
Red Hat Customer Content
Services

Red Hat Single Sign-On
7.1
Authorization Services Guide

For Use with Red Hat Single Sign-On 7.1

Red Hat Single Sign-On 7.1 Authorization Services Guide

For Use with Red Hat Single Sign-On 7.1

Legal Notice

Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
This guide consists of information for authorization services for Red Hat Single Sign-On 7.1

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW
1.1. ARCHITECTURE
1.2. TERMINOLOGY

CHAPTER 2. GETTING STARTED
2.1. SECURING A SERVLET APPLICATION
2.2. CREATING A REALM AND A USER
2.3. ENABLING AUTHORIZATION SERVICES
2.4. BUILD, DEPLOY, AND TEST YOUR APPLICATION

CHAPTER 3. MANAGING RESOURCE SERVERS
3.1. CREATING A CLIENT APPLICATION
3.2. ENABLING AUTHORIZATION SERVICES
3.3. DEFAULT CONFIGURATION
3.4. EXPORT AND IMPORT AUTHORIZATION CONFIGURATION

CHAPTER 4. MANAGING RESOURCES AND SCOPES
4.1. VIEWING RESOURCES
4.2. CREATING RESOURCES

CHAPTER 5. MANAGING POLICIES
5.1. USER-BASED POLICY
5.2. ROLE-BASED POLICY
5.3. DEFINING A ROLE AS REQUIRED
5.4. JAVASCRIPT-BASED POLICY
5.5. RULE-BASED POLICY
5.6. TIME-BASED POLICY
5.7. AGGREGATED POLICY
5.8. POSITIVE AND NEGATIVE LOGIC
5.9. POLICY EVALUATION API

CHAPTER 6. MANAGING PERMISSIONS
6.1. CREATING RESOURCE-BASED PERMISSIONS
6.2. CREATING SCOPE-BASED PERMISSIONS
6.3. POLICY DECISION STRATEGIES

CHAPTER 7. EVALUATING AND TESTING POLICIES
7.1. PROVIDING IDENTITY INFORMATION
7.2. PROVIDING CONTEXTUAL INFORMATION
7.3. PROVIDING THE PERMISSIONS

CHAPTER 8. AUTHORIZATION SERVICES
8.1. PROTECTION API
8.2. AUTHORIZATION API
8.3. ENTITLEMENT API
8.4. INTROSPECTING A REQUESTING PARTY TOKEN
8.5. AUTHORIZATION CLIENT JAVA API

CHAPTER 9. POLICY ENFORCERS
9.1. RED HAT SINGLE SIGN-ON ADAPTER POLICY ENFORCER

3
4
9

12
12
12
14
16

21
21
22
24
27

29
29
29

32
32
33
34
35
37
39
40
42
42

45
45
47
48

50
50
50
50

51
51
53
55
58
59

63
63

Table of Contents

1

Red Hat Single Sign-On 7.1 Authorization Services Guide

2

CHAPTER 1. OVERVIEW

Note

Authorization Services is a Technology Preview feature and is not fully supported. This
feature is disabled by default.

To enable Authorization Services add the standalone/configuration/profile.properties
file with the contents profile=preview or start the server with -
Dkeycloak.profile=preview to enable all technology preview features.

Red Hat Single Sign-On supports fine-grained authorization policies and is able to combine different
access control mechanisms such as:

Attribute-based access control (ABAC)

Role-based access control (RBAC)

User-based access control (UBAC)

Context-based access control (CBAC)

Rule-based access control

Using Javascript

Using JBoss Drools

Time-based access control

Support for custom access control mechanisms (ACMs) through a Policy Provider
Service Provider Interface (SPI)

Red Hat Single Sign-On is based on a set of administrative UIs and a RESTful API, and provides
the necessary means to create permissions for your protected resources and scopes, associate
those permissions with authorization policies, and enforce authorization decisions in your
applications and services.

Resource servers (applications or services serving protected resources) usually rely on some kind of
information to decide if access should be granted to a protected resource. For RESTful-based
resource servers, that information is usually obtained from a security token, usually sent as a bearer
token on every request to the server. For web applications that rely on a session to authenticate
users, that information is usually stored in a user’s session and retrieved from there for each
request.

Frequently, resource servers only perform authorization decisions based on role-based access
control (RBAC), where the roles granted to the user trying to access protected resources are
checked against the roles mapped to these same resources. While roles are very useful and used
by applications, they also have a few limitations:

Resources and roles are tightly coupled and changes to roles (such as adding, removing, or
changing an access context) can impact multiple resources

Changes to your security requirements can imply deep changes to application code to reflect
these changes

Depending on your application size, role management might become difficult and error-prone

CHAPTER 1. OVERVIEW

3

It is not the most flexible access control mechanism. Roles do not represent who you are and
lack contextual information. If you have been granted a role, you have at least some access.

Considering that today we need to consider heterogeneous environments where users are
distributed across different regions, with different local policies, using different devices, and with a
high demand for information sharing, Red Hat Single Sign-On Authorization Services can help you
improve the authorization capabilities of your applications and services by providing:

Resource protection using fine-grained authorization policies and different access control
mechanisms

Centralized Resource, Permission, and Policy Management

Centralized Policy Decision Point

REST security based on a set of REST-based authorization services

Authorization workflows and User-Managed Access

The infrastructure to help avoid code replication across projects (and redeploys) and quickly
adapt to changes in your security requirements.

1.1. ARCHITECTURE

From a design perspective, Authorization Services is based on a well-defined set of authorization
patterns providing these capabilities:

Policy Administration Point (PAP)

Red Hat Single Sign-On 7.1 Authorization Services Guide

4

Provides a set of UIs based on the Red Hat Single Sign-On Administration Console to manage
resource servers, resources, scopes, permissions, and policies. Part of this is also accomplished
remotely through the use of the Protection API.

Policy Decision Point (PDP)

Provides a distributable policy decision point to where authorization requests are sent and
policies are evaluated accordingly with the permissions being requested. Part of this is also
accomplished remotely through the use of the Entitlement APIs.

Policy Enforcement Point (PEP)

Provides implementations for different environments to actually enforce authorization decisions
at the resource server side. Red Hat Single Sign-On provides some built-in Policy Enforcers.

Policy Information Point (PIP)

Being based on Red Hat Single Sign-On Authentication Server, you can obtain attributes from
identities and runtime environment during the evaluation of authorization policies.

1.1.1. The Authorization Process

Three main processes define the necessary steps to understand how to use Red Hat Single Sign-
On to enable fine-grained authorization to your applications:

Resource Management

Permission and Policy Management

Policy Enforcement

1.1.1.1. Resource Management

Resource Management involves all the necessary steps to define what is being protected.

First, you need to specify Red Hat Single Sign-On what are you looking to protect, which usually
represents a web application or a set of one or more services. For more information on resource
servers see Terminology.

Resource servers are managed using the Red Hat Single Sign-On Administration Console. There
you can enable any registered client application as a resource server and start managing the
resources and scopes you want to protect.

CHAPTER 1. OVERVIEW

5

A resource can be a web page, a RESTFul resource, a file in your file system, an EJB, and so on.
They can represent a group of resources (just like a Class in Java) or they can represent a single
and specific resource.

For instance, you might have a Bank Account resource that represents all banking accounts and
use it to define the authorization policies that are common to all banking accounts. However, you
might want to define specific policies for Alice Account (a resource instance that belongs to a
customer), where only the owner is allowed to access some information or perform an operation.

Resources can be managed using the Red Hat Single Sign-On Administration Console or the
Protection API. In the latter case, resource servers are able to manage their resources remotely.

Scopes usually represent the actions that can be performed on a resource, but they are not limited
to that. You can also use scopes to represent one or more attributes within a resource.

1.1.1.2. Permission and Policy Management

Once you have defined your resource server and all the resources you want to protect, you must set
up permissions and policies.

This process involves all the necessary steps to actually define the security and access
requirements that govern your resources.

Policies define the conditions that must be satisfied to access or perform operations on something
(resource or scope), but they are not tied to what they are protecting. They are generic and can be
reused to build permissions or even more complex policies.

For instance,to allow access to a group of resources only for users granted with a role "User
Premium,"" you can use RBAC (Role-based Access Control).

Red Hat Single Sign-On 7.1 Authorization Services Guide

6

Red Hat Single Sign-On provides a few built-in policy types (and their respective policy providers)
covering the most common access control mechanisms. You can even create policies based on
rules written using JavaScript or JBoss Drools.

Once you have your policies defined, you can start defining your permissions. Permissions are
coupled with the resource they are protecting. Here you specify what you want to protect (resource
or scope) and the policies that must be satisfied to grant or deny permission.

1.1.1.3. Policy Enforcement

Policy Enforcement involves the necessary steps to actually enforce authorization decisions to a
resource server. This is achieved by enabling a Policy Enforcement Point or PEP at the resource
server that is capable of communicating with the authorization server, ask for authorization data and
control access to protected resources based on the decisions and permissions returned by the
server.

Red Hat Single Sign-On provides some built-in Policy Enforcers implementations that you can use
to protect your applications depending on the platform they are running on.

1.1.2. Authorization Services

Authorization services consist of the following RESTFul APIs:

Protection API

Authorization API

Entitlement API

Each of these services provides a specific API covering the different steps involved in the
authorization process.

1.1.2.1. Protection API

The Protection API is a UMA-compliant endpoint providing a small set of operations for resource
servers to help them manage their resources and scopes. Only resource servers are allowed to
access this API, which also requires a uma_protection scope.

The operations provided by the Protection API can be organized in two main groups:

CHAPTER 1. OVERVIEW

7

https://docs.kantarainitiative.org/uma/rec-uma-core.html

Resource Management

Create Resource

Delete Resource

Find by Id

Find All

Find with filters (for example, search by name, type, or URI)

Permission Management

Issue Permission Tickets

Note

By default, Remote Resource Management is enabled. You can change that using the
Red Hat Single Sign-On Administration Console and only allow resource management
through the console.

When using the UMA protocol, the issuance of Permission Tickets by the Protection API is an
important part of the whole authorization process. As described in a subsequent section, they
represent the permissions being requested by the client and that are sent to the server to obtain a
final token with all permissions granted during the evaluation of the permissions and policies
associated with the resources and scopes being requested.

For more information, see Protection API.

1.1.2.2. Authorization API

The Authorization API is also a UMA-compliant endpoint providing a single operation that
exchanges an Access Token and Permission Ticket with a Requesting Party Token (RPT).

The RPT contains all permissions granted to a client and can be used to call a resource server to
get access to its protected resources.

When requesting an RPT you can also provide a previously issued RPT. In this case, the resulting
RPT will consist of the union of the permissions from the previous RPT and the new ones within a
permission ticket.

For more information, see Authorization API.

1.1.3. Entitlement API

Red Hat Single Sign-On 7.1 Authorization Services Guide

8

https://docs.kantarainitiative.org/uma/rec-uma-core.html

1.1.3. Entitlement API

The Entitlement API provides a 1-legged protocol to issue RPTs. Unlike the Authorization API, the
Entitlement API only expects an access token.

From this API you can obtain all the entitlements or permissions for a user (based on the resources
managed by a given resource server) or just the entitlements for a set of one or more resources.

