
OpenShift Container Platform 3.5

Using Images

OpenShift Container Platform 3.5 Guide to Using Images

Last Updated: 2019-01-17

OpenShift Container Platform 3.5 Using Images
OpenShift Container Platform 3.5 Guide to Using Images

Legal Notice
Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative
Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of
CC-BY-SA is available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it,
you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to
assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the
Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other
countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the
United States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European
Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally
related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered
trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in
the United States and other countries and are used with the OpenStack Foundation's
permission. We are not affiliated with, endorsed or sponsored by the OpenStack
Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
Use these topics to find out what different S2I (Source-to-Image), database and Docker
images are available for OpenShift Container Platform 3.5 users.

. .

. .

Table of Contents
CHAPTER 1. OVERVIEW

CHAPTER 2. SOURCE-TO-IMAGE (S2I)
2.1. OVERVIEW
2.2. .NET CORE

2.2.1. Benefits of Using .NET Core
2.2.2. Supported Versions
2.2.3. Images
2.2.4. Build Process
2.2.5. Configuration
2.2.6. Quickly Deploying Applications from .NET Core Source
2.2.7. .NET Core Templates

2.3. NODE.JS
2.3.1. Overview
2.3.2. Versions
2.3.3. Images
2.3.4. Build Process
2.3.5. Configuration
2.3.6. Hot Deploying

2.4. PERL
2.4.1. Overview
2.4.2. Versions
2.4.3. Images
2.4.4. Build Process
2.4.5. Configuration
2.4.6. Accessing Logs
2.4.7. Hot Deploying

2.5. PHP
2.5.1. Overview
2.5.2. Versions
2.5.3. Images
2.5.4. Build Process
2.5.5. Configuration

2.5.5.1. Apache Configuration
2.5.6. Accessing Logs
2.5.7. Hot Deploying

2.6. PYTHON
2.6.1. Overview
2.6.2. Versions
2.6.3. Images
2.6.4. Build Process
2.6.5. Configuration
2.6.6. Hot Deploying

2.7. RUBY
2.7.1. Overview
2.7.2. Versions
2.7.3. Images
2.7.4. Build Process
2.7.5. Configuration
2.7.6. Hot Deploying

2.8. CUSTOMIZING S2I IMAGES

5

6
6
6
6
6
6
7
7
9
9

10
10
10
10
10
11
11
12
12
12
12
13
13
14
14
14
15
15
15
15
16
17
17
18
18
18
18
18
19
19
20
21
21
21
21
22
22
23
24

Table of Contents

1

. .

2.8.1. Overview
2.8.2. Invoking Scripts Embedded in an Image

CHAPTER 3. DATABASE IMAGES
3.1. OVERVIEW
3.2. MYSQL

3.2.1. Overview
3.2.2. Versions
3.2.3. Images
3.2.4. Configuration and Usage

3.2.4.1. Initializing the Database
3.2.4.2. Running MySQL Commands in Containers
3.2.4.3. Environment Variables
3.2.4.4. Volume Mount Points
3.2.4.5. Changing Passwords

3.2.5. Creating a Database Service from a Template
3.2.6. Using MySQL Replication

3.2.6.1. Creating the Deployment Configuration for the MySQL Master
3.2.6.2. Creating a Headless Service
3.2.6.3. Scaling the MySQL Slaves

3.2.7. Troubleshooting
3.2.7.1. Linux Native AIO Failure

3.3. POSTGRESQL
3.3.1. Overview
3.3.2. Versions
3.3.3. Images
3.3.4. Configuration and Usage

3.3.4.1. Initializing the Database
3.3.4.2. Running PostgreSQL Commands in Containers
3.3.4.3. Environment Variables
3.3.4.4. Volume Mount Points
3.3.4.5. Changing Passwords

3.3.5. Creating a Database Service from a Template
3.4. MONGODB

3.4.1. Overview
3.4.2. Versions
3.4.3. Images
3.4.4. Configuration and Usage

3.4.4.1. Initializing the Database
3.4.4.2. Running MongoDB Commands in Containers
3.4.4.3. Environment Variables
3.4.4.4. Volume Mount Points
3.4.4.5. Changing Passwords

3.4.5. Creating a Database Service from a Template
3.4.6. Using MongoDB Replication

3.4.6.1. Creating the Deployment Configuration
3.4.6.2. Creating the Service Pod
3.4.6.3. Creating a Headless Service
3.4.6.4. Creating the Final Replication Set
3.4.6.5. Scaling the MongoDB Replication Set

3.5. MARIADB
3.5.1. Overview
3.5.2. Versions

24
24

26
26
26
26
26
26
27
27
27
28
30
30
32
32
33
35
36
36
36
37
37
37
37
38
38
38
39
40
40
41
42
42
42
42
43
43
43
44
45
45
46
47
47
49
50
50
51
51
51
51

OpenShift Container Platform 3.5 Using Images

2

. .

. .

. .

. .

3.5.3. Images
3.5.4. Configuration and Usage

3.5.4.1. Initializing the Database
3.5.4.2. Running MariaDB Commands in Containers
3.5.4.3. Environment Variables
3.5.4.4. Volume Mount Points
3.5.4.5. Changing Passwords

3.5.5. Creating a Database Service from a Template
3.5.6. Troubleshooting

3.5.6.1. Linux Native AIO Failure

CHAPTER 4. DOCKER IMAGES
4.1. OVERVIEW

CHAPTER 5. OTHER IMAGES
5.1. OVERVIEW
5.2. JENKINS

5.2.1. Overview
5.2.2. Versions
5.2.3. Images
5.2.4. Configuration and Usage

5.2.4.1. Initializing Jenkins
5.2.4.1.1. OpenShift Container Platform OAuth authentication
5.2.4.1.2. Jenkins Standard Authentication

5.2.4.2. Environment Variables
5.2.4.3. Cross Project Access
5.2.4.4. Volume Mount Points

5.2.5. Creating a Jenkins Service from a Template
5.2.6. Using Jenkins as a Source-To-Image builder
5.2.7. Using the Jenkins Kubernetes Plug-in to Run Jobs
5.2.8. Tutorial
5.2.9. OpenShift Container Platform Pipeline Plug-in
5.2.10. OpenShift Container Platform Client Plug-in
5.2.11. OpenShift Container Platform Sync Plug-in

CHAPTER 6. XPAAS MIDDLEWARE IMAGES
6.1. OVERVIEW

CHAPTER 7. REVISION HISTORY: USING IMAGES
7.1. WED MAY 31 2017
7.2. TUE MAY 02 2017
7.3. WED APR 12 2017

51
52
52
52
53
55
55
56
57
57

59
59

60
60
60
60
60
60
61
61
61
62
62
62
63
63
64
65
66
66
67
67

68
68

69
69
69
69

Table of Contents

3

OpenShift Container Platform 3.5 Using Images

4

CHAPTER 1. OVERVIEW
Use these topics to discover the different S2I (Source-to-Image), database, and other
container images that are available for OpenShift Container Platform users.

Red Hat’s official container images are provided in the Red Hat Registry at
registry.access.redhat.com. OpenShift Container Platform’s supported S2I, database, and
Jenkins images are provided in the openshift3 repository in the Red Hat Registry. For
example, registry.access.redhat.com/openshift3/nodejs-010-rhel7 for the Node.js
image.

The xPaaS middleware images are provided in their respective product repositories on the
Red Hat Registry, but suffixed with a -openshift. For example,
registry.access.redhat.com/jboss-eap-6/eap64-openshift for the JBoss EAP image.

CHAPTER 1. OVERVIEW

5

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#source-build
https://registry.access.redhat.com
https://access.redhat.com/search/#/container-images?q=openshift3&p=1&sort=relevant&rows=12&srch=any&documentKind=ImageRepository

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

2.1. OVERVIEW
This topic group includes information on the different S2I (Source-to-Image) supported
images available for OpenShift Container Platform users.

2.2. .NET CORE

2.2.1. Benefits of Using .NET Core
.NET Core is a general purpose development platform featuring automatic memory
management and modern programming languages. It allows users to build high-quality
applications efficiently. .NET Core is available on Red Hat Enterprise Linux (RHEL 7) and
OpenShift Container Platform via certified containers. .NET Core offers:

The ability to follow a microservices-based approach, where some components are
built with .NET and others with Java, but all can run on a common, supported
platform in Red Hat Enterprise Linux and OpenShift Container Platform.

The capacity to more easily develop new .NET Core workloads on Windows;
customers are able to deploy and run on either Red Hat Enterprise Linux or Windows
Server.

A heterogeneous data center, where the underlying infrastructure is capable of
running .NET applications without having to rely solely on Windows Server.

Access to many of the popular development frameworks such as .NET, Java, Ruby,
and Python from within OpenShift Container Platform.

2.2.2. Supported Versions
.NET Core version 1.0

.NET Core version 1.1

Supported on Red Hat Enterprise Linux (RHEL) 7 and OpenShift Container Platform
versions 3.3 and later

The .NET Core software collection (rh-dotnetcore10 and rh-dotnetcore11) ships with the
project.json build system (1.0.0-preview2 SDK). See the Known Issues chapter in the
.NET Core Release Notes for details on installing this SDK on a non-RHEL system.

Visual Studio 2017 no longer supports the project.json build system. Support for the
msbuild/csproj build system will be added in the .NET Core 2.0 release.

2.2.3. Images
The RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/dotnet/dotnetcore-10-rhel7
$ docker pull registry.access.redhat.com/dotnet/dotnetcore-11-rhel7

OpenShift Container Platform 3.5 Using Images

6

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#source-build
http://developers.redhat.com/dotnet/
https://access.redhat.com/documentation/en/net-core/1.1/paged/release-notes/

Image stream definitions for the .NET Core on RHEL S2I image are now added during
OpenShift Container Platform installations.

2.2.4. Build Process
S2I produces ready-to-run images by injecting source code into a container and letting the
container prepare that source code for execution. It performs the following steps:

1. Starts a container from the builder image.

2. Downloads the application source.

3. Streams the scripts and application sources into the builder image container.

4. Runs the assemble script (from the builder image).

5. Saves the final image.

See S2I Build Process for a detailed overview of the build process.

2.2.5. Configuration
The .NET Core images support several environment variables, which you can set to control
the build behavior of your .NET Core application.

NOTE

You must set environment variables that control build behavior in the S2I build
configuration or in the .s2i/environment file to make them available to the
build steps.

Table 2.1. NET Core Environment Variables

Variable Name Description Default

DOTNET_STARTUP_P
ROJECT

Used to select the project to run.
This must be the folder in the
source repository containing
project.json.

.

DOTNET_PUBLISH Used to control whether the
application should be built by
executing dotnet build or
dotnet publish. To publish the
application, set the value to true.
It is recommended to publish your
application.

For backwards compatibility, the
default is false.

In the next major release, this
variable will be removed and the
builder will always publish the
application.

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

7

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/creating_images/#build-process

DOTNET_ASSEMBLY_
NAME

Used to select the assembly to
run. This must not include the
.dll extension. Set this to the
output assembly name specified
in project.json (name,
buildOptions/outputName).
For project.json, the assembly
name defaults to the
project.json parent folder. When
project.json is at the context-
dir, the parent folder name will
be src. So, by default, this
generates a src.dll assembly.
Setting DOTNET_ASSEMBLY_NAME
will cause:

The assembly to be
<DOTNET_ASSEMBLY_NAM
E>.dll

The application sources to
be in subfolder
DOTNET_ASSEMBLY_NAME
in the deployed container.

The name of the
DOTNET_STARTUP_PROJECT
folder.

DOTNET_RESTORE_S
OURCES

Used to specify the space-
separated list of NuGet package
sources used during the restore
operation. This overrides all of the
sources specified in the
NuGet.config file.

Unset

DOTNET_NPM_TOOLS Used to specify a list of NPM
packages to install before building
the application.

Unset

DOTNET_TEST_PROJ
ECTS

Used to specify the space-
separated list of test projects to
run. This must be folders
containing project.json. dotnet
test is invoked for each folder.

Unset

DOTNET_CONFIGURA
TION

Used to run the application in
Debug or Release mode. This
value should be either Release or
Debug.

Release

Variable Name Description Default

OpenShift Container Platform 3.5 Using Images

8

ASPNETCORE_URLS This variable is set to
http://*:8080 to configure
ASP.NET Core to use the port
exposed by the image. It is not
recommended to change this.

http://*:8080

Variable Name Description Default

2.2.6. Quickly Deploying Applications from .NET Core Source

IMPORTANT

The .NET image stream must first be installed. If you ran a standard
installation, the image stream will be present.

An image can be used to build an application by running oc new-app against a sample
repository:

$ oc new-app registry.access.redhat.com/dotnet/dotnetcore-10-
rhel7~https://github.com/redhat-developer/s2i-dotnetcore-ex#dotnetcore-1.0
--context-dir=app
$ oc new-app registry.access.redhat.com/dotnet/dotnetcore-11-
rhel7~https://github.com/redhat-developer/s2i-dotnetcore-ex#dotnetcore-1.1
--context-dir=app

NOTE

The oc new-app command can detect .NET Core source starting in OpenShift
Container Platform 3.3.

2.2.7. .NET Core Templates

IMPORTANT

The .NET image templates and the .NET images streams must first be installed.
If you ran a standard installation, the templates and image streams will be
present. This can be checked with:

$ (oc get -n openshift templates; oc get -n openshift is) |
grep dotnet

OpenShift Container Platform includes templates for the .NET Core images to help easily
deploy a sample application.

The .NET Core sample application running on dotnet/dotnetcore-10-rhel7 can be
deployed with:

$ oc new-app --template dotnet-example

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

9

https://github.com/redhat-developer/s2i-dotnetcore/blob/master/dotnet_imagestreams.json
https://github.com/redhat-developer/s2i-dotnetcore/blob/master/templates
https://github.com/redhat-developer/s2i-dotnetcore#openshift-templates
https://github.com/redhat-developer/s2i-dotnetcore-ex

The .NET Core sample application running on dotnet/dotnetcore-11-rhel7 can be
deployed with:

$ oc new-app --template dotnet-example -p
DOTNET_IMAGE_STREAM_TAG=dotnet:1.1 -p SOURCE_REPOSITORY_REF=dotnetcore-1.1

The .NET Core MusicStore application using PostgreSQL as database can be deployed with:

$ oc new-app --template=dotnet-pgsql-persistent

2.3. NODE.JS

2.3.1. Overview
OpenShift Container Platform provides S2I enabled Node.js images for building and running
Node.js applications. The Node.js S2I builder image assembles your application source with
any required dependencies to create a new image containing your Node.js application. This
resulting image can be run either by OpenShift Container Platform or by Docker.

