
OpenShift Online 3

CLI Reference

OpenShift Online CLI Reference

Last Updated: 2020-03-31

OpenShift Online 3 CLI Reference

OpenShift Online CLI Reference

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

With the OpenShift Online command line interface (CLI), you can create applications and manage
OpenShift projects from a terminal. These topics show you how to use CLI.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. GET STARTED WITH THE CLI
2.1. OVERVIEW
2.2. INSTALLING THE CLI

2.2.1. For Windows
2.2.2. For Mac OS X
2.2.3. For Linux

2.3. BASIC SETUP AND LOGIN
2.4. CLI CONFIGURATION FILES
2.5. PROJECTS

CHAPTER 3. MANAGING CLI PROFILES
3.1. OVERVIEW
3.2. SWITCHING BETWEEN CLI PROFILES
3.3. MANUALLY CONFIGURING CLI PROFILES
3.4. LOADING AND MERGING RULES

CHAPTER 4. DEVELOPER CLI OPERATIONS
4.1. OVERVIEW
4.2. COMMON OPERATIONS
4.3. OBJECT TYPES
4.4. BASIC CLI OPERATIONS

4.4.1. whoami
4.4.2. types
4.4.3. login
4.4.4. logout
4.4.5. new-project
4.4.6. new-app
4.4.7. status
4.4.8. project
4.4.9. explain
4.4.10. cluster
4.4.11. completion
4.4.12. help
4.4.13. plugin
4.4.14. version

4.5. APPLICATION MODIFICATION CLI OPERATIONS
4.5.1. get
4.5.2. describe
4.5.3. edit
4.5.4. config
4.5.5. volume
4.5.6. label
4.5.7. annotate
4.5.8. expose
4.5.9. delete
4.5.10. set

4.5.10.1. set env
4.5.10.2. set build-secret

4.6. BUILD AND DEPLOYMENT CLI OPERATIONS
4.6.1. start-build

4

5
5
5
5
5
5
6
7
7

9
9
9
11

13

15
15
15
16
17
17
17
17
17
17
17
18
18
18
18
18
18
18
19
19
19
19
19

20
20
20
20
20
20
21
21
21
21
21

Table of Contents

1

4.6.2. rollout
4.6.3. rollback
4.6.4. new-build
4.6.5. cancel-build
4.6.6. image
4.6.7. import
4.6.8. import-image
4.6.9. scale
4.6.10. tag

4.7. ADVANCED COMMANDS
4.7.1. adm
4.7.2. create
4.7.3. replace
4.7.4. apply
4.7.5. process
4.7.6. run
4.7.7. patch
4.7.8. export
4.7.9. extract
4.7.10. idle
4.7.11. observe
4.7.12. auth
4.7.13. policy
4.7.14. convert
4.7.15. secrets
4.7.16. serviceaccounts
4.7.17. autoscale

4.8. TROUBLESHOOTING AND DEBUGGING CLI OPERATIONS
4.8.1. debug

4.8.1.1. Usage
4.8.1.2. Examples

4.8.2. logs
4.8.3. exec
4.8.4. rsh
4.8.5. rsync
4.8.6. port-forward
4.8.7. proxy
4.8.8. attach
4.8.9. cp

23
23
23
23
24
24
24
24
24
24
25
25
25
25
25
25
26
26
26
27
27
27
27
27
27
27
27
28
28
28
28
28
29
29
29
29
29
29
30

OpenShift Online 3 CLI Reference

2

Table of Contents

3

CHAPTER 1. OVERVIEW
With the OpenShift Online command line interface (CLI), you can create applications and manage
OpenShift Online projects from a terminal. The CLI is ideal in situations where you are:

Working directly with project source code.

Scripting OpenShift Online operations.

Restricted by bandwidth resources and cannot use the web console.

The CLI is available using the oc command:

$ oc <command>

See Get Started with the CLI for installation and setup instructions.

OpenShift Online 3 CLI Reference

4

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-new-app
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-projects
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-infrastructure-components-web-console

CHAPTER 2. GET STARTED WITH THE CLI

2.1. OVERVIEW

The OpenShift Online CLI exposes commands for managing your applications, as well as lower level
tools to interact with each component of your system. This topic guides you through getting started
with the CLI, including installation and logging in to create your first project.

2.2. INSTALLING THE CLI

Installation options for the CLI vary depending on your operating system.

To log in using the CLI, collect your token from the web console’s Command Line page, which is
accessed from Command Line Tools in the Help menu. The token is hidden, so you must click the copy
to clipboard button at the end of the oc login line on the Command Line Tools page, then paste the
copied contents to show the token.

2.2.1. For Windows

The CLI for Windows is provided as a zip archive; you can download it from the Command Line Tools
page on the web console.

Then, unzip the archive with a ZIP program and move the oc binary to a directory on your PATH. To
check your PATH, open the Command Prompt and run:

C:\> path

2.2.2. For Mac OS X

The CLI for Mac OS X is provided as a tar.gz archive; you can download it from the Command Line
Tools page on the web console.

