
OpenShift Container Platform 4.1

Container-native virtualization

Container-native virtualization installation, usage, and release notes

Last Updated: 2020-02-28

OpenShift Container Platform 4.1 Container-native virtualization

Container-native virtualization installation, usage, and release notes

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about how to use container-native virtualization in OpenShift
Container Platform 4.1

. .

. .

Table of Contents

CHAPTER 1. CONTAINER-NATIVE VIRTUALIZATION INSTALLATION
1.1. ABOUT CONTAINER-NATIVE VIRTUALIZATION

1.1.1. What you can do with container-native virtualization
1.1.2. Container-native virtualization support

1.2. PREPARING YOUR CLUSTER FOR CONTAINER-NATIVE VIRTUALIZATION
1.3. INSTALLING CONTAINER-NATIVE VIRTUALIZATION

1.3.1. Preparing to install container-native virtualization
1.3.2. Subscribing to the KubeVirt HyperConverged Cluster Operator catalog
1.3.3. Deploying container-native virtualization

1.4. INSTALLING THE VIRTCTL CLIENT
1.4.1. Enabling container-native virtualization repositories
1.4.2. Installing the virtctl client

1.5. UNINSTALLING CONTAINER-NATIVE VIRTUALIZATION
1.5.1. Deleting the KubeVirt HyperConverged custom resource
1.5.2. Deleting the KubeVirt HyperConverged Cluster Operator catalog subscription
1.5.3. Deleting a project using the web console

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE
2.1. CREATING VIRTUAL MACHINES

2.1.1. Running the virtual machine wizard to create a virtual machine
2.1.1.1. Virtual machine wizard fields
2.1.1.2. Cloud-init fields
2.1.1.3. Networking fields
2.1.1.4. Storage fields

2.1.2. Pasting in a pre-configured YAML file to create a virtual machine
2.1.3. Using the CLI to create a virtual machine
2.1.4. Virtual machine storage volume types

2.2. TLS CERTIFICATES FOR DATAVOLUME IMPORTS
2.2.1. Adding TLS certificates for authenticating DataVolume imports
2.2.2. Example: ConfigMap created from a TLS certificate

2.3. IMPORTING A VMWARE VIRTUAL MACHINE OR TEMPLATE WITH THE VIRTUAL MACHINE WIZARD
2.3.1. Uploading the VMware Virtual Disk Development Kit
2.3.2. Importing the VMware virtual machine or template
2.3.3. Updating the imported virtual machine’s NIC name
2.3.4. Virtual machine wizard fields

2.3.4.1. Virtual machine wizard fields
2.3.4.2. Cloud-init fields
2.3.4.3. Networking fields
2.3.4.4. Storage fields

2.4. IMPORTING VIRTUAL MACHINE IMAGES WITH DATAVOLUMES
2.4.1. CDI supported operations matrix
2.4.2. About DataVolumes
2.4.3. Importing a virtual machine image into a container-native virtualization object with DataVolumes
2.4.4. Template: DataVolume virtual machine configuration file
2.4.5. Template: DataVolume import configuration file

2.5. EDITING VIRTUAL MACHINES
2.5.1. Using the web console to edit a virtual machine
2.5.2. Editing the virtual machine YAML configuration
2.5.3. Using the CLI to edit a virtual machine

2.6. DELETING VIRTUAL MACHINES
2.6.1. Deleting a virtual machine using the web console

6
6
6
6
6
7
7
8
8
9
9
9

10
10
11
11

12
12
12
13
14
15
15
16
16
17
18
18
18
19
19

20
21
22
22
23
24
24
25
25
26
26
28
29
30
30
30
31
31
32

Table of Contents

1

2.6.2. Deleting a virtual machine and PVCs using the CLI
2.7. CONTROLLING VIRTUAL MACHINES STATES

2.7.1. Controlling virtual machines from the web console
2.7.1.1. Starting a virtual machine
2.7.1.2. Restarting a virtual machine
2.7.1.3. Stopping a virtual machine

2.7.2. CLI reference for controlling virtual machines
2.7.2.1. start
2.7.2.2. restart
2.7.2.3. stop
2.7.2.4. list

2.8. ACCESSING VIRTUAL MACHINE CONSOLES
2.8.1. Virtual machine console sessions

2.8.1.1. Connecting to a virtual machine with the web console
2.8.1.2. Connecting to the serial console
2.8.1.3. Connecting to the VNC console
2.8.1.4. Connecting to the RDP console

2.8.2. Accessing virtual machine consoles by using CLI commands
2.8.2.1. Accessing a virtual machine instance via SSH
2.8.2.2. Accessing the serial console of a virtual machine instance
2.8.2.3. Accessing the graphical console of a virtual machine instances with VNC
2.8.2.4. Connecting to a Windows virtual machine with an RDP console

2.9. USING THE CLI TOOLS
2.9.1. Virtctl client commands
2.9.2. OpenShift Container Platform client commands

2.10. AUTOMATING MANAGEMENT TASKS
2.10.1. About Red Hat Ansible Automation
2.10.2. Automating virtual machine creation with Red Hat Ansible Automation
2.10.3. Example: Ansible Playbook for creating virtual machines

2.11. USING THE DEFAULT POD NETWORK WITH CONTAINER-NATIVE VIRTUALIZATION
2.11.1. Configuring masquerade mode from the command line
2.11.2. Web console

2.11.2.1. Networking fields
2.11.3. Configuration file examples

2.11.3.1. Template: virtual machine configuration file
2.11.3.2. Template: Windows virtual machine instance configuration file

2.12. ATTACHING A VIRTUAL MACHINE TO MULTIPLE NETWORKS
2.12.1. Container-native virtualization networking glossary
2.12.2. Connecting a resource to a bridge-based network
2.12.3. Creating a NIC for a virtual machine
2.12.4. Networking fields

2.13. INSTALLING THE QEMU GUEST AGENT ON VIRTUAL MACHINES
2.13.1. Installing QEMU guest agent on a Linux virtual machine

2.14. VIEWING THE IP ADDRESS OF VNICS ON A VIRTUAL MACHINE
2.14.1. Viewing the IP address of a virtual machine interface in the CLI
2.14.2. Viewing the IP address of a virtual machine interface in the web console

2.15. CONFIGURING PXE BOOTING FOR VIRTUAL MACHINES
2.15.1. Container-native virtualization networking glossary
2.15.2. PXE booting with a specified MAC address
2.15.3. Template: virtual machine instance configuration file for PXE booting

2.16. MANAGING GUEST MEMORY
2.16.1. Configuring guest memory overcommitment
2.16.2. Disabling guest memory overhead accounting

32
32
33
33
33
34
34
34
34
35
35
35
35
36
36
36
37
37
37
38
38
39
40
40
41
41
41

42
43
44
44
45
45
45
45
46
47
47
48
49
50
50
50
51
51
52
52
52
53
55
56
56
57

OpenShift Container Platform 4.1 Container-native virtualization

2

2.17. CREATING VIRTUAL MACHINE TEMPLATES
2.17.1. Creating a virtual machine template with the interactive wizard in the web console
2.17.2. Virtual machine template interactive wizard fields

2.17.2.1. Virtual machine template wizard fields
2.17.2.2. Cloud-init fields
2.17.2.3. Networking fields
2.17.2.4. Storage fields

2.18. EDITING A VIRTUAL MACHINE TEMPLATE
2.18.1. Editing a virtual machine template in the web console

2.19. DELETING A VIRTUAL MACHINE TEMPLATE
2.19.1. Deleting a virtual machine template in the web console

2.20. CLONING A VIRTUAL MACHINE DISK INTO A NEW DATAVOLUME
2.20.1. About DataVolumes
2.20.2. Cloning the PersistentVolumeClaim of a virtual machine disk into a new DataVolume
2.20.3. Template: DataVolume clone configuration file
2.20.4. CDI supported operations matrix

2.21. CLONING A VIRTUAL MACHINE BY USING A DATAVOLUMETEMPLATE
2.21.1. About DataVolumes
2.21.2. Creating a new virtual machine from a cloned PersistentVolumeClaim by using a DataVolumeTemplate

2.21.3. Template: DataVolume virtual machine configuration file
2.21.4. CDI supported operations matrix

2.22. UPLOADING LOCAL DISK IMAGES BY USING THE VIRTCTL TOOL
2.22.1. CDI supported operations matrix
2.22.2. Uploading a local disk image to a new PersistentVolumeClaim

2.23. EXPANDING VIRTUAL STORAGE BY ADDING BLANK DISK IMAGES
2.23.1. About DataVolumes
2.23.2. Creating a blank disk image with DataVolumes
2.23.3. Template: DataVolume configuration file for blank disk images

2.24. PREPARING CDI SCRATCH SPACE
2.24.1. About DataVolumes
2.24.2. Understanding scratch space

Manual provisioning
2.24.3. Defining a StorageClass in the CDI configuration
2.24.4. CDI operations that require scratch space
2.24.5. CDI supported operations matrix

2.25. VIRTUAL MACHINE LIVE MIGRATION
2.25.1. Understanding live migration

2.26. LIVE MIGRATION LIMITS AND TIMEOUTS
2.26.1. Configuring live migration limits and timeouts
2.26.2. Cluster-wide live migration limits and timeouts

2.27. MIGRATING A VIRTUAL MACHINE INSTANCE TO ANOTHER NODE
2.27.1. Initiating live migration of a virtual machine instance in the web console
2.27.2. Initiating live migration of a virtual machine instance in the CLI

2.28. MONITORING LIVE MIGRATION OF A VIRTUAL MACHINE INSTANCE
2.28.1. Monitoring live migration of a virtual machine instance in the web console
2.28.2. Monitoring live migration of a virtual machine instance in the CLI

2.29. CANCELLING THE LIVE MIGRATION OF A VIRTUAL MACHINE INSTANCE
2.29.1. Cancelling live migration of a virtual machine instance in the web console
2.29.2. Cancelling live migration of a virtual machine instance in the CLI

2.30. NODE MAINTENANCE MODE
2.30.1. Understanding node maintenance mode

2.31. CONFIGURING VIRTUAL MACHINE EVICTION STRATEGY

58
58
59
59
60
60
61
61

62
62
62
62
63
63
64
64
65
65

65
67
68
68
69
69
70
70
70
71
71
71
71
72
72
72
73
74
74
74
74
75
75
75
76
76
77
77
77
77
78
78
78
79

Table of Contents

3

. .

2.31.1. Configuring custom virtual machines with the LiveMigration eviction strategy
2.32. SETTING A NODE TO MAINTENANCE MODE

2.32.1. Understanding node maintenance mode
2.32.2. Setting a node to maintenance mode in the web console
2.32.3. Setting a node to maintenance mode in the CLI

2.33. RESUMING A NODE FROM MAINTENANCE MODE
2.33.1. Resuming a node from maintenance mode in the web console
2.33.2. Resuming a node from maintenance mode in the CLI

2.34. INSTALLING VIRTIO DRIVER ON AN EXISTING WINDOWS VIRTUAL MACHINE
2.34.1. Understanding VirtIO drivers
2.34.2. Supported VirtIO drivers for Microsoft Windows virtual machines
2.34.3. Adding VirtIO drivers container disk to a virtual machine
2.34.4. Installing VirtIO drivers on an existing Windows virtual machine
2.34.5. Removing the VirtIO container disk from a virtual machine

2.35. INSTALLING VIRTIO DRIVER ON A NEW WINDOWS VIRTUAL MACHINE
2.35.1. Understanding VirtIO drivers
2.35.2. Supported VirtIO drivers for Microsoft Windows virtual machines
2.35.3. Adding VirtIO drivers container disk to a virtual machine
2.35.4. Installing VirtIO drivers during Windows installation
2.35.5. Removing the VirtIO container disk from a virtual machine

2.36. VIEWING LOGS
2.36.1. Understanding logs
2.36.2. Viewing virtual machine logs in the CLI
2.36.3. Viewing virtual machine logs in the web console

2.37. VIEWING EVENTS
2.37.1. Understanding events
2.37.2. Viewing the events for a virtual machine in the web console
2.37.3. Viewing namespace events in the CLI
2.37.4. Viewing resource events in the CLI

2.38. OPENSHIFT CONTAINER PLATFORM CLUSTER MONITORING, LOGGING, AND TELEMETRY
2.38.1. About OpenShift Container Platform cluster monitoring
2.38.2. About cluster logging
2.38.3. About Telemetry

2.38.3.1. What information is collected
2.38.4. CLI troubleshooting and debugging commands

CHAPTER 3. CONTAINER-NATIVE VIRTUALIZATION 2.0 RELEASE NOTES
3.1. CONTAINER-NATIVE VIRTUALIZATION 2.0 RELEASE NOTES

3.1.1. About container-native virtualization
3.1.1.1. What you can do with container-native virtualization
3.1.1.2. Container-native virtualization support

3.1.2. New and changed features
3.1.2.1. Supported binding methods
3.1.2.2. Web console improvements

3.1.3. Resolved issues
3.1.4. Known issues

79
79
79
80
80
81
81
81

82
82
82
83
84
84
85
85
85
86
87
87
88
88
88
88
89
89
89
89
89
90
90
90
90
90
91

92
92
92
92
92
92
92
93
93
93

OpenShift Container Platform 4.1 Container-native virtualization

4

Table of Contents

5

CHAPTER 1. CONTAINER-NATIVE VIRTUALIZATION
INSTALLATION

1.1. ABOUT CONTAINER-NATIVE VIRTUALIZATION

Learn about container-native virtualization’s capabilities and support scope.

1.1.1. What you can do with container-native virtualization

Container-native virtualization is an add-on to OpenShift Container Platform that allows you to run and
manage virtual machine workloads alongside container workloads.

Container-native virtualization adds new objects into your OpenShift Container Platform cluster via
Kubernetes custom resources to enable virtualization tasks. These tasks include:

Creating and managing Linux and Windows virtual machines

Connecting to virtual machines through a variety of consoles and CLI tools

Importing and cloning existing virtual machines, including VMware virtual machines

Managing network interface controllers and storage disks attached to virtual machines

Live migrating virtual machines between nodes

An enhanced web console provides a graphical portal to manage these virtualized resources alongside
the OpenShift Container Platform cluster containers and infrastructure.

1.1.2. Container-native virtualization support

IMPORTANT

container-native virtualization is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

1.2. PREPARING YOUR CLUSTER FOR CONTAINER-NATIVE
VIRTUALIZATION

Container-native virtualization 2.0 works with OpenShift Container Platform by default, however the
following installation configurations are recommended:

The OpenShift Container Platform cluster is installed on bare metal. Manage your Compute
nodes in accordance with the number and size of the virtual machines to host in the cluster.

Monitoring is configured in the cluster.

OpenShift Container Platform 4.1 Container-native virtualization

6

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/monitoring/#about-cluster-monitoring

1.3. INSTALLING CONTAINER-NATIVE VIRTUALIZATION

Install container-native virtualization to add virtualization functionality to your OpenShift Container
Platform cluster.

Before you deploy container-native virtualization, you must create two Custom Resource Definition
(CRD) objects:

kind: OperatorGroup

kind: CatalogSource

You can create both objects by running a single command.

To finish installing container-native virtualization, use the OpenShift Container Platform 4.1 web console
to subscribe to and deploy the container-native virtualization Operators.

IMPORTANT

container-native virtualization is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

1.3.1. Preparing to install container-native virtualization

Before deploying container-native virtualization:

Create a namespace called kubevirt-hyperconverged.

Create OperatorGroup and CatalogSource Custom Resource Definition objects (CRDs) in the
kubevirt-hyperconverged namespace.

Prerequisites

OpenShift Container Platform 4.1

User with cluster-admin privileges

The OpenShift Container Platform Command-line Interface (CLI), commonly known as oc

Procedure

1. Create the kubevirt-hyperconverged namespace by running the following command:

$ oc new-project kubevirt-hyperconverged

2. Create the OperatorGroup and CatalogSource in the kubevirt-hyperconverged namespace
by running the following command:

cat <<EOF | oc apply -f -

CHAPTER 1. CONTAINER-NATIVE VIRTUALIZATION INSTALLATION

7

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/web_console/#web-console-overview_web-console
https://access.redhat.com/support/offerings/techpreview/

apiVersion: operators.coreos.com/v1alpha2
kind: OperatorGroup
metadata:
 name: hco-operatorgroup
 namespace: kubevirt-hyperconverged

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: hco-catalogsource
 namespace: openshift-operator-lifecycle-manager
 imagePullPolicy: Always
spec:
 sourceType: grpc
 image: registry.redhat.io/container-native-virtualization/hco-bundle-registry:v2.0.0
 displayName: KubeVirt HyperConverged
 publisher: Red Hat
EOF

1.3.2. Subscribing to the KubeVirt HyperConverged Cluster Operator catalog

Before you install container-native virtualization, subscribe to the KubeVirt HyperConverged Cluster
Operator catalog from the OpenShift Container Platform web console. Subscribing gives the kubevirt-
hyperconverged namespace access to the container-native virtualization Operators.

Prerequisites

OperatorGroup and CatalogSource Custom Resource Definition objects (CRDs), both
created in the kubevirt-hyperconverged namespace

Procedure

1. Open a browser window and navigate to the OpenShift Container Platform web console.

2. Select the kubevirt-hyperconverged project from the Projects list.

3. Navigate to the Catalog → Operator Management page.

4. In the Operator Catalogs tab, locate KubeVirt HyperConverged Cluster Operator and click
Create Subscription.

5. Click Create to launch the container-native virtualization Operators.

1.3.3. Deploying container-native virtualization

After subscribing to the KubeVirt HyperConverged Cluster Operator catalog, create the KubeVirt
HyperConverged Cluster Operator Deployment custom resource to deploy container-native
virtualization.

Prerequisites

An active subscription to the KubeVirt HyperConverged Cluster Operator catalog in the
kubevirt-hyperconverged namespace

OpenShift Container Platform 4.1 Container-native virtualization

8

Procedure

1. Navigate to the Catalog → Installed Operators page.

2. Click KubeVirt HyperConverged Cluster Operator.

3. Click the KubeVirt HyperConverged Cluster Operator Deployment tab and click Create
HyperConverged.

4. Click Create to launch container-native virtualization.

5. Navigate to the Workloads → Pods page and monitor the container-native virtualization Pods
until they are all Running. After all the Pods display the Running state, you can access
container-native virtualization.

NOTE

You can verify the installation by navigating to the web console at kubevirt-web-
ui.your.app.subdomain.host.com. Log in by using your OpenShift Container Platform
credentials.

1.4. INSTALLING THE VIRTCTL CLIENT

The virtctl client is a command-line utility for managing container-native virtualization resources.

Install the client to your system by enabling the container-native virtualization repository and installing
the kubevirt-virtctl package.

1.4.1. Enabling container-native virtualization repositories

Red Hat offers container-native virtualization repositories for both Red Hat Enterprise Linux 8 and Red
Hat Enterprise Linux 7:

Red Hat Enterprise Linux 8 repository: cnv-2.0-for-rhel-8-x86_64-rpms

Red Hat Enterprise Linux 7 repository: rhel-7-server-cnv-2.0-rpms

The process for enabling the repository in subscription-manager is the same in both platforms.

