& RedHat

Red Hat Quay 3.8

Deploy Red Hat Quay for proof-of-concept
(non-production) purposes

Deploy Red Hat Quay

Last Updated: 2024-01-15

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-
production) purposes

Deploy Red Hat Quay

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Get started with Red Hat Quay

Table of Contents
PREFACE . v ettt e et e e et e e e

CHAPTER L. OVERVIEW .. . e

1.1. ARCHITECTURE
1.1.1. Internal components
1.1.2. External components

CHAPTER 2. GETTING STARTED WITH RED HAT QUAYcoouae.

2.1. PREREQUISITES
2.1.1. Using Podman

Table of Contents

~N

2.2. PREPARING RED HAT ENTERPRISE LINUX FOR A RED HAT QUAY PROOF OF CONCEPT DEPLOYMENT

2.2.1. Install and register the RHEL server
2.2.2. Installing Podman
2.2.3. Registry authentication
2.2.4. Firewall configuration
2.2.5.IP addressing and naming services
2.3. CONFIGURING THE DATABASE
2.3.1. Setting up Postgres
2.4. CONFIGURING REDIS
2.4.1. Setting up Redis
2.5. CONFIGURING RED HAT QUAY
2.5.1. Red Hat Quay setup
2.5.1.1. Basic configuration
2.5.1.2. Server configuration
2.5.1.3. Database
2.5.1.4. Redis
2.5.2. Validate and download configuration
2.6. DEPLOYING RED HAT QUAY
2.6.1. Prerequisites
2.6.2. Preparing the configuration folder
2.6.3. Prepare local storage for image data
2.6.4. Deploy the Red Hat Quay registry
2.7.USING RED HAT QUAY
2.7.1. Push and pull images

CHAPTER 3. ADVANCED RED HAT QUAY DEPLOYMENT

3.1. USING SSL/TLS

3.1.1. Creating a certificate authority and signing a certificate

3.1.1.1. Creating a certificate authority

3.1.1.2. Signing a certificate
3.1.2. Configuring SSL/TLS using the Red Hat Quay Ul
3.1.3. Configuring SSL using the command line interface
3.1.4. Testing SSL configuration using the command line
3.1.5. Testing SSL configuration using the browser
3.1.6. Configuring podman to trust the Certificate Authority

3.1.7. Configuring the system to trust the certificate authority

3.2. RED HAT QUAY SUPERUSER
3.2.1. Adding a superuser to Quay using the Ul
3.2.2. Editing the config.yaml file to add a superuser
3.2.3. Accessing the superuser admin panel
3.2.3.1. Creating a globally visible user message

O O 0 00 0 00

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

3.3. REPOSITORY MIRRORING
3.3.1. Repository mirroring
3.3.2. Mirroring configuration Ul
3.3.3. Mirroring worker
3.3.4. Creating a mirrored repository
3.3.4.1. Repository mirroring settings
3.3.4.2. Advanced settings
3.3.4.3. Synchronize now
3.3.5. Mirroring tag patterns
3.3.5.1. Pattern syntax
3.3.5.2. Example tag patterns
3.4. CLAIR FOR RED HAT QUAY
3.4.1. Setting up Clair on standalone Red Hat Quay deployments
3.4.2. Testing Clair
3.4.3. CVE ratings from the National Vulnerability Database
3.5. RESTARTING CONTAINERS
3.5.1. Using systemd unit files with Podman
3.5.2. Starting, stopping and checking the status of services
3.5.3. Testing restart after reboot
3.5.4. Configuring Quay’s dependency on Clair
3.6. FEDERAL INFORMATION PROCESSING STANDARD (FIPS) READINESS AND COMPLIANCE

CHAPTER 4. NEXT STEPS .o i i i i et i ittt

25
25
25
25
26
26
28
28
29
29
29
30
30
33
34
34
34
35
36
36
37

Table of Contents

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

PREFACE

Red Hat Quay is an enterprise-quality registry for building, securing and serving container images. This
procedure describes how to deploy Red Hat Quay for proof-of-concept (non-production) purposes.

