
OpenShift Container Platform 4.4

Security

Learning about and managing security for OpenShift Container Platform

Last Updated: 2021-02-14

OpenShift Container Platform 4.4 Security

Learning about and managing security for OpenShift Container Platform

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document discusses container security, configuring certificates, and enabling encryption to
help secure the cluster.

. .

Table of Contents

CHAPTER 1. CONTAINER SECURITY
1.1. UNDERSTANDING CONTAINER SECURITY

1.1.1. What are containers?
1.1.2. What is OpenShift Container Platform?

1.2. UNDERSTANDING HOST AND VM SECURITY
1.2.1. Securing containers on Red Hat Enterprise Linux CoreOS (RHCOS)
1.2.2. Comparing virtualization and containers
1.2.3. Securing OpenShift Container Platform

1.3. HARDENING RHCOS
1.3.1. Choosing what to harden in RHCOS
1.3.2. Choosing how to harden RHCOS

1.3.2.1. Hardening before installation
1.3.2.2. Hardening during installation
1.3.2.3. Hardening after the cluster is running

1.4. UNDERSTANDING COMPLIANCE
1.4.1. Understanding compliance and risk management

1.5. SECURING CONTAINER CONTENT
1.5.1. Securing inside the container
1.5.2. Creating redistributable images with UBI
1.5.3. Security scanning in RHEL

1.5.3.1. Scanning OpenShift images
1.5.4. Integrating external scanning

1.5.4.1. Image metadata
1.5.4.1.1. Example annotation keys
1.5.4.1.2. Example annotation values

1.5.4.2. Annotating image objects
1.5.4.2.1. Example annotate CLI command

1.5.4.3. Controlling pod execution
1.5.4.3.1. Example annotation

1.5.4.4. Integration reference
1.5.4.4.1. Example REST API call

1.6. USING CONTAINER REGISTRIES SECURELY
1.6.1. Knowing where containers come from?
1.6.2. Immutable and certified containers
1.6.3. Getting containers from Red Hat Registry and Ecosystem Catalog
1.6.4. OpenShift Container Registry
1.6.5. Storing containers using Red Hat Quay

1.7. SECURING THE BUILD PROCESS
1.7.1. Building once, deploying everywhere
1.7.2. Managing builds
1.7.3. Securing inputs during builds
1.7.4. Designing your build process
1.7.5. Building Knative serverless applications

1.8. DEPLOYING CONTAINERS
1.8.1. Controlling container deployments with triggers
1.8.2. Controlling what image sources can be deployed
1.8.3. Using signature transports
1.8.4. Creating secrets and config maps
1.8.5. Automating continuous deployment

1.9. SECURING THE CONTAINER PLATFORM
1.9.1. Isolating containers with multitenancy

6
6
6
7
7
8
9
9

10
10
10
11
11
11

12
12
12
12
13
13
13
14
14
14
15
16
16
16
17
17
17
17
18
18
18
19
19

20
20
20
21
22
23
23
23
24
26
26
27
27
27

Table of Contents

1

. .

. .

1.9.2. Protecting control plane with admission plug-ins
1.9.2.1. Security context constraints (SCCs)
1.9.2.2. Granting roles to service accounts

1.9.3. Authentication and authorization
1.9.3.1. Controlling access using OAuth
1.9.3.2. API access control and management
1.9.3.3. Red Hat Single Sign-On
1.9.3.4. Secure self-service web console

1.9.4. Managing certificates for the platform
1.9.4.1. Configuring custom certificates

1.10. SECURING NETWORKS
1.10.1. Using network namespaces
1.10.2. Isolating pods with network policies
1.10.3. Using multiple pod networks
1.10.4. Isolating applications
1.10.5. Securing ingress traffic
1.10.6. Securing egress traffic

1.11. SECURING ATTACHED STORAGE
1.11.1. Persistent volume plug-ins
1.11.2. Shared storage
1.11.3. Block storage

1.12. MONITORING CLUSTER EVENTS AND LOGS
1.12.1. Watching cluster events
1.12.2. Logging
1.12.3. Audit logs

CHAPTER 2. CONFIGURING CERTIFICATES
2.1. REPLACING THE DEFAULT INGRESS CERTIFICATE

2.1.1. Understanding the default ingress certificate
2.1.2. Replacing the default ingress certificate

2.2. ADDING API SERVER CERTIFICATES
2.2.1. Add an API server named certificate

2.3. SECURING SERVICE TRAFFIC USING SERVICE SERVING CERTIFICATE SECRETS
2.3.1. Understanding service serving certificates
2.3.2. Add a service certificate
2.3.3. Add the service CA bundle to a config map
2.3.4. Add the service CA bundle to an API service
2.3.5. Add the service CA bundle to a custom resource definition
2.3.6. Add the service CA bundle to a mutating webhook configuration
2.3.7. Add the service CA bundle to a validating webhook configuration
2.3.8. Manually rotate the generated service certificate
2.3.9. Manually rotate the service CA certificate

CHAPTER 3. CERTIFICATE TYPES AND DESCRIPTIONS
3.1. USER-PROVIDED CERTIFICATES FOR THE API SERVER

3.1.1. Purpose
3.1.2. Location
3.1.3. Management
3.1.4. Expiration
3.1.5. Customization

Additional resources
3.2. PROXY CERTIFICATES

3.2.1. Purpose

28
28
28
29
29
29
29
29
30
30
30
31
31
31
31
31
32
32
32
33
33
33
33
34
35

36
36
36
36
37
37
39
39
39
40
41

42
43
44
44
45

47
47
47
47
47
47
47
47
47
47

OpenShift Container Platform 4.4 Security

2

Additional resources
3.2.2. Managing proxy certificates during installation
3.2.3. Location
3.2.4. Expiration
3.2.5. Services
3.2.6. Management
3.2.7. Customization
3.2.8. Renewal

3.3. SERVICE CA CERTIFICATES
3.3.1. Purpose
3.3.2. Expiration
3.3.3. Management
3.3.4. Services

Additional resources
3.4. NODE CERTIFICATES

3.4.1. Purpose
3.4.2. Management

Additional resources
3.5. BOOTSTRAP CERTIFICATES

3.5.1. Purpose
3.5.2. Management
3.5.3. Expiration
3.5.4. Customization

3.6. ETCD CERTIFICATES
3.6.1. Purpose
3.6.2. Expiration
3.6.3. Management
3.6.4. Services

Additional resources
3.7. OLM CERTIFICATES

3.7.1. Management
3.8. USER-PROVIDED CERTIFICATES FOR DEFAULT INGRESS

3.8.1. Purpose
3.8.2. Location
3.8.3. Management
3.8.4. Expiration
3.8.5. Services
3.8.6. Customization

Additional resources
3.9. INGRESS CERTIFICATES

3.9.1. Purpose
3.9.2. Location
3.9.3. Workflow
3.9.4. Expiration
3.9.5. Services
3.9.6. Management
3.9.7. Renewal

3.10. MONITORING AND CLUSTER LOGGING OPERATOR COMPONENT CERTIFICATES
3.10.1. Expiration
3.10.2. Management

3.11. CONTROL PLANE CERTIFICATES
3.11.1. Location
3.11.2. Management

48
48
48
48
49
49
49
50
50
50
50
51
51
52
52
52
52
52
52
52
52
52
53
53
53
53
53
53
53
53
53
54
54
54
54
54
54
54
54
55
55
55
55
57
57
57
57
57
58
58
58
58
58

Table of Contents

3

. .

. .

. .

. .

CHAPTER 4. VIEWING AUDIT LOGS
4.1. ABOUT THE API AUDIT LOG
4.2. VIEWING THE AUDIT LOG

CHAPTER 5. ALLOWING JAVASCRIPT-BASED ACCESS TO THE API SERVER FROM ADDITIONAL HOSTS

5.1. ALLOWING JAVASCRIPT-BASED ACCESS TO THE API SERVER FROM ADDITIONAL HOSTS

CHAPTER 6. ENCRYPTING ETCD DATA
6.1. ABOUT ETCD ENCRYPTION
6.2. ENABLING ETCD ENCRYPTION
6.3. DISABLING ETCD ENCRYPTION

CHAPTER 7. SCANNING PODS FOR VULNERABILITIES
7.1. RUNNING THE CONTAINER SECURITY OPERATOR
7.2. QUERYING IMAGE VULNERABILITIES FROM THE CLI

59
59
60

63
63

65
65
65
66

68
68
70

OpenShift Container Platform 4.4 Security

4

Table of Contents

5

CHAPTER 1. CONTAINER SECURITY

1.1. UNDERSTANDING CONTAINER SECURITY

Securing a containerized application relies on multiple levels of security:

Container security begins with a trusted base container image and continues through the
container build process as it moves through your CI/CD pipeline.

When a container is deployed, its security depends on it running on secure operating systems
and networks, and establishing firm boundaries between the container itself and the users and
hosts that interact with it.

Continued security relies on being able to scan container images for vulnerabilities and having
an efficient way to correct and replace vulnerable images.

Beyond what a platform such as OpenShift Container Platform offers out of the box, your organization
will likely have its own security demands. Some level of compliance verification might be needed before
you can even bring OpenShift Container Platform into your data center.

Likewise, you may need to add your own agents, specialized hardware drivers, or encryption features to
OpenShift Container Platform, before it can meet your organization’s security standards.

This guide provides a high-level walkthrough of the container security measures available in OpenShift
Container Platform, including solutions for the host layer, the container and orchestration layer, and the
build and application layer. It then points you to specific OpenShift Container Platform documentation
to help you achieve those security measures.

This guide contains the following information:

Why container security is important and how it compares with existing security standards.

Which container security measures are provided by the host (RHCOS and RHEL) layer and
which are provided by OpenShift Container Platform.

How to evaluate your container content and sources for vulnerabilities.

How to design your build and deployment process to proactively check container content.

How to control access to containers through authentication and authorization.

How networking and attached storage are secured in OpenShift Container Platform.

Containerized solutions for API management and SSO.

The goal of this guide is to understand the incredible security benefits of using OpenShift Container
Platform for your containerized workloads and how the entire Red Hat ecosystem plays a part in making
and keeping containers secure. It will also help you understand how you can engage with the OpenShift
Container Platform to achieve your organization’s security goals.

1.1.1. What are containers?

Containers package an application and all its dependencies into a single image that can be promoted
from development, to test, to production, without change. A container might be part of a larger
application that works closely with other containers.

Containers provide consistency across environments and multiple deployment targets: physical servers,

OpenShift Container Platform 4.4 Security

6

Containers provide consistency across environments and multiple deployment targets: physical servers,
virtual machines (VMs), and private or public cloud.

Some of the benefits of using containers include:

Infrastructure Applications

Sandboxed application processes on a shared Linux
operating system kernel

Package my application and all of its dependencies

Simpler, lighter, and denser than virtual machines Deploy to any environment in seconds and enable
CI/CD

Portable across different environments Easily access and share containerized components

See Understanding Linux containers from the Red Hat customer portal to find out more about Linux
containers. To learn about RHEL container tools, see Building, running, and managing containers in the
RHEL product documentation.

1.1.2. What is OpenShift Container Platform?

Automating how containerized applications are deployed, run, and managed is the job of a platform such
as OpenShift Container Platform. At its core, OpenShift Container Platform relies on the Kubernetes
project to provide the engine for orchestrating containers across many nodes in scalable data centers.

Kubernetes is a project, which can run using different operating systems and add-on components that
offer no guarantees of supportability from the project. As a result, the security of different Kubernetes
platforms can vary.

OpenShift Container Platform is designed to lock down Kubernetes security and integrate the platform
with a variety of extended components. To do this, OpenShift Container Platform draws on the
extensive Red Hat ecosystem of open source technologies that include the operating systems,
authentication, storage, networking, development tools, base container images, and many other
components.

OpenShift Container Platform can leverage Red Hat’s experience in uncovering and rapidly deploying
fixes for vulnerabilities in the platform itself as well as the containerized applications running on the
platform. Red Hat’s experience also extends to efficiently integrating new components with OpenShift
Container Platform as they become available and adapting technologies to individual customer needs.

Additional resources

OpenShift Container Platform architecture

OpenShift Security Guide

1.2. UNDERSTANDING HOST AND VM SECURITY

Both containers and virtual machines provide ways of separating applications running on a host from the
operating system itself. Understanding RHCOS, which is the operating system used by OpenShift
Container Platform, will help you see how the host systems protect containers and hosts from each
other.

CHAPTER 1. CONTAINER SECURITY

7

https://www.redhat.com/en/topics/containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/architecture/#architecture
https://access.redhat.com/articles/5059881

1.2.1. Securing containers on Red Hat Enterprise Linux CoreOS (RHCOS)

Containers simplify the act of deploying many applications to run on the same host, using the same
kernel and container runtime to spin up each container. The applications can be owned by many users
and, because they are kept separate, can run different, and even incompatible, versions of those
applications at the same time without issue.

In Linux, containers are just a special type of process, so securing containers is similar in many ways to
securing any other running process. An environment for running containers starts with an operating
system that can secure the host kernel from containers and other processes running on the host, as well
as secure containers from each other.

Because OpenShift Container Platform 4.4 runs on RHCOS hosts, with the option of using Red Hat
Enterprise Linux (RHEL) as worker nodes, the following concepts apply by default to any deployed
OpenShift Container Platform cluster. These RHEL security features are at the core of what makes
running containers in OpenShift more secure:

Linux namespaces enable creating an abstraction of a particular global system resource to make
it appear as a separate instance to processes within a namespace. Consequently, several
containers can use the same computing resource simultaneously without creating a conflict.
Container namespaces that are separate from the host by default include mount table, process
table, network interface, user, control group, UTS, and IPC namespaces. Those containers that
need direct access to host namespaces need to have elevated permissions to request that
access. See Overview of Containers in Red Hat Systems from the RHEL 7 container
documentation for details on the types of namespaces.

SELinux provides an additional layer of security to keep containers isolated from each other and
from the host. SELinux allows administrators to enforce mandatory access controls (MAC) for
every user, application, process, and file.

CGroups (control groups) limit, account for, and isolate the resource usage (CPU, memory, disk
I/O, network, etc.) of a collection of processes. CGroups are used to ensure that containers on
the same host are not impacted by each other.

Secure computing mode (seccomp) profiles can be associated with a container to restrict
available system calls. See page 94 of the OpenShift Security Guide for details about seccomp.

Deploying containers using RHCOS reduces the attack surface by minimizing the host
environment and tuning it for containers. The CRI-O container engine further reduces that
attack surface by implementing only those features required by Kubernetes and OpenShift to
run and manage containers, as opposed to other container engines that implement desktop-
oriented standalone features.

RHCOS is a version of Red Hat Enterprise Linux (RHEL) that is specially configured to work as control
plane (master) and worker nodes on OpenShift Container Platform clusters. So RHCOS is tuned to
efficiently run container workloads, along with Kubernetes and OpenShift services.

To further protect RHCOS systems in OpenShift Container Platform clusters, most containers, except
those managing or monitoring the host system itself, should run as a non-root user. Dropping the
privilege level or creating containers with the least amount of privileges possible is recommended best
practice for protecting your own OpenShift Container Platform clusters.

Additional resources

How nodes enforce resource constraints

Managing security context constraints

OpenShift Container Platform 4.4 Security

8

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers#linux_containers_architecture
https://access.redhat.com/articles/5059881
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cri-o_runtime/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/nodes/#allocate-node-enforcement_nodes-nodes-resources-configuring
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/authentication_and_authorization/#managing-pod-security-policies

Available platforms

Machine requirements for a cluster with user-provisioned infrastructure

Choosing how to configure RHCOS

Ignition

Kernel arguments

Kernel modules

FIPS cryptography

Disk encryption

Chrony time service

OpenShift Container Platform cluster updates

1.2.2. Comparing virtualization and containers

Traditional virtualization provides another way to keep application environments separate on the same
physical host. However, virtual machines work in a different way than containers. Virtualization relies on a
hypervisor spinning up guest virtual machines (VMs), each of which has its own operating system (OS),
represented by a running kernel, as well as the running application and its dependencies.

With VMs, the hypervisor isolates the guests from each other and from the host kernel. Fewer individuals
and processes have access to the hypervisor, reducing the attack surface on the physical server. That
said, security must still be monitored: one guest VM might be able to use hypervisor bugs to gain access
to another VM or the host kernel. And, when the OS needs to be patched, it must be patched on all guest
VMs using that OS.

Containers can be run inside guest VMs, and there might be use cases where this is desirable. For
example, you might be deploying a traditional application in a container, perhaps in order to lift-and-shift
an application to the cloud.

Container separation on a single host, however, provides a more lightweight, flexible, and easier-to-
scale deployment solution. This deployment model is particularly appropriate for cloud-native
applications. Containers are generally much smaller than VMs and consume less memory and CPU.