Procedure

Use subscription manager to enable the appropriate container-native virtualization repository
for your system:

subscription-manager repos --enable <repository>

1.4.2. Installing the virtctl client

Install the virtctl client from the kubevirt-virtctl package.

Procedure

Install the kubevirt-virtctl package:

CHAPTER 1. CONTAINER-NATIVE VIRTUALIZATION INSTALLATION

9

yum install kubevirt-virtctl

See also: Using the CLI tools for container-native virtualization.

1.5. UNINSTALLING CONTAINER-NATIVE VIRTUALIZATION

You can uninstall container-native virtualization by using the OpenShift Container Platform 4.1 web
console. First, delete the custom resource you created during deployment. Then, delete the KubeVirt
HyperConverged Cluster Operator catalog subscription.

Prerequisites

Container-native virtualization 2.0

1.5.1. Deleting the KubeVirt HyperConverged custom resource

To uninstall container-native virtualization, you must delete the custom resource that you created
during deployment.

Prerequisites

An active KubeVirt HyperConverged Cluster Operator Deployment custom resource

Procedure

1. From the OpenShift Container Platform web console, select kubevirt-hyperconverged from
the Projects list.

2. Navigate to the Catalog → Installed Operators page.

3. Click KubeVirt HyperConverged Cluster Operator.

4. Click the KubeVirt HyperConverged Cluster Operator Deployment tab.

5. Click the Options menu in the row containing the kubevirt-hyperconverged custom
resource. In the expanded menu, click Delete HyperConverged.

6. Click Delete in the confirmation window.

7. Navigate to the Workloads → Pods page to verify that only the Operator Pods are running.

8. Open a terminal window and clean up the remaining KubeVirt resources by running the
following command:

$ oc delete apiservices v1alpha3.subresources.kubevirt.io -n kubevirt-hyperconverged

NOTE

Because some KubeVirt resources are currently improperly retained, you must
manually remove them. These resources will be removed automatically after
(BZ1712429) is resolved.

OpenShift Container Platform 4.1 Container-native virtualization

10

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/web_console/#web-console-overview_web-console
https://bugzilla.redhat.com/show_bug.cgi?id=1712429

1.5.2. Deleting the KubeVirt HyperConverged Cluster Operator catalog subscription

To finish uninstalling container-native virtualization, delete your KubeVirt HyperConverged Cluster
Operator catalog subscription.

Prerequisites

An active KubeVirt HyperConverged Cluster Operator catalog subscription

Procedure

1. From the OpenShift Container Platform web console, select kubevirt-hyperconverged from
the Projects list.

2. Navigate to the Catalog → Operator Management page.

3. Click the Operator Subscriptions tab.

4. Click the Options menu in the row that contains the hco-subscription subscription. In the
expanded menu, click Remove Subscription.

5. Ensure that the Also completely remove the Operator from the selected namespace check
box is selected. If it is not selected, Operator Pods will remain in Workloads → Pods when the
subscription is removed.

6. Confirm that you want to remove the subscription by clicking Remove again.

NOTE

You can now delete the kubevirt-hyperconverged namespace.

1.5.3. Deleting a project using the web console

Procedure

1. Navigate to Home → Projects.

2. Locate the project that you want to delete from the list of projects.

3. On the far right side of the project listing, select Delete Project from the menu. If you do not
have permissions to delete the project, the Delete Project option is grayed out and the option is
not clickable.

CHAPTER 1. CONTAINER-NATIVE VIRTUALIZATION INSTALLATION

11

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S
GUIDE

2.1. CREATING VIRTUAL MACHINES

Use one of these procedures to create a virtual machine:

Running the virtual machine wizard

Pasting a pre-configured YAML file with the virtual machine wizard

Using the CLI

Importing a VMware virtual machine or template with the virtual machine wizard

2.1.1. Running the virtual machine wizard to create a virtual machine

The web console features an interactive wizard that guides you through Basic Settings, Networking,
and Storage screens to simplify the process of creating virtual machines. All required fields are marked
by a *. The wizard prevents you from moving to the next screen until the required fields have been
completed.

NICs and storage disks can be created and attached to virtual machines after they have been created.

Bootable Disk

If either URL or Container are selected as the Provision Source in the Basic Settings screen, a
rootdisk disk is created and attached to the virtual machine as the Bootable Disk. You can modify the
rootdisk but you cannot remove it.

A Bootable Disk is not required for virtual machines provisioned from a PXE source if there are no disks
attached to the virtual machine. If one or more disks are attached to the virtual machine, you must select
one as the Bootable Disk.

Prerequisites

When you create your virtual machine using the wizard, your virtual machine’s storage medium
must support Read-Write-Many (RWM) PVCs.

Procedure

1. Click Workloads → Virtual Machines from the side menu.

2. Click Create Virtual Machine and select Create with Wizard.

3. Fill in all required Basic Settings. Selecting a Template automatically fills in these fields.

4. Click Next to progress to the Networking screen. A nic0 NIC is attached by default.

a. (Optional) Click Create NIC to create additional NICs.

b. (Optional) You can remove any or all NICs by clicking the ⋮ button and selecting Remove
NIC. A virtual machine does not need a NIC attached to be created. NICs can be created
after the virtual machine has been created.

OpenShift Container Platform 4.1 Container-native virtualization

12

5. Click Next to progress to the Storage screen.

a. (Optional) Click Create Disk to create additional disks. These disks can be removed by
clicking the ⋮ button and selecting Remove Disk.

b. (Optional) Click on a disk to modify available fields. Click the ✓ button to save the update.

c. (Optional) Click Attach Disk to choose an available disk from the Select Storage drop-
down list.

6. Click Create Virtual Machine >. The Results screen displays the JSON configuration file for the
virtual machine.

The virtual machine is listed in Workloads → Virtual Machines.

Refer to the virtual machine wizard fields section when running the web console wizard.

2.1.1.1. Virtual machine wizard fields

Name Parameter Description

Name The name can contain lower-case
letters (a-z), numbers (0-9), and
hyphens (-), up to a maximum of
253 characters. The first and last
characters must be alphanumeric.
The name must not contain
upper-case letters, spaces,
periods (.), or special characters.

Description Optional description field.

Template Template from which to create
the virtual machine. Selecting a
template will automatically
complete other fields.

Provision Source PXE Provision virtual machine from
PXE menu. Requires a PXE-
capable NIC in the cluster.

URL Provision virtual machine from an
image available from an HTTP or
S3 endpoint.

Container Provision virtual machine from a
bootable operating system
container located in a registry
accessible from the cluster.
Example: kubevirt/cirros-
registry-disk-demo.

Cloned Disk Provision source is a cloned disk.

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

13

Import Import virtual machine from a
supported provider.

Operating System A list of operating systems
available in the cluster. This is the
primary operating system for the
virtual machine. If you select
Import as the Provider Source,
the operating system is filled in
automatically, based on the
operating system of the VMware
virtual machine being imported.

Flavor small, medium, large, tiny, Custom Presets that determine the
amount of CPU and memory
allocated to the virtual machine.

Workload Profile desktop A virtual machine configuration
for use on a desktop.

generic A virtual machine configuration
that balances performance and
compatibility for a broad range of
workloads.

high performance A virtual machine configuration
that is optimized for high-
performance loads.

Start virtual machine on creation Select to automatically start the
virtual machine upon creation.

Use cloud-init Select to enable the cloud-init
fields.

Name Parameter Description

2.1.1.2. Cloud-init fields

Name Description

Hostname Sets a specific host name for the virtual machine.

Authenticated SSH Keys The user’s public key that is copied to
~/.ssh/authorized_keys on the virtual machine.

Use custom script Replaces other options with a field in which you paste
a custom cloud-init script.

OpenShift Container Platform 4.1 Container-native virtualization

14

2.1.1.3. Networking fields

Name Description

Create NIC Create a new NIC for the virtual machine.

NIC NAME Name for the NIC.

MAC ADDRESS MAC address for the network interface. If a MAC
address is not specified, an ephemeral address is
generated for the session.

NETWORK CONFIGURATION List of available NetworkAttachmentDefinition
objects.

BINDING METHOD List of available binding methods. For the default
Pod network, masquerade is the only
recommended binding method. For secondary
networks, use the bridge binding method. The
masquerade method is not supported for non-
default networks.

PXE NIC List of PXE-capable networks. Only visible if PXE
has been selected as the Provision Source.

2.1.1.4. Storage fields

Name Description

Create Disk Create a new disk for the virtual machine.

Attach Disk Select an existing disk, from a list of available PVCs,
to attach to the virtual machine.

DISK NAME Name of the disk. The name can contain lower-case
letters (a-z), numbers (0-9), hyphens (-), and periods
(.), up to a maximum of 253 characters. The first and
last characters must be alphanumeric. The name
must not contain upper-case letters, spaces, or
special characters.

SIZE (GB) Size, in GB, of the disk.

STORAGE CLASS Name of the underlying StorageClass.

Bootable Disk List of available disks from which the virtual machine
will boot. This is locked to rootdisk if the Provision
Source of the virtual machine is URL or Container.

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

15

2.1.2. Pasting in a pre-configured YAML file to create a virtual machine

Create a virtual machine by writing or pasting a YAML configuration file in the web console in the
Workloads → Virtual Machines screen. A valid example virtual machine configuration is provided by
default whenever you open the YAML edit screen.

If your YAML configuration is invalid when you click Create, an error message indicates the parameter in
which the error occurs. Only one error is shown at a time.

NOTE

Navigating away from the YAML screen while editing cancels any changes to the
configuration you have made.

Procedure

1. Click Workloads → Virtual Machines from the side menu.

2. Click Create Virtual Machine and select Create from YAML.

3. Write or paste your virtual machine configuration in the editable window.

a. Alternatively, use the example virtual machine provided by default in the YAML screen.

4. (Optional) Click Download to download the YAML configuration file in its present state.

5. Click Create to create the virtual machine.

The virtual machine is listed in Workloads → Virtual Machines.

2.1.3. Using the CLI to create a virtual machine

Procedure

The spec object of the VirtualMachine configuration file references the virtual machine settings, such as
the number of cores and the amount of memory, the disk type, and the volumes to use.

1. Attach the virtual machine disk to the virtual machine by referencing the relevant PVC
claimName as a volume.

2. To create a virtual machine with the OpenShift Container Platform client, run this command:

$ oc create -f <vm.yaml>

3. Since virtual machines are created in a Stopped state, run a virtual machine instance by starting
it.

NOTE

A ReplicaSet’s purpose is often used to guarantee the availability of a specified number
of identical Pods. ReplicaSet is not currently supported in container-native virtualization.

Table 2.1. Domain settings

OpenShift Container Platform 4.1 Container-native virtualization

16

https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

Setting Description

Cores The number of cores inside the virtual machine. Must
be a value greater than or equal to 1.

Memory The amount of RAM that is allocated to the virtual
machine by the node. Specify a value in M for
Megabyte or Gi for Gigabyte.

Disks: name The name of the volume that is referenced. Must
match the name of a volume.

Table 2.2. Volume settings

Setting Description

Name The name of the volume, which must be a DNS label
and unique within the virtual machine.

PersistentVolumeClaim The PVC to attach to the virtual machine. The
claimName of the PVC must be in the same project
as the virtual machine.

Virtual machine storage volume types are listed here, as well as domain and volume settings. See the
kubevirt API Reference for a definitive list of virtual machine settings.

2.1.4. Virtual machine storage volume types

ephemeral A local copy-on-write (COW) image that uses a network volume as a read-only backing
store. The backing volume must be a PersistentVolumeClaim. The ephemeral image is
created when the virtual machine starts and stores all writes locally. The ephemeral image is
discarded when the virtual machine is stopped, restarted, or deleted. The backing volume
(PVC) is not mutated in any way.

persistentV
olumeClaim

Attaches an available PV to a virtual machine. Attaching a PV allows for the virtual machine
data to persist between sessions.

Importing an existing virtual machine disk into a PVC by using CDI and attaching the PVC to
a virtual machine instance is the recommended method for importing existing virtual
machines into OpenShift Container Platform. There are some requirements for the disk to
be used within a PVC.

dataVolume DataVolumes build on the persistentVolumeClaim disk type by managing the process of
preparing the virtual machine disk via an import, clone, or upload operation. VMs that use this
volume type are guaranteed not to start until the volume is ready.

cloudInitNo
Cloud

Attaches a disk that contains the referenced cloud-init NoCloud data source, providing user
data and metadata to the virtual machine. A cloud-init installation is required inside the virtual
machine disk.

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

17

https://kubevirt.io/api-reference/master/definitions.html#_v1_virtualmachinespec

containerDis
k

References an image, such as a virtual machine disk, that is stored in the container image
registry. The image is pulled from the registry and embedded in a volume when the virtual
machine is created. A containerDisk volume is ephemeral. It is discarded when the virtual
machine is stopped, restarted, or deleted.

Container disks are not limited to a single virtual machine and are useful for creating large
numbers of virtual machine clones that do not require persistent storage.

Only RAW and QCOW2 formats are supported disk types for the container image registry.
QCOW2 is recommended for reduced image size.

emptyDisk Creates an additional sparse QCOW2 disk that is tied to the life-cycle of the virtual machine
interface. The data survives guest-initiated reboots in the virtual machine but is discarded
when the virtual machine stops or is restarted from the web console. The empty disk is used
to store application dependencies and data that otherwise exceeds the limited temporary file
system of an ephemeral disk.

The disk capacity size must also be provided.

2.2. TLS CERTIFICATES FOR DATAVOLUME IMPORTS

2.2.1. Adding TLS certificates for authenticating DataVolume imports

TLS certificates for registry or HTTPS endpoints must be added to a ConfigMap in order to import data
from these sources. This ConfigMap must be present in the namespace of the destination DataVolume.

Create the ConfigMap by referencing the relative file path for the TLS certificate.

Procedure

1. Ensure you are in the correct namespace. The ConfigMap can only be referenced by
DataVolumes if it is in the same namespace.

$ oc get ns

2. Create the ConfigMap:

$ oc create configmap <configmap-name> --from-file=</path/to/file/ca.pem>

2.2.2. Example: ConfigMap created from a TLS certificate

The following example is of a ConfigMap created from ca.pem TLS certificate.

apiVersion: v1
kind: ConfigMap
metadata:
 name: tls-certs
data:
 ca.pem: |
 -----BEGIN CERTIFICATE-----
 ... <base64 encoded cert> ...
 -----END CERTIFICATE-----

OpenShift Container Platform 4.1 Container-native virtualization

18

2.3. IMPORTING A VMWARE VIRTUAL MACHINE OR TEMPLATE WITH
THE VIRTUAL MACHINE WIZARD

You can import a VMware virtual machine or template. If you import a template, a virtual machine based
on the template is created.

IMPORTANT

Importing a VMware virtual machine or template is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

Prerequisites

The VMware virtual machine is powered off.

The VMware Virtual Disk Development Kit (VDDK) has been uploaded to the namespace in
which you are importing the virtual machine.

2.3.1. Uploading the VMware Virtual Disk Development Kit

Procedure

1. In a browser, navigate to VMware Documentation and log in.

2. Click VMware SDK & API Product Documentation to expand.

3. Click VMware Virtual Disk Development Kit (VDDK).

4. Click Latest Releases and select the latest VDDK release.

5. Click Download SDKs to download the VDDK archive file.

6. Save the VDDK archive file in an HTTP-accessible location.

7. Switch to the namespace where you will import the virtual machine:

$ oc project <namespace>

8. Upload VDDK to the namespace:

$ cat <<EOF | oc apply -f -
apiVersion: cdi.kubevirt.io/v1alpha1
kind: DataVolume
metadata:
 name: "vddk-pvc"
spec:

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

19

https://access.redhat.com/support/offerings/techpreview/
https://www.vmware.com/support/pubs/

1

 source:
 http:
 url: "<http://www.example.com/VDDK_archive_file>" 1
 contentType: "archive"
 pvc:
 storageClassName: nfs-sc
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: "200Mi"
EOF

<url> is the path of the VDDK archive file.

2.3.2. Importing the VMware virtual machine or template

Procedure

1. Click Workloads → Virtual Machines from the side menu.

2. Click Create Virtual Machine and select Create with Wizard.

3. Perform the following procedure in the Basic Settings screen:

a. Click Provision Source and select Import.

b. Click Provider and select VMware.

c. Click vCenter Instance and select Connect to New Instance or a saved vCenter instance.

If you select Connect to New Instance, provide values in the following fields and click
Check and Save:

vCenter Hostname

vCenter User Name

vCenter Password
The wizard connects to the vCenter instance and saves the credentials.

If you clear the Save as New vCenter Instance check box and click Check, the
wizard connects to the vCenter instance without saving the credentials.

If you select a saved vCenter instance, the wizard connects to it by using the saved
credentials.

d. Click VM to import and select a virtual machine or template.
The Name and Operating System are filled in automatically with the attributes of the
selected virtual machine or template.

e. Specify the Memory (GB) and number of CPUs if you use the default flavor, Custom.
Optionally, you can select an existing Flavor.

f. Select a Workload Profile.

OpenShift Container Platform 4.1 Container-native virtualization

20

g. Click Next.

4. Perform the following procedure in the Networking screen:

a. Click NETWORK CONFIGURATION and select Pod Networking.

b. Select a BINDING METHOD.

c. Click the ✓ button to save the update.

d. Click Next.

5. Perform the following procedure in the Storage screen:

a. Click each disk and select a STORAGE CLASS. If you do not select a storage class,
container-native virtualization uses the default storage class to create the virtual machine.

b. Click the ✓ button to save the update.

c. Select a Bootable Disk if you have more than one bootable disk.

d. Click Create Virtual Machine >.
The Result screen displays the resources created for the virtual machine.

6. Click Close.

To view the progress of the import:

1. Click Workloads → Pods from the side menu.

2. Click the conversion pod, kubevirt-v2v-conversion-<id>, to view the pod details.

3. In the Overview tab, click ANNOTATIONS for the v2vConversionProgress value.

If an error occurs, you can check the conversion pod log:

1. Click Workloads → Pods from the side menu.

2. Click the conversion pod, kubevirt-v2v-conversion-<id>, to view the pod details.

3. Click Logs to view the conversion pod log.

Refer to the virtual machine wizard fields section for more information on the wizard fields.

2.3.3. Updating the imported virtual machine’s NIC name

Update the imported virtual machine’s NIC name to conform to container-native virtualization naming
conventions.

Procedure

1. Log in to the imported virtual machine.

2. Go to the /etc/sysconfig/network-scripts directory.

3. Rename the network configuration file with the new NIC name (a single NIC is called eth0):

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

21

$ mv original_NIC ifcfg-ethx

4. Update the following parameters in the network configuration file:

NAME=ethx
DEVICE=ethx

5. Restart the network:

$ systemctl restart network

2.3.4. Virtual machine wizard fields

2.3.4.1. Virtual machine wizard fields

Name Parameter Description

Name The name can contain lower-case
letters (a-z), numbers (0-9), and
hyphens (-), up to a maximum of
253 characters. The first and last
characters must be alphanumeric.
The name must not contain
upper-case letters, spaces,
periods (.), or special characters.

Description Optional description field.

Template Template from which to create
the virtual machine. Selecting a
template will automatically
complete other fields.