2.3.2. Versions
Currently, OpenShift Container Platform provides versions 0.10, 4, and 6 of Node.js.

2.3.3. Images
These images come in two flavors, depending on your needs:

RHEL 7

CentOS 7

RHEL 7 Based Images

The RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/openshift3/nodejs-010-rhel7
$ docker pull registry.access.redhat.com/rhscl/nodejs-4-rhel7

CentOS 7 Based Image

This image is available on Docker Hub:

$ docker pull openshift/nodejs-010-centos7

To use these images, you can either access them directly from these image registries, or
push them into your OpenShift Container Platform Docker registry. Additionally, you can
create an image stream that points to the image, either in your Docker registry or at the
external location. Your OpenShift Container Platform resources can then reference the
ImageStream. You can find example image stream definitions for all the provided OpenShift
Container Platform images.

2.3.4. Build Process

OpenShift Container Platform 3.5 Using Images

10

https://github.com/redhat-developer/s2i-dotnetcore-ex
https://github.com/aspnet/MusicStore
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#source-build
https://github.com/sclorg/s2i-nodejs-container/tree/master/0.10
https://github.com/sclorg/s2i-nodejs-container/tree/master/4
https://github.com/sclorg/s2i-nodejs-container/tree/master/6
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-infrastructure-components-image-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#integrated-openshift-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-streams
https://github.com/openshift/origin/tree/master/examples/image-streams

S2I produces ready-to-run images by injecting source code into a container and letting the
container prepare that source code for execution. It performs the following steps:

1. Starts a container from the builder image.

2. Downloads the application source.

3. Streams the scripts and application sources into the builder image container.

4. Runs the assemble script (from the builder image).

5. Saves the final image.

See S2I Build Process for a detailed overview of the build process.

2.3.5. Configuration
The Node.js image supports a number of environment variables, which can be set to control
the configuration and behavior of the Node.js runtime.

To set these environment variables as part of your image, you can place them into a
.s2i/environment file inside your source code repository, or define them in the
environment section of the build configuration’s sourceStrategy definition.

You can also set environment variables to be used with an existing image when creating
new applications, or by updating environment variables for existing objects such as
deployment configurations.

NOTE

Environment variables that control build behavior must be set as part of the
s2i build configuration or in the .s2i/environment file to make them available
to the build steps.

Table 2.2. Development Mode Environment Variables

Variable name Description

DEV_MODE When set to true, enables hot deploy and opens the debug
port. Additionally, indicates to tooling that the image is in
development mode. Default is false.

DEBUG_PORT The debug port. Only valid if DEV_MODE is set to true. Default is
5858.

NPM_MIRROR The custom NPM registry mirror URL. All NPM packages will be
downloaded from the mirror link during the build process.

2.3.6. Hot Deploying
Hot deployment allows you to quickly make and deploy changes to your application without
having to generate a new S2I build. In order to immediately pick up changes made in your
application source code, you must run your built image with the DEV_MODE=true

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/creating_images/#build-process
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#environment-files
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#buildconfig-environment
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#set-environment-variables

environment variable.

You can set new environment variables when creating new applications, or updating
environment variables for existing objects.

WARNING

Only use the DEV_MODE=true environment variable while developing or
debugging. Using this in your production environment is not
recommended.

To change the source code of a running pod, open a remote shell into the container:

$ oc rsh <pod_id>

Entering into a running container changes your current directory to /opt/app-root/src,
where the source code is located.

2.4. PERL

2.4.1. Overview
OpenShift Container Platform provides S2I enabled Perl images for building and running Perl
applications. The Perl S2I builder image assembles your application source with any
required dependencies to create a new image containing your Perl application. This
resulting image can be run either by OpenShift Container Platform or by Docker.

2.4.2. Versions
Currently, OpenShift Container Platform supports versions 5.16, 5.20, and 5.24 of Perl.

2.4.3. Images
Images comes in two flavors, depending on your needs:

RHEL 7

CentOS 7

RHEL 7 Based Images

The RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/openshift3/perl-516-rhel7
$ docker pull registry.access.redhat.com/rhscl/perl-520-rhel7
$ docker pull registry.access.redhat.com/rhscl/perl-524-rhel7

CentOS 7 Based Image



OpenShift Container Platform 3.5 Using Images

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#set-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#source-build
https://github.com/sclorg/s2i-perl-container/tree/master/5.16
https://github.com/sclorg/s2i-perl-container/tree/master/5.20
https://github.com/sclorg/s2i-perl-container/tree/master/5.24

A CentOS image for Perl 5.16 is available on Docker Hub:

$ docker pull openshift/perl-516-centos7

To use these images, you can either access them directly from these image registries or
push them into your OpenShift Container Platform Docker registry. Additionally, you can
create an image stream that points to the image, either in your Docker registry or at the
external location. Your OpenShift Container Platformt resources can then reference the
ImageStream. You can find example image stream definitions for all the provided OpenShift
Container Platform images.

2.4.4. Build Process
S2I produces ready-to-run images by injecting source code into a container and letting the
container prepare that source code for execution. It performs the following steps:

1. Starts a container from the builder image.

2. Downloads the application source.

3. Streams the scripts and application sources into the builder image container.

4. Runs the assemble script (from the builder image).

5. Saves the final image.

See S2I Build Process for a detailed overview of the build process.

2.4.5. Configuration
The Perl image supports a number of environment variables which can be set to control the
configuration and behavior of the Perl runtime.

To set these environment variables as part of your image, you can place them into a
.s2i/environment file inside your source code repository, or define them in the
environment section of the build configuration’s sourceStrategy definition.

You can also set environment variables to be used with an existing image when creating
new applications, or by updating environment variables for existing objects such as
deployment configurations.

NOTE

Environment variables that control build behavior must be set as part of the
s2i build configuration or in the .s2i/environment file to make them available
to the build steps.

Table 2.3. Perl Environment Variables

Variable name Description

ENABLE_CPAN_TEST When set to true, this variable installs all the cpan
modules and runs their tests. By default, the testing of
the modules is turned off.

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-infrastructure-components-image-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#integrated-openshift-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-streams
https://github.com/openshift/origin/tree/master/examples/image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/creating_images/#build-process
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#environment-files
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#buildconfig-environment
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#set-environment-variables

CPAN_MIRROR This variable specifies a mirror URL which cpanminus
uses to install dependencies. By default, this URL is not
specified.

PERL_APACHE2_RELOAD Set this to true to enable automatic reloading of
modified Perl modules. By default, automatic reloading is
turned off.

HTTPD_START_SERVERS The StartServers directive sets the number of child
server processes created on startup. Default is 8.

HTTPD_MAX_REQUEST_WORKERS Number of simultaneous requests that will be handled
by Apache. The default is 256, but it will be
automatically lowered if memory is limited.

Variable name Description

2.4.6. Accessing Logs
Access logs are streamed to standard output and as such they can be viewed using the oc
logs command. Error logs are stored in the /tmp/error_log file, which can be viewed using
the oc rsh command to access the container.

2.4.7. Hot Deploying
Hot deployment allows you to quickly make and deploy changes to your application without
having to generate a new S2I build. To enable hot deployment in this image, you must set
the PERL_APACHE2_RELOAD environment variable to true. For example, see the oc new-app
command. You can use the oc set env command to update environment variables of
existing objects.

WARNING

You should only use this option while developing or debugging; it is not
recommended to turn this on in your production environment.

To change your source code in a running pod, use the oc rsh command to enter the
container:

$ oc rsh <pod_id>

After you enter into the running container, your current directory is set to /opt/app-
root/src, where the source code is located.

2.5. PHP



OpenShift Container Platform 3.5 Using Images

14

https://httpd.apache.org/docs/2.4/mod/mpm_common.html#startservers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#set-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations

2.5.1. Overview
OpenShift Container Platform provides S2I enabled PHP images for building and running
PHP applications. The PHP S2I builder image assembles your application source with any
required dependencies to create a new image containing your PHP application. This
resulting image can be run either by OpenShift Container Platform or by Docker.

2.5.2. Versions
Currently, OpenShift Container Platform provides versions 5.5, 5.6, and 7.0 of PHP.

2.5.3. Images
These images come in two flavors, depending on your needs:

RHEL 7

CentOS 7

RHEL 7 Based Images

The RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/openshift3/php-55-rhel7
$ docker pull registry.access.redhat.com/rhscl/php-56-rhel7
$ docker pull registry.access.redhat.com/rhscl/php-70-rhel7

CentOS 7 Based Images

CentOS images for PHP 5.5 and 5.6 are available on Docker Hub:

$ docker pull openshift/php-55-centos7
$ docker pull openshift/php-56-centos7

To use these images, you can either access them directly from these image registries or
push them into your OpenShift Container Platform Docker registry. Additionally, you can
create an image stream that points to the image, either in your Docker registry or at the
external location. Your OpenShift Container Platform resources can then reference the
image stream.

You can find example image stream definitions for all the provided OpenShift Container
Platform images.

2.5.4. Build Process
S2I produces ready-to-run images by injecting source code into a container and letting the
container prepare that source code for execution. It performs the following steps:

1. Starts a container from the builder image.

2. Downloads the application source.

3. Streams the scripts and application sources into the builder image container.

4. Runs the assemble script (from the builder image).

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

15

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#source-build
https://github.com/sclorg/s2i-php-container/tree/master/5.5
https://github.com/sclorg/s2i-php-container/tree/master/5.6
https://github.com/sclorg/s2i-php-container/tree/master/7.0
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-infrastructure-components-image-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#integrated-openshift-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-streams
https://github.com/openshift/origin/tree/master/examples/image-streams

5. Saves the final image.

See S2I Build Process for a detailed overview of the build process.

2.5.5. Configuration
The PHP image supports a number of environment variables which can be set to control the
configuration and behavior of the PHP runtime.

To set these environment variables as part of your image, you can place them into a
.s2i/environment file inside your source code repository, or define them in the
environment section of the build configuration’s sourceStrategy definition.

You can also set environment variables to be used with an existing image when creating
new applications, or by updating environment variables for existing objects such as
deployment configurations.

NOTE

Environment variables that control build behavior must be set as part of the
s2i build configuration or in the .s2i/environment file to make them available
to the build steps.

The following environment variables set their equivalent property value in the php.ini file:

Table 2.4. PHP Environment Variables

Variable Name Description Default

ERROR_REPORTING Informs PHP of the errors,
warnings, and notices for which
you would like it to take action.

E_ALL & ~E_NOTICE

DISPLAY_ERRORS Controls if and where PHP outputs
errors, notices, and warnings.

ON

DISPLAY_STARTUP_
ERRORS

Causes any display errors that
occur during PHP’s startup
sequence to be handled
separately from display errors.

OFF

TRACK_ERRORS Stores the last error/warning
message in $php_errormsg
(boolean).

OFF

HTML_ERRORS Links errors to documentation that
is related to the error.

ON

INCLUDE_PATH Path for PHP source files. .:/opt/openshift/src:/opt/rh/ph
p55/root/usr/share/pear

SESSION_PATH Location for session data files. /tmp/sessions

OpenShift Container Platform 3.5 Using Images

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/creating_images/#build-process
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#environment-files
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#buildconfig-environment
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#set-environment-variables

DOCUMENTROOT Path that defines the document
root for your application (for
example, /public).

/

Variable Name Description Default

The following environment variable sets its equivalent property value in the opcache.ini
file:

Table 2.5. Additional PHP settings

Variable Name Description Defau
lt

OPCACHE_MEMORY_CONSU
MPTION

The OPcache shared memory storage size. 16M

OPCACHE_REVALIDATE_F
REQ

How often to check script time stamps for updates, in
seconds. 0 results in OPcache checking for updates on
every request.

2

You can also override the entire directory used to load the PHP configuration by setting:

Table 2.6. Additional PHP settings

Variable Name Description

PHPRC Sets the path to the php.ini file.

PHP_INI_SCAN_DIR Path to scan for additional .ini configuration files

You can use a custom composer repository mirror URL to download packages instead of the
default 'packagist.org':

Table 2.7. Composer Environment Variables

Variable Name Description COMPOSER_MIRROR

2.5.5.1. Apache Configuration

If the DocumentRoot of the application is nested in the source directory /opt/openshift/src,
you can provide your own .htaccess file to override the default Apache behavior and
specify how application requests should be handled. The .htaccess file must be located at
the root of the application source.

2.5.6. Accessing Logs

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

17

http://php.net/manual/en/book.opcache.php
http://php.net/manual/en/book.opcache.php

Access logs are streamed to standard out and as such they can be viewed using the oc
logs command. Error logs are stored in the /tmp/error_log file, which can be viewed using
the oc rsh command to access the container.

2.5.7. Hot Deploying
Hot deployment allows you to quickly make and deploy changes to your application without
having to generate a new S2I build. In order to immediately pick up changes made in your
application source code, you must run your built image with the
OPCACHE_REVALIDATE_FREQ=0 environment variable.

For example, see the oc new-app command. You can use the oc env command to update
environment variables of existing objects.

WARNING

You should only use this option while developing or debugging; it is not
recommended to turn this on in your production environment.

To change your source code in a running pod, use the oc rsh command to enter the
container:

$ oc rsh <pod_id>

After you enter into the running container, your current directory is set to /opt/app-
root/src, where the source code is located.

2.6. PYTHON

2.6.1. Overview
OpenShift Container Platform provides S2I enabled Python images for building and running
Python applications. The Python S2I builder image assembles your application source with
any required dependencies to create a new image containing your Python application. This
resulting image can be run either by OpenShift Container Platform or by Docker.

2.6.2. Versions
Currently, OpenShift Container Platform provides versions 2.7, 3.3, 3.4, and 3.5 of Python.

2.6.3. Images
These images come in two flavors, depending on your needs:

RHEL 7

CentOS 7

RHEL 7 Based Images



OpenShift Container Platform 3.5 Using Images

18

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#set-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#source-build
https://github.com/sclorg/s2i-python-container/tree/master/2.7
https://github.com/sclorg/s2i-python-container/tree/master/3.3
https://github.com/sclorg/s2i-python-container/tree/master/3.4
https://github.com/sclorg/s2i-python-container/tree/master/3.5

The RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/rhscl/python-27-rhel7
$ docker pull registry.access.redhat.com/openshift3/python-33-rhel7
$ docker pull registry.access.redhat.com/rhscl/python-34-rhel7
$ docker pull registry.access.redhat.com/rhscl/python-35-rhel7

CentOS 7 Based Images

These images are available on Docker Hub:

$ docker pull centos/python-27-centos7
$ docker pull openshift/python-33-centos7
$ docker pull centos/python-34-centos7
$ docker pull centos/python-35-centos7

To use these images, you can either access them directly from these image registries or
push them into your OpenShift Container Platform Docker registry. Additionally, you can
create an image stream that points to the image, either in your Docker registry or at the
external location. Your OpenShift Container Platform resources can then reference the
ImageStream. You can find example image stream definitions for all the provided OpenShift
Container Platform images.

2.6.4. Build Process
S2I produces ready-to-run images by injecting source code into a container and letting the
container prepare that source code for execution. It performs the following steps:

1. Starts a container from the builder image.

2. Downloads the application source.

3. Streams the scripts and application sources into the builder image container.

4. Runs the assemble script (from the builder image).

5. Saves the final image.

See S2I Build Process for a detailed overview of the build process.