CHAPTER 1. OVERVIEW

CHAPTER 1. OVERVIEW

Red Hat Quay includes the following features:

High availability

Geo-replication

Repository mirroring

Docker v2, schema 2 (multi-arch) support
Continuous integration

Security scanning with Clair

Custom log rotation

Zero downtime garbage collection

24/7 support

Red Hat Quay provides support for the following:

Multiple authentication and access methods

Multiple storage backends

Custom certificates for Quay, Clair, and storage backends
Application registries

Different container image types

1.1. ARCHITECTURE

Red Hat Quay includes several core components, both internal and external.

1.1.1. Internal components

Red Hat Quay includes the following internal components:

Quay (container registry). Runs the Quay container as a service, consisting of several
components in the pod.

Clair. Scans container images for vulnerabilities and suggests fixes.

1.1.2. External components

Red Hat Quay includes the following external components:

Database. Used by Red Hat Quay as its primary metadata storage. Note that this is not for
image storage.

Redis (key-value store). Stores live builder logs and the Red Hat Quay tutorial. Also includes
the locking mechanism that is required for garbage collection.

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

® Cloud storage. For supported deployments, one of the following storage types must be used:

o Public cloud storage. In public cloud environments, you should use the cloud provider’s
object storage, such as Amazon Web Services's Amazon S3 or Google Cloud’'s Google
Cloud Storage.

o Private cloud storage. In private clouds, an S3 or Swift compliant Object Store is needed,
such as Ceph RADOS, or OpenStack Swift.

WARNING
AA Do not use "Locally mounted directory" Storage Engine for any production

configurations. Mounted NFS volumes are not supported. Local storage is meant for
Red Hat Quay test-only installations.

CHAPTER 2. GETTING STARTED WITH RED HAT QUAY

CHAPTER 2. GETTING STARTED WITH RED HAT QUAY

The Red Hat Quay registry can be deployed for non-production purposes on a single machine, either
physical or virtual.

2.1. PREREQUISITES
® Red Hat Enterprise Linux (RHEL) 8

o To obtain the latest version of Red Hat Enterprise Linux (RHEL) 8, see Downlad Red Hat
Enterprise Linux.

o Forinstallation instructions, see the Product Documentation for Red Hat Enterprise Linux 8 .
® An active subscription to Red Hat
® Two or more virtual CPUs
® 4 GB or more of RAM

® Approximately 30 GB of disk space on your test system, which can be broken down as follows:

o Approximately 10 GB of disk space for the Red Hat Enterprise Linux (RHEL) operating
system.

o Approximately 10 GB of disk space for Docker storage for running three containers.

o Approximately 10 GB of disk space for Red Hat Quay local storage.

NOTE

CEPH or other local storage might require more memory.
More information on sizing can be found at Quay 3.x Sizing Guidlines.

NOTE

Red Hat Enterprise Linux (RHEL) 8 is recommended for highly available, production
quality deployments of Red Hat Quay 3.8. RHEL 7 has not been tested with Red Hat
Quay 3.8, and will be deprecated in a future release.

2.1.1. Using Podman

This document uses Podman for creating and deploying containers. For more information on Podman
and related technologies, see Building, running, and managing Linux containers on Red Hat Enterprise
Linux 8.

IMPORTANT

If you do not have Podman installed on your system, the use of equivalent Docker
commands might be possible, however this is not recommended. Docker has not been
tested with Red Hat Quay 3.8, and will be deprecated in a future release. Podman is
recommended for highly available, production quality deployments of Red Hat Quay 3.8.

https://access.redhat.com/downloads/content/479/ver=/rhel---8/8.3/x86_64/product-software
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/
https://access.redhat.com/articles/5177961
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

2.2. PREPARING RED HAT ENTERPRISE LINUX FOR A RED HAT QUAY
PROOF OF CONCEPT DEPLOYMENT

Use the following procedures to configure Red Hat Enterprise Linux (RHEL) for a Red Hat Quay proof
of concept deployment.
2.2.1. Install and register the RHEL server

Use the following procedure to configure the Red Hat Enterprise Linux (RHEL) server for a Red Hat
Quay proof of concept deployment.