Then, unpack the archive and move the oc binary to a directory on your PATH. To check your PATH,
open a Terminal window and run:

$ echo $PATH

2.2.3. For Linux

The CLI for Linux is provided as a tar.gz archive; you can download it from the Command Line Tools
page on the web console.

Then, unpack the archive and move the oc binary to a directory on your PATH. To check your path, run:

$ echo $PATH

To unpack the archive:

$ tar -xf <file>

NOTE

CHAPTER 2. GET STARTED WITH THE CLI

5

1

2

3

4

NOTE

If you do not use RHEL or Fedora, ensure that libc is installed in a directory on your library
path. If libc is not available, you might see the following error when you run CLI
commands:

oc: No such file or directory

2.3. BASIC SETUP AND LOGIN

The oc login command is the best way to initially set up the CLI, and it serves as the entry point for most
users. The interactive flow helps you establish a session to an OpenShift Online server with the provided
credentials. The information is automatically saved in a CLI configuration file that is then used for
subsequent commands.

The following example shows the interactive setup and login using the oc login command:

Example 2.1. Initial CLI Setup

$ oc login
OpenShift server [https://localhost:8443]: https://openshift.example.com 1

Username: alice 2
Authentication required for https://openshift.example.com (openshift)
Password: ******
Login successful. 3

You don't have any projects. You can try to create a new project, by running

 $ oc new-project <projectname> 4

Welcome to OpenShift! See 'oc help' to get started.

The command prompts for the OpenShift Online server URL.

The command prompts for login credentials: a user name and password.

A session is established with the server, and a session token is received.

If you do not have a project, information is given on how to create one.

When you have completed the CLI configuration, subsequent commands use the configuration file for
the server, session token, and project information.

You can log out of CLI using the oc logout command:

$ oc logout
User, alice, logged out of https://openshift.example.com

If you log in after creating or being granted access to a project, a project you have access to is
automatically set as the current default, until switching to another one :

OpenShift Online 3 CLI Reference

6

$ oc login
Username: alice
Authentication required for https://openshift.example.com (openshift)
Password:
Login successful.

Using project "aliceproject".

Additional options are also available for the oc login command.

2.4. CLI CONFIGURATION FILES

A CLI configuration file permanently stores oc options and contains a series of authentication
mechanisms and OpenShift Online server connection information associated with nicknames.

As described in the previous section, the oc login command automatically creates and manages CLI
configuration files. All information gathered by the command is stored in a configuration file located in
~/.kube/config. The current CLI configuration can be viewed using the following command:

Example 2.2. Viewing the CLI Configuration

$ oc config view
apiVersion: v1
clusters:
- cluster:
 server: https://openshift.example.com
 name: openshift
contexts:
- context:
 cluster: openshift
 namespace: aliceproject
 user: alice
 name: alice
current-context: alice
kind: Config
preferences: {}
users:
- name: alice
 user:
 token: NDM2N2MwODgtNjI1Yy10N3VhLTg1YmItYzI4NDEzZDUyYzVi

CLI configuration files can be used to setup multiple CLI profiles using various OpenShift Online servers,
namespaces, and users so that you can switch easily between them. The CLI can support multiple
configuration files; they are loaded at runtime and merged together along with any override options
specified from the command line.

2.5. PROJECTS

$ oc project

If you have access to multiple projects, use the following syntax to switch to a particular project by
specifying the project name:

CHAPTER 2. GET STARTED WITH THE CLI

7

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-authentication
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-additional-concepts-authentication

$ oc project <project_name>

For example:

$ oc project project02
Now using project 'project02'.

$ oc project project03
Now using project 'project03'.

$ oc project
Using project 'project03'.

OpenShift Online 3 CLI Reference

8

1

CHAPTER 3. MANAGING CLI PROFILES

3.1. OVERVIEW

A CLI configuration file allows you to configure different profiles, or contexts, for use with the OpenShift
CLI. A context consists of user authentication and OpenShift Online server information associated with
a nickname.

3.2. SWITCHING BETWEEN CLI PROFILES

Contexts allow you to easily switch between multiple users across multiple OpenShift Online servers, or
clusters, when using issuing CLI operations. Nicknames make managing CLI configuration easier by
providing short-hand references to contexts, user credentials, and cluster details.