2.6.5. Configuration
The Python image supports a number of environment variables which can be set to control
the configuration and behavior of the Python runtime.

To set these environment variables as part of your image, you can place them into a
.s2i/environment file inside your source code repository, or define them in the
environment section of the build configuration’s sourceStrategy definition.

You can also set environment variables to be used with an existing image when creating
new applications, or by updating environment variables for existing objects such as
deployment configurations.

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-infrastructure-components-image-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#integrated-openshift-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-streams
https://github.com/openshift/origin/tree/master/examples/image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/creating_images/#build-process
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#environment-files
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#buildconfig-environment
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#set-environment-variables

NOTE

Environment variables that control build behavior must be set as part of the
s2i build configuration or in the .s2i/environment file to make them available
to the build steps.

Table 2.8. Python Environment Variables

Variable name Description

APP_FILE This variable specifies the file name passed to the
Python interpreter which is responsible for launching the
application. This variable is set to app.py by default.

APP_MODULE This variable specifies the WSGI callable. It follows the
pattern $(MODULE_NAME):$(VARIABLE_NAME), where
the module name is a full dotted path and the variable
name refers to a function inside the specified module. If
you use setup.py for installing the application, then the
module name can be read from that file and the variable
defaults to application. There is an example setup-
test-app available.

APP_CONFIG This variable indicates the path to a valid Python file with
a gunicorn configuration.

DISABLE_COLLECTSTATIC Set it to a nonempty value to inhibit the execution of
manage.py collectstatic during the build. Only
affects Django projects.

DISABLE_MIGRATE Set it to a nonempty value to inhibit the execution of
manage.py migrate when the produced image is run.
Only affects Django projects.

PIP_INDEX_URL Set this variable to use a custom index URL or mirror to
download required packages during build process. This
only affects packages listed in the requirements.txt
file.

WEB_CONCURRENCY Set this to change the default setting for the number of
workers. By default, this is set to the number of available
cores times 4.

2.6.6. Hot Deploying
Hot deployment allows you to quickly make and deploy changes to your application without
having to generate a new S2I build. If you are using Django, hot deployment works out of
the box.

To enable hot deployment while using Gunicorn, ensure you have a Gunicorn configuration
file inside your repository with the reload option set to true. Specify your configuration file
using the APP_CONFIG environment variable. For example, see the oc new-app command.

OpenShift Container Platform 3.5 Using Images

20

https://github.com/sclorg/s2i-python-container/tree/master/3.3/test/setup-test-app
http://docs.gunicorn.org/en/latest/configure.html
http://docs.gunicorn.org/en/stable/settings.html#workers
https://gunicorn-docs.readthedocs.org/en/latest/settings.html#reload
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#specifying-environment-variables

You can use the oc set env command to update environment variables of existing objects.

WARNING

You should only use this option while developing or debugging; it is not
recommended to turn this on in your production environment.

To change your source code in a running pod, use the oc rsh command to enter the
container:

$ oc rsh <pod_id>

After you enter into the running container, your current directory is set to /opt/app-
root/src, where the source code is located.

2.7. RUBY

2.7.1. Overview
OpenShift Container Platform provides S2I enabled Ruby images for building and running
Ruby applications. The Ruby S2I builder image assembles your application source with any
required dependencies to create a new image containing your Ruby application. This
resulting image can be run either by OpenShift Container Platform or by Docker.

2.7.2. Versions
Currently, OpenShift Container Platform provides versions 2.0, 2.2, and 2.3 of Ruby.

2.7.3. Images
These images come in two flavors, depending on your needs:

RHEL 7

CentOS 7

RHEL 7 Based Images

The RHEL 7 images are available through the Red Hat registry:

$ docker pull registry.access.redhat.com/openshift3/ruby-20-rhel7
$ docker pull registry.access.redhat.com/rhscl/ruby-22-rhel7
$ docker pull registry.access.redhat.com/rhscl/ruby-23-rhel7

CentOS 7 Based Images

These images are available on Docker Hub:



CHAPTER 2. SOURCE-TO-IMAGE (S2I)

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#set-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#source-build
https://github.com/sclorg/s2i-ruby-container/tree/master/2.0
https://github.com/sclorg/s2i-ruby-container/tree/master/2.2
https://github.com/sclorg/s2i-ruby-container/tree/master/2.3

$ docker pull openshift/ruby-20-centos7
$ docker pull openshift/ruby-22-centos7
$ docker pull centos/ruby-23-centos7

To use these images, you can either access them directly from these image registries or
push them into your OpenShift Container Platform Docker registry. Additionally, you can
create an image stream that points to the image, either in your Docker registry or at the
external location. Your OpenShift Container Platform resources can then reference the
ImageStream. You can find example image stream definitions for all the provided OpenShift
Container Platform images.

2.7.4. Build Process
S2I produces ready-to-run images by injecting source code into a container and letting the
container prepare that source code for execution. It performs the following steps:

1. Starts a container from the builder image.

2. Downloads the application source.

3. Streams the scripts and application sources into the builder image container.

4. Runs the assemble script (from the builder image).

5. Saves the final image.

See S2I Build Process for a detailed overview of the build process.

2.7.5. Configuration
The Ruby image supports a number of environment variables which can be set to control
the configuration and behavior of the Ruby runtime.

To set these environment variables as part of your image, you can place them into a
.s2i/environment file inside your source code repository, or define them in the
environment section of the build configuration’s sourceStrategy definition.

You can also set environment variables to be used with an existing image when creating
new applications, or by updating environment variables for existing objects such as
deployment configurations.

NOTE

Environment variables that control build behavior must be set as part of the
s2i build configuration or in the .s2i/environment file to make them available
to the build steps.

Table 2.9. Ruby Environment Variables

Variable name Description

OpenShift Container Platform 3.5 Using Images

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-infrastructure-components-image-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#integrated-openshift-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-streams
https://github.com/openshift/origin/tree/master/examples/image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/creating_images/#build-process
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#environment-files
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#buildconfig-environment
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#set-environment-variables

RACK_ENV This variable specifies the environment within which the
Ruby application is deployed; for example, production,
development, or test. Each level has different
behavior in terms of logging verbosity, error pages, and
ruby gem installation. The application assets are only
compiled if RACK_ENV is set to production; the default
value is production.

RAILS_ENV This variable specifies the environment within which the
Ruby on Rails application is deployed; for example,
production, development, or test. Each level has
different behavior in terms of logging verbosity, error
pages, and ruby gem installation. The application assets
are only compiled if RAILS_ENV is set to production.
This variable is set to ${RACK_ENV} by default.

DISABLE_ASSET_COMPILATION When set to true, this variable disables the process of
asset compilation. Asset compilation only happens when
the application runs in a production environment.
Therefore, you can use this variable when assets have
already been compiled.

PUMA_MIN_THREADS,
PUMA_MAX_THREADS

This variable indicates the minimum and maximum
number of threads that will be available in Puma's thread
pool.

PUMA_WORKERS This variable indicates the number of worker processes
to be launched in Puma’s clustered mode (when Puma
runs more than two processes). If not explicitly set, the
default behavior sets PUMA_WORKERS to a value that is
appropriate for the memory available to the container
and the number of cores on the host.

RUBYGEM_MIRROR Set this variable to use a custom RubyGems mirror URL
to download required gem packages during the build
process. Note: This environment variable is only
available for Ruby 2.2+ images.

Variable name Description

2.7.6. Hot Deploying
Hot deployment allows you to quickly make and deploy changes to your application without
having to generate a new S2I build. The method for enabling hot deployment in this image
differs based on the application type.

Ruby on Rails Applications

For Ruby on Rails application, run the built Rails application with the
RAILS_ENV=development environment variable passed to the running pod. For an existing
deployment configuration, you can use the oc set env command:

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

23

https://github.com/puma/puma
https://github.com/puma/puma#clustered-mode
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#set-environment-variables

$ oc set env dc/rails-app RAILS_ENV=development

Other Types of Ruby Applications (Sinatra, Padrino, etc.)

For other types of Ruby applications, your application must be built with a gem that can
reload the server every time a change to the source code is made inside the running
container. Those gems are:

Shotgun

Rerun

Rack-livereload

In order to be able to run your application in development mode, you must modify the S2I
run script so that the web server is launched by the chosen gem, which checks for changes
in the source code.

After you build your application image with your version of the S2I run script, run the image
with the RACK_ENV=development environment variable. For example, see the oc new-app
command. You can use the oc set env command to update environment variables of
existing objects.

WARNING

You should only use this option while developing or debugging; it is not
recommended to turn this on in your production environment.

To change your source code in a running pod, use the oc rsh command to enter the
container:

$ oc rsh <pod_id>

After you enter into the running container, your current directory is set to /opt/app-
root/src, where the source code is located.

2.8. CUSTOMIZING S2I IMAGES

2.8.1. Overview
S2I builder images normally include assemble and run scripts, but the default behavior of
those scripts may not be suitable for all users. This topic covers a few approaches for
customizing the behavior of an S2I builder that includes default scripts.

2.8.2. Invoking Scripts Embedded in an Image
Typically, builder images provide their own version of the S2I scripts that cover the most
common use-cases. If these scripts do not fulfill your needs, S2I provides a way of
overriding them by adding custom ones in the .s2i/bin directory. However, by doing this



OpenShift Container Platform 3.5 Using Images

24

https://github.com/rtomayko/shotgun
https://github.com/alexch/rerun
https://github.com/johnbintz/rack-livereload
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/creating_images/#s2i-scripts
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/creating_images/#s2i-scripts
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#set-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/creating_images/#s2i-scripts

you are completely replacing the standard scripts. In some cases this is acceptable, but in
other scenarios you may prefer to execute a few commands before (or after) the scripts
while retaining the logic of the script provided in the image. In this case, it is possible to
create a wrapper script that executes custom logic and delegates further work to the
default script in the image.

To determine the location of the scripts inside of the builder image, look at the value of
io.openshift.s2i.scripts-url label. Use docker inspect:

$ docker inspect --format='{{ index .Config.Labels
"io.openshift.s2i.scripts-url" }}' openshift/wildfly-100-centos7
image:///usr/libexec/s2i

You inspected the openshift/wildfly-100-centos7 builder image and found out that the
scripts are in the /usr/libexec/s2i directory.

With this knowledge, invoke any of these scripts from your own by wrapping its invocation.

Example 2.1. .s2i/bin/assemble script

#!/bin/bash
echo "Before assembling"

/usr/libexec/s2i/assemble
rc=$?

if [$rc -eq 0]; then
 echo "After successful assembling"
else
 echo "After failed assembling"
fi

exit $rc

The example shows a custom assemble script that prints the message, executes standard
assemble script from the image and prints another message depending on the exit code of
the assemble script.

When wrapping the run script, you must use exec for invoking it to ensure signals are
handled properly. Unfortunately, the use of exec also precludes the ability to run additional
commands after invoking the default image run script.

Example 2.2. .s2i/bin/run script

#!/bin/bash
echo "Before running application"
exec /usr/libexec/s2i/run

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/creating_images/#s2i-scripts
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/creating_images/#general-container-image-guidelines

CHAPTER 3. DATABASE IMAGES

3.1. OVERVIEW
This topic group includes information on the different database images available for
OpenShift Container Platform users.

NOTE

Enabling clustering for database images is currently in Technology Preview
and not intended for production use.

3.2. MYSQL

3.2.1. Overview
OpenShift Container Platform provides a container image for running MySQL. This image
can provide database services based on username, password, and database name settings
provided via configuration.

3.2.2. Versions
Currently, OpenShift Container Platform provides versions 5.5, 5.6, and 5.7 of MySQL.

3.2.3. Images
This image comes in two flavors, depending on your needs:

RHEL 7

CentOS 7

RHEL 7 Based Images

The RHEL 7 image is available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/openshift3/mysql-55-rhel7
$ docker pull registry.access.redhat.com/rhscl/mysql-56-rhel7
$ docker pull registry.access.redhat.com/rhscl/mysql-57-rhel7

CentOS 7 Based Images

CentOS images for MySQL 5.5 and 5.6 are available on Docker Hub:

$ docker pull openshift/mysql-55-centos7
$ docker pull openshift/mysql-56-centos7

To use these images, you can either access them directly from these registries or push
them into your OpenShift Container Platform Docker registry. Additionally, you can create
an ImageStream that points to the image, either in your Docker registry or at the external

OpenShift Container Platform 3.5 Using Images

26

https://github.com/sclorg/mysql-container/tree/master/5.5
https://github.com/sclorg/mysql-container/tree/master/5.6
https://github.com/sclorg/mysql-container/tree/master/5.7

location. Your OpenShift Container Platform resources can then reference the ImageStream.
You can find example ImageStream definitions for all the provided OpenShift Container
Platform images.

3.2.4. Configuration and Usage

3.2.4.1. Initializing the Database

The first time you use the shared volume, the database is created along with the database
administrator user and the MySQL root user (if you specify the MYSQL_ROOT_PASSWORD
environment variable). Afterwards, the MySQL daemon starts up. If you are re-attaching
the volume to another container, then the database, database user, and the administrator
user are not created, and the MySQL daemon starts.

The following command creates a new database pod with MySQL running in a container:

$ oc new-app \
 -e MYSQL_USER=<username> \
 -e MYSQL_PASSWORD=<password> \
 -e MYSQL_DATABASE=<database_name> \
 registry.access.redhat.com/openshift3/mysql-55-rhel7

3.2.4.2. Running MySQL Commands in Containers

OpenShift Container Platform uses Software Collections (SCLs) to install and launch MySQL.
If you want to execute a MySQL command inside of a running container (for debugging),
you must invoke it using bash.

To do so, first identify the name of the pod. For example, you can view the list of pods in
your current project:

$ oc get pods

Then, open a remote shell session to the pod:

$ oc rsh <pod>

When you enter the container, the required SCL is automatically enabled.

You can now run the mysql command from the bash shell to start a MySQL interactive
session and perform normal MySQL operations. For example, to authenticate as the
database user:

bash-4.2$ mysql -u $MYSQL_USER -p$MYSQL_PASSWORD -h $HOSTNAME
$MYSQL_DATABASE
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4
Server version: 5.5.37 MySQL Community Server (GPL)
...
mysql>

When you are finished, enter quit or exit to leave the MySQL session.

CHAPTER 3. DATABASE IMAGES

27

https://github.com/openshift/origin/tree/master/examples/image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#pods
https://www.softwarecollections.org/

3.2.4.3. Environment Variables

The MySQL user name, password, and database name must be configured with the
following environment variables:

Table 3.1. MySQL Environment Variables

Variable Name Description

MYSQL_USER Specifies the user name for the database user that is
created for use by your application.

MYSQL_PASSWORD Password for the MYSQL_USER.

MYSQL_DATABASE Name of the database to which MYSQL_USER has full
rights.