For more information see Entitlement API.

1.2. TERMINOLOGY

Before going further, it is important to understand these terms and concepts introduced by Red Hat
Single Sign-On Authorization Services.

1.2.1. Resource Server

Per OAuth2 terminology, a resource server is the server hosting the protected resources and
capable of accepting and responding to protected resource requests.

Resource servers usually rely on some kind of information to decide whether access to a protected
resource should be granted. For RESTful-based resource servers, that information is usually carried
in a security token, typically sent as a bearer token along with every request to the server. Web
applications that rely on a session to authenticate users usually store that information in the user’s
session and retrieve it from there for each request.

In Red Hat Single Sign-On, any confidential client application can act as a resource server. This
client’s resources and their respective scopes are protected and governed by a set of authorization
policies.

1.2.2. Resource

A resource is part of the assets of an application and the organization. It can be a set of one or more
endpoints, a classic web resource such as an HTML page, and so on. In authorization policy
terminology, a resource is the object being protected.

Every resource has a unique identifier that can represent a single resource or a set of resources.
For instance, you can manage a Banking Account Resource that represents and defines a set of
authorization policies for all banking accounts. But you can also have a different resource named
Alice’s Banking Account, which represents a single resource owned by a single customer, which
can have its own set of authorization policies.

CHAPTER 1. OVERVIEW

9

1.2.3. Scope

A resource’s scope is a bounded extent of access that is possible to perform on a resource. In
authorization policy terminology, a scope is one of the potentially many verbs that can logically apply
to a resource.

It usually indicates what can be done with a given resource. Example of scopes are view, edit,
delete, and so on. However, scope can also be related to specific information provided by a
resource. In this case, you can have a project resource and a cost scope, where the cost scope is
used to define specific policies and permissions for users to access a project’s cost.

1.2.4. Permission

Consider this simple and very common permission:

A permission associates the object being protected with the policies that must be evaluated to
determine whether access is granted.

X CAN DO Y ON RESOURCE Z

where … ​

X represents one or more users, roles, or groups, or a combination of them. You can also
use claims and context here.

Y represents an action to be performed, for example, write, view, and so on.

Z represents a protected resource, for example, "/accounts".

Red Hat Single Sign-On provides a rich platform for building a range of permission strategies
ranging from simple to very complex, rule-based dynamic permissions. It provides flexibility and
helps to:

Reduce code refactoring and permission management costs

Support a more flexible security model, helping you to easily adapt to changes in your security
requirements

Make changes at runtime; applications are only concerned about the resources and scopes
being protected and not how they are protected.

1.2.5. Policy

A policy defines the conditions that must be satisfied to grant access to an object. Unlike
permissions, you do not specify the object being protected but rather the conditions that must be
satisfied for access to a given object (for example, resource, scope, or both). Policies are strongly
related to the different access control mechanisms (ACMs) that you can use to protect your
resources. With policies, you can implement strategies for attribute-based access control (ABAC),
role-based access control (RBAC), context-based access control, or any combination of these.

Red Hat Single Sign-On leverages the concept of policies and how you define them by providing the
concept of aggregated policies, where you can build a "policy of policies" and still control the
behavior of the evaluation. Instead of writing one large policy with all the conditions that must be
satisfied for access to a given resource, the policies implementation in Red Hat Single Sign-On
Authorization Services follows the divide-and-conquer technique. That is, you can create individual
policies, then reuse them with different permissions and build more complex policies by combining
individual policies.

Red Hat Single Sign-On 7.1 Authorization Services Guide

10

1.2.6. Policy Provider

Policy providers are implementations of specific policy types. Red Hat Single Sign-On provides built-
in policies, backed by their corresponding policy providers, and you can create your own policy
types to support your specific requirements.

Red Hat Single Sign-On provides a SPI (Service Provider Interface) that you can use to plug in your
own policy provider implementations.

1.2.7. Permission Ticket

A permission ticket is a special type of token defined by the OAuth2’s User-Managed Access (UMA)
Profile specification that provides an opaque structure whose form is determined by the
authorization server. This structure represents the resources and/or scopes being requested by a
client as well as the policies that must be applied to a request for authorization data (requesting
party token [RPT]).

In UMA, permission tickets are crucial to support person-to-person sharing and also person-to-
organization sharing. Using permission tickets for authorization workflows enables a range of
scenarios from simple to complex, where resource owners and resource servers have complete
control over their resources based on fine-grained policies that govern the access to these
resources.

In the UMA workflow, permission tickets are issued by the authorization server to a resource server,
which returns the permission ticket to the client trying to access a protected resource. Once the
client receives the ticket, it can make a request for an RPT (a final token holding authorization data)
by sending the ticket back to the authorization server.

For more information on permission tickets, see Authorization API and the UMA specification.

CHAPTER 1. OVERVIEW

11

https://docs.kantarainitiative.org/uma/rec-uma-core.html
https://docs.kantarainitiative.org/uma/rec-uma-core.html

CHAPTER 2. GETTING STARTED

Before you can use this tutorial, you need to complete the installation of Red Hat Single Sign-On
and create the initial admin user as shown in the Getting Started tutorial. There is one caveat to this.
You have to run a separate JBoss EAP 7 instance on the same machine as Red Hat Single Sign-
On Server. This separate instance will run your Java Servlet application. Because of this you will
have to run the Red Hat Single Sign-On under a different port so that there are no port conflicts
when running on the same machine. Use the jboss.socket.binding.port-offset system
property on the command line. The value of this property is a number that will be added to the base
value of every port opened by Red Hat Single Sign-On Server.

To boot Red Hat Single Sign-On Server:

Linux/Unix

$.../bin/standalone.sh -Djboss.socket.binding.port-offset=100

Windows

> ...\bin\standalone.bat -Djboss.socket.binding.port-offset=100

For more details about how to install and configure a JBoss EAP 7, please follow the steps on the
Securing Applications and Services Guide tutorial.

After installing and booting both servers you should be able to access Red Hat Single Sign-On
Admin Console at http://localhost:8180/auth/admin/ and also the JBoss EAP 7 instance at
http://localhost:8080.

2.1. SECURING A SERVLET APPLICATION

The purpose of this getting started guide is to get you up and running as quickly as possible so that
you can experiment with and test various authorization features provided by Red Hat Single Sign-
On. This quick tour relies heavily on the default database and server configurations and does not
cover complex deployment options. For more information on features or configuration options, see
the appropriate sections in this documentation.

This guide explains key concepts about Red Hat Single Sign-On Authorization Services:

Enabling fine-grained authorization for a client application

Configuring a client application to be a resource server, with protected resources

Defining permissions and authorization policies to govern access to protected resources

Enabling policy enforcement in your applications.

2.2. CREATING A REALM AND A USER

The first step is to create a realm and a user in that realm. The realm consists of:

A single user

Red Hat Single Sign-On 7.1 Authorization Services Guide

12

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.1/html-single/getting_started_guide/
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.1/html-single/securing_applications_and_services_guide/
http://localhost:8180/auth/admin/
http://localhost:8080

A single client application, which then becomes a resource server for which you need to enable
authorization services.

To create a realm and a user complete the following steps:

1. Create a realm with a name hello-world-authz. Once created, a page similar to the
following is displayed:

Realm hello-world-authz

2. Create a user for your newly created realm. Click Users. The user list page opens.

3. On the right side of the empty user list, click Add User.

4. To create a new user, complete the Username, Email, First Name, and Last Name fields.
Click the User Enabled switch to On, and then click Save.

Add User

CHAPTER 2. GETTING STARTED

13

5. Set a password for the user by clicking the Credentials tab.

Set User Password

6. Complete the New Password and Password Confirmation fields with a password and
click the Temporary switch to OFF.

7. Click Reset Password to set the user’s password.

2.3. ENABLING AUTHORIZATION SERVICES

You can enable authorization services in an existing client application configured to use the OpenID
Connect Protocol. You can also create a new client.

To create a new client, complete the following steps:

Red Hat Single Sign-On 7.1 Authorization Services Guide

14

1. Click Clients to start creating a new client application and fill in the Client ID, Client
Protocol, and Root URL fields.

Create Client Application

2. Click Save. The Client Details page is displayed.

Client Details

3. On the Client Details page, click the Authorization Enabled switch to ON, and then click
Save. A new Authorization tab is displayed for the client.

4. Click the Authorization tab and an Authorization Settings page similar to the following is
displayed:

Authorization Settings

CHAPTER 2. GETTING STARTED

15

When you enable authorization services for a client application, Red Hat Single Sign-On
automatically creates several default settings for your client authorization configuration.

For more information about authorization configuration, see Enabling Authorization Services.

2.4. BUILD, DEPLOY, AND TEST YOUR APPLICATION

Now that the app-authz-vanilla resource server (or client) is properly configured and authorization
services are enabled, it can be deployed to the server.

The project and code for the application you are going to deploy is available in Quickstarts for the
Red Hat Single Sign-On (SSO) Server. You will need the following installed on your machine and
available in your PATH before you can continue:

Java JDK 8

Apache Maven 3.1.1 or higher

Git

You can obtain the code by cloning the repository at https://github.com/redhat-developer/redhat-
sso-quickstarts. Use the branch matching the version of Red Hat Single Sign-On in use. Follow
these steps to download the code.

Clone Project

$ git clone https://github.com/redhat-developer/redhat-sso-quickstarts

The application we are about to build and deploy is located at

$ cd redhat-sso-quickstarts/app-authz-jee-vanilla

2.4.1. Obtaining the Adapter Configuration

You must first obtain the adapter configuration before building and deploying the application.

Red Hat Single Sign-On 7.1 Authorization Services Guide

16

https://github.com/redhat-developer/redhat-sso-quickstarts
https://github.com/redhat-developer/redhat-sso-quickstarts

To obtain the adapter configuration from the Red Hat Single Sign-On Administration Console,
complete the following steps.

1. Click Clients. In the client listing, click the app-authz-vanilla client application. The Client
Details page opens.

Client Details

2. Click the Installation tab. From the Format Option dropdown list, select Keycloak OIDC
JSON. The adapter configuration is displayed in JSON format. Click Download.

Adapter Configuration

3. Move the file keycloak.json to the app-authz-jee-vanilla/config directory.

4. (optional) By default, the policy enforcer responds with a 403 status code when the user
lacks permission to access protected resources on the resource server. However, you can

CHAPTER 2. GETTING STARTED

17

also specify a redirection URL for unauthorized users. To specify a redirection URL, edit the
keycloak.json file you updated in step 3 and replace the policy-enforcer configuration
with the following:

This change specifies to the policy enforcer to redirect users to a /app-authz-
vanilla/error.jsp page if a user does not have the necessary permissions to access a
protected resource, rather than an unhelpful 403 Unauthorized message.

2.4.2. Building and Deploying the Application

To build and deploy the application execute the following command:

2.4.3. Testing the Application

If your application was successfully deployed you can access it at http://localhost:8080/app-authz-
vanilla. The Red Hat Single Sign-On Login page opens.

