
Red Hat 3scale API Management 2.5

Using the Developer Portal

A properly configured Developer Portal provides plenty of functionalities for API
management.

Last Updated: 2020-01-28

Red Hat 3scale API Management 2.5 Using the Developer Portal

A properly configured Developer Portal provides plenty of functionalities for API management.

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide documents the uses of the Developer Portal on Red Hat 3scale API Management 2.5.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PART I. API DOCUMENTATION

CHAPTER 1. ADDING SPECIFICATIONS TO 3SCALE
1.1. NAVIGATE TO SERVICE SPECIFICATIONS IN ACTIVEDOCS
1.2. CREATE A SERVICE SPECIFICATION
1.3. WORKING WITH YOUR FIRST ACTIVEDOC

CHAPTER 2. CREATE AN OAS SPEC
2.1. ABOUT OPENAPI SPECIFICATION (OAS)
2.2. 3SCALE ACTIVEDOCS AND OAS
2.3. CREATING THE SPECIFICATION OF YOUR API

2.3.1. Learning by example: the Petstore API
2.3.2. More on the OAS specification

2.3.2.1. OAS object
2.3.2.2. Info object
2.3.2.3. Paths object

2.3.3. Useful tools
2.3.3.1. Extension to the OAS specification: auto-fill of API keys

CHAPTER 3. ACTIVEDOCS & OAUTH
3.1. PREREQUISITES
3.2. CLIENT CREDENTIALS AND RESOURCE OWNER FLOWS

CHAPTER 4. PUBLISH ACTIVEDOCS IN THE DEVELOPER PORTAL

CHAPTER 5. UPGRADE SWAGGER UI 2.1.3 TO 2.2.10

PART II. API VERSIONING

CHAPTER 6. API VERSIONING
6.1. GOAL
6.2. PREREQUISITES
6.3. URL VERSIONING
6.4. ENDPOINT VERSIONING
6.5. CUSTOM HEADER VERSIONING

PART III. API AUTHENTICATION

CHAPTER 7. AUTHENTICATION PATTERNS
7.1. SUPPORTED AUTHENTICATION PATTERNS
7.2. SETTING UP AUTHENTICATION PATTERNS

7.2.1. Select the authentication mode for your service
7.2.2. Select the Authentication mode you want to use
7.2.3. Ensure your API accepts the correct types of credentials
7.2.4. Create an application to test credentials

7.3. STANDARD AUTHENTICATION PATTERNS
7.3.1. API key
7.3.2. App_ID and App_Key pair
7.3.3. OpenID Connect

7.4. REFERRER FILTERING

CHAPTER 8. OPENID CONNECT INTEGRATION
8.1. JWT VERIFICATION AND PARSING BY APICAST
8.2. CLIENT CREDENTIALS SYNCHRONIZATION BY ZYNC

4

5
5
5
6

8
8
8
8
8
9
9

10
10
10
10

13
13
13

17

18

19

20
20
20
20
23
23

24

25
25
25
25
26
26
26
26
26
27
27
27

31
31
32

Table of Contents

1

. .

. .

8.3. CONFIGURE RED HAT SINGLE SIGN-ON INTEGRATION
8.3.1. Configure Zync to use custom CA certificates
8.3.2. Configure Red Hat Single Sign-On
8.3.3. Configure 3scale

8.4. OAUTH 2.0 SUPPORTED FLOWS
8.4.1. How OAuth 2.0 supported flows work
8.4.2. Configuring OAuth 2.0 supported flows

8.5. TEST THE INTEGRATION
8.5.1. Test the client synchronization
8.5.2. Test the API authorization flow

8.6. EXAMPLE OF THE INTEGRATION

PART IV. OPENAPI SPECIFICATION (OAS)

CHAPTER 9. CREATING A NEW SERVICE BASED ON OPENAPI SPECIFICATION (OAS)
9.1. INTRODUCTION
9.2. PREREQUISITES
9.3. FEATURES OF OPENAPI SPECIFICATION
9.4. USING OPENAPI SPECIFICATION

9.4.1. Detecting OpenAPI definition from the filename path
9.4.2. Detecting OpenAPI definition from a URL
9.4.3. Detecting OpenAPI definition from stdin

32
32
33
34
34
35
35
35
35
36
36

38

39
39
39
39
39
40
40
40

Red Hat 3scale API Management 2.5 Using the Developer Portal

2

Table of Contents

3

PART I. API DOCUMENTATION

Red Hat 3scale API Management 2.5 Using the Developer Portal

4

CHAPTER 1. ADDING SPECIFICATIONS TO 3SCALE
By the end of the section, you will have ActiveDocs set up for your API.

3scale offers a framework to create interactive documentation for your API.

With OpenAPI Specification (OAS) 2.0 (based on the OpenAPI Specification (OAS)) you will have a
functional documentation for your API, which will help your developers explore, test and integrate with
your API.

1.1. NAVIGATE TO SERVICE SPECIFICATIONS IN ACTIVEDOCS

Navigate to [your_API_name] → ActiveDocs in your Admin Portal. This will lead you to the list of your
service specifications for your API (initially empty).

You can add as many service specifications as you want. Typically, each service specification
corresponds to one of your APIs. For example, 3scale has specifications for each 3scale API , such as
Service Management, Account Management, Analytics, and Billing.

1.2. CREATE A SERVICE SPECIFICATION

When you add a new service spec, you will have to provide:

Name

System name (required to reference the Servcie specification from the Developer Portal)

Whether you want the specification to be public or not

A description that is only meant for your own consumption

API JSON spec, which you can see in the figure below.

The API JSON specification is the "secret ingredient" of ActiveDocs.

You must generate the specification of your API according to the specification proposed by OpenAPI
Specification (OAS). In this tutorial we assume that you already have a valid OpenAPI Specification
(OAS) 2.0-compliant specification of your API.

CHAPTER 1. ADDING SPECIFICATIONS TO 3SCALE

5

https://github.com/swagger-api/swagger-spec
https://github.com/3scale/porta/tree/master/doc/active_docs
https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md
https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md

1.3. WORKING WITH YOUR FIRST ACTIVEDOC

Once you have added your first ActiveDoc, you can see it listed in [your_API_name] → ActiveDocs. You
can edit it as necessary, delete it, or switch it from public to private. You can also detach it from your API
or attach it to any other API. You can see all your ActiveDocs (attached to an API or not) in Audience →
Developer Portal → ActiveDocs

You can also preview what your ActiveDocs looks like by clicking on the name you gave the service
specification (in the example it was called it Pet Store). You can do this even if the specification is not
public yet.

This is what your ActiveDoc will look like:

Red Hat 3scale API Management 2.5 Using the Developer Portal

6

CHAPTER 1. ADDING SPECIFICATIONS TO 3SCALE

7

CHAPTER 2. CREATE AN OAS SPEC
This section will help you to create a OpenAPI Specification 2.0-compliant (OAS) specification for your
RESTful API, which is required to power ActiveDocs on your Developer Portal. If you only would like to
read the code, all the examples are on OAS Petstore example source code .

2.1. ABOUT OPENAPI SPECIFICATION (OAS)

3scale ActiveDocs are based on the specification of RESTful web services called Swagger (from
Wordnik). This example is based on the Extended OpenAPi SpecificationPetstore example and draws all
the specification data from the OpenAPi Specification 2.0 specification document.