MYSQL_ROOT_PASSWORD Optional password for the root user. If this is not set,
then remote login to the root account is not possible.
Local connections from within the container are always
permitted without a password.

MYSQL_SERVICE_HOST Service host variable automatically created by
Kubernetes.

MYSQL_SERVICE_PORT Service port variable automatically created by
Kubernetes.

WARNING

You must specify the user name, password, and database name. If you do
not specify all three, the pod will fail to start and OpenShift Container
Platform will continuously try to restart it.

MySQL settings can be configured with the following environment variables:

Table 3.2. Additional MySQL Settings

Variable Name Description Defau
lt

MYSQL_LOWER_CASE_TAB
LE_NAMES

Sets how the table names are stored and compared. 0

MYSQL_MAX_CONNECTION
S

The maximum permitted number of simultaneous client
connections.

151



OpenShift Container Platform 3.5 Using Images

28

MYSQL_MAX_ALLOWED_PA
CKET

The maximum size of one packet or any
generated/intermediate string.

200M

MYSQL_FT_MIN_WORD_LE
N

The minimum length of the word to be included in a
FULLTEXT index.

4

MYSQL_FT_MAX_WORD_LE
N

The maximum length of the word to be included in a
FULLTEXT index.

20

MYSQL_AIO Controls the innodb_use_native_aio setting value if the
native AIO is broken.

1

MYSQL_TABLE_OPEN_CAC
HE

The number of open tables for all threads. 400

MYSQL_KEY_BUFFER_SIZ
E

The size of the buffer used for index blocks. 32M
(or
10%
of
availa
ble
memo
ry)

MYSQL_SORT_BUFFER_SI
ZE

The size of the buffer used for sorting. 256K

MYSQL_READ_BUFFER_SI
ZE

The size of the buffer used for a sequential scan. 8M (or
5% of
availa
ble
memo
ry)

MYSQL_INNODB_BUFFER_
POOL_SIZE

The size of the buffer pool where InnoDB caches table
and index data.

32M
(or
50%
of
availa
ble
memo
ry)

Variable Name Description Defau
lt

CHAPTER 3. DATABASE IMAGES

29

MYSQL_INNODB_LOG_FIL
E_SIZE

The size of each log file in a log group. 8M (or
15%
of
availa
ble
memo
ry)

MYSQL_INNODB_LOG_BUF
FER_SIZE

The size of the buffer that InnoDB uses to write to the log
files on disk.

8M (or
15%
of
availa
ble
memo
ry)

Variable Name Description Defau
lt

Some of the memory-related parameters have two default values. The fixed value is used
when a container does not have memory limits assigned. The other value is calculated
dynamically during a container’s startup based on available memory.

3.2.4.4. Volume Mount Points

The MySQL image can be run with mounted volumes to enable persistent storage for the
database:

/var/lib/mysql/data - This is the data directory where MySQL stores database files.

3.2.4.5. Changing Passwords

Passwords are part of the image configuration, therefore the only supported method to
change passwords for the database user (MYSQL_USER) and root user is by changing the
environment variables MYSQL_PASSWORD and MYSQL_ROOT_PASSWORD, respectively.

You can view the current passwords by viewing the pod or deployment configuration in the
web console or by listing the environment variables with the CLI:

$ oc set env pod <pod_name> --list

Whenever MYSQL_ROOT_PASSWORD is set, it enables remote access for the root user with the
given password, and whenever it is unset, remote access for the root user is disabled. This
does not affect the regular user MYSQL_USER, who always has remote access. This also does
not affect local access by the root user, who can always log in without a password in
localhost.

Changing database passwords through SQL statements or any way other than through the
environment variables aforementioned causes a mismatch between the values stored in
the variables and the actual passwords. Whenever a database container starts, it resets the
passwords to the values stored in the environment variables.

To change these passwords, update one or both of the desired environment variables for

OpenShift Container Platform 3.5 Using Images

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#memory-limits

the related deployment configuration(s) using the oc set env command. If multiple
deployment configurations utilize these environment variables, for example in the case of
an application created from a template, you must update the variables on each deployment
configuration so that the passwords are in sync everywhere. This can be done all in the
same command:

$ oc set env dc <dc_name> [<dc_name_2> ...] \
 MYSQL_PASSWORD=<new_password> \
 MYSQL_ROOT_PASSWORD=<new_root_password>

IMPORTANT

Depending on your application, there may be other environment variables for
passwords in other parts of the application that should also be updated to
match. For example, there could be a more generic DATABASE_USER variable in
a front-end pod that should match the database user’s password. Ensure that
passwords are in sync for all required environment variables per your
application, otherwise your pods may fail to redeploy when triggered.

Updating the environment variables triggers the redeployment of the database server if
you have a configuration change trigger. Otherwise, you must manually start a new
deployment in order to apply the password changes.

To verify that new passwords are in effect, first open a remote shell session to the running
MySQL pod:

$ oc rsh <pod>

From the bash shell, verify the database user’s new password:

bash-4.2$ mysql -u $MYSQL_USER -p<new_password> -h $HOSTNAME
$MYSQL_DATABASE -te "SELECT * FROM (SELECT database()) db CROSS JOIN
(SELECT user()) u"

If the password was changed correctly, you should see a table like this:

+------------+---------------------+
| database() | user() |
+------------+---------------------+
| sampledb | user0PG@172.17.42.1 |
+------------+---------------------+

To verify the root user’s new password:

bash-4.2$ mysql -u root -p<new_root_password> -h $HOSTNAME $MYSQL_DATABASE
-te "SELECT * FROM (SELECT database()) db CROSS JOIN (SELECT user()) u"

If the password was changed correctly, you should see a table like this:

+------------+------------------+
| database() | user() |
+------------+------------------+

CHAPTER 3. DATABASE IMAGES

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#config-change-trigger

| sampledb | root@172.17.42.1 |
+------------+------------------+

3.2.5. Creating a Database Service from a Template
OpenShift Container Platform provides a template to make creating a new database service
easy. The template provides parameter fields to define all the mandatory environment
variables (user, password, database name, etc) with predefined defaults including auto-
generation of password values. It will also define both a deployment configuration and a
service.

The MySQL templates should have been registered in the default openshift project by your
cluster administrator during the initial cluster setup. See Loading the Default Image
Streams and Templates for more details, if required.

There are two templates available:

mysql-ephemeral is for development or testing purposes only because it uses
ephemeral storage for the database content. This means that if the database pod is
restarted for any reason, such as the pod being moved to another node or the
deployment configuration being updated and triggering a redeploy, all data will be
lost.

mysql-persistent uses a persistent volume store for the database data which
means the data will survive a pod restart. Using persistent volumes requires a
persistent volume pool be defined in the OpenShift Container Platform deployment.
Cluster administrator instructions for setting up the pool are located here.

You can find instructions for instantiating templates by following these instructions.

Once you have instantiated the service, you can copy the user name, password, and
database name environment variables into a deployment configuration for another
component that intends to access the database. That component can then access the
database via the service that was defined.

3.2.6. Using MySQL Replication

NOTE

Enabling clustering for database images is currently in Technology Preview
and not intended for production use.

Red Hat provides a proof-of-concept template for MySQL master-slave replication
(clustering); you can obtain the example template from GitHub.

To upload the example template into the current project’s template library:

$ oc create -f \

https://raw.githubusercontent.com/openshift/mysql/master/5.5/examples/repl
ica/mysql_replica.json

OpenShift Container Platform 3.5 Using Images

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-imagestreams-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-nfs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#dev-guide-templates
https://github.com/sclorg/mysql-container/tree/master/5.5/examples/replica

The following sections detail the objects defined in the example template and describe how
they work together to start a cluster of MySQL servers implementing master-slave
replication. This is the recommended replication strategy for MySQL.

3.2.6.1. Creating the Deployment Configuration for the MySQL Master

To set up MySQL replication, a deployment configuration is defined in the example template
that defines a replication controller. For MySQL master-slave replication, two deployment
configurations are needed. One deployment configuration defines the MySQL master server
and second the MySQL slave servers.

To tell a MySQL server to act as the master, the command field in the container’s definition
in the deployment configuration must be set to run-mysqld-master. This script acts as an
alternative entrypoint for the MySQL image and configures the MySQL server to run as the
master in replication.

MySQL replication requires a special user that relays data between the master and slaves.
The following environment variables are defined in the template for this purpose:

Variable Name Description Defau
lt

MYSQL_MASTER_USER The user name of the replication user mast
er

MYSQL_MASTER_PASSWOR
D

The password for the replication user gener
ated

Example 3.1. MySQL Master Deployment Configuration Object Definition in the
Example Template

kind: "DeploymentConfig"
apiVersion: "v1"
metadata:
 name: "mysql-master"
spec:
 strategy:
 type: "Recreate"
 triggers:
 - type: "ConfigChange"
 replicas: 1
 selector:
 name: "mysql-master"
 template:
 metadata:
 labels:
 name: "mysql-master"
 spec:
 volumes:
 - name: "mysql-master-data"
 persistentVolumeClaim:
 claimName: "mysql-master"
 containers:

CHAPTER 3. DATABASE IMAGES

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#replication-controllers

Since we claimed a persistent volume in this deployment configuration to have all data
persisted for the MySQL master server, you must ask your cluster administrator to create a
persistent volume that you can claim the storage from.

After the deployment configuration is created and the pod with MySQL master server is
started, it will create the database defined by MYSQL_DATABASE and configure the server to
replicate this database to slaves.

The example provided defines only one replica of the MySQL master server. This causes
OpenShift Container Platform to start only one instance of the server. Multiple instances
(multi-master) is not supported and therefore you can not scale this replication controller.

To replicate the database created by the MySQL master, a deployment configuration is
defined in the template. This deployment configuration creates a replication controller that
launches the MySQL image with the command field set to run-mysqld-slave. This
alternative entrypoints skips the initialization of the database and configures the MySQL
server to connect to the mysql-master service, which is also defined in example template.

Example 3.2. MySQL Slave Deployment Configuration Object Definition in the
Example Template

 - name: "server"
 image: "openshift/mysql-55-centos7"
 command:
 - "run-mysqld-master"
 ports:
 - containerPort: 3306
 protocol: "TCP"
 env:
 - name: "MYSQL_MASTER_USER"
 value: "${MYSQL_MASTER_USER}"
 - name: "MYSQL_MASTER_PASSWORD"
 value: "${MYSQL_MASTER_PASSWORD}"
 - name: "MYSQL_USER"
 value: "${MYSQL_USER}"
 - name: "MYSQL_PASSWORD"
 value: "${MYSQL_PASSWORD}"
 - name: "MYSQL_DATABASE"
 value: "${MYSQL_DATABASE}"
 - name: "MYSQL_ROOT_PASSWORD"
 value: "${MYSQL_ROOT_PASSWORD}"
 volumeMounts:
 - name: "mysql-master-data"
 mountPath: "/var/lib/mysql/data"
 resources: {}
 terminationMessagePath: "/dev/termination-log"
 imagePullPolicy: "IfNotPresent"
 securityContext:
 capabilities: {}
 privileged: false
 restartPolicy: "Always"
 dnsPolicy: "ClusterFirst"

kind: "DeploymentConfig"
apiVersion: "v1"

OpenShift Container Platform 3.5 Using Images

34

This example deployment configuration starts the replication controller with the initial
number of replicas set to 1. You can scale this replication controller in both directions, up to
the resources capacity of your account.

3.2.6.2. Creating a Headless Service

The pods created by the MySQL slave replication controller must reach the MySQL master
server in order to register for replication. The example template defines a headless service
named mysql-master for this purpose. This service is not used only for replication, but the
clients can also send the queries to mysql-master:3306 as the MySQL host.

To have a headless service, the portalIP parameter in the service definition is set to
None. Then you can use a DNS query to get a list of the pod IP addresses that represents
the current endpoints for this service.

metadata:
 name: "mysql-slave"
spec:
 strategy:
 type: "Recreate"
 triggers:
 - type: "ConfigChange"
 replicas: 1
 selector:
 name: "mysql-slave"
 template:
 metadata:
 labels:
 name: "mysql-slave"
 spec:
 containers:
 - name: "server"
 image: "openshift/mysql-55-centos7"
 command:
 - "run-mysqld-slave"
 ports:
 - containerPort: 3306
 protocol: "TCP"
 env:
 - name: "MYSQL_MASTER_USER"
 value: "${MYSQL_MASTER_USER}"
 - name: "MYSQL_MASTER_PASSWORD"
 value: "${MYSQL_MASTER_PASSWORD}"
 - name: "MYSQL_DATABASE"
 value: "${MYSQL_DATABASE}"
 resources: {}
 terminationMessagePath: "/dev/termination-log"
 imagePullPolicy: "IfNotPresent"
 securityContext:
 capabilities: {}
 privileged: false
 restartPolicy: "Always"
 dnsPolicy: "ClusterFirst"

CHAPTER 3. DATABASE IMAGES

35

Example 3.3. Headless Service Object Definition in the Example Template

3.2.6.3. Scaling the MySQL Slaves

To increase the number of members in the cluster:

$ oc scale rc mysql-slave-1 --replicas=<number>

This tells the replication controller to create a new MySQL slave pod. When a new slave is
created, the slave entrypoint first attempts to contact the mysql-master service and
register itself to the replication set. Once that is done, the MySQL master server sends the
slave the replicated database.

When scaling down, the MySQL slave is shut down and, because the slave does not have
any persistent storage defined, all data on the slave is lost. The MySQL master server then
discovers that the slave is not reachable anymore, and it automatically removes it from the
replication.

3.2.7. Troubleshooting
This section describes some troubles you might encounter and presents possible
resolutions.

3.2.7.1. Linux Native AIO Failure

Symptom
The MySQL container fails to start and the logs show something like:

151113 5:06:56 InnoDB: Using Linux native AIO
151113 5:06:56 InnoDB: Warning: io_setup() failed with EAGAIN. Will make
5 attempts before giving up.
InnoDB: Warning: io_setup() attempt 1 failed.

kind: "Service"
apiVersion: "v1"
metadata:
 name: "mysql-master"
 labels:
 name: "mysql-master"
spec:
 ports:
 - protocol: "TCP"
 port: 3306
 targetPort: 3306
 nodePort: 0
 selector:
 name: "mysql-master"
 portalIP: "None"
 type: "ClusterIP"
 sessionAffinity: "None"
status:
 loadBalancer: {}

OpenShift Container Platform 3.5 Using Images

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#scaling

InnoDB: Warning: io_setup() attempt 2 failed.
Waiting for MySQL to start ...
InnoDB: Warning: io_setup() attempt 3 failed.
InnoDB: Warning: io_setup() attempt 4 failed.
Waiting for MySQL to start ...
InnoDB: Warning: io_setup() attempt 5 failed.
151113 5:06:59 InnoDB: Error: io_setup() failed with EAGAIN after 5
attempts.
InnoDB: You can disable Linux Native AIO by setting innodb_use_native_aio
= 0 in my.cnf
151113 5:06:59 InnoDB: Fatal error: cannot initialize AIO sub-system
151113 5:06:59 [ERROR] Plugin 'InnoDB' init function returned error.
151113 5:06:59 [ERROR] Plugin 'InnoDB' registration as a STORAGE ENGINE
failed.
151113 5:06:59 [ERROR] Unknown/unsupported storage engine: InnoDB
151113 5:06:59 [ERROR] Aborting

Explanation
MySQL’s storage engine was unable to use the kernel’s AIO (Asynchronous I/O) facilities
due to resource limits.

