
OpenShift Container Platform 3.6

Container Security Guide

OpenShift Container Platform 3.6 Container Security Guide

Last Updated: 2018-09-15

OpenShift Container Platform 3.6 Container Security Guide

OpenShift Container Platform 3.6 Container Security Guide

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Secure your cluster using these recommendations

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. ABOUT THIS GUIDE
1.2. WHAT ARE CONTAINERS?

Further Reading
1.3. CONTAINER SECURITY IN OPENSHIFT CONTAINER PLATFORM

Further Reading

CHAPTER 2. CONTAINER HOSTS AND MULTI-TENANCY
2.1. HOW CONTAINERS ARE SECURED ON RHEL

Further Reading
2.2. MULTI-TENANCY: VIRTUALIZATION VERSUS CONTAINERS

Further Reading

CHAPTER 3. CONTAINER CONTENT
3.1. SECURITY INSIDE THE CONTAINER

Further Reading
3.2. CONTAINER CONTENT SCANNING
3.3. INTEGRATING EXTERNAL SCANNING TOOLS WITH OPENSHIFT

3.3.1. Image Metadata
3.3.1.1. Example Annotation Keys
3.3.1.2. Example Annotation Values

3.3.2. Annotating Image Objects
3.3.2.1. Example Annotate CLI Command

3.3.3. Controlling Pod Execution
3.3.3.1. Example Annotation

3.3.4. Integration Reference
3.3.4.1. Example REST API Call

CHAPTER 4. REGISTRIES
4.1. WHERE DO YOUR CONTAINERS COME FROM?
4.2. IMMUTABLE AND CERTIFIED CONTAINERS

Further Reading
4.3. RED HAT REGISTRY AND RED HAT CONTAINER CATALOG

Further Reading
4.4. OPENSHIFT CONTAINER REGISTRY

Further Reading

CHAPTER 5. BUILD PROCESS
5.1. BUILD ONCE, DEPLOY EVERYWHERE
5.2. BUILD MANAGEMENT AND SECURITY

Further Reading
5.3. SECURING INPUTS DURING BUILDS

Further Reading
5.4. DESIGNING YOUR BUILD PROCESS

Further Reading

CHAPTER 6. DEPLOYMENT
6.1. CONTROLLING WHAT CAN BE DEPLOYED IN A CONTAINER

Further Reading
6.2. CONTROLLING WHAT IMAGE SOURCES CAN BE DEPLOYED

6.2.1. Signature Transports
Further Reading

6.3. SECRETS AND CONFIGMAPS

4
4
4
4
4
5

6
6
6
6
7

8
8
8
8
8
8
9

10
11
11
11
11
11
11

13
13
13
13
13
14
14
14

15
15
15
16
16
16
17
17

18
18
19
19
20
21
21

Table of Contents

1

. .

. .

. .

. .

. .

Further Reading
6.4. SECURITY CONTEXT CONSTRAINTS (SCCS)

Further Reading
6.5. CONTINUOUS DEPLOYMENT TOOLING

CHAPTER 7. SECURING THE CONTAINER PLATFORM
7.1. CONTAINER ORCHESTRATION

Further Reading
7.2. AUTHENTICATION AND AUTHORIZATION

7.2.1. Controlling Access Using OAuth
Further Reading

7.2.2. API Access Control and Management
7.2.3. Red Hat SSO
7.2.4. Secure Self-service Web Console

Further Reading
7.3. MANAGING CERTIFICATES FOR THE PLATFORM

7.3.1. Configuring Custom Certificates
Further Reading

CHAPTER 8. NETWORK SECURITY
8.1. NETWORK NAMESPACES

Further Reading
8.2. ISOLATING APPLICATIONS

CHAPTER 9. ATTACHED STORAGE
9.1. PERSISTENT VOLUME PLUG-INS

Further Reading
9.2. SHARED STORAGE

Further Reading
9.3. BLOCK STORAGE

Further Reading

CHAPTER 10. MONITORING CLUSTER EVENTS AND LOGS
10.1. INTRODUCTION
10.2. CLUSTER EVENTS
10.3. CLUSTER LOGS

10.3.1. Service Logs
10.3.2. Master API Audit Log

CHAPTER 11. REVISION HISTORY: CONTAINER SECURITY GUIDE
11.1. FRI FEB 16 2018
11.2. TUE FEB 06 2018
11.3. THU JAN 25 2018
11.4. MON JAN 08 2018
11.5. FRI DEC 22 2017
11.6. MON DEC 11 2017
11.7. TUE NOV 21 2017
11.8. WED AUG 09 2017

21
22
22
22

23
23
23
23
23
24
24
24
24
25
25
25
25

27
27
27
27

28
28
28
28
28
28
28

30
30
30
31
31
31

33
33
33
33
33
33
33
34
34

OpenShift Container Platform 3.6 Container Security Guide

2

Table of Contents

3

CHAPTER 1. INTRODUCTION

1.1. ABOUT THIS GUIDE

This guide provides a high-level walkthrough of the container security measures available in OpenShift
Container Platform, including solutions for the host layer, the container and orchestration layer, and the
build and application layer. This guide contains the following information:

Why container security is important and how it compares with existing security standards.

Which container security measures are provided by the host (RHEL) layer and which are
provided by OpenShift Container Platform.

How to evaluate your container content and sources for vulnerabilities.

How to design your build and deployment process to proactively check container content.

How to control access to containers via authentication and authorization.

How networking and attached storage are secured in OpenShift Container Platform.

Containerized solutions for API management and SSO.

1.2. WHAT ARE CONTAINERS?

Containers package an application and all its dependencies into a single image that can be promoted
from development, to test, to production, without change.

Containers provide consistency across environments and multiple deployment targets: physical servers,
virtual machines (VMs), and private or public cloud.

Some of the benefits of using containers include:

INFRASTRUCTURE APPLICATIONS

Sandboxed application processes on a shared Linux
OS kernel

Package my application and all of its dependencies

Simpler, lighter, and denser than virtual machines Deploy to any environment in seconds and enable
CI/CD

Portable across different environments Easily access and share containerized components

Further Reading

OpenShift Container Platform Architecture : Core Concepts → Containers and Images

Red Hat Enterprise Linux Atomic Host Container Security Guide

1.3. CONTAINER SECURITY IN OPENSHIFT CONTAINER PLATFORM

OpenShift Container Platform 3.6 Container Security Guide

4

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#architecture-core-concepts-containers-and-images
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/

This guide describes the key elements of security for each layer of the container solution stack, while
also showing how OpenShift Container Platform can be used to to create, deploy, and manage
containers at scale, with security in mind at every stage and every layer.

Further Reading

Red Hat Enterprise Linux Atomic Host Overview of Containers in Red Hat Systems

Red Hat Enterprise Linux Atomic Host Container Security Guide

CHAPTER 1. INTRODUCTION

5

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/

CHAPTER 2. CONTAINER HOSTS AND MULTI-TENANCY

2.1. HOW CONTAINERS ARE SECURED ON RHEL

Containers enable you to simplify multi-tenancy deployments by deploying multiple applications on a
single host, using the kernel and the docker runtime to spin up each container.