Provision Source PXE Provision virtual machine from
PXE menu. Requires a PXE-
capable NIC in the cluster.

URL Provision virtual machine from an
image available from an HTTP or
S3 endpoint.

Container Provision virtual machine from a
bootable operating system
container located in a registry
accessible from the cluster.
Example: kubevirt/cirros-
registry-disk-demo.

Cloned Disk Provision source is a cloned disk.

OpenShift Container Platform 4.1 Container-native virtualization

22

Import Import virtual machine from a
supported provider.

Operating System A list of operating systems
available in the cluster. This is the
primary operating system for the
virtual machine. If you select
Import as the Provider Source,
the operating system is filled in
automatically, based on the
operating system of the VMware
virtual machine being imported.

Flavor small, medium, large, tiny, Custom Presets that determine the
amount of CPU and memory
allocated to the virtual machine.

Workload Profile desktop A virtual machine configuration
for use on a desktop.

generic A virtual machine configuration
that balances performance and
compatibility for a broad range of
workloads.

high performance A virtual machine configuration
that is optimized for high-
performance loads.

Start virtual machine on creation Select to automatically start the
virtual machine upon creation.

Use cloud-init Select to enable the cloud-init
fields.

Name Parameter Description

2.3.4.2. Cloud-init fields

Name Description

Hostname Sets a specific host name for the virtual machine.

Authenticated SSH Keys The user’s public key that is copied to
~/.ssh/authorized_keys on the virtual machine.

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

23

Use custom script Replaces other options with a field in which you paste
a custom cloud-init script.

Name Description

2.3.4.3. Networking fields

Name Description

Create NIC Create a new NIC for the virtual machine.

NIC NAME Name for the NIC.

MAC ADDRESS MAC address for the network interface. If a MAC
address is not specified, an ephemeral address is
generated for the session.

NETWORK CONFIGURATION List of available NetworkAttachmentDefinition
objects.

BINDING METHOD List of available binding methods. For the default
Pod network, masquerade is the only
recommended binding method. For secondary
networks, use the bridge binding method. The
masquerade method is not supported for non-
default networks.

PXE NIC List of PXE-capable networks. Only visible if PXE
has been selected as the Provision Source.

2.3.4.4. Storage fields

Name Description

Create Disk Create a new disk for the virtual machine.

Attach Disk Select an existing disk, from a list of available PVCs,
to attach to the virtual machine.

DISK NAME Name of the disk. The name can contain lower-case
letters (a-z), numbers (0-9), hyphens (-), and periods
(.), up to a maximum of 253 characters. The first and
last characters must be alphanumeric. The name
must not contain upper-case letters, spaces, or
special characters.

SIZE (GB) Size, in GB, of the disk.

OpenShift Container Platform 4.1 Container-native virtualization

24

STORAGE CLASS Name of the underlying StorageClass.

Bootable Disk List of available disks from which the virtual machine
will boot. This is locked to rootdisk if the Provision
Source of the virtual machine is URL or Container.

Name Description

2.4. IMPORTING VIRTUAL MACHINE IMAGES WITH DATAVOLUMES

You can import an existing virtual machine image into your OpenShift Container Platform cluster.
Container-native virtualization uses DataVolumes to automate the import of data and the creation of an
underlying PersistentVolumeClaim (PVC).

CAUTION

When you import a disk image into a PVC, the disk image is expanded to use the full storage capacity
that is requested in the PVC. To use this space, the disk partitions and file system(s) in the virtual
machine might need to be expanded.

The resizing procedure varies based on the operating system installed on the VM. Refer to the operating
system documentation for details.

Prerequisites

If the endpoint requires a TLS certificate, the certificate must be included in a ConfigMap in the
same namespace as the DataVolume and referenced in the DataVolume configuration.

You may need to define a StorageClass or prepare CDI scratch space for this operation to
complete successfully.

2.4.1. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content
types

HTTP HTTPS HTTP basic
auth

Registry S3 Bucket Upload

KubeVirt(Q
COW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓
QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
✓ GZ*
✓ XZ*

Archive+ ✓ TAR ✓ TAR ✓ TAR □ TAR □ TAR □ TAR

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

25

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

+ Archive does not support block mode DVs

2.4.2. About DataVolumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. DataVolumes orchestrate import, clone, and upload operations that are associated with an
underlying PersistentVolumeClaim (PVC). DataVolumes are integrated with KubeVirt, and they prevent
a virtual machine from being started before the PVC has been prepared.

2.4.3. Importing a virtual machine image into a container-native virtualization object
with DataVolumes

To create a virtual machine from an imported image, specify the image location in the VirtualMachine
configuration file before you create the virtual machine.

Prerequisites

Install the OpenShift Container Platform Command-line Interface (CLI), commonly known as oc

A virtual machine disk image, in RAW, ISO, or QCOW2 format, optionally compressed by using
xz or gz

An HTTP endpoint where the image is hosted, along with any authentication credentials needed
to access the data source

At least one available PersistentVolume

Procedure

1. Identify an HTTP file server that hosts the virtual disk image that you want to import. You need
the complete URL in the correct format:

http://www.example.com/path/to/data

2. If your data source requires authentication credentials, edit the endpoint-secret.yaml file, and
apply the updated configuration to the cluster:

apiVersion: v1
kind: Secret
metadata:
 name: <endpoint-secret>
 labels:
 app: containerized-data-importer
type: Opaque
data:
 accessKeyId: "" 1
 secretKey: "" 2

OpenShift Container Platform 4.1 Container-native virtualization

26

http://www.example.com/path/to/data

1

2

Optional: your key or user name, base64 encoded

Optional: your secret or password, base64 encoded

$ oc apply -f endpoint-secret.yaml

3. Edit the virtual machine configuration file, specifying the data source for the image you want to
import. In this example, a Fedora image is imported:

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 creationTimestamp: null
 labels:
 kubevirt.io/vm: vm-fedora-datavolume
 name: vm-fedora-datavolume
spec:
 dataVolumeTemplates:
 - metadata:
 creationTimestamp: null
 name: fedora-dv
 spec:
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 2Gi
 storageClassName: local
 source:
 http:
 url:
https://download.fedoraproject.org/pub/fedora/linux/releases/28/Cloud/x86_64/images/Fedora
-Cloud-Base-28-1.1.x86_64.qcow2 1
 secretRef: "" 2
 certConfigMap: "" 3
 status: {}
 running: false
 template:
 metadata:
 creationTimestamp: null
 labels:
 kubevirt.io/vm: vm-fedora-datavolume
 spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: datavolumedisk1
 machine:
 type: ""
 resources:
 requests:

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

27

1

2

3

1

The HTTP source of the image you want to import.

The secretRef parameter is optional.

The certConfigMap is only required if the endpoint requires authentication. The
referenced ConfigMap must be in the same namespace as the DataVolume.

4. Create the virtual machine:

$ oc create -f vm-<name>-datavolume.yaml

NOTE

The oc create command creates the DataVolume and the virtual machine. The
CDI controller creates an underlying PVC with the correct annotation, and the
import process begins. When the import completes, the DataVolume status
changes to Succeeded, and the virtual machine is allowed to start.

DataVolume provisioning happens in the background, so there is no need to
monitor it. You can start the virtual machine, and it will not run until the import is
complete.

Optional verification steps

1. Run oc get pods and look for the importer Pod. This Pod downloads the image from the
specified URL and stores it on the provisioned PV.

2. Monitor the DataVolume status until it shows Succeeded.

$ oc describe dv <data-label> 1

The data label for the DataVolume specified in the virtual machine configuration file.

3. To verify that provisioning is complete and that the VMI has started, try accessing its serial
console:

$ virtctl console <vm-fedora-datavolume>

2.4.4. Template: DataVolume virtual machine configuration file

example-dv-vm.yaml

 memory: 64M
 terminationGracePeriodSeconds: 0
 volumes:
 - dataVolume:
 name: fedora-dv
 name: datavolumedisk1
status: {}

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine

OpenShift Container Platform 4.1 Container-native virtualization

28

1 The HTTP source of the image you want to import, if applicable.

2.4.5. Template: DataVolume import configuration file

example-import-dv.yaml

metadata:
 labels:
 kubevirt.io/vm: example-vm
 name: example-vm
spec:
 dataVolumeTemplates:
 - metadata:
 name: example-dv
 spec:
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1G
 source:
 http:
 url: "" 1
 running: false
 template:
 metadata:
 labels:
 kubevirt.io/vm: example-vm
 spec:
 domain:
 cpu:
 cores: 1
 devices:
 disks:
 - disk:
 bus: virtio
 name: example-dv-disk
 machine:
 type: q35
 resources:
 requests:
 memory: 1G
 terminationGracePeriodSeconds: 0
 volumes:
 - dataVolume:
 name: example-dv
 name: example-dv-disk

apiVersion: cdi.kubevirt.io/v1alpha1
kind: DataVolume
metadata:
 name: "example-import-dv"
spec:

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

29

1

2

The HTTP source of the image you want to import.

The secretRef parameter is optional.

2.5. EDITING VIRTUAL MACHINES

Edit a virtual machine by completing one of the following tasks:

Using the web console

Editing the virtual machine YAML configuration

Using the CLI

2.5.1. Using the web console to edit a virtual machine

Edit select values of a virtual machine in the Virtual Machine Overview screen of the web console.
Other values can be edited using the CLI. Changes do not display until you reboot the virtual machine.

Prerequisites

When editing from the Virtual Machine Overview screen, the virtual machine must be Off.

Procedure

1. Click Workloads → Virtual Machines from the side menu.

2. Select a Virtual Machine.

3. Click Edit to make editable fields available.

4. You can change the Flavor but only to Custom, which provides additional fields for CPU and
Memory.

5. Click Save.
The values and virtual machine are updated after the operation is processed.

If the virtual machine is running, changes will not display until the virtual machine is rebooted.

2.5.2. Editing the virtual machine YAML configuration

Edit the YAML configuration of a virtual machine the web console.

Not all parameters can be updated. If you edit values that cannot be changed and click Save, an error

 source:
 http:
 url: "" 1
 secretRef: "" 2
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: "1G"

OpenShift Container Platform 4.1 Container-native virtualization

30

Not all parameters can be updated. If you edit values that cannot be changed and click Save, an error
message indicates the parameter that was not able to be updated.

The YAML configuration can be edited while the virtual machine is Running, however the changes will
only take effect after the virtual machine has been stopped and started again.

NOTE

Navigating away from the YAML screen while editing cancels any changes to the
configuration you have made.

Procedure

1. Click Workloads → Virtual Machine from the side menu.

2. Select a virtual machine.

3. Click the YAML tab to display the editable configuration.

4. Optional: You can click Download to download the YAML file locally in its current state.

5. Edit the file and click Save.

A confirmation message shows that the modification has been successful and includes the updated
version number for the object.

2.5.3. Using the CLI to edit a virtual machine

Prerequisites

You configured your virtual machine with a YAML object configuration file.

You installed the oc CLI.

Procedure

1. Run the following command to update the virtual machine configuration.

oc edit

2. Open the object configuration.

3. Edit the YAML.

4. If you edit a running virtual machine, you need to do one of the following:

Restart the virtual machine

Run the following command for the new configuration to take effect.

oc apply

2.6. DELETING VIRTUAL MACHINES

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

31

Use one of these procedures to delete a virtual machine:

Using the web console

Using the CLI

2.6.1. Deleting a virtual machine using the web console

Deleting a virtual machine permanently removes it from the cluster.

Delete a virtual machine using the ⋮ button of the virtual machine in the Workloads → Virtual
Machines list, or using the Actions control of the Virtual Machine Details screen.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machines from the side
menu.

2. Click the ⋮ button of the virtual machine to delete and select Delete Virtual Machine.

Alternatively, click the virtual machine name to open the Virtual Machine Details screen
and click Actions → Delete Virtual Machine.

3. In the confirmation pop-up window, click Delete to permanently delete the virtual machine.

2.6.2. Deleting a virtual machine and PVCs using the CLI

When you delete a virtual machine, the PVC it uses is unbound.

If you do not plan to bind this PVC to a different VM, it is best practice to delete it, in order to maintain a
clean environment and avoid possible confusion.

Procedure

Run these commands to delete the virtual machine and the PVC.

NOTE

You can delete objects only in the project you are currently working in, unless you specify
the -n <project_name> option, for project name.

1. Run the following command to delete the virtual machine:

$ oc delete vm <fedora-vm>

2. Run the following command to delete the PVC associated with the virtual machine.

$ oc delete pvc <fedora-vm-pvc>

2.7. CONTROLLING VIRTUAL MACHINES STATES

With container-native virtualization, you can stop, start, and restart virtual machines from both the web
console and the command-line interface (CLI).

OpenShift Container Platform 4.1 Container-native virtualization

32

2.7.1. Controlling virtual machines from the web console

You can also stop, start, and restart virtual machines from the web console.

2.7.1.1. Starting a virtual machine

You can start a virtual machine from the web console.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machines.

2. Start the virtual machine from this screen, which makes it easier to perform actions on multiple
virtual machines in the one screen, or from the Virtual Machine Details screen where you can
view comprehensive details of the selected virtual machine:

Click the Options menu at the end of virtual machine and select Start Virtual
Machine.

Click the virtual machine name to open the Virtual Machine Details screen and click
Actions and select Start Virtual Machine.

3. In the confirmation window, click Start to start the virtual machine.

NOTE

When you start virtual machine that is provisioned from a URL source for the first time,
the virtual machine is in the Importing state while container-native virtualization imports
the container from the URL endpoint. Depending on the size of the image, this process
might take several minutes.

2.7.1.2. Restarting a virtual machine

You can restart a running virtual machine from the web console.

IMPORTANT

Do not restart a virtual machine while it has a status of Importing. Restarting the virtual
machine causes an error for it.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machines.

2. Restart the virtual machine from this screen, which makes it easier to perform actions on
multiple virtual machines in the one screen, or from the Virtual Machine Details screen where
you can view comprehensive details of the selected virtual machine:

Click the Options menu at the end of virtual machine and select Restart Virtual
Machine.

Click the virtual machine name to open the Virtual Machine Details screen and click

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

33

Click the virtual machine name to open the Virtual Machine Details screen and click
Actions and select Restart Virtual Machine.

3. In the confirmation window, click Restart to restart the virtual machine.

2.7.1.3. Stopping a virtual machine

You can stop a virtual machine from the web console.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machines.

2. Stop the virtual machine from this screen, which makes it easier to perform actions on multiple
virtual machines in the one screen, or from the Virtual Machine Details screen where you can
view comprehensive details of the selected virtual machine:

Click the Options menu at the end of virtual machine and select Stop Virtual
Machine.

Click the virtual machine name to open the Virtual Machine Details screen and click
Actions and select Stop Virtual Machine.

3. In the confirmation window, click Stop to stop the virtual machine.

2.7.2. CLI reference for controlling virtual machines

Use the following virtctl client utility and oc commands to change the state of the virtual machines and
display lists of the virtual machines and the virtual machine instances that represent them.

NOTE

When you run virtctl commands, you modify the virtual machines themselves, not the
virtual machine instances that represent them in the web console.

2.7.2.1. start

Start a virtual machine.

Example: Start a virtual machine in the current project

$ virtctl start <example-vm>

Example: Start a virtual machine in a specific project

$ virtctl start <example-vm> -n <project_name>

2.7.2.2. restart

Restart a running virtual machine.

Example: Restart a virtual machine in the current project

OpenShift Container Platform 4.1 Container-native virtualization

34

$ virtctl restart <example-vm>

Example: Restart a virtual machine in a specific project

$ virtctl restart <example-vm> -n <project_name>

2.7.2.3. stop

Stop a running virtual machine.

Example: Stop a virtual machine in the current project

$ virtctl stop <example-vm>

Example: Stop a virtual machine in a specific project

$ virtctl stop <example-vm> -n <project_name>

2.7.2.4. list

List the virtual machines or virtual machine instances in a project. The virtual machine instances are
abstractions that represent the virtual machines themselves.

Example: List the virtual machines in the current project

$ oc get vm

Example: List the virtual machines in a specific project

$ oc get vm -n <project_name>

Example: List the running virtual machine instances in the current project

$ oc get vmi

Example: List the running virtual machine instances in a specific project

$ oc get vmi -n <project_name>

2.8. ACCESSING VIRTUAL MACHINE CONSOLES

Container-native virtualization provides different virtual machine consoles that you can use to
accomplish different product tasks. You can access these consoles through the web console and by
using CLI commands.

2.8.1. Virtual machine console sessions

You can connect to the VNC and serial consoles of a running virtual machine from the Consoles tab in
the Virtual Machine Details screen of the web console.

There are two consoles available: the graphical VNC Console and the Serial Console. The VNC

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

35

There are two consoles available: the graphical VNC Console and the Serial Console. The VNC
Console opens by default whenever you navigate to the Consoles tab. You can switch between the
consoles using the VNC Console Serial Console list.

Console sessions remain active in the background unless they are disconnected. When the Disconnect
before switching checkbox is active and you switch consoles, the current console session is
disconnected and a new session with the selected console connects to the virtual machine. This ensures
only one console session is open at a time.

Options for the VNC Console

The Send Key button lists key combinations to send to the virtual machine.

Options for the Serial Console

Use the Disconnect button to manually disconnect the Serial Console session from the virtual machine.
Use the Reconnect button to manually open a Serial Console session to the virtual machine.

2.8.1.1. Connecting to a virtual machine with the web console

You can connect to a virtual machine by using the web console.

Procedure

1. Ensure you are in the correct project. If not, click the Project list and select the appropriate
project.

2. Click Applications → Virtual Machines to display the virtual machines in the project.

3. Select a virtual machine.

4. In the Overview tab, click the virt-launcher-<vm-name> pod.

5. Click the Terminal tab. If the terminal is blank, click the terminal and press any key to initiate
connection.

2.8.1.2. Connecting to the serial console

Connect to the Serial Console of a running virtual machine from the Consoles tab in the Virtual
Machine Details screen of the web console.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machines.

2. Select a virtual machine.

3. Click Consoles. The VNC console opens by default.

4. Click the VNC Console drop-down list and select Serial Console.

2.8.1.3. Connecting to the VNC console

Connect to the VNC console of a running virtual machine from the Consoles tab in the Virtual Machine
Details screen of the web console.

Procedure

OpenShift Container Platform 4.1 Container-native virtualization

36

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machines.

2. Select a virtual machine.

3. Click Consoles. The VNC console opens by default.

2.8.1.4. Connecting to the RDP console

The desktop viewer console, which utilizes the Remote Desktop Protocol (RDP), provides a better
console experience for connecting to Windows virtual machines.

To connect to a Windows virtual machine with RDP, download the console.rdp file for the virtual
machine from the Consoles tab in the Virtual Machine Details screen of the web console and supply it
to your preferred RDP client.

Prerequisites

A running Windows virtual machine with the QEMU guest agent installed. The qemu-guest-
agent is included in the VirtIO drivers.

A layer 2 vNIC attached to the virtual machine.

An RDP client installed on a machine on the same network as the Windows virtual machine.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machines.

