
OpenShift Container Platform 4.11

Operators

Working with Operators in OpenShift Container Platform

Last Updated: 2024-02-07

OpenShift Container Platform 4.11 Operators

Working with Operators in OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information for working with Operators in OpenShift Container Platform.
This includes instructions for cluster administrators on how to install and manage Operators, as well
as information for developers on how to create applications from installed Operators. This also
contains guidance on building your own Operator using the Operator SDK.

. .

. .

Table of Contents

CHAPTER 1. OPERATORS OVERVIEW
1.1. FOR DEVELOPERS
1.2. FOR ADMINISTRATORS
1.3. NEXT STEPS

CHAPTER 2. UNDERSTANDING OPERATORS
2.1. WHAT ARE OPERATORS?

2.1.1. Why use Operators?
2.1.2. Operator Framework
2.1.3. Operator maturity model

2.2. OPERATOR FRAMEWORK PACKAGING FORMAT
2.2.1. Bundle format

2.2.1.1. Manifests
Additionally supported objects

2.2.1.2. Annotations
2.2.1.3. Dependencies
2.2.1.4. About the opm CLI

2.2.2. File-based catalogs
2.2.2.1. Directory structure
2.2.2.2. Schemas

2.2.2.2.1. olm.package schema
2.2.2.2.2. olm.channel schema
2.2.2.2.3. olm.bundle schema

2.2.2.3. Properties
2.2.2.3.1. olm.package property
2.2.2.3.2. olm.gvk property
2.2.2.3.3. olm.package.required
2.2.2.3.4. olm.gvk.required

2.2.2.4. Example catalog
2.2.2.5. Guidelines

2.2.2.5.1. Immutable bundles
2.2.2.5.2. Source control

2.2.2.6. CLI usage
2.2.2.7. Automation

2.3. OPERATOR FRAMEWORK GLOSSARY OF COMMON TERMS
2.3.1. Common Operator Framework terms

2.3.1.1. Bundle
2.3.1.2. Bundle image
2.3.1.3. Catalog source
2.3.1.4. Channel
2.3.1.5. Channel head
2.3.1.6. Cluster service version
2.3.1.7. Dependency
2.3.1.8. Index image
2.3.1.9. Install plan
2.3.1.10. Multitenancy
2.3.1.11. Operator group
2.3.1.12. Package
2.3.1.13. Registry
2.3.1.14. Subscription
2.3.1.15. Update graph

14
14
14
15

16
16
16
16
17
18
18
18
19

20
20
21
21
23
24
24
25
26
26
26
27
27
27
28
29
29
29
29
29
30
30
30
30
30
30
30
30
30
31
31
31
31
31
31
31
31

Table of Contents

1

2.4. OPERATOR LIFECYCLE MANAGER (OLM)
2.4.1. Operator Lifecycle Manager concepts and resources

2.4.1.1. What is Operator Lifecycle Manager?
2.4.1.2. OLM resources

2.4.1.2.1. Cluster service version
2.4.1.2.2. Catalog source

2.4.1.2.2.1. Image template for custom catalog sources
2.4.1.2.2.2. Catalog health requirements

2.4.1.2.3. Subscription
2.4.1.2.4. Install plan
2.4.1.2.5. Operator groups
2.4.1.2.6. Operator conditions

2.4.2. Operator Lifecycle Manager architecture
2.4.2.1. Component responsibilities
2.4.2.2. OLM Operator
2.4.2.3. Catalog Operator
2.4.2.4. Catalog Registry

2.4.3. Operator Lifecycle Manager workflow
2.4.3.1. Operator installation and upgrade workflow in OLM

2.4.3.1.1. Example upgrade path
2.4.3.1.2. Skipping upgrades
2.4.3.1.3. Replacing multiple Operators
2.4.3.1.4. Z-stream support

2.4.4. Operator Lifecycle Manager dependency resolution
2.4.4.1. About dependency resolution
2.4.4.2. Operator properties

2.4.4.2.1. Arbitrary properties
2.4.4.3. Operator dependencies
2.4.4.4. Generic constraints

2.4.4.4.1. Common Expression Language (CEL) constraints
2.4.4.4.2. Compound constraints (all, any, not)
2.4.4.4.3. Nested compound constraints

2.4.4.5. Dependency preferences
2.4.4.5.1. Catalog priority
2.4.4.5.2. Channel ordering
2.4.4.5.3. Order within a channel
2.4.4.5.4. Other constraints

2.4.4.5.4.1. Subscription constraint
2.4.4.5.4.2. Package constraint

2.4.4.5.5. Additional resources
2.4.4.6. CRD upgrades
2.4.4.7. Dependency best practices
2.4.4.8. Dependency caveats
2.4.4.9. Example dependency resolution scenarios

Example: Deprecating dependent APIs
Example: Version deadlock

2.4.5. Operator groups
2.4.5.1. About Operator groups
2.4.5.2. Operator group membership
2.4.5.3. Target namespace selection
2.4.5.4. Operator group CSV annotations
2.4.5.5. Provided APIs annotation
2.4.5.6. Role-based access control

31
32
32
32
33
33
36
38
38
39
41
41

42
42
43
43
44
44
44
46
46
48
49
50
50
50
51
51
52
52
53
54
55
55
56
56
56
56
57
57
57
57
58
59
59
59
59
59
60
60
61

62
62

OpenShift Container Platform 4.11 Operators

2

. .

. .

2.4.5.7. Copied CSVs
2.4.5.8. Static Operator groups
2.4.5.9. Operator group intersection

Rules for intersection
2.4.5.10. Limitations for multitenant Operator management
2.4.5.11. Troubleshooting Operator groups

Membership
2.4.6. Multitenancy and Operator colocation

2.4.6.1. Colocation of Operators in a namespace
2.4.7. Operator conditions

2.4.7.1. About Operator conditions
2.4.7.2. Supported conditions

2.4.7.2.1. Upgradeable condition
2.4.7.3. Additional resources

2.4.8. Operator Lifecycle Manager metrics
2.4.8.1. Exposed metrics

2.4.9. Webhook management in Operator Lifecycle Manager
2.4.9.1. Additional resources

2.5. UNDERSTANDING OPERATORHUB
2.5.1. About OperatorHub
2.5.2. OperatorHub architecture

2.5.2.1. OperatorHub custom resource
2.5.3. Additional resources

2.6. RED HAT-PROVIDED OPERATOR CATALOGS
2.6.1. About Operator catalogs
2.6.2. About Red Hat-provided Operator catalogs

2.7. OPERATORS IN MULTITENANT CLUSTERS
2.7.1. Default Operator install modes and behavior
2.7.2. Recommended solution for multitenant clusters
2.7.3. Operator colocation and Operator groups

2.8. CRDS
2.8.1. Extending the Kubernetes API with custom resource definitions

2.8.1.1. Custom resource definitions
2.8.1.2. Creating a custom resource definition
2.8.1.3. Creating cluster roles for custom resource definitions
2.8.1.4. Creating custom resources from a file
2.8.1.5. Inspecting custom resources

2.8.2. Managing resources from custom resource definitions
2.8.2.1. Custom resource definitions
2.8.2.2. Creating custom resources from a file
2.8.2.3. Inspecting custom resources

CHAPTER 3. USER TASKS
3.1. CREATING APPLICATIONS FROM INSTALLED OPERATORS

3.1.1. Creating an etcd cluster using an Operator
3.2. INSTALLING OPERATORS IN YOUR NAMESPACE

3.2.1. Prerequisites
3.2.2. About Operator installation with OperatorHub
3.2.3. Installing from OperatorHub using the web console
3.2.4. Installing from OperatorHub using the CLI
3.2.5. Installing a specific version of an Operator

CHAPTER 4. ADMINISTRATOR TASKS

66
67
68
68
69
70
70
70
70
71
71
72
72
73
73
73
74
74
74
74
75
75
76
76
76
77
78
78
79
80
80
80
80
81

82
84
85
86
86
86
87

89
89
89
90
90
90
91

92
95

97

Table of Contents

3

4.1. ADDING OPERATORS TO A CLUSTER
4.1.1. About Operator installation with OperatorHub
4.1.2. Installing from OperatorHub using the web console
4.1.3. Installing from OperatorHub using the CLI
4.1.4. Installing a specific version of an Operator
4.1.5. Preparing for multiple instances of an Operator for multitenant clusters
4.1.6. Installing global Operators in custom namespaces
4.1.7. Pod placement of Operator workloads

4.2. UPDATING INSTALLED OPERATORS
4.2.1. Preparing for an Operator update
4.2.2. Changing the update channel for an Operator
4.2.3. Manually approving a pending Operator update

4.3. DELETING OPERATORS FROM A CLUSTER
4.3.1. Deleting Operators from a cluster using the web console
4.3.2. Deleting Operators from a cluster using the CLI
4.3.3. Refreshing failing subscriptions

4.4. CONFIGURING OPERATOR LIFECYCLE MANAGER FEATURES
4.4.1. Disabling copied CSVs

4.5. CONFIGURING PROXY SUPPORT IN OPERATOR LIFECYCLE MANAGER
4.5.1. Overriding proxy settings of an Operator
4.5.2. Injecting a custom CA certificate

4.6. VIEWING OPERATOR STATUS
4.6.1. Operator subscription condition types
4.6.2. Viewing Operator subscription status by using the CLI
4.6.3. Viewing Operator catalog source status by using the CLI

4.7. MANAGING OPERATOR CONDITIONS
4.7.1. Overriding Operator conditions
4.7.2. Updating your Operator to use Operator conditions

4.7.2.1. Setting defaults
4.7.3. Additional resources

4.8. ALLOWING NON-CLUSTER ADMINISTRATORS TO INSTALL OPERATORS
4.8.1. Understanding Operator installation policy

4.8.1.1. Installation scenarios
4.8.1.2. Installation workflow

4.8.2. Scoping Operator installations
4.8.2.1. Fine-grained permissions

4.8.3. Operator catalog access control
4.8.4. Troubleshooting permission failures

4.9. MANAGING CUSTOM CATALOGS
4.9.1. Prerequisites
4.9.2. File-based catalogs

4.9.2.1. Creating a file-based catalog image
4.9.2.2. Updating or filtering a file-based catalog image

4.9.3. SQLite-based catalogs
4.9.3.1. Creating a SQLite-based index image
4.9.3.2. Updating a SQLite-based index image
4.9.3.3. Filtering a SQLite-based index image

4.9.4. Adding a catalog source to a cluster
4.9.5. Accessing images for Operators from private registries
4.9.6. Disabling the default OperatorHub sources
4.9.7. Removing custom catalogs

4.10. USING OPERATOR LIFECYCLE MANAGER ON RESTRICTED NETWORKS
4.10.1. Prerequisites

97
97
97
99

102
103
104
106
107
107
107
108
108
109
109
110
112
112
113
114
115
117
117
117
118

120
121
122
122
122
122
122
123
123
124
126
127
127
129
129
129
129
132
135
135
136
137
139
141

145
146
146
147

OpenShift Container Platform 4.11 Operators

4

. .

4.10.2. Disabling the default OperatorHub sources
4.10.3. Mirroring an Operator catalog
4.10.4. Adding a catalog source to a cluster

4.11. CATALOG SOURCE POD SCHEDULING
4.11.1. Overriding the node selector for catalog source pods
4.11.2. Overriding the priority class name for catalog source pods
4.11.3. Overriding tolerations for catalog source pods

CHAPTER 5. DEVELOPING OPERATORS
5.1. ABOUT THE OPERATOR SDK

5.1.1. What are Operators?
5.1.2. Development workflow
5.1.3. Additional resources

5.2. INSTALLING THE OPERATOR SDK CLI
5.2.1. Installing the Operator SDK CLI

5.3. GO-BASED OPERATORS
5.3.1. Getting started with Operator SDK for Go-based Operators

5.3.1.1. Prerequisites
5.3.1.2. Creating and deploying Go-based Operators
5.3.1.3. Next steps

5.3.2. Operator SDK tutorial for Go-based Operators
5.3.2.1. Prerequisites
5.3.2.2. Creating a project

5.3.2.2.1. PROJECT file
5.3.2.2.2. About the Manager
5.3.2.2.3. About multi-group APIs

5.3.2.3. Creating an API and controller
5.3.2.3.1. Defining the API
5.3.2.3.2. Generating CRD manifests

5.3.2.3.2.1. About OpenAPI validation
5.3.2.4. Implementing the controller

5.3.2.4.1. Resources watched by the controller
5.3.2.4.2. Controller configurations
5.3.2.4.3. Reconcile loop
5.3.2.4.4. Permissions and RBAC manifests

5.3.2.5. Enabling proxy support
5.3.2.6. Running the Operator

5.3.2.6.1. Running locally outside the cluster
5.3.2.6.2. Running as a deployment on the cluster
5.3.2.6.3. Bundling an Operator and deploying with Operator Lifecycle Manager

5.3.2.6.3.1. Bundling an Operator
5.3.2.6.3.2. Deploying an Operator with Operator Lifecycle Manager

5.3.2.7. Creating a custom resource
5.3.2.8. Additional resources

5.3.3. Project layout for Go-based Operators
5.3.3.1. Go-based project layout

5.3.4. Updating Go-based Operator projects for newer Operator SDK versions
5.3.4.1. Updating Go-based Operator projects for Operator SDK 1.22.2
5.3.4.2. Additional resources

5.4. ANSIBLE-BASED OPERATORS
5.4.1. Getting started with Operator SDK for Ansible-based Operators

5.4.1.1. Prerequisites
5.4.1.2. Creating and deploying Ansible-based Operators

147
148
148
150
150
151
152

153
153
153
153
154
154
154
155
155
155
156
157
157
158
158
159
159
159
160
160
161
161

162
166
167
167
168
168
169
170
170
171
171

173
174
176
176
176
177
177
182
182
182
182
183

Table of Contents

5

5.4.1.3. Next steps
5.4.2. Operator SDK tutorial for Ansible-based Operators

5.4.2.1. Prerequisites
5.4.2.2. Creating a project

5.4.2.2.1. PROJECT file
5.4.2.3. Creating an API
5.4.2.4. Modifying the manager
5.4.2.5. Enabling proxy support
5.4.2.6. Running the Operator

5.4.2.6.1. Running locally outside the cluster
5.4.2.6.2. Running as a deployment on the cluster
5.4.2.6.3. Bundling an Operator and deploying with Operator Lifecycle Manager

5.4.2.6.3.1. Bundling an Operator
5.4.2.6.3.2. Deploying an Operator with Operator Lifecycle Manager

5.4.2.7. Creating a custom resource
5.4.2.8. Additional resources

5.4.3. Project layout for Ansible-based Operators
5.4.3.1. Ansible-based project layout

5.4.4. Updating projects for newer Operator SDK versions
5.4.4.1. Updating Ansible-based Operator projects for Operator SDK 1.22.2
5.4.4.2. Additional resources

5.4.5. Ansible support in Operator SDK
5.4.5.1. Custom resource files
5.4.5.2. watches.yaml file

5.4.5.2.1. Advanced options
5.4.5.3. Extra variables sent to Ansible
5.4.5.4. Ansible Runner directory

5.4.6. Kubernetes Collection for Ansible
5.4.6.1. Installing the Kubernetes Collection for Ansible
5.4.6.2. Testing the Kubernetes Collection locally
5.4.6.3. Next steps

5.4.7. Using Ansible inside an Operator
5.4.7.1. Custom resource files
5.4.7.2. Testing an Ansible-based Operator locally
5.4.7.3. Testing an Ansible-based Operator on the cluster
5.4.7.4. Ansible logs

5.4.7.4.1. Viewing Ansible logs
5.4.7.4.2. Enabling full Ansible results in logs
5.4.7.4.3. Enabling verbose debugging in logs

5.4.8. Custom resource status management
5.4.8.1. About custom resource status in Ansible-based Operators
5.4.8.2. Tracking custom resource status manually

5.5. HELM-BASED OPERATORS
5.5.1. Getting started with Operator SDK for Helm-based Operators

5.5.1.1. Prerequisites
5.5.1.2. Creating and deploying Helm-based Operators
5.5.1.3. Next steps

5.5.2. Operator SDK tutorial for Helm-based Operators
5.5.2.1. Prerequisites
5.5.2.2. Creating a project

5.5.2.2.1. Existing Helm charts
5.5.2.2.2. PROJECT file

5.5.2.3. Understanding the Operator logic

184
184
185
185
186
186
187
188
189
189
190
191
191

192
193
195
195
195
196
196
199
199
199

200
201

202
203
203
204
204
206
206
206
207
210
211
211
212
212
212
212
213
214
214
214
214
216
216
216
217
218
219
219

OpenShift Container Platform 4.11 Operators

6

5.5.2.3.1. Sample Helm chart
5.5.2.3.2. Modifying the custom resource spec

5.5.2.4. Enabling proxy support
5.5.2.5. Running the Operator

5.5.2.5.1. Running locally outside the cluster
5.5.2.5.2. Running as a deployment on the cluster
5.5.2.5.3. Bundling an Operator and deploying with Operator Lifecycle Manager

5.5.2.5.3.1. Bundling an Operator
5.5.2.5.3.2. Deploying an Operator with Operator Lifecycle Manager

5.5.2.6. Creating a custom resource
5.5.2.7. Additional resources

5.5.3. Project layout for Helm-based Operators
5.5.3.1. Helm-based project layout

5.5.4. Updating Helm-based projects for newer Operator SDK versions
5.5.4.1. Updating Helm-based Operator projects for Operator SDK 1.22.2
5.5.4.2. Additional resources

5.5.5. Helm support in Operator SDK
5.5.5.1. Helm charts

5.5.6. Operator SDK tutorial for Hybrid Helm Operators
5.5.6.1. Prerequisites
5.5.6.2. Creating a project
5.5.6.3. Creating a Helm API

5.5.6.3.1. Operator logic for the Helm API
5.5.6.3.2. Custom Helm reconciler configurations using provided library APIs

5.5.6.4. Creating a Go API
5.5.6.4.1. Defining the API
5.5.6.4.2. Controller implementation
5.5.6.4.3. Differences in main.go
5.5.6.4.4. Permissions and RBAC manifests

5.5.6.5. Running locally outside the cluster
5.5.6.6. Running as a deployment on the cluster
5.5.6.7. Creating custom resources
5.5.6.8. Project layout

5.5.7. Updating Hybrid Helm-based projects for newer Operator SDK versions
5.5.7.1. Updating Hybrid Helm-based Operator projects for Operator SDK 1.22.2
5.5.7.2. Additional resources

5.6. JAVA-BASED OPERATORS
5.6.1. Getting started with Operator SDK for Java-based Operators

5.6.1.1. Prerequisites
5.6.1.2. Creating and deploying Java-based Operators
5.6.1.3. Next steps

5.6.2. Operator SDK tutorial for Java-based Operators
5.6.2.1. Prerequisites
5.6.2.2. Creating a project

5.6.2.2.1. PROJECT file
5.6.2.3. Creating an API and controller

5.6.2.3.1. Defining the API
5.6.2.3.2. Generating CRD manifests
5.6.2.3.3. Creating a Custom Resource

5.6.2.4. Implementing the controller
5.6.2.4.1. Reconcile loop
5.6.2.4.2. Defining labelsForMemcached
5.6.2.4.3. Define the createMemcachedDeployment

220
220
220
222
222
222
223
224
225
226
228
228
228
229
229
231
231
231

232
233
233
234
234
235
235
236
237
237
239
241
241
242
245
246
246
249
249
249
250
250
252
252
252
253
253
253
254
255
256
257
259
261
261

Table of Contents

7

5.6.2.5. Running the Operator
5.6.2.5.1. Running locally outside the cluster
5.6.2.5.2. Running as a deployment on the cluster
5.6.2.5.3. Bundling an Operator and deploying with Operator Lifecycle Manager

5.6.2.5.3.1. Bundling an Operator
5.6.2.5.3.2. Deploying an Operator with Operator Lifecycle Manager

5.6.2.6. Additional resources
5.6.3. Project layout for Java-based Operators

5.6.3.1. Java-based project layout
5.7. DEFINING CLUSTER SERVICE VERSIONS (CSVS)

5.7.1. How CSV generation works
5.7.1.1. Generated files and resources
5.7.1.2. Version management

5.7.2. Manually-defined CSV fields
5.7.2.1. Operator metadata annotations

Example use cases
5.7.3. Enabling your Operator for restricted network environments
5.7.4. Enabling your Operator for multiple architectures and operating systems

5.7.4.1. Architecture and operating system support for Operators
5.7.5. Setting a suggested namespace
5.7.6. Enabling Operator conditions
5.7.7. Defining webhooks

5.7.7.1. Webhook considerations for OLM
Certificate authority constraints
Admission webhook rules constraints
Conversion webhook constraints

5.7.8. Understanding your custom resource definitions (CRDs)
5.7.8.1. Owned CRDs
5.7.8.2. Required CRDs
5.7.8.3. CRD upgrades

5.7.8.3.1. Adding a new CRD version
5.7.8.3.2. Deprecating or removing a CRD version

5.7.8.4. CRD templates
5.7.8.5. Hiding internal objects
5.7.8.6. Initializing required custom resources

5.7.9. Understanding your API services
5.7.9.1. Owned API services

5.7.9.1.1. API service resource creation
5.7.9.1.2. API service serving certificates

5.7.9.2. Required API services
5.8. WORKING WITH BUNDLE IMAGES

5.8.1. Bundling an Operator
5.8.2. Deploying an Operator with Operator Lifecycle Manager
5.8.3. Publishing a catalog containing a bundled Operator
5.8.4. Testing an Operator upgrade on Operator Lifecycle Manager
5.8.5. Controlling Operator compatibility with OpenShift Container Platform versions
5.8.6. Additional resources

5.9. COMPLYING WITH POD SECURITY ADMISSION
5.9.1. Security context constraint synchronization with pod security standards
5.9.2. Ensuring Operator workloads run in namespaces set to the restricted pod security level
5.9.3. Managing pod security admission for Operator workloads that require escalated permissions
5.9.4. Additional resources

5.10. VALIDATING OPERATORS USING THE SCORECARD TOOL

261
262
263
265
265
266
268
268
268
269
269
269
270
270
272
274
274
278
279
280
280
282
284
284
285
285
285
285
288
289
289
290
291
291
292
293
293
294
295
295
295
295
297
298
301
303
306
306
306
307
308
309
309

OpenShift Container Platform 4.11 Operators

8

. .

5.10.1. About the scorecard tool
5.10.2. Scorecard configuration
5.10.3. Built-in scorecard tests
5.10.4. Running the scorecard tool
5.10.5. Scorecard output
5.10.6. Selecting tests
5.10.7. Enabling parallel testing
5.10.8. Custom scorecard tests

5.11. VALIDATING OPERATOR BUNDLES
5.11.1. About the bundle validate command
5.11.2. Built-in bundle validate tests
5.11.3. Running the bundle validate command

5.12. HIGH-AVAILABILITY OR SINGLE-NODE CLUSTER DETECTION AND SUPPORT
5.12.1. About the cluster high-availability mode API
5.12.2. Example API usage in Operator projects

5.13. CONFIGURING BUILT-IN MONITORING WITH PROMETHEUS
5.13.1. Prometheus Operator support
5.13.2. Exposing custom metrics for Go-based Operators
5.13.3. Exposing custom metrics for Ansible-based Operators

5.14. CONFIGURING LEADER ELECTION
5.14.1. Operator leader election examples

5.14.1.1. Leader-for-life election
5.14.1.2. Leader-with-lease election

5.15. OBJECT PRUNING UTILITY FOR GO-BASED OPERATORS
5.15.1. About the operator-lib pruning utility
5.15.2. Pruning utility configuration

5.16. MIGRATING PACKAGE MANIFEST PROJECTS TO BUNDLE FORMAT
5.16.1. About packaging format migration
5.16.2. Migrating a package manifest project to bundle format

5.17. OPERATOR SDK CLI REFERENCE
5.17.1. bundle

5.17.1.1. validate
5.17.2. cleanup
5.17.3. completion
5.17.4. create

5.17.4.1. api
5.17.5. generate

5.17.5.1. bundle
5.17.5.2. kustomize

5.17.5.2.1. manifests
5.17.6. init
5.17.7. run

5.17.7.1. bundle
5.17.7.2. bundle-upgrade

5.17.8. scorecard

CHAPTER 6. CLUSTER OPERATORS REFERENCE
6.1. CLUSTER BAREMETAL OPERATOR

Purpose
Project

6.2. BARE METAL EVENT RELAY
Purpose
Configuration objects

310
310
311
312
313
314
314
315
318
318
319

320
321
321

322
323
323
323
325
329
329
329
330
330
330
331
332
332
333
334
335
335
335
336
336
336
337
337
338
338
339
339
339
340
340

342
342
342
342
342
342
342

Table of Contents

9

Project
CRD
Additional resources

6.3. CLOUD CREDENTIAL OPERATOR
Purpose
Project
CRDs
Configuration objects
Additional resources

6.4. CLUSTER AUTHENTICATION OPERATOR
Purpose
Project

6.5. CLUSTER AUTOSCALER OPERATOR
Purpose
Project
CRDs

6.6. CLUSTER CLOUD CONTROLLER MANAGER OPERATOR
Purpose
Project

6.7. CLUSTER CAPI OPERATOR
Purpose
Project
CRDs

6.8. CLUSTER CONFIG OPERATOR
Purpose
Project

6.9. CLUSTER CSI SNAPSHOT CONTROLLER OPERATOR
Purpose
Project

6.10. CLUSTER IMAGE REGISTRY OPERATOR
Purpose
Project

6.11. CLUSTER MACHINE APPROVER OPERATOR
Purpose
Project

6.12. CLUSTER MONITORING OPERATOR
Purpose
Project
CRDs
Configuration objects

6.13. CLUSTER NETWORK OPERATOR
Purpose

6.14. CLUSTER SAMPLES OPERATOR
Purpose
Project

6.15. CLUSTER STORAGE OPERATOR
Purpose
Project
Configuration
Notes

6.16. CLUSTER VERSION OPERATOR
Purpose
Project

343
343
343
343
343
343
343
344
344
344
344
344
344
344
344
344
344
344
345
345
345
345
345
346
346
346
346
346
346
346
346
346
346
347
347
347
347
347
347
347
348
348
348
348
349
349
349
349
349
349
349
349
349

OpenShift Container Platform 4.11 Operators

10

Additional resources
6.17. CONSOLE OPERATOR

Purpose
Project

6.18. DNS OPERATOR
Purpose
Project

6.19. ETCD CLUSTER OPERATOR
Purpose
Project
CRDs
Configuration objects

6.20. INGRESS OPERATOR
Purpose
Project
CRDs
Configuration objects
Notes

6.21. INSIGHTS OPERATOR
Purpose
Project
Configuration
Notes
Additional resources

6.22. KUBERNETES API SERVER OPERATOR
Purpose
Project
CRDs
Configuration objects

6.23. KUBERNETES CONTROLLER MANAGER OPERATOR
Purpose
Project

6.24. KUBERNETES SCHEDULER OPERATOR
Purpose
Project
Configuration

6.25. KUBERNETES STORAGE VERSION MIGRATOR OPERATOR
Purpose
Project

6.26. MACHINE API OPERATOR
Purpose
Project
CRDs

6.27. MACHINE CONFIG OPERATOR
Purpose
Project

6.28. MARKETPLACE OPERATOR
Purpose
Project

6.29. NODE TUNING OPERATOR
Purpose
Project
Additional resources

349
349
349
350
350
350
350
350
350
350
350
350
350
350
350
350
351
351
351
351
351
351
351
352
352
352
352
352
352
352
352
352
352
352
353
353
353
353
353
353
353
353
353
354
354
354
354
354
355
355
355
355
355

Table of Contents

11

6.30. OPENSHIFT API SERVER OPERATOR
Purpose
Project
CRDs

6.31. OPENSHIFT CONTROLLER MANAGER OPERATOR
Purpose
Project

6.32. OPERATOR LIFECYCLE MANAGER OPERATORS
Purpose
CRDs
OLM Operator
Catalog Operator
Catalog Registry
Additional resources

6.33. OPENSHIFT SERVICE CA OPERATOR
Purpose
Project

6.34. VSPHERE PROBLEM DETECTOR OPERATOR
Purpose
Configuration
Notes
Additional resources

355
356
356
356
356
356
356
356
356
357
358
358
359
359
359
359
359
359
359
359
359
359

OpenShift Container Platform 4.11 Operators

12

Table of Contents

13

CHAPTER 1. OPERATORS OVERVIEW
Operators are among the most important components of OpenShift Container Platform. Operators are
the preferred method of packaging, deploying, and managing services on the control plane. They can
also provide advantages to applications that users run.

Operators integrate with Kubernetes APIs and CLI tools such as kubectl and oc commands. They
provide the means of monitoring applications, performing health checks, managing over-the-air (OTA)
updates, and ensuring that applications remain in your specified state.

While both follow similar Operator concepts and goals, Operators in OpenShift Container Platform are
managed by two different systems, depending on their purpose:

Cluster Operators, which are managed by the Cluster Version Operator (CVO), are installed by
default to perform cluster functions.

Optional add-on Operators, which are managed by Operator Lifecycle Manager (OLM), can be
made accessible for users to run in their applications.

With Operators, you can create applications to monitor the running services in the cluster. Operators are
designed specifically for your applications. Operators implement and automate the common Day 1
operations such as installation and configuration as well as Day 2 operations such as autoscaling up and
down and creating backups. All these activities are in a piece of software running inside your cluster.

1.1. FOR DEVELOPERS

As a developer, you can perform the following Operator tasks:

Install Operator SDK CLI .

Create Go-based Operators, Ansible-based Operators, Java-based Operators, and Helm-
based Operators.

Use Operator SDK to build,test, and deploy an Operator .

Install and subscribe an Operator to your namespace .

Create an application from an installed Operator through the web console .

Additional resources

Machine deletion lifecycle hook examples for Operator developers

1.2. FOR ADMINISTRATORS

As a cluster administrator, you can perform the following Operator tasks:

Manage custom catalogs

Allow non-cluster administrators to install Operators

Install an Operator from OperatorHub

View Operator status.

OpenShift Container Platform 4.11 Operators

14

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-installing-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-golang-quickstart
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-ansible-quickstart
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-java-quickstart
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-helm-quickstart
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-installing-operators-in-namespace
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-creating-apps-from-installed-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/machine_management/#machine-lifecycle-hook-deletion-uses_deleting-machine
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-creating-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-installing-operators-in-namespace
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-status

Manage Operator conditions

Upgrade installed Operators

Delete installed Operators

Configure proxy support

Use Operator Lifecycle Manager on restricted networks

To know all about the cluster Operators that Red Hat provides, see Cluster Operators reference.

1.3. NEXT STEPS

To understand more about Operators, see What are Operators?

CHAPTER 1. OPERATORS OVERVIEW

15

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-managing-operatorconditions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-upgrading-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-deleting-operators-from-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-configuring-proxy-support
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-restricted-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#cluster-operators-ref
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-what-operators-are

CHAPTER 2. UNDERSTANDING OPERATORS

2.1. WHAT ARE OPERATORS?

Conceptually, Operators take human operational knowledge and encode it into software that is more
easily shared with consumers.

Operators are pieces of software that ease the operational complexity of running another piece of
software. They act like an extension of the software vendor’s engineering team, monitoring a Kubernetes
environment (such as OpenShift Container Platform) and using its current state to make decisions in
real time. Advanced Operators are designed to handle upgrades seamlessly, react to failures
automatically, and not take shortcuts, like skipping a software backup process to save time.

More technically, Operators are a method of packaging, deploying, and managing a Kubernetes
application.

A Kubernetes application is an app that is both deployed on Kubernetes and managed using the
Kubernetes APIs and kubectl or oc tooling. To be able to make the most of Kubernetes, you require a
set of cohesive APIs to extend in order to service and manage your apps that run on Kubernetes. Think
of Operators as the runtime that manages this type of app on Kubernetes.

2.1.1. Why use Operators?

Operators provide:

Repeatability of installation and upgrade.

Constant health checks of every system component.

Over-the-air (OTA) updates for OpenShift components and ISV content.

A place to encapsulate knowledge from field engineers and spread it to all users, not just one or
two.

Why deploy on Kubernetes?

Kubernetes (and by extension, OpenShift Container Platform) contains all of the primitives needed
to build complex distributed systems – secret handling, load balancing, service discovery, autoscaling
– that work across on-premises and cloud providers.

Why manage your app with Kubernetes APIs and kubectl tooling?

These APIs are feature rich, have clients for all platforms and plug into the cluster’s access
control/auditing. An Operator uses the Kubernetes extension mechanism, custom resource
definitions (CRDs), so your custom object, for example MongoDB, looks and acts just like the built-
in, native Kubernetes objects.

How do Operators compare with service brokers?

A service broker is a step towards programmatic discovery and deployment of an app. However,
because it is not a long running process, it cannot execute Day 2 operations like upgrade, failover, or
scaling. Customizations and parameterization of tunables are provided at install time, versus an
Operator that is constantly watching the current state of your cluster. Off-cluster services are a good
match for a service broker, although Operators exist for these as well.

2.1.2. Operator Framework

The Operator Framework is a family of tools and capabilities to deliver on the customer experience

OpenShift Container Platform 4.11 Operators

16

https://marketplace.redhat.com/en-us/products/mongodb-enterprise-advanced-from-ibm

described above. It is not just about writing code; testing, delivering, and updating Operators is just as
important. The Operator Framework components consist of open source tools to tackle these
problems:

Operator SDK

The Operator SDK assists Operator authors in bootstrapping, building, testing, and packaging their
own Operator based on their expertise without requiring knowledge of Kubernetes API complexities.

Operator Lifecycle Manager

Operator Lifecycle Manager (OLM) controls the installation, upgrade, and role-based access control
(RBAC) of Operators in a cluster. Deployed by default in OpenShift Container Platform 4.11.

Operator Registry

The Operator Registry stores cluster service versions (CSVs) and custom resource definitions
(CRDs) for creation in a cluster and stores Operator metadata about packages and channels. It runs
in a Kubernetes or OpenShift cluster to provide this Operator catalog data to OLM.

OperatorHub

OperatorHub is a web console for cluster administrators to discover and select Operators to install
on their cluster. It is deployed by default in OpenShift Container Platform.

These tools are designed to be composable, so you can use any that are useful to you.

2.1.3. Operator maturity model

The level of sophistication of the management logic encapsulated within an Operator can vary. This
logic is also in general highly dependent on the type of the service represented by the Operator.

One can however generalize the scale of the maturity of the encapsulated operations of an Operator for
certain set of capabilities that most Operators can include. To this end, the following Operator maturity
model defines five phases of maturity for generic day two operations of an Operator:

Figure 2.1. Operator maturity model

The above model also shows how these capabilities can best be developed through the Helm, Go, and
Ansible capabilities of the Operator SDK.

CHAPTER 2. UNDERSTANDING OPERATORS

17

2.2. OPERATOR FRAMEWORK PACKAGING FORMAT

This guide outlines the packaging format for Operators supported by Operator Lifecycle Manager
(OLM) in OpenShift Container Platform.

NOTE

Support for the legacy package manifest format for Operators is removed in OpenShift
Container Platform 4.8 and later. Existing Operator projects in the package manifest
format can be migrated to the bundle format by using the Operator SDK pkgman-to-
bundle command. See Migrating package manifest projects to bundle format for more
details.

2.2.1. Bundle format

The bundle format for Operators is a packaging format introduced by the Operator Framework. To
improve scalability and to better enable upstream users hosting their own catalogs, the bundle format
specification simplifies the distribution of Operator metadata.

An Operator bundle represents a single version of an Operator. On-disk bundle manifests are
containerized and shipped as a bundle image, which is a non-runnable container image that stores the
Kubernetes manifests and Operator metadata. Storage and distribution of the bundle image is then
managed using existing container tools like podman and docker and container registries such as Quay.

Operator metadata can include:

Information that identifies the Operator, for example its name and version.

Additional information that drives the UI, for example its icon and some example custom
resources (CRs).

Required and provided APIs.

Related images.

When loading manifests into the Operator Registry database, the following requirements are validated:

The bundle must have at least one channel defined in the annotations.

Every bundle has exactly one cluster service version (CSV).

If a CSV owns a custom resource definition (CRD), that CRD must exist in the bundle.

2.2.1.1. Manifests

Bundle manifests refer to a set of Kubernetes manifests that define the deployment and RBAC model of
the Operator.

A bundle includes one CSV per directory and typically the CRDs that define the owned APIs of the CSV
in its /manifests directory.

Example bundle format layout

etcd
├── manifests

OpenShift Container Platform 4.11 Operators

18

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-pkgman-to-bundle

Additionally supported objects
The following object types can also be optionally included in the /manifests directory of a bundle:

Supported optional object types

ClusterRole

ClusterRoleBinding

ConfigMap

ConsoleCLIDownload

ConsoleLink

ConsoleQuickStart

ConsoleYamlSample

PodDisruptionBudget

PriorityClass

PrometheusRule

Role

RoleBinding

Secret

Service

ServiceAccount

ServiceMonitor

VerticalPodAutoscaler

When these optional objects are included in a bundle, Operator Lifecycle Manager (OLM) can create
them from the bundle and manage their lifecycle along with the CSV:

Lifecycle for optional objects

When the CSV is deleted, OLM deletes the optional object.

When the CSV is upgraded:

If the name of the optional object is the same, OLM updates it in place.

│ ├── etcdcluster.crd.yaml
│ └── etcdoperator.clusterserviceversion.yaml
│ └── secret.yaml
│ └── configmap.yaml
└── metadata
 └── annotations.yaml
 └── dependencies.yaml

CHAPTER 2. UNDERSTANDING OPERATORS

19

1

2

3

4

5

6

If the name of the optional object has changed between versions, OLM deletes and
recreates it.

2.2.1.2. Annotations

A bundle also includes an annotations.yaml file in its /metadata directory. This file defines higher level
aggregate data that helps describe the format and package information about how the bundle should
be added into an index of bundles:

Example annotations.yaml

The media type or format of the Operator bundle. The registry+v1 format means it contains a
CSV and its associated Kubernetes objects.

The path in the image to the directory that contains the Operator manifests. This label is reserved
for future use and currently defaults to manifests/. The value manifests.v1 implies that the bundle
contains Operator manifests.

The path in the image to the directory that contains metadata files about the bundle. This label is
reserved for future use and currently defaults to metadata/. The value metadata.v1 implies that
this bundle has Operator metadata.

The package name of the bundle.

The list of channels the bundle is subscribing to when added into an Operator Registry.

The default channel an Operator should be subscribed to when installed from a registry.

NOTE

In case of a mismatch, the annotations.yaml file is authoritative because the on-cluster
Operator Registry that relies on these annotations only has access to this file.

2.2.1.3. Dependencies

The dependencies of an Operator are listed in a dependencies.yaml file in the metadata/ folder of a
bundle. This file is optional and currently only used to specify explicit Operator-version dependencies.

The dependency list contains a type field for each item to specify what kind of dependency this is. The
following types of Operator dependencies are supported:

olm.package

This type indicates a dependency for a specific Operator version. The dependency information must
include the package name and the version of the package in semver format. For example, you can
specify an exact version such as 0.5.2 or a range of versions such as >0.5.1.

annotations:
 operators.operatorframework.io.bundle.mediatype.v1: "registry+v1" 1
 operators.operatorframework.io.bundle.manifests.v1: "manifests/" 2
 operators.operatorframework.io.bundle.metadata.v1: "metadata/" 3
 operators.operatorframework.io.bundle.package.v1: "test-operator" 4
 operators.operatorframework.io.bundle.channels.v1: "beta,stable" 5
 operators.operatorframework.io.bundle.channel.default.v1: "stable" 6

OpenShift Container Platform 4.11 Operators

20

olm.gvk

With this type, the author can specify a dependency with group/version/kind (GVK) information,
similar to existing CRD and API-based usage in a CSV. This is a path to enable Operator authors to
consolidate all dependencies, API or explicit versions, to be in the same place.

olm.constraint

This type declares generic constraints on arbitrary Operator properties.

In the following example, dependencies are specified for a Prometheus Operator and etcd CRDs:

Example dependencies.yaml file

Additional resources

Operator Lifecycle Manager dependency resolution

2.2.1.4. About the opm CLI

The opm CLI tool is provided by the Operator Framework for use with the Operator bundle format. This
tool allows you to create and maintain catalogs of Operators from a list of Operator bundles that are
similar to software repositories. The result is a container image which can be stored in a container
registry and then installed on a cluster.

A catalog contains a database of pointers to Operator manifest content that can be queried through an
included API that is served when the container image is run. On OpenShift Container Platform,
Operator Lifecycle Manager (OLM) can reference the image in a catalog source, defined by a
CatalogSource object, which polls the image at regular intervals to enable frequent updates to installed
Operators on the cluster.

See CLI tools for steps on installing the opm CLI.

2.2.2. File-based catalogs

File-based catalogs are the latest iteration of the catalog format in Operator Lifecycle Manager (OLM).
It is a plain text-based (JSON or YAML) and declarative config evolution of the earlier SQLite database
format, and it is fully backwards compatible. The goal of this format is to enable Operator catalog
editing, composability, and extensibility.

Editing

With file-based catalogs, users interacting with the contents of a catalog are able to make direct
changes to the format and verify that their changes are valid. Because this format is plain text JSON
or YAML, catalog maintainers can easily manipulate catalog metadata by hand or with widely known
and supported JSON or YAML tooling, such as the jq CLI.

dependencies:
 - type: olm.package
 value:
 packageName: prometheus
 version: ">0.27.0"
 - type: olm.gvk
 value:
 group: etcd.database.coreos.com
 kind: EtcdCluster
 version: v1beta2

CHAPTER 2. UNDERSTANDING OPERATORS

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-understanding-dependency-resolution
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cli_tools/#cli-opm-install

This editability enables the following features and user-defined extensions:

Promoting an existing bundle to a new channel

Changing the default channel of a package

Custom algorithms for adding, updating, and removing upgrade edges

Composability

File-based catalogs are stored in an arbitrary directory hierarchy, which enables catalog composition.
For example, consider two separate file-based catalog directories: catalogA and catalogB. A catalog
maintainer can create a new combined catalog by making a new directory catalogC and copying
catalogA and catalogB into it.
This composability enables decentralized catalogs. The format permits Operator authors to maintain
Operator-specific catalogs, and it permits maintainers to trivially build a catalog composed of
individual Operator catalogs. File-based catalogs can be composed by combining multiple other
catalogs, by extracting subsets of one catalog, or a combination of both of these.

NOTE

Duplicate packages and duplicate bundles within a package are not permitted. The
opm validate command returns an error if any duplicates are found.

Because Operator authors are most familiar with their Operator, its dependencies, and its upgrade
compatibility, they are able to maintain their own Operator-specific catalog and have direct control
over its contents. With file-based catalogs, Operator authors own the task of building and
maintaining their packages in a catalog. Composite catalog maintainers, however, only own the task
of curating the packages in their catalog and publishing the catalog to users.

Extensibility

The file-based catalog specification is a low-level representation of a catalog. While it can be
maintained directly in its low-level form, catalog maintainers can build interesting extensions on top
that can be used by their own custom tooling to make any number of mutations.
For example, a tool could translate a high-level API, such as (mode=semver), down to the low-level,
file-based catalog format for upgrade edges. Or a catalog maintainer might need to customize all of
the bundle metadata by adding a new property to bundles that meet a certain criteria.

While this extensibility allows for additional official tooling to be developed on top of the low-level
APIs for future OpenShift Container Platform releases, the major benefit is that catalog maintainers
have this capability as well.

IMPORTANT

OpenShift Container Platform 4.11 Operators

22

IMPORTANT

As of OpenShift Container Platform 4.11, the default Red Hat-provided Operator catalog
releases in the file-based catalog format. The default Red Hat-provided Operator
catalogs for OpenShift Container Platform 4.6 through 4.10 released in the deprecated
SQLite database format.

The opm subcommands, flags, and functionality related to the SQLite database format
are also deprecated and will be removed in a future release. The features are still
supported and must be used for catalogs that use the deprecated SQLite database
format.

Many of the opm subcommands and flags for working with the SQLite database format,
such as opm index prune, do not work with the file-based catalog format. For more
information about working with file-based catalogs, see Managing custom catalogs and
Mirroring images for a disconnected installation using the oc-mirror plugin .

2.2.2.1. Directory structure

File-based catalogs can be stored and loaded from directory-based file systems. The opm CLI loads
the catalog by walking the root directory and recursing into subdirectories. The CLI attempts to load
every file it finds and fails if any errors occur.

Non-catalog files can be ignored using .indexignore files, which have the same rules for patterns and
precedence as .gitignore files.

Example .indexignore file

Catalog maintainers have the flexibility to choose their desired layout, but it is recommended to store
each package’s file-based catalog blobs in separate subdirectories. Each individual file can be either
JSON or YAML; it is not necessary for every file in a catalog to use the same format.

Basic recommended structure

This recommended structure has the property that each subdirectory in the directory hierarchy is a self-
contained catalog, which makes catalog composition, discovery, and navigation trivial file system
operations. The catalog could also be included in a parent catalog by copying it into the parent catalog’s

Ignore everything except non-object .json and .yaml files
**/*
!*.json
!*.yaml
**/objects/*.json
**/objects/*.yaml

catalog
├── packageA
│ └── index.yaml
├── packageB
│ ├── .indexignore
│ ├── index.yaml
│ └── objects
│ └── packageB.v0.1.0.clusterserviceversion.yaml
└── packageC
 └── index.json

CHAPTER 2. UNDERSTANDING OPERATORS

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-managing-custom-catalogs-fb
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#installing-mirroring-disconnected

root directory.

2.2.2.2. Schemas

File-based catalogs use a format, based on the CUE language specification, that can be extended with
arbitrary schemas. The following _Meta CUE schema defines the format that all file-based catalog blobs
must adhere to:

_Meta schema

NOTE

No CUE schemas listed in this specification should be considered exhaustive. The opm
validate command has additional validations that are difficult or impossible to express
concisely in CUE.

An Operator Lifecycle Manager (OLM) catalog currently uses three schemas (olm.package,
olm.channel, and olm.bundle), which correspond to OLM’s existing package and bundle concepts.

Each Operator package in a catalog requires exactly one olm.package blob, at least one olm.channel
blob, and one or more olm.bundle blobs.

NOTE

All olm.* schemas are reserved for OLM-defined schemas. Custom schemas must use a
unique prefix, such as a domain that you own.

2.2.2.2.1. olm.package schema

The olm.package schema defines package-level metadata for an Operator. This includes its name,
description, default channel, and icon.

Example 2.1. olm.package schema

_Meta: {
 // schema is required and must be a non-empty string
 schema: string & !=""

 // package is optional, but if it's defined, it must be a non-empty string
 package?: string & !=""

 // properties is optional, but if it's defined, it must be a list of 0 or more properties
 properties?: [... #Property]
}

#Property: {
 // type is required
 type: string & !=""

 // value is required, and it must not be null
 value: !=null
}

OpenShift Container Platform 4.11 Operators

24

https://cuelang.org/docs/references/spec/

2.2.2.2.2. olm.channel schema

The olm.channel schema defines a channel within a package, the bundle entries that are members of
the channel, and the upgrade edges for those bundles.

A bundle can included as an entry in multiple olm.channel blobs, but it can have only one entry per
channel.

It is valid for an entry’s replaces value to reference another bundle name that cannot be found in this
catalog or another catalog. However, all other channel invariants must hold true, such as a channel not
having multiple heads.

Example 2.2. olm.channel schema

#Package: {
 schema: "olm.package"

 // Package name
 name: string & !=""

 // A description of the package
 description?: string

 // The package's default channel
 defaultChannel: string & !=""

 // An optional icon
 icon?: {
 base64data: string
 mediatype: string
 }
}

#Channel: {
 schema: "olm.channel"
 package: string & !=""
 name: string & !=""
 entries: [...#ChannelEntry]
}

#ChannelEntry: {
 // name is required. It is the name of an `olm.bundle` that
 // is present in the channel.
 name: string & !=""

 // replaces is optional. It is the name of bundle that is replaced
 // by this entry. It does not have to be present in the entry list.
 replaces?: string & !=""

 // skips is optional. It is a list of bundle names that are skipped by
 // this entry. The skipped bundles do not have to be present in the
 // entry list.
 skips?: [...string & !=""]

CHAPTER 2. UNDERSTANDING OPERATORS

25

2.2.2.2.3. olm.bundle schema

Example 2.3. olm.bundle schema

2.2.2.3. Properties

Properties are arbitrary pieces of metadata that can be attached to file-based catalog schemas. The
type field is a string that effectively specifies the semantic and syntactic meaning of the value field. The
value can be any arbitrary JSON or YAML.

OLM defines a handful of property types, again using the reserved olm.* prefix.

2.2.2.3.1. olm.package property

The olm.package property defines the package name and version. This is a required property on
bundles, and there must be exactly one of these properties. The packageName field must match the
bundle’s first-class package field, and the version field must be a valid semantic version.

Example 2.4. olm.package property

 // skipRange is optional. It is the semver range of bundle versions
 // that are skipped by this entry.
 skipRange?: string & !=""
}

#Bundle: {
 schema: "olm.bundle"
 package: string & !=""
 name: string & !=""
 image: string & !=""
 properties: [...#Property]
 relatedImages?: [...#RelatedImage]
}

#Property: {
 // type is required
 type: string & !=""

 // value is required, and it must not be null
 value: !=null
}

#RelatedImage: {
 // image is the image reference
 image: string & !=""

 // name is an optional descriptive name for an image that
 // helps identify its purpose in the context of the bundle
 name?: string & !=""
}

OpenShift Container Platform 4.11 Operators

26

2.2.2.3.2. olm.gvk property

The olm.gvk property defines the group/version/kind (GVK) of a Kubernetes API that is provided by
this bundle. This property is used by OLM to resolve a bundle with this property as a dependency for
other bundles that list the same GVK as a required API. The GVK must adhere to Kubernetes GVK
validations.

Example 2.5. olm.gvk property

2.2.2.3.3. olm.package.required

The olm.package.required property defines the package name and version range of another package
that this bundle requires. For every required package property a bundle lists, OLM ensures there is an
Operator installed on the cluster for the listed package and in the required version range. The
versionRange field must be a valid semantic version (semver) range.

Example 2.6. olm.package.required property

2.2.2.3.4. olm.gvk.required

The olm.gvk.required property defines the group/version/kind (GVK) of a Kubernetes API that this
bundle requires. For every required GVK property a bundle lists, OLM ensures there is an Operator
installed on the cluster that provides it. The GVK must adhere to Kubernetes GVK validations.

#PropertyPackage: {
 type: "olm.package"
 value: {
 packageName: string & !=""
 version: string & !=""
 }
}

#PropertyGVK: {
 type: "olm.gvk"
 value: {
 group: string & !=""
 version: string & !=""
 kind: string & !=""
 }
}

#PropertyPackageRequired: {
 type: "olm.package.required"
 value: {
 packageName: string & !=""
 versionRange: string & !=""
 }
}

CHAPTER 2. UNDERSTANDING OPERATORS

27

Example 2.7. olm.gvk.required property

2.2.2.4. Example catalog

With file-based catalogs, catalog maintainers can focus on Operator curation and compatibility.
Because Operator authors have already produced Operator-specific catalogs for their Operators,
catalog maintainers can build their catalog by rendering each Operator catalog into a subdirectory of
the catalog’s root directory.

There are many possible ways to build a file-based catalog; the following steps outline a simple
approach:

1. Maintain a single configuration file for the catalog, containing image references for each
Operator in the catalog:

Example catalog configuration file

2. Run a script that parses the configuration file and creates a new catalog from its references:

Example script

#PropertyGVKRequired: {
 type: "olm.gvk.required"
 value: {
 group: string & !=""
 version: string & !=""
 kind: string & !=""
 }
}

name: community-operators
repo: quay.io/community-operators/catalog
tag: latest
references:
- name: etcd-operator
 image: quay.io/etcd-
operator/index@sha256:5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f
6be03
- name: prometheus-operator
 image: quay.io/prometheus-
operator/index@sha256:e258d248fda94c63753607f7c4494ee0fcbe92f1a76bfdac795c9d84101
eb317

name=$(yq eval '.name' catalog.yaml)
mkdir "$name"
yq eval '.name + "/" + .references[].name' catalog.yaml | xargs mkdir
for l in $(yq e '.name as $catalog | .references[] | .image + "|" + $catalog + "/" + .name +
"/index.yaml"' catalog.yaml); do
 image=$(echo $l | cut -d'|' -f1)
 file=$(echo $l | cut -d'|' -f2)
 opm render "$image" > "$file"
done
opm alpha generate dockerfile "$name"

OpenShift Container Platform 4.11 Operators

28

2.2.2.5. Guidelines

Consider the following guidelines when maintaining file-based catalogs.

2.2.2.5.1. Immutable bundles

The general advice with Operator Lifecycle Manager (OLM) is that bundle images and their metadata
should be treated as immutable.

If a broken bundle has been pushed to a catalog, you must assume that at least one of your users has
upgraded to that bundle. Based on that assumption, you must release another bundle with an upgrade
edge from the broken bundle to ensure users with the broken bundle installed receive an upgrade. OLM
will not reinstall an installed bundle if the contents of that bundle are updated in the catalog.

However, there are some cases where a change in the catalog metadata is preferred:

Channel promotion: If you already released a bundle and later decide that you would like to add
it to another channel, you can add an entry for your bundle in another olm.channel blob.

New upgrade edges: If you release a new 1.2.z bundle version, for example 1.2.4, but 1.3.0 is
already released, you can update the catalog metadata for 1.3.0 to skip 1.2.4.

2.2.2.5.2. Source control

Catalog metadata should be stored in source control and treated as the source of truth. Updates to
catalog images should include the following steps:

1. Update the source-controlled catalog directory with a new commit.

2. Build and push the catalog image. Use a consistent tagging taxonomy, such as :latest or :
<target_cluster_version>, so that users can receive updates to a catalog as they become
available.

2.2.2.6. CLI usage

For instructions about creating file-based catalogs by using the opm CLI, see Managing custom
catalogs.

For reference documentation about the opm CLI commands related to managing file-based catalogs,
see CLI tools.

2.2.2.7. Automation

Operator authors and catalog maintainers are encouraged to automate their catalog maintenance with
CI/CD workflows. Catalog maintainers can further improve on this by building GitOps automation to
accomplish the following tasks:

Check that pull request (PR) authors are permitted to make the requested changes, for
example by updating their package’s image reference.

Check that the catalog updates pass the opm validate command.

indexImage=$(yq eval '.repo + ":" + .tag' catalog.yaml)
docker build -t "$indexImage" -f "$name.Dockerfile" .
docker push "$indexImage"

CHAPTER 2. UNDERSTANDING OPERATORS

29

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-creating-fb-catalog-image_olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cli_tools/#cli-opm-ref

Check that the updated bundle or catalog image references exist, the catalog images run
successfully in a cluster, and Operators from that package can be successfully installed.

Automatically merge PRs that pass the previous checks.

Automatically rebuild and republish the catalog image.

2.3. OPERATOR FRAMEWORK GLOSSARY OF COMMON TERMS

This topic provides a glossary of common terms related to the Operator Framework, including Operator
Lifecycle Manager (OLM) and the Operator SDK.

2.3.1. Common Operator Framework terms

2.3.1.1. Bundle

In the bundle format, a bundle is a collection of an Operator CSV, manifests, and metadata. Together,
they form a unique version of an Operator that can be installed onto the cluster.

2.3.1.2. Bundle image

In the bundle format, a bundle image is a container image that is built from Operator manifests and that
contains one bundle. Bundle images are stored and distributed by Open Container Initiative (OCI) spec
container registries, such as Quay.io or DockerHub.

2.3.1.3. Catalog source

A catalog source represents a store of metadata that OLM can query to discover and install Operators
and their dependencies.

2.3.1.4. Channel

A channel defines a stream of updates for an Operator and is used to roll out updates for subscribers.
The head points to the latest version of that channel. For example, a stable channel would have all
stable versions of an Operator arranged from the earliest to the latest.

An Operator can have several channels, and a subscription binding to a certain channel would only look
for updates in that channel.

2.3.1.5. Channel head

A channel head refers to the latest known update in a particular channel.

2.3.1.6. Cluster service version

A cluster service version (CSV) is a YAML manifest created from Operator metadata that assists OLM in
running the Operator in a cluster. It is the metadata that accompanies an Operator container image,
used to populate user interfaces with information such as its logo, description, and version.

It is also a source of technical information that is required to run the Operator, like the RBAC rules it
requires and which custom resources (CRs) it manages or depends on.

2.3.1.7. Dependency

An Operator may have a dependency on another Operator being present in the cluster. For example, the

OpenShift Container Platform 4.11 Operators

30

An Operator may have a dependency on another Operator being present in the cluster. For example, the
Vault Operator has a dependency on the etcd Operator for its data persistence layer.

OLM resolves dependencies by ensuring that all specified versions of Operators and CRDs are installed
on the cluster during the installation phase. This dependency is resolved by finding and installing an
Operator in a catalog that satisfies the required CRD API, and is not related to packages or bundles.

2.3.1.8. Index image

In the bundle format, an index image refers to an image of a database (a database snapshot) that
contains information about Operator bundles including CSVs and CRDs of all versions. This index can
host a history of Operators on a cluster and be maintained by adding or removing Operators using the
opm CLI tool.

2.3.1.9. Install plan

An install plan is a calculated list of resources to be created to automatically install or upgrade a CSV.

2.3.1.10. Multitenancy

A tenant in OpenShift Container Platform is a user or group of users that share common access and
privileges for a set of deployed workloads, typically represented by a namespace or project. You can use
tenants to provide a level of isolation between different groups or teams.

When a cluster is shared by multiple users or groups, it is considered a multitenant cluster.

2.3.1.11. Operator group

An Operator group configures all Operators deployed in the same namespace as the OperatorGroup
object to watch for their CR in a list of namespaces or cluster-wide.

2.3.1.12. Package

In the bundle format, a package is a directory that encloses all released history of an Operator with each
version. A released version of an Operator is described in a CSV manifest alongside the CRDs.

2.3.1.13. Registry

A registry is a database that stores bundle images of Operators, each with all of its latest and historical
versions in all channels.

2.3.1.14. Subscription

A subscription keeps CSVs up to date by tracking a channel in a package.

2.3.1.15. Update graph

An update graph links versions of CSVs together, similar to the update graph of any other packaged
software. Operators can be installed sequentially, or certain versions can be skipped. The update graph
is expected to grow only at the head with newer versions being added.

2.4. OPERATOR LIFECYCLE MANAGER (OLM)

CHAPTER 2. UNDERSTANDING OPERATORS

31

2.4.1. Operator Lifecycle Manager concepts and resources

This guide provides an overview of the concepts that drive Operator Lifecycle Manager (OLM) in
OpenShift Container Platform.

2.4.1.1. What is Operator Lifecycle Manager?

Operator Lifecycle Manager (OLM) helps users install, update, and manage the lifecycle of Kubernetes
native applications (Operators) and their associated services running across their OpenShift Container
Platform clusters. It is part of the Operator Framework, an open source toolkit designed to manage
Operators in an effective, automated, and scalable way.

Figure 2.2. Operator Lifecycle Manager workflow

OLM runs by default in OpenShift Container Platform 4.11, which aids cluster administrators in installing,
upgrading, and granting access to Operators running on their cluster. The OpenShift Container
Platform web console provides management screens for cluster administrators to install Operators, as
well as grant specific projects access to use the catalog of Operators available on the cluster.

For developers, a self-service experience allows provisioning and configuring instances of databases,
monitoring, and big data services without having to be subject matter experts, because the Operator
has that knowledge baked into it.

2.4.1.2. OLM resources

The following custom resource definitions (CRDs) are defined and managed by Operator Lifecycle
Manager (OLM):

Table 2.1. CRDs managed by OLM and Catalog Operators

Resource Short name Description

ClusterServic
eVersion
(CSV)

csv Application metadata. For example: name, version, icon, required
resources.

CatalogSour
ce

catsrc A repository of CSVs, CRDs, and packages that define an application.

Subscription sub Keeps CSVs up to date by tracking a channel in a package.

OpenShift Container Platform 4.11 Operators

32

https://operatorframework.io/

InstallPlan ip Calculated list of resources to be created to automatically install or
upgrade a CSV.

OperatorGro
up

og Configures all Operators deployed in the same namespace as the
OperatorGroup object to watch for their custom resource (CR) in a
list of namespaces or cluster-wide.

OperatorCon
ditions

- Creates a communication channel between OLM and an Operator it
manages. Operators can write to the Status.Conditions array to
communicate complex states to OLM.

Resource Short name Description

2.4.1.2.1. Cluster service version

A cluster service version (CSV) represents a specific version of a running Operator on an OpenShift
Container Platform cluster. It is a YAML manifest created from Operator metadata that assists Operator
Lifecycle Manager (OLM) in running the Operator in the cluster.

OLM requires this metadata about an Operator to ensure that it can be kept running safely on a cluster,
and to provide information about how updates should be applied as new versions of the Operator are
published. This is similar to packaging software for a traditional operating system; think of the packaging
step for OLM as the stage at which you make your rpm, deb, or apk bundle.

A CSV includes the metadata that accompanies an Operator container image, used to populate user
interfaces with information such as its name, version, description, labels, repository link, and logo.

A CSV is also a source of technical information required to run the Operator, such as which custom
resources (CRs) it manages or depends on, RBAC rules, cluster requirements, and install strategies. This
information tells OLM how to create required resources and set up the Operator as a deployment.

2.4.1.2.2. Catalog source

A catalog source represents a store of metadata, typically by referencing an index image stored in a
container registry. Operator Lifecycle Manager (OLM) queries catalog sources to discover and install
Operators and their dependencies. OperatorHub in the OpenShift Container Platform web console also
displays the Operators provided by catalog sources.

TIP

Cluster administrators can view the full list of Operators provided by an enabled catalog source on a
cluster by using the Administration → Cluster Settings → Configuration → OperatorHub page in the
web console.

The spec of a CatalogSource object indicates how to construct a pod or how to communicate with a
service that serves the Operator Registry gRPC API.

Example 2.8. Example CatalogSource object

​apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:

CHAPTER 2. UNDERSTANDING OPERATORS

33

1

2

3

Name for the CatalogSource object. This value is also used as part of the name for the related
pod that is created in the requested namespace.

Namespace to create the catalog in. To make the catalog available cluster-wide in all
namespaces, set this value to openshift-marketplace. The default Red Hat-provided catalog
sources also use the openshift-marketplace namespace. Otherwise, set the value to a specific
namespace to make the Operator only available in that namespace.

Optional: To avoid cluster upgrades potentially leaving Operator installations in an unsupported
state or without a continued update path, you can enable automatically changing your Operator
catalog’s index image version as part of cluster upgrades.

Set the olm.catalogImageTemplate annotation to your index image name and use one or more
of the Kubernetes cluster version variables as shown when constructing the template for the
image tag. The annotation overwrites the spec.image field at run time. See the "Image
template for custom catalog sources" section for more details.

 generation: 1
 name: example-catalog 1
 namespace: openshift-marketplace 2
 annotations:
 olm.catalogImageTemplate: 3
 "quay.io/example-org/example-catalog:v{kube_major_version}.{kube_minor_version}.
{kube_patch_version}"
spec:
 displayName: Example Catalog 4
 image: quay.io/example-org/example-catalog:v1 5
 priority: -400 6
 publisher: Example Org
 sourceType: grpc 7
 grpcPodConfig:
 nodeSelector: 8
 custom_label: <label>
 priorityClassName: system-cluster-critical 9
 tolerations: 10
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoSchedule"
 updateStrategy:
 registryPoll: 11
 interval: 30m0s
status:
 connectionState:
 address: example-catalog.openshift-marketplace.svc:50051
 lastConnect: 2021-08-26T18:14:31Z
 lastObservedState: READY 12
 latestImageRegistryPoll: 2021-08-26T18:46:25Z 13
 registryService: 14
 createdAt: 2021-08-26T16:16:37Z
 port: 50051
 protocol: grpc
 serviceName: example-catalog
 serviceNamespace: openshift-marketplace

OpenShift Container Platform 4.11 Operators

34

4

5

6

7

8

9

10

11

12

13

14

Display name for the catalog in the web console and CLI.

Index image for the catalog. Optionally, can be omitted when using the
olm.catalogImageTemplate annotation, which sets the pull spec at run time.

Weight for the catalog source. OLM uses the weight for prioritization during dependency
resolution. A higher weight indicates the catalog is preferred over lower-weighted catalogs.

Source types include the following:

grpc with an image reference: OLM pulls the image and runs the pod, which is
expected to serve a compliant API.

grpc with an address field: OLM attempts to contact the gRPC API at the given
address. This should not be used in most cases.

configmap: OLM parses config map data and runs a pod that can serve the gRPC API
over it.

Optional: For grpc type catalog sources, overrides the default node selector for the pod
serving the content in spec.image, if defined.

Optional: For grpc type catalog sources, overrides the default priority class name for the pod
serving the content in spec.image, if defined. Kubernetes provides system-cluster-critical and
system-node-critical priority classes by default. Setting the field to empty ("") assigns the pod
the default priority. Other priority classes can be defined manually.

Optional: For grpc type catalog sources, overrides the default tolerations for the pod serving
the content in spec.image, if defined.

Automatically check for new versions at a given interval to stay up-to-date.

Last observed state of the catalog connection. For example:

READY: A connection is successfully established.

CONNECTING: A connection is attempting to establish.

TRANSIENT_FAILURE: A temporary problem has occurred while attempting to
establish a connection, such as a timeout. The state will eventually switch back to
CONNECTING and try again.

See States of Connectivity in the gRPC documentation for more details.

Latest time the container registry storing the catalog image was polled to ensure the image is
up-to-date.

Status information for the catalog’s Operator Registry service.

Referencing the name of a CatalogSource object in a subscription instructs OLM where to search to
find a requested Operator:

Example 2.9. Example Subscription object referencing a catalog source

apiVersion: operators.coreos.com/v1alpha1

CHAPTER 2. UNDERSTANDING OPERATORS

35

https://grpc.github.io/grpc/core/md_doc_connectivity-semantics-and-api.html

Additional resources

Understanding OperatorHub

Red Hat-provided Operator catalogs

Adding a catalog source to a cluster

Catalog priority

Viewing Operator catalog source status by using the CLI

Catalog source pod scheduling

2.4.1.2.2.1. Image template for custom catalog sources

Operator compatibility with the underlying cluster can be expressed by a catalog source in various ways.
One way, which is used for the default Red Hat-provided catalog sources, is to identify image tags for
index images that are specifically created for a particular platform release, for example OpenShift
Container Platform 4.11.

During a cluster upgrade, the index image tag for the default Red Hat-provided catalog sources are
updated automatically by the Cluster Version Operator (CVO) so that Operator Lifecycle Manager
(OLM) pulls the updated version of the catalog. For example during an upgrade from OpenShift
Container Platform 4.10 to 4.11, the spec.image field in the CatalogSource object for the redhat-
operators catalog is updated from:

to:

However, the CVO does not automatically update image tags for custom catalogs. To ensure users are
left with a compatible and supported Operator installation after a cluster upgrade, custom catalogs
should also be kept updated to reference an updated index image.

Starting in OpenShift Container Platform 4.9, cluster administrators can add the
olm.catalogImageTemplate annotation in the CatalogSource object for custom catalogs to an image
reference that includes a template. The following Kubernetes version variables are supported for use in
the template:

kube_major_version

kind: Subscription
metadata:
 name: example-operator
 namespace: example-namespace
spec:
 channel: stable
 name: example-operator
 source: example-catalog
 sourceNamespace: openshift-marketplace

registry.redhat.io/redhat/redhat-operator-index:v4.10

registry.redhat.io/redhat/redhat-operator-index:v4.11

OpenShift Container Platform 4.11 Operators

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-understanding-operatorhub
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-rh-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-creating-catalog-from-index_olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-dependency-catalog-priority_olm-understanding-dependency-resolution
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-cs-status-cli_olm-status
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-cs-podsched

kube_minor_version

kube_patch_version

NOTE

You must specify the Kubernetes cluster version and not an OpenShift Container
Platform cluster version, as the latter is not currently available for templating.

Provided that you have created and pushed an index image with a tag specifying the updated
Kubernetes version, setting this annotation enables the index image versions in custom catalogs to be
automatically changed after a cluster upgrade. The annotation value is used to set or update the image
reference in the spec.image field of the CatalogSource object. This helps avoid cluster upgrades
leaving Operator installations in unsupported states or without a continued update path.

IMPORTANT

You must ensure that the index image with the updated tag, in whichever registry it is
stored in, is accessible by the cluster at the time of the cluster upgrade.

Example 2.10. Example catalog source with an image template

NOTE

If the spec.image field and the olm.catalogImageTemplate annotation are both set, the
spec.image field is overwritten by the resolved value from the annotation. If the
annotation does not resolve to a usable pull spec, the catalog source falls back to the set
spec.image value.

If the spec.image field is not set and the annotation does not resolve to a usable pull
spec, OLM stops reconciliation of the catalog source and sets it into a human-readable
error condition.

For an OpenShift Container Platform 4.11 cluster, which uses Kubernetes 1.24, the
olm.catalogImageTemplate annotation in the preceding example resolves to the following image
reference:

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 generation: 1
 name: example-catalog
 namespace: openshift-marketplace
 annotations:
 olm.catalogImageTemplate:
 "quay.io/example-org/example-catalog:v{kube_major_version}.{kube_minor_version}"
spec:
 displayName: Example Catalog
 image: quay.io/example-org/example-catalog:v1.24
 priority: -400
 publisher: Example Org

CHAPTER 2. UNDERSTANDING OPERATORS

37

For future releases of OpenShift Container Platform, you can create updated index images for your
custom catalogs that target the later Kubernetes version that is used by the later OpenShift Container
Platform version. With the olm.catalogImageTemplate annotation set before the upgrade, upgrading
the cluster to the later OpenShift Container Platform version would then automatically update the
catalog’s index image as well.

2.4.1.2.2.2. Catalog health requirements

Operator catalogs on a cluster are interchangeable from the perspective of installation resolution; a
Subscription object might reference a specific catalog, but dependencies are resolved using all
catalogs on the cluster.

For example, if Catalog A is unhealthy, a subscription referencing Catalog A could resolve a dependency
in Catalog B, which the cluster administrator might not have been expecting, because B normally had a
lower catalog priority than A.

As a result, OLM requires that all catalogs with a given global namespace (for example, the default
openshift-marketplace namespace or a custom global namespace) are healthy. When a catalog is
unhealthy, all Operator installation or update operations within its shared global namespace will fail with
a CatalogSourcesUnhealthy condition. If these operations were permitted in an unhealthy state, OLM
might make resolution and installation decisions that were unexpected to the cluster administrator.

As a cluster administrator, if you observe an unhealthy catalog and want to consider the catalog as
invalid and resume Operator installations, see the "Removing custom catalogs" or "Disabling the default
OperatorHub catalog sources" sections for information about removing the unhealthy catalog.

Additional resources

Removing custom catalogs

Disabling the default OperatorHub catalog sources

2.4.1.2.3. Subscription

A subscription, defined by a Subscription object, represents an intention to install an Operator. It is the
custom resource that relates an Operator to a catalog source.

Subscriptions describe which channel of an Operator package to subscribe to, and whether to perform
updates automatically or manually. If set to automatic, the subscription ensures Operator Lifecycle
Manager (OLM) manages and upgrades the Operator to ensure that the latest version is always running
in the cluster.

Example Subscription object

quay.io/example-org/example-catalog:v1.24

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: example-operator
 namespace: example-namespace
spec:
 channel: stable

OpenShift Container Platform 4.11 Operators

38

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-removing-catalogs_olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-restricted-networks-operatorhub_olm-managing-custom-catalogs

This Subscription object defines the name and namespace of the Operator, as well as the catalog from
which the Operator data can be found. The channel, such as alpha, beta, or stable, helps determine
which Operator stream should be installed from the catalog source.

The names of channels in a subscription can differ between Operators, but the naming scheme should
follow a common convention within a given Operator. For example, channel names might follow a minor
release update stream for the application provided by the Operator (1.2, 1.3) or a release frequency
(stable, fast).

In addition to being easily visible from the OpenShift Container Platform web console, it is possible to
identify when there is a newer version of an Operator available by inspecting the status of the related
subscription. The value associated with the currentCSV field is the newest version that is known to
OLM, and installedCSV is the version that is installed on the cluster.

Additional resources

Multitenancy and Operator colocation

Viewing Operator subscription status by using the CLI

2.4.1.2.4. Install plan

An install plan, defined by an InstallPlan object, describes a set of resources that Operator Lifecycle
Manager (OLM) creates to install or upgrade to a specific version of an Operator. The version is defined
by a cluster service version (CSV).

To install an Operator, a cluster administrator, or a user who has been granted Operator installation
permissions, must first create a Subscription object. A subscription represents the intent to subscribe
to a stream of available versions of an Operator from a catalog source. The subscription then creates an
InstallPlan object to facilitate the installation of the resources for the Operator.

The install plan must then be approved according to one of the following approval strategies:

If the subscription’s spec.installPlanApproval field is set to Automatic, the install plan is
approved automatically.

If the subscription’s spec.installPlanApproval field is set to Manual, the install plan must be
manually approved by a cluster administrator or user with proper permissions.

After the install plan is approved, OLM creates the specified resources and installs the Operator in the
namespace that is specified by the subscription.

Example 2.11. Example InstallPlan object

 name: example-operator
 source: example-catalog
 sourceNamespace: openshift-marketplace

apiVersion: operators.coreos.com/v1alpha1
kind: InstallPlan
metadata:
 name: install-abcde
 namespace: operators
spec:
 approval: Automatic
 approved: true

CHAPTER 2. UNDERSTANDING OPERATORS

39

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-colocation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-status-viewing-cli_olm-status

 clusterServiceVersionNames:
 - my-operator.v1.0.1
 generation: 1
status:
 ...
 catalogSources: []
 conditions:
 - lastTransitionTime: '2021-01-01T20:17:27Z'
 lastUpdateTime: '2021-01-01T20:17:27Z'
 status: 'True'
 type: Installed
 phase: Complete
 plan:
 - resolving: my-operator.v1.0.1
 resource:
 group: operators.coreos.com
 kind: ClusterServiceVersion
 manifest: >-
 ...
 name: my-operator.v1.0.1
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1alpha1
 status: Created
 - resolving: my-operator.v1.0.1
 resource:
 group: apiextensions.k8s.io
 kind: CustomResourceDefinition
 manifest: >-
 ...
 name: webservers.web.servers.org
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1beta1
 status: Created
 - resolving: my-operator.v1.0.1
 resource:
 group: ''
 kind: ServiceAccount
 manifest: >-
 ...
 name: my-operator
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1
 status: Created
 - resolving: my-operator.v1.0.1
 resource:
 group: rbac.authorization.k8s.io
 kind: Role
 manifest: >-
 ...
 name: my-operator.v1.0.1-my-operator-6d7cbc6f57
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1

OpenShift Container Platform 4.11 Operators

40

Additional resources

Multitenancy and Operator colocation

Allowing non-cluster administrators to install Operators

2.4.1.2.5. Operator groups

An Operator group, defined by the OperatorGroup resource, provides multitenant configuration to
OLM-installed Operators. An Operator group selects target namespaces in which to generate required
RBAC access for its member Operators.