See Linux Containers Compared to KVM Virtualization in the RHEL 7 container documentation to learn
about the differences between container and VMs.

1.2.3. Securing OpenShift Container Platform

When you deploy OpenShift Container Platform, you have the choice of an installer-provisioned
infrastructure (there are several available platforms) or your own user-provisioned infrastructure. Some
low-level security-related configuration, such as enabling FIPS compliance or adding kernel modules
required at first boot, might benefit from a user-provisioned infrastructure. Likewise, user-provisioned
infrastructure is appropriate for disconnected OpenShift Container Platform deployments.

Keep in mind that, when it comes to making security enhancements and other configuration changes to
OpenShift Container Platform, the goals should include:

Keeping the underlying nodes as generic as possible. You want to be able to easily throw away

CHAPTER 1. CONTAINER SECURITY

9

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/architecture/#available-platforms_architecture-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/installing/#installation-requirements-user-infra_installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/architecture/#rhcos-configured_architecture-rhcos
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/architecture/#rhcos-about-ignition_architecture-rhcos
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/installing/#installation-special-config-kargs_installing-customizing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/installing/#installation-special-config-kmod_installing-customizing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/installing/#installing-fips
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/installing/#installation-special-config-encrypt-disk_installing-customizing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/installing/#installation-special-config-chrony_installing-customizing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/updating_clusters/#update-service-overview_updating-cluster-between-minor
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers#linux_containers_compared_to_kvm_virtualization

Keeping the underlying nodes as generic as possible. You want to be able to easily throw away
and spin up similar nodes quickly and in prescriptive ways.

Managing modifications to nodes through OpenShift Container Platform as much as possible,
rather than making direct, one-off changes to the nodes.

In pursuit of those goals, most node changes should be done during installation through Ignition or later
using MachineConfigs that are applied to sets of nodes by the Machine Config Operator. Examples of
security-related configuration changes you can do in this way include:

Adding kernel arguments

Adding kernel modules

Enabling support for FIPS cryptography

Configuring disk encryption

Configuring the chrony time service

Besides the Machine Config Operator, there are several other Operators available to configure
OpenShift Container Platform infrastructure that are managed by the Cluster Version Operator (CVO).
The CVO is able to automate many aspects of OpenShift Container Platform cluster updates.

1.3. HARDENING RHCOS

RHCOS was created and tuned to be deployed in OpenShift Container Platform with few if any changes
needed to RHCOS nodes. Every organization adopting OpenShift Container Platform has its own
requirements for system hardening. As a RHEL system with OpenShift-specific modifications and
features added (such as Ignition, ostree, and a read-only /usr to provide limited immutability), RHCOS
can be hardened just as you would any RHEL system. Differences lie in the ways you manage the
hardening.

A key feature of OpenShift Container Platform and its Kubernetes engine is to be able to quickly scale
applications and infrastructure up and down as needed. Unless it is unavoidable, you do not want to
make direct changes to RHCOS by logging into a host and adding software or changing settings. You
want to have the OpenShift Container Platform installer and control plane manage changes to RHCOS
so new nodes can be spun up without manual intervention.

So, if you are setting out to harden RHCOS nodes in OpenShift Container Platform to meet your
security needs, you should consider both what to harden and how to go about doing that hardening.

1.3.1. Choosing what to harden in RHCOS

The RHEL 8 Security Hardening guide describes how you should approach security for any RHEL
system.

Use this guide to learn how to approach cryptography, evaluate vulnerabilities, and assess threats to
various services. Likewise, you can learn how to scan for compliance standards, check file integrity,
perform auditing, and encrypt storage devices.

With the knowledge of what features you want to harden, you can then decide how to harden them in
RHCOS.

1.3.2. Choosing how to harden RHCOS

Direct modification of RHCOS systems in OpenShift Container Platform is discouraged. Instead, you

OpenShift Container Platform 4.4 Security

10

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/security_hardening/index#scanning-container-and-container-images-for-vulnerabilities_scanning-the-system-for-security-compliance-and-vulnerabilities

Direct modification of RHCOS systems in OpenShift Container Platform is discouraged. Instead, you
should think of modifying systems in pools of nodes, such as worker nodes and master nodes. When a
new node is needed, in non-bare metal installs, you can request a new node of the type you want and it
will be created from an RHCOS image plus the modifications you created earlier.

There are opportunities for modifying RHCOS before installation, during installation, and after the
cluster is up and running.

1.3.2.1. Hardening before installation

For bare metal installations, you can add hardening features to RHCOS before beginning the OpenShift
Container Platform installation. For example, you can add kernel options when you boot the RHCOS
installer to turn security features on or off, such as SELinux or various low-level settings, such as
symmetric multithreading.

Although bare metal RHCOS installations are more difficult, they offer the opportunity of getting
operating system changes in place before starting the OpenShift Container Platform installation. This
can be important when you need to ensure that certain features, such as disk encryption or special
networking settings, be set up at the earliest possible moment.

1.3.2.2. Hardening during installation

You can interrupt the OpenShift installation process and change Ignition configs. Through Ignition
configs, you can add your own files and systemd services to the RHCOS nodes. You can also make some
basic security-related changes to the install-config.yaml file used for installation. Contents added in
this way are available at each node’s first boot.

1.3.2.3. Hardening after the cluster is running

After the OpenShift Container Platform cluster is up and running, there are several ways to apply
hardening features to RHCOS:

Daemon set: If you need a service to run on every node, you can add that service with a
Kubernetes DaemonSet object.

Machine config: MachineConfig objects contain a subset of Ignition configs in the same format.
By applying machine configs to all worker or control plane nodes, you can ensure that the next
node of the same type that is added to the cluster has the same changes applied.

All of the features noted here are described in the OpenShift Container Platform product
documentation.

Additional resources

OpenShift Security Guide

Choosing how to configure RHCOS

Modifying Nodes

Manually creating the installation configuration file

Creating the Kubernetes manifest and Ignition config files

Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines using an ISO image

CHAPTER 1. CONTAINER SECURITY

11

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://access.redhat.com/articles/5059881
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/architecture/#rhcos-deployed_architecture-rhcos
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/nodes/#nodes-nodes-managing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/installing/#installation-initializing-manual_installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/installing/#installation-user-infra-generate-k8s-manifest-ignition_installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/installing/#installation-user-infra-machines-iso_installing-bare-metal

Customizing nodes

Adding kernel arguments to Nodes

Installation configuration parameters - see fips

Support for FIPS cryptography

RHEL core crypto components

1.4. UNDERSTANDING COMPLIANCE

For many OpenShift Container Platform customers, regulatory readiness, or compliance, on some level
is required before any systems can be put into production. That regulatory readiness can be imposed by
national standards, industry standards or the organization’s corporate governance framework.

1.4.1. Understanding compliance and risk management

FIPS compliance is one of the most critical components required in highly secure environments, to
ensure that only supported cryptographic technologies are allowed on nodes. To understand Red Hat’s
view of OpenShift Container Platform compliance frameworks, refer to the Risk Management and
Regulatory Readiness chapter of the OpenShift Security Guide Book .

Additional resources

Installing a cluster in FIPS mode

1.5. SECURING CONTAINER CONTENT

To ensure the security of the content inside your containers you need to start with trusted base images,
such as Red Hat Universal Base Images, and add trusted software. To check the ongoing security of your
container images, there are both Red Hat and third-party tools for scanning images.

1.5.1. Securing inside the container

Applications and infrastructures are composed of readily available components, many of which are open
source packages such as, the Linux operating system, JBoss Web Server, PostgreSQL, and Node.js.

Containerized versions of these packages are also available. However, you need to know where the
packages originally came from, what versions are used, who built them, and whether there is any
malicious code inside them.

Some questions to answer include:

Will what is inside the containers compromise your infrastructure?

Are there known vulnerabilities in the application layer?

Are the runtime and operating system layers current?

By building your containers from Red Hat Universal Base Images (UBI) you are assured of a foundation
for your container images that consists of the same RPM-packaged software that is included in Red Hat
Enterprise Linux. No subscriptions are required to either use or redistribute UBI images.

To assure ongoing security of the containers themselves, security scanning features, used directly from

OpenShift Container Platform 4.4 Security

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/installing/#installing-customizing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/nodes/#nodes-nodes-kernel-arguments_nodes-nodes-working
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/installing/#installation-configuration-parameters_installing-aws-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/installing/#installing-fips
https://access.redhat.com/articles/3359851
https://access.redhat.com/articles/5059881
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/installing/#installing-fips-mode_installing-fips
https://access.redhat.com/articles/4238681

RHEL or added to OpenShift Container Platform, can alert you when an image you are using has
vulnerabilities. OpenSCAP image scanning is available in RHEL and the Container Security Operator can
be added to check container images used in OpenShift Container Platform.

1.5.2. Creating redistributable images with UBI

To create containerized applications, you typically start with a trusted base image that offers the
components that are usually provided by the operating system. These include the libraries, utilities, and
other features the application expects to see in the operating system’s file system.

Red Hat Universal Base Images (UBI) were created to encourage anyone building their own containers
to start with one that is made entirely from Red Hat Enterprise Linux rpm packages and other content.
These UBI images are updated regularly to keep up with security patches and free to use and
redistribute with container images built to include your own software.

Search the Red Hat Ecosystem Catalog to both find and check the health of different UBI images. As
someone creating secure container images, you might be interested in these two general types of UBI
images:

UBI: There are standard UBI images for RHEL 7 and 8 (ubi7/ubi and ubi8/ubi), as well as
minimal images based on those systems (ubi7/ubi-minimal and ubi8/ubi-mimimal). All of
these images are preconfigured to point to free repositories of RHEL software that you can add
to the container images you build, using standard yum and dnf commands. Red Hat encourages
people to use these images on other distributions, such as Fedora and Ubuntu.

Red Hat Software Collections: Search the Red Hat Ecosystem Catalog for rhscl/ to find
images created to use as base images for specific types of applications. For example, there are
Apache httpd (rhscl/httpd-*), Python (rhscl/python-*), Ruby (rhscl/ruby-*), Node.js
(rhscl/nodejs-*) and Perl (rhscl/perl-*) rhscl images.

Keep in mind that while UBI images are freely available and redistributable, Red Hat support for these
images is only available through Red Hat product subscriptions.

See Using Red Hat Universal Base Images in the Red Hat Enterprise Linux documentation for
information on how to use and build on standard, minimal and init UBI images.

1.5.3. Security scanning in RHEL

For Red Hat Enterprise Linux (RHEL) systems, OpenSCAP scanning is available from the openscap-
utils package. In RHEL, you can use the openscap-podman command to scan images for
vulnerabilities. See Scanning containers and container images for vulnerabilities in the Red Hat
Enterprise Linux documentation.

OpenShift Container Platform enables you to leverage RHEL scanners with your CI/CD process. For
example, you can integrate static code analysis tools that test for security flaws in your source code and
software composition analysis tools that identify open source libraries in order to provide metadata on
those libraries such as known vulnerabilities.

1.5.3.1. Scanning OpenShift images

For the container images that are running in OpenShift Container Platform and are pulled from Red Hat
Quay registries, you can use an Operator to list the vulnerabilities of those images. The Container
Security Operator can be added to OpenShift Container Platform to provide vulnerability reporting for
images added to selected namespaces.

Container image scanning for Red Hat Quay is performed by the Clair security scanner . In Red Hat

CHAPTER 1. CONTAINER SECURITY

13

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#container-security-operator-setup
https://catalog.redhat.com/software/containers/explore
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index#using_red_hat_universal_base_images_standard_minimal_and_runtimes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/security_hardening/index#scanning-the-system-for-configuration-compliance-and-vulnerabilities_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#container-security-operator-setup

Container image scanning for Red Hat Quay is performed by the Clair security scanner . In Red Hat
Quay, Clair can search for and report vulnerabilities in images built from RHEL, CentOS, Oracle, Alpine,
Debian, and Ubuntu operating system software.

1.5.4. Integrating external scanning

OpenShift Container Platform makes use of object annotations to extend functionality. External tools,
such as vulnerability scanners, can annotate image objects with metadata to summarize results and
control pod execution. This section describes the recognized format of this annotation so it can be
reliably used in consoles to display useful data to users.

1.5.4.1. Image metadata

There are different types of image quality data, including package vulnerabilities and open source
software (OSS) license compliance. Additionally, there may be more than one provider of this metadata.
To that end, the following annotation format has been reserved:

quality.images.openshift.io/<qualityType>.<providerId>: {}

Table 1.1. Annotation key format

Component Description Acceptable values

qualityType Metadata type vulnerability
license
operations
policy

providerId Provider ID string openscap
redhatcatalog
redhatinsights
blackduck
jfrog

1.5.4.1.1. Example annotation keys

quality.images.openshift.io/vulnerability.blackduck: {}
quality.images.openshift.io/vulnerability.jfrog: {}
quality.images.openshift.io/license.blackduck: {}
quality.images.openshift.io/vulnerability.openscap: {}

The value of the image quality annotation is structured data that must adhere to the following format:

Table 1.2. Annotation value format

Field Required? Description Type

name Yes Provider display name String

timestamp Yes Scan timestamp String

OpenShift Container Platform 4.4 Security

14

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#quay-security-scanner
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

description No Short description String

reference Yes URL of information
source or more details.
Required so user may
validate the data.

String

scannerVersion No Scanner version String

compliant No Compliance pass or fail Boolean

summary No Summary of issues
found

List (see table below)

Field Required? Description Type

The summary field must adhere to the following format:

Table 1.3. Summary field value format

Field Description Type

label Display label for component (for
example, "critical," "important,"
"moderate," "low," or "health")

String

data Data for this component (for
example, count of vulnerabilities
found or score)

String

severityIndex Component index allowing for
ordering and assigning graphical
representation. The value is range
0..3 where 0 = low.

Integer

reference URL of information source or
more details. Optional.

String

1.5.4.1.2. Example annotation values

This example shows an OpenSCAP annotation for an image with vulnerability summary data and a
compliance boolean:

OpenSCAP annotation

{
 "name": "OpenSCAP",
 "description": "OpenSCAP vulnerability score",
 "timestamp": "2016-09-08T05:04:46Z",
 "reference": "https://www.open-scap.org/930492",

CHAPTER 1. CONTAINER SECURITY

15

This example shows the Red Hat Container Catalog annotation for an image with health index data with
an external URL for additional details:

Red Hat Container Catalog annotation

1.5.4.2. Annotating image objects

While image stream objects are what an end user of OpenShift Container Platform operates against,
image objects are annotated with security metadata. Image objects are cluster-scoped, pointing to a
single image that may be referenced by many image streams and tags.

1.5.4.2.1. Example annotate CLI command

Replace <image> with an image digest, for example
sha256:401e359e0f45bfdcf004e258b72e253fd07fba8cc5c6f2ed4f4608fb119ecc2:

$ oc annotate image <image> \
 quality.images.openshift.io/vulnerability.redhatcatalog='{ \
 "name": "Red Hat Container Catalog", \
 "description": "Container health index", \
 "timestamp": "2020-06-01T05:04:46Z", \
 "compliant": null, \
 "scannerVersion": "1.2", \
 "reference": "https://access.redhat.com/errata/RHBA-2020:2347", \
 "summary": "[\
 { "label": "Health index", "data": "B", "severityIndex": 1, "reference": null }]" }'

1.5.4.3. Controlling pod execution

Use the images.openshift.io/deny-execution image policy to programmatically control if an image can
be run.

 "compliant": true,
 "scannerVersion": "1.2",
 "summary": [
 { "label": "critical", "data": "4", "severityIndex": 3, "reference": null },
 { "label": "important", "data": "12", "severityIndex": 2, "reference": null },
 { "label": "moderate", "data": "8", "severityIndex": 1, "reference": null },
 { "label": "low", "data": "26", "severityIndex": 0, "reference": null }
]
}

{
 "name": "Red Hat Container Catalog",
 "description": "Container health index",
 "timestamp": "2016-09-08T05:04:46Z",
 "reference": "https://access.redhat.com/errata/RHBA-2016:1566",
 "compliant": null,
 "scannerVersion": "1.2",
 "summary": [
 { "label": "Health index", "data": "B", "severityIndex": 1, "reference": null }
]
}

OpenShift Container Platform 4.4 Security

16

https://catalog.redhat.com/software/containers/explore

1.5.4.3.1. Example annotation

1.5.4.4. Integration reference

In most cases, external tools such as vulnerability scanners develop a script or plug-in that watches for
image updates, performs scanning, and annotates the associated image object with the results.
Typically this automation calls the OpenShift Container Platform 4.4 REST APIs to write the annotation.
See OpenShift Container Platform REST APIs for general information on the REST APIs.