2. Select a Windows virtual machine.

3. Click the Consoles tab.

4. Click the Consoles list and select Desktop Viewer.

5. In the Network Interface list, select the layer 2 vNIC.

6. Click Launch Remote Desktop to download the console.rdp file.

7. Open an RDP client and reference the console.rdp file. For example, using remmina:

$ remmina --connect /path/to/console.rdp

8. Enter the Administrator user name and password to connect to the Windows virtual machine.

2.8.2. Accessing virtual machine consoles by using CLI commands

2.8.2.1. Accessing a virtual machine instance via SSH

You can use SSH to access a virtual machine after you expose port 22 on it.

The virtctl expose command forwards a virtual machine instance port to a node port and creates a
service for enabled access. The following example creates the fedora-vm-ssh service that forwards
port 22 of the <fedora-vm> virtual machine to a port on the node:

Prerequisites

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

37

1

Prerequisites

The virtual machine instance you want to access must be running.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

Procedure

1. Run the following command to create the fedora-vm-ssh service:

$ virtctl expose vm <fedora-vm> --port=20022 --target-port=22 --name=fedora-vm-ssh --
type=NodePort 1

<fedora-vm> is the name of the virtual machine that you run the fedora-vm-ssh service
on.

2. Check the service to find out which port the service acquired:

$ oc get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
fedora-vm-ssh NodePort 127.0.0.1 <none> 20022:32551/TCP 6s

In this example, the service acquired the 32551 port.

3. Log in to the virtual machine instance via SSH. Use the ipAddress of the node and the port that
you found in the previous step:

$ ssh username@<node_IP_address> -p 32551

2.8.2.2. Accessing the serial console of a virtual machine instance

The virtctl console command opens a serial console to the specified virtual machine instance.

Prerequisites

The virt-viewer package must be installed.

The virtual machine instance you want to access must be running.

Procedure

Connect to the serial console with virtctl:

$ virtctl console <VMI>

2.8.2.3. Accessing the graphical console of a virtual machine instances with VNC

The virtctl client utility can use the remote-viewer function to open a graphical console to a running
virtual machine instance. This capability is included in the virt-viewer package.

Prerequisites

The virt-viewer package must be installed.

OpenShift Container Platform 4.1 Container-native virtualization

38

The virtual machine instance you want to access must be running.

NOTE

If you use virtctl via SSH on a remote machine, you must forward the X session to your
machine.

Procedure

1. Connect to the graphical interface with the virtctl utility:

$ virtctl vnc <VMI>

2. If the command failed, try using the -v flag to collect troubleshooting information:

$ virtctl vnc <VMI> -v 4

2.8.2.4. Connecting to a Windows virtual machine with an RDP console

The Remote Desktop Protocol (RDP) provides a better console experience for connecting to Windows
virtual machines.

To connect to a Windows virtual machine with RDP, specify the IP address of the attached L2 vNIC to
your RDP client.

Prerequisites

A running Windows virtual machine with the QEMU guest agent installed. The qemu-guest-
agent is included in the VirtIO drivers.

A layer 2 vNIC attached to the virtual machine.

An RDP client installed on a machine on the same network as the Windows virtual machine.

Procedure

1. Log in to the container-native virtualization cluster through the oc CLI tool as a user with an
access token.

$ oc login -u <user> https://<cluster.example.com>:8443

2. Use oc describe vmi to display the configuration of the running Windows virtual machine.

$ oc describe vmi <windows-vmi-name>

...
spec:
 networks:
 - name: default
 pod: {}
 - multus:
 networkName: cnv-bridge
 name: bridge-net

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

39

3. Identify and copy the IP address of the layer 2 network interface. This is 192.0.2.0 in the above
example, or 2001:db8:: if you prefer IPv6.

4. Open an RDP client and use the IP address copied in the previous step for the connection.

5. Enter the Administrator user name and password to connect to the Windows virtual machine.

2.9. USING THE CLI TOOLS

The two primary CLI tools used for managing resources in the cluster are:

The container-native virtualization virtctl client

The OpenShift Container Platform oc client

Prerequisites

You must install the virtctl client.

2.9.1. Virtctl client commands

The virtctl client is a command-line utility for managing container-native virtualization resources. The
following table contains the virtctl commands used throughout the container-native virtualization
documentation.

Table 2.3. virtctl client commands

Command Description

virtctl start <vm> Start a virtual machine.

virtctl stop <vm> Stop a virtual machine.

virtctl restart <vm> Restart a virtual machine.

...
status:
 interfaces:
 - interfaceName: eth0
 ipAddress: 198.51.100.0/24
 ipAddresses:
 198.51.100.0/24
 mac: a0:36:9f:0f:b1:70
 name: default
 - interfaceName: eth1
 ipAddress: 192.0.2.0/24
 ipAddresses:
 192.0.2.0/24
 2001:db8::/32
 mac: 00:17:a4:77:77:25
 name: bridge-net
...

OpenShift Container Platform 4.1 Container-native virtualization

40

virtctl expose <vm> Create a service that forwards a designated port of a virtual
machine or virtual machine instance and expose the service
on the specified port of the node.

virtctl console <vmi> Connect to a serial console of a virtual machine instance.

virtctl vnc <vmi> Open a VNC connection to a virtual machine instance.

virtctl image-upload <… ​> Upload a virtual machine image to a PersistentVolumeClaim.

Command Description

2.9.2. OpenShift Container Platform client commands

The OpenShift Container Platform oc client is a command-line utility for managing OpenShift Container
Platform resources. The following table contains the oc commands used throughout the container-
native virtualization documentation.

Table 2.4. oc commands

Command Description

oc login -u <user_name> Log in to the OpenShift Container Platform cluster as
<user_name>.

oc get <object_type> Display a list of objects for the specified object type in the
project.

oc describe <object_type>
<resource_name>

Display details of the specific resource in the project.

oc create -f <object_config> Create a resource in the project from a filename or from stdin.

oc edit <object_type>
<resource_name>

Edit a resource in the project.

oc delete <object_type>
<resource_name>

Delete a resource in the project.

For more comprehensive information on oc client commands, see the OpenShift Container Platform
CLI reference.

2.10. AUTOMATING MANAGEMENT TASKS

You can automate {ProductName} management tasks by using Red Hat Ansible Automation. Learn the
basics by using an Ansible Playbook to create a new virtual machine.

2.10.1. About Red Hat Ansible Automation

Ansible is an automation tool used to configure systems, deploy software, and perform rolling updates.

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/cli_reference/#cli_reference

Ansible is an automation tool used to configure systems, deploy software, and perform rolling updates.
Ansible includes support for {ProductName}, and Ansible modules enable you to automate cluster
management tasks such as template, persistent volume claim, and virtual machine operations.

Ansible provides a way to automate {ProductName} management, which you can also accomplish by
using the oc CLI tool or APIs. Ansible is unique because it allows you to integrate KubeVirt modules with
other Ansible modules.

2.10.2. Automating virtual machine creation with Red Hat Ansible Automation

You can use the kubevirt_vm Ansible Playbook to create virtual machines in your OpenShift Container
Platform cluster.

Prerequisites

Red Hat Ansible Engine version 2.8 or newer

Procedure

1. Edit an Ansible Playbook YAML file so that it includes the kubevirt_vm task:

NOTE

This snippet only includes the kubevirt_vm portion of the playbook.

2. Edit the values to reflect the virtual machine you want to create, including the namespace, the
number of cpu_cores, the memory, and the disks. For example:

3. If you want the virtual machine to boot immediately after creation, add state: running to the

 kubevirt_vm:
 namespace:
 name:
 cpu_cores:
 memory:
 disks:
 - name:
 volume:
 containerDisk:
 image:
 disk:
 bus:

 kubevirt_vm:
 namespace: default
 name: vm1
 cpu_cores: 1
 memory: 64Mi
 disks:
 - name: containerdisk
 volume:
 containerDisk:
 image: kubevirt/cirros-container-disk-demo:latest
 disk:
 bus: virtio

OpenShift Container Platform 4.1 Container-native virtualization

42

https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#kubevirt
https://access.redhat.com/products/red-hat-ansible-engine

1

3. If you want the virtual machine to boot immediately after creation, add state: running to the
YAML file. For example:

Changing this value to state: absent deletes the virtual machine, if it already exists.

4. Run the ansible-playbook command, using your playbook’s file name as the only argument:

$ ansible-playbook create-vm.yaml

5. Review the output to determine if the play was successful:

(...)
TASK [Create my first VM] **
changed: [localhost]

PLAY RECAP
**
localhost : ok=2 changed=1 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

6. If you did not include state: running in your playbook file and you want to boot the VM now, edit
the file so that it includes state: running and run the playbook again:

$ ansible-playbook create-vm.yaml

To verify that the virtual machine was created, try to access the VM console .

2.10.3. Example: Ansible Playbook for creating virtual machines

You can use the kubevirt_vm Ansible Playbook to automate virtual machine creation.

The following YAML file is an example of the kubevirt_vm playbook. It includes sample values that you
must replace with your own information if you run the playbook.

 kubevirt_vm:
 namespace: default
 name: vm1
 state: running 1
 cpu_cores: 1

- name: Ansible Playbook 1
 hosts: localhost
 connection: local
 tasks:
 - name: Create my first VM
 kubevirt_vm:
 namespace: default
 name: vm1
 cpu_cores: 1
 memory: 64Mi
 disks:
 - name: containerdisk

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

43

Additional information

Intro to Playbooks

Tools for Validating Playbooks

2.11. USING THE DEFAULT POD NETWORK WITH CONTAINER-NATIVE
VIRTUALIZATION

You can use the default Pod network with container-native virtualization. To do so, you must use the
masquerade binding method. It is the only recommended binding method for use with the default Pod
network. Do not use masquerade mode with non-default networks.

NOTE

For secondary networks, use the bridge binding method.

2.11.1. Configuring masquerade mode from the command line

You can use masquerade mode to hide a virtual machine’s outgoing traffic behind the Pod IP address.
Masquerade mode uses Network Address Translation (NAT) to connect virtual machines to the Pod
network backend through a Linux bridge.

Enable masquerade mode and allow traffic to enter the virtual machine by editing your virtual machine
configuration file.

Prerequisites

The virtual machine must be configured to use DHCP to acquire IPv4 addresses. The examples
below are configured to use DHCP.

Procedure

1. Edit the interfaces spec of your virtual machine configuration file:

 volume:
 containerDisk:
 image: kubevirt/cirros-container-disk-demo:latest
 disk:
 bus: virtio

kind: VirtualMachine
spec:
 domain:
 devices:
 interfaces:
 - name: red
 masquerade: {} 1
 ports:
 - port: 80 2
 networks:
 - name: red
 pod: {}

OpenShift Container Platform 4.1 Container-native virtualization

44

https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
https://docs.ansible.com/ansible/latest/community/other_tools_and_programs.html#validate-playbook-tools

1

2

Connect using masquerade mode

Allow incoming traffic on port 80

2. Create the virtual machine:

$ oc create -f <vm-name>.yaml

2.11.2. Web console

If you create a virtual machine from the container-native virtualization web console wizard, select the
required binding method from the Networking screen.

2.11.2.1. Networking fields

Name Description

Create NIC Create a new NIC for the virtual machine.

NIC NAME Name for the NIC.

MAC ADDRESS MAC address for the network interface. If a MAC
address is not specified, an ephemeral address is
generated for the session.

NETWORK CONFIGURATION List of available NetworkAttachmentDefinition
objects.

BINDING METHOD List of available binding methods. For the default
Pod network, masquerade is the only
recommended binding method. For secondary
networks, use the bridge binding method. The
masquerade method is not supported for non-
default networks.

PXE NIC List of PXE-capable networks. Only visible if PXE
has been selected as the Provision Source.

2.11.3. Configuration file examples

2.11.3.1. Template: virtual machine configuration file

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 name: example-vm
 namespace: default
spec:
 running: false

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

45

2.11.3.2. Template: Windows virtual machine instance configuration file

 template:
 spec:
 domain:
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 - name: cloudinitdisk
 disk:
 bus: virtio
 interfaces:
 - masquerade: {}
 name: default
 resources:
 requests:
 memory: 1024M
 networks:
 - name: default
 pod: {}
 volumes:
 - name: containerdisk
 containerDisk:
 image: kubevirt/fedora-cloud-container-disk-demo
 - name: cloudinitdisk
 cloudInitNoCloud:
 userData: |
 #!/bin/bash
 echo "fedora" | passwd fedora --stdin

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachineInstance
metadata:
 labels:
 special: vmi-windows
 name: vmi-windows
spec:
 domain:
 clock:
 timer:
 hpet:
 present: false
 hyperv: {}
 pit:
 tickPolicy: delay
 rtc:
 tickPolicy: catchup
 utc: {}
 cpu:
 cores: 2
 devices:
 disks:
 - disk:

OpenShift Container Platform 4.1 Container-native virtualization

46

2.12. ATTACHING A VIRTUAL MACHINE TO MULTIPLE NETWORKS

Container-native virtualization provides Layer-2 networking capabilities that allow you to connect virtual
machines to multiple networks. You can import virtual machines with existing workloads that depend on
access to multiple interfaces. You can also configure a PXE network so that you can boot machines over
the network.

To get started, a network administrator configures a NetworkAttachmentDefinition of type cnv-bridge.
Then, users can attach Pods, virtual machine instances, and virtual machines to the bridge network.
From the container-native virtualization web console, you can create a vNIC that refers to the bridge
network.

2.12.1. Container-native virtualization networking glossary

Container-native virtualization provides advanced networking functionality by using custom resources
and plug-ins.

The following terms are used throughout container-native virtualization documentation:

Container Network Interface (CNI)

a Cloud Native Computing Foundation project, focused on container network connectivity.
Container-native virtualization uses CNI plug-ins to build upon the basic Kubernetes networking
functionality.

Multus

a "meta" CNI plug-in that allows multiple CNIs to exist so that a Pod or virtual machine can use the

 bus: sata
 name: pvcdisk
 interfaces:
 - masquerade: {}
 model: e1000
 name: default
 features:
 acpi: {}
 apic: {}
 hyperv:
 relaxed: {}
 spinlocks:
 spinlocks: 8191
 vapic: {}
 firmware:
 uuid: 5d307ca9-b3ef-428c-8861-06e72d69f223
 machine:
 type: q35
 resources:
 requests:
 memory: 2Gi
 networks:
 - name: default
 pod: {}
 terminationGracePeriodSeconds: 0
 volumes:
 - name: pvcdisk
 persistentVolumeClaim:
 claimName: disk-windows

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

47

https://www.cncf.io/

1

a "meta" CNI plug-in that allows multiple CNIs to exist so that a Pod or virtual machine can use the
interfaces it needs.

Custom Resource Definition (CRD)

a Kubernetes API resource that allows you to define custom resources, or an object defined by using
the CRD API resource.

NetworkAttachmentDefinition

a CRD introduced by the Multus project that allows you to attach Pods, virtual machines, and virtual
machine instances to one or more networks.

Preboot eXecution Environment (PXE)

an interface that enables an administrator to boot a client machine from a server over the network.
Network booting allows you to remotely load operating systems and other software onto the client.

2.12.2. Connecting a resource to a bridge-based network

As a network administrator, you can configure a NetworkAttachmentDefinition of type cnv-bridge to
provide Layer-2 networking to Pods and virtual machines.

Prerequisites

Container-native virtualization 2.0 or newer

A Linux bridge must be configured and attached to the correct Network Interface Card on every
node.

If you use VLANs, vlan_filtering must be enabled on the bridge.

The NIC must be tagged to all relevant VLANs.

For example: bridge vlan add dev bond0 vid 1-4095 master

Procedure

1. Create a new file for the NetworkAttachmentDefinition in any local directory. The file must have
the following contents, modified to match your configuration:

If you add this annotation to your NetworkAttachmentDefinition, your virtual machine
instances will only run on nodes that have the br0 bridge connected.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: a-bridge-network
 annotations:
 k8s.v1.cni.cncf.io/resourceName: bridge.network.kubevirt.io/br0 1
spec:
 config: '{
 "cniVersion": "0.3.0",
 "name": "a-bridge-network", 2
 "type": "cnv-bridge", 3
 "bridge": "br0", 4
 "isGateway": true,
 "ipam": {}
}'

OpenShift Container Platform 4.1 Container-native virtualization

48

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

2

3

4

1

The name value is part of the annotation you will use in the next step.

The actual name of the Container Network Interface (CNI) plug-in that provides the
network for this NetworkAttachmentDefinition. Do not change this field unless you want to
use a different CNI.

You must substitute the actual name of the bridge, if it is not br0.

$ oc create -f <resource_spec.yaml>

2. Edit the configuration file of a virtual machine or virtual machine instance that you want to
connect to the bridge network:

You must substitute the actual name value from the NetworkAttachmentDefinition.

In this example, the NetworkAttachmentDefinition and Pod are in the same namespace.

To specify a different namespace, use the following syntax:

3. Apply the configuration file to the resource:

$ oc create -f <local/path/to/network-attachment-definition.yaml>

NOTE

When defining the vNIC in the next section, ensure that the NETWORK value is the
bridge network name from the NetworkAttachmentDefinition you created in the previous
section.

2.12.3. Creating a NIC for a virtual machine

Create and attach additional NICs to a virtual machine from the web console.

Procedure

1. In the correct project in the container-native virtualization console, click Workloads → Virtual
Machines.

apiVersion: v1
kind: VirtualMachine
metadata:
 name: example-vm
 annotations:
 k8s.v1.cni.cncf.io/networks: a-bridge-network 1
spec:
...

...
 annotations:
 k8s.v1.cni.cncf.io/networks: <namespace>/a-bridge-network
...

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

49

2. Select a virtual machine template.

3. Click Network Interfaces to display the NICs already attached to the virtual machine.

4. Click Create NIC to create a new slot in the list.

5. Fill in the NAME, NETWORK, MAC ADDRESS, and BINDING METHOD for the new NIC.

6. Click the ✓ button to save and attach the NIC to the virtual machine.

2.12.4. Networking fields

Name Description

Create NIC Create a new NIC for the virtual machine.

NIC NAME Name for the NIC.

MAC ADDRESS MAC address for the network interface. If a MAC
address is not specified, an ephemeral address is
generated for the session.

NETWORK CONFIGURATION List of available NetworkAttachmentDefinition
objects.

BINDING METHOD List of available binding methods. For the default
Pod network, masquerade is the only
recommended binding method. For secondary
networks, use the bridge binding method. The
masquerade method is not supported for non-
default networks.

PXE NIC List of PXE-capable networks. Only visible if PXE
has been selected as the Provision Source.

Install the optional QEMU guest agent on the virtual machine so that the host can display relevant
information about the additional networks.

2.13. INSTALLING THE QEMU GUEST AGENT ON VIRTUAL MACHINES

The QEMU guest agent is a daemon that runs on the virtual machine. The agent passes network
information on the virtual machine, notably the IP address of additional networks, to the host.

2.13.1. Installing QEMU guest agent on a Linux virtual machine

The qemu-guest-agent is widely available and available by default in Red Hat virtual machines. Install
the agent and start the service

Procedure

1. Access the virtual machine command line through one of the consoles or by SSH.

OpenShift Container Platform 4.1 Container-native virtualization

50

2. Install the QEMU guest agent on the virtual machine:

$ yum install -y qemu-guest-agent

3. Start the QEMU guest agent service:

$ systemctl start qemu-guest-agent

4. Ensure the service is persistent:

$ systemctl enable qemu-guest-agent

You can also install and start the QEMU guest agent using the cloud-init:*Use custom script* field of
the wizard when creating either virtual machines or virtual machines templates in the web console.