Login Page

Log in as alice using the password you specified for that user. After authenticating, the following
page is displayed:

Hello World Authz Main Page

"policy-enforcer": {
 "on-deny-redirect-to" : "/app-authz-vanilla/error.jsp"
}

$ cd redhat-sso-quickstarts/app-authz-jee-vanilla
$ mvn clean package wildfly:deploy

Red Hat Single Sign-On 7.1 Authorization Services Guide

18

http://localhost:8080/app-authz-vanilla

The default settings defined by Red Hat Single Sign-On when you enable authorization services for
a client application provide a simple policy that always grants access to the resources protected by
this policy.

You can start by changing the default permissions and policies and test how your application
responds, or even create new policies using the different policy types provided by Red Hat Single
Sign-On.

There are a plenty of things you can do now to test this application. For example, you can change
the default policy by clicking the Authorization tab for the client, then Policies tab, then click on
Default Policy in the list to allow you to change it as follows:

Now, log out of the demo application and log in again. You can no longer access the application.

// The default value is $evaluation.grant(),
// let's see what happens when we change it to $evaluation.deny()
$evaluation.deny();

CHAPTER 2. GETTING STARTED

19

Let’s fix that now, but instead of changing the Default Policy code we are going to change the
Logic to Negative using the dropdown list below the policy code text area. That re-enables
access to the application as we are negating the result of that policy, which is by default denying all
requests for access. Again, before testing this change, be sure to log out and log in again.

2.4.4. Next Steps

There are additional things you can do, such as:

Create a scope, define a policy and permission for it, and test it on the application side. Can the
user perform an action (or anything else represented by the scope you created)?

Create different types of policies such as rule-based, and associate these policies with the
Default Permission.

Apply multiple policies to the Default Permission and test the behavior. For example,
combine multiple policies and change the Decision Strategy accordingly.

For more information about how to view and test permissions inside your application see
Obtaining the Authorization Context.

Red Hat Single Sign-On 7.1 Authorization Services Guide

20

CHAPTER 3. MANAGING RESOURCE SERVERS

According to the OAuth2 specification, a resource server is a server hosting the protected resources
and capable of accepting and responding to protected resource requests.

In Red Hat Single Sign-On, resource servers are provided with a rich platform for enabling fine-
grained authorization for their protected resources, where authorization decisions can be made
based on different access control mechanisms.

Any client application can be configured to support fine-grained permissions. In doing so, you are
conceptually turning the client application into a resource server.

3.1. CREATING A CLIENT APPLICATION

The first step to enable Red Hat Single Sign-On Authorization Services is to create the client
application that you want to turn into a resource server.

To create a client application, complete the following steps:

1. Click Clients.

Clients

2. On this page, click Create.

Create Client

CHAPTER 3. MANAGING RESOURCE SERVERS

21

3. Type the Client ID of the client. For example, my-resource-server.

4. Type the Root URL for your application. For example:

5. Click Save. The client is created and the client Settings page opens. A page similar to the
following is displayed:

Client Settings

3.2. ENABLING AUTHORIZATION SERVICES

To turn your OIDC Client Application into a resource server and enable fine-grained authorization,
click the Authorization Enabled switch to ON and click Save.

http://${host}:${port}/my-resource-server

Red Hat Single Sign-On 7.1 Authorization Services Guide

22

Enabling Authorization Services

A new Authorization tab is displayed for this client. Click the Authorization tab and a page similar to
the following is displayed:

Resource Server Settings

The Authorization tab contains additional sub-tabs covering the different steps that you must follow
to actually protect your application’s resources. Each tab is covered separately by a specific topic in
this documentation. But here is a quick description about each one:

Settings

General settings for your resource server. For more details about this page see the Resource
Server Settings section.

CHAPTER 3. MANAGING RESOURCE SERVERS

23

Resource

From this page, you can manage your application’s resources.

Scope

From this page, you can manage scopes.

Policies

From this page, you can manage authorization policies and define the conditions that must be
met to grant a permission.

Permissions

From this page, you can manage the permissions for your protected resources and scopes by
linking them with the policies you created.

Evaluate

From this page, you can simulate authorization requests and view the result of the evaluation of
the permissions and authorization policies you have defined.

3.2.1. Resource Server Settings

On the Resource Server Settings page, you can configure the policy enforcement mode, allow
remote resource management, and export the authorization configuration settings.

Policy Enforcement Mode

Specifies how policies are enforced when processing authorization requests sent to the server.

Enforcing

(default mode) Requests are denied by default even when there is no policy associated with
a given resource.

Permissive

Requests are allowed even when there is no policy associated with a given resource.

Disabled

Disables the evaluation of all policies and allows access to all resources.

Allow Remote Resource Management

Specifies whether resources can be managed remotely by the resource server. If false,
resources can be managed only from the administration console.

Export Settings

You can export the authorization configuration settings to a JSON file. Click Export to display
the complete JSON configuration for download. The configuration file contains everything
defined for a resource server: protected resources, scopes, permissions, and policies.

3.3. DEFAULT CONFIGURATION

Red Hat Single Sign-On 7.1 Authorization Services Guide

24

When you create a resource server, Red Hat Single Sign-On creates a default configuration for your
newly created resource server.

The default configuration consists of:

A default protected resource representing all resources in your application.

A policy that always grants access to the resources protected by this policy.

A permission that governs access to all resources based on the default policy.

The default protected resource is referred to as the default resource and you can view it if you
navigate to the Resources tab.

Default Resource

This resource defines a Type, namely urn:my-resource-server:resources:default and a
URI /*. Here, the URI field defines a wildcard pattern that indicates to Red Hat Single Sign-On that
this resource represents all the paths in your application. In other words, when enabling policy
enforcement for your application, all the permissions associated with the resource will be examined
before granting access.

The Type mentioned previously defines a value that can be used to create typed resource
permissions that must be applied to the default resource or any other resource you create using the
same type.

The default policy is referred to as the only from realm policy and you can view it if you navigate
to the Policies tab.

Default Policy

CHAPTER 3. MANAGING RESOURCE SERVERS

25

This policy is a JavaScript-based policy defining a condition that always grants access to the
resources protected by this policy. If you click this policy you can see that it defines a rule as follows:

Lastly, the default permission is referred to as the default permission and you can view it if you
navigate to the Permissions tab.

Default Permission

This permission is a resource-based permission, defining a set of one or more policies that are
applied to all resources with a given type.

3.3.1. Changing the Default Configuration

// by default, grants any permission associated with this policy
$evaluation.grant();

Red Hat Single Sign-On 7.1 Authorization Services Guide

26

3.3.1. Changing the Default Configuration

You can change the default configuration by removing the default resource, policy, or permission
definitions and creating your own.

Note

The default configuration defines a resource that maps to all paths in your application. If
you are about to write permissions to your own resources, be sure to remove the Default
Resource or change its URI field to a more specific path in your application. Otherwise,
the policy associated with the default resource (which by default always grants access)
will allow Red Hat Single Sign-On to grant access to any protected resource.

3.4. EXPORT AND IMPORT AUTHORIZATION CONFIGURATION

The configuration settings for a resource server (or client) can be exported and downloaded. You
can also import an existing configuration file for a resource server. Importing and exporting a
configuration file is helpful when you want to create an initial configuration for a resource server or to
update an existing configuration. The configuration file contains definitions for:

Protected resources and scopes

Policies

Permissions

3.4.1. Exporting a Configuration File

To export a configuration file, complete the following steps:

1. Navigate to the Resource Server Settings page.

Resource Server Settings

CHAPTER 3. MANAGING RESOURCE SERVERS

27

2. On this page, in the Export Settings section, click Export.

Export Settings

The configuration file is exported in JSON format and displayed in a text area, from which you can
copy and paste. You can also click Download to download the configuration file and save it.

3.4.2. Importing a Configuration File

To import a configuration file for a resource server, click Select file to select a file containing the
configuration you want to import.

Red Hat Single Sign-On 7.1 Authorization Services Guide

28

CHAPTER 4. MANAGING RESOURCES AND SCOPES

Resource management is straightforward and generic. After creating a resource server, you can
start creating the resources and scopes that you want to protect. Resources and scopes can be
managed by navigating to the Resource and Scope tabs, respectively.

4.1. VIEWING RESOURCES

On the Resource page, you see a list of the resources associated with a resource server.

Resources

The resource list provides information about the protected resources, such as:

Type

URI

Owner

Associated scopes, if any

Associated permissions

From this list, you can also directly create a permission by clicking Create Permission for the
resource for which you want to create the permission.

Note

Before creating permissions for your resources, be sure you have already defined the
policies that you want to associate with the permission.

4.2. CREATING RESOURCES

CHAPTER 4. MANAGING RESOURCES AND SCOPES

29

4.2. CREATING RESOURCES

Creating a resource is straightforward and generic. Your main concern is the granularity of the
resources you create. In other words, resources can be created to represent a set of one or more
resources and the way you define them is crucial to managing permissions.

To create a new resource, click Create in the right upper corner of the resource listing.

Add Resource

In Red Hat Single Sign-On, a resource defines a small set of information that is common to different
types of resources, such as:

Name

A human-readable and unique string describing this resource.

Type

A string uniquely identifying the type of a set of one or more resources. The type is a string used
to group different resource instances. For example, the default type for the default resource that
is automatically created is urn:resource-server-name:resources:default

URI

A URI that provides the location/address for the resource. For HTTP resources, the URI is
usually the relative path used to serve these resources.

Scopes

One or more scopes to associate with the resource.

4.2.1. Typed Resources

The type field of a resource can be used to group different resources together, so they can be
protected using a common set of permissions.

Red Hat Single Sign-On 7.1 Authorization Services Guide

30

4.2.2. Resource Owners

Resources also have an owner. By default, resources are owned by the resource server.

However, resources can also be associated with users, so you can create permissions based on the
resource owner. For example, only the resource owner is allowed to delete or update a given
resource.

4.2.3. Managing Resources Remotely

Resource management is also exposed through the Protection API to allow resource servers to
remotely manage their resources.

When using the Protection API, resource servers can be implemented to manage resources owned
by their users. In this case, you can specify the user identifier to configure a resource as belonging
to a specific user.

Note

Red Hat Single Sign-On provides resource servers complete control over their resources.
In the future, we should be able to allow users to control their own resources as well as
approve authorization requests and manage permissions, especially when using the UMA
protocol.

CHAPTER 4. MANAGING RESOURCES AND SCOPES

31

CHAPTER 5. MANAGING POLICIES

As mentioned previously, policies define the conditions that must be satisfied before granting access
to an object.

You can view all policies associated with a resource server by clicking the Policy tab when editing a
resource server.

Policies

On this tab, you can view the list of previously created policies as well as create and edit a policy.

To create a new policy, in the upper right corner of the policy list, select a policy type from the
Create policy dropdown list. Details about each policy type are described in this section.

5.1. USER-BASED POLICY

You can use this type of policy to define conditions for your permissions where a set of one or more
users is permitted to access an object.

To create a new user-based policy, select User-Based in the dropdown list in the upper right corner
of the permission listing.

Add a User-Based Policy

Red Hat Single Sign-On 7.1 Authorization Services Guide

32

5.1.1. Configuration

Name

A human-readable and unique string identifying the policy. A best practice is to use names that
are closely related to your business and security requirements, so you can identify them more
easily.