You must have an operating system (OS) that can secure the host kernel and secure containers from
each other. In Linux, containers are just a special type of process, so securing containers is the same as
securing any running process. Containers should run as a non-root user. Dropping the privilege level or
creating containers with the least amount of privileges possible is recommended.

Because OpenShift Container Platform runs on Red Hat Enterprise Linux (RHEL) and RHEL Atomic
Host, the following concepts apply by default to any deployed OpenShift Container Platform cluster and
are at the core of what make containers secure on the platform.

Linux namespaces enable creating an abstraction of a particular global system resource to make
it appear as a separate instance to processes within a namespace. Consequently, several
containers can use the same resource simultaneously without creating a conflict. See Overview
of Containers in Red Hat Systems for details on the types of namespaces (e.g., mount, PID, and
network).

SELinux provides an additional layer of security to keep containers isolated from each other and
from the host. SELinux allows administrators to enforce mandatory access controls (MAC) for
every user, application, process, and file.

CGroups (control groups) limit, account for, and isolate the resource usage (CPU, memory, disk
I/O, network, etc.) of a collection of processes. CGroups are used to ensure that containers on
the same host are not impacted by each other.

Secure computing mode (seccomp) profiles can be associated with a container to restrict
available system calls.

Deploying containers using RHEL Atomic Host reduces the attack surface by minimizing the
host environment and tuning it for containers.

Further Reading

Linux man page: namespaces(7)

Red Hat Enterprise Linux Atomic Host Overview of Containers in Red Hat Systems: Secure
Containers with SELinux

Red Hat Enterprise Linux Resource Management Guide: Introduction to Control Groups
(CGroups)

Red Hat Enterprise Linux Atomic Host Container Security Guide: Linux Capabilities and
seccomp

Kernel documentation: seccomp

2.2. MULTI-TENANCY: VIRTUALIZATION VERSUS CONTAINERS

Traditional virtualization also enables multi-tenancy, but in a very different way from containers.
Virtualization relies on a hypervisor spinning up guest virtual machines (VMs), each of which has its own
operating system (OS), as well as the running application and its dependencies.

OpenShift Container Platform 3.6 Container Security Guide

6

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers#linux_containers_architecture
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers#secure_containers_with_selinux
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Resource_Management_Guide/chap-Introduction_to_Control_Groups.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/linux_capabilities_and_seccomp
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

With VMs, the hypervisor isolates the guests from each other and from the host kernel. Fewer individuals
and processes have access to the hypervisor, reducing the attack surface on the physical server. That
said, security must still be monitored: one guest VM may be able to use hypervisor bugs to gain access
to another VM or the host kernel. And, when the OS needs patching, it must be patched on all guest
VMs using that OS.

Containers can be run inside guest VMs, and there may be use cases where this is desirable. For
example, you may be deploying a traditional application in a container, perhaps in order to lift-and-shift
an application to the cloud. However, container multi-tenancy on a single host provides a more
lightweight, flexible, and easier-to-scale deployment solution. This deployment model is particularly
appropriate for cloud-native applications.

Further Reading

Red Hat Enterprise Linux Atomic Host Overview of Containers in Red Hat Systems: Linux
Containers Compared to KVM Virtualization

CHAPTER 2. CONTAINER HOSTS AND MULTI-TENANCY

7

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers#linux_containers_compared_to_kvm_virtualization

CHAPTER 3. CONTAINER CONTENT

3.1. SECURITY INSIDE THE CONTAINER

Applications and infrastructures are composed of readily available components, many of which are open
source packages such as, the Linux operating system, JBoss Web Server, PostgreSQL, and Node.js.

Containerized versions of these packages are also available, However, you need to know where the
packages originally came from, who built them, and whether there is any malicious code inside them.

Some questions to answer include:

Will what is inside the containers compromise your infrastructure?

Are there known vulnerabilities in the application layer?

Are the runtime and OS layers current?

Further Reading

OpenShift Container Platform Using Images

Reference documentation on framework, database, and service container images provided
by Red Hat for use on OpenShift Container Platform

3.2. CONTAINER CONTENT SCANNING

Container scanning tools can leverage continuously updated vulnerability databases to ensure that you
always have the latest information on known vulnerabilities for your container content. The list of known
vulnerabilities constantly evolves; you must check the contents of your container images when you first
download them and continue to track vulnerability status over time for all of your approved and deployed
images.

RHEL provides a pluggable API to support multiple scanners. You can also use Red Hat CloudForms
with OpenSCAP to scan container images for security issues. See the Red Hat Enterprise Linux Security
Guide for general information on OpenSCAP in RHEL, and the Red Hat CloudForms Policies and
Profiles Guide for specifics on OpenSCAP integration.

OpenShift Container Platform enables you to leverage such scanners with your CI/CD process. For
example, you can integrate static code analysis tools that test for security flaws in your source code and
software composition analysis tools that identify open source libraries in order to provide metadata on
those libraries such as known vulnerabilities. This is covered in more detail in Build Process.

3.3. INTEGRATING EXTERNAL SCANNING TOOLS WITH OPENSHIFT

OpenShift Container Platform makes use of object annotations to extend functionality. External tools,
such as vulnerability scanners, may annotate image objects with metadata to summarize results and
control pod execution. This section describes the recognized format of this annotation so it may be
reliably used in consoles to display useful data to users.

3.3.1. Image Metadata

There are different types of image quality data, including package vulnerabilities and open source
software (OSS) license compliance. Additionally, there may be more than one provider of this metadata.
To that end, the following annotation format has been reserved:

OpenShift Container Platform 3.6 Container Security Guide

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/using_images/#using-images-index
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/chap-Compliance_and_Vulnerability_Scanning.html
https://access.redhat.com/documentation/en-us/red_hat_cloudforms/4.2/html-single/policies_and_profiles_guide/#openscap
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

quality.images.openshift.io/<qualityType>.<providerId>: {}

Table 3.1. Annotation Key Format

Component Description Acceptable Values

qualityType Metadata type vulnerability
license
operations
policy

providerId Provider ID string openscap
redhatcatalog
redhatinsights
blackduck
jfrog

3.3.1.1. Example Annotation Keys

quality.images.openshift.io/vulnerability.blackduck: {}
quality.images.openshift.io/vulnerability.jfrog: {}
quality.images.openshift.io/license.blackduck: {}
quality.images.openshift.io/vulnerability.openscap: {}

The value of the image quality annotation is structured data that must adhere to the following format:

Table 3.2. Annotation Value Format

Field Required? Description Type

name Yes Provider display name String

timestamp Yes Scan timestamp String

description No Short description String

reference Yes URL of information
source and/or more
details. Required so user
may validate the data.