The set of target namespaces is provided by a comma-delimited string stored in the
olm.targetNamespaces annotation of a cluster service version (CSV). This annotation is applied to the
CSV instances of member Operators and is projected into their deployments.

Additional resources

Operator groups

2.4.1.2.6. Operator conditions

As part of its role in managing the lifecycle of an Operator, Operator Lifecycle Manager (OLM) infers
the state of an Operator from the state of Kubernetes resources that define the Operator. While this
approach provides some level of assurance that an Operator is in a given state, there are many instances
where an Operator might need to communicate information to OLM that could not be inferred
otherwise. This information can then be used by OLM to better manage the lifecycle of the Operator.

OLM provides a custom resource definition (CRD) called OperatorCondition that allows Operators to
communicate conditions to OLM. There are a set of supported conditions that influence management
of the Operator by OLM when present in the Spec.Conditions array of an OperatorCondition
resource.

NOTE

By default, the Spec.Conditions array is not present in an OperatorCondition object
until it is either added by a user or as a result of custom Operator logic.

Additional resources

 status: Created
 - resolving: my-operator.v1.0.1
 resource:
 group: rbac.authorization.k8s.io
 kind: RoleBinding
 manifest: >-
 ...
 name: my-operator.v1.0.1-my-operator-6d7cbc6f57
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1
 status: Created
 ...

CHAPTER 2. UNDERSTANDING OPERATORS

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-colocation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-creating-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-understanding-operatorgroups

Operator conditions

2.4.2. Operator Lifecycle Manager architecture

This guide outlines the component architecture of Operator Lifecycle Manager (OLM) in OpenShift
Container Platform.

2.4.2.1. Component responsibilities

Operator Lifecycle Manager (OLM) is composed of two Operators: the OLM Operator and the Catalog
Operator.

Each of these Operators is responsible for managing the custom resource definitions (CRDs) that are
the basis for the OLM framework:

Table 2.2. CRDs managed by OLM and Catalog Operators

Resource Shor
t
nam
e

Own
er

Description

ClusterServic
eVersion
(CSV)

csv OLM Application metadata: name, version, icon, required resources,
installation, and so on.

InstallPlan ip Catal
og

Calculated list of resources to be created to automatically install or
upgrade a CSV.

CatalogSour
ce

cats
rc

Catal
og

A repository of CSVs, CRDs, and packages that define an application.

Subscription sub Catal
og

Used to keep CSVs up to date by tracking a channel in a package.

OperatorGro
up

og OLM Configures all Operators deployed in the same namespace as the
OperatorGroup object to watch for their custom resource (CR) in a list
of namespaces or cluster-wide.

Each of these Operators is also responsible for creating the following resources:

Table 2.3. Resources created by OLM and Catalog Operators

Resource Owner

Deployments OLM

ServiceAccounts

(Cluster)Roles

OpenShift Container Platform 4.11 Operators

42

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-operatorconditions

(Cluster)RoleBindings

CustomResourceDefinitions (CRDs) Catalog

ClusterServiceVersions

Resource Owner

2.4.2.2. OLM Operator

The OLM Operator is responsible for deploying applications defined by CSV resources after the
required resources specified in the CSV are present in the cluster.

The OLM Operator is not concerned with the creation of the required resources; you can choose to
manually create these resources using the CLI or using the Catalog Operator. This separation of concern
allows users incremental buy-in in terms of how much of the OLM framework they choose to leverage
for their application.

The OLM Operator uses the following workflow:

1. Watch for cluster service versions (CSVs) in a namespace and check that requirements are met.

2. If requirements are met, run the install strategy for the CSV.

NOTE

A CSV must be an active member of an Operator group for the install strategy to
run.

2.4.2.3. Catalog Operator

The Catalog Operator is responsible for resolving and installing cluster service versions (CSVs) and the
required resources they specify. It is also responsible for watching catalog sources for updates to
packages in channels and upgrading them, automatically if desired, to the latest available versions.

To track a package in a channel, you can create a Subscription object configuring the desired package,
channel, and the CatalogSource object you want to use for pulling updates. When updates are found,
an appropriate InstallPlan object is written into the namespace on behalf of the user.

The Catalog Operator uses the following workflow:

1. Connect to each catalog source in the cluster.

2. Watch for unresolved install plans created by a user, and if found:

a. Find the CSV matching the name requested and add the CSV as a resolved resource.

b. For each managed or required CRD, add the CRD as a resolved resource.

c. For each required CRD, find the CSV that manages it.

3. Watch for resolved install plans and create all of the discovered resources for it, if approved by a
user or automatically.

CHAPTER 2. UNDERSTANDING OPERATORS

43

4. Watch for catalog sources and subscriptions and create install plans based on them.

2.4.2.4. Catalog Registry

The Catalog Registry stores CSVs and CRDs for creation in a cluster and stores metadata about
packages and channels.

A package manifest is an entry in the Catalog Registry that associates a package identity with sets of
CSVs. Within a package, channels point to a particular CSV. Because CSVs explicitly reference the CSV
that they replace, a package manifest provides the Catalog Operator with all of the information that is
required to update a CSV to the latest version in a channel, stepping through each intermediate version.

2.4.3. Operator Lifecycle Manager workflow

This guide outlines the workflow of Operator Lifecycle Manager (OLM) in OpenShift Container
Platform.

2.4.3.1. Operator installation and upgrade workflow in OLM

In the Operator Lifecycle Manager (OLM) ecosystem, the following resources are used to resolve
Operator installations and upgrades:

ClusterServiceVersion (CSV)

CatalogSource

Subscription

Operator metadata, defined in CSVs, can be stored in a collection called a catalog source. OLM uses
catalog sources, which use the Operator Registry API, to query for available Operators as well as
upgrades for installed Operators.

Figure 2.3. Catalog source overview

Within a catalog source, Operators are organized into packages and streams of updates called channels,
which should be a familiar update pattern from OpenShift Container Platform or other software on a
continuous release cycle like web browsers.

Figure 2.4. Packages and channels in a Catalog source

OpenShift Container Platform 4.11 Operators

44

https://github.com/operator-framework/operator-registry

Figure 2.4. Packages and channels in a Catalog source

A user indicates a particular package and channel in a particular catalog source in a subscription, for
example an etcd package and its alpha channel. If a subscription is made to a package that has not yet
been installed in the namespace, the latest Operator for that package is installed.

NOTE

OLM deliberately avoids version comparisons, so the "latest" or "newest" Operator
available from a given catalog → channel → package path does not necessarily need to be
the highest version number. It should be thought of more as the head reference of a
channel, similar to a Git repository.

Each CSV has a replaces parameter that indicates which Operator it replaces. This builds a graph of
CSVs that can be queried by OLM, and updates can be shared between channels. Channels can be
thought of as entry points into the graph of updates:

Figure 2.5. OLM graph of available channel updates

CHAPTER 2. UNDERSTANDING OPERATORS

45

Figure 2.5. OLM graph of available channel updates

Example channels in a package

For OLM to successfully query for updates, given a catalog source, package, channel, and CSV, a catalog
must be able to return, unambiguously and deterministically, a single CSV that replaces the input CSV.

2.4.3.1.1. Example upgrade path

For an example upgrade scenario, consider an installed Operator corresponding to CSV version 0.1.1.
OLM queries the catalog source and detects an upgrade in the subscribed channel with new CSV
version 0.1.3 that replaces an older but not-installed CSV version 0.1.2, which in turn replaces the older
and installed CSV version 0.1.1.

OLM walks back from the channel head to previous versions via the replaces field specified in the CSVs
to determine the upgrade path 0.1.3 → 0.1.2 → 0.1.1; the direction of the arrow indicates that the
former replaces the latter. OLM upgrades the Operator one version at the time until it reaches the
channel head.

For this given scenario, OLM installs Operator version 0.1.2 to replace the existing Operator version
0.1.1. Then, it installs Operator version 0.1.3 to replace the previously installed Operator version 0.1.2. At
this point, the installed operator version 0.1.3 matches the channel head and the upgrade is completed.

2.4.3.1.2. Skipping upgrades

The basic path for upgrades in OLM is:

packageName: example
channels:
- name: alpha
 currentCSV: example.v0.1.2
- name: beta
 currentCSV: example.v0.1.3
defaultChannel: alpha

OpenShift Container Platform 4.11 Operators

46

A catalog source is updated with one or more updates to an Operator.

OLM traverses every version of the Operator until reaching the latest version the catalog
source contains.

However, sometimes this is not a safe operation to perform. There will be cases where a published
version of an Operator should never be installed on a cluster if it has not already, for example because a
version introduces a serious vulnerability.

In those cases, OLM must consider two cluster states and provide an update graph that supports both:

The "bad" intermediate Operator has been seen by the cluster and installed.

The "bad" intermediate Operator has not yet been installed onto the cluster.

By shipping a new catalog and adding a skipped release, OLM is ensured that it can always get a single
unique update regardless of the cluster state and whether it has seen the bad update yet.

Example CSV with skipped release

Consider the following example of Old CatalogSource and New CatalogSource.

Figure 2.6. Skipping updates

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 name: etcdoperator.v0.9.2
 namespace: placeholder
 annotations:
spec:
 displayName: etcd
 description: Etcd Operator
 replaces: etcdoperator.v0.9.0
 skips:
 - etcdoperator.v0.9.1

CHAPTER 2. UNDERSTANDING OPERATORS

47

Figure 2.6. Skipping updates

This graph maintains that:

Any Operator found in Old CatalogSource has a single replacement in New CatalogSource.

Any Operator found in New CatalogSource has a single replacement in New CatalogSource.

If the bad update has not yet been installed, it will never be.

2.4.3.1.3. Replacing multiple Operators

Creating New CatalogSource as described requires publishing CSVs that replace one Operator, but
can skip several. This can be accomplished using the skipRange annotation:

where <semver_range> has the version range format supported by the semver library.

When searching catalogs for updates, if the head of a channel has a skipRange annotation and the
currently installed Operator has a version field that falls in the range, OLM updates to the latest entry in
the channel.

The order of precedence is:

1. Channel head in the source specified by sourceName on the subscription, if the other criteria
for skipping are met.

2. The next Operator that replaces the current one, in the source specified by sourceName.

olm.skipRange: <semver_range>

OpenShift Container Platform 4.11 Operators

48

https://github.com/blang/semver#ranges

3. Channel head in another source that is visible to the subscription, if the other criteria for
skipping are met.

4. The next Operator that replaces the current one in any source visible to the subscription.

Example CSV with skipRange

2.4.3.1.4. Z-stream support

A z-stream, or patch release, must replace all previous z-stream releases for the same minor version.
OLM does not consider major, minor, or patch versions, it just needs to build the correct graph in a
catalog.

In other words, OLM must be able to take a graph as in Old CatalogSource and, similar to before,
generate a graph as in New CatalogSource:

Figure 2.7. Replacing several Operators

This graph maintains that:

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 name: elasticsearch-operator.v4.1.2
 namespace: <namespace>
 annotations:
 olm.skipRange: '>=4.1.0 <4.1.2'

CHAPTER 2. UNDERSTANDING OPERATORS

49

Any Operator found in Old CatalogSource has a single replacement in New CatalogSource.

Any Operator found in New CatalogSource has a single replacement in New CatalogSource.

Any z-stream release in Old CatalogSource will update to the latest z-stream release in New
CatalogSource.

Unavailable releases can be considered "virtual" graph nodes; their content does not need to
exist, the registry just needs to respond as if the graph looks like this.

2.4.4. Operator Lifecycle Manager dependency resolution

This guide outlines dependency resolution and custom resource definition (CRD) upgrade lifecycles with
Operator Lifecycle Manager (OLM) in OpenShift Container Platform.

2.4.4.1. About dependency resolution

Operator Lifecycle Manager (OLM) manages the dependency resolution and upgrade lifecycle of
running Operators. In many ways, the problems OLM faces are similar to other system or language
package managers, such as yum and rpm.

However, there is one constraint that similar systems do not generally have that OLM does: because
Operators are always running, OLM attempts to ensure that you are never left with a set of Operators
that do not work with each other.

As a result, OLM must never create the following scenarios:

Install a set of Operators that require APIs that cannot be provided

Update an Operator in a way that breaks another that depends upon it

This is made possible with two types of data:

Properties Typed metadata about the Operator that constitutes the public interface for it in the
dependency resolver. Examples include the group/version/kind (GVK) of the APIs provided
by the Operator and the semantic version (semver) of the Operator.

Constraints
or
dependencie
s

An Operator’s requirements that should be satisfied by other Operators that might or might
not have already been installed on the target cluster. These act as queries or filters over all
available Operators and constrain the selection during dependency resolution and
installation. Examples include requiring a specific API to be available on the cluster or
expecting a particular Operator with a particular version to be installed.

OLM converts these properties and constraints into a system of Boolean formulas and passes them to a
SAT solver, a program that establishes Boolean satisfiability, which does the work of determining what
Operators should be installed.

2.4.4.2. Operator properties

All Operators in a catalog have the following properties:

olm.package

Includes the name of the package and the version of the Operator

OpenShift Container Platform 4.11 Operators

50

olm.gvk

A single property for each provided API from the cluster service version (CSV)

Additional properties can also be directly declared by an Operator author by including a properties.yaml
file in the metadata/ directory of the Operator bundle.

Example arbitrary property

2.4.4.2.1. Arbitrary properties

Operator authors can declare arbitrary properties in a properties.yaml file in the metadata/ directory of
the Operator bundle. These properties are translated into a map data structure that is used as an input
to the Operator Lifecycle Manager (OLM) resolver at runtime.

These properties are opaque to the resolver as it does not understand the properties, but it can evaluate
the generic constraints against those properties to determine if the constraints can be satisfied given
the properties list.

Example arbitrary properties

This structure can be used to construct a Common Expression Language (CEL) expression for generic
constraints.

Additional resources

Common Expression Language (CEL) constraints

2.4.4.3. Operator dependencies

The dependencies of an Operator are listed in a dependencies.yaml file in the metadata/ folder of a
bundle. This file is optional and currently only used to specify explicit Operator-version dependencies.

The dependency list contains a type field for each item to specify what kind of dependency this is. The
following types of Operator dependencies are supported:

properties:
- type: olm.kubeversion
 value:
 version: "1.16.0"

properties:
 - property:
 type: color
 value: red
 - property:
 type: shape
 value: square
 - property:
 type: olm.gvk
 value:
 group: olm.coreos.io
 version: v1alpha1
 kind: myresource

CHAPTER 2. UNDERSTANDING OPERATORS

51

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-cel_olm-understanding-dependency-resolution

olm.package

This type indicates a dependency for a specific Operator version. The dependency information must
include the package name and the version of the package in semver format. For example, you can
specify an exact version such as 0.5.2 or a range of versions such as >0.5.1.

olm.gvk

With this type, the author can specify a dependency with group/version/kind (GVK) information,
similar to existing CRD and API-based usage in a CSV. This is a path to enable Operator authors to
consolidate all dependencies, API or explicit versions, to be in the same place.

olm.constraint

This type declares generic constraints on arbitrary Operator properties.

In the following example, dependencies are specified for a Prometheus Operator and etcd CRDs:

Example dependencies.yaml file

2.4.4.4. Generic constraints

An olm.constraint property declares a dependency constraint of a particular type, differentiating non-
constraint and constraint properties. Its value field is an object containing a failureMessage field
holding a string-representation of the constraint message. This message is surfaced as an informative
comment to users if the constraint is not satisfiable at runtime.

The following keys denote the available constraint types:

gvk

Type whose value and interpretation is identical to the olm.gvk type

package

Type whose value and interpretation is identical to the olm.package type

cel

A Common Expression Language (CEL) expression evaluated at runtime by the Operator Lifecycle
Manager (OLM) resolver over arbitrary bundle properties and cluster information

all, any, not

Conjunction, disjunction, and negation constraints, respectively, containing one or more concrete
constraints, such as gvk or a nested compound constraint

2.4.4.4.1. Common Expression Language (CEL) constraints

The cel constraint type supports Common Expression Language (CEL) as the expression language. The
cel struct has a rule field which contains the CEL expression string that is evaluated against Operator
properties at runtime to determine if the Operator satisfies the constraint.

dependencies:
 - type: olm.package
 value:
 packageName: prometheus
 version: ">0.27.0"
 - type: olm.gvk
 value:
 group: etcd.database.coreos.com
 kind: EtcdCluster
 version: v1beta2

OpenShift Container Platform 4.11 Operators

52

https://github.com/google/cel-go

Example cel constraint

The CEL syntax supports a wide range of logical operators, such as AND and OR. As a result, a single
CEL expression can have multiple rules for multiple conditions that are linked together by these logical
operators. These rules are evaluated against a dataset of multiple different properties from a bundle or
any given source, and the output is solved into a single bundle or Operator that satisfies all of those rules
within a single constraint.

Example cel constraint with multiple rules

2.4.4.4.2. Compound constraints (all, any, not)

Compound constraint types are evaluated following their logical definitions.

The following is an example of a conjunctive constraint (all) of two packages and one GVK. That is, they
must all be satisfied by installed bundles:

Example all constraint

The following is an example of a disjunctive constraint (any) of three versions of the same GVK. That is,
at least one must be satisfied by installed bundles:

Example any constraint

type: olm.constraint
value:
 failureMessage: 'require to have "certified"'
 cel:
 rule: 'properties.exists(p, p.type == "certified")'

type: olm.constraint
value:
 failureMessage: 'require to have "certified" and "stable" properties'
 cel:
 rule: 'properties.exists(p, p.type == "certified") && properties.exists(p, p.type == "stable")'

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
 value:
 failureMessage: All are required for Red because...
 all:
 constraints:
 - failureMessage: Package blue is needed for...
 package:
 name: blue
 versionRange: '>=1.0.0'
 - failureMessage: GVK Green/v1 is needed for...
 gvk:
 group: greens.example.com
 version: v1
 kind: Green

CHAPTER 2. UNDERSTANDING OPERATORS

53

The following is an example of a negation constraint (not) of one version of a GVK. That is, this GVK
cannot be provided by any bundle in the result set:

Example not constraint

The negation semantics might appear unclear in the not constraint context. To clarify, the negation is
really instructing the resolver to remove any possible solution that includes a particular GVK, package at
a version, or satisfies some child compound constraint from the result set.

As a corollary, the not compound constraint should only be used within all or any constraints, because
negating without first selecting a possible set of dependencies does not make sense.

2.4.4.4.3. Nested compound constraints

A nested compound constraint, one that contains at least one child compound constraint along with zero

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
 value:
 failureMessage: Any are required for Red because...
 any:
 constraints:
 - gvk:
 group: blues.example.com
 version: v1beta1
 kind: Blue
 - gvk:
 group: blues.example.com
 version: v1beta2
 kind: Blue
 - gvk:
 group: blues.example.com
 version: v1
 kind: Blue

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
 value:
 all:
 constraints:
 - failureMessage: Package blue is needed for...
 package:
 name: blue
 versionRange: '>=1.0.0'
 - failureMessage: Cannot be required for Red because...
 not:
 constraints:
 - gvk:
 group: greens.example.com
 version: v1alpha1
 kind: greens

OpenShift Container Platform 4.11 Operators

54

A nested compound constraint, one that contains at least one child compound constraint along with zero
or more simple constraints, is evaluated from the bottom up following the procedures for each
previously described constraint type.

The following is an example of a disjunction of conjunctions, where one, the other, or both can satisfy
the constraint:

Example nested compound constraint

NOTE

The maximum raw size of an olm.constraint type is 64KB to limit resource exhaustion
attacks.

2.4.4.5. Dependency preferences

There can be many options that equally satisfy a dependency of an Operator. The dependency resolver
in Operator Lifecycle Manager (OLM) determines which option best fits the requirements of the
requested Operator. As an Operator author or user, it can be important to understand how these
choices are made so that dependency resolution is clear.

2.4.4.5.1. Catalog priority

On OpenShift Container Platform cluster, OLM reads catalog sources to know which Operators are
available for installation.

Example CatalogSource object

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
 value:
 failureMessage: Required for Red because...
 any:
 constraints:
 - all:
 constraints:
 - package:
 name: blue
 versionRange: '>=1.0.0'
 - gvk:
 group: blues.example.com
 version: v1
 kind: Blue
 - all:
 constraints:
 - package:
 name: blue
 versionRange: '<1.0.0'
 - gvk:
 group: blues.example.com
 version: v1beta1
 kind: Blue

CHAPTER 2. UNDERSTANDING OPERATORS

55

A CatalogSource object has a priority field, which is used by the resolver to know how to prefer options
for a dependency.

There are two rules that govern catalog preference:

Options in higher-priority catalogs are preferred to options in lower-priority catalogs.

Options in the same catalog as the dependent are preferred to any other catalogs.

2.4.4.5.2. Channel ordering

An Operator package in a catalog is a collection of update channels that a user can subscribe to in an
OpenShift Container Platform cluster. Channels can be used to provide a particular stream of updates
for a minor release (1.2, 1.3) or a release frequency (stable, fast).

It is likely that a dependency might be satisfied by Operators in the same package, but different
channels. For example, version 1.2 of an Operator might exist in both the stable and fast channels.

Each package has a default channel, which is always preferred to non-default channels. If no option in
the default channel can satisfy a dependency, options are considered from the remaining channels in
lexicographic order of the channel name.

2.4.4.5.3. Order within a channel

There are almost always multiple options to satisfy a dependency within a single channel. For example,
Operators in one package and channel provide the same set of APIs.

When a user creates a subscription, they indicate which channel to receive updates from. This
immediately reduces the search to just that one channel. But within the channel, it is likely that many
Operators satisfy a dependency.

Within a channel, newer Operators that are higher up in the update graph are preferred. If the head of a
channel satisfies a dependency, it will be tried first.

2.4.4.5.4. Other constraints

In addition to the constraints supplied by package dependencies, OLM includes additional constraints to
represent the desired user state and enforce resolution invariants.

2.4.4.5.4.1. Subscription constraint

A subscription constraint filters the set of Operators that can satisfy a subscription. Subscriptions are
user-supplied constraints for the dependency resolver. They declare the intent to either install a new
Operator if it is not already on the cluster, or to keep an existing Operator updated.

apiVersion: "operators.coreos.com/v1alpha1"
kind: "CatalogSource"
metadata:
 name: "my-operators"
 namespace: "operators"
spec:
 sourceType: grpc
 image: example.com/my/operator-index:v1
 displayName: "My Operators"
 priority: 100

OpenShift Container Platform 4.11 Operators

56

2.4.4.5.4.2. Package constraint

Within a namespace, no two Operators may come from the same package.

2.4.4.5.5. Additional resources

Catalog health requirements

2.4.4.6. CRD upgrades

OLM upgrades a custom resource definition (CRD) immediately if it is owned by a singular cluster
service version (CSV). If a CRD is owned by multiple CSVs, then the CRD is upgraded when it has
satisfied all of the following backward compatible conditions:

All existing serving versions in the current CRD are present in the new CRD.

All existing instances, or custom resources, that are associated with the serving versions of the
CRD are valid when validated against the validation schema of the new CRD.

Additional resources

Adding a new CRD version

Deprecating or removing a CRD version

2.4.4.7. Dependency best practices

When specifying dependencies, there are best practices you should consider.

Depend on APIs or a specific version range of Operators

Operators can add or remove APIs at any time; always specify an olm.gvk dependency on any APIs
your Operators requires. The exception to this is if you are specifying olm.package constraints
instead.

Set a minimum version

The Kubernetes documentation on API changes describes what changes are allowed for Kubernetes-
style Operators. These versioning conventions allow an Operator to update an API without bumping
the API version, as long as the API is backwards-compatible.
For Operator dependencies, this means that knowing the API version of a dependency might not be
enough to ensure the dependent Operator works as intended.

For example:

TestOperator v1.0.0 provides v1alpha1 API version of the MyObject resource.

TestOperator v1.0.1 adds a new field spec.newfield to MyObject, but still at v1alpha1.

Your Operator might require the ability to write spec.newfield into the MyObject resource. An
olm.gvk constraint alone is not enough for OLM to determine that you need TestOperator v1.0.1 and
not TestOperator v1.0.0.

Whenever possible, if a specific Operator that provides an API is known ahead of time, specify an
additional olm.package constraint to set a minimum.

Omit a maximum version or allow a very wide range

Because Operators provide cluster-scoped resources such as API services and CRDs, an Operator

CHAPTER 2. UNDERSTANDING OPERATORS

57

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-cs-health_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-dependency-resolution-adding-new-crd-version_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-dependency-resolution-removing-crd-version_osdk-generating-csvs

Because Operators provide cluster-scoped resources such as API services and CRDs, an Operator
that specifies a small window for a dependency might unnecessarily constrain updates for other
consumers of that dependency.
Whenever possible, do not set a maximum version. Alternatively, set a very wide semantic range to
prevent conflicts with other Operators. For example, >1.0.0 <2.0.0.

Unlike with conventional package managers, Operator authors explicitly encode that updates are
safe through channels in OLM. If an update is available for an existing subscription, it is assumed that
the Operator author is indicating that it can update from the previous version. Setting a maximum
version for a dependency overrides the update stream of the author by unnecessarily truncating it at
a particular upper bound.

NOTE

Cluster administrators cannot override dependencies set by an Operator author.

However, maximum versions can and should be set if there are known incompatibilities that must be
avoided. Specific versions can be omitted with the version range syntax, for example > 1.0.0 !1.2.1.

Additional resources

Kubernetes documentation: Changing the API

2.4.4.8. Dependency caveats

When specifying dependencies, there are caveats you should consider.

No compound constraints (AND)

There is currently no method for specifying an AND relationship between constraints. In other words,
there is no way to specify that one Operator depends on another Operator that both provides a
given API and has version >1.1.0.
This means that when specifying a dependency such as:

It would be possible for OLM to satisfy this with two Operators: one that provides EtcdCluster and
one that has version >3.1.0. Whether that happens, or whether an Operator is selected that satisfies
both constraints, depends on the ordering that potential options are visited. Dependency
preferences and ordering options are well-defined and can be reasoned about, but to exercise
caution, Operators should stick to one mechanism or the other.

Cross-namespace compatibility

OLM performs dependency resolution at the namespace scope. It is possible to get into an update

dependencies:
- type: olm.package
 value:
 packageName: etcd
 version: ">3.1.0"
- type: olm.gvk
 value:
 group: etcd.database.coreos.com
 kind: EtcdCluster
 version: v1beta2

OpenShift Container Platform 4.11 Operators

58

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api_changes.md#readme

OLM performs dependency resolution at the namespace scope. It is possible to get into an update
deadlock if updating an Operator in one namespace would be an issue for an Operator in another
namespace, and vice-versa.

2.4.4.9. Example dependency resolution scenarios

In the following examples, a provider is an Operator which "owns" a CRD or API service.

Example: Deprecating dependent APIs
A and B are APIs (CRDs):

The provider of A depends on B.

The provider of B has a subscription.

The provider of B updates to provide C but deprecates B.

This results in:

B no longer has a provider.

A no longer works.

This is a case OLM prevents with its upgrade strategy.

Example: Version deadlock
A and B are APIs:

The provider of A requires B.

The provider of B requires A.

The provider of A updates to (provide A2, require B2) and deprecate A.

The provider of B updates to (provide B2, require A2) and deprecate B.

If OLM attempts to update A without simultaneously updating B, or vice-versa, it is unable to progress
to new versions of the Operators, even though a new compatible set can be found.

This is another case OLM prevents with its upgrade strategy.

2.4.5. Operator groups

This guide outlines the use of Operator groups with Operator Lifecycle Manager (OLM) in OpenShift
Container Platform.

2.4.5.1. About Operator groups

An Operator group, defined by the OperatorGroup resource, provides multitenant configuration to
OLM-installed Operators. An Operator group selects target namespaces in which to generate required
RBAC access for its member Operators.

The set of target namespaces is provided by a comma-delimited string stored in the
olm.targetNamespaces annotation of a cluster service version (CSV). This annotation is applied to the
CSV instances of member Operators and is projected into their deployments.

CHAPTER 2. UNDERSTANDING OPERATORS

59

2.4.5.2. Operator group membership

An Operator is considered a member of an Operator group if the following conditions are true:

The CSV of the Operator exists in the same namespace as the Operator group.

The install modes in the CSV of the Operator support the set of namespaces targeted by the
Operator group.

An install mode in a CSV consists of an InstallModeType field and a boolean Supported field. The spec
of a CSV can contain a set of install modes of four distinct InstallModeTypes:

Table 2.4. Install modes and supported Operator groups

InstallModeType Description

OwnNamespace The Operator can be a member of an Operator group that selects its
own namespace.

SingleNamespace The Operator can be a member of an Operator group that selects one
namespace.

MultiNamespace The Operator can be a member of an Operator group that selects more
than one namespace.

AllNamespaces The Operator can be a member of an Operator group that selects all
namespaces (target namespace set is the empty string "").

NOTE

If the spec of a CSV omits an entry of InstallModeType, then that type is considered
unsupported unless support can be inferred by an existing entry that implicitly supports it.

2.4.5.3. Target namespace selection

You can explicitly name the target namespace for an Operator group using the
spec.targetNamespaces parameter:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace
spec:
 targetNamespaces:
 - my-namespace

OpenShift Container Platform 4.11 Operators

60

WARNING

Operator Lifecycle Manager (OLM) creates the following cluster roles for each
Operator group:

<operatorgroup_name>-admin

<operatorgroup_name>-edit

<operatorgroup_name>-view

When you manually create an Operator group, you must specify a unique name that
does not conflict with the existing cluster roles or other Operator groups on the
cluster.

You can alternatively specify a namespace using a label selector with the spec.selector parameter:

IMPORTANT

Listing multiple namespaces via spec.targetNamespaces or use of a label selector via
spec.selector is not recommended, as the support for more than one target namespace
in an Operator group will likely be removed in a future release.

If both spec.targetNamespaces and spec.selector are defined, spec.selector is ignored.
Alternatively, you can omit both spec.selector and spec.targetNamespaces to specify a global
Operator group, which selects all namespaces:

The resolved set of selected namespaces is shown in the status.namespaces parameter of an Opeator
group. The status.namespace of a global Operator group contains the empty string (""), which signals
to a consuming Operator that it should watch all namespaces.

2.4.5.4. Operator group CSV annotations

Member CSVs of an Operator group have the following annotations:



apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace
spec:
 selector:
 cool.io/prod: "true"

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace

CHAPTER 2. UNDERSTANDING OPERATORS

61

Annotation Description

olm.operatorGroup=<group_name> Contains the name of the Operator group.

olm.operatorNamespace=
<group_namespace>

Contains the namespace of the Operator group.

olm.targetNamespaces=
<target_namespaces>

Contains a comma-delimited string that lists the
target namespace selection of the Operator group.

NOTE

All annotations except olm.targetNamespaces are included with copied CSVs. Omitting
the olm.targetNamespaces annotation on copied CSVs prevents the duplication of
target namespaces between tenants.

2.4.5.5. Provided APIs annotation

A group/version/kind (GVK) is a unique identifier for a Kubernetes API. Information about what GVKs are
provided by an Operator group are shown in an olm.providedAPIs annotation. The value of the
annotation is a string consisting of <kind>.<version>.<group> delimited with commas. The GVKs of
CRDs and API services provided by all active member CSVs of an Operator group are included.

Review the following example of an OperatorGroup object with a single active member CSV that
provides the PackageManifest resource:

2.4.5.6. Role-based access control

When an Operator group is created, three cluster roles are generated. Each contains a single
aggregation rule with a cluster role selector set to match a label, as shown below:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 annotations:
 olm.providedAPIs: PackageManifest.v1alpha1.packages.apps.redhat.com
 name: olm-operators
 namespace: local
 ...
spec:
 selector: {}
 serviceAccount:
 metadata:
 creationTimestamp: null
 targetNamespaces:
 - local
status:
 lastUpdated: 2019-02-19T16:18:28Z
 namespaces:
 - local

OpenShift Container Platform 4.11 Operators

62

Cluster role Label to match

<operatorgroup_name>-admin olm.opgroup.permissions/aggregate-to-
admin: <operatorgroup_name>

<operatorgroup_name>-edit olm.opgroup.permissions/aggregate-to-edit:
<operatorgroup_name>

<operatorgroup_name>-view olm.opgroup.permissions/aggregate-to-view:
<operatorgroup_name>

WARNING

Operator Lifecycle Manager (OLM) creates the following cluster roles for each
Operator group:

<operatorgroup_name>-admin

<operatorgroup_name>-edit

<operatorgroup_name>-view

When you manually create an Operator group, you must specify a unique name that
does not conflict with the existing cluster roles or other Operator groups on the
cluster.

The following RBAC resources are generated when a CSV becomes an active member of an Operator
group, as long as the CSV is watching all namespaces with the AllNamespaces install mode and is not in
a failed state with reason InterOperatorGroupOwnerConflict:

Cluster roles for each API resource from a CRD

Cluster roles for each API resource from an API service

Additional roles and role bindings

Table 2.5. Cluster roles generated for each API resource from a CRD

Cluster role Settings



CHAPTER 2. UNDERSTANDING OPERATORS

63

<kind>.<group>-<version>-admin Verbs on <kind>:

*

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-admin: true

olm.opgroup.permissions/aggregate-
to-admin: <operatorgroup_name>

<kind>.<group>-<version>-edit Verbs on <kind>:

create

update

patch

delete

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-edit: true

olm.opgroup.permissions/aggregate-
to-edit: <operatorgroup_name>

<kind>.<group>-<version>-view Verbs on <kind>:

get

list

watch

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

Cluster role Settings

OpenShift Container Platform 4.11 Operators

64

<kind>.<group>-<version>-view-crdview Verbs on apiextensions.k8s.io
customresourcedefinitions <crd-name>:

get

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

Cluster role Settings

Table 2.6. Cluster roles generated for each API resource from an API service

Cluster role Settings

<kind>.<group>-<version>-admin Verbs on <kind>:

*

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-admin: true

olm.opgroup.permissions/aggregate-
to-admin: <operatorgroup_name>

<kind>.<group>-<version>-edit Verbs on <kind>:

create

update

patch

delete

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-edit: true

olm.opgroup.permissions/aggregate-
to-edit: <operatorgroup_name>

CHAPTER 2. UNDERSTANDING OPERATORS

65

<kind>.<group>-<version>-view Verbs on <kind>:

get

list

watch

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

Cluster role Settings

Additional roles and role bindings

If the CSV defines exactly one target namespace that contains *, then a cluster role and
corresponding cluster role binding are generated for each permission defined in the
permissions field of the CSV. All resources generated are given the olm.owner: <csv_name>
and olm.owner.namespace: <csv_namespace> labels.

If the CSV does not define exactly one target namespace that contains *, then all roles and role
bindings in the Operator namespace with the olm.owner: <csv_name> and
olm.owner.namespace: <csv_namespace> labels are copied into the target namespace.

2.4.5.7. Copied CSVs

OLM creates copies of all active member CSVs of an Operator group in each of the target namespaces
of that Operator group. The purpose of a copied CSV is to tell users of a target namespace that a
specific Operator is configured to watch resources created there.

Copied CSVs have a status reason Copied and are updated to match the status of their source CSV.
The olm.targetNamespaces annotation is stripped from copied CSVs before they are created on the
cluster. Omitting the target namespace selection avoids the duplication of target namespaces between
tenants.

Copied CSVs are deleted when their source CSV no longer exists or the Operator group that their
source CSV belongs to no longer targets the namespace of the copied CSV.

NOTE

OpenShift Container Platform 4.11 Operators

66

NOTE

By default, the disableCopiedCSVs field is disabled. After enabling a
disableCopiedCSVs field, the OLM deletes existing copied CSVs on a cluster. When a
disableCopiedCSVs field is disabled, the OLM adds copied CSVs again.

Disable the disableCopiedCSVs field:

Enable the disableCopiedCSVs field:

2.4.5.8. Static Operator groups

An Operator group is static if its spec.staticProvidedAPIs field is set to true. As a result, OLM does not
modify the olm.providedAPIs annotation of an Operator group, which means that it can be set in
advance. This is useful when a user wants to use an Operator group to prevent resource contention in a
set of namespaces but does not have active member CSVs that provide the APIs for those resources.

Below is an example of an Operator group that protects Prometheus resources in all namespaces with
the something.cool.io/cluster-monitoring: "true" annotation:

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OLMConfig
metadata:
 name: cluster
spec:
 features:
 disableCopiedCSVs: false
EOF

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OLMConfig
metadata:
 name: cluster
spec:
 features:
 disableCopiedCSVs: true
EOF

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: cluster-monitoring
 namespace: cluster-monitoring
 annotations:
 olm.providedAPIs:
Alertmanager.v1.monitoring.coreos.com,Prometheus.v1.monitoring.coreos.com,PrometheusRule.v1.mo
nitoring.coreos.com,ServiceMonitor.v1.monitoring.coreos.com
spec:
 staticProvidedAPIs: true
 selector:
 matchLabels:
 something.cool.io/cluster-monitoring: "true"

CHAPTER 2. UNDERSTANDING OPERATORS

67

WARNING

Operator Lifecycle Manager (OLM) creates the following cluster roles for each
Operator group:

<operatorgroup_name>-admin

<operatorgroup_name>-edit

<operatorgroup_name>-view

When you manually create an Operator group, you must specify a unique name that
does not conflict with the existing cluster roles or other Operator groups on the
cluster.

2.4.5.9. Operator group intersection

Two Operator groups are said to have intersecting provided APIs if the intersection of their target
namespace sets is not an empty set and the intersection of their provided API sets, defined by
olm.providedAPIs annotations, is not an empty set.

A potential issue is that Operator groups with intersecting provided APIs can compete for the same
resources in the set of intersecting namespaces.

NOTE

When checking intersection rules, an Operator group namespace is always included as
part of its selected target namespaces.

Rules for intersection
Each time an active member CSV synchronizes, OLM queries the cluster for the set of intersecting
provided APIs between the Operator group of the CSV and all others. OLM then checks if that set is an
empty set:

If true and the CSV’s provided APIs are a subset of the Operator group’s:

Continue transitioning.

If true and the CSV’s provided APIs are not a subset of the Operator group’s:

If the Operator group is static:

Clean up any deployments that belong to the CSV.

Transition the CSV to a failed state with status reason
CannotModifyStaticOperatorGroupProvidedAPIs.

If the Operator group is not static:

Replace the Operator group’s olm.providedAPIs annotation with the union of itself
and the CSV’s provided APIs.



OpenShift Container Platform 4.11 Operators

68

If false and the CSV’s provided APIs are not a subset of the Operator group’s:

Clean up any deployments that belong to the CSV.

Transition the CSV to a failed state with status reason InterOperatorGroupOwnerConflict.

If false and the CSV’s provided APIs are a subset of the Operator group’s:

If the Operator group is static:

Clean up any deployments that belong to the CSV.

Transition the CSV to a failed state with status reason
CannotModifyStaticOperatorGroupProvidedAPIs.

If the Operator group is not static:

Replace the Operator group’s olm.providedAPIs annotation with the difference
between itself and the CSV’s provided APIs.

NOTE

Failure states caused by Operator groups are non-terminal.

The following actions are performed each time an Operator group synchronizes:

The set of provided APIs from active member CSVs is calculated from the cluster. Note that
copied CSVs are ignored.

The cluster set is compared to olm.providedAPIs, and if olm.providedAPIs contains any extra
APIs, then those APIs are pruned.

All CSVs that provide the same APIs across all namespaces are requeued. This notifies
conflicting CSVs in intersecting groups that their conflict has possibly been resolved, either
through resizing or through deletion of the conflicting CSV.

2.4.5.10. Limitations for multitenant Operator management

OpenShift Container Platform provides limited support for simultaneously installing different versions
of an Operator on the same cluster. Operator Lifecycle Manager (OLM) installs Operators multiple
times in different namespaces. One constraint of this is that the Operator’s API versions must be the
same.

Operators are control plane extensions due to their usage of CustomResourceDefinition objects
(CRDs), which are global resources in Kubernetes. Different major versions of an Operator often have
incompatible CRDs. This makes them incompatible to install simultaneously in different namespaces on
a cluster.

All tenants, or namespaces, share the same control plane of a cluster. Therefore, tenants in a multitenant
cluster also share global CRDs, which limits the scenarios in which different instances of the same
Operator can be used in parallel on the same cluster.

The supported scenarios include the following:

Operators of different versions that ship the exact same CRD definition (in case of versioned
CRDs, the exact same set of versions)

CHAPTER 2. UNDERSTANDING OPERATORS

69

Operators of different versions that do not ship a CRD, and instead have their CRD available in a
separate bundle on the OperatorHub

All other scenarios are not supported, because the integrity of the cluster data cannot be guaranteed if
there are multiple competing or overlapping CRDs from different Operator versions to be reconciled on
the same cluster.

Additional resources

Operator Lifecycle Manager (OLM) → Multitenancy and Operator colocation

Operators in multitenant clusters

Allowing non-cluster administrators to install Operators

2.4.5.11. Troubleshooting Operator groups

Membership

An install plan’s namespace must contain only one Operator group. When attempting to
generate a cluster service version (CSV) in a namespace, an install plan considers an Operator
group invalid in the following scenarios:

No Operator groups exist in the install plan’s namespace.

Multiple Operator groups exist in the install plan’s namespace.

An incorrect or non-existent service account name is specified in the Operator group.

If an install plan encounters an invalid Operator group, the CSV is not generated and the
InstallPlan resource continues to install with a relevant message. For example, the following
message is provided if more than one Operator group exists in the same namespace:

where count= specifies the number of Operator groups in the namespace.

If the install modes of a CSV do not support the target namespace selection of the Operator
group in its namespace, the CSV transitions to a failure state with the reason
UnsupportedOperatorGroup. CSVs in a failed state for this reason transition to pending after
either the target namespace selection of the Operator group changes to a supported
configuration, or the install modes of the CSV are modified to support the target namespace
selection.

2.4.6. Multitenancy and Operator colocation

This guide outlines multitenancy and Operator colocation in Operator Lifecycle Manager (OLM).

2.4.6.1. Colocation of Operators in a namespace

Operator Lifecycle Manager (OLM) handles OLM-managed Operators that are installed in the same
namespace, meaning their Subscription resources are colocated in the same namespace, as related
Operators. Even if they are not actually related, OLM considers their states, such as their version and
update policy, when any one of them is updated.

attenuated service account query failed - more than one operator group(s) are managing this
namespace count=2

OpenShift Container Platform 4.11 Operators

70

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-colocation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-multitenancy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-creating-policy

This default behavior manifests in two ways:

InstallPlan resources of pending updates include ClusterServiceVersion (CSV) resources of
all other Operators that are in the same namespace.

All Operators in the same namespace share the same update policy. For example, if one
Operator is set to manual updates, all other Operators' update policies are also set to manual.

These scenarios can lead to the following issues:

It becomes hard to reason about install plans for Operator updates, because there are many
more resources defined in them than just the updated Operator.

It becomes impossible to have some Operators in a namespace update automatically while other
are updated manually, which is a common desire for cluster administrators.

These issues usually surface because, when installing Operators with the OpenShift Container Platform
web console, the default behavior installs Operators that support the All namespaces install mode into
the default openshift-operators global namespace.

As a cluster administrator, you can bypass this default behavior manually by using the following
workflow:

1. Create a namespace for the installation of the Operator.

2. Create a custom global Operator group, which is an Operator group that watches all
namespaces. By associating this Operator group with the namespace you just created, it makes
the installation namespace a global namespace, which makes Operators installed there available
in all namespaces.

3. Install the desired Operator in the installation namespace.

If the Operator has dependencies, the dependencies are automatically installed in the pre-created
namespace. As a result, it is then valid for the dependency Operators to have the same update policy
and shared install plans. For a detailed procedure, see "Installing global Operators in custom
namespaces".

Additional resources

Installing global Operators in custom namespaces

Operators in multitenant clusters

2.4.7. Operator conditions

This guide outlines how Operator Lifecycle Manager (OLM) uses Operator conditions.

2.4.7.1. About Operator conditions

As part of its role in managing the lifecycle of an Operator, Operator Lifecycle Manager (OLM) infers
the state of an Operator from the state of Kubernetes resources that define the Operator. While this
approach provides some level of assurance that an Operator is in a given state, there are many instances
where an Operator might need to communicate information to OLM that could not be inferred
otherwise. This information can then be used by OLM to better manage the lifecycle of the Operator.

OLM provides a custom resource definition (CRD) called OperatorCondition that allows Operators to

CHAPTER 2. UNDERSTANDING OPERATORS

71

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-installing-global-namespaces_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-multitenancy

1

2

communicate conditions to OLM. There are a set of supported conditions that influence management
of the Operator by OLM when present in the Spec.Conditions array of an OperatorCondition
resource.

NOTE

By default, the Spec.Conditions array is not present in an OperatorCondition object
until it is either added by a user or as a result of custom Operator logic.

2.4.7.2. Supported conditions

Operator Lifecycle Manager (OLM) supports the following Operator conditions.

2.4.7.2.1. Upgradeable condition

The Upgradeable Operator condition prevents an existing cluster service version (CSV) from being
replaced by a newer version of the CSV. This condition is useful when:

An Operator is about to start a critical process and should not be upgraded until the process is
completed.

An Operator is performing a migration of custom resources (CRs) that must be completed
before the Operator is ready to be upgraded.

IMPORTANT

Setting the Upgradeable Operator condition to the False value does not avoid pod
disruption. If you must ensure your pods are not disrupted, see "Using pod disruption
budgets to specify the number of pods that must be up" and "Graceful termination" in
the "Additional resources" section.

Example Upgradeable Operator condition

Name of the condition.

A False value indicates the Operator is not ready to be upgraded. OLM prevents a CSV that
replaces the existing CSV of the Operator from leaving the Pending phase. A False value does not
block cluster upgrades.

apiVersion: operators.coreos.com/v1
kind: OperatorCondition
metadata:
 name: my-operator
 namespace: operators
spec:
 conditions:
 - type: Upgradeable 1
 status: "False" 2
 reason: "migration"
 message: "The Operator is performing a migration."
 lastTransitionTime: "2020-08-24T23:15:55Z"

OpenShift Container Platform 4.11 Operators

72

2.4.7.3. Additional resources

Managing Operator conditions

Enabling Operator conditions

Using pod disruption budgets to specify the number of pods that must be up

Graceful termination

2.4.8. Operator Lifecycle Manager metrics

2.4.8.1. Exposed metrics

Operator Lifecycle Manager (OLM) exposes certain OLM-specific resources for use by the
Prometheus-based OpenShift Container Platform cluster monitoring stack.

Table 2.7. Metrics exposed by OLM

Name Description

catalog_source
_count

Number of catalog sources.

catalogsource_r
eady

State of a catalog source. The value 1 indicates that the catalog source is in a READY
state. The value of 0 indicates that the catalog source is not in a READY state.

csv_abnormal When reconciling a cluster service version (CSV), present whenever a CSV version is in
any state other than Succeeded, for example when it is not installed. Includes the
name, namespace, phase, reason, and version labels. A Prometheus alert is
created when this metric is present.

csv_count Number of CSVs successfully registered.

csv_succeeded When reconciling a CSV, represents whether a CSV version is in a Succeeded state
(value 1) or not (value 0). Includes the name, namespace, and version labels.

csv_upgrade_c
ount

Monotonic count of CSV upgrades.

install_plan_co
unt

Number of install plans.

installplan_war
nings_total

Monotonic count of warnings generated by resources, such as deprecated resources,
included in an install plan.

olm_resolution_
duration_secon
ds

The duration of a dependency resolution attempt.

CHAPTER 2. UNDERSTANDING OPERATORS

73

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-operatorconditions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-operatorconditions_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-pods-configuring-pod-distruption-about_nodes-pods-configuring
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/building_applications/#deployments-graceful-termination_route-based-deployment-strategies

subscription_co
unt

Number of subscriptions.

subscription_sy
nc_total

Monotonic count of subscription syncs. Includes the channel, installed CSV, and
subscription name labels.

Name Description

2.4.9. Webhook management in Operator Lifecycle Manager

Webhooks allow Operator authors to intercept, modify, and accept or reject resources before they are
saved to the object store and handled by the Operator controller. Operator Lifecycle Manager (OLM)
can manage the lifecycle of these webhooks when they are shipped alongside your Operator.

See Defining cluster service versions (CSVs) for details on how an Operator developer can define
webhooks for their Operator, as well as considerations when running on OLM.

2.4.9.1. Additional resources

Types of webhook admission plugins

Kubernetes documentation:

Validating admission webhooks

Mutating admission webhooks

Conversion webhooks

2.5. UNDERSTANDING OPERATORHUB

2.5.1. About OperatorHub

OperatorHub is the web console interface in OpenShift Container Platform that cluster administrators
use to discover and install Operators. With one click, an Operator can be pulled from its off-cluster
source, installed and subscribed on the cluster, and made ready for engineering teams to self-service
manage the product across deployment environments using Operator Lifecycle Manager (OLM).

Cluster administrators can choose from catalogs grouped into the following categories:

Category Description

Red Hat Operators Red Hat products packaged and shipped by Red Hat. Supported by Red Hat.

Certified
Operators

Products from leading independent software vendors (ISVs). Red Hat partners with
ISVs to package and ship. Supported by the ISV.

Red Hat
Marketplace

Certified software that can be purchased from Red Hat Marketplace.

OpenShift Container Platform 4.11 Operators

74

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-defining-csv-webhook_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/architecture/#admission-webhook-types_admission-plug-ins
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#validatingadmissionwebhook
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#mutatingadmissionwebhook
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/#webhook-conversion
https://marketplace.redhat.com/

1

2

Community
Operators

Optionally-visible software maintained by relevant representatives in the redhat-
openshift-ecosystem/community-operators-prod/operators GitHub repository. No
official support.

Custom Operators Operators you add to the cluster yourself. If you have not added any custom Operators,
the Custom category does not appear in the web console on your OperatorHub.

Category Description

Operators on OperatorHub are packaged to run on OLM. This includes a YAML file called a cluster
service version (CSV) containing all of the CRDs, RBAC rules, deployments, and container images
required to install and securely run the Operator. It also contains user-visible information like a
description of its features and supported Kubernetes versions.

The Operator SDK can be used to assist developers packaging their Operators for use on OLM and
OperatorHub. If you have a commercial application that you want to make accessible to your customers,
get it included using the certification workflow provided on the Red Hat Partner Connect portal at
connect.redhat.com.

2.5.2. OperatorHub architecture

The OperatorHub UI component is driven by the Marketplace Operator by default on OpenShift
Container Platform in the openshift-marketplace namespace.

2.5.2.1. OperatorHub custom resource

The Marketplace Operator manages an OperatorHub custom resource (CR) named cluster that
manages the default CatalogSource objects provided with OperatorHub. You can modify this resource
to enable or disable the default catalogs, which is useful when configuring OpenShift Container Platform
in restricted network environments.

Example OperatorHub custom resource

disableAllDefaultSources is an override that controls availability of all default catalogs that are
configured by default during an OpenShift Container Platform installation.

Disable default catalogs individually by changing the disabled parameter value per source.

apiVersion: config.openshift.io/v1
kind: OperatorHub
metadata:
 name: cluster
spec:
 disableAllDefaultSources: true 1
 sources: [2
 {
 name: "community-operators",
 disabled: false
 }
]

CHAPTER 2. UNDERSTANDING OPERATORS

75

https://github.com/redhat-openshift-ecosystem/community-operators-prod/tree/main/operators
https://connect.redhat.com

2.5.3. Additional resources

Catalog source

About the Operator SDK

Defining cluster service versions (CSVs)

Operator installation and upgrade workflow in OLM

Red Hat Partner Connect

Red Hat Marketplace

2.6. RED HAT-PROVIDED OPERATOR CATALOGS

Red Hat provides several Operator catalogs that are included with OpenShift Container Platform by
default.

IMPORTANT

As of OpenShift Container Platform 4.11, the default Red Hat-provided Operator catalog
releases in the file-based catalog format. The default Red Hat-provided Operator
catalogs for OpenShift Container Platform 4.6 through 4.10 released in the deprecated
SQLite database format.

The opm subcommands, flags, and functionality related to the SQLite database format
are also deprecated and will be removed in a future release. The features are still
supported and must be used for catalogs that use the deprecated SQLite database
format.

Many of the opm subcommands and flags for working with the SQLite database format,
such as opm index prune, do not work with the file-based catalog format. For more
information about working with file-based catalogs, see Managing custom catalogs,
Operator Framework packaging format, and Mirroring images for a disconnected
installation using the oc-mirror plugin.

2.6.1. About Operator catalogs

An Operator catalog is a repository of metadata that Operator Lifecycle Manager (OLM) can query to
discover and install Operators and their dependencies on a cluster. OLM always installs Operators from
the latest version of a catalog.

An index image, based on the Operator bundle format, is a containerized snapshot of a catalog. It is an
immutable artifact that contains the database of pointers to a set of Operator manifest content. A
catalog can reference an index image to source its content for OLM on the cluster.

As catalogs are updated, the latest versions of Operators change, and older versions may be removed or
altered. In addition, when OLM runs on an OpenShift Container Platform cluster in a restricted network
environment, it is unable to access the catalogs directly from the internet to pull the latest content.

As a cluster administrator, you can create your own custom index image, either based on a Red Hat-
provided catalog or from scratch, which can be used to source the catalog content on the cluster.
Creating and updating your own index image provides a method for customizing the set of Operators
available on the cluster, while also avoiding the aforementioned restricted network environment issues.

IMPORTANT

OpenShift Container Platform 4.11 Operators

76

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-catalogsource_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-upgrades_olm-workflow
https://connect.redhat.com
https://marketplace.redhat.com
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-file-based-catalogs_olm-packaging-format
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#installing-mirroring-disconnected

IMPORTANT

Kubernetes periodically deprecates certain APIs that are removed in subsequent
releases. As a result, Operators are unable to use removed APIs starting with the version
of OpenShift Container Platform that uses the Kubernetes version that removed the API.

If your cluster is using custom catalogs, see Controlling Operator compatibility with
OpenShift Container Platform versions for more details about how Operator authors can
update their projects to help avoid workload issues and prevent incompatible upgrades.

NOTE

Support for the legacy package manifest format for Operators, including custom catalogs
that were using the legacy format, is removed in OpenShift Container Platform 4.8 and
later.

When creating custom catalog images, previous versions of OpenShift Container
Platform 4 required using the oc adm catalog build command, which was deprecated
for several releases and is now removed. With the availability of Red Hat-provided index
images starting in OpenShift Container Platform 4.6, catalog builders must use the opm
index command to manage index images.

Additional resources

Managing custom catalogs

Packaging format

Using Operator Lifecycle Manager on restricted networks

2.6.2. About Red Hat-provided Operator catalogs

The Red Hat-provided catalog sources are installed by default in the openshift-marketplace
namespace, which makes the catalogs available cluster-wide in all namespaces.

The following Operator catalogs are distributed by Red Hat:

Catalog Index image Description

redhat-
operators

registry.redhat.io/redhat/redhat-operator-
index:v4.11

Red Hat products
packaged and shipped
by Red Hat. Supported
by Red Hat.

certified-
operators

registry.redhat.io/redhat/certified-operator-
index:v4.11

Products from leading
independent software
vendors (ISVs). Red Hat
partners with ISVs to
package and ship.
Supported by the ISV.

CHAPTER 2. UNDERSTANDING OPERATORS

77

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-file-based-catalogs_olm-packaging-format
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-restricted-networks

redhat-
marketplace

registry.redhat.io/redhat/redhat-marketplace-
index:v4.11

Certified software that
can be purchased from
Red Hat Marketplace.

community-
operators

registry.redhat.io/redhat/community-operator-
index:v4.11

Software maintained by
relevant representatives
in the redhat-openshift-
ecosystem/community-
operators-
prod/operators GitHub
repository. No official
support.

Catalog Index image Description

During a cluster upgrade, the index image tag for the default Red Hat-provided catalog sources are
updated automatically by the Cluster Version Operator (CVO) so that Operator Lifecycle Manager
(OLM) pulls the updated version of the catalog. For example during an upgrade from OpenShift
Container Platform 4.8 to 4.9, the spec.image field in the CatalogSource object for the redhat-
operators catalog is updated from:

to:

2.7. OPERATORS IN MULTITENANT CLUSTERS

The default behavior for Operator Lifecycle Manager (OLM) aims to provide simplicity during Operator
installation. However, this behavior can lack flexibility, especially in multitenant clusters. In order for
multiple tenants on a OpenShift Container Platform cluster to use an Operator, the default behavior of
OLM requires that administrators install the Operator in All namespaces mode, which can be considered
to violate the principle of least privilege.

Consider the following scenarios to determine which Operator installation workflow works best for your
environment and requirements.

Additional resources

Common terms: Multitenant

Limitations for multitenant Operator management

2.7.1. Default Operator install modes and behavior

When installing Operators with the web console as an administrator, you typically have two choices for
the install mode, depending on the Operator’s capabilities:

Single namespace

Installs the Operator in the chosen single namespace, and makes all permissions that the Operator

registry.redhat.io/redhat/redhat-operator-index:v4.8

registry.redhat.io/redhat/redhat-operator-index:v4.9

OpenShift Container Platform 4.11 Operators

78

https://marketplace.redhat.com/
https://github.com/redhat-openshift-ecosystem/community-operators-prod/tree/main/operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-common-terms-multitenancy_olm-common-terms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-operatorgroups-limitations

Installs the Operator in the chosen single namespace, and makes all permissions that the Operator
requests available in that namespace.

All namespaces

Installs the Operator in the default openshift-operators namespace to watch and be made available
to all namespaces in the cluster. Makes all permissions that the Operator requests available in all
namespaces. In some cases, an Operator author can define metadata to give the user a second
option for that Operator’s suggested namespace.

This choice also means that users in the affected namespaces get access to the Operators APIs, which
can leverage the custom resources (CRs) they own, depending on their role in the namespace:

The namespace-admin and namespace-edit roles can read/write to the Operator APIs,
meaning they can use them.

The namespace-view role can read CR objects of that Operator.

For Single namespace mode, because the Operator itself installs in the chosen namespace, its pod and
service account are also located there. For All namespaces mode, the Operator’s privileges are all
automatically elevated to cluster roles, meaning the Operator has those permissions in all namespaces.

Additional resources

Adding Operators to a cluster

Install modes types

Setting a suggested namespace

2.7.2. Recommended solution for multitenant clusters

While a Multinamespace install mode does exist, it is supported by very few Operators. As a middle
ground solution between the standard All namespaces and Single namespace install modes, you can
install multiple instances of the same Operator, one for each tenant, by using the following workflow:

1. Create a namespace for the tenant Operator that is separate from the tenant’s namespace.

2. Create an Operator group for the tenant Operator scoped only to the tenant’s namespace.

3. Install the Operator in the tenant Operator namespace.

As a result, the Operator resides in the tenant Operator namespace and watches the tenant namespace,
but neither the Operator’s pod nor its service account are visible or usable by the tenant.

This solution provides better tenant separation, least privilege principle at the cost of resource usage,
and additional orchestration to ensure the constraints are met. For a detailed procedure, see "Preparing
for multiple instances of an Operator for multitenant clusters".

Limitations and considerations

This solution only works when the following constraints are met:

All instances of the same Operator must be the same version.

The Operator cannot have dependencies on other Operators.

The Operator cannot ship a CRD conversion webhook.

IMPORTANT

CHAPTER 2. UNDERSTANDING OPERATORS

79

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-operatorgroups-membership_olm-understanding-operatorgroups
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-suggested-namespace_osdk-generating-csvs

IMPORTANT

You cannot use different versions of the same Operator on the same cluster. Eventually,
the installation of another instance of the Operator would be blocked when it meets the
following conditions:

The instance is not the newest version of the Operator.

The instance ships an older revision of the CRDs that lack information or versions
that newer revisions have that are already in use on the cluster.

WARNING

As an administrator, use caution when allowing non-cluster administrators to install
Operators self-sufficiently, as explained in "Allowing non-cluster administrators to
install Operators". These tenants should only have access to a curated catalog of
Operators that are known to not have dependencies. These tenants must also be
forced to use the same version line of an Operator, to ensure the CRDs do not
change. This requires the use of namespace-scoped catalogs and likely disabling
the global default catalogs.

Additional resources

Preparing for multiple instances of an Operator for multitenant clusters

Allowing non-cluster administrators to install Operators

Disabling the default OperatorHub catalog sources

2.7.3. Operator colocation and Operator groups

Operator Lifecycle Manager (OLM) handles OLM-managed Operators that are installed in the same
namespace, meaning their Subscription resources are colocated in the same namespace, as related
Operators. Even if they are not actually related, OLM considers their states, such as their version and
update policy, when any one of them is updated.

For more information on Operator colocation and using Operator groups effectively, see Operator
Lifecycle Manager (OLM) → Multitenancy and Operator colocation.

2.8. CRDS

2.8.1. Extending the Kubernetes API with custom resource definitions

Operators use the Kubernetes extension mechanism, custom resource definitions (CRDs), so that
custom objects managed by the Operator look and act just like the built-in, native Kubernetes objects.
This guide describes how cluster administrators can extend their OpenShift Container Platform cluster
by creating and managing CRDs.

2.8.1.1. Custom resource definitions

In the Kubernetes API, a resource is an endpoint that stores a collection of API objects of a certain kind.



OpenShift Container Platform 4.11 Operators

80

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-preparing-operators-multitenant_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-creating-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-restricted-networks-operatorhub_olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-colocation

In the Kubernetes API, a resource is an endpoint that stores a collection of API objects of a certain kind.
For example, the built-in Pods resource contains a collection of Pod objects.

A custom resource definition (CRD) object defines a new, unique object type, called a kind, in the cluster
and lets the Kubernetes API server handle its entire lifecycle.

Custom resource (CR) objects are created from CRDs that have been added to the cluster by a cluster
administrator, allowing all cluster users to add the new resource type into projects.

When a cluster administrator adds a new CRD to the cluster, the Kubernetes API server reacts by
creating a new RESTful resource path that can be accessed by the entire cluster or a single project
(namespace) and begins serving the specified CR.

Cluster administrators that want to grant access to the CRD to other users can use cluster role
aggregation to grant access to users with the admin, edit, or view default cluster roles. Cluster role
aggregation allows the insertion of custom policy rules into these cluster roles. This behavior integrates
the new resource into the RBAC policy of the cluster as if it was a built-in resource.

Operators in particular make use of CRDs by packaging them with any required RBAC policy and other
software-specific logic. Cluster administrators can also add CRDs manually to the cluster outside of the
lifecycle of an Operator, making them available to all users.

NOTE

While only cluster administrators can create CRDs, developers can create the CR from an
existing CRD if they have read and write permission to it.

2.8.1.2. Creating a custom resource definition

To create custom resource (CR) objects, cluster administrators must first create a custom resource
definition (CRD).

Prerequisites

Access to an OpenShift Container Platform cluster with cluster-admin user privileges.

Procedure

To create a CRD:

1. Create a YAML file that contains the following field types:

Example YAML file for a CRD

apiVersion: apiextensions.k8s.io/v1 1
kind: CustomResourceDefinition
metadata:
 name: crontabs.stable.example.com 2
spec:
 group: stable.example.com 3
 versions:
 name: v1 4
 scope: Namespaced 5
 names:
 plural: crontabs 6

CHAPTER 2. UNDERSTANDING OPERATORS

81

1

2

3

4

5

6

7

8

9

Use the apiextensions.k8s.io/v1 API.

Specify a name for the definition. This must be in the <plural-name>.<group> format
using the values from the group and plural fields.

Specify a group name for the API. An API group is a collection of objects that are logically
related. For example, all batch objects like Job or ScheduledJob could be in the batch API
group (such as batch.api.example.com). A good practice is to use a fully-qualified-
domain name (FQDN) of your organization.

Specify a version name to be used in the URL. Each API group can exist in multiple
versions, for example v1alpha, v1beta, v1.

Specify whether the custom objects are available to a project (Namespaced) or all
projects in the cluster (Cluster).

Specify the plural name to use in the URL. The plural field is the same as a resource in an
API URL.

Specify a singular name to use as an alias on the CLI and for display.

Specify the kind of objects that can be created. The type can be in CamelCase.

Specify a shorter string to match your resource on the CLI.

NOTE

By default, a CRD is cluster-scoped and available to all projects.

2. Create the CRD object:

A new RESTful API endpoint is created at:

For example, using the example file, the following endpoint is created:

You can now use this endpoint URL to create and manage CRs. The object kind is based on the
spec.kind field of the CRD object you created.

2.8.1.3. Creating cluster roles for custom resource definitions

Cluster administrators can grant permissions to existing cluster-scoped custom resource definitions

 singular: crontab 7
 kind: CronTab 8
 shortNames:
 - ct 9

$ oc create -f <file_name>.yaml

/apis/<spec:group>/<spec:version>/<scope>/*/<names-plural>/...

/apis/stable.example.com/v1/namespaces/*/crontabs/...

OpenShift Container Platform 4.11 Operators

82

1

2 8

Cluster administrators can grant permissions to existing cluster-scoped custom resource definitions
(CRDs). If you use the admin, edit, and view default cluster roles, you can take advantage of cluster role
aggregation for their rules.

IMPORTANT

You must explicitly assign permissions to each of these roles. The roles with more
permissions do not inherit rules from roles with fewer permissions. If you assign a rule to a
role, you must also assign that verb to roles that have more permissions. For example, if
you grant the get crontabs permission to the view role, you must also grant it to the edit
and admin roles. The admin or edit role is usually assigned to the user that created a
project through the project template.

Prerequisites

Create a CRD.

Procedure

1. Create a cluster role definition file for the CRD. The cluster role definition is a YAML file that
contains the rules that apply to each cluster role. An OpenShift Container Platform controller
adds the rules that you specify to the default cluster roles.

Example YAML file for a cluster role definition

Use the rbac.authorization.k8s.io/v1 API.

Specify a name for the definition.

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1 1
metadata:
 name: aggregate-cron-tabs-admin-edit 2
 labels:
 rbac.authorization.k8s.io/aggregate-to-admin: "true" 3
 rbac.authorization.k8s.io/aggregate-to-edit: "true" 4
rules:
- apiGroups: ["stable.example.com"] 5
 resources: ["crontabs"] 6
 verbs: ["get", "list", "watch", "create", "update", "patch", "delete", "deletecollection"] 7

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: aggregate-cron-tabs-view 8
 labels:
 # Add these permissions to the "view" default role.
 rbac.authorization.k8s.io/aggregate-to-view: "true" 9
 rbac.authorization.k8s.io/aggregate-to-cluster-reader: "true" 10
rules:
- apiGroups: ["stable.example.com"] 11
 resources: ["crontabs"] 12
 verbs: ["get", "list", "watch"] 13

CHAPTER 2. UNDERSTANDING OPERATORS

83

3

4

5 11

6 12

7 13

9

10

1

2

3

Specify this label to grant permissions to the admin default role.

Specify this label to grant permissions to the edit default role.

Specify the group name of the CRD.

Specify the plural name of the CRD that these rules apply to.

Specify the verbs that represent the permissions that are granted to the role. For example,
apply read and write permissions to the admin and edit roles and only read permission to
the view role.

Specify this label to grant permissions to the view default role.

Specify this label to grant permissions to the cluster-reader default role.

2. Create the cluster role:

2.8.1.4. Creating custom resources from a file

After a custom resource definitions (CRD) has been added to the cluster, custom resources (CRs) can
be created with the CLI from a file using the CR specification.

Prerequisites

CRD added to the cluster by a cluster administrator.

Procedure

1. Create a YAML file for the CR. In the following example definition, the cronSpec and image
custom fields are set in a CR of Kind: CronTab. The Kind comes from the spec.kind field of
the CRD object:

Example YAML file for a CR

Specify the group name and API version (name/version) from the CRD.

Specify the type in the CRD.

Specify a name for the object.

Specify the finalizers for the object, if any. Finalizers allow controllers to implement

$ oc create -f <file_name>.yaml

apiVersion: "stable.example.com/v1" 1
kind: CronTab 2
metadata:
 name: my-new-cron-object 3
 finalizers: 4
 - finalizer.stable.example.com
spec: 5
 cronSpec: "* * * * /5"
 image: my-awesome-cron-image

OpenShift Container Platform 4.11 Operators

84

4

5

Specify the finalizers for the object, if any. Finalizers allow controllers to implement
conditions that must be completed before the object can be deleted.

Specify conditions specific to the type of object.

2. After you create the file, create the object:

2.8.1.5. Inspecting custom resources

You can inspect custom resource (CR) objects that exist in your cluster using the CLI.

Prerequisites

A CR object exists in a namespace to which you have access.

Procedure

1. To get information on a specific kind of a CR, run:

For example:

Example output

Resource names are not case-sensitive, and you can use either the singular or plural forms
defined in the CRD, as well as any short name. For example:

2. You can also view the raw YAML data for a CR:

For example:

Example output

$ oc create -f <file_name>.yaml

$ oc get <kind>

$ oc get crontab

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

$ oc get crontabs

$ oc get crontab

$ oc get ct

$ oc get <kind> -o yaml

$ oc get ct -o yaml

CHAPTER 2. UNDERSTANDING OPERATORS

85

https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/#finalizers

1 2 Custom data from the YAML that you used to create the object displays.

2.8.2. Managing resources from custom resource definitions

This guide describes how developers can manage custom resources (CRs) that come from custom
resource definitions (CRDs).

2.8.2.1. Custom resource definitions

In the Kubernetes API, a resource is an endpoint that stores a collection of API objects of a certain kind.
For example, the built-in Pods resource contains a collection of Pod objects.

A custom resource definition (CRD) object defines a new, unique object type, called a kind, in the cluster
and lets the Kubernetes API server handle its entire lifecycle.

Custom resource (CR) objects are created from CRDs that have been added to the cluster by a cluster
administrator, allowing all cluster users to add the new resource type into projects.

Operators in particular make use of CRDs by packaging them with any required RBAC policy and other
software-specific logic. Cluster administrators can also add CRDs manually to the cluster outside of the
lifecycle of an Operator, making them available to all users.

NOTE

While only cluster administrators can create CRDs, developers can create the CR from an
existing CRD if they have read and write permission to it.

2.8.2.2. Creating custom resources from a file

After a custom resource definitions (CRD) has been added to the cluster, custom resources (CRs) can
be created with the CLI from a file using the CR specification.

Prerequisites

CRD added to the cluster by a cluster administrator.

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
 kind: CronTab
 metadata:
 clusterName: ""
 creationTimestamp: 2017-05-31T12:56:35Z
 deletionGracePeriodSeconds: null
 deletionTimestamp: null
 name: my-new-cron-object
 namespace: default
 resourceVersion: "285"
 selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
 uid: 9423255b-4600-11e7-af6a-28d2447dc82b
 spec:
 cronSpec: '* * * * /5' 1
 image: my-awesome-cron-image 2

OpenShift Container Platform 4.11 Operators

86

1

2

3

4

5

Procedure

1. Create a YAML file for the CR. In the following example definition, the cronSpec and image
custom fields are set in a CR of Kind: CronTab. The Kind comes from the spec.kind field of
the CRD object:

Example YAML file for a CR

Specify the group name and API version (name/version) from the CRD.

Specify the type in the CRD.

Specify a name for the object.

Specify the finalizers for the object, if any. Finalizers allow controllers to implement
conditions that must be completed before the object can be deleted.

Specify conditions specific to the type of object.

2. After you create the file, create the object:

2.8.2.3. Inspecting custom resources

You can inspect custom resource (CR) objects that exist in your cluster using the CLI.

Prerequisites

A CR object exists in a namespace to which you have access.

Procedure

1. To get information on a specific kind of a CR, run:

For example:

Example output

apiVersion: "stable.example.com/v1" 1
kind: CronTab 2
metadata:
 name: my-new-cron-object 3
 finalizers: 4
 - finalizer.stable.example.com
spec: 5
 cronSpec: "* * * * /5"
 image: my-awesome-cron-image

$ oc create -f <file_name>.yaml

$ oc get <kind>

$ oc get crontab

CHAPTER 2. UNDERSTANDING OPERATORS

87

https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/#finalizers

1 2

Resource names are not case-sensitive, and you can use either the singular or plural forms
defined in the CRD, as well as any short name. For example:

2. You can also view the raw YAML data for a CR:

For example:

Example output

Custom data from the YAML that you used to create the object displays.

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

$ oc get crontabs

$ oc get crontab

$ oc get ct

$ oc get <kind> -o yaml

$ oc get ct -o yaml

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
 kind: CronTab
 metadata:
 clusterName: ""
 creationTimestamp: 2017-05-31T12:56:35Z
 deletionGracePeriodSeconds: null
 deletionTimestamp: null
 name: my-new-cron-object
 namespace: default
 resourceVersion: "285"
 selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
 uid: 9423255b-4600-11e7-af6a-28d2447dc82b
 spec:
 cronSpec: '* * * * /5' 1
 image: my-awesome-cron-image 2

OpenShift Container Platform 4.11 Operators

88

CHAPTER 3. USER TASKS

3.1. CREATING APPLICATIONS FROM INSTALLED OPERATORS

This guide walks developers through an example of creating applications from an installed Operator
using the OpenShift Container Platform web console.

3.1.1. Creating an etcd cluster using an Operator

This procedure walks through creating a new etcd cluster using the etcd Operator, managed by
Operator Lifecycle Manager (OLM).

Prerequisites

Access to an OpenShift Container Platform 4.11 cluster.

The etcd Operator already installed cluster-wide by an administrator.

Procedure

1. Create a new project in the OpenShift Container Platform web console for this procedure. This
example uses a project called my-etcd.

2. Navigate to the Operators → Installed Operators page. The Operators that have been installed
to the cluster by the cluster administrator and are available for use are shown here as a list of
cluster service versions (CSVs). CSVs are used to launch and manage the software provided by
the Operator.

TIP

You can get this list from the CLI using:

3. On the Installed Operators page, click the etcd Operator to view more details and available
actions.
As shown under Provided APIs, this Operator makes available three new resource types,
including one for an etcd Cluster (the EtcdCluster resource). These objects work similar to the
built-in native Kubernetes ones, such as Deployment or ReplicaSet, but contain logic specific
to managing etcd.

4. Create a new etcd cluster:

a. In the etcd Cluster API box, click Create instance.

b. The next screen allows you to make any modifications to the minimal starting template of an
EtcdCluster object, such as the size of the cluster. For now, click Create to finalize. This
triggers the Operator to start up the pods, services, and other components of the new etcd
cluster.

5. Click on the example etcd cluster, then click the Resources tab to see that your project now
contains a number of resources created and configured automatically by the Operator.

Verify that a Kubernetes service has been created that allows you to access the database from

$ oc get csv

CHAPTER 3. USER TASKS

89

Verify that a Kubernetes service has been created that allows you to access the database from
other pods in your project.

6. All users with the edit role in a given project can create, manage, and delete application
instances (an etcd cluster, in this example) managed by Operators that have already been
created in the project, in a self-service manner, just like a cloud service. If you want to enable
additional users with this ability, project administrators can add the role using the following
command:

You now have an etcd cluster that will react to failures and rebalance data as pods become unhealthy or
are migrated between nodes in the cluster. Most importantly, cluster administrators or developers with
proper access can now easily use the database with their applications.

3.2. INSTALLING OPERATORS IN YOUR NAMESPACE

If a cluster administrator has delegated Operator installation permissions to your account, you can install
and subscribe an Operator to your namespace in a self-service manner.