After logging in with the CLI for the first time, OpenShift Online creates a ~/.kube/config file if one
does not already exist. As more authentication and connection details are provided to the CLI, either
automatically during an oc login operation or by setting them explicitly , the updated information is
stored in the configuration file:

Example 3.1. CLI Configuration File

The clusters section defines connection details for OpenShift Online clusters, including the
address for their master server. In this example, one cluster is nicknamed
openshift1.example.com:8443 and another is nicknamed openshift2.example.com:8443.

apiVersion: v1
clusters: 1
- cluster:
 insecure-skip-tls-verify: true
 server: https://openshift1.example.com:8443
 name: openshift1.example.com:8443
- cluster:
 insecure-skip-tls-verify: true
 server: https://openshift2.example.com:8443
 name: openshift2.example.com:8443
contexts: 2
- context:
 cluster: openshift1.example.com:8443
 namespace: alice-project
 user: alice/openshift1.example.com:8443
 name: alice-project/openshift1.example.com:8443/alice
- context:
 cluster: openshift1.example.com:8443
 namespace: joe-project
 user: alice/openshift1.example.com:8443
 name: joe-project/openshift1/alice
current-context: joe-project/openshift1.example.com:8443/alice 3
kind: Config
preferences: {}
users: 4
- name: alice/openshift1.example.com:8443
 user:
 token: xZHd2piv5_9vQrg-SKXRJ2Dsl9SceNJdhNTljEKTb8k

CHAPTER 3. MANAGING CLI PROFILES

9

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-additional-concepts-authentication

2

3

4

This contexts section defines two contexts: one nicknamed alice-
project/openshift1.example.com:8443/alice, using the alice-project project,

The current-context parameter shows that the joe-
project/openshift1.example.com:8443/alice context is currently in use, allowing the alice user
to work in the joe-project project on the openshift1.example.com:8443 cluster.

The users section defines user credentials. In this example, the user nickname
alice/openshift1.example.com:8443 uses an access token.

The CLI can support multiple configuration files; they are loaded at runtime and merged together along
with any override options specified from the command line.

After you are logged in, you can use the oc status command or the oc project command to verify your
current working environment:

Example 3.2. Verifying the Current Working Environment

$ oc status
oc status
In project Joe's Project (joe-project)

service database (172.30.43.12:5434 -> 3306)
 database deploys docker.io/openshift/mysql-55-centos7:latest
 #1 deployed 25 minutes ago - 1 pod

service frontend (172.30.159.137:5432 -> 8080)
 frontend deploys origin-ruby-sample:latest <-
 builds https://github.com/openshift/ruby-hello-world with joe-project/ruby-20-centos7:latest
 #1 deployed 22 minutes ago - 2 pods

To see more information about a service or deployment, use 'oc describe service <name>' or 'oc
describe dc <name>'.
You can use 'oc get all' to see lists of each of the types described above.

$ oc project
Using project "joe-project" from context named "joe-project/openshift1.example.com:8443/alice"
on server "https://openshift1.example.com:8443".

To log in using any other combination of user credentials and cluster details, run the oc login command
again and supply the relevant information during the interactive process. A context is constructed based
on the supplied information if one does not already exist.

If you are already logged in and want to switch to another project the current user already has access to,
use the oc project command and supply the name of the project:

$ oc project alice-project
Now using project "alice-project" on server "https://openshift1.example.com:8443".

At any time, you can use the oc config view command to view your current, full CLI configuration, as
seen in the output.

OpenShift Online 3 CLI Reference

10

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#api-authentication

Additional CLI configuration commands are also available for more advanced usage.

3.3. MANUALLY CONFIGURING CLI PROFILES

NOTE

This section covers more advanced usage of CLI configurations. In most situations, you
can simply use the oc login and oc project commands to log in and switch between
contexts and projects.

If you want to manually configure your CLI configuration files, you can use the oc config command
instead of modifying the files themselves. The oc config command includes a number of helpful
subcommands for this purpose:

Table 3.1. CLI Configuration Subcommands

Subcom
mand

Usage

set-
cluster

Sets a cluster entry in the CLI configuration file. If the referenced cluster nickname already exists,
the specified information is merged in.

$ oc config set-cluster <cluster_nickname> [--server=<master_ip_or_fqdn>]
[--certificate-authority=<path/to/certificate/authority>]
[--api-version=<apiversion>] [--insecure-skip-tls-verify=true]

set-
context

Sets a context entry in the CLI configuration file. If the referenced context nickname already
exists, the specified information is merged in.

$ oc config set-context <context_nickname> [--cluster=<cluster_nickname>]
[--user=<user_nickname>] [--namespace=<namespace>]

use-
context

Sets the current context using the specified context nickname.

$ oc config use-context <context_nickname>

set Sets an individual value in the CLI configuration file.

$ oc config set <property_name> <property_value>

The <property_name> is a dot-delimited name where each token represents either an attribute
name or a map key. The <property_value> is the new value being set.

unset Unsets individual values in the CLI configuration file.

$ oc config unset <property_name>

The <property_name> is a dot-delimited name where each token represents either an attribute
name or a map key.

CHAPTER 3. MANAGING CLI PROFILES

11

view Displays the merged CLI configuration currently in use.

$ oc config view

Displays the result of the specified CLI configuration file.