For Windows virtual machines, the QEMU guest agent is included in the VirtIO drivers, which can be
installed on an existing Windows virtual machine or during the installation of Windows on the virtual
machine.

2.14. VIEWING THE IP ADDRESS OF VNICS ON A VIRTUAL MACHINE

The QEMU guest agent runs on the virtual machine and passes the IP address of attached vNICs to the
host, allowing you to view the IP address from both the web console and the oc client.

Prerequisites

The QEMU guest agent must be installed and running on the virtual machine.

2.14.1. Viewing the IP address of a virtual machine interface in the CLI

The network interface configuration is included in the oc describe vmi <vmi_name> command.

You can also view the IP address information by running ip addr on the virtual machine, or by running oc
get vmi <vmi_name> -o yaml.

Procedure

Use the oc describe command to display the virtual machine interface configuration:

$ oc describe vmi <vmi_name>

...
Interfaces:
 Interface Name: eth0
 Ip Address: 10.244.0.37/24
 Ip Addresses:
 10.244.0.37/24
 fe80::858:aff:fef4:25/64
 Mac: 0a:58:0a:f4:00:25
 Name: default
 Interface Name: v2
 Ip Address: 1.1.1.7/24
 Ip Addresses:

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

51

 1.1.1.7/24
 fe80::f4d9:70ff:fe13:9089/64
 Mac: f6:d9:70:13:90:89
 Interface Name: v1
 Ip Address: 1.1.1.1/24
 Ip Addresses:
 1.1.1.1/24
 1.1.1.2/24
 1.1.1.4/24
 2001:de7:0:f101::1/64
 2001:db8:0:f101::1/64
 fe80::1420:84ff:fe10:17aa/64
 Mac: 16:20:84:10:17:aa

2.14.2. Viewing the IP address of a virtual machine interface in the web console

The IP information displays in the Virtual Machine Overview screen for the virtual machine.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machines.

2. Click the virtual machine name to open the Virtual Machine Overview screen.

The information for each attached vNIC is displayed under IP ADDRESSES.

2.15. CONFIGURING PXE BOOTING FOR VIRTUAL MACHINES

PXE booting, or network booting, is available in container-native virtualization. Network booting allows a
computer to boot and load an operating system or other program without requiring a locally attached
storage device. For example, you can use it to choose your desired OS image from a PXE server when
deploying a new host.

Prerequisites

A Linux bridge must be connected.

The PXE server must be connected to the same VLAN as the bridge.

2.15.1. Container-native virtualization networking glossary

Container-native virtualization provides advanced networking functionality by using custom resources
and plug-ins.

The following terms are used throughout container-native virtualization documentation:

Container Network Interface (CNI)

a Cloud Native Computing Foundation project, focused on container network connectivity.
Container-native virtualization uses CNI plug-ins to build upon the basic Kubernetes networking
functionality.

Multus

a "meta" CNI plug-in that allows multiple CNIs to exist so that a Pod or virtual machine can use the
interfaces it needs.

OpenShift Container Platform 4.1 Container-native virtualization

52

https://www.cncf.io/

1

Custom Resource Definition (CRD)

a Kubernetes API resource that allows you to define custom resources, or an object defined by using
the CRD API resource.

NetworkAttachmentDefinition

a CRD introduced by the Multus project that allows you to attach Pods, virtual machines, and virtual
machine instances to one or more networks.

Preboot eXecution Environment (PXE)

an interface that enables an administrator to boot a client machine from a server over the network.
Network booting allows you to remotely load operating systems and other software onto the client.

2.15.2. PXE booting with a specified MAC address

As an administrator, you can boot a client over the network by first creating a
NetworkAttachmentDefinition object for your PXE network. Then, reference the
NetworkAttachmentDefinition in your virtual machine instance configuration file before you start the
virtual machine instance. You can also specify a MAC address in the virtual machine instance
configuration file, if required by the PXE server.

Prerequisites

A Linux bridge must be connected.

The PXE server must be connected to the same VLAN as the bridge.

Procedure

1. Configure a PXE network on the cluster:

a. Create the NetworkAttachmentDefinition file for PXE network pxe-net-conf:

The cnv-tuning plug-in provides support for custom MAC addresses.

NOTE

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: pxe-net-conf
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "pxe-net-conf",
 "plugins": [
 {
 "type": "cnv-bridge",
 "bridge": "br1",
 "ipam": {}
 },
 {
 "type": "cnv-tuning" 1
 }
]
 }'

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

53

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

NOTE

The virtual machine instance will be attached to the bridge br1 through an
access port with the requested VLAN.

2. Create the NetworkAttachmentDefinition object by using the file you created in the previous
step:

$ oc create -f pxe-net-conf.yaml

3. Edit the virtual machine instance configuration file to include the details of the interface and
network.

a. Specify the network and MAC address, if required by the PXE server. If the MAC address is
not specified, a value is assigned automatically. However, note that at this time, MAC
addresses assigned automatically are not persistent.
Ensure that bootOrder is set to 1 so that the interface boots first. In this example, the
interface is connected to a network called <pxe-net>:

interfaces:
- masquerade: {}
 name: default
- bridge: {}
 name: pxe-net
 macAddress: de:00:00:00:00:de
 bootOrder: 1

NOTE

Boot order is global for interfaces and disks.

b. Assign a boot device number to the disk to ensure proper booting after operating system
provisioning.
Set the disk bootOrder value to 2:

devices:
 disks:
 - disk:
 bus: virtio
 name: containerdisk
 bootOrder: 2

c. Specify that the network is connected to the previously created
NetworkAttachmentDefinition. In this scenario, <pxe-net> is connected to the
NetworkAttachmentDefinition called <pxe-net-conf>:

networks:
- name: default
 pod: {}
- name: pxe-net
 multus:
 networkName: pxe-net-conf

OpenShift Container Platform 4.1 Container-native virtualization

54

4. Create the virtual machine instance:

$ oc create -f vmi-pxe-boot.yaml
 virtualmachineinstance.kubevirt.io "vmi-pxe-boot" created

5. Wait for the virtual machine instance to run:

$ oc get vmi vmi-pxe-boot -o yaml | grep -i phase
 phase: Running

6. View the virtual machine instance using VNC:

$ virtctl vnc vmi-pxe-boot

7. Watch the boot screen to verify that the PXE boot is successful.

8. Log in to the virtual machine instance:

$ virtctl console vmi-pxe-boot

9. Verify the interfaces and MAC address on the virtual machine and that the interface connected
to the bridge has the specified MAC address. In this case, we used eth1 for the PXE boot,
without an IP address. The other interface, eth0, got an IP address from OpenShift Container
Platform.

$ ip addr
...
3. eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen
1000
 link/ether de:00:00:00:00:de brd ff:ff:ff:ff:ff:ff

2.15.3. Template: virtual machine instance configuration file for PXE booting

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachineInstance
metadata:
 creationTimestamp: null
 labels:
 special: vmi-pxe-boot
 name: vmi-pxe-boot
spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: containerdisk
 bootOrder: 2
 - disk:
 bus: virtio
 name: cloudinitdisk
 interfaces:
 - masquerade: {}

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

55

2.16. MANAGING GUEST MEMORY

If you want to adjust guest memory settings to suit a specific use case, you can do so by editing the
guest’s YAML configuration file. Container-native virtualization allows you to configure guest memory
overcommitment and disable guest memory overhead accounting.

Both of these procedures carry some degree of risk. Proceed only if you are an experienced
administrator.

2.16.1. Configuring guest memory overcommitment

If your virtual workload requires more memory than available, you can use memory overcommitment to
allocate all or most of the host’s memory to your virtual machine instances. Enabling memory
overcommitment means you can maximize resources that are normally reserved for the host.

For example, if the host has 32 GB RAM, you can use memory overcommitment to fit 8 virtual machines
with 4 GB RAM each. This allocation works under the assumption that the virtual machines will not use
all of their memory at the same time.

Procedure

1. To explicitly tell the virtual machine instance that it has more memory available than was
requested from the cluster, edit the virtual machine configuration file and set
spec.domain.memory.guest to a higher value than
spec.domain.resources.requests.memory. This process is called memory overcommitment.

In this example, 1024M is requested from the cluster, but the virtual machine instance is told

 name: default
 - bridge: {}
 name: pxe-net
 macAddress: de:00:00:00:00:de
 bootOrder: 1
 machine:
 type: ""
 resources:
 requests:
 memory: 1024M
 networks:
 - name: default
 pod: {}
 - multus:
 networkName: pxe-net-conf
 name: pxe-net
 terminationGracePeriodSeconds: 0
 volumes:
 - name: containerdisk
 containerDisk:
 image: kubevirt/fedora-cloud-container-disk-demo
 - cloudInitNoCloud:
 userData: |
 #!/bin/bash
 echo "fedora" | passwd fedora --stdin
 name: cloudinitdisk
status: {}

OpenShift Container Platform 4.1 Container-native virtualization

56

In this example, 1024M is requested from the cluster, but the virtual machine instance is told
that it has 2048M available. As long as there is enough free memory available on the node, the
virtual machine instance will consume up to 2048M.

NOTE

The same eviction rules as those for Pods apply to the virtual machine instance if
the node is under memory pressure.

2. Create the virtual machine:

$ oc create -f <file name>.yaml

2.16.2. Disabling guest memory overhead accounting

WARNING

This procedure is only useful in certain use-cases and must only be attempted by
advanced users.

A small amount of memory is requested by each virtual machine instance in addition to the amount that
you request. This additional memory is used for the infrastructure that wraps each
VirtualMachineInstance process.

Though it is not usually advisable, it is possible to increase the virtual machine instance density on the
node by disabling guest memory overhead accounting.

Procedure

1. To disable guest memory overhead accounting, edit the YAML configuration file and set the
overcommitGuestOverhead value to true. This parameter is disabled by default.

kind: VirtualMachine
spec:
 template:
 domain:
 resources:
 requests:
 memory: 1024M
 memory:
 guest: 2048M



kind: VirtualMachine
spec:
 template:
 domain:
 resources:

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

57

NOTE

If overcommitGuestOverhead is enabled, it adds the guest overhead to memory
limits, if present.

2. Create the virtual machine:

$ oc create -f <file name>.yaml

2.17. CREATING VIRTUAL MACHINE TEMPLATES

Using Virtual machines templates is an easy way to create multiple virtual machines with similar
configuration. After a template is created, reference the template when creating virtual machines.

2.17.1. Creating a virtual machine template with the interactive wizard in the web
console

The web console features an interactive wizard that guides you through the Basic Settings,
Networking, and Storage screens to simplify the process of creating virtual machine templates. All
required fields are marked with a *. The wizard prevents you from moving to the next screen until you
provide values in the required fields.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machine Templates.

2. Click Create Template and select Create with Wizard.

3. Fill in all required Basic Settings.

4. Click Next to progress to the Networking screen. A NIC that is named nic0 is attached by
default.

a. Optional: Click Create NIC to create additional NICs.

b. Optional: You can remove any or all NICs by clicking the Options menu and selecting
Remove NIC. Virtual machines created from a template do not need a NIC attached. NICs
can be created after a virtual machine has been created.

5. Click Next to progress to the Storage screen.

a. Optional: Click Create Disk to create additional disks.

b. Optional: Click a disk to modify available fields. Click the ✓ button to save the changes.

c. Optional: Click Attach Disk to choose an available disk from the Select Storage list.

NOTE

 overcommitGuestOverhead: true
 requests:
 memory: 1024M

OpenShift Container Platform 4.1 Container-native virtualization

58

NOTE

If either URL or Container are selected as the Provision Source in the Basic
Settings screen, a rootdisk disk is created and attached to virtual machines
as the Bootable Disk. You can modify the rootdisk but you cannot remove
it.

A Bootable Disk is not required for virtual machines provisioned from a PXE
source if there are no disks attached to the virtual machine. If one or more
disks are attached to the virtual machine, you must select one as the
Bootable Disk.

6. Click Create Virtual Machine Template >. The Results screen displays the JSON configuration
file for the virtual machine template.
The template is listed in Workloads → Virtual Machine Templates.

2.17.2. Virtual machine template interactive wizard fields

The following tables describe the fields for the Basic Settings, Networking, and Storage panes in the
Create Virtual Machine Template interactive wizard.

2.17.2.1. Virtual machine template wizard fields

Name Parameter Description

Name The name can contain lower-case
letters (a-z), numbers (0-9), and
hyphens (-), up to a maximum of
253 characters. The first and last
characters must be alphanumeric.
The name must not contain
upper-case letters, spaces,
periods (.), or special characters.

Description Optional description field.

Provision Source PXE Provision virtual machine from
PXE menu. Requires a PXE-
capable NIC in the cluster.

URL Provision virtual machine from an
image available from an HTTP or
S3 endpoint.

Container Provision virtual machine from a
bootable operating system
container located in a registry
accessible from the cluster.
Example: kubevirt/cirros-
registry-disk-demo.

Cloned Disk Provision source is a cloned disk.

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

59

Import Import virtual machine from a
supported provider.

Operating System A list of operating systems
available in the cluster. This is the
primary operating system for the
virtual machine. If you select
Import as the Provider Source,
the operating system is filled in
automatically, based on the
operating system of the VMware
virtual machine being imported.

Flavor small, medium, large, tiny, Custom Presets that determine the
amount of CPU and memory
allocated to the virtual machine.

Workload Profile desktop A virtual machine configuration
for use on a desktop.

generic A virtual machine configuration
that balances performance and
compatibility for a broad range of
workloads.

high performance A virtual machine configuration
that is optimized for high-
performance loads.

Use cloud-init Select to enable the cloud-init
fields.

Name Parameter Description

2.17.2.2. Cloud-init fields

Name Description

Hostname Sets a specific host name for the virtual machine.

Authenticated SSH Keys The user’s public key that is copied to
~/.ssh/authorized_keys on the virtual machine.

Use custom script Replaces other options with a field in which you paste
a custom cloud-init script.

2.17.2.3. Networking fields

OpenShift Container Platform 4.1 Container-native virtualization

60

Name Description

Create NIC Create a new NIC for the virtual machine.

NIC NAME Name for the NIC.

MAC ADDRESS MAC address for the network interface. If a MAC
address is not specified, an ephemeral address is
generated for the session.

NETWORK CONFIGURATION List of available NetworkAttachmentDefinition
objects.

BINDING METHOD List of available binding methods. For the default
Pod network, masquerade is the only
recommended binding method. For secondary
networks, use the bridge binding method. The
masquerade method is not supported for non-
default networks.

PXE NIC List of PXE-capable networks. Only visible if PXE
has been selected as the Provision Source.

2.17.2.4. Storage fields

Name Description

Create Disk Create a new disk for the virtual machine.

Attach Disk Select an existing disk, from a list of available PVCs,
to attach to the virtual machine.

DISK NAME Name of the disk. The name can contain lower-case
letters (a-z), numbers (0-9), hyphens (-), and periods
(.), up to a maximum of 253 characters. The first and
last characters must be alphanumeric. The name
must not contain upper-case letters, spaces, or
special characters.

SIZE (GB) Size, in GB, of the disk.

STORAGE CLASS Name of the underlying StorageClass.

Bootable Disk List of available disks from which the virtual machine
will boot. This is locked to rootdisk if the Provision
Source of the virtual machine is URL or Container.

2.18. EDITING A VIRTUAL MACHINE TEMPLATE

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

61

You can edit a virtual machine template in the web console.

2.18.1. Editing a virtual machine template in the web console

You can edit the YAML configuration of a virtual machine template from the web console.

Not all parameters can be modified. If you click Save with an invalid configuration, an error message
indicates the parameter that cannot be modified.

NOTE

Navigating away from the YAML screen while editing cancels any changes to the
configuration that you made.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machine Templates.

2. Select a template.

3. Click the YAML tab to display the editable configuration.

4. Edit the file and click Save.

A confirmation message, which includes the updated version number for the object, shows the
modification has been successful.

2.19. DELETING A VIRTUAL MACHINE TEMPLATE

You can delete a virtual machine template in the web console.

2.19.1. Deleting a virtual machine template in the web console

Deleting a virtual machine template permanently removes it from the cluster.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machine Templates.

2. You can delete the virtual machine template from this pane, which makes it easier to perform
actions on multiple templates in the one pane, or from the Virtual Machine Template Details
pane where you can view comprehensive details of the selected template:

Click the Options menu of the template to delete and select Delete Template.

Click the template name to open the Virtual Machine Template Details pane and click
Actions → Delete Template.

3. In the confirmation pop-up window, click Delete to permanently delete the template.

2.20. CLONING A VIRTUAL MACHINE DISK INTO A NEW DATAVOLUME

You can clone the PersistentVolumeClaim (PVC) of a virtual machine disk into a new DataVolume by

OpenShift Container Platform 4.1 Container-native virtualization

62

You can clone the PersistentVolumeClaim (PVC) of a virtual machine disk into a new DataVolume by
referencing the source PVC in your DataVolume configuration file.

Prerequisites

You may need to define a StorageClass or prepare CDI scratch space for this operation to
complete successfully. The CDI supported operations matrix shows the conditions that require
scratch space.

2.20.1. About DataVolumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. DataVolumes orchestrate import, clone, and upload operations that are associated with an
underlying PersistentVolumeClaim (PVC). DataVolumes are integrated with KubeVirt, and they prevent
a virtual machine from being started before the PVC has been prepared.

2.20.2. Cloning the PersistentVolumeClaim of a virtual machine disk into a new
DataVolume

You can clone a PersistentVolumeClaim (PVC) of an existing virtual machine disk into a new
DataVolume. The new DataVolume can then be used for a new virtual machine.

NOTE

When a DataVolume is created independently of a virtual machine, the lifecycle of the
DataVolume is independent of the virtual machine. If the virtual machine is deleted,
neither the DataVolume nor its associated PVC is deleted.

Prerequisites

Determine the PVC of an existing virtual machine disk to use. You must power down the virtual
machine that is associated with the PVC before you can clone it.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

Procedure

1. Examine the virtual machine disk you want to clone to identify the name and namespace of the
associated PVC.

2. Create a YAML file for a DataVolume object that specifies the name of the new DataVolume,
the name and namespace of the source PVC, and the size of the new DataVolume.
For example:

apiVersion: cdi.kubevirt.io/v1alpha1
kind: DataVolume
metadata:
 name: cloner-datavolume 1
spec:
 source:
 pvc:
 namespace: "<source-namespace>" 2
 name: "<my-favorite-vm-disk>" 3
 pvc:

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

63

1

2

3

4

The name of the new DataVolume.

The namespace where the source PVC exists.

The name of the source PVC.

The size of the new DataVolume. You must allocate enough space, or the cloning operation
fails. The size must be the same or larger as the source PVC.

3. Start cloning the PVC by creating the DataVolume:

$ oc create -f <cloner-datavolume>.yaml

NOTE

DataVolumes prevent a virtual machine from starting before the PVC is
prepared, so you can create a virtual machine that references the new
DataVolume while the PVC clones.