OAS is not only a specification. It also provides a full feature framework around it:

1. Servers for the specification of the resources in multiple languages (NodeJS, Scala, and
others).

2. A set of HTML/CSS/Javascripts assets that take the specification file and generate the
attractive UI.

3. A OAS codegen project, which allows generation of client libraries automatically from a
Swagger-compliant server. Support to create client-side libraries in a number of modern
languages.

2.2. 3SCALE ACTIVEDOCS AND OAS

ActiveDocs is not a OAS replacement but an instantiation of it. With ActiveDocs, you don’t have to run
your own OAS server or deal with the UI components of the interactive documentation. The interactive
documentation is served and rendered from your 3scale Developer Portal.

The only thing you need to do is to build a Swagger-compliant specification of your API, add it on your
Admin Portal, and the interactive documentation will be available. Your developers will be able to launch
requests against your API through your Developer Portal.

If you already have a Swagger-compliant specification of your API, you can add it in your Developer
Portal (see the tutorial on the ActiveDocs configuration).

3scale extended the OAS specification in several ways to accommodate certain features that were
needed for our own interactive API documentation:

Auto-fill of API keys

OAS proxy to allow calls to non-CORS enabled APIs

2.3. CREATING THE SPECIFICATION OF YOUR API

We recommend that you first read the original specification from the original source: the OAS
Specification.

On the OAS site there are multiple examples of specifications. If you like to learn by example, you can
follow the example of the Petstore API by the OAS API Team.

2.3.1. Learning by example: the Petstore API

Red Hat 3scale API Management 2.5 Using the Developer Portal

8

https://github.com/swagger-api/swagger-spec/blob/master/examples/v2.0/json/petstore-expanded.json
https://github.com/swagger-api/swagger-core
http://www.wordnik.com/
https://github.com/swagger-api/swagger-spec/blob/master/examples/v2.0/json/petstore-expanded.json
https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md
https://github.com/swagger-api/swagger-ui
https://github.com/swagger-api/swagger-codegen
https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md

The Petstore API is an extremely simple API. It is meant as a learning tool, not for production.

The Petstore API is composed of 4 methods:

GET /api/pets - returns all pets from the system

POST /api/pets - creates a new pet in the store

GET /api/pets/{id} - returns a pet based on a single ID

DELETE /api/pets/{id} - deletes a single pet based on the ID

Because Petstore is integrated with 3scale API Management, you have to add an additional parameter
for authentication – for example, the standard User Key authentication method (there are others) sent
in the headers.

You need to add the parameters:

user_key: {user_key}

The user_key will be sent by the developers in their requests to your API. The developers will obtain
those keys on your Developer Portal. On receiving the key, you must to perform the authorization check
against 3scale using the Service Management API.

For your developers, the documentation of your API represented in cURL calls would look like this:

curl -X GET "http://example.com/api/pets?tags=TAGS&limit=LIMIT" -H "user_key: {user_key}"
curl -X POST "http://example.com/api/pets" -H "user_key: {user_key}" -d "{ "name": "NAME", "tag":
"TAG", "id": ID }"
curl -X GET "http://example.com/api/pets/{id}" -H "user_key: {user_key}"
curl -X DELETE "http://example.com/api/pets/{id}" -H "user_key: {user_key}"

However, if you want the documentation to look like the OAS Petstore Documentation , you must create
a Swagger-compliant specification like the associated Petstore swagger.json file. You can use this
specification out-of-the-box to test your ActiveDocs. But remember that this is not your API. You can
learn more in the next section.

2.3.2. More on the OAS specification

The OAS specification relies on a resource declaration that maps to a hash encoded in JSON. Take the
Petstore swagger.json file as an example and go step by step.

2.3.2.1. OAS object

This is the root document object for the API specification. It lists all the highest level fields.

CHAPTER 2. CREATE AN OAS SPEC

9

https://support.3scale.net/howtos/api-authentication#authentication-patterns
http://petstore.swagger.io/

WARNING

The host must be a domain and not an IP address. 3scale will proxy the requests
made against your Developer Portal to your host and render the results. This
requires your host and basePath endpoint to be whitelisted by us for security
reasons. You can only declare a host that is your own. 3scale reserves the right to
terminate your account if we detect that you’re proxying a domain that does not
belong to you. This means that local host or any other wildcard domain will not work.

2.3.2.2. Info object

The Info object provides the metadata about the API. This will be presented in the ActiveDocs page.

2.3.2.3. Paths object

The paths object holds the relative paths to the individual endpoints. The path is appended to the
basePath to construct the full URL. The paths may be empty, due to ACL constraints.

Parameters that are not objects use primitive data types. In Swagger, these are based on the types
supported by the JSON-Schema Draft 4. There is an additional primitive data type "file" but it will work
only if the API endpoint has CORS enabled (so the upload won’t go through api-docs gateway).
Otherwise, it will get stuck on the gateway level.

Supported datatypes

Currently OAS supports the following dataTypes:

integer with possible formats: int32 and int64. Both formats are signed.

number with possible formats: float and double

string with possible formats (besides the unformatted version): byte, date, date-time, password

boolean

2.3.3. Useful tools

The JSON Editor Online is useful if you are very familiar with the JSON notation. It gives a pretty format
to compact JSON, and it also provides a JSON object browser.

The OAS Editor is another useful tool. This enables you to create and edit your OAS API specification
written in YAML in your browser and preview it in real time. You can also generate a valid JSON
specification, which you can upload later in your 3scale Admin Portal. You can use the live demo version
with limited functionality or deploy your own OAS Editor.

2.3.3.1. Extension to the OAS specification: auto-fill of API keys

Auto-fill of API keys is a useful extension to the OAS specification in 3scale ActiveDocs. In the
parameters, you can define the x-data-threescale-name field with the following values depending on
your API authentication mode:

user_keys - returns the user keys for applications of the services that use API key

Red Hat 3scale API Management 2.5 Using the Developer Portal

10

http://json-schema.org/latest/json-schema-core.html#anchor8
http://www.jsoneditoronline.org/
https://github.com/swagger-api/swagger-editor
http://editor.swagger.io

user_keys - returns the user keys for applications of the services that use API key
authentication only.

app_ids - returns the IDs for applications of the services that use App ID/App Key (OAuth and
OpenID Connect are also supported for backwards compatibility).

app_keys - returns the keys for applications of services that use App ID/App Key (OAuth and
OpenID Connect are also supported for backwards compatibility).

client_ids - returns the client IDs for applications of the services that use OAuth/OpenID
Connect authentication only.

client_sercrets - returns the client secrets for applications of the services that use
OAuth/OpenID Connect authentication only.

API key authentication example

The following example shows using "x-data-threescale-name": "user_keys" for API key authentication
only:

"parameters": [
 {
 "name": "user_key",
 "description": "Your access API Key",
 "type": "string",
 "in": "query",
 "x-data-threescale-name": "user_keys",
 "required": true
 },
]

App ID/App Key authentication example

For App ID/App Key authentication mode, specify "x-data-threescale-name": "app_ids" for the
parameter that represents the application ID, and "x-data-threescale-name": "app_keys" for the
parameter that represents the application key.

When you have declared your parameters, ActiveDocs will automatically prompt the ActiveDocs user to
log in to the Developer Portal to get their keys as shown in the following screenshot:

If the user is already logged in, ActiveDocs will show the latest five keys that could be relevant for them
so that they can test right away without having to copy and paste their keys.