$ oc config view --config=<specific_filename>

Subcom
mand

Usage

Example Usage

Consider the following configuration workflow. First, login as a user that uses an access token. This
token is used by the alice user:

$ oc login https://openshift1.example.com --
token=ns7yVhuRNpDM9cgzfhhxQ7bM5s7N2ZVrkZepSRf4LC0

View the cluster entry automatically created:

$ oc config view
apiVersion: v1
clusters:
- cluster:
 insecure-skip-tls-verify: true
 server: https://openshift1.example.com
 name: openshift1-example-com
contexts:
- context:
 cluster: openshift1-example-com
 namespace: default
 user: alice/openshift1-example-com
 name: default/openshift1-example-com/alice
current-context: default/openshift1-example-com/alice
kind: Config
preferences: {}
users:
- name: alice/openshift1.example.com
 user:
 token: ns7yVhuRNpDM9cgzfhhxQ7bM5s7N2ZVrkZepSRf4LC0

Update the current context to have users login to the desired namespace:

$ oc config set-context `oc config current-context` --namespace=<project_name>

To confirm that the changes have taken effect, examine the current context:

$ oc whoami -c

All subsequent CLI operations will use the new context, unless otherwise specified by overriding CLI

OpenShift Online 3 CLI Reference

12

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#api-authentication

All subsequent CLI operations will use the new context, unless otherwise specified by overriding CLI
options or until the context is switched.

3.4. LOADING AND MERGING RULES

When issuing CLI operations, the loading and merging order for the CLI configuration follows these
rules:

1. CLI configuration files are retrieved from your workstation, using the following hierarchy and
merge rules:

If the --config option is set, then only that file is loaded. The flag may only be set once and
no merging takes place.

If $KUBECONFIG environment variable is set, then it is used. The variable can be a list of
paths, and if so the paths are merged together. When a value is modified, it is modified in
the file that defines the stanza. When a value is created, it is created in the first file that
exists. If no files in the chain exist, then it creates the last file in the list.

Otherwise, the ~/.kube/config file is used and no merging takes place.

2. The context to use is determined based on the first hit in the following chain:

The value of the --context option.

The current-context value from the CLI configuration file.

An empty value is allowed at this stage.

3. The user and cluster to use is determined. At this point, you may or may not have a context; they
are built based on the first hit in the following chain, which is run once for the user and once for
the cluster:

The value of the --user option for user name and the --cluster option for cluster name.

If the --context option is present, then use the context’s value.

An empty value is allowed at this stage.

4. The actual cluster information to use is determined. At this point, you may or may not have
cluster information. Each piece of the cluster information is built based on the first hit in the
following chain:

The values of any of the following command line options:

--server,

--api-version

--certificate-authority

--insecure-skip-tls-verify

If cluster information and a value for the attribute is present, then use it.

If you do not have a server location, then there is an error.

CHAPTER 3. MANAGING CLI PROFILES

13

If you do not have a server location, then there is an error.

5. The actual user information to use is determined. Users are built using the same rules as clusters,
except that you can only have one authentication technique per user; conflicting techniques
cause the operation to fail. Command line options take precedence over configuration file
values. Valid command line options are:

--auth-path

--client-certificate

--client-key

--token

6. For any information that is still missing, default values are used and prompts are given for
additional information.

OpenShift Online 3 CLI Reference

14

CHAPTER 4. DEVELOPER CLI OPERATIONS

4.1. OVERVIEW

This topic provides information on the developer CLI operations and their syntax. You must setup and
login with the CLI before you can perform these operations.

4.2. COMMON OPERATIONS

The developer CLI allows interaction with the various objects that are managed by OpenShift Online.
Many common oc operations are invoked using the following syntax:

$ oc <action> <object_type> <object_name>

This specifies:

An <action> to perform, such as get or describe.

The <object_type> to perform the action on, such as service or the abbreviated svc.

The <object_name> of the specified <object_type>.

For example, the oc get operation returns a complete list of services that are currently defined:

$ oc get svc
NAME LABELS SELECTOR IP PORT(S)
docker-registry docker-registry=default docker-registry=default 172.30.78.158
5000/TCP
kubernetes component=apiserver,provider=kubernetes <none> 172.30.0.2
443/TCP
kubernetes-ro component=apiserver,provider=kubernetes <none> 172.30.0.1
80/TCP

The oc describe operation can then be used to return detailed information about a specific object:

$ oc describe svc docker-registry
Name: docker-registry
Labels: docker-registry=default
Selector: docker-registry=default
IP: 172.30.78.158
Port: <unnamed> 5000/TCP
Endpoints: 10.128.0.2:5000
Session Affinity: None
No events.

CHAPTER 4. DEVELOPER CLI OPERATIONS

15

WARNING

Versions of oc prior to 3.0.2.0 did not have the ability to negotiate API versions
against a server. So if you are using oc up to 3.0.1.0 with a server that only supports
v1 or higher versions of the API, make sure to pass --api-version in order to point
the oc client to the correct API endpoint. For example: oc get svc --api-
version=v1.