String

scannerVersion No Scanner version String

compliant No Compliance pass/fail Boolean

summary No Summary of issues
found

List (see table below)

The summary field must adhere to the following format:

CHAPTER 3. CONTAINER CONTENT

9

Table 3.3. Summary Field Value Format

Field Description Type

label Display label for component (e.g.,
"critical", "important", "moderate",
"low" or "health")

String

data Data for this component (e.g.,
count of vulnerabilities found or
score)

String

severityIndex Component index allowing for
ordering and assigning graphical
representation. The value is range
0..3 where 0 = low.

Integer

reference URL of information source and/or
more details. Optional.

String

3.3.1.2. Example Annotation Values

This example shows an OpenSCAP annotation for an image with vulnerability summary data and a
compliance boolean:

OpenSCAP Annotation

This example shows a Red Hat Container Catalog annotation for an image with health index data with an
external URL for additional details:

Red Hat Container Catalog Annotation

{
 "name": "OpenSCAP",
 "description": "OpenSCAP vulnerability score",
 "timestamp": "2016-09-08T05:04:46Z",
 "reference": "https://www.open-scap.org/930492",
 "compliant": true,
 "scannerVersion": "1.2",
 "summary": [
 { "label": "critical", "data": "4", "severityIndex": 3, "reference":
null },
 { "label": "important", "data": "12", "severityIndex": 2,
"reference": null },
 { "label": "moderate", "data": "8", "severityIndex": 1, "reference":
null },
 { "label": "low", "data": "26", "severityIndex": 0, "reference": null
}
]
}

{
 "name": "Red Hat Container Catalog",

OpenShift Container Platform 3.6 Container Security Guide

10

3.3.2. Annotating Image Objects

While image stream objects are what an end-user of OpenShift Container Platform operates against,
image objects are annotated with security metadata. Image objects are cluster-scoped, pointing to a
single image that may be referenced by many image streams and tags.

3.3.2.1. Example Annotate CLI Command

Replace <image> with an image digest, for example
sha256:fec8a395afe3e804b3db5cb277869142d2b5c561ebb517585566e160ff321988:

$ oc annotate image <image> \
 quality.images.openshift.io/vulnerability.redhatcatalog='{ \
 "name": "Red Hat Container Catalog", \
 "description": "Container health index", \
 "timestamp": "2016-09-08T05:04:46Z", \
 "compliant": null, \
 "scannerVersion": "1.2", \
 "reference": "https://access.redhat.com/errata/RHBA-2016:1566", \
 "summary": "[\
 { "label": "Health index", "data": "B", "severityIndex": 1,
"reference": null }]" }'

3.3.3. Controlling Pod Execution

To programmatically control if an image may be run, the images.openshift.io/deny-execution
image policy may be used. See Image Policy for more information.

3.3.3.1. Example Annotation

3.3.4. Integration Reference

In most cases, external tools such as vulnerability scanners will develop a script or plug-in that watches
for image updates, performs scanning and annotate the associated image object with the results.
Typically this automation calls the OpenShift Container Platform REST API to write the annotation. See
REST API Reference for general information on the REST API and PATCH call to update images.

3.3.4.1. Example REST API Call

 "description": "Container health index",
 "timestamp": "2016-09-08T05:04:46Z",
 "reference": "https://access.redhat.com/errata/RHBA-2016:1566",
 "compliant": null,
 "scannerVersion": "1.2",
 "summary": [
 { "label": "Health index", "data": "B", "severityIndex": 1,
"reference": null }
]
}

annotations:
 images.openshift.io/deny-execution: true

CHAPTER 3. CONTAINER CONTENT

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/rest_api_reference/#rest-api-openshift-v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/cluster_administration/#admin-guide-image-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/rest_api_reference/#rest-api-index

This example call using curl will overwrite the value of the annotation. Be sure to replace the values for
<token>, <openshift_server>, <image_id>, and <image_annotation>.

Patch API Call

$ curl -X PATCH \
 -H "Authorization: Bearer <token>" \
 -H "Content-Type: application/merge-patch+json" \
 https://<openshift_server>:8443/oapi/v1/images/<image_id> \
 --data '{ <image_annotation> }'

Below is example PATCH payload data.

Patch Call Data

{
"metadata": {
 "annotations": {
 "quality.images.openshift.io/vulnerability.redhatcatalog":
 "{ 'name': 'Red Hat Container Catalog', 'description': 'Container
health index', 'timestamp': '2016-09-08T05:04:46Z', 'compliant': null,
'reference': 'https://access.redhat.com/errata/RHBA-2016:1566', 'summary':
[{'label': 'Health index', 'data': '4', 'severityIndex': 1, 'reference':
null}] }"
 }
 }
}

OpenShift Container Platform 3.6 Container Security Guide

12

CHAPTER 4. REGISTRIES

4.1. WHERE DO YOUR CONTAINERS COME FROM?

There are tools you can use to scan and track the contents of your downloaded and deployed container
images. However, there are many public sources of container images. When using public container
registries, you can add a layer of protection by using trusted sources.

4.2. IMMUTABLE AND CERTIFIED CONTAINERS

Consuming security updates is particularly important when managing immutable containers. Immutable
containers are containers that will never be changed while running. When you deploy immutable
containers, you do not step into the running container to replace one or more binaries; you rebuild and
redeploy an updated container image.

Red Hat certified images are:

Free of known vulnerabilities in the platform components or layers.

Compatible across the RHEL platforms, from bare metal to cloud.

Supported by Red Hat.

The list of known vulnerabilities is constantly evolving, so you must track the contents of your deployed
container images, as well as newly downloaded images, over time. You can use Red Hat Security
Advisories (RHSAs) to alert you to any newly discovered issues in Red Hat certified container images,
and direct you to the updated image.

Further Reading

More on immutable containers in OpenShift Container Platform:

OpenShift Container Platform Architecture : Image Streams

OpenShift Container Platform Developer Guide: Referencing Images in Image Streams

4.3. RED HAT REGISTRY AND RED HAT CONTAINER CATALOG

Red Hat provides certified containers for Red Hat products and partner offerings via the Red Hat
Registry, which is a public container registry hosted by Red Hat at registry.access.redhat.com. The Red
Hat Container Catalog enables you to identify bug fix or security advisories associated with container
images provided in the Red Hat Registry.

Container content is monitored for vulnerabilities by Red Hat and updated regularly. When Red Hat
releases security updates, such as fixes to glibc, Drown, or Dirty Cow, any affected container images
are also rebuilt and pushed to the Red Hat Registry.

Red Hat uses a "health index" for security risk with containers provided through the Red Hat Container
Catalog. These containers consume software provided by Red Hat and the errata process, so old, stale
containers are insecure whereas new, fresh containers are more secure.

To illustrate the age of containers, the Red Hat Container Catalog uses a grading system. A freshness
grade is a measure of the oldest and most severe security errata available for an image. "A" is more up-
to-date than "F". See Container Health Index grades as used inside the Red Hat Container Catalog for
more details on this grading system.