1.5.4.4.1. Example REST API call

The following example call using curl overrides the value of the annotation. Be sure to replace the values
for <token>, <openshift_server>, <image_id>, and <image_annotation>.

Patch API call

$ curl -X PATCH \
 -H "Authorization: Bearer <token>" \
 -H "Content-Type: application/merge-patch+json" \
 https://<openshift_server>:8443/oapi/v1/images/<image_id> \
 --data '{ <image_annotation> }'

The following is an example of PATCH payload data:

Patch call data

{
"metadata": {
 "annotations": {
 "quality.images.openshift.io/vulnerability.redhatcatalog":
 "{ 'name': 'Red Hat Container Catalog', 'description': 'Container health index', 'timestamp': '2020-
06-01T05:04:46Z', 'compliant': null, 'reference': 'https://access.redhat.com/errata/RHBA-2020:2347',
'summary': [{'label': 'Health index', 'data': '4', 'severityIndex': 1, 'reference': null}] }"
 }
 }
}

Additional resources

Image stream objects

1.6. USING CONTAINER REGISTRIES SECURELY

Container registries store container images to:

Make images accessible to others

Organize images into repositories that can include multiple versions of an image

Optionally limit access to images, based on different authentication methods, or make them

annotations:
 images.openshift.io/deny-execution: true

CHAPTER 1. CONTAINER SECURITY

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/images/#images-imagestream-use_images-understand

Optionally limit access to images, based on different authentication methods, or make them
publicly available

There are public container registries, such as Quay.io and Docker Hub where many people and
organizations share their images. The Red Hat Registry offers supported Red Hat and partner images,
while the Red Hat Ecosystem Catalog offers detailed descriptions and health checks for those images.
To manage your own registry, you could purchase a container registry such as Red Hat Quay.

From a security standpoint, some registries provide special features to check and improve the health of
your containers. For example, Red Hat Quay offers container vulnerability scanning with Clair security
scanner, build triggers to automatically rebuild images when source code changes in GitHub and other
locations, and the ability to use role-based access control (RBAC) to secure access to images.

1.6.1. Knowing where containers come from?

There are tools you can use to scan and track the contents of your downloaded and deployed container
images. However, there are many public sources of container images. When using public container
registries, you can add a layer of protection by using trusted sources.

1.6.2. Immutable and certified containers

Consuming security updates is particularly important when managing immutable containers. Immutable
containers are containers that will never be changed while running. When you deploy immutable
containers, you do not step into the running container to replace one or more binaries. From an
operational standpoint, you rebuild and redeploy an updated container image to replace a container
instead of changing it.

Red Hat certified images are:

Free of known vulnerabilities in the platform components or layers

Compatible across the RHEL platforms, from bare metal to cloud

Supported by Red Hat

The list of known vulnerabilities is constantly evolving, so you must track the contents of your deployed
container images, as well as newly downloaded images, over time. You can use Red Hat Security
Advisories (RHSAs) to alert you to any newly discovered issues in Red Hat certified container images,
and direct you to the updated image. Alternatively, you can go to the Red Hat Ecosystem Catalog to
look up that and other security-related issues for each Red Hat image.

1.6.3. Getting containers from Red Hat Registry and Ecosystem Catalog

Red Hat lists certified container images for Red Hat products and partner offerings from the Container
Images section of the Red Hat Ecosystem Catalog. From that catalog, you can see details of each
image, including CVE, software packages listings, and health scores.

Red Hat images are actually stored in what is referred to as the Red Hat Registry , which is represented by
a public container registry (registry.access.redhat.com) and an authenticated registry
(registry.redhat.io). Both include basically the same set of container images, with registry.redhat.io
including some additional images that require authentication with Red Hat subscription credentials.

Container content is monitored for vulnerabilities by Red Hat and updated regularly. When Red Hat
releases security updates, such as fixes to glibc, DROWN, or Dirty Cow, any affected container images
are also rebuilt and pushed to the Red Hat Registry.

OpenShift Container Platform 4.4 Security

18

https://access.redhat.com/products/red-hat-quay
https://access.redhat.com/security/security-updates/#/security-advisories
https://catalog.redhat.com/software/containers/explore
https://access.redhat.com/security/vulnerabilities/drown
https://access.redhat.com/blogs/766093/posts/2757141

Red Hat uses a health index to reflect the security risk for each container provided through the Red
Hat Ecosystem Catalog. Because containers consume software provided by Red Hat and the errata
process, old, stale containers are insecure whereas new, fresh containers are more secure.

To illustrate the age of containers, the Red Hat Container Catalog uses a grading system. A freshness
grade is a measure of the oldest and most severe security errata available for an image. "A" is more up to
date than "F". See Container Health Index grades as used inside the Red Hat Container Catalog for more
details on this grading system.

Refer to the Red Hat Product Security Center for details on security updates and vulnerabilities related
to Red Hat software. Check out Red Hat Security Advisories to search for specific advisories and CVEs.

1.6.4. OpenShift Container Registry

OpenShift Container Platform includes the OpenShift Container Registry , a private registry running as an
integrated component of the platform that you can use to manage your container images. The
OpenShift Container Registry provides role-based access controls that allow you to manage who can
pull and push which container images.

OpenShift Container Platform also supports integration with other private registries that you might
already be using, such as Red Hat Quay.

Additional resources

Integrated OpenShift Container Platform registry

1.6.5. Storing containers using Red Hat Quay

Red Hat Quay is an enterprise-quality container registry product from Red Hat. Development for Red
Hat Quay is done through the upstream Project Quay. Red Hat Quay is available to deploy on-premise
or through the hosted version of Red Hat Quay at Quay.io.

Security-related features of Red Hat Quay include:

Time machine: Allows images with older tags to expire after a set period of time or based on a
user-selected expiration time.

Repository mirroring: Lets you mirror other registries for security reasons, such hosting a public
repository on Red Hat Quay behind a company firewall, or for performance reasons, to keep
registries closer to where they are used.

Action log storage: Save Red Hat Quay logging output to Elasticsearch storage to allow for
later search and analysis.

Clair security scanning: Scan images against a variety of Linux vulnerability databases, based
on the origins of each container image.

Internal authentication: Use the default local database to handle RBAC authentication to Red
Hat Quay or choose from LDAP, Keystone (OpenStack), JWT Custom Authentication, or
External Application Token authentication.

External authorization (OAuth): Allow authorization to Red Hat Quay from GitHub, GitHub
Enterprise, or Google Authentication.

Access settings: Generate tokens to allow access to Red Hat Quay from docker, rkt,

CHAPTER 1. CONTAINER SECURITY

19

https://access.redhat.com/articles/2803031
https://access.redhat.com/security/
https://access.redhat.com/security/security-updates/#/security-advisories
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/registry/#architecture-component-imageregistry
https://access.redhat.com/products/red-hat-quay
https://docs.projectquay.io/welcome.html
https://quay.io
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#repo-mirroring-in-red-hat-quay
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#proc_manage-log-storage
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#quay-security-scanner

Access settings: Generate tokens to allow access to Red Hat Quay from docker, rkt,
anonymous access, user-created accounts, encrypted client passwords, or prefix username
autocompletion.

Ongoing integration of Red Hat Quay with OpenShift Container Platform continues, with several
OpenShift Container Platform Operators of particular interest. The Quay Bridge Operator lets you
replace the internal OpenShift Container Platform registry with Red Hat Quay. The Quay Container
Security Operator lets you check vulnerabilities of images running in OpenShift Container Platform that
were pulled from Red Hat Quay registries.

1.7. SECURING THE BUILD PROCESS

In a container environment, the software build process is the stage in the life cycle where application
code is integrated with the required runtime libraries. Managing this build process is key to securing the
software stack.

1.7.1. Building once, deploying everywhere

Using OpenShift Container Platform as the standard platform for container builds enables you to
guarantee the security of the build environment. Adhering to a "build once, deploy everywhere"
philosophy ensures that the product of the build process is exactly what is deployed in production.

It is also important to maintain the immutability of your containers. You should not patch running
containers, but rebuild and redeploy them.

As your software moves through the stages of building, testing, and production, it is important that the
tools making up your software supply chain be trusted. The following figure illustrates the process and
tools that could be incorporated into a trusted software supply chain for containerized software:

OpenShift Container Platform can be integrated with trusted code repositories (such as GitHub) and
development platforms (such as Che) for creating and managing secure code. Unit testing could rely on
Cucumber and JUnit. You could inspect your containers for vulnerabilities and compliance issues with
Anchore or Twistlock, and use image scanning tools such as AtomicScan or Clair. Tools such as Sysdig
could provide ongoing monitoring of your containerized applications.

1.7.2. Managing builds

You can use Source-to-Image (S2I) to combine source code and base images. Builder images make use

OpenShift Container Platform 4.4 Security

20

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#quay-bridge-operator
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#container-security-operator-setup
https://cucumber.io/
https://junit.org/
https://anchore.com
https://sysdig.com

You can use Source-to-Image (S2I) to combine source code and base images. Builder images make use
of S2I to enable your development and operations teams to collaborate on a reproducible build
environment. With Red Hat S2I images available as Universal Base Image (UBI) images, you can now
freely redistribute your software with base images built from real RHEL RPM packages. Red Hat has
removed subscription restrictions to allow this.

When developers commit code with Git for an application using build images, OpenShift Container
Platform can perform the following functions:

Trigger, either by using webhooks on the code repository or other automated continuous
integration (CI) process, to automatically assemble a new image from available artifacts, the S2I
builder image, and the newly committed code.

Automatically deploy the newly built image for testing.

Promote the tested image to production where it can be automatically deployed using a CI
process.

You can use the integrated OpenShift Container Registry to manage access to final images. Both S2I
and native build images are automatically pushed to your OpenShift Container Registry.

In addition to the included Jenkins for CI, you can also integrate your own build and CI environment with
OpenShift Container Platform using RESTful APIs, as well as use any API-compliant image registry.

1.7.3. Securing inputs during builds

In some scenarios, build operations require credentials to access dependent resources, but it is
undesirable for those credentials to be available in the final application image produced by the build.
You can define input secrets for this purpose.

For example, when building a Node.js application, you can set up your private mirror for Node.js modules.
In order to download modules from that private mirror, you must supply a custom .npmrc file for the
build that contains a URL, user name, and password. For security reasons, you do not want to expose

CHAPTER 1. CONTAINER SECURITY

21

your credentials in the application image.

Using this example scenario, you can add an input secret to a new BuildConfig object:

1. Create the secret, if it does not exist:

$ oc create secret generic secret-npmrc --from-file=.npmrc=~/.npmrc

This creates a new secret named secret-npmrc, which contains the base64 encoded content of
the ~/.npmrc file.

2. Add the secret to the source section in the existing BuildConfig object:

3. To include the secret in a new BuildConfig object, run the following command:

$ oc new-build \
 openshift/nodejs-010-centos7~https://github.com/sclorg/nodejs-ex.git \
 --build-secret secret-npmrc

1.7.4. Designing your build process

You can design your container image management and build process to use container layers so that you
can separate control.

For example, an operations team manages base images, while architects manage middleware, runtimes,
databases, and other solutions. Developers can then focus on application layers and focus on writing
code.

Because new vulnerabilities are identified daily, you need to proactively check container content over

source:
 git:
 uri: https://github.com/sclorg/nodejs-ex.git
 secrets:
 - destinationDir: .
 secret:
 name: secret-npmrc

OpenShift Container Platform 4.4 Security

22

Because new vulnerabilities are identified daily, you need to proactively check container content over
time. To do this, you should integrate automated security testing into your build or CI process. For
example:

SAST / DAST – Static and Dynamic security testing tools.

Scanners for real-time checking against known vulnerabilities. Tools like these catalog the open
source packages in your container, notify you of any known vulnerabilities, and update you when
new vulnerabilities are discovered in previously scanned packages.

Your CI process should include policies that flag builds with issues discovered by security scans so that
your team can take appropriate action to address those issues. You should sign your custom built
containers to ensure that nothing is tampered with between build and deployment.

Using GitOps methodology, you can use the same CI/CD mechanisms to manage not only your
application configurations, but also your OpenShift Container Platform infrastructure.

1.7.5. Building Knative serverless applications

Relying on Kubernetes and Kourier, you can build, deploy and manage serverless applications using
Knative in OpenShift Container Platform. As with other builds, you can use S2I images to build your
containers, then serve them using Knative services. View Knative application builds through the
Topology view of the OpenShift Container Platform web console.

Additional resources

Understanding image builds

Triggering and modifying builds

Creating build inputs

Input secrets and config maps

The CI/CD methodology and practice

Knative Serving architecture

Viewing application composition using the Topology view

1.8. DEPLOYING CONTAINERS

You can use a variety of techniques to make sure that the containers you deploy hold the latest
production-quality content and that they have not been tampered with. These techniques include
setting up build triggers to incorporate the latest code and using signatures to ensure that the container
comes from a trusted source and has not been modified.

1.8.1. Controlling container deployments with triggers

If something happens during the build process, or if a vulnerability is discovered after an image has been
deployed, you can use tooling for automated, policy-based deployment to remediate. You can use
triggers to rebuild and replace images, ensuring the immutable containers process, instead of patching
running containers, which is not recommended.

CHAPTER 1. CONTAINER SECURITY

23

https://knative.dev/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/builds/#understanding-image-builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/builds/#triggering-builds-build-hooks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/builds/#creating-build-inputs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/builds/#builds-input-secrets-configmaps_creating-build-inputs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/architecture/#cicd_gitops
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/serverless_applications/#serverless-serving-architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/applications/#odc-viewing-application-composition-using-topology-view

For example, you build an application using three container image layers: core, middleware, and
applications. An issue is discovered in the core image and that image is rebuilt. After the build is
complete, the image is pushed to your OpenShift Container Registry. OpenShift Container Platform
detects that the image has changed and automatically rebuilds and deploys the application image,
based on the defined triggers. This change incorporates the fixed libraries and ensures that the
production code is identical to the most current image.

You can use the oc set triggers command to set a deployment trigger. For example, to set a trigger for
a deployment called deployment-example:

$ oc set triggers deploy/deployment-example \
 --from-image=example:latest \
 --containers=web

1.8.2. Controlling what image sources can be deployed

It is important that the intended images are actually being deployed, that the images including the
contained content are from trusted sources, and they have not been altered. Cryptographic signing
provides this assurance. OpenShift Container Platform enables cluster administrators to apply security

OpenShift Container Platform 4.4 Security

24

policy that is broad or narrow, reflecting deployment environment and security requirements. Two
parameters define this policy:

one or more registries, with optional project namespace

trust type, such as accept, reject, or require public key(s)

You can use these policy parameters to allow, deny, or require a trust relationship for entire registries,
parts of registries, or individual images. Using trusted public keys, you can ensure that the source is
cryptographically verified. The policy rules apply to nodes. Policy may be applied uniformly across all
nodes or targeted for different node workloads (for example, build, zone, or environment).

Example image signature policy file

{
 "default": [{"type": "reject"}],
 "transports": {
 "docker": {
 "access.redhat.com": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release"
 }
]
 },
 "atomic": {
 "172.30.1.1:5000/openshift": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release"
 }
],
 "172.30.1.1:5000/production": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "/etc/pki/example.com/pubkey"
 }
],
 "172.30.1.1:5000": [{"type": "reject"}]
 }
 }
}

The policy can be saved onto a node as /etc/containers/policy.json. Saving this file to a node is best
accomplished using a new MachineConfig object. This example enforces the following rules:

Require images from the Red Hat Registry (registry.access.redhat.com) to be signed by the
Red Hat public key.

Require images from your OpenShift Container Registry in the openshift namespace to be
signed by the Red Hat public key.

Require images from your OpenShift Container Registry in the production namespace to be

CHAPTER 1. CONTAINER SECURITY

25

Require images from your OpenShift Container Registry in the production namespace to be
signed by the public key for example.com.

Reject all other registries not specified by the global default definition.

1.8.3. Using signature transports

A signature transport is a way to store and retrieve the binary signature blob. There are two types of
signature transports.

atomic: Managed by the OpenShift Container Platform API.

docker: Served as a local file or by a web server.

The OpenShift Container Platform API manages signatures that use the atomic transport type. You
must store the images that use this signature type in your OpenShift Container Registry. Because the
docker/distribution extensions API auto-discovers the image signature endpoint, no additional
configuration is required.

Signatures that use the docker transport type are served by local file or web server. These signatures
are more flexible; you can serve images from any container image registry and use an independent
server to deliver binary signatures.