3.2.1. Prerequisites

A cluster administrator must add certain permissions to your OpenShift Container Platform user
account to allow self-service Operator installation to a namespace. See Allowing non-cluster
administrators to install Operators for details.

3.2.2. About Operator installation with OperatorHub

OperatorHub is a user interface for discovering Operators; it works in conjunction with Operator
Lifecycle Manager (OLM), which installs and manages Operators on a cluster.

As a user with the proper permissions, you can install an Operator from OperatorHub using the
OpenShift Container Platform web console or CLI.

During installation, you must determine the following initial settings for the Operator:

Installation Mode

Choose a specific namespace in which to install the Operator.

Update Channel

If an Operator is available through multiple channels, you can choose which channel you want to
subscribe to. For example, to deploy from the stable channel, if available, select it from the list.

Approval Strategy

You can choose automatic or manual updates.
If you choose automatic updates for an installed Operator, when a new version of that Operator is
available in the selected channel, Operator Lifecycle Manager (OLM) automatically upgrades the
running instance of your Operator without human intervention.

If you select manual updates, when a newer version of an Operator is available, OLM creates an
update request. As a cluster administrator, you must then manually approve that update request to
have the Operator updated to the new version.

Understanding OperatorHub

$ oc policy add-role-to-user edit <user> -n <target_project>

OpenShift Container Platform 4.11 Operators

90

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-creating-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-understanding-operatorhub

3.2.3. Installing from OperatorHub using the web console

You can install and subscribe to an Operator from OperatorHub using the OpenShift Container Platform
web console.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with Operator installation
permissions.

Procedure

1. Navigate in the web console to the Operators → OperatorHub page.

2. Scroll or type a keyword into the Filter by keyword box to find the Operator you want. For
example, type advanced to find the Advanced Cluster Management for Kubernetes Operator.
You can also filter options by Infrastructure Features. For example, select Disconnected if you
want to see Operators that work in disconnected environments, also known as restricted
network environments.

3. Select the Operator to display additional information.

NOTE

Choosing a Community Operator warns that Red Hat does not certify
Community Operators; you must acknowledge the warning before continuing.

4. Read the information about the Operator and click Install.

5. On the Install Operator page:

a. Choose a specific, single namespace in which to install the Operator. The Operator will only
watch and be made available for use in this single namespace.

b. Select an Update Channel (if more than one is available).

c. Select Automatic or Manual approval strategy, as described earlier.

6. Click Install to make the Operator available to the selected namespaces on this OpenShift
Container Platform cluster.

a. If you selected a Manual approval strategy, the upgrade status of the subscription remains
Upgrading until you review and approve the install plan.
After approving on the Install Plan page, the subscription upgrade status moves to Up to
date.

b. If you selected an Automatic approval strategy, the upgrade status should resolve to Up to
date without intervention.

7. After the upgrade status of the subscription is Up to date, select Operators → Installed
Operators to verify that the cluster service version (CSV) of the installed Operator eventually
shows up. The Status should ultimately resolve to InstallSucceeded in the relevant namespace.

NOTE

CHAPTER 3. USER TASKS

91

NOTE

For the All namespaces…​ installation mode, the status resolves to
InstallSucceeded in the openshift-operators namespace, but the status is
Copied if you check in other namespaces.

If it does not:

a. Check the logs in any pods in the openshift-operators project (or other relevant
namespace if A specific namespace…​ installation mode was selected) on the Workloads →
Pods page that are reporting issues to troubleshoot further.

3.2.4. Installing from OperatorHub using the CLI

Instead of using the OpenShift Container Platform web console, you can install an Operator from
OperatorHub using the CLI. Use the oc command to create or update a Subscription object.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with Operator installation
permissions.

Install the oc command to your local system.

Procedure

1. View the list of Operators available to the cluster from OperatorHub:

Example output

Note the catalog for your desired Operator.

2. Inspect your desired Operator to verify its supported install modes and available channels:

3. An Operator group, defined by an OperatorGroup object, selects target namespaces in which to

$ oc get packagemanifests -n openshift-marketplace

NAME CATALOG AGE
3scale-operator Red Hat Operators 91m
advanced-cluster-management Red Hat Operators 91m
amq7-cert-manager Red Hat Operators 91m
...
couchbase-enterprise-certified Certified Operators 91m
crunchy-postgres-operator Certified Operators 91m
mongodb-enterprise Certified Operators 91m
...
etcd Community Operators 91m
jaeger Community Operators 91m
kubefed Community Operators 91m
...

$ oc describe packagemanifests <operator_name> -n openshift-marketplace

OpenShift Container Platform 4.11 Operators

92

3. An Operator group, defined by an OperatorGroup object, selects target namespaces in which to
generate required RBAC access for all Operators in the same namespace as the Operator
group.
The namespace to which you subscribe the Operator must have an Operator group that
matches the install mode of the Operator, either the AllNamespaces or SingleNamespace
mode. If the Operator you intend to install uses the AllNamespaces, then the openshift-
operators namespace already has an appropriate Operator group in place.

However, if the Operator uses the SingleNamespace mode and you do not already have an
appropriate Operator group in place, you must create one.

NOTE

The web console version of this procedure handles the creation of the
OperatorGroup and Subscription objects automatically behind the scenes for
you when choosing SingleNamespace mode.

a. Create an OperatorGroup object YAML file, for example operatorgroup.yaml:

Example OperatorGroup object

WARNING

Operator Lifecycle Manager (OLM) creates the following cluster roles
for each Operator group:

<operatorgroup_name>-admin

<operatorgroup_name>-edit

<operatorgroup_name>-view

When you manually create an Operator group, you must specify a
unique name that does not conflict with the existing cluster roles or
other Operator groups on the cluster.

b. Create the OperatorGroup object:

4. Create a Subscription object YAML file to subscribe a namespace to an Operator, for example

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: <operatorgroup_name>
 namespace: <namespace>
spec:
 targetNamespaces:
 - <namespace>



$ oc apply -f operatorgroup.yaml

CHAPTER 3. USER TASKS

93

1

2

3

4

5

4. Create a Subscription object YAML file to subscribe a namespace to an Operator, for example
sub.yaml:

Example Subscription object

For default AllNamespaces install mode usage, specify the openshift-operators
namespace. Alternatively, you can specify a custom global namespace, if you have created
one. Otherwise, specify the relevant single namespace for SingleNamespace install mode
usage.

Name of the channel to subscribe to.

Name of the Operator to subscribe to.

Name of the catalog source that provides the Operator.

Namespace of the catalog source. Use openshift-marketplace for the default
OperatorHub catalog sources.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: <subscription_name>
 namespace: openshift-operators 1
spec:
 channel: <channel_name> 2
 name: <operator_name> 3
 source: redhat-operators 4
 sourceNamespace: openshift-marketplace 5
 config:
 env: 6
 - name: ARGS
 value: "-v=10"
 envFrom: 7
 - secretRef:
 name: license-secret
 volumes: 8
 - name: <volume_name>
 configMap:
 name: <configmap_name>
 volumeMounts: 9
 - mountPath: <directory_name>
 name: <volume_name>
 tolerations: 10
 - operator: "Exists"
 resources: 11
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"
 nodeSelector: 12
 foo: bar

OpenShift Container Platform 4.11 Operators

94

6

7

8

9

10

11

12

The env parameter defines a list of Environment Variables that must exist in all containers
in the pod created by OLM.

The envFrom parameter defines a list of sources to populate Environment Variables in the
container.

The volumes parameter defines a list of Volumes that must exist on the pod created by
OLM.

The volumeMounts parameter defines a list of VolumeMounts that must exist in all
containers in the pod created by OLM. If a volumeMount references a volume that does
not exist, OLM fails to deploy the Operator.

The tolerations parameter defines a list of Tolerations for the pod created by OLM.

The resources parameter defines resource constraints for all the containers in the pod
created by OLM.

The nodeSelector parameter defines a NodeSelector for the pod created by OLM.

5. Create the Subscription object:

At this point, OLM is now aware of the selected Operator. A cluster service version (CSV) for
the Operator should appear in the target namespace, and APIs provided by the Operator should
be available for creation.

Additional resources

Operator groups

Channel names

3.2.5. Installing a specific version of an Operator

You can install a specific version of an Operator by setting the cluster service version (CSV) in a
Subscription object.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with Operator installation
permissions

OpenShift CLI (oc) installed

Procedure

1. Create a Subscription object YAML file that subscribes a namespace to an Operator with a
specific version by setting the startingCSV field. Set the installPlanApproval field to Manual
to prevent the Operator from automatically upgrading if a later version exists in the catalog.
For example, the following sub.yaml file can be used to install the Red Hat Quay Operator
specifically to version 3.4.0:

$ oc apply -f sub.yaml

CHAPTER 3. USER TASKS

95

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-operatorgroups-about_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-subscription_olm-understanding-olm

1

2

Subscription with a specific starting Operator version

Set the approval strategy to Manual in case your specified version is superseded by a later
version in the catalog. This plan prevents an automatic upgrade to a later version and
requires manual approval before the starting CSV can complete the installation.

Set a specific version of an Operator CSV.

2. Create the Subscription object:

3. Manually approve the pending install plan to complete the Operator installation.

Additional resources

Manually approving a pending Operator update

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: quay-operator
 namespace: quay
spec:
 channel: quay-v3.4
 installPlanApproval: Manual 1
 name: quay-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: quay-operator.v3.4.0 2

$ oc apply -f sub.yaml

OpenShift Container Platform 4.11 Operators

96

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-approving-pending-upgrade_olm-upgrading-operators

CHAPTER 4. ADMINISTRATOR TASKS

4.1. ADDING OPERATORS TO A CLUSTER

Cluster administrators can install Operators to an OpenShift Container Platform cluster by subscribing
Operators to namespaces with OperatorHub.

NOTE

For information on how OLM handles updates for installed Operators colocated in the
same namespace, as well as an alternative method for installing Operators with custom
global Operator groups, see Multitenancy and Operator colocation.

4.1.1. About Operator installation with OperatorHub

OperatorHub is a user interface for discovering Operators; it works in conjunction with Operator
Lifecycle Manager (OLM), which installs and manages Operators on a cluster.

As a user with the proper permissions, you can install an Operator from OperatorHub using the
OpenShift Container Platform web console or CLI.

During installation, you must determine the following initial settings for the Operator:

Installation Mode

Choose a specific namespace in which to install the Operator.

Update Channel

If an Operator is available through multiple channels, you can choose which channel you want to
subscribe to. For example, to deploy from the stable channel, if available, select it from the list.

Approval Strategy

You can choose automatic or manual updates.
If you choose automatic updates for an installed Operator, when a new version of that Operator is
available in the selected channel, Operator Lifecycle Manager (OLM) automatically upgrades the
running instance of your Operator without human intervention.

If you select manual updates, when a newer version of an Operator is available, OLM creates an
update request. As a cluster administrator, you must then manually approve that update request to
have the Operator updated to the new version.

Additional resources

Understanding OperatorHub

4.1.2. Installing from OperatorHub using the web console

You can install and subscribe to an Operator from OperatorHub using the OpenShift Container Platform
web console.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Access to an OpenShift Container Platform cluster using an account with Operator installation

CHAPTER 4. ADMINISTRATOR TASKS

97

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-colocation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-understanding-operatorhub

Access to an OpenShift Container Platform cluster using an account with Operator installation
permissions.

Procedure

1. Navigate in the web console to the Operators → OperatorHub page.

2. Scroll or type a keyword into the Filter by keyword box to find the Operator you want. For
example, type advanced to find the Advanced Cluster Management for Kubernetes Operator.
You can also filter options by Infrastructure Features. For example, select Disconnected if you
want to see Operators that work in disconnected environments, also known as restricted
network environments.

3. Select the Operator to display additional information.

NOTE

Choosing a Community Operator warns that Red Hat does not certify
Community Operators; you must acknowledge the warning before continuing.

4. Read the information about the Operator and click Install.

5. On the Install Operator page:

a. Select one of the following:

All namespaces on the cluster (default) installs the Operator in the default openshift-
operators namespace to watch and be made available to all namespaces in the cluster.
This option is not always available.

A specific namespace on the cluster allows you to choose a specific, single namespace
in which to install the Operator. The Operator will only watch and be made available for
use in this single namespace.

b. Choose a specific, single namespace in which to install the Operator. The Operator will only
watch and be made available for use in this single namespace.

c. Select an Update Channel (if more than one is available).

d. Select Automatic or Manual approval strategy, as described earlier.

6. Click Install to make the Operator available to the selected namespaces on this OpenShift
Container Platform cluster.

a. If you selected a Manual approval strategy, the upgrade status of the subscription remains
Upgrading until you review and approve the install plan.
After approving on the Install Plan page, the subscription upgrade status moves to Up to
date.

b. If you selected an Automatic approval strategy, the upgrade status should resolve to Up to
date without intervention.

7. After the upgrade status of the subscription is Up to date, select Operators → Installed
Operators to verify that the cluster service version (CSV) of the installed Operator eventually
shows up. The Status should ultimately resolve to InstallSucceeded in the relevant namespace.

NOTE

OpenShift Container Platform 4.11 Operators

98

NOTE

For the All namespaces…​ installation mode, the status resolves to
InstallSucceeded in the openshift-operators namespace, but the status is
Copied if you check in other namespaces.

If it does not:

a. Check the logs in any pods in the openshift-operators project (or other relevant
namespace if A specific namespace…​ installation mode was selected) on the Workloads →
Pods page that are reporting issues to troubleshoot further.

4.1.3. Installing from OperatorHub using the CLI

Instead of using the OpenShift Container Platform web console, you can install an Operator from
OperatorHub using the CLI. Use the oc command to create or update a Subscription object.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with Operator installation
permissions.

Install the oc command to your local system.

Procedure

1. View the list of Operators available to the cluster from OperatorHub:

Example output

Note the catalog for your desired Operator.

2. Inspect your desired Operator to verify its supported install modes and available channels:

3. An Operator group, defined by an OperatorGroup object, selects target namespaces in which to

$ oc get packagemanifests -n openshift-marketplace

NAME CATALOG AGE
3scale-operator Red Hat Operators 91m
advanced-cluster-management Red Hat Operators 91m
amq7-cert-manager Red Hat Operators 91m
...
couchbase-enterprise-certified Certified Operators 91m
crunchy-postgres-operator Certified Operators 91m
mongodb-enterprise Certified Operators 91m
...
etcd Community Operators 91m
jaeger Community Operators 91m
kubefed Community Operators 91m
...

$ oc describe packagemanifests <operator_name> -n openshift-marketplace

CHAPTER 4. ADMINISTRATOR TASKS

99

3. An Operator group, defined by an OperatorGroup object, selects target namespaces in which to
generate required RBAC access for all Operators in the same namespace as the Operator
group.
The namespace to which you subscribe the Operator must have an Operator group that
matches the install mode of the Operator, either the AllNamespaces or SingleNamespace
mode. If the Operator you intend to install uses the AllNamespaces, then the openshift-
operators namespace already has an appropriate Operator group in place.

However, if the Operator uses the SingleNamespace mode and you do not already have an
appropriate Operator group in place, you must create one.

NOTE

The web console version of this procedure handles the creation of the
OperatorGroup and Subscription objects automatically behind the scenes for
you when choosing SingleNamespace mode.

a. Create an OperatorGroup object YAML file, for example operatorgroup.yaml:

Example OperatorGroup object

WARNING

Operator Lifecycle Manager (OLM) creates the following cluster roles
for each Operator group:

<operatorgroup_name>-admin

<operatorgroup_name>-edit

<operatorgroup_name>-view

When you manually create an Operator group, you must specify a
unique name that does not conflict with the existing cluster roles or
other Operator groups on the cluster.

b. Create the OperatorGroup object:

4. Create a Subscription object YAML file to subscribe a namespace to an Operator, for example

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: <operatorgroup_name>
 namespace: <namespace>
spec:
 targetNamespaces:
 - <namespace>



$ oc apply -f operatorgroup.yaml

OpenShift Container Platform 4.11 Operators

100

1

2

3

4

5

4. Create a Subscription object YAML file to subscribe a namespace to an Operator, for example
sub.yaml:

Example Subscription object

For default AllNamespaces install mode usage, specify the openshift-operators
namespace. Alternatively, you can specify a custom global namespace, if you have created
one. Otherwise, specify the relevant single namespace for SingleNamespace install mode
usage.

Name of the channel to subscribe to.

Name of the Operator to subscribe to.

Name of the catalog source that provides the Operator.

Namespace of the catalog source. Use openshift-marketplace for the default
OperatorHub catalog sources.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: <subscription_name>
 namespace: openshift-operators 1
spec:
 channel: <channel_name> 2
 name: <operator_name> 3
 source: redhat-operators 4
 sourceNamespace: openshift-marketplace 5
 config:
 env: 6
 - name: ARGS
 value: "-v=10"
 envFrom: 7
 - secretRef:
 name: license-secret
 volumes: 8
 - name: <volume_name>
 configMap:
 name: <configmap_name>
 volumeMounts: 9
 - mountPath: <directory_name>
 name: <volume_name>
 tolerations: 10
 - operator: "Exists"
 resources: 11
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"
 nodeSelector: 12
 foo: bar

CHAPTER 4. ADMINISTRATOR TASKS

101

6

7

8

9

10

11

12

The env parameter defines a list of Environment Variables that must exist in all containers
in the pod created by OLM.

The envFrom parameter defines a list of sources to populate Environment Variables in the
container.

The volumes parameter defines a list of Volumes that must exist on the pod created by
OLM.

The volumeMounts parameter defines a list of VolumeMounts that must exist in all
containers in the pod created by OLM. If a volumeMount references a volume that does
not exist, OLM fails to deploy the Operator.

The tolerations parameter defines a list of Tolerations for the pod created by OLM.

The resources parameter defines resource constraints for all the containers in the pod
created by OLM.

The nodeSelector parameter defines a NodeSelector for the pod created by OLM.

5. Create the Subscription object:

At this point, OLM is now aware of the selected Operator. A cluster service version (CSV) for
the Operator should appear in the target namespace, and APIs provided by the Operator should
be available for creation.

Additional resources

About Operator groups

4.1.4. Installing a specific version of an Operator

You can install a specific version of an Operator by setting the cluster service version (CSV) in a
Subscription object.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with Operator installation
permissions

OpenShift CLI (oc) installed

Procedure

1. Create a Subscription object YAML file that subscribes a namespace to an Operator with a
specific version by setting the startingCSV field. Set the installPlanApproval field to Manual
to prevent the Operator from automatically upgrading if a later version exists in the catalog.
For example, the following sub.yaml file can be used to install the Red Hat Quay Operator
specifically to version 3.4.0:

Subscription with a specific starting Operator version

$ oc apply -f sub.yaml

OpenShift Container Platform 4.11 Operators

102

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-operatorgroups-about_olm-understanding-operatorgroups

1

2

Set the approval strategy to Manual in case your specified version is superseded by a later
version in the catalog. This plan prevents an automatic upgrade to a later version and
requires manual approval before the starting CSV can complete the installation.

Set a specific version of an Operator CSV.

2. Create the Subscription object:

3. Manually approve the pending install plan to complete the Operator installation.

Additional resources

Manually approving a pending Operator update

4.1.5. Preparing for multiple instances of an Operator for multitenant clusters

As a cluster administrator, you can add multiple instances of an Operator for use in multitenant clusters.
This is an alternative solution to either using the standard All namespaces install mode, which can be
considered to violate the principle of least privilege, or the Multinamespace mode, which is not widely
adopted. For more information, see "Operators in multitenant clusters".

In the following procedure, the tenant is a user or group of users that share common access and
privileges for a set of deployed workloads. The tenant Operator is the instance of an Operator that is
intended for use by only that tenant.

Prerequisites

All instances of the Operator you want to install must be the same version across a given cluster.

IMPORTANT

For more information on this and other limitations, see "Operators in multitenant
clusters".

Procedure

1. Before installing the Operator, create a namespace for the tenant Operator that is separate

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: quay-operator
 namespace: quay
spec:
 channel: quay-v3.4
 installPlanApproval: Manual 1
 name: quay-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: quay-operator.v3.4.0 2

$ oc apply -f sub.yaml

CHAPTER 4. ADMINISTRATOR TASKS

103

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-approving-pending-upgrade_olm-upgrading-operators

1

1. Before installing the Operator, create a namespace for the tenant Operator that is separate
from the tenant’s namespace. For example, if the tenant’s namespace is team1, you might
create a team1-operator namespace:

a. Define a Namespace resource and save the YAML file, for example, team1-operator.yaml:

b. Create the namespace by running the following command:

2. Create an Operator group for the tenant Operator scoped to the tenant’s namespace, with only
that one namespace entry in the spec.targetNamespaces list:

a. Define an OperatorGroup resource and save the YAML file, for example, team1-
operatorgroup.yaml:

Define only the tenant’s namespace in the spec.targetNamespaces list.

b. Create the Operator group by running the following command:

Next steps

Install the Operator in the tenant Operator namespace. This task is more easily performed by
using the OperatorHub in the web console instead of the CLI; for a detailed procedure, see
Installing from OperatorHub using the web console .

NOTE

After completing the Operator installation, the Operator resides in the tenant
Operator namespace and watches the tenant namespace, but neither the
Operator’s pod nor its service account are visible or usable by the tenant.

Additional resources

Operators in multitenant clusters

4.1.6. Installing global Operators in custom namespaces

apiVersion: v1
kind: Namespace
metadata:
 name: team1-operator

$ oc create -f team1-operator.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: team1-operatorgroup
 namespace: team1-operator
spec:
 targetNamespaces:
 - team1 1

$ oc create -f team1-operatorgroup.yaml

OpenShift Container Platform 4.11 Operators

104

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-installing-from-operatorhub-using-web-console_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-multitenancy

When installing Operators with the OpenShift Container Platform web console, the default behavior
installs Operators that support the All namespaces install mode into the default openshift-operators
global namespace. This can cause issues related to shared install plans and update policies between all
Operators in the namespace. For more details on these limitations, see "Multitenancy and Operator
colocation".

As a cluster administrator, you can bypass this default behavior manually by creating a custom global
namespace and using that namespace to install your individual or scoped set of Operators and their
dependencies.

Procedure

1. Before installing the Operator, create a namespace for the installation of your desired Operator.
This installation namespace will become the custom global namespace:

a. Define a Namespace resource and save the YAML file, for example, global-
operators.yaml:

b. Create the namespace by running the following command:

2. Create a custom global Operator group, which is an Operator group that watches all
namespaces:

a. Define an OperatorGroup resource and save the YAML file, for example, global-
operatorgroup.yaml. Omit both the spec.selector and spec.targetNamespaces fields to
make it a global Operator group, which selects all namespaces:

NOTE

The status.namespaces of a created global Operator group contains the
empty string (""), which signals to a consuming Operator that it should watch
all namespaces.

b. Create the Operator group by running the following command:

Next steps

Install the desired Operator in your custom global namespace. Because the web console does
not populate the Installed Namespace menu during Operator installation with custom global

apiVersion: v1
kind: Namespace
metadata:
 name: global-operators

$ oc create -f global-operators.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: global-operatorgroup
 namespace: global-operators

$ oc create -f global-operatorgroup.yaml

CHAPTER 4. ADMINISTRATOR TASKS

105

namespaces, this task can only be performed with the OpenShift CLI (oc). For a detailed
procedure, see Installing from OperatorHub using the CLI .

NOTE

When you initiate the Operator installation, if the Operator has dependencies, the
dependencies are also automatically installed in the custom global namespace. As
a result, it is then valid for the dependency Operators to have the same update
policy and shared install plans.

Additional resources

Multitenancy and Operator colocation

4.1.7. Pod placement of Operator workloads

By default, Operator Lifecycle Manager (OLM) places pods on arbitrary worker nodes when installing an
Operator or deploying Operand workloads. As an administrator, you can use projects with a combination
of node selectors, taints, and tolerations to control the placement of Operators and Operands to
specific nodes.

Controlling pod placement of Operator and Operand workloads has the following prerequisites:

1. Determine a node or set of nodes to target for the pods per your requirements. If available, note
an existing label, such as node-role.kubernetes.io/app, that identifies the node or nodes.
Otherwise, add a label, such as myoperator, by using a machine set or editing the node directly.
You will use this label in a later step as the node selector on your project.

2. If you want to ensure that only pods with a certain label are allowed to run on the nodes, while
steering unrelated workloads to other nodes, add a taint to the node or nodes by using a
machine set or editing the node directly. Use an effect that ensures that new pods that do not
match the taint cannot be scheduled on the nodes. For example, a myoperator:NoSchedule
taint ensures that new pods that do not match the taint are not scheduled onto that node, but
existing pods on the node are allowed to remain.

3. Create a project that is configured with a default node selector and, if you added a taint, a
matching toleration.

At this point, the project you created can be used to steer pods towards the specified nodes in the
following scenarios:

For Operator pods

Administrators can create a Subscription object in the project. As a result, the Operator pods are
placed on the specified nodes.

For Operand pods

Using an installed Operator, users can create an application in the project, which places the custom
resource (CR) owned by the Operator in the project. As a result, the Operand pods are placed on the
specified nodes, unless the Operator is deploying cluster-wide objects or resources in other
namespaces, in which case this customized pod placement does not apply.

Additional resources

Adding taints and tolerations manually to nodes or with machine sets

OpenShift Container Platform 4.11 Operators

106

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-installing-operator-from-operatorhub-using-cli_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-colocation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-scheduler-taints-tolerations-adding_nodes-scheduler-taints-tolerations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-scheduler-taints-tolerations-adding-machineset_nodes-scheduler-taints-tolerations

Creating project-wide node selectors

Creating a project with a node selector and toleration

4.2. UPDATING INSTALLED OPERATORS

As a cluster administrator, you can update Operators that have been previously installed using Operator
Lifecycle Manager (OLM) on your OpenShift Container Platform cluster.

NOTE

For information on how OLM handles updates for installed Operators colocated in the
same namespace, as well as an alternative method for installing Operators with custom
global Operator groups, see Multitenancy and Operator colocation.

4.2.1. Preparing for an Operator update

The subscription of an installed Operator specifies an update channel that tracks and receives updates
for the Operator. You can change the update channel to start tracking and receiving updates from a
newer channel.

The names of update channels in a subscription can differ between Operators, but the naming scheme
typically follows a common convention within a given Operator. For example, channel names might
follow a minor release update stream for the application provided by the Operator (1.2, 1.3) or a release
frequency (stable, fast).

NOTE

You cannot change installed Operators to a channel that is older than the current
channel.

Red Hat Customer Portal Labs include the following application that helps administrators prepare to
update their Operators:

Red Hat OpenShift Container Platform Operator Update Information Checker

You can use the application to search for Operator Lifecycle Manager-based Operators and verify the
available Operator version per update channel across different versions of OpenShift Container
Platform. Cluster Version Operator-based Operators are not included.

4.2.2. Changing the update channel for an Operator

You can change the update channel for an Operator by using the OpenShift Container Platform web
console.

TIP

If the approval strategy in the subscription is set to Automatic, the update process initiates as soon as a
new Operator version is available in the selected channel. If the approval strategy is set to Manual, you
must manually approve pending updates.

Prerequisites

CHAPTER 4. ADMINISTRATOR TASKS

107

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-scheduler-node-selectors-project_nodes-scheduler-node-selectors
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-scheduler-taints-tolerations-projects_nodes-scheduler-taints-tolerations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-colocation
https://access.redhat.com/labs/ocpouic/

An Operator previously installed using Operator Lifecycle Manager (OLM).

Procedure

1. In the Administrator perspective of the web console, navigate to Operators → Installed
Operators.

2. Click the name of the Operator you want to change the update channel for.

3. Click the Subscription tab.

4. Click the name of the update channel under Channel.

5. Click the newer update channel that you want to change to, then click Save.

6. For subscriptions with an Automatic approval strategy, the update begins automatically.
Navigate back to the Operators → Installed Operators page to monitor the progress of the
update. When complete, the status changes to Succeeded and Up to date.
For subscriptions with a Manual approval strategy, you can manually approve the update from
the Subscription tab.

4.2.3. Manually approving a pending Operator update

If an installed Operator has the approval strategy in its subscription set to Manual, when new updates are
released in its current update channel, the update must be manually approved before installation can
begin.

Prerequisites

An Operator previously installed using Operator Lifecycle Manager (OLM).

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Operators → Installed Operators.

2. Operators that have a pending update display a status with Upgrade available. Click the name
of the Operator you want to update.

3. Click the Subscription tab. Any update requiring approval are displayed next to Upgrade
Status. For example, it might display 1 requires approval.

4. Click 1 requires approval, then click Preview Install Plan.

5. Review the resources that are listed as available for update. When satisfied, click Approve.

6. Navigate back to the Operators → Installed Operators page to monitor the progress of the
update. When complete, the status changes to Succeeded and Up to date.

4.3. DELETING OPERATORS FROM A CLUSTER

The following describes how to delete, or uninstall, Operators that were previously installed using
Operator Lifecycle Manager (OLM) on your OpenShift Container Platform cluster.

IMPORTANT

OpenShift Container Platform 4.11 Operators

108

IMPORTANT

You must successfully and completely uninstall an Operator prior to attempting to
reinstall the same Operator. Failure to fully uninstall the Operator properly can leave
resources, such as a project or namespace, stuck in a "Terminating" state and cause "error
resolving resource" messages to be observed when trying to reinstall the Operator. For
more information, see Reinstalling Operators after failed uninstallation.

4.3.1. Deleting Operators from a cluster using the web console

Cluster administrators can delete installed Operators from a selected namespace by using the web
console.

Prerequisites

You have access to an OpenShift Container Platform cluster web console using an account with
cluster-admin permissions.

Procedure

1. Navigate to the Operators → Installed Operators page.

2. Scroll or enter a keyword into the Filter by name field to find the Operator that you want to
remove. Then, click on it.

3. On the right side of the Operator Details page, select Uninstall Operator from the Actions list.
An Uninstall Operator? dialog box is displayed.

4. Select Uninstall to remove the Operator, Operator deployments, and pods. Following this
action, the Operator stops running and no longer receives updates.

NOTE

This action does not remove resources managed by the Operator, including
custom resource definitions (CRDs) and custom resources (CRs). Dashboards
and navigation items enabled by the web console and off-cluster resources that
continue to run might need manual clean up. To remove these after uninstalling
the Operator, you might need to manually delete the Operator CRDs.

4.3.2. Deleting Operators from a cluster using the CLI

Cluster administrators can delete installed Operators from a selected namespace by using the CLI.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

oc command installed on workstation.

Procedure

1. Ensure the latest version of the subscribed operator (for example, serverless-operator) is
identified in the currentCSV field.

CHAPTER 4. ADMINISTRATOR TASKS

109

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/support/#olm-reinstall_troubleshooting-operator-issues

Example output

2. Delete the subscription (for example, serverless-operator):

Example output

3. Delete the CSV for the Operator in the target namespace using the currentCSV value from the
previous step:

Example output

4.3.3. Refreshing failing subscriptions

In Operator Lifecycle Manager (OLM), if you subscribe to an Operator that references images that are
not accessible on your network, you can find jobs in the openshift-marketplace namespace that are
failing with the following errors:

Example output

Example output

As a result, the subscription is stuck in this failing state and the Operator is unable to install or upgrade.

You can refresh a failing subscription by deleting the subscription, cluster service version (CSV), and
other related objects. After recreating the subscription, OLM then reinstalls the correct version of the
Operator.

Prerequisites

You have a failing subscription that is unable to pull an inaccessible bundle image.

$ oc get subscription.operators.coreos.com serverless-operator -n openshift-serverless -o
yaml | grep currentCSV

 currentCSV: serverless-operator.v1.28.0

$ oc delete subscription.operators.coreos.com serverless-operator -n openshift-serverless

subscription.operators.coreos.com "serverless-operator" deleted

$ oc delete clusterserviceversion serverless-operator.v1.28.0 -n openshift-serverless

clusterserviceversion.operators.coreos.com "serverless-operator.v1.28.0" deleted

ImagePullBackOff for
Back-off pulling image "example.com/openshift4/ose-elasticsearch-operator-
bundle@sha256:6d2587129c846ec28d384540322b40b05833e7e00b25cca584e004af9a1d292e"

rpc error: code = Unknown desc = error pinging docker registry example.com: Get
"https://example.com/v2/": dial tcp: lookup example.com on 10.0.0.1:53: no such host

OpenShift Container Platform 4.11 Operators

110

You have confirmed that the correct bundle image is accessible.

Procedure

1. Get the names of the Subscription and ClusterServiceVersion objects from the namespace
where the Operator is installed:

Example output

2. Delete the subscription:

3. Delete the cluster service version:

4. Get the names of any failing jobs and related config maps in the openshift-marketplace
namespace:

Example output

5. Delete the job:

This ensures pods that try to pull the inaccessible image are not recreated.

6. Delete the config map:

$ oc get sub,csv -n <namespace>

NAME PACKAGE SOURCE CHANNEL
subscription.operators.coreos.com/elasticsearch-operator elasticsearch-operator redhat-
operators 5.0

NAME DISPLAY VERSION
REPLACES PHASE
clusterserviceversion.operators.coreos.com/elasticsearch-operator.5.0.0-65 OpenShift
Elasticsearch Operator 5.0.0-65 Succeeded

$ oc delete subscription <subscription_name> -n <namespace>

$ oc delete csv <csv_name> -n <namespace>

$ oc get job,configmap -n openshift-marketplace

NAME COMPLETIONS DURATION AGE
job.batch/1de9443b6324e629ddf31fed0a853a121275806170e34c926d69e53a7fcbccb 1/1
26s 9m30s

NAME DATA AGE
configmap/1de9443b6324e629ddf31fed0a853a121275806170e34c926d69e53a7fcbccb 3
9m30s

$ oc delete job <job_name> -n openshift-marketplace

$ oc delete configmap <configmap_name> -n openshift-marketplace

CHAPTER 4. ADMINISTRATOR TASKS

111

7. Reinstall the Operator using OperatorHub in the web console.

Verification

Check that the Operator has been reinstalled successfully:

4.4. CONFIGURING OPERATOR LIFECYCLE MANAGER FEATURES

The Operator Lifecycle Manager (OLM) controller is configured by an OLMConfig custom resource
(CR) named cluster. Cluster administrators can modify this resource to enable or disable certain
features.

This document outlines the features currently supported by OLM that are configured by the
OLMConfig resource.

4.4.1. Disabling copied CSVs

When an Operator is installed by Operator Lifecycle Manager (OLM), a simplified copy of its cluster
service version (CSV) is created in every namespace that the Operator is configured to watch. These
CSVs are known as copied CSVs and communicate to users which controllers are actively reconciling
resource events in a given namespace.

When Operators are configured to use the AllNamespaces install mode, versus targeting a single or
specified set of namespaces, a copied CSV is created in every namespace on the cluster. On especially
large clusters, with namespaces and installed Operators potentially in the hundreds or thousands, copied
CSVs consume an untenable amount of resources, such as OLM’s memory usage, cluster etcd limits, and
networking.

To support these larger clusters, cluster administrators can disable copied CSVs for Operators installed
with the AllNamespaces mode.

WARNING

If you disable copied CSVs, a user’s ability to discover Operators in the
OperatorHub and CLI is limited to Operators installed directly in the user’s
namespace.

If an Operator is configured to reconcile events in the user’s namespace but is
installed in a different namespace, the user cannot view the Operator in the
OperatorHub or CLI. Operators affected by this limitation are still available and
continue to reconcile events in the user’s namespace.

This behavior occurs for the following reasons:

Copied CSVs identify the Operators available for a given namespace.

Role-based access control (RBAC) scopes the user’s ability to view and
discover Operators in the OperatorHub and CLI.

$ oc get sub,csv,installplan -n <namespace>



OpenShift Container Platform 4.11 Operators

112

1

Procedure

Edit the OLMConfig object named cluster and set the spec.features.disableCopiedCSVs
field to true:

Disabled copied CSVs for AllNamespaces install mode Operators

Verification

When copied CSVs are disabled, OLM captures this information in an event in the Operator’s
namespace:

Example output

When the spec.features.disableCopiedCSVs field is missing or set to false, OLM recreates
the copied CSVs for all Operators installed with the AllNamespaces mode and deletes the
previously mentioned events.

Additional resources

Install modes

4.5. CONFIGURING PROXY SUPPORT IN OPERATOR LIFECYCLE
MANAGER

If a global proxy is configured on the OpenShift Container Platform cluster, Operator Lifecycle Manager
(OLM) automatically configures Operators that it manages with the cluster-wide proxy. However, you
can also configure installed Operators to override the global proxy or inject a custom CA certificate.

Additional resources

Configuring the cluster-wide proxy

Configuring a custom PKI (custom CA certificate)

Developing Operators that support proxy settings for Go, Ansible, and Helm

$ oc apply -f - <<EOF
apiVersion: operators.coreos.com/v1
kind: OLMConfig
metadata:
 name: cluster
spec:
 features:
 disableCopiedCSVs: true 1
EOF

$ oc get events

LAST SEEN TYPE REASON OBJECT MESSAGE
85s Warning DisabledCopiedCSVs clusterserviceversion/my-csv.v1.0.0 CSV
copying disabled for operators/my-csv.v1.0.0

CHAPTER 4. ADMINISTRATOR TASKS

113

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-operatorgroups-membership_olm-understanding-operatorgroups
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#enable-cluster-wide-proxy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#configuring-a-custom-pki
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-run-proxy_osdk-golang-tutorial
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-run-proxy_osdk-ansible-tutorial
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-run-proxy_osdk-helm-tutorial

4.5.1. Overriding proxy settings of an Operator

If a cluster-wide egress proxy is configured, Operators running with Operator Lifecycle Manager (OLM)
inherit the cluster-wide proxy settings on their deployments. Cluster administrators can also override
these proxy settings by configuring the subscription of an Operator.

IMPORTANT

Operators must handle setting environment variables for proxy settings in the pods for
any managed Operands.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Procedure

1. Navigate in the web console to the Operators → OperatorHub page.

2. Select the Operator and click Install.

3. On the Install Operator page, modify the Subscription object to include one or more of the
following environment variables in the spec section:

HTTP_PROXY

HTTPS_PROXY

NO_PROXY

For example:

Subscription object with proxy setting overrides

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: etcd-config-test
 namespace: openshift-operators
spec:
 config:
 env:
 - name: HTTP_PROXY
 value: test_http
 - name: HTTPS_PROXY
 value: test_https
 - name: NO_PROXY
 value: test
 channel: clusterwide-alpha
 installPlanApproval: Automatic
 name: etcd
 source: community-operators
 sourceNamespace: openshift-marketplace
 startingCSV: etcdoperator.v0.9.4-clusterwide

OpenShift Container Platform 4.11 Operators

114

NOTE

These environment variables can also be unset using an empty value to remove
any previously set cluster-wide or custom proxy settings.

OLM handles these environment variables as a unit; if at least one of them is set, all three are
considered overridden and the cluster-wide defaults are not used for the deployments of the
subscribed Operator.

4. Click Install to make the Operator available to the selected namespaces.

5. After the CSV for the Operator appears in the relevant namespace, you can verify that custom
proxy environment variables are set in the deployment. For example, using the CLI:

Example output

4.5.2. Injecting a custom CA certificate

When a cluster administrator adds a custom CA certificate to a cluster using a config map, the Cluster
Network Operator merges the user-provided certificates and system CA certificates into a single
bundle. You can inject this merged bundle into your Operator running on Operator Lifecycle Manager
(OLM), which is useful if you have a man-in-the-middle HTTPS proxy.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Custom CA certificate added to the cluster using a config map.

Desired Operator installed and running on OLM.

Procedure

1. Create an empty config map in the namespace where the subscription for your Operator exists
and include the following label:

$ oc get deployment -n openshift-operators \
 etcd-operator -o yaml \
 | grep -i "PROXY" -A 2

 - name: HTTP_PROXY
 value: test_http
 - name: HTTPS_PROXY
 value: test_https
 - name: NO_PROXY
 value: test
 image: quay.io/coreos/etcd-
operator@sha256:66a37fd61a06a43969854ee6d3e21088a98b93838e284a6086b13917f96b0
d9c
...

apiVersion: v1
kind: ConfigMap

CHAPTER 4. ADMINISTRATOR TASKS

115

1

2

1

2

3

4

5

6

Name of the config map.

Requests the Cluster Network Operator to inject the merged bundle.

After creating this config map, it is immediately populated with the certificate contents of the
merged bundle.

2. Update your the Subscription object to include a spec.config section that mounts the
trusted-ca config map as a volume to each container within a pod that requires a custom CA:

Add a config section if it does not exist.

Specify labels to match pods that are owned by the Operator.

Create a trusted-ca volume.

ca-bundle.crt is required as the config map key.

tls-ca-bundle.pem is required as the config map path.

Create a trusted-ca volume mount.

NOTE

metadata:
 name: trusted-ca 1
 labels:
 config.openshift.io/inject-trusted-cabundle: "true" 2

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: my-operator
spec:
 package: etcd
 channel: alpha
 config: 1
 selector:
 matchLabels:
 <labels_for_pods> 2
 volumes: 3
 - name: trusted-ca
 configMap:
 name: trusted-ca
 items:
 - key: ca-bundle.crt 4
 path: tls-ca-bundle.pem 5
 volumeMounts: 6
 - name: trusted-ca
 mountPath: /etc/pki/ca-trust/extracted/pem
 readOnly: true

OpenShift Container Platform 4.11 Operators

116

NOTE

Deployments of an Operator can fail to validate the authority and display a x509
certificate signed by unknown authority error. This error can occur even after
injecting a custom CA when using the subscription of an Operator. In this case,
you can set the mountPath as /etc/ssl/certs for trusted-ca by using the
subscription of an Operator.

4.6. VIEWING OPERATOR STATUS

Understanding the state of the system in Operator Lifecycle Manager (OLM) is important for making
decisions about and debugging problems with installed Operators. OLM provides insight into
subscriptions and related catalog sources regarding their state and actions performed. This helps users
better understand the healthiness of their Operators.

4.6.1. Operator subscription condition types

Subscriptions can report the following condition types:

Table 4.1. Subscription condition types

Condition Description

CatalogSourcesUnhealthy Some or all of the catalog sources to be used in resolution are
unhealthy.

InstallPlanMissing An install plan for a subscription is missing.

InstallPlanPending An install plan for a subscription is pending installation.

InstallPlanFailed An install plan for a subscription has failed.

ResolutionFailed The dependency resolution for a subscription has failed.

NOTE

Default OpenShift Container Platform cluster Operators are managed by the Cluster
Version Operator (CVO) and they do not have a Subscription object. Application
Operators are managed by Operator Lifecycle Manager (OLM) and they have a
Subscription object.

Additional resources

Refreshing failing subscriptions

4.6.2. Viewing Operator subscription status by using the CLI

You can view Operator subscription status by using the CLI.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

CHAPTER 4. ADMINISTRATOR TASKS

117

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-refresh-subs_olm-deleting-operators-from-a-cluster

You have installed the OpenShift CLI (oc).

Procedure

1. List Operator subscriptions:

2. Use the oc describe command to inspect a Subscription resource:

3. In the command output, find the Conditions section for the status of Operator subscription
condition types. In the following example, the CatalogSourcesUnhealthy condition type has a
status of false because all available catalog sources are healthy:

Example output

NOTE

Default OpenShift Container Platform cluster Operators are managed by the Cluster
Version Operator (CVO) and they do not have a Subscription object. Application
Operators are managed by Operator Lifecycle Manager (OLM) and they have a
Subscription object.

4.6.3. Viewing Operator catalog source status by using the CLI

You can view the status of an Operator catalog source by using the CLI.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. List the catalog sources in a namespace. For example, you can check the openshift-

$ oc get subs -n <operator_namespace>

$ oc describe sub <subscription_name> -n <operator_namespace>

Name: cluster-logging
Namespace: openshift-logging
Labels: operators.coreos.com/cluster-logging.openshift-logging=
Annotations: <none>
API Version: operators.coreos.com/v1alpha1
Kind: Subscription
...
Conditions:
 Last Transition Time: 2019-07-29T13:42:57Z
 Message: all available catalogsources are healthy
 Reason: AllCatalogSourcesHealthy
 Status: False
 Type: CatalogSourcesUnhealthy
...

OpenShift Container Platform 4.11 Operators

118

1. List the catalog sources in a namespace. For example, you can check the openshift-
marketplace namespace, which is used for cluster-wide catalog sources:

Example output

2. Use the oc describe command to get more details and status about a catalog source:

Example output

In the preceding example output, the last observed state is TRANSIENT_FAILURE. This state
indicates that there is a problem establishing a connection for the catalog source.

3. List the pods in the namespace where your catalog source was created:

Example output

$ oc get catalogsources -n openshift-marketplace

NAME DISPLAY TYPE PUBLISHER AGE
certified-operators Certified Operators grpc Red Hat 55m
community-operators Community Operators grpc Red Hat 55m
example-catalog Example Catalog grpc Example Org 2m25s
redhat-marketplace Red Hat Marketplace grpc Red Hat 55m
redhat-operators Red Hat Operators grpc Red Hat 55m

$ oc describe catalogsource example-catalog -n openshift-marketplace

Name: example-catalog
Namespace: openshift-marketplace
Labels: <none>
Annotations: operatorframework.io/managed-by: marketplace-operator
 target.workload.openshift.io/management: {"effect": "PreferredDuringScheduling"}
API Version: operators.coreos.com/v1alpha1
Kind: CatalogSource
...
Status:
 Connection State:
 Address: example-catalog.openshift-marketplace.svc:50051
 Last Connect: 2021-09-09T17:07:35Z
 Last Observed State: TRANSIENT_FAILURE
 Registry Service:
 Created At: 2021-09-09T17:05:45Z
 Port: 50051
 Protocol: grpc
 Service Name: example-catalog
 Service Namespace: openshift-marketplace
...

$ oc get pods -n openshift-marketplace

NAME READY STATUS RESTARTS AGE
certified-operators-cv9nn 1/1 Running 0 36m
community-operators-6v8lp 1/1 Running 0 36m

CHAPTER 4. ADMINISTRATOR TASKS

119

When a catalog source is created in a namespace, a pod for the catalog source is created in that
namespace. In the preceding example output, the status for the example-catalog-bwt8z pod is
ImagePullBackOff. This status indicates that there is an issue pulling the catalog source’s index
image.

4. Use the oc describe command to inspect a pod for more detailed information:

Example output

In the preceding example output, the error messages indicate that the catalog source’s index
image is failing to pull successfully because of an authorization issue. For example, the index
image might be stored in a registry that requires login credentials.

Additional resources

Operator Lifecycle Manager concepts and resources → Catalog source

gRPC documentation: States of Connectivity

Accessing images for Operators from private registries

4.7. MANAGING OPERATOR CONDITIONS

As a cluster administrator, you can manage Operator conditions by using Operator Lifecycle Manager

marketplace-operator-86bfc75f9b-jkgbc 1/1 Running 0 42m
example-catalog-bwt8z 0/1 ImagePullBackOff 0 3m55s
redhat-marketplace-57p8c 1/1 Running 0 36m
redhat-operators-smxx8 1/1 Running 0 36m

$ oc describe pod example-catalog-bwt8z -n openshift-marketplace

Name: example-catalog-bwt8z
Namespace: openshift-marketplace
Priority: 0
Node: ci-ln-jyryyg2-f76d1-ggdbq-worker-b-vsxjd/10.0.128.2
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 48s default-scheduler Successfully assigned openshift-
marketplace/example-catalog-bwt8z to ci-ln-jyryyf2-f76d1-fgdbq-worker-b-vsxjd
 Normal AddedInterface 47s multus Add eth0 [10.131.0.40/23] from
openshift-sdn
 Normal BackOff 20s (x2 over 46s) kubelet Back-off pulling image
"quay.io/example-org/example-catalog:v1"
 Warning Failed 20s (x2 over 46s) kubelet Error: ImagePullBackOff
 Normal Pulling 8s (x3 over 47s) kubelet Pulling image "quay.io/example-
org/example-catalog:v1"
 Warning Failed 8s (x3 over 47s) kubelet Failed to pull image
"quay.io/example-org/example-catalog:v1": rpc error: code = Unknown desc = reading
manifest v1 in quay.io/example-org/example-catalog: unauthorized: access to the requested
resource is not authorized
 Warning Failed 8s (x3 over 47s) kubelet Error: ErrImagePull

OpenShift Container Platform 4.11 Operators

120

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-catalogsource_olm-understanding-olm
https://grpc.github.io/grpc/core/md_doc_connectivity-semantics-and-api.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-accessing-images-private-registries_olm-managing-custom-catalogs

As a cluster administrator, you can manage Operator conditions by using Operator Lifecycle Manager
(OLM).

4.7.1. Overriding Operator conditions

As a cluster administrator, you might want to ignore a supported Operator condition reported by an
Operator. When present, Operator conditions in the Spec.Overrides array override the conditions in the
Spec.Conditions array, allowing cluster administrators to deal with situations where an Operator is
incorrectly reporting a state to Operator Lifecycle Manager (OLM).

NOTE

By default, the Spec.Overrides array is not present in an OperatorCondition object until
it is added by a cluster administrator. The Spec.Conditions array is also not present until
it is either added by a user or as a result of custom Operator logic.

For example, consider a known version of an Operator that always communicates that it is not
upgradeable. In this instance, you might want to upgrade the Operator despite the Operator
communicating that it is not upgradeable. This could be accomplished by overriding the Operator
condition by adding the condition type and status to the Spec.Overrides array in the
OperatorCondition object.

Prerequisites

An Operator with an OperatorCondition object, installed using OLM.

Procedure

1. Edit the OperatorCondition object for the Operator:

2. Add a Spec.Overrides array to the object:

Example Operator condition override

$ oc edit operatorcondition <name>

apiVersion: operators.coreos.com/v1
kind: OperatorCondition
metadata:
 name: my-operator
 namespace: operators
spec:
 overrides:
 - type: Upgradeable 1
 status: "True"
 reason: "upgradeIsSafe"
 message: "This is a known issue with the Operator where it always reports that it cannot
be upgraded."
 conditions:
 - type: Upgradeable
 status: "False"
 reason: "migration"
 message: "The operator is performing a migration."
 lastTransitionTime: "2020-08-24T23:15:55Z"

CHAPTER 4. ADMINISTRATOR TASKS

121

1 Allows the cluster administrator to change the upgrade readiness to True.

4.7.2. Updating your Operator to use Operator conditions

Operator Lifecycle Manager (OLM) automatically creates an OperatorCondition resource for each
ClusterServiceVersion resource that it reconciles. All service accounts in the CSV are granted the
RBAC to interact with the OperatorCondition owned by the Operator.

An Operator author can develop their Operator to use the operator-lib library such that, after the
Operator has been deployed by OLM, it can set its own conditions. For more resources about setting
Operator conditions as an Operator author, see the Enabling Operator conditions page.

4.7.2.1. Setting defaults

In an effort to remain backwards compatible, OLM treats the absence of an OperatorCondition
resource as opting out of the condition. Therefore, an Operator that opts in to using Operator conditions
should set default conditions before the ready probe for the pod is set to true. This provides the
Operator with a grace period to update the condition to the correct state.

4.7.3. Additional resources

Operator conditions

4.8. ALLOWING NON-CLUSTER ADMINISTRATORS TO INSTALL
OPERATORS

Cluster administrators can use Operator groups to allow regular users to install Operators.

Additional resources

Operator groups

4.8.1. Understanding Operator installation policy

Operators can require wide privileges to run, and the required privileges can change between versions.
Operator Lifecycle Manager (OLM) runs with cluster-admin privileges. By default, Operator authors
can specify any set of permissions in the cluster service version (CSV), and OLM consequently grants it
to the Operator.

To ensure that an Operator cannot achieve cluster-scoped privileges and that users cannot escalate
privileges using OLM, Cluster administrators can manually audit Operators before they are added to the
cluster. Cluster administrators are also provided tools for determining and constraining which actions are
allowed during an Operator installation or upgrade using service accounts.

Cluster administrators can associate an Operator group with a service account that has a set of
privileges granted to it. The service account sets policy on Operators to ensure they only run within
predetermined boundaries by using role-based access control (RBAC) rules. As a result, the Operator is
unable to do anything that is not explicitly permitted by those rules.

By employing Operator groups, users with enough privileges can install Operators with a limited scope.
As a result, more of the Operator Framework tools can safely be made available to more users, providing
a richer experience for building applications with Operators.

NOTE

OpenShift Container Platform 4.11 Operators

122

https://docs.openshift.com/container-platform/4.12/operators/operator_sdk/osdk-generating-csvs.html#osdk-operatorconditions_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-operatorconditions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-understanding-operatorgroups

NOTE

Role-based access control (RBAC) for Subscription objects is automatically granted to
every user with the edit or admin role in a namespace. However, RBAC does not exist on
OperatorGroup objects; this absence is what prevents regular users from installing
Operators. Preinstalling Operator groups is effectively what gives installation privileges.

Keep the following points in mind when associating an Operator group with a service account:

The APIService and CustomResourceDefinition resources are always created by OLM using
the cluster-admin role. A service account associated with an Operator group should never be
granted privileges to write these resources.

Any Operator tied to this Operator group is now confined to the permissions granted to the
specified service account. If the Operator asks for permissions that are outside the scope of the
service account, the install fails with appropriate errors so the cluster administrator can
troubleshoot and resolve the issue.

4.8.1.1. Installation scenarios

When determining whether an Operator can be installed or upgraded on a cluster, Operator Lifecycle
Manager (OLM) considers the following scenarios:

A cluster administrator creates a new Operator group and specifies a service account. All
Operator(s) associated with this Operator group are installed and run against the privileges
granted to the service account.

A cluster administrator creates a new Operator group and does not specify any service account.
OpenShift Container Platform maintains backward compatibility, so the default behavior
remains and Operator installs and upgrades are permitted.

For existing Operator groups that do not specify a service account, the default behavior
remains and Operator installs and upgrades are permitted.

A cluster administrator updates an existing Operator group and specifies a service account.
OLM allows the existing Operator to continue to run with their current privileges. When such an
existing Operator is going through an upgrade, it is reinstalled and run against the privileges
granted to the service account like any new Operator.

A service account specified by an Operator group changes by adding or removing permissions,
or the existing service account is swapped with a new one. When existing Operators go through
an upgrade, it is reinstalled and run against the privileges granted to the updated service
account like any new Operator.

A cluster administrator removes the service account from an Operator group. The default
behavior remains and Operator installs and upgrades are permitted.

4.8.1.2. Installation workflow

When an Operator group is tied to a service account and an Operator is installed or upgraded, Operator
Lifecycle Manager (OLM) uses the following workflow:

1. The given Subscription object is picked up by OLM.

2. OLM fetches the Operator group tied to this subscription.

CHAPTER 4. ADMINISTRATOR TASKS

123

3. OLM determines that the Operator group has a service account specified.

4. OLM creates a client scoped to the service account and uses the scoped client to install the
Operator. This ensures that any permission requested by the Operator is always confined to
that of the service account in the Operator group.

5. OLM creates a new service account with the set of permissions specified in the CSV and assigns
it to the Operator. The Operator runs as the assigned service account.

4.8.2. Scoping Operator installations

To provide scoping rules to Operator installations and upgrades on Operator Lifecycle Manager (OLM),
associate a service account with an Operator group.

Using this example, a cluster administrator can confine a set of Operators to a designated namespace.

Procedure

1. Create a new namespace:

2. Allocate permissions that you want the Operator(s) to be confined to. This involves creating a
new service account, relevant role(s), and role binding(s).

The following example grants the service account permissions to do anything in the designated
namespace for simplicity. In a production environment, you should create a more fine-grained
set of permissions:

$ cat <<EOF | oc create -f -
apiVersion: v1
kind: Namespace
metadata:
 name: scoped
EOF

$ cat <<EOF | oc create -f -
apiVersion: v1
kind: ServiceAccount
metadata:
 name: scoped
 namespace: scoped
EOF

$ cat <<EOF | oc create -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: scoped
 namespace: scoped
rules:
- apiGroups: ["*"]
 resources: ["*"]
 verbs: ["*"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding

OpenShift Container Platform 4.11 Operators

124

3. Create an OperatorGroup object in the designated namespace. This Operator group targets
the designated namespace to ensure that its tenancy is confined to it.
In addition, Operator groups allow a user to specify a service account. Specify the service
account created in the previous step:

Any Operator installed in the designated namespace is tied to this Operator group and
therefore to the service account specified.

WARNING

Operator Lifecycle Manager (OLM) creates the following cluster roles for
each Operator group:

<operatorgroup_name>-admin

<operatorgroup_name>-edit

<operatorgroup_name>-view

When you manually create an Operator group, you must specify a unique
name that does not conflict with the existing cluster roles or other Operator
groups on the cluster.

4. Create a Subscription object in the designated namespace to install an Operator:

metadata:
 name: scoped-bindings
 namespace: scoped
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: scoped
subjects:
- kind: ServiceAccount
 name: scoped
 namespace: scoped
EOF

$ cat <<EOF | oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: scoped
 namespace: scoped
spec:
 serviceAccountName: scoped
 targetNamespaces:
 - scoped
EOF



CHAPTER 4. ADMINISTRATOR TASKS

125

1

2

Specify a catalog source that already exists in the designated namespace or one that is in
the global catalog namespace.

Specify a namespace where the catalog source was created.

Any Operator tied to this Operator group is confined to the permissions granted to the
specified service account. If the Operator requests permissions that are outside the scope of
the service account, the installation fails with relevant errors.

4.8.2.1. Fine-grained permissions

Operator Lifecycle Manager (OLM) uses the service account specified in an Operator group to create or
update the following resources related to the Operator being installed:

ClusterServiceVersion

Subscription

Secret

ServiceAccount

Service

ClusterRole and ClusterRoleBinding

Role and RoleBinding

To confine Operators to a designated namespace, cluster administrators can start by granting the
following permissions to the service account:

NOTE

The following role is a generic example and additional rules might be required based on
the specific Operator.

$ cat <<EOF | oc create -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: etcd
 namespace: scoped
spec:
 channel: singlenamespace-alpha
 name: etcd
 source: <catalog_source_name> 1
 sourceNamespace: <catalog_source_namespace> 2
EOF

kind: Role
rules:
- apiGroups: ["operators.coreos.com"]
 resources: ["subscriptions", "clusterserviceversions"]
 verbs: ["get", "create", "update", "patch"]

OpenShift Container Platform 4.11 Operators

126

1 2

1

Add permissions to create other resources, such as deployments and pods shown here.

In addition, if any Operator specifies a pull secret, the following permissions must also be added:

Required to get the secret from the OLM namespace.

4.8.3. Operator catalog access control

When an Operator catalog is created in the global catalog namespace openshift-marketplace, the
catalog’s Operators are made available cluster-wide to all namespaces. A catalog created in other
namespaces only makes its Operators available in that same namespace of the catalog.

On clusters where non-cluster administrator users have been delegated Operator installation privileges,
cluster administrators might want to further control or restrict the set of Operators those users are
allowed to install. This can be achieved with the following actions:

1. Disable all of the default global catalogs.

2. Enable custom, curated catalogs in the same namespace where the relevant Operator groups
have been preinstalled.

Additional resources

Disabling the default OperatorHub sources

Adding a catalog source to a cluster

4.8.4. Troubleshooting permission failures

- apiGroups: [""]
 resources: ["services", "serviceaccounts"]
 verbs: ["get", "create", "update", "patch"]
- apiGroups: ["rbac.authorization.k8s.io"]
 resources: ["roles", "rolebindings"]
 verbs: ["get", "create", "update", "patch"]
- apiGroups: ["apps"] 1
 resources: ["deployments"]
 verbs: ["list", "watch", "get", "create", "update", "patch", "delete"]
- apiGroups: [""] 2
 resources: ["pods"]
 verbs: ["list", "watch", "get", "create", "update", "patch", "delete"]

kind: ClusterRole 1
rules:
- apiGroups: [""]
 resources: ["secrets"]
 verbs: ["get"]

kind: Role
rules:
- apiGroups: [""]
 resources: ["secrets"]
 verbs: ["create", "update", "patch"]

CHAPTER 4. ADMINISTRATOR TASKS

127

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-restricted-networks-operatorhub_olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-creating-catalog-from-index_olm-managing-custom-catalogs

If an Operator installation fails due to lack of permissions, identify the errors using the following
procedure.

Procedure

1. Review the Subscription object. Its status has an object reference installPlanRef that points
to the InstallPlan object that attempted to create the necessary [Cluster]Role[Binding]
object(s) for the Operator:

2. Check the status of the InstallPlan object for any errors:

The error message tells you:

The type of resource it failed to create, including the API group of the resource. In this case,
it was clusterroles in the rbac.authorization.k8s.io group.

The name of the resource.

The type of error: is forbidden tells you that the user does not have enough permission to
do the operation.

The name of the user who attempted to create or update the resource. In this case, it refers
to the service account specified in the Operator group.

The scope of the operation: cluster scope or not.
The user can add the missing permission to the service account and then iterate.

NOTE

apiVersion: operators.coreos.com/v1
kind: Subscription
metadata:
 name: etcd
 namespace: scoped
status:
 installPlanRef:
 apiVersion: operators.coreos.com/v1
 kind: InstallPlan
 name: install-4plp8
 namespace: scoped
 resourceVersion: "117359"
 uid: 2c1df80e-afea-11e9-bce3-5254009c9c23

apiVersion: operators.coreos.com/v1
kind: InstallPlan
status:
 conditions:
 - lastTransitionTime: "2019-07-26T21:13:10Z"
 lastUpdateTime: "2019-07-26T21:13:10Z"
 message: 'error creating clusterrole etcdoperator.v0.9.4-clusterwide-dsfx4:
clusterroles.rbac.authorization.k8s.io
 is forbidden: User "system:serviceaccount:scoped:scoped" cannot create resource
 "clusterroles" in API group "rbac.authorization.k8s.io" at the cluster scope'
 reason: InstallComponentFailed
 status: "False"
 type: Installed
 phase: Failed

OpenShift Container Platform 4.11 Operators

128

NOTE

Operator Lifecycle Manager (OLM) does not currently provide the complete
list of errors on the first try.

4.9. MANAGING CUSTOM CATALOGS

Cluster administrators and Operator catalog maintainers can create and manage custom catalogs
packaged using the bundle format on Operator Lifecycle Manager (OLM) in OpenShift Container
Platform.

IMPORTANT

Kubernetes periodically deprecates certain APIs that are removed in subsequent
releases. As a result, Operators are unable to use removed APIs starting with the version
of OpenShift Container Platform that uses the Kubernetes version that removed the API.

If your cluster is using custom catalogs, see Controlling Operator compatibility with
OpenShift Container Platform versions for more details about how Operator authors can
update their projects to help avoid workload issues and prevent incompatible upgrades.

Additional resources

Red Hat-provided Operator catalogs

4.9.1. Prerequisites

Install the opm CLI.

4.9.2. File-based catalogs

File-based catalogs are the latest iteration of the catalog format in Operator Lifecycle Manager (OLM).
It is a plain text-based (JSON or YAML) and declarative config evolution of the earlier SQLite database
format, and it is fully backwards compatible.

IMPORTANT

As of OpenShift Container Platform 4.11, the default Red Hat-provided Operator catalog
releases in the file-based catalog format. The default Red Hat-provided Operator
catalogs for OpenShift Container Platform 4.6 through 4.10 released in the deprecated
SQLite database format.

The opm subcommands, flags, and functionality related to the SQLite database format
are also deprecated and will be removed in a future release. The features are still
supported and must be used for catalogs that use the deprecated SQLite database
format.

Many of the opm subcommands and flags for working with the SQLite database format,
such as opm index prune, do not work with the file-based catalog format. For more
information about working with file-based catalogs, see Operator Framework packaging
format and Mirroring images for a disconnected installation using the oc-mirror plugin .

4.9.2.1. Creating a file-based catalog image

You can use the opm CLI to create a catalog image that uses the plain text file-based catalog format

CHAPTER 4. ADMINISTRATOR TASKS

129

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-bundle-format_olm-packaging-format
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-rh-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cli_tools/#cli-opm-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-file-based-catalogs_olm-packaging-format
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#installing-mirroring-disconnected

1

1

2

3

You can use the opm CLI to create a catalog image that uses the plain text file-based catalog format
(JSON or YAML), which replaces the deprecated SQLite database format.

Prerequisites

opm

podman version 1.9.3+

A bundle image built and pushed to a registry that supports Docker v2-2

Procedure

1. Initialize the catalog:

a. Create a directory for the catalog by running the following command:

b. Generate a Dockerfile that can build a catalog image by running the opm generate
dockerfile command:

Specify the official Red Hat base image by using the -i flag, otherwise the Dockerfile
uses the default upstream image.

The Dockerfile must be in the same parent directory as the catalog directory that you
created in the previous step:

Example directory structure

Parent directory

Catalog directory

Dockerfile generated by the opm generate dockerfile command

c. Populate the catalog with the package definition for your Operator by running the opm init
command:

$ mkdir <catalog_dir>

$ opm generate dockerfile <catalog_dir> \
 -i registry.redhat.io/openshift4/ose-operator-registry:v4.11 1

. 1
├── <catalog_dir> 2
└── <catalog_dir>.Dockerfile 3

$ opm init <operator_name> \ 1
 --default-channel=preview \ 2
 --description=./README.md \ 3
 --icon=./operator-icon.svg \ 4
 --output yaml \ 5
 > <catalog_dir>/index.yaml 6

OpenShift Container Platform 4.11 Operators

130

https://docs.docker.com/registry/spec/manifest-v2-2/

1

2

3

4

5

6

1

2

1

Operator, or package, name

Channel that subscriptions default to if unspecified

Path to the Operator’s README.md or other documentation

Path to the Operator’s icon

Output format: JSON or YAML

Path for creating the catalog configuration file

This command generates an olm.package declarative config blob in the specified catalog
configuration file.

2. Add a bundle to the catalog by running the opm render command:

Pull spec for the bundle image

Path to the catalog configuration file

NOTE

Channels must contain at least one bundle.

3. Add a channel entry for the bundle. For example, modify the following example to your
specifications, and add it to your <catalog_dir>/index.yaml file:

Example channel entry

Ensure that you include the period (.) after <operator_name> but before the v in the
version. Otherwise, the entry fails to pass the opm validate command.

4. Validate the file-based catalog:

a. Run the opm validate command against the catalog directory:

b. Check that the error code is 0:

$ opm render <registry>/<namespace>/<bundle_image_name>:<tag> \ 1
 --output=yaml \
 >> <catalog_dir>/index.yaml 2

schema: olm.channel
package: <operator_name>
name: preview
entries:
 - name: <operator_name>.v0.1.0 1

$ opm validate <catalog_dir>

CHAPTER 4. ADMINISTRATOR TASKS

131

Example output

5. Build the catalog image by running the podman build command:

6. Push the catalog image to a registry:

a. If required, authenticate with your target registry by running the podman login command:

b. Push the catalog image by running the podman push command:

Additional resources

opm CLI reference

4.9.2.2. Updating or filtering a file-based catalog image

You can use the opm CLI to update or filter (also known as prune) a catalog image that uses the file-
based catalog format. By extracting and modifying the contents of an existing catalog image, you can
update, add, or remove one or more Operator package entries from the catalog. You can then rebuild
the image as an updated version of the catalog.

NOTE

Alternatively, if you already have a catalog image on a mirror registry, you can use the oc-
mirror CLI plugin to automatically prune any removed images from an updated source
version of that catalog image while mirroring it to the target registry.

For more information about the oc-mirror plugin and this use case, see the "Keeping your
mirror registry content updated" section, and specifically the "Pruning images"
subsection, of "Mirroring images for a disconnected installation using the oc-mirror
plugin".

Prerequisites

opm CLI.

podman version 1.9.3+.

A file-based catalog image.

A catalog directory structure recently initialized on your workstation related to this catalog.

$ echo $?

0

$ podman build . \
 -f <catalog_dir>.Dockerfile \
 -t <registry>/<namespace>/<catalog_image_name>:<tag>

$ podman login <registry>

$ podman push <registry>/<namespace>/<catalog_image_name>:<tag>

OpenShift Container Platform 4.11 Operators

132

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cli_tools/#cli-opm-ref

If you do not have an initialized catalog directory, create the directory and generate the
Dockerfile. For more information, see the "Initialize the catalog" step from the "Creating a file-
based catalog image" procedure.

Procedure

1. Extract the contents of the catalog image in YAML format to an index.yaml file in your catalog
directory:

NOTE

Alternatively, you can use the -o json flag to output in JSON format.

2. Modify the contents of the resulting index.yaml file to your specifications by updating, adding,
or removing one or more Operator package entries.

IMPORTANT

After a bundle has been published in a catalog, assume that one of your users has
installed it. Ensure that all previously published bundles in a catalog have an
update path to the current or newer channel head to avoid stranding users that
have that version installed.

For example, if you wanted to remove an Operator package, the following example lists a set of
olm.package, olm.channel, and olm.bundle blobs which must be deleted to remove the
package from the catalog:

Example 4.1. Example removed entries

$ opm render <registry>/<namespace>/<catalog_image_name>:<tag> \
 -o yaml > <catalog_dir>/index.yaml

defaultChannel: release-2.7
icon:
 base64data: <base64_string>
 mediatype: image/svg+xml
name: example-operator
schema: olm.package

entries:
- name: example-operator.v2.7.0
 skipRange: '>=2.6.0 <2.7.0'
- name: example-operator.v2.7.1
 replaces: example-operator.v2.7.0
 skipRange: '>=2.6.0 <2.7.1'
- name: example-operator.v2.7.2
 replaces: example-operator.v2.7.1
 skipRange: '>=2.6.0 <2.7.2'
- name: example-operator.v2.7.3
 replaces: example-operator.v2.7.2
 skipRange: '>=2.6.0 <2.7.3'
- name: example-operator.v2.7.4

CHAPTER 4. ADMINISTRATOR TASKS

133

3. Save your changes to the index.yaml file.

4. Validate the catalog:

5. Rebuild the catalog:

6. Push the updated catalog image to a registry:

Verification

 replaces: example-operator.v2.7.3
 skipRange: '>=2.6.0 <2.7.4'
name: release-2.7
package: example-operator
schema: olm.channel

image: example.com/example-inc/example-operator-bundle@sha256:<digest>
name: example-operator.v2.7.0
package: example-operator
properties:
- type: olm.gvk
 value:
 group: example-group.example.io
 kind: MyObject
 version: v1alpha1
- type: olm.gvk
 value:
 group: example-group.example.io
 kind: MyOtherObject
 version: v1beta1
- type: olm.package
 value:
 packageName: example-operator
 version: 2.7.0
- type: olm.bundle.object
 value:
 data: <base64_string>
- type: olm.bundle.object
 value:
 data: <base64_string>
relatedImages:
- image: example.com/example-inc/example-related-image@sha256:<digest>
 name: example-related-image
schema: olm.bundle

$ opm validate <catalog_dir>

$ podman build . \
 -f <catalog_dir>.Dockerfile \
 -t <registry>/<namespace>/<catalog_image_name>:<tag>

$ podman push <registry>/<namespace>/<catalog_image_name>:<tag>

OpenShift Container Platform 4.11 Operators

134

1

1. In the web console, navigate to the OperatorHub configuration resource in the Administration
→ Cluster Settings → Configuration page.

2. Add the catalog source or update the existing catalog source to use the pull spec for your
updated catalog image.
For more information, see "Adding a catalog source to a cluster" in the "Additional resources" of
this section.

3. After the catalog source is in a READY state, navigate to the Operators → OperatorHub page
and check that the changes you made are reflected in the list of Operators.

Additional resources

Mirroring images for a disconnected installation using the oc-mirror plugin → Keeping your
mirror registry content updated

Adding a catalog source to a cluster

4.9.3. SQLite-based catalogs

IMPORTANT

The SQLite database format for Operator catalogs is a deprecated feature. Deprecated
functionality is still included in OpenShift Container Platform and continues to be
supported; however, it will be removed in a future release of this product and is not
recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

4.9.3.1. Creating a SQLite-based index image

You can create an index image based on the SQLite database format by using the opm CLI.

Prerequisites

opm

podman version 1.9.3+

A bundle image built and pushed to a registry that supports Docker v2-2

Procedure

1. Start a new index:

Comma-separated list of bundle images to add to the index.

$ opm index add \
 --bundles <registry>/<namespace>/<bundle_image_name>:<tag> \ 1
 --tag <registry>/<namespace>/<index_image_name>:<tag> \ 2
 [--binary-image <registry_base_image>] 3

CHAPTER 4. ADMINISTRATOR TASKS

135

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#updating-mirror-registry-content
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-creating-catalog-from-index_olm-restricted-networks
https://docs.docker.com/registry/spec/manifest-v2-2/

2

3

1

2

3

4

The image tag that you want the index image to have.

Optional: An alternative registry base image to use for serving the catalog.

2. Push the index image to a registry.

a. If required, authenticate with your target registry:

b. Push the index image:

4.9.3.2. Updating a SQLite-based index image

After configuring OperatorHub to use a catalog source that references a custom index image, cluster
administrators can keep the available Operators on their cluster up to date by adding bundle images to
the index image.

You can update an existing index image using the opm index add command.

Prerequisites

opm

podman version 1.9.3+

An index image built and pushed to a registry.

An existing catalog source referencing the index image.

Procedure

1. Update the existing index by adding bundle images:

The --bundles flag specifies a comma-separated list of additional bundle images to add to
the index.

The --from-index flag specifies the previously pushed index.

The --tag flag specifies the image tag to apply to the updated index image.

The --pull-tool flag specifies the tool used to pull container images.

where:

$ podman login <registry>

$ podman push <registry>/<namespace>/<index_image_name>:<tag>

$ opm index add \
 --bundles <registry>/<namespace>/<new_bundle_image>@sha256:<digest> \ 1
 --from-index <registry>/<namespace>/<existing_index_image>:<existing_tag> \ 2
 --tag <registry>/<namespace>/<existing_index_image>:<updated_tag> \ 3
 --pull-tool podman 4

OpenShift Container Platform 4.11 Operators

136

<registry>

Specifies the hostname of the registry, such as quay.io or mirror.example.com.

<namespace>

Specifies the namespace of the registry, such as ocs-dev or abc.

<new_bundle_image>

Specifies the new bundle image to add to the registry, such as ocs-operator.

<digest>

Specifies the SHA image ID, or digest, of the bundle image, such as
c7f11097a628f092d8bad148406aa0e0951094a03445fd4bc0775431ef683a41.

<existing_index_image>

Specifies the previously pushed image, such as abc-redhat-operator-index.

<existing_tag>

Specifies a previously pushed image tag, such as 4.11.

<updated_tag>

Specifies the image tag to apply to the updated index image, such as 4.11.1.

Example command

2. Push the updated index image:

3. After Operator Lifecycle Manager (OLM) automatically polls the index image referenced in the
catalog source at its regular interval, verify that the new packages are successfully added:

4.9.3.3. Filtering a SQLite-based index image

An index image, based on the Operator bundle format, is a containerized snapshot of an Operator
catalog. You can filter, or prune, an index of all but a specified list of packages, which creates a copy of
the source index containing only the Operators that you want.