Description

A string containing details about this policy.

Users

Specifies which users are given access by this policy.

Logic

The Logic of this policy to apply after the other conditions have been evaluated.

5.2. ROLE-BASED POLICY

You can use this type of policy to define conditions for your permissions where a set of one or more
roles is permitted to access an object.

By default, roles added to this policy are not specified as required and the policy will grant access if
the user requesting access has been granted any of these roles. However, you can specify a
specific role as required if you want to enforce a specific role. You can also combine required and
non-required roles, regardless of whether they are realm or client roles.

Role policies can be useful when you need more restricted role-based access control (RBAC),
where specific roles must be enforced to grant access to an object. For instance, you can enforce
that a user must consent to allowing a client application (which is acting on the user’s behalf) to
access the user’s resources. You can use Red Hat Single Sign-On Client Scope Mapping to enable
consent pages or even enforce clients to explicitly provide a scope when obtaining access tokens
from a Red Hat Single Sign-On server.

CHAPTER 5. MANAGING POLICIES

33

To create a new role-based policy, select Role-Based in the dropdown list in the upper right corner
of the permission listing.

Add Role-Based Policy

5.2.1. Configuration

Name

A human-readable and unique string describing the policy. A best practice is to use names that
are closely related to your business and security requirements, so you can identify them more
easily.

Description

A string containing details about this policy.

Realm Roles

Specifies which realm roles are permitted by this policy.

Client Roles

Specifies which client roles are permitted by this policy. To enable this field must first select a
Client.

Logic

The Logic of this policy to apply after the other conditions have been evaluated.

5.3. DEFINING A ROLE AS REQUIRED

When creating a role-based policy, you can specify a specific role as Required. When you do that,
the policy will grant access only if the user requesting access has been granted all the required
roles. Both realm and client roles can be configured as such.

Red Hat Single Sign-On 7.1 Authorization Services Guide

34

Example of Required Role

To specify a role as required, select the Required checkbox for the role you want to configure as
required.

Required roles can be useful when your policy defines multiple roles but only a subset of them are
mandatory. In this case, you can combine realm and client roles to enable an even more fine-
grained role-based access control (RBAC) model for your application. For example, you can have
policies specific for a client and require a specific client role associated with that client. Or you can
enforce that access is granted only in the presence of a specific realm role. You can also combine
both approaches within the same policy.

5.4. JAVASCRIPT-BASED POLICY

You can use this type of policy to define conditions for your permissions using JavaScript. It is one
of the rule-based policy types supported by Red Hat Single Sign-On, and provides flexibility to write
any policy based on the Evaluation API.

To create a new JavaScript-based policy, select JavaScript in the dropdown list in the upper right
corner of the permission listing.

Add JavaScript Policy

CHAPTER 5. MANAGING POLICIES

35

5.4.1. Configuration

Name

A human-readable and unique string describing the policy. A best practice is to use names that
are closely related to your business and security requirements, so you can identify them more
easily.

Description

A string containing details about this policy.

Code

The JavaScript code providing the conditions for this policy.

Logic

The Logic of this policy to apply after the other conditions have been evaluated.

5.4.2. Examples

Here is a simple example of a JavaScript-based policy that uses attribute-based access control
(ABAC) to define a condition based on an attribute obtained from the execution context:

You can also use role-based access control (RBAC):

var context = $evaluation.getContext();
var contextAttributes = context.getAttributes();

if (contextAttributes.containsValue('kc.client.network.ip_address',
'127.0.0.1')) {
 $evaluation.grant();
}

Red Hat Single Sign-On 7.1 Authorization Services Guide

36

Or a combination of several access control mechanisms:

When writing your own rules, keep in mind that the $evaluation object is an object implementing
org.keycloak.authorization.policy.evaluation.Evaluation. For more information about what you
can access from this interface, see the Evaluation API.

5.5. RULE-BASED POLICY

With this type of policy you can define conditions for your permissions using Drools, which is a rule
evaluation environment. It is one of the Rule-Based policy types supported by Red Hat Single Sign-
On, and provides flexibility to write any policy based on the Evaluation API.

To create a new Rule-based policy, in the dropdown list in the right upper corner of the permission
listing, select Rule.

Add Rule Policy

5.5.1. Configuration

var identity = $evaluation.getIdentity();

if (identity.hasRole('keycloak_user')) {
 $evaluation.grant();
}

var context = $evaluation.getContext();
var identity = context.getIdentity();
var attributes = identity.getAttributes();
var email = attributes.getValue('email').asString(0);

if (identity.hasRole('admin') || email.endsWith('@keycloak.org')) {
 $evaluation.grant();
}

CHAPTER 5. MANAGING POLICIES

37

http://www.drools.org

Name

A human-readable and unique string describing the policy. We strongly suggest that you use
names that are closely related with your business and security requirements, so you can identify
them more easily and also know what they actually mean.

Description

A string with more details about this policy.

Policy Maven Artifact

A Maven groupId-artifactId-version (GAV) pointing to an artifact where the rules are defined.
Once you have provided the GAV, you can click Resolve to load both Module and Session
fields.

Group Id

The groupId of the artifact.

Artifact Id

The artifactId of the artifact.

Version

The version of the artifact.

Module

The module used by this policy. You must provide a module to select a specific session from
which rules will be loaded.

Session

The session used by this policy. The session provides all the rules to evaluate when processing
the policy.

Update Period

Specifies an interval for scanning for artifact updates.

Logic

The Logic of this policy to apply after the other conditions have been evaluated.

5.5.2. Examples

Here is a simple example of a Drools-based policy that uses attribute-based access control (ABAC)
to define a condition that evaluates to a GRANT only if the authenticated user is the owner of the
requested resource:

import org.keycloak.authorization.policy.evaluation.Evaluation;
rule "Authorize Resource Owner"
 dialect "mvel"
 when
 $evaluation : Evaluation(
 $identity: context.identity,
 $permission: permission,
 $permission.resource != null &&

Red Hat Single Sign-On 7.1 Authorization Services Guide

38

You can even use another variant of ABAC to obtain attributes from the identity and define a
condition accordingly:

For more information about what you can access from the
org.keycloak.authorization.policy.evaluation.Evaluation interface, see Evaluation
API.

5.6. TIME-BASED POLICY

You can use this type of policy to define time conditions for your permissions.

To create a new time-based policy, select Time in the dropdown list in the upper right corner of the
permission listing.

Add Time Policy

$permission.resource.owner.equals($identity.id)
)
 then
 $evaluation.grant();
end

import org.keycloak.authorization.policy.evaluation.Evaluation;
rule "Authorize Using Identity Information"
 dialect "mvel"
 when
 $evaluation : Evaluation(
 $identity: context.identity,
 identity.attributes.containsValue("someAttribute",
"you_can_access")
)
 then
 $evaluation.grant();
end

CHAPTER 5. MANAGING POLICIES

39

5.6.1. Configuration

Name

A human-readable and unique string describing the policy. A best practice is to use names that
are closely related to your business and security requirements, so you can identify them more
easily.

Description

A string containing details about this policy.

Not Before

Defines the time before which access must not be granted. Permission is granted only if the
current date/time is later than or equal to this value.

Not On or After

Defines the time after which access must not be granted. Permission is granted only if the
current date/time is earlier than or equal to this value.

Day of Month

Defines the day of month that access must be granted. You can also specify a range of dates. In
this case, permission is granted only if the current day of the month is between or equal to the
two values specified.

Month

Defines the month that access must be granted. You can also specify a range of months. In this
case, permission is granted only if the current month is between or equal to the two values
specified.

Year

Defines the year that access must be granted. You can also specify a range of years. In this
case, permission is granted only if the current year is between or equal to the two values
specified.

Hour

Defines the hour that access must be granted. You can also specify a range of hours. In this
case, permission is granted only if current hour is between or equal to the two values specified.

Minute

Defines the minute that access must be granted. You can also specify a range of minutes. In this
case, permission is granted only if the current minute is between or equal to the two values
specified.

Logic

The Logic of this policy to apply after the other conditions have been evaluated.

Access is only granted if all conditions are satisfied. Red Hat Single Sign-On will perform an AND
based on the outcome of each condition.

5.7. AGGREGATED POLICY

Red Hat Single Sign-On 7.1 Authorization Services Guide

40

As mentioned previously, Red Hat Single Sign-On allows you to build a policy of policies, a concept
referred to as policy aggregation. You can use policy aggregation to reuse existing policies to build
more complex ones and keep your permissions even more decoupled from the policies that are
evaluated during the processing of authorization requests.

To create a new aggregated policy, select Aggregated in the dropdown list located in the right
upper corner of the permission listing.

Add an Aggregated Policy

Let’s suppose you have a resource called Confidential Resource that can be accessed only by
users from the keycloak.org domain and from a certain range of IP addresses. You can create a
single policy with both conditions. However, you want to reuse the domain part of this policy to apply
to permissions that operates regardless of the originating network.

You can create separate policies for both domain and network conditions and create a third policy
based on the combination of these two policies. With an aggregated policy, you can freely combine
other policies and then apply the new aggregated policy to any permission you want.

Note

When creating aggregated policies, be mindful that you are not introducing a circular
reference or dependency between policies. If a circular dependency is detected, you
cannot create or update the policy.

5.7.1. Configuration

Name

A human-readable and unique string describing the policy. We strongly suggest that you use
names that are closely related with your business and security requirements, so you can identify
them more easily and also know what they mean.

Description

CHAPTER 5. MANAGING POLICIES

41

A string with more details about this policy.

Apply Policy

Defines a set of one or more policies to associate with a policy.

Decision Strategy

The decision strategy for this permission.

Logic

The Logic of this policy to apply after the other conditions have been evaluated.

5.7.2. Decision Strategy for Aggregated Policies

When creating aggregated policies, you can also define the decision strategy that will be used to
determine the final decision based on the outcome from each policy.

Unanimous

The default strategy if none is provided. In this case, all policies must evaluate to a positive
decision for the final decision to be also positive.

Affirmative

In this case, at least one policy must evaluate to a positive decision in order for the final decision
to be also positive.

Consensus

In this case, the number of positive decisions must be greater than the number of negative
decisions. If the number of positive and negative decisions is the same, the final decision will be
negative.

5.8. POSITIVE AND NEGATIVE LOGIC

Policies can be configured with positive or negative logic. Briefly, you can use this option to define
whether the policy result should be kept as it is or be negated.

For example, suppose you want to create a policy where only users not granted with a specific role
should be given access. In this case, you can create a role-based policy using that role and set its
Logic field to Negative. If you keep Positive, which is the default behavior, the policy result will be
kept as it is.

5.9. POLICY EVALUATION API

When writing rule-based policies using JavaScript or JBoss Drools, Red Hat Single Sign-On
provides an Evaluation API that provides useful information to help determine whether a permission
should be granted.

This API consists of a few interfaces that provides you access to information such as:

The permission being requested

The identity that is requesting the permission, from which you can obtain claims/attributes

Red Hat Single Sign-On 7.1 Authorization Services Guide

42

Runtime environment and any other attribute associated with the execution context

The main interface is org.keycloak.authorization.policy.evaluation.Evaluation, which defines the
following contract:

When processing an authorization request, Red Hat Single Sign-On creates an Evaluation
instance before evaluating any policy. This instance is then passed to each policy to determine
whether access is GRANT or DENY.