CHAPTER 4. REGISTRIES

13

https://access.redhat.com/security/security-updates/#/security-advisories
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/developer_guide/#referencing-images-in-image-streams
https://registry.access.redhat.com
https://access.redhat.com/containers
https://access.redhat.com/articles/2803031

Further Reading

Red Hat Container Catalog FAQ

Red Hat Product Security Center

Red Hat Security Advisories

4.4. OPENSHIFT CONTAINER REGISTRY

OpenShift Container Platform includes the OpenShift Container Registry, a private registry that runs
integrated with the platform that you can use to manage your container images. The OpenShift
Container Registry provides role-based access controls that allow you to manage who can pull and push
which container images.

OpenShift Container Platform also supports integration with other private registries you may already be
using.

Further Reading

OpenShift Container Platform Architecture : Infrastructure Components → Image Registry

OpenShift Container Platform 3.6 Container Security Guide

14

https://access.redhat.com/containers#/faq
https://access.redhat.com/security/
https://access.redhat.com/security/security-updates/#/security-advisories
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#architecture-infrastructure-components-image-registry

CHAPTER 5. BUILD PROCESS

5.1. BUILD ONCE, DEPLOY EVERYWHERE

In a container environment, the software build process is the stage in the life cycle where application
code is integrated with the required runtime libraries. Managing this build process is key to securing the
software stack.

Using OpenShift Container Platform as the standard platform for container builds enables you to
guarantee the security of the build environment. Adhering to a "build once, deploy everywhere"
philosophy ensures that the product of the build process is exactly what is deployed in production.

It is also important to maintain the immutability of your containers. You should not patch running
containers, but rebuild and redeploy them.

5.2. BUILD MANAGEMENT AND SECURITY

You can use source-to-Image (S2I) to combine source code and base images. Builder images make use
of S2I to enable your development and operations teams to collaborate on a reproducible build
environment.

When developers commit code with Git for an application using build images, OpenShift Container
Platform can perform the following functions:

Trigger, either via webhooks on the code repository or other automated continuous integration
(CI) process, to automatically assemble a new image from available artifacts, the S2I builder
image, and the newly committed code.

Automatically deploy the newly-built image for testing.

Promote the tested image to production where it can be automatically deployed using CI
process.

You can use OpenShift Container Registry to manage access to final images. Both S2I and native build
images are automatically pushed to the OpenShift Container Registry.

CHAPTER 5. BUILD PROCESS

15

In addition to the included Jenkins for CI, you can also integrate your own build / CI environment with
OpenShift Container Platform using RESTful APIs, as well as use any API-compliant image registry.

Further Reading

OpenShift Container Platform Developer Guide

How Builds Work

Triggering Builds

OpenShift Container Platform Architecture : Source-to-Image (S2I) Build

OpenShift Container Platform Using Images: Other Images → Jenkins

5.3. SECURING INPUTS DURING BUILDS

In some scenarios, build operations require credentials to access dependent resources, but it is
undesirable for those credentials to be available in the final application image produced by the build. You
can define input secrets for this purpose.

For example, when building a Node.js application, you can set up your private mirror for Node.js
modules. In order to download modules from that private mirror, you have to supply a custom .npmrc file
for the build that contains a URL, user name, and password. For security reasons, you do not want to
expose your credentials in the application image.

Using this example scenario, you can add an input secret to a new BuildConfig:

1. Create the secret, if it does not exist:

$ oc secrets new secret-npmrc .npmrc=~/.npmrc

This creates a new secret named secret-npmrc, which contains the base64 encoded content of
the ~/.npmrc file.

2. Add the secret to the source section in the existing BuildConfig:

3. To include the secret in a new BuildConfig, run the following command:

$ oc new-build \
 openshift/nodejs-010-centos7~https://github.com/sclorg/nodejs-
ex.git \
 --build-secret secret-npmrc

Further Reading

OpenShift Container Platform Developer Guide: Input Secrets

source:
 git:
 uri: https://github.com/sclorg/nodejs-ex.git
 secrets:
 - secret:
 name: secret-npmrc

OpenShift Container Platform 3.6 Container Security Guide

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/developer_guide/#dev-guide-how-builds-work
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/developer_guide/#dev-guide-triggering-builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/using_images/#using-images-other-images-jenkins
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/developer_guide/#using-secrets-during-build

5.4. DESIGNING YOUR BUILD PROCESS

You can design your container image management and build process to use container layers so that you
can separate control.

For example, an operations team manages base images, while architects manage middleware, runtimes,
databases, and other solutions. Developers can then focus on application layers and just write code.

Because new vulnerabilities are identified daily, you need to proactively check container content over
time. To do this, you should integrate automated security testing into your build or CI process. For
example:

SAST / DAST – Static and Dynamic security testing tools.

Scanners for real-time checking against known vulnerabilities. Tools like these catalog the open
source packages in your container, notify you of any known vulnerabilities, and update you when
new vulnerabilities are discovered in previously scanned packages.

Your CI process should include policies that flag builds with issues discovered by security scans so that
your team can take appropriate action to address those issues. You should sign your custom built
containers to ensure that nothing is tampered with between build and deployment.

Further Reading

Red Hat Enterprise Linux Atomic Host Managing Containers: Signing Container Images

CHAPTER 5. BUILD PROCESS

17

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/managing_containers/signing_container_images

CHAPTER 6. DEPLOYMENT

6.1. CONTROLLING WHAT CAN BE DEPLOYED IN A CONTAINER

If something happens during the build process, or if a vulnerability is discovered after an image has been
deployed, you can use tooling for automated, policy-based deployment. You can use triggers to rebuild
and replace images instead of patching running containers, which is not recommended.

For example, you build an application using three container image layers: core, middleware, and
applications. An issue is discovered in the core image and that image is rebuilt. After the build is
complete, the image is pushed to the OpenShift Container Registry. OpenShift Container Platform
detects that the image has changed and automatically rebuilds and deploys the application image, based
on the defined triggers. This change incorporates the fixed libraries and ensures that the production code
is identical to the most current image.

The oc set triggers command can be used to set a deployment trigger for a deployment
configuration. For example, to set an ImageChangeTrigger in a deployment configuration called
frontend:

OpenShift Container Platform 3.6 Container Security Guide

18

$ oc set triggers dc/frontend \
 --from-image=myproject/origin-ruby-sample:latest \
 -c helloworld

Further Reading

OpenShift Container Platform Developer Guide

How Deployments Work

Setting Deployment Triggers

Application Life Cycle Management → Promoting Applications Across Environments

6.2. CONTROLLING WHAT IMAGE SOURCES CAN BE DEPLOYED

It is important that the intended images are actually being deployed, that they are from trusted sources,
and they have not been altered. Cryptographic signing provides this assurance. OpenShift Container
Platform enables cluster administrators to apply security policy that is broad or narrow, reflecting
deployment environment and security requirements. Two parameters define this policy:

one or more registries (with optional project namespace)

trust type (accept, reject, or require public key(s))

With these policy parameters, registries or parts of registries, even individual images, may be whitelisted
(accept), blacklisted (reject), or define a trust relationship using trusted public key(s) to ensure the source
is cryptographically verified. The policy rules apply to nodes. Policy may be applied uniformly across all
nodes or targeted for different node workloads (for example, build, zone, or environment).