CHAPTER 2. CREATE AN OAS SPEC

11

NOTE

The x-data-threescale-name field is an extension to the OAS specification that will be
ignored outside the domain of ActiveDocs.

Red Hat 3scale API Management 2.5 Using the Developer Portal

12

CHAPTER 3. ACTIVEDOCS & OAUTH
By the end of this tutorial, you will have a set of ActiveDocs that will allow your users to easily test and
call your OAuth-enabled API from one place.

If you have an OAuth-enabled API, you will want to show off its capabilities to your users. How can you
do this using ActiveDocs? While this is a bit trickier than usual, it’s still possible.

3.1. PREREQUISITES

Before you begin, you will need to have a Red Hat Single Sign-On instance set up, and OpenID Connect
integration configured. See OpenID Connect integration documentation for information on how to set it
up. Additionally, you will need to be familiar with how to set up ActiveDocs – see Add ActiveDocs and
Create a (Swagger) spec .

3.2. CLIENT CREDENTIALS AND RESOURCE OWNER FLOWS

This first example is for an API using the OAuth 2.0 client credentials flow. This API accepts any path and
returns information about the request (path, request parameters, headers, etc.). The Echo API is only
accessible using a valid access token. Users of the API are only able to call it once they have exchanged
their credentials (client_id and client_secret) for an access token.

In order for users to be able to call the API from ActiveDocs, they will need to request an access token.
Since this is just a call to an OAuth authorization server, you can create an ActiveDocs spec for the
OAuth token endpoint. This will allow you to call this endpoint from within ActiveDocs. In this case, for a
client credentials flow, the Swagger JSON spec looks like this:

{
 "swagger": "2.0",
 "info": {
 "version": "v1",
 "title": "OAuth for Echo API",
 "description": "OAuth2.0 Client Credentails Flow for authentication of our Echo API.",
 "contact": {
 "name": "API Support",
 "url": "http://www.swagger.io/support",
 "email": "support@swagger.io"
 }
 },
 "host": "red-hat-sso-instance.example.com",
 "basePath": "/auth/realms/realm-example/protocol/openid-connect",
 "schemes": [
 "http"
],
 "paths": {
 "/token": {
 "post": {
 "description": "This operation returns the access token for the API. You must call this before
calling any other endpoints.",
 "operationId": "oauth",
 "parameters": [
 {
 "name": "client_id",
 "description": "Your client id",

CHAPTER 3. ACTIVEDOCS & OAUTH

13

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.5/html/using_the_developer_portal/openid-connect
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.5/html/using_the_developer_portal/add-activedocs
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.5/html/using_the_developer_portal/create-activedocs-spec

For a resource owner OAuth flow, you’ll probably also want to add parameters for a username and
password, as well as any other parameters that you require in order to issue an access token. For this
client credentials flow example, you’re just sending the client_id and client_secret – which can be
populated from the 3scale values for signed-in users – as well as the grant_type.

Then in the ActiveDocs spec for our Echo API we need to add the access_token parameter instead of
the client_id and the client_secret.

 "type": "string",
 "in": "query",
 "required": true
 },
 {
 "name": "client_secret",
 "description": "Your client secret",
 "type": "string",
 "in": "query",
 "required": true
 },
 {
 "name": "grant_type",
 "description": "OAuth2 Grant Type",
 "type": "string",
 "default": "client_credentials",
 "required": true,
 "in": "query",
 "enum": [
 "client_credentials",
 "authorization_code",
 "refresh_token",
 "password"
]
 }
]
 }
 }
 }
}

{
 "swagger": "2.0",
 "info": {
 "version": "v1",
 "title": "Echo API",
 "description": "A simple API that accepts any path and returns information about the request",
 "contact": {
 "name": "API Support",
 "url": "http://www.swagger.io/support",
 "email": "support@swagger.io"
 }
 },
 "host": "echo-api.3scale.net",
 "basePath": "/v1/words",
 "schemes": [
 "http"
],

Red Hat 3scale API Management 2.5 Using the Developer Portal

14

You can then include your ActiveDocs in the Developer Portal as usual. In this case, since you want to
specify the order in which they display to have the OAuth endpoint first, it looks like this:

 "produces": [
 "application/json"
],
 "paths": {
 "/{word}.json": {
 "get": {
 "description": "This operation returns information about the request (path, request parameters,
headers, etc.),
 "operationId": "wordsGet",
 "summary": "Returns the path of a given word",
 "parameters": [
 {
 "name": "word",
 "description": "The word related to the path",
 "type": "string",
 "in": "path",
 "required": true
 },
 {
 "name": "access_token",
 "description": "Your access token",
 "type": "string",
 "in": "query",
 "required": true
 }
]
 }
 }
 }
}

{% active_docs version: "2.0" services: "oauth" %}

<script type="text/javascript">
 $(function () {
 window.swaggerUi.load(); // <-- loads first swagger-ui

 // do second swagger-ui

 var url = "/swagger/spec/echo-api.json";
 window.anotherSwaggerUi = new SwaggerUi({
 url: url,
 dom_id: "another-swagger-ui-container",
 supportedSubmitMethods: ['get', 'post', 'put', 'delete', 'patch'],
 onComplete: function(swaggerApi, swaggerUi) {
 $('#another-swagger-ui-container pre code').each(function(i, e) {hljs.highlightBlock(e)});
 },
 onFailure: function(data) {
 log("Unable to Load Echo-API-SwaggerUI");

CHAPTER 3. ACTIVEDOCS & OAUTH

15

 },
 docExpansion: "list",
 transport: function(httpClient, obj) {
 log("[swagger-ui]>>> custom transport.");
 return ApiDocsProxy.execute(httpClient, obj);
 }
 });

 window.anotherSwaggerUi.load();

 });
</script>

Red Hat 3scale API Management 2.5 Using the Developer Portal

16

CHAPTER 4. PUBLISH ACTIVEDOCS IN THE DEVELOPER
PORTAL

By the end of this tutorial, you will have published your ActiveDocs in your developer portal.

Once you’re happy with your Swagger, and you have added it to 3scale , it’s time to make it public and
link it on your Developer Portal so it can be used by your API developers.

You’ll have to add the following snippet to the content of any page of your Developer Portal. This must
be done through the CMS of your Developer Portal. Note that SERVICE_NAME should be the system
name of the service spec, pet_store in the example.

NOTE

You can specify only one service on one page. If you want to display multiple
specifications, the best way is to do it on different pages.

This snippet requires jQuery, which is typically already included in the main layout
of your Developer Portal. If you remove it from there, make sure you add the
jQuery dependency on the page with ActiveDocs.

Make sure you have Liquid tags enabled on the CMS page.

The version used in the Liquid tag {{ '{% active_docs version: "2.0" ' }}%}
should correspond to that of the Swagger spec.

If you would like to fetch your specification from an external source, change the
JavaScript code as follows:

You can see an example in the snippet in on line 14. Just make sure that this line is not inside the
comments block.