Prerequisites

podman version 1.9.3+

grpcurl (third-party command-line tool)

opm

Access to a registry that supports Docker v2-2

$ opm index add \
 --bundles quay.io/ocs-dev/ocs-
operator@sha256:c7f11097a628f092d8bad148406aa0e0951094a03445fd4bc0775431ef683a
41 \
 --from-index mirror.example.com/abc/abc-redhat-operator-index:4.11 \
 --tag mirror.example.com/abc/abc-redhat-operator-index:4.11.1 \
 --pull-tool podman

$ podman push <registry>/<namespace>/<existing_index_image>:<updated_tag>

$ oc get packagemanifests -n openshift-marketplace

CHAPTER 4. ADMINISTRATOR TASKS

137

https://github.com/fullstorydev/grpcurl
https://docs.docker.com/registry/spec/manifest-v2-2/

Procedure

1. Authenticate with your target registry:

2. Determine the list of packages you want to include in your pruned index.

a. Run the source index image that you want to prune in a container. For example:

Example output

b. In a separate terminal session, use the grpcurl command to get a list of the packages
provided by the index:

c. Inspect the packages.out file and identify which package names from this list you want to
keep in your pruned index. For example:

Example snippets of packages list

d. In the terminal session where you executed the podman run command, press Ctrl and C to
stop the container process.

3. Run the following command to prune the source index of all but the specified packages:

$ podman login <target_registry>

$ podman run -p50051:50051 \
 -it registry.redhat.io/redhat/redhat-operator-index:v4.11

Trying to pull registry.redhat.io/redhat/redhat-operator-index:v4.11...
Getting image source signatures
Copying blob ae8a0c23f5b1 done
...
INFO[0000] serving registry database=/database/index.db port=50051

$ grpcurl -plaintext localhost:50051 api.Registry/ListPackages > packages.out

...
{
 "name": "advanced-cluster-management"
}
...
{
 "name": "jaeger-product"
}
...
{
{
 "name": "quay-operator"
}
...

$ opm index prune \
 -f registry.redhat.io/redhat/redhat-operator-index:v4.11 \ 1
 -p advanced-cluster-management,jaeger-product,quay-operator \ 2

OpenShift Container Platform 4.11 Operators

138

1

2

3

4

Index to prune.

Comma-separated list of packages to keep.

Required only for IBM Power and IBM Z images: Operator Registry base image with the tag
that matches the target OpenShift Container Platform cluster major and minor version.

Custom tag for new index image being built.

4. Run the following command to push the new index image to your target registry:

where <namespace> is any existing namespace on the registry.

4.9.4. Adding a catalog source to a cluster

Adding a catalog source to an OpenShift Container Platform cluster enables the discovery and
installation of Operators for users. Cluster administrators can create a CatalogSource object that
references an index image. OperatorHub uses catalog sources to populate the user interface.

TIP

Alternatively, you can use the web console to manage catalog sources. From the Administration →
Cluster Settings → Configuration → OperatorHub page, click the Sources tab, where you can create,
update, delete, disable, and enable individual sources.

Prerequisites

An index image built and pushed to a registry.

Procedure

1. Create a CatalogSource object that references your index image.

a. Modify the following to your specifications and save it as a catalogSource.yaml file:

 [-i registry.redhat.io/openshift4/ose-operator-registry:v4.9] \ 3
 -t <target_registry>:<port>/<namespace>/redhat-operator-index:v4.11 4

$ podman push <target_registry>:<port>/<namespace>/redhat-operator-index:v4.11

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: my-operator-catalog
 namespace: openshift-marketplace 1
 annotations:
 olm.catalogImageTemplate: 2
 "<registry>/<namespace>/<index_image_name>:v{kube_major_version}.
{kube_minor_version}.{kube_patch_version}"
spec:
 sourceType: grpc
 image: <registry>/<namespace>/<index_image_name>:<tag> 3
 displayName: My Operator Catalog

CHAPTER 4. ADMINISTRATOR TASKS

139

1

2

3

4

5

If you want the catalog source to be available globally to users in all namespaces,
specify the openshift-marketplace namespace. Otherwise, you can specify a different
namespace for the catalog to be scoped and available only for that namespace.

Optional: Set the olm.catalogImageTemplate annotation to your index image name
and use one or more of the Kubernetes cluster version variables as shown when
constructing the template for the image tag.

Specify your index image. If you specify a tag after the image name, for example
:v4.11, the catalog source pod uses an image pull policy of Always, meaning the pod
always pulls the image prior to starting the container. If you specify a digest, for
example @sha256:<id>, the image pull policy is IfNotPresent, meaning the pod pulls
the image only if it does not already exist on the node.

Specify your name or an organization name publishing the catalog.

Catalog sources can automatically check for new versions to keep up to date.

b. Use the file to create the CatalogSource object:

2. Verify the following resources are created successfully.

a. Check the pods:

Example output

b. Check the catalog source:

Example output

c. Check the package manifest:

 publisher: <publisher_name> 4
 updateStrategy:
 registryPoll: 5
 interval: 30m

$ oc apply -f catalogSource.yaml

$ oc get pods -n openshift-marketplace

NAME READY STATUS RESTARTS AGE
my-operator-catalog-6njx6 1/1 Running 0 28s
marketplace-operator-d9f549946-96sgr 1/1 Running 0 26h

$ oc get catalogsource -n openshift-marketplace

NAME DISPLAY TYPE PUBLISHER AGE
my-operator-catalog My Operator Catalog grpc 5s

$ oc get packagemanifest -n openshift-marketplace

OpenShift Container Platform 4.11 Operators

140

Example output

You can now install the Operators from the OperatorHub page on your OpenShift Container Platform
web console.

Additional resources

Operator Lifecycle Manager concepts and resources → Catalog source

Accessing images for Operators from private registries

Image pull policy

4.9.5. Accessing images for Operators from private registries

If certain images relevant to Operators managed by Operator Lifecycle Manager (OLM) are hosted in
an authenticated container image registry, also known as a private registry, OLM and OperatorHub are
unable to pull the images by default. To enable access, you can create a pull secret that contains the
authentication credentials for the registry. By referencing one or more pull secrets in a catalog source,
OLM can handle placing the secrets in the Operator and catalog namespace to allow installation.

Other images required by an Operator or its Operands might require access to private registries as well.
OLM does not handle placing the secrets in target tenant namespaces for this scenario, but
authentication credentials can be added to the global cluster pull secret or individual namespace service
accounts to enable the required access.

The following types of images should be considered when determining whether Operators managed by
OLM have appropriate pull access:

Index images

A CatalogSource object can reference an index image, which use the Operator bundle format and
are catalog sources packaged as container images hosted in images registries. If an index image is
hosted in a private registry, a secret can be used to enable pull access.

Bundle images

Operator bundle images are metadata and manifests packaged as container images that represent a
unique version of an Operator. If any bundle images referenced in a catalog source are hosted in one
or more private registries, a secret can be used to enable pull access.

Operator and Operand images

If an Operator installed from a catalog source uses a private image, either for the Operator image
itself or one of the Operand images it watches, the Operator will fail to install because the
deployment will not have access to the required registry authentication. Referencing secrets in a
catalog source does not enable OLM to place the secrets in target tenant namespaces in which
Operands are installed.
Instead, the authentication details can be added to the global cluster pull secret in the openshift-
config namespace, which provides access to all namespaces on the cluster. Alternatively, if providing
access to the entire cluster is not permissible, the pull secret can be added to the default service
accounts of the target tenant namespaces.

Prerequisites

NAME CATALOG AGE
jaeger-product My Operator Catalog 93s

CHAPTER 4. ADMINISTRATOR TASKS

141

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-catalogsource_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-accessing-images-private-registries_olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/images/#image-pull-policy

At least one of the following hosted in a private registry:

An index image or catalog image.

An Operator bundle image.

An Operator or Operand image.

Procedure

1. Create a secret for each required private registry.

a. Log in to the private registry to create or update your registry credentials file:

NOTE

The file path of your registry credentials can be different depending on the
container tool used to log in to the registry. For the podman CLI, the default
location is ${XDG_RUNTIME_DIR}/containers/auth.json. For the docker
CLI, the default location is /root/.docker/config.json.

b. It is recommended to include credentials for only one registry per secret, and manage
credentials for multiple registries in separate secrets. Multiple secrets can be included in a
CatalogSource object in later steps, and OpenShift Container Platform will merge the
secrets into a single virtual credentials file for use during an image pull.
A registry credentials file can, by default, store details for more than one registry or for
multiple repositories in one registry. Verify the current contents of your file. For example:

File storing credentials for multiple registries

Because this file is used to create secrets in later steps, ensure that you are storing details
for only one registry per file. This can be accomplished by using either of the following
methods:

$ podman login <registry>:<port>

{
 "auths": {
 "registry.redhat.io": {
 "auth": "FrNHNydQXdzclNqdg=="
 },
 "quay.io": {
 "auth": "fegdsRib21iMQ=="
 },
 "https://quay.io/my-namespace/my-user/my-image": {
 "auth": "eWfjwsDdfsa221=="
 },
 "https://quay.io/my-namespace/my-user": {
 "auth": "feFweDdscw34rR=="
 },
 "https://quay.io/my-namespace": {
 "auth": "frwEews4fescyq=="
 }
 }
}

OpenShift Container Platform 4.11 Operators

142

Use the podman logout <registry> command to remove credentials for additional
registries until only the one registry you want remains.

Edit your registry credentials file and separate the registry details to be stored in
multiple files. For example:

File storing credentials for one registry

File storing credentials for another registry

c. Create a secret in the openshift-marketplace namespace that contains the authentication
credentials for a private registry:

Repeat this step to create additional secrets for any other required private registries,
updating the --from-file flag to specify another registry credentials file path.

2. Create or update an existing CatalogSource object to reference one or more secrets:

{
 "auths": {
 "registry.redhat.io": {
 "auth": "FrNHNydQXdzclNqdg=="
 }
 }
}

{
 "auths": {
 "quay.io": {
 "auth": "Xd2lhdsbnRib21iMQ=="
 }
 }
}

$ oc create secret generic <secret_name> \
 -n openshift-marketplace \
 --from-file=.dockerconfigjson=<path/to/registry/credentials> \
 --type=kubernetes.io/dockerconfigjson

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: my-operator-catalog
 namespace: openshift-marketplace
spec:
 sourceType: grpc
 secrets: 1
 - "<secret_name_1>"
 - "<secret_name_2>"
 image: <registry>:<port>/<namespace>/<image>:<tag>
 displayName: My Operator Catalog
 publisher: <publisher_name>

CHAPTER 4. ADMINISTRATOR TASKS

143

1

1

Add a spec.secrets section and specify any required secrets.

3. If any Operator or Operand images that are referenced by a subscribed Operator require access
to a private registry, you can either provide access to all namespaces in the cluster, or individual
target tenant namespaces.

To provide access to all namespaces in the cluster, add authentication details to the global
cluster pull secret in the openshift-config namespace.

WARNING

Cluster resources must adjust to the new global pull secret, which can
temporarily limit the usability of the cluster.

a. Extract the .dockerconfigjson file from the global pull secret:

b. Update the .dockerconfigjson file with your authentication credentials for the
required private registry or registries and save it as a new file:

Replace <registry>:<port>/<namespace> with the private registry details and
<token> with your authentication credentials.

c. Update the global pull secret with the new file:

To update an individual namespace, add a pull secret to the service account for the
Operator that requires access in the target tenant namespace.

a. Recreate the secret that you created for the openshift-marketplace in the tenant
namespace:

 updateStrategy:
 registryPoll:
 interval: 30m



$ oc extract secret/pull-secret -n openshift-config --confirm

$ cat .dockerconfigjson | \
 jq --compact-output '.auths["<registry>:<port>/<namespace>/"] |= . + {"auth":"
<token>"}' \ 1
 > new_dockerconfigjson

$ oc set data secret/pull-secret -n openshift-config \
 --from-file=.dockerconfigjson=new_dockerconfigjson

$ oc create secret generic <secret_name> \
 -n <tenant_namespace> \
 --from-file=.dockerconfigjson=<path/to/registry/credentials> \
 --type=kubernetes.io/dockerconfigjson

OpenShift Container Platform 4.11 Operators

144

1

1

b. Verify the name of the service account for the Operator by searching the tenant
namespace:

If the Operator was installed in an individual namespace, search that namespace. If
the Operator was installed for all namespaces, search the openshift-operators
namespace.

Example output

Service account for an installed etcd Operator.

c. Link the secret to the service account for the Operator:

Additional resources

See What is a secret? for more information on the types of secrets, including those used for
registry credentials.

See Updating the global cluster pull secret for more details on the impact of changing this
secret.

See Allowing pods to reference images from other secured registries for more details on linking
pull secrets to service accounts per namespace.

4.9.6. Disabling the default OperatorHub sources

Operator catalogs that source content provided by Red Hat and community projects are configured for
OperatorHub by default during an OpenShift Container Platform installation. As a cluster administrator,
you can disable the set of default catalogs.

Procedure

Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the
OperatorHub object:

TIP

$ oc get sa -n <tenant_namespace> 1

NAME SECRETS AGE
builder 2 6m1s
default 2 6m1s
deployer 2 6m1s
etcd-operator 2 5m18s 1

$ oc secrets link <operator_sa> \
 -n <tenant_namespace> \
 <secret_name> \
 --for=pull

$ oc patch OperatorHub cluster --type json \
 -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

CHAPTER 4. ADMINISTRATOR TASKS

145

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cicd/#builds-secrets-overview_creating-build-inputs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/images/#images-update-global-pull-secret_using-image-pull-secrets
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/images/#images-allow-pods-to-reference-images-from-secure-registries_using-image-pull-secrets

TIP

Alternatively, you can use the web console to manage catalog sources. From the Administration →
Cluster Settings → Configuration → OperatorHub page, click the Sources tab, where you can create,
update, delete, disable, and enable individual sources.

4.9.7. Removing custom catalogs

As a cluster administrator, you can remove custom Operator catalogs that have been previously added
to your cluster by deleting the related catalog source.

Procedure

1. In the Administrator perspective of the web console, navigate to Administration → Cluster
Settings.

2. Click the Configuration tab, and then click OperatorHub.

3. Click the Sources tab.

4. Select the Options menu for the catalog that you want to remove, and then click Delete
CatalogSource.

4.10. USING OPERATOR LIFECYCLE MANAGER ON RESTRICTED
NETWORKS

For OpenShift Container Platform clusters that are installed on restricted networks, also known as
disconnected clusters, Operator Lifecycle Manager (OLM) by default cannot access the Red Hat-
provided OperatorHub sources hosted on remote registries because those remote sources require full
internet connectivity.

However, as a cluster administrator you can still enable your cluster to use OLM in a restricted network if
you have a workstation that has full internet access. The workstation, which requires full internet access
to pull the remote OperatorHub content, is used to prepare local mirrors of the remote sources, and
push the content to a mirror registry.

The mirror registry can be located on a bastion host, which requires connectivity to both your
workstation and the disconnected cluster, or a completely disconnected, or airgapped, host, which
requires removable media to physically move the mirrored content to the disconnected environment.

This guide describes the following process that is required to enable OLM in restricted networks:

Disable the default remote OperatorHub sources for OLM.

Use a workstation with full internet access to create and push local mirrors of the OperatorHub
content to a mirror registry.

Configure OLM to install and manage Operators from local sources on the mirror registry
instead of the default remote sources.

After enabling OLM in a restricted network, you can continue to use your unrestricted workstation to
keep your local OperatorHub sources updated as newer versions of Operators are released.

IMPORTANT

OpenShift Container Platform 4.11 Operators

146

IMPORTANT

While OLM can manage Operators from local sources, the ability for a given Operator to
run successfully in a restricted network still depends on the Operator itself meeting the
following criteria:

List any related images, or other container images that the Operator might
require to perform their functions, in the relatedImages parameter of its
ClusterServiceVersion (CSV) object.

Reference all specified images by a digest (SHA) and not by a tag.

You can search software on the Red Hat Ecosystem Catalog for a list of Red Hat
Operators that support running in disconnected mode by filtering with the following
selections:

Type Containerized application

Deployme
nt method

Operator

Infrastruct
ure
features

Disconnected

Additional resources

Red Hat-provided Operator catalogs

Enabling your Operator for restricted network environments

4.10.1. Prerequisites

Log in to your OpenShift Container Platform cluster as a user with cluster-admin privileges.

NOTE

If you are using OLM in a restricted network on IBM Z, you must have at least 12 GB
allocated to the directory where you place your registry.

4.10.2. Disabling the default OperatorHub sources

Operator catalogs that source content provided by Red Hat and community projects are configured for
OperatorHub by default during an OpenShift Container Platform installation. In a restricted network
environment, you must disable the default catalogs as a cluster administrator. You can then configure
OperatorHub to use local catalog sources.

Procedure

Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the
OperatorHub object:

CHAPTER 4. ADMINISTRATOR TASKS

147

https://catalog.redhat.com/software/search?p=1&deployed_as=Operator&type=Containerized application&badges_and_features=Disconnected
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-rh-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-enabling-operator-for-restricted-network_osdk-generating-csvs

TIP

Alternatively, you can use the web console to manage catalog sources. From the Administration →
Cluster Settings → Configuration → OperatorHub page, click the Sources tab, where you can create,
update, delete, disable, and enable individual sources.

4.10.3. Mirroring an Operator catalog

For instructions about mirroring Operator catalogs for use with disconnected clusters, see Installing →
Mirroring images for a disconnected installation.

IMPORTANT

As of OpenShift Container Platform 4.11, the default Red Hat-provided Operator catalog
releases in the file-based catalog format. The default Red Hat-provided Operator
catalogs for OpenShift Container Platform 4.6 through 4.10 released in the deprecated
SQLite database format.

The opm subcommands, flags, and functionality related to the SQLite database format
are also deprecated and will be removed in a future release. The features are still
supported and must be used for catalogs that use the deprecated SQLite database
format.

Many of the opm subcommands and flags for working with the SQLite database format,
such as opm index prune, do not work with the file-based catalog format. For more
information about working with file-based catalogs, see Operator Framework packaging
format, Managing custom catalogs, and Mirroring images for a disconnected installation
using the oc-mirror plugin.

4.10.4. Adding a catalog source to a cluster

Adding a catalog source to an OpenShift Container Platform cluster enables the discovery and
installation of Operators for users. Cluster administrators can create a CatalogSource object that
references an index image. OperatorHub uses catalog sources to populate the user interface.

TIP

Alternatively, you can use the web console to manage catalog sources. From the Administration →
Cluster Settings → Configuration → OperatorHub page, click the Sources tab, where you can create,
update, delete, disable, and enable individual sources.

Prerequisites

An index image built and pushed to a registry.

Procedure

1. Create a CatalogSource object that references your index image. If you used the oc adm
catalog mirror command to mirror your catalog to a target registry, you can use the generated
catalogSource.yaml file in your manifests directory as a starting point.

a. Modify the following to your specifications and save it as a catalogSource.yaml file:

$ oc patch OperatorHub cluster --type json \
 -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

OpenShift Container Platform 4.11 Operators

148

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#olm-mirroring-catalog_installing-mirroring-installation-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-file-based-catalogs_olm-packaging-format
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-managing-custom-catalogs-fb
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#installing-mirroring-disconnected

1

2

3

4

5

a. Modify the following to your specifications and save it as a catalogSource.yaml file:

If you mirrored content to local files before uploading to a registry, remove any
backslash (/) characters from the metadata.name field to avoid an "invalid resource
name" error when you create the object.

If you want the catalog source to be available globally to users in all namespaces,
specify the openshift-marketplace namespace. Otherwise, you can specify a different
namespace for the catalog to be scoped and available only for that namespace.

Specify your index image. If you specify a tag after the image name, for example
:v4.11, the catalog source pod uses an image pull policy of Always, meaning the pod
always pulls the image prior to starting the container. If you specify a digest, for
example @sha256:<id>, the image pull policy is IfNotPresent, meaning the pod pulls
the image only if it does not already exist on the node.

Specify your name or an organization name publishing the catalog.

Catalog sources can automatically check for new versions to keep up to date.

b. Use the file to create the CatalogSource object:

2. Verify the following resources are created successfully.

a. Check the pods:

Example output

b. Check the catalog source:

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: my-operator-catalog 1
 namespace: openshift-marketplace 2
spec:
 sourceType: grpc
 image: <registry>/<namespace>/redhat-operator-index:v4.11 3
 displayName: My Operator Catalog
 publisher: <publisher_name> 4
 updateStrategy:
 registryPoll: 5
 interval: 30m

$ oc apply -f catalogSource.yaml

$ oc get pods -n openshift-marketplace

NAME READY STATUS RESTARTS AGE
my-operator-catalog-6njx6 1/1 Running 0 28s
marketplace-operator-d9f549946-96sgr 1/1 Running 0 26h

$ oc get catalogsource -n openshift-marketplace

CHAPTER 4. ADMINISTRATOR TASKS

149

Example output

c. Check the package manifest:

Example output

You can now install the Operators from the OperatorHub page on your OpenShift Container Platform
web console.

Additional resources

Accessing images for Operators from private registries

Image template for custom catalog sources

Image pull policy

4.11. CATALOG SOURCE POD SCHEDULING

When an Operator Lifecycle Manager (OLM) catalog source of source type grpc defines a spec.image,
the Catalog Operator creates a pod that serves the defined image content. By default, this pod defines
the following in its spec:

Only the kubernetes.io/os=linux node selector

No priority class name

No tolerations

As an administrator, you can override these values by modifying fields in the CatalogSource object’s
optional spec.grpcPodConfig section.

Additional resources

OLM concepts and resources → Catalog source

4.11.1. Overriding the node selector for catalog source pods

Prequisites

CatalogSource object of source type grpc with spec.image defined

Procedure

Edit the CatalogSource object and add or modify the spec.grpcPodConfig section to include

NAME DISPLAY TYPE PUBLISHER AGE
my-operator-catalog My Operator Catalog grpc 5s

$ oc get packagemanifest -n openshift-marketplace

NAME CATALOG AGE
jaeger-product My Operator Catalog 93s

OpenShift Container Platform 4.11 Operators

150

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-accessing-images-private-registries_olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-catalogsource-image-template_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/images/#image-pull-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-catalogsource_olm-understanding-olm

Edit the CatalogSource object and add or modify the spec.grpcPodConfig section to include
the following:

where <label> is the label for the node selector that you want catalog source pods to use for
scheduling.

Additional resources

Placing pods on specific nodes using node selectors

4.11.2. Overriding the priority class name for catalog source pods

Prequisites

CatalogSource object of source type grpc with spec.image defined

Procedure

Edit the CatalogSource object and add or modify the spec.grpcPodConfig section to include
the following:

where <priority_class> is one of the following:

One of the default priority classes provided by Kubernetes: system-cluster-critical or
system-node-critical

An empty set ("") to assign the default priority

A pre-existing and custom defined priority class

NOTE

Previously, the only pod scheduling parameter that could be overriden was
priorityClassName. This was done by adding the operatorframework.io/priorityclass
annotation to the CatalogSource object. For example:

If a CatalogSource object defines both the annotation and
spec.grpcPodConfig.priorityClassName, the annotation takes precedence over the
configuration parameter.

 grpcPodConfig:
 nodeSelector:
 custom_label: <label>

 grpcPodConfig:
 priorityClassName: <priority_class>

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: example-catalog
 namespace: openshift-marketplace
 annotations:
 operatorframework.io/priorityclass: system-cluster-critical

CHAPTER 4. ADMINISTRATOR TASKS

151

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-scheduler-node-selectors

Additional resources

Pod priority classes

4.11.3. Overriding tolerations for catalog source pods

Prequisites

CatalogSource object of source type grpc with spec.image defined

Procedure

Edit the CatalogSource object and add or modify the spec.grpcPodConfig section to include
the following:

Additional resources

Understanding taints and tolerations

 grpcPodConfig:
 tolerations:
 - key: "<key_name>"
 operator: "<operator_type>"
 value: "<value>"
 effect: "<effect>"

OpenShift Container Platform 4.11 Operators

152

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#admin-guide-priority-preemption-priority-class_nodes-pods-priority
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-scheduler-taints-tolerations-about_nodes-scheduler-taints-tolerations

CHAPTER 5. DEVELOPING OPERATORS

5.1. ABOUT THE OPERATOR SDK

The Operator Framework is an open source toolkit to manage Kubernetes native applications, called
Operators, in an effective, automated, and scalable way. Operators take advantage of Kubernetes
extensibility to deliver the automation advantages of cloud services, like provisioning, scaling, and
backup and restore, while being able to run anywhere that Kubernetes can run.

Operators make it easy to manage complex, stateful applications on top of Kubernetes. However,
writing an Operator today can be difficult because of challenges such as using low-level APIs, writing
boilerplate, and a lack of modularity, which leads to duplication.

The Operator SDK, a component of the Operator Framework, provides a command-line interface (CLI)
tool that Operator developers can use to build, test, and deploy an Operator.

Why use the Operator SDK?

The Operator SDK simplifies this process of building Kubernetes-native applications, which can require
deep, application-specific operational knowledge. The Operator SDK not only lowers that barrier, but it
also helps reduce the amount of boilerplate code required for many common management capabilities,
such as metering or monitoring.

The Operator SDK is a framework that uses the controller-runtime library to make writing Operators
easier by providing the following features:

High-level APIs and abstractions to write the operational logic more intuitively

Tools for scaffolding and code generation to quickly bootstrap a new project

Integration with Operator Lifecycle Manager (OLM) to streamline packaging, installing, and
running Operators on a cluster

Extensions to cover common Operator use cases

Metrics set up automatically in any generated Go-based Operator for use on clusters where the
Prometheus Operator is deployed

Operator authors with cluster administrator access to a Kubernetes-based cluster (such as OpenShift
Container Platform) can use the Operator SDK CLI to develop their own Operators based on Go,
Ansible, or Helm. Kubebuilder is embedded into the Operator SDK as the scaffolding solution for Go-
based Operators, which means existing Kubebuilder projects can be used as is with the Operator SDK
and continue to work.

NOTE

OpenShift Container Platform 4.11 supports Operator SDK v1.22.2.

5.1.1. What are Operators?

For an overview about basic Operator concepts and terminology, see Understanding Operators.

5.1.2. Development workflow

The Operator SDK provides the following workflow to develop a new Operator:

CHAPTER 5. DEVELOPING OPERATORS

153

https://operatorframework.io/
https://github.com/kubernetes-sigs/controller-runtime
https://kubebuilder.io/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-what-operators-are

1. Create an Operator project by using the Operator SDK command-line interface (CLI).

2. Define new resource APIs by adding custom resource definitions (CRDs).

3. Specify resources to watch by using the Operator SDK API.

4. Define the Operator reconciling logic in a designated handler and use the Operator SDK API to
interact with resources.

5. Use the Operator SDK CLI to build and generate the Operator deployment manifests.

Figure 5.1. Operator SDK workflow

At a high level, an Operator that uses the Operator SDK processes events for watched resources in an
Operator author-defined handler and takes actions to reconcile the state of the application.

5.1.3. Additional resources

Certified Operator Build Guide

5.2. INSTALLING THE OPERATOR SDK CLI

The Operator SDK provides a command-line interface (CLI) tool that Operator developers can use to
build, test, and deploy an Operator. You can install the Operator SDK CLI on your workstation so that
you are prepared to start authoring your own Operators.

Operator authors with cluster administrator access to a Kubernetes-based cluster, such as OpenShift
Container Platform, can use the Operator SDK CLI to develop their own Operators based on Go,
Ansible, or Helm. Kubebuilder is embedded into the Operator SDK as the scaffolding solution for Go-
based Operators, which means existing Kubebuilder projects can be used as is with the Operator SDK
and continue to work.

NOTE

OpenShift Container Platform 4.11 supports Operator SDK v1.22.2.

5.2.1. Installing the Operator SDK CLI

You can install the OpenShift SDK CLI tool on Linux.

OpenShift Container Platform 4.11 Operators

154

https://redhat-connect.gitbook.io/certified-operator-guide/
https://kubebuilder.io/

Prerequisites

Go v1.18+

docker v17.03+, podman v1.9.3+, or buildah v1.7+

Procedure

1. Navigate to the OpenShift mirror site .

2. From the latest 4.11 directory, download the latest version of the tarball for Linux.

3. Unpack the archive:

4. Make the file executable:

5. Move the extracted operator-sdk binary to a directory that is on your PATH.

TIP

To check your PATH:

Verification

After you install the Operator SDK CLI, verify that it is available:

Example output

5.3. GO-BASED OPERATORS

5.3.1. Getting started with Operator SDK for Go-based Operators

To demonstrate the basics of setting up and running a Go-based Operator using tools and libraries
provided by the Operator SDK, Operator developers can build an example Go-based Operator for
Memcached, a distributed key-value store, and deploy it to a cluster.

5.3.1.1. Prerequisites

Operator SDK CLI installed

$ tar xvf operator-sdk-v1.22.2-ocp-linux-x86_64.tar.gz

$ chmod +x operator-sdk

$ echo $PATH

$ sudo mv ./operator-sdk /usr/local/bin/operator-sdk

$ operator-sdk version

operator-sdk version: "v1.22.2-ocp", ...

CHAPTER 5. DEVELOPING OPERATORS

155

https://golang.org/dl/
https://mirror.openshift.com/pub/openshift-v4/x86_64/clients/operator-sdk/

OpenShift CLI (oc) v4.11+ installed

Go v1.18+

Logged into an OpenShift Container Platform 4.11 cluster with oc with an account that has
cluster-admin permissions

To allow the cluster to pull the image, the repository where you push your image must be set as
public, or you must configure an image pull secret

Additional resources

Installing the Operator SDK CLI

Getting started with the OpenShift CLI

5.3.1.2. Creating and deploying Go-based Operators

You can build and deploy a simple Go-based Operator for Memcached by using the Operator SDK.

Procedure

1. Create a project.

a. Create your project directory:

b. Change into the project directory:

c. Run the operator-sdk init command to initialize the project:

The command uses the Go plugin by default.

2. Create an API.
Create a simple Memcached API:

3. Build and push the Operator image.
Use the default Makefile targets to build and push your Operator. Set IMG with a pull spec for
your image that uses a registry you can push to:

$ mkdir memcached-operator

$ cd memcached-operator

$ operator-sdk init \
 --domain=example.com \
 --repo=github.com/example-inc/memcached-operator

$ operator-sdk create api \
 --resource=true \
 --controller=true \
 --group cache \
 --version v1 \
 --kind Memcached

OpenShift Container Platform 4.11 Operators

156

https://golang.org/dl/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-installing-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cli_tools/#getting-started-cli

4. Run the Operator.

a. Install the CRD:

b. Deploy the project to the cluster. Set IMG to the image that you pushed:

5. Create a sample custom resource (CR).

a. Create a sample CR:

b. Watch for the CR to reconcile the Operator:

6. Delete a CR
Delete a CR by running the following command:

7. Clean up.
Run the following command to clean up the resources that have been created as part of this
procedure:

5.3.1.3. Next steps

See Operator SDK tutorial for Go-based Operators for a more in-depth walkthrough on building
a Go-based Operator.

5.3.2. Operator SDK tutorial for Go-based Operators

Operator developers can take advantage of Go programming language support in the Operator SDK to
build an example Go-based Operator for Memcached, a distributed key-value store, and manage its
lifecycle.

This process is accomplished using two centerpieces of the Operator Framework:

Operator SDK

The operator-sdk CLI tool and controller-runtime library API

Operator Lifecycle Manager (OLM)

$ make docker-build docker-push IMG=<registry>/<user>/<image_name>:<tag>

$ make install

$ make deploy IMG=<registry>/<user>/<image_name>:<tag>

$ oc apply -f config/samples/cache_v1_memcached.yaml \
 -n memcached-operator-system

$ oc logs deployment.apps/memcached-operator-controller-manager \
 -c manager \
 -n memcached-operator-system

$ oc delete -f config/samples/cache_v1_memcached -n memcached-operator-system

$ make undeploy

CHAPTER 5. DEVELOPING OPERATORS

157

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-golang-tutorial

Installation, upgrade, and role-based access control (RBAC) of Operators on a cluster

NOTE

This tutorial goes into greater detail than Getting started with Operator SDK for Go-
based Operators.

5.3.2.1. Prerequisites

Operator SDK CLI installed

OpenShift CLI (oc) v4.11+ installed

Go v1.18+

Logged into an OpenShift Container Platform 4.11 cluster with oc with an account that has
cluster-admin permissions

To allow the cluster to pull the image, the repository where you push your image must be set as
public, or you must configure an image pull secret

Additional resources

Installing the Operator SDK CLI

Getting started with the OpenShift CLI

5.3.2.2. Creating a project

Use the Operator SDK CLI to create a project called memcached-operator.

Procedure

1. Create a directory for the project:

2. Change to the directory:

3. Activate support for Go modules:

4. Run the operator-sdk init command to initialize the project:

NOTE

$ mkdir -p $HOME/projects/memcached-operator

$ cd $HOME/projects/memcached-operator

$ export GO111MODULE=on

$ operator-sdk init \
 --domain=example.com \
 --repo=github.com/example-inc/memcached-operator

OpenShift Container Platform 4.11 Operators

158

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-golang-quickstart
https://golang.org/dl/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-installing-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cli_tools/#getting-started-cli

1

2

NOTE

The operator-sdk init command uses the Go plugin by default.

The operator-sdk init command generates a go.mod file to be used with Go modules. The --
repo flag is required when creating a project outside of $GOPATH/src/, because generated
files require a valid module path.

5.3.2.2.1. PROJECT file

Among the files generated by the operator-sdk init command is a Kubebuilder PROJECT file.
Subsequent operator-sdk commands, as well as help output, that are run from the project root read
this file and are aware that the project type is Go. For example:

5.3.2.2.2. About the Manager

The main program for the Operator is the main.go file, which initializes and runs the Manager. The
Manager automatically registers the Scheme for all custom resource (CR) API definitions and sets up
and runs controllers and webhooks.

The Manager can restrict the namespace that all controllers watch for resources:

By default, the Manager watches the namespace where the Operator runs. To watch all namespaces,
you can leave the namespace option empty:

You can also use the MultiNamespacedCacheBuilder function to watch a specific set of namespaces:

List of namespaces.

Creates a Cmd struct to provide shared dependencies and start components.

5.3.2.2.3. About multi-group APIs

domain: example.com
layout:
- go.kubebuilder.io/v3
projectName: memcached-operator
repo: github.com/example-inc/memcached-operator
version: "3"
plugins:
 manifests.sdk.operatorframework.io/v2: {}
 scorecard.sdk.operatorframework.io/v2: {}
 sdk.x-openshift.io/v1: {}

mgr, err := ctrl.NewManager(cfg, manager.Options{Namespace: namespace})

mgr, err := ctrl.NewManager(cfg, manager.Options{Namespace: ""})

var namespaces []string 1
mgr, err := ctrl.NewManager(cfg, manager.Options{ 2
 NewCache: cache.MultiNamespacedCacheBuilder(namespaces),
})

CHAPTER 5. DEVELOPING OPERATORS

159

https://golang.org/ref/mod
https://godoc.org/github.com/kubernetes-sigs/controller-runtime/pkg/manager#Manager
https://godoc.org/github.com/kubernetes-sigs/controller-runtime/pkg/cache#MultiNamespacedCacheBuilder

Before you create an API and controller, consider whether your Operator requires multiple API groups.
This tutorial covers the default case of a single group API, but to change the layout of your project to
support multi-group APIs, you can run the following command:

This command updates the PROJECT file, which should look like the following example:

For multi-group projects, the API Go type files are created in the apis/<group>/<version>/ directory,
and the controllers are created in the controllers/<group>/ directory. The Dockerfile is then updated
accordingly.

Additional resource

For more details on migrating to a multi-group project, see the Kubebuilder documentation.

5.3.2.3. Creating an API and controller

Use the Operator SDK CLI to create a custom resource definition (CRD) API and controller.

Procedure

1. Run the following command to create an API with group cache, version, v1, and kind
Memcached:

2. When prompted, enter y for creating both the resource and controller:

Example output

This process generates the Memcached resource API at api/v1/memcached_types.go and the
controller at controllers/memcached_controller.go.

5.3.2.3.1. Defining the API

$ operator-sdk edit --multigroup=true

domain: example.com
layout: go.kubebuilder.io/v3
multigroup: true
...

$ operator-sdk create api \
 --group=cache \
 --version=v1 \
 --kind=Memcached

Create Resource [y/n]
y
Create Controller [y/n]
y

Writing scaffold for you to edit...
api/v1/memcached_types.go
controllers/memcached_controller.go
...

OpenShift Container Platform 4.11 Operators

160

https://book.kubebuilder.io/migration/multi-group.html

Define the API for the Memcached custom resource (CR).

Procedure

1. Modify the Go type definitions at api/v1/memcached_types.go to have the following spec and
status:

2. Update the generated code for the resource type:

TIP

After you modify a *_types.go file, you must run the make generate command to update the
generated code for that resource type.

The above Makefile target invokes the controller-gen utility to update the
api/v1/zz_generated.deepcopy.go file. This ensures your API Go type definitions implement
the runtime.Object interface that all Kind types must implement.

5.3.2.3.2. Generating CRD manifests

After the API is defined with spec and status fields and custom resource definition (CRD) validation
markers, you can generate CRD manifests.

Procedure

Run the following command to generate and update CRD manifests:

This Makefile target invokes the controller-gen utility to generate the CRD manifests in the
config/crd/bases/cache.example.com_memcacheds.yaml file.

5.3.2.3.2.1. About OpenAPI validation

OpenAPIv3 schemas are added to CRD manifests in the spec.validation block when the manifests are
generated. This validation block allows Kubernetes to validate the properties in a Memcached custom
resource (CR) when it is created or updated.

Markers, or annotations, are available to configure validations for your API. These markers always have a

// MemcachedSpec defines the desired state of Memcached
type MemcachedSpec struct {
 // +kubebuilder:validation:Minimum=0
 // Size is the size of the memcached deployment
 Size int32 `json:"size"`
}

// MemcachedStatus defines the observed state of Memcached
type MemcachedStatus struct {
 // Nodes are the names of the memcached pods
 Nodes []string `json:"nodes"`
}

$ make generate

$ make manifests

CHAPTER 5. DEVELOPING OPERATORS

161

Markers, or annotations, are available to configure validations for your API. These markers always have a
+kubebuilder:validation prefix.

Additional resources

For more details on the usage of markers in API code, see the following Kubebuilder
documentation:

CRD generation

Markers

List of OpenAPIv3 validation markers

For more details about OpenAPIv3 validation schemas in CRDs, see the Kubernetes
documentation.

5.3.2.4. Implementing the controller

After creating a new API and controller, you can implement the controller logic.

Procedure

For this example, replace the generated controller file controllers/memcached_controller.go
with following example implementation:

Example 5.1. Example memcached_controller.go

/*
Copyright 2020.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

package controllers

import (
 appsv1 "k8s.io/api/apps/v1"
 corev1 "k8s.io/api/core/v1"
 "k8s.io/apimachinery/pkg/api/errors"
 metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
 "k8s.io/apimachinery/pkg/types"
 "reflect"

 "context"

OpenShift Container Platform 4.11 Operators

162

https://book.kubebuilder.io/reference/generating-crd.html
https://book.kubebuilder.io/reference/markers.html
https://book.kubebuilder.io/reference/markers/crd-validation.html
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#specifying-a-structural-schema

 "github.com/go-logr/logr"
 "k8s.io/apimachinery/pkg/runtime"
 ctrl "sigs.k8s.io/controller-runtime"
 "sigs.k8s.io/controller-runtime/pkg/client"
 ctrllog "sigs.k8s.io/controller-runtime/pkg/log"

 cachev1 "github.com/example-inc/memcached-operator/api/v1"
)

// MemcachedReconciler reconciles a Memcached object
type MemcachedReconciler struct {
 client.Client
 Log logr.Logger
 Scheme *runtime.Scheme
}

//
+kubebuilder:rbac:groups=cache.example.com,resources=memcacheds,verbs=get;list;watch
;create;update;patch;delete
//
+kubebuilder:rbac:groups=cache.example.com,resources=memcacheds/status,verbs=get;up
date;patch
//
+kubebuilder:rbac:groups=cache.example.com,resources=memcacheds/finalizers,verbs=upd
ate
//
+kubebuilder:rbac:groups=apps,resources=deployments,verbs=get;list;watch;create;update;
patch;delete
// +kubebuilder:rbac:groups=core,resources=pods,verbs=get;list;

// Reconcile is part of the main kubernetes reconciliation loop which aims to
// move the current state of the cluster closer to the desired state.
// TODO(user): Modify the Reconcile function to compare the state specified by
// the Memcached object against the actual cluster state, and then
// perform operations to make the cluster state reflect the state specified by
// the user.
//
// For more details, check Reconcile and its Result here:
// - https://pkg.go.dev/sigs.k8s.io/controller-runtime@v0.7.0/pkg/reconcile
func (r *MemcachedReconciler) Reconcile(ctx context.Context, req ctrl.Request)
(ctrl.Result, error) {
 //log := r.Log.WithValues("memcached", req.NamespacedName)
 log := ctrllog.FromContext(ctx)
 // Fetch the Memcached instance
 memcached := &cachev1.Memcached{}
 err := r.Get(ctx, req.NamespacedName, memcached)
 if err != nil {
 if errors.IsNotFound(err) {
 // Request object not found, could have been deleted after reconcile
request.
 // Owned objects are automatically garbage collected. For additional
cleanup logic use finalizers.
 // Return and don't requeue
 log.Info("Memcached resource not found. Ignoring since object must be
deleted")
 return ctrl.Result{}, nil

CHAPTER 5. DEVELOPING OPERATORS

163

 }
 // Error reading the object - requeue the request.
 log.Error(err, "Failed to get Memcached")
 return ctrl.Result{}, err
 }

 // Check if the deployment already exists, if not create a new one
 found := &appsv1.Deployment{}
 err = r.Get(ctx, types.NamespacedName{Name: memcached.Name, Namespace:
memcached.Namespace}, found)
 if err != nil && errors.IsNotFound(err) {
 // Define a new deployment
 dep := r.deploymentForMemcached(memcached)
 log.Info("Creating a new Deployment", "Deployment.Namespace",
dep.Namespace, "Deployment.Name", dep.Name)
 err = r.Create(ctx, dep)
 if err != nil {
 log.Error(err, "Failed to create new Deployment",
"Deployment.Namespace", dep.Namespace, "Deployment.Name", dep.Name)
 return ctrl.Result{}, err
 }
 // Deployment created successfully - return and requeue
 return ctrl.Result{Requeue: true}, nil
 } else if err != nil {
 log.Error(err, "Failed to get Deployment")
 return ctrl.Result{}, err
 }

 // Ensure the deployment size is the same as the spec
 size := memcached.Spec.Size
 if *found.Spec.Replicas != size {
 found.Spec.Replicas = &size
 err = r.Update(ctx, found)
 if err != nil {
 log.Error(err, "Failed to update Deployment", "Deployment.Namespace",
found.Namespace, "Deployment.Name", found.Name)
 return ctrl.Result{}, err
 }
 // Spec updated - return and requeue
 return ctrl.Result{Requeue: true}, nil
 }

 // Update the Memcached status with the pod names
 // List the pods for this memcached's deployment
 podList := &corev1.PodList{}
 listOpts := []client.ListOption{
 client.InNamespace(memcached.Namespace),
 client.MatchingLabels(labelsForMemcached(memcached.Name)),
 }
 if err = r.List(ctx, podList, listOpts...); err != nil {
 log.Error(err, "Failed to list pods", "Memcached.Namespace",
memcached.Namespace, "Memcached.Name", memcached.Name)
 return ctrl.Result{}, err
 }
 podNames := getPodNames(podList.Items)

OpenShift Container Platform 4.11 Operators

164

 // Update status.Nodes if needed
 if !reflect.DeepEqual(podNames, memcached.Status.Nodes) {
 memcached.Status.Nodes = podNames
 err := r.Status().Update(ctx, memcached)
 if err != nil {
 log.Error(err, "Failed to update Memcached status")
 return ctrl.Result{}, err
 }
 }

 return ctrl.Result{}, nil
}

// deploymentForMemcached returns a memcached Deployment object
func (r *MemcachedReconciler) deploymentForMemcached(m *cachev1.Memcached)
*appsv1.Deployment {
 ls := labelsForMemcached(m.Name)
 replicas := m.Spec.Size

 dep := &appsv1.Deployment{
 ObjectMeta: metav1.ObjectMeta{
 Name: m.Name,
 Namespace: m.Namespace,
 },
 Spec: appsv1.DeploymentSpec{
 Replicas: &replicas,
 Selector: &metav1.LabelSelector{
 MatchLabels: ls,
 },
 Template: corev1.PodTemplateSpec{
 ObjectMeta: metav1.ObjectMeta{
 Labels: ls,
 },
 Spec: corev1.PodSpec{
 Containers: []corev1.Container{{
 Image: "memcached:1.4.36-alpine",
 Name: "memcached",
 Command: []string{"memcached", "-m=64", "-o", "modern",
"-v"},
 Ports: []corev1.ContainerPort{{
 ContainerPort: 11211,
 Name: "memcached",
 }},
 }},
 },
 },
 },
 }
 // Set Memcached instance as the owner and controller
 ctrl.SetControllerReference(m, dep, r.Scheme)
 return dep
}

// labelsForMemcached returns the labels for selecting the resources
// belonging to the given memcached CR name.
func labelsForMemcached(name string) map[string]string {

CHAPTER 5. DEVELOPING OPERATORS

165

The example controller runs the following reconciliation logic for each Memcached custom
resource (CR):

Create a Memcached deployment if it does not exist.

Ensure that the deployment size is the same as specified by the Memcached CR spec.

Update the Memcached CR status with the names of the memcached pods.

The next subsections explain how the controller in the example implementation watches resources and
how the reconcile loop is triggered. You can skip these subsections to go directly to Running the
Operator.

5.3.2.4.1. Resources watched by the controller

The SetupWithManager() function in controllers/memcached_controller.go specifies how the
controller is built to watch a CR and other resources that are owned and managed by that controller.

NewControllerManagedBy() provides a controller builder that allows various controller configurations.

For(&cachev1.Memcached{}) specifies the Memcached type as the primary resource to watch. For

 return map[string]string{"app": "memcached", "memcached_cr": name}
}

// getPodNames returns the pod names of the array of pods passed in
func getPodNames(pods []corev1.Pod) []string {
 var podNames []string
 for _, pod := range pods {
 podNames = append(podNames, pod.Name)
 }
 return podNames
}

// SetupWithManager sets up the controller with the Manager.
func (r *MemcachedReconciler) SetupWithManager(mgr ctrl.Manager) error {
 return ctrl.NewControllerManagedBy(mgr).
 For(&cachev1.Memcached{}).
 Owns(&appsv1.Deployment{}).
 Complete(r)
}

import (
 ...
 appsv1 "k8s.io/api/apps/v1"
 ...
)

func (r *MemcachedReconciler) SetupWithManager(mgr ctrl.Manager) error {
 return ctrl.NewControllerManagedBy(mgr).
 For(&cachev1.Memcached{}).
 Owns(&appsv1.Deployment{}).
 Complete(r)
}

OpenShift Container Platform 4.11 Operators

166

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-run-operator_osdk-golang-tutorial

For(&cachev1.Memcached{}) specifies the Memcached type as the primary resource to watch. For
each Add, Update, or Delete event for a Memcached type, the reconcile loop is sent a reconcile
Request argument, which consists of a namespace and name key, for that Memcached object.

Owns(&appsv1.Deployment{}) specifies the Deployment type as the secondary resource to watch.
For each Deployment type Add, Update, or Delete event, the event handler maps each event to a
reconcile request for the owner of the deployment. In this case, the owner is the Memcached object for
which the deployment was created.

5.3.2.4.2. Controller configurations

You can initialize a controller by using many other useful configurations. For example:

Set the maximum number of concurrent reconciles for the controller by using the
MaxConcurrentReconciles option, which defaults to 1:

Filter watch events using predicates.

Choose the type of EventHandler to change how a watch event translates to reconcile requests
for the reconcile loop. For Operator relationships that are more complex than primary and
secondary resources, you can use the EnqueueRequestsFromMapFunc handler to transform a
watch event into an arbitrary set of reconcile requests.

For more details on these and other configurations, see the upstream Builder and Controller GoDocs.

5.3.2.4.3. Reconcile loop

Every controller has a reconciler object with a Reconcile() method that implements the reconcile loop.
The reconcile loop is passed the Request argument, which is a namespace and name key used to find
the primary resource object, Memcached, from the cache:

Based on the return values, result, and error, the request might be requeued and the reconcile loop

func (r *MemcachedReconciler) SetupWithManager(mgr ctrl.Manager) error {
 return ctrl.NewControllerManagedBy(mgr).
 For(&cachev1.Memcached{}).
 Owns(&appsv1.Deployment{}).
 WithOptions(controller.Options{
 MaxConcurrentReconciles: 2,
 }).
 Complete(r)
}

import (
 ctrl "sigs.k8s.io/controller-runtime"

 cachev1 "github.com/example-inc/memcached-operator/api/v1"
 ...
)

func (r *MemcachedReconciler) Reconcile(ctx context.Context, req ctrl.Request) (ctrl.Result, error) {
 // Lookup the Memcached instance for this reconcile request
 memcached := &cachev1.Memcached{}
 err := r.Get(ctx, req.NamespacedName, memcached)
 ...
}

CHAPTER 5. DEVELOPING OPERATORS

167

https://pkg.go.dev/sigs.k8s.io/controller-runtime/pkg/handler#EventHandler
https://godoc.org/github.com/kubernetes-sigs/controller-runtime/pkg/builder#example-Builder
https://godoc.org/github.com/kubernetes-sigs/controller-runtime/pkg/controller

Based on the return values, result, and error, the request might be requeued and the reconcile loop
might be triggered again:

You can set the Result.RequeueAfter to requeue the request after a grace period as well:

NOTE

You can return Result with RequeueAfter set to periodically reconcile a CR.

For more on reconcilers, clients, and interacting with resource events, see the Controller Runtime Client
API documentation.

5.3.2.4.4. Permissions and RBAC manifests

The controller requires certain RBAC permissions to interact with the resources it manages. These are
specified using RBAC markers, such as the following:

The ClusterRole object manifest at config/rbac/role.yaml is generated from the previous markers by
using the controller-gen utility whenever the make manifests command is run.

5.3.2.5. Enabling proxy support

Operator authors can develop Operators that support network proxies. Cluster administrators configure
proxy support for the environment variables that are handled by Operator Lifecycle Manager (OLM). To
support proxied clusters, your Operator must inspect the environment for the following standard proxy

// Reconcile successful - don't requeue
return ctrl.Result{}, nil
// Reconcile failed due to error - requeue
return ctrl.Result{}, err
// Requeue for any reason other than an error
return ctrl.Result{Requeue: true}, nil

import "time"

// Reconcile for any reason other than an error after 5 seconds
return ctrl.Result{RequeueAfter: time.Second*5}, nil

//
+kubebuilder:rbac:groups=cache.example.com,resources=memcacheds,verbs=get;list;watch;create;upd
ate;patch;delete
//
+kubebuilder:rbac:groups=cache.example.com,resources=memcacheds/status,verbs=get;update;patch

// +kubebuilder:rbac:groups=cache.example.com,resources=memcacheds/finalizers,verbs=update
//
+kubebuilder:rbac:groups=apps,resources=deployments,verbs=get;list;watch;create;update;patch;delete

// +kubebuilder:rbac:groups=core,resources=pods,verbs=get;list;

func (r *MemcachedReconciler) Reconcile(ctx context.Context, req ctrl.Request) (ctrl.Result, error) {
 ...
}

OpenShift Container Platform 4.11 Operators

168

https://sdk.operatorframework.io/docs/building-operators/golang/references/client/

variables and pass the values to Operands:

HTTP_PROXY

HTTPS_PROXY

NO_PROXY

NOTE

This tutorial uses HTTP_PROXY as an example environment variable.

Prerequisites

A cluster with cluster-wide egress proxy enabled.

Procedure

1. Edit the controllers/memcached_controller.go file to include the following:

a. Import the proxy package from the operator-lib library:

b. Add the proxy.ReadProxyVarsFromEnv helper function to the reconcile loop and append
the results to the Operand environments:

2. Set the environment variable on the Operator deployment by adding the following to the
config/manager/manager.yaml file:

5.3.2.6. Running the Operator

There are three ways you can use the Operator SDK CLI to build and run your Operator:

Run locally outside the cluster as a Go program.

import (
 ...
 "github.com/operator-framework/operator-lib/proxy"
)

for i, container := range dep.Spec.Template.Spec.Containers {
 dep.Spec.Template.Spec.Containers[i].Env = append(container.Env,
proxy.ReadProxyVarsFromEnv()...)
}
...

containers:
 - args:
 - --leader-elect
 - --leader-election-id=ansible-proxy-demo
 image: controller:latest
 name: manager
 env:
 - name: "HTTP_PROXY"
 value: "http_proxy_test"

CHAPTER 5. DEVELOPING OPERATORS

169

https://github.com/operator-framework/operator-lib/releases/tag/v0.7.0

Run as a deployment on the cluster.

Bundle your Operator and use Operator Lifecycle Manager (OLM) to deploy on the cluster.

NOTE

Before running your Go-based Operator as either a deployment on OpenShift Container
Platform or as a bundle that uses OLM, ensure that your project has been updated to use
supported images.

5.3.2.6.1. Running locally outside the cluster

You can run your Operator project as a Go program outside of the cluster. This is useful for
development purposes to speed up deployment and testing.

Procedure

Run the following command to install the custom resource definitions (CRDs) in the cluster
configured in your ~/.kube/config file and run the Operator locally:

Example output

5.3.2.6.2. Running as a deployment on the cluster

You can run your Operator project as a deployment on your cluster.

Prerequisites

Prepared your Go-based Operator to run on OpenShift Container Platform by updating the
project to use supported images

Procedure

1. Run the following make commands to build and push the Operator image. Modify the IMG
argument in the following steps to reference a repository that you have access to. You can
obtain an account for storing containers at repository sites such as Quay.io.
a. Build the image:

$ make install run

...
2021-01-10T21:09:29.016-0700 INFO controller-runtime.metrics metrics server is starting to
listen {"addr": ":8080"}
2021-01-10T21:09:29.017-0700 INFO setup starting manager
2021-01-10T21:09:29.017-0700 INFO controller-runtime.manager starting metrics server
{"path": "/metrics"}
2021-01-10T21:09:29.018-0700 INFO controller-runtime.manager.controller.memcached
Starting EventSource {"reconciler group": "cache.example.com", "reconciler kind":
"Memcached", "source": "kind source: /, Kind="}
2021-01-10T21:09:29.218-0700 INFO controller-runtime.manager.controller.memcached
Starting Controller {"reconciler group": "cache.example.com", "reconciler kind":
"Memcached"}
2021-01-10T21:09:29.218-0700 INFO controller-runtime.manager.controller.memcached
Starting workers {"reconciler group": "cache.example.com", "reconciler kind": "Memcached",
"worker count": 1}

OpenShift Container Platform 4.11 Operators

170

a. Build the image:

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMD64 architectures. Docker will
automatically set the environment variable to the value specified by –
platform. With Buildah, the –build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

b. Push the image to a repository:

NOTE

The name and tag of the image, for example IMG=
<registry>/<user>/<image_name>:<tag>, in both the commands can also
be set in your Makefile. Modify the IMG ?= controller:latest value to set
your default image name.

2. Run the following command to deploy the Operator:

By default, this command creates a namespace with the name of your Operator project in the
form <project_name>-system and is used for the deployment. This command also installs the
RBAC manifests from config/rbac.

3. Run the following command to verify that the Operator is running:

Example output

5.3.2.6.3. Bundling an Operator and deploying with Operator Lifecycle Manager

5.3.2.6.3.1. Bundling an Operator

The Operator bundle format is the default packaging method for Operator SDK and Operator Lifecycle
Manager (OLM). You can get your Operator ready for use on OLM by using the Operator SDK to build
and push your Operator project as a bundle image.

Prerequisites

$ make docker-build IMG=<registry>/<user>/<image_name>:<tag>

$ make docker-push IMG=<registry>/<user>/<image_name>:<tag>

$ make deploy IMG=<registry>/<user>/<image_name>:<tag>

$ oc get deployment -n <project_name>-system

NAME READY UP-TO-DATE AVAILABLE AGE
<project_name>-controller-manager 1/1 1 1 8m

CHAPTER 5. DEVELOPING OPERATORS

171

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

Operator SDK CLI installed on a development workstation

OpenShift CLI (oc) v4.11+ installed

Operator project initialized by using the Operator SDK

If your Operator is Go-based, your project must be updated to use supported images for
running on OpenShift Container Platform

Procedure

1. Run the following make commands in your Operator project directory to build and push your
Operator image. Modify the IMG argument in the following steps to reference a repository that
you have access to. You can obtain an account for storing containers at repository sites such as
Quay.io.

a. Build the image:

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMD64 architectures. Docker will
automatically set the environment variable to the value specified by –
platform. With Buildah, the –build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

b. Push the image to a repository:

2. Create your Operator bundle manifest by running the make bundle command, which invokes
several commands, including the Operator SDK generate bundle and bundle validate
subcommands:

Bundle manifests for an Operator describe how to display, create, and manage an application.
The make bundle command creates the following files and directories in your Operator project:

A bundle manifests directory named bundle/manifests that contains a
ClusterServiceVersion object

A bundle metadata directory named bundle/metadata

All custom resource definitions (CRDs) in a config/crd directory

A Dockerfile bundle.Dockerfile

These files are then automatically validated by using operator-sdk bundle validate to ensure
the on-disk bundle representation is correct.

3. Build and push your bundle image by running the following commands. OLM consumes

$ make docker-build IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make docker-push IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make bundle IMG=<registry>/<user>/<operator_image_name>:<tag>

OpenShift Container Platform 4.11 Operators

172

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

1

2

3

3. Build and push your bundle image by running the following commands. OLM consumes
Operator bundles using an index image, which reference one or more bundle images.

a. Build the bundle image. Set BUNDLE_IMG with the details for the registry, user
namespace, and image tag where you intend to push the image:

b. Push the bundle image:

5.3.2.6.3.2. Deploying an Operator with Operator Lifecycle Manager

Operator Lifecycle Manager (OLM) helps you to install, update, and manage the lifecycle of Operators
and their associated services on a Kubernetes cluster. OLM is installed by default on OpenShift
Container Platform and runs as a Kubernetes extension so that you can use the web console and the
OpenShift CLI (oc) for all Operator lifecycle management functions without any additional tools.

The Operator bundle format is the default packaging method for Operator SDK and OLM. You can use
the Operator SDK to quickly run a bundle image on OLM to ensure that it runs properly.

Prerequisites

Operator SDK CLI installed on a development workstation

Operator bundle image built and pushed to a registry

OLM installed on a Kubernetes-based cluster (v1.16.0 or later if you use
apiextensions.k8s.io/v1 CRDs, for example OpenShift Container Platform 4.11)

Logged in to the cluster with oc using an account with cluster-admin permissions

If your Operator is Go-based, your project must be updated to use supported images for
running on OpenShift Container Platform

Procedure

1. Enter the following command to run the Operator on the cluster:

The run bundle command creates a valid file-based catalog and installs the Operator
bundle on your cluster using OLM.

Optional: By default, the command installs the Operator in the currently active project in
your ~/.kube/config file. You can add the -n flag to set a different namespace scope for
the installation.

If you do not specify an image, the command uses quay.io/operator-
framework/opm:latest as the default index image. If you specify an image, the command
uses the bundle image itself as the index image.

IMPORTANT

$ make bundle-build BUNDLE_IMG=<registry>/<user>/<bundle_image_name>:<tag>

$ docker push <registry>/<user>/<bundle_image_name>:<tag>

$ operator-sdk run bundle \ 1
 -n <namespace> \ 2
 <registry>/<user>/<bundle_image_name>:<tag> 3

CHAPTER 5. DEVELOPING OPERATORS

173

IMPORTANT

As of OpenShift Container Platform 4.11, the run bundle command supports the
file-based catalog format for Operator catalogs by default. The deprecated
SQLite database format for Operator catalogs continues to be supported;
however, it will be removed in a future release. It is recommended that Operator
authors migrate their workflows to the file-based catalog format.

This command performs the following actions:

Create an index image referencing your bundle image. The index image is opaque and
ephemeral, but accurately reflects how a bundle would be added to a catalog in production.

Create a catalog source that points to your new index image, which enables OperatorHub to
discover your Operator.

Deploy your Operator to your cluster by creating an OperatorGroup, Subscription,
InstallPlan, and all other required resources, including RBAC.

5.3.2.7. Creating a custom resource

After your Operator is installed, you can test it by creating a custom resource (CR) that is now provided
on the cluster by the Operator.

Prerequisites

Example Memcached Operator, which provides the Memcached CR, installed on a cluster

Procedure

1. Change to the namespace where your Operator is installed. For example, if you deployed the
Operator using the make deploy command:

2. Edit the sample Memcached CR manifest at config/samples/cache_v1_memcached.yaml to
contain the following specification:

3. Create the CR:

4. Ensure that the Memcached Operator creates the deployment for the sample CR with the
correct size:

$ oc project memcached-operator-system

apiVersion: cache.example.com/v1
kind: Memcached
metadata:
 name: memcached-sample
...
spec:
...
 size: 3

$ oc apply -f config/samples/cache_v1_memcached.yaml

OpenShift Container Platform 4.11 Operators

174

Example output

5. Check the pods and CR status to confirm the status is updated with the Memcached pod
names.

a. Check the pods:

Example output

b. Check the CR status:

Example output

6. Update the deployment size.

a. Update config/samples/cache_v1_memcached.yaml file to change the spec.size field in
the Memcached CR from 3 to 5:

b. Confirm that the Operator changes the deployment size:

$ oc get deployments

NAME READY UP-TO-DATE AVAILABLE AGE
memcached-operator-controller-manager 1/1 1 1 8m
memcached-sample 3/3 3 3 1m

$ oc get pods

NAME READY STATUS RESTARTS AGE
memcached-sample-6fd7c98d8-7dqdr 1/1 Running 0 1m
memcached-sample-6fd7c98d8-g5k7v 1/1 Running 0 1m
memcached-sample-6fd7c98d8-m7vn7 1/1 Running 0 1m

$ oc get memcached/memcached-sample -o yaml

apiVersion: cache.example.com/v1
kind: Memcached
metadata:
...
 name: memcached-sample
...
spec:
 size: 3
status:
 nodes:
 - memcached-sample-6fd7c98d8-7dqdr
 - memcached-sample-6fd7c98d8-g5k7v
 - memcached-sample-6fd7c98d8-m7vn7

$ oc patch memcached memcached-sample \
 -p '{"spec":{"size": 5}}' \
 --type=merge

CHAPTER 5. DEVELOPING OPERATORS

175

Example output

7. Delete the CR by running the following command:

8. Clean up the resources that have been created as part of this tutorial.

If you used the make deploy command to test the Operator, run the following command:

If you used the operator-sdk run bundle command to test the Operator, run the following
command:

5.3.2.8. Additional resources

See Project layout for Go-based Operators to learn about the directory structures created by
the Operator SDK.

If a cluster-wide egress proxy is configured, cluster administrators can override the proxy
settings or inject a custom CA certificate for specific Operators running on Operator Lifecycle
Manager (OLM).

5.3.3. Project layout for Go-based Operators

The operator-sdk CLI can generate, or scaffold, a number of packages and files for each Operator
project.

5.3.3.1. Go-based project layout

Go-based Operator projects, the default type, generated using the operator-sdk init command contain
the following files and directories:

File or directory Purpose

main.go Main program of the Operator. This instantiates a new manager that registers all
custom resource definitions (CRDs) in the apis/ directory and starts all controllers in
the controllers/ directory.

apis/ Directory tree that defines the APIs of the CRDs. You must edit the
apis/<version>/<kind>_types.go files to define the API for each resource type and
import these packages in your controllers to watch for these resource types.

$ oc get deployments

NAME READY UP-TO-DATE AVAILABLE AGE
memcached-operator-controller-manager 1/1 1 1 10m
memcached-sample 5/5 5 5 3m

$ oc delete -f config/samples/cache_v1_memcached.yaml

$ make undeploy

$ operator-sdk cleanup <project_name>

OpenShift Container Platform 4.11 Operators

176

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-golang-project-layout
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#enable-cluster-wide-proxy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-configuring-proxy-support

controllers/ Controller implementations. Edit the controller/<kind>_controller.go files to define
the reconcile logic of the controller for handling a resource type of the specified kind.

config/ Kubernetes manifests used to deploy your controller on a cluster, including CRDs,
RBAC, and certificates.

Makefile Targets used to build and deploy your controller.

Dockerfile Instructions used by a container engine to build your Operator.

manifests/ Kubernetes manifests for registering CRDs, setting up RBAC, and deploying the
Operator as a deployment.

File or directory Purpose

5.3.4. Updating Go-based Operator projects for newer Operator SDK versions

OpenShift Container Platform 4.11 supports Operator SDK 1.22.2. If you already have the 1.16.0 CLI
installed on your workstation, you can update the CLI to 1.22.2 by installing the latest version.

However, to ensure your existing Operator projects maintain compatibility with Operator SDK 1.22.2,
update steps are required for the associated breaking changes introduced since 1.16.0. You must
perform the update steps manually in any of your Operator projects that were previously created or
maintained with 1.16.0.

5.3.4.1. Updating Go-based Operator projects for Operator SDK 1.22.2

The following procedure updates an existing Go-based Operator project for compatibility with 1.22.2.

Prerequisites

Operator SDK 1.22.2 installed.

An Operator project created or maintained with Operator SDK 1.16.0.

Procedure

1. Make the following changes to the config/default/manager_auth_proxy_patch.yaml file:

...
spec:
 template:
 spec:
 containers:
 - name: kube-rbac-proxy
 image: registry.redhat.io/openshift4/ose-kube-rbac-proxy:v4.11 1
 args:
 - "--secure-listen-address=0.0.0.0:8443"
 - "--upstream=http://127.0.0.1:8080/"
 - "--logtostderr=true"
 - "--v=0" 2

CHAPTER 5. DEVELOPING OPERATORS

177

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-installing-cli

1

2

3

Update the tag version from v4.10 to v4.11.

Reduce the debugging log level from --v=10 to --v=0.

Add resource requests and limits.

2. Make the following changes to your Makefile:

a. Enable support for image digests by adding the following environment variables to your
Makefile:

Old Makefile

New Makefile

b. Edit your Makefile to replace the bundle target with the BUNDLE_GEN_FLAGS
environment variable:

Old Makefile

New Makefile

...
resources:
 limits:
 cpu: 500m
 memory: 128Mi
 requests:
 cpu: 5m
 memory: 64Mi 3

BUNDLE_IMG ?= $(IMAGE_TAG_BASE)-bundle:v$(VERSION)
...

BUNDLE_IMG ?= $(IMAGE_TAG_BASE)-bundle:v$(VERSION)

BUNDLE_GEN_FLAGS are the flags passed to the operator-sdk generate bundle
command
BUNDLE_GEN_FLAGS ?= -q --overwrite --version $(VERSION)
$(BUNDLE_METADATA_OPTS)

USE_IMAGE_DIGESTS defines if images are resolved via tags or digests
You can enable this value if you would like to use SHA Based Digests
To enable set flag to true
USE_IMAGE_DIGESTS ?= false
ifeq ($(USE_IMAGE_DIGESTS), true)
 BUNDLE_GEN_FLAGS += --use-image-digests
endif

$(KUSTOMIZE) build config/manifests | operator-sdk generate bundle -q --overwrite --
version $(VERSION) $(BUNDLE_METADATA_OPTS)

OpenShift Container Platform 4.11 Operators

178

1

c. Edit your Makefile to update opm to version 1.23.0:

Replace v1.19.1 with v1.23.0.

d. Edit your Makefile to replace the go get targets with go install targets:

Old Makefile

$(KUSTOMIZE) build config/manifests | operator-sdk generate bundle
$(BUNDLE_GEN_FLAGS)

.PHONY: opm
OPM = ./bin/opm
opm: ## Download opm locally if necessary.
ifeq (,$(wildcard $(OPM)))
ifeq (,$(shell which opm 2>/dev/null))
 @{ \
 set -e ;\
 mkdir -p $(dir $(OPM)) ;\
 OS=$(shell go env GOOS) && ARCH=$(shell go env GOARCH) && \
 curl -sSLo $(OPM) https://github.com/operator-framework/operator-
registry/releases/download/v1.23.0/$${OS}-$${ARCH}-opm ;\ 1
 chmod +x $(OPM) ;\
 }
else
OPM = $(shell which opm)
endif
endif

CONTROLLER_GEN = $(shell pwd)/bin/controller-gen
.PHONY: controller-gen
controller-gen: ## Download controller-gen locally if necessary.
 $(call go-get-tool,$(CONTROLLER_GEN),sigs.k8s.io/controller-tools/cmd/controller-
gen@v0.8.0)

KUSTOMIZE = $(shell pwd)/bin/kustomize
.PHONY: kustomize
kustomize: ## Download kustomize locally if necessary.
 $(call go-get-tool,$(KUSTOMIZE),sigs.k8s.io/kustomize/kustomize/v3@v3.8.7)

ENVTEST = $(shell pwd)/bin/setup-envtest
.PHONY: envtest
envtest: ## Download envtest-setup locally if necessary.
 $(call go-get-tool,$(ENVTEST),sigs.k8s.io/controller-runtime/tools/setup-envtest@latest)

go-get-tool will 'go get' any package $2 and install it to $1.
PROJECT_DIR := $(shell dirname $(abspath $(lastword $(MAKEFILE_LIST))))
define go-get-tool
@[-f $(1)] || { \
set -e ;\
TMP_DIR=$$(mktemp -d) ;\
cd $$TMP_DIR ;\
go mod init tmp ;\
echo "Downloading $(2)" ;\

CHAPTER 5. DEVELOPING OPERATORS

179

1

2

New Makefile

e. Update ENVTEST_K8S_VERSION and controller-gen fields in your Makefile to support
Kubernetes 1.24:

Update version 1.22 to 1.24.

Update version 0.7.0 to 0.9.0.

GOBIN=$(PROJECT_DIR)/bin go get $(2) ;\
rm -rf $$TMP_DIR ;\
}
endef

##@ Build Dependencies

Location to install dependencies to
LOCALBIN ?= $(shell pwd)/bin
$(LOCALBIN):
 mkdir -p $(LOCALBIN)

Tool Binaries
KUSTOMIZE ?= $(LOCALBIN)/kustomize
CONTROLLER_GEN ?= $(LOCALBIN)/controller-gen
ENVTEST ?= $(LOCALBIN)/setup-envtest

Tool Versions
KUSTOMIZE_VERSION ?= v3.8.7
CONTROLLER_TOOLS_VERSION ?= v0.8.0

KUSTOMIZE_INSTALL_SCRIPT ?= "https://raw.githubusercontent.com/kubernetes-
sigs/kustomize/master/hack/install_kustomize.sh"
.PHONY: kustomize
kustomize: $(KUSTOMIZE) ## Download kustomize locally if necessary.
$(KUSTOMIZE): $(LOCALBIN)
 curl -s $(KUSTOMIZE_INSTALL_SCRIPT) | bash -s -- $(subst
v,,$(KUSTOMIZE_VERSION)) $(LOCALBIN)

.PHONY: controller-gen
controller-gen: $(CONTROLLER_GEN) ## Download controller-gen locally if necessary.
$(CONTROLLER_GEN): $(LOCALBIN)
 GOBIN=$(LOCALBIN) go install sigs.k8s.io/controller-tools/cmd/controller-
gen@$(CONTROLLER_TOOLS_VERSION)

.PHONY: envtest
envtest: $(ENVTEST) ## Download envtest-setup locally if necessary.
$(ENVTEST): $(LOCALBIN)
 GOBIN=$(LOCALBIN) go install sigs.k8s.io/controller-runtime/tools/setup-
envtest@latest

...
ENVTEST_K8S_VERSION = 1.24 1
...
sigs.k8s.io/controller-tools/cmd/controller-gen@v0.9.0 2

OpenShift Container Platform 4.11 Operators

180

1

2

3

4 5 6

7

f. Apply the changes to your Makefile and rebuild your Operator by entering the following
command:

3. Make the following changes to the go.mod file to update Go and its dependencies:

Update version 1.16 to 1.18.

Update version v1.16.4 to v1.16.5.

Update version v1.15.0 to v1.18.1.

Update version v0.22.1 to v0.24.0.

Update version v0.10.0 to v0.12.1.

4. Download and clean up the dependencies by entering the following command:

5. If you use the api/webhook_suitetest.go and controllers/suite_test.go suite test files, make
the following changes:

Old suite test file

New suite test file

6. If you use the Kubernetes declarative plugin, update your Dockerfile with the following changes:

a. Add the following changes below the line that begins COPY controllers/ controllers/:

$ make

go 1.18 1

require (
 github.com/onsi/ginkgo v1.16.5 2
 github.com/onsi/gomega v1.18.1 3
 k8s.io/api v0.24.0 4
 k8s.io/apimachinery v0.24.0 5
 k8s.io/client-go v0.24.0 6
 sigs.k8s.io/controller-runtime v0.12.1 7
)

$ go mod tidy

cfg, err := testEnv.Start()

var err error
// cfg is defined in this file globally.
cfg, err = testEnv.Start()

https://github.com/kubernetes-sigs/kubebuilder-declarative-
pattern/blob/master/docs/addon/walkthrough/README.md#adding-a-manifest
Stage channels and make readable

CHAPTER 5. DEVELOPING OPERATORS

181

b. Add the following changes below the line that begins COPY --from=builder
/workspace/manager .:

5.3.4.2. Additional resources

Migrating package manifest projects to bundle format

Upgrading projects for Operator SDK 1.16.0

Upgrading projects for Operator SDK v1.10.1

Upgrading projects for Operator SDK v1.8.0

5.4. ANSIBLE-BASED OPERATORS

5.4.1. Getting started with Operator SDK for Ansible-based Operators

The Operator SDK includes options for generating an Operator project that leverages existing Ansible
playbooks and modules to deploy Kubernetes resources as a unified application, without having to write
any Go code.

To demonstrate the basics of setting up and running an Ansible-based Operator using tools and
libraries provided by the Operator SDK, Operator developers can build an example Ansible-based
Operator for Memcached, a distributed key-value store, and deploy it to a cluster.

5.4.1.1. Prerequisites

Operator SDK CLI installed

OpenShift CLI (oc) v4.11+ installed

Ansible v2.9.0

Ansible Runner v2.0.2+

Ansible Runner HTTP Event Emitter plugin v1.0.0+

Python 3.8.6+

OpenShift Python client v0.12.0+

Logged into an OpenShift Container Platform 4.11 cluster with oc with an account that has
cluster-admin permissions

To allow the cluster to pull the image, the repository where you push your image must be set as
public, or you must configure an image pull secret

Additional resources

COPY channels/ /channels/
RUN chmod -R a+rx /channels/

copy channels
COPY --from=builder /channels /channels

OpenShift Container Platform 4.11 Operators

182

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-pkgman-to-bundle
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/index#osdk-upgrading-v1101-to-v1160_osdk-upgrading-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html/operators/developing-operators#osdk-upgrading-v180-to-v1101_osdk-upgrading-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html/operators/developing-operators#osdk-upgrading-v130-to-v180_osdk-upgrading-projects
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/2.9/index.html
https://ansible-runner.readthedocs.io/en/latest/install.html
https://github.com/ansible/ansible-runner-http
https://www.python.org/downloads/
https://pypi.org/project/openshift/

1

Installing the Operator SDK CLI

Getting started with the OpenShift CLI

5.4.1.2. Creating and deploying Ansible-based Operators

You can build and deploy a simple Ansible-based Operator for Memcached by using the Operator SDK.