Resolution
Turn off AIO usage entirely by setting environment variable MYSQL_AIO to have value 0. On
subsequent deployments, this arranges for the MySQL configuration variable
innodb_use_native_aio to have value 0.

Alternatively, increase the aio-max-nr kernel resource. The following example examines
the current value of aio-max-nr and doubles it.

$ sysctl fs.aio-max-nr
fs.aio-max-nr = 1048576
sysctl -w fs.aio-max-nr=2097152

This is a per-node resolution and lasts until the next node reboot.

3.3. POSTGRESQL

3.3.1. Overview
OpenShift Container Platform provides a container image for running PostgreSQL. This
image can provide database services based on username, password, and database name
settings provided via configuration.

3.3.2. Versions
Currently, OpenShift Container Platform supports versions 9.4, and 9.5 of PostgreSQL.

3.3.3. Images
These images come in two flavors, depending on your needs:

RHEL 7

CHAPTER 3. DATABASE IMAGES

37

https://github.com/sclorg/rhscl-dockerfiles/tree/master/rhel7.rh-postgresql94
https://github.com/sclorg/postgresql-container/tree/generated/9.5

CentOS 7

RHEL 7 Based Image

The RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/rhscl/postgresql-94-rhel7
$ docker pull registry.access.redhat.com/rhscl/postgresql-95-rhel7

CentOS 7 Based Image

These images are available on Docker Hub:

$ docker pull centos/postgresql-94-centos7
$ docker pull centos/postgresql-95-centos7

To use these images, you can either access them directly from these registries or push
them into your OpenShift Container Platform Docker registry. Additionally, you can create
an ImageStream that points to the image, either in your Docker registry or at the external
location. Your OpenShift Container Platform resources can then reference the ImageStream.
You can find example ImageStream definitions for all the provided OpenShift Container
Platform images.

3.3.4. Configuration and Usage

3.3.4.1. Initializing the Database

The first time you use the shared volume, the database is created along with the database
administrator user and the PostgreSQL postgres user (if you specify the
POSTGRESQL_ADMIN_PASSWORD environment variable). Afterwards, the PostgreSQL daemon
starts up. If you are re-attaching the volume to another container, then the database, the
database user, and the administrator user are not created, and the PostgreSQL daemon
starts.

The following command creates a new database pod with PostgreSQL running in a
container:

$ oc new-app \
 -e POSTGRESQL_USER=<username> \
 -e POSTGRESQL_PASSWORD=<password> \
 -e POSTGRESQL_DATABASE=<database_name> \
 registry.access.redhat.com/rhscl/postgresql-95-rhel7

3.3.4.2. Running PostgreSQL Commands in Containers

OpenShift Container Platform uses Software Collections (SCLs) to install and launch
PostgreSQL. If you want to execute a PostgreSQL command inside of a running container
(for debugging), you must invoke it using bash.

To do so, first identify the name of the running PostgreSQL pod. For example, you can view
the list of pods in your current project:

$ oc get pods

OpenShift Container Platform 3.5 Using Images

38

https://github.com/openshift/origin/tree/master/examples/image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#pods
https://www.softwarecollections.org/

Then, open a remote shell session to the desired pod:

$ oc rsh <pod>

When you enter the container, the required SCL is automatically enabled.

You can now run the psql command from the bash shell to start a PostgreSQL interactive
session and perform normal PostgreSQL operations. For example, to authenticate as the
database user:

bash-4.2$ PGPASSWORD=$POSTGRESQL_PASSWORD psql -h postgresql
$POSTGRESQL_DATABASE $POSTGRESQL_USER
psql (9.5.16)
Type "help" for help.

default=>

When you are finished, enter \q to leave the PostgreSQL session.

3.3.4.3. Environment Variables

The PostgreSQL user name, password, and database name must be configured with the
following environment variables:

Table 3.3. PostgreSQL Environment Variables

Variable Name Description

POSTGRESQL_USER User name for the PostgreSQL account to be created.
This user has full rights to the database.

POSTGRESQL_PASSWORD Password for the user account.

POSTGRESQL_DATABASE Database name.

POSTGRESQL_ADMIN_PASSWORD Optional password for the postgres administrator user.
If this is not set, then remote login to the postgres
account is not possible. Local connections from within
the container are always permitted without a password.

WARNING

You must specify the user name, password, and database name. If you do
not specify all three, the pod will fail to start and OpenShift Container
Platform will continuously try to restart it.

PostgreSQL settings can be configured with the following environment variables:



CHAPTER 3. DATABASE IMAGES

39

Table 3.4. Additional PostgreSQL settings

Variable Name Description Defau
lt

POSTGRESQL_MAX_CONNE
CTIONS

Maximum number of client connections allowed. 100

POSTGRESQL_MAX_PREPA
RED_TRANSACTIONS

Maximum number of transactions that can be in the
"prepared" state. If using prepared transactions, the
value should be at least as large as
POSTGRESQL_MAX_CONNECTIONS.

0

POSTGRESQL_SHARED_BU
FFERS

Amount of memory dedicated to PostgreSQL for caching
data.

32M

POSTGRESQL_EFFECTIVE
_CACHE_SIZE

Estimated amount of memory available for disk caching
by the operating system and within PostgreSQL itself.

128M

3.3.4.4. Volume Mount Points

The PostgreSQL image can be run with mounted volumes to enable persistent storage for
the database:

/var/lib/pgsql/data - This is the database cluster directory where PostgreSQL stores
database files.

3.3.4.5. Changing Passwords

Passwords are part of the image configuration, therefore the only supported method to
change passwords for the database user (POSTGRESQL_USER) and postgres administrator
user is by changing the environment variables POSTGRESQL_PASSWORD and
POSTGRESQL_ADMIN_PASSWORD, respectively.

You can view the current passwords by viewing the pod or deployment configuration in the
web console or by listing the environment variables with the CLI:

$ oc set env pod <pod_name> --list

Changing database passwords through SQL statements or any way other than through the
environment variables aforementioned will cause a mismatch between the values stored in
the variables and the actual passwords. Whenever a database container starts, it resets the
passwords to the values stored in the environment variables.

To change these passwords, update one or both of the desired environment variables for
the related deployment configuration(s) using the oc set env command. If multiple
deployment configurations utilize these environment variables, for example in the case of
an application created from a template, you must update the variables on each deployment
configuration so that the passwords are in sync everywhere. This can be done all in the
same command:

OpenShift Container Platform 3.5 Using Images

40

$ oc set env dc <dc_name> [<dc_name_2> ...] \
 POSTGRESQL_PASSWORD=<new_password> \
 POSTGRESQL_ADMIN_PASSWORD=<new_admin_password>

IMPORTANT

Depending on your application, there may be other environment variables for
passwords in other parts of the application that should also be updated to
match. For example, there could be a more generic DATABASE_USER variable in
a front-end pod that should match the database user’s password. Ensure that
passwords are in sync for all required environment variables per your
application, otherwise your pods may fail to redeploy when triggered.

Updating the environment variables triggers the redeployment of the database server if
you have a configuration change trigger. Otherwise, you must manually start a new
deployment in order to apply the password changes.

To verify that new passwords are in effect, first open a remote shell session to the running
PostgreSQL pod:

$ oc rsh <pod>

From the bash shell, verify the database user’s new password:

bash-4.2$ PGPASSWORD=<new_password> psql -h postgresql
$POSTGRESQL_DATABASE $POSTGRESQL_USER -c "SELECT * FROM (SELECT
current_database()) cdb CROSS JOIN (SELECT current_user) cu"

If the password was changed correctly, you should see a table like this:

 current_database | current_user
------------------+--------------
 default | django
(1 row)

From the bash shell, verify the postgres administrator user’s new password:

bash-4.2$ PGPASSWORD=<new_admin_password> psql -h postgresql
$POSTGRESQL_DATABASE postgres -c "SELECT * FROM (SELECT
current_database()) cdb CROSS JOIN (SELECT current_user) cu"

If the password was changed correctly, you should see a table like this:

 current_database | current_user
------------------+--------------
 default | postgres
(1 row)

3.3.5. Creating a Database Service from a Template
OpenShift Container Platform provides a template to make creating a new database service
easy. The template provides parameter fields to define all the mandatory environment

CHAPTER 3. DATABASE IMAGES

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#config-change-trigger
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#dev-guide-templates

variables (user, password, database name, etc) with predefined defaults including auto-
generation of password values. It will also define both a deployment configuration and a
service.

The PostgreSQL templates should have been registered in the default openshift project by
your cluster administrator during the initial cluster setup. See Loading the Default Image
Streams and Templates for more details, if required.

There are two templates available:

PostgreSQL-ephemeral is for development or testing purposes only because it uses
ephemeral storage for the database content. This means that if the database pod is
restarted for any reason, such as the pod being moved to another node or the
deployment configuration being updated and triggering a redeploy, all data will be
lost.

PostgreSQL-persistent uses a persistent volume store for the database data
which means the data will survive a pod restart. Using persistent volumes requires a
persistent volume pool be defined in the OpenShift Container Platform deployment.
Cluster administrator instructions for setting up the pool are located here.

You can find instructions for instantiating templates by following these instructions.

Once you have instantiated the service, you can copy the user name, password, and
database name environment variables into a deployment configuration for another
component that intends to access the database. That component can then access the
database via the service that was defined.

3.4. MONGODB

3.4.1. Overview
OpenShift Container Platform provides a container image for running MongoDB. This image
can provide database services based on username, password, and database name settings
provided via configuration.

3.4.2. Versions
Currently, OpenShift Container Platform provides versions 2.4, 2.6, and 3.2 of MongoDB.

3.4.3. Images
These images come in two flavors, depending on your needs:

RHEL 7

CentOS 7

RHEL 7 Based Images

The RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/openshift3/mongodb-24-rhel7
$ docker pull registry.access.redhat.com/rhscl/mongodb-26-rhel7
$ docker pull registry.access.redhat.com/rhscl/mongodb-32-rhel7

OpenShift Container Platform 3.5 Using Images

42

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-imagestreams-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-nfs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#dev-guide-templates
https://github.com/sclorg/mongodb-container/tree/master/2.4
https://github.com/sclorg/mongodb-container/tree/master/2.6
https://github.com/sclorg/mongodb-container/tree/master/3.2

CentOS 7 Based Images

These images are available on Docker Hub:

$ docker pull openshift/mongodb-24-centos7
$ docker pull centos/mongodb-26-centos7
$ docker pull centos/mongodb-32-centos7

To use these images, you can either access them directly from these registries or push
them into your OpenShift Container Platform Docker registry. Additionally, you can create
an ImageStream that points to the image, either in your Docker registry or at the external
location. Your OpenShift Container Platform resources can then reference the ImageStream.
You can find example ImageStream definitions for all the provided OpenShift Container
Platform images.

3.4.4. Configuration and Usage

3.4.4.1. Initializing the Database

You can configure MongoDB with an ephemeral volume or a persistent volume. The first
time you use the volume, the database is created along with the database administrator
user. Afterwards, the MongoDB daemon starts up. If you are re-attaching the volume to
another container, then the database, database user, and the administrator user are not
created, and the MongoDB daemon starts.

The following command creates a new database pod with MongoDB running in a container
with an ephemeral volume:

$ oc new-app \
 -e MONGODB_USER=<username> \
 -e MONGODB_PASSWORD=<password> \
 -e MONGODB_DATABASE=<database_name> \
 -e MONGODB_ADMIN_PASSWORD=<admin_password> \
 registry.access.redhat.com/rhscl/mongodb-26-rhel7

3.4.4.2. Running MongoDB Commands in Containers

OpenShift Container Platform uses Software Collections (SCLs) to install and launch
MongoDB. If you want to execute a MongoDB command inside of a running container (for
debugging), you must invoke it using bash.

To do so, first identify the name of the running MongoDB pod. For example, you can view
the list of pods in your current project:

$ oc get pods

Then, open a remote shell session to the desired pod:

$ oc rsh <pod>

When you enter the container, the required SCL is automatically enabled.

CHAPTER 3. DATABASE IMAGES

43

https://github.com/openshift/origin/tree/master/examples/image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#pods
https://www.softwarecollections.org/

You can now run mongo commands from the bash shell to start a MongoDB interactive
session and perform normal MongoDB operations. For example, to switch to the sampledb
database and authenticate as the database user:

bash-4.2$ mongo -u $MONGODB_USER -p $MONGODB_PASSWORD $MONGODB_DATABASE
MongoDB shell version: 2.4.9
connecting to: sampledb
>

When you are finished, press CTRL+D to leave the MongoDB session.

3.4.4.3. Environment Variables

The MongoDB user name, password, database name, and admin password must be
configured with the following environment variables:

Table 3.5. MongoDB Environment Variables

Variable Name Description

MONGODB_USER User name for MongoDB account to be created.

MONGODB_PASSWORD Password for the user account.

MONGODB_DATABASE Database name.

MONGODB_ADMIN_PASSWORD Password for the admin user.

WARNING

You must specify the user name, password, database name, and admin
password. If you do not specify all four, the pod will fail to start and
OpenShift Container Platform will continuously try to restart it.

NOTE

The administrator user name is set to admin and you must specify its
password by setting the MONGODB_ADMIN_PASSWORD environment variable. This
process is done upon database initialization.

MongoDB settings can be configured with the following environment variables:

Table 3.6. Additional MongoDB Settings



OpenShift Container Platform 3.5 Using Images

44

Variable Name Description Defau
lt

MONGODB_NOPREALLOC Disable data file preallocation. true

MONGODB_SMALLFILES Set MongoDB to use a smaller default data file size. true

MONGODB_QUIET Runs MongoDB in a quiet mode that attempts to limit the
amount of output.

true

MONGODB_TEXT_SEARCH_
ENABLED

(MongoDB version 2.4 only) Enables the text search
feature.

false

NOTE

Text search is enabled by default in MongoDB versions 2.6 and higher, and
therefore has no configurable parameter.

3.4.4.4. Volume Mount Points

The MongoDB image can be run with mounted volumes to enable persistent storage for the
database:

/var/lib/mongodb/data - This is the database directory where MongoDB stores
database files.

3.4.4.5. Changing Passwords

Passwords are part of the image configuration, therefore the only supported method to
change passwords for the database user (MONGODB_USER) and admin user is by changing
the environment variables MONGODB_PASSWORD and MONGODB_ADMIN_PASSWORD, respectively.