<h1>Documentation</h1>
<p>Use our live documentation to learn about Echo API</p>
{% active_docs version: "2.0" services: "SERVICE_NAME" %}
<script type="text/javascript">
 $(function () {
 {% comment %}
 // you have access to swaggerUi.options object to customize its behaviour
 // such as setting a different docExpansion mode
 window.swaggerUi.options['docExpansion'] = 'none';
 // or even getting the swagger specification loaded from a different url
 window.swaggerUi.options['url'] = "http://petstore.swagger.io/v2/swagger.json";
 {% endcomment %}
 window.swaggerUi.load();
 });
</script>

$(function () {
 window.swaggerUi.options['url'] = "SWAGGER_JSON_URL";
 window.swaggerUi.load();
});

CHAPTER 4. PUBLISH ACTIVEDOCS IN THE DEVELOPER PORTAL

17

CHAPTER 5. UPGRADE SWAGGER UI 2.1.3 TO 2.2.10
If you are using a version of 3scale that contains Swagger UI 2.1.3, you can upgrade to Swagger UI
version 2.2.10.

Previous implementations of Swagger UI 2.1.3 in the 3scale developer portal rely on the presence of a
single {% active_docs version: "2.0" %} liquid tag in the Documentation page. With the introduction
of support for Swagger 2.2.10 in 3scale, the implementation method changes to multiple cdn_asset and
include liquid tags.

NOTE

Previous versions of Swagger UI in 3scale will continue to be called using the legacy
active_docs liquid tag method.

Perform the following steps to upgrade Swagger UI 2.1.3 to 2.2.10:

1. Log in to your 3scale AMP admin portal

2. Navigate to the Developer Portal → Documentation page, or the page in which you want to
update your Swagger UI implementation

3. In the code pane replace the {% active_docs version: "2.0" %} liquid tag with the following
assets with the cdn_asset liquid tag and the new partial shared/swagger_ui:

{% cdn_asset /swagger-ui/2.2.10/swagger-ui.js %}
{% cdn_asset /swagger-ui/2.2.10/swagger-ui.css %}

{% include 'shared/swagger_ui' %}

4. By default, Swagger UI loads the ActiveDocs specification published in APIs > ActiveDocs.
Load a different specification by adding the following window.swaggerUi.options line before
the window.swaggerUi.load(); line, where <SPEC_SYSTEM_NAME> is the system name of
the specification you want to load:

window.swaggerUi.options['url'] = "{{provider.api_specs.<SPEC_SYSTEM_NAME>.url}}";

Red Hat 3scale API Management 2.5 Using the Developer Portal

18

PART II. API VERSIONING

PART II. API VERSIONING

19

CHAPTER 6. API VERSIONING
The 3scale API Management Platform allows API versioning. You have three ways to version your API
correctly when you manage your API with 3scale. The following methods are examples of how you could
version your API within the 3scale Gateway, which provides extra features due to 3scale’s architecture.

6.1. GOAL

This guide is designed to give you enough information to implement an API versioning system within
3scale.

Suppose you have an API for finding songs. Users can search for their favorite songs by different
keywords: artist, songwriter, song title, album title, and so on. Assume you had an initial version (v1) of the
API and now you have developed a new, improved version (v2).

The following sections describe the three most typical ways of implementing an APR versioning system
using 3scale:

URL versioning

Endpoint versioning

Custom header versioning

6.2. PREREQUISITES

Complete the basics of connecting your API to 3scale before using this quick start guide.

6.3. URL VERSIONING

If you have different endpoints for searching songs (by artist, by song title, and so on), with URL
versioning you would include the API version as part of the URI, for example:

1. api.songs.com/v1/songwriter

2. api.songs.com/v2/songwriter

3. api.songs.com/v1/song

4. api.songs.com/v2/song

5. and so on

NOTE

When you use this method, you should have planned since v1 that you were going to
version your API.

The 3scale Gateway would then extract the endpoint and the version from the URI. This approach
allows you to set up application plans for any version/endpoint combination. You can then associate
metrics with those plans and endpoints, and you can chart the usage for each endpoint on each version.

The following screen capture shows 3scale’s flexibility.

Figure 6.1. Versioning Plan Feature

Red Hat 3scale API Management 2.5 Using the Developer Portal

20

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.5/html-single/product#getting-started

Figure 6.1. Versioning Plan Feature

The only thing left to do is go to [your_API_name] > Integration > Configuration in your 3scale Admin
Portal and map your URIs to your metrics, as shown in the following diagram.

Figure 6.2. Mapping URIs to metrics

You now have two different versions of your API, each with different features enabled. You also have full
control and visibility on their usage.

CHAPTER 6. API VERSIONING

21

If you want to communicate to all of your users that they should move to the API v2, you can send an
internal note asking them to do so. You can monitor who makes the move and see how the activity on v1
decreases while the activity on v2 increases. By adding the metric in your authorization calls to 3scale,
you can see how much overall traffic is hitting v1 vs. v2 endpoints and get an idea of when it is safe to
deprecate v1.

Figure 6.3. Versioning

If some users continue to use v1, you can filter out only those users to send another internal note about
switching to v2.

3scale provides a three-step method for sending deprecation notices.

1. Navigate to Audience > Applications > Listing and filter the list by the application plan that you
want to send the deprecation note and click Search.

2. Click the multiselector to select all of the users for that particular version. New options display
and allow you to perform bulk operations, such as Send email, Change Application Plan, and
Change State.

3. Click Send email and follow the steps to send a deprecation notice to those customers who are
still under the obsolete version.

The following image provides a visual reference.

Figure 6.4. Sending deprecation note

Red Hat 3scale API Management 2.5 Using the Developer Portal

22

For each authrep call that is made to an endpoint, you authenticate only once but report twice: once for
the endpoint and once for the API version. There is no double-billing because the call can be
authenticated only one time. For each call you make to any endpoint of a specific API version, you
aggregate the hits on a convenient metric named after the version number (v1, v2, and so on), which you
can use to compare full version traffic with each other.

6.4. ENDPOINT VERSIONING

You have the endpoint change for each version (api.cons.com/author_v1) with endpoint versioning. The
gateway extracts the endpoint and the version from the endpoint itself. This method , as well as the
previous method, allows the API provider to map external URLs to internal ones.

The endpoint versioning method can only be performed with the on-premise deployment method as it
requires a URL rewrite using the LUA scripts that are provided as part of the on-premise configuration.

EXTERNAL INTERNAL

api.songs.com/songwriter_v1 could be rewritten to internal.songs.com/search_by_so
ngwriter

api.songs.com/songwriter_v2 could be rewritten to internal.songs.com/songwriter

Almost everything (mapping, application plans features, and so on.) works exactly the same as in the
previous method.

6.5. CUSTOM HEADER VERSIONING

With custom header versioning, you use a header (that is, "x-api-version") instead of the URI to specify
the version.

The gateway then extracts the endpoint from the path and the version from the header. Just as before,
you can analyze and visualize any combination of path/version that you want. This approach has several
inconveniences, regardless of the API management system you use. See API versioning methods, a brief
reference for more information. Here are a few pointers on how 3scale works.

Just like the previous method, custom header versioning can only be applied to on-premise
hosted APIs because it requires some parsing/processing of the request headers to correctly
route the authrep calls. This type of custom processing can only be done using Lua scripting.

With this method, the fine-grained feature separation of the previous methods is much harder
to achieve.

One of the biggest advantages of using this methodology, and the main reason some API
providers choose it, is because the URL and endpoints of your customers will never change.
When a developer wants to switch from one API version to another, they only have to change
the header. Everything else works the same.

CHAPTER 6. API VERSIONING

23

https://www.3scale.net/2016/06/api-versioning-methods-a-brief-reference/

PART III. API AUTHENTICATION

Red Hat 3scale API Management 2.5 Using the Developer Portal

24

CHAPTER 7. AUTHENTICATION PATTERNS
By the end of this tutorial you will know how to set the authentication pattern on your API and the effect
that this has on applications communicating with your API.