Example Image Signature Policy File

{
 "default": [{"type": "reject"}],
 "transports": {
 "docker": {
 "registry.access.redhat.com": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-
release"
 }
]
 },
 "atomic": {
 "172.30.1.1:5000/openshift": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-
release"
 }
],
 "172.30.1.1:5000/production": [
 {

CHAPTER 6. DEPLOYMENT

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/developer_guide/#dev-guide-how-deployments-work
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/developer_guide/#triggers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/developer_guide/#dev-guide-promoting-applications

 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "/etc/pki/example.com/pubkey"
 }
],
 "172.30.1.1:5000": [{"type": "insecureAcceptAnything"}]
 }
 }
}

The policy can be saved onto a node as /etc/containers/policy.json. This example enforces the
following rules:

1. Require images from the Red Hat Registry (registry.access.redhat.com) to be signed by
the Red Hat public key.

2. Require images from the OpenShift Container Registry in the openshift namespace to be signed
by the Red Hat public key.

3. Require images from the OpenShift Container Registry in the production namespace to be
signed by the public key for example.com.

4. Reject all other registries not specified by the global default definition.

For specific instructions on configuring a host, see Enabling Image Signature Support. See the section
below for details on Signature Transports. For more details on image signature policy, see the Signature
verification policy file format source code documentation.

6.2.1. Signature Transports

A signature transport is a way to store and retrieve the binary signature blob. There are two types of
signature transports.

atomic: Managed by the OpenShift Container Platform API.

docker: Served as a local file or by a web server.

Signatures using the atomic transport type are managed by the OpenShift Container Platform API.
Images must be stored by the OpenShift Container Registry. No additional configuration is required due
to the docker/distributionextensions API to auto-discover the image signature endpoint.

Signatures using the docker transport type are served by local file or web server. They have the benefit
of the most flexibility: any container registry can be used to serve images with an independent server to
deliver binary signatures.

However, the docker transport type requires additional configuration. Each node must be configured
with the URI of the signature server using arbitrarily-named YAML files placed into a directory on the
host system, /etc/containers/registries.d by default. The configuration files contain a registry URI and a
signature server URI, or sigstore:

Example Registries.d File

docker:
 registry.access.redhat.com:
 sigstore: http://registry.access.redhat.com/content/sigstore/

OpenShift Container Platform 3.6 Container Security Guide

20

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#enabling-image-signature-support
https://github.com/containers/image/blob/master/docs/policy.json.md
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/cluster_administration/#reading-image-signatures-via-registry-api

This example file may be placed on each node as /etc/containers/registries.d/redhat.com.yaml. It
defines a signature server (the sigstore parameter) to serve signatures for the docker transport type
for the Red Hat Registry (access.registry.redhat.com). Placing these files onto a cluster of nodes
may be automated using Ansible, for example. No service restart is required since policy and
registries.d files are dynamically loaded by the container runtime.

For more details, see the Registries Configuration Directory or Signature access protocols source code
documentation.

Further Reading

OpenShift Container Platform Cluster Administration Guide

Default Scheduling

Red Hat Knowledgebase

Container Image Signing Integration Guide

Source Code Reference

Image signing policy

Signature transports

Signature format

6.3. SECRETS AND CONFIGMAPS

The Secret object type provides a mechanism to hold sensitive information such as passwords,
OpenShift Container Platform client configuration files, dockercfg files, and private source repository
credentials. Secrets decouple sensitive content from pods. You can mount secrets into containers using
a volume plug-in or the system can use secrets to perform actions on behalf of a pod.

For example, to add a secret to your deployment configuration using the web console so that it can
access a private image repository:

1. Create a new project.

2. Navigate to Resources → Secrets and create a new secret. Set Secret Type to Image Secret
and Authentication Type to Image Registry Credentials to enter credentials for accessing a
private image repository.

3. When creating a deployment configuration (for example, from the Add to Project → Deploy
Image page), set the Pull Secret to your new secret.

ConfigMaps are similar to secrets, but are designed to support working with strings that do not contain
sensitive information. The ConfigMap object holds key-value pairs of configuration data that can be
consumed in pods or used to store configuration data for system components such as controllers.

Further Reading

OpenShift Container Platform Developer Guide

Secrets

ConfigMaps

CHAPTER 6. DEPLOYMENT

21

https://github.com/containers/image/blob/master/docs/registries.d.md
https://github.com/containers/image/blob/master/docs/signature-protocols.md
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/cluster_administration/#admin-guide-scheduler
https://access.redhat.com/articles/2750891
https://github.com/containers/image/blob/master/docs/policy.json.md
https://github.com/containers/image/blob/master/docs/signature-protocols.md
https://github.com/containers/image/blob/master/docs/atomic-signature.md
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/developer_guide/#dev-guide-secrets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/developer_guide/#dev-guide-configmaps

6.4. SECURITY CONTEXT CONSTRAINTS (SCCS)

You can use security context constraints (SCCs) to define a set of conditions that a pod (a collection of
containers) must run with in order to be accepted into the system.

Some aspects that can be managed by SCCs include:

Running of privileged containers.

Capabilities a container can request to be added.

Use of host directories as volumes.

SELinux context of the container.

Container user ID.

If you have the required permissions, you can adjust the default SCC policies to be more permissive.

Further Reading

OpenShift Container Platform Architecture : Security Context Constraints

OpenShift Container Platform Installation and Configuration: Security Warning

Discusses privileged containers

6.5. CONTINUOUS DEPLOYMENT TOOLING

You can integrate your own continuous deployment (CD) tooling with OpenShift Container Platform.

By leveraging CI/CD and OpenShift Container Platform, you can automate the process of rebuilding the
application to incorporate the latest fixes, testing, and ensuring that it is deployed everywhere within the
environment.

OpenShift Container Platform 3.6 Container Security Guide

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#security-context-constraints
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#security-warning

CHAPTER 7. SECURING THE CONTAINER PLATFORM

7.1. CONTAINER ORCHESTRATION

APIs are key to automating container management at scale. APIs are used to:

Validate and configure the data for pods, services, and replication controllers.

Perform project validation on incoming requests and invoke triggers on other major system
components.

Further Reading

OpenShift Container Platform Architecture: How Is OpenShift Container Platform Secured?

7.2. AUTHENTICATION AND AUTHORIZATION

7.2.1. Controlling Access Using OAuth

You can use API access control via authentication and authorization for securing your container
platform. The OpenShift Container Platform master includes a built-in OAuth server. Users can obtain
OAuth access tokens to authenticate themselves to the API.