You can view the current passwords by viewing the pod or deployment configuration in the
web console or by listing the environment variables with the CLI:

$ oc set env pod <pod_name> --list

Changing database passwords directly in MongoDB causes a mismatch between the values
stored in the variables and the actual passwords. Whenever a database container starts, it
resets the passwords to the values stored in the environment variables.

To change these passwords, update one or both of the desired environment variables for
the related deployment configuration(s) using the oc set env command. If multiple
deployment configurations utilize these environment variables, for example in the case of
an application created from a template, you must update the variables on each deployment
configuration so that the passwords are in sync everywhere. This can be done all in the
same command:

$ oc set env dc <dc_name> [<dc_name_2> ...] \
 MONGODB_PASSWORD=<new_password> \
 MONGODB_ADMIN_PASSWORD=<new_admin_password>

CHAPTER 3. DATABASE IMAGES

45

https://docs.mongodb.org/v2.4/core/index-text/#text-search-text-command

IMPORTANT

Depending on your application, there may be other environment variables for
passwords in other parts of the application that should also be updated to
match. For example, there could be a more generic DATABASE_USER variable in
a front-end pod that should match the database user’s password. Ensure that
passwords are in sync for all required environment variables per your
application, otherwise your pods may fail to redeploy when triggered.

Updating the environment variables triggers the redeployment of the database server if
you have a configuration change trigger. Otherwise, you must manually start a new
deployment in order to apply the password changes.

To verify that new passwords are in effect, first open a remote shell session to the running
MongoDB pod:

$ oc rsh <pod>

From the bash shell, verify the database user’s new password:

bash-4.2$ mongo -u $MONGODB_USER -p <new_password> $MONGODB_DATABASE --
eval "db.version()"

If the password was changed correctly, you should see output like this:

MongoDB shell version: 2.6.9
connecting to: sampledb
2.6.9

To verify the admin user’s new password:

bash-4.2$ mongo -u admin -p <new_admin_password> admin --eval
"db.version()"

If the password was changed correctly, you should see output like this:

MongoDB shell version: 2.4.9
connecting to: admin
2.4.9

3.4.5. Creating a Database Service from a Template
OpenShift Container Platform provides a template to make creating a new database service
easy. The template provides parameter fields to define all the mandatory environment
variables (user, password, database name, etc) with predefined defaults including auto-
generation of password values. It will also define both a deployment configuration and a
service.

The MongoDB templates should have been registered in the default openshift project by
your cluster administrator during the initial cluster setup. See Loading the Default Image
Streams and Templates for more details, if required.

There are two templates available:

OpenShift Container Platform 3.5 Using Images

46

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#config-change-trigger
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-imagestreams-templates

mongodb-ephemeral is for development/testing purposes only because it uses
ephemeral storage for the database content. This means that if the database pod is
restarted for any reason, such as the pod being moved to another node or the
deployment configuration being updated and triggering a redeploy, all data will be
lost.

mongodb-persistent uses a persistent volume store for the database data which
means the data will survive a pod restart. Using persistent volumes requires a
persistent volume pool be defined in the OpenShift Container Platform deployment.
Cluster administrator instructions for setting up the pool are located here.

You can find instructions for instantiating templates by following these instructions.

Once you have instantiated the service, you can copy the user name, password, and
database name environment variables into a deployment configuration for another
component that intends to access the database. That component can then access the
database via the service that was defined.

3.4.6. Using MongoDB Replication

NOTE

Enabling clustering for database images is currently in Technology Preview
and not intended for production use.

Red Hat provides a proof-of-concept template for MongoDB replication (clustering); you can
obtain the example template from GitHub.

For example, to upload the example template into the current project’s template library:

$ oc create -f \

https://raw.githubusercontent.com/openshift/mongodb/master/2.4/examples/re
plica/mongodb-clustered.json

IMPORTANT

The example template does not use persistent storage. When you lose all
members of the replication set, your data will be lost.

The following sections detail the objects defined in the example template and describe how
they work together to start a cluster of MongoDB servers implementing master-slave
replication and automated failover. This is the recommended replication strategy for
MongoDB.

3.4.6.1. Creating the Deployment Configuration

To set up MongoDB replication, a deployment configuration is defined in the example
template that defines a replication controller. The replication controller manages the
members of the MongoDB cluster.

To tell a MongoDB server that the member will be part of the cluster, additional
environment variables are provided for the container defined in the replication controller
pod template:

CHAPTER 3. DATABASE IMAGES

47

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-nfs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#dev-guide-templates
https://github.com/sclorg/mongodb-container/tree/master/2.4/examples/replica
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#replication-controllers

Variable Name Description Defau
lt

MONGODB_REPLICA_NAME Specifies the name of the replication set. rs0

MONGODB_KEYFILE_VALU
E

See: Generate a Key File gener
ated

Example 3.4. Deployment Configuration Object Definition in the Example
Template

kind: DeploymentConfig
apiVersion: v1
metadata:
 name: "${MONGODB_SERVICE_NAME}"
spec:
 strategy:
 type: Recreate
 resources: {}
 triggers:
 - type: ConfigChange
 replicas: 3
 selector:
 name: mongodb-replica
 template:
 metadata:
 labels:
 name: mongodb-replica
 spec:
 containers:
 - name: member
 image: openshift/mongodb-24-centos7
 env:
 - name: MONGODB_USER
 value: "${MONGODB_USER}"
 - name: MONGODB_PASSWORD
 value: "${MONGODB_PASSWORD}"
 - name: MONGODB_DATABASE
 value: "${MONGODB_DATABASE}"
 - name: MONGODB_ADMIN_PASSWORD
 value: "${MONGODB_ADMIN_PASSWORD}"
 - name: MONGODB_REPLICA_NAME
 value: "${MONGODB_REPLICA_NAME}"
 - name: MONGODB_SERVICE_NAME
 value: "${MONGODB_SERVICE_NAME}"
 - name: MONGODB_KEYFILE_VALUE
 value: "${MONGODB_KEYFILE_VALUE}"
 ports:
 - containerPort: 27017
 protocol: TCP
 restartPolicy: Never
 dnsPolicy: ClusterFirst

OpenShift Container Platform 3.5 Using Images

48

http://docs.mongodb.org/manual/tutorial/generate-key-file

After the deployment configuration is created and the pods with MongoDB cluster members
are started, they will not be initialized. Instead, they start as part of the rs0 replication set,
as the value of MONGODB_REPLICA_NAME is set to rs0 by default.

3.4.6.2. Creating the Service Pod

To initialize members created by the deployment configuration, the pods are started with
the initiate argument, which instructs the startup script to behave slightly differently
than a regular, stand-alone MongoDB database.

Example 3.5. Deployment Configuration Object Definition in the Example
Template

- kind: DeploymentConfig
 apiVersion: v1
 metadata:
 name: "${MONGODB_SERVICE_NAME}"
 spec:
 strategy:
 type: Recreate
 recreateParams:
 post:
 failurePolicy: Retry
 execNewPod:
 command: ["run-mongod","initiate"]
 containerName: mongodb
 env:
 - name: MONGODB_INITIAL_REPLICA_COUNT
 value: '3'
 triggers:
 - type: ConfigChange
 replicas: 3
 selector:
 name: mongodb-replica
 template:
 metadata:
 labels:
 name: mongodb-replica
 spec:
 containers:
 - name: mongodb
 image: openshift/mongodb-24-centos7
 readinessProbe:
 tcpSocket:
 port: 27017
 initialDelaySeconds: 15
 timeoutSeconds: 1
 env:
 - name: MONGODB_USER
 value: "${MONGODB_USER}"
 - name: MONGODB_PASSWORD
 value: "${MONGODB_PASSWORD}"
 - name: MONGODB_DATABASE
 value: "${MONGODB_DATABASE}"
 - name: MONGODB_ADMIN_PASSWORD
 value: "${MONGODB_ADMIN_PASSWORD}"

CHAPTER 3. DATABASE IMAGES

49

3.4.6.3. Creating a Headless Service

The initiate argument in the container specification above instructs the container to first
discover all running member pods within the MongoDB cluster. To achieve this, a headless
service is defined named mongodb in the example template.

To have a headless service, the portalIP parameter in the service definition is set to
None. Then you can use a DNS query to get a list of the pod IP addresses that represents
the current endpoints for this service.

Example 3.6. Headless Service Object Definition in the Example Template

3.4.6.4. Creating the Final Replication Set

When the script that runs as the container entrypoint has the IP addresses of all running
MongoDB members, it creates a MongoDB replication set configuration where it lists all
member IP addresses. It then initiates the replication set using rs.initiate(config). The
script waits until MongoDB elects the PRIMARY member of the cluster.

Once the PRIMARY member has been elected, the entrypoint script starts creating
MongoDB users and databases.

Clients can then start using the MongoDB instance by sending the queries to the mongodb

 - name: MONGODB_REPLICA_NAME
 value: "${MONGODB_REPLICA_NAME}"
 - name: MONGODB_SERVICE_NAME
 value: "${MONGODB_SERVICE_NAME}"
 - name: MONGODB_KEYFILE_VALUE
 value: "${MONGODB_KEYFILE_VALUE}"
 ports:
 - containerPort: 27017

kind: "Service"
apiVersion: "v1"
metadata:
 name: "${MONGODB_SERVICE_NAME}"
 labels:
 name: "${MONGODB_SERVICE_NAME}"
spec:
 ports:
 - protocol: "TCP"
 port: 27017
 targetPort: 27017
 nodePort: 0
 selector:
 name: "mongodb-replica"
 portalIP: "None"
 type: "ClusterIP"
 sessionAffinity: "None"
status:
 loadBalancer: {}

OpenShift Container Platform 3.5 Using Images

50

service. As this service is a headless service, they do not need to provide the IP address.
Clients can use mongodb:27017 for connections. The service then sends the query to one
of the members in the replication set.

3.4.6.5. Scaling the MongoDB Replication Set

To increase the number of members in the cluster:

$ oc scale rc mongodb-1 --replicas=<number>

This tells the replication controller to create a new MongoDB member pod. When a new
member is created, the member entrypoint first attempts to discover other running
members in the cluster. It then chooses one and adds itself to the list of members. Once
the replication configuration is updated, the other members replicate the data to a new pod
and start a new election.

3.5. MARIADB

3.5.1. Overview
OpenShift Container Platform provides a container image for running MariaDB. This image
can provide database services based on username, password, and database name settings
provided in a configuration file.

3.5.2. Versions
Currently, OpenShift Container Platform provides versions 10.0 and 10.1 of MariaDB.

3.5.3. Images
These images come in two flavors, depending on your needs:

RHEL 7

CentOS 7

RHEL 7 Based Images

The RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/rhscl/mariadb-100-rhel7
$ docker pull registry.access.redhat.com/rhscl/mariadb-101-rhel7

CentOS 7 Based Images

These images are available on Docker Hub:

$ docker pull openshift/mariadb-100-centos7
$ docker pull centos/mariadb-101-centos7

To use these images, you can either access them directly from these registries or push
them into your OpenShift Container Platform Docker registry. Additionally, you can create
an ImageStream that points to the image, either in your Docker registry or at the external

CHAPTER 3. DATABASE IMAGES

51

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#scaling
https://github.com/sclorg/mariadb-container/tree/master/10.0
https://github.com/sclorg/mariadb-container/tree/master/10.1

location. Your OpenShift Container Platform resources can then reference the ImageStream.
You can find example ImageStream definitions for all the provided OpenShift Container
Platform images.

3.5.4. Configuration and Usage

3.5.4.1. Initializing the Database

The first time you use the shared volume, the database is created along with the database
administrator user and the MariaDB root user (if you specify the MYSQL_ROOT_PASSWORD
environment variable). Afterwards, the MariaDB daemon starts up. If you are re-attaching
the volume to another container, then the database, database user, and the administrator
user are not created, and the MariaDB daemon starts.

The following command creates a new database pod with MariaDB running in a container:

$ oc new-app \
 -e MYSQL_USER=<username> \
 -e MYSQL_PASSWORD=<password> \
 -e MYSQL_DATABASE=<database_name> \
 registry.access.redhat.com/rhscl/mariadb-101-rhel7

3.5.4.2. Running MariaDB Commands in Containers

OpenShift Container Platform uses Software Collections (SCLs) to install and launch
MariaDB. If you want to execute a MariaDB command inside of a running container (for
debugging), you must invoke it using bash.

To do so, first identify the name of the running MariaDB pod. For example, you can view the
list of pods in your current project:

$ oc get pods

Then, open a remote shell session to the pod:

$ oc rsh <pod>

When you enter the container, the required SCL is automatically enabled.

You can now run mysql commands from the bash shell to start a MariaDB interactive
session and perform normal MariaDB operations. For example, to authenticate as the
database user:

bash-4.2$ mysql -u $MYSQL_USER -p$MYSQL_PASSWORD -h $HOSTNAME
$MYSQL_DATABASE
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4
Server version: 5.5.37 MySQL Community Server (GPL)
...
mysql>

When you are finished, enter quit or exit to leave the MySQL session.

OpenShift Container Platform 3.5 Using Images

52

https://github.com/openshift/origin/tree/master/examples/image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#pods
https://www.softwarecollections.org/

3.5.4.3. Environment Variables

The MariaDB user name, password, and database name must be configured with the
following environment variables:

Table 3.7. MariaDB Environment Variables

Variable Name Description

MYSQL_USER User name for MySQL account to be created.

MYSQL_PASSWORD Password for the user account.

MYSQL_DATABASE Database name.

MYSQL_ROOT_PASSWORD Password for the root user (optional).

WARNING

You must specify the user name, password, and database name. If you do
not specify all three, the pod will fail to start and OpenShift Container
Platform will continuously try to restart it.

MariaDB settings can be configured with the following environment variables:

Table 3.8. Additional MariaDB Settings

Variable Name Description Defau
lt

MYSQL_LOWER_CASE_TAB
LE_NAMES

Sets how the table names are stored and compared. 0

MYSQL_MAX_CONNECTION
S

The maximum permitted number of simultaneous client
connections.

151

MYSQL_MAX_ALLOWED_PA
CKET

The maximum size of one packet or any
generated/intermediate string.

200M

MYSQL_FT_MIN_WORD_LE
N

The minimum length of the word to be included in a
FULLTEXT index.

4

MYSQL_FT_MAX_WORD_LE
N

The maximum length of the word to be included in a
FULLTEXT index.

20



CHAPTER 3. DATABASE IMAGES

53

MYSQL_AIO Controls the innodb_use_native_aio setting value if the
native AIO is broken.

1

MYSQL_TABLE_OPEN_CAC
HE

The number of open tables for all threads. 400

MYSQL_KEY_BUFFER_SIZ
E

The size of the buffer used for index blocks. 32M
(or
10%
of
availa
ble
memo
ry)

MYSQL_SORT_BUFFER_SI
ZE

The size of the buffer used for sorting. 256K

MYSQL_READ_BUFFER_SI
ZE

The size of the buffer used for a sequential scan. 8M (or
5% of
availa
ble
memo
ry)

MYSQL_INNODB_BUFFER_
POOL_SIZE

The size of the buffer pool where InnoDB caches table
and index data.