2.20.3. Template: DataVolume clone configuration file

example-clone-dv.yaml

2.20.4. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 500Mi 4

apiVersion: cdi.kubevirt.io/v1alpha1
kind: DataVolume
metadata:
 name: "example-clone-dv"
spec:
 source:
 pvc:
 name: source-pvc
 namespace: example-ns
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: "1G"

OpenShift Container Platform 4.1 Container-native virtualization

64

Content
types

HTTP HTTPS HTTP basic
auth

Registry S3 Bucket Upload

KubeVirt(Q
COW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓
QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
✓ GZ*
✓ XZ*

Archive+ ✓ TAR ✓ TAR ✓ TAR □ TAR □ TAR □ TAR

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

+ Archive does not support block mode DVs

2.21. CLONING A VIRTUAL MACHINE BY USING A
DATAVOLUMETEMPLATE

You can create a new virtual machine by cloning the PersistentVolumeClaim (PVC) of an existing VM. By
including a dataVolumeTemplate in your virtual machine configuration file, you create a new
DataVolume from the original PVC.

Prerequisites

You may need to define a StorageClass or prepare CDI scratch space for this operation to
complete successfully. The CDI supported operations matrix shows the conditions that require
scratch space.

2.21.1. About DataVolumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. DataVolumes orchestrate import, clone, and upload operations that are associated with an
underlying PersistentVolumeClaim (PVC). DataVolumes are integrated with KubeVirt, and they prevent
a virtual machine from being started before the PVC has been prepared.

2.21.2. Creating a new virtual machine from a cloned PersistentVolumeClaim by
using a DataVolumeTemplate

You can create a virtual machine that clones the PersistentVolumeClaim (PVC) of an existing virtual
machine into a DataVolume. By referencing a dataVolumeTemplate in the virtual machine spec, the
source PVC is cloned to a DataVolume, which is then automatically used for the creation of the virtual
machine.

NOTE

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

65

NOTE

When a DataVolume is created as part of the DataVolumeTemplate of a virtual machine,
the lifecycle of the DataVolume is then dependent on the virtual machine. If the virtual
machine is deleted, the DataVolume and associated PVC are also deleted.

Prerequisites

Determine the PVC of an existing virtual machine disk to use. You must power down the virtual
machine that is associated with the PVC before you can clone it.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

Procedure

1. Examine the virtual machine you want to clone to identify the name and namespace of the
associated PVC.

2. Create a YAML file for a VirtualMachine object. The following virtual machine example clones
my-favorite-vm-disk, which is located in the source-namespace namespace. The 2Gi
DataVolume called favorite-clone is created from my-favorite-vm-disk.
For example:

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 labels:
 kubevirt.io/vm: vm-dv-clone
 name: vm-dv-clone 1
spec:
 running: false
 template:
 metadata:
 labels:
 kubevirt.io/vm: vm-dv-clone
 spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: root-disk
 resources:
 requests:
 memory: 64M
 volumes:
 - dataVolume:
 name: favorite-clone
 name: root-disk
 dataVolumeTemplates:
 - metadata:
 name: favorite-clone
 spec:
 pvc:
 accessModes:

OpenShift Container Platform 4.1 Container-native virtualization

66

1 The virtual machine to create.

3. Create the virtual machine with the PVC-cloned DataVolume:

$ oc create -f <vm-clone-datavolumetemplate>.yaml

2.21.3. Template: DataVolume virtual machine configuration file

example-dv-vm.yaml

 - ReadWriteOnce
 resources:
 requests:
 storage: 2Gi
 source:
 pvc:
 namespace: "source-namespace"
 name: "my-favorite-vm-disk"

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 labels:
 kubevirt.io/vm: example-vm
 name: example-vm
spec:
 dataVolumeTemplates:
 - metadata:
 name: example-dv
 spec:
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1G
 source:
 http:
 url: "" 1
 running: false
 template:
 metadata:
 labels:
 kubevirt.io/vm: example-vm
 spec:
 domain:
 cpu:
 cores: 1
 devices:
 disks:
 - disk:
 bus: virtio
 name: example-dv-disk
 machine:

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

67

1 The HTTP source of the image you want to import, if applicable.

2.21.4. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content
types

HTTP HTTPS HTTP basic
auth

Registry S3 Bucket Upload

KubeVirt(Q
COW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓
QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
✓ GZ*
✓ XZ*

Archive+ ✓ TAR ✓ TAR ✓ TAR □ TAR □ TAR □ TAR

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

+ Archive does not support block mode DVs

2.22. UPLOADING LOCAL DISK IMAGES BY USING THE VIRTCTL TOOL

You can upload a disk image that is stored locally by using the virtctl command-line utility.

Prerequisites

Install the kubevirt-virtctl package

You may need to define a StorageClass or prepare CDI scratch space for this operation to
complete successfully.

 type: q35
 resources:
 requests:
 memory: 1G
 terminationGracePeriodSeconds: 0
 volumes:
 - dataVolume:
 name: example-dv
 name: example-dv-disk

OpenShift Container Platform 4.1 Container-native virtualization

68

2.22.1. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content
types

HTTP HTTPS HTTP basic
auth

Registry S3 Bucket Upload

KubeVirt(Q
COW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓
QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
✓ GZ*
✓ XZ*

Archive+ ✓ TAR ✓ TAR ✓ TAR □ TAR □ TAR □ TAR

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

+ Archive does not support block mode DVs

2.22.2. Uploading a local disk image to a new PersistentVolumeClaim

You can use the virtctl CLI utility to upload a virtual machine disk image from a client machine to your
cluster. Uploading the disk image creates a PersistentVolumeClaim (PVC) that you can associate with a
virtual machine.

Prerequisites

A virtual machine disk image, in RAW, ISO, or QCOW2 format, optionally compressed by using
xz or gz.

The kubevirt-virtctl package must be installed on the client machine.

The client machine must be configured to trust the OpenShift Container Platform router’s
certificate.

Procedure

1. Identify the following items:

File location of the VM disk image you want to upload

Name and size required for the resulting PVC

2. Run the virtctl image-upload command to upload your VM image. You must specify the PVC

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

69

2. Run the virtctl image-upload command to upload your VM image. You must specify the PVC
name, PVC size, and file location. For example:

$ virtctl image-upload --pvc-name=upload-fedora-pvc --pvc-size=10Gi --image-
path=/images/fedora28.qcow2

CAUTION

To allow insecure server connections when using HTTPS, use the --insecure parameter. Be
aware that when you use the --insecure flag, the authenticity of the upload endpoint is not
verified.

3. To verify that the PVC was created, view all PVC objects:

$ oc get pvc

2.23. EXPANDING VIRTUAL STORAGE BY ADDING BLANK DISK
IMAGES

You can increase your storage capacity or create new data partitions by adding blank disk images to
container-native virtualization.

2.23.1. About DataVolumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. DataVolumes orchestrate import, clone, and upload operations that are associated with an
underlying PersistentVolumeClaim (PVC). DataVolumes are integrated with KubeVirt, and they prevent
a virtual machine from being started before the PVC has been prepared.

2.23.2. Creating a blank disk image with DataVolumes

You can create a new blank disk image in a PersistentVolumeClaim by customizing and deploying a
DataVolume configuration file.

Prerequisites

At least one available PersistentVolume

Install the OpenShift Command-line Interface (CLI), commonly known as oc

Procedure

1. Edit the DataVolume configuration file:

apiVersion: cdi.kubevirt.io/v1alpha1
kind: DataVolume
metadata:
 name: blank-image-datavolume
spec:
 source:
 blank: {}
 pvc:

OpenShift Container Platform 4.1 Container-native virtualization

70

2. Create the blank disk image by running the following command:

$ oc create -f <blank-image-datavolume>.yaml

2.23.3. Template: DataVolume configuration file for blank disk images

blank-image-datavolume.yaml

2.24. PREPARING CDI SCRATCH SPACE

2.24.1. About DataVolumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. DataVolumes orchestrate import, clone, and upload operations that are associated with an
underlying PersistentVolumeClaim (PVC). DataVolumes are integrated with KubeVirt, and they prevent
a virtual machine from being started before the PVC has been prepared.

2.24.2. Understanding scratch space

The Containerized Data Importer (CDI) requires scratch space (temporary storage) to complete some
operations, such as importing and uploading virtual machine images. During this process, the CDI
provisions a scratch space PVC equal to the size of the PVC backing the destination DataVolume (DV).
The scratch space PVC is deleted after the operation completes or aborts.

The CDIConfig object allows you to define which StorageClass to use to bind the scratch space PVC by
setting the scratchSpaceStorageClass in the spec: section of the CDIConfig object.

If the defined StorageClass does not match a StorageClass in the cluster, then the default StorageClass

 # Optional: Set the storage class or omit to accept the default
 # storageClassName: "hostpath"
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 500Mi

apiVersion: cdi.kubevirt.io/v1alpha1
kind: DataVolume
metadata:
 name: blank-image-datavolume
spec:
 source:
 blank: {}
 pvc:
 # Optional: Set the storage class or omit to accept the default
 # storageClassName: "hostpath"
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 500Mi

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

71

If the defined StorageClass does not match a StorageClass in the cluster, then the default StorageClass
defined for the cluster is used. If there is no default StorageClass defined in the cluster, the
StorageClass used to provision the original DV or PVC is used.

NOTE

The CDI requires requesting scratch space with a file volume mode, regardless of the
PVC backing the origin DataVolume. If the origin PVC is backed by block volume mode,
you must define a StorageClass capable of provisioning file volume mode PVCs.

Manual provisioning
If there are no storage classes, the CDI will use any PVCs in the project that match the size requirements
for the image. If there are no PVCs that match these requirements, the CDI import Pod will remain in a
Pending state until an appropriate PVC is made available or until a timeout function kills the Pod.

2.24.3. Defining a StorageClass in the CDI configuration

Define a StorageClass in the CDI configuration to dynamically provision scratch space for CDI
operations.

Procedure

Use the oc client to edit the cdiconfig/config and add or edit the spec:
scratchSpaceStorageClass to match a StorageClass in the cluster.

$ oc edit cdiconfig/config

2.24.4. CDI operations that require scratch space

Type Reason

Registry imports The CDI must download the image to a scratch
space and extract the layers to find the image file.
The image file is then passed to QEMU-IMG for
conversion to a raw disk.

Upload image QEMU-IMG does not accept input from STDIN.
Instead, the image to upload is saved in scratch
space before it can be passed to QEMU-IMG for
conversion.

API Version: cdi.kubevirt.io/v1alpha1
kind: CDIConfig
metadata:
 name: config
...
spec:
 scratchSpaceStorageClass: "<storage_class>"
...

OpenShift Container Platform 4.1 Container-native virtualization

72

HTTP imports of archived images QEMU-IMG does not know how to handle the archive
formats CDI supports. Instead, the image is
unarchived and saved into scratch space before it is
passed to QEMU-IMG.

HTTP imports of authenticated images QEMU-IMG inadequately handles authentication.
Instead, the image is saved to scratch space and
authenticated before it is passed to QEMU-IMG.

HTTP imports of custom certificates QEMU-IMG inadequately handles custom
certificates of HTTPS endpoints. Instead, the CDI
downloads the image to scratch space before
passing the file to QEMU-IMG.

Type Reason

2.24.5. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content
types

HTTP HTTPS HTTP basic
auth

Registry S3 Bucket Upload

KubeVirt(Q
COW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓
QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
✓ GZ*
✓ XZ*

Archive+ ✓ TAR ✓ TAR ✓ TAR □ TAR □ TAR □ TAR

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

+ Archive does not support block mode DVs

Additional resources

See the Dynamic provisioning section for more information on StorageClasses and how these
are defined in the cluster.

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

73

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/storage/#about_dynamic-provisioning

2.25. VIRTUAL MACHINE LIVE MIGRATION

2.25.1. Understanding live migration

Live migration is the process of moving a running virtual machine instance to another node in the cluster
without interruption to the virtual workload or access. This can be a manual process, if you select a
virtual machine instance to migrate to another node, or an automatic process, if the virtual machine
instance has a LiveMigrate eviction strategy and the node on which it is running is placed into
maintenance.

NOTE

NFS shared volumes are the only shared data volume type supported for live migration in
container-native virtualization 2.0.

Additional resources:

Migrating a virtual machine instance to another node

Node maintenance mode

Live migration limiting

2.26. LIVE MIGRATION LIMITS AND TIMEOUTS

Live migration limits and timeouts are applied so that migration processes do not overwhelm the cluster.
Configure these settings by editing the kubevirt-config configuration file.

2.26.1. Configuring live migration limits and timeouts

Configure live migration limits and timeouts for the cluster by adding updated key:value fields to the
kubevirt-config configuration file, which is located in the kubevirt-hyperconverged namespace.

Procedure

Edit the kubevirt-config configuration file and add the necessary live migration parameters.
The following example shows the default values:

$ oc edit configmap kubevirt-config -n kubevirt-hyperconverged

apiVersion: v1
kind: ConfigMap
metadata:
 name: kubevirt-config
 namespace: kubevirt
 labels:
 kubevirt.io: ""
data:
 feature-gates: "LiveMigration"
 migrations: |-
 parallelMigrationsPerCluster: 5
 parallelOutboundMigrationsPerNode: 2

OpenShift Container Platform 4.1 Container-native virtualization

74

2.26.2. Cluster-wide live migration limits and timeouts

Table 2.5. Migration parameters

Parameter Description Default

parallelMigrationsPerCluster Number of migrations running in
parallel in the cluster.

5

parallelOutboundMigrations
PerNode

Maximum number of outbound
migrations per node.

2

bandwidthPerMigration Bandwidth limit of each migration,
in MiB/s.

64Mi

completionTimeoutPerGiB The migration will be canceled if it
has not completed in this time, in
seconds per GiB of memory. For
example, a virtual machine
instance with 6GiB memory will
timeout if it has not completed
migration in 4800 seconds. If the
Migration Method is
BlockMigration, the size of the
migrating disks is included in the
calculation.

800

progressTimeout The migration will be canceled if
memory copy fails to make
progress in this time, in seconds.

150

2.27. MIGRATING A VIRTUAL MACHINE INSTANCE TO ANOTHER
NODE

Manually initiate a live migration of a virtual machine instance to another node using either the web
console or the CLI.

2.27.1. Initiating live migration of a virtual machine instance in the web console

Migrate a running virtual machine instance to a different node in the cluster.

NOTE

The Migrate Virtual Machine action is visible to all users but only admin users can initiate
a virtual machine migration.

Procedure

 bandwidthPerMigration: 64Mi
 completionTimeoutPerGiB: 800
 progressTimeout: 150

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

75

1. In the container-native virtualization console, click Workloads → Virtual Machines.

2. You can initiate the migration from this screen, which makes it easier to perform actions on
multiple virtual machines in the one screen, or from the Virtual Machine Details screen where
you can view comprehensive details of the selected virtual machine:

Click the Options menu at the end of virtual machine and select Migrate Virtual
Machine.

Click the virtual machine name to open the Virtual Machine Details screen and click
Actions → Migrate Virtual Machine.

3. Click Migrate to migrate the virtual machine to another node.

2.27.2. Initiating live migration of a virtual machine instance in the CLI

Initiate a live migration of a running virtual machine instance by creating a
VirtualMachineInstanceMigration object in the cluster and referencing the name of the virtual
machine instance.

Procedure

1. Create a VirtualMachineInstanceMigration configuration file for the virtual machine instance
to migrate. For example, vmi-migrate.yaml:

2. Create the object in the cluster:

$ oc create -f vmi-migrate.yaml

The VirtualMachineInstanceMigration object triggers a live migration of the virtual machine instance.
This object exists in the cluster for as long as the virtual machine instance is running, unless manually
deleted.

Additional resources:

Monitoring live migration of a virtual machine instance

Cancelling the live migration of a virtual machine instance

2.28. MONITORING LIVE MIGRATION OF A VIRTUAL MACHINE
INSTANCE

You can monitor the progress of a live migration of a virtual machine instance from either the web
console or the CLI.

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachineInstanceMigration
metadata:
 name: migration-job
spec:
 vmiName: vmi-fedora

OpenShift Container Platform 4.1 Container-native virtualization

76

2.28.1. Monitoring live migration of a virtual machine instance in the web console

For the duration of the migration, the virtual machine has a status of Migrating. This status is displayed
in the Virtual Machines list or in the Virtual Machine Details screen for the migrating virtual machine.

Procedure

In the container-native virtualization console, click Workloads → Virtual Machines.

2.28.2. Monitoring live migration of a virtual machine instance in the CLI

The status of the virtual machine migration is stored in the Status component of the
VirtualMachineInstance configuration.

Procedure

Use the oc describe command on the migrating virtual machine instance:

$ oc describe vmi vmi-fedora

+

2.29. CANCELLING THE LIVE MIGRATION OF A VIRTUAL MACHINE
INSTANCE

Cancel the live migration so that the virtual machine instance remains on the original node.

You can cancel a live migration from either the web console or the CLI.

2.29.1. Cancelling live migration of a virtual machine instance in the web console

...
Status:
 Conditions:
 Last Probe Time: <nil>
 Last Transition Time: <nil>
 Status: True
 Type: LiveMigratable
 Migration Method: LiveMigration
 Migration State:
 Completed: true
 End Timestamp: 2018-12-24T06:19:42Z
 Migration UID: d78c8962-0743-11e9-a540-fa163e0c69f1
 Source Node: node2.example.com
 Start Timestamp: 2018-12-24T06:19:35Z
 Target Node: node1.example.com
 Target Node Address: 10.9.0.18:43891
 Target Node Domain Detected: true

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

77

A live migration of the virtual machine instance can be cancelled using the Options menu found on
each virtual machine in the Workloads → Virtual Machines screen, or from the Actions menu on the
Virtual Machine Details screen.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machines.

2. You can cancel the migration from this screen, which makes it easier to perform actions on
multiple virtual machines in the one screen, or from the Virtual Machine Details screen where
you can view comprehensive details of the selected virtual machine:

Click the Options menu at the end of virtual machine and select Cancel Virtual
Machine Migration.

Click the virtual machine name to open the Virtual Machine Details screen and click
Actions → Cancel Virtual Machine Migration.

3. Click Cancel Migration to cancel the virtual machine live migration.

2.29.2. Cancelling live migration of a virtual machine instance in the CLI

Cancel the live migration of a virtual machine instance by deleting the
VirtualMachineInstanceMigration object associated with the migration.

Procedure

Delete the VirtualMachineInstanceMigration object that triggered the live migration,
migration-job in this example:

$ oc delete vmim migration-job

2.30. NODE MAINTENANCE MODE

2.30.1. Understanding node maintenance mode

Placing a node into maintenance marks the node as unschedulable and drains all the virtual machines
and pods from it. Virtual machine instances that have a LiveMigrate eviction strategy are live migrated
to another node without loss of service. This eviction strategy is configured by default in virtual machine
created from common templates but must be configured manually for custom virtual machines.

Virtual machine instances without an eviction strategy will be deleted on the node and recreated on
another node.

NOTE

NFS shared volumes are the only shared data volume type supported for live migration in
container-native virtualization 2.0.