Procedure

1. Install the latest RHEL 8 server. You can do a minimal, shell-access only install, or Server plus
GUI if you want a desktop.

2. Register and subscribe your RHEL server system as described in How to register and subscribe a
RHEL system to the Red Hat Customer Portal using Red Hat Subscription-Manager

3. Enter the following commands to register your system and list available subscriptions. Choose
an available RHEL server subscription, attach to its pool ID, and upgrade to the latest software:

subscription-manager register --username=<user_name> --password=<password>
subscription-manager refresh

subscription-manager list --available

subscription-manager attach --pool=<pool_id>

yum update -y

2.2.2. Installing Podman

Use the following procedure to install Podman.
Procedure
® Enter the following command to install Podman:

I $ sudo yum install -y podman

e Alternatively, you can install the container-tools module, which pulls in the full set of container
software packages:

I $ sudo yum module install -y container-tools

2.2.3. Registry authentication

Use the following procedure to authenticate your registry for a Red Hat Quay proof of concept.

Procedure

1. Set up authentication to registry.redhat.io by following the Red Hat Container Registry
Authentication procedure. Setting up authentication allows you to pull the Quay container.

https://access.redhat.com/solutions/253273
https://access.redhat.com/RegistryAuthentication

CHAPTER 2. GETTING STARTED WITH RED HAT QUAY

NOTE

This differs from earlier versions of Red Hat Quay, when the images were hosted
on Quay.io.

2. Enter the following command to log in to the registry:
I $ sudo podman login registry.redhat.io

You are prompted to enter your username and password.

2.2.4. Firewall configuration

If you have a firewall running on your system, you might have to add rules that allow access to Red Hat
Quay. Use the following procedure to configure your firewall for a proof of concept deployment.

Procedure

® The commands required depend on the ports that you have mapped on your system, for
example:

$ firewall-cmd --permanent --add-port=80/tcp

$ firewall-cmd --permanent --add-port=443/tcp
$ firewall-cmd --permanent --add-port=5432/tcp
$ firewall-cmd --permanent --add-port=5433/tcp
$ firewall-cmd --permanent --add-port=6379/tcp
$ firewall-cmd --reload

2.2.5. 1P addressing and naming services

There are several ways to configure the component containers in Red Hat Quay so that they can
communicate with each other, for example:

e Using the IP addresses for the containersYou can determine the IP address for containers
with podman inspect and then use the values in the configuration tool when specifying the
connection strings, for example:

I $ sudo podman inspect -f "{{.NetworkSettings.IPAddress}}" postgresql-quay

This approach is susceptible to host restarts, as the IP addresses for the containers will change
after areboot.

e Using a naming service. If you want your deployment to survive container restarts, which
typically result in changed IP addresses, you can implement a naming service. For example, the
dnsname plugin is used to allow containers to resolve each other by name.

® Using the host network You can use the podman run command with the --net=host option
and then use container ports on the host when specifying the addresses in the configuration.
This option is susceptible to port conflicts when two containers want to use the same port. This
method is not recommended.

e Configuring port mapping You can use port mappings to expose ports on the host and then
use these ports in combination with the host IP address or host name.

https://github.com/containers/dnsname

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

This document uses port mapping and assumes a static IP address for your host system. Throughout the
deployment, quay-sever.example.com is used with the 192.168.1.112 IP address. This information is
established in the /etc/hosts file, for example:

I $ cat /etc/hosts

Example output:
I 192.168.1.112 quay-server.example.com

Table 2.1. Sample proof of concept port mapping

Component Port mapping Address
Quay -p 80:8080 -p http://quay-
443:8443 server.example.com

Postgres for Quay -p 5432:5432 quay-
server.example.com:543
2

Redis -p 6379:6379 quay-
server.example.com:637
9

Postgres for Clair V4 -p 5433:5432 quay-
server.example.com:543
3

Clair V4 -p 8081:8080 http://quay-

server.example.com:808
1

2.3. CONFIGURING THE DATABASE

Red Hat Quay requires a database for storing metadata. Postgres is used throughout this document and
is recommended for highly available configurations. Alternatively, you can use MySQL with a similar
approach to configuration as described below.

2.3.1. Setting up Postgres

For the Red Hat Quay proof of concept, a directory on the local file system to persist database data is
used.

Procedure

1. In the installation folder, denoted here by the $QUAY variable, create a directory for the
database data by entering the following command:

I $ mkdir -p $QUAY/postgres-quay

10

CHAPTER 2. GETTING STARTED WITH RED HAT QUAY

2. Set the appropriate permissions by entering the following command:

I $ setfacl -m u:26:-wx $QUAY/postgres-quay

3. Start the Postgres container, specifying the username, password, and database name and port,
with the volume definition for database data:

$ sudo podman run -d --rm --name postgresqgl-quay \
-e POSTGRESQL_USER=quayuser \
-e POSTGRESQL_PASSWORD=quaypass \
-e POSTGRESQL_DATABASE=quay \
-e POSTGRESQL_ADMIN_PASSWORD=adminpass \
-p 5432:5432 \
-v $QUAY/postgres-quay:/var/lib/pgsql/data:Z \
registry.redhat.io/rhel8/postgresql-10

4. Ensure that the Postgres pg_trgm module is installed by running the following command:

$ sudo podman exec -it postgresqgl-quay /bin/bash -c 'echo "CREATE EXTENSION IF NOT
EXISTS pg_trgm" | psql -d quay -U postgres'

NOTE
N The pg_trgm module is required for the Quay container.

2.4. CONFIGURING REDIS

Redis ia a key-value store that is used by Red Hat Quay for live builder logs and the Red Hat Quay
tutorial.

2.4.1. Setting up Redis

Use the following procedure to deploy the Redis container for the Red Hat Quay proof of concept.

Procedure

e Start the Redis container, specifying the port and password, by entering the following
command:

$ sudo podman run -d --rm --name redis \
-p 6379:6379 \
-e REDIS_PASSWORD=strongpassword \
registry.redhat.io/rhel8/redis-6

2.5. CONFIGURING RED HAT QUAY

Use the following procedure to generate a configuration file that details all components, including
registry settings, the database, and Redis connection parameters.

Procedure

1

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

1. To generate a configuration file, enter the following command to run the Quay container in
config mode. You must specify a password, for example, the string secret:

$ sudo podman run --rm -it --name quay_config -p 80:8080 -p 443:8443
registry.redhat.io/quay/quay-rhel8:v3.8.15 config secret

2. Use your browser to access the user interface for the configuration tool at http:/quay-
server.example.com.

NOTE

This documentation assumes that you have configured the quay-
server.example.com hostname in your /etc/hosts file.

3. Login with username and password specified

4. Login with the username and password you set in Step 1of Configuring Red Hat Quay.

NOTE

If you followed this procedure, the username is quayconfig and the password is
secret.

2.5.1. Red Hat Quay setup

In the Red Hat Quay configuration editor, you must enter the following credentials:
® Basic configuration
® Server configuration
® Database

® Redis

2.5.1.1. Basic configuration

Under Basic Configuration, populate the Registry Titleand Registry Title Shortfields. The default
values can be used if they are populated.

2.5.1.2. Server configuration

Under Server Hostname, specify the HTTP host and port for the location where the registry will be
accessible on the network.