Procedure

1. Create a project.

a. Create your project directory:

b. Change into the project directory:

c. Run the operator-sdk init command with the ansible plugin to initialize the project:

2. Create an API.
Create a simple Memcached API:

Generates an Ansible role for the API.

3. Build and push the Operator image.
Use the default Makefile targets to build and push your Operator. Set IMG with a pull spec for
your image that uses a registry you can push to:

4. Run the Operator.

a. Install the CRD:

b. Deploy the project to the cluster. Set IMG to the image that you pushed:

$ mkdir memcached-operator

$ cd memcached-operator

$ operator-sdk init \
 --plugins=ansible \
 --domain=example.com

$ operator-sdk create api \
 --group cache \
 --version v1 \
 --kind Memcached \
 --generate-role 1

$ make docker-build docker-push IMG=<registry>/<user>/<image_name>:<tag>

$ make install

$ make deploy IMG=<registry>/<user>/<image_name>:<tag>

CHAPTER 5. DEVELOPING OPERATORS

183

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-installing-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cli_tools/#getting-started-cli

5. Create a sample custom resource (CR).

a. Create a sample CR:

b. Watch for the CR to reconcile the Operator:

Example output

6. Delete a CR
Delete a CR by running the following command:

7. Clean up.
Run the following command to clean up the resources that have been created as part of this
procedure:

5.4.1.3. Next steps

See Operator SDK tutorial for Ansible-based Operators for a more in-depth walkthrough on
building an Ansible-based Operator.

5.4.2. Operator SDK tutorial for Ansible-based Operators

Operator developers can take advantage of Ansible support in the Operator SDK to build an example
Ansible-based Operator for Memcached, a distributed key-value store, and manage its lifecycle. This
tutorial walks through the following process:

Create a Memcached deployment

$ oc apply -f config/samples/cache_v1_memcached.yaml \
 -n memcached-operator-system

$ oc logs deployment.apps/memcached-operator-controller-manager \
 -c manager \
 -n memcached-operator-system

...
I0205 17:48:45.881666 7 leaderelection.go:253] successfully acquired lease
memcached-operator-system/memcached-operator
{"level":"info","ts":1612547325.8819902,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting
EventSource","source":"kind source: cache.example.com/v1, Kind=Memcached"}
{"level":"info","ts":1612547325.98242,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting Controller"}
{"level":"info","ts":1612547325.9824686,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting workers","worker
count":4}
{"level":"info","ts":1612547348.8311093,"logger":"runner","msg":"Ansible-runner exited
successfully","job":"4037200794235010051","name":"memcached-
sample","namespace":"memcached-operator-system"}

$ oc delete -f config/samples/cache_v1_memcached -n memcached-operator-system

$ make undeploy

OpenShift Container Platform 4.11 Operators

184

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-ansible-tutorial
https://docs.ansible.com/ansible/latest/index.html

Ensure that the deployment size is the same as specified by the Memcached custom resource
(CR) spec

Update the Memcached CR status using the status writer with the names of the memcached
pods

This process is accomplished by using two centerpieces of the Operator Framework:

Operator SDK

The operator-sdk CLI tool and controller-runtime library API

Operator Lifecycle Manager (OLM)

Installation, upgrade, and role-based access control (RBAC) of Operators on a cluster

NOTE

This tutorial goes into greater detail than Getting started with Operator SDK for Ansible-
based Operators.

5.4.2.1. Prerequisites

Operator SDK CLI installed

OpenShift CLI (oc) v4.11+ installed

Ansible v2.9.0

Ansible Runner v2.0.2+

Ansible Runner HTTP Event Emitter plugin v1.0.0+

Python 3.8.6+

OpenShift Python client v0.12.0+

Logged into an OpenShift Container Platform 4.11 cluster with oc with an account that has
cluster-admin permissions

To allow the cluster to pull the image, the repository where you push your image must be set as
public, or you must configure an image pull secret

Additional resources

Installing the Operator SDK CLI

Getting started with the OpenShift CLI

5.4.2.2. Creating a project

Use the Operator SDK CLI to create a project called memcached-operator.

Procedure

1. Create a directory for the project:

CHAPTER 5. DEVELOPING OPERATORS

185

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-ansible-quickstart
https://docs.ansible.com/ansible/2.9/index.html
https://ansible-runner.readthedocs.io/en/latest/install.html
https://github.com/ansible/ansible-runner-http
https://www.python.org/downloads/
https://pypi.org/project/openshift/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-installing-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cli_tools/#getting-started-cli

1

2. Change to the directory:

3. Run the operator-sdk init command with the ansible plugin to initialize the project:

5.4.2.2.1. PROJECT file

Among the files generated by the operator-sdk init command is a Kubebuilder PROJECT file.
Subsequent operator-sdk commands, as well as help output, that are run from the project root read
this file and are aware that the project type is Ansible. For example:

5.4.2.3. Creating an API

Use the Operator SDK CLI to create a Memcached API.

Procedure

Run the following command to create an API with group cache, version, v1, and kind
Memcached:

Generates an Ansible role for the API.

After creating the API, your Operator project updates with the following structure:

Memcached CRD

Includes a sample Memcached resource

Manager

Program that reconciles the state of the cluster to the desired state by using:

A reconciler, either an Ansible role or playbook

$ mkdir -p $HOME/projects/memcached-operator

$ cd $HOME/projects/memcached-operator

$ operator-sdk init \
 --plugins=ansible \
 --domain=example.com

domain: example.com
layout:
- ansible.sdk.operatorframework.io/v1
plugins:
 manifests.sdk.operatorframework.io/v2: {}
 scorecard.sdk.operatorframework.io/v2: {}
 sdk.x-openshift.io/v1: {}
projectName: memcached-operator
version: "3"

$ operator-sdk create api \
 --group cache \
 --version v1 \
 --kind Memcached \
 --generate-role 1

OpenShift Container Platform 4.11 Operators

186

A reconciler, either an Ansible role or playbook

A watches.yaml file, which connects the Memcached resource to the memcached Ansible
role

5.4.2.4. Modifying the manager

Update your Operator project to provide the reconcile logic, in the form of an Ansible role, which runs
every time a Memcached resource is created, updated, or deleted.

Procedure

1. Update the roles/memcached/tasks/main.yml file with the following structure:

This memcached role ensures a memcached deployment exist and sets the deployment size.

2. Set default values for variables used in your Ansible role by editing the
roles/memcached/defaults/main.yml file:

3. Update the Memcached sample resource in the config/samples/cache_v1_memcached.yaml

- name: start memcached
 k8s:
 definition:
 kind: Deployment
 apiVersion: apps/v1
 metadata:
 name: '{{ ansible_operator_meta.name }}-memcached'
 namespace: '{{ ansible_operator_meta.namespace }}'
 spec:
 replicas: "{{size}}"
 selector:
 matchLabels:
 app: memcached
 template:
 metadata:
 labels:
 app: memcached
 spec:
 containers:
 - name: memcached
 command:
 - memcached
 - -m=64
 - -o
 - modern
 - -v
 image: "docker.io/memcached:1.4.36-alpine"
 ports:
 - containerPort: 11211

defaults file for Memcached
size: 1

CHAPTER 5. DEVELOPING OPERATORS

187

3. Update the Memcached sample resource in the config/samples/cache_v1_memcached.yaml
file with the following structure:

The key-value pairs in the custom resource (CR) spec are passed to Ansible as extra variables.

NOTE

The names of all variables in the spec field are converted to snake case, meaning
lowercase with an underscore, by the Operator before running Ansible. For example,
serviceAccount in the spec becomes service_account in Ansible.

You can disable this case conversion by setting the snakeCaseParameters option to
false in your watches.yaml file. It is recommended that you perform some type validation
in Ansible on the variables to ensure that your application is receiving expected input.

5.4.2.5. Enabling proxy support

Operator authors can develop Operators that support network proxies. Cluster administrators configure
proxy support for the environment variables that are handled by Operator Lifecycle Manager (OLM). To
support proxied clusters, your Operator must inspect the environment for the following standard proxy
variables and pass the values to Operands:

HTTP_PROXY

HTTPS_PROXY

NO_PROXY

NOTE

This tutorial uses HTTP_PROXY as an example environment variable.

Prerequisites

A cluster with cluster-wide egress proxy enabled.

Procedure

1. Add the environment variables to the deployment by updating the
roles/memcached/tasks/main.yml file with the following:

apiVersion: cache.example.com/v1
kind: Memcached
metadata:
 labels:
 app.kubernetes.io/name: memcached
 app.kubernetes.io/instance: memcached-sample
 app.kubernetes.io/part-of: memcached-operator
 app.kubernetes.io/managed-by: kustomize
 app.kubernetes.io/created-by: memcached-operator
 name: memcached-sample
spec:
 size: 3

...

OpenShift Container Platform 4.11 Operators

188

2. Set the environment variable on the Operator deployment by adding the following to the
config/manager/manager.yaml file:

5.4.2.6. Running the Operator

There are three ways you can use the Operator SDK CLI to build and run your Operator:

Run locally outside the cluster as a Go program.

Run as a deployment on the cluster.

Bundle your Operator and use Operator Lifecycle Manager (OLM) to deploy on the cluster.

5.4.2.6.1. Running locally outside the cluster

You can run your Operator project as a Go program outside of the cluster. This is useful for
development purposes to speed up deployment and testing.

Procedure

Run the following command to install the custom resource definitions (CRDs) in the cluster
configured in your ~/.kube/config file and run the Operator locally:

Example output

env:
 - name: HTTP_PROXY
 value: '{{ lookup("env", "HTTP_PROXY") | default("", True) }}'
 - name: http_proxy
 value: '{{ lookup("env", "HTTP_PROXY") | default("", True) }}'
...

containers:
 - args:
 - --leader-elect
 - --leader-election-id=ansible-proxy-demo
 image: controller:latest
 name: manager
 env:
 - name: "HTTP_PROXY"
 value: "http_proxy_test"

$ make install run

...
{"level":"info","ts":1612589622.7888272,"logger":"ansible-controller","msg":"Watching
resource","Options.Group":"cache.example.com","Options.Version":"v1","Options.Kind":"Memc
ached"}
{"level":"info","ts":1612589622.7897573,"logger":"proxy","msg":"Starting to
serve","Address":"127.0.0.1:8888"}
{"level":"info","ts":1612589622.789971,"logger":"controller-runtime.manager","msg":"starting
metrics server","path":"/metrics"}
{"level":"info","ts":1612589622.7899997,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting

CHAPTER 5. DEVELOPING OPERATORS

189

5.4.2.6.2. Running as a deployment on the cluster

You can run your Operator project as a deployment on your cluster.

Procedure

1. Run the following make commands to build and push the Operator image. Modify the IMG
argument in the following steps to reference a repository that you have access to. You can
obtain an account for storing containers at repository sites such as Quay.io.

a. Build the image:

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMD64 architectures. Docker will
automatically set the environment variable to the value specified by –
platform. With Buildah, the –build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

b. Push the image to a repository:

NOTE

The name and tag of the image, for example IMG=
<registry>/<user>/<image_name>:<tag>, in both the commands can also
be set in your Makefile. Modify the IMG ?= controller:latest value to set
your default image name.

2. Run the following command to deploy the Operator:

By default, this command creates a namespace with the name of your Operator project in the
form <project_name>-system and is used for the deployment. This command also installs the
RBAC manifests from config/rbac.

3. Run the following command to verify that the Operator is running:

EventSource","source":"kind source: cache.example.com/v1, Kind=Memcached"}
{"level":"info","ts":1612589622.8904517,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting Controller"}
{"level":"info","ts":1612589622.8905244,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting workers","worker
count":8}

$ make docker-build IMG=<registry>/<user>/<image_name>:<tag>

$ make docker-push IMG=<registry>/<user>/<image_name>:<tag>

$ make deploy IMG=<registry>/<user>/<image_name>:<tag>

$ oc get deployment -n <project_name>-system

OpenShift Container Platform 4.11 Operators

190

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

Example output

5.4.2.6.3. Bundling an Operator and deploying with Operator Lifecycle Manager

5.4.2.6.3.1. Bundling an Operator

The Operator bundle format is the default packaging method for Operator SDK and Operator Lifecycle
Manager (OLM). You can get your Operator ready for use on OLM by using the Operator SDK to build
and push your Operator project as a bundle image.

Prerequisites

Operator SDK CLI installed on a development workstation

OpenShift CLI (oc) v4.11+ installed

Operator project initialized by using the Operator SDK

Procedure

1. Run the following make commands in your Operator project directory to build and push your
Operator image. Modify the IMG argument in the following steps to reference a repository that
you have access to. You can obtain an account for storing containers at repository sites such as
Quay.io.

a. Build the image:

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMD64 architectures. Docker will
automatically set the environment variable to the value specified by –
platform. With Buildah, the –build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

b. Push the image to a repository:

2. Create your Operator bundle manifest by running the make bundle command, which invokes
several commands, including the Operator SDK generate bundle and bundle validate
subcommands:

Bundle manifests for an Operator describe how to display, create, and manage an application.
The make bundle command creates the following files and directories in your Operator project:

NAME READY UP-TO-DATE AVAILABLE AGE
<project_name>-controller-manager 1/1 1 1 8m

$ make docker-build IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make docker-push IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make bundle IMG=<registry>/<user>/<operator_image_name>:<tag>

CHAPTER 5. DEVELOPING OPERATORS

191

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

1

A bundle manifests directory named bundle/manifests that contains a
ClusterServiceVersion object

A bundle metadata directory named bundle/metadata

All custom resource definitions (CRDs) in a config/crd directory

A Dockerfile bundle.Dockerfile

These files are then automatically validated by using operator-sdk bundle validate to ensure
the on-disk bundle representation is correct.

3. Build and push your bundle image by running the following commands. OLM consumes
Operator bundles using an index image, which reference one or more bundle images.

a. Build the bundle image. Set BUNDLE_IMG with the details for the registry, user
namespace, and image tag where you intend to push the image:

b. Push the bundle image:

5.4.2.6.3.2. Deploying an Operator with Operator Lifecycle Manager

Operator Lifecycle Manager (OLM) helps you to install, update, and manage the lifecycle of Operators
and their associated services on a Kubernetes cluster. OLM is installed by default on OpenShift
Container Platform and runs as a Kubernetes extension so that you can use the web console and the
OpenShift CLI (oc) for all Operator lifecycle management functions without any additional tools.

The Operator bundle format is the default packaging method for Operator SDK and OLM. You can use
the Operator SDK to quickly run a bundle image on OLM to ensure that it runs properly.

Prerequisites

Operator SDK CLI installed on a development workstation

Operator bundle image built and pushed to a registry

OLM installed on a Kubernetes-based cluster (v1.16.0 or later if you use
apiextensions.k8s.io/v1 CRDs, for example OpenShift Container Platform 4.11)

Logged in to the cluster with oc using an account with cluster-admin permissions

Procedure

1. Enter the following command to run the Operator on the cluster:

The run bundle command creates a valid file-based catalog and installs the Operator
bundle on your cluster using OLM.

$ make bundle-build BUNDLE_IMG=<registry>/<user>/<bundle_image_name>:<tag>

$ docker push <registry>/<user>/<bundle_image_name>:<tag>

$ operator-sdk run bundle \ 1
 -n <namespace> \ 2
 <registry>/<user>/<bundle_image_name>:<tag> 3

OpenShift Container Platform 4.11 Operators

192

2

3

Optional: By default, the command installs the Operator in the currently active project in
your ~/.kube/config file. You can add the -n flag to set a different namespace scope for

If you do not specify an image, the command uses quay.io/operator-
framework/opm:latest as the default index image. If you specify an image, the command
uses the bundle image itself as the index image.

IMPORTANT

As of OpenShift Container Platform 4.11, the run bundle command supports the
file-based catalog format for Operator catalogs by default. The deprecated
SQLite database format for Operator catalogs continues to be supported;
however, it will be removed in a future release. It is recommended that Operator
authors migrate their workflows to the file-based catalog format.

This command performs the following actions:

Create an index image referencing your bundle image. The index image is opaque and
ephemeral, but accurately reflects how a bundle would be added to a catalog in production.

Create a catalog source that points to your new index image, which enables OperatorHub to
discover your Operator.

Deploy your Operator to your cluster by creating an OperatorGroup, Subscription,
InstallPlan, and all other required resources, including RBAC.

5.4.2.7. Creating a custom resource

After your Operator is installed, you can test it by creating a custom resource (CR) that is now provided
on the cluster by the Operator.

Prerequisites

Example Memcached Operator, which provides the Memcached CR, installed on a cluster

Procedure

1. Change to the namespace where your Operator is installed. For example, if you deployed the
Operator using the make deploy command:

2. Edit the sample Memcached CR manifest at config/samples/cache_v1_memcached.yaml to
contain the following specification:

$ oc project memcached-operator-system

apiVersion: cache.example.com/v1
kind: Memcached
metadata:
 name: memcached-sample
...
spec:
...
 size: 3

CHAPTER 5. DEVELOPING OPERATORS

193

3. Create the CR:

4. Ensure that the Memcached Operator creates the deployment for the sample CR with the
correct size:

Example output

5. Check the pods and CR status to confirm the status is updated with the Memcached pod
names.

a. Check the pods:

Example output

b. Check the CR status:

Example output

6. Update the deployment size.

a. Update config/samples/cache_v1_memcached.yaml file to change the spec.size field in
the Memcached CR from 3 to 5:

$ oc apply -f config/samples/cache_v1_memcached.yaml

$ oc get deployments

NAME READY UP-TO-DATE AVAILABLE AGE
memcached-operator-controller-manager 1/1 1 1 8m
memcached-sample 3/3 3 3 1m

$ oc get pods

NAME READY STATUS RESTARTS AGE
memcached-sample-6fd7c98d8-7dqdr 1/1 Running 0 1m
memcached-sample-6fd7c98d8-g5k7v 1/1 Running 0 1m
memcached-sample-6fd7c98d8-m7vn7 1/1 Running 0 1m

$ oc get memcached/memcached-sample -o yaml

apiVersion: cache.example.com/v1
kind: Memcached
metadata:
...
 name: memcached-sample
...
spec:
 size: 3
status:
 nodes:
 - memcached-sample-6fd7c98d8-7dqdr
 - memcached-sample-6fd7c98d8-g5k7v
 - memcached-sample-6fd7c98d8-m7vn7

OpenShift Container Platform 4.11 Operators

194

b. Confirm that the Operator changes the deployment size:

Example output

7. Delete the CR by running the following command:

8. Clean up the resources that have been created as part of this tutorial.

If you used the make deploy command to test the Operator, run the following command:

If you used the operator-sdk run bundle command to test the Operator, run the following
command:

5.4.2.8. Additional resources

See Project layout for Ansible-based Operators to learn about the directory structures created
by the Operator SDK.

If a cluster-wide egress proxy is configured, cluster administrators can override the proxy
settings or inject a custom CA certificate for specific Operators running on Operator Lifecycle
Manager (OLM).

5.4.3. Project layout for Ansible-based Operators

The operator-sdk CLI can generate, or scaffold, a number of packages and files for each Operator
project.

5.4.3.1. Ansible-based project layout

Ansible-based Operator projects generated using the operator-sdk init --plugins ansible command
contain the following directories and files:

File or directory Purpose

Dockerfile Dockerfile for building the container image for the Operator.

$ oc patch memcached memcached-sample \
 -p '{"spec":{"size": 5}}' \
 --type=merge

$ oc get deployments

NAME READY UP-TO-DATE AVAILABLE AGE
memcached-operator-controller-manager 1/1 1 1 10m
memcached-sample 5/5 5 5 3m

$ oc delete -f config/samples/cache_v1_memcached.yaml

$ make undeploy

$ operator-sdk cleanup <project_name>

CHAPTER 5. DEVELOPING OPERATORS

195

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-ansible-project-layout
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#enable-cluster-wide-proxy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-configuring-proxy-support

Makefile Targets for building, publishing, deploying the container image that wraps the Operator
binary, and targets for installing and uninstalling the custom resource definition (CRD).

PROJECT YAML file containing metadata information for the Operator.

config/crd Base CRD files and the kustomization.yaml file settings.

config/default Collects all Operator manifests for deployment. Use by the make deploy command.

config/manager Controller manager deployment.

config/prometh
eus

ServiceMonitor resource for monitoring the Operator.

config/rbac Role and role binding for leader election and authentication proxy.

config/samples Sample resources created for the CRDs.

config/testing Sample configurations for testing.

playbooks/ A subdirectory for the playbooks to run.

roles/ Subdirectory for the roles tree to run.

watches.yaml Group/version/kind (GVK) of the resources to watch, and the Ansible invocation
method. New entries are added by using the create api command.

requirements.y
ml

YAML file containing the Ansible collections and role dependencies to install during a
build.

molecule/ Molecule scenarios for end-to-end testing of your role and Operator.

File or directory Purpose

5.4.4. Updating projects for newer Operator SDK versions

OpenShift Container Platform 4.11 supports Operator SDK 1.22.2. If you already have the 1.16.0 CLI
installed on your workstation, you can update the CLI to 1.22.2 by installing the latest version.

However, to ensure your existing Operator projects maintain compatibility with Operator SDK 1.22.2,
update steps are required for the associated breaking changes introduced since 1.16.0. You must
perform the update steps manually in any of your Operator projects that were previously created or
maintained with 1.16.0.

5.4.4.1. Updating Ansible-based Operator projects for Operator SDK 1.22.2

The following procedure updates an existing Ansible-based Operator project for compatibility with
1.22.2.

OpenShift Container Platform 4.11 Operators

196

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-installing-cli

1

2

3

Prerequisites

Operator SDK 1.22.2 installed.

An Operator project created or maintained with Operator SDK 1.16.0.

Procedure

1. Make the following changes to the config/default/manager_auth_proxy_patch.yaml file:

Update the tag version from v4.10 to v4.11.

Reduce the debugging log level from --v=10 to --v=0.

Add resource requests and limits.

2. Make the following changes to your Makefile:

a. Enable support for image digests by adding the following environment variables to your
Makefile:

Old Makefile

New Makefile

...
spec:
 template:
 spec:
 containers:
 - name: kube-rbac-proxy
 image: registry.redhat.io/openshift4/ose-kube-rbac-proxy:v4.11 1
 args:
 - "--secure-listen-address=0.0.0.0:8443"
 - "--upstream=http://127.0.0.1:8080/"
 - "--logtostderr=true"
 - "--v=0" 2
...
resources:
 limits:
 cpu: 500m
 memory: 128Mi
 requests:
 cpu: 5m
 memory: 64Mi 3

BUNDLE_IMG ?= $(IMAGE_TAG_BASE)-bundle:v$(VERSION)
...

BUNDLE_IMG ?= $(IMAGE_TAG_BASE)-bundle:v$(VERSION)

BUNDLE_GEN_FLAGS are the flags passed to the operator-sdk generate bundle
command
BUNDLE_GEN_FLAGS ?= -q --overwrite --version $(VERSION)

CHAPTER 5. DEVELOPING OPERATORS

197

1

b. Edit your Makefile to replace the bundle target with the BUNDLE_GEN_FLAGS
environment variable:

Old Makefile

New Makefile

c. Edit your Makefile to update opm to version 1.23.0:

Replace v1.19.1 with v1.23.0.

d. Apply the changes to your Makefile and rebuild your Operator by entering the following
command:

3. Update the image tag in your Operator’s Dockerfile as shown in the following example:

Example Dockerfile

$(BUNDLE_METADATA_OPTS)

USE_IMAGE_DIGESTS defines if images are resolved via tags or digests
You can enable this value if you would like to use SHA Based Digests
To enable set flag to true
USE_IMAGE_DIGESTS ?= false
ifeq ($(USE_IMAGE_DIGESTS), true)
 BUNDLE_GEN_FLAGS += --use-image-digests
endif

$(KUSTOMIZE) build config/manifests | operator-sdk generate bundle -q --overwrite --
version $(VERSION) $(BUNDLE_METADATA_OPTS)

$(KUSTOMIZE) build config/manifests | operator-sdk generate bundle
$(BUNDLE_GEN_FLAGS)

.PHONY: opm
OPM = ./bin/opm
opm: ## Download opm locally if necessary.
ifeq (,$(wildcard $(OPM)))
ifeq (,$(shell which opm 2>/dev/null))
 @{ \
 set -e ;\
 mkdir -p $(dir $(OPM)) ;\
 OS=$(shell go env GOOS) && ARCH=$(shell go env GOARCH) && \
 curl -sSLo $(OPM) https://github.com/operator-framework/operator-
registry/releases/download/v1.23.0/$${OS}-$${ARCH}-opm ;\ 1
 chmod +x $(OPM) ;\
 }
else
OPM = $(shell which opm)
endif
endif

$ make

OpenShift Container Platform 4.11 Operators

198

1

1

2

3

4

Update the version tag to v4.11.

4. Update your requirements.yml file as shown in the following example:

Update version 1.2.1 to 2.0.1.

Update version 0.3.1 to 0.4.0.

Update version 2.2.0 to 2.3.1.

Add support for the Operator Ansible SDK by adding the cloud.common collection.

IMPORTANT

As of version 2.0.0, the community.kubernetes collection was renamed to
kubernetes.core. The community.kubernetes collection has been replaced by
deprecated redirects to kubernetes.core. If you use fully qualified collection
names (FQCNs) that begin with community.kubernetes, you must update the
FQCNs to use kubernetes.core.

5.4.4.2. Additional resources

Migrating package manifest projects to bundle format

Upgrading projects for Operator SDK v1.16.0

Upgrading projects for Operator SDK v1.10.1

Upgrading projects for Operator SDK v1.8.0

5.4.5. Ansible support in Operator SDK

5.4.5.1. Custom resource files

Operators use the Kubernetes extension mechanism, custom resource definitions (CRDs), so your
custom resource (CR) looks and acts just like the built-in, native Kubernetes objects.

The CR file format is a Kubernetes resource file. The object has mandatory and optional fields:

Table 5.1. Custom resource fields

FROM registry.redhat.io/openshift4/ose-ansible-operator:v4.11 1

collections:
 - name: community.kubernetes
 version: "2.0.1" 1
 - name: operator_sdk.util
 version: "0.4.0" 2
 - name: kubernetes.core
 version: "2.3.1" 3
 - name: cloud.common 4
 version: "2.1.1"

CHAPTER 5. DEVELOPING OPERATORS

199

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-pkgman-to-bundle
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/index#osdk-upgrading-v1101-to-v1160_osdk-upgrading-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html/operators/developing-operators#osdk-upgrading-v180-to-v1101_osdk-upgrading-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html/operators/developing-operators#osdk-upgrading-v130-to-v180_osdk-upgrading-projects

Field Description

apiVersion Version of the CR to be created.

kind Kind of the CR to be created.

metadata Kubernetes-specific metadata to be created.

spec (optional) Key-value list of variables which are passed to Ansible. This field is empty by
default.

status Summarizes the current state of the object. For Ansible-based Operators,
the status subresource is enabled for CRDs and managed by the
operator_sdk.util.k8s_status Ansible module by default, which includes
condition information to the CR status.

annotations Kubernetes-specific annotations to be appended to the CR.

The following list of CR annotations modify the behavior of the Operator:

Table 5.2. Ansible-based Operator annotations

Annotation Description

ansible.operator-
sdk/reconcile-period

Specifies the reconciliation interval for the CR. This value is parsed using the
standard Golang package time. Specifically, ParseDuration is used which
applies the default suffix of s, giving the value in seconds.

Example Ansible-based Operator annotation

5.4.5.2. watches.yaml file

A group/version/kind (GVK) is a unique identifier for a Kubernetes API. The watches.yaml file contains a
list of mappings from custom resources (CRs), identified by its GVK, to an Ansible role or playbook. The
Operator expects this mapping file in a predefined location at /opt/ansible/watches.yaml.

Table 5.3. watches.yaml file mappings

Field Description

group Group of CR to watch.

apiVersion: "test1.example.com/v1alpha1"
kind: "Test1"
metadata:
 name: "example"
annotations:
 ansible.operator-sdk/reconcile-period: "30s"

OpenShift Container Platform 4.11 Operators

200

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#status-subresource
https://golang.org/pkg/time/
https://golang.org/pkg/time/#ParseDuration

1

2

3

version Version of CR to watch.

kind Kind of CR to watch

role (default) Path to the Ansible role added to the container. For example, if your roles
directory is at /opt/ansible/roles/ and your role is named busybox, this
value would be /opt/ansible/roles/busybox. This field is mutually
exclusive with the playbook field.

playbook Path to the Ansible playbook added to the container. This playbook is
expected to be a way to call roles. This field is mutually exclusive with the
role field.

reconcilePeriod (optional) The reconciliation interval, how often the role or playbook is run, for a given
CR.

manageStatus (optional) When set to true (default), the Operator manages the status of the CR
generically. When set to false, the status of the CR is managed elsewhere,
by the specified role or playbook or in a separate controller.

Field Description

Example watches.yaml file

Simple example mapping Test1 to the test1 role.

Simple example mapping Test2 to a playbook.

More complex example for the Test3 kind. Disables re-queuing and managing the CR status in the
playbook.

5.4.5.2.1. Advanced options

Advanced features can be enabled by adding them to your watches.yaml file per GVK. They can go

- version: v1alpha1 1
 group: test1.example.com
 kind: Test1
 role: /opt/ansible/roles/Test1

- version: v1alpha1 2
 group: test2.example.com
 kind: Test2
 playbook: /opt/ansible/playbook.yml

- version: v1alpha1 3
 group: test3.example.com
 kind: Test3
 playbook: /opt/ansible/test3.yml
 reconcilePeriod: 0
 manageStatus: false

CHAPTER 5. DEVELOPING OPERATORS

201

Advanced features can be enabled by adding them to your watches.yaml file per GVK. They can go
below the group, version, kind and playbook or role fields.

Some features can be overridden per resource using an annotation on that CR. The options that can be
overridden have the annotation specified below.

Table 5.4. Advanced watches.yaml file options

Feature YAML key Description Annotation for
override

Defa
ult
valu
e

Reconcile period reconcilePeri
od

Time between reconcile runs for a
particular CR.

ansible.oper
ator-
sdk/reconcil
e-period

1m

Manage status manageStatu
s

Allows the Operator to manage
the conditions section of each
CR status section.

 true

Watch dependent
resources

watchDepen
dentResourc
es

Allows the Operator to
dynamically watch resources that
are created by Ansible.

 true

Watch cluster-scoped
resources

watchCluster
ScopedReso
urces

Allows the Operator to watch
cluster-scoped resources that
are created by Ansible.

 fals
e

Max runner artifacts maxRunnerA
rtifacts

Manages the number of artifact
directories that Ansible Runner
keeps in the Operator container
for each individual resource.

ansible.oper
ator-
sdk/max-
runner-
artifacts

20

Example watches.yml file with advanced options

5.4.5.3. Extra variables sent to Ansible

Extra variables can be sent to Ansible, which are then managed by the Operator. The spec section of the
custom resource (CR) passes along the key-value pairs as extra variables. This is equivalent to extra
variables passed in to the ansible-playbook command.

- version: v1alpha1
 group: app.example.com
 kind: AppService
 playbook: /opt/ansible/playbook.yml
 maxRunnerArtifacts: 30
 reconcilePeriod: 5s
 manageStatus: False
 watchDependentResources: False

OpenShift Container Platform 4.11 Operators

202

https://ansible-runner.readthedocs.io/en/latest/intro.html#runner-artifacts-directory-hierarchy

The Operator also passes along additional variables under the meta field for the name of the CR and
the namespace of the CR.

For the following CR example:

The structure passed to Ansible as extra variables is:

The message and newParameter fields are set in the top level as extra variables, and meta provides
the relevant metadata for the CR as defined in the Operator. The meta fields can be accessed using dot
notation in Ansible, for example:

5.4.5.4. Ansible Runner directory

Ansible Runner keeps information about Ansible runs in the container. This is located at /tmp/ansible-
operator/runner/<group>/<version>/<kind>/<namespace>/<name>.

Additional resources

To learn more about the runner directory, see the Ansible Runner documentation.

5.4.6. Kubernetes Collection for Ansible

To manage the lifecycle of your application on Kubernetes using Ansible, you can use the Kubernetes
Collection for Ansible. This collection of Ansible modules allows a developer to either leverage their
existing Kubernetes resource files written in YAML or express the lifecycle management in native
Ansible.

One of the biggest benefits of using Ansible in conjunction with existing Kubernetes resource files is the
ability to use Jinja templating so that you can customize resources with the simplicity of a few variables
in Ansible.

This section goes into detail on usage of the Kubernetes Collection. To get started, install the collection

apiVersion: "app.example.com/v1alpha1"
kind: "Database"
metadata:
 name: "example"
spec:
 message: "Hello world 2"
 newParameter: "newParam"

{ "meta": {
 "name": "<cr_name>",
 "namespace": "<cr_namespace>",
 },
 "message": "Hello world 2",
 "new_parameter": "newParam",
 "_app_example_com_database": {
 <full_crd>
 },
}

- debug:
 msg: "name: {{ ansible_operator_meta.name }}, {{ ansible_operator_meta.namespace }}"

CHAPTER 5. DEVELOPING OPERATORS

203

https://ansible-runner.readthedocs.io/en/latest/index.html
https://galaxy.ansible.com/community/kubernetes

This section goes into detail on usage of the Kubernetes Collection. To get started, install the collection
on your local workstation and test it using a playbook before moving on to using it within an Operator.

5.4.6.1. Installing the Kubernetes Collection for Ansible

You can install the Kubernetes Collection for Ansible on your local workstation.

Procedure

1. Install Ansible 2.9+:

2. Install the OpenShift python client package:

3. Install the Kubernetes Collection using one of the following methods:

You can install the collection directly from Ansible Galaxy:

If you have already initialized your Operator, you might have a requirements.yml file at the
top level of your project. This file specifies Ansible dependencies that must be installed for
your Operator to function. By default, this file installs the community.kubernetes
collection as well as the operator_sdk.util collection, which provides modules and plugins
for Operator-specific fuctions.
To install the dependent modules from the requirements.yml file:

5.4.6.2. Testing the Kubernetes Collection locally

Operator developers can run the Ansible code from their local machine as opposed to running and
rebuilding the Operator each time.

Prerequisites

Initialize an Ansible-based Operator project and create an API that has a generated Ansible role
by using the Operator SDK

Install the Kubernetes Collection for Ansible

Procedure

1. In your Ansible-based Operator project directory, modify the roles/<kind>/tasks/main.yml file
with the Ansible logic that you want. The roles/<kind>/ directory is created when you use the --
generate-role flag while creating an API. The <kind> replaceable matches the kind that you
specified for the API.
The following example creates and deletes a config map based on the value of a variable named
state:

$ sudo dnf install ansible

$ pip3 install openshift

$ ansible-galaxy collection install community.kubernetes

$ ansible-galaxy collection install -r requirements.yml

OpenShift Container Platform 4.11 Operators

204

https://github.com/openshift/openshift-restclient-python

1

2

Change this value if you want the config map to be created in a different namespace from
default.

Setting ignore_errors: true ensures that deleting a nonexistent config map does not fail.

2. Modify the roles/<kind>/defaults/main.yml file to set state to present by default:

3. Create an Ansible playbook by creating a playbook.yml file in the top-level of your project
directory, and include your <kind> role:

4. Run the playbook:

Example output

5. Verify that the config map was created:

- name: set ConfigMap example-config to {{ state }}
 community.kubernetes.k8s:
 api_version: v1
 kind: ConfigMap
 name: example-config
 namespace: default 1
 state: "{{ state }}"
 ignore_errors: true 2

state: present

- hosts: localhost
 roles:
 - <kind>

$ ansible-playbook playbook.yml

[WARNING]: provided hosts list is empty, only localhost is available. Note that the implicit
localhost does not match 'all'

PLAY [localhost] **

TASK [Gathering Facts]
**
ok: [localhost]

TASK [memcached : set ConfigMap example-config to present]
**
changed: [localhost]

PLAY RECAP **
localhost : ok=2 changed=1 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

CHAPTER 5. DEVELOPING OPERATORS

205

Example output

6. Rerun the playbook setting state to absent:

Example output

7. Verify that the config map was deleted:

5.4.6.3. Next steps

See Using Ansible inside an Operator for details on triggering your custom Ansible logic inside
of an Operator when a custom resource (CR) changes.

5.4.7. Using Ansible inside an Operator

After you are familiar with using the Kubernetes Collection for Ansible locally , you can trigger the same
Ansible logic inside of an Operator when a custom resource (CR) changes. This example maps an Ansible
role to a specific Kubernetes resource that the Operator watches. This mapping is done in the
watches.yaml file.

5.4.7.1. Custom resource files

Operators use the Kubernetes extension mechanism, custom resource definitions (CRDs), so your
custom resource (CR) looks and acts just like the built-in, native Kubernetes objects.

The CR file format is a Kubernetes resource file. The object has mandatory and optional fields:

$ oc get configmaps

NAME DATA AGE
example-config 0 2m1s

$ ansible-playbook playbook.yml --extra-vars state=absent

[WARNING]: provided hosts list is empty, only localhost is available. Note that the implicit
localhost does not match 'all'

PLAY [localhost] **

TASK [Gathering Facts]
**
ok: [localhost]

TASK [memcached : set ConfigMap example-config to absent]
**
changed: [localhost]

PLAY RECAP **
localhost : ok=2 changed=1 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

$ oc get configmaps

OpenShift Container Platform 4.11 Operators

206

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-ansible-inside-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-ansible-k8s-collection

Table 5.5. Custom resource fields

Field Description

apiVersion Version of the CR to be created.

kind Kind of the CR to be created.

metadata Kubernetes-specific metadata to be created.

spec (optional) Key-value list of variables which are passed to Ansible. This field is empty by
default.

status Summarizes the current state of the object. For Ansible-based Operators,
the status subresource is enabled for CRDs and managed by the
operator_sdk.util.k8s_status Ansible module by default, which includes
condition information to the CR status.

annotations Kubernetes-specific annotations to be appended to the CR.

The following list of CR annotations modify the behavior of the Operator:

Table 5.6. Ansible-based Operator annotations

Annotation Description

ansible.operator-
sdk/reconcile-period

Specifies the reconciliation interval for the CR. This value is parsed using the
standard Golang package time. Specifically, ParseDuration is used which
applies the default suffix of s, giving the value in seconds.

Example Ansible-based Operator annotation

5.4.7.2. Testing an Ansible-based Operator locally

You can test the logic inside of an Ansible-based Operator running locally by using the make run
command from the top-level directory of your Operator project. The make run Makefile target runs the
ansible-operator binary locally, which reads from the watches.yaml file and uses your ~/.kube/config
file to communicate with a Kubernetes cluster just as the k8s modules do.

NOTE

apiVersion: "test1.example.com/v1alpha1"
kind: "Test1"
metadata:
 name: "example"
annotations:
 ansible.operator-sdk/reconcile-period: "30s"

CHAPTER 5. DEVELOPING OPERATORS

207

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#status-subresource
https://golang.org/pkg/time/
https://golang.org/pkg/time/#ParseDuration

NOTE

You can customize the roles path by setting the environment variable
ANSIBLE_ROLES_PATH or by using the ansible-roles-path flag. If the role is not found
in the ANSIBLE_ROLES_PATH value, the Operator looks for it in {{current
directory}}/roles.

Prerequisites

Ansible Runner v2.0.2+

Ansible Runner HTTP Event Emitter plugin v1.0.0+

Performed the previous steps for testing the Kubernetes Collection locally

Procedure

1. Install your custom resource definition (CRD) and proper role-based access control (RBAC)
definitions for your custom resource (CR):

Example output

2. Run the make run command:

Example output

$ make install

/usr/bin/kustomize build config/crd | kubectl apply -f -
customresourcedefinition.apiextensions.k8s.io/memcacheds.cache.example.com created

$ make run

/home/user/memcached-operator/bin/ansible-operator run
{"level":"info","ts":1612739145.2871568,"logger":"cmd","msg":"Version","Go
Version":"go1.15.5","GOOS":"linux","GOARCH":"amd64","ansible-
operator":"v1.10.1","commit":"1abf57985b43bf6a59dcd18147b3c574fa57d3f6"}
...
{"level":"info","ts":1612739148.347306,"logger":"controller-runtime.metrics","msg":"metrics
server is starting to listen","addr":":8080"}
{"level":"info","ts":1612739148.3488882,"logger":"watches","msg":"Environment variable not
set; using default
value","envVar":"ANSIBLE_VERBOSITY_MEMCACHED_CACHE_EXAMPLE_COM","default":
2}
{"level":"info","ts":1612739148.3490262,"logger":"cmd","msg":"Environment variable not set;
using default
value","Namespace":"","envVar":"ANSIBLE_DEBUG_LOGS","ANSIBLE_DEBUG_LOGS":fals
e}
{"level":"info","ts":1612739148.3490646,"logger":"ansible-controller","msg":"Watching
resource","Options.Group":"cache.example.com","Options.Version":"v1","Options.Kind":"Memc
ached"}
{"level":"info","ts":1612739148.350217,"logger":"proxy","msg":"Starting to
serve","Address":"127.0.0.1:8888"}
{"level":"info","ts":1612739148.3506632,"logger":"controller-runtime.manager","msg":"starting

OpenShift Container Platform 4.11 Operators

208

https://ansible-runner.readthedocs.io/en/latest/install.html
https://github.com/ansible/ansible-runner-http

With the Operator now watching your CR for events, the creation of a CR will trigger your
Ansible role to run.

NOTE

Consider an example config/samples/<gvk>.yaml CR manifest:

Because the spec field is not set, Ansible is invoked with no extra variables.
Passing extra variables from a CR to Ansible is covered in another section. It is
important to set reasonable defaults for the Operator.

3. Create an instance of your CR with the default variable state set to present:

4. Check that the example-config config map was created:

Example output

5. Modify your config/samples/<gvk>.yaml file to set the state field to absent. For example:

6. Apply the changes:

metrics server","path":"/metrics"}
{"level":"info","ts":1612739148.350784,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting
EventSource","source":"kind source: cache.example.com/v1, Kind=Memcached"}
{"level":"info","ts":1612739148.5511978,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting Controller"}
{"level":"info","ts":1612739148.5512562,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting workers","worker
count":8}

apiVersion: <group>.example.com/v1alpha1
kind: <kind>
metadata:
 name: "<kind>-sample"

$ oc apply -f config/samples/<gvk>.yaml

$ oc get configmaps

NAME STATUS AGE
example-config Active 3s

apiVersion: cache.example.com/v1
kind: Memcached
metadata:
 name: memcached-sample
spec:
 state: absent

$ oc apply -f config/samples/<gvk>.yaml

CHAPTER 5. DEVELOPING OPERATORS

209

7. Confirm that the config map is deleted:

5.4.7.3. Testing an Ansible-based Operator on the cluster

After you have tested your custom Ansible logic locally inside of an Operator, you can test the Operator
inside of a pod on an OpenShift Container Platform cluster, which is preferred for production use.

You can run your Operator project as a deployment on your cluster.

Procedure

1. Run the following make commands to build and push the Operator image. Modify the IMG
argument in the following steps to reference a repository that you have access to. You can
obtain an account for storing containers at repository sites such as Quay.io.

a. Build the image:

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMD64 architectures. Docker will
automatically set the environment variable to the value specified by –
platform. With Buildah, the –build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

b. Push the image to a repository:

NOTE

The name and tag of the image, for example IMG=
<registry>/<user>/<image_name>:<tag>, in both the commands can also
be set in your Makefile. Modify the IMG ?= controller:latest value to set
your default image name.

2. Run the following command to deploy the Operator:

By default, this command creates a namespace with the name of your Operator project in the
form <project_name>-system and is used for the deployment. This command also installs the
RBAC manifests from config/rbac.

3. Run the following command to verify that the Operator is running:

$ oc get configmap

$ make docker-build IMG=<registry>/<user>/<image_name>:<tag>

$ make docker-push IMG=<registry>/<user>/<image_name>:<tag>

$ make deploy IMG=<registry>/<user>/<image_name>:<tag>

$ oc get deployment -n <project_name>-system

OpenShift Container Platform 4.11 Operators

210

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

1

2

Example output

5.4.7.4. Ansible logs

Ansible-based Operators provide logs about the Ansible run, which can be useful for debugging your
Ansible tasks. The logs can also contain detailed information about the internals of the Operator and its
interactions with Kubernetes.

5.4.7.4.1. Viewing Ansible logs

Prerequisites

Ansible-based Operator running as a deployment on a cluster

Procedure

To view logs from an Ansible-based Operator, run the following command:

View logs from the manager container.

If you used the make deploy command to run the Operator as a deployment, use the
<project_name>-system namespace.

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
<project_name>-controller-manager 1/1 1 1 8m

$ oc logs deployment/<project_name>-controller-manager \
 -c manager \ 1
 -n <namespace> 2

{"level":"info","ts":1612732105.0579333,"logger":"cmd","msg":"Version","Go
Version":"go1.15.5","GOOS":"linux","GOARCH":"amd64","ansible-
operator":"v1.10.1","commit":"1abf57985b43bf6a59dcd18147b3c574fa57d3f6"}
{"level":"info","ts":1612732105.0587437,"logger":"cmd","msg":"WATCH_NAMESPACE
environment variable not set. Watching all namespaces.","Namespace":""}
I0207 21:08:26.110949 7 request.go:645] Throttling request took 1.035521578s, request:
GET:https://172.30.0.1:443/apis/flowcontrol.apiserver.k8s.io/v1alpha1?timeout=32s
{"level":"info","ts":1612732107.768025,"logger":"controller-runtime.metrics","msg":"metrics
server is starting to listen","addr":"127.0.0.1:8080"}
{"level":"info","ts":1612732107.768796,"logger":"watches","msg":"Environment variable not
set; using default
value","envVar":"ANSIBLE_VERBOSITY_MEMCACHED_CACHE_EXAMPLE_COM","default":
2}
{"level":"info","ts":1612732107.7688773,"logger":"cmd","msg":"Environment variable not set;
using default
value","Namespace":"","envVar":"ANSIBLE_DEBUG_LOGS","ANSIBLE_DEBUG_LOGS":fals
e}
{"level":"info","ts":1612732107.7688901,"logger":"ansible-controller","msg":"Watching
resource","Options.Group":"cache.example.com","Options.Version":"v1","Options.Kind":"Memc
ached"}
{"level":"info","ts":1612732107.770032,"logger":"proxy","msg":"Starting to

CHAPTER 5. DEVELOPING OPERATORS

211

5.4.7.4.2. Enabling full Ansible results in logs

You can set the environment variable ANSIBLE_DEBUG_LOGS to True to enable checking the full
Ansible result in logs, which can be helpful when debugging.

Procedure

Edit the config/manager/manager.yaml and
config/default/manager_auth_proxy_patch.yaml files to include the following configuration:

5.4.7.4.3. Enabling verbose debugging in logs

While developing an Ansible-based Operator, it can be helpful to enable additional debugging in logs.

Procedure

Add the ansible.sdk.operatorframework.io/verbosity annotation to your custom resource to
enable the verbosity level that you want. For example:

5.4.8. Custom resource status management

5.4.8.1. About custom resource status in Ansible-based Operators

serve","Address":"127.0.0.1:8888"}
I0207 21:08:27.770185 7 leaderelection.go:243] attempting to acquire leader lease
memcached-operator-system/memcached-operator...
{"level":"info","ts":1612732107.770202,"logger":"controller-runtime.manager","msg":"starting
metrics server","path":"/metrics"}
I0207 21:08:27.784854 7 leaderelection.go:253] successfully acquired lease
memcached-operator-system/memcached-operator
{"level":"info","ts":1612732107.7850506,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting
EventSource","source":"kind source: cache.example.com/v1, Kind=Memcached"}
{"level":"info","ts":1612732107.8853772,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting Controller"}
{"level":"info","ts":1612732107.8854098,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting workers","worker
count":4}

 containers:
 - name: manager
 env:
 - name: ANSIBLE_DEBUG_LOGS
 value: "True"

apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "example-memcached"
 annotations:
 "ansible.sdk.operatorframework.io/verbosity": "4"
spec:
 size: 4

OpenShift Container Platform 4.11 Operators

212

Ansible-based Operators automatically update custom resource (CR) status subresources with generic
information about the previous Ansible run. This includes the number of successful and failed tasks and
relevant error messages as shown:

Ansible-based Operators also allow Operator authors to supply custom status values with the
k8s_status Ansible module, which is included in the operator_sdk.util collection. This allows the author
to update the status from within Ansible with any key-value pair as desired.

By default, Ansible-based Operators always include the generic Ansible run output as shown above. If
you would prefer your application did not update the status with Ansible output, you can track the status
manually from your application.

5.4.8.2. Tracking custom resource status manually

You can use the operator_sdk.util collection to modify your Ansible-based Operator to track custom
resource (CR) status manually from your application.

Prerequisites

Ansible-based Operator project created by using the Operator SDK

Procedure

1. Update the watches.yaml file with a manageStatus field set to false:

2. Use the operator_sdk.util.k8s_status Ansible module to update the subresource. For example,
to update with key test and value data, operator_sdk.util can be used as shown:

status:
 conditions:
 - ansibleResult:
 changed: 3
 completion: 2018-12-03T13:45:57.13329
 failures: 1
 ok: 6
 skipped: 0
 lastTransitionTime: 2018-12-03T13:45:57Z
 message: 'Status code was -1 and not [200]: Request failed: <urlopen error [Errno
 113] No route to host>'
 reason: Failed
 status: "True"
 type: Failure
 - lastTransitionTime: 2018-12-03T13:46:13Z
 message: Running reconciliation
 reason: Running
 status: "True"
 type: Running

- version: v1
 group: api.example.com
 kind: <kind>
 role: <role>
 manageStatus: false

CHAPTER 5. DEVELOPING OPERATORS

213

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#status-subresource
https://galaxy.ansible.com/operator_sdk/util

3. You can declare collections in the meta/main.yml file for the role, which is included for
scaffolded Ansible-based Operators:

4. After declaring collections in the role meta, you can invoke the k8s_status module directly:

5.5. HELM-BASED OPERATORS

5.5.1. Getting started with Operator SDK for Helm-based Operators

The Operator SDK includes options for generating an Operator project that leverages existing Helm
charts to deploy Kubernetes resources as a unified application, without having to write any Go code.

To demonstrate the basics of setting up and running an Helm-based Operator using tools and libraries
provided by the Operator SDK, Operator developers can build an example Helm-based Operator for
Nginx and deploy it to a cluster.

5.5.1.1. Prerequisites

Operator SDK CLI installed

OpenShift CLI (oc) v4.11+ installed

Logged into an OpenShift Container Platform 4.11 cluster with oc with an account that has
cluster-admin permissions

To allow the cluster to pull the image, the repository where you push your image must be set as
public, or you must configure an image pull secret

Additional resources

Installing the Operator SDK CLI

Getting started with the OpenShift CLI

5.5.1.2. Creating and deploying Helm-based Operators

You can build and deploy a simple Helm-based Operator for Nginx by using the Operator SDK.

Procedure

- operator_sdk.util.k8s_status:
 api_version: app.example.com/v1
 kind: <kind>
 name: "{{ ansible_operator_meta.name }}"
 namespace: "{{ ansible_operator_meta.namespace }}"
 status:
 test: data

collections:
 - operator_sdk.util

k8s_status:
 ...
 status:
 key1: value1

OpenShift Container Platform 4.11 Operators

214

https://helm.sh/docs/
https://helm.sh/docs/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-installing-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cli_tools/#getting-started-cli

Procedure

1. Create a project.

a. Create your project directory:

b. Change into the project directory:

c. Run the operator-sdk init command with the helm plugin to initialize the project:

2. Create an API.
Create a simple Nginx API:

This API uses the built-in Helm chart boilerplate from the helm create command.

3. Build and push the Operator image.
Use the default Makefile targets to build and push your Operator. Set IMG with a pull spec for
your image that uses a registry you can push to:

4. Run the Operator.

a. Install the CRD:

b. Deploy the project to the cluster. Set IMG to the image that you pushed:

5. Add a security context constraint (SCC).
The Nginx service account requires privileged access to run in OpenShift Container Platform.
Add the following SCC to the service account for the nginx-sample pod:

6. Create a sample custom resource (CR).

a. Create a sample CR:

$ mkdir nginx-operator

$ cd nginx-operator

$ operator-sdk init \
 --plugins=helm

$ operator-sdk create api \
 --group demo \
 --version v1 \
 --kind Nginx

$ make docker-build docker-push IMG=<registry>/<user>/<image_name>:<tag>

$ make install

$ make deploy IMG=<registry>/<user>/<image_name>:<tag>

$ oc adm policy add-scc-to-user \
 anyuid system:serviceaccount:nginx-operator-system:nginx-sample

CHAPTER 5. DEVELOPING OPERATORS

215

b. Watch for the CR to reconcile the Operator:

7. Delete a CR
Delete a CR by running the following command:

8. Clean up.
Run the following command to clean up the resources that have been created as part of this
procedure:

5.5.1.3. Next steps

See Operator SDK tutorial for Helm-based Operators for a more in-depth walkthrough on
building a Helm-based Operator.

5.5.2. Operator SDK tutorial for Helm-based Operators

Operator developers can take advantage of Helm support in the Operator SDK to build an example
Helm-based Operator for Nginx and manage its lifecycle. This tutorial walks through the following
process:

Create a Nginx deployment

Ensure that the deployment size is the same as specified by the Nginx custom resource (CR)
spec

Update the Nginx CR status using the status writer with the names of the nginx pods

This process is accomplished using two centerpieces of the Operator Framework:

Operator SDK

The operator-sdk CLI tool and controller-runtime library API

Operator Lifecycle Manager (OLM)

Installation, upgrade, and role-based access control (RBAC) of Operators on a cluster

NOTE

This tutorial goes into greater detail than Getting started with Operator SDK for Helm-
based Operators.

5.5.2.1. Prerequisites

$ oc apply -f config/samples/demo_v1_nginx.yaml \
 -n nginx-operator-system

$ oc logs deployment.apps/nginx-operator-controller-manager \
 -c manager \
 -n nginx-operator-system

$ oc delete -f config/samples/demo_v1_nginx -n nginx-operator-system

$ make undeploy

OpenShift Container Platform 4.11 Operators

216

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-helm-tutorial
https://helm.sh/docs/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-helm-quickstart

Operator SDK CLI installed

OpenShift CLI (oc) v4.11+ installed

Logged into an OpenShift Container Platform 4.11 cluster with oc with an account that has
cluster-admin permissions

To allow the cluster to pull the image, the repository where you push your image must be set as
public, or you must configure an image pull secret

Additional resources

Installing the Operator SDK CLI

Getting started with the OpenShift CLI

5.5.2.2. Creating a project

Use the Operator SDK CLI to create a project called nginx-operator.

Procedure

1. Create a directory for the project:

2. Change to the directory:

3. Run the operator-sdk init command with the helm plugin to initialize the project:

NOTE

By default, the helm plugin initializes a project using a boilerplate Helm chart. You
can use additional flags, such as the --helm-chart flag, to initialize a project using
an existing Helm chart.

The init command creates the nginx-operator project specifically for watching a resource with
API version example.com/v1 and kind Nginx.

4. For Helm-based projects, the init command generates the RBAC rules in the
config/rbac/role.yaml file based on the resources that would be deployed by the default
manifest for the chart. Verify that the rules generated in this file meet the permission
requirements of the Operator.

$ mkdir -p $HOME/projects/nginx-operator

$ cd $HOME/projects/nginx-operator

$ operator-sdk init \
 --plugins=helm \
 --domain=example.com \
 --group=demo \
 --version=v1 \
 --kind=Nginx

CHAPTER 5. DEVELOPING OPERATORS

217

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-installing-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cli_tools/#getting-started-cli

5.5.2.2.1. Existing Helm charts

Instead of creating your project with a boilerplate Helm chart, you can alternatively use an existing chart,
either from your local file system or a remote chart repository, by using the following flags:

--helm-chart

--helm-chart-repo

--helm-chart-version

If the --helm-chart flag is specified, the --group, --version, and --kind flags become optional. If left
unset, the following default values are used:

Flag Value

--domain my.domain

--group charts

--version v1

--kind Deduced from the specified chart

If the --helm-chart flag specifies a local chart archive, for example example-chart-1.2.0.tgz, or
directory, the chart is validated and unpacked or copied into the project. Otherwise, the Operator SDK
attempts to fetch the chart from a remote repository.

If a custom repository URL is not specified by the --helm-chart-repo flag, the following chart reference
formats are supported:

Format Description

<repo_name>/<
chart_name>

Fetch the Helm chart named <chart_name> from the helm chart repository named
<repo_name>, as specified in the
$HELM_HOME/repositories/repositories.yaml file. Use the helm repo add
command to configure this file.

<url> Fetch the Helm chart archive at the specified URL.

If a custom repository URL is specified by --helm-chart-repo, the following chart reference format is
supported:

Format Description

<chart_name> Fetch the Helm chart named <chart_name> in the Helm chart repository specified by
the --helm-chart-repo URL value.

If the --helm-chart-version flag is unset, the Operator SDK fetches the latest available version of the

OpenShift Container Platform 4.11 Operators

218

Helm chart. Otherwise, it fetches the specified version. The optional --helm-chart-version flag is not
used when the chart specified with the --helm-chart flag refers to a specific version, for example when it
is a local path or a URL.

For more details and examples, run:

5.5.2.2.2. PROJECT file

Among the files generated by the operator-sdk init command is a Kubebuilder PROJECT file.
Subsequent operator-sdk commands, as well as help output, that are run from the project root read
this file and are aware that the project type is Helm. For example:

5.5.2.3. Understanding the Operator logic

For this example, the nginx-operator project executes the following reconciliation logic for each Nginx
custom resource (CR):

Create an Nginx deployment if it does not exist.

Create an Nginx service if it does not exist.

Create an Nginx ingress if it is enabled and does not exist.

Ensure that the deployment, service, and optional ingress match the desired configuration as
specified by the Nginx CR, for example the replica count, image, and service type.

By default, the nginx-operator project watches Nginx resource events as shown in the watches.yaml
file and executes Helm releases using the specified chart:

$ operator-sdk init --plugins helm --help

domain: example.com
layout:
- helm.sdk.operatorframework.io/v1
plugins:
 manifests.sdk.operatorframework.io/v2: {}
 scorecard.sdk.operatorframework.io/v2: {}
 sdk.x-openshift.io/v1: {}
projectName: nginx-operator
resources:
- api:
 crdVersion: v1
 namespaced: true
 domain: example.com
 group: demo
 kind: Nginx
 version: v1
version: "3"

Use the 'create api' subcommand to add watches to this file.
- group: demo
 version: v1

CHAPTER 5. DEVELOPING OPERATORS

219

5.5.2.3.1. Sample Helm chart

When a Helm Operator project is created, the Operator SDK creates a sample Helm chart that contains
a set of templates for a simple Nginx release.

For this example, templates are available for deployment, service, and ingress resources, along with a
NOTES.txt template, which Helm chart developers use to convey helpful information about a release.

If you are not already familiar with Helm charts, review the Helm developer documentation.

5.5.2.3.2. Modifying the custom resource spec

Helm uses a concept called values to provide customizations to the defaults of a Helm chart, which are
defined in the values.yaml file.

You can override these defaults by setting the desired values in the custom resource (CR) spec. You can
use the number of replicas as an example.

Procedure

1. The helm-charts/nginx/values.yaml file has a value called replicaCount set to 1 by default. To
have two Nginx instances in your deployment, your CR spec must contain replicaCount: 2.
Edit the config/samples/demo_v1_nginx.yaml file to set replicaCount: 2:

2. Similarly, the default service port is set to 80. To use 8080, edit the
config/samples/demo_v1_nginx.yaml file to set spec.port: 8080,which adds the service port
override:

The Helm Operator applies the entire spec as if it was the contents of a values file, just like the helm
install -f ./overrides.yaml command.

5.5.2.4. Enabling proxy support

 kind: Nginx
 chart: helm-charts/nginx
+kubebuilder:scaffold:watch

apiVersion: demo.example.com/v1
kind: Nginx
metadata:
 name: nginx-sample
...
spec:
...
 replicaCount: 2

apiVersion: demo.example.com/v1
kind: Nginx
metadata:
 name: nginx-sample
spec:
 replicaCount: 2
 service:
 port: 8080

OpenShift Container Platform 4.11 Operators

220

https://docs.helm.sh/developing_charts/
https://helm.sh/docs/intro/using_helm/#customizing-the-chart-before-installing

Operator authors can develop Operators that support network proxies. Cluster administrators configure
proxy support for the environment variables that are handled by Operator Lifecycle Manager (OLM). To
support proxied clusters, your Operator must inspect the environment for the following standard proxy
variables and pass the values to Operands:

HTTP_PROXY

HTTPS_PROXY

NO_PROXY

NOTE

This tutorial uses HTTP_PROXY as an example environment variable.

Prerequisites

A cluster with cluster-wide egress proxy enabled.

Procedure

1. Edit the watches.yaml file to include overrides based on an environment variable by adding the
overrideValues field:

2. Add the proxy.http value in the helm-charts/nginx/values.yaml file:

3. To make sure the chart template supports using the variables, edit the chart template in the
helm-charts/nginx/templates/deployment.yaml file to contain the following:

4. Set the environment variable on the Operator deployment by adding the following to the

...
- group: demo.example.com
 version: v1alpha1
 kind: Nginx
 chart: helm-charts/nginx
 overrideValues:
 proxy.http: $HTTP_PROXY
...

...
proxy:
 http: ""
 https: ""
 no_proxy: ""

containers:
 - name: {{ .Chart.Name }}
 securityContext:
 - toYaml {{ .Values.securityContext | nindent 12 }}
 image: "{{ .Values.image.repository }}:{{ .Values.image.tag | default .Chart.AppVersion }}"
 imagePullPolicy: {{ .Values.image.pullPolicy }}
 env:
 - name: http_proxy
 value: "{{ .Values.proxy.http }}"

CHAPTER 5. DEVELOPING OPERATORS

221

4. Set the environment variable on the Operator deployment by adding the following to the
config/manager/manager.yaml file:

5.5.2.5. Running the Operator

There are three ways you can use the Operator SDK CLI to build and run your Operator:

Run locally outside the cluster as a Go program.

Run as a deployment on the cluster.

Bundle your Operator and use Operator Lifecycle Manager (OLM) to deploy on the cluster.

5.5.2.5.1. Running locally outside the cluster

You can run your Operator project as a Go program outside of the cluster. This is useful for
development purposes to speed up deployment and testing.

Procedure

Run the following command to install the custom resource definitions (CRDs) in the cluster
configured in your ~/.kube/config file and run the Operator locally:

Example output

5.5.2.5.2. Running as a deployment on the cluster

containers:
 - args:
 - --leader-elect
 - --leader-election-id=ansible-proxy-demo
 image: controller:latest
 name: manager
 env:
 - name: "HTTP_PROXY"
 value: "http_proxy_test"

$ make install run

...
{"level":"info","ts":1612652419.9289865,"logger":"controller-runtime.metrics","msg":"metrics
server is starting to listen","addr":":8080"}
{"level":"info","ts":1612652419.9296563,"logger":"helm.controller","msg":"Watching
resource","apiVersion":"demo.example.com/v1","kind":"Nginx","namespace":"","reconcilePeriod
":"1m0s"}
{"level":"info","ts":1612652419.929983,"logger":"controller-runtime.manager","msg":"starting
metrics server","path":"/metrics"}
{"level":"info","ts":1612652419.930015,"logger":"controller-runtime.manager.controller.nginx-
controller","msg":"Starting EventSource","source":"kind source: demo.example.com/v1,
Kind=Nginx"}
{"level":"info","ts":1612652420.2307851,"logger":"controller-runtime.manager.controller.nginx-
controller","msg":"Starting Controller"}
{"level":"info","ts":1612652420.2309358,"logger":"controller-runtime.manager.controller.nginx-
controller","msg":"Starting workers","worker count":8}

OpenShift Container Platform 4.11 Operators

222

You can run your Operator project as a deployment on your cluster.

Procedure

1. Run the following make commands to build and push the Operator image. Modify the IMG
argument in the following steps to reference a repository that you have access to. You can
obtain an account for storing containers at repository sites such as Quay.io.

a. Build the image:

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMD64 architectures. Docker will
automatically set the environment variable to the value specified by –
platform. With Buildah, the –build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

b. Push the image to a repository:

NOTE

The name and tag of the image, for example IMG=
<registry>/<user>/<image_name>:<tag>, in both the commands can also
be set in your Makefile. Modify the IMG ?= controller:latest value to set
your default image name.

2. Run the following command to deploy the Operator:

By default, this command creates a namespace with the name of your Operator project in the
form <project_name>-system and is used for the deployment. This command also installs the
RBAC manifests from config/rbac.

3. Run the following command to verify that the Operator is running:

Example output

5.5.2.5.3. Bundling an Operator and deploying with Operator Lifecycle Manager

$ make docker-build IMG=<registry>/<user>/<image_name>:<tag>

$ make docker-push IMG=<registry>/<user>/<image_name>:<tag>

$ make deploy IMG=<registry>/<user>/<image_name>:<tag>

$ oc get deployment -n <project_name>-system

NAME READY UP-TO-DATE AVAILABLE AGE
<project_name>-controller-manager 1/1 1 1 8m

CHAPTER 5. DEVELOPING OPERATORS

223

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

5.5.2.5.3.1. Bundling an Operator

The Operator bundle format is the default packaging method for Operator SDK and Operator Lifecycle
Manager (OLM). You can get your Operator ready for use on OLM by using the Operator SDK to build
and push your Operator project as a bundle image.

Prerequisites

Operator SDK CLI installed on a development workstation

OpenShift CLI (oc) v4.11+ installed

Operator project initialized by using the Operator SDK

Procedure

1. Run the following make commands in your Operator project directory to build and push your
Operator image. Modify the IMG argument in the following steps to reference a repository that
you have access to. You can obtain an account for storing containers at repository sites such as
Quay.io.

a. Build the image:

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMD64 architectures. Docker will
automatically set the environment variable to the value specified by –
platform. With Buildah, the –build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

b. Push the image to a repository:

2. Create your Operator bundle manifest by running the make bundle command, which invokes
several commands, including the Operator SDK generate bundle and bundle validate
subcommands:

Bundle manifests for an Operator describe how to display, create, and manage an application.
The make bundle command creates the following files and directories in your Operator project:

A bundle manifests directory named bundle/manifests that contains a
ClusterServiceVersion object

A bundle metadata directory named bundle/metadata

All custom resource definitions (CRDs) in a config/crd directory

A Dockerfile bundle.Dockerfile
These files are then automatically validated by using operator-sdk bundle validate to ensure

$ make docker-build IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make docker-push IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make bundle IMG=<registry>/<user>/<operator_image_name>:<tag>

OpenShift Container Platform 4.11 Operators

224

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

1

2

3

These files are then automatically validated by using operator-sdk bundle validate to ensure
the on-disk bundle representation is correct.

3. Build and push your bundle image by running the following commands. OLM consumes
Operator bundles using an index image, which reference one or more bundle images.

a. Build the bundle image. Set BUNDLE_IMG with the details for the registry, user
namespace, and image tag where you intend to push the image:

b. Push the bundle image:

5.5.2.5.3.2. Deploying an Operator with Operator Lifecycle Manager

Operator Lifecycle Manager (OLM) helps you to install, update, and manage the lifecycle of Operators
and their associated services on a Kubernetes cluster. OLM is installed by default on OpenShift
Container Platform and runs as a Kubernetes extension so that you can use the web console and the
OpenShift CLI (oc) for all Operator lifecycle management functions without any additional tools.

The Operator bundle format is the default packaging method for Operator SDK and OLM. You can use
the Operator SDK to quickly run a bundle image on OLM to ensure that it runs properly.

Prerequisites

Operator SDK CLI installed on a development workstation

Operator bundle image built and pushed to a registry

OLM installed on a Kubernetes-based cluster (v1.16.0 or later if you use
apiextensions.k8s.io/v1 CRDs, for example OpenShift Container Platform 4.11)

Logged in to the cluster with oc using an account with cluster-admin permissions

Procedure

1. Enter the following command to run the Operator on the cluster:

The run bundle command creates a valid file-based catalog and installs the Operator
bundle on your cluster using OLM.

Optional: By default, the command installs the Operator in the currently active project in
your ~/.kube/config file. You can add the -n flag to set a different namespace scope for
the installation.

If you do not specify an image, the command uses quay.io/operator-
framework/opm:latest as the default index image. If you specify an image, the command
uses the bundle image itself as the index image.

$ make bundle-build BUNDLE_IMG=<registry>/<user>/<bundle_image_name>:<tag>

$ docker push <registry>/<user>/<bundle_image_name>:<tag>

$ operator-sdk run bundle \ 1
 -n <namespace> \ 2
 <registry>/<user>/<bundle_image_name>:<tag> 3

CHAPTER 5. DEVELOPING OPERATORS

225

IMPORTANT

As of OpenShift Container Platform 4.11, the run bundle command supports the
file-based catalog format for Operator catalogs by default. The deprecated
SQLite database format for Operator catalogs continues to be supported;
however, it will be removed in a future release. It is recommended that Operator
authors migrate their workflows to the file-based catalog format.

This command performs the following actions:

Create an index image referencing your bundle image. The index image is opaque and
ephemeral, but accurately reflects how a bundle would be added to a catalog in production.

Create a catalog source that points to your new index image, which enables OperatorHub to
discover your Operator.

Deploy your Operator to your cluster by creating an OperatorGroup, Subscription,
InstallPlan, and all other required resources, including RBAC.

5.5.2.6. Creating a custom resource

After your Operator is installed, you can test it by creating a custom resource (CR) that is now provided
on the cluster by the Operator.

Prerequisites

Example Nginx Operator, which provides the Nginx CR, installed on a cluster

Procedure

1. Change to the namespace where your Operator is installed. For example, if you deployed the
Operator using the make deploy command:

2. Edit the sample Nginx CR manifest at config/samples/demo_v1_nginx.yaml to contain the
following specification:

3. The Nginx service account requires privileged access to run in OpenShift Container Platform.
Add the following security context constraint (SCC) to the service account for the nginx-
sample pod:

$ oc project nginx-operator-system

apiVersion: demo.example.com/v1
kind: Nginx
metadata:
 name: nginx-sample
...
spec:
...
 replicaCount: 3

$ oc adm policy add-scc-to-user \
 anyuid system:serviceaccount:nginx-operator-system:nginx-sample

OpenShift Container Platform 4.11 Operators

226

4. Create the CR:

5. Ensure that the Nginx Operator creates the deployment for the sample CR with the correct
size:

Example output

6. Check the pods and CR status to confirm the status is updated with the Nginx pod names.

a. Check the pods:

Example output

b. Check the CR status:

Example output

7. Update the deployment size.

a. Update config/samples/demo_v1_nginx.yaml file to change the spec.size field in the
Nginx CR from 3 to 5:

$ oc apply -f config/samples/demo_v1_nginx.yaml

$ oc get deployments

NAME READY UP-TO-DATE AVAILABLE AGE
nginx-operator-controller-manager 1/1 1 1 8m
nginx-sample 3/3 3 3 1m

$ oc get pods

NAME READY STATUS RESTARTS AGE
nginx-sample-6fd7c98d8-7dqdr 1/1 Running 0 1m
nginx-sample-6fd7c98d8-g5k7v 1/1 Running 0 1m
nginx-sample-6fd7c98d8-m7vn7 1/1 Running 0 1m

$ oc get nginx/nginx-sample -o yaml

apiVersion: demo.example.com/v1
kind: Nginx
metadata:
...
 name: nginx-sample
...
spec:
 replicaCount: 3
status:
 nodes:
 - nginx-sample-6fd7c98d8-7dqdr
 - nginx-sample-6fd7c98d8-g5k7v
 - nginx-sample-6fd7c98d8-m7vn7

CHAPTER 5. DEVELOPING OPERATORS

227

b. Confirm that the Operator changes the deployment size:

Example output

8. Delete the CR by running the following command:

9. Clean up the resources that have been created as part of this tutorial.

If you used the make deploy command to test the Operator, run the following command:

If you used the operator-sdk run bundle command to test the Operator, run the following
command:

5.5.2.7. Additional resources

See Project layout for Helm-based Operators to learn about the directory structures created by
the Operator SDK.

If a cluster-wide egress proxy is configured, cluster administrators can override the proxy
settings or inject a custom CA certificate for specific Operators running on Operator Lifecycle
Manager (OLM).

5.5.3. Project layout for Helm-based Operators

The operator-sdk CLI can generate, or scaffold, a number of packages and files for each Operator
project.

5.5.3.1. Helm-based project layout

Helm-based Operator projects generated using the operator-sdk init --plugins helm command
contain the following directories and files:

File/folders Purpose

config/ Kustomize manifests for deploying the Operator on a Kubernetes cluster.

$ oc patch nginx nginx-sample \
 -p '{"spec":{"replicaCount": 5}}' \
 --type=merge

$ oc get deployments

NAME READY UP-TO-DATE AVAILABLE AGE
nginx-operator-controller-manager 1/1 1 1 10m
nginx-sample 5/5 5 5 3m

$ oc delete -f config/samples/demo_v1_nginx.yaml

$ make undeploy

$ operator-sdk cleanup <project_name>

OpenShift Container Platform 4.11 Operators

228

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-helm-project-layout
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#enable-cluster-wide-proxy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-configuring-proxy-support
https://kustomize.io/

helm-charts/ Helm chart initialized with the operator-sdk create api command.

Dockerfile Used to build the Operator image with the make docker-build command.

watches.yaml Group/version/kind (GVK) and Helm chart location.

Makefile Targets used to manage the project.

PROJECT YAML file containing metadata information for the Operator.

File/folders Purpose

5.5.4. Updating Helm-based projects for newer Operator SDK versions

OpenShift Container Platform 4.11 supports Operator SDK 1.22.2. If you already have the 1.16.0 CLI
installed on your workstation, you can update the CLI to 1.22.2 by installing the latest version.

However, to ensure your existing Operator projects maintain compatibility with Operator SDK 1.22.2,
update steps are required for the associated breaking changes introduced since 1.16.0. You must
perform the update steps manually in any of your Operator projects that were previously created or
maintained with 1.16.0.

5.5.4.1. Updating Helm-based Operator projects for Operator SDK 1.22.2

The following procedure updates an existing Helm-based Operator project for compatibility with 1.22.2.

Prerequisites

Operator SDK 1.22.2 installed.

An Operator project created or maintained with Operator SDK 1.16.0.

Procedure

1. Make the following changes to the config/default/manager_auth_proxy_patch.yaml file:

...
spec:
 template:
 spec:
 containers:
 - name: kube-rbac-proxy
 image: registry.redhat.io/openshift4/ose-kube-rbac-proxy:v4.11 1
 args:
 - "--secure-listen-address=0.0.0.0:8443"
 - "--upstream=http://127.0.0.1:8080/"
 - "--logtostderr=true"
 - "--v=0" 2
...
resources:
 limits:

CHAPTER 5. DEVELOPING OPERATORS

229

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-installing-cli

1

2

3

Update the tag version from v4.10 to v4.11.