However, the docker transport type requires additional configuration. You must configure the nodes
with the URI of the signature server by placing arbitrarily-named YAML files into a directory on the host
system, /etc/containers/registries.d by default. The YAML configuration files contain a registry URI and
a signature server URI, or sigstore:

Example registries.d file

In this example, the Red Hat Registry, access.redhat.com, is the signature server that provides
signatures for the docker transport type. Its URI is defined in the sigstore parameter. You might name
this file /etc/containers/registries.d/redhat.com.yaml and use the Machine Config Operator to
automatically place the file on each node in your cluster. No service restart is required since policy and
registries.d files are dynamically loaded by the container runtime.

1.8.4. Creating secrets and config maps

The Secret object type provides a mechanism to hold sensitive information such as passwords,
OpenShift Container Platform client configuration files, dockercfg files, and private source repository
credentials. Secrets decouple sensitive content from pods. You can mount secrets into containers using
a volume plug-in or the system can use secrets to perform actions on behalf of a pod.

For example, to add a secret to your deployment configuration so that it can access a private image
repository, do the following:

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Create a new project.

docker:
 access.redhat.com:
 sigstore: https://access.redhat.com/webassets/docker/content/sigstore

OpenShift Container Platform 4.4 Security

26

3. Navigate to Resources → Secrets and create a new secret. Set Secret Type to Image Secret
and Authentication Type to Image Registry Credentials to enter credentials for accessing a
private image repository.

4. When creating a deployment configuration (for example, from the Add to Project → Deploy
Image page), set the Pull Secret to your new secret.

Config maps are similar to secrets, but are designed to support working with strings that do not contain
sensitive information. The ConfigMap object holds key-value pairs of configuration data that can be
consumed in pods or used to store configuration data for system components such as controllers.

1.8.5. Automating continuous deployment

You can integrate your own continuous deployment (CD) tooling with OpenShift Container Platform.

By leveraging CI/CD and OpenShift Container Platform, you can automate the process of rebuilding the
application to incorporate the latest fixes, testing, and ensuring that it is deployed everywhere within the
environment.

Additional resources

Input secrets and config maps

1.9. SECURING THE CONTAINER PLATFORM

OpenShift Container Platform and Kubernetes APIs are key to automating container management at
scale. APIs are used to:

Validate and configure the data for pods, services, and replication controllers.

Perform project validation on incoming requests and invoke triggers on other major system
components.

Security-related features in OpenShift Container Platform that are based on Kubernetes include:

Multitenancy, which combines Role-Based Access Controls and network policies to isolate
containers at multiple levels.

Admission plug-ins, which form boundaries between an API and those making requests to the
API.

OpenShift Container Platform uses Operators to automate and simplify the management of
Kubernetes-level security features.

1.9.1. Isolating containers with multitenancy

Multitenancy allows applications on an OpenShift Container Platform cluster that are owned by multiple
users, and run across multiple hosts and namespaces, to remain isolated from each other and from
outside attacks. You obtain multitenancy by applying role-based access control (RBAC) to Kubernetes
namespaces.

In Kubernetes, namespaces are areas where applications can run in ways that are separate from other
applications. OpenShift Container Platform uses and extends namespaces by adding extra annotations,
including MCS labeling in SELinux, and identifying these extended namespaces as projects. Within the

CHAPTER 1. CONTAINER SECURITY

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/builds/#builds-input-secrets-configmaps_creating-build-inputs

scope of a project, users can maintain their own cluster resources, including service accounts, policies,
constraints, and various other objects.

RBAC objects are assigned to projects to authorize selected users to have access to those projects.
That authorization takes the form of rules, roles, and bindings:

Rules define what a user can create or access in a project.

Roles are collections of rules that you can bind to selected users or groups.

Bindings define the association between users or groups and roles.

Local RBAC roles and bindings attach a user or group to a particular project. Cluster RBAC can attach
cluster-wide roles and bindings to all projects in a cluster. There are default cluster roles that can be
assigned to provide admin, basic-user, cluster-admin, and cluster-status access.

1.9.2. Protecting control plane with admission plug-ins

While RBAC controls access rules between users and groups and available projects, admission plug-ins
define access to the OpenShift Container Platform master API. Admission plug-ins form a chain of rules
that consist of:

Default admissions plug-ins: These implement a default set of policies and resources limits that
are applied to components of the OpenShift Container Platform control plane.

Mutating admission plug-ins: These plug-ins dynamically extend the admission chain. They call
out to a webhook server and can both authenticate a request and modify the selected resource.

Validating admission plug-ins: These validate requests for a selected resource and can both
validate the request and ensure that the resource does not change again.

API requests go through admissions plug-ins in a chain, with any failure along the way causing the
request to be rejected. Each admission plug-in is associated with particular resources and only responds
to requests for those resources.

1.9.2.1. Security context constraints (SCCs)

You can use security context constraints (SCCs) to define a set of conditions that a pod must run with in
order to be accepted into the system.

Some aspects that can be managed by SCCs include:

Running of privileged containers

Capabilities a container can request to be added

Use of host directories as volumes

SELinux context of the container

Container user ID

If you have the required permissions, you can adjust the default SCC policies to be more permissive, if
required.

1.9.2.2. Granting roles to service accounts

OpenShift Container Platform 4.4 Security

28

You can assign roles to service accounts, in the same way that users are assigned role-based access.
There are three default service accounts created for each project. A service account:

is limited in scope to a particular project

derives its name from its project

is automatically assigned an API token and credentials to access the OpenShift Container
Registry

Service accounts associated with platform components automatically have their keys rotated.

1.9.3. Authentication and authorization

1.9.3.1. Controlling access using OAuth

You can use API access control via authentication and authorization for securing your container
platform. The OpenShift Container Platform master includes a built-in OAuth server. Users can obtain
OAuth access tokens to authenticate themselves to the API.

As an administrator, you can configure OAuth to authenticate using an identity provider , such as LDAP,
GitHub, or Google. The identity provider is used by default for new OpenShift Container Platform
deployments, but you can configure this at initial installation time or post-installation.

1.9.3.2. API access control and management

Applications can have multiple, independent API services which have different endpoints that require
management. OpenShift Container Platform includes a containerized version of the 3scale API gateway
so that you can manage your APIs and control access.

3scale gives you a variety of standard options for API authentication and security, which can be used
alone or in combination to issue credentials and control access: standard API keys, application ID and
key pair, and OAuth 2.0.

You can restrict access to specific endpoints, methods, and services and apply access policy for groups
of users. Application plans allow you to set rate limits for API usage and control traffic flow for groups of
developers.

For a tutorial on using APIcast v2, the containerized 3scale API Gateway, see Running APIcast on Red
Hat OpenShift in the 3scale documentation.

1.9.3.3. Red Hat Single Sign-On

The Red Hat Single Sign-On server enables you to secure your applications by providing web single sign-
on capabilities based on standards, including SAML 2.0, OpenID Connect, and OAuth 2.0. The server
can act as a SAML or OpenID Connect–based identity provider (IdP), mediating with your enterprise
user directory or third-party identity provider for identity information and your applications using
standards-based tokens. You can integrate Red Hat Single Sign-On with LDAP-based directory
services including Microsoft Active Directory and Red Hat Enterprise Linux Identity Management.

1.9.3.4. Secure self-service web console

OpenShift Container Platform provides a self-service web console to ensure that teams do not access
other environments without authorization. OpenShift Container Platform ensures a secure multitenant
master by providing the following:

CHAPTER 1. CONTAINER SECURITY

29

https://support.3scale.net/docs/deployment-options/apicast-openshift

Access to the master uses Transport Layer Security (TLS)

Access to the API Server uses X.509 certificates or OAuth access tokens

Project quota limits the damage that a rogue token could do

The etcd service is not exposed directly to the cluster

1.9.4. Managing certificates for the platform

OpenShift Container Platform has multiple components within its framework that use REST-based
HTTPS communication leveraging encryption via TLS certificates. OpenShift Container Platform’s
installer configures these certificates during installation. There are some primary components that
generate this traffic:

masters (API server and controllers)

etcd

nodes

registry

router

1.9.4.1. Configuring custom certificates

You can configure custom serving certificates for the public host names of the API server and web
console during initial installation or when redeploying certificates. You can also use a custom CA.

Additional resources

Introduction to OpenShift Container Platform

Using RBAC to define and apply permissions

About admission plug-ins

Managing security context constraints

SCC reference commands

Examples of granting roles to service accounts

Configuring the internal OAuth server

Understanding identity provider configuration

Certificate types and descriptions

Proxy certificates

1.10. SECURING NETWORKS

Network security can be managed at several levels. At the pod level, network namespaces can prevent
containers from seeing other pods or the host system by restricting network access. Network policies

OpenShift Container Platform 4.4 Security

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/architecture/#architecture-platform-introduction_architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/authentication_and_authorization/#using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/architecture/#admission-plug-ins
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/authentication_and_authorization/#managing-pod-security-policies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/authentication_and_authorization/#security-context-constraints-command-reference_configuring-internal-oauth
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/authentication_and_authorization/#service-accounts-granting-roles_understanding-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/authentication_and_authorization/#configuring-internal-oauth
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/authentication_and_authorization/#understanding-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/certificate_types_descriptions/#cert-types-user-provided-certificates-for-the-api-server
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/certificate_types_descriptions/#cert-types-proxy-certificates

give you control over allowing and rejecting connections. You can manage ingress and egress traffic to
and from your containerized applications.

1.10.1. Using network namespaces

OpenShift Container Platform uses software-defined networking (SDN) to provide a unified cluster
network that enables communication between containers across the cluster.

Network policy mode, by default, makes all pods in a project accessible from other pods and network
endpoints. To isolate one or more pods in a project, you can create NetworkPolicy objects in that
project to indicate the allowed incoming connections. Using multitenant mode, you can provide project-
level isolation for pods and services.

1.10.2. Isolating pods with network policies

Using network policies, you can isolate pods from each other in the same project. Network policies can
deny all network access to a pod, only allow connections for the ingress controller, reject connections
from pods in other projects, or set similar rules for how networks behave.

Additional resources

About network policy

1.10.3. Using multiple pod networks

Each running container has only one network interface by default. The Multus CNI plug-in lets you
create multiple CNI networks, and then attach any of those networks to your pods. In that way, you can
do things like separate private data onto a more restricted network and have multiple network
interfaces on each node.

Additional resources

Using multiple networks

1.10.4. Isolating applications

OpenShift Container Platform enables you to segment network traffic on a single cluster to make
multitenant clusters that isolate users, teams, applications, and environments from non-global
resources.

Additional resources

Configuring network isolation using OpenShiftSDN

1.10.5. Securing ingress traffic

There are many security implications related to how you configure access to your Kubernetes services
from outside of your OpenShift Container Platform cluster. Besides exposing HTTP and HTTPS routes,
ingress routing allows you to set up NodePort or LoadBalancer ingress types. NodePort exposes an
application’s service API object from each cluster worker. LoadBalancer lets you assign an external load
balancer to an associated service API object in your OpenShift Container Platform cluster.

Additional resources

CHAPTER 1. CONTAINER SECURITY

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/networking/#about-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/networking/#understanding-multiple-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/networking/#configuring-multitenant-isolation

Configuring ingress cluster traffic

1.10.6. Securing egress traffic

OpenShift Container Platform provides the ability to control egress traffic using either a router or
firewall method. For example, you can use IP whitelisting to control database access. A cluster
administrator can assign one or more egress IP addresses to a project in an OpenShift Container
Platform SDN network provider. Likewise, a cluster administrator can prevent egress traffic from going
outside of an OpenShift Container Platform cluster using an egress firewall.

By assigning a fixed egress IP address, you can have all outgoing traffic assigned to that IP address for a
particular project. With the egress firewall, you can prevent a pod from connecting to an external
network, prevent a pod from connecting to an internal network, or limit a pod’s access to specific internal
subnets.

Additional resources

Configuring an egress firewall to control access to external IP addresses

Configuring egress IPs for a project

1.11. SECURING ATTACHED STORAGE

OpenShift Container Platform supports multiple types of storage, both for on-premise and cloud
providers. In particular, OpenShift Container Platform can use storage types that support the Container
Storage Interface.

1.11.1. Persistent volume plug-ins

Containers are useful for both stateless and stateful applications. Protecting attached storage is a key
element of securing stateful services. Using the Container Storage Interface (CSI), OpenShift Container
Platform can incorporate storage from any storage back end that supports the CSI interface.

OpenShift Container Platform provides plug-ins for multiple types of storage, including:

Red Hat OpenShift Container Storage *

AWS Elastic Block Stores (EBS) *

AWS Elastic File System (EFS) *

Azure Disk *

Azure File *

OpenStack Cinder *

GCE Persistent Disks *

VMware vSphere *

Network File System (NFS)

FlexVolume

Fibre Channel

OpenShift Container Platform 4.4 Security

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/networking/#configuring-ingress-cluster-traffic-ingress-controller
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/networking/#configuring-egress-firewall
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/networking/#assigning-egress-ips

iSCSI

Plug-ins for those storage types with dynamic provisioning are marked with an asterisk (*). Data in
transit is encrypted via HTTPS for all OpenShift Container Platform components communicating with
each other.

You can mount a persistent volume (PV) on a host in any way supported by your storage type. Different
types of storage have different capabilities and each PV’s access modes are set to the specific modes
supported by that particular volume.

For example, NFS can support multiple read/write clients, but a specific NFS PV might be exported on
the server as read-only. Each PV has its own set of access modes describing that specific PV’s
capabilities, such as ReadWriteOnce, ReadOnlyMany, and ReadWriteMany.

1.11.2. Shared storage

For shared storage providers like NFS, the PV registers its group ID (GID) as an annotation on the PV
resource. Then, when the PV is claimed by the pod, the annotated GID is added to the supplemental
groups of the pod, giving that pod access to the contents of the shared storage.

1.11.3. Block storage

For block storage providers like AWS Elastic Block Store (EBS), GCE Persistent Disks, and iSCSI,
OpenShift Container Platform uses SELinux capabilities to secure the root of the mounted volume for
non-privileged pods, making the mounted volume owned by and only visible to the container with which
it is associated.

Additional resources

Understanding persistent storage

Configuring CSI volumes

Dynamic provisioning

Persistent storage using NFS

Persistent storage using AWS Elastic Block Store

Persistent storage using GCE Persistent Disk

1.12. MONITORING CLUSTER EVENTS AND LOGS

The ability to monitor and audit an OpenShift Container Platform cluster is an important part of
safeguarding the cluster and its users against inappropriate usage.

There are two main sources of cluster-level information that are useful for this purpose: events and
logging.

1.12.1. Watching cluster events

Cluster administrators are encouraged to familiarize themselves with the Event resource type and
review the list of system events to determine which events are of interest. Events are associated with a
namespace, either the namespace of the resource they are related to or, for cluster events, the default

CHAPTER 1. CONTAINER SECURITY

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/storage/#understanding-persistent-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/storage/#persistent-storage-using-csi
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/storage/#dynamic-provisioning
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/storage/#persistent-storage-using-nfs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/storage/#persistent-storage-using-aws-ebs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/storage/#persistent-storage-using-gce

namespace. The default namespace holds relevant events for monitoring or auditing a cluster, such as
node events and resource events related to infrastructure components.

The master API and oc command do not provide parameters to scope a listing of events to only those
related to nodes. A simple approach would be to use grep:

$ oc get event -n default | grep Node
1h 20h 3 origin-node-1.example.local Node Normal NodeHasDiskPressure ...

A more flexible approach is to output the events in a form that other tools can process. For example, the
following example uses the jq tool against JSON output to extract only NodeHasDiskPressure events:

$ oc get events -n default -o json \
 | jq '.items[] | select(.involvedObject.kind == "Node" and .reason == "NodeHasDiskPressure")'
{
 "apiVersion": "v1",
 "count": 3,
 "involvedObject": {
 "kind": "Node",
 "name": "origin-node-1.example.local",
 "uid": "origin-node-1.example.local"
 },
 "kind": "Event",
 "reason": "NodeHasDiskPressure",
 ...
}

Events related to resource creation, modification, or deletion can also be good candidates for detecting
misuse of the cluster. The following query, for example, can be used to look for excessive pulling of
images:

$ oc get events --all-namespaces -o json \
 | jq '[.items[] | select(.involvedObject.kind == "Pod" and .reason == "Pulling")] | length'
4

NOTE

When a namespace is deleted, its events are deleted as well. Events can also expire and
are deleted to prevent filling up etcd storage. Events are not stored as a permanent
record and frequent polling is necessary to capture statistics over time.

1.12.2. Logging

Using the oc log command, you can view container logs, build configs and deployments in real time.
Different can users have access different access to logs:

Users who have access to a project are able to see the logs for that project by default.

Users with admin roles can access all container logs.

To save your logs for further audit and analysis, you can enable the cluster-logging add-on feature to
collect, manage, and view system, container, and audit logs. You can deploy, manage, and upgrade
cluster logging through the Elasticsearch Operator and Cluster Logging Operator.