Additional resources:

OpenShift Container Platform 4.1 Container-native virtualization

78

Virtual machine live migration

Configuring virtual machine eviction strategy

2.31. CONFIGURING VIRTUAL MACHINE EVICTION STRATEGY

The LiveMigrate eviction strategy ensures that a virtual machine instance is not interrupted if the node
is placed into maintenance or drained. Virtual machines instances with this eviction strategy will be live
migrated to another node.

2.31.1. Configuring custom virtual machines with the LiveMigration eviction strategy

You only need to configure the LiveMigration eviction strategy on custom virtual machines. Common
templates have this eviction strategy configured by default.

Procedure

1. Add the evictionStrategy: LiveMigrate option to the spec section in the virtual machine
configuration file. This example uses oc edit to update the relevant snippet of the
VirtualMachine configuration file:

$ oc edit vm <custom-vm> -n <my-namespace>

2. Restart the virtual machine for the update to take effect:

$ virtctl restart <custom-vm> -n <my-namespace>

2.32. SETTING A NODE TO MAINTENANCE MODE

2.32.1. Understanding node maintenance mode

Placing a node into maintenance marks the node as unschedulable and drains all the virtual machines
and pods from it. Virtual machine instances that have a LiveMigrate eviction strategy are live migrated
to another node without loss of service. This eviction strategy is configured by default in virtual machine
created from common templates but must be configured manually for custom virtual machines.

Virtual machine instances without an eviction strategy will be deleted on the node and recreated on
another node.

NOTE

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 name: custom-vm
spec:
 terminationGracePeriodSeconds: 30
 evictionStrategy: LiveMigrate
 domain:
 resources:
 requests:
...

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

79

NOTE

NFS shared volumes are the only shared data volume type supported for live migration in
container-native virtualization 2.0.

Place a node into maintenance from either the web console or the CLI.

2.32.2. Setting a node to maintenance mode in the web console

Set a node to maintenance mode using the Options menu found on each node in the Compute →
Nodes list, or using the Actions control of the Node Details screen.

Procedure

1. In the container-native virtualization console, click Compute → Nodes.

2. You can set the node to maintenance from this screen, which makes it easier to perform actions
on multiple nodes in the one screen or from the Node Details screen where you can view
comprehensive details of the selected node:

Click the Options menu at the end of the node and select Start Maintenance.

Click the node name to open the Node Details screen and click Actions → Start
Maintenance.

3. Click Start Maintenance in the confirmation window.

The node will live migrate virtual machine instances that have the liveMigration eviction strategy, and
the node is no longer schedulable. All other pods and virtual machines on the node are deleted and
recreated on another node.

2.32.3. Setting a node to maintenance mode in the CLI

Set a node to maintenance mode by creating a NodeMaintenance Custom Resource (CR) object that
references the node name and the reason for setting it to maintenance mode.

Procedure

1. Create the node maintenance CR configuration. This example uses a CR that is called node02-
maintenance.yaml:

2. Create the NodeMaintenance object in the cluster:

apiVersion: kubevirt.io/v1alpha1
kind: NodeMaintenance
metadata:
 name: node02-maintenance
spec:
 nodeName: node02
 reason: "Replacing node02"

OpenShift Container Platform 4.1 Container-native virtualization

80

$ oc apply -f <node02-maintenance.yaml>

The node live migrates virtual machine instances that have the liveMigration eviction strategy, and
taint the node so that it is no longer schedulable. All other pods and virtual machines on the node are
deleted and recreated on another node.

Additional resources:

Resuming a node from maintenance mode

2.33. RESUMING A NODE FROM MAINTENANCE MODE

Resuming a node brings it out of maintenance mode and schedulable again.

Resume a node from maintenance from either the web console or the CLI.

2.33.1. Resuming a node from maintenance mode in the web console

Resume a node from maintenance mode using the Options menu found on each node in the
Compute → Nodes list, or using the Actions control of the Node Details screen.

Procedure

1. In the container-native virtualization console, click Compute → Nodes.

2. You can resume the node from this screen, which makes it easier to perform actions on multiple
nodes in the one screen, or from the Node Details screen where you can view comprehensive
details of the selected node:

Click the Options menu at the end of the node and select Stop Maintenance.

Click the node name to open the Node Details screen and click Actions → Stop
Maintenance.

3. Click Stop Maintenance in the confirmation window.

The node becomes schedulable, but virtual machine instances that were running on the node prior to
maintenance will not automatically migrate back to this node.

2.33.2. Resuming a node from maintenance mode in the CLI

Resume a node from maintenance mode and make it schedulable again by deleting the
NodeMaintenance object for the node.

Procedure

1. Find the NodeMaintenance object:

$ oc get nodemaintenance

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

81

2. Optional: Insepct the NodeMaintenance object to ensure it is associated with the correct node:

$ oc describe nodemaintenance <node02-maintenance>

3. Delete the NodeMaintenance object:

$ oc delete nodemaintenance <node02-maintenance>

2.34. INSTALLING VIRTIO DRIVER ON AN EXISTING WINDOWS
VIRTUAL MACHINE

2.34.1. Understanding VirtIO drivers

VirtIO drivers are paravirtualized device drivers required for Microsoft Windows virtual machines to run
in container-native virtualization. The supported drivers are available in the cnv-tech-preview/virtio-win
container disk of the Red Hat Container Catalog .

The cnv-tech-preview/virtio-win container disk must be attached to the virtual machine as a SATA CD
drive to enable driver installation. You can install VirtIO drivers during Windows installation on the virtual
machine or added to an existing Windows installation.

After the drivers are installed, the cnv-tech-preview/virtio-win container disk can be removed from the
virtual machine.

See also: Installing Virtio drivers on a new Windows virtual machine .

2.34.2. Supported VirtIO drivers for Microsoft Windows virtual machines

Table 2.6. Supported drivers

Driver name Hardware ID Description

viostor VEN_1AF4&DEV_1001
VEN_1AF4&DEV_1042

The block driver. Sometimes
displays as an SCSI Controller in
the Other devices group.

viorng VEN_1AF4&DEV_1005
VEN_1AF4&DEV_1044

The entropy source driver.
Sometimes displays as a PCI
Device in the Other devices
group.

Name: node02-maintenance
Namespace:
Labels:
Annotations:
API Version: kubevirt.io/v1alpha1
Kind: NodeMaintenance
...
Spec:
 Node Name: node02
 Reason: Replacing node02

OpenShift Container Platform 4.1 Container-native virtualization

82

https://access.redhat.com/containers/?count=50#/product/5be1983a5a13463a3e1d8ef4

1

NetKVM VEN_1AF4&DEV_1000
VEN_1AF4&DEV_1041

The network driver. Sometimes
displays as an Ethernet
Controller in the Other devices
group. Available only if a VirtIO
NIC is configured.

Driver name Hardware ID Description

2.34.3. Adding VirtIO drivers container disk to a virtual machine

Container-native virtualization distributes VirtIO drivers for Microsoft Windows as a container disk, which
is available from the Red Hat Container Catalog . To install these drivers to a Windows virtual machine,
attach the cnv-tech-preview/virtio-win container disk to the virtual machine as a SATA CD drive in the
virtual machine configuration file.

Prerequisites

Download the cnv-tech-preview/virtio-win container disk from the Red Hat Container Catalog .
This is not mandatory, because the container disk will be downloaded from the Red Hat registry
if it not already present in the cluster, but it can reduce installation time.

Procedure

1. Add the cnv-tech-preview/virtio-win container disk as a cdrom disk in the Windows virtual
machine configuration file. The container disk will be downloaded from the registry if it is not
already present in the cluster.

container-native virtualization boots virtual machine disks in the order defined in the
VirtualMachine configuration file. You can either define other disks for the virtual machine
before the cnv-tech-preview/virtio-win container disk or use the optional bootOrder
parameter to ensure the virtual machine boots from the correct disk. If you specify the
bootOrder for a disk, it must be specified for all disks in the configuration.

2. The disk is available once the virtual machine has started:

If you add the container disk to a running virtual machine, use oc apply -f <vm.yaml> in the
CLI or reboot the virtual machine for the changes to take effect.

spec:
 domain:
 devices:
 disks:
 - name: virtiocontainerdisk
 bootOrder: 2 1
 cdrom:
 bus: sata
volumes:
 - containerDisk:
 image: cnv-tech-preview/virtio-win
 name: virtiocontainerdisk

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

83

https://access.redhat.com/containers/?count=50#/product/5be1983a5a13463a3e1d8ef4
https://access.redhat.com/containers/?count=50#/product/5be1983a5a13463a3e1d8ef4

If the virtual machine is not running, use virtctl start <vm>.

After the virtual machine has started, the VirtIO drivers can be installed from the attached SATA CD
drive.

2.34.4. Installing VirtIO drivers on an existing Windows virtual machine

Install the VirtIO drivers from the attached SATA CD drive to an existing Windows virtual machine.

NOTE

This procedure uses a generic approach to adding drivers to Windows. The process might
differ slightly between versions of Windows. Refer to the documentation for the version
of Windows that you are installing.

Procedure

1. Start the virtual machine and connect to a graphical console.

2. Log in to a Windows user session.

3. Open Device Manager and expand Other devices to list any Unknown device.

a. You might need to open the Device Properties to identify the unknown device. Right-click
the device and select Properties.

b. Click the Details tab and select Hardware Ids in the Property list.

c. Compare the Value for the Hardware Ids with the supported VirtIO drivers.

4. Right-click the device and select Update Driver Software.

5. Click Browse my computer for driver software and browse to the attached SATA CD drive,
where the VirtIO drivers are located. The drivers are arranged hierarchically according to their
driver type, operating system, and CPU architecture.

6. Click Next to install the driver.

7. Repeat this process for all the necessary VirtIO drivers.

8. After the driver installs, click Close to close the window.

9. Reboot the virtual machine to complete the driver installation.

2.34.5. Removing the VirtIO container disk from a virtual machine

After installing all required VirtIO drivers to the virtual machine, the cnv-tech-preview/virtio-win
container disk no longer needs to be attached to the virtual machine. Remove the cnv-tech-
preview/virtio-win container disk from the virtual machine configuration file.

Procedure

1. Edit the configuration file and remove the disk and the volume.

$ oc edit vm <vm-name>

OpenShift Container Platform 4.1 Container-native virtualization

84

2. Reboot the virtual machine for the changes to take effect.

2.35. INSTALLING VIRTIO DRIVER ON A NEW WINDOWS VIRTUAL
MACHINE

Prerequisites

Windows installation media accessible by the virtual machine, such as importing an ISO into a
data volume and attaching it to the virtual machine.

2.35.1. Understanding VirtIO drivers

VirtIO drivers are paravirtualized device drivers required for Microsoft Windows virtual machines to run
in container-native virtualization. The supported drivers are available in the cnv-tech-preview/virtio-win
container disk of the Red Hat Container Catalog .

The cnv-tech-preview/virtio-win container disk must be attached to the virtual machine as a SATA CD
drive to enable driver installation. You can install VirtIO drivers during Windows installation on the virtual
machine or added to an existing Windows installation.

After the drivers are installed, the cnv-tech-preview/virtio-win container disk can be removed from the
virtual machine.

See also: Installing VirtIO driver on an existing Windows virtual machine .

2.35.2. Supported VirtIO drivers for Microsoft Windows virtual machines

Table 2.7. Supported drivers

Driver name Hardware ID Description

viostor VEN_1AF4&DEV_1001
VEN_1AF4&DEV_1042

The block driver. Sometimes
displays as an SCSI Controller in
the Other devices group.

viorng VEN_1AF4&DEV_1005
VEN_1AF4&DEV_1044

The entropy source driver.
Sometimes displays as a PCI
Device in the Other devices
group.

spec:
 domain:
 devices:
 disks:
 - name: virtiocontainerdisk
 bootOrder: 2
 cdrom:
 bus: sata
volumes:
 - containerDisk:
 image: cnv-tech-preview/virtio-win
 name: virtiocontainerdisk

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

85

https://access.redhat.com/containers/?count=50#/product/5be1983a5a13463a3e1d8ef4

1

NetKVM VEN_1AF4&DEV_1000
VEN_1AF4&DEV_1041

The network driver. Sometimes
displays as an Ethernet
Controller in the Other devices
group. Available only if a VirtIO
NIC is configured.

Driver name Hardware ID Description

2.35.3. Adding VirtIO drivers container disk to a virtual machine

Container-native virtualization distributes VirtIO drivers for Microsoft Windows as a container disk, which
is available from the Red Hat Container Catalog . To install these drivers to a Windows virtual machine,
attach the cnv-tech-preview/virtio-win container disk to the virtual machine as a SATA CD drive in the
virtual machine configuration file.

Prerequisites

Download the cnv-tech-preview/virtio-win container disk from the Red Hat Container Catalog .
This is not mandatory, because the container disk will be downloaded from the Red Hat registry
if it not already present in the cluster, but it can reduce installation time.

Procedure

1. Add the cnv-tech-preview/virtio-win container disk as a cdrom disk in the Windows virtual
machine configuration file. The container disk will be downloaded from the registry if it is not
already present in the cluster.

container-native virtualization boots virtual machine disks in the order defined in the
VirtualMachine configuration file. You can either define other disks for the virtual machine
before the cnv-tech-preview/virtio-win container disk or use the optional bootOrder
parameter to ensure the virtual machine boots from the correct disk. If you specify the
bootOrder for a disk, it must be specified for all disks in the configuration.

2. The disk is available once the virtual machine has started:

If you add the container disk to a running virtual machine, use oc apply -f <vm.yaml> in the
CLI or reboot the virtual machine for the changes to take effect.

If the virtual machine is not running, use virtctl start <vm>.

spec:
 domain:
 devices:
 disks:
 - name: virtiocontainerdisk
 bootOrder: 2 1
 cdrom:
 bus: sata
volumes:
 - containerDisk:
 image: cnv-tech-preview/virtio-win
 name: virtiocontainerdisk

OpenShift Container Platform 4.1 Container-native virtualization

86

https://access.redhat.com/containers/?count=50#/product/5be1983a5a13463a3e1d8ef4
https://access.redhat.com/containers/?count=50#/product/5be1983a5a13463a3e1d8ef4

After the virtual machine has started, the VirtIO drivers can be installed from the attached SATA CD
drive.

2.35.4. Installing VirtIO drivers during Windows installation

Install the VirtIO drivers from the attached SATA CD driver during Windows installation.

NOTE

This procedure uses a generic approach to the Windows installation and the installation
method might differ between versions of Windows. Refer to the documentation for the
version of Windows that you are installing.

Procedure

1. Start the virtual machine and connect to a graphical console.

2. Begin the Windows installation process.

3. Select the Advanced installation.

4. The storage destination will not be recognized until the driver is loaded. Click Load driver.

5. The drivers are attached as a SATA CD drive. Click OK and browse the CD drive for the storage
driver to load. The drivers are arranged hierarchically according to their driver type, operating
system, and CPU architecture.

6. Repeat the previous two steps for all required drivers.

7. Complete the Windows installation.

2.35.5. Removing the VirtIO container disk from a virtual machine

After installing all required VirtIO drivers to the virtual machine, the cnv-tech-preview/virtio-win
container disk no longer needs to be attached to the virtual machine. Remove the cnv-tech-
preview/virtio-win container disk from the virtual machine configuration file.

Procedure

1. Edit the configuration file and remove the disk and the volume.

$ oc edit vm <vm-name>

spec:
 domain:
 devices:
 disks:
 - name: virtiocontainerdisk
 bootOrder: 2
 cdrom:
 bus: sata
volumes:

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

87

2. Reboot the virtual machine for the changes to take effect.

2.36. VIEWING LOGS

2.36.1. Understanding logs

Logs are collected for OpenShift Container Platform Builds, Deployments, and Pods. In container-native
virtualization, virtual machine logs can be retrieved from the virtual machine launcher Pod in either the
web console or the CLI.

The -f option follows the log output in real time, which is useful for monitoring progress and error
checking.

If the launcher Pod is failing to start, use the --previous option to see the logs of the last attempt.

WARNING

ErrImagePull and ImagePullBackOff errors can be caused by an incorrect
Deployment configuration or problems with the images that are referenced.

2.36.2. Viewing virtual machine logs in the CLI

Get virtual machine logs from the virtual machine launcher Pod.

Procedure

User the following command:

$ oc logs <virt-launcher-name>

2.36.3. Viewing virtual machine logs in the web console

Get virtual machine logs from the associated virtual machine launcher Pod.

Procedure

1. In the container-native virtualization console, click Workloads → Virtual Machines.

2. Click the virtual machine to open the Virtual Machine Details panel.

3. In the Overview tab, click the virt-launcher-<name> Pod in the POD section.

4. Click Logs.

 - containerDisk:
 image: cnv-tech-preview/virtio-win
 name: virtiocontainerdisk



OpenShift Container Platform 4.1 Container-native virtualization

88

2.37. VIEWING EVENTS

2.37.1. Understanding events

OpenShift Container Platform events are records of important life-cycle information in a namespace
and are useful for monitoring and troubleshooting resource scheduling, creation, and deletion issues.

Container-native virtualization adds events for virtual machines and virtual machine instances. These
can be viewed from either the web console or the CLI.

See also: Viewing system event information in an OpenShift Container Platform cluster .

2.37.2. Viewing the events for a virtual machine in the web console

You can view the stream events for a running a virtual machine from the Virtual Machine Details panel
of the web console.

The ▮▮ button pauses the events stream.
The ▶ button continues a paused events stream.

Procedure

1. Click Workloads → Virtual Machines from the side menu.

2. Select a Virtual Machine.

3. Click Events to view all events for the virtual machine.

2.37.3. Viewing namespace events in the CLI

Use the OpenShift Container Platform client to get the events for a namespace.

Procedure

In the namespace, use the oc get command:

$ oc get events

2.37.4. Viewing resource events in the CLI

Events are included in the resource description, which you can get using the OpenShift Container
Platform client.

Procedure

In the namespace, use the oc describe command. The following example shows how to get the
events for a virtual machine, a virtual machine instance, and the virt-launcher Pod for a virtual
machine:

$ oc describe vm <vm>
$ oc describe vmi <vmi>
$ oc describe pod virt-launcher-<name>

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

89

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/nodes/#nodes-containers-events

2.38. OPENSHIFT CONTAINER PLATFORM CLUSTER MONITORING,
LOGGING, AND TELEMETRY

OpenShift Container Platform provides various resources for monitoring at the cluster level.

2.38.1. About OpenShift Container Platform cluster monitoring

OpenShift Container Platform includes a pre-configured, pre-installed, and self-updating monitoring
stack that is based on the Prometheus open source project and its wider eco-system. It provides
monitoring of cluster components and includes a set of alerts to immediately notify the cluster
administrator about any occurring problems and a set of Grafana dashboards. The cluster monitoring
stack is only supported for monitoring OpenShift Container Platform clusters.

IMPORTANT

To ensure compatibility with future OpenShift Container Platform updates, configuring
only the specified monitoring stack options is supported.