Depending on your API, you may need to use different authentication patterns to issue credentials for
access to your API. These can range from API keys to openAuth tokens and custom configurations. This
tutorial covers how to select from the available standard Authentication Patterns.

7.1. SUPPORTED AUTHENTICATION PATTERNS

3scale supports the following authentication patterns out of the box:

Standard API Keys: Single randomized strings or hashes acting as an identifier and a secret
token.

Application Identifier and Key pairs: Immutable identifier and mutable secret key strings.

OpenID Connect

7.2. SETTING UP AUTHENTICATION PATTERNS

7.2.1. Select the authentication mode for your service

Navigate to the API service you want to work on (there may be only one service named API in which case
select this). Go to the Integration section.

Each service that you operate can use a different authentication pattern, but only one pattern can be
used per service.

IMPORTANT

CHAPTER 7. AUTHENTICATION PATTERNS

25

IMPORTANT

You must not change the authentication pattern after the credentials have been
registered because the behavior of the service may then become unpredictable. To
change authentication patterns we recommend creating a new service and migrating
customers.

7.2.2. Select the Authentication mode you want to use

To select an authentication mode, scroll to the AUTHENTICATION section. Here, you can choose one of
the following options:

API Key (user_key)

App_ID and App_Key Pair

OpenID Connect

7.2.3. Ensure your API accepts the correct types of credentials

Depending on the credential type chosen, you may need to accept different parameters in your API calls
(key fields, IDs etc.). The names of these parameters may not be the same as those used internally at
3scale. The 3scale authentication will function correctly if the correct parameter names are used in calls
to the 3scale backend.

7.2.4. Create an application to test credentials

To ensure that the credential sets are working, you can create a new application to issue credentials to
use the API. Navigate to the Accounts area of your Admin Portal’s dashboard, click the account you want
to use and click new application.

Filling out the form and clicking save will create a new application with credentials to use the API. You
can now use these credentials to make calls to your API and records will be checked against the 3scale
list of registered applications.

7.3. STANDARD AUTHENTICATION PATTERNS

3scale supports the authentication patterns detailed in the following sections.

7.3.1. API key

The simplest form of credential supported is the single API model. Here, each application with
permissions on the API has a single (unique) long character string; example:

By default, the name of the key parameter is user_key. You can use this label or choose another, such
as API-key. If choosing another label, you need to map the value before you make the authorization calls
to 3scale. The string acts as both, an identifier and a secret token, for use of the API. It is recommended
that you use such patterns only in environments with low security requirements or with SSL security on
API calls. Following are the operations that can be carried out on the token and application:

Application Suspend: This suspends the applications access to the API and, in effect, all calls to
the API with the relevant key will be suspended.

API-key = 853a76f7c8d5f4a1ee8bf10a4e0d1f13

Red Hat 3scale API Management 2.5 Using the Developer Portal

26

Application Resume: Undoes the effect of an application suspend action.

Key Regenerate: This action generates a new random string key for the application and
associates it with the application. Immediately after this action is taken, calls with the previous
token will cease to be accepted.

The latter action can be triggered from the API Administration in the Admin Portal and (if permitted)
from the API Developers User console.

7.3.2. App_ID and App_Key pair

The API Key Pattern combines the identity of the application and the secret usage token in one token;
however, this pattern separates the two. Each application using the API, issues an immutable initial
identifier known as the Application ID (App ID). The App ID is constant and may or may not be secret. In
addition, each application may have 1-n Application Keys (App_Keys). Each Key is associated directly
with the App_ID and should be treated as secret.

In the default setting, developers can create up to five keys per application. This allows a developer to
create a new key, add it to their code, redeploy their application, and then disable old keys. This does not
cause any application downtime the way an API Key Regeneration would.

Statistics and rate limits are always kept at the application ID level of granularity and not per API Key. If a
developer wants to track two sets of statistics, they should create two applications rather than two keys.

It is also possible to change the mode in the system and allow applications to be created in the absence
of application keys. In this case the 3scale system will authenticate access based on the App ID only (and
no key checks are made). This mode is useful for widget type scenarios or where rate limits are applied
to users rather than applications. In most cases you will want your API to enforce the presence of at
least one application key per application present. This setting is available in [your_API_name] >
Integration > Settings.

7.3.3. OpenID Connect

For information on OpenID Connect authentication, see the OpenID Connect integration section.

7.4. REFERRER FILTERING

3scale supports the Referrer Filtering feature that can be used to whitelist IP addresses or domain
names from where an application can access the API. The API clients specify the referrer value in the
Referer header. The purpose and the usage of the Referer header are described in the RFC 7231,
section 5.5.2: Referer.

To enable the Referrer Filtering feature go to [your_API_name] > Integration > Settings, click the
Require referrer filtering checkbox and click Update Service.

app_id = 80a4e03 app_key = a1ee8bf10a4e0d1f13853a76f7c8d5f4

CHAPTER 7. AUTHENTICATION PATTERNS

27

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.5/html/using_the_developer_portal/openid-connect
https://tools.ietf.org/html/rfc7231#section-5.5.2

The developers with access to your API must configure allowed domain/IP referrers from the developer
portal.

In the Admin Portal on the application details page for all applications that belong to this service a new
Referrer Filters section displays. Here, the admin can also configure a whitelist of the allowed Referrer
header values for this application.

Red Hat 3scale API Management 2.5 Using the Developer Portal

28

You can set a maximum of five referrer values per application.

The value can only consist of Latin letters, numbers, and special characters *, ., and -. * can be used for
wildcard values. If the value is set to *, any referrer value will be allowed, so the referrer check will be
bypassed.

For the Referrer Filtering feature to work, the APIcast Referrer policy must be enabled in the service
policy chain.

When the Require referrer filtering feature and the 3scale Referrer policy are enabled, the
authorization works as follows:

1. The applications that do not have Referrer Filters specified are authorized normally only using
the provided credentials.

2. For the applications that have Referrer Filters values set, APIcast extracts the referrer value
from the Referer header of the request and sends it as referrer param in the AuthRep
(authorize and report) request to the Service Management API. The following table shows the
AuthRep responses for different combination of the referrer filtering parameters.

referrer
parameter
passed?

Referrer Filters
configured for the
app?

Referrer
parameter value

HTTP Response Response body

Yes Yes matches referrer
filter

200 OK <status>
<authorized>tru
e</authorized>
</status>

Yes No matches referrer
filter

200 OK <status>
<authorized>tru
e</authorized>
</status>

CHAPTER 7. AUTHENTICATION PATTERNS

29

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.5/html-single/deployment_options/#referrer_policy

Yes Yes does not match
referrer filter

409 Conflict <status>
<authorized>fal
se</authorized>
<reason>referre
r
"test.example.c
om" is not
allowed</reaso
n>
(test.example.c
om is an example)

Yes No does not match
referrer filter

200 OK <status>
<authorized>tru
e</authorized>
</status>

Yes Yes * 200 OK <status>
<authorized>tru
e</authorized>
</status>

Yes No * 200 OK <status>
<authorized>tru
e</authorized>
</status>

No Yes  —  409 Conflict <status>
<authorized>fal
se</authorized>
<reason>referre
r is
missing</reaso
n>

No No  —  200 OK <status>
<authorized>tru
e</authorized>
</status>

referrer
parameter
passed?