If you followed the instructions in this documenter, enter quay-server.example.com.

2.5.1.3. Database

In the Database section, specify the connection details for the database that Red Hat Quay uses to
store metadata.

If you followed the instructions in this document for deploying a proof of concept system, enter the
following values:

12

CHAPTER 2. GETTING STARTED WITH RED HAT QUAY

® Database Type: Postgres

® Database Server: quay-server.example.com:5432
® Username: quayuser

® Password: quaypass

® Database Name: quay

2.5.1.4. Redis

The Redis key-value store is used to store real-time events and build logs.

If you followed the instructions in this document for deploying a proof-of-concept system, enter the
following credentials under the Redis section:

® Redis Hosthame: quay-server.example.com
® Redis port: 6379 (default)

® Redis password: strongpassword

2.5.2. Validate and download configuration

After all required fields have been set, validate your settings by clicking Validate Configuration
Changes. If any errors are reported, continue editing your configuration until the settings are valid and
Red Hat Quay can connect to your database and Redis servers.

After validation, download the Configuration file. Stop the Quay container that is running the
configuration editor.

2.6. DEPLOYING RED HAT QUAY

2.6.1. Prerequisites

® The Red Hat Quay database is running.
® The Redis server is running.
® You have generated a valid configuration file.

® You have stopped the Quay container that was running the configuration editor.

2.6.2. Preparing the configuration folder

Use the following procedure to prepare your Red Hat Quay configuration folder.

Procedure

1. Create a directory to copy the Red Hat Quay configuration bundle to:

I $ mkdir $QUAY/config

13

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

2. Copy the generated Red Hat Quay configuration bundle to the directory:

I $ cp ~/Downloads/quay-config.tar.gz ~/config

3. Change into the the directory:
I $ cd $QUAY/config

4. Unpack the Red Hat Quay configuration bundle:

I $ tar xvf quay-config.tar.gz

2.6.3. Prepare local storage for image data

Use the following procedure to set your local file system to store registry images.

Procedure

1. Create a local directory that will store registry images by entering the following command:

I $ mkdir SQUAY/storage

2. Set the directory to store registry images:

I $ setfacl -m u:1001:-wx $QUAY/storage

2.6.4. Deploy the Red Hat Quay registry

1. Use the following procedure to deploy the Quay registry container.

2. Enter the following command to start the Quay registry container, specifying the appropriate
volumes for configuration data and local storage for image data:

$ sudo podman run -d --rm -p 80:8080 -p 443:8443 \
--name=quay \
-v $QUAY/config:/conf/stack:Z \
-v $QUAY/storage:/datastorage:Z \
registry.redhat.io/quay/quay-rhel8:v3.8.15

2.7. USING RED HAT QUAY

The following steps allow you to use the interface and create new organizations and repositories, and to
search and browse existing repositories. Following step 3, you can use the command line interface to
interact with the registry, and to push and pull images.

1. Use your browser to access the user interface for the Red Hat Quay registry at http://quay-
server.example.com, assuming you have configured quay-server.example.com as your
hostname in your /etc/hosts file.

2. Click Create Account and add a user, for example, quayadmin with a password password.

3. From the command line, log in to the registry:

14

CHAPTER 2. GETTING STARTED WITH RED HAT QUAY

$ sudo podman login --tls-verify=false quay-server.example.com
Username: quayadmin

Password: password

Login Succeeded!

2.7.1. Push and pull images

1. To test pushing and pulling images from the Red Hat Quay registry, first pull a sample image
from an external registry:

$ sudo podman pull busybox

Trying to pull docker.io/library/busybox...