4.3. OBJECT TYPES

The CLI supports the following object types, some of which have abbreviated syntax:

Object Type Abbreviated Version

build

buildConfig bc

deploymentConfig dc

event ev

imageStream is

imageStreamTag istag

imageStreamImage isimage

job

LimitRange limits

node

pod po

ResourceQuota quota

replicationController rc

secrets

service svc



OpenShift Online 3 CLI Reference

16

ServiceAccount sa

persistentVolume pv

persistentVolumeClaim pvc

Object Type Abbreviated Version

4.4. BASIC CLI OPERATIONS

The following table describes basic oc operations and their general syntax:

4.4.1. whoami

Return information about the current session:

$ oc whoami [--options]

4.4.2. types

Display an introduction to some core OpenShift Online concepts:

$ oc types

4.4.3. login

Log in to the OpenShift Online server:

$ oc login

4.4.4. logout

End the current session:

$ oc logout

4.4.5. new-project

Create a new project:

$ oc new-project <project_name>

4.4.6. new-app

Creates a new application based on the source code in the current directory:

$ oc new-app

CHAPTER 4. DEVELOPER CLI OPERATIONS

17

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-new-app

Creates a new application based on the source code in a remote repository:

$ oc new-app https://github.com/sclorg/cakephp-ex

Creates a new application based on the source code in a private remote repository:

$ oc new-app https://github.com/youruser/yourprivaterepo --source-secret=yoursecret

4.4.7. status

Show an overview of the current project:

$ oc status

4.4.8. project

Switch to another project. Run without options to display the current project. To view all projects you
have access to run oc projects.

$ oc project <project_name>

4.4.9. explain

See the documentation of a resource and its fields:

$ oc explain <resource_name>

4.4.10. cluster

Start or stop a OpenShift Online cluster:

$ oc cluster [--options]

4.4.11. completion

Output shell completion code for the specified shell:

$ oc completion [--options]

4.4.12. help

Get help about any command:

$ oc <command> --help

4.4.13. plugin

Run a command line plug-in:

OpenShift Online 3 CLI Reference

18

$ oc plugin [--options]

4.4.14. version

Display client and server versions:

$ oc version [--options]

4.5. APPLICATION MODIFICATION CLI OPERATIONS

4.5.1. get

Return a list of objects for the specified object type. If the optional <object_name> is included in the
request, then the list of results is filtered by that value.

$ oc get <object_type> [<object_name>]

You can use the -o or --output option to modify the output format.

$ oc get <object_type> [<object_name>]-o|--output=json|yaml|wide|custom-columns=...|custom-
columns-file=...|go-template=...|go-template-file=...|jsonpath=...|jsonpath-file=...]

The output format can be a JSON or YAML, or an extensible format like custom columns, golang
template, and jsonpath.

For example, the following command lists the name of the pods running in a specific project:

$ oc get pods -n default -o jsonpath='{range .items[*].metadata}{"Pod Name: "}{.name}{"\n"}{end}'

Pod Name: docker-registry-1-wvhrx
Pod Name: registry-console-1-ntq65
Pod Name: router-1-xzw69

4.5.2. describe

Returns information about the specific object returned by the query. A specific <object_name> must be
provided. The actual information that is available varies as described in object type.

$ oc describe <object_type> <object_name>

4.5.3. edit

Edit the desired object type:

$ oc edit <object_type>/<object_name>

Edit the desired object type with a specified text editor:

$ OC_EDITOR="<text_editor>" oc edit <object_type>/<object_name>

CHAPTER 4. DEVELOPER CLI OPERATIONS

19

http://kubernetes.io/docs/user-guide/kubectl-overview/#custom-columns
http://golang.org/pkg/text/template/#pkg-overview
http://kubernetes.io/docs/user-guide/jsonpath

Edit the desired object in a specified format (eg: JSON):

$ oc edit <object_type>/<object_name> \
 --output-version=<object_type_version> \
 -o <object_type_format>

4.5.4. config

Change configuration files for the client:

$ oc config --config=""

4.5.5. volume

Modify a volume:

$ oc volume <object_type>/<object_name> [--option]

4.5.6. label

Update the labels on a object:

$ oc label <object_type> <object_name> <label>

4.5.7. annotate

Update the annotations on a resource:

$ oc annotate [--options]

4.5.8. expose

Look up a service and expose it as a route. There is also the ability to expose a deployment
configuration, replication controller, service, or pod as a new service on a specified port. If no labels are
specified, the new object will re-use the labels from the object it exposes.

If you are exposing a service, the default generator is --generator=route/v1. For all other cases the
default is --generator=service/v2, which leaves the port unnamed. Generally, there is no need to set a
generator with the oc expose command. A third generator, --generator=service/v1, is available with
the port name default.

$ oc expose <object_type> <object_name>

4.5.9. delete

Delete the specified object. An object configuration can also be passed in through STDIN. The oc
delete all -l <label> operation deletes all objects matching the specified <label>, including the
replication controller so that pods are not re-created.

$ oc delete -f <file_path>

OpenShift Online 3 CLI Reference

20

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-volumes
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#replication-controllers

$ oc delete <object_type> <object_name>

$ oc delete <object_type> -l <label>

$ oc delete all -l <label>

4.5.10. set

Modify a specific property of the specified object.