Referrer Filters
configured for the
app?

Referrer
parameter value

HTTP Response Response body

The calls that are not authorized by AuthRep are rejected by APIcast with an "Authorization Failed" error.
You can configure the exact status code and the error message on the service Integration page.

Red Hat 3scale API Management 2.5 Using the Developer Portal

30

CHAPTER 8. OPENID CONNECT INTEGRATION
3scale integrates with the 3rd-party Identity Providers (IdP) for authenticating the API requests using
the OpenID Connect specification. OpenID Connect is built on top of OAuth 2.0 that complements the
OAuth 2.0 Authorization framework with an authentication mechanism. When OpenID Connect
authentication option is used, the API requests are authenticated using the access tokens in the JSON
Web Token (JWT) format (RFC 7519).

The integration consists of the following two parts:

Section 8.1, “JWT verification and parsing by APIcast”

Section 8.2, “Client credentials synchronization by Zync”

Red Hat 3scale API Management fully supports both integration points with Red Hat Single Sign-On
(RH-SSO) acting as the OpenID Provider. See the supported version of RH-SSO on the Supported
Configurations page. APIcast integration is also tested with ForgeRock.

In both cases, you can configure the integration by specifying the OpenID Connect Issuer field in the
APIcast Configuration on the Integration page of the service using OpenID Connect authentication
option. For instructions, see Section 8.3, “Configure Red Hat Single Sign-On integration” .

8.1. JWT VERIFICATION AND PARSING BY APICAST

The API requests to the service using the OpenID Connect authentication mode should provide the
access token in the JWT format, issued by the OpenID Provider, in the Authorization header using
Bearer schema. The header should look like the following example:

Authorization: Bearer <JWK>

Example:

Authorization: Bearer:
eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJodHRwczovL2lkcC5leGFtcGxlLmNvbSIsInN1YiI
6ImFiYzEyMyIsIm5iZiI6MTUzNzg5MjQ5NCwiZXhwIjoxNTM3ODk2MDk0LCJpYXQiOjE1Mzc4OTI0OT
QsImp0aSI6ImlkMTIzNDU2IiwidHlwIjoiQmVhcmVyIn0.LM2PSmQ0k8mR7eDS_Z8iRdGta-Ea-
pJRrf4C6bAiKz-Nzhxpm7fF7oV3BOipFmimwkQ_-mw3kN--
oOc3vU1RE4FTCQGbzO1SAWHOZqG5ZUx5ugaASY-
hUHIohy6PC7dQl0e2NlAeqqg4MuZtEwrpESJW-
VnGdljrAS0HsXzd6nENM0Z_ofo4ZdTKvIKsk2KrdyVBOcjgVjYongtppR0cw30FwnpqfeCkuATeINN5OK
HXOibRA24pQyIF1s81nnmxLnjnVbu24SFE34aMGRXYzs4icMI8sK65eKxbvwV3PIG3mM0C4ilZPO26d
oP0YrLfVwFcqEirmENUAcHXz7NuvA

The JWT token contains a signature that the token’s receiver can verify and ensure that the token was
signed by a known issuer and that its content has not been changed. 3scale supports RSA signature
based on the public/private key pair. Here, the issuer signs the JWT token using a private key. APIcast
verifies this token using a public key.

APIcast uses OpenID Connect Discovery for getting the JSON Web Keys (JWK) that can be used for
verifying the JWT signature.

On each request, APIcast does the following:

1. Verifies the JWT token using the public key.

CHAPTER 8. OPENID CONNECT INTEGRATION

31

https://openid.net/connect/
https://tools.ietf.org/html/rfc7519
https://access.redhat.com/products/red-hat-single-sign-on
https://access.redhat.com/articles/2798521
https://www.forgerock.com/
https://openid.net/specs/openid-connect-discovery-1_0.html
https://tools.ietf.org/html/draft-ietf-jose-json-web-key-41

2. Validates the claims nbf and exp.

3. Verifies that the issuer specified in the claim iss (Issuer) is the same as the one configured in
the OpenID Connect Issuer field.

4. Extracts the value of the azp or aud claim and uses it as the Client ID (that identifies the
application in 3scale) to authorize the call through the Service Management API.

If any of the JWT validation or the authorization checks fail, APIcast returns an "Authenication failed"
error. Otherwise, APIcast proxies the request to the API backend. The Authorization header remains in
the request, so the API backend can also use the JWT token to check the user and client identity.

8.2. CLIENT CREDENTIALS SYNCHRONIZATION BY ZYNC

Using the Zync component, 3scale syncronizes the client (application) credentials between 3scale and
the Red Hat Single Sign-On server configured through the OpenID Connect Issuer setting. Whenever a
new application is created, updated, or deleted for a service configured to use OpenID Connect, Zync
receives the corresponding event and communicates the change to the Red Hat Single Sign-On
instance using RH-SSO API. The Section 8.3, “Configure Red Hat Single Sign-On integration” section
provides the steps required to ensure that Zync has the correct credentials to use the RH-SSO API.

8.3. CONFIGURE RED HAT SINGLE SIGN-ON INTEGRATION

8.3.1. Configure Zync to use custom CA certificates

You must establish an SSL connection between Zync and Red Hat Single Sign-On. 3scale 2.2 and above
supports custom CA certificates for Red Hat Single Sign-On with the SSL_CERT_FILE environment
variable. This variable points to the local path of the certificates bundle. Configure it as follows:

1. Validate the new certificate with the following cURL command. The expected response is a
JSON configuration of the realm. If validation fails it is an indicator that your certificate may not
be correct.

curl -v https://<secure-sso-host>/auth/realms/master --cacert customCA.pem

2. Add the certificate bundle to the Zync pod:

a. Gather the existing content of the /etc/pki/tls/cert.pem file on the Zync pod. Run:

oc exec <zync-pod-id> cat /etc/pki/tls/cert.pem > zync.pem

b. Append the contents of the custom CA certificate file to zync.pem:

cat customCA.pem >> zync.pem

c. Attach the new file to the Zync pod as ConfigMap:

oc create configmap zync-ca-bundle --from-file=./zync.pem

oc set volume dc/zync --add --name=zync-ca-bundle --mount-path
/etc/pki/tls/zync/zync.pem --sub-path zync.pem --source='{"configMap":{"name":"zync-ca-
bundle","items":[{"key":"zync.pem","path":"zync.pem"}]}}'

Red Hat 3scale API Management 2.5 Using the Developer Portal

32

https://tools.ietf.org/html/rfc7519#section-4.1.5
https://tools.ietf.org/html/rfc7519#section-4.1.4
https://tools.ietf.org/html/rfc7519#section-4.1.1

oc patch dc/zync --type=json -p '[{"op": "add", "path":
"/spec/template/spec/containers/0/volumeMounts/0/subPath", "value":"zync.pem"}]'

3. After deployment, verify that the certificate is attached and the content is correct:

oc exec <zync-pod-id> cat /etc/pki/tls/zync/zync.pem

4. Configure the SSL_CERT_FILE environment variable on Zync to point to the new CA
certificate bundle:

oc set env dc/zync SSL_CERT_FILE=/etc/pki/tls/zync/zync.pem

8.3.2. Configure Red Hat Single Sign-On

To configure Red Hat Single Sign-On, take the following steps:

1. Create a realm (<REALM_NAME>).

2. Create a client:

a. Specify a client ID.

b. In the Client Protocol field, select openid-connect.