Reduce the debugging log level from --v=10 to --v=0.

Add resource requests and limits.

2. Make the following changes to your Makefile:

a. Enable support for image digests by adding the following environment variables to your
Makefile:

Old Makefile

New Makefile

b. Edit your Makefile to replace the bundle target with the BUNDLE_GEN_FLAGS
environment variable:

Old Makefile

New Makefile

c. Edit your Makefile to update opm to version 1.23.0:

 cpu: 500m
 memory: 128Mi
 requests:
 cpu: 5m
 memory: 64Mi 3

BUNDLE_IMG ?= $(IMAGE_TAG_BASE)-bundle:v$(VERSION)
...

BUNDLE_IMG ?= $(IMAGE_TAG_BASE)-bundle:v$(VERSION)

BUNDLE_GEN_FLAGS are the flags passed to the operator-sdk generate bundle
command
BUNDLE_GEN_FLAGS ?= -q --overwrite --version $(VERSION)
$(BUNDLE_METADATA_OPTS)

USE_IMAGE_DIGESTS defines if images are resolved via tags or digests
You can enable this value if you would like to use SHA Based Digests
To enable set flag to true
USE_IMAGE_DIGESTS ?= false
ifeq ($(USE_IMAGE_DIGESTS), true)
 BUNDLE_GEN_FLAGS += --use-image-digests
endif

$(KUSTOMIZE) build config/manifests | operator-sdk generate bundle -q --overwrite --
version $(VERSION) $(BUNDLE_METADATA_OPTS)

$(KUSTOMIZE) build config/manifests | operator-sdk generate bundle
$(BUNDLE_GEN_FLAGS)

OpenShift Container Platform 4.11 Operators

230

1

1

Replace v1.19.1 with v1.23.0.

d. Apply the changes to your Makefile and rebuild your Operator by entering the following
command:

3. Update the image tag in your Operator’s Dockerfile as shown in the following example:

Example Dockerfile

Update the version tag to v4.11.

5.5.4.2. Additional resources

Migrating package manifest projects to bundle format

Upgrading projects for Operator SDK 1.16.0

Upgrading projects for Operator SDK v1.10.1

Upgrading projects for Operator SDK v1.8.0

5.5.5. Helm support in Operator SDK

5.5.5.1. Helm charts

One of the Operator SDK options for generating an Operator project includes leveraging an existing
Helm chart to deploy Kubernetes resources as a unified application, without having to write any Go
code. Such Helm-based Operators are designed to excel at stateless applications that require very little

.PHONY: opm
OPM = ./bin/opm
opm: ## Download opm locally if necessary.
ifeq (,$(wildcard $(OPM)))
ifeq (,$(shell which opm 2>/dev/null))
 @{ \
 set -e ;\
 mkdir -p $(dir $(OPM)) ;\
 OS=$(shell go env GOOS) && ARCH=$(shell go env GOARCH) && \
 curl -sSLo $(OPM) https://github.com/operator-framework/operator-
registry/releases/download/v1.23.0/$${OS}-$${ARCH}-opm ;\ 1
 chmod +x $(OPM) ;\
 }
else
OPM = $(shell which opm)
endif
endif

$ make

FROM registry.redhat.io/openshift4/ose-helm-operator:v4.11 1

CHAPTER 5. DEVELOPING OPERATORS

231

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-pkgman-to-bundle
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/index#osdk-upgrading-v1101-to-v1160_osdk-upgrading-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html/operators/developing-operators#osdk-upgrading-v180-to-v1101_osdk-upgrading-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html/operators/developing-operators#osdk-upgrading-v130-to-v180_osdk-upgrading-projects

logic when rolled out, because changes should be applied to the Kubernetes objects that are generated
as part of the chart. This may sound limiting, but can be sufficient for a surprising amount of use-cases
as shown by the proliferation of Helm charts built by the Kubernetes community.

The main function of an Operator is to read from a custom object that represents your application
instance and have its desired state match what is running. In the case of a Helm-based Operator, the
spec field of the object is a list of configuration options that are typically described in the Helm
values.yaml file. Instead of setting these values with flags using the Helm CLI (for example, helm install
-f values.yaml), you can express them within a custom resource (CR), which, as a native Kubernetes
object, enables the benefits of RBAC applied to it and an audit trail.

For an example of a simple CR called Tomcat:

The replicaCount value, 2 in this case, is propagated into the template of the chart where the following
is used:

After an Operator is built and deployed, you can deploy a new instance of an app by creating a new
instance of a CR, or list the different instances running in all environments using the oc command:

There is no requirement use the Helm CLI or install Tiller; Helm-based Operators import code from the
Helm project. All you have to do is have an instance of the Operator running and register the CR with a
custom resource definition (CRD). Because it obeys RBAC, you can more easily prevent production
changes.

5.5.6. Operator SDK tutorial for Hybrid Helm Operators

The standard Helm-based Operator support in the Operator SDK has limited functionality compared to
the Go-based and Ansible-based Operator support that has reached the Auto Pilot capability (level V)
in the Operator maturity model.

The Hybrid Helm Operator enhances the existing Helm-based support’s abilities through Go APIs. With
this hybrid approach of Helm and Go, the Operator SDK enables Operator authors to use the following
process:

Generate a default structure for, or scaffold, a Go API in the same project as Helm.

Configure the Helm reconciler in the main.go file of the project, through the libraries provided
by the Hybrid Helm Operator.

IMPORTANT

apiVersion: apache.org/v1alpha1
kind: Tomcat
metadata:
 name: example-app
spec:
 replicaCount: 2

{{ .Values.replicaCount }}

$ oc get Tomcats --all-namespaces

OpenShift Container Platform 4.11 Operators

232

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-maturity-model_olm-what-operators-are

IMPORTANT

The Hybrid Helm Operator is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

This tutorial walks through the following process using the Hybrid Helm Operator:

Create a Memcached deployment through a Helm chart if it does not exist

Ensure that the deployment size is the same as specified by Memcached custom resource (CR)
spec

Create a MemcachedBackup deployment by using the Go API

5.5.6.1. Prerequisites

Operator SDK CLI installed

OpenShift CLI (oc) v4.11+ installed

Logged into an OpenShift Container Platform 4.11 cluster with oc with an account that has
cluster-admin permissions

To allow the cluster to pull the image, the repository where you push your image must be set as
public, or you must configure an image pull secret

Additional resources

Installing the Operator SDK CLI

Getting started with the OpenShift CLI

5.5.6.2. Creating a project

Use the Operator SDK CLI to create a project called memcached-operator.

Procedure

1. Create a directory for the project:

2. Change to the directory:

3. Run the operator-sdk init command to initialize the project. Use a domain of example.com so
that all API groups are <group>.example.com:

$ mkdir -p $HOME/github.com/example/memcached-operator

$ cd $HOME/github.com/example/memcached-operator

CHAPTER 5. DEVELOPING OPERATORS

233

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-installing-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cli_tools/#getting-started-cli

The init command generates the RBAC rules in the config/rbac/role.yaml file based on the
resources that would be deployed by the chart’s default manifests. Verify that the rules
generated in the config/rbac/role.yaml file meet your Operator’s permission requirements.

Additional resources

This procedure creates a project structure that is compatible with both Helm and Go APIs. To
learn more about the project directory structure, see Project layout.

5.5.6.3. Creating a Helm API

Use the Operator SDK CLI to create a Helm API.

Procedure

Run the following command to create a Helm API with group cache, version v1, and kind
Memcached:

NOTE

This procedure also configures your Operator project to watch the Memcached resource
with API version v1 and scaffolds a boilerplate Helm chart. Instead of creating the project
from the boilerplate Helm chart scaffolded by the Operator SDK, you can alternatively
use an existing chart from your local file system or remote chart repository.

For more details and examples for creating Helm API based on existing or new charts, run
the following command:

Additional resources

Existing Helm charts

5.5.6.3.1. Operator logic for the Helm API

By default, your scaffolded Operator project watches Memcached resource events as shown in the
watches.yaml file and executes Helm releases using the specified chart.

Example 5.2. Example watches.yaml file

$ operator-sdk init \
 --plugins=hybrid.helm.sdk.operatorframework.io \
 --project-version="3" \
 --domain example.com \
 --repo=github.com/example/memcached-operator

$ operator-sdk create api \
 --plugins helm.sdk.operatorframework.io/v1 \
 --group cache \
 --version v1 \
 --kind Memcached

$ operator-sdk create api --plugins helm.sdk.operatorframework.io/v1 --help

OpenShift Container Platform 4.11 Operators

234

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-hh-project-layout_osdk-hybrid-helm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-helm-existing-chart_osdk-helm-tutorial

Additional resources

For detailed documentation on customizing the Helm Operator logic through the chart, see
Understanding the Operator logic.

5.5.6.3.2. Custom Helm reconciler configurations using provided library APIs

A disadvantage of existing Helm-based Operators is the inability to configure the Helm reconciler,
because it is abstracted from users. For a Helm-based Operator to reach the Seamless Upgrades
capability (level II and later) that reuses an already existing Helm chart, a hybrid between the Go and
Helm Operator types adds value.

The APIs provided in the helm-operator-plugins library allow Operator authors to make the following
configurations:

Customize value mapping based on cluster state

Execute code in specific events by configuring the reconciler’s event recorder

Customize the reconciler’s logger

Setup Install, Upgrade, and Uninstall annotations to enable Helm’s actions to be configured
based on the annotations found in custom resources watched by the reconciler

Configure the reconciler to run with Pre and Post hooks

The above configurations to the reconciler can be done in the main.go file:

Example main.go file

5.5.6.4. Creating a Go API

Use the Operator SDK CLI to create a Go API.

Procedure

Use the 'create api' subcommand to add watches to this file.
- group: cache.my.domain
 version: v1
 kind: Memcached
 chart: helm-charts/memcached
#+kubebuilder:scaffold:watch

// Operator's main.go
// With the help of helpers provided in the library, the reconciler can be
// configured here before starting the controller with this reconciler.
reconciler := reconciler.New(
 reconciler.WithChart(*chart),
 reconciler.WithGroupVersionKind(gvk),
)

if err := reconciler.SetupWithManager(mgr); err != nil {
 panic(fmt.Sprintf("unable to create reconciler: %s", err))
}

CHAPTER 5. DEVELOPING OPERATORS

235

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-helm-logic_osdk-helm-tutorial
https://github.com/operator-framework/helm-operator-plugins

Procedure

1. Run the following command to create a Go API with group cache, version v1, and kind
MemcachedBackup:

2. When prompted, enter y for creating both resource and controller:

This procedure generates the MemcachedBackup resource API at
api/v1/memcachedbackup_types.go and the controller at
controllers/memcachedbackup_controller.go.

5.5.6.4.1. Defining the API

Define the API for the MemcachedBackup custom resource (CR).

Represent this Go API by defining the MemcachedBackup type, which will have a
MemcachedBackupSpec.Size field to set the quantity of Memcached backup instances (CRs) to be
deployed, and a MemcachedBackupStatus.Nodes field to store a CR’s pod names.

NOTE

The Node field is used to illustrate an example of a Status field.

Procedure

1. Define the API for the MemcachedBackup CR by modifying the Go type definitions in the
api/v1/memcachedbackup_types.go file to have the following spec and status:

Example 5.3. Example api/v1/memcachedbackup_types.go file

$ operator-sdk create api \
 --group=cache \
 --version v1 \
 --kind MemcachedBackup \
 --resource \
 --controller \
 --plugins=go/v3

$ Create Resource [y/n]
y
Create Controller [y/n]
y

// MemcachedBackupSpec defines the desired state of MemcachedBackup
type MemcachedBackupSpec struct {
 // INSERT ADDITIONAL SPEC FIELDS - desired state of cluster
 // Important: Run "make" to regenerate code after modifying this file

 //+kubebuilder:validation:Minimum=0
 // Size is the size of the memcached deployment
 Size int32 `json:"size"`
}

// MemcachedBackupStatus defines the observed state of MemcachedBackup
type MemcachedBackupStatus struct {
 // INSERT ADDITIONAL STATUS FIELD - define observed state of cluster

OpenShift Container Platform 4.11 Operators

236

2. Update the generated code for the resource type:

TIP

After you modify a *_types.go file, you must run the make generate command to update the
generated code for that resource type.

3. After the API is defined with spec and status fields and CRD validation markers, generate and
update the CRD manifests:

This Makefile target invokes the controller-gen utility to generate the CRD manifests in the
config/crd/bases/cache.my.domain_memcachedbackups.yaml file.

5.5.6.4.2. Controller implementation

The controller in this tutorial performs the following actions:

Create a Memcached deployment if it does not exist.

Ensure that the deployment size is the same as specified by the Memcached CR spec.

Update the Memcached CR status with the names of the memcached pods.

For a detailed explanation on how to configure the controller to perform the above mentioned actions,
see Implementing the controller in the Operator SDK tutorial for standard Go-based Operators.

5.5.6.4.3. Differences in main.go

For standard Go-based Operators and the Hybrid Helm Operator, the main.go file handles the
scaffolding the initialization and running of the Manager program for the Go API. For the Hybrid Helm
Operator, however, the main.go file also exposes the logic for loading the watches.yaml file and
configuring the Helm reconciler.

Example 5.4. Example main.go file

 // Important: Run "make" to regenerate code after modifying this file
 // Nodes are the names of the memcached pods
 Nodes []string `json:"nodes"`
}

$ make generate

$ make manifests

...
 for _, w := range ws {
 // Register controller with the factory
 reconcilePeriod := defaultReconcilePeriod
 if w.ReconcilePeriod != nil {
 reconcilePeriod = w.ReconcilePeriod.Duration
 }

CHAPTER 5. DEVELOPING OPERATORS

237

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-golang-implement-controller_osdk-golang-tutorial
https://pkg.go.dev/sigs.k8s.io/controller-runtime/pkg/manager#Manager

The manager is initialized with both Helm and Go reconcilers:

Example 5.5. Example Helm and Go reconcilers

 maxConcurrentReconciles := defaultMaxConcurrentReconciles
 if w.MaxConcurrentReconciles != nil {
 maxConcurrentReconciles = *w.MaxConcurrentReconciles
 }

 r, err := reconciler.New(
 reconciler.WithChart(*w.Chart),
 reconciler.WithGroupVersionKind(w.GroupVersionKind),
 reconciler.WithOverrideValues(w.OverrideValues),
 reconciler.SkipDependentWatches(w.WatchDependentResources != nil &&
!*w.WatchDependentResources),
 reconciler.WithMaxConcurrentReconciles(maxConcurrentReconciles),
 reconciler.WithReconcilePeriod(reconcilePeriod),
 reconciler.WithInstallAnnotations(annotation.DefaultInstallAnnotations...),
 reconciler.WithUpgradeAnnotations(annotation.DefaultUpgradeAnnotations...),
 reconciler.WithUninstallAnnotations(annotation.DefaultUninstallAnnotations...),
)
...

...
// Setup manager with Go API
 if err = (&controllers.MemcachedBackupReconciler{
 Client: mgr.GetClient(),
 Scheme: mgr.GetScheme(),
 }).SetupWithManager(mgr); err != nil {
 setupLog.Error(err, "unable to create controller", "controller", "MemcachedBackup")
 os.Exit(1)
 }

 ...
// Setup manager with Helm API
 for _, w := range ws {

 ...
 if err := r.SetupWithManager(mgr); err != nil {
 setupLog.Error(err, "unable to create controller", "controller", "Helm")
 os.Exit(1)
 }
 setupLog.Info("configured watch", "gvk", w.GroupVersionKind, "chartPath", w.ChartPath,
"maxConcurrentReconciles", maxConcurrentReconciles, "reconcilePeriod", reconcilePeriod)
 }

// Start the manager
 if err := mgr.Start(ctrl.SetupSignalHandler()); err != nil {
 setupLog.Error(err, "problem running manager")
 os.Exit(1)
 }

OpenShift Container Platform 4.11 Operators

238

5.5.6.4.4. Permissions and RBAC manifests

The controller requires certain role-based access control (RBAC) permissions to interact with the
resources it manages. For the Go API, these are specified with RBAC markers, as shown in the Operator
SDK tutorial for standard Go-based Operators.

For the Helm API, the permissions are scaffolded by default in roles.yaml. Currently, however, due to a
known issue when the Go API is scaffolded, the permissions for the Helm API are overwritten. As a result
of this issue, ensure that the permissions defined in roles.yaml match your requirements.

NOTE

This known issue is being tracked in https://github.com/operator-framework/helm-
operator-plugins/issues/142.

The following is an example role.yaml for a Memcached Operator:

Example 5.6. Example Helm and Go reconcilers

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: manager-role
rules:
- apiGroups:
 - ""
 resources:
 - namespaces
 verbs:
 - get
- apiGroups:
 - apps
 resources:
 - deployments
 - daemonsets
 - replicasets
 - statefulsets
 verbs:
 - create
 - delete
 - get
 - list
 - patch
 - update
 - watch
- apiGroups:
 - cache.my.domain
 resources:
 - memcachedbackups
 verbs:
 - create
 - delete
 - get
 - list

CHAPTER 5. DEVELOPING OPERATORS

239

https://github.com/operator-framework/helm-operator-plugins/issues/142

 - patch
 - update
 - watch
- apiGroups:
 - cache.my.domain
 resources:
 - memcachedbackups/finalizers
 verbs:
 - create
 - delete
 - get
 - list
 - patch
 - update
 - watch
- apiGroups:
 - ""
 resources:
 - pods
 - services
 - services/finalizers
 - endpoints
 - persistentvolumeclaims
 - events
 - configmaps
 - secrets
 - serviceaccounts
 verbs:
 - create
 - delete
 - get
 - list
 - patch
 - update
 - watch
- apiGroups:
 - cache.my.domain
 resources:
 - memcachedbackups/status
 verbs:
 - get
 - patch
 - update
- apiGroups:
 - policy
 resources:
 - events
 - poddisruptionbudgets
 verbs:
 - create
 - delete
 - get
 - list
 - patch
 - update
 - watch

OpenShift Container Platform 4.11 Operators

240

Additional resources

RBAC markers for Go-based Operators

5.5.6.5. Running locally outside the cluster

You can run your Operator project as a Go program outside of the cluster. This is useful for
development purposes to speed up deployment and testing.

Procedure

Run the following command to install the custom resource definitions (CRDs) in the cluster
configured in your ~/.kube/config file and run the Operator locally:

5.5.6.6. Running as a deployment on the cluster

You can run your Operator project as a deployment on your cluster.

Procedure

1. Run the following make commands to build and push the Operator image. Modify the IMG
argument in the following steps to reference a repository that you have access to. You can
obtain an account for storing containers at repository sites such as Quay.io.

a. Build the image:

NOTE

- apiGroups:
 - cache.my.domain
 resources:
 - memcacheds
 - memcacheds/status
 - memcacheds/finalizers
 verbs:
 - create
 - delete
 - get
 - list
 - patch
 - update
 - watch

$ make install run

$ make docker-build IMG=<registry>/<user>/<image_name>:<tag>

CHAPTER 5. DEVELOPING OPERATORS

241

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-golang-controller-rbac-markers_osdk-golang-tutorial

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMD64 architectures. Docker will
automatically set the environment variable to the value specified by –
platform. With Buildah, the –build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

b. Push the image to a repository:

NOTE

The name and tag of the image, for example IMG=
<registry>/<user>/<image_name>:<tag>, in both the commands can also
be set in your Makefile. Modify the IMG ?= controller:latest value to set
your default image name.

2. Run the following command to deploy the Operator:

By default, this command creates a namespace with the name of your Operator project in the
form <project_name>-system and is used for the deployment. This command also installs the
RBAC manifests from config/rbac.

3. Run the following command to verify that the Operator is running:

Example output

5.5.6.7. Creating custom resources

After your Operator is installed, you can test it by creating custom resources (CRs) that are now
provided on the cluster by the Operator.

Procedure

1. Change to the namespace where your Operator is installed:

2. Update the sample Memcached CR manifest at the
config/samples/cache_v1_memcached.yaml file by updating the replicaCount field to 3:

Example 5.7. Example config/samples/cache_v1_memcached.yaml file

$ make docker-push IMG=<registry>/<user>/<image_name>:<tag>

$ make deploy IMG=<registry>/<user>/<image_name>:<tag>

$ oc get deployment -n <project_name>-system

NAME READY UP-TO-DATE AVAILABLE AGE
<project_name>-controller-manager 1/1 1 1 8m

$ oc project <project_name>-system

OpenShift Container Platform 4.11 Operators

242

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

3. Create the Memcached CR:

4. Ensure that the Memcached Operator creates the deployment for the sample CR with the
correct size:

apiVersion: cache.my.domain/v1
kind: Memcached
metadata:
 name: memcached-sample
spec:
 # Default values copied from <project_dir>/helm-charts/memcached/values.yaml
 affinity: {}
 autoscaling:
 enabled: false
 maxReplicas: 100
 minReplicas: 1
 targetCPUUtilizationPercentage: 80
 fullnameOverride: ""
 image:
 pullPolicy: IfNotPresent
 repository: nginx
 tag: ""
 imagePullSecrets: []
 ingress:
 annotations: {}
 className: ""
 enabled: false
 hosts:
 - host: chart-example.local
 paths:
 - path: /
 pathType: ImplementationSpecific
 tls: []
 nameOverride: ""
 nodeSelector: {}
 podAnnotations: {}
 podSecurityContext: {}
 replicaCount: 3
 resources: {}
 securityContext: {}
 service:
 port: 80
 type: ClusterIP
 serviceAccount:
 annotations: {}
 create: true
 name: ""
 tolerations: []

$ oc apply -f config/samples/cache_v1_memcached.yaml

$ oc get pods

CHAPTER 5. DEVELOPING OPERATORS

243

Example output

5. Update the sample MemcachedBackup CR manifest at the
config/samples/cache_v1_memcachedbackup.yaml file by updating the size to 2:

Example 5.8. Example config/samples/cache_v1_memcachedbackup.yaml file

6. Create the MemcachedBackup CR:

7. Ensure that the count of memcachedbackup pods is the same as specified in the CR:

Example output

8. You can update the spec in each of the above CRs, and then apply them again. The controller
reconciles again and ensures that the size of the pods is as specified in the spec of the
respective CRs.

9. Clean up the resources that have been created as part of this tutorial:

a. Delete the Memcached resource:

b. Delete the MemcachedBackup resource:

c. If you used the make deploy command to test the Operator, run the following command:

NAME READY STATUS RESTARTS AGE
memcached-sample-6fd7c98d8-7dqdr 1/1 Running 0 18m
memcached-sample-6fd7c98d8-g5k7v 1/1 Running 0 18m
memcached-sample-6fd7c98d8-m7vn7 1/1 Running 0 18m

apiVersion: cache.my.domain/v1
kind: MemcachedBackup
metadata:
 name: memcachedbackup-sample
spec:
 size: 2

$ oc apply -f config/samples/cache_v1_memcachedbackup.yaml

$ oc get pods

NAME READY STATUS RESTARTS AGE
memcachedbackup-sample-8649699989-4bbzg 1/1 Running 0 22m
memcachedbackup-sample-8649699989-mq6mx 1/1 Running 0 22m

$ oc delete -f config/samples/cache_v1_memcached.yaml

$ oc delete -f config/samples/cache_v1_memcachedbackup.yaml

$ make undeploy

OpenShift Container Platform 4.11 Operators

244

5.5.6.8. Project layout

The Hybrid Helm Operator scaffolding is customized to be compatible with both Helm and Go APIs.

File/folders Purpose

Dockerfile Instructions used by a container engine to build your Operator image with the make
docker-build command.

Makefile Build file with helper targets to help you work with your project.

PROJECT YAML file containing metadata information for the Operator. Represents the project’s
configuration and is used to track useful information for the CLI and plugins.

bin/ Contains useful binaries such as the manager which is used to run your project locally
and the kustomize utility used for the project configuration.

config/ Contains configuration files, including all Kustomize manifests, to launch your Operator
project on a cluster. Plugins might use it to provide functionality. For example, for the
Operator SDK to help create your Operator bundle, the CLI looks up the CRDs and CRs
which are scaffolded in this directory.

config/crd/
Contains custom resource definitions (CRDs).

config/default/
Contains a Kustomize base for launching the controller in a standard configuration.

config/manager/
Contains the manifests to launch your Operator project as pods on the cluster.

config/manifests/
Contains the base to generate your OLM manifests in the bundle/ directory.

config/prometheus/
Contains the manifests required to enable project to serve metrics to Prometheus
such as the ServiceMonitor resource.

config/scorecard/
Contains the manifests required to allow you test your project with the scorecard
tool.

config/rbac/
Contains the RBAC permissions required to run your project.

config/samples/
Contains samples for custom resources.

api/ Contains the Go API definition.

controllers/ Contains the controllers for the Go API.

hack/ Contains utility files, such as the file used to scaffold the license header for your project
files.

CHAPTER 5. DEVELOPING OPERATORS

245

https://kustomize.io/

main.go Main program of the Operator. Instantiates a new manager that registers all custom
resource definitions (CRDs) in the apis/ directory and starts all controllers in the
controllers/ directory.

helm-charts/ Contains the Helm charts which can be specified using the create api command with
the Helm plugin.

watches.yaml Contains group/version/kind (GVK) and Helm chart location. Used to configure the
Helm watches.

File/folders Purpose

5.5.7. Updating Hybrid Helm-based projects for newer Operator SDK versions

OpenShift Container Platform 4.11 supports Operator SDK 1.22.2. If you already have the 1.16.0 CLI
installed on your workstation, you can update the CLI to 1.22.2 by installing the latest version.

However, to ensure your existing Operator projects maintain compatibility with Operator SDK 1.22.2,
update steps are required for the associated breaking changes introduced since 1.16.0. You must
perform the update steps manually in any of your Operator projects that were previously created or
maintained with 1.16.0.

5.5.7.1. Updating Hybrid Helm-based Operator projects for Operator SDK 1.22.2

The following procedure updates an existing Hybrid Helm-based Operator project for compatibility with
1.22.2.

Prerequisites

Operator SDK 1.22.2 installed.

An Operator project created or maintained with Operator SDK 1.16.0.

Procedure

1. Make the following changes to the config/default/manager_auth_proxy_patch.yaml file:

...
spec:
 template:
 spec:
 containers:
 - name: kube-rbac-proxy
 image: registry.redhat.io/openshift4/ose-kube-rbac-proxy:v4.11 1
 args:
 - "--secure-listen-address=0.0.0.0:8443"
 - "--upstream=http://127.0.0.1:8080/"
 - "--logtostderr=true"
 - "--v=0" 2
...
resources:
 limits:

OpenShift Container Platform 4.11 Operators

246

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-installing-cli

1

2

3

Update the tag version from v4.10 to v4.11.

Reduce the debugging log level from --v=10 to --v=0.

Add resource requests and limits.

2. Make the following changes to your Makefile:

a. Enable support for image digests by adding the following environment variables to your
Makefile:

Old Makefile

New Makefile

b. Edit your Makefile to replace the bundle target with the BUNDLE_GEN_FLAGS
environment variable:

Old Makefile

New Makefile

c. Edit your Makefile to update opm to version 1.23.0:

 cpu: 500m
 memory: 128Mi
 requests:
 cpu: 5m
 memory: 64Mi 3

BUNDLE_IMG ?= $(IMAGE_TAG_BASE)-bundle:v$(VERSION)
...

BUNDLE_IMG ?= $(IMAGE_TAG_BASE)-bundle:v$(VERSION)

BUNDLE_GEN_FLAGS are the flags passed to the operator-sdk generate bundle
command
BUNDLE_GEN_FLAGS ?= -q --overwrite --version $(VERSION)
$(BUNDLE_METADATA_OPTS)

USE_IMAGE_DIGESTS defines if images are resolved via tags or digests
You can enable this value if you would like to use SHA Based Digests
To enable set flag to true
USE_IMAGE_DIGESTS ?= false
ifeq ($(USE_IMAGE_DIGESTS), true)
 BUNDLE_GEN_FLAGS += --use-image-digests
endif

$(KUSTOMIZE) build config/manifests | operator-sdk generate bundle -q --overwrite --
version $(VERSION) $(BUNDLE_METADATA_OPTS)

$(KUSTOMIZE) build config/manifests | operator-sdk generate bundle
$(BUNDLE_GEN_FLAGS)

CHAPTER 5. DEVELOPING OPERATORS

247

1

1

2

1

Replace v1.19.1 with v1.23.0.

d. Update ENVTEST_K8S_VERSION and controller-gen fields in your Makefile to support
Kubernetes 1.24:

Update version 1.22 to 1.24.

Update version 0.7.0 to 0.9.0.

e. Apply the changes to your Makefile and rebuild your Operator by entering the following
command:

3. Make the following changes to the go.mod file to update Go and its dependencies:

Update version 1.16 to 1.18.

.PHONY: opm
OPM = ./bin/opm
opm: ## Download opm locally if necessary.
ifeq (,$(wildcard $(OPM)))
ifeq (,$(shell which opm 2>/dev/null))
 @{ \
 set -e ;\
 mkdir -p $(dir $(OPM)) ;\
 OS=$(shell go env GOOS) && ARCH=$(shell go env GOARCH) && \
 curl -sSLo $(OPM) https://github.com/operator-framework/operator-
registry/releases/download/v1.23.0/$${OS}-$${ARCH}-opm ;\ 1
 chmod +x $(OPM) ;\
 }
else
OPM = $(shell which opm)
endif
endif

...
ENVTEST_K8S_VERSION = 1.24 1
...
sigs.k8s.io/controller-tools/cmd/controller-gen@v0.9.0 2

$ make

go 1.18 1

require (
 github.com/onsi/ginkgo v1.16.5 2
 github.com/onsi/gomega v1.18.1 3
 k8s.io/api v0.24.0 4
 k8s.io/apimachinery v0.24.0 5
 k8s.io/client-go v0.24.0 6
 sigs.k8s.io/controller-runtime v0.12.1 7
)

OpenShift Container Platform 4.11 Operators

248

2

3

4 5 6

7

1

Update version v1.16.4 to v1.16.5.

Update version v1.15.0 to v1.18.1.

Update version v0.22.1 to v0.24.0.

Update version v0.10.0 to v0.12.1.

4. Edit your go.mod file to update the Helm Operator plugins:

Update version v0.0.8 to v0.0.11.

5. Make the following changes to your Dockerfile to update Go to version 1.18:

Old dockerfile.go file

New dockerfile.go file

6. Download and clean up the dependencies by entering the following command:

5.5.7.2. Additional resources

Migrating package manifest projects to bundle format

Upgrading projects for Operator SDK 1.16.0

Upgrading projects for Operator SDK v1.10.1

Upgrading projects for Operator SDK v1.8.0

5.6. JAVA-BASED OPERATORS

5.6.1. Getting started with Operator SDK for Java-based Operators

IMPORTANT

github.com/operator-framework/helm-operator-plugins v0.0.11 1

const dockerfileTemplate = `# Build the manager binary
FROM golang:1.17 as builder

const dockerfileTemplate = `# Build the manager binary
FROM golang:1.18 as builder

$ go mod tidy

CHAPTER 5. DEVELOPING OPERATORS

249

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-pkgman-to-bundle
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/index#osdk-upgrading-v1101-to-v1160_osdk-upgrading-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html/operators/developing-operators#osdk-upgrading-v180-to-v1101_osdk-upgrading-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html/operators/developing-operators#osdk-upgrading-v130-to-v180_osdk-upgrading-projects

IMPORTANT

Java-based Operator SDK is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

To demonstrate the basics of setting up and running a Java-based Operator using tools and libraries
provided by the Operator SDK, Operator developers can build an example Java-based Operator for
Memcached, a distributed key-value store, and deploy it to a cluster.

5.6.1.1. Prerequisites

Operator SDK CLI installed

OpenShift CLI (oc) v4.11+ installed

Java v11+

Maven v3.6.3+

Logged into an OpenShift Container Platform 4.11 cluster with oc with an account that has
cluster-admin permissions

To allow the cluster to pull the image, the repository where you push your image must be set as
public, or you must configure an image pull secret

Additional resources

Installing the Operator SDK CLI

Getting started with the OpenShift CLI

5.6.1.2. Creating and deploying Java-based Operators

You can build and deploy a simple Java-based Operator for Memcached by using the Operator SDK.

Procedure

1. Create a project.

a. Create your project directory:

b. Change into the project directory:

c. Run the operator-sdk init command with the quarkus plugin to initialize the project:

$ mkdir memcached-operator

$ cd memcached-operator

OpenShift Container Platform 4.11 Operators

250

https://access.redhat.com/support/offerings/techpreview/
https://java.com/en/download/help/download_options.html
https://maven.apache.org/install.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-installing-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cli_tools/#getting-started-cli

2. Create an API.
Create a simple Memcached API:

3. Build and push the Operator image.
Use the default Makefile targets to build and push your Operator. Set IMG with a pull spec for
your image that uses a registry you can push to:

4. Run the Operator.

a. Install the CRD:

b. Deploy the project to the cluster. Set IMG to the image that you pushed:

5. Create a sample custom resource (CR).

a. Create a sample CR:

b. Watch for the CR to reconcile the Operator:

6. Delete a CR
Delete a CR by running the following command:

7. Clean up.
Run the following command to clean up the resources that have been created as part of this
procedure:

$ operator-sdk init \
 --plugins=quarkus \
 --domain=example.com \
 --project-name=memcached-operator

$ operator-sdk create api \
 --plugins quarkus \
 --group cache \
 --version v1 \
 --kind Memcached

$ make docker-build docker-push IMG=<registry>/<user>/<image_name>:<tag>

$ make install

$ make deploy IMG=<registry>/<user>/<image_name>:<tag>

$ oc apply -f config/samples/cache_v1_memcached.yaml \
 -n memcached-operator-system

$ oc logs deployment.apps/memcached-operator-controller-manager \
 -c manager \
 -n memcached-operator-system

$ oc delete -f config/samples/cache_v1_memcached -n memcached-operator-system

CHAPTER 5. DEVELOPING OPERATORS

251

5.6.1.3. Next steps

See Operator SDK tutorial for Java-based Operators for a more in-depth walkthrough on
building a Java-based Operator.

5.6.2. Operator SDK tutorial for Java-based Operators

IMPORTANT

Java-based Operator SDK is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Operator developers can take advantage of Java programming language support in the Operator SDK
to build an example Java-based Operator for Memcached, a distributed key-value store, and manage its
lifecycle.

This process is accomplished using two centerpieces of the Operator Framework:

Operator SDK

The operator-sdk CLI tool and java-operator-sdk library API

Operator Lifecycle Manager (OLM)

Installation, upgrade, and role-based access control (RBAC) of Operators on a cluster

NOTE

This tutorial goes into greater detail than Getting started with Operator SDK for Java-
based Operators.

5.6.2.1. Prerequisites

Operator SDK CLI installed

OpenShift CLI (oc) v4.11+ installed

Java v11+

Maven v3.6.3+

Logged into an OpenShift Container Platform 4.11 cluster with oc with an account that has
cluster-admin permissions

To allow the cluster to pull the image, the repository where you push your image must be set as
public, or you must configure an image pull secret

$ make undeploy

OpenShift Container Platform 4.11 Operators

252

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-java-tutorial
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-java-quickstart
https://java.com/en/download/help/download_options.html
https://maven.apache.org/install.html

Additional resources

Installing the Operator SDK CLI

Getting started with the OpenShift CLI

5.6.2.2. Creating a project

Use the Operator SDK CLI to create a project called memcached-operator.

Procedure

1. Create a directory for the project:

2. Change to the directory:

3. Run the operator-sdk init command with the quarkus plugin to initialize the project:

5.6.2.2.1. PROJECT file

Among the files generated by the operator-sdk init command is a Kubebuilder PROJECT file.
Subsequent operator-sdk commands, as well as help output, that are run from the project root read
this file and are aware that the project type is Java. For example:

5.6.2.3. Creating an API and controller

Use the Operator SDK CLI to create a custom resource definition (CRD) API and controller.

Procedure

1. Run the following command to create an API:

$ mkdir -p $HOME/projects/memcached-operator

$ cd $HOME/projects/memcached-operator

$ operator-sdk init \
 --plugins=quarkus \
 --domain=example.com \
 --project-name=memcached-operator

domain: example.com
layout:
- quarkus.javaoperatorsdk.io/v1-alpha
projectName: memcached-operator
version: "3"

$ operator-sdk create api \
 --plugins=quarkus \ 1
 --group=cache \ 2
 --version=v1 \ 3
 --kind=Memcached 4

CHAPTER 5. DEVELOPING OPERATORS

253

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-installing-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cli_tools/#getting-started-cli

1

2

3

4

Set the plugin flag to quarkus.

Set the group flag to cache.

Set the version flag to v1.

Set the kind flag to Memcached.

Verification

1. Run the tree command to view the file structure:

Example output

5.6.2.3.1. Defining the API

Define the API for the Memcached custom resource (CR).

Procedure

Edit the following files that were generated as part of the create api process:

a. Update the following attributes in the MemcachedSpec.java file to define the desired
state of the Memcached CR:

$ tree

.
├── Makefile
├── PROJECT
├── pom.xml
└── src
 └── main
 ├── java
 │ └── com
 │ └── example
 │ ├── Memcached.java
 │ ├── MemcachedReconciler.java
 │ ├── MemcachedSpec.java
 │ └── MemcachedStatus.java
 └── resources
 └── application.properties

6 directories, 8 files

public class MemcachedSpec {

 private Integer size;

 public Integer getSize() {
 return size;
 }

 public void setSize(Integer size) {

OpenShift Container Platform 4.11 Operators

254

b. Update the following attributes in the MemcachedStatus.java file to define the observed
state of the Memcached CR:

NOTE

The example below illustrates a Node status field. It is recommended that
you use typical status properties in practice.

c. Update the Memcached.java file to define the Schema for Memcached APIs that extends
to both MemcachedSpec.java and MemcachedStatus.java files.

5.6.2.3.2. Generating CRD manifests

After the API is defined with MemcachedSpec and MemcachedStatus files, you can generate CRD
manifests.

Procedure

Run the following command from the memcached-operator directory to generate the CRD:

Verification

 this.size = size;
 }
}

import java.util.ArrayList;
import java.util.List;

public class MemcachedStatus {

 // Add Status information here
 // Nodes are the names of the memcached pods
 private List<String> nodes;

 public List<String> getNodes() {
 if (nodes == null) {
 nodes = new ArrayList<>();
 }
 return nodes;
 }

 public void setNodes(List<String> nodes) {
 this.nodes = nodes;
 }
}

@Version("v1")
@Group("cache.example.com")
public class Memcached extends CustomResource<MemcachedSpec,
MemcachedStatus> implements Namespaced {}

$ mvn clean install

CHAPTER 5. DEVELOPING OPERATORS

255

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md#typical-status-properties

Verify the contents of the CRD in the target/kubernetes/memcacheds.cache.example.com-
v1.yml file as shown in the following example:

Example output

5.6.2.3.3. Creating a Custom Resource

After generating the CRD manifests, you can create the Custom Resource (CR).

Procedure

Create a Memcached CR called memcached-sample.yaml:

$ cat target/kubernetes/memcacheds.cache.example.com-v1.yaml

Generated by Fabric8 CRDGenerator, manual edits might get overwritten!
apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 name: memcacheds.cache.example.com
spec:
 group: cache.example.com
 names:
 kind: Memcached
 plural: memcacheds
 singular: memcached
 scope: Namespaced
 versions:
 - name: v1
 schema:
 openAPIV3Schema:
 properties:
 spec:
 properties:
 size:
 type: integer
 type: object
 status:
 properties:
 nodes:
 items:
 type: string
 type: array
 type: object
 type: object
 served: true
 storage: true
 subresources:
 status: {}

apiVersion: cache.example.com/v1
kind: Memcached
metadata:
 name: memcached-sample

OpenShift Container Platform 4.11 Operators

256

5.6.2.4. Implementing the controller

After creating a new API and controller, you can implement the controller logic.

Procedure

1. Append the following dependency to the pom.xml file:

2. For this example, replace the generated controller file MemcachedReconciler.java with
following example implementation:

Example 5.9. Example MemcachedReconciler.java

spec:
 # Add spec fields here
 size: 1

 <dependency>
 <groupId>commons-collections</groupId>
 <artifactId>commons-collections</artifactId>
 <version>3.2.2</version>
 </dependency>

package com.example;

import io.fabric8.kubernetes.client.KubernetesClient;
import io.javaoperatorsdk.operator.api.reconciler.Context;
import io.javaoperatorsdk.operator.api.reconciler.Reconciler;
import io.javaoperatorsdk.operator.api.reconciler.UpdateControl;
import io.fabric8.kubernetes.api.model.ContainerBuilder;
import io.fabric8.kubernetes.api.model.ContainerPortBuilder;
import io.fabric8.kubernetes.api.model.LabelSelectorBuilder;
import io.fabric8.kubernetes.api.model.ObjectMetaBuilder;
import io.fabric8.kubernetes.api.model.OwnerReferenceBuilder;
import io.fabric8.kubernetes.api.model.Pod;
import io.fabric8.kubernetes.api.model.PodSpecBuilder;
import io.fabric8.kubernetes.api.model.PodTemplateSpecBuilder;
import io.fabric8.kubernetes.api.model.apps.Deployment;
import io.fabric8.kubernetes.api.model.apps.DeploymentBuilder;
import io.fabric8.kubernetes.api.model.apps.DeploymentSpecBuilder;
import org.apache.commons.collections.CollectionUtils;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;

public class MemcachedReconciler implements Reconciler<Memcached> {
 private final KubernetesClient client;

 public MemcachedReconciler(KubernetesClient client) {
 this.client = client;
 }

 // TODO Fill in the rest of the reconciler

CHAPTER 5. DEVELOPING OPERATORS

257

 @Override
 public UpdateControl<Memcached> reconcile(
 Memcached resource, Context context) {
 // TODO: fill in logic
 Deployment deployment = client.apps()
 .deployments()
 .inNamespace(resource.getMetadata().getNamespace())
 .withName(resource.getMetadata().getName())
 .get();

 if (deployment == null) {
 Deployment newDeployment = createMemcachedDeployment(resource);
 client.apps().deployments().create(newDeployment);
 return UpdateControl.noUpdate();
 }

 int currentReplicas = deployment.getSpec().getReplicas();
 int requiredReplicas = resource.getSpec().getSize();

 if (currentReplicas != requiredReplicas) {
 deployment.getSpec().setReplicas(requiredReplicas);
 client.apps().deployments().createOrReplace(deployment);
 return UpdateControl.noUpdate();
 }

 List<Pod> pods = client.pods()
 .inNamespace(resource.getMetadata().getNamespace())
 .withLabels(labelsForMemcached(resource))
 .list()
 .getItems();

 List<String> podNames =
 pods.stream().map(p -> p.getMetadata().getName()).collect(Collectors.toList());

 if (resource.getStatus() == null
 || !CollectionUtils.isEqualCollection(podNames,
resource.getStatus().getNodes())) {
 if (resource.getStatus() == null) resource.setStatus(new MemcachedStatus());
 resource.getStatus().setNodes(podNames);
 return UpdateControl.updateResource(resource);
 }

 return UpdateControl.noUpdate();
 }

 private Map<String, String> labelsForMemcached(Memcached m) {
 Map<String, String> labels = new HashMap<>();
 labels.put("app", "memcached");
 labels.put("memcached_cr", m.getMetadata().getName());
 return labels;
 }

 private Deployment createMemcachedDeployment(Memcached m) {
 Deployment deployment = new DeploymentBuilder()
 .withMetadata(

OpenShift Container Platform 4.11 Operators

258

The example controller runs the following reconciliation logic for each Memcached custom
resource (CR):

Creates a Memcached deployment if it does not exist.

Ensures that the deployment size matches the size specified by the Memcached CR spec.

Updates the Memcached CR status with the names of the memcached pods.

The next subsections explain how the controller in the example implementation watches resources and
how the reconcile loop is triggered. You can skip these subsections to go directly to Running the
Operator.

5.6.2.4.1. Reconcile loop

1. Every controller has a reconciler object with a Reconcile() method that implements the
reconcile loop. The reconcile loop is passed the Deployment argument, as shown in the
following example:

 new ObjectMetaBuilder()
 .withName(m.getMetadata().getName())
 .withNamespace(m.getMetadata().getNamespace())
 .build())
 .withSpec(
 new DeploymentSpecBuilder()
 .withReplicas(m.getSpec().getSize())
 .withSelector(
 new
LabelSelectorBuilder().withMatchLabels(labelsForMemcached(m)).build())
 .withTemplate(
 new PodTemplateSpecBuilder()
 .withMetadata(
 new ObjectMetaBuilder().withLabels(labelsForMemcached(m)).build())
 .withSpec(
 new PodSpecBuilder()
 .withContainers(
 new ContainerBuilder()
 .withImage("memcached:1.4.36-alpine")
 .withName("memcached")
 .withCommand("memcached", "-m=64", "-o", "modern", "-v")
 .withPorts(
 new ContainerPortBuilder()
 .withContainerPort(11211)
 .withName("memcached")
 .build())
 .build())
 .build())
 .build())
 .build())
 .build();
 deployment.addOwnerReference(m);
 return deployment;
 }
}

CHAPTER 5. DEVELOPING OPERATORS

259

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-run-operator_osdk-java-tutorial

2. As shown in the following example, if the Deployment is null, the deployment needs to be
created. After you create the Deployment, you can determine if reconciliation is necessary. If
there is no need of reconciliation, return the value of UpdateControl.noUpdate(), otherwise,
return the value of `UpdateControl.updateStatus(resource):

3. After getting the Deployment, get the current and required replicas, as shown in the following
example:

4. If currentReplicas does not match the requiredReplicas, you must update the Deployment, as
shown in the following example:

5. The following example shows how to obtain the list of pods and their names:

6. Check if resources were created and verify podnames with the Memcached resources. If a
mismatch exists in either of these conditions, perform a reconciliation as shown in the following
example:

 Deployment deployment = client.apps()
 .deployments()
 .inNamespace(resource.getMetadata().getNamespace())
 .withName(resource.getMetadata().getName())
 .get();

 if (deployment == null) {
 Deployment newDeployment = createMemcachedDeployment(resource);
 client.apps().deployments().create(newDeployment);
 return UpdateControl.noUpdate();
 }

 int currentReplicas = deployment.getSpec().getReplicas();
 int requiredReplicas = resource.getSpec().getSize();

 if (currentReplicas != requiredReplicas) {
 deployment.getSpec().setReplicas(requiredReplicas);
 client.apps().deployments().createOrReplace(deployment);
 return UpdateControl.noUpdate();
 }

 List<Pod> pods = client.pods()
 .inNamespace(resource.getMetadata().getNamespace())
 .withLabels(labelsForMemcached(resource))
 .list()
 .getItems();

 List<String> podNames =
 pods.stream().map(p -> p.getMetadata().getName()).collect(Collectors.toList());

 if (resource.getStatus() == null
 || !CollectionUtils.isEqualCollection(podNames, resource.getStatus().getNodes())) {
 if (resource.getStatus() == null) resource.setStatus(new MemcachedStatus());
 resource.getStatus().setNodes(podNames);
 return UpdateControl.updateResource(resource);
 }

OpenShift Container Platform 4.11 Operators

260

5.6.2.4.2. Defining labelsForMemcached

labelsForMemcached is a utility to return a map of the labels to attach to the resources:

5.6.2.4.3. Define the createMemcachedDeployment

The createMemcachedDeployment method uses the fabric8 DeploymentBuilder class:

5.6.2.5. Running the Operator

There are three ways you can use the Operator SDK CLI to build and run your Operator:

 private Map<String, String> labelsForMemcached(Memcached m) {
 Map<String, String> labels = new HashMap<>();
 labels.put("app", "memcached");
 labels.put("memcached_cr", m.getMetadata().getName());
 return labels;
 }

 private Deployment createMemcachedDeployment(Memcached m) {
 Deployment deployment = new DeploymentBuilder()
 .withMetadata(
 new ObjectMetaBuilder()
 .withName(m.getMetadata().getName())
 .withNamespace(m.getMetadata().getNamespace())
 .build())
 .withSpec(
 new DeploymentSpecBuilder()
 .withReplicas(m.getSpec().getSize())
 .withSelector(
 new LabelSelectorBuilder().withMatchLabels(labelsForMemcached(m)).build())
 .withTemplate(
 new PodTemplateSpecBuilder()
 .withMetadata(
 new ObjectMetaBuilder().withLabels(labelsForMemcached(m)).build())
 .withSpec(
 new PodSpecBuilder()
 .withContainers(
 new ContainerBuilder()
 .withImage("memcached:1.4.36-alpine")
 .withName("memcached")
 .withCommand("memcached", "-m=64", "-o", "modern", "-v")
 .withPorts(
 new ContainerPortBuilder()
 .withContainerPort(11211)
 .withName("memcached")
 .build())
 .build())
 .build())
 .build())
 .build())
 .build();
 deployment.addOwnerReference(m);
 return deployment;
 }

CHAPTER 5. DEVELOPING OPERATORS

261

https://fabric8.io/

Run locally outside the cluster as a Go program.

Run as a deployment on the cluster.

Bundle your Operator and use Operator Lifecycle Manager (OLM) to deploy on the cluster.

5.6.2.5.1. Running locally outside the cluster

You can run your Operator project as a Go program outside of the cluster. This is useful for
development purposes to speed up deployment and testing.

Procedure

1. Run the following command to compile the Operator:

Example output

2. Run the following command to install the CRD to the default namespace:

Example output

3. Create a file called rbac.yaml as shown in the following example:

4. Run the following command to grant cluster-admin privileges to the memcached-quarkus-
operator-operator by applying the rbac.yaml file:

$ mvn clean install

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 11.193 s
[INFO] Finished at: 2021-05-26T12:16:54-04:00
[INFO] --

$ oc apply -f target/kubernetes/memcacheds.cache.example.com-v1.yml

customresourcedefinition.apiextensions.k8s.io/memcacheds.cache.example.com created

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: memcached-operator-admin
subjects:
- kind: ServiceAccount
 name: memcached-quarkus-operator-operator
 namespace: default
roleRef:
 kind: ClusterRole
 name: cluster-admin
 apiGroup: ""

$ oc apply -f rbac.yaml

OpenShift Container Platform 4.11 Operators

262

5. Enter the following command to run the Operator:

NOTE

The java command will run the Operator and remain running until you end the
process. You will need another terminal to complete the rest of these commands.

6. Apply the memcached-sample.yaml file with the following command:

Example output

Verification

Run the following command to confirm that the pod has started:

Example output

5.6.2.5.2. Running as a deployment on the cluster

You can run your Operator project as a deployment on your cluster.

Procedure

1. Run the following make commands to build and push the Operator image. Modify the IMG
argument in the following steps to reference a repository that you have access to. You can
obtain an account for storing containers at repository sites such as Quay.io.

a. Build the image:

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMD64 architectures. Docker will
automatically set the environment variable to the value specified by –
platform. With Buildah, the –build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

$ java -jar target/quarkus-app/quarkus-run.jar

$ kubectl apply -f memcached-sample.yaml

memcached.cache.example.com/memcached-sample created

$ oc get all

NAME READY STATUS RESTARTS AGE
pod/memcached-sample-6c765df685-mfqnz 1/1 Running 0 18s

$ make docker-build IMG=<registry>/<user>/<image_name>:<tag>

CHAPTER 5. DEVELOPING OPERATORS

263

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

b. Push the image to a repository:

NOTE

The name and tag of the image, for example IMG=
<registry>/<user>/<image_name>:<tag>, in both the commands can also
be set in your Makefile. Modify the IMG ?= controller:latest value to set
your default image name.

2. Run the following command to install the CRD to the default namespace:

Example output

3. Create a file called rbac.yaml as shown in the following example:

IMPORTANT

The rbac.yaml file will be applied at a later step.

4. Run the following command to deploy the Operator:

5. Run the following command to grant cluster-admin privileges to the memcached-quarkus-
operator-operator by applying the rbac.yaml file created in a previous step:

6. Run the following command to verify that the Operator is running:

$ make docker-push IMG=<registry>/<user>/<image_name>:<tag>

$ oc apply -f target/kubernetes/memcacheds.cache.example.com-v1.yml

customresourcedefinition.apiextensions.k8s.io/memcacheds.cache.example.com created

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: memcached-operator-admin
subjects:
- kind: ServiceAccount
 name: memcached-quarkus-operator-operator
 namespace: default
roleRef:
 kind: ClusterRole
 name: cluster-admin
 apiGroup: ""

$ make deploy IMG=<registry>/<user>/<image_name>:<tag>

$ oc apply -f rbac.yaml

$ oc get all -n default

OpenShift Container Platform 4.11 Operators

264

Example output

7. Run the following command to apply the memcached-sample.yaml and create the
memcached-sample pod:

Example output

Verification

Run the following command to confirm the pods have started:

Example output

5.6.2.5.3. Bundling an Operator and deploying with Operator Lifecycle Manager

5.6.2.5.3.1. Bundling an Operator

The Operator bundle format is the default packaging method for Operator SDK and Operator Lifecycle
Manager (OLM). You can get your Operator ready for use on OLM by using the Operator SDK to build
and push your Operator project as a bundle image.

Prerequisites

Operator SDK CLI installed on a development workstation

OpenShift CLI (oc) v4.11+ installed

Operator project initialized by using the Operator SDK

Procedure

1. Run the following make commands in your Operator project directory to build and push your
Operator image. Modify the IMG argument in the following steps to reference a repository that
you have access to. You can obtain an account for storing containers at repository sites such as
Quay.io.

a. Build the image:

NAME READY UP-TO-DATE AVAILABLE AGE
pod/memcached-quarkus-operator-operator-7db86ccf58-k4mlm 0/1 Running 0
18s

$ oc apply -f memcached-sample.yaml

memcached.cache.example.com/memcached-sample created

$ oc get all

NAME READY STATUS RESTARTS AGE
pod/memcached-quarkus-operator-operator-7b766f4896-kxnzt 1/1 Running 1 79s
pod/memcached-sample-6c765df685-mfqnz 1/1 Running 0 18s

CHAPTER 5. DEVELOPING OPERATORS

265

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMD64 architectures. Docker will
automatically set the environment variable to the value specified by –
platform. With Buildah, the –build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

b. Push the image to a repository:

2. Create your Operator bundle manifest by running the make bundle command, which invokes
several commands, including the Operator SDK generate bundle and bundle validate
subcommands:

Bundle manifests for an Operator describe how to display, create, and manage an application.
The make bundle command creates the following files and directories in your Operator project:

A bundle manifests directory named bundle/manifests that contains a
ClusterServiceVersion object

A bundle metadata directory named bundle/metadata

All custom resource definitions (CRDs) in a config/crd directory

A Dockerfile bundle.Dockerfile

These files are then automatically validated by using operator-sdk bundle validate to ensure
the on-disk bundle representation is correct.

3. Build and push your bundle image by running the following commands. OLM consumes
Operator bundles using an index image, which reference one or more bundle images.

a. Build the bundle image. Set BUNDLE_IMG with the details for the registry, user
namespace, and image tag where you intend to push the image:

b. Push the bundle image:

5.6.2.5.3.2. Deploying an Operator with Operator Lifecycle Manager

Operator Lifecycle Manager (OLM) helps you to install, update, and manage the lifecycle of Operators
and their associated services on a Kubernetes cluster. OLM is installed by default on OpenShift
Container Platform and runs as a Kubernetes extension so that you can use the web console and the

$ make docker-build IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make docker-push IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make bundle IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make bundle-build BUNDLE_IMG=<registry>/<user>/<bundle_image_name>:<tag>

$ docker push <registry>/<user>/<bundle_image_name>:<tag>

OpenShift Container Platform 4.11 Operators

266

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

1

2

3

OpenShift CLI (oc) for all Operator lifecycle management functions without any additional tools.

The Operator bundle format is the default packaging method for Operator SDK and OLM. You can use
the Operator SDK to quickly run a bundle image on OLM to ensure that it runs properly.

Prerequisites

Operator SDK CLI installed on a development workstation

Operator bundle image built and pushed to a registry

OLM installed on a Kubernetes-based cluster (v1.16.0 or later if you use
apiextensions.k8s.io/v1 CRDs, for example OpenShift Container Platform 4.11)

Logged in to the cluster with oc using an account with cluster-admin permissions

Procedure

1. Enter the following command to run the Operator on the cluster:

The run bundle command creates a valid file-based catalog and installs the Operator
bundle on your cluster using OLM.

Optional: By default, the command installs the Operator in the currently active project in
your ~/.kube/config file. You can add the -n flag to set a different namespace scope for
the installation.

If you do not specify an image, the command uses quay.io/operator-
framework/opm:latest as the default index image. If you specify an image, the command
uses the bundle image itself as the index image.

IMPORTANT

As of OpenShift Container Platform 4.11, the run bundle command supports the
file-based catalog format for Operator catalogs by default. The deprecated
SQLite database format for Operator catalogs continues to be supported;
however, it will be removed in a future release. It is recommended that Operator
authors migrate their workflows to the file-based catalog format.

This command performs the following actions:

Create an index image referencing your bundle image. The index image is opaque and
ephemeral, but accurately reflects how a bundle would be added to a catalog in production.

Create a catalog source that points to your new index image, which enables OperatorHub to
discover your Operator.

Deploy your Operator to your cluster by creating an OperatorGroup, Subscription,
InstallPlan, and all other required resources, including RBAC.

$ operator-sdk run bundle \ 1
 -n <namespace> \ 2
 <registry>/<user>/<bundle_image_name>:<tag> 3

CHAPTER 5. DEVELOPING OPERATORS

267

5.6.2.6. Additional resources

See Project layout for Java-based Operators to learn about the directory structures created by
the Operator SDK.

If a cluster-wide egress proxy is configured, cluster administrators can override the proxy
settings or inject a custom CA certificate for specific Operators running on Operator Lifecycle
Manager (OLM).

5.6.3. Project layout for Java-based Operators

IMPORTANT

Java-based Operator SDK is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The operator-sdk CLI can generate, or scaffold, a number of packages and files for each Operator
project.

5.6.3.1. Java-based project layout

Java-based Operator projects generated by the operator-sdk init command contain the following files
and directories:

File or directory Purpose

pom.xml File that contains the dependencies required to run the Operator.

<domain>/ Directory that contains the files that represent the API. If the domain is example.com,
this folder is called example/.

MemcachedRec
onciler.java

Java file that defines controller implementations.

MemcachedSpe
c.java

Java file that defines the desired state of the Memcached CR.

MemcachedStat
us.java

Java file that defines the observed state of the Memcached CR.

Memcached.jav
a

Java file that defines the Schema for Memcached APIs.

target/kubernet
es/

Directory that contains the CRD yaml files.

OpenShift Container Platform 4.11 Operators

268

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-java-project-layout
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#enable-cluster-wide-proxy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-configuring-proxy-support
https://access.redhat.com/support/offerings/techpreview/

5.7. DEFINING CLUSTER SERVICE VERSIONS (CSVS)

A cluster service version (CSV), defined by a ClusterServiceVersion object, is a YAML manifest created
from Operator metadata that assists Operator Lifecycle Manager (OLM) in running the Operator in a
cluster. It is the metadata that accompanies an Operator container image, used to populate user
interfaces with information such as its logo, description, and version. It is also a source of technical
information that is required to run the Operator, like the RBAC rules it requires and which custom
resources (CRs) it manages or depends on.

The Operator SDK includes the CSV generator to generate a CSV for the current Operator project,
customized using information contained in YAML manifests and Operator source files.

A CSV-generating command removes the responsibility of Operator authors having in-depth OLM
knowledge in order for their Operator to interact with OLM or publish metadata to the Catalog Registry.
Further, because the CSV spec will likely change over time as new Kubernetes and OLM features are
implemented, the Operator SDK is equipped to easily extend its update system to handle new CSV
features going forward.

5.7.1. How CSV generation works

Operator bundle manifests, which include cluster service versions (CSVs), describe how to display,
create, and manage an application with Operator Lifecycle Manager (OLM). The CSV generator in the
Operator SDK, called by the generate bundle subcommand, is the first step towards publishing your
Operator to a catalog and deploying it with OLM. The subcommand requires certain input manifests to
construct a CSV manifest; all inputs are read when the command is invoked, along with a CSV base, to
idempotently generate or regenerate a CSV.

Typically, the generate kustomize manifests subcommand would be run first to generate the input
Kustomize bases that are consumed by the generate bundle subcommand. However, the Operator SDK
provides the make bundle command, which automates several tasks, including running the following
subcommands in order:

1. generate kustomize manifests

2. generate bundle

3. bundle validate

Additional resources

See Bundling an Operator for a full procedure that includes generating a bundle and CSV.

5.7.1.1. Generated files and resources

The make bundle command creates the following files and directories in your Operator project:

A bundle manifests directory named bundle/manifests that contains a ClusterServiceVersion
(CSV) object

A bundle metadata directory named bundle/metadata

All custom resource definitions (CRDs) in a config/crd directory

A Dockerfile bundle.Dockerfile

The following resources are typically included in a CSV:

CHAPTER 5. DEVELOPING OPERATORS

269

https://kustomize.io/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-bundle-operator_osdk-working-bundle-images

Role

Defines Operator permissions within a namespace.

ClusterRole

Defines cluster-wide Operator permissions.

Deployment

Defines how an Operand of an Operator is run in pods.

CustomResourceDefinition (CRD)

Defines custom resources that your Operator reconciles.

Custom resource examples

Examples of resources adhering to the spec of a particular CRD.

5.7.1.2. Version management

The --version flag for the generate bundle subcommand supplies a semantic version for your bundle
when creating one for the first time and when upgrading an existing one.

By setting the VERSION variable in your Makefile, the --version flag is automatically invoked using that
value when the generate bundle subcommand is run by the make bundle command. The CSV version
is the same as the Operator version, and a new CSV is generated when upgrading Operator versions.

5.7.2. Manually-defined CSV fields

Many CSV fields cannot be populated using generated, generic manifests that are not specific to
Operator SDK. These fields are mostly human-written metadata about the Operator and various custom
resource definitions (CRDs).

Operator authors must directly modify their cluster service version (CSV) YAML file, adding
personalized data to the following required fields. The Operator SDK gives a warning during CSV
generation when a lack of data in any of the required fields is detected.

The following tables detail which manually-defined CSV fields are required and which are optional.

Table 5.7. Required

Field Description

metadata.name A unique name for this CSV. Operator version should be included in the name to ensure
uniqueness, for example app-operator.v0.1.1.

metadata.capab
ilities

The capability level according to the Operator maturity model. Options include Basic
Install, Seamless Upgrades, Full Lifecycle, Deep Insights, and Auto Pilot.

spec.displayNa
me

A public name to identify the Operator.

spec.descriptio
n

A short description of the functionality of the Operator.

spec.keywords Keywords describing the Operator.

OpenShift Container Platform 4.11 Operators

270

spec.maintainer
s

Human or organizational entities maintaining the Operator, with a name and email.

spec.provider The provider of the Operator (usually an organization), with a name.

spec.labels Key-value pairs to be used by Operator internals.

spec.version Semantic version of the Operator, for example 0.1.1.

spec.customres
ourcedefinitions

Any CRDs the Operator uses. This field is populated automatically by the Operator SDK
if any CRD YAML files are present in deploy/. However, several fields not in the CRD
manifest spec require user input:

description: description of the CRD.

resources: any Kubernetes resources leveraged by the CRD, for example
Pod and StatefulSet objects.

specDescriptors: UI hints for inputs and outputs of the Operator.

Field Description

Table 5.8. Optional

Field Description

spec.replaces The name of the CSV being replaced by this CSV.

spec.links URLs (for example, websites and documentation) pertaining to the Operator or
application being managed, each with a name and url.

spec.selector Selectors by which the Operator can pair resources in a cluster.

spec.icon A base64-encoded icon unique to the Operator, set in a base64data field with a
mediatype.

spec.maturity The level of maturity the software has achieved at this version. Options include
planning, pre-alpha, alpha, beta, stable, mature, inactive, and deprecated.

Further details on what data each field above should hold are found in the CSV spec.

NOTE

Several YAML fields currently requiring user intervention can potentially be parsed from
Operator code.

Additional resources

CHAPTER 5. DEVELOPING OPERATORS

271

https://github.com/operator-framework/operator-lifecycle-manager/blob/master/doc/design/building-your-csv.md

Operator maturity model

5.7.2.1. Operator metadata annotations

Operator developers can manually define certain annotations in the metadata of a cluster service
version (CSV) to enable features or highlight capabilities in user interfaces (UIs), such as OperatorHub.

The following table lists Operator metadata annotations that can be manually defined using
metadata.annotations fields.

Table 5.9. Annotations

Field Description

alm-examples Provide custom resource definition (CRD) templates
with a minimum set of configuration. Compatible UIs
pre-fill this template for users to further customize.

operatorframework.io/initialization-resource Specify a single required custom resource by adding
operatorframework.io/initialization-resource
annotation to the cluster service version (CSV)
during Operator installation. The user is then
prompted to create the custom resource through a
template provided in the CSV. Must include a
template that contains a complete YAML definition.

operatorframework.io/suggested-namespace Set a suggested namespace where the Operator
should be deployed.

OpenShift Container Platform 4.11 Operators

272

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-maturity-model_olm-what-operators-are

operators.openshift.io/infrastructure-features Infrastructure features supported by the Operator.
Users can view and filter by these features when
discovering Operators through OperatorHub in the
web console. Valid, case-sensitive values:

disconnected: Operator supports being
mirrored into disconnected catalogs,
including all dependencies, and does not
require internet access. All related images
required for mirroring are listed by the
Operator.

cnf: Operator provides a Cloud-native
Network Functions (CNF) Kubernetes
plugin.

cni: Operator provides a Container
Network Interface (CNI) Kubernetes plugin.

csi: Operator provides a Container Storage
Interface (CSI) Kubernetes plugin.

fips: Operator accepts the FIPS mode of
the underlying platform and works on nodes
that are booted into FIPS mode.

IMPORTANT

The use of FIPS validated or
Modules In Process cryptographic
libraries is only supported on
OpenShift Container Platform
deployments on the x86_64
architecture.

proxy-aware: Operator supports running
on a cluster behind a proxy. Operator
accepts the standard proxy environment
variables HTTP_PROXY and
HTTPS_PROXY, which Operator
Lifecycle Manager (OLM) provides to the
Operator automatically when the cluster is
configured to use a proxy. Required
environment variables are passed down to
Operands for managed workloads.

operators.openshift.io/valid-subscription Free-form array for listing any specific subscriptions
that are required to use the Operator. For example,
'["3Scale Commercial License", "Red Hat
Managed Integration"]'.

operators.operatorframework.io/internal-
objects

Hides CRDs in the UI that are not meant for user
manipulation.

Field Description

CHAPTER 5. DEVELOPING OPERATORS

273

Field Description

Example use cases

Operator supports disconnected and proxy-aware

Operator requires an OpenShift Container Platform license

Operator requires a 3scale license

Operator supports disconnected and proxy-aware, and requires an OpenShift Container
Platform license

Additional resources

CRD templates

Initializing required custom resources

Setting a suggested namespace

Enabling your Operator for restricted network environments (disconnected mode)

Hiding internal objects

Support for FIPS crytography

5.7.3. Enabling your Operator for restricted network environments

As an Operator author, your Operator must meet additional requirements to run properly in a restricted
network, or disconnected, environment.

Operator requirements for supporting disconnected mode

Replace hard-coded image references with environment variables.

In the cluster service version (CSV) of your Operator:

List any related images, or other container images that your Operator might require to

operators.openshift.io/infrastructure-features: '["disconnected", "proxy-aware"]'

operators.openshift.io/valid-subscription: '["OpenShift Container Platform"]'

operators.openshift.io/valid-subscription: '["3Scale Commercial License", "Red Hat Managed
Integration"]'

operators.openshift.io/infrastructure-features: '["disconnected", "proxy-aware"]'
operators.openshift.io/valid-subscription: '["OpenShift Container Platform"]'

OpenShift Container Platform 4.11 Operators

274

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-crds-templates_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-init-resource_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-suggested-namespace_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-enabling-operator-for-restricted-network_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-hiding-internal-objects_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#installing-fips

1

2

List any related images, or other container images that your Operator might require to
perform their functions.

Reference all specified images by a digest (SHA) and not by a tag.

All dependencies of your Operator must also support running in a disconnected mode.

Your Operator must not require any off-cluster resources.

Prerequisites

An Operator project with a CSV. The following procedure uses the Memcached Operator as an
example for Go-, Ansible-, and Helm-based projects.

Procedure

1. Set an environment variable for the additional image references used by the Operator in the
config/manager/manager.yaml file:

Example 5.10. Example config/manager/manager.yaml file

Define the environment variable, such as RELATED_IMAGE_MEMCACHED.

Set the related image reference and tag, such as docker.io/memcached:1.4.36-alpine.

2. Replace hard-coded image references with environment variables in the relevant file for your
Operator project type:

For Go-based Operator projects, add the environment variable to the
controllers/memcached_controller.go file as shown in the following example:

Example 5.11. Example controllers/memcached_controller.go file

...
spec:
 ...
 spec:
 ...
 containers:
 - command:
 - /manager
 ...
 env:
 - name: <related_image_environment_variable> 1
 value: "<related_image_reference_with_tag>" 2

 // deploymentForMemcached returns a memcached Deployment object

...

 Spec: corev1.PodSpec{
 Containers: []corev1.Container{{
- Image: "memcached:1.4.36-alpine", 1
+ Image: os.Getenv("<related_image_environment_variable>"), 2
 Name: "memcached",

CHAPTER 5. DEVELOPING OPERATORS

275

1

2

1

2

Delete the image reference and tag.

Use the os.Getenv function to call the <related_image_environment_variable>.

NOTE

The os.Getenv function returns an empty string if a variable is not set. Set
the <related_image_environment_variable> before changing the file.

For Ansible-based Operator projects, add the environment variable to the
roles/memcached/tasks/main.yml file as shown in the following example:

Example 5.12. Example roles/memcached/tasks/main.yml file

Delete the image reference and tag.

Use the lookup function to call the <related_image_environment_variable>.

For Helm-based Operator projects, add the overrideValues field to the watches.yaml file
as shown in the following example:

Example 5.13. Example watches.yaml file

 Command: []string{"memcached", "-m=64", "-o", "modern", "-v"},
 Ports: []corev1.ContainerPort{{

...

spec:
 containers:
 - name: memcached
 command:
 - memcached
 - -m=64
 - -o
 - modern
 - -v
- image: "docker.io/memcached:1.4.36-alpine" 1
+ image: "{{ lookup('env', '<related_image_environment_variable>') }}" 2
 ports:
 - containerPort: 11211

...

...
- group: demo.example.com
 version: v1alpha1
 kind: Memcached
 chart: helm-charts/memcached
 overrideValues: 1
 relatedImage: ${<related_image_environment_variable>} 2

OpenShift Container Platform 4.11 Operators

276

1

2

1

2

3

Add the overrideValues field.

Define the overrideValues field by using the
<related_image_environment_variable>, such as
RELATED_IMAGE_MEMCACHED.

a. Add the value of the overrideValues field to the helm-
charts/memchached/values.yaml file as shown in the following example:

Example helm-charts/memchached/values.yaml file

b. Edit the chart template in the helm-charts/memcached/templates/deployment.yaml
file as shown in the following example:

Example 5.14. Example helm-charts/memcached/templates/deployment.yaml file

Add the env field.

Name the environment variable.

Define the value of the environment variable.

3. Add the BUNDLE_GEN_FLAGS variable definition to your Makefile with the following changes:

Example Makefile

...
relatedImage: ""

containers:
 - name: {{ .Chart.Name }}
 securityContext:
 - toYaml {{ .Values.securityContext | nindent 12 }}
 image: "{{ .Values.image.pullPolicy }}
 env: 1
 - name: related_image 2
 value: "{{ .Values.relatedImage }}" 3

 BUNDLE_GEN_FLAGS ?= -q --overwrite --version $(VERSION)
$(BUNDLE_METADATA_OPTS)

 # USE_IMAGE_DIGESTS defines if images are resolved via tags or digests
 # You can enable this value if you would like to use SHA Based Digests
 # To enable set flag to true
 USE_IMAGE_DIGESTS ?= false
 ifeq ($(USE_IMAGE_DIGESTS), true)
 BUNDLE_GEN_FLAGS += --use-image-digests
 endif

...

CHAPTER 5. DEVELOPING OPERATORS

277

1

2

1

2

Delete this line in the Makefile.

Replace the line above with this line.

4. To update your Operator image to use a digest (SHA) and not a tag, run the make bundle
command and set USE_IMAGE_DIGESTS to true :

5. Add the disconnected annotation, which indicates that the Operator works in a disconnected
environment:

Operators can be filtered in OperatorHub by this infrastructure feature.

5.7.4. Enabling your Operator for multiple architectures and operating systems

Operator Lifecycle Manager (OLM) assumes that all Operators run on Linux hosts. However, as an
Operator author, you can specify whether your Operator supports managing workloads on other
architectures, if worker nodes are available in the OpenShift Container Platform cluster.

If your Operator supports variants other than AMD64 and Linux, you can add labels to the cluster
service version (CSV) that provides the Operator to list the supported variants. Labels indicating
supported architectures and operating systems are defined by the following:

Set <arch> to a supported string.

Set <os> to a supported string.

NOTE

Only the labels on the channel head of the default channel are considered for filtering
package manifests by label. This means, for example, that providing an additional
architecture for an Operator in the non-default channel is possible, but that architecture
is not available for filtering in the PackageManifest API.

If a CSV does not include an os label, it is treated as if it has the following Linux support label by default:

- $(KUSTOMIZE) build config/manifests | operator-sdk generate bundle -q --overwrite --
version $(VERSION) $(BUNDLE_METADATA_OPTS) 1
+ $(KUSTOMIZE) build config/manifests | operator-sdk generate bundle
$(BUNDLE_GEN_FLAGS) 2

...

$ make bundle USE_IMAGE_DIGESTS=true

metadata:
 annotations:
 operators.openshift.io/infrastructure-features: '["disconnected"]'

labels:
 operatorframework.io/arch.<arch>: supported 1
 operatorframework.io/os.<os>: supported 2

OpenShift Container Platform 4.11 Operators

278

1 2

If a CSV does not include an arch label, it is treated as if it has the following AMD64 support label by
default:

If an Operator supports multiple node architectures or operating systems, you can add multiple labels, as
well.

Prerequisites

An Operator project with a CSV.

To support listing multiple architectures and operating systems, your Operator image
referenced in the CSV must be a manifest list image.

For the Operator to work properly in restricted network, or disconnected, environments, the
image referenced must also be specified using a digest (SHA) and not by a tag.

Procedure

Add a label in the metadata.labels of your CSV for each supported architecture and operating
system that your Operator supports:

After you add a new architecture or operating system, you must also now include the
default os.linux and arch.amd64 variants explicitly.

Additional resources

See the Image Manifest V 2, Schema 2 specification for more information on manifest lists.