As an administrator, you can configure OAuth to authenticate using an identity provider, such as LDAP,
GitHub, or Google. The Deny All identity provider is used by default for new OpenShift Container
Platform deployments, but you can configure this at initial installation time or post-installation. See
Configuring authentication and user agent for a full list of identity providers.

For example, to configure the GitHub identity provider post-installation:

1. Edit the master configuration file at /etc/origin/master-config.yaml.

2. Modify the oauthConfig stanza per the following:

oauthConfig:
 ...
 identityProviders:
 - name: github
 challenge: false
 login: true
 mappingMethod: claim
 provider:
 apiVersion: v1
 kind: GitHubIdentityProvider
 clientID: ...
 clientSecret: ...
 organizations:
 - myorganization1
 - myorganization2
 teams:
 - myorganization1/team-a
 - myorganization2/team-b

CHAPTER 7. SECURING THE CONTAINER PLATFORM

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#architecture-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-configuring-authentication

NOTE

See the GitHub section in Configuring Authentication for more detailed
information and usage.

3. After saving your changes, restart the master services for the changes to take effect:

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

Further Reading

OpenShift Container Platform Architecture

Additional Concepts → Authentication

Additional Concepts → Authorization

OpenShift Container Platform CLI Reference

OpenShift Container Platform Developer Guide: CLI Authentication

7.2.2. API Access Control and Management

Applications can have multiple, independent API services which have different endpoints that require
management. OpenShift Container Platform includes a containerized version of the 3scale API gateway
so that you can manage your APIs and control access.

3scale gives you a variety of standard options for API authentication and security, which can be used
alone or in combination to issue credentials and control access: Standard API keys, Application ID and
key pair, and OAuth 2.0.

You can restrict access to specific end points, methods, and services and apply access policy for groups
of users. Application plans allow you to set rate limits for API usage and control traffic flow for groups of
developers.

For a tutorial on using APIcast v2, the containerized 3scale API Gateway, see Running APIcast on Red
Hat OpenShift.

7.2.3. Red Hat SSO

The Red Hat Single Sign-On (RH-SSO) Server enables you to secure your applications by providing
Web SSO capabilities based on standards, including SAML 2.0, OpenID Connect, and OAuth 2.0. The
Server can act as a SAML or OpenID Connect–based identity provider (IdP), mediating with your
enterprise user directory or third-party identity provider for identity information and your applications
using standards-based tokens. You can integrate Red Hat SSO with LDAP-based directory services
including Microsoft Active Directory and Red Hat Enterprise Linux Identity Management.

See Red Hat JBoss SSO for OpenShift documentation for usage tutorials.

7.2.4. Secure Self-service Web Console

OpenShift Container Platform provides a self-service web console to ensure that teams do not access
other environments without authorization. OpenShift Container Platform ensures a secure multi-tenant
master by providing the following:

OpenShift Container Platform 3.6 Container Security Guide

24

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#GitHub
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#architecture-additional-concepts-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/developer_guide/#cli-authentication
https://support.3scale.net/docs/deployment-options/apicast-openshift
https://access.redhat.com/documentation/en-us/red_hat_jboss_middleware_for_openshift/3/html/red_hat_jboss_sso_for_openshift/tutorials

Access to the master uses Transport Layer Security (TLS)

Access to the API Server uses X.509 certificates or OAuth access tokens

Project quota limits the damage that a rogue token could do

Etcd is not exposed directly to the cluster

Further Reading

OpenShift Container Platform Architecture : Infrastructure Components → Web Console

OpenShift Container Platform Developer Guide: Web Console Authentication

7.3. MANAGING CERTIFICATES FOR THE PLATFORM

OpenShift Container Platform has multiple components within its framework that use REST-based
HTTPS communication leveraging encryption via TLS certificates. OpenShift Container Platform’s
Ansible-based installer configures these certificates during installation. There are some primary
components that generate this traffic:

masters (API server and controllers)

etcd

nodes

registry

router

7.3.1. Configuring Custom Certificates

You can configure custom serving certificates for the public host names of the API server and web
console during initial installation or when redeploying certificates. You can also use a custom CA.

During initial advanced installations using Ansible playbooks, custom certificates can be configured using
the openshift_master_overwrite_named_certificates Ansible variable, which is configurable
in the inventory file. For example:

openshift_master_named_certificates=[{"certfile":
"/path/on/host/to/custom1.crt", "keyfile": "/path/on/host/to/custom1.key",
"cafile": "/path/on/host/to/custom-ca1.crt"}]

See the Advanced Installation’s Configuring Custom Certificates for more options and instructions on
how to run the installation playbook.

The installer provides Ansible playbooks for checking on the expiration dates of all cluster certificates.
Additional playbooks can automatically redeploy all certificates at once using the current CA, redeploy
specific certificates only, or redeploy a newly generated or custom CA on its own. See Redeploying
Certificates for more on these playbooks.

Further Reading

OpenShift Container Platform Installation and Configuration

CHAPTER 7. SECURING THE CONTAINER PLATFORM

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/developer_guide/#web-console-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#advanced-install-custom-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-redeploying-certificates

Configuring Custom Certificates

Checking Certificate Expirations

Redeploying Certificates

OpenShift Container Platform 3.6 Container Security Guide

26

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-certificate-customization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-cert-expiry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#redeploy-certificates

CHAPTER 8. NETWORK SECURITY

8.1. NETWORK NAMESPACES

OpenShift Container Platform uses software-defined networking (SDN) to provide a unified cluster
network that enables communication between containers across the cluster.

Using network namespaces, you can isolate pod networks. Each pod gets its own IP and port range to
bind to, thereby isolating pod networks from each other on the node. Pods from different projects cannot
send packets to or receive packets from pods and services of a different project. You can use this to
isolate developer, test and production environments within a cluster.

OpenShift Container Platform also provides the ability to control egress traffic using either a router or
firewall method. For example, you can use IP whitelisting to control database access.

Further Reading

OpenShift Container Platform Architecture : Networking

OpenShift Container Platform Cluster Administration : Managing Networking

Red Hat Enterprise Linux Atomic Host Managing Containers: Running Super-Privileged
Containers

8.2. ISOLATING APPLICATIONS

OpenShift Container Platform enables you to segment network traffic on a single cluster to make multi-
tenant clusters that isolate users, teams, applications, and environments.

For example, to isolate a project network in the cluster and vice versa, run:

$ oc adm pod-network isolate-projects <project1> <project2>

In the above example, all of the pods and services in <project1> and <project2> can not access
any pods and services from other non-global projects in the cluster and vice versa.

CHAPTER 8. NETWORK SECURITY

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#architecture-additional-concepts-networking
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/cluster_administration/#admin-guide-manage-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/managing_containers/running_super_privileged_containers

CHAPTER 9. ATTACHED STORAGE

9.1. PERSISTENT VOLUME PLUG-INS

Containers are useful for both stateless and stateful applications. Protecting attached storage is a key
element of securing stateful services.