3. To configure the client permissions, set the following values:

a. Access Type to confidential.

b. Standard Flow Enabled to OFF.

c. Direct Access Grants Enabled to OFF.

d. Service Accounts Enabled to ON.

4. Set the service account roles for the client:

a. Navigate to the Service Account Roles tab of the client.

b. In the Client Roles dropdown list, click realm-management.

c. In the Available Roles pane, select the manage-clients list item and assign the role by
clicking Add selected >>.

5. Note the client credentials:

a. Make a note of the client ID (<CLIENT_ID>).

b. Navigate to the Credentials tab of the client and make a note of the Secret field
(<CLIENT_SECRET>).

6. Add a user to the realm:

a. Click the Users menu on the left side of the window.

b. Click Add user.

c. Type the username, set the Email Verified switch to ON, and click Save.

CHAPTER 8. OPENID CONNECT INTEGRATION

33

d. On the Credentials tab, set the password. Enter the password in both the fields, set the
Temporary switch to OFF to avoid the password reset at the next login, and click Reset
Password.

e. When the pop-up window displays, click Change password.

8.3.3. Configure 3scale

After you have created and configured the client in Red Hat Single Sign-On, you must configure 3scale
to work with Red Hat Single Sign-On.

To configure 3scale, take the following steps:

1. Enable OpenID Connect.

a. Select the service on which you want to enable the OpenID Connect authentication,
navigate to [your_API_name] > Integration > Configuration.

b. Select edit integration settings.

c. Under the Authentication deployment options, select OpenID Connect.

d. Click Update Service to save the settings.

2. Edit the APIcast Configuration:

a. Navigate to [your_API_name] > Integration > Configuration.

b. Select edit APIcast configuration.

c. Under the Authentication Settings heading, in the OpenID Connect Issuer field, enter the
previously noted client credentials with the URL of your Red Hat Single Sign-On server
(located at host <RHSSO_HOST> and port <RHSSO_PORT>).

https://<CLIENT_ID>:<CLIENT_SECRET>@<RHSSO_HOST>:
<RHSSO_PORT>/auth/realms/<REALM_NAME>

d. To save the configuration, click Update the Staging Environment.

8.4. OAUTH 2.0 SUPPORTED FLOWS

The API clients must get access tokens from the OpenID Connect issuer configured in 3scale, using any
OAuth 2.0 flow that is supported by this OpenID provider. In case of Red Hat Signle Sign-On, the
following flows are supported (the terms used in RH-SSO clients are specified in parenthesis):

Authorization Code (Standard Flow)

Resource Owner Password Credentials (Direct Access Grants Flow)

Implicit (Implicit Flow)

Client Credentials (Service Accounts Flow)

When clients under OpenID Connect (OIDC) are created in 3scale, the corresponding clients created by
Zync in Red Hat Single Sign-On (RH SSO) have only the Authorization Code flow enabled. This flow is
recommended as the most secure and suitable for most cases. However, it is possible to enable other

Red Hat 3scale API Management 2.5 Using the Developer Portal

34

flows.

8.4.1. How OAuth 2.0 supported flows work

The client gets the access token using the authorization request, or the token request, or both. The
URLs that receive these requests can be discovered using the .well-known/openid-configuration
endpoint of the OpenID provider, in the "authorization_endpoint" and "token_endpoint", accordingly.
Example: https://<RHSSO_HOST>:<RHSSO_PORT>/auth/realms/<REALM_NAME>/.well-
known/openid-configuration.

8.4.2. Configuring OAuth 2.0 supported flows

You can configure allowed OAuth 2.0 flows for the 3scale API in the Admin Portal. When you create a
new application, the basic integration is finished, including the OpenId Connect (OIDC) configuration.

To configure OAuth 2.0 supported flows, perform these steps:

1. Navigate to the Authentication Settings section: [Your_API_name] > Integration > edit
integration settings > Authentication

2. Choose OpenId Connect.

3. The corresponding flows are enabled on the client on RH SSO side. You can view them by
navigating through [Your_API_name] > Integration > Edit APIcast configuration >
Authentication Settings

standardFlowEnabled (Authorization Code flow) [selected by default]

implicitFlowEnabled (Implicit flow)

serviceAccountsEnabled (Service Accounts Flow)

directAccessGrantsEnabled (Direct Access Grant Flow)

4. Choose one or multiple flows.

5. To save your changes, click Update the Staging Environment.

8.5. TEST THE INTEGRATION

To test the integration, you must perform the steps listed in the following sections.

8.5.1. Test the client synchronization

To test the client synchronization, take the following steps:

1. Create an application for the service where you configured the OpenID Connect integration.

2. Note the client ID and the client Secret of the generated application.

3. Verify that the client with the same client ID and client secret is now present in the configured
Red Hat Single Sign-On realm.

4. Update the Redirect URL of the application in the 3scale admin portal. Redirect URLs should be
as specific as possible.

5. Verify that the Valid Redirect URIs field of the client in Red Hat Single Sign-On has been

CHAPTER 8. OPENID CONNECT INTEGRATION

35

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.3/html/securing_applications_and_services_guide/openid_connect_3#redirect_uris

5. Verify that the Valid Redirect URIs field of the client in Red Hat Single Sign-On has been
updated accordingly.

8.5.2. Test the API authorization flow

To test the APT authorization flow, take the following steps:

1. Get the access token from the Red Hat Single Sign-On server using an OAuth 2.0 flow that is
enabled on the corresponding RH-SSO client.

2. Use the value of the access_token retrieved from RH-SSO in the Authorization header as
follows: Authorization: Bearer <access_token>

If the token is correct and the corresponding application in 3scale is authorized, APIcast gateway returns
a response from the API backend.

8.6. EXAMPLE OF THE INTEGRATION

The service "API" in 3scale is configured to use the OpenID Connect authentication. The Public Base
URL on the service "API" is configured to be https://api.example.com and the Private Base URL is
configured to be https://internal-api.example.com.

The OpenID Connect Issuer field is set to https://zync:41dbb98b-e4e9-4a89-84a3-
91d1d19c4207@idp.example.com/auth/realms/myrealm in the API integration and the client zync in
the realm myrealm has the correct Service Account roles.

In 3scale, there is an application having the myclientid client ID, myclientsecret client secret, and a
https://myapp.example.com Redirect URL. In Red Hat Single Sign-On, in the myrealm realm, there
also exists a client having a myclientid client ID, myclientsecret secret, and
https://myapp.example.com Valid Redirect URIs . Standard Flow is enabled on this client. There is a user
configured in the myrealm realm having the myuser username and mypassword password.

The flow is as follows:

1. Using the endpoint https://idp.example.com/auth/realms/myrealm/protocol/openid-
connect/auth, the application sends an Authorization request to RH-SSO. The application
should provide the client ID myclientsecret and Redirect URL https://myapp.example.com
with the request.

2. RH-SSO shows the login window, where the user must provide the user’s credentials: Username
myuser and password mypassword.

3. Depending on the configuration, and if it is the first time that the user is authenticating in this
specific application, the consent window displays.

4. After the user is authenticated, the applciation sends a Token request to RH-SSO using the
endpoint https://idp.example.com/auth/realms/myrealm/protocol/openid-connect/token
and providing the client ID myclientid, client secret myclientsecret and Redirect URL
https://myapp.example.com.