OpenShift Container Platform 4.4 Security

34

1.12.3. Audit logs

With audit logs, you can follow a sequence of activities associated with how a user, administrator, or
other OpenShift Container Platform component is behaving. API audit logging is done on each server.

Additional resources

List of system events

Understanding cluster logging

Viewing audit logs

CHAPTER 1. CONTAINER SECURITY

35

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/nodes/#nodes-containers-events
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/logging/#cluster-logging
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/security/#audit-log-view

1

CHAPTER 2. CONFIGURING CERTIFICATES

2.1. REPLACING THE DEFAULT INGRESS CERTIFICATE

2.1.1. Understanding the default ingress certificate

By default, OpenShift Container Platform uses the Ingress Operator to create an internal CA and issue a
wildcard certificate that is valid for applications under the .apps sub-domain. Both the web console and
CLI use this certificate as well.

The internal infrastructure CA certificates are self-signed. While this process might be perceived as bad
practice by some security or PKI teams, any risk here is minimal. The only clients that implicitly trust
these certificates are other components within the cluster. Replacing the default wildcard certificate
with one that is issued by a public CA already included in the CA bundle as provided by the container
userspace allows external clients to connect securely to applications running under the .apps sub-
domain.

2.1.2. Replacing the default ingress certificate

You can replace the default ingress certificate for all applications under the .apps subdomain. After you
replace the certificate, all applications, including the web console and CLI, will have encryption provided
by specified certificate.

Prerequisites

You must have a wildcard certificate for the fully qualified .apps subdomain and its
corresponding private key. Each should be in a separate PEM format file.

The private key must be unencrypted. If your key is encrypted, decrypt it before importing it
into OpenShift Container Platform.

The certificate must include the subjectAltName extension showing *.apps.<clustername>.
<domain>.

The certificate file can contain one or more certificates in a chain. The wildcard certificate must
be the first certificate in the file. It can then be followed with any intermediate certificates, and
the file should end with the root CA certificate.

Copy the root CA certificate into an additional PEM format file.

Procedure

1. Create a config map that includes only the root CA certificate used to sign the wildcard
certificate:

$ oc create configmap custom-ca \
 --from-file=ca-bundle.crt=</path/to/example-ca.crt> \ 1
 -n openshift-config

</path/to/example-ca.crt> is the path to the root CA certificate file on your local file
system.

2. Update the cluster-wide proxy configuration with the newly created config map:

OpenShift Container Platform 4.4 Security

36

1

2

3

1

$ oc patch proxy/cluster \
 --type=merge \
 --patch='{"spec":{"trustedCA":{"name":"custom-ca"}}}'

3. Create a secret that contains the wildcard certificate chain and key:

$ oc create secret tls <secret> \ 1
 --cert=</path/to/cert.crt> \ 2
 --key=</path/to/cert.key> \ 3
 -n openshift-ingress

<secret> is the name of the secret that will contain the certificate chain and private key.

</path/to/cert.crt> is the path to the certificate chain on your local file system.

</path/to/cert.key> is the path to the private key associated with this certificate.

4. Update the Ingress Controller configuration with the newly created secret:

$ oc patch ingresscontroller.operator default \
 --type=merge -p \
 '{"spec":{"defaultCertificate": {"name": "<secret>"}}}' \ 1
 -n openshift-ingress-operator

Replace <secret> with the name used for the secret in the previous step.

2.2. ADDING API SERVER CERTIFICATES

The default API server certificate is issued by an internal OpenShift Container Platform cluster CA.
Clients outside of the cluster will not be able to verify the API server’s certificate by default. This
certificate can be replaced by one that is issued by a CA that clients trust.

2.2.1. Add an API server named certificate

The default API server certificate is issued by an internal OpenShift Container Platform cluster CA. You
can add one or more alternative certificates that the API server will return based on the fully qualified
domain name (FQDN) requested by the client, for example when a reverse proxy or load balancer is
used.

Prerequisites

You must have a certificate for the FQDN and its corresponding private key. Each should be in a
separate PEM format file.

The private key must be unencrypted. If your key is encrypted, decrypt it before importing it
into OpenShift Container Platform.

The certificate must include the subjectAltName extension showing the FQDN.

The certificate file can contain one or more certificates in a chain. The certificate for the API
server FQDN must be the first certificate in the file. It can then be followed with any
intermediate certificates, and the file should end with the root CA certificate.

CHAPTER 2. CONFIGURING CERTIFICATES

37

1

2

3

1

2

WARNING

Do not provide a named certificate for the internal load balancer (host name api-
int.<cluster_name>.<base_domain>). Doing so will leave your cluster in a
degraded state.

Procedure

1. Create a secret that contains the certificate chain and private key in the openshift-config
namespace.

$ oc create secret tls <secret> \ 1
 --cert=</path/to/cert.crt> \ 2
 --key=</path/to/cert.key> \ 3
 -n openshift-config

<secret> is the name of the secret that will contain the certificate chain and private key.

</path/to/cert.crt> is the path to the certificate chain on your local file system.

</path/to/cert.key> is the path to the private key associated with this certificate.

2. Update the API server to reference the created secret.

$ oc patch apiserver cluster \
 --type=merge -p \
 '{"spec":{"servingCerts": {"namedCertificates":
 [{"names": ["<FQDN>"], 1
 "servingCertificate": {"name": "<secret>"}}]}}}' 2

Replace <FQDN> with the FQDN that the API server should provide the certificate for.

Replace <secret> with the name used for the secret in the previous step.

3. Examine the apiserver/cluster object and confirm the secret is now referenced.

$ oc get apiserver cluster -o yaml
...
spec:
 servingCerts:
 namedCertificates:
 - names:
 - <FQDN>
 servingCertificate:
 name: <secret>
...

2.3. SECURING SERVICE TRAFFIC USING SERVICE SERVING

OpenShift Container Platform 4.4 Security

38

2.3. SECURING SERVICE TRAFFIC USING SERVICE SERVING
CERTIFICATE SECRETS

2.3.1. Understanding service serving certificates

Service serving certificates are intended to support complex middleware applications that require
encryption. These certificates are issued as TLS web server certificates.

The service-ca controller uses the x509.SHA256WithRSA signature algorithm to generate service
certificates.

The generated certificate and key are in PEM format, stored in tls.crt and tls.key respectively, within a
created secret. The certificate and key are automatically replaced when they get close to expiration.

The service CA certificate, which issues the service certificates, is valid for 26 months and is
automatically rotated when there is less than six months validity left. After rotation, the previous service
CA configuration is still trusted until its expiration. This allows a grace period for all affected services to
refresh their key material before the expiration. If you do not upgrade your cluster during this grace
period, which restarts services and refreshes their key material, you might need to manually restart
services to avoid failures after the previous service CA expires.

NOTE

You can use the following command to manually restart all pods in the cluster. Be aware
that running this command causes a service interruption, because it deletes every running
pod in every namespace. These pods will automatically restart after they are deleted.

$ for I in $(oc get ns -o jsonpath='{range .items[*]} {.metadata.name}{"\n"} {end}'); \
 do oc delete pods --all -n $I; \
 sleep 1; \
 done

2.3.2. Add a service certificate

To secure communication to your service, generate a signed serving certificate and key pair into a secret
in the same namespace as the service.

IMPORTANT

The generated certificate is only valid for the internal service DNS name
<service.name>.<service.namespace>.svc, and are only valid for internal
communications.

Prerequisites:

You must have a service defined.

Procedure

1. Annotate the service with service.beta.openshift.io/serving-cert-secret-name:

$ oc annotate service <service_name> \ 1
 service.beta.openshift.io/serving-cert-secret-name=<secret_name> 2

CHAPTER 2. CONFIGURING CERTIFICATES

39

1

2

1

Replace <service_name> with the name of the service to secure.

<secret_name> will be the name of the generated secret containing the certificate and
key pair. For convenience, it is recommended that this be the same as <service_name>.

For example, use the following command to annotate the service test1:

$ oc annotate service test1 service.beta.openshift.io/serving-cert-secret-name=test1

2. Examine the service to confirm that the annotations are present:

$ oc describe service <service_name>

Verify that the annotations are listed in the output:

...
Annotations: service.beta.openshift.io/serving-cert-secret-name: <service_name>
 service.beta.openshift.io/serving-cert-signed-by: openshift-service-serving-
signer@1556850837
...

3. After the cluster generates a secret for your service, your Pod spec can mount it, and the pod
will run after it becomes available.

2.3.3. Add the service CA bundle to a config map

A Pod can access the service CA certificate by mounting a ConfigMap object that is annotated with
service.beta.openshift.io/inject-cabundle=true. Once annotated, the cluster automatically injects the
service CA certificate into the service-ca.crt key on the config map. Access to this CA certificate allows
TLS clients to verify connections to services using service serving certificates.

IMPORTANT

After adding this annotation to a config map all existing data in it is deleted. It is
recommended to use a separate config map to contain the service-ca.crt, instead of
using the same config map that stores your pod configuration.

Procedure

1. Annotate the config map with service.beta.openshift.io/inject-cabundle=true:

$ oc annotate configmap <config_map_name> \ 1
 service.beta.openshift.io/inject-cabundle=true

Replace <config_map_name> with the name of the config map to annotate.

NOTE

OpenShift Container Platform 4.4 Security

40

1

NOTE

Explicitly referencing the service-ca.crt key in a volume mount will prevent a pod
from starting until the config map has been injected with the CA bundle. This
behavior can be overridden by setting the optional field to true for the volume’s
serving certificate configuration.

For example, use the following command to annotate the config map test1:

$ oc annotate configmap test1 service.beta.openshift.io/inject-cabundle=true

2. View the config map to ensure that the service CA bundle has been injected:

$ oc get configmap <config_map_name> -o yaml

The CA bundle is displayed as the value of the service-ca.crt key in the YAML output:

apiVersion: v1
data:
 service-ca.crt: |
 -----BEGIN CERTIFICATE-----
...

2.3.4. Add the service CA bundle to an API service

You can annotate an APIService object with service.beta.openshift.io/inject-cabundle=true to have
its spec.caBundle field populated with the service CA bundle. This allows the Kubernetes API server to
validate the service CA certificate used to secure the targeted endpoint.

Procedure

1. Annotate the API service with service.beta.openshift.io/inject-cabundle=true:

$ oc annotate apiservice <api_service_name> \ 1
 service.beta.openshift.io/inject-cabundle=true

Replace <api_service_name> with the name of the API service to annotate.

For example, use the following command to annotate the API service test1:

$ oc annotate apiservice test1 service.beta.openshift.io/inject-cabundle=true

2. View the API service to ensure that the service CA bundle has been injected:

$ oc get apiservice <api_service_name> -o yaml

The CA bundle is displayed in the spec.caBundle field in the YAML output:

apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:

CHAPTER 2. CONFIGURING CERTIFICATES

41

1

 annotations:
 service.beta.openshift.io/inject-cabundle: "true"
...
spec:
 caBundle: <CA_BUNDLE>
...

2.3.5. Add the service CA bundle to a custom resource definition

You can annotate a CustomResourceDefinition (CRD) object with service.beta.openshift.io/inject-
cabundle=true to have its spec.conversion.webhook.clientConfig.caBundle field populated with the
service CA bundle. This allows the Kubernetes API server to validate the service CA certificate used to
secure the targeted endpoint.

NOTE

The service CA bundle will only be injected into the CRD if the CRD is configured to use a
webhook for conversion. It is only useful to inject the service CA bundle if a CRD’s
webhook is secured with a service CA certificate.

Procedure

1. Annotate the CRD with service.beta.openshift.io/inject-cabundle=true:

$ oc annotate crd <crd_name> \ 1
 service.beta.openshift.io/inject-cabundle=true

Replace <crd_name> with the name of the CRD to annotate.

For example, use the following command to annotate the CRD test1:

$ oc annotate crd test1 service.beta.openshift.io/inject-cabundle=true

2. View the CRD to ensure that the service CA bundle has been injected:

$ oc get crd <crd_name> -o yaml

The CA bundle is displayed in the spec.conversion.webhook.clientConfig.caBundle field in
the YAML output:

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 annotations:
 service.beta.openshift.io/inject-cabundle: "true"
...
spec:
 conversion:
 strategy: Webhook
 webhook:
 clientConfig:
 caBundle: <CA_BUNDLE>
...

OpenShift Container Platform 4.4 Security

42

1

2.3.6. Add the service CA bundle to a mutating webhook configuration

You can annotate a MutatingWebhookConfiguration object with service.beta.openshift.io/inject-
cabundle=true to have the clientConfig.caBundle field of each webhook populated with the service
CA bundle. This allows the Kubernetes API server to validate the service CA certificate used to secure
the targeted endpoint.

NOTE

Do not set this annotation for admission webhook configurations that need to specify
different CA bundles for different webhooks. If you do, then the service CA bundle will be
injected for all webhooks.

Procedure

1. Annotate the mutating webhook configuration with service.beta.openshift.io/inject-
cabundle=true:

$ oc annotate mutatingwebhookconfigurations <mutating_webhook_name> \ 1
 service.beta.openshift.io/inject-cabundle=true

Replace <mutating_webhook_name> with the name of the mutating webhook
configuration to annotate.

For example, use the following command to annotate the mutating webhook configuration
test1:

$ oc annotate mutatingwebhookconfigurations test1 service.beta.openshift.io/inject-
cabundle=true

2. View the mutating webhook configuration to ensure that the service CA bundle has been
injected:

$ oc get mutatingwebhookconfigurations <mutating_webhook_name> -o yaml

The CA bundle is displayed in the clientConfig.caBundle field of all webhooks in the YAML
output:

apiVersion: admissionregistration.k8s.io/v1
kind: MutatingWebhookConfiguration
metadata:
 annotations:
 service.beta.openshift.io/inject-cabundle: "true"
...
webhooks:
- myWebhook:
 - v1beta1
 clientConfig:
 caBundle: <CA_BUNDLE>
...

CHAPTER 2. CONFIGURING CERTIFICATES

43

1

2.3.7. Add the service CA bundle to a validating webhook configuration

You can annotate a ValidatingWebhookConfiguration object with service.beta.openshift.io/inject-
cabundle=true to have the clientConfig.caBundle field of each webhook populated with the service
CA bundle. This allows the Kubernetes API server to validate the service CA certificate used to secure
the targeted endpoint.

NOTE

Do not set this annotation for admission webhook configurations that need to specify
different CA bundles for different webhooks. If you do, then the service CA bundle will be
injected for all webhooks.

Procedure

1. Annotate the validating webhook configuration with service.beta.openshift.io/inject-
cabundle=true:

$ oc annotate validatingwebhookconfigurations <validating_webhook_name> \ 1
 service.beta.openshift.io/inject-cabundle=true

Replace <validating_webhook_name> with the name of the validating webhook
configuration to annotate.

For example, use the following command to annotate the validating webhook configuration
test1:

$ oc annotate validatingwebhookconfigurations test1 service.beta.openshift.io/inject-
cabundle=true

2. View the validating webhook configuration to ensure that the service CA bundle has been
injected:

$ oc get validatingwebhookconfigurations <validating_webhook_name> -o yaml

The CA bundle is displayed in the clientConfig.caBundle field of all webhooks in the YAML
output:

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
 annotations:
 service.beta.openshift.io/inject-cabundle: "true"
...
webhooks:
- myWebhook:
 - v1beta1
 clientConfig:
 caBundle: <CA_BUNDLE>
...

2.3.8. Manually rotate the generated service certificate

OpenShift Container Platform 4.4 Security

44

1

You can rotate the service certificate by deleting the associated secret. Deleting the secret results in a
new one being automatically created, resulting in a new certificate.

Prerequisites

A secret containing the certificate and key pair must have been generated for the service.

Procedure

1. Examine the service to determine the secret containing the certificate. This is found in the
serving-cert-secret-name annotation, as seen below.

$ oc describe service <service_name>
...
service.beta.openshift.io/serving-cert-secret-name: <secret>
...

2. Delete the generated secret for the service. This process will automatically recreate the secret.

$ oc delete secret <secret> 1

Replace <secret> with the name of the secret from the previous step.

3. Confirm that the certificate has been recreated by obtaining the new secret and examining the
AGE.

$ oc get secret <service_name>

NAME TYPE DATA AGE
<service.name> kubernetes.io/tls 2 1s

2.3.9. Manually rotate the service CA certificate

The service CA is valid for 26 months and is automatically refreshed when there is less than six months
validity left.

If necessary, you can manually refresh the service CA by using the following procedure.

WARNING

A manually-rotated service CA does not maintain trust with the previous service CA.
You might experience a temporary service disruption until the pods in the cluster
are restarted, which ensures that pods are using service serving certificates issued
by the new service CA.