2.38.2. About cluster logging

The cluster logging components are based upon Elasticsearch, Fluentd, and Kibana (EFK). The collector,
Fluentd, is deployed to each node in the OpenShift Container Platform cluster. It collects all node and
container logs and writes them to Elasticsearch (ES). Kibana is the centralized, web UI where users and
administrators can create rich visualizations and dashboards with the aggregated data.

For more information on cluster logging, see the OpenShift Container Platform cluster logging
documentation.

2.38.3. About Telemetry

Telemetry collects anonymized aggregated information about:

The size of an OpenShift Container Platform cluster

The health and status of OpenShift Container Platform components

Use of OpenShift Container Platform components

The features in use

This information is used by Red Hat to help make OpenShift Container Platform better and more
intuitive to use. None of the information is shared with third parties.

2.38.3.1. What information is collected

Telemetry does not collect, and will never collect, identifying information like user names, passwords, or
the names or addresses of user resources.

Primary information collected includes:

Number of updates available per cluster

Channel and image repository used for an update

Number of errors that occurred during an update

OpenShift Container Platform 4.1 Container-native virtualization

90

https://prometheus.io/
https://grafana.com/
http://www.fluentd.org/architecture
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/guide/en/kibana/current/introduction.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/logging/#efk-logging

Progress information of an update that is running

Number of machines per cluster

Number of CPU cores and size of RAM of the machines

Number of members in the etcd cluster and number of objects currently stored in the etcd
cluster

Number of CPU cores and RAM used per machine type - infra or master

Number of CPU cores and RAM used per cluster

Use of OpenShift Container Platform framework components per cluster

Version of the OpenShift Container Platform cluster

Health, condition, and status for any OpenShift Container Platform framework component that
is installed on the cluster, for example Cluster Version Operator, Cluster Monitoring, Image
Registry, and Elasticsearch for Logging

A unique random identifier that is generated during installation

Name of the platform OpenShift Container Platform is deployed on, such as Amazon Web
Services

2.38.4. CLI troubleshooting and debugging commands

For a list of the oc client troubleshooting and debugging commands, see the OpenShift Container
Platform CLI reference documentation.

CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE

91

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/cli_reference/#cli-troubleshooting-commands_developer-cli-commands

CHAPTER 3. CONTAINER-NATIVE VIRTUALIZATION 2.0
RELEASE NOTES

3.1. CONTAINER-NATIVE VIRTUALIZATION 2.0 RELEASE NOTES

3.1.1. About container-native virtualization

3.1.1.1. What you can do with container-native virtualization

Container-native virtualization is an add-on to OpenShift Container Platform that allows you to run and
manage virtual machine workloads alongside container workloads.

Container-native virtualization adds new objects into your OpenShift Container Platform cluster via
Kubernetes custom resources to enable virtualization tasks. These tasks include:

Creating and managing Linux and Windows virtual machines

Connecting to virtual machines through a variety of consoles and CLI tools

Importing and cloning existing virtual machines, including VMware virtual machines

Managing network interface controllers and storage disks attached to virtual machines

Live migrating virtual machines between nodes

An enhanced web console provides a graphical portal to manage these virtualized resources alongside
the OpenShift Container Platform cluster containers and infrastructure.

3.1.1.2. Container-native virtualization support

IMPORTANT

container-native virtualization is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

3.1.2. New and changed features

3.1.2.1. Supported binding methods

Open vSwitch (OVS) is no longer recommended and should not be used in container-native
virtualization 2.0.

For the default Pod network, masquerade is the only recommended binding method. It is not
supported for non-default networks.

For secondary networks, use the bridge binding method.

OpenShift Container Platform 4.1 Container-native virtualization

92

https://access.redhat.com/support/offerings/techpreview/

3.1.2.2. Web console improvements

You can now view all services associated with a virtual machine in the Virtual Machine Details
screen.

3.1.3. Resolved issues

Deleting a PVC after a CDI import fails no longer results in the importer Pod getting stuck in a
CrashLoopBackOff state. The PVC is now deleted normally. (BZ#1673683)

3.1.4. Known issues

Some KubeVirt resources are improperly retained when removing container-native
virtualization. As a workaround, you must manually remove them by running the command oc
delete apiservices v1alpha3.subresources.kubevirt.io -n kubevirt-hyperconverged. These
resources will be removed automatically after (BZ#1712429) is resolved.

When using an older version of virtctl with container-native virtualization 2.0, virtctl cannot
connect to the requested virtual machine. On the client, update the virtctl RPM package to the
latest version to resolve this issue. (BZ#1706108)

Interfaces connected to the default Pod network lose connectivity after live migration. As a
workaround, use an additional multus-backed network. (BZ#1693532)

Container-native virtualization cannot reliably identify node drains that are triggered by running
either oc adm drain or kubectl drain. Do not run these commands on the nodes of any clusters
where container-native virtualization is deployed. The nodes might not drain if there are virtual
machines running on top of them. The current solution is to put nodes into maintenance.
(BZ#1707427)

If you create a virtual machine with the Pod network connected in bridge mode and use a
cloud-init disk, the virtual machine will lose its network connectivity after being restarted. As a
workaround, remove the HWADDR line in the file /etc/sysconfig/network-scripts/ifcfg-eth0.
(BZ#1708680)

Masquerade does not currently work with CNV. Due to an upstream issue, you cannot connect a
virtual machine to the default Pod network while in Masquerade mode. (BZ#1725848)

Creating a NIC with Masquerade in the wizard does not allow you to specify the port option.
(BZ#1725848)

If a virtual machine uses guaranteed CPUs, it will not be scheduled, because the label
cpumanager=true is not automatically set on nodes. As a workaround, remove the
CPUManager entry from the kubevirt-config ConfigMap. Then, manually label the nodes with
cpumanager=true before running virtual machines with guaranteed CPUs on your cluster.
(BZ#1718944)

If you use the web console to create a virtual machine template that has the same name as an
existing virtual machine, the operation fails and the message Name is already used by another
virtual machine is displayed. As a workaround, create the template from the command line.
(BZ#1717930)

ReadWriteMany (RWX) is the only supported storage access mode for live migration, importing
VMware virtual machines, and creating virtual machines by using the wizard. (BZ#1724654)

CHAPTER 3. CONTAINER-NATIVE VIRTUALIZATION 2.0 RELEASE NOTES

93

https://bugzilla.redhat.com/show_bug.cgi?id=1673683
https://bugzilla.redhat.com/show_bug.cgi?id=1712429
https://bugzilla.redhat.com/show_bug.cgi?id=1706108
https://bugzilla.redhat.com/show_bug.cgi?id=1693532
https://bugzilla.redhat.com/show_bug.cgi?id=1707427
https://bugzilla.redhat.com/show_bug.cgi?id=1708680
https://bugzilla.redhat.com/show_bug.cgi?id=1725848
https://bugzilla.redhat.com/show_bug.cgi?id=1725848
https://bugzilla.redhat.com/show_bug.cgi?id=1718944
https://bugzilla.redhat.com/show_bug.cgi?id=1717930
https://bugzilla.redhat.com/show_bug.cgi?id=1724654

OpenShift Container Platform 4.1 Container-native virtualization

94

	Table of Contents
	CHAPTER 1. CONTAINER-NATIVE VIRTUALIZATION INSTALLATION
	1.1. ABOUT CONTAINER-NATIVE VIRTUALIZATION
	1.1.1. What you can do with container-native virtualization
	1.1.2. Container-native virtualization support

	1.2. PREPARING YOUR CLUSTER FOR CONTAINER-NATIVE VIRTUALIZATION
	1.3. INSTALLING CONTAINER-NATIVE VIRTUALIZATION
	1.3.1. Preparing to install container-native virtualization
	1.3.2. Subscribing to the KubeVirt HyperConverged Cluster Operator catalog
	1.3.3. Deploying container-native virtualization

	1.4. INSTALLING THE VIRTCTL CLIENT
	1.4.1. Enabling container-native virtualization repositories
	1.4.2. Installing the virtctl client

	1.5. UNINSTALLING CONTAINER-NATIVE VIRTUALIZATION
	1.5.1. Deleting the KubeVirt HyperConverged custom resource
	1.5.2. Deleting the KubeVirt HyperConverged Cluster Operator catalog subscription
	1.5.3. Deleting a project using the web console

	CHAPTER 2. CONTAINER-NATIVE VIRTUALIZATION USER’S GUIDE
	2.1. CREATING VIRTUAL MACHINES
	2.1.1. Running the virtual machine wizard to create a virtual machine
	2.1.1.1. Virtual machine wizard fields
	2.1.1.2. Cloud-init fields
	2.1.1.3. Networking fields
	2.1.1.4. Storage fields

	2.1.2. Pasting in a pre-configured YAML file to create a virtual machine
	2.1.3. Using the CLI to create a virtual machine
	2.1.4. Virtual machine storage volume types

	2.2. TLS CERTIFICATES FOR DATAVOLUME IMPORTS
	2.2.1. Adding TLS certificates for authenticating DataVolume imports
	2.2.2. Example: ConfigMap created from a TLS certificate

	2.3. IMPORTING A VMWARE VIRTUAL MACHINE OR TEMPLATE WITH THE VIRTUAL MACHINE WIZARD
	2.3.1. Uploading the VMware Virtual Disk Development Kit
	2.3.2. Importing the VMware virtual machine or template
	2.3.3. Updating the imported virtual machine’s NIC name
	2.3.4. Virtual machine wizard fields
	2.3.4.1. Virtual machine wizard fields
	2.3.4.2. Cloud-init fields
	2.3.4.3. Networking fields
	2.3.4.4. Storage fields

	2.4. IMPORTING VIRTUAL MACHINE IMAGES WITH DATAVOLUMES
	2.4.1. CDI supported operations matrix
	2.4.2. About DataVolumes
	2.4.3. Importing a virtual machine image into a container-native virtualization object with DataVolumes
	2.4.4. Template: DataVolume virtual machine configuration file
	2.4.5. Template: DataVolume import configuration file

	2.5. EDITING VIRTUAL MACHINES
	2.5.1. Using the web console to edit a virtual machine
	2.5.2. Editing the virtual machine YAML configuration
	2.5.3. Using the CLI to edit a virtual machine

	2.6. DELETING VIRTUAL MACHINES
	2.6.1. Deleting a virtual machine using the web console
	2.6.2. Deleting a virtual machine and PVCs using the CLI

	2.7. CONTROLLING VIRTUAL MACHINES STATES
	2.7.1. Controlling virtual machines from the web console
	2.7.1.1. Starting a virtual machine
	2.7.1.2. Restarting a virtual machine
	2.7.1.3. Stopping a virtual machine

	2.7.2. CLI reference for controlling virtual machines
	2.7.2.1. start
	2.7.2.2. restart
	2.7.2.3. stop
	2.7.2.4. list

	2.8. ACCESSING VIRTUAL MACHINE CONSOLES
	2.8.1. Virtual machine console sessions
	2.8.1.1. Connecting to a virtual machine with the web console
	2.8.1.2. Connecting to the serial console
	2.8.1.3. Connecting to the VNC console
	2.8.1.4. Connecting to the RDP console

	2.8.2. Accessing virtual machine consoles by using CLI commands
	2.8.2.1. Accessing a virtual machine instance via SSH
	2.8.2.2. Accessing the serial console of a virtual machine instance
	2.8.2.3. Accessing the graphical console of a virtual machine instances with VNC
	2.8.2.4. Connecting to a Windows virtual machine with an RDP console

	2.9. USING THE CLI TOOLS
	2.9.1. Virtctl client commands
	2.9.2. OpenShift Container Platform client commands

	2.10. AUTOMATING MANAGEMENT TASKS
	2.10.1. About Red Hat Ansible Automation
	2.10.2. Automating virtual machine creation with Red Hat Ansible Automation
	2.10.3. Example: Ansible Playbook for creating virtual machines

	2.11. USING THE DEFAULT POD NETWORK WITH CONTAINER-NATIVE VIRTUALIZATION
	2.11.1. Configuring masquerade mode from the command line
	2.11.2. Web console
	2.11.2.1. Networking fields

	2.11.3. Configuration file examples
	2.11.3.1. Template: virtual machine configuration file
	2.11.3.2. Template: Windows virtual machine instance configuration file

	2.12. ATTACHING A VIRTUAL MACHINE TO MULTIPLE NETWORKS
	2.12.1. Container-native virtualization networking glossary
	2.12.2. Connecting a resource to a bridge-based network
	2.12.3. Creating a NIC for a virtual machine
	2.12.4. Networking fields

	2.13. INSTALLING THE QEMU GUEST AGENT ON VIRTUAL MACHINES
	2.13.1. Installing QEMU guest agent on a Linux virtual machine

	2.14. VIEWING THE IP ADDRESS OF VNICS ON A VIRTUAL MACHINE
	2.14.1. Viewing the IP address of a virtual machine interface in the CLI
	2.14.2. Viewing the IP address of a virtual machine interface in the web console

	2.15. CONFIGURING PXE BOOTING FOR VIRTUAL MACHINES
	2.15.1. Container-native virtualization networking glossary
	2.15.2. PXE booting with a specified MAC address
	2.15.3. Template: virtual machine instance configuration file for PXE booting

	2.16. MANAGING GUEST MEMORY
	2.16.1. Configuring guest memory overcommitment
	2.16.2. Disabling guest memory overhead accounting

	2.17. CREATING VIRTUAL MACHINE TEMPLATES
	2.17.1. Creating a virtual machine template with the interactive wizard in the web console
	2.17.2. Virtual machine template interactive wizard fields
	2.17.2.1. Virtual machine template wizard fields
	2.17.2.2. Cloud-init fields
	2.17.2.3. Networking fields
	2.17.2.4. Storage fields

	2.18. EDITING A VIRTUAL MACHINE TEMPLATE
	2.18.1. Editing a virtual machine template in the web console

	2.19. DELETING A VIRTUAL MACHINE TEMPLATE
	2.19.1. Deleting a virtual machine template in the web console

	2.20. CLONING A VIRTUAL MACHINE DISK INTO A NEW DATAVOLUME
	2.20.1. About DataVolumes
	2.20.2. Cloning the PersistentVolumeClaim of a virtual machine disk into a new DataVolume
	2.20.3. Template: DataVolume clone configuration file
	2.20.4. CDI supported operations matrix

	2.21. CLONING A VIRTUAL MACHINE BY USING A DATAVOLUMETEMPLATE
	2.21.1. About DataVolumes
	2.21.2. Creating a new virtual machine from a cloned PersistentVolumeClaim by using a DataVolumeTemplate
	2.21.3. Template: DataVolume virtual machine configuration file
	2.21.4. CDI supported operations matrix

	2.22. UPLOADING LOCAL DISK IMAGES BY USING THE VIRTCTL TOOL
	2.22.1. CDI supported operations matrix
	2.22.2. Uploading a local disk image to a new PersistentVolumeClaim

	2.23. EXPANDING VIRTUAL STORAGE BY ADDING BLANK DISK IMAGES
	2.23.1. About DataVolumes
	2.23.2. Creating a blank disk image with DataVolumes
	2.23.3. Template: DataVolume configuration file for blank disk images

	2.24. PREPARING CDI SCRATCH SPACE
	2.24.1. About DataVolumes
	2.24.2. Understanding scratch space
	Manual provisioning

	2.24.3. Defining a StorageClass in the CDI configuration
	2.24.4. CDI operations that require scratch space
	2.24.5. CDI supported operations matrix

	2.25. VIRTUAL MACHINE LIVE MIGRATION
	2.25.1. Understanding live migration

	2.26. LIVE MIGRATION LIMITS AND TIMEOUTS
	2.26.1. Configuring live migration limits and timeouts
	2.26.2. Cluster-wide live migration limits and timeouts

	2.27. MIGRATING A VIRTUAL MACHINE INSTANCE TO ANOTHER NODE
	2.27.1. Initiating live migration of a virtual machine instance in the web console
	2.27.2. Initiating live migration of a virtual machine instance in the CLI

	2.28. MONITORING LIVE MIGRATION OF A VIRTUAL MACHINE INSTANCE
	2.28.1. Monitoring live migration of a virtual machine instance in the web console
	2.28.2. Monitoring live migration of a virtual machine instance in the CLI

	2.29. CANCELLING THE LIVE MIGRATION OF A VIRTUAL MACHINE INSTANCE
	2.29.1. Cancelling live migration of a virtual machine instance in the web console
	2.29.2. Cancelling live migration of a virtual machine instance in the CLI

	2.30. NODE MAINTENANCE MODE
	2.30.1. Understanding node maintenance mode

	2.31. CONFIGURING VIRTUAL MACHINE EVICTION STRATEGY
	2.31.1. Configuring custom virtual machines with the LiveMigration eviction strategy

	2.32. SETTING A NODE TO MAINTENANCE MODE
	2.32.1. Understanding node maintenance mode
	2.32.2. Setting a node to maintenance mode in the web console
	2.32.3. Setting a node to maintenance mode in the CLI

	2.33. RESUMING A NODE FROM MAINTENANCE MODE
	2.33.1. Resuming a node from maintenance mode in the web console
	2.33.2. Resuming a node from maintenance mode in the CLI

	2.34. INSTALLING VIRTIO DRIVER ON AN EXISTING WINDOWS VIRTUAL MACHINE
	2.34.1. Understanding VirtIO drivers
	2.34.2. Supported VirtIO drivers for Microsoft Windows virtual machines
	2.34.3. Adding VirtIO drivers container disk to a virtual machine
	2.34.4. Installing VirtIO drivers on an existing Windows virtual machine
	2.34.5. Removing the VirtIO container disk from a virtual machine

	2.35. INSTALLING VIRTIO DRIVER ON A NEW WINDOWS VIRTUAL MACHINE
	2.35.1. Understanding VirtIO drivers
	2.35.2. Supported VirtIO drivers for Microsoft Windows virtual machines
	2.35.3. Adding VirtIO drivers container disk to a virtual machine
	2.35.4. Installing VirtIO drivers during Windows installation
	2.35.5. Removing the VirtIO container disk from a virtual machine

	2.36. VIEWING LOGS
	2.36.1. Understanding logs
	2.36.2. Viewing virtual machine logs in the CLI
	2.36.3. Viewing virtual machine logs in the web console

	2.37. VIEWING EVENTS
	2.37.1. Understanding events
	2.37.2. Viewing the events for a virtual machine in the web console
	2.37.3. Viewing namespace events in the CLI
	2.37.4. Viewing resource events in the CLI

	2.38. OPENSHIFT CONTAINER PLATFORM CLUSTER MONITORING, LOGGING, AND TELEMETRY
	2.38.1. About OpenShift Container Platform cluster monitoring
	2.38.2. About cluster logging
	2.38.3. About Telemetry
	2.38.3.1. What information is collected

	2.38.4. CLI troubleshooting and debugging commands

	CHAPTER 3. CONTAINER-NATIVE VIRTUALIZATION 2.0 RELEASE NOTES
	3.1. CONTAINER-NATIVE VIRTUALIZATION 2.0 RELEASE NOTES
	3.1.1. About container-native virtualization
	3.1.1.1. What you can do with container-native virtualization
	3.1.1.2. Container-native virtualization support

	3.1.2. New and changed features
	3.1.2.1. Supported binding methods
	3.1.2.2. Web console improvements

	3.1.3. Resolved issues
	3.1.4. Known issues