5.7.4.1. Architecture and operating system support for Operators

The following strings are supported in Operator Lifecycle Manager (OLM) on OpenShift Container
Platform when labeling or filtering Operators that support multiple architectures and operating systems:

Table 5.10. Architectures supported on OpenShift Container Platform

Architecture String

AMD64 amd64

64-bit PowerPC little-endian ppc64le

labels:
 operatorframework.io/os.linux: supported

labels:
 operatorframework.io/arch.amd64: supported

labels:
 operatorframework.io/arch.s390x: supported
 operatorframework.io/os.zos: supported
 operatorframework.io/os.linux: supported 1
 operatorframework.io/arch.amd64: supported 2

CHAPTER 5. DEVELOPING OPERATORS

279

https://docs.docker.com/registry/spec/manifest-v2-2/#manifest-list

1

IBM Z s390x

Architecture String

Table 5.11. Operating systems supported on OpenShift Container Platform

Operating system String

Linux linux

z/OS zos

NOTE

Different versions of OpenShift Container Platform and other Kubernetes-based
distributions might support a different set of architectures and operating systems.

5.7.5. Setting a suggested namespace

Some Operators must be deployed in a specific namespace, or with ancillary resources in specific
namespaces, to work properly. If resolved from a subscription, Operator Lifecycle Manager (OLM)
defaults the namespaced resources of an Operator to the namespace of its subscription.

As an Operator author, you can instead express a desired target namespace as part of your cluster
service version (CSV) to maintain control over the final namespaces of the resources installed for their
Operators. When adding the Operator to a cluster using OperatorHub, this enables the web console to
autopopulate the suggested namespace for the cluster administrator during the installation process.

Procedure

In your CSV, set the operatorframework.io/suggested-namespace annotation to your
suggested namespace:

Set your suggested namespace.

5.7.6. Enabling Operator conditions

Operator Lifecycle Manager (OLM) provides Operators with a channel to communicate complex states
that influence OLM behavior while managing the Operator. By default, OLM creates an
OperatorCondition custom resource definition (CRD) when it installs an Operator. Based on the
conditions set in the OperatorCondition custom resource (CR), the behavior of OLM changes
accordingly.

To support Operator conditions, an Operator must be able to read the OperatorCondition CR created
by OLM and have the ability to complete the following tasks:

metadata:
 annotations:
 operatorframework.io/suggested-namespace: <namespace> 1

OpenShift Container Platform 4.11 Operators

280

Get the specific condition.

Set the status of a specific condition.

This can be accomplished by using the operator-lib library. An Operator author can provide a controller-
runtime client in their Operator for the library to access the OperatorCondition CR owned by the
Operator in the cluster.

The library provides a generic Conditions interface, which has the following methods to Get and Set a
conditionType in the OperatorCondition CR:

Get

To get the specific condition, the library uses the client.Get function from controller-runtime, which
requires an ObjectKey of type types.NamespacedName present in conditionAccessor.

Set

To update the status of the specific condition, the library uses the client.Update function from
controller-runtime. An error occurs if the conditionType is not present in the CRD.

The Operator is allowed to modify only the status subresource of the CR. Operators can either delete
or update the status.conditions array to include the condition. For more details on the format and
description of the fields present in the conditions, see the upstream Condition GoDocs.

NOTE

Operator SDK v1.10.1 supports operator-lib v0.3.0.

Prerequisites

An Operator project generated using the Operator SDK.

Procedure

To enable Operator conditions in your Operator project:

1. In the go.mod file of your Operator project, add operator-framework/operator-lib as a
required library:

2. Write your own constructor in your Operator logic that will result in the following outcomes:

Accepts a controller-runtime client.

Accepts a conditionType.

Returns a Condition interface to update or add conditions.

Because OLM currently supports the Upgradeable condition, you can create an interface that

module github.com/example-inc/memcached-operator

go 1.15

require (
 k8s.io/apimachinery v0.19.2
 k8s.io/client-go v0.19.2
 sigs.k8s.io/controller-runtime v0.7.0
 operator-framework/operator-lib v0.3.0
)

CHAPTER 5. DEVELOPING OPERATORS

281

https://github.com/operator-framework/operator-lib/tree/v0.3.0
https://github.com/kubernetes-sigs/controller-runtime/tree/master/pkg/client
https://godoc.org/k8s.io/apimachinery/pkg/apis/meta/v1#Condition

Because OLM currently supports the Upgradeable condition, you can create an interface that
has methods to access the Upgradeable condition. For example:

In this example, the NewUpgradeable constructor is further used to create a variable cond of
type Condition. The cond variable would in turn have Get and Set methods, which can be used
for handling the OLM Upgradeable condition.

Additional resources

Operator conditions

5.7.7. Defining webhooks

Webhooks allow Operator authors to intercept, modify, and accept or reject resources before they are
saved to the object store and handled by the Operator controller. Operator Lifecycle Manager (OLM)
can manage the lifecycle of these webhooks when they are shipped alongside your Operator.

The cluster service version (CSV) resource of an Operator can include a webhookdefinitions section to
define the following types of webhooks:

Admission webhooks (validating and mutating)

Conversion webhooks

Procedure

Add a webhookdefinitions section to the spec section of the CSV of your Operator and
include any webhook definitions using a type of ValidatingAdmissionWebhook,
MutatingAdmissionWebhook, or ConversionWebhook. The following example contains all
three types of webhooks:

CSV containing webhooks

import (
 ...
 apiv1 "github.com/operator-framework/api/pkg/operators/v1"
)

func NewUpgradeable(cl client.Client) (Condition, error) {
 return NewCondition(cl, "apiv1.OperatorUpgradeable")
}

cond, err := NewUpgradeable(cl);

 apiVersion: operators.coreos.com/v1alpha1
 kind: ClusterServiceVersion
 metadata:
 name: webhook-operator.v0.0.1
 spec:
 customresourcedefinitions:
 owned:
 - kind: WebhookTest
 name: webhooktests.webhook.operators.coreos.io 1
 version: v1
 install:

OpenShift Container Platform 4.11 Operators

282

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-operatorconditions

 spec:
 deployments:
 - name: webhook-operator-webhook
 ...
 ...
 ...
 strategy: deployment
 installModes:
 - supported: false
 type: OwnNamespace
 - supported: false
 type: SingleNamespace
 - supported: false
 type: MultiNamespace
 - supported: true
 type: AllNamespaces
 webhookdefinitions:
 - type: ValidatingAdmissionWebhook 2
 admissionReviewVersions:
 - v1beta1
 - v1
 containerPort: 443
 targetPort: 4343
 deploymentName: webhook-operator-webhook
 failurePolicy: Fail
 generateName: vwebhooktest.kb.io
 rules:
 - apiGroups:
 - webhook.operators.coreos.io
 apiVersions:
 - v1
 operations:
 - CREATE
 - UPDATE
 resources:
 - webhooktests
 sideEffects: None
 webhookPath: /validate-webhook-operators-coreos-io-v1-webhooktest
 - type: MutatingAdmissionWebhook 3
 admissionReviewVersions:
 - v1beta1
 - v1
 containerPort: 443
 targetPort: 4343
 deploymentName: webhook-operator-webhook
 failurePolicy: Fail
 generateName: mwebhooktest.kb.io
 rules:
 - apiGroups:
 - webhook.operators.coreos.io
 apiVersions:
 - v1
 operations:
 - CREATE
 - UPDATE
 resources:

CHAPTER 5. DEVELOPING OPERATORS

283

1

2

3

4

5

The CRDs targeted by the conversion webhook must exist here.

A validating admission webhook.

A mutating admission webhook.

A conversion webhook.

The spec.PreserveUnknownFields property of each CRD must be set to false or nil.

Additional resources

Types of webhook admission plugins

Kubernetes documentation:

Validating admission webhooks

Mutating admission webhooks

Conversion webhooks

5.7.7.1. Webhook considerations for OLM

When deploying an Operator with webhooks using Operator Lifecycle Manager (OLM), you must define
the following:

The type field must be set to either ValidatingAdmissionWebhook,
MutatingAdmissionWebhook, or ConversionWebhook, or the CSV will be placed in a failed
phase.

The CSV must contain a deployment whose name is equivalent to the value supplied in the
deploymentName field of the webhookdefinition.

When the webhook is created, OLM ensures that the webhook only acts upon namespaces that match
the Operator group that the Operator is deployed in.

Certificate authority constraints

OLM is configured to provide each deployment with a single certificate authority (CA). The logic that

 - webhooktests
 sideEffects: None
 webhookPath: /mutate-webhook-operators-coreos-io-v1-webhooktest
 - type: ConversionWebhook 4
 admissionReviewVersions:
 - v1beta1
 - v1
 containerPort: 443
 targetPort: 4343
 deploymentName: webhook-operator-webhook
 generateName: cwebhooktest.kb.io
 sideEffects: None
 webhookPath: /convert
 conversionCRDs:
 - webhooktests.webhook.operators.coreos.io 5
...

OpenShift Container Platform 4.11 Operators

284

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/architecture/#admission-webhook-types_admission-plug-ins
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#validatingadmissionwebhook
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#mutatingadmissionwebhook
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/#webhook-conversion

OLM is configured to provide each deployment with a single certificate authority (CA). The logic that
generates and mounts the CA into the deployment was originally used by the API service lifecycle logic.
As a result:

The TLS certificate file is mounted to the deployment at
/apiserver.local.config/certificates/apiserver.crt.

The TLS key file is mounted to the deployment at
/apiserver.local.config/certificates/apiserver.key.

Admission webhook rules constraints
To prevent an Operator from configuring the cluster into an unrecoverable state, OLM places the CSV
in the failed phase if the rules defined in an admission webhook intercept any of the following requests:

Requests that target all groups

Requests that target the operators.coreos.com group

Requests that target the ValidatingWebhookConfigurations or
MutatingWebhookConfigurations resources

Conversion webhook constraints
OLM places the CSV in the failed phase if a conversion webhook definition does not adhere to the
following constraints:

CSVs featuring a conversion webhook can only support the AllNamespaces install mode.

The CRD targeted by the conversion webhook must have its spec.preserveUnknownFields
field set to false or nil.

The conversion webhook defined in the CSV must target an owned CRD.

There can only be one conversion webhook on the entire cluster for a given CRD.

5.7.8. Understanding your custom resource definitions (CRDs)

There are two types of custom resource definitions (CRDs) that your Operator can use: ones that are
owned by it and ones that it depends on, which are required.

5.7.8.1. Owned CRDs

The custom resource definitions (CRDs) owned by your Operator are the most important part of your
CSV. This establishes the link between your Operator and the required RBAC rules, dependency
management, and other Kubernetes concepts.

It is common for your Operator to use multiple CRDs to link together concepts, such as top-level
database configuration in one object and a representation of replica sets in another. Each one should be
listed out in the CSV file.

Table 5.12. Owned CRD fields

Field Description Required/optional

Name The full name of your CRD. Required

CHAPTER 5. DEVELOPING OPERATORS

285

Version The version of that object API. Required

Kind The machine readable name of your CRD. Required

DisplayName A human readable version of your CRD name, for example
MongoDB Standalone.

Required

Description A short description of how this CRD is used by the Operator
or a description of the functionality provided by the CRD.

Required

Group The API group that this CRD belongs to, for example
database.example.com.

Optional

Resources Your CRDs own one or more types of Kubernetes objects.
These are listed in the resources section to inform your
users of the objects they might need to troubleshoot or how
to connect to the application, such as the service or ingress
rule that exposes a database.

It is recommended to only list out the objects that are
important to a human, not an exhaustive list of everything
you orchestrate. For example, do not list config maps that
store internal state that are not meant to be modified by a
user.

Optional

Field Description Required/optional

OpenShift Container Platform 4.11 Operators

286

SpecDescriptors,
StatusDescriptors
, and
ActionDescriptors

These descriptors are a way to hint UIs with certain inputs or
outputs of your Operator that are most important to an end
user. If your CRD contains the name of a secret or config
map that the user must provide, you can specify that here.
These items are linked and highlighted in compatible UIs.

There are three types of descriptors:

SpecDescriptors: A reference to fields in the
spec block of an object.

StatusDescriptors: A reference to fields in the
status block of an object.

ActionDescriptors: A reference to actions that
can be performed on an object.

All descriptors accept the following fields:

DisplayName: A human readable name for the
Spec, Status, or Action.

Description: A short description of the Spec,
Status, or Action and how it is used by the
Operator.

Path: A dot-delimited path of the field on the
object that this descriptor describes.

X-Descriptors: Used to determine which
"capabilities" this descriptor has and which UI
component to use. See the openshift/console
project for a canonical list of React UI X-
Descriptors for OpenShift Container Platform.

Also see the openshift/console project for more
information on Descriptors in general.

Optional

Field Description Required/optional

The following example depicts a MongoDB Standalone CRD that requires some user input in the form
of a secret and config map, and orchestrates services, stateful sets, pods and config maps:

Example owned CRD

 - displayName: MongoDB Standalone
 group: mongodb.com
 kind: MongoDbStandalone
 name: mongodbstandalones.mongodb.com
 resources:
 - kind: Service
 name: ''
 version: v1
 - kind: StatefulSet
 name: ''
 version: v1beta2
 - kind: Pod

CHAPTER 5. DEVELOPING OPERATORS

287

https://github.com/openshift/console/tree/release-4.3/frontend/packages/operator-lifecycle-manager/src/components/descriptors/types.ts
https://github.com/openshift/console/tree/release-4.3/frontend/packages/operator-lifecycle-manager/src/components/descriptors

5.7.8.2. Required CRDs

Relying on other required CRDs is completely optional and only exists to reduce the scope of individual
Operators and provide a way to compose multiple Operators together to solve an end-to-end use case.

An example of this is an Operator that might set up an application and install an etcd cluster (from an
etcd Operator) to use for distributed locking and a Postgres database (from a Postgres Operator) for
data storage.

Operator Lifecycle Manager (OLM) checks against the available CRDs and Operators in the cluster to
fulfill these requirements. If suitable versions are found, the Operators are started within the desired
namespace and a service account created for each Operator to create, watch, and modify the
Kubernetes resources required.

Table 5.13. Required CRD fields

Field Description Required/optional

Name The full name of the CRD you require. Required

Version The version of that object API. Required

 name: ''
 version: v1
 - kind: ConfigMap
 name: ''
 version: v1
 specDescriptors:
 - description: Credentials for Ops Manager or Cloud Manager.
 displayName: Credentials
 path: credentials
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:selector:core:v1:Secret'
 - description: Project this deployment belongs to.
 displayName: Project
 path: project
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:selector:core:v1:ConfigMap'
 - description: MongoDB version to be installed.
 displayName: Version
 path: version
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:label'
 statusDescriptors:
 - description: The status of each of the pods for the MongoDB cluster.
 displayName: Pod Status
 path: pods
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:podStatuses'
 version: v1
 description: >-
 MongoDB Deployment consisting of only one host. No replication of
 data.

OpenShift Container Platform 4.11 Operators

288

1

Kind The Kubernetes object kind. Required

DisplayName A human readable version of the CRD. Required

Description A summary of how the component fits in your larger
architecture.

Required

Field Description Required/optional

Example required CRD

5.7.8.3. CRD upgrades

OLM upgrades a custom resource definition (CRD) immediately if it is owned by a singular cluster
service version (CSV). If a CRD is owned by multiple CSVs, then the CRD is upgraded when it has
satisfied all of the following backward compatible conditions:

All existing serving versions in the current CRD are present in the new CRD.

All existing instances, or custom resources, that are associated with the serving versions of the
CRD are valid when validated against the validation schema of the new CRD.

5.7.8.3.1. Adding a new CRD version

Procedure

To add a new version of a CRD to your Operator:

1. Add a new entry in the CRD resource under the versions section of your CSV.
For example, if the current CRD has a version v1alpha1 and you want to add a new version
v1beta1 and mark it as the new storage version, add a new entry for v1beta1:

New entry.

2. Ensure the referencing version of the CRD in the owned section of your CSV is updated if the
CSV intends to use the new version:

 required:
 - name: etcdclusters.etcd.database.coreos.com
 version: v1beta2
 kind: EtcdCluster
 displayName: etcd Cluster
 description: Represents a cluster of etcd nodes.

versions:
 - name: v1alpha1
 served: true
 storage: false
 - name: v1beta1 1
 served: true
 storage: true

CHAPTER 5. DEVELOPING OPERATORS

289

1

1

1 2

Update the version.

3. Push the updated CRD and CSV to your bundle.

5.7.8.3.2. Deprecating or removing a CRD version

Operator Lifecycle Manager (OLM) does not allow a serving version of a custom resource definition
(CRD) to be removed right away. Instead, a deprecated version of the CRD must be first disabled by
setting the served field in the CRD to false. Then, the non-serving version can be removed on the
subsequent CRD upgrade.

Procedure

To deprecate and remove a specific version of a CRD:

1. Mark the deprecated version as non-serving to indicate this version is no longer in use and may
be removed in a subsequent upgrade. For example:

Set to false.

2. Switch the storage version to a serving version if the version to be deprecated is currently the
storage version. For example:

Update the storage fields accordingly.

NOTE

To remove a specific version that is or was the storage version from a CRD, that
version must be removed from the storedVersion in the status of the CRD. OLM
will attempt to do this for you if it detects a stored version no longer exists in the
new CRD.

customresourcedefinitions:
 owned:
 - name: cluster.example.com
 version: v1beta1 1
 kind: cluster
 displayName: Cluster

versions:
 - name: v1alpha1
 served: false 1
 storage: true

versions:
 - name: v1alpha1
 served: false
 storage: false 1
 - name: v1beta1
 served: true
 storage: true 2

OpenShift Container Platform 4.11 Operators

290

3. Upgrade the CRD with the above changes.

4. In subsequent upgrade cycles, the non-serving version can be removed completely from the
CRD. For example:

5. Ensure the referencing CRD version in the owned section of your CSV is updated accordingly if
that version is removed from the CRD.

5.7.8.4. CRD templates

Users of your Operator must be made aware of which options are required versus optional. You can
provide templates for each of your custom resource definitions (CRDs) with a minimum set of
configuration as an annotation named alm-examples. Compatible UIs will pre-fill this template for users
to further customize.

The annotation consists of a list of the kind, for example, the CRD name and the corresponding
metadata and spec of the Kubernetes object.

The following full example provides templates for EtcdCluster, EtcdBackup and EtcdRestore:

5.7.8.5. Hiding internal objects

It is common practice for Operators to use custom resource definitions (CRDs) internally to accomplish
a task. These objects are not meant for users to manipulate and can be confusing to users of the
Operator. For example, a database Operator might have a Replication CRD that is created whenever a
user creates a Database object with replication: true.

As an Operator author, you can hide any CRDs in the user interface that are not meant for user
manipulation by adding the operators.operatorframework.io/internal-objects annotation to the
cluster service version (CSV) of your Operator.

Procedure

1. Before marking one of your CRDs as internal, ensure that any debugging information or
configuration that might be required to manage the application is reflected on the status or
spec block of your CR, if applicable to your Operator.

2. Add the operators.operatorframework.io/internal-objects annotation to the CSV of your

versions:
 - name: v1beta1
 served: true
 storage: true

metadata:
 annotations:
 alm-examples: >-
 [{"apiVersion":"etcd.database.coreos.com/v1beta2","kind":"EtcdCluster","metadata":
{"name":"example","namespace":"default"},"spec":{"size":3,"version":"3.2.13"}},
{"apiVersion":"etcd.database.coreos.com/v1beta2","kind":"EtcdRestore","metadata":
{"name":"example-etcd-cluster"},"spec":{"etcdCluster":{"name":"example-etcd-
cluster"},"backupStorageType":"S3","s3":{"path":"<full-s3-path>","awsSecret":"<aws-secret>"}}},
{"apiVersion":"etcd.database.coreos.com/v1beta2","kind":"EtcdBackup","metadata":
{"name":"example-etcd-cluster-backup"},"spec":{"etcdEndpoints":["<etcd-cluster-
endpoints>"],"storageType":"S3","s3":{"path":"<full-s3-path>","awsSecret":"<aws-secret>"}}}]

CHAPTER 5. DEVELOPING OPERATORS

291

1

2. Add the operators.operatorframework.io/internal-objects annotation to the CSV of your
Operator to specify any internal objects to hide in the user interface:

Internal object annotation

Set any internal CRDs as an array of strings.

5.7.8.6. Initializing required custom resources

An Operator might require the user to instantiate a custom resource before the Operator can be fully
functional. However, it can be challenging for a user to determine what is required or how to define the
resource.

As an Operator developer, you can specify a single required custom resource by adding
operatorframework.io/initialization-resource to the cluster service version (CSV) during Operator
installation. You are then prompted prompted to create the custom resource through a template that is
provided in the CSV. The annotation must include a template that contains a complete YAML definition
that is required to initialize the resource during installation.

If this annotation is defined, after installing the Operator from the OpenShift Container Platform web
console, the user is prompted to create the resource using the template provided in the CSV.

Procedure

Add the operatorframework.io/initialization-resource annotation to the CSV of your Operator
to specify a required custom resource. For example, the following annotation requires the
creation of a StorageCluster resource and provides a full YAML definition:

Initialization resource annotation

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 name: my-operator-v1.2.3
 annotations:
 operators.operatorframework.io/internal-objects:
'["my.internal.crd1.io","my.internal.crd2.io"]' 1
...

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 name: my-operator-v1.2.3
 annotations:
 operatorframework.io/initialization-resource: |-
 {
 "apiVersion": "ocs.openshift.io/v1",
 "kind": "StorageCluster",
 "metadata": {
 "name": "example-storagecluster"
 },
 "spec": {
 "manageNodes": false,
 "monPVCTemplate": {

OpenShift Container Platform 4.11 Operators

292

5.7.9. Understanding your API services

As with CRDs, there are two types of API services that your Operator may use: owned and required.

5.7.9.1. Owned API services

When a CSV owns an API service, it is responsible for describing the deployment of the extension api-
server that backs it and the group/version/kind (GVK) it provides.

An API service is uniquely identified by the group/version it provides and can be listed multiple times to
denote the different kinds it is expected to provide.

Table 5.14. Owned API service fields

 "spec": {
 "accessModes": [
 "ReadWriteOnce"
],
 "resources": {
 "requests": {
 "storage": "10Gi"
 }
 },
 "storageClassName": "gp2"
 }
 },
 "storageDeviceSets": [
 {
 "count": 3,
 "dataPVCTemplate": {
 "spec": {
 "accessModes": [
 "ReadWriteOnce"
],
 "resources": {
 "requests": {
 "storage": "1Ti"
 }
 },
 "storageClassName": "gp2",
 "volumeMode": "Block"
 }
 },
 "name": "example-deviceset",
 "placement": {},
 "portable": true,
 "resources": {}
 }
]
 }
 }
...

CHAPTER 5. DEVELOPING OPERATORS

293

Field Description Required/optional

Group Group that the API service provides, for example
database.example.com.

Required

Version Version of the API service, for example v1alpha1. Required

Kind A kind that the API service is expected to provide. Required

Name The plural name for the API service provided. Required

DeploymentName Name of the deployment defined by your CSV that
corresponds to your API service (required for owned API
services). During the CSV pending phase, the OLM
Operator searches the InstallStrategy of your CSV for a
Deployment spec with a matching name, and if not found,
does not transition the CSV to the "Install Ready" phase.

Required

DisplayName A human readable version of your API service name, for
example MongoDB Standalone.

Required

Description A short description of how this API service is used by the
Operator or a description of the functionality provided by
the API service.

Required

Resources Your API services own one or more types of Kubernetes
objects. These are listed in the resources section to inform
your users of the objects they might need to troubleshoot
or how to connect to the application, such as the service or
ingress rule that exposes a database.

It is recommended to only list out the objects that are
important to a human, not an exhaustive list of everything
you orchestrate. For example, do not list config maps that
store internal state that are not meant to be modified by a
user.

Optional

SpecDescriptors,
StatusDescriptors
, and
ActionDescriptors

Essentially the same as for owned CRDs. Optional

5.7.9.1.1. API service resource creation

Operator Lifecycle Manager (OLM) is responsible for creating or replacing the service and API service
resources for each unique owned API service:

Service pod selectors are copied from the CSV deployment matching the DeploymentName
field of the API service description.

A new CA key/certificate pair is generated for each installation and the base64-encoded CA

OpenShift Container Platform 4.11 Operators

294

A new CA key/certificate pair is generated for each installation and the base64-encoded CA
bundle is embedded in the respective API service resource.

5.7.9.1.2. API service serving certificates

OLM handles generating a serving key/certificate pair whenever an owned API service is being installed.
The serving certificate has a common name (CN) containing the hostname of the generated Service
resource and is signed by the private key of the CA bundle embedded in the corresponding API service
resource.

The certificate is stored as a type kubernetes.io/tls secret in the deployment namespace, and a volume
named apiservice-cert is automatically appended to the volumes section of the deployment in the CSV
matching the DeploymentName field of the API service description.

If one does not already exist, a volume mount with a matching name is also appended to all containers of
that deployment. This allows users to define a volume mount with the expected name to accommodate
any custom path requirements. The path of the generated volume mount defaults to
/apiserver.local.config/certificates and any existing volume mounts with the same path are replaced.

5.7.9.2. Required API services

OLM ensures all required CSVs have an API service that is available and all expected GVKs are
discoverable before attempting installation. This allows a CSV to rely on specific kinds provided by API
services it does not own.

Table 5.15. Required API service fields

Field Description Required/optional

Group Group that the API service provides, for example
database.example.com.

Required

Version Version of the API service, for example v1alpha1. Required

Kind A kind that the API service is expected to provide. Required

DisplayName A human readable version of your API service name, for
example MongoDB Standalone.

Required

Description A short description of how this API service is used by the
Operator or a description of the functionality provided by
the API service.

Required

5.8. WORKING WITH BUNDLE IMAGES

You can use the Operator SDK to package, deploy, and upgrade Operators in the bundle format for use
on Operator Lifecycle Manager (OLM).

5.8.1. Bundling an Operator

The Operator bundle format is the default packaging method for Operator SDK and Operator Lifecycle

CHAPTER 5. DEVELOPING OPERATORS

295

The Operator bundle format is the default packaging method for Operator SDK and Operator Lifecycle
Manager (OLM). You can get your Operator ready for use on OLM by using the Operator SDK to build
and push your Operator project as a bundle image.

Prerequisites

Operator SDK CLI installed on a development workstation

OpenShift CLI (oc) v4.11+ installed

Operator project initialized by using the Operator SDK

If your Operator is Go-based, your project must be updated to use supported images for
running on OpenShift Container Platform

Procedure

1. Run the following make commands in your Operator project directory to build and push your
Operator image. Modify the IMG argument in the following steps to reference a repository that
you have access to. You can obtain an account for storing containers at repository sites such as
Quay.io.

a. Build the image:

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMD64 architectures. Docker will
automatically set the environment variable to the value specified by –
platform. With Buildah, the –build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

b. Push the image to a repository:

2. Create your Operator bundle manifest by running the make bundle command, which invokes
several commands, including the Operator SDK generate bundle and bundle validate
subcommands:

Bundle manifests for an Operator describe how to display, create, and manage an application.
The make bundle command creates the following files and directories in your Operator project:

A bundle manifests directory named bundle/manifests that contains a
ClusterServiceVersion object

A bundle metadata directory named bundle/metadata

All custom resource definitions (CRDs) in a config/crd directory

$ make docker-build IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make docker-push IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make bundle IMG=<registry>/<user>/<operator_image_name>:<tag>

OpenShift Container Platform 4.11 Operators

296

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

1

2

A Dockerfile bundle.Dockerfile

These files are then automatically validated by using operator-sdk bundle validate to ensure
the on-disk bundle representation is correct.

3. Build and push your bundle image by running the following commands. OLM consumes
Operator bundles using an index image, which reference one or more bundle images.

a. Build the bundle image. Set BUNDLE_IMG with the details for the registry, user
namespace, and image tag where you intend to push the image:

b. Push the bundle image:

5.8.2. Deploying an Operator with Operator Lifecycle Manager

Operator Lifecycle Manager (OLM) helps you to install, update, and manage the lifecycle of Operators
and their associated services on a Kubernetes cluster. OLM is installed by default on OpenShift
Container Platform and runs as a Kubernetes extension so that you can use the web console and the
OpenShift CLI (oc) for all Operator lifecycle management functions without any additional tools.

The Operator bundle format is the default packaging method for Operator SDK and OLM. You can use
the Operator SDK to quickly run a bundle image on OLM to ensure that it runs properly.

Prerequisites

Operator SDK CLI installed on a development workstation

Operator bundle image built and pushed to a registry

OLM installed on a Kubernetes-based cluster (v1.16.0 or later if you use
apiextensions.k8s.io/v1 CRDs, for example OpenShift Container Platform 4.11)

Logged in to the cluster with oc using an account with cluster-admin permissions

If your Operator is Go-based, your project must be updated to use supported images for
running on OpenShift Container Platform

Procedure

1. Enter the following command to run the Operator on the cluster:

The run bundle command creates a valid file-based catalog and installs the Operator
bundle on your cluster using OLM.

Optional: By default, the command installs the Operator in the currently active project in
your ~/.kube/config file. You can add the -n flag to set a different namespace scope for
the installation.

$ make bundle-build BUNDLE_IMG=<registry>/<user>/<bundle_image_name>:<tag>

$ docker push <registry>/<user>/<bundle_image_name>:<tag>

$ operator-sdk run bundle \ 1
 -n <namespace> \ 2
 <registry>/<user>/<bundle_image_name>:<tag> 3

CHAPTER 5. DEVELOPING OPERATORS

297

3
the installation.
If you do not specify an image, the command uses quay.io/operator-
framework/opm:latest as the default index image. If you specify an image, the command

IMPORTANT

As of OpenShift Container Platform 4.11, the run bundle command supports the
file-based catalog format for Operator catalogs by default. The deprecated
SQLite database format for Operator catalogs continues to be supported;
however, it will be removed in a future release. It is recommended that Operator
authors migrate their workflows to the file-based catalog format.

This command performs the following actions:

Create an index image referencing your bundle image. The index image is opaque and
ephemeral, but accurately reflects how a bundle would be added to a catalog in production.

Create a catalog source that points to your new index image, which enables OperatorHub to
discover your Operator.

Deploy your Operator to your cluster by creating an OperatorGroup, Subscription,
InstallPlan, and all other required resources, including RBAC.

Additional resources

File-based catalogs in Operator Framework packaging format

File-based catalogs in Managing custom catalogs

Bundle format

5.8.3. Publishing a catalog containing a bundled Operator

To install and manage Operators, Operator Lifecycle Manager (OLM) requires that Operator bundles
are listed in an index image, which is referenced by a catalog on the cluster. As an Operator author, you
can use the Operator SDK to create an index containing the bundle for your Operator and all of its
dependencies. This is useful for testing on remote clusters and publishing to container registries.

NOTE

The Operator SDK uses the opm CLI to facilitate index image creation. Experience with
the opm command is not required. For advanced use cases, the opm command can be
used directly instead of the Operator SDK.

Prerequisites

Operator SDK CLI installed on a development workstation

Operator bundle image built and pushed to a registry

OLM installed on a Kubernetes-based cluster (v1.16.0 or later if you use
apiextensions.k8s.io/v1 CRDs, for example OpenShift Container Platform 4.11)

Logged in to the cluster with oc using an account with cluster-admin permissions

OpenShift Container Platform 4.11 Operators

298

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-file-based-catalogs_olm-packaging-format
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-managing-custom-catalogs-fb
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-bundle-format_olm-packaging-format

Procedure

1. Run the following make command in your Operator project directory to build an index image
containing your Operator bundle:

where the CATALOG_IMG argument references a repository that you have access to. You can
obtain an account for storing containers at repository sites such as Quay.io.

2. Push the built index image to a repository:

TIP

You can use Operator SDK make commands together if you would rather perform multiple
actions in sequence at once. For example, if you had not yet built a bundle image for your
Operator project, you can build and push both a bundle image and an index image with the
following syntax:

Alternatively, you can set the IMAGE_TAG_BASE field in your Makefile to an existing
repository:

You can then use the following syntax to build and push images with automatically-generated
names, such as quay.io/example/my-operator-bundle:v0.0.1 for the bundle image and
quay.io/example/my-operator-catalog:v0.0.1 for the index image:

3. Define a CatalogSource object that references the index image you just generated, and then
create the object by using the oc apply command or web console:

Example CatalogSource YAML

$ make catalog-build CATALOG_IMG=<registry>/<user>/<index_image_name>:<tag>

$ make catalog-push CATALOG_IMG=<registry>/<user>/<index_image_name>:<tag>

$ make bundle-build bundle-push catalog-build catalog-push \
 BUNDLE_IMG=<bundle_image_pull_spec> \
 CATALOG_IMG=<index_image_pull_spec>

IMAGE_TAG_BASE=quay.io/example/my-operator

$ make bundle-build bundle-push catalog-build catalog-push

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: cs-memcached
 namespace: default
spec:
 displayName: My Test
 publisher: Company
 sourceType: grpc
 image: quay.io/example/memcached-catalog:v0.0.1 1

CHAPTER 5. DEVELOPING OPERATORS

299

1 Set image to the image pull spec you used previously with the CATALOG_IMG argument.

4. Check the catalog source:

Example output

Verification

1. Install the Operator using your catalog:

a. Define an OperatorGroup object and create it by using the oc apply command or web
console:

Example OperatorGroup YAML

b. Define a Subscription object and create it by using the oc apply command or web console:

Example Subscription YAML

2. Verify the installed Operator is running:

a. Check the Operator group:

 updateStrategy:
 registryPoll:
 interval: 10m

$ oc get catalogsource

NAME DISPLAY TYPE PUBLISHER AGE
cs-memcached My Test grpc Company 4h31m

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-test
 namespace: default
spec:
 targetNamespaces:
 - default

​apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: catalogtest
 namespace: default
spec:
 channel: "alpha"
 installPlanApproval: Manual
 name: catalog
 source: cs-memcached
 sourceNamespace: default
 startingCSV: memcached-operator.v0.0.1

OpenShift Container Platform 4.11 Operators

300

Example output

b. Check the cluster service version (CSV):

Example output

c. Check the pods for the Operator:

Example output

Additional resources

See Managing custom catalogs for details on direct usage of the opm CLI for more advanced
use cases.

5.8.4. Testing an Operator upgrade on Operator Lifecycle Manager

You can quickly test upgrading your Operator by using Operator Lifecycle Manager (OLM) integration in
the Operator SDK, without requiring you to manually manage index images and catalog sources.

The run bundle-upgrade subcommand automates triggering an installed Operator to upgrade to a later
version by specifying a bundle image for the later version.

Prerequisites

Operator installed with OLM either by using the run bundle subcommand or with traditional
OLM installation

A bundle image that represents a later version of the installed Operator

Procedure

1. If your Operator has not already been installed with OLM, install the earlier version either by

$ oc get og

NAME AGE
my-test 4h40m

$ oc get csv

NAME DISPLAY VERSION REPLACES PHASE
memcached-operator.v0.0.1 Test 0.0.1 Succeeded

$ oc get pods

NAME READY STATUS RESTARTS AGE
9098d908802769fbde8bd45255e69710a9f8420a8f3d814abe88b68f8ervdj6 0/1
Completed 0 4h33m
catalog-controller-manager-7fd5b7b987-69s4n 2/2 Running 0
4h32m
cs-memcached-7622r 1/1 Running 0 4h33m

CHAPTER 5. DEVELOPING OPERATORS

301

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-managing-custom-catalogs

1. If your Operator has not already been installed with OLM, install the earlier version either by
using the run bundle subcommand or with traditional OLM installation.

NOTE

If the earlier version of the bundle was installed traditionally using OLM, the
newer bundle that you intend to upgrade to must not exist in the index image
referenced by the catalog source. Otherwise, running the run bundle-upgrade
subcommand will cause the registry pod to fail because the newer bundle is
already referenced by the index that provides the package and cluster service
version (CSV).

For example, you can use the following run bundle subcommand for a Memcached Operator by
specifying the earlier bundle image:

Example output

2. Upgrade the installed Operator by specifying the bundle image for the later Operator version:

Example output

$ operator-sdk run bundle <registry>/<user>/memcached-operator:v0.0.1

INFO[0006] Creating a File-Based Catalog of the bundle "quay.io/demo/memcached-
operator:v0.0.1"
INFO[0008] Generated a valid File-Based Catalog
INFO[0012] Created registry pod: quay-io-demo-memcached-operator-v1-0-1
INFO[0012] Created CatalogSource: memcached-operator-catalog
INFO[0012] OperatorGroup "operator-sdk-og" created
INFO[0012] Created Subscription: memcached-operator-v0-0-1-sub
INFO[0015] Approved InstallPlan install-h9666 for the Subscription: memcached-operator-
v0-0-1-sub
INFO[0015] Waiting for ClusterServiceVersion "my-project/memcached-operator.v0.0.1" to
reach 'Succeeded' phase
INFO[0015] Waiting for ClusterServiceVersion ""my-project/memcached-operator.v0.0.1" to
appear
INFO[0026] Found ClusterServiceVersion "my-project/memcached-operator.v0.0.1" phase:
Pending
INFO[0028] Found ClusterServiceVersion "my-project/memcached-operator.v0.0.1" phase:
Installing
INFO[0059] Found ClusterServiceVersion "my-project/memcached-operator.v0.0.1" phase:
Succeeded
INFO[0059] OLM has successfully installed "memcached-operator.v0.0.1"

$ operator-sdk run bundle-upgrade <registry>/<user>/memcached-operator:v0.0.2

INFO[0002] Found existing subscription with name memcached-operator-v0-0-1-sub and
namespace my-project
INFO[0002] Found existing catalog source with name memcached-operator-catalog and
namespace my-project
INFO[0008] Generated a valid Upgraded File-Based Catalog
INFO[0009] Created registry pod: quay-io-demo-memcached-operator-v0-0-2
INFO[0009] Updated catalog source memcached-operator-catalog with address and

OpenShift Container Platform 4.11 Operators

302

3. Clean up the installed Operators:

Additional resources

Traditional Operator installation with OLM

5.8.5. Controlling Operator compatibility with OpenShift Container Platform
versions

IMPORTANT

Kubernetes periodically deprecates certain APIs that are removed in subsequent
releases. If your Operator is using a deprecated API, it might no longer work after the
OpenShift Container Platform cluster is upgraded to the Kubernetes version where the
API has been removed.

As an Operator author, it is strongly recommended that you review the Deprecated API
Migration Guide in Kubernetes documentation and keep your Operator projects up to
date to avoid using deprecated and removed APIs. Ideally, you should update your
Operator before the release of a future version of OpenShift Container Platform that
would make the Operator incompatible.

When an API is removed from an OpenShift Container Platform version, Operators running on that
cluster version that are still using removed APIs will no longer work properly. As an Operator author, you
should plan to update your Operator projects to accommodate API deprecation and removal to avoid
interruptions for users of your Operator.

TIP

annotations
INFO[0010] Deleted previous registry pod with name "quay-io-demo-memcached-operator-
v0-0-1"
INFO[0041] Approved InstallPlan install-gvcjh for the Subscription: memcached-operator-v0-
0-1-sub
INFO[0042] Waiting for ClusterServiceVersion "my-project/memcached-operator.v0.0.2" to
reach 'Succeeded' phase
INFO[0019] Found ClusterServiceVersion "my-project/memcached-operator.v0.0.2" phase:
Pending
INFO[0042] Found ClusterServiceVersion "my-project/memcached-operator.v0.0.2" phase:
InstallReady
INFO[0043] Found ClusterServiceVersion "my-project/memcached-operator.v0.0.2" phase:
Installing
INFO[0044] Found ClusterServiceVersion "my-project/memcached-operator.v0.0.2" phase:
Succeeded
INFO[0044] Successfully upgraded to "memcached-operator.v0.0.2"

$ operator-sdk cleanup memcached-operator

CHAPTER 5. DEVELOPING OPERATORS

303

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-adding-operators-to-a-cluster
https://kubernetes.io/docs/reference/using-api/deprecation-guide/

TIP

You can check the event alerts of your Operators to find whether there are any warnings about APIs
currently in use. The following alerts fire when they detect an API in use that will be removed in the next
release:

APIRemovedInNextReleaseInUse

APIs that will be removed in the next OpenShift Container Platform release.

APIRemovedInNextEUSReleaseInUse

APIs that will be removed in the next OpenShift Container Platform Extended Update Support
(EUS) release.

If a cluster administrator has installed your Operator, before they upgrade to the next version of
OpenShift Container Platform, they must ensure a version of your Operator is installed that is
compatible with that next cluster version. While it is recommended that you update your Operator
projects to no longer use deprecated or removed APIs, if you still need to publish your Operator bundles
with removed APIs for continued use on earlier versions of OpenShift Container Platform, ensure that
the bundle is configured accordingly.

The following procedure helps prevent administrators from installing versions of your Operator on an
incompatible version of OpenShift Container Platform. These steps also prevent administrators from
upgrading to a newer version of OpenShift Container Platform that is incompatible with the version of
your Operator that is currently installed on their cluster.

This procedure is also useful when you know that the current version of your Operator will not work well,
for any reason, on a specific OpenShift Container Platform version. By defining the cluster versions
where the Operator should be distributed, you ensure that the Operator does not appear in a catalog of
a cluster version which is outside of the allowed range.

IMPORTANT

Operators that use deprecated APIs can adversely impact critical workloads when cluster
administrators upgrade to a future version of OpenShift Container Platform where the
API is no longer supported. If your Operator is using deprecated APIs, you should
configure the following settings in your Operator project as soon as possible.

Prerequisites

An existing Operator project

Procedure

1. If you know that a specific bundle of your Operator is not supported and will not work correctly
on OpenShift Container Platform later than a certain cluster version, configure the maximum
version of OpenShift Container Platform that your Operator is compatible with. In your
Operator project’s cluster service version (CSV), set the olm.maxOpenShiftVersion
annotation to prevent administrators from upgrading their cluster before upgrading the installed
Operator to a compatible version:

IMPORTANT

OpenShift Container Platform 4.11 Operators

304

https://access.redhat.com/support/policy/updates/openshift#ocp4_phases

1

1

IMPORTANT

You must use olm.maxOpenShiftVersion annotation only if your Operator
bundle version cannot work in later versions. Be aware that cluster admins cannot
upgrade their clusters with your solution installed. If you do not provide later
version and a valid upgrade path, cluster admins may uninstall your Operator and
can upgrade the cluster version.

Example CSV with olm.maxOpenShiftVersion annotation

Specify the maximum cluster version of OpenShift Container Platform that your Operator
is compatible with. For example, setting value to 4.9 prevents cluster upgrades to
OpenShift Container Platform versions later than 4.9 when this bundle is installed on a
cluster.

2. If your bundle is intended for distribution in a Red Hat-provided Operator catalog, configure the
compatible versions of OpenShift Container Platform for your Operator by setting the following
properties. This configuration ensures your Operator is only included in catalogs that target
compatible versions of OpenShift Container Platform:

NOTE

This step is only valid when publishing Operators in Red Hat-provided catalogs. If
your bundle is only intended for distribution in a custom catalog, you can skip this
step. For more details, see "Red Hat-provided Operator catalogs".

a. Set the com.redhat.openshift.versions annotation in your project’s
bundle/metadata/annotations.yaml file:

Example bundle/metadata/annotations.yaml file with compatible versions

Set to a range or single version.

b. To prevent your bundle from being carried on to an incompatible version of OpenShift
Container Platform, ensure that the index image is generated with the proper
com.redhat.openshift.versions label in your Operator’s bundle image. For example, if your
project was generated using the Operator SDK, update the bundle.Dockerfile file:

Example bundle.Dockerfile with compatible versions

Set to a range or single version, for example, v4.7-v4.9. This setting defines the cluster

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 annotations:
 "olm.properties": '[{"type": "olm.maxOpenShiftVersion", "value": "<cluster_version>"}]' 1

com.redhat.openshift.versions: "v4.7-v4.9" 1

LABEL com.redhat.openshift.versions="<versions>" 1

CHAPTER 5. DEVELOPING OPERATORS

305

1 Set to a range or single version, for example, v4.7-v4.9. This setting defines the cluster
versions where the Operator should be distributed, and the Operator does not appear
in a catalog of a cluster version which is outside of the range.

You can now bundle a new version of your Operator and publish the updated version to a catalog for
distribution.

Additional resources

Managing OpenShift Versions in the Certified Operator Build Guide

Updating installed Operators

Red Hat-provided Operator catalogs

5.8.6. Additional resources

See Operator Framework packaging format for details on the bundle format.

See Managing custom catalogs for details on adding bundle images to index images by using
the opm command.

See Operator Lifecycle Manager workflow for details on how upgrades work for installed
Operators.

5.9. COMPLYING WITH POD SECURITY ADMISSION

Pod security admission is an implementation of the Kubernetes pod security standards . Pod security
admission restricts the behavior of pods. Pods that do not comply with the pod security admission
defined globally or at the namespace level are not admitted to the cluster and cannot run.

If your Operator project does not require escalated permissions to run, you can ensure your workloads
run in namespaces set to the restricted pod security level. If your Operator project requires escalated
permissions to run, you must set the following security context configurations:

The allowed pod security admission level for the Operator’s namespace

The allowed security context constraints (SCC) for the workload’s service account

For more information, see Understanding and managing pod security admission .

5.9.1. Security context constraint synchronization with pod security standards

OpenShift Container Platform includes Kubernetes pod security admission . Globally, the privileged
profile is enforced, and the restricted profile is used for warnings and audits.

In addition to the global pod security admission control configuration, a controller exists that applies pod
security admission control warn and audit labels to namespaces according to the SCC permissions of
the service accounts that are in a given namespace.

IMPORTANT

OpenShift Container Platform 4.11 Operators

306

https://redhat-connect.gitbook.io/certified-operator-guide/ocp-deployment/operator-metadata/bundle-directory/managing-openshift-versions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-upgrading-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-rh-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-bundle-format_olm-packaging-format
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-workflow
https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#understanding-and-managing-pod-security-admission
https://kubernetes.io/docs/concepts/security/pod-security-admission

IMPORTANT

Namespaces that are defined as part of the cluster payload have pod security admission
synchronization disabled permanently. You can enable pod security admission
synchronization on other namespaces as necessary.

The controller examines ServiceAccount object permissions to use security context constraints in each
namespace. Security context constraints (SCCs) are mapped to pod security profiles based on their
field values; the controller uses these translated profiles. Pod security admission warn and audit labels
are set to the most privileged pod security profile found in the namespace to prevent warnings and
audit logging as pods are created.

Namespace labeling is based on consideration of namespace-local service account privileges.

Applying pods directly might use the SCC privileges of the user who runs the pod. However, user
privileges are not considered during automatic labeling.

5.9.2. Ensuring Operator workloads run in namespaces set to the restricted pod
security level

To ensure your Operator project can run on a wide variety of deployments and environments, configure
the Operator’s workloads to run in namespaces set to the restricted pod security level.

WARNING

You must leave the runAsUser field empty. If your image requires a specific user, it
cannot be run under restricted security context constraints (SCC) and restricted
pod security enforcement.

Procedure

To configure Operator workloads to run in namespaces set to the restricted pod security level,
edit your Operator’s namespace definition similar to the following examples:

IMPORTANT

It is recommended that you set the seccomp profile in your Operator’s
namespace definition. However, setting the seccomp profile is not supported in
OpenShift Container Platform 4.10.

For Operator projects that must run in only OpenShift Container Platform 4.11 and later,
edit your Operator’s namespace definition similar to the following example:

Example config/manager/manager.yaml file



...
spec:
 securityContext:
 seccompProfile:

CHAPTER 5. DEVELOPING OPERATORS

307

1

1

By setting the seccomp profile type to RuntimeDefault, the SCC defaults to the pod
security profile of the namespace.

For Operator projects that must also run in OpenShift Container Platform 4.10, edit your
Operator’s namespace definition similar to the following example:

Example config/manager/manager.yaml file

Leaving the seccomp profile type unset ensures your Operator project can run in
OpenShift Container Platform 4.10.

Additional resources

Managing security context constraints

5.9.3. Managing pod security admission for Operator workloads that require
escalated permissions

If your Operator project requires escalated permissions to run, you must edit your Operator’s cluster
service version (CSV).

Procedure

1. Set the security context configuration to the required permission level in your Operator’s CSV,
similar to the following example:

Example <operator_name>.clusterserviceversion.yaml file with network administrator
privileges

 type: RuntimeDefault 1
 runAsNonRoot: true
 containers:
 - name: <operator_workload_container>
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop:
 - ALL
...

...
spec:
 securityContext: 1
 runAsNonRoot: true
 containers:
 - name: <operator_workload_container>
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop:
 - ALL
...

OpenShift Container Platform 4.11 Operators

308

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#managing-security-context-constraints

2. Set the service account privileges that allow your Operator’s workloads to use the required
security context constraints (SCC), similar to the following example:

Example <operator_name>.clusterserviceversion.yaml file

3. Edit your Operator’s CSV description to explain why your Operator project requires escalated
permissions similar to the following example:

Example <operator_name>.clusterserviceversion.yaml file

5.9.4. Additional resources

Understanding and managing pod security admission

5.10. VALIDATING OPERATORS USING THE SCORECARD TOOL

As an Operator author, you can use the scorecard tool in the Operator SDK to do the following tasks:

Validate that your Operator project is free of syntax errors and packaged correctly

...
containers:
 - name: my-container
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 add:
 - "NET_ADMIN"
...

...
 install:
 spec:
 clusterPermissions:
 - rules:
 - apiGroups:
 - security.openshift.io
 resourceNames:
 - privileged
 resources:
 - securitycontextconstraints
 verbs:
 - use
 serviceAccountName: default
...

...
spec:
 apiservicedefinitions:{}
 ...
description: The <operator_name> requires a privileged pod security admission label set on
the Operator's namespace. The Operator's agents require escalated permissions to restart
the node if the node needs remediation.

CHAPTER 5. DEVELOPING OPERATORS

309

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#understanding-and-managing-pod-security-admission

Review suggestions about ways you can improve your Operator

5.10.1. About the scorecard tool

While the Operator SDK bundle validate subcommand can validate local bundle directories and remote
bundle images for content and structure, you can use the scorecard command to run tests on your
Operator based on a configuration file and test images. These tests are implemented within test images
that are configured and constructed to be executed by the scorecard.

The scorecard assumes it is run with access to a configured Kubernetes cluster, such as OpenShift
Container Platform. The scorecard runs each test within a pod, from which pod logs are aggregated and
test results are sent to the console. The scorecard has built-in basic and Operator Lifecycle Manager
(OLM) tests and also provides a means to execute custom test definitions.

Scorecard workflow

1. Create all resources required by any related custom resources (CRs) and the Operator

2. Create a proxy container in the deployment of the Operator to record calls to the API server
and run tests

3. Examine parameters in the CRs

The scorecard tests make no assumptions as to the state of the Operator being tested. Creating
Operators and CRs for an Operators are beyond the scope of the scorecard itself. Scorecard tests can,
however, create whatever resources they require if the tests are designed for resource creation.

scorecard command syntax

The scorecard requires a positional argument for either the on-disk path to your Operator bundle or the
name of a bundle image.

For further information about the flags, run:

5.10.2. Scorecard configuration

The scorecard tool uses a configuration that allows you to configure internal plugins, as well as several
global configuration options. Tests are driven by a configuration file named config.yaml, which is
generated by the make bundle command, located in your bundle/ directory:

Example scorecard configuration file

$ operator-sdk scorecard <bundle_dir_or_image> [flags]

$ operator-sdk scorecard -h

./bundle

...
└── tests
 └── scorecard
 └── config.yaml

kind: Configuration

OpenShift Container Platform 4.11 Operators

310

The configuration file defines each test that scorecard can execute. The following fields of the
scorecard configuration file define the test as follows:

Configuration field Description

image Test container image name that implements a test

entrypoint Command and arguments that are invoked in the test image to execute a
test

labels Scorecard-defined or custom labels that select which tests to run

5.10.3. Built-in scorecard tests

The scorecard ships with pre-defined tests that are arranged into suites: the basic test suite and the
Operator Lifecycle Manager (OLM) suite.

Table 5.16. Basic test suite

Test Description Short name

Spec Block Exists This test checks the custom resource (CR) created in the
cluster to make sure that all CRs have a spec block.

basic-check-spec-
test

Table 5.17. OLM test suite

Test Description Short name

apiversion: scorecard.operatorframework.io/v1alpha3
metadata:
 name: config
stages:
- parallel: true
 tests:
 - image: quay.io/operator-framework/scorecard-test:v1.22.2
 entrypoint:
 - scorecard-test
 - basic-check-spec
 labels:
 suite: basic
 test: basic-check-spec-test
 - image: quay.io/operator-framework/scorecard-test:v1.22.2
 entrypoint:
 - scorecard-test
 - olm-bundle-validation
 labels:
 suite: olm
 test: olm-bundle-validation-test

CHAPTER 5. DEVELOPING OPERATORS

311

Bundle Validation This test validates the bundle manifests found in the
bundle that is passed into scorecard. If the bundle
contents contain errors, then the test result output
includes the validator log as well as error messages from
the validation library.

olm-bundle-
validation-test

Provided APIs Have
Validation

This test verifies that the custom resource definitions
(CRDs) for the provided CRs contain a validation section
and that there is validation for each spec and status
field detected in the CR.

olm-crds-have-
validation-test

Owned CRDs Have
Resources Listed

This test makes sure that the CRDs for each CR provided
via the cr-manifest option have a resources
subsection in the owned CRDs section of the
ClusterServiceVersion (CSV). If the test detects used
resources that are not listed in the resources section, it
lists them in the suggestions at the end of the test. Users
are required to fill out the resources section after initial
code generation for this test to pass.

olm-crds-have-
resources-test

Spec Fields With
Descriptors

This test verifies that every field in the CRs spec sections
has a corresponding descriptor listed in the CSV.

olm-spec-
descriptors-test

Status Fields With
Descriptors

This test verifies that every field in the CRs status
sections have a corresponding descriptor listed in the
CSV.

olm-status-
descriptors-test

Test Description Short name

5.10.4. Running the scorecard tool

A default set of Kustomize files are generated by the Operator SDK after running the init command.
The default bundle/tests/scorecard/config.yaml file that is generated can be immediately used to run
the scorecard tool against your Operator, or you can modify this file to your test specifications.

Prerequisites

Operator project generated by using the Operator SDK

Procedure

1. Generate or regenerate your bundle manifests and metadata for your Operator:

This command automatically adds scorecard annotations to your bundle metadata, which is used
by the scorecard command to run tests.

2. Run the scorecard against the on-disk path to your Operator bundle or the name of a bundle

$ make bundle

OpenShift Container Platform 4.11 Operators

312

2. Run the scorecard against the on-disk path to your Operator bundle or the name of a bundle
image:

5.10.5. Scorecard output

The --output flag for the scorecard command specifies the scorecard results output format: either text
or json.

Example 5.15. Example JSON output snippet

Example 5.16. Example text output snippet

$ operator-sdk scorecard <bundle_dir_or_image>

{
 "apiVersion": "scorecard.operatorframework.io/v1alpha3",
 "kind": "TestList",
 "items": [
 {
 "kind": "Test",
 "apiVersion": "scorecard.operatorframework.io/v1alpha3",
 "spec": {
 "image": "quay.io/operator-framework/scorecard-test:v1.22.2",
 "entrypoint": [
 "scorecard-test",
 "olm-bundle-validation"
],
 "labels": {
 "suite": "olm",
 "test": "olm-bundle-validation-test"
 }
 },
 "status": {
 "results": [
 {
 "name": "olm-bundle-validation",
 "log": "time=\"2020-06-10T19:02:49Z\" level=debug msg=\"Found manifests directory\"
name=bundle-test\ntime=\"2020-06-10T19:02:49Z\" level=debug msg=\"Found metadata
directory\" name=bundle-test\ntime=\"2020-06-10T19:02:49Z\" level=debug msg=\"Getting
mediaType info from manifests directory\" name=bundle-test\ntime=\"2020-06-10T19:02:49Z\"
level=info msg=\"Found annotations file\" name=bundle-test\ntime=\"2020-06-10T19:02:49Z\"
level=info msg=\"Could not find optional dependencies file\" name=bundle-test\n",
 "state": "pass"
 }
]
 }
 }
]
}

--
Image: quay.io/operator-framework/scorecard-test:v1.22.2
Entrypoint: [scorecard-test olm-bundle-validation]

CHAPTER 5. DEVELOPING OPERATORS

313

NOTE

The output format spec matches the Test type layout.

5.10.6. Selecting tests

Scorecard tests are selected by setting the --selector CLI flag to a set of label strings. If a selector flag is
not supplied, then all the tests within the scorecard configuration file are run.

Tests are run serially with test results being aggregated by the scorecard and written to standard output,
or stdout.

Procedure

1. To select a single test, for example basic-check-spec-test, specify the test by using the --
selector flag:

2. To select a suite of tests, for example olm, specify a label that is used by all of the OLM tests:

3. To select multiple tests, specify the test names by using the selector flag using the following
syntax:

5.10.7. Enabling parallel testing

As an Operator author, you can define separate stages for your tests using the scorecard configuration

Labels:
 "suite":"olm"
 "test":"olm-bundle-validation-test"
Results:
 Name: olm-bundle-validation
 State: pass
 Log:
 time="2020-07-15T03:19:02Z" level=debug msg="Found manifests directory" name=bundle-test
 time="2020-07-15T03:19:02Z" level=debug msg="Found metadata directory" name=bundle-test
 time="2020-07-15T03:19:02Z" level=debug msg="Getting mediaType info from manifests
directory" name=bundle-test
 time="2020-07-15T03:19:02Z" level=info msg="Found annotations file" name=bundle-test
 time="2020-07-15T03:19:02Z" level=info msg="Could not find optional dependencies file"
name=bundle-test

$ operator-sdk scorecard <bundle_dir_or_image> \
 -o text \
 --selector=test=basic-check-spec-test

$ operator-sdk scorecard <bundle_dir_or_image> \
 -o text \
 --selector=suite=olm

$ operator-sdk scorecard <bundle_dir_or_image> \
 -o text \
 --selector='test in (basic-check-spec-test,olm-bundle-validation-test)'

OpenShift Container Platform 4.11 Operators

314

https://pkg.go.dev/github.com/operator-framework/api/pkg/apis/scorecard/v1alpha3#Test

1

As an Operator author, you can define separate stages for your tests using the scorecard configuration
file. Stages run sequentially in the order they are defined in the configuration file. A stage contains a list
of tests and a configurable parallel setting.

By default, or when a stage explicitly sets parallel to false, tests in a stage are run sequentially in the
order they are defined in the configuration file. Running tests one at a time is helpful to guarantee that
no two tests interact and conflict with each other.

However, if tests are designed to be fully isolated, they can be parallelized.

Procedure

To run a set of isolated tests in parallel, include them in the same stage and set parallel to true:

Enables parallel testing

All tests in a parallel stage are executed simultaneously, and scorecard waits for all of them to
finish before proceding to the next stage. This can make your tests run much faster.

5.10.8. Custom scorecard tests

The scorecard tool can run custom tests that follow these mandated conventions:

Tests are implemented within a container image

Tests accept an entrypoint which include a command and arguments

Tests produce v1alpha3 scorecard output in JSON format with no extraneous logging in the
test output

Tests can obtain the bundle contents at a shared mount point of /bundle

Tests can access the Kubernetes API using an in-cluster client connection

apiVersion: scorecard.operatorframework.io/v1alpha3
kind: Configuration
metadata:
 name: config
stages:
- parallel: true 1
 tests:
 - entrypoint:
 - scorecard-test
 - basic-check-spec
 image: quay.io/operator-framework/scorecard-test:v1.22.2
 labels:
 suite: basic
 test: basic-check-spec-test
 - entrypoint:
 - scorecard-test
 - olm-bundle-validation
 image: quay.io/operator-framework/scorecard-test:v1.22.2
 labels:
 suite: olm
 test: olm-bundle-validation-test

CHAPTER 5. DEVELOPING OPERATORS

315

Writing custom tests in other programming languages is possible if the test image follows the above
guidelines.

The following example shows of a custom test image written in Go:

Example 5.17. Example custom scorecard test

// Copyright 2020 The Operator-SDK Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package main

import (
 "encoding/json"
 "fmt"
 "log"
 "os"

 scapiv1alpha3 "github.com/operator-framework/api/pkg/apis/scorecard/v1alpha3"
 apimanifests "github.com/operator-framework/api/pkg/manifests"
)

// This is the custom scorecard test example binary
// As with the Redhat scorecard test image, the bundle that is under
// test is expected to be mounted so that tests can inspect the
// bundle contents as part of their test implementations.
// The actual test is to be run is named and that name is passed
// as an argument to this binary. This argument mechanism allows
// this binary to run various tests all from within a single
// test image.

const PodBundleRoot = "/bundle"

func main() {
 entrypoint := os.Args[1:]
 if len(entrypoint) == 0 {
 log.Fatal("Test name argument is required")
 }

 // Read the pod's untar'd bundle from a well-known path.
 cfg, err := apimanifests.GetBundleFromDir(PodBundleRoot)
 if err != nil {
 log.Fatal(err.Error())
 }

OpenShift Container Platform 4.11 Operators

316

 var result scapiv1alpha3.TestStatus

 // Names of the custom tests which would be passed in the
 // `operator-sdk` command.
 switch entrypoint[0] {
 case CustomTest1Name:
 result = CustomTest1(cfg)
 case CustomTest2Name:
 result = CustomTest2(cfg)
 default:
 result = printValidTests()
 }

 // Convert scapiv1alpha3.TestResult to json.
 prettyJSON, err := json.MarshalIndent(result, "", " ")
 if err != nil {
 log.Fatal("Failed to generate json", err)
 }
 fmt.Printf("%s\n", string(prettyJSON))

}

// printValidTests will print out full list of test names to give a hint to the end user on what the valid
tests are.
func printValidTests() scapiv1alpha3.TestStatus {
 result := scapiv1alpha3.TestResult{}
 result.State = scapiv1alpha3.FailState
 result.Errors = make([]string, 0)
 result.Suggestions = make([]string, 0)

 str := fmt.Sprintf("Valid tests for this image include: %s %s",
 CustomTest1Name,
 CustomTest2Name)
 result.Errors = append(result.Errors, str)
 return scapiv1alpha3.TestStatus{
 Results: []scapiv1alpha3.TestResult{result},
 }
}

const (
 CustomTest1Name = "customtest1"
 CustomTest2Name = "customtest2"
)

// Define any operator specific custom tests here.
// CustomTest1 and CustomTest2 are example test functions. Relevant operator specific
// test logic is to be implemented in similarly.

func CustomTest1(bundle *apimanifests.Bundle) scapiv1alpha3.TestStatus {
 r := scapiv1alpha3.TestResult{}
 r.Name = CustomTest1Name
 r.State = scapiv1alpha3.PassState
 r.Errors = make([]string, 0)
 r.Suggestions = make([]string, 0)
 almExamples := bundle.CSV.GetAnnotations()["alm-examples"]
 if almExamples == "" {

CHAPTER 5. DEVELOPING OPERATORS

317

5.11. VALIDATING OPERATOR BUNDLES

As an Operator author, you can run the bundle validate command in the Operator SDK to validate the
content and format of an Operator bundle. You can run the command on a remote Operator bundle
image or a local Operator bundle directory.

5.11.1. About the bundle validate command

While the Operator SDK scorecard command can run tests on your Operator based on a configuration
file and test images, the bundle validate subcommand can validate local bundle directories and remote
bundle images for content and structure.

bundle validate command syntax

NOTE

The bundle validate command runs automatically when you build your bundle using the
make bundle command.

Bundle images are pulled from a remote registry and built locally before they are validated. Local bundle
directories must contain Operator metadata and manifests. The bundle metadata and manifests must
have a structure similar to the following bundle layout:

Example bundle layout

 fmt.Println("no alm-examples in the bundle CSV")
 }

 return wrapResult(r)
}

func CustomTest2(bundle *apimanifests.Bundle) scapiv1alpha3.TestStatus {
 r := scapiv1alpha3.TestResult{}
 r.Name = CustomTest2Name
 r.State = scapiv1alpha3.PassState
 r.Errors = make([]string, 0)
 r.Suggestions = make([]string, 0)
 almExamples := bundle.CSV.GetAnnotations()["alm-examples"]
 if almExamples == "" {
 fmt.Println("no alm-examples in the bundle CSV")
 }
 return wrapResult(r)
}

func wrapResult(r scapiv1alpha3.TestResult) scapiv1alpha3.TestStatus {
 return scapiv1alpha3.TestStatus{
 Results: []scapiv1alpha3.TestResult{r},
 }
}

$ operator-sdk bundle validate <bundle_dir_or_image> <flags>

OpenShift Container Platform 4.11 Operators

318

Bundle tests pass validation and finish with an exit code of 0 if no errors are detected.

Example output

Tests fail validation and finish with an exit code of 1 if errors are detected.

Example output

Bundle tests that result in warnings can still pass validation with an exit code of 0 as long as no errors are
detected. Tests only fail on errors.

Example output

For further information about the bundle validate subcommand, run:

5.11.2. Built-in bundle validate tests

The Operator SDK ships with pre-defined validators arranged into suites. If you run the bundle validate
command without specifying a validator, the default test runs. The default test verifies that a bundle
adheres to the specifications defined by the Operator Framework community. For more information,
see "Bundle format".

You can run optional validators to test for issues such as OperatorHub compatibility or deprecated
Kubernetes APIs. Optional validators always run in addition to the default test.

bundle validate command syntax for optional test suites

Table 5.18. Addtional bundle validate validators

./bundle
 ├── manifests
 │ ├── cache.my.domain_memcacheds.yaml
 │ └── memcached-operator.clusterserviceversion.yaml
 └── metadata
 └── annotations.yaml

INFO[0000] All validation tests have completed successfully

ERRO[0000] Error: Value cache.example.com/v1alpha1, Kind=Memcached: CRD
"cache.example.com/v1alpha1, Kind=Memcached" is present in bundle "" but not defined in CSV

WARN[0000] Warning: Value : (memcached-operator.v0.0.1) annotations not found
INFO[0000] All validation tests have completed successfully

$ operator-sdk bundle validate -h

$ operator-sdk bundle validate <bundle_dir_or_image>
 --select-optional <test_label>

CHAPTER 5. DEVELOPING OPERATORS

319

Name Description Label

Operator Framework This validator tests an Operator bundle against the entire
suite of validators provided by the Operator Framework.

suite=operatorfra
mework

OperatorHub This validator tests an Operator bundle for compatibility
with OperatorHub.

name=operatorhu
b

Good Practices This validator tests whether an Operator bundle complies
with good practices as defined by the Operator
Framework. It checks for issues, such as an empty CRD
description or unsupported Operator Lifecycle Manager
(OLM) resources.

name=good-
practices

Additional resources

Bundle format

5.11.3. Running the bundle validate command

The default validator runs a test every time you enter the bundle validate command. You can run
optional validators using the --select-optional flag. Optional validators run tests in addition to the
default test.

Prerequisites

Operator project generated by using the Operator SDK

Procedure

1. If you want to run the default validator against a local bundle directory, enter the following
command from your Operator project directory:

2. If you want to run the default validator against a remote Operator bundle image, enter the
following command:

where:

<bundle_registry>

Specifies the registry where the bundle is hosted, such as quay.io/example.

<bundle_image_name>

Specifies the name of the bundle image, such as memcached-operator.

<tag>

$ operator-sdk bundle validate ./bundle

$ operator-sdk bundle validate \
 <bundle_registry>/<bundle_image_name>:<tag>

OpenShift Container Platform 4.11 Operators

320

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-bundle-format_olm-packaging-format

Specifies the tag of the bundle image, such as v1.22.2.

NOTE

If you want to validate an Operator bundle image, you must host your image in
a remote registry. The Operator SDK pulls the image and builds it locally
before running tests. The bundle validate command does not support testing
local bundle images.

3. If you want to run an additional validator against an Operator bundle, enter the following
command:

where:

<bundle_dir_or_image>

Specifies the local bundle directory or remote bundle image, such as
~/projects/memcached or quay.io/example/memcached-operator:v1.22.

<test_label>

Specifies the name of the validator you want to run, such as name=good-practices.

Example output

5.12. HIGH-AVAILABILITY OR SINGLE-NODE CLUSTER DETECTION
AND SUPPORT

An OpenShift Container Platform cluster can be configured in high-availability (HA) mode, which uses
multiple nodes, or in non-HA mode, which uses a single node. A single-node cluster, also known as
single-node OpenShift, is likely to have more conservative resource constraints. Therefore, it is
important that Operators installed on a single-node cluster can adjust accordingly and still run well.

By accessing the cluster high-availability mode API provided in OpenShift Container Platform, Operator
authors can use the Operator SDK to enable their Operator to detect a cluster’s infrastructure topology,
either HA or non-HA mode. Custom Operator logic can be developed that uses the detected cluster
topology to automatically switch the resource requirements, both for the Operator and for any
Operands or workloads it manages, to a profile that best fits the topology.

5.12.1. About the cluster high-availability mode API

OpenShift Container Platform provides a cluster high-availability mode API that can be used by
Operators to help detect infrastructure topology. The Infrastructure API holds cluster-wide information
regarding infrastructure. Operators managed by Operator Lifecycle Manager (OLM) can use the

$ operator-sdk bundle validate \
 <bundle_dir_or_image> \
 --select-optional <test_label>

ERRO[0000] Error: Value apiextensions.k8s.io/v1, Kind=CustomResource: unsupported
media type registry+v1 for bundle object
WARN[0000] Warning: Value k8sevent.v0.0.1: owned CRD
"k8sevents.k8s.k8sevent.com" has an empty description

CHAPTER 5. DEVELOPING OPERATORS

321

Infrastructure API if they need to configure an Operand or managed workload differently based on the
high-availability mode.

In the Infrastructure API, the infrastructureTopology status expresses the expectations for
infrastructure services that do not run on control plane nodes, usually indicated by a node selector for a
role value other than master. The controlPlaneTopology status expresses the expectations for
Operands that normally run on control plane nodes.

The default setting for either status is HighlyAvailable, which represents the behavior Operators have
in multiple node clusters. The SingleReplica setting is used in single-node clusters, also known as
single-node OpenShift, and indicates that Operators should not configure their Operands for high-
availability operation.

The OpenShift Container Platform installer sets the controlPlaneTopology and
infrastructureTopology status fields based on the replica counts for the cluster when it is created,
according to the following rules:

When the control plane replica count is less than 3, the controlPlaneTopology status is set to
SingleReplica. Otherwise, it is set to HighlyAvailable.

When the worker replica count is 0, the control plane nodes are also configured as workers.
Therefore, the infrastructureTopology status will be the same as the controlPlaneTopology
status.

When the worker replica count is 1, the infrastructureTopology is set to SingleReplica.
Otherwise, it is set to HighlyAvailable.

5.12.2. Example API usage in Operator projects

As an Operator author, you can update your Operator project to access the Infrastructure API by using
normal Kubernetes constructs and the controller-runtime library, as shown in the following examples:

controller-runtime library example

Kubernetes constructs example

// Simple query
 nn := types.NamespacedName{
 Name: "cluster",
 }
 infraConfig := &configv1.Infrastructure{}
 err = crClient.Get(context.Background(), nn, infraConfig)
 if err != nil {
 return err
 }
 fmt.Printf("using crclient: %v\n", infraConfig.Status.ControlPlaneTopology)
 fmt.Printf("using crclient: %v\n", infraConfig.Status.InfrastructureTopology)

operatorConfigInformer := configinformer.NewSharedInformerFactoryWithOptions(configClient,
2*time.Second)
 infrastructureLister = operatorConfigInformer.Config().V1().Infrastructures().Lister()
 infraConfig, err := configClient.ConfigV1().Infrastructures().Get(context.Background(), "cluster",
metav1.GetOptions{})
 if err != nil {
 return err

OpenShift Container Platform 4.11 Operators

322

5.13. CONFIGURING BUILT-IN MONITORING WITH PROMETHEUS

This guide describes the built-in monitoring support provided by the Operator SDK using the
Prometheus Operator and details usage for authors of Go-based and Ansible-based Operators.

5.13.1. Prometheus Operator support

Prometheus is an open-source systems monitoring and alerting toolkit. The Prometheus Operator
creates, configures, and manages Prometheus clusters running on Kubernetes-based clusters, such as
OpenShift Container Platform.

Helper functions exist in the Operator SDK by default to automatically set up metrics in any generated
Go-based Operator for use on clusters where the Prometheus Operator is deployed.

5.13.2. Exposing custom metrics for Go-based Operators

As an Operator author, you can publish custom metrics by using the global Prometheus registry from the
controller-runtime/pkg/metrics library.

Prerequisites

Go-based Operator generated using the Operator SDK

Prometheus Operator, which is deployed by default on OpenShift Container Platform clusters

Procedure

1. In your Operator SDK project, uncomment the following line in the
config/default/kustomization.yaml file:

2. Create a custom controller class to publish additional metrics from the Operator. The following
example declares the widgets and widgetFailures collectors as global variables, and then
registers them with the init() function in the controller’s package:

Example 5.18. controllers/memcached_controller_test_metrics.go file

 }
// fmt.Printf("%v\n", infraConfig)
 fmt.Printf("%v\n", infraConfig.Status.ControlPlaneTopology)
 fmt.Printf("%v\n", infraConfig.Status.InfrastructureTopology)

../prometheus

package controllers

import (
 "github.com/prometheus/client_golang/prometheus"
 "sigs.k8s.io/controller-runtime/pkg/metrics"
)

var (
 widgets = prometheus.NewCounter(
 prometheus.CounterOpts{

CHAPTER 5. DEVELOPING OPERATORS

323

https://prometheus.io/

3. Record to these collectors from any part of the reconcile loop in the main controller class, which
determines the business logic for the metric:

Example 5.19. controllers/memcached_controller.go file

4. Build and push the Operator:

5. Deploy the Operator:

6. Create role and role binding definitions to allow the service monitor of the Operator to be
scraped by the Prometheus instance of the OpenShift Container Platform cluster.
Roles must be assigned so that service accounts have the permissions to scrape the metrics of
the namespace:

Example 5.20. config/prometheus/role.yaml role

 Name: "widgets_total",
 Help: "Number of widgets processed",
 },
)
 widgetFailures = prometheus.NewCounter(
 prometheus.CounterOpts{
 Name: "widget_failures_total",
 Help: "Number of failed widgets",
 },
)
)

func init() {
 // Register custom metrics with the global prometheus registry
 metrics.Registry.MustRegister(widgets, widgetFailures)
}

func (r *MemcachedReconciler) Reconcile(ctx context.Context, req ctrl.Request)
(ctrl.Result, error) {
 ...
 ...
 // Add metrics
 widgets.Inc()
 widgetFailures.Inc()

 return ctrl.Result{}, nil
}

$ make docker-build docker-push IMG=<registry>/<user>/<image_name>:<tag>

$ make deploy IMG=<registry>/<user>/<image_name>:<tag>

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: prometheus-k8s-role

OpenShift Container Platform 4.11 Operators

324

Example 5.21. config/prometheus/rolebinding.yaml role binding

7. Apply the roles and role bindings for the deployed Operator:

8. Set the labels for the namespace that you want to scrape, which enables OpenShift cluster
monitoring for that namespace:

Verification

Query and view the metrics in the OpenShift Container Platform web console. You can use the
names that were set in the custom controller class, for example widgets_total and
widget_failures_total.