Prerequisites

You must be logged in as a cluster admin.

CHAPTER 2. CONFIGURING CERTIFICATES

45

Procedure

1. View the expiration date of the current service CA certificate by using the following command.

$ oc get secrets/signing-key -n openshift-service-ca \
 -o template='{{index .data "tls.crt"}}' \
 | base64 -d \
 | openssl x509 -noout -enddate

2. Manually rotate the service CA. This process generates a new service CA which will be used to
sign the new service certificates.

$ oc delete secret/signing-key -n openshift-service-ca

3. To apply the new certificates to all services, restart all the pods in your cluster. This command
ensures that all services use the updated certificates.

$ for I in $(oc get ns -o jsonpath='{range .items[*]} {.metadata.name}{"\n"} {end}'); \
 do oc delete pods --all -n $I; \
 sleep 1; \
 done

WARNING

This command will cause a service interruption, as it goes through and
deletes every running pod in every namespace. These pods will
automatically restart after they are deleted.

OpenShift Container Platform 4.4 Security

46

CHAPTER 3. CERTIFICATE TYPES AND DESCRIPTIONS

3.1. USER-PROVIDED CERTIFICATES FOR THE API SERVER

3.1.1. Purpose

The API server is accessible by clients external to the cluster at api.<cluster_name>.<base_domain>.
You might want clients to access the API server at a different host name or without the need to
distribute the cluster-managed certificate authority (CA) certificates to the clients. The administrator
must set a custom default certificate to be used by the API server when serving content.

3.1.2. Location

The user-provided certificates must be provided in a kubernetes.io/tls type Secret in the openshift-
config namespace. Update the API server cluster configuration, the apiserver/cluster resource, to
enable the use of the user-provided certificate.

3.1.3. Management

User-provided certificates are managed by the user.

3.1.4. Expiration

User-provided certificates are managed by the user.

3.1.5. Customization

Update the secret containing the user-managed certificate as needed.

Additional resources

Adding API server certificates

3.2. PROXY CERTIFICATES

3.2.1. Purpose

Proxy certificates allow users to specify one or more custom certificate authority (CA) certificates used
by platform components when making egress connections.

The trustedCA field of the Proxy object is a reference to a config map that contains a user-provided
trusted certificate authority (CA) bundle. This bundle is merged with the Red Hat Enterprise Linux
CoreOS (RHCOS) trust bundle and injected into the trust store of platform components that make
egress HTTPS calls. For example, image-registry-operator calls an external image registry to download
images. If trustedCA is not specified, only the RHCOS trust bundle is used for proxied HTTPS
connections. Provide custom CA certificates to the RHCOS trust bundle if you want to use your own
certificate infrastructure.

The trustedCA field should only be consumed by a proxy validator. The validator is responsible for
reading the certificate bundle from required key ca-bundle.crt and copying it to a config map named
trusted-ca-bundle in the openshift-config-managed namespace. The namespace for the config map
referenced by trustedCA is openshift-config:

CHAPTER 3. CERTIFICATE TYPES AND DESCRIPTIONS

47

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/security/#api-server-certificates

Additional resources

Configuring the cluster-wide proxy

3.2.2. Managing proxy certificates during installation

The additionalTrustBundle value of the installer configuration is used to specify any proxy-trusted CA
certificates during installation. For example:

$ cat install-config.yaml
. . .
proxy:
 httpProxy: http://<HTTP_PROXY>
 httpsProxy: https://<HTTPS_PROXY>
additionalTrustBundle: |
 -----BEGIN CERTIFICATE-----
 <MY_HTTPS_PROXY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
. . .

3.2.3. Location

The user-provided trust bundle is represented as a config map. The config map is mounted into the file
system of platform components that make egress HTTPS calls. Typically, Operators mount the config
map to /etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem, but this is not required by the proxy. A
proxy can modify or inspect the HTTPS connection. In either case, the proxy must generate and sign a
new certificate for the connection.

Complete proxy support means connecting to the specified proxy and trusting any signatures it has
generated. Therefore, it is necessary to let the user specify a trusted root, such that any certificate chain
connected to that trusted root is also trusted.

If using the RHCOS trust bundle, place CA certificates in /etc/pki/ca-trust/source/anchors.

See Using shared system certificates in the Red Hat Enterprise Linux documentation for more
information.

3.2.4. Expiration

The user sets the expiration term of the user-provided trust bundle.

The default expiration term is defined by the CA certificate itself. It is up to the CA administrator to
configure this for the certificate before it can be used by OpenShift Container Platform or RHCOS.

NOTE

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-ca-bundle
 namespace: openshift-config
data:
 ca-bundle.crt: |
 -----BEGIN CERTIFICATE-----
 Custom CA certificate bundle.
 -----END CERTIFICATE-----

OpenShift Container Platform 4.4 Security

48

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/networking/#enable-cluster-wide-proxy
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-shared-system-certificates_security-hardening

NOTE

Red Hat does not monitor for when CAs expire. However, due to the long life of CAs, this
is generally not an issue. However, you might need to periodically update the trust bundle.

3.2.5. Services

By default, all platform components that make egress HTTPS calls will use the RHCOS trust bundle. If
trustedCA is defined, it will also be used.

Any service that is running on the RHCOS node is able to use the trust bundle of the node.

3.2.6. Management

These certificates are managed by the system and not the user.

3.2.7. Customization

Updating the user-provided trust bundle consists of either:

updating the PEM-encoded certificates in the config map referenced by trustedCA, or

creating a config map in the namespace openshift-config that contains the new trust bundle
and updating trustedCA to reference the name of the new config map.

The mechanism for writing CA certificates to the RHCOS trust bundle is exactly the same as writing any
other file to RHCOS, which is done through the use of machine configs. When the Machine Config
Operator (MCO) applies the new machine config that contains the new CA certificates, the node is
rebooted. During the next boot, the service coreos-update-ca-trust.service runs on the RHCOS nodes,
which automatically update the trust bundle with the new CA certificates. For example:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 50-examplecorp-ca-cert
spec:
 config:
 ignition:
 version: 2.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;charset=utf-
8;base64,LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUVORENDQXh5Z0F3SUJBZ0lKQU5
1bkkwRDY2MmNuTUEwR0NTcUdTSWIzRFFFQkN3VUFNSUdsTVFzd0NRWUQKV1FRR0V3SlZVek
VYTUJVR0ExVUVDQXdPVG05eWRHZ2dRMkZ5YjJ4cGJtRXhFREFPQmdOVkJBY01CMUpoYkdWcA
pBMmd4RmpBVUJnTlZCQW9NRFZKbFpDQklZWFFzSUVsdVl5NHhFekFSQmdOVkJBc01DbEpsWk
NCSVlYUWdTVlF4Ckh6QVpCZ05WQkFNTUVsSmxaQ0JJWVhRZ1NWUWdVbTl2ZENCRFFURWhN
QjhHQ1NxR1NJYjNEUUVKQVJZU2FXNW0KWGpDQnBURUxNQWtHQTFVRUJoTUNWVk14RnpBV
kJnTlZCQWdNRGs1dmNuUm9JRU5oY205c2FXNWhNUkF3RGdZRApXUVFIREFkU1lXeGxhV2RvTV
JZd0ZBWURWUVFLREExU1pXUWdTR0YwTENCSmJtTXVNUk13RVFZRFZRUUxEQXBTCkFXUWd
TR0YwSUVsVU1Sc3dHUVlEVlFRRERCSlNaV1FnU0dGMElFbFVJRkp2YjNRZ1EwRXhJVEFmQmdrc
WhraUcKMHcwQkNRRVdFbWx1Wm05elpXTkFjbVZrYUdGMExtTnZiVENDQVNJd0RRWUpLb1pJaH

CHAPTER 3. CERTIFICATE TYPES AND DESCRIPTIONS

49

The trust store of machines must also support updating the trust store of nodes.

3.2.8. Renewal

There are no Operators that can auto-renew certificates on the RHCOS nodes.

NOTE

Red Hat does not monitor for when CAs expire. However, due to the long life of CAs, this
is generally not an issue. However, you might need to periodically update the trust bundle.

3.3. SERVICE CA CERTIFICATES

3.3.1. Purpose

service-ca is an Operator that creates a self-signed CA when an OpenShift Container Platform cluster
is deployed.

3.3.2. Expiration

A custom expiration term is not supported. The self-signed CA is stored in a secret with qualified name
service-ca/signing-key in fields tls.crt (certificate(s)), tls.key (private key), and ca-bundle.crt (CA
bundle).

Other services can request a service serving certificate by annotating a service resource with
service.beta.openshift.io/serving-cert-secret-name: <secret name>. In response, the Operator
generates a new certificate, as tls.crt, and private key, as tls.key to the named secret. The certificate is
valid for two years.

Other services can request that the CA bundle for the service CA be injected into APIService or
ConfigMap resources by annotating with service.beta.openshift.io/inject-cabundle: true to support
validating certificates generated from the service CA. In response, the Operator writes its current CA
bundle to the CABundle field of the APIService resource or as service-ca.crt to a config map.

As of OpenShift Container Platform 4.3.5, automated rotation is supported and is backported to some

ZjTkFRRUJCUUFEZ2dFUApCRENDQVFvQ2dnRUJBTFF0OU9KUWg2R0M1TFQxZzgwcU5oMHU1
MEJRNHNaL3laOGFFVHh0KzVsblBWWDZNSEt6CmQvaTdsRHFUZlRjZkxMMm55VUJkMmZRRGsx
QjBmeHJza2hHSUlaM2lmUDFQczRsdFRrdjhoUlNvYjNWdE5xU28KSHhrS2Z2RDJQS2pUUHhEUFdZ
eXJ1eTlpckxaaW9NZmZpM2kvZ0N1dDBaV3RBeU8zTVZINXFXRi9lbkt3Z1BFUwpZOXBvK1RkQ3ZS
Qi9SVU9iQmFNNzYxRWNyTFNNMUdxSE51ZVNmcW5obzNBakxRNmRCblBXbG82MzhabTFWZWJ
LCkNFTHloa0xXTVNGa0t3RG1uZTBqUTAyWTRnMDc1dkNLdkNzQ0F3RUFBYU5qTUdFd0hRWUR
WUjBPQkJZRUZIN1IKNXlDK1VlaElJUGV1TDhacXczUHpiZ2NaTUI4R0ExVWRJd1FZTUJhQUZIN1I0
eUMrVWVoSUlQZXVMOFpxdzNQegpjZ2NaTUE4R0ExVWRFd0VCL3dRRk1BTUJBZjh3RGdZRFZS
MFBBUUgvQkFRREFnR0dNQTBHQ1NxR1NJYjNEUUVCCkR3VUFBNElCQVFCRE52RDJWbTlzQT
VBOUFsT0pSOCtlbjVYejloWGN4SkI1cGh4Y1pROGpGb0cwNFZzaHZkMGUKTUVuVXJNY2ZGZ0laN
G5qTUtUUUNNNFpGVVBBaWV5THg0ZjUySHVEb3BwM2U1SnlJTWZXK0tGY05JcEt3Q3NhawpwU2
9LdElVT3NVSks3cUJWWnhjckl5ZVFWMnFjWU9lWmh0UzV3QnFJd09BaEZ3bENFVDdaZTU4UUhtUz
Q4c2xqCjVlVGtSaml2QWxFeHJGektjbGpDNGF4S1Fsbk92VkF6eitHbTMyVTB4UEJGNEJ5ZVBWeEN
KVUh3MVRzeVRtZWwKU3hORXA3eUhvWGN3bitmWG5hK3Q1SldoMWd4VVp0eTMKLS0tLS1FTkQ
gQ0VSVElGSUNBVEUtLS0tLQo=
 filesystem: root
 mode: 0644
 path: /etc/pki/ca-trust/source/anchors/examplecorp-ca.crt

OpenShift Container Platform 4.4 Security

50

4.2.z and 4.3.z releases. For any release supporting automated rotation, the service CA is valid for 26
months and is automatically refreshed when there is less than 13 months validity left. If necessary, you
can manually refresh the service CA.

The service CA expiration of 26 months is longer than the expected upgrade interval for a supported
OpenShift Container Platform cluster, such that non-control plane consumers of service CA certificates
will be refreshed after CA rotation and prior to the expiration of the pre-rotation CA.

WARNING

A manually-rotated service CA does not maintain trust with the previous service CA.
You might experience a temporary service disruption until the Pods in the cluster
are restarted, which ensures that Pods are using service serving certificates issued
by the new service CA.

3.3.3. Management

These certificates are managed by the system and not the user.

3.3.4. Services

Services that use service CA certificates include:

cluster-autoscaler-operator

cluster-monitoring-operator

cluster-authentication-operator

cluster-image-registry-operator

cluster-ingress-operator

cluster-kube-apiserver-operator

cluster-kube-controller-manager-operator

cluster-kube-scheduler-operator

cluster-networking-operator

cluster-openshift-apiserver-operator

cluster-openshift-controller-manager-operator

cluster-samples-operator

cluster-svcat-apiserver-operator

cluster-svcat-controller-manager-operator

machine-config-operator

CHAPTER 3. CERTIFICATE TYPES AND DESCRIPTIONS

51

console-operator

insights-operator

machine-api-operator

operator-lifecycle-manager

This is not a comprehensive list.

Additional resources

Manually rotate service serving certificates

Securing service traffic using service serving certificate secrets

3.4. NODE CERTIFICATES

3.4.1. Purpose

Node certificates are signed by the cluster; they come from a certificate authority (CA) that is
generated by the bootstrap process. Once the cluster is installed, the node certificates are auto-
rotated.

3.4.2. Management

These certificates are managed by the system and not the user.

Additional resources

Working with nodes

3.5. BOOTSTRAP CERTIFICATES

3.5.1. Purpose

The kubelet, in OpenShift Container Platform 4 and later, uses the bootstrap certificate located in
/etc/kubernetes/kubeconfig to initially bootstrap. This is followed by the bootstrap initialization process
and authorization of the kubelet to create a CSR .

In that process, the kubelet generates a CSR while communicating over the bootstrap channel. The
controller manager signs the CSR, resulting in a certificate that the kubelet manages.

3.5.2. Management

These certificates are managed by the system and not the user.

3.5.3. Expiration

This bootstrap CA is valid for 10 years.

The kubelet-managed certificate is valid for one year and rotates automatically at around the 80
percent mark of that one year.

OpenShift Container Platform 4.4 Security

52

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/security/#add-service-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/security/#add-service-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/nodes/#nodes-nodes-working
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/#bootstrap-initialization
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/#authorize-kubelet-to-create-csr

3.5.4. Customization

You cannot customize the bootstrap certificates.

3.6. ETCD CERTIFICATES

3.6.1. Purpose

etcd certificates are signed by the etcd-signer; they come from a certificate authority (CA) that is
generated by the bootstrap process.

3.6.2. Expiration

The CA certificates are valid for 10 years. The peer, client, and server certificates are valid for three
years.

3.6.3. Management

These certificates are managed by the system and not the user.

3.6.4. Services

etcd certificates are used for encrypted communication between etcd member peers, as well as
encrypted client traffic. The following certificates are generated and used by etcd and other processes
that communicate with etcd:

Peer certificates: Used for communication between etcd members.

Client certificates: Used for encrypted server-client communication. Client certificates are
currently used by the API server only, and no other service should connect to etcd directly
except for the proxy. Client secrets (etcd-client, etcd-metric-client, etcd-metric-signer, and
etcd-signer) are added to the openshift-config, openshift-monitoring, and openshift-kube-
apiserver namespaces.

Server certificates: Used by the etcd server for authenticating client requests.

Metric certificates: All metric consumers connect to proxy with metric-client certificates.

Additional resources

Recovering from lost master hosts

3.7. OLM CERTIFICATES

3.7.1. Management

All certificates for OpenShift Lifecycle Manager (OLM) components (olm-operator, catalog-operator,
packageserver, and marketplace-operator) are managed by the system.

When installing Operators that include webhooks or API services in their ClusterServiceVersion (CSV)
object, OLM creates and rotates the certificates for these resources. Certificates for resources in the
openshift-operator-lifecycle-manager namespace are managed by OLM.

OLM will not update the certificates of Operators that it manages in proxy environments. These

CHAPTER 3. CERTIFICATE TYPES AND DESCRIPTIONS

53

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/backup_and_restore/#dr-scenario-1-recover-master-hosts_dr-infrastructure-recovery

OLM will not update the certificates of Operators that it manages in proxy environments. These
certificates must be managed by the user using the subscription config.