Policies determine this by invoking the grant() or deny() methods on an Evaluation instance.
By default, the state of the Evaluation instance is denied, which means that your policies must
explicitly invoke the grant() method to indicate to the policy evaluation engine that permission
should be granted.

For more information about the Evaluation API see the JavaDocs.

5.9.1. The Evaluation Context

The evaluation context provides useful information to policies during their evaluation.

public interface Evaluation {

 /**
 * Returns the {@link ResourcePermission} to be evaluated.
 *
 * @return the permission to be evaluated
 */
 ResourcePermission getPermission();

 /**
 * Returns the {@link EvaluationContext}. Which provides access to
the whole evaluation runtime context.
 *
 * @return the evaluation context
 */
 EvaluationContext getContext();

 /**
 * Grants the requested permission to the caller.
 */
 void grant();

 /**
 * Denies the requested permission.
 */
 void deny();
}

public interface EvaluationContext {

 /**
 * Returns the {@link Identity} that represents an entity (person or
non-person) to which the permissions must be granted, or not.
 *
 * @return the identity to which the permissions must be granted, or
not

CHAPTER 5. MANAGING POLICIES

43

https://access.redhat.com/webassets/avalon/d/red-hat-single-sign-on/version-7.1/javadocs/

From this interface, policies can obtain:

The authenticated Identity

Information about the execution context and runtime environment

The Identity is built based on the OAuth2 Access Token that was sent along with the
authorization request, and this construct has access to all claims extracted from the original token.
For example, if you are using a Protocol Mapper to include a custom claim in a OAuth2 Access
Token you can also access this claim from a policy and use it to build your conditions.

The EvaluationContext also gives you access to attributes related to both the execution and
runtime environments. For now, there only a few built-in attributes.

Table 5.1. Execution and Runtime Attributes

Name Description Type

kc.time.date_time Current date and time String. Format MM/dd/yyyy
hh:mm:ss

kc.client.network.ip_address IPv4 address of the client String

kc.client.network.host Client’s host name String

kc.client.id The client id String

kc.client.user_agent The value of the 'User-Agent'
HTTP header

String[]

kc.realm.name The name of the realm String

 */
 Identity getIdentity();

 /**
 * Returns all attributes within the current execution and runtime
environment.
 *
 * @return the attributes within the current execution and runtime
environment
 */
 Attributes getAttributes();
}

Red Hat Single Sign-On 7.1 Authorization Services Guide

44

CHAPTER 6. MANAGING PERMISSIONS

A permission associates the object being protected and the policies that must be evaluated to decide
whether access should be granted.

After creating the resources you want to protect and the policies you want to use to protect these
resources, you can start managing permissions. To manage permissions, click the Permissions tab
when editing a resource server.

Permissions

Permissions can be created to protect two main types of objects:

Resources

Scopes

To create a permission, select the permission type you want to create from the dropdown list in the
upper right corner of the permission listing. The following sections describe these two types of
objects in more detail.

6.1. CREATING RESOURCE-BASED PERMISSIONS

A resource-based permission defines a set of one or more resources to protect using a set of one or
more authorization policies.

To create a new resource-based permission, select Resource-based in the dropdown list in the
upper right corner of the permission listing.

Add Resource-Based Permission

CHAPTER 6. MANAGING PERMISSIONS

45

6.1.1. Configuration

Name

A human-readable and unique string describing the permission. A best practice is to use names
that are closely related to your business and security requirements, so you can identify them
more easily.

Description

A string containing details about this permission.

Apply To Resource Type

Specifies if the permission is applied to all resources with a given type. When selecting this field,
you are prompted to enter the resource type to protect.

Resource Type

Defines the resource type to protect. When defined, this permission is evaluated for all
resources matching that type.

Resources

Defines a set of one or more resources to protect.

Apply Policy

Defines a set of one or more policies to associate with a permission.

Decision Strategy

The Decision Strategy for this permission.

6.1.2. Typed Resource Permission

Red Hat Single Sign-On 7.1 Authorization Services Guide

46

Resource permissions can also be used to define policies that are to be applied to all resources with
a given type. This form of resource-based permission can be useful when you have resources
sharing common access requirements and constraints.

Frequently, resources within an application can be categorized (or typed) based on the data they
encapsulate or the functionality they provide. For example, a financial application can manage
different banking accounts where each one belongs to a specific customer. Although they are
different banking accounts, they share common security requirements and constraints that are
globally defined by the banking organization. With typed resource permissions, you can define
common policies to apply to all banking accounts, such as:

Only the owner can manage his account

Only allow access from the owner’s country and/or region

Enforce a specific authentication method

To create a typed resource permission, click Apply to Resource Type when creating a new resource-
based permission. With Apply to Resource Type set to On, you can specify the type that you
want to protect as well as the policies that are to be applied to govern access to all resources with
type you have specified.

Example of a Typed Resource Permission

6.2. CREATING SCOPE-BASED PERMISSIONS

A scope-based permission defines a set of one or more scopes to protect using a set of one or more
authorization policies. Unlike resource-based permissions, you can use this permission type to
create permissions not only for a resource, but also for the scopes associated with it, providing
more granularity when defining the permissions that govern your resources and the actions that can
be performed on them.

To create a new scope-based permission, select Scope-based in the dropdown list in the upper
right corner of the permission listing.

CHAPTER 6. MANAGING PERMISSIONS

47

Add Scope-Based Permission

6.2.1. Configuration

Name

A human-readable and unique string describing the permission. A best practice is to use names
that are closely related to your business and security requirements, so you can identify them
more easily.

Description

A string containing details about this permission.

Resource

Restricts the scopes to those associated with the selected resource. If none is selected, all
scopes are available.

Scopes

Defines a set of one or more scopes to protect.

Apply Policy

Defines a set of one or more policies to associate with a permission.

Decision Strategy

The Decision Strategy for this permission.

6.3. POLICY DECISION STRATEGIES

When associating policies with a permission, you can also define a decision strategy to specify how
to evaluate the outcome of the associated policies to determine access.

Unanimous

Red Hat Single Sign-On 7.1 Authorization Services Guide

48

The default strategy if none is provided. In this case, all policies must evaluate to a positive
decision for the final decision to be also positive.

Affirmative

In this case, at least one policy must evaluate to a positive decision for the final decision to be
also positive.

Consensus

In this case, the number of positive decisions must be greater than the number of negative
decisions. If the number of positive and negative decisions is equal, the final decision will be
negative.

CHAPTER 6. MANAGING PERMISSIONS

49

CHAPTER 7. EVALUATING AND TESTING POLICIES

When designing your policies, you can simulate authorization requests to test how your policies are
being evaluated.

You can access the Policy Evaluation Tool by clicking the Evaluate tab when editing a resource
server. There you can specify different inputs to simulate real authorization requests and test the
effect of your policies.

7.1. PROVIDING IDENTITY INFORMATION

The Identity Information filters can be used to specify the user requesting permissions.

You can also click Entitlement to obtain all permissions for the user you selected.

7.2. PROVIDING CONTEXTUAL INFORMATION

The Contextual Information filters can be used to define additional attributes to the evaluation
context, so that policies can obtain these same attributes.

7.3. PROVIDING THE PERMISSIONS

The Permissions filters can be used to build an authorization request. You can request permissions
for a set of one or more resources and scopes. If you want to simulate authorization requests based
on all protected resources and scopes, click Add without specifying any Resources or Scopes.

When you’ve specified your desired values, click Evaluate.

Red Hat Single Sign-On 7.1 Authorization Services Guide

50

CHAPTER 8. AUTHORIZATION SERVICES

Red Hat Single Sign-On Authorization Services are based on OAuth2’s User-Managed Access
(UMA) Profile.

This section describes the different RESTful endpoints that you can interact with to enable fine-
grained authorization for your applications and services.

8.1. PROTECTION API

The Protection API provides a UMA-compliant set of endpoints providing:

Resource Registration

With this endpoint, resource servers can manage their resources remotely and enable policy
enforcers to query the server for the resources that need protection.

Permission Registration

In the UMA protocol, resource servers access this endpoint, which issues permission tickets.

An important requirement for this API is that only resource servers are allowed to access its
endpoints using a special OAuth2 access token called a protection API token (PAT). In UMA, a PAT
is a token with the scope uma_protection.

8.1.1. What is a PAT and How to Obtain It

A protection API token (PAT) is a special OAuth2 access token with a scope defined as
uma_protection. When you create a resource server, Red Hat Single Sign-On automatically
creates a role, uma_protection, for the corresponding client application and associates it with the
client’s service account.

Service Account granted with uma_protection role

CHAPTER 8. AUTHORIZATION SERVICES

51

Resource servers can obtain a PAT from Red Hat Single Sign-On like any other OAuth2 access
token. For example, using curl:

The example above is using the client_credentials grant type to obtain a PAT from the server. As a
result, the server returns a response similar to the following:

Note

Red Hat Single Sign-On can authenticate your client application in different ways. For
simplicity, the client_credentials grant type is used here, which requires a client_id and a
client_secret. You can choose to use any supported authentication method.

8.1.2. Managing Resources

Resource servers can manage their resources remotely using a UMA-compliant endpoint.

This endpoint provides registration operations outlined as follows (entire path omitted for clarity):

Create resource set description: POST /resource_set

Read resource set description: GET /resource_set/{_id}

Update resource set description: PUT /resource_set/{_id}

Delete resource set description: DELETE /resource_set/{_id}

List resource set descriptions: GET /resource_set

List resource set descriptions using a filter: GET /resource_set?filter=${filter}

For more information about the contract for each of these operations, see UMA Resource Set
Registration.

curl -X POST \
 -H "Authorization: Basic
aGVsbG8td29ybGQtYXV0aHotc2VydmljZTpwYXNzd29yZA==" \
 -H "Content-Type: application/x-www-form-urlencoded" \
 -d 'grant_type=client_credentials' \
 "http://localhost:8080/auth/realms/${realm_name}/protocol/openid-
connect/token"

{
 "access_token": ${PAT},
 "expires_in": 300,
 "refresh_expires_in": 1800,
 "refresh_token": ${refresh_token},
 "token_type": "bearer",
 "id_token": ${id_token},
 "not-before-policy": 0,
 "session_state": "ccea4a55-9aec-4024-b11c-44f6f168439e"
}

http://${host}:${port}/auth/realms/${realm_name}/authz/protection/resourc
e_set

Red Hat Single Sign-On 7.1 Authorization Services Guide

52

https://docs.kantarainitiative.org/uma/rec-oauth-resource-reg-v1_0_1.html

8.1.3. Managing Permission Requests

Resource servers using the UMA protocol can use a specific endpoint to manage permission
requests. This endpoint provides a UMA-compliant flow for registering permission requests and
obtaining a permission ticket.

A permission ticket is a special security token type representing a permission request. Per the UMA
specification, a permission ticket is:

A correlation handle that is conveyed from an authorization server to a
resource server, from a resource server to a client, and ultimately from
a client back to an authorization server, to enable the authorization
server to assess the correct policies to apply to a request for
authorization data.