4.5.10.1. set env

Sets an environment variable on a deployment configuration or a build configuration:

$ oc set env dc/mydc VAR1=value1

4.5.10.2. set build-secret

Sets the name of a secret on a build configuration. The secret may be an image pull or push secret or a
source repository secret:

$ oc set build-secret --source bc/mybc mysecret

4.6. BUILD AND DEPLOYMENT CLI OPERATIONS

One of the fundamental capabilities of OpenShift Online is the ability to build applications into a
container from source.

OpenShift Online provides CLI access to inspect and manipulate deployment configurations using
standard oc resource operations, such as get, create, and describe.

4.6.1. start-build

Manually start the build process with the specified build configuration file:

$ oc start-build <buildconfig_name>

Manually start the build process by specifying the name of a previous build as a starting point:

$ oc start-build --from-build=<build_name>

Manually start the build process by specifying either a configuration file or the name of a previous build
and retrieve its build logs:

$ oc start-build --from-build=<build_name> --follow

$ oc start-build <buildconfig_name> --follow

Wait for a build to complete and exit with a non-zero return code if the build fails:

CHAPTER 4. DEVELOPER CLI OPERATIONS

21

$ oc start-build --from-build=<build_name> --wait

Set or override environment variables for the current build without changing the build configuration.
Alternatively, use -e.

$ oc start-build --env <var_name>=<value>

Set or override the default build log level output during the build:

$ oc start-build --build-loglevel [0-5]

Specify the source code commit identifier the build should use; requires a build based on a Git
repository:

$ oc start-build --commit=<hash>

Re-run build with name <build_name>:

$ oc start-build --from-build=<build_name>

Archive <dir_name> and build with it as the binary input:

$ oc start-build --from-dir=<dir_name>

Use existing archive as the binary input; unlike --from-file the archive will be extracted by the builder
prior to the build process:

$ oc start-build --from-archive=<archive_name>

Use <file_name> as the binary input for the build. This file must be the only one in the build source. For
example, pom.xml or Dockerfile.

$ oc start-build --from-file=<file_name>

Download the binary input using HTTP or HTTPS instead of reading it from the file system:

$ oc start-build --from-file=<file_URL>

Download an archive and use its contents as the build source:

$ oc start-build --from-archive=<archive_URL>

The path to a local source code repository to use as the binary input for a build:

$ oc start-build --from-repo=<path_to_repo>

Specify a webhook URL for an existing build configuration to trigger:

$ oc start-build --from-webhook=<webhook_URL>

The contents of the post-receive hook to trigger a build:

OpenShift Online 3 CLI Reference

22

$ oc start-build --git-post-receive=<contents>

The path to the Git repository for post-receive; defaults to the current directory:

$ oc start-build --git-repository=<path_to_repo>

List the webhooks for the specified build configuration or build; accepts all, generic, or github:

$ oc start-build --list-webhooks

Override the Spec.Strategy.SourceStrategy.Incremental option of a source-strategy build:

$ oc start-build --incremental

Override the Spec.Strategy.DockerStrategy.NoCache option of a docker-strategy build:

$ oc start-build --no-cache

4.6.2. rollout

Manage a Kubernetes deployment or an OpenShift deployment configuration. Start a new rollout, view
its status or history, or rollback to a previous revision of your application:

$ oc rollout [--options]

4.6.3. rollback

Perform a rollback:

$ oc rollback <deployment_name>

4.6.4. new-build

Create a build configuration based on the source code in the current Git repository (with a public
remote) and a container image:

$ oc new-build .

Create a build configuration based on a remote git repository:

$ oc new-build https://github.com/sclorg/cakephp-ex

Create a build configuration based on a private remote git repository:

$ oc new-build https://github.com/youruser/yourprivaterepo --source-secret=yoursecret

4.6.5. cancel-build

Stop a build that is in progress:

CHAPTER 4. DEVELOPER CLI OPERATIONS

23

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#rolling-back-a-deployment

$ oc cancel-build <build_name>

Cancel multiple builds at the same time:

$ oc cancel-build <build1_name> <build2_name> <build3_name>

Cancel all builds created from the build configuration:

$ oc cancel-build bc/<buildconfig_name>

Specify the builds to be canceled:

$ oc cancel-build bc/<buildconfig_name> --state=<state>

Example values for state are new or pending.

4.6.6. image

Useful commands for managing images.

$ oc image [--options]

4.6.7. import

Commands that import applications into OpenShift Online.