3.8. USER-PROVIDED CERTIFICATES FOR DEFAULT INGRESS

3.8.1. Purpose

Applications are usually exposed at <route_name>.apps.<cluster_name>.<base_domain>. The
<cluster_name> and <base_domain> come from the installation config file. <route_name> is the host
field of the route, if specified, or the route name. For example, hello-openshift-
default.apps.username.devcluster.openshift.com. hello-openshift is the name of the route and the
route is in the default namespace. You might want clients to access the applications without the need to
distribute the cluster-managed CA certificates to the clients. The administrator must set a custom
default certificate when serving application content.

WARNING

The Ingress Operator generates a default certificate for an Ingress Controller to
serve as a placeholder until you configure a custom default certificate. Do not use
operator-generated default certificates in production clusters.

3.8.2. Location

The user-provided certificates must be provided in a tls type Secret resource in the openshift-ingress
namespace. Update the IngressController CR in the openshift-ingress-operator namespace to enable
the use of the user-provided certificate. For more information on this process, see Setting a custom
default certificate.

3.8.3. Management

User-provided certificates are managed by the user.

3.8.4. Expiration

User-provided certificates are managed by the user.

3.8.5. Services

Applications deployed on the cluster use user-provided certificates for default ingress.

3.8.6. Customization

Update the secret containing the user-managed certificate as needed.

Additional resources

Replacing the default ingress certificate

OpenShift Container Platform 4.4 Security

54

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/networking/#nw-ingress-setting-a-custom-default-certificate_configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/security/#replacing-default-ingress

3.9. INGRESS CERTIFICATES

3.9.1. Purpose

The Ingress Operator uses certificates for:

Securing access to metrics for Prometheus.

Securing access to routes.

3.9.2. Location

To secure access to Ingress Operator and Ingress Controller metrics, the Ingress Operator uses service
serving certificates. The Operator requests a certificate from the service-ca controller for its own
metrics, and the service-ca controller puts the certificate in a secret named metrics-tls in the
openshift-ingress-operator namespace. Additionally, the Ingress Operator requests a certificate for
each Ingress Controller, and the service-ca controller puts the certificate in a secret named router-
metrics-certs-<name>, where <name> is the name of the Ingress Controller, in the openshift-ingress
namespace.

Each Ingress Controller has a default certificate that it uses for secured routes that do not specify their
own certificates. Unless you specify a custom certificate, the Operator uses a self-signed certificate by
default. The Operator uses its own self-signed signing certificate to sign any default certificate that it
generates. The Operator generates this signing certificate and puts it in a secret named router-ca in the
openshift-ingress-operator namespace. When the Operator generates a default certificate, it puts the
default certificate in a secret named router-certs-<name> (where <name> is the name of the Ingress
Controller) in the openshift-ingress namespace.

WARNING

The Ingress Operator generates a default certificate for an Ingress Controller to
serve as a placeholder until you configure a custom default certificate. Do not use
Operator-generated default certificates in production clusters.

3.9.3. Workflow

Figure 3.1. Custom certificate workflow

namespace/openshift-
ingress

namespace/openshift-
ingress-operator

deployments/router-
default

3

ingresscontrollers/
default

Reference Contents are copied

0

Figure 3.2. Default certificate workflow

CHAPTER 3. CERTIFICATE TYPES AND DESCRIPTIONS

55

Figure 3.2. Default certificate workflow

namespace/openshift-
ingress

namespace/openshift-
ingress-operator

deployments/router-
default

3

ingresscontrollers/
default

Reference Contents are copied

0

 An empty defaultCertificate field causes the Ingress Operator to use its self-signed CA to
generate a serving certificate for the specified domain.

 The default CA certificate and key generated by the Ingress Operator. Used to sign Operator-
generated default serving certificates.

 In the default workflow, the wildcard default serving certificate, created by the Ingress Operator
and signed using the generated default CA certificate. In the custom workflow, this is the user-provided
certificate.

 The router deployment. Uses the certificate in secrets/router-certs-default as its default front-
end server certificate.

 In the default workflow, the contents of the wildcard default serving certificate (public and private
parts) are copied here to enable OAuth integration. In the custom workflow, this is the user-provided
certificate.

 Transitional resource containing the certificate (public part) of the Operator-generated default CA
certificate; read by OAuth and the web console to establish trust. This object will be removed in a future
release.

 The public (certificate) part of the default serving certificate. Replaces the configmaps/router-ca
resource.

 The user updates the cluster proxy configuration with the CA certificate that signed the
ingresscontroller serving certificate. This enables components like auth, console, and the registry to
trust the serving certificate.

 The cluster-wide trusted CA bundle containing the combined Red Hat Enterprise Linux CoreOS
(RHCOS) and user-provided CA bundles or an RHCOS-only bundle if a user bundle is not provided.

 The custom CA certificate bundle, which instructs other components (for example, auth and
console) to trust an ingresscontroller configured with a custom certificate.

 The trustedCA field is used to reference the user-provided CA bundle.

OpenShift Container Platform 4.4 Security

56

 The Cluster Network Operator injects the trusted CA bundle into the proxy-ca config map.

 In OpenShift Container Platform 4.4, some components are transitioning from using router-ca to
using default-ingress-cert.

3.9.4. Expiration

The expiration terms for the Ingress Operator’s certificates are as follows:

The expiration date for metrics certificates that the service-ca controller creates is two years
after the date of creation.

The expiration date for the Operator’s signing certificate is two years after the date of creation.

The expiration date for default certificates that the Operator generates is two years after the
date of creation.

You cannot specify custom expiration terms on certificates that the Ingress Operator or service-ca
controller creates.

You cannot specify expiration terms when installing OpenShift Container Platform for certificates that
the Ingress Operator or service-ca controller creates.

3.9.5. Services

Prometheus uses the certificates that secure metrics.

The Ingress Operator uses its signing certificate to sign default certificates that it generates for Ingress
Controllers for which you do not set custom default certificates.

Cluster components that use secured routes may use the default Ingress Controller’s default
certificate.

Ingress to the cluster via a secured route uses the default certificate of the Ingress Controller by which
the route is accessed unless the route specifies its own certificate.

3.9.6. Management

Ingress certificates are managed by the user. See Replacing the default ingress certificate for more
information.

3.9.7. Renewal

The service-ca controller automatically rotates the certificates that it issues. However, it is possible to
use oc delete secret <secret> to manually rotate service serving certificates.

The Ingress Operator does not rotate its own signing certificate or the default certificates that it
generates. Operator-generated default certificates are intended as placeholders for custom default
certificates that you configure.

3.10. MONITORING AND CLUSTER LOGGING OPERATOR
COMPONENT CERTIFICATES

CHAPTER 3. CERTIFICATE TYPES AND DESCRIPTIONS

57

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/security/#replacing-default-ingress

3.10.1. Expiration

Monitoring components secure their traffic with service CA certificates. These certificates are valid for 2
years and are replaced automatically on rotation of the service CA, which is every 13 months.

If the certificate lives in the openshift-monitoring or openshift-logging namespace, it is system
managed and rotated automatically.

3.10.2. Management

These certificates are managed by the system and not the user.

3.11. CONTROL PLANE CERTIFICATES

3.11.1. Location

Control plane certificates are included in these namespaces:

openshift-config-managed

openshift-kube-apiserver

openshift-kube-apiserver-operator

openshift-kube-controller-manager

openshift-kube-controller-manager-operator

openshift-kube-scheduler

3.11.2. Management

Control plane certificates are managed by the system and rotated automatically.

In the rare case that your control plane certificates expired, see Recovering from expired control plane
certificates

OpenShift Container Platform 4.4 Security

58

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/backup_and_restore/#dr-recovering-expired-certs

CHAPTER 4. VIEWING AUDIT LOGS
Audit provides a security-relevant chronological set of records documenting the sequence of activities
that have affected the system by individual users, administrators, or other components of the system.

4.1. ABOUT THE API AUDIT LOG

Audit works at the API server level, logging all requests coming to the server. Each audit log contains the
following information:

Table 4.1. Audit log fields

Field Description

level The audit level at which the event was generated.

auditID A unique audit ID, generated for each request.

stage The stage of the request handling when this event instance was
generated.

requestURI The request URI as sent by the client to a server.

verb The Kubernetes verb associated with the request. For non-resource
requests, this is the lowercase HTTP method.

user The authenticated user information.

impersonatedUser Optional. The impersonated user information, if the request is
impersonating another user.

sourceIPs Optional. The source IPs, from where the request originated and any
intermediate proxies.

userAgent Optional. The user agent string reported by the client. Note that the user
agent is provided by the client, and must not be trusted.

objectRef Optional. The object reference this request is targeted at. This does not
apply for List-type requests, or non-resource requests.

responseStatus Optional. The response status, populated even when the
ResponseObject is not a Status type. For successful responses, this
will only include the code. For non-status type error responses, this will
be auto-populated with the error message.

CHAPTER 4. VIEWING AUDIT LOGS

59

requestObject Optional. The API object from the request, in JSON format. The
RequestObject is recorded as is in the request (possibly re-encoded
as JSON), prior to version conversion, defaulting, admission or merging.
It is an external versioned object type, and might not be a valid object on
its own. This is omitted for non-resource requests and is only logged at
request level and higher.

responseObject Optional. The API object returned in the response, in JSON format. The
ResponseObject is recorded after conversion to the external type,
and serialized as JSON. This is omitted for non-resource requests and is
only logged at response level.

requestReceivedTimestamp The time that the request reached the API server.

stageTimestamp The time that the request reached the current audit stage.

annotations Optional. An unstructured key value map stored with an audit event that
may be set by plug-ins invoked in the request serving chain, including
authentication, authorization and admission plug-ins. Note that these
annotations are for the audit event, and do not correspond to the
metadata.annotations of the submitted object. Keys should uniquely
identify the informing component to avoid name collisions, for example
podsecuritypolicy.admission.k8s.io/policy. Values should be
short. Annotations are included in the metadata level.

Field Description

Example output for the Kubernetes API server:

{"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata","auditID":"ad209ce1-fec7-4130-8192-
c4cc63f1d8cd","stage":"ResponseComplete","requestURI":"/api/v1/namespaces/openshift-kube-
controller-manager/configmaps/cert-recovery-controller-lock?timeout=35s","verb":"update","user":
{"username":"system:serviceaccount:openshift-kube-controller-manager:localhost-recovery-
client","uid":"dd4997e3-d565-4e37-80f8-7fc122ccd785","groups":
["system:serviceaccounts","system:serviceaccounts:openshift-kube-controller-
manager","system:authenticated"]},"sourceIPs":["::1"],"userAgent":"cluster-kube-controller-manager-
operator/v0.0.0 (linux/amd64) kubernetes/$Format","objectRef":
{"resource":"configmaps","namespace":"openshift-kube-controller-manager","name":"cert-recovery-
controller-lock","uid":"5c57190b-6993-425d-8101-
8337e48c7548","apiVersion":"v1","resourceVersion":"574307"},"responseStatus":{"metadata":
{},"code":200},"requestReceivedTimestamp":"2020-04-
02T08:27:20.200962Z","stageTimestamp":"2020-04-02T08:27:20.206710Z","annotations":
{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":"RBAC: allowed by
ClusterRoleBinding \"system:openshift:operator:kube-controller-manager-recovery\" of ClusterRole
\"cluster-admin\" to ServiceAccount \"localhost-recovery-client/openshift-kube-controller-manager\""}}

4.2. VIEWING THE AUDIT LOG

You can view logs for the OpenShift Container Platform API server or the Kubernetes API server for
each master node.

Procedure

OpenShift Container Platform 4.4 Security

60

To view the audit log:

1. View the OpenShift Container Platform API server logs

a. If necessary, get the node name of the log you want to view:

$ oc adm node-logs --role=master --path=openshift-apiserver/

ip-10-0-140-97.ec2.internal audit-2019-04-09T00-12-19.834.log
ip-10-0-140-97.ec2.internal audit-2019-04-09T11-13-00.469.log
ip-10-0-140-97.ec2.internal audit.log
ip-10-0-153-35.ec2.internal audit-2019-04-09T00-11-49.835.log
ip-10-0-153-35.ec2.internal audit-2019-04-09T11-08-30.469.log
ip-10-0-153-35.ec2.internal audit.log
ip-10-0-170-165.ec2.internal audit-2019-04-09T00-13-00.128.log
ip-10-0-170-165.ec2.internal audit-2019-04-09T11-10-04.082.log
ip-10-0-170-165.ec2.internal audit.log

b. View the OpenShift Container Platform API server log for a specific master node and
timestamp or view all the logs for that master:

$ oc adm node-logs <node-name> --path=openshift-apiserver/<log-name>

For example:

$ oc adm node-logs ip-10-0-140-97.ec2.internal --path=openshift-apiserver/audit-2019-
04-08T13-09-01.227.log
$ oc adm node-logs ip-10-0-140-97.ec2.internal --path=openshift-apiserver/audit.log

The output appears similar to the following:

{"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata","auditID":"ad209ce1-fec7-
4130-8192-
c4cc63f1d8cd","stage":"ResponseComplete","requestURI":"/api/v1/namespaces/openshift-
kube-controller-manager/configmaps/cert-recovery-controller-lock?
timeout=35s","verb":"update","user":{"username":"system:serviceaccount:openshift-kube-
controller-manager:localhost-recovery-client","uid":"dd4997e3-d565-4e37-80f8-
7fc122ccd785","groups":["system:serviceaccounts","system:serviceaccounts:openshift-
kube-controller-manager","system:authenticated"]},"sourceIPs":
["::1"],"userAgent":"cluster-kube-controller-manager-operator/v0.0.0 (linux/amd64)
kubernetes/$Format","objectRef":{"resource":"configmaps","namespace":"openshift-kube-
controller-manager","name":"cert-recovery-controller-lock","uid":"5c57190b-6993-425d-
8101-8337e48c7548","apiVersion":"v1","resourceVersion":"574307"},"responseStatus":
{"metadata":{},"code":200},"requestReceivedTimestamp":"2020-04-
02T08:27:20.200962Z","stageTimestamp":"2020-04-
02T08:27:20.206710Z","annotations":
{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":"RBAC: allowed by
ClusterRoleBinding \"system:openshift:operator:kube-controller-manager-recovery\" of
ClusterRole \"cluster-admin\" to ServiceAccount \"localhost-recovery-client/openshift-
kube-controller-manager\""}}

2. View the Kubernetes API server logs:

a. If necessary, get the node name of the log you want to view:

CHAPTER 4. VIEWING AUDIT LOGS

61

$ oc adm node-logs --role=master --path=kube-apiserver/

ip-10-0-140-97.ec2.internal audit-2019-04-09T14-07-27.129.log
ip-10-0-140-97.ec2.internal audit-2019-04-09T19-18-32.542.log
ip-10-0-140-97.ec2.internal audit.log
ip-10-0-153-35.ec2.internal audit-2019-04-09T19-24-22.620.log
ip-10-0-153-35.ec2.internal audit-2019-04-09T19-51-30.905.log
ip-10-0-153-35.ec2.internal audit.log
ip-10-0-170-165.ec2.internal audit-2019-04-09T18-37-07.511.log
ip-10-0-170-165.ec2.internal audit-2019-04-09T19-21-14.371.log
ip-10-0-170-165.ec2.internal audit.log

b. View the Kubernetes API server log for a specific master node and timestamp or view all the
logs for that master:

$ oc adm node-logs <node-name> --path=kube-apiserver/<log-name>

For example:

$ oc adm node-logs ip-10-0-140-97.ec2.internal --path=kube-apiserver/audit-2019-04-
09T14-07-27.129.log
$ oc adm node-logs ip-10-0-170-165.ec2.internal --path=kube-apiserver/audit.log

The output appears similar to the following:

{"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata","auditID":"ad209ce1-fec7-
4130-8192-
c4cc63f1d8cd","stage":"ResponseComplete","requestURI":"/api/v1/namespaces/openshift-
kube-controller-manager/configmaps/cert-recovery-controller-lock?
timeout=35s","verb":"update","user":{"username":"system:serviceaccount:openshift-kube-
controller-manager:localhost-recovery-client","uid":"dd4997e3-d565-4e37-80f8-
7fc122ccd785","groups":["system:serviceaccounts","system:serviceaccounts:openshift-
kube-controller-manager","system:authenticated"]},"sourceIPs":
["::1"],"userAgent":"cluster-kube-controller-manager-operator/v0.0.0 (linux/amd64)
kubernetes/$Format","objectRef":{"resource":"configmaps","namespace":"openshift-kube-
controller-manager","name":"cert-recovery-controller-lock","uid":"5c57190b-6993-425d-
8101-8337e48c7548","apiVersion":"v1","resourceVersion":"574307"},"responseStatus":
{"metadata":{},"code":200},"requestReceivedTimestamp":"2020-04-
02T08:27:20.200962Z","stageTimestamp":"2020-04-
02T08:27:20.206710Z","annotations":
{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":"RBAC: allowed by
ClusterRoleBinding \"system:openshift:operator:kube-controller-manager-recovery\" of
ClusterRole \"cluster-admin\" to ServiceAccount \"localhost-recovery-client/openshift-
kube-controller-manager\""}}

OpenShift Container Platform 4.4 Security

62

1

CHAPTER 5. ALLOWING JAVASCRIPT-BASED ACCESS TO
THE API SERVER FROM ADDITIONAL HOSTS

5.1. ALLOWING JAVASCRIPT-BASED ACCESS TO THE API SERVER
FROM ADDITIONAL HOSTS

The default OpenShift Container Platform configuration only allows the OpenShift web console to send
requests to the API server.