Note

Permission ticket support is limited. In the full UMA protocol, resource servers can register
permission requests in the server to support authorization flows where a resource owner
(the user that owns a resource being requested) can approve access to his resources by
third parties, among other ways. This represents one of the main features of the UMA
specification: resource owners can control their own resources and the policies that
govern them. Currently Red Hat Single Sign-On UMA implementation support is very
limited in this regard. For example, the system does not store permission tickets on the
server and we are essentially using UMA to provide API security and base our
authorization offerings. In the future, full support of UMA and other use cases is planned.

In most cases, you won’t need to deal with this endpoint directly. Red Hat Single Sign-On provides
a policy enforcer that enables UMA for your resource server so it can obtain a permission ticket from
the authorization server, return this ticket to client application, and enforce authorization decisions
based on a final requesting party token (RPT).

8.2. AUTHORIZATION API

The Authorization API provides a UMA-compliant endpoint for obtaining authorization data from the
server, where the authorization data represents the result of the evaluation of all permissions and
authorization policies associated with the resources being requested.

Unlike the Protection API, any client application can access the Authorization API endpoint, which
requires a special OAuth2 access token called an authorization API token (AAT). In UMA, an AAT is
a token with the scope uma_authorization.

8.2.1. What is an AAT and How to Obtain It

An authorization API token (AAT) is a special OAuth2 access token with the scope
uma_authorization. When you create a user, Red Hat Single Sign-On automatically assigns the
role uma_authorization to the user. The uma_authorization role is a default realm role.

Default Role uma_authorization

http://${host}:${port}/auth/realms/${realm_name}/authz/protection/permiss
ion

CHAPTER 8. AUTHORIZATION SERVICES

53

An AAT enables a client application to query the server for user permissions.

Client applications can obtain an AAT from Red Hat Single Sign-On like any other OAuth2 access
token. Usually, client applications obtain AATs after the user is successfully authenticated in Red
Hat Single Sign-On. By default, the authorization_code grant type is used to authenticate users, and
the server will issue an OAuth2 access token to the client application acting on their behalf.

The example below uses the Resource Owner Password Credentials Grant Type to request an AAT:

As a result, the server response is:

8.2.2. Requesting Authorization Data and Token

Client applications using the UMA protocol can use a specific endpoint to obtain a special security
token called a requesting party token (RPT). This token consists of all the permissions granted to a

curl -X POST \
 -H "Authorization: Basic
aGVsbG8td29ybGQtYXV0aHotc2VydmljZTpwYXNzd29yZA==" \
 -H "Content-Type: application/x-www-form-urlencoded" \
 -d
'username=${username}&password=${user_password}&grant_type=password' \
 "http://localhost:8080/auth/realms/${realm_name}/protocol/openid-
connect/token"

{
 "access_token": ${AAT},
 "expires_in": 300,
 "refresh_expires_in": 1800,
 "refresh_token": ${refresh_token},
 "token_type": "bearer",
 "id_token": ${id_token},
 "not-before-policy": 0,
 "session_state": "3cad2afc-855b-47b7-8e4d-a21c66e312fb"
}

Red Hat Single Sign-On 7.1 Authorization Services Guide

54

user as a result of the evaluation of the permissions and authorization policies associated with the
resources being requested. With an RPT, client applications can gain access to protected resources
at the resource server.

When requesting an RPT, you need to provide two things:

A permission ticket with the resources you want to access

The authorization API token (AAT) (as a bearer token) representing a user’s identity and his
consent to access authorization data on his behalf.

As a result, the server response is:

8.2.2.1. Requesting Party Token

A Requesting Party Token (RPT) is a JSON web token (JWT) digitally signed using JSON Web
Signature (JWS). The token is built based on the AAT sent by the client during the authorization
process.

When you decode an RPT you will see something like:

From this token you can obtain all permissions granted by the server from the permissions claim.

8.3. ENTITLEMENT API

http://${host}:${port}/auth/realms/${realm_name}/authz/authorize

curl -X POST
 -H "Authorization: Bearer ${AAT}" -d '{
 "ticket" : ${PERMISSION_TICKET}
}' "http://localhost:8080/auth/realms/hello-world-authz/authz/authorize"

{"rpt":"${RPT}"}

{
 "authorization": {
 "permissions": [
 {
 "resource_set_id": "d2fe9843-6462-4bfc-baba-b5787bb6e0e7",
 "resource_set_name": "Hello World Resource"
 }
]
 },
 "jti": "d6109a09-78fd-4998-bf89-95730dfd0892-1464906679405",
 "exp": 1464906971,
 "nbf": 0,
 "iat": 1464906671,
 "sub": "f1888f4d-5172-4359-be0c-af338505d86c",
 "typ": "kc_ett",
 "azp": "hello-world-authz-service"
}

CHAPTER 8. AUTHORIZATION SERVICES

55

https://tools.ietf.org/html/rfc7519
https://www.rfc-editor.org/rfc/rfc7515.txt

The Entitlement API provides a 1-legged protocol for obtaining authorization data from the server,
where the authorization data represents the result of the evaluation of all permissions and
authorization policies associated with the resources being requested.

Unlike the Authorization API, the Entitlement API is not UMA-compliant and does not require
permission tickets.

The purpose of this API is provide a more lightweight API for obtaining authorization data, where a
client in possession of a valid OAuth2 access token is able to obtain the necessary authorization
data on behalf of its users.

8.3.1. Requesting Entitlements

Client applications can use a specific endpoint to obtain a special security token called a requesting
party token (RPT). This token consists of all the entitlements (or permissions) for a user as a result
of the evaluation of the permissions and authorization policies associated with the resources being
requested. With an RPT, client applications can gain access to protected resources at the resource
server.

8.3.1.1. Obtaining Entitlements

The easiest way to obtain entitlements for a specific user is using an HTTP GET request. For
example, using curl:

Note

When requesting entitlements using this endpoint, you must provide the access_token (as
a bearer token) representing a user’s identity and his consent to access authorization data
on his behalf.

In the curl example, ${resource_server_id} is the client_id registered with the client application
acting as a resource server.

As a result, the server response is:

Using this method to obtain entitlements, the server responds to the requesting client with all
entitlements for a user, based on the evaluation of the permissions and authorization policies
associated with the resources managed by the resource server.

8.3.1.2. Obtaining Entitlements for a Specific Set of Resources

http://${host}:${port}/auth/realms/${realm_name}/authz/entitlement

curl -X GET \
 -H "Authorization: Bearer ${access_token}" \
 "http://localhost:8080/auth/realms/hello-world-
authz/authz/entitlement/${resource_server_id}"

{
 "rpt": ${RPT}
}

Red Hat Single Sign-On 7.1 Authorization Services Guide

56

You can also use the entitlements endpoint to obtain a user’s entitlements for a set of one or more
resources. For example, using curl:

As a result, the server response is:

Unlike the GET version, the server responds with an RPT holding the permissions granted during
the evaluation of the permissions and authorization policies associated with the resources being
requested.

When requesting entitlements, you can also specify the scopes you want to access. For example,
using curl:

8.3.1.3. Requesting Party Token

A requesting party token (RPT) is a JSON web token (JWT) digitally signed using JSON web
signature (JWS). The token is built based on the access_token sent by the client during the
authorization process.

When you decode an RPT, you see a payload similar to the following:

curl -X POST -H "Authorization: Bearer ${access_token}" -d '{
 "permissions" : [
 {
 "resource_set_name" : "Hello World Resource"
 }
]
}' "http://localhost:8080/auth/realms/hello-world-
authz/authz/entitlement/hello-world-authz-service"

{
 "rpt": ${RPT}
}

curl -X POST -H "Authorization: Bearer ${access_token}" -d '{
 "permissions" : [
 {
 "resource_set_name" : "Hello World Resource",
 "scopes" : [
 "urn:my-app.com:scopes:view"
]
 }
]
}' "http://localhost:8080/auth/realms/hello-world-
authz/authz/entitlement/hello-world-authz-service"

{
 "authorization": {
 "permissions": [
 {
 "resource_set_id": "d2fe9843-6462-4bfc-baba-b5787bb6e0e7",
 "resource_set_name": "Hello World Resource"
 }
]
 },
 "jti": "d6109a09-78fd-4998-bf89-95730dfd0892-1464906679405",

CHAPTER 8. AUTHORIZATION SERVICES

57

https://tools.ietf.org/html/rfc7519
https://www.rfc-editor.org/rfc/rfc7515.txt

From this token you can obtain all permissions granted by the server from the permissions claim.

8.4. INTROSPECTING A REQUESTING PARTY TOKEN

Sometimes you might want to introspect a requesting party token (RPT) to check its validity or
obtain the permissions within the token to enforce authorization decisions on the resource server
side.

There are two main use cases where token introspection can help you:

When client applications need to query the token validity to obtain a new one with the same or
additional permissions

When enforcing authorization decisions at the resource server side, especially when none of the
built-in policy enforcers fits your application

8.4.1. Obtaining Information about an RPT

The token introspection is essentially a OAuth2 token introspection-compliant endpoint from which
you can obtain information about an RPT.

To introspect an RPT using this endpoint, you can send a request to the server as follows:

Note

The request above is using HTTP BASIC and passing the client’s credentials (client ID
and secret) to authenticate the client attempting to introspect the token, but you can use
any other client authentication method supported by Red Hat Single Sign-On.

The introspection endpoint expects two parameters:

token_type_hint

 "exp": 1464906971,
 "nbf": 0,
 "iat": 1464906671,
 "sub": "f1888f4d-5172-4359-be0c-af338505d86c",
 "typ": "kc_ett",
 "azp": "hello-world-authz-service"
}

http://${host}:${port}/auth/realms/${realm_name}/protocol/openid-
connect/token/introspect

curl -X POST \
 -H "Authorization: Basic
aGVsbG8td29ybGQtYXV0aHotc2VydmljZTpzZWNyZXQ=" \
 -H "Content-Type: application/x-www-form-urlencoded" \
 -d 'token_type_hint=requesting_party_token&token=${RPT}' \
 "http://localhost:8080/auth/realms/hello-world-authz/protocol/openid-
connect/token/introspect"

Red Hat Single Sign-On 7.1 Authorization Services Guide

58

https://tools.ietf.org/html/rfc7662

Use requesting_party_token as the value for this parameter, which indicates that you want to
introspect an RPT.

token

Use the token string as it was returned by the server during the authorization process as the
value for this parameter.

As a result, the server response is:

If the RPT is not active, this response is returned instead:

8.4.2. Do I Need to Invoke the Server Every Time I Want to Introspect an RPT?

No. Both Entitlement APIs use the JSON web token (JWT) specification as the default format for
RPTs.

If you want to validate these tokens without a call to the remote introspection endpoint, you can
decode the RPT and query for its validity locally. Once you decode the token, you can also use the
permissions within the token to enforce authorization decisions.

This is essentially what the policy enforcers do. Be sure to:

Validate the signature of the RPT (based on the realm’s public key)

Query for token validity based on its exp, iat, and aud claims

8.5. AUTHORIZATION CLIENT JAVA API

If you are using Java, you can access all Red Hat Single Sign-On Authorization Services using a
client API.