32M
(or
50%
of
availa
ble
memo
ry)

MYSQL_INNODB_LOG_FIL
E_SIZE

The size of each log file in a log group. 8M (or
15%
of
availa
ble
memo
ry)

MYSQL_INNODB_LOG_BUF
FER_SIZE

The size of the buffer that InnoDB uses to write to the log
files on disk.

8M (or
15%
of
availa
ble
memo
ry)

Variable Name Description Defau
lt

OpenShift Container Platform 3.5 Using Images

54

MYSQL_DEFAULTS_FILE Point to an alternative configuration file. /etc/m
y.cnf

MYSQL_BINLOG_FORMAT Set sets the binlog format, supported values are row
and statement.

state
ment

Variable Name Description Defau
lt

3.5.4.4. Volume Mount Points

The MariaDB image can be run with mounted volumes to enable persistent storage for the
database:

/var/lib/mysql/data - The MySQL data directory is where MariaDB stores database
files.

NOTE

When mounting a directory from the host into the container, ensure that the
mounted directory has the appropriate permissions. Also verify that the owner
and group of the directory match the user name running inside the container.

3.5.4.5. Changing Passwords

Passwords are part of the image configuration, therefore the only supported method to
change passwords for the database user (MYSQL_USER) and admin user is by changing the
environment variables MYSQL_PASSWORD and MYSQL_ROOT_PASSWORD, respectively.

You can view the current passwords by viewing the pod or deployment configuration in the
web console or by listing the environment variables with the CLI:

$ oc set env pod <pod_name> --list

Changing database passwords through SQL statements or any way other than through the
environment variables aforementioned causes a mismatch between the values stored in
the variables and the actual passwords. Whenever a database container starts, it resets the
passwords to the values stored in the environment variables.

To change these passwords, update one or both of the desired environment variables for
the related deployment configuration(s) using the oc set env command. If multiple
deployment configurations utilize these environment variables, for example in the case of
an application created from a template, you must update the variables on each deployment
configuration so that the passwords are in sync everywhere. This can be done all in the
same command:

CHAPTER 3. DATABASE IMAGES

55

$ oc set env dc <dc_name> [<dc_name_2> ...] \
 MYSQL_PASSWORD=<new_password> \
 MYSQL_ROOT_PASSWORD=<new_root_password>

IMPORTANT

Depending on your application, there may be other environment variables for
passwords in other parts of the application that should also be updated to
match. For example, there could be a more generic DATABASE_USER variable in
a front-end pod that should match the database user’s password. Ensure that
passwords are in sync for all required environment variables per your
application, otherwise your pods may fail to redeploy when triggered.

Updating the environment variables triggers the redeployment of the database server if
you have a configuration change trigger. Otherwise, you must manually start a new
deployment in order to apply the password changes.

To verify that new passwords are in effect, first open a remote shell session to the running
MariaDB pod:

$ oc rsh <pod>

From the bash shell, verify the database user’s new password:

bash-4.2$ mysql -u $MYSQL_USER -p<new_password> -h $HOSTNAME
$MYSQL_DATABASE -te "SELECT * FROM (SELECT database()) db CROSS JOIN
(SELECT user()) u"

If the password was changed correctly, you should see a table like this:

+------------+---------------------+
| database() | user() |
+------------+---------------------+
| sampledb | user0PG@172.17.42.1 |
+------------+---------------------+

To verify the root user’s new password:

bash-4.2$ mysql -u root -p<new_root_password> -h $HOSTNAME $MYSQL_DATABASE
-te "SELECT * FROM (SELECT database()) db CROSS JOIN (SELECT user()) u"

If the password was changed correctly, you should see a table like this:

+------------+------------------+
| database() | user() |
+------------+------------------+
| sampledb | root@172.17.42.1 |
+------------+------------------+

3.5.5. Creating a Database Service from a Template
OpenShift Container Platform provides a template to make creating a new database service

OpenShift Container Platform 3.5 Using Images

56

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#config-change-trigger
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#dev-guide-templates

easy. The template provides parameter fields to define all the mandatory environment
variables (user, password, database name, etc) with predefined defaults including auto-
generation of password values. It will also define both a deployment configuration and a
service.

The MariaDB templates should have been registered in the default openshift project by
your cluster administrator during the initial cluster setup. See Loading the Default Image
Streams and Templates for more details, if required.

There are two templates available:

mariadb-ephemeral is for development or testing purposes only because it uses
ephemeral storage for the database content. This means that if the database pod is
restarted for any reason, such as the pod being moved to another node or the
deployment configuration being updated and triggering a redeploy, all data will be
lost.

mariadb-persistent uses a persistent volume store for the database data which
means the data will survive a pod restart. Using persistent volumes requires a
persistent volume pool be defined in the OpenShift Container Platform deployment.
Cluster administrator instructions for setting up the pool are located here.

You can find instructions for instantiating templates by following these instructions.

Once you have instantiated the service, you can copy the user name, password, and
database name environment variables into a deployment configuration for another
component that intends to access the database. That component can then access the
database through the service that was defined.

3.5.6. Troubleshooting
This section describes some troubles you might encounter and presents possible
resolutions.

3.5.6.1. Linux Native AIO Failure

Symptom
The MySQL container fails to start and the logs show something like:

151113 5:06:56 InnoDB: Using Linux native AIO
151113 5:06:56 InnoDB: Warning: io_setup() failed with EAGAIN. Will make
5 attempts before giving up.
InnoDB: Warning: io_setup() attempt 1 failed.
InnoDB: Warning: io_setup() attempt 2 failed.
Waiting for MySQL to start ...
InnoDB: Warning: io_setup() attempt 3 failed.
InnoDB: Warning: io_setup() attempt 4 failed.
Waiting for MySQL to start ...
InnoDB: Warning: io_setup() attempt 5 failed.
151113 5:06:59 InnoDB: Error: io_setup() failed with EAGAIN after 5
attempts.
InnoDB: You can disable Linux Native AIO by setting innodb_use_native_aio
= 0 in my.cnf
151113 5:06:59 InnoDB: Fatal error: cannot initialize AIO sub-system
151113 5:06:59 [ERROR] Plugin 'InnoDB' init function returned error.

CHAPTER 3. DATABASE IMAGES

57

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-imagestreams-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-nfs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#dev-guide-templates

151113 5:06:59 [ERROR] Plugin 'InnoDB' registration as a STORAGE ENGINE
failed.
151113 5:06:59 [ERROR] Unknown/unsupported storage engine: InnoDB
151113 5:06:59 [ERROR] Aborting

Explanation
MariaDB’s storage engine was unable to use the kernel’s AIO (Asynchronous I/O) facilities
due to resource limits.

Resolution
Turn off AIO usage entirely, by setting environment variable MYSQL_AIO to have value 0. On
subsequent deployments, this arranges for the MySQL configuration variable
innodb_use_native_aio to have value 0.

Alternatively, increase the aio-max-nr kernel resource. The following example examines
the current value of aio-max-nr and doubles it.

$ sysctl fs.aio-max-nr
fs.aio-max-nr = 1048576
sysctl -w fs.aio-max-nr=2097152

This is a per-node resolution and lasts until the next node reboot.

OpenShift Container Platform 3.5 Using Images

58

CHAPTER 4. DOCKER IMAGES

4.1. OVERVIEW
You can use arbitrary container images in your OpenShift Container Platform instance, for
example those found on the Docker Hub. For instructions on how to enable images to run
with USER in the Dockerfile, see Managing Security Context Constraints.

CHAPTER 4. DOCKER IMAGES

59

https://registry.hub.docker.com/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#how-do-i

CHAPTER 5. OTHER IMAGES

5.1. OVERVIEW
This topic group includes information on other container images available for OpenShift
Container Platform users.

5.2. JENKINS

5.2.1. Overview
OpenShift Container Platform provides a container image for running Jenkins. This image
provides a Jenkins server instance, which can be used to set up a basic flow for continuous
testing, integration, and delivery.

This image also includes a sample Jenkins job, which triggers a new build of a BuildConfig
defined in OpenShift Container Platform, tests the output of that build, and then on
successful build, retags the output to indicate the build is ready for production.

5.2.2. Versions
OpenShift Container Platform follows the LTS releases of Jenkins. Currently, OpenShift
Container Platform provides versions 1.x and 2.x.

5.2.3. Images
These images come in two flavors, depending on your needs:

RHEL 7

CentOS 7

RHEL 7 Based Images

The RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/openshift3/jenkins-1-rhel7
$ docker pull registry.access.redhat.com/openshift3/jenkins-2-rhel7

CentOS 7 Based Images

This image is available on Docker Hub:

$ docker pull openshift/jenkins-1-centos7
$ docker pull openshift/jenkins-2-centos7

To use these images, you can either access them directly from these registries or push
them into your OpenShift Container Platform Docker registry. Additionally, you can create
an ImageStream that points to the image, either in your Docker registry or at the external
location. Your OpenShift Container Platform resources can then reference the ImageStream.
You can find example ImageStream definitions for all the provided OpenShift Container
Platform images.

OpenShift Container Platform 3.5 Using Images

60

https://jenkins.io/changelog-stable/
https://github.com/openshift/origin/tree/master/examples/image-streams

5.2.4. Configuration and Usage

5.2.4.1. Initializing Jenkins

You can manage Jenkins authentication in two ways:

OpenShift Container Platform OAuth authentication provided by the OpenShift Login
plug-in.

Standard authentication provided by Jenkins

5.2.4.1.1. OpenShift Container Platform OAuth authentication

OAuth authentication is activated by configuring the Configure Global Security panel in
the Jenkins UI, or by setting the OPENSHIFT_ENABLE_OAUTH environment variable on the
Jenkins Deployment Config to anything other than false. This activates the OpenShift
Login plug-in, which retrieves the configuration information from pod data or by interacting
with the OpenShift Container Platform API server.

Valid credentials are controlled by the OpenShift Container Platform identity provider. For
example, if Allow All is the default identity provider, you can provide any non-empty
string for both the user name and password.

Jenkins supports both browser and non-browser access.

Valid users are automatically added to the Jenkins authorization matrix at log in, where
OpenShift Container Platform Roles dictate the specific Jenkins permissions the user will
have.

Users with the admin role will have the traditional Jenkins administrative user permissions.
Users with the edit or view role will have progressively less permissions. See the Jenkins
image source repository README for the specifics on the OpenShift roles to Jenkins
permissions mappings.

NOTE

The admin user that is pre-populated in the OpenShift Container Platform
Jenkins image with administrative privileges will not be given those privileges
when OpenShift Container Platform OAuth is used, unless the OpenShift
Container Platform cluster administrator explicitly defines that user in the
OpenShift Container Platform identity provider and assigns the admin role to
the user.

Jenkins' users permissions can be changed after the users are initially established. The
OpenShift Login plug-in polls the OpenShift Container Platform API server for permissions
and updates the permissions stored in Jenkins for each user with the permissions retrieved
from OpenShift Container Platform. If the Jenkins UI is used to update permissions for a
Jenkins user, the permission changes are overwritten the next time the plug-in polls
OpenShift Container Platform.

You can control how often the polling occurs with the
OPENSHIFT_PERMISSIONS_POLL_INTERVAL environment variable. The default polling interval
is five minutes.

CHAPTER 5. OTHER IMAGES

61

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#oauth
https://github.com/openshift/jenkins-openshift-login-plugin/blob/master/README.md#browser-access
https://github.com/openshift/jenkins-openshift-login-plugin/blob/master/README.md#non-browser-access
https://github.com/openshift/jenkins#jenkins-admin-user

The easiest way to create a new Jenkins service using OAuth authentication is to use a
template as described below.

5.2.4.1.2. Jenkins Standard Authentication

Jenkins authentication is used by default if the image is run directly, without using a
template.

The first time Jenkins starts, the configuration is created along with the administrator user
and password. The default user credentials are admin and password. Configure the default
password by setting the JENKINS_PASSWORD environment variable when using (and only
when using) standard Jenkins authentication.

To create a new Jenkins application using standard Jenkins authentication:

$ oc new-app -e \
 JENKINS_PASSWORD=<password> \
 openshift/jenkins-1-centos7

5.2.4.2. Environment Variables

The Jenkins server can be configured with the following environment variables:

Table 5.1. Jenkins Environment Variables

Variable name Description

JENKINS_PASSWORD The password for the admin user when using standard
Jenkins authentication. Not applicable when using
OpenShift Container Platform OAuth authentication.

OPENSHIFT_ENABLE_OAUTH Determines whether the OpenShift Login plug-in
manages authentication when logging into Jenkins.
Enabled when set to any non-empty value other than
"false".

OPENSHIFT_PERMISSIONS_POLL_I
NTERVAL

Specifies in seconds how often the OpenShift Login plug-
in polls OpenShift Container Platform for the permissions
associated with each user defined in Jenkins.

5.2.4.3. Cross Project Access

If you are going to run Jenkins somewhere other than as a deployment within your same
project, you will need to provide an access token to Jenkins to access your project.

1. Identify the secret for the service account that has appropriate permissions to
access the project Jenkins needs to access:

$ oc describe serviceaccount default
Name: default
Labels: <none>
Secrets: { default-token-uyswp }

OpenShift Container Platform 3.5 Using Images

62

 { default-dockercfg-xcr3d }
Tokens: default-token-izv1u
 default-token-uyswp

In this case the secret is named default-token-uyswp

2. Retrieve the token from the secret:

$ oc describe secret <secret name from above> # e.g. default-token-
izv1u
Name: default-token-izv1u
Labels: <none>
Annotations: kubernetes.io/service-
account.name=default,kubernetes.io/service-account.uid=32f5b661-
2a8f-11e5-9528-3c970e3bf0b7
Type: kubernetes.io/service-account-token
Data
====
ca.crt: 1066 bytes
token: eyJhbGc..<content cut>....wRA

The token field contains the token value Jenkins needs to access the project.

5.2.4.4. Volume Mount Points

The Jenkins image can be run with mounted volumes to enable persistent storage for the
configuration:

/var/lib/jenkins - This is the data directory where Jenkins stores configuration files
including job definitions.

5.2.5. Creating a Jenkins Service from a Template
Templates provide parameter fields to define all the environment variables (password) with
predefined defaults. OpenShift Container Platform provides templates to make creating a
new Jenkins service easy. The Jenkins templates should have been registered in the default
openshift project by your cluster administrator during the initial cluster setup. See
Loading the Default Image Streams and Templates for more details, if required.

The two available templates both define a deployment configuration and a service. The
templates differ in their storage strategy, which affects whether or not the Jenkins content
persists across a pod restart.