If you need to access the API server or OAuth server from a JavaScript application using a different host
name, you can configure additional host names to allow.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the APIServer resource:

$ oc edit apiserver.config.openshift.io cluster

2. Add the additionalCORSAllowedOrigins field under the spec section and specify one or more
additional host names:

The host name is specified as a Golang regular expression that matches against CORS
headers from HTTP requests against the API server and OAuth server.

NOTE

apiVersion: config.openshift.io/v1
kind: APIServer
metadata:
 annotations:
 release.openshift.io/create-only: "true"
 creationTimestamp: "2019-07-11T17:35:37Z"
 generation: 1
 name: cluster
 resourceVersion: "907"
 selfLink: /apis/config.openshift.io/v1/apiservers/cluster
 uid: 4b45a8dd-a402-11e9-91ec-0219944e0696
spec:
 additionalCORSAllowedOrigins:
 - (?i)//my\.subdomain\.domain\.com(:|\z) 1

CHAPTER 5. ALLOWING JAVASCRIPT-BASED ACCESS TO THE API SERVER FROM ADDITIONAL HOSTS

63

https://github.com/google/re2/wiki/Syntax

NOTE

This example uses the following syntax:

The (?i) makes it case-insensitive.

The // pins to the beginning of the domain and matches the double slash
following http: or https:.

The \. escapes dots in the domain name.

The (:|\z) matches the end of the domain name (\z) or a port separator (:).

3. Save the file to apply the changes.

OpenShift Container Platform 4.4 Security

64

CHAPTER 6. ENCRYPTING ETCD DATA

6.1. ABOUT ETCD ENCRYPTION

By default, etcd data is not encrypted in OpenShift Container Platform. You can enable etcd encryption
for your cluster to provide an additional layer of data security. For example, it can help protect the loss
of sensitive data if an etcd backup is exposed to the incorrect parties.

When you enable etcd encryption, the following OpenShift API server and Kubernetes API server
resources are encrypted:

Secrets

Config maps

Routes

OAuth access tokens

OAuth authorize tokens

When you enable etcd encryption, encryption keys are created. These keys are rotated on a weekly
basis. You must have these keys in order to restore from an etcd backup.

6.2. ENABLING ETCD ENCRYPTION

You can enable etcd encryption to encrypt sensitive resources in your cluster.

WARNING

It is not recommended to take a backup of etcd until the initial encryption process is
complete. If the encryption process has not completed, the backup might be only
partially encrypted.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Modify the APIServer object:

$ oc edit apiserver

2. Set the encryption field type to aescbc:

spec:
 encryption:
 type: aescbc 1

CHAPTER 6. ENCRYPTING ETCD DATA

65

1 The aescbc type means that AES-CBC with PKCS#7 padding and a 32 byte key is used to
perform the encryption.

3. Save the file to apply the changes.
The encryption process starts. It can take 20 minutes or longer for this process to complete,
depending on the size of your cluster.

4. Verify that etcd encryption was successful.

a. Review the Encrypted status condition for the OpenShift API server to verify that its
resources were successfully encrypted:

$ oc get openshiftapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

The output shows EncryptionCompleted upon successful encryption:

EncryptionCompleted
All resources encrypted: routes.route.openshift.io, oauthaccesstokens.oauth.openshift.io,
oauthauthorizetokens.oauth.openshift.io

If the output shows EncryptionInProgress, this means that encryption is still in progress.
Wait a few minutes and try again.

b. Review the Encrypted status condition for the Kubernetes API server to verify that its
resources were successfully encrypted:

$ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

The output shows EncryptionCompleted upon successful encryption:

EncryptionCompleted
All resources encrypted: secrets, configmaps

If the output shows EncryptionInProgress, this means that encryption is still in progress.
Wait a few minutes and try again.

6.3. DISABLING ETCD ENCRYPTION

You can disable encryption of etcd data in your cluster.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Modify the APIServer object:

$ oc edit apiserver

2. Set the encryption field type to identity:

OpenShift Container Platform 4.4 Security

66

1 The identity type is the default value and means that no encryption is performed.

3. Save the file to apply the changes.
The decryption process starts. It can take 20 minutes or longer for this process to complete,
depending on the size of your cluster.

4. Verify that etcd decryption was successful.

a. Review the Encrypted status condition for the OpenShift API server to verify that its
resources were successfully decrypted:

$ oc get openshiftapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

The output shows DecryptionCompleted upon successful decryption:

DecryptionCompleted
Encryption mode set to identity and everything is decrypted

If the output shows DecryptionInProgress, this means that decryption is still in progress.
Wait a few minutes and try again.

b. Review the Encrypted status condition for the Kubernetes API server to verify that its
resources were successfully decrypted:

$ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

The output shows DecryptionCompleted upon successful decryption:

DecryptionCompleted
Encryption mode set to identity and everything is decrypted

If the output shows DecryptionInProgress, this means that decryption is still in progress.
Wait a few minutes and try again.

spec:
 encryption:
 type: identity 1

CHAPTER 6. ENCRYPTING ETCD DATA

67

CHAPTER 7. SCANNING PODS FOR VULNERABILITIES
Using the Container Security Operator (CSO), you can access vulnerability scan results from the
OpenShift Container Platform web console for container images used in active pods on the cluster. The
CSO:

Watches containers associated with pods on all or specified namespaces

Queries the container registry where the containers came from for vulnerability information,
provided an image’s registry is running image scanning (such as Quay.io or a Red Hat Quay
registry with Clair scanning)

Exposes vulnerabilities via the ImageManifestVuln object in the Kubernetes API

Using the instructions here, the CSO is installed in the openshift-operators namespace, so it is available
to all namespaces on your OpenShift cluster.

7.1. RUNNING THE CONTAINER SECURITY OPERATOR

You can start the Container Security Operator from the OpenShift Container Platform web console by
selecting and installing that Operator from the Operator Hub, as described here.

Prerequisites

Have administrator privileges to the OpenShift Container Platform cluster

Have containers that come from a Red Hat Quay or Quay.io registry running on your cluster

Procedure

1. Navigate to Operators → OperatorHub and select Security.

2. Select the Container Security Operator, then select Install to go to the Create Operator
Subscription page.

3. Check the settings. All namespaces and automatic approval strategy are selected, by default

4. Select Subscribe. The Container Security Operator appears after a few moments on the
Installed Operators screen.

5. Optionally, you can add custom certificates to the CSO. In this example, create a certificate
named quay.crt in the current directory. Then run the following command to add the cert to the
CSO:

$ oc create secret generic container-security-operator-extra-certs --from-file=quay.crt -n
openshift-operators

6. If you added a custom certificate, restart the Operator pod for the new certs to take effect.

7. Open the OpenShift Dashboard (Home → Overview). A link to Quay Image Security appears
under the status section, with a listing of the number of vulnerabilities found so far. Select the
link to see a Quay Image Security breakdown, as shown in the following figure:

OpenShift Container Platform 4.4 Security

68

https://quay.io
https://access.redhat.com/products/red-hat-quay

8. You can do one of two things at this point to follow up on any detected vulnerabilities:

Select the link to the vulnerability. You are taken to the container registry that the container
came from, where you can see information about the vulnerability. The following figure
shows an example of detected vulnerabilities from a Quay.io registry:

Select the namespaces link to go to the ImageManifestVuln screen, where you can see the
name of the selected image and all namespaces where that image is running. The following
figure indicates that a particular vulnerable image is running in the quay-enterprise
namespace:

CHAPTER 7. SCANNING PODS FOR VULNERABILITIES

69

At this point, you know what images are vulnerable, what you need to do to fix those vulnerabilities, and
every namespace that the image was run in. So you can:

Alert anyone running the image that they need to correct the vulnerability

Stop the images from running by deleting the deployment or other object that started the pod
that the image is in

Note that if you do delete the pod, it may take several minutes for the vulnerability to reset on the
dashboard.

7.2. QUERYING IMAGE VULNERABILITIES FROM THE CLI

Using the oc command, you can display information about vulnerabilities detected by the Container
Security Operator.

Prerequisites

Be running the Container Security Operator on your OpenShift Container Platform instance

Procedure

To query for detected container image vulnerabilities, type:

$ oc get vuln --all-namespaces
NAMESPACE NAME AGE
default sha256.ca90... 6m56s
skynet sha256.ca90... 9m37s

To display details for a particular vulnerability, provide the vulnerability name and its namespace
to the oc describe command. This example shows an active container whose image includes an
RPM package with a vulnerability:

$ oc describe vuln --namespace mynamespace sha256.ac50e3752...
Name: sha256.ac50e3752...
Namespace: quay-enterprise
...
Spec:
 Features:
 Name: nss-util
 Namespace Name: centos:7
 Version: 3.44.0-3.el7
 Versionformat: rpm
 Vulnerabilities:
 Description: Network Security Services (NSS) is a set of libraries...

OpenShift Container Platform 4.4 Security

70

	Table of Contents
	CHAPTER 1. CONTAINER SECURITY
	1.1. UNDERSTANDING CONTAINER SECURITY
	1.1.1. What are containers?
	1.1.2. What is OpenShift Container Platform?

	1.2. UNDERSTANDING HOST AND VM SECURITY
	1.2.1. Securing containers on Red Hat Enterprise Linux CoreOS (RHCOS)
	1.2.2. Comparing virtualization and containers
	1.2.3. Securing OpenShift Container Platform

	1.3. HARDENING RHCOS
	1.3.1. Choosing what to harden in RHCOS
	1.3.2. Choosing how to harden RHCOS
	1.3.2.1. Hardening before installation
	1.3.2.2. Hardening during installation
	1.3.2.3. Hardening after the cluster is running

	1.4. UNDERSTANDING COMPLIANCE
	1.4.1. Understanding compliance and risk management

	1.5. SECURING CONTAINER CONTENT
	1.5.1. Securing inside the container
	1.5.2. Creating redistributable images with UBI
	1.5.3. Security scanning in RHEL
	1.5.3.1. Scanning OpenShift images

	1.5.4. Integrating external scanning
	1.5.4.1. Image metadata
	1.5.4.2. Annotating image objects
	1.5.4.3. Controlling pod execution
	1.5.4.4. Integration reference

	1.6. USING CONTAINER REGISTRIES SECURELY
	1.6.1. Knowing where containers come from?
	1.6.2. Immutable and certified containers
	1.6.3. Getting containers from Red Hat Registry and Ecosystem Catalog
	1.6.4. OpenShift Container Registry
	1.6.5. Storing containers using Red Hat Quay

	1.7. SECURING THE BUILD PROCESS
	1.7.1. Building once, deploying everywhere
	1.7.2. Managing builds
	1.7.3. Securing inputs during builds
	1.7.4. Designing your build process
	1.7.5. Building Knative serverless applications

	1.8. DEPLOYING CONTAINERS
	1.8.1. Controlling container deployments with triggers
	1.8.2. Controlling what image sources can be deployed
	1.8.3. Using signature transports
	1.8.4. Creating secrets and config maps
	1.8.5. Automating continuous deployment

	1.9. SECURING THE CONTAINER PLATFORM
	1.9.1. Isolating containers with multitenancy
	1.9.2. Protecting control plane with admission plug-ins
	1.9.2.1. Security context constraints (SCCs)
	1.9.2.2. Granting roles to service accounts

	1.9.3. Authentication and authorization
	1.9.3.1. Controlling access using OAuth
	1.9.3.2. API access control and management
	1.9.3.3. Red Hat Single Sign-On
	1.9.3.4. Secure self-service web console

	1.9.4. Managing certificates for the platform
	1.9.4.1. Configuring custom certificates

	1.10. SECURING NETWORKS
	1.10.1. Using network namespaces
	1.10.2. Isolating pods with network policies
	1.10.3. Using multiple pod networks
	1.10.4. Isolating applications
	1.10.5. Securing ingress traffic
	1.10.6. Securing egress traffic

	1.11. SECURING ATTACHED STORAGE
	1.11.1. Persistent volume plug-ins
	1.11.2. Shared storage
	1.11.3. Block storage

	1.12. MONITORING CLUSTER EVENTS AND LOGS
	1.12.1. Watching cluster events
	1.12.2. Logging
	1.12.3. Audit logs

	CHAPTER 2. CONFIGURING CERTIFICATES
	2.1. REPLACING THE DEFAULT INGRESS CERTIFICATE
	2.1.1. Understanding the default ingress certificate
	2.1.2. Replacing the default ingress certificate

	2.2. ADDING API SERVER CERTIFICATES
	2.2.1. Add an API server named certificate

	2.3. SECURING SERVICE TRAFFIC USING SERVICE SERVING CERTIFICATE SECRETS
	2.3.1. Understanding service serving certificates
	2.3.2. Add a service certificate
	2.3.3. Add the service CA bundle to a config map
	2.3.4. Add the service CA bundle to an API service
	2.3.5. Add the service CA bundle to a custom resource definition
	2.3.6. Add the service CA bundle to a mutating webhook configuration
	2.3.7. Add the service CA bundle to a validating webhook configuration
	2.3.8. Manually rotate the generated service certificate
	2.3.9. Manually rotate the service CA certificate

	CHAPTER 3. CERTIFICATE TYPES AND DESCRIPTIONS
	3.1. USER-PROVIDED CERTIFICATES FOR THE API SERVER
	3.1.1. Purpose
	3.1.2. Location
	3.1.3. Management
	3.1.4. Expiration
	3.1.5. Customization
	Additional resources

	3.2. PROXY CERTIFICATES
	3.2.1. Purpose
	Additional resources

	3.2.2. Managing proxy certificates during installation
	3.2.3. Location
	3.2.4. Expiration
	3.2.5. Services
	3.2.6. Management
	3.2.7. Customization
	3.2.8. Renewal

	3.3. SERVICE CA CERTIFICATES
	3.3.1. Purpose
	3.3.2. Expiration
	3.3.3. Management
	3.3.4. Services
	Additional resources

	3.4. NODE CERTIFICATES
	3.4.1. Purpose
	3.4.2. Management
	Additional resources

	3.5. BOOTSTRAP CERTIFICATES
	3.5.1. Purpose
	3.5.2. Management
	3.5.3. Expiration
	3.5.4. Customization

	3.6. ETCD CERTIFICATES
	3.6.1. Purpose
	3.6.2. Expiration
	3.6.3. Management
	3.6.4. Services
	Additional resources

	3.7. OLM CERTIFICATES
	3.7.1. Management

	3.8. USER-PROVIDED CERTIFICATES FOR DEFAULT INGRESS
	3.8.1. Purpose
	3.8.2. Location
	3.8.3. Management
	3.8.4. Expiration
	3.8.5. Services
	3.8.6. Customization
	Additional resources

	3.9. INGRESS CERTIFICATES
	3.9.1. Purpose
	3.9.2. Location
	3.9.3. Workflow
	3.9.4. Expiration
	3.9.5. Services
	3.9.6. Management
	3.9.7. Renewal

	3.10. MONITORING AND CLUSTER LOGGING OPERATOR COMPONENT CERTIFICATES
	3.10.1. Expiration
	3.10.2. Management

	3.11. CONTROL PLANE CERTIFICATES
	3.11.1. Location
	3.11.2. Management

	CHAPTER 4. VIEWING AUDIT LOGS
	4.1. ABOUT THE API AUDIT LOG
	4.2. VIEWING THE AUDIT LOG

	CHAPTER 5. ALLOWING JAVASCRIPT-BASED ACCESS TO THE API SERVER FROM ADDITIONAL HOSTS
	5.1. ALLOWING JAVASCRIPT-BASED ACCESS TO THE API SERVER FROM ADDITIONAL HOSTS

	CHAPTER 6. ENCRYPTING ETCD DATA
	6.1. ABOUT ETCD ENCRYPTION
	6.2. ENABLING ETCD ENCRYPTION
	6.3. DISABLING ETCD ENCRYPTION

	CHAPTER 7. SCANNING PODS FOR VULNERABILITIES
	7.1. RUNNING THE CONTAINER SECURITY OPERATOR
	7.2. QUERYING IMAGE VULNERABILITIES FROM THE CLI