8.5.1. Maven Dependency

{
 "permissions": [
 {
 "resource_set_id": "90ccc6fc-b296-4cd1-881e-089e1ee15957",
 "resource_set_name": "Hello World Resource"
 }
],
 "exp": 1465314139,
 "nbf": 0,
 "iat": 1465313839,
 "aud": "hello-world-authz-service",
 "active": true
}

{
 "active": false
}

<dependencies>
 <dependency>

CHAPTER 8. AUTHORIZATION SERVICES

59

https://tools.ietf.org/html/rfc7519

8.5.2. Configuration

The client configuration is defined in a JSON file as follows:

realm (required)

The name of the realm.

auth-server-url (required)

The base URL of the Red Hat Single Sign-On server. All other Red Hat Single Sign-On pages
and REST service endpoints are derived from this. It is usually in the form https://host:port/auth.

resource (required)

The client-id of the application. Each application has a client-id that is used to identify the
application.

credentials (required) Specifies the credentials of the application. This is an object notation
where the key is the credential type and the value is the value of the credential type. Currently
only secret/password is supported.

8.5.3. Obtaining User Entitlements

Here is an example illustrating how to obtain user entitlements:

 <groupId>org.keycloak</groupId>
 <artifactId>keycloak-authz-client</artifactId>
 <version>${KEYCLOAK_VERSION}</version>
 </dependency>
</dependencies>

{
 "realm": "hello-world-authz",
 "auth-server-url" : "http://localhost:8080/auth",
 "resource" : "hello-world-authz-service",
 "credentials": {
 "secret": "secret"
 }
}

// create a new instance based on the configuration defined in keycloak-
authz.json
AuthzClient authzClient = AuthzClient.create();

// obtain an Entitlement API Token to get access to the Entitlement API.
// this token is an access token issued to a client on behalf of an user
// with a scope = kc_entitlement
String eat = getEntitlementAPIToken(authzClient);

// send the entitlement request to the server to
// obtain an RPT with all permissions granted to the user
EntitlementResponse response = authzClient.entitlement(eat)
 .getAll("hello-world-authz-service");
String rpt = response.getRpt();

Red Hat Single Sign-On 7.1 Authorization Services Guide

60

Here is an example illustrating how to obtain user entitlements for a set of one or more resources:

8.5.4. Creating a Resource Using the Protection API

System.out.println("You got a RPT: " + rpt);

// now you can use the RPT to access protected resources on the resource
server

// create a new instance based on the configuration defined in keycloak-
authz.json
AuthzClient authzClient = AuthzClient.create();

// obtain an Entitlement API Token to get access to the Entitlement API.
// this token is an access token issued to a client on behalf of an user
// with a scope = kc_entitlement
String eat = getEntitlementAPIToken(authzClient);

// create an entitlement request
EntitlementRequest request = new EntitlementRequest();
PermissionRequest permission = new PermissionRequest();

permission.setResourceSetName("Hello World Resource");

request.addPermission(permission);

// send the entitlement request to the server to obtain an RPT
// with all permissions granted to the user
EntitlementResponse response = authzClient.entitlement(eat)
 .get("hello-world-authz-service", request);
String rpt = response.getRpt();

System.out.println("You got a RPT: " + rpt);

// create a new instance based on the configuration defined in keycloak-
authz.json
AuthzClient authzClient = AuthzClient.create();

// create a new resource representation with the information we want
ResourceRepresentation newResource = new ResourceRepresentation();

newResource.setName("New Resource");
newResource.setType("urn:hello-world-authz:resources:example");

newResource.addScope(new ScopeRepresentation("urn:hello-world-
authz:scopes:view"));

ProtectedResource resourceClient = authzClient.protection().resource();
Set<String> existingResource = resourceClient
 .findByFilter("name=" + newResource.getName());

if (!existingResource.isEmpty()) {
 resourceClient.delete(existingResource.iterator().next());
}

CHAPTER 8. AUTHORIZATION SERVICES

61

// create the resource on the server
RegistrationResponse response = resourceClient.create(newResource);
String resourceId = response.getId();

// query the resource using its newly generated id
ResourceRepresentation resource =
resourceClient.findById(resourceId).getResourceDescription();

Red Hat Single Sign-On 7.1 Authorization Services Guide

62

CHAPTER 9. POLICY ENFORCERS

Policy Enforcement Point (PEP) is a design pattern and as such you can implement it in different
ways. Red Hat Single Sign-On provides all the necessary means to implement PEPs for different
platforms, environments, and programming languages. Red Hat Single Sign-On Authorization
Services presents a RESTful API, and leverages OAuth2 authorization capabilities for fine-grained
authorization using a centralized authorization server.

9.1. RED HAT SINGLE SIGN-ON ADAPTER POLICY ENFORCER

You can enforce authorization decisions for your applications if you are using Red Hat Single Sign-
On OIDC adapters.

When you enable policy enforcement for your Red Hat Single Sign-On application, the
corresponding adapter intercepts all requests to your application and enforces the authorization
decisions obtained from the server.

Policy enforcement is strongly linked to your application’s paths and the resources you created for a
resource server using the Red Hat Single Sign-On Administration Console. By default, when you
create a resource server, Red Hat Single Sign-On creates a default configuration for your resource
server so you can enable policy enforcement quickly.

The default configuration allows access for all resources in your application provided the
authenticated user belongs to the same realm as the resource server being protected.

9.1.1. Policy Enforcement Configuration

To enable policy enforcement for your application, add the following property to your keycloak.json
file:

keycloak.json

{
 "policy-enforcer": {}
}

CHAPTER 9. POLICY ENFORCERS

63

Or a little more verbose if you want to manually define the resources being protected:

Here is a description of each configuration option:

policy-enforcer

Specifies the configuration options that define how policies are actually enforced and optionally
the paths you want to protect. If not specified, the policy enforcer queries the server for all
resources associated with the resource server being protected. In this case, you need to ensure
the resources are properly configured with a URI property that matches the paths you want to
protect.

user-managed-access

Specifies that the adapter uses the UMA protocol. If specified, the adapter queries the server
for permission tickets and return them to clients according to the UMA specification. If not
specified, the adapter relies on the requesting party token (RPT) sent to the server to enforce
permissions.

{
 "policy-enforcer": {
 "user-managed-access" : {},
 "enforcement-mode" : "ENFORCING"
 "paths": [
 {
 "path" : "/someUri/*",
 "methods" : [
 {
 "method": "GET",
 "scopes" : ["urn:app.com:scopes:view"]
 },
 {
 "method": "POST",
 "scopes" : ["urn:app.com:scopes:create"]
 }
]
 },
 {
 "name" : "Some Resource",
 "path" : "/usingPattern/{id}",
 "methods" : [
 {
 "method": "DELETE",
 "scopes" : ["urn:app.com:scopes:delete"]
 }
]
 },
 {
 "path" : "/exactMatch"
 },
 {
 "name" : "Admin Resources",
 "path" : "/usingWildCards/*"
 }
]
 }
}

Red Hat Single Sign-On 7.1 Authorization Services Guide

64

enforcement-mode

Specifies how policies are enforced.

ENFORCING

(default mode) Requests are denied by default even when there is no policy associated
with a given resource.

PERMISSIVE

Requests are allowed even when there is no policy associated with a given resource.

DISABLED

Completely disables the evaluation of policies and allows access to any resource.

on-deny-redirect-to

Defines a URL where a client request is redirected when an "access denied" message is
obtained from the server. By default, the adapter responds with a 403 HTTP status code.

paths

Specifies the paths to protect.

name

The name of a resource on the server that is to be associated with a given path. When
used in conjunction with a path, the policy enforcer ignores the resource’s URI property
and uses the path you provided instead.

path

(required) A URI relative to the application’s context path. If this option is specified, the
policy enforcer queries the server for a resource with a URI with the same value.
Currently a very basic logic for path matching is supported. Examples of valid paths are:

Wildcards: /*

Suffix: /*.html

Sub-paths: /path/*

Path parameters: /resource/{id}

Exact match: /resource

methods The HTTP methods (for example, GET, POST, PATCH) to protect and how
they are associated with the scopes for a given resource in the server. +[/'']

method

The name of the HTTP method.

scopes

An array of strings with the scopes associated with the method. When you associate
scopes with a specific method, the client trying to access a protected resource (or
path) must provide an RPT that grants permission to all scopes specified in the list.
For example, if you define a method POST with a scope create, the RPT must contain

CHAPTER 9. POLICY ENFORCERS

65

a permission granting access to the create scope when performing a POST to the
path.

enforcement-mode

Specifies how policies are enforced.

ENFORCING

(default mode) Requests are denied by default even when there is no policy
associated with a given resource.

DISABLED

Disables the evaluation of policies for a path

9.1.2. Protecting a Stateless Service Using a Bearer Token

If the adapter is configured with the bearer-only configuration option, the policy enforcer decides
whether a request to access a protected resource is allowed or denied based on the permissions of
the bearer token.

1. HTTP GET example passing an RPT as a bearer token

In this example, a keycloak.json file in your application is similar to the following:

Example of WEB-INF/keycloak.json with the bearer-only configuration option

9.1.2.1. Authorization Response

When a client tries to access a resource server with a bearer token that is lacking permissions to
access a protected resource, the resource server responds with a 401 status code and a WWW-
Authenticate header. The value of the WWW-Authenticate header depends on the
authorization protocol in use by the resource server.

Here is an example of a response from a resource server that is using UMA as the authorization
protocol:

And another example when the resource server is using the Entitlement protocol:

GET /my-resource-server/my-protected-resource HTTP/1.1
Host: host.com
Authorization: Bearer ${RPT}
...

...
"bearer-only" : true,
...

HTTP/1.1 401 Unauthorized
WWW-Authenticate: UMA realm="photoz-restful-
api",as_uri="http://localhost:8080/auth/realms/photoz/authz/authorize",tic
ket="${PERMISSION_TICKET}"

Red Hat Single Sign-On 7.1 Authorization Services Guide

66

Once a client receives a response from the server, it examines the status code and WWW-
Authenticate header to obtain an RPT from the Red Hat Single Sign-On Server.

9.1.3. Obtaining the Authorization Context

When policy enforcement is enabled, the permissions obtained from the server are available through
org.keycloak.AuthorizationContext. This class provides several methods you can use to
obtain permissions and ascertain whether a permission was granted for a particular resource or
scope.

Obtaining the Authorization Context in a Servlet Container

Note

For more details about how you can obtain a KeycloakSecurityContext consult the
adapter configuration. The example above should be sufficient to obtain the context when
running an application using any of the servlet containers supported by Red Hat Single
Sign-On.

The authorization context helps give you more control over the decisions made and returned by the
server. For example, you can use it to build a dynamic menu where items are hidden or shown
depending on the permissions associated with a resource or scope.

The AuthorizationContext represents one of the main capabilities of Red Hat Single Sign-On
Authorization Services. From the examples above, you can see that the protected resource is not
directly associated with the policies that govern them.