Getting image source signatures

Copying blob 4¢c892f00285e done

Copying config 226675368 done

Writing manifest to image destination

Storing signatures
22667f5368222920948d19¢c7133ab1c9c3f745805¢14125859d20cede07f11f9

2. Use the podman images command to see the local copy:

$ sudo podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/library/busybox latest 22667f53682a 14 hoursago 1.45MB

3. Tag this image, in preparation for pushing it to the Red Hat Quay registry:

$ sudo podman tag docker.io/library/busybox quay-
server.example.com/quayadmin/busybox:test

4. Next, push the image to the Red Hat Quay registry. Following this step, you can use your
browser to see the tagged image in your repository.

$ sudo podman push --tls-verify=false quay-server.example.com/quayadmin/busybox:test
Getting image source signatures

Copying blob 6b245f040973 done

Copying config 226675368 done

Writing manifest to image destination

Storing signatures

5. To test access to the image from the command line, first delete the local copy of the image:

$ sudo podman rmi quay-server.example.com/quayadmin/busybox:test
Untagged: quay-server.example.com/quayadmin/busybox:test

6. Pull the image again, this time from your Red Hat Quay registry:

$ sudo podman pull --tls-verify=false quay-server.example.com/quayadmin/busybox:test
Trying to pull quay-server.example.com/quayadmin/busybox:test...

Getting image source signatures

Copying blob 6ef22a7134ba | 10.0b/0.0b

Copying config 226675368 done

15

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

Writing manifest to image destination
Storing signatures
22667f5368222920948d19¢c7133ab1c9c3f745805¢14125859d20cede07f11f9

16

CHAPTER 3. ADVANCED RED HAT QUAY DEPLOYMENT

CHAPTER 3. ADVANCED RED HAT QUAY DEPLOYMENT

Use the following sections to configure advanced Red Hat Quay settings.

3.1. USING SSL/TLS

To configure Red Hat Quay with a self-signed certificate, you must create a Certificate Authority (CA)
and then generate the required key and certificate files.

NOTE
The following examples assume you have configured the server hostname quay-

server.example.com using DNS or another naming mechanism, such as adding an entry
in your /etc/hosts file:

$ cat /etc/hosts

192.168.1.112 quay-server.example.com

3.1.1. Creating a certificate authority and signing a certificate

Use the following procedures to create a certificate file and a primary key file named ssl.cert and
ssl.key.

3.1.1.1. Creating a certificate authority

Use the following procedure to create a certificate authority (CA)
Procedure
1. Generate the root CA key by entering the following command:

I $ openssl genrsa -out rootCA.key 2048

2. Generate the root CA certificate by entering the following command:

I $ openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.pem

3. Enter the information that will be incorporated into your certificate request, including the server
hostname, for example:

Country Name (2 letter code) [XX]:IE

State or Province Name (full name) [[:GALWAY

Locality Name (eg, city) [Default City].GALWAY

Organization Name (eg, company) [Default Company Ltd]:QUAY

Organizational Unit Name (eg, section) [:DOCS

Common Name (eg, your name or your server's hostname) []:quay-server.example.com

3.1.1.2. Signing a certificate

Use the following procedure to sign a certificate.

17

https://en.wikipedia.org/wiki/Self-signed_certificate

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

Procedure

1. Generate the server key by entering the following command:

I $ openssl genrsa -out ssl.key 2048

2. Generate a signing request by entering the following command:

I $ openssl req -new -key ssl.key -out ssl.csr

3. Enter the information that will be incorporated into your certificate request, including the server
hostname, for example:

Country Name (2 letter code) [XX]:IE

State or Province Name (full name) [[:GALWAY

Locality Name (eg, city) [Default City].GALWAY

Organization Name (eg, company) [Default Company Ltd]:QUAY

Organizational Unit Name (eg, section) [:DOCS

Common Name (eg, your name or your server's hostname) []:quay-server.example.com

4. Create a configuration file openssl.cnf, specifying the server hostname, for example:

openssl.cnf

[req]

reg_extensions = v3_req

distinguished_name = req_distinguished_name
[req_distinguished_name]