$ oc import [--options]

4.6.8. import-image

Import tag and image information from an external image repository:

$ oc import-image <image_stream>

4.6.9. scale

Set the number of desired replicas for a replication controller or a deployment configuration to the
number of specified replicas:

$ oc scale <object_type> <object_name> --replicas=<#_of_replicas>

4.6.10. tag

Take an existing tag or image from an image stream, or a container image "pull spec", and set it as the
most recent image for a tag in one or more other image streams:

$ oc tag <current_image> <image_stream>

4.7. ADVANCED COMMANDS

OpenShift Online 3 CLI Reference

24

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#replication-controllers

4.7.1. adm

Administrative commands. Tools for managing a cluster:

$ oc adm [--options]

4.7.2. create

Parse a configuration file and create one or more OpenShift Online objects based on the file contents.
The -f flag can be passed multiple times with different file or directory paths. When the flag is passed
multiple times, oc create iterates through each one, creating the objects described in all of the
indicated files. Any existing resources are ignored.

$ oc create -f <file_or_dir_path>

4.7.3. replace

Attempt to modify an existing object based on the contents of the specified configuration file. The -f
flag can be passed multiple times with different file or directory paths. When the flag is passed multiple
times, oc replace iterates through each one, updating the objects described in all of the indicated files.

$ oc replace -f <file_or_dir_path>

4.7.4. apply

Apply a configuration to a resource by file name or stdin:

$ oc apply [--options]

4.7.5. process

Transform a project template into a project configuration file:

$ oc process -f <template_file_path>

4.7.6. run

Create and run a particular image, possibly replicated. By default, create a deployment configuration to
manage the created container(s). You can choose to create a different resource using the --generator
flag:

API Resource --generator Option

Deployment configuration deploymentconfig/v1 (default)

Pod run-pod/v1

Replication controller run/v1

CHAPTER 4. DEVELOPER CLI OPERATIONS

25

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-templates

Deployment using extensions/v1beta1 endpoint deployment/v1beta1

Deployment using apps/v1beta1 endpoint deployment/apps.v1beta1

Job job/v1

Cron job cronjob/v2alpha1

API Resource --generator Option

You can choose to run in the foreground for an interactive container execution.

$ oc run NAME --image=<image> \
 [--generator=<resource>] \
 [--port=<port>] \
 [--replicas=<replicas>] \
 [--dry-run=<bool>] \
 [--overrides=<inline_json>] \
 [options]

4.7.7. patch

Updates one or more fields of an object using strategic merge patch:

$ oc patch <object_type> <object_name> -p <changes>

The <changes> is a JSON or YAML expression containing the new fields and the values. For example, to
update the spec.unschedulable field of the node node1 to the value true, the json expression is:

$ oc patch node node1 -p '{"spec":{"unschedulable":true}}'

4.7.8. export

Export resources to be used elsewhere:

$ oc export <object_type> [--options]

If you are upgrading from OpenShift Online Starter to OpenShift Online Pro, use oc export all to export
all of your existing objects. OpenShift Online Pro does not support per-object resource migration.

See Creating a Template from Existing Objects for more information on exporting existing objects from
your project in template form.

4.7.9. extract

Extract secrets or config maps to disk:

$ oc extract [--options]

OpenShift Online 3 CLI Reference

26

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#export-as-template

4.7.10. idle

Idle scalable resources:

$ oc idle [--options]

4.7.11. observe

Observe changes to resources and react to them:

$ oc observe [--options]

4.7.12. auth

Inspect authorization:

$ oc auth [--options]

4.7.13. policy

Manage authorization policies:

$ oc policy [--options]

4.7.14. convert

Convert configuration files between different API versions:

$ oc convert [--options]

4.7.15. secrets

Configure secrets:

$ oc secrets [--options]

4.7.16. serviceaccounts

Manage service accounts in your project. Service accounts allow system components to access the API.

$ oc serviceaccounts [--options]

4.7.17. autoscale

Setup an autoscaler for your application. Requires metrics to be enabled in the cluster. Check with your
cluster administrator to confirm whether metrics are enabled in your environment.

$ oc autoscale dc/<dc_name> [--options]

CHAPTER 4. DEVELOPER CLI OPERATIONS

27

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-secrets
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-pod-autoscaling

4.8. TROUBLESHOOTING AND DEBUGGING CLI OPERATIONS

4.8.1. debug

Launch a command shell to debug a running application.

$ oc debug -h

When debugging images and setup problems, you can get an exact copy of a running pod configuration
and troubleshoot with a shell. Since a failing pod may not be started and not accessible to rsh or exec,
running the debug command creates a carbon copy of that setup.

The default mode is to start a shell inside of the first container of the referenced pod, replication
controller, or deployment configuration. The started pod will be a copy of your source pod, with labels
stripped, the command changed to /bin/sh, and readiness and liveness checks disabled. If you just want
to run a command, add -- and a command to run. Passing a command will not create a TTY or send
STDIN by default. Other flags are supported for altering the container or pod in common ways.

A common problem running containers is a security policy that prohibits you from running as a root user
on the cluster. You can use this command to test running a pod as non-root (with --as-user) or to run a
non-root pod as root (with --as-root).

The debug pod is deleted when the remote command completes or you interrupt the shell.