OpenShift Container Platform provides plug-ins for multiple types of storage, including NFS, AWS Elastic
Block Stores (EBS), GCE Persistent Disks, GlusterFS, iSCSI, RADOS (Ceph) and Cinder. Data in transit
is encrypted via HTTPS for all OpenShift Container Platform components communicating with each
other.

You can mount PersistentVolume (PV) on a host in any way supported by your storage type.
Different types of storage have different capabilities and each PV’s access modes are set to the specific
modes supported by that particular volume.

For example, NFS can support multiple read/write clients, but a specific NFS PV might be exported on
the server as read-only. Each PV has its own set of access modes describing that specific PV’s
capabilities, such as ReadWriteOnce, ReadOnlyMany, and ReadWriteMany.

Further Reading

OpenShift Container Platform Architecture : Additional Concepts → Storage

OpenShift Container Platform Installation and Configuration: Configuring Persistent Storage →
Volume Security

9.2. SHARED STORAGE

For shared storage providers like NFS, Ceph, and Gluster, the PV registers its group ID (GID) as an
annotation on the PV resource. Then, when the PV is claimed by the pod, the annotated GID is added to
the supplemental groups of the pod, giving that pod access to the contents of the shared storage.

Further Reading

OpenShift Container Platform Installation and Configuration

Persistent Storage Using NFS

Persistent Storage Using Ceph RBD

Persistent Storage Using GlusterFS

9.3. BLOCK STORAGE

For block storage providers like AWS Elastic Block Store (EBS), GCE Persistent Disks, and iSCSI,
OpenShift Container Platform uses SELinux capabilities to secure the root of the mounted volume for
non-privileged pods, making the mounted volume owned by and only visible to the container with which it
is associated.

Further Reading

OpenShift Container Platform Installation and Configuration

Persistent Storage Using AWS Elastic Block Storage

OpenShift Container Platform 3.6 Container Security Guide

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-persistent-storage-pod-security-context
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-nfs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-ceph-rbd
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-glusterfs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-aws

Persistent Storage Using GCE Persistent Disk

Persistent Storage Using iSCSI

CHAPTER 9. ATTACHED STORAGE

29

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-gce
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-iscsi

CHAPTER 10. MONITORING CLUSTER EVENTS AND LOGS

10.1. INTRODUCTION

In addition to security measures mentioned in other sections of this guide, the ability to monitor and audit
an OpenShift Container Platform cluster is an important part of safeguarding the cluster and its users
against inappropriate usage.

There are two main sources of cluster-level information that are useful for this purpose: events and logs.

10.2. CLUSTER EVENTS

Cluster administrators are encouraged to familiarize themselves with the Event resource type and review
a list of events to determine which events are of interest. Depending on the master controller and plugin
configuration, there are typically more potential event types than listed here.

Events are associated with a namespace, either the namespace of the resource they are related to or,
for cluster events, the default namespace. The default namespace holds relevant events for monitoring
or auditing a cluster, such as Node events and resource events related to infrastructure components.

The master API and oc command do not provide parameters to scope a listing of events to only those
related to nodes. A simple approach would be to use grep:

$ oc get event -n default | grep Node
1h 20h 3 origin-node-1.example.local Node
Normal NodeHasDiskPressure ...

A more flexible approach is to output the events in a form that other tools can process. For example, the
following example uses the jq tool against JSON output to extract only NodeHasDiskPressure events:

$ oc get events -n default -o json \
 | jq '.items[] | select(.involvedObject.kind == "Node" and .reason ==
"NodeHasDiskPressure")'

{
 "apiVersion": "v1",
 "count": 3,
 "involvedObject": {
 "kind": "Node",
 "name": "origin-node-1.example.local",
 "uid": "origin-node-1.example.local"
 },
 "kind": "Event",
 "reason": "NodeHasDiskPressure",
 ...
}

Events related to resource creation, modification, or deletion can also be good candidates for detecting
misuse of the cluster. The following query, for example, can be used to look for excessive pulling of
images:

$ oc get events --all-namespaces -o json \
 | jq '[.items[] | select(.involvedObject.kind == "Pod" and .reason ==
"Pulling")] | length'

OpenShift Container Platform 3.6 Container Security Guide

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/developer_guide/#events-reference

4

NOTE

When a namespace is deleted, its events are deleted as well. Events can also expire and
are deleted to prevent filling up etcd storage. Events are not stored as a permanent
record and frequent polling is necessary to capture statistics over time.

10.3. CLUSTER LOGS

This section describes the types of operational logs produced on the cluster.

10.3.1. Service Logs

OpenShift Container Platform produces logs with each systemd service that is running on a host:

atomic-openshift-master-api

atomic-openshift-master-controllers

etcd

atomic-openshift-node

These logs are intended more for debugging purposes than for security auditing. They can be retrieved
per host with journalctl or, in clusters with the aggregated logging stack deployed, in the logging
.operations indexes (possibly in the Ops cluster) as a cluster administrator.

10.3.2. Master API Audit Log

To log master API requests by users, administrators, or system components enable audit logging for the
master API. This will create a file on each master host or, if there is no file configured, be included in the
service’s journal. Entries in the journal can be found by searching for "AUDIT".

Audit log entries consist of one line recording each REST request when it is received and one line with
the HTTP response code when it completes. For example, here is a record of the system administrator
requesting a list of nodes:

2017-10-17T13:12:17.635085787Z AUDIT: id="410eda6b-88d4-4491-87ff-
394804ca69a1" ip="192.168.122.156" method="GET" user="system:admin"
groups="\"system:cluster-admins\",\"system:authenticated\"" as="<self>"
asgroups="<lookup>" namespace="<none>" uri="/api/v1/nodes"
2017-10-17T13:12:17.636081056Z AUDIT: id="410eda6b-88d4-4491-87ff-
394804ca69a1" response="200"

It might be useful to poll the log periodically for the number of recent requests per response code, as
shown in the following example:

$ tail -5000 /var/log/openshift-audit.log \
 | grep -Po 'response="..."' \
 | sort | uniq -c | sort -rn

CHAPTER 10. MONITORING CLUSTER EVENTS AND LOGS

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#aggregated-ops
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#master-node-config-audit-config
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#master-node-config-audit-config

 3288 response="200"
 8 response="404"
 6 response="201"

The following list describes some of the response codes in more detail:

200 or 201 response codes indicate a successful request.

400 response codes may be of interest as they indicate a malformed request, which should not
occur with most clients.

404 response codes are typically benign requests for a resource that does not exist.

500 - 599 response codes indicate server errors, which can be a result of bugs, system failures,
or even malicious activity.

If an unusual number of error responses are found, the audit log entries for corresponding requests can
be retrieved for further investigation.