NOTE

A pod may be restarted when it is moved to another node, or when an update
of the deployment configuration triggers a redeployment.

jenkins-ephemeral uses ephemeral storage. On pod restart, all data is lost. This
template is useful for development or testing only.

jenkins-persistent uses a persistent volume store. Data survives a pod restart.
To use a persistent volume store, the cluster administrator must define a persistent
volume pool in the OpenShift Container Platform deployment.

CHAPTER 5. OTHER IMAGES

63

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-imagestreams-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#services

Once you have selected which template you want, you must instantiate the template to be
able to use Jenkins:

Creating a New Jenkins Service

1. Ensure the the default image streams and templates are already installed.

2. Create a new Jenkins application using:

a. A persistent volume:

$ oc new-app jenkins-persistent

a. Or an emptyDir type volume (where configuration does not persist across pod
restarts):

$ oc new-app jenkins-ephemeral

NOTE

If you instantiate the template against releases prior to v3.4 of OpenShift
Container Platform, standard Jenkins authentication is used, and the default
admin account will exist with password password. See Jenkins Standard
Authentication for details about changing this password.

5.2.6. Using Jenkins as a Source-To-Image builder
To customize the official OpenShift Container Platform Jenkins image, you have two
options:

Use Docker layering.

Use the image as a Source-To-Image builder, described here.

You can use S2I to copy your custom Jenkins Jobs definitions, additional plug-ins or replace
the provided config.xml file with your own, custom, configuration.

In order to include your modifications in the Jenkins image, you need to have a Git
repository with the following directory structure:

plugins
This directory contains those binary Jenkins plug-ins you want to copy into Jenkins.

plugins.txt
This file lists the plug-ins you want to install:

pluginId:pluginVersion

configuration/jobs
This directory contains the Jenkins job definitions.

configuration/config.xml
This file contains your custom Jenkins configuration.

OpenShift Container Platform 3.5 Using Images

64

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-imagestreams-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#source-build

1

2

3

The contents of the configuration/ directory will be copied into the /var/lib/jenkins/
directory, so you can also include additional files, such as credentials.xml, there.

The following is an example build configuration that customizes the Jenkins image in
OpenShift Container Platform:

The source field defines the source Git repository with the layout described above.

The strategy field defines the original Jenkins image to use as a source image for the
build.

The output field defines the resulting, customized Jenkins image you can use in
deployment configuration instead of the official Jenkins image.

5.2.7. Using the Jenkins Kubernetes Plug-in to Run Jobs
The official OpenShift Container Platform Jenkins image includes the pre-installed
Kubernetes plug-in that allows Jenkins slaves to be dynamically provisioned on multiple
container hosts using Kubernetes and OpenShift Container Platform.

To use the Kubernetes plug-in, OpenShift Container Platform provides three images suitable
for use as Jenkins slaves: the Base, Maven, and Node.js images.

The first is a base image for Jenkins slaves:

It pulls in both the required tools (headless Java, the Jenkins JNLP client) and the
useful ones (including git, tar, zip, and nss among others).

It establishes the JNLP slave agent as the entrypoint.

It includes the oc client tooling for invoking command line operations from within
Jenkins jobs, and

It provides Dockerfiles for both CentOS and RHEL images.

apiVersion: v1
kind: BuildConfig
metadata:
 name: custom-jenkins-build
spec:
 source: 1
 git:
 uri: https://github.com/custom/repository
 type: Git
 strategy: 2
 sourceStrategy:
 from:
 kind: ImageStreamTag
 name: jenkins:latest
 namespace: openshift
 type: Source
 output: 3
 to:
 kind: ImageStreamTag
 name: custom-jenkins:latest

CHAPTER 5. OTHER IMAGES

65

https://wiki.jenkins-ci.org/display/JENKINS/Kubernetes+Plugin
https://github.com/openshift/jenkins/tree/master/slave-base

Two additional images that extend the base image are also provided:

Maven

Node.js

Both the Maven and Node.js slave images are configured as Kubernetes Pod Template
images within the OpenShift Container Platform Jenkins image’s configuration for the
Kubernetes plugin. That configuration includes labels for each of the images that can be
applied to any of your Jenkins jobs under their "Restrict where this project can be run"
setting. If the label is applied, execution of the given job will be done under an OpenShift
Container Platform pod running the respective slave image.

The Maven and Node.js Jenkins slave images provide Dockerfiles for both CentOS and RHEL
that you can reference when building new slave images. Also note the contrib and
contrib/bin subdirectories. They allow for the insertion of configuration files and
executable scripts for your image.

The Jenkins image also provides auto-discovery and auto-configuration of slave images for
the Kubernetes plug-in. The Jenkins image searches for these in the existing image streams
within the project that it is running in. The search specifically looks for image streams that
have the label role set to jenkins-slave.

When it finds an image stream with this label, it generates the corresponding Kubernetes
plug-in configuration so you can assign your Jenkins jobs to run in a pod running the
container image provided by the image stream.

Note: this scanning is only performed once, when the Jenkins master is starting. If you label
additional imagestreams, the Jenkins master will need to be restarted to pick up the
additional images.

To use a container image as a Jenkins slave, the image must run the slave agent as an
entrypoint. For more details about this, refer to the official Jenkins documentation.

5.2.8. Tutorial
For more details on the sample job included in this image, see this tutorial.

5.2.9. OpenShift Container Platform Pipeline Plug-in
The Jenkins image’s list of pre-installed plug-ins includes a plug-in which assists in the
creating of CI/CD workflows that run against an OpenShift Container Platform server. A
series of build steps, post-build actions, as well as SCM-style polling are provided which
equate to administrative and operational actions on the OpenShift Container Platform
server and the API artifacts hosted there.

In addition to being accessible from the classic "freestyle" form of Jenkins job, the build
steps as of version 1.0.14 of the OpenShift Container Platform Pipeline Plug-in are also
available to Jenkins Pipeline jobs via the DSL extension points provided by the Jenkins
Pipeline Plug-in. The OpenShift Jenkins Pipeline build strategy sample illustrates how to use
the OpenShift Pipeline plugin DSL versions of its steps.

The sample Jenkins job that is pre-configured in the Jenkins image utilizes the OpenShift
Container Platform pipeline plug-in and serves as an example of how to leverage the plug-in
for creating CI/CD flows for OpenShift Container Platform in Jenkins.

OpenShift Container Platform 3.5 Using Images

66

https://github.com/openshift/jenkins/tree/master/slave-maven
https://github.com/openshift/jenkins/tree/master/slave-nodejs
https://wiki.jenkins-ci.org/display/JENKINS/Distributed+builds#Distributedbuilds-Launchslaveagentheadlessly
https://github.com/openshift/origin/blob/master/examples/jenkins/README.md
https://github.com/openshift/origin/tree/master/examples/jenkins/pipeline
https://github.com/openshift/jenkins/tree/master/1/contrib/openshift/configuration/jobs/OpenShift Sample

See the the plug-in’s README for a detailed description of what is available.

5.2.10. OpenShift Container Platform Client Plug-in
The experiences gained working with users of the OpenShift Pipeline plug-in, coupled with
the rapid evolution of both Jenkins and OpenShift, have provided valuable insight into how
to integrate OpenShift Container Platform from Jenkins jobs.

As such, the new experimental OpenShift Client Plug-in for Jenkins is now offered as a
technical preview and is included in the OpenShift Jenkins images on CentOS
(docker.io/openshift/jenkins-1-centos7:latest and docker.io/openshift/jenkins-2-
centos7:latest). The plug-in is also available from the Jenkins Update Center. The
OpenShift Client plug-in will eventually replace the OpenShift Pipeline plug-in as the tool for
OpenShift integration from Jenkins jobs. The OpenShift Client Plug-in provides:

A Fluent-style syntax for use in Jenkins Pipelines

Use of and exposure to any option available with oc

Integration with Jenkins credentials and clusters

Continued support for classic Jenkins Freestyle jobs

5.2.11. OpenShift Container Platform Sync Plug-in
To facilitate OpenShift Container Platform Pipeline build strategy for integration between
Jenkins and OpenShift Container Platform, the OpenShift Sync plug-in monitors the API
server of OpenShift Container Platform for updates BuildConfigs and Builds that employ
the Pipeline strategy and either creates Jenkins Pipeline projects (when a BuildConfig is
created) or starts jobs in the resulting projects (when a Build is started).

CHAPTER 5. OTHER IMAGES

67

https://github.com/openshift/jenkins-plugin/
https://github.com/openshift/jenkins-client-plugin
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#pipeline-strategy-options
https://github.com/openshift/jenkins-sync-plugin

CHAPTER 6. XPAAS MIDDLEWARE IMAGES

6.1. OVERVIEW
Red Hat offers a containerized xPaaS image for a host of middleware products that are
designed for use with OpenShift Container Platform. With the 3.2 release of OpenShift
Container Platform, the documentation for these images has been migrated to the Red Hat
Customer Portal.

OpenShift Container Platform 3.5 Using Images

68

https://access.redhat.com/documentation/en/red-hat-jboss-middleware-for-openshift/

CHAPTER 7. REVISION HISTORY: USING IMAGES

7.1. WED MAY 31 2017

Affected Topic Description of Change

Jenkins Moved content to Jenkins Readme.md documentation and added links in
the OpenShift Container Platform OAuth authentication section.

7.2. TUE MAY 02 2017

Affected Topic Description of Change

S2I (Source-to-Image)
→ .NET Core

Added a support statement about Visual Studio 2017.

7.3. WED APR 12 2017
OpenShift Container Platform 3.5 Initial Release

Affected Topic Description of Change

Database Images →
MariaDB

New topic on the MariaDB database image.

Other Images →
Jenkins

Clarified information about non-browser access to the OpenShift
Container Platform OAuth Authentication section.

CHAPTER 7. REVISION HISTORY: USING IMAGES

69

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. SOURCE-TO-IMAGE (S2I)
	2.1. OVERVIEW
	2.2. .NET CORE
	2.2.1. Benefits of Using .NET Core
	2.2.2. Supported Versions
	2.2.3. Images
	2.2.4. Build Process
	2.2.5. Configuration
	2.2.6. Quickly Deploying Applications from .NET Core Source
	2.2.7. .NET Core Templates

	2.3. NODE.JS
	2.3.1. Overview
	2.3.2. Versions
	2.3.3. Images
	2.3.4. Build Process
	2.3.5. Configuration
	2.3.6. Hot Deploying

	2.4. PERL
	2.4.1. Overview
	2.4.2. Versions
	2.4.3. Images
	2.4.4. Build Process
	2.4.5. Configuration
	2.4.6. Accessing Logs
	2.4.7. Hot Deploying

	2.5. PHP
	2.5.1. Overview
	2.5.2. Versions
	2.5.3. Images
	2.5.4. Build Process
	2.5.5. Configuration
	2.5.5.1. Apache Configuration

	2.5.6. Accessing Logs
	2.5.7. Hot Deploying

	2.6. PYTHON
	2.6.1. Overview
	2.6.2. Versions
	2.6.3. Images
	2.6.4. Build Process
	2.6.5. Configuration
	2.6.6. Hot Deploying

	2.7. RUBY
	2.7.1. Overview
	2.7.2. Versions
	2.7.3. Images
	2.7.4. Build Process
	2.7.5. Configuration
	2.7.6. Hot Deploying

	2.8. CUSTOMIZING S2I IMAGES
	2.8.1. Overview
	2.8.2. Invoking Scripts Embedded in an Image

	CHAPTER 3. DATABASE IMAGES
	3.1. OVERVIEW
	3.2. MYSQL
	3.2.1. Overview
	3.2.2. Versions
	3.2.3. Images
	3.2.4. Configuration and Usage
	3.2.4.1. Initializing the Database
	3.2.4.2. Running MySQL Commands in Containers
	3.2.4.3. Environment Variables
	3.2.4.4. Volume Mount Points
	3.2.4.5. Changing Passwords

	3.2.5. Creating a Database Service from a Template
	3.2.6. Using MySQL Replication
	3.2.6.1. Creating the Deployment Configuration for the MySQL Master
	3.2.6.2. Creating a Headless Service
	3.2.6.3. Scaling the MySQL Slaves

	3.2.7. Troubleshooting
	3.2.7.1. Linux Native AIO Failure

	3.3. POSTGRESQL
	3.3.1. Overview
	3.3.2. Versions
	3.3.3. Images
	3.3.4. Configuration and Usage
	3.3.4.1. Initializing the Database
	3.3.4.2. Running PostgreSQL Commands in Containers
	3.3.4.3. Environment Variables
	3.3.4.4. Volume Mount Points
	3.3.4.5. Changing Passwords

	3.3.5. Creating a Database Service from a Template

	3.4. MONGODB
	3.4.1. Overview
	3.4.2. Versions
	3.4.3. Images
	3.4.4. Configuration and Usage
	3.4.4.1. Initializing the Database
	3.4.4.2. Running MongoDB Commands in Containers
	3.4.4.3. Environment Variables
	3.4.4.4. Volume Mount Points
	3.4.4.5. Changing Passwords

	3.4.5. Creating a Database Service from a Template
	3.4.6. Using MongoDB Replication
	3.4.6.1. Creating the Deployment Configuration
	3.4.6.2. Creating the Service Pod
	3.4.6.3. Creating a Headless Service
	3.4.6.4. Creating the Final Replication Set
	3.4.6.5. Scaling the MongoDB Replication Set

	3.5. MARIADB
	3.5.1. Overview
	3.5.2. Versions
	3.5.3. Images
	3.5.4. Configuration and Usage
	3.5.4.1. Initializing the Database
	3.5.4.2. Running MariaDB Commands in Containers
	3.5.4.3. Environment Variables
	3.5.4.4. Volume Mount Points
	3.5.4.5. Changing Passwords

	3.5.5. Creating a Database Service from a Template
	3.5.6. Troubleshooting
	3.5.6.1. Linux Native AIO Failure

	CHAPTER 4. DOCKER IMAGES
	4.1. OVERVIEW

	CHAPTER 5. OTHER IMAGES
	5.1. OVERVIEW
	5.2. JENKINS
	5.2.1. Overview
	5.2.2. Versions
	5.2.3. Images
	5.2.4. Configuration and Usage
	5.2.4.1. Initializing Jenkins
	5.2.4.2. Environment Variables
	5.2.4.3. Cross Project Access
	5.2.4.4. Volume Mount Points

	5.2.5. Creating a Jenkins Service from a Template
	5.2.6. Using Jenkins as a Source-To-Image builder
	5.2.7. Using the Jenkins Kubernetes Plug-in to Run Jobs
	5.2.8. Tutorial
	5.2.9. OpenShift Container Platform Pipeline Plug-in
	5.2.10. OpenShift Container Platform Client Plug-in
	5.2.11. OpenShift Container Platform Sync Plug-in

	CHAPTER 6. XPAAS MIDDLEWARE IMAGES
	6.1. OVERVIEW

	CHAPTER 7. REVISION HISTORY: USING IMAGES
	7.1. WED MAY 31 2017
	7.2. TUE MAY 02 2017
	7.3. WED APR 12 2017