4.8.1.1. Usage

$ oc debug RESOURCE/NAME [ENV1=VAL1 ...] [-c CONTAINER] [options] [-- COMMAND]

4.8.1.2. Examples

To debug a currently running deployment:

$ oc debug dc/test

To test running a deployment as a non-root user:

$ oc debug dc/test --as-user=1000000

To debug a specific failing container by running the env command in the second container:

$ oc debug dc/test -c second -- /bin/env

To view the pod that would be created to debug:

$ oc debug dc/test -o yaml

4.8.2. logs

Retrieve the log output for a specific build, deployment, or pod. This command works for builds, build
configurations, deployment configurations, and pods.

OpenShift Online 3 CLI Reference

28

$ oc logs -f <pod>

4.8.3. exec

Execute a command in an already-running container. You can optionally specify a container ID, otherwise
it defaults to the first container.

$ oc exec <pod> [-c <container>] <command>

IMPORTANT

For security purposes, the oc exec command does not work when accessing privileged
containers except when the command is executed by a cluster-admin user.
Administrators can SSH into a node host, then use the docker exec command on the
desired container.

4.8.4. rsh

Open a remote shell session to a container:

$ oc rsh <pod>

4.8.5. rsync

Copy the contents to or from a directory in an already-running pod container. If you do not specify a
container, it defaults to the first container in the pod.

To copy contents from a local directory to a directory in a pod:

$ oc rsync <local_dir> <pod>:<pod_dir> -c <container>

To copy contents from a directory in a pod to a local directory:

$ oc rsync <pod>:<pod_dir> <local_dir> -c <container>

4.8.6. port-forward

Forward one or more local ports to a pod:

$ oc port-forward <pod> <local_port>:<remote_port>

4.8.7. proxy

Run a proxy to the Kubernetes API server:

$ oc proxy --port=<port> --www=<static_directory>

4.8.8. attach

CHAPTER 4. DEVELOPER CLI OPERATIONS

29

https://access.redhat.com/errata/RHSA-2015:1650
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-port-forwarding

Attach to a running container:

$ oc attach [--options]

4.8.9. cp

Copy files and directories to and from containers:

$ oc cp [--options]

OpenShift Online 3 CLI Reference

30

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. GET STARTED WITH THE CLI
	2.1. OVERVIEW
	2.2. INSTALLING THE CLI
	2.2.1. For Windows
	2.2.2. For Mac OS X
	2.2.3. For Linux

	2.3. BASIC SETUP AND LOGIN
	2.4. CLI CONFIGURATION FILES
	2.5. PROJECTS

	CHAPTER 3. MANAGING CLI PROFILES
	3.1. OVERVIEW
	3.2. SWITCHING BETWEEN CLI PROFILES
	3.3. MANUALLY CONFIGURING CLI PROFILES
	3.4. LOADING AND MERGING RULES

	CHAPTER 4. DEVELOPER CLI OPERATIONS
	4.1. OVERVIEW
	4.2. COMMON OPERATIONS
	4.3. OBJECT TYPES
	4.4. BASIC CLI OPERATIONS
	4.4.1. whoami
	4.4.2. types
	4.4.3. login
	4.4.4. logout
	4.4.5. new-project
	4.4.6. new-app
	4.4.7. status
	4.4.8. project
	4.4.9. explain
	4.4.10. cluster
	4.4.11. completion
	4.4.12. help
	4.4.13. plugin
	4.4.14. version

	4.5. APPLICATION MODIFICATION CLI OPERATIONS
	4.5.1. get
	4.5.2. describe
	4.5.3. edit
	4.5.4. config
	4.5.5. volume
	4.5.6. label
	4.5.7. annotate
	4.5.8. expose
	4.5.9. delete
	4.5.10. set
	4.5.10.1. set env
	4.5.10.2. set build-secret

	4.6. BUILD AND DEPLOYMENT CLI OPERATIONS
	4.6.1. start-build
	4.6.2. rollout
	4.6.3. rollback
	4.6.4. new-build
	4.6.5. cancel-build
	4.6.6. image
	4.6.7. import
	4.6.8. import-image
	4.6.9. scale
	4.6.10. tag

	4.7. ADVANCED COMMANDS
	4.7.1. adm
	4.7.2. create
	4.7.3. replace
	4.7.4. apply
	4.7.5. process
	4.7.6. run
	4.7.7. patch
	4.7.8. export
	4.7.9. extract
	4.7.10. idle
	4.7.11. observe
	4.7.12. auth
	4.7.13. policy
	4.7.14. convert
	4.7.15. secrets
	4.7.16. serviceaccounts
	4.7.17. autoscale

	4.8. TROUBLESHOOTING AND DEBUGGING CLI OPERATIONS
	4.8.1. debug
	4.8.1.1. Usage
	4.8.1.2. Examples

	4.8.2. logs
	4.8.3. exec
	4.8.4. rsh
	4.8.5. rsync
	4.8.6. port-forward
	4.8.7. proxy
	4.8.8. attach
	4.8.9. cp