5. RH-SSO returns a JSON with an "access_token" field
eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lk… xBArNhqF-A.

6. The application sends an API request to https://api.example.com with the header
Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lk… xBArNhqF-A.

Red Hat 3scale API Management 2.5 Using the Developer Portal

36

https://api.example.com
https://internal-api.example.com
https://zync:41dbb98b-e4e9-4a89-84a3-91d1d19c4207@idp.example.com/auth/realms/myrealm
https://myapp.example.com
https://myapp.example.com
https://idp.example.com/auth/realms/myrealm/protocol/openid-connect/auth
https://myapp.example.com
https://idp.example.com/auth/realms/myrealm/protocol/openid-connect/token
https://myapp.example.com
https://api.example.com

7. The application should receive a successful response from https://internal-api.example.com.

CHAPTER 8. OPENID CONNECT INTEGRATION

37

https://internal-api.example.com

PART IV. OPENAPI SPECIFICATION (OAS)

Red Hat 3scale API Management 2.5 Using the Developer Portal

38

CHAPTER 9. CREATING A NEW SERVICE BASED ON OPENAPI
SPECIFICATION (OAS)

9.1. INTRODUCTION

This documentation outlines the features of OpenAPI 2.0 specification (OAS) in 3scale 2.5 and provides
steps to update an existing service or create a new one.

9.2. PREREQUISITES

OpenAPI Specification (OAS)

A 3scale 2.5 instance tenant credentials (token or provider_key)

9.3. FEATURES OF OPENAPI SPECIFICATION

NOTE

ActiveDocs are created/updated when importing OpenAPI (OAS)

Service’s system_name can be passed as an option parameter and defaults to info.title field
from OAS.

Methods are created for each operation from the OAS.

Method names are taken from operation.operationId field.

All existing mapping rules are deleted before importing a new API definition.

Methods will be not deleted if they exist before running the command.

Mapping rules are created on each operation from the OAS.

The OpenAPI definition resource can be provided by one of the following channels:

Filename in the available path

URL format - toolbox will try to download from given address.

Read from stdin standard input stream.

9.4. USING OPENAPI SPECIFICATION

NAME
 openapi - Import API definition in OpenAPI specification

USAGE
 3scale import openapi [opts] -d <dst> <spec>

DESCRIPTION
 Using an API definition format like OpenAPI, import to your 3scale API

CHAPTER 9. CREATING A NEW SERVICE BASED ON OPENAPI SPECIFICATION (OAS)

39

OPTIONS
 -d --destination=<value> 3scale target instance.
 Format: "http[s]://<authentication>@3scale_domain"

 -t --target_system_name=<value> Target system name

OPTIONS FOR IMPORT
 -c --config-file=<value> 3scale toolbox
 configuration file
 (default:
 $HOME/.3scalerc.yaml)
 -h --help show help for this command
 -k --insecure Proceed and operate even
 for server connections
 otherwise considered
 insecure
 -v --version Prints the version of this
 command

9.4.1. Detecting OpenAPI definition from the filename path

The allowed formats are json and yaml. The format is automatically detected from filename extension.

$ 3scale import openapi -d <destination> /path/to/your/spec/file.[json|yaml|yml]

9.4.2. Detecting OpenAPI definition from a URL

The allowed formats are json and yaml. The format is automatically detected from URL’s path
extension.

$ 3scale import openapi -d <destination> http[s]://domain/resource/path.[json|yaml|yml]

9.4.3. Detecting OpenAPI definition from stdin

The command line parameter for the OpenAPI resource is -.

The allowed formats are json and yaml. The format is automatically detected internally with parsers.

$ tool_to_read_openapi_from_source | 3scale import openapi -d <destination> -

Red Hat 3scale API Management 2.5 Using the Developer Portal

40

	Table of Contents
	PART I. API DOCUMENTATION
	CHAPTER 1. ADDING SPECIFICATIONS TO 3SCALE
	1.1. NAVIGATE TO SERVICE SPECIFICATIONS IN ACTIVEDOCS
	1.2. CREATE A SERVICE SPECIFICATION
	1.3. WORKING WITH YOUR FIRST ACTIVEDOC

	CHAPTER 2. CREATE AN OAS SPEC
	2.1. ABOUT OPENAPI SPECIFICATION (OAS)
	2.2. 3SCALE ACTIVEDOCS AND OAS
	2.3. CREATING THE SPECIFICATION OF YOUR API
	2.3.1. Learning by example: the Petstore API
	2.3.2. More on the OAS specification
	2.3.2.1. OAS object
	2.3.2.2. Info object
	2.3.2.3. Paths object

	2.3.3. Useful tools
	2.3.3.1. Extension to the OAS specification: auto-fill of API keys

	CHAPTER 3. ACTIVEDOCS & OAUTH
	3.1. PREREQUISITES
	3.2. CLIENT CREDENTIALS AND RESOURCE OWNER FLOWS

	CHAPTER 4. PUBLISH ACTIVEDOCS IN THE DEVELOPER PORTAL
	CHAPTER 5. UPGRADE SWAGGER UI 2.1.3 TO 2.2.10
	PART II. API VERSIONING
	CHAPTER 6. API VERSIONING
	6.1. GOAL
	6.2. PREREQUISITES
	6.3. URL VERSIONING
	6.4. ENDPOINT VERSIONING
	6.5. CUSTOM HEADER VERSIONING

	PART III. API AUTHENTICATION
	CHAPTER 7. AUTHENTICATION PATTERNS
	7.1. SUPPORTED AUTHENTICATION PATTERNS
	7.2. SETTING UP AUTHENTICATION PATTERNS
	7.2.1. Select the authentication mode for your service
	7.2.2. Select the Authentication mode you want to use
	7.2.3. Ensure your API accepts the correct types of credentials
	7.2.4. Create an application to test credentials

	7.3. STANDARD AUTHENTICATION PATTERNS
	7.3.1. API key
	7.3.2. App_ID and App_Key pair
	7.3.3. OpenID Connect

	7.4. REFERRER FILTERING

	CHAPTER 8. OPENID CONNECT INTEGRATION
	8.1. JWT VERIFICATION AND PARSING BY APICAST
	8.2. CLIENT CREDENTIALS SYNCHRONIZATION BY ZYNC
	8.3. CONFIGURE RED HAT SINGLE SIGN-ON INTEGRATION
	8.3.1. Configure Zync to use custom CA certificates
	8.3.2. Configure Red Hat Single Sign-On
	8.3.3. Configure 3scale

	8.4. OAUTH 2.0 SUPPORTED FLOWS
	8.4.1. How OAuth 2.0 supported flows work
	8.4.2. Configuring OAuth 2.0 supported flows

	8.5. TEST THE INTEGRATION
	8.5.1. Test the client synchronization
	8.5.2. Test the API authorization flow

	8.6. EXAMPLE OF THE INTEGRATION

	PART IV. OPENAPI SPECIFICATION (OAS)
	CHAPTER 9. CREATING A NEW SERVICE BASED ON OPENAPI SPECIFICATION (OAS)
	9.1. INTRODUCTION
	9.2. PREREQUISITES
	9.3. FEATURES OF OPENAPI SPECIFICATION
	9.4. USING OPENAPI SPECIFICATION
	9.4.1. Detecting OpenAPI definition from the filename path
	9.4.2. Detecting OpenAPI definition from a URL
	9.4.3. Detecting OpenAPI definition from stdin