NOTE

The IP address of the request is typically a cluster host or API load balancer, and there is
no record of the IP address behind a load balancer proxy request (however, load balancer
logs can be useful for determining request origin).

It can be useful to look for unusual numbers of requests by a particular user or group.

The following example lists the top 10 users by number of requests in the last 5000 lines of the audit log:

$ tail -5000 /var/log/openshift-audit.log \
 | grep -Po ' user="(.*?)(?<!\\)"' \
 | sort | uniq -c | sort -rn | head -10

 976 user="system:openshift-master"
 270 user="system:node:origin-node-1.example.local"
 270 user="system:node:origin-master.example.local"
 66 user="system:anonymous"
 32 user="system:serviceaccount:kube-system:cronjob-controller"
 24 user="system:serviceaccount:kube-system:pod-garbage-collector"
 18 user="system:serviceaccount:kube-system:endpoint-controller"
 14 user="system:serviceaccount:openshift-infra:serviceaccount-pull-
secrets-controller"
 11 user="test user"
 4 user="test \" user"

More advanced queries generally require the use of additional log analysis tools. Auditors will need a
detailed familiarity with the OpenShift v1 API and Kubernetes v1 API to aggregate request summaries
from the audit log according to which kind of resource is involved (the uri field). See REST API
Reference for details.

OpenShift Container Platform 3.6 Container Security Guide

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/rest_api_reference/#rest-api-index

CHAPTER 11. REVISION HISTORY: CONTAINER SECURITY
GUIDE

11.1. FRI FEB 16 2018

Affected Topic Description of Change

Container Security
Guide

Added new topic on monitoring cluster events and logs

11.2. TUE FEB 06 2018

Affected Topic Description of Change

Container Security
Guide

Added new topic on monitoring cluster events and logs

11.3. THU JAN 25 2018

Affected Topic Description of Change

Container Security
Guide

Added new topic on monitoring cluster events and logs

11.4. MON JAN 08 2018

Affected Topic Description of Change

Container Security
Guide

Added new topic on monitoring cluster events and logs

11.5. FRI DEC 22 2017

Affected Topic Description of Change

Container Security
Guide

Added new topic on monitoring cluster events and logs

11.6. MON DEC 11 2017

CHAPTER 11. REVISION HISTORY: CONTAINER SECURITY GUIDE

33

Affected Topic Description of Change

Container Security
Guide

Added new topic on monitoring cluster events and logs

11.7. TUE NOV 21 2017

Affected Topic Description of Change

Container Security
Guide

Added new topic on monitoring cluster events and logs

11.8. WED AUG 09 2017

OpenShift Container Platform 3.6 Initial Release

Affected Topic Description of Change

Deployment Added the Controlling What Image Sources Can Be Deployed section.

OpenShift Container Platform 3.6 Container Security Guide

34

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. ABOUT THIS GUIDE
	1.2. WHAT ARE CONTAINERS?
	Further Reading

	1.3. CONTAINER SECURITY IN OPENSHIFT CONTAINER PLATFORM
	Further Reading

	CHAPTER 2. CONTAINER HOSTS AND MULTI-TENANCY
	2.1. HOW CONTAINERS ARE SECURED ON RHEL
	Further Reading

	2.2. MULTI-TENANCY: VIRTUALIZATION VERSUS CONTAINERS
	Further Reading

	CHAPTER 3. CONTAINER CONTENT
	3.1. SECURITY INSIDE THE CONTAINER
	Further Reading

	3.2. CONTAINER CONTENT SCANNING
	3.3. INTEGRATING EXTERNAL SCANNING TOOLS WITH OPENSHIFT
	3.3.1. Image Metadata
	3.3.1.1. Example Annotation Keys
	3.3.1.2. Example Annotation Values

	3.3.2. Annotating Image Objects
	3.3.2.1. Example Annotate CLI Command

	3.3.3. Controlling Pod Execution
	3.3.3.1. Example Annotation

	3.3.4. Integration Reference
	3.3.4.1. Example REST API Call

	CHAPTER 4. REGISTRIES
	4.1. WHERE DO YOUR CONTAINERS COME FROM?
	4.2. IMMUTABLE AND CERTIFIED CONTAINERS
	Further Reading

	4.3. RED HAT REGISTRY AND RED HAT CONTAINER CATALOG
	Further Reading

	4.4. OPENSHIFT CONTAINER REGISTRY
	Further Reading

	CHAPTER 5. BUILD PROCESS
	5.1. BUILD ONCE, DEPLOY EVERYWHERE
	5.2. BUILD MANAGEMENT AND SECURITY
	Further Reading

	5.3. SECURING INPUTS DURING BUILDS
	Further Reading

	5.4. DESIGNING YOUR BUILD PROCESS
	Further Reading

	CHAPTER 6. DEPLOYMENT
	6.1. CONTROLLING WHAT CAN BE DEPLOYED IN A CONTAINER
	Further Reading

	6.2. CONTROLLING WHAT IMAGE SOURCES CAN BE DEPLOYED
	6.2.1. Signature Transports
	Further Reading

	6.3. SECRETS AND CONFIGMAPS
	Further Reading

	6.4. SECURITY CONTEXT CONSTRAINTS (SCCS)
	Further Reading

	6.5. CONTINUOUS DEPLOYMENT TOOLING

	CHAPTER 7. SECURING THE CONTAINER PLATFORM
	7.1. CONTAINER ORCHESTRATION
	Further Reading

	7.2. AUTHENTICATION AND AUTHORIZATION
	7.2.1. Controlling Access Using OAuth
	Further Reading

	7.2.2. API Access Control and Management
	7.2.3. Red Hat SSO
	7.2.4. Secure Self-service Web Console
	Further Reading

	7.3. MANAGING CERTIFICATES FOR THE PLATFORM
	7.3.1. Configuring Custom Certificates
	Further Reading

	CHAPTER 8. NETWORK SECURITY
	8.1. NETWORK NAMESPACES
	Further Reading

	8.2. ISOLATING APPLICATIONS

	CHAPTER 9. ATTACHED STORAGE
	9.1. PERSISTENT VOLUME PLUG-INS
	Further Reading

	9.2. SHARED STORAGE
	Further Reading

	9.3. BLOCK STORAGE
	Further Reading

	CHAPTER 10. MONITORING CLUSTER EVENTS AND LOGS
	10.1. INTRODUCTION
	10.2. CLUSTER EVENTS
	10.3. CLUSTER LOGS
	10.3.1. Service Logs
	10.3.2. Master API Audit Log

	CHAPTER 11. REVISION HISTORY: CONTAINER SECURITY GUIDE
	11.1. FRI FEB 16 2018
	11.2. TUE FEB 06 2018
	11.3. THU JAN 25 2018
	11.4. MON JAN 08 2018
	11.5. FRI DEC 22 2017
	11.6. MON DEC 11 2017
	11.7. TUE NOV 21 2017
	11.8. WED AUG 09 2017