5.13.3. Exposing custom metrics for Ansible-based Operators

As an Operator author creating Ansible-based Operators, you can use the Operator SDK’s

 namespace: <operator_namespace>
rules:
 - apiGroups:
 - ""
 resources:
 - endpoints
 - pods
 - services
 - nodes
 - secrets
 verbs:
 - get
 - list
 - watch

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: prometheus-k8s-rolebinding
 namespace: memcached-operator-system
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: prometheus-k8s-role
subjects:
 - kind: ServiceAccount
 name: prometheus-k8s
 namespace: openshift-monitoring

$ oc apply -f config/prometheus/role.yaml

$ oc apply -f config/prometheus/rolebinding.yaml

$ oc label namespace <operator_namespace> openshift.io/cluster-monitoring="true"

CHAPTER 5. DEVELOPING OPERATORS

325

As an Operator author creating Ansible-based Operators, you can use the Operator SDK’s
osdk_metrics module to expose custom Operator and Operand metrics, emit events, and support
logging.

Prerequisites

Ansible-based Operator generated using the Operator SDK

Prometheus Operator, which is deployed by default on OpenShift Container Platform clusters

Procedure

1. Generate an Ansible-based Operator. This example uses a testmetrics.com domain:

2. Create a metrics API. This example uses a kind named Testmetrics:

3. Edit the roles/testmetrics/tasks/main.yml file and use the osdk_metrics module to create
custom metrics for your Operator project:

Example 5.22. Example roles/testmetrics/tasks/main.yml file

$ operator-sdk init \
 --plugins=ansible \
 --domain=testmetrics.com

$ operator-sdk create api \
 --group metrics \
 --version v1 \
 --kind Testmetrics \
 --generate-role

tasks file for Memcached
- name: start k8sstatus
 k8s:
 definition:
 kind: Deployment
 apiVersion: apps/v1
 metadata:
 name: '{{ ansible_operator_meta.name }}-memcached'
 namespace: '{{ ansible_operator_meta.namespace }}'
 spec:
 replicas: "{{size}}"
 selector:
 matchLabels:
 app: memcached
 template:
 metadata:
 labels:
 app: memcached
 spec:
 containers:
 - name: memcached
 command:
 - memcached

OpenShift Container Platform 4.11 Operators

326

Verification

1. Run your Operator on a cluster. For example, to use the "run as a deployment" method:

a. Build the Operator image and push it to a registry:

b. Install the Operator on a cluster:

c. Deploy the Operator:

 - -m=64
 - -o
 - modern
 - -v
 image: "docker.io/memcached:1.4.36-alpine"
 ports:
 - containerPort: 11211

- osdk_metric:
 name: my_thing_counter
 description: This metric counts things
 counter: {}

- osdk_metric:
 name: my_counter_metric
 description: Add 3.14 to the counter
 counter:
 increment: yes

- osdk_metric:
 name: my_gauge_metric
 description: Create my gauge and set it to 2.
 gauge:
 set: 2

- osdk_metric:
 name: my_histogram_metric
 description: Observe my histogram
 histogram:
 observe: 2

- osdk_metric:
 name: my_summary_metric
 description: Observe my summary
 summary:
 observe: 2

$ make docker-build docker-push IMG=<registry>/<user>/<image_name>:<tag>

$ make install

$ make deploy IMG=<registry>/<user>/<image_name>:<tag>

CHAPTER 5. DEVELOPING OPERATORS

327

2. Create a Testmetrics custom resource (CR):

a. Define the CR spec:

Example 5.23. Example config/samples/metrics_v1_testmetrics.yaml file

b. Create the object:

3. Get the pod details:

Example output

4. Get the endpoint details:

Example output

5. Request a custom metrics token:

6. Check the metrics values:

a. Check the my_counter_metric value:

Example output

apiVersion: metrics.testmetrics.com/v1
kind: Testmetrics
metadata:
 name: testmetrics-sample
spec:
 size: 1

$ oc create -f config/samples/metrics_v1_testmetrics.yaml

$ oc get pods

NAME READY STATUS RESTARTS AGE
ansiblemetrics-controller-manager-<id> 2/2 Running 0 149m
testmetrics-sample-memcached-<id> 1/1 Running 0 147m

$ oc get ep

NAME ENDPOINTS AGE
ansiblemetrics-controller-manager-metrics-service 10.129.2.70:8443 150m

$ token=`oc create token prometheus-k8s -n openshift-monitoring`

$ oc exec ansiblemetrics-controller-manager-<id> -- curl -k -H "Authoriza
tion: Bearer $token" 'https://10.129.2.70:8443/metrics' | grep my_counter

HELP my_counter_metric Add 3.14 to the counter
TYPE my_counter_metric counter
my_counter_metric 2

OpenShift Container Platform 4.11 Operators

328

b. Check the my_gauge_metric value:

Example output

c. Check the my_histogram_metric and my_summary_metric values:

Example output

5.14. CONFIGURING LEADER ELECTION

During the lifecycle of an Operator, it is possible that there may be more than one instance running at
any given time, for example when rolling out an upgrade for the Operator. In such a scenario, it is
necessary to avoid contention between multiple Operator instances using leader election. This ensures
only one leader instance handles the reconciliation while the other instances are inactive but ready to
take over when the leader steps down.

There are two different leader election implementations to choose from, each with its own trade-off:

Leader-for-life

The leader pod only gives up leadership, using garbage collection, when it is deleted. This
implementation precludes the possibility of two instances mistakenly running as leaders, a state also
known as split brain. However, this method can be subject to a delay in electing a new leader. For
example, when the leader pod is on an unresponsive or partitioned node, the pod-eviction-timeout
dictates long how it takes for the leader pod to be deleted from the node and step down, with a
default of 5m. See the Leader-for-life Go documentation for more.

Leader-with-lease

The leader pod periodically renews the leader lease and gives up leadership when it cannot renew the
lease. This implementation allows for a faster transition to a new leader when the existing leader is
isolated, but there is a possibility of split brain in certain situations. See the Leader-with-lease Go
documentation for more.

By default, the Operator SDK enables the Leader-for-life implementation. Consult the related Go
documentation for both approaches to consider the trade-offs that make sense for your use case.

5.14.1. Operator leader election examples

The following examples illustrate how to use the two leader election options for an Operator, Leader-
for-life and Leader-with-lease.

5.14.1.1. Leader-for-life election

$ oc exec ansiblemetrics-controller-manager-<id> -- curl -k -H "Authoriza
tion: Bearer $token" 'https://10.129.2.70:8443/metrics' | grep gauge

HELP my_gauge_metric Create my gauge and set it to 2.

$ oc exec ansiblemetrics-controller-manager-<id> -- curl -k -H "Authoriza
tion: Bearer $token" 'https://10.129.2.70:8443/metrics' | grep Observe

HELP my_histogram_metric Observe my histogram
HELP my_summary_metric Observe my summary

CHAPTER 5. DEVELOPING OPERATORS

329

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/#options
https://godoc.org/github.com/operator-framework/operator-sdk/pkg/leader
https://github.com/kubernetes/client-go/blob/30b06a83d67458700a5378239df6b96948cb9160/tools/leaderelection/leaderelection.go#L21-L24
https://godoc.org/github.com/kubernetes-sigs/controller-runtime/pkg/leaderelection

With the Leader-for-life election implementation, a call to leader.Become() blocks the Operator as it
retries until it can become the leader by creating the config map named memcached-operator-lock:

If the Operator is not running inside a cluster, leader.Become() simply returns without error to skip the
leader election since it cannot detect the name of the Operator.

5.14.1.2. Leader-with-lease election

The Leader-with-lease implementation can be enabled using the Manager Options for leader election:

When the Operator is not running in a cluster, the Manager returns an error when starting because it
cannot detect the namespace of the Operator to create the config map for leader election. You can
override this namespace by setting the LeaderElectionNamespace option for the Manager.

5.15. OBJECT PRUNING UTILITY FOR GO-BASED OPERATORS

The operator-lib pruning utility lets Go-based Operators clean up, or prune, objects when they are no
longer needed. Operator authors can also use the utility to create custom hooks and strategies.

5.15.1. About the operator-lib pruning utility

Objects, such as jobs or pods, are created as a normal part of the Operator life cycle. If the cluster

import (
 ...
 "github.com/operator-framework/operator-sdk/pkg/leader"
)

func main() {
 ...
 err = leader.Become(context.TODO(), "memcached-operator-lock")
 if err != nil {
 log.Error(err, "Failed to retry for leader lock")
 os.Exit(1)
 }
 ...
}

import (
 ...
 "sigs.k8s.io/controller-runtime/pkg/manager"
)

func main() {
 ...
 opts := manager.Options{
 ...
 LeaderElection: true,
 LeaderElectionID: "memcached-operator-lock"
 }
 mgr, err := manager.New(cfg, opts)
 ...
}

OpenShift Container Platform 4.11 Operators

330

https://godoc.org/github.com/kubernetes-sigs/controller-runtime/pkg/manager#Options

Objects, such as jobs or pods, are created as a normal part of the Operator life cycle. If the cluster
administrator or the Operator does not remove these object, they can stay in the cluster and consume
resources.

Previously, the following options were available for pruning unnecessary objects:

Operator authors had to create a unique pruning solution for their Operators.

Cluster administrators had to clean up objects on their own.

The operator-lib pruning utility removes objects from a Kubernetes cluster for a given namespace. The
library was added in version 0.9.0 of the operator-lib library as part of the Operator Framework.

5.15.2. Pruning utility configuration

The operator-lib pruning utility is written in Go and includes common pruning strategies for Go-based
Operators.

Example configuration

The pruning utility configuration file defines pruning actions by using the following fields:

Configuration field Description

log Logger used to handle library log messages.

DryRun Boolean that determines whether resources should be removed. If set to
true, the utility runs but does not to remove resources.

Clientset Client-go Kubernetes ClientSet used for Kubernetes API calls.

LabelSelector Kubernetes label selector expression used to find resources to prune.

Resources Kubernetes resource kinds. PodKind and JobKind are currently
supported.

cfg = Config{
 log: logf.Log.WithName("prune"),
 DryRun: false,
 Clientset: client,
 LabelSelector: "app=<operator_name>",
 Resources: []schema.GroupVersionKind{
 {Group: "", Version: "", Kind: PodKind},
 },
 Namespaces: []string{"default"},
 Strategy: StrategyConfig{
 Mode: MaxCountStrategy,
 MaxCountSetting: 1,
 },
 PreDeleteHook: myhook,
}

CHAPTER 5. DEVELOPING OPERATORS

331

https://github.com/operator-framework/operator-lib/tree/main/prune
https://github.com/operator-framework/operator-lib/releases/tag/v0.9.0

Namespaces List of Kubernetes namespaces to search for resources.

Strategy Pruning strategy to run.

Strategy.Mode MaxCountStrategy, MaxAgeStrategy, or CustomStrategy are
currently supported.

Strategy.MaxCountSettin
g

Integer value for MaxCountStrategy that specifies how many resources
should remain after the pruning utility run.

Strategy.MaxAgeSetting Go time.Duration string value, such as 48h, that specifies the age of
resources to prune.

Strategy.CustomSettings Go map of values that can be passed into a custom strategy function.

PreDeleteHook Optional: Go function to call before pruning a resource.

CustomStrategy Optional: Go function that implements a custom pruning strategy

Configuration field Description

Pruning execution

You can call the pruning action by running the execute function on the pruning configuration.

You can also call a pruning action by using a cron package or by calling the pruning utility with a
triggering event.

5.16. MIGRATING PACKAGE MANIFEST PROJECTS TO BUNDLE
FORMAT

Support for the legacy package manifest format for Operators is removed in OpenShift Container
Platform 4.8 and later. If you have an Operator project that was initially created using the package
manifest format, you can use the Operator SDK to migrate the project to the bundle format. The bundle
format is the preferred packaging format for Operator Lifecycle Manager (OLM) starting in OpenShift
Container Platform 4.6.

5.16.1. About packaging format migration

The Operator SDK pkgman-to-bundle command helps in migrating Operator Lifecycle Manager (OLM)
package manifests to bundles. The command takes an input package manifest directory and generates
bundles for each of the versions of manifests present in the input directory. You can also then build
bundle images for each of the generated bundles.

For example, consider the following packagemanifests/ directory for a project in the package manifest
format:

err := cfg.Execute(ctx)

OpenShift Container Platform 4.11 Operators

332

Example package manifest format layout

After running the migration, the following bundles are generated in the bundle/ directory:

Example bundle format layout

Based on this generated layout, bundle images for both of the bundles are also built with the following
names:

quay.io/example/etcd:0.0.1

quay.io/example/etcd:0.0.2

Additional resources

Operator Framework packaging format

5.16.2. Migrating a package manifest project to bundle format

packagemanifests/
└── etcd
 ├── 0.0.1
 │ ├── etcdcluster.crd.yaml
 │ └── etcdoperator.clusterserviceversion.yaml
 ├── 0.0.2
 │ ├── etcdbackup.crd.yaml
 │ ├── etcdcluster.crd.yaml
 │ ├── etcdoperator.v0.0.2.clusterserviceversion.yaml
 │ └── etcdrestore.crd.yaml
 └── etcd.package.yaml

bundle/
├── bundle-0.0.1
│ ├── bundle.Dockerfile
│ ├── manifests
│ │ ├── etcdcluster.crd.yaml
│ │ ├── etcdoperator.clusterserviceversion.yaml
│ ├── metadata
│ │ └── annotations.yaml
│ └── tests
│ └── scorecard
│ └── config.yaml
└── bundle-0.0.2
 ├── bundle.Dockerfile
 ├── manifests
 │ ├── etcdbackup.crd.yaml
 │ ├── etcdcluster.crd.yaml
 │ ├── etcdoperator.v0.0.2.clusterserviceversion.yaml
 │ ├── etcdrestore.crd.yaml
 ├── metadata
 │ └── annotations.yaml
 └── tests
 └── scorecard
 └── config.yaml

CHAPTER 5. DEVELOPING OPERATORS

333

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-packaging-format

1

2

3

Operator authors can use the Operator SDK to migrate a package manifest format Operator project to
a bundle format project.

Prerequisites

Operator SDK CLI installed

Operator project initially generated using the Operator SDK in package manifest format

Procedure

Use the Operator SDK to migrate your package manifest project to the bundle format and
generate bundle images:

Specify the location of the package manifests directory for the project, such as
packagemanifests/ or manifests/.

Optional: By default, the generated bundles are written locally to disk to the bundle/
directory. You can use the --output-dir flag to specify an alternative location.

Set the --image-tag-base flag to provide the base of the image name, such as
quay.io/example/etcd, that will be used for the bundles. Provide the name without a tag,
because the tag for the images will be set according to the bundle version. For example,
the full bundle image names are generated in the format <image_name_base>:
<bundle_version>.

Verification

Verify that the generated bundle image runs successfully:

Example output

5.17. OPERATOR SDK CLI REFERENCE

$ operator-sdk pkgman-to-bundle <package_manifests_dir> \ 1
 [--output-dir <directory>] \ 2
 --image-tag-base <image_name_base> 3

$ operator-sdk run bundle <bundle_image_name>:<tag>

INFO[0025] Successfully created registry pod: quay-io-my-etcd-0-9-4
INFO[0025] Created CatalogSource: etcd-catalog
INFO[0026] OperatorGroup "operator-sdk-og" created
INFO[0026] Created Subscription: etcdoperator-v0-9-4-sub
INFO[0031] Approved InstallPlan install-5t58z for the Subscription: etcdoperator-v0-9-4-sub
INFO[0031] Waiting for ClusterServiceVersion "default/etcdoperator.v0.9.4" to reach
'Succeeded' phase
INFO[0032] Waiting for ClusterServiceVersion "default/etcdoperator.v0.9.4" to appear
INFO[0048] Found ClusterServiceVersion "default/etcdoperator.v0.9.4" phase: Pending
INFO[0049] Found ClusterServiceVersion "default/etcdoperator.v0.9.4" phase: Installing
INFO[0064] Found ClusterServiceVersion "default/etcdoperator.v0.9.4" phase: Succeeded
INFO[0065] OLM has successfully installed "etcdoperator.v0.9.4"

OpenShift Container Platform 4.11 Operators

334

The Operator SDK command-line interface (CLI) is a development kit designed to make writing
Operators easier.

Operator SDK CLI syntax

Operator authors with cluster administrator access to a Kubernetes-based cluster (such as OpenShift
Container Platform) can use the Operator SDK CLI to develop their own Operators based on Go,
Ansible, or Helm. Kubebuilder is embedded into the Operator SDK as the scaffolding solution for Go-
based Operators, which means existing Kubebuilder projects can be used as is with the Operator SDK
and continue to work.

5.17.1. bundle

The operator-sdk bundle command manages Operator bundle metadata.

5.17.1.1. validate

The bundle validate subcommand validates an Operator bundle.

Table 5.19. bundle validate flags

Flag Description

-h, --help Help output for the bundle validate subcommand.

--index-builder
(string)

Tool to pull and unpack bundle images. Only used when validating a bundle image.
Available options are docker, which is the default, podman, or none.

--list-optional List all optional validators available. When set, no validators are run.

--select-optional
(string)

Label selector to select optional validators to run. When run with the --list-
optional flag, lists available optional validators.

5.17.2. cleanup

The operator-sdk cleanup command destroys and removes resources that were created for an
Operator that was deployed with the run command.

Table 5.20. cleanup flags

Flag Description

-h, --help Help output for the run bundle subcommand.

--kubeconfig (string) Path to the kubeconfig file to use for CLI requests.

-n, --namespace
(string)

If present, namespace in which to run the CLI request.

$ operator-sdk <command> [<subcommand>] [<argument>] [<flags>]

CHAPTER 5. DEVELOPING OPERATORS

335

https://kubebuilder.io/

--timeout <duration> Time to wait for the command to complete before failing. The default value is
2m0s.

Flag Description

5.17.3. completion

The operator-sdk completion command generates shell completions to make issuing CLI commands
quicker and easier.

Table 5.21. completion subcommands

Subcommand Description

bash Generate bash completions.

zsh Generate zsh completions.

Table 5.22. completion flags

Flag Description

-h, --help Usage help output.

For example:

Example output

5.17.4. create

The operator-sdk create command is used to create, or scaffold, a Kubernetes API.

5.17.4.1. api

The create api subcommand scaffolds a Kubernetes API. The subcommand must be run in a project
that was initialized with the init command.

Table 5.23. create api flags

$ operator-sdk completion bash

bash completion for operator-sdk -*- shell-script -*-
...
ex: ts=4 sw=4 et filetype=sh

OpenShift Container Platform 4.11 Operators

336

Flag Description

-h, --help Help output for the run bundle subcommand.

5.17.5. generate

The operator-sdk generate command invokes a specific generator to generate code or manifests.

5.17.5.1. bundle

The generate bundle subcommand generates a set of bundle manifests, metadata, and a
bundle.Dockerfile file for your Operator project.

NOTE

Typically, you run the generate kustomize manifests subcommand first to generate the
input Kustomize bases that are used by the generate bundle subcommand. However,
you can use the make bundle command in an initialized project to automate running
these commands in sequence.

Table 5.24. generate bundle flags

Flag Description

--channels (string) Comma-separated list of channels to which the bundle belongs. The default value
is alpha.

--crds-dir (string) Root directory for CustomResoureDefinition manifests.

--default-channel
(string)

The default channel for the bundle.

--deploy-dir (string) Root directory for Operator manifests, such as deployments and RBAC. This
directory is different from the directory passed to the --input-dir flag.

-h, --help Help for generate bundle

--input-dir (string) Directory from which to read an existing bundle. This directory is the parent of
your bundle manifests directory and is different from the --deploy-dir
directory.

--kustomize-dir
(string)

Directory containing Kustomize bases and a kustomization.yaml file for bundle
manifests. The default path is config/manifests.

--manifests Generate bundle manifests.

--metadata Generate bundle metadata and Dockerfile.

--output-dir (string) Directory to write the bundle to.

CHAPTER 5. DEVELOPING OPERATORS

337

https://kustomize.io/

--overwrite Overwrite the bundle metadata and Dockerfile if they exist. The default value is
true.

--package (string) Package name for the bundle.

-q, --quiet Run in quiet mode.

--stdout Write bundle manifest to standard out.

--version (string) Semantic version of the Operator in the generated bundle. Set only when creating
a new bundle or upgrading the Operator.

Flag Description

Additional resources

See Bundling an Operator for a full procedure that includes using the make bundle command
to call the generate bundle subcommand.

5.17.5.2. kustomize

The generate kustomize subcommand contains subcommands that generate Kustomize data for the
Operator.

5.17.5.2.1. manifests

The generate kustomize manifests subcommand generates or regenerates Kustomize bases and a
kustomization.yaml file in the config/manifests directory, which are used to build bundle manifests by
other Operator SDK commands. This command interactively asks for UI metadata, an important
component of manifest bases, by default unless a base already exists or you set the --interactive=false
flag.

Table 5.25. generate kustomize manifests flags

Flag Description

--apis-dir (string) Root directory for API type definitions.

-h, --help Help for generate kustomize manifests.

--input-dir (string) Directory containing existing Kustomize files.

--interactive When set to false, if no Kustomize base exists, an interactive command prompt is
presented to accept custom metadata.

--output-dir (string) Directory where to write Kustomize files.

--package (string) Package name.

OpenShift Container Platform 4.11 Operators

338

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-bundle-operator_osdk-working-bundle-images
https://kustomize.io/

-q, --quiet Run in quiet mode.

Flag Description

5.17.6. init

The operator-sdk init command initializes an Operator project and generates, or scaffolds, a default
project directory layout for the given plugin.

This command writes the following files:

Boilerplate license file

PROJECT file with the domain and repository

Makefile to build the project

go.mod file with project dependencies

kustomization.yaml file for customizing manifests

Patch file for customizing images for manager manifests

Patch file for enabling Prometheus metrics

main.go file to run

Table 5.26. init flags

Flag Description

--help, -h Help output for the init command.

--plugins (string) Name and optionally version of the plugin to initialize the project with. Available
plugins are ansible.sdk.operatorframework.io/v1, go.kubebuilder.io/v2,
go.kubebuilder.io/v3, and helm.sdk.operatorframework.io/v1.

--project-version Project version. Available values are 2 and 3-alpha, which is the default.

5.17.7. run

The operator-sdk run command provides options that can launch the Operator in various
environments.

5.17.7.1. bundle

The run bundle subcommand deploys an Operator in the bundle format with Operator Lifecycle
Manager (OLM).

Table 5.27. run bundle flags

CHAPTER 5. DEVELOPING OPERATORS

339

Flag Description

--index-image (string) Index image in which to inject a bundle. The default image is quay.io/operator-
framework/upstream-opm-builder:latest.

--install-mode
<install_mode_value
>

Install mode supported by the cluster service version (CSV) of the Operator, for
example AllNamespaces or SingleNamespace.

--timeout <duration> Install timeout. The default value is 2m0s.

--kubeconfig (string) Path to the kubeconfig file to use for CLI requests.

-n, --namespace
(string)

If present, namespace in which to run the CLI request.

-h, --help Help output for the run bundle subcommand.

Additional resources

See Operator group membership for details on possible install modes.

5.17.7.2. bundle-upgrade

The run bundle-upgrade subcommand upgrades an Operator that was previously installed in the
bundle format with Operator Lifecycle Manager (OLM).

Table 5.28. run bundle-upgrade flags

Flag Description

--timeout <duration> Upgrade timeout. The default value is 2m0s.

--kubeconfig (string) Path to the kubeconfig file to use for CLI requests.

-n, --namespace
(string)

If present, namespace in which to run the CLI request.

-h, --help Help output for the run bundle subcommand.

5.17.8. scorecard

The operator-sdk scorecard command runs the scorecard tool to validate an Operator bundle and
provide suggestions for improvements. The command takes one argument, either a bundle image or
directory containing manifests and metadata. If the argument holds an image tag, the image must be
present remotely.

Table 5.29. scorecard flags

OpenShift Container Platform 4.11 Operators

340

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-operatorgroups-membership_olm-understanding-operatorgroups

Flag Description

-c, --config (string) Path to scorecard configuration file. The default path is
bundle/tests/scorecard/config.yaml.

-h, --help Help output for the scorecard command.

--kubeconfig (string) Path to kubeconfig file.

-L, --list List which tests are available to run.

-n, --namespace
(string)

Namespace in which to run the test images.

-o, --output (string) Output format for results. Available values are text, which is the default, and json.

-l, --selector (string) Label selector to determine which tests are run.

-s, --service-account
(string)

Service account to use for tests. The default value is default.

-x, --skip-cleanup Disable resource cleanup after tests are run.

-w, --wait-time
<duration>

Seconds to wait for tests to complete, for example 35s. The default value is 30s.

Additional resources

See Validating Operators using the scorecard tool for details about running the scorecard tool.

CHAPTER 5. DEVELOPING OPERATORS

341

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#osdk-scorecard

CHAPTER 6. CLUSTER OPERATORS REFERENCE
This reference guide indexes the cluster Operators shipped by Red Hat that serve as the architectural
foundation for OpenShift Container Platform. Cluster Operators are installed by default, unless
otherwise noted, and are managed by the Cluster Version Operator (CVO). For more details on the
control plane architecture, see Operators in OpenShift Container Platform .

Cluster administrators can view cluster Operators in the OpenShift Container Platform web console
from the Administration → Cluster Settings page.

NOTE

Cluster Operators are not managed by Operator Lifecycle Manager (OLM) and
OperatorHub. OLM and OperatorHub are part of the Operator Framework used in
OpenShift Container Platform for installing and running optional add-on Operators.

Some of the following cluster Operators can be disabled prior to installation. For more information see
Viewing the cluster capabilities.

6.1. CLUSTER BAREMETAL OPERATOR

NOTE

The Cluster Baremetal Operator is an optional cluster capability that can be disabled by
cluster administrators during installation. For more information about optional cluster
capabilities, see "Cluster capabilities" in Post-installation configuration.

Purpose
The Cluster Baremetal Operator (CBO) deploys all the components necessary to take a bare-metal
server to a fully functioning worker node ready to run OpenShift Container Platform compute nodes.
The CBO ensures that the metal3 deployment, which consists of the Bare Metal Operator (BMO) and
Ironic containers, runs on one of the control plane nodes within the OpenShift Container Platform
cluster. The CBO also listens for OpenShift Container Platform updates to resources that it watches
and takes appropriate action.

Project
cluster-baremetal-operator

Additional resources

Bare-metal capability

6.2. BARE METAL EVENT RELAY

Purpose
The OpenShift Bare Metal Event Relay manages the life-cycle of the Bare Metal Event Relay. The Bare
Metal Event Relay enables you to configure the types of cluster event that are monitored using Redfish
hardware events.

Configuration objects
You can use this command to edit the configuration after installation: for example, the webhook port.
You can edit configuration objects with:

OpenShift Container Platform 4.11 Operators

342

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/architecture/#operators-overview_control-plane
https://operatorframework.io/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/architecture/#olm-operators_control-plane
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/post-installation_configuration/#viewing_the_cluster_capabilities_cluster-capabilities
https://github.com/openshift/cluster-baremetal-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/post-installation_configuration/#cluster-bare-metal-operator_cluster-capabilities

Project
hw-event-proxy-operator

CRD
The proxy enables applications running on bare-metal clusters to respond quickly to Redfish hardware
changes and failures such as breaches of temperature thresholds, fan failure, disk loss, power outages,
and memory failure, reported using the HardwareEvent CR.

hardwareevents.event.redhat-cne.org:

Scope: Namespaced

CR: HardwareEvent

Validation: Yes

Additional resources

Monitoring Redfish hardware events

6.3. CLOUD CREDENTIAL OPERATOR

Purpose
The Cloud Credential Operator (CCO) manages cloud provider credentials as Kubernetes custom
resource definitions (CRDs). The CCO syncs on CredentialsRequest custom resources (CRs) to allow
OpenShift Container Platform components to request cloud provider credentials with the specific
permissions that are required for the cluster to run.

By setting different values for the credentialsMode parameter in the install-config.yaml file, the CCO
can be configured to operate in several different modes. If no mode is specified, or the
credentialsMode parameter is set to an empty string (""), the CCO operates in its default mode.

Project
openshift-cloud-credential-operator

CRDs

credentialsrequests.cloudcredential.openshift.io

Scope: Namespaced

CR: CredentialsRequest

$ oc -n [namespace] edit cm hw-event-proxy-operator-manager-config

apiVersion: controller-runtime.sigs.k8s.io/v1alpha1
kind: ControllerManagerConfig
health:
 healthProbeBindAddress: :8081
metrics:
 bindAddress: 127.0.0.1:8080
webhook:
 port: 9443
leaderElection:
 leaderElect: true
 resourceName: 6e7a703c.redhat-cne.org

CHAPTER 6. CLUSTER OPERATORS REFERENCE

343

https://github.com/redhat-cne/hw-event-proxy-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/scalability_and_performance/#using-rfhe
https://github.com/openshift/cloud-credential-operator

Validation: Yes

Configuration objects
No configuration required.

Additional resources

CredentialsRequest custom resource

About the Cloud Credential Operator

6.4. CLUSTER AUTHENTICATION OPERATOR

Purpose
The Cluster Authentication Operator installs and maintains the Authentication custom resource in a
cluster and can be viewed with:

Project
cluster-authentication-operator

6.5. CLUSTER AUTOSCALER OPERATOR

Purpose
The Cluster Autoscaler Operator manages deployments of the OpenShift Cluster Autoscaler using the
cluster-api provider.

Project
cluster-autoscaler-operator

CRDs

ClusterAutoscaler: This is a singleton resource, which controls the configuration autoscaler
instance for the cluster. The Operator only responds to the ClusterAutoscaler resource named
default in the managed namespace, the value of the WATCH_NAMESPACE environment
variable.

MachineAutoscaler: This resource targets a node group and manages the annotations to
enable and configure autoscaling for that group, the min and max size. Currently only
MachineSet objects can be targeted.

6.6. CLUSTER CLOUD CONTROLLER MANAGER OPERATOR

Purpose

NOTE

This Operator is only fully supported for Microsoft Azure Stack Hub.

It is available as a Technology Preview for Alibaba Cloud, Amazon Web Services (AWS),
Google Cloud Platform (GCP), IBM Cloud, Microsoft Azure, Red Hat OpenStack
Platform (RHOSP), and VMware vSphere.

$ oc get clusteroperator authentication -o yaml

OpenShift Container Platform 4.11 Operators

344

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/api_reference/#credentialsrequest-cloudcredential-openshift-io-v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#about-cloud-credential-operator
https://github.com/openshift/cluster-authentication-operator
https://github.com/openshift/cluster-autoscaler-operator
https://access.redhat.com/support/offerings/techpreview

The Cluster Cloud Controller Manager Operator manages and updates the cloud controller managers
deployed on top of OpenShift Container Platform. The Operator is based on the Kubebuilder
framework and controller-runtime libraries. It is installed via the Cluster Version Operator (CVO).

It contains the following components:

Operator

Cloud configuration observer

By default, the Operator exposes Prometheus metrics through the metrics service.

Project
cluster-cloud-controller-manager-operator

6.7. CLUSTER CAPI OPERATOR

NOTE

This Operator is available as a Technology Preview for Amazon Web Services (AWS) and
Google Cloud Platform (GCP).

Purpose
The Cluster CAPI Operator maintains the lifecycle of Cluster API resources. This Operator is responsible
for all administrative tasks related to deploying the Cluster API project within an OpenShift Container
Platform cluster.

Project
cluster-capi-operator

CRDs

awsmachines.infrastructure.cluster.x-k8s.io

Scope: Namespaced

CR: awsmachine

Validation: No

gcpmachines.infrastructure.cluster.x-k8s.io

Scope: Namespaced

CR: gcpmachine

Validation: No

awsmachinetemplates.infrastructure.cluster.x-k8s.io

Scope: Namespaced

CR: awsmachinetemplate

Validation: No

CHAPTER 6. CLUSTER OPERATORS REFERENCE

345

https://github.com/openshift/cluster-cloud-controller-manager-operator
https://access.redhat.com/support/offerings/techpreview
https://github.com/openshift/cluster-capi-operator

gcpmachinetemplates.infrastructure.cluster.x-k8s.io

Scope: Namespaced

CR: gcpmachinetemplate

Validation: No

6.8. CLUSTER CONFIG OPERATOR

Purpose
The Cluster Config Operator performs the following tasks related to config.openshift.io:

Creates CRDs.

Renders the initial custom resources.

Handles migrations.

Project
cluster-config-operator

6.9. CLUSTER CSI SNAPSHOT CONTROLLER OPERATOR

Purpose
The Cluster CSI Snapshot Controller Operator installs and maintains the CSI Snapshot Controller. The
CSI Snapshot Controller is responsible for watching the VolumeSnapshot CRD objects and manages
the creation and deletion lifecycle of volume snapshots.

Project
cluster-csi-snapshot-controller-operator

6.10. CLUSTER IMAGE REGISTRY OPERATOR

Purpose
The Cluster Image Registry Operator manages a singleton instance of the OpenShift image registry. It
manages all configuration of the registry, including creating storage.

On initial start up, the Operator creates a default image-registry resource instance based on the
configuration detected in the cluster. This indicates what cloud storage type to use based on the cloud
provider.

If insufficient information is available to define a complete image-registry resource, then an incomplete
resource is defined and the Operator updates the resource status with information about what is
missing.

The Cluster Image Registry Operator runs in the openshift-image-registry namespace and it also
manages the registry instance in that location. All configuration and workload resources for the registry
reside in that namespace.

Project
cluster-image-registry-operator

6.11. CLUSTER MACHINE APPROVER OPERATOR

OpenShift Container Platform 4.11 Operators

346

https://github.com/openshift/cluster-config-operator
https://github.com/openshift/cluster-csi-snapshot-controller-operator
https://github.com/openshift/cluster-image-registry-operator

Purpose
The Cluster Machine Approver Operator automatically approves the CSRs requested for a new worker
node after cluster installation.

NOTE

For the control plane node, the approve-csr service on the bootstrap node automatically
approves all CSRs during the cluster bootstrapping phase.

Project
cluster-machine-approver-operator

6.12. CLUSTER MONITORING OPERATOR

Purpose
The Cluster Monitoring Operator manages and updates the Prometheus-based cluster monitoring stack
deployed on top of OpenShift Container Platform.

Project
openshift-monitoring

CRDs

alertmanagers.monitoring.coreos.com

Scope: Namespaced

CR: alertmanager

Validation: Yes

prometheuses.monitoring.coreos.com

Scope: Namespaced

CR: prometheus

Validation: Yes

prometheusrules.monitoring.coreos.com

Scope: Namespaced

CR: prometheusrule

Validation: Yes

servicemonitors.monitoring.coreos.com

Scope: Namespaced

CR: servicemonitor

Validation: Yes

Configuration objects

CHAPTER 6. CLUSTER OPERATORS REFERENCE

347

https://github.com/openshift/cluster-machine-approver
https://github.com/openshift/cluster-monitoring-operator

6.13. CLUSTER NETWORK OPERATOR

Purpose
The Cluster Network Operator installs and upgrades the networking components on an OpenShift
Container Platform cluster.

6.14. CLUSTER SAMPLES OPERATOR

NOTE

The Cluster Samples Operator is an optional cluster capability that can be disabled by
cluster administrators during installation. For more information about optional cluster
capabilities, see "Cluster capabilities" in Post-installation configuration.

Purpose
The Cluster Samples Operator manages the sample image streams and templates stored in the
openshift namespace.

On initial start up, the Operator creates the default samples configuration resource to initiate the
creation of the image streams and templates. The configuration object is a cluster scoped object with
the key cluster and type configs.samples.

The image streams are the Red Hat Enterprise Linux CoreOS (RHCOS)-based OpenShift Container
Platform image streams pointing to images on registry.redhat.io. Similarly, the templates are those
categorized as OpenShift Container Platform templates.

The Cluster Samples Operator deployment is contained within the openshift-cluster-samples-
operator namespace. On start up, the install pull secret is used by the image stream import logic in the
OpenShift image registry and API server to authenticate with registry.redhat.io. An administrator can
create any additional secrets in the openshift namespace if they change the registry used for the
sample image streams. If created, those secrets contain the content of a config.json for docker
needed to facilitate image import.

The image for the Cluster Samples Operator contains image stream and template definitions for the
associated OpenShift Container Platform release. After the Cluster Samples Operator creates a sample,
it adds an annotation that denotes the OpenShift Container Platform version that it is compatible with.
The Operator uses this annotation to ensure that each sample matches the compatible release version.
Samples outside of its inventory are ignored, as are skipped samples.

Modifications to any samples that are managed by the Operator are allowed as long as the version
annotation is not modified or deleted. However, on an upgrade, as the version annotation will change,
those modifications can get replaced as the sample will be updated with the newer version. The Jenkins
images are part of the image payload from the installation and are tagged into the image streams
directly.

The samples resource includes a finalizer, which cleans up the following upon its deletion:

Operator-managed image streams

Operator-managed templates

Operator-generated configuration resources

$ oc -n openshift-monitoring edit cm cluster-monitoring-config

OpenShift Container Platform 4.11 Operators

348

Cluster status resources

Upon deletion of the samples resource, the Cluster Samples Operator recreates the resource using the
default configuration.

Project
cluster-samples-operator

Additional resources

OpenShift samples capability

6.15. CLUSTER STORAGE OPERATOR

Purpose
The Cluster Storage Operator sets OpenShift Container Platform cluster-wide storage defaults. It
ensures a default storage class exists for OpenShift Container Platform clusters.

Project
cluster-storage-operator

Configuration
No configuration is required.

Notes

The Cluster Storage Operator supports Amazon Web Services (AWS) and Red Hat OpenStack
Platform (RHOSP).

The created storage class can be made non-default by editing its annotation, but the storage
class cannot be deleted as long as the Operator runs.

6.16. CLUSTER VERSION OPERATOR

Purpose
Cluster Operators manage specific areas of cluster functionality. The Cluster Version Operator (CVO)
manages the lifecycle of cluster Operators, many of which are installed in OpenShift Container Platform
by default.

The CVO also checks with the OpenShift Update Service to see the valid updates and update paths
based on current component versions and information in the graph.

Project
cluster-version-operator

Additional resources

Operators in OpenShift Container Platform

6.17. CONSOLE OPERATOR

Purpose
The Console Operator installs and maintains the OpenShift Container Platform web console on a
cluster.

CHAPTER 6. CLUSTER OPERATORS REFERENCE

349

https://github.com/openshift/cluster-samples-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/post-installation_configuration/#cluster-samples-operator_cluster-capabilities
https://github.com/openshift/cluster-storage-operator
https://github.com/openshift/cluster-version-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/architecture/#operators-overview_control-plane

Project
console-operator

6.18. DNS OPERATOR

Purpose
The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods that
enables DNS-based Kubernetes Service discovery in OpenShift Container Platform.

The Operator creates a working default deployment based on the cluster’s configuration.

The default cluster domain is cluster.local.

Configuration of the CoreDNS Corefile or Kubernetes plugin is not yet supported.

The DNS Operator manages CoreDNS as a Kubernetes daemon set exposed as a service with a static IP.
CoreDNS runs on all nodes in the cluster.

Project
cluster-dns-operator

6.19. ETCD CLUSTER OPERATOR

Purpose
The etcd cluster Operator automates etcd cluster scaling, enables etcd monitoring and metrics, and
simplifies disaster recovery procedures.

Project
cluster-etcd-operator

CRDs

etcds.operator.openshift.io

Scope: Cluster

CR: etcd

Validation: Yes

Configuration objects

6.20. INGRESS OPERATOR

Purpose
The Ingress Operator configures and manages the OpenShift Container Platform router.

Project
openshift-ingress-operator

CRDs

clusteringresses.ingress.openshift.io
Scope: Namespaced

$ oc edit etcd cluster

OpenShift Container Platform 4.11 Operators

350

https://github.com/openshift/console-operator
https://github.com/openshift/cluster-dns-operator
https://github.com/openshift/cluster-etcd-operator/
https://github.com/openshift/cluster-ingress-operator

Scope: Namespaced

CR: clusteringresses

Validation: No

Configuration objects

Cluster config

Type Name: clusteringresses.ingress.openshift.io

Instance Name: default

View Command:

Notes
The Ingress Operator sets up the router in the openshift-ingress project and creates the deployment
for the router:

The Ingress Operator uses the clusterNetwork[].cidr from the network/cluster status to determine
what mode (IPv4, IPv6, or dual stack) the managed Ingress Controller (router) should operate in. For
example, if clusterNetwork contains only a v6 cidr, then the Ingress Controller operates in IPv6-only
mode.

In the following example, Ingress Controllers managed by the Ingress Operator will run in IPv4-only
mode because only one cluster network exists and the network is an IPv4 cidr:

Example output

6.21. INSIGHTS OPERATOR

Purpose
The Insights Operator gathers OpenShift Container Platform configuration data and sends it to Red
Hat. The data is used to produce proactive insights recommendations about potential issues that a
cluster might be exposed to. These insights are communicated to cluster administrators through
Insights Advisor on console.redhat.com.

Project
insights-operator

Configuration
No configuration is required.

Notes

$ oc get clusteringresses.ingress.openshift.io -n openshift-ingress-operator default -o
yaml

$ oc get deployment -n openshift-ingress

$ oc get network/cluster -o jsonpath='{.status.clusterNetwork[*]}'

map[cidr:10.128.0.0/14 hostPrefix:23]

CHAPTER 6. CLUSTER OPERATORS REFERENCE

351

https://console.redhat.com/
https://github.com/openshift/insights-operator

Insights Operator compliments OpenShift Container Platform Telemetry.

Additional resources

About remote health monitoring for details about Insights Operator and Telemetry

6.22. KUBERNETES API SERVER OPERATOR

Purpose
The Kubernetes API Server Operator manages and updates the Kubernetes API server deployed on top
of OpenShift Container Platform. The Operator is based on the OpenShift Container Platform library-
go framework and it is installed using the Cluster Version Operator (CVO).

Project
openshift-kube-apiserver-operator

CRDs

kubeapiservers.operator.openshift.io

Scope: Cluster

CR: kubeapiserver

Validation: Yes

Configuration objects

6.23. KUBERNETES CONTROLLER MANAGER OPERATOR

Purpose
The Kubernetes Controller Manager Operator manages and updates the Kubernetes Controller
Manager deployed on top of OpenShift Container Platform. The Operator is based on OpenShift
Container Platform library-go framework and it is installed via the Cluster Version Operator (CVO).

It contains the following components:

Operator

Bootstrap manifest renderer

Installer based on static pods

Configuration observer

By default, the Operator exposes Prometheus metrics through the metrics service.

Project
cluster-kube-controller-manager-operator

6.24. KUBERNETES SCHEDULER OPERATOR

Purpose

$ oc edit kubeapiserver

OpenShift Container Platform 4.11 Operators

352

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/support/#about-remote-health-monitoring
https://github.com/openshift/cluster-kube-apiserver-operator
https://github.com/openshift/cluster-kube-controller-manager-operator

The Kubernetes Scheduler Operator manages and updates the Kubernetes Scheduler deployed on top
of OpenShift Container Platform. The Operator is based on the OpenShift Container Platform library-
go framework and it is installed with the Cluster Version Operator (CVO).

The Kubernetes Scheduler Operator contains the following components:

Operator

Bootstrap manifest renderer

Installer based on static pods

Configuration observer

By default, the Operator exposes Prometheus metrics through the metrics service.

Project
cluster-kube-scheduler-operator

Configuration
The configuration for the Kubernetes Scheduler is the result of merging:

a default configuration.

an observed configuration from the spec schedulers.config.openshift.io.

All of these are sparse configurations, invalidated JSON snippets which are merged to form a valid
configuration at the end.

6.25. KUBERNETES STORAGE VERSION MIGRATOR OPERATOR

Purpose
The Kubernetes Storage Version Migrator Operator detects changes of the default storage version,
creates migration requests for resource types when the storage version changes, and processes
migration requests.

Project
cluster-kube-storage-version-migrator-operator

6.26. MACHINE API OPERATOR

Purpose
The Machine API Operator manages the lifecycle of specific purpose custom resource definitions
(CRD), controllers, and RBAC objects that extend the Kubernetes API. This declares the desired state of
machines in a cluster.

Project
machine-api-operator

CRDs

MachineSet

Machine

MachineHealthCheck

CHAPTER 6. CLUSTER OPERATORS REFERENCE

353

https://github.com/openshift/cluster-kube-scheduler-operator
https://github.com/openshift/cluster-kube-storage-version-migrator-operator
https://github.com/openshift/machine-api-operator

6.27. MACHINE CONFIG OPERATOR

Purpose
The Machine Config Operator manages and applies configuration and updates of the base operating
system and container runtime, including everything between the kernel and kubelet.

There are four components:

machine-config-server: Provides Ignition configuration to new machines joining the cluster.

machine-config-controller: Coordinates the upgrade of machines to the desired
configurations defined by a MachineConfig object. Options are provided to control the
upgrade for sets of machines individually.

machine-config-daemon: Applies new machine configuration during update. Validates and
verifies the state of the machine to the requested machine configuration.

machine-config: Provides a complete source of machine configuration at installation, first start
up, and updates for a machine.

IMPORTANT

Currently, there is no supported way to block or restrict the machine config server
endpoint. The machine config server must be exposed to the network so that newly-
provisioned machines, which have no existing configuration or state, are able to fetch
their configuration. In this model, the root of trust is the certificate signing requests
(CSR) endpoint, which is where the kubelet sends its certificate signing request for
approval to join the cluster. Because of this, machine configs should not be used to
distribute sensitive information, such as secrets and certificates.

To ensure that the machine config server endpoints, ports 22623 and 22624, are secured
in bare metal scenarios, customers must configure proper network policies.

Additional resources

About the OpenShift SDN network plugin .

Project
openshift-machine-config-operator

6.28. MARKETPLACE OPERATOR

NOTE

The Marketplace Operator is an optional cluster capability that can be disabled by cluster
administrators during installation. For more information about optional cluster
capabilities, see "Cluster capabilities" in Post-installation configuration.

Purpose
The Marketplace Operator simplifies the process for bringing off-cluster Operators to your cluster by
using a set of default Operator Lifecycle Manager (OLM) catalogs on the cluster. When the
Marketplace Operator is installed, it creates the openshift-marketplace namespace. OLM ensures
catalog sources installed in the openshift-marketplace namespace are available for all namespaces on
the cluster.

OpenShift Container Platform 4.11 Operators

354

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#about-openshift-sdn
https://github.com/openshift/machine-config-operator

Project
operator-marketplace

Additional resources

Marketplace capability

6.29. NODE TUNING OPERATOR

Purpose
The Node Tuning Operator helps you manage node-level tuning by orchestrating the TuneD daemon
and achieves low latency performance by using the Performance Profile controller. The majority of high-
performance applications require some level of kernel tuning. The Node Tuning Operator provides a
unified management interface to users of node-level sysctls and more flexibility to add custom tuning
specified by user needs.

The Operator manages the containerized TuneD daemon for OpenShift Container Platform as a
Kubernetes daemon set. It ensures the custom tuning specification is passed to all containerized TuneD
daemons running in the cluster in the format that the daemons understand. The daemons run on all
nodes in the cluster, one per node.

Node-level settings applied by the containerized TuneD daemon are rolled back on an event that
triggers a profile change or when the containerized TuneD daemon is terminated gracefully by receiving
and handling a termination signal.

The Node Tuning Operator uses the Performance Profile controller to implement automatic tuning to
achieve low latency performance for OpenShift Container Platform applications. The cluster
administrator configures a performance profile to define node-level settings such as the following:

Updating the kernel to kernel-rt.

Choosing CPUs for housekeeping.

Choosing CPUs for running workloads.

The Node Tuning Operator is part of a standard OpenShift Container Platform installation in version 4.1
and later.

NOTE

In earlier versions of OpenShift Container Platform, the Performance Addon Operator
was used to implement automatic tuning to achieve low latency performance for
OpenShift applications. In OpenShift Container Platform 4.11 and later, this functionality
is part of the Node Tuning Operator.

Project
cluster-node-tuning-operator

Additional resources

Low latency tuning of OCP nodes

6.30. OPENSHIFT API SERVER OPERATOR

CHAPTER 6. CLUSTER OPERATORS REFERENCE

355

https://github.com/operator-framework/operator-marketplace
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/post-installation_configuration/#marketplace-operator_cluster-capabilities
https://github.com/openshift/cluster-node-tuning-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/scalability_and_performance/#cnf-understanding-low-latency_cnf-master

Purpose
The OpenShift API Server Operator installs and maintains the openshift-apiserver on a cluster.

Project
openshift-apiserver-operator

CRDs

openshiftapiservers.operator.openshift.io

Scope: Cluster

CR: openshiftapiserver

Validation: Yes

6.31. OPENSHIFT CONTROLLER MANAGER OPERATOR

Purpose
The OpenShift Controller Manager Operator installs and maintains the OpenShiftControllerManager
custom resource in a cluster and can be viewed with:

The custom resource definitino (CRD) openshiftcontrollermanagers.operator.openshift.io can be
viewed in a cluster with:

Project
cluster-openshift-controller-manager-operator

6.32. OPERATOR LIFECYCLE MANAGER OPERATORS

Purpose
Operator Lifecycle Manager (OLM) helps users install, update, and manage the lifecycle of Kubernetes
native applications (Operators) and their associated services running across their OpenShift Container
Platform clusters. It is part of the Operator Framework, an open source toolkit designed to manage
Operators in an effective, automated, and scalable way.

Figure 6.1. Operator Lifecycle Manager workflow

OLM runs by default in OpenShift Container Platform 4.11, which aids cluster administrators in installing,

$ oc get clusteroperator openshift-controller-manager -o yaml

$ oc get crd openshiftcontrollermanagers.operator.openshift.io -o yaml

OpenShift Container Platform 4.11 Operators

356

https://github.com/openshift/cluster-openshift-apiserver-operator
https://github.com/openshift/cluster-openshift-controller-manager-operator
https://operatorframework.io/

OLM runs by default in OpenShift Container Platform 4.11, which aids cluster administrators in installing,
upgrading, and granting access to Operators running on their cluster. The OpenShift Container
Platform web console provides management screens for cluster administrators to install Operators, as
well as grant specific projects access to use the catalog of Operators available on the cluster.

For developers, a self-service experience allows provisioning and configuring instances of databases,
monitoring, and big data services without having to be subject matter experts, because the Operator
has that knowledge baked into it.

CRDs
Operator Lifecycle Manager (OLM) is composed of two Operators: the OLM Operator and the Catalog
Operator.

Each of these Operators is responsible for managing the custom resource definitions (CRDs) that are
the basis for the OLM framework:

Table 6.1. CRDs managed by OLM and Catalog Operators

Resource Shor
t
nam
e

Own
er

Description

ClusterServic
eVersion
(CSV)

csv OLM Application metadata: name, version, icon, required resources,
installation, and so on.

InstallPlan ip Catal
og

Calculated list of resources to be created to automatically install or
upgrade a CSV.

CatalogSour
ce

cats
rc

Catal
og

A repository of CSVs, CRDs, and packages that define an application.

Subscription sub Catal
og

Used to keep CSVs up to date by tracking a channel in a package.

OperatorGro
up

og OLM Configures all Operators deployed in the same namespace as the
OperatorGroup object to watch for their custom resource (CR) in a list
of namespaces or cluster-wide.

Each of these Operators is also responsible for creating the following resources:

Table 6.2. Resources created by OLM and Catalog Operators

Resource Owner

Deployments OLM

ServiceAccounts

(Cluster)Roles

CHAPTER 6. CLUSTER OPERATORS REFERENCE

357

(Cluster)RoleBindings

CustomResourceDefinitions (CRDs) Catalog

ClusterServiceVersions

Resource Owner

OLM Operator
The OLM Operator is responsible for deploying applications defined by CSV resources after the
required resources specified in the CSV are present in the cluster.

The OLM Operator is not concerned with the creation of the required resources; you can choose to
manually create these resources using the CLI or using the Catalog Operator. This separation of concern
allows users incremental buy-in in terms of how much of the OLM framework they choose to leverage
for their application.

The OLM Operator uses the following workflow:

1. Watch for cluster service versions (CSVs) in a namespace and check that requirements are met.

2. If requirements are met, run the install strategy for the CSV.

NOTE

A CSV must be an active member of an Operator group for the install strategy to
run.

Catalog Operator
The Catalog Operator is responsible for resolving and installing cluster service versions (CSVs) and the
required resources they specify. It is also responsible for watching catalog sources for updates to
packages in channels and upgrading them, automatically if desired, to the latest available versions.

To track a package in a channel, you can create a Subscription object configuring the desired package,
channel, and the CatalogSource object you want to use for pulling updates. When updates are found,
an appropriate InstallPlan object is written into the namespace on behalf of the user.

The Catalog Operator uses the following workflow:

1. Connect to each catalog source in the cluster.

2. Watch for unresolved install plans created by a user, and if found:

a. Find the CSV matching the name requested and add the CSV as a resolved resource.

b. For each managed or required CRD, add the CRD as a resolved resource.

c. For each required CRD, find the CSV that manages it.

3. Watch for resolved install plans and create all of the discovered resources for it, if approved by a
user or automatically.

4. Watch for catalog sources and subscriptions and create install plans based on them.

OpenShift Container Platform 4.11 Operators

358

Catalog Registry
The Catalog Registry stores CSVs and CRDs for creation in a cluster and stores metadata about
packages and channels.

A package manifest is an entry in the Catalog Registry that associates a package identity with sets of
CSVs. Within a package, channels point to a particular CSV. Because CSVs explicitly reference the CSV
that they replace, a package manifest provides the Catalog Operator with all of the information that is
required to update a CSV to the latest version in a channel, stepping through each intermediate version.

Additional resources

Understanding Operator Lifecycle Manager (OLM)

6.33. OPENSHIFT SERVICE CA OPERATOR

Purpose
The OpenShift Service CA Operator mints and manages serving certificates for Kubernetes services.

Project
openshift-service-ca-operator

6.34. VSPHERE PROBLEM DETECTOR OPERATOR

Purpose
The vSphere Problem Detector Operator checks clusters that are deployed on vSphere for common
installation and misconfiguration issues that are related to storage.

NOTE

The vSphere Problem Detector Operator is only started by the Cluster Storage Operator
when the Cluster Storage Operator detects that the cluster is deployed on vSphere.

Configuration
No configuration is required.

Notes

The Operator supports OpenShift Container Platform installations on vSphere.

The Operator uses the vsphere-cloud-credentials to communicate with vSphere.

The Operator performs checks that are related to storage.

Additional resources

Using the vSphere Problem Detector Operator

CHAPTER 6. CLUSTER OPERATORS REFERENCE

359

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-understanding-olm
https://github.com/openshift/service-ca-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#using-vsphere-problem-detector-operator

	Table of Contents
	CHAPTER 1. OPERATORS OVERVIEW
	1.1. FOR DEVELOPERS
	1.2. FOR ADMINISTRATORS
	1.3. NEXT STEPS

	CHAPTER 2. UNDERSTANDING OPERATORS
	2.1. WHAT ARE OPERATORS?
	2.1.1. Why use Operators?
	2.1.2. Operator Framework
	2.1.3. Operator maturity model

	2.2. OPERATOR FRAMEWORK PACKAGING FORMAT
	2.2.1. Bundle format
	2.2.1.1. Manifests
	2.2.1.2. Annotations
	2.2.1.3. Dependencies
	2.2.1.4. About the opm CLI

	2.2.2. File-based catalogs
	2.2.2.1. Directory structure
	2.2.2.2. Schemas
	2.2.2.3. Properties
	2.2.2.4. Example catalog
	2.2.2.5. Guidelines
	2.2.2.6. CLI usage
	2.2.2.7. Automation

	2.3. OPERATOR FRAMEWORK GLOSSARY OF COMMON TERMS
	2.3.1. Common Operator Framework terms
	2.3.1.1. Bundle
	2.3.1.2. Bundle image
	2.3.1.3. Catalog source
	2.3.1.4. Channel
	2.3.1.5. Channel head
	2.3.1.6. Cluster service version
	2.3.1.7. Dependency
	2.3.1.8. Index image
	2.3.1.9. Install plan
	2.3.1.10. Multitenancy
	2.3.1.11. Operator group
	2.3.1.12. Package
	2.3.1.13. Registry
	2.3.1.14. Subscription
	2.3.1.15. Update graph

	2.4. OPERATOR LIFECYCLE MANAGER (OLM)
	2.4.1. Operator Lifecycle Manager concepts and resources
	2.4.1.1. What is Operator Lifecycle Manager?
	2.4.1.2. OLM resources

	2.4.2. Operator Lifecycle Manager architecture
	2.4.2.1. Component responsibilities
	2.4.2.2. OLM Operator
	2.4.2.3. Catalog Operator
	2.4.2.4. Catalog Registry

	2.4.3. Operator Lifecycle Manager workflow
	2.4.3.1. Operator installation and upgrade workflow in OLM

	2.4.4. Operator Lifecycle Manager dependency resolution
	2.4.4.1. About dependency resolution
	2.4.4.2. Operator properties
	2.4.4.3. Operator dependencies
	2.4.4.4. Generic constraints
	2.4.4.5. Dependency preferences
	2.4.4.6. CRD upgrades
	2.4.4.7. Dependency best practices
	2.4.4.8. Dependency caveats
	2.4.4.9. Example dependency resolution scenarios

	2.4.5. Operator groups
	2.4.5.1. About Operator groups
	2.4.5.2. Operator group membership
	2.4.5.3. Target namespace selection
	2.4.5.4. Operator group CSV annotations
	2.4.5.5. Provided APIs annotation
	2.4.5.6. Role-based access control
	2.4.5.7. Copied CSVs
	2.4.5.8. Static Operator groups
	2.4.5.9. Operator group intersection
	2.4.5.10. Limitations for multitenant Operator management
	2.4.5.11. Troubleshooting Operator groups

	2.4.6. Multitenancy and Operator colocation
	2.4.6.1. Colocation of Operators in a namespace

	2.4.7. Operator conditions
	2.4.7.1. About Operator conditions
	2.4.7.2. Supported conditions
	2.4.7.3. Additional resources

	2.4.8. Operator Lifecycle Manager metrics
	2.4.8.1. Exposed metrics

	2.4.9. Webhook management in Operator Lifecycle Manager
	2.4.9.1. Additional resources

	2.5. UNDERSTANDING OPERATORHUB
	2.5.1. About OperatorHub
	2.5.2. OperatorHub architecture
	2.5.2.1. OperatorHub custom resource

	2.5.3. Additional resources

	2.6. RED HAT-PROVIDED OPERATOR CATALOGS
	2.6.1. About Operator catalogs
	2.6.2. About Red Hat-provided Operator catalogs

	2.7. OPERATORS IN MULTITENANT CLUSTERS
	2.7.1. Default Operator install modes and behavior
	2.7.2. Recommended solution for multitenant clusters
	2.7.3. Operator colocation and Operator groups

	2.8. CRDS
	2.8.1. Extending the Kubernetes API with custom resource definitions
	2.8.1.1. Custom resource definitions
	2.8.1.2. Creating a custom resource definition
	2.8.1.3. Creating cluster roles for custom resource definitions
	2.8.1.4. Creating custom resources from a file
	2.8.1.5. Inspecting custom resources

	2.8.2. Managing resources from custom resource definitions
	2.8.2.1. Custom resource definitions
	2.8.2.2. Creating custom resources from a file
	2.8.2.3. Inspecting custom resources

	CHAPTER 3. USER TASKS
	3.1. CREATING APPLICATIONS FROM INSTALLED OPERATORS
	3.1.1. Creating an etcd cluster using an Operator

	3.2. INSTALLING OPERATORS IN YOUR NAMESPACE
	3.2.1. Prerequisites
	3.2.2. About Operator installation with OperatorHub
	3.2.3. Installing from OperatorHub using the web console
	3.2.4. Installing from OperatorHub using the CLI
	3.2.5. Installing a specific version of an Operator

	CHAPTER 4. ADMINISTRATOR TASKS
	4.1. ADDING OPERATORS TO A CLUSTER
	4.1.1. About Operator installation with OperatorHub
	4.1.2. Installing from OperatorHub using the web console
	4.1.3. Installing from OperatorHub using the CLI
	4.1.4. Installing a specific version of an Operator
	4.1.5. Preparing for multiple instances of an Operator for multitenant clusters
	4.1.6. Installing global Operators in custom namespaces
	4.1.7. Pod placement of Operator workloads

	4.2. UPDATING INSTALLED OPERATORS
	4.2.1. Preparing for an Operator update
	4.2.2. Changing the update channel for an Operator
	4.2.3. Manually approving a pending Operator update

	4.3. DELETING OPERATORS FROM A CLUSTER
	4.3.1. Deleting Operators from a cluster using the web console
	4.3.2. Deleting Operators from a cluster using the CLI
	4.3.3. Refreshing failing subscriptions

	4.4. CONFIGURING OPERATOR LIFECYCLE MANAGER FEATURES
	4.4.1. Disabling copied CSVs

	4.5. CONFIGURING PROXY SUPPORT IN OPERATOR LIFECYCLE MANAGER
	4.5.1. Overriding proxy settings of an Operator
	4.5.2. Injecting a custom CA certificate

	4.6. VIEWING OPERATOR STATUS
	4.6.1. Operator subscription condition types
	4.6.2. Viewing Operator subscription status by using the CLI
	4.6.3. Viewing Operator catalog source status by using the CLI

	4.7. MANAGING OPERATOR CONDITIONS
	4.7.1. Overriding Operator conditions
	4.7.2. Updating your Operator to use Operator conditions
	4.7.2.1. Setting defaults

	4.7.3. Additional resources

	4.8. ALLOWING NON-CLUSTER ADMINISTRATORS TO INSTALL OPERATORS
	4.8.1. Understanding Operator installation policy
	4.8.1.1. Installation scenarios
	4.8.1.2. Installation workflow

	4.8.2. Scoping Operator installations
	4.8.2.1. Fine-grained permissions

	4.8.3. Operator catalog access control
	4.8.4. Troubleshooting permission failures

	4.9. MANAGING CUSTOM CATALOGS
	4.9.1. Prerequisites
	4.9.2. File-based catalogs
	4.9.2.1. Creating a file-based catalog image
	4.9.2.2. Updating or filtering a file-based catalog image

	4.9.3. SQLite-based catalogs
	4.9.3.1. Creating a SQLite-based index image
	4.9.3.2. Updating a SQLite-based index image
	4.9.3.3. Filtering a SQLite-based index image

	4.9.4. Adding a catalog source to a cluster
	4.9.5. Accessing images for Operators from private registries
	4.9.6. Disabling the default OperatorHub sources
	4.9.7. Removing custom catalogs

	4.10. USING OPERATOR LIFECYCLE MANAGER ON RESTRICTED NETWORKS
	4.10.1. Prerequisites
	4.10.2. Disabling the default OperatorHub sources
	4.10.3. Mirroring an Operator catalog
	4.10.4. Adding a catalog source to a cluster

	4.11. CATALOG SOURCE POD SCHEDULING
	4.11.1. Overriding the node selector for catalog source pods
	4.11.2. Overriding the priority class name for catalog source pods
	4.11.3. Overriding tolerations for catalog source pods

	CHAPTER 5. DEVELOPING OPERATORS
	5.1. ABOUT THE OPERATOR SDK
	5.1.1. What are Operators?
	5.1.2. Development workflow
	5.1.3. Additional resources

	5.2. INSTALLING THE OPERATOR SDK CLI
	5.2.1. Installing the Operator SDK CLI

	5.3. GO-BASED OPERATORS
	5.3.1. Getting started with Operator SDK for Go-based Operators
	5.3.1.1. Prerequisites
	5.3.1.2. Creating and deploying Go-based Operators
	5.3.1.3. Next steps

	5.3.2. Operator SDK tutorial for Go-based Operators
	5.3.2.1. Prerequisites
	5.3.2.2. Creating a project
	5.3.2.3. Creating an API and controller
	5.3.2.4. Implementing the controller
	5.3.2.5. Enabling proxy support
	5.3.2.6. Running the Operator
	5.3.2.7. Creating a custom resource
	5.3.2.8. Additional resources

	5.3.3. Project layout for Go-based Operators
	5.3.3.1. Go-based project layout

	5.3.4. Updating Go-based Operator projects for newer Operator SDK versions
	5.3.4.1. Updating Go-based Operator projects for Operator SDK 1.22.2
	5.3.4.2. Additional resources

	5.4. ANSIBLE-BASED OPERATORS
	5.4.1. Getting started with Operator SDK for Ansible-based Operators
	5.4.1.1. Prerequisites
	5.4.1.2. Creating and deploying Ansible-based Operators
	5.4.1.3. Next steps

	5.4.2. Operator SDK tutorial for Ansible-based Operators
	5.4.2.1. Prerequisites
	5.4.2.2. Creating a project
	5.4.2.3. Creating an API
	5.4.2.4. Modifying the manager
	5.4.2.5. Enabling proxy support
	5.4.2.6. Running the Operator
	5.4.2.7. Creating a custom resource
	5.4.2.8. Additional resources

	5.4.3. Project layout for Ansible-based Operators
	5.4.3.1. Ansible-based project layout

	5.4.4. Updating projects for newer Operator SDK versions
	5.4.4.1. Updating Ansible-based Operator projects for Operator SDK 1.22.2
	5.4.4.2. Additional resources

	5.4.5. Ansible support in Operator SDK
	5.4.5.1. Custom resource files
	5.4.5.2. watches.yaml file
	5.4.5.3. Extra variables sent to Ansible
	5.4.5.4. Ansible Runner directory

	5.4.6. Kubernetes Collection for Ansible
	5.4.6.1. Installing the Kubernetes Collection for Ansible
	5.4.6.2. Testing the Kubernetes Collection locally
	5.4.6.3. Next steps

	5.4.7. Using Ansible inside an Operator
	5.4.7.1. Custom resource files
	5.4.7.2. Testing an Ansible-based Operator locally
	5.4.7.3. Testing an Ansible-based Operator on the cluster
	5.4.7.4. Ansible logs

	5.4.8. Custom resource status management
	5.4.8.1. About custom resource status in Ansible-based Operators
	5.4.8.2. Tracking custom resource status manually

	5.5. HELM-BASED OPERATORS
	5.5.1. Getting started with Operator SDK for Helm-based Operators
	5.5.1.1. Prerequisites
	5.5.1.2. Creating and deploying Helm-based Operators
	5.5.1.3. Next steps

	5.5.2. Operator SDK tutorial for Helm-based Operators
	5.5.2.1. Prerequisites
	5.5.2.2. Creating a project
	5.5.2.3. Understanding the Operator logic
	5.5.2.4. Enabling proxy support
	5.5.2.5. Running the Operator
	5.5.2.6. Creating a custom resource
	5.5.2.7. Additional resources

	5.5.3. Project layout for Helm-based Operators
	5.5.3.1. Helm-based project layout

	5.5.4. Updating Helm-based projects for newer Operator SDK versions
	5.5.4.1. Updating Helm-based Operator projects for Operator SDK 1.22.2
	5.5.4.2. Additional resources

	5.5.5. Helm support in Operator SDK
	5.5.5.1. Helm charts

	5.5.6. Operator SDK tutorial for Hybrid Helm Operators
	5.5.6.1. Prerequisites
	5.5.6.2. Creating a project
	5.5.6.3. Creating a Helm API
	5.5.6.4. Creating a Go API
	5.5.6.5. Running locally outside the cluster
	5.5.6.6. Running as a deployment on the cluster
	5.5.6.7. Creating custom resources
	5.5.6.8. Project layout

	5.5.7. Updating Hybrid Helm-based projects for newer Operator SDK versions
	5.5.7.1. Updating Hybrid Helm-based Operator projects for Operator SDK 1.22.2
	5.5.7.2. Additional resources

	5.6. JAVA-BASED OPERATORS
	5.6.1. Getting started with Operator SDK for Java-based Operators
	5.6.1.1. Prerequisites
	5.6.1.2. Creating and deploying Java-based Operators
	5.6.1.3. Next steps

	5.6.2. Operator SDK tutorial for Java-based Operators
	5.6.2.1. Prerequisites
	5.6.2.2. Creating a project
	5.6.2.3. Creating an API and controller
	5.6.2.4. Implementing the controller
	5.6.2.5. Running the Operator
	5.6.2.6. Additional resources

	5.6.3. Project layout for Java-based Operators
	5.6.3.1. Java-based project layout

	5.7. DEFINING CLUSTER SERVICE VERSIONS (CSVS)
	5.7.1. How CSV generation works
	5.7.1.1. Generated files and resources
	5.7.1.2. Version management

	5.7.2. Manually-defined CSV fields
	5.7.2.1. Operator metadata annotations

	5.7.3. Enabling your Operator for restricted network environments
	5.7.4. Enabling your Operator for multiple architectures and operating systems
	5.7.4.1. Architecture and operating system support for Operators

	5.7.5. Setting a suggested namespace
	5.7.6. Enabling Operator conditions
	5.7.7. Defining webhooks
	5.7.7.1. Webhook considerations for OLM

	5.7.8. Understanding your custom resource definitions (CRDs)
	5.7.8.1. Owned CRDs
	5.7.8.2. Required CRDs
	5.7.8.3. CRD upgrades
	5.7.8.4. CRD templates
	5.7.8.5. Hiding internal objects
	5.7.8.6. Initializing required custom resources

	5.7.9. Understanding your API services
	5.7.9.1. Owned API services
	5.7.9.2. Required API services

	5.8. WORKING WITH BUNDLE IMAGES
	5.8.1. Bundling an Operator
	5.8.2. Deploying an Operator with Operator Lifecycle Manager
	5.8.3. Publishing a catalog containing a bundled Operator
	5.8.4. Testing an Operator upgrade on Operator Lifecycle Manager
	5.8.5. Controlling Operator compatibility with OpenShift Container Platform versions
	5.8.6. Additional resources

	5.9. COMPLYING WITH POD SECURITY ADMISSION
	5.9.1. Security context constraint synchronization with pod security standards
	5.9.2. Ensuring Operator workloads run in namespaces set to the restricted pod security level
	5.9.3. Managing pod security admission for Operator workloads that require escalated permissions
	5.9.4. Additional resources

	5.10. VALIDATING OPERATORS USING THE SCORECARD TOOL
	5.10.1. About the scorecard tool
	5.10.2. Scorecard configuration
	5.10.3. Built-in scorecard tests
	5.10.4. Running the scorecard tool
	5.10.5. Scorecard output
	5.10.6. Selecting tests
	5.10.7. Enabling parallel testing
	5.10.8. Custom scorecard tests

	5.11. VALIDATING OPERATOR BUNDLES
	5.11.1. About the bundle validate command
	5.11.2. Built-in bundle validate tests
	5.11.3. Running the bundle validate command

	5.12. HIGH-AVAILABILITY OR SINGLE-NODE CLUSTER DETECTION AND SUPPORT
	5.12.1. About the cluster high-availability mode API
	5.12.2. Example API usage in Operator projects

	5.13. CONFIGURING BUILT-IN MONITORING WITH PROMETHEUS
	5.13.1. Prometheus Operator support
	5.13.2. Exposing custom metrics for Go-based Operators
	5.13.3. Exposing custom metrics for Ansible-based Operators

	5.14. CONFIGURING LEADER ELECTION
	5.14.1. Operator leader election examples
	5.14.1.1. Leader-for-life election
	5.14.1.2. Leader-with-lease election

	5.15. OBJECT PRUNING UTILITY FOR GO-BASED OPERATORS
	5.15.1. About the operator-lib pruning utility
	5.15.2. Pruning utility configuration

	5.16. MIGRATING PACKAGE MANIFEST PROJECTS TO BUNDLE FORMAT
	5.16.1. About packaging format migration
	5.16.2. Migrating a package manifest project to bundle format

	5.17. OPERATOR SDK CLI REFERENCE
	5.17.1. bundle
	5.17.1.1. validate

	5.17.2. cleanup
	5.17.3. completion
	5.17.4. create
	5.17.4.1. api

	5.17.5. generate
	5.17.5.1. bundle
	5.17.5.2. kustomize

	5.17.6. init
	5.17.7. run
	5.17.7.1. bundle
	5.17.7.2. bundle-upgrade

	5.17.8. scorecard

	CHAPTER 6. CLUSTER OPERATORS REFERENCE
	6.1. CLUSTER BAREMETAL OPERATOR
	Purpose
	Project

	6.2. BARE METAL EVENT RELAY
	Purpose
	Configuration objects
	Project
	CRD
	Additional resources

	6.3. CLOUD CREDENTIAL OPERATOR
	Purpose
	Project
	CRDs
	Configuration objects
	Additional resources

	6.4. CLUSTER AUTHENTICATION OPERATOR
	Purpose
	Project

	6.5. CLUSTER AUTOSCALER OPERATOR
	Purpose
	Project
	CRDs

	6.6. CLUSTER CLOUD CONTROLLER MANAGER OPERATOR
	Purpose
	Project

	6.7. CLUSTER CAPI OPERATOR
	Purpose
	Project
	CRDs

	6.8. CLUSTER CONFIG OPERATOR
	Purpose
	Project

	6.9. CLUSTER CSI SNAPSHOT CONTROLLER OPERATOR
	Purpose
	Project

	6.10. CLUSTER IMAGE REGISTRY OPERATOR
	Purpose
	Project

	6.11. CLUSTER MACHINE APPROVER OPERATOR
	Purpose
	Project

	6.12. CLUSTER MONITORING OPERATOR
	Purpose
	Project
	CRDs
	Configuration objects

	6.13. CLUSTER NETWORK OPERATOR
	Purpose

	6.14. CLUSTER SAMPLES OPERATOR
	Purpose
	Project

	6.15. CLUSTER STORAGE OPERATOR
	Purpose
	Project
	Configuration
	Notes

	6.16. CLUSTER VERSION OPERATOR
	Purpose
	Project
	Additional resources

	6.17. CONSOLE OPERATOR
	Purpose
	Project

	6.18. DNS OPERATOR
	Purpose
	Project

	6.19. ETCD CLUSTER OPERATOR
	Purpose
	Project
	CRDs
	Configuration objects

	6.20. INGRESS OPERATOR
	Purpose
	Project
	CRDs
	Configuration objects
	Notes

	6.21. INSIGHTS OPERATOR
	Purpose
	Project
	Configuration
	Notes
	Additional resources

	6.22. KUBERNETES API SERVER OPERATOR
	Purpose
	Project
	CRDs
	Configuration objects

	6.23. KUBERNETES CONTROLLER MANAGER OPERATOR
	Purpose
	Project

	6.24. KUBERNETES SCHEDULER OPERATOR
	Purpose
	Project
	Configuration

	6.25. KUBERNETES STORAGE VERSION MIGRATOR OPERATOR
	Purpose
	Project

	6.26. MACHINE API OPERATOR
	Purpose
	Project
	CRDs

	6.27. MACHINE CONFIG OPERATOR
	Purpose
	Project

	6.28. MARKETPLACE OPERATOR
	Purpose
	Project

	6.29. NODE TUNING OPERATOR
	Purpose
	Project
	Additional resources

	6.30. OPENSHIFT API SERVER OPERATOR
	Purpose
	Project
	CRDs

	6.31. OPENSHIFT CONTROLLER MANAGER OPERATOR
	Purpose
	Project

	6.32. OPERATOR LIFECYCLE MANAGER OPERATORS
	Purpose
	CRDs
	OLM Operator
	Catalog Operator
	Catalog Registry
	Additional resources

	6.33. OPENSHIFT SERVICE CA OPERATOR
	Purpose
	Project

	6.34. VSPHERE PROBLEM DETECTOR OPERATOR
	Purpose
	Configuration
	Notes
	Additional resources