Consider some similar code using role-based access control (RBAC):

HTTP/1.1 401 Unauthorized
WWW-Authenticate: KC_ETT realm="photoz-restful-
api",as_uri="http://localhost:8080/auth/realms/photoz/authz/entitlement"

 HttpServletRequest request = ... // obtain
javax.servlet.http.HttpServletRequest
 KeycloakSecurityContext keycloakSecurityContext =
 (KeycloakSecurityContext) request
 .getAttribute(KeycloakSecurityContext.class.getName());
 AuthorizationContext authzContext =
 keycloakSecurityContext.getAuthorizationContext();

if (authzContext.hasResourcePermission("Project Resource")) {
 // user can access the Project Resource
}

if (authzContext.hasResourcePermission("Admin Resource")) {
 // user can access administration resources
}

if (authzContext.hasScopePermission("urn:project.com:project:create")) {
 // user can create new projects
}

CHAPTER 9. POLICY ENFORCERS

67

Although both examples address the same requirements, they do so in different ways. In RBAC,
roles only implicitly define access for their resources. With Red Hat Single Sign-On you gain the
capability to create more manageable code that focuses directly on your resources whether you are
using RBAC, attribute-based access control (ABAC), or any other BAC variant. Either you have the
permission for a given resource or scope, or you don’t.

Now, suppose your security requirements have changed and in addition to project managers, PMOs
can also create new projects.

Security requirements change, but with Red Hat Single Sign-On there is no need to change your
application code to address the new requirements. Once your application is based on the resource
and scope identifier, you need only change the configuration of the permissions or policies
associated with a particular resource in the authorization server. In this case, the permissions and
policies associated with the Project Resource and/or the scope
urn:project.com:project:create would be changed.

9.1.4. JavaScript Integration

The Red Hat Single Sign-On Server comes with a JavaScript library you can use to interact with a
resource server protected by a policy enforcer. This library is based on the Red Hat Single Sign-On
JavaScript adapter, which can be integrated to allow your client to obtain permissions from a Red
Hat Single Sign-On Server.

You can obtain this library from a running a Red Hat Single Sign-On Server instance by including
the following script tag in your web page:

Once you do that, you can create a KeycloakAuthorization instance as follows:

The keycloak-authz.js library provides two main features:

Handle responses from a resource server protected by a Red Hat Single Sign-On Policy
Enforcer and obtain a requesting party token (RPT) with the necessary permissions to gain
access to the protected resources on the resource server.

In this case, the library can handle whatever authorization protocol the resource server is
using: Entitlements.

Obtain permissions from a Red Hat Single Sign-On Server using the Entitlement API.

if (User.hasRole('user')) {
 // user can access the Project Resource
}

if (User.hasRole('admin')) {
 // user can access administration resources
}

if (User.hasRole('project-manager')) {
 // user can create new projects
}

<script src="http://.../auth/js/keycloak-authz.js"></script>

var keycloak = ... // obtain a Keycloak instance from keycloak.js library
var authorization = new KeycloakAuthorization(keycloak);

Red Hat Single Sign-On 7.1 Authorization Services Guide

68

In both cases, the library allows you to easily interact with both resource server and Red Hat Single
Sign-On Authorization Services to obtain tokens with permissions your client can use as bearer
tokens to access the protected resources on a resource server.

9.1.4.1. Handling Authorization Responses from a Resource Server

If a resource server is protected by a policy enforcer, it responds to client requests based on the
permissions carried along with a bearer token. Typically, when you try to access a resource server
with a bearer token that is lacking permissions to access a protected resource, the resource server
responds with a 401 status code and a WWW-Authenticate header.

The value of the WWW-Authenticate header depends on the authorization protocol in use by the
resource server. Whatever protocol is in use, you can use a KeycloakAuthorization instance
to handle responses as follows:

The authorize function is completely asynchronous and supports a few callback functions to
receive notifications from the server:

onGrant: The first argument of the function. If authorization was successful and the server
returned an RPT with the requested permissions, the callback receives the RPT.

onDeny: The second argument of the function. Only called if the server has denied the
authorization request.

onError: The third argument of the function. Only called if the server responds unexpectedly.

Most applications should use the onGrant callback to retry a request after a 401 response.
Subsequent requests should include the RPT as a bearer token for retries.

9.1.4.2. Obtaining Entitlements

The keycloak-authz.js library provides an entitlement function that you can use to obtain an RPT
from the server using the Entitlement API.

var wwwAuthenticateHeader = ... // extract WWW-Authenticate Header from
the response in case of a 401 status code
authorization.authorize(wwwAuthenticateHeader).then(function (rpt) {
 // onGrant callback function.
 // If authorization was successful you'll receive an RPT
 // with the necessary permissions to access the resource server
}, function () {
 // onDeny callback function.
 // Called when the authorization request is denied by the server
}, function () {
 // onError callback function. Called when the server responds
unexpectedly
});

authorization.entitlement('my-resource-server-id').then(function (rpt) {
 // onGrant callback function.
 // If authorization was successful you'll receive an RPT
 // with the necessary permissions to access the resource server
});

CHAPTER 9. POLICY ENFORCERS

69

When using the entitlement function, you must provide the client_id of the resource server you
want to access.

The entitlement function is completely asynchronous and supports a few callback functions to
receive notifications from the server:

onGrant: The first argument of the function. If authorization was successful and the server
returned an RPT with the requested permissions, the callback receives the RPT.

onDeny: The second argument of the function. Only called if the server has denied the
authorization request.

onError: The third argument of the function. Only called if the server responds unexpectedly.

9.1.4.3. Obtaining the RPT

If you have already obtained an RPT using any of the authorization functions provided by the library,
you can always obtain the RPT as follows from the authorization object (assuming that it has been
initialized by one of the techniques shown earlier):

9.1.5. Setting Up TLS/HTTPS

When the server is using HTTPS, ensure your adapter is configured as follows:

keycloak.json

The configuration above enables TLS/HTTPS to the Authorization Client, making possible to access
a Red Hat Single Sign-On Server remotely using the HTTPS scheme.

Note

It is strongly recommended that you enable TLS/HTTPS when accessing the Red Hat
Single Sign-On Server endpoints.

var rpt = authorization.rpt;

{
 "truststore": "path_to_your_trust_store",
 "truststore-password": "trust_store_password"
}

Red Hat Single Sign-On 7.1 Authorization Services Guide

70

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. ARCHITECTURE
	1.1.1. The Authorization Process
	1.1.1.1. Resource Management
	1.1.1.2. Permission and Policy Management
	1.1.1.3. Policy Enforcement

	1.1.2. Authorization Services
	1.1.2.1. Protection API
	1.1.2.2. Authorization API

	1.1.3. Entitlement API

	1.2. TERMINOLOGY
	1.2.1. Resource Server
	1.2.2. Resource
	1.2.3. Scope
	1.2.4. Permission
	1.2.5. Policy
	1.2.6. Policy Provider
	1.2.7. Permission Ticket

	CHAPTER 2. GETTING STARTED
	2.1. SECURING A SERVLET APPLICATION
	2.2. CREATING A REALM AND A USER
	2.3. ENABLING AUTHORIZATION SERVICES
	2.4. BUILD, DEPLOY, AND TEST YOUR APPLICATION
	2.4.1. Obtaining the Adapter Configuration
	2.4.2. Building and Deploying the Application
	2.4.3. Testing the Application
	2.4.4. Next Steps

	CHAPTER 3. MANAGING RESOURCE SERVERS
	3.1. CREATING A CLIENT APPLICATION
	3.2. ENABLING AUTHORIZATION SERVICES
	3.2.1. Resource Server Settings

	3.3. DEFAULT CONFIGURATION
	3.3.1. Changing the Default Configuration

	3.4. EXPORT AND IMPORT AUTHORIZATION CONFIGURATION
	3.4.1. Exporting a Configuration File
	3.4.2. Importing a Configuration File

	CHAPTER 4. MANAGING RESOURCES AND SCOPES
	4.1. VIEWING RESOURCES
	4.2. CREATING RESOURCES
	4.2.1. Typed Resources
	4.2.2. Resource Owners
	4.2.3. Managing Resources Remotely

	CHAPTER 5. MANAGING POLICIES
	5.1. USER-BASED POLICY
	5.1.1. Configuration

	5.2. ROLE-BASED POLICY
	5.2.1. Configuration

	5.3. DEFINING A ROLE AS REQUIRED
	5.4. JAVASCRIPT-BASED POLICY
	5.4.1. Configuration
	5.4.2. Examples

	5.5. RULE-BASED POLICY
	5.5.1. Configuration
	5.5.2. Examples

	5.6. TIME-BASED POLICY
	5.6.1. Configuration

	5.7. AGGREGATED POLICY
	5.7.1. Configuration
	5.7.2. Decision Strategy for Aggregated Policies

	5.8. POSITIVE AND NEGATIVE LOGIC
	5.9. POLICY EVALUATION API
	5.9.1. The Evaluation Context

	CHAPTER 6. MANAGING PERMISSIONS
	6.1. CREATING RESOURCE-BASED PERMISSIONS
	6.1.1. Configuration
	6.1.2. Typed Resource Permission

	6.2. CREATING SCOPE-BASED PERMISSIONS
	6.2.1. Configuration

	6.3. POLICY DECISION STRATEGIES

	CHAPTER 7. EVALUATING AND TESTING POLICIES
	7.1. PROVIDING IDENTITY INFORMATION
	7.2. PROVIDING CONTEXTUAL INFORMATION
	7.3. PROVIDING THE PERMISSIONS

	CHAPTER 8. AUTHORIZATION SERVICES
	8.1. PROTECTION API
	8.1.1. What is a PAT and How to Obtain It
	8.1.2. Managing Resources
	8.1.3. Managing Permission Requests

	8.2. AUTHORIZATION API
	8.2.1. What is an AAT and How to Obtain It
	8.2.2. Requesting Authorization Data and Token
	8.2.2.1. Requesting Party Token

	8.3. ENTITLEMENT API
	8.3.1. Requesting Entitlements
	8.3.1.1. Obtaining Entitlements
	8.3.1.2. Obtaining Entitlements for a Specific Set of Resources
	8.3.1.3. Requesting Party Token

	8.4. INTROSPECTING A REQUESTING PARTY TOKEN
	8.4.1. Obtaining Information about an RPT
	8.4.2. Do I Need to Invoke the Server Every Time I Want to Introspect an RPT?

	8.5. AUTHORIZATION CLIENT JAVA API
	8.5.1. Maven Dependency
	8.5.2. Configuration
	8.5.3. Obtaining User Entitlements
	8.5.4. Creating a Resource Using the Protection API

	CHAPTER 9. POLICY ENFORCERS
	9.1. RED HAT SINGLE SIGN-ON ADAPTER POLICY ENFORCER
	9.1.1. Policy Enforcement Configuration
	9.1.2. Protecting a Stateless Service Using a Bearer Token
	9.1.2.1. Authorization Response

	9.1.3. Obtaining the Authorization Context
	9.1.4. JavaScript Integration
	9.1.4.1. Handling Authorization Responses from a Resource Server
	9.1.4.2. Obtaining Entitlements
	9.1.4.3. Obtaining the RPT

	9.1.5. Setting Up TLS/HTTPS