[v3_req]

basicConstraints = CA:FALSE

keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]

DNS.1 = quay-server.example.com
IP.1=192.168.1.112

5. Use the configuration file to generate the certificate ssl.cert:

$ openssl x509 -req -in ssl.csr -CA rootCA.pem -CAkey rootCA .key -CAcreateserial -out
ssl.cert -days 356 -extensions v3_req -extfile openssl.cnf

3.1.2. Configuring SSL/TLS using the Red Hat Quay Ul

Use the following procedure to configure SSL/TLS using the Red Hat Quay UL

To configure SSL using the command line interface, see "Configuring SSL/TLS using the command line
interface”.

Prerequisites

® You have created a certificate authority and signed the certificate.

Procedure

18

CHAPTER 3. ADVANCED RED HAT QUAY DEPLOYMENT

Start the Quay container in configuration mode:

$ sudo podman run --rm -it --name quay_config -p 80:8080 -p 443:8443
registry.redhat.io/quay/quay-rhel8:v3.8.15 config secret

In the Server Configuration section, select Red Hat Quay handles TLSfor SSL/TLS. Upload
the certificate file and private key file created earlier, ensuring that the Server Hostname
matches the value used when the certificates were created.

Validate and download the updated configuration.

Stop the Quay container and then restart the registry by entering the following command:

$ sudo podman rm -f quay

$ sudo podman run -d --rm -p 80:8080 -p 443:8443 \
--name=quay \

-v $QUAY/config:/conf/stack:Z \

-v $QUAY/storage:/datastorage:Z \
registry.redhat.io/quay/quay-rhel8:v3.8.15

3.1.3. Configuring SSL using the command line interface

Use the following procedure to configure SSL/TLS using the command line interface.

Prerequisites

You have created a certificate authority and signed the certificate.

Procedure

1.

Copy the certificate file and primary key file to your configuration directory, ensuring they are
named ssl.cert and ssl.key respectively:

I cp ~/ssl.cert ~/ssl.key $QUAY/config
Change into the $QUAY/config directory by entering the following command:
I $ cd $QUAY/config

Edit the config.yaml file and specify that you want Red Hat Quay to handle TLS/SSL.:

config.yaml

SERVER_HOSTNAME: quay-server.example.com

PREFERRED_URL_SCHEME: https

Optional: Append the contents of the rootCA.pem file to the end of the ssl.cert file by entering
the following command:

I $ cat rootCA.pem >> ssl.cert

19

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

5. Stop the Quay container by entering the following command:

I $ sudo podman stop quay

6. Restart the registry by entering the following command:

$ sudo podman run -d --rm -p 80:8080 -p 443:8443 \
--name=quay \
-v $QUAY/config:/conf/stack:Z \
-v $QUAY/storage:/datastorage:Z \
registry.redhat.io/quay/quay-rhel8:v3.8.15

3.1.4. Testing SSL configuration using the command line

® Use the podman login command to attempt to log in to the Quay registry with SSL enabled:
$ sudo podman login quay-server.example.com
Username: quayadmin
Password:
Error: error authenticating creds for "quay-server.example.com": error pinging docker registry

quay-server.example.com: Get "https://quay-server.example.com/v2/": x509: certificate
signed by unknown authority

® Podman does not trust self-signed certificates. As a workaround, use the --tls-verify option:

$ sudo podman login --tls-verify=false quay-server.example.com
Username: quayadmin
Password:

Login Succeeded!

Configuring Podman to trust the root Certificate Authority (CA) is covered in a subsequent section.

3.1.5. Testing SSL configuration using the browser

When you attempt to access the Quay registry, in this case, hitps:/quay-server.example.com, the
browser warns of the potential risk:

20

https://quay-server.example.com

CHAPTER 3. ADVANCED RED HAT QUAY DEPLOYMENT

& > C A Notsecure | quay-serverexample.com

A

Your connection is not private

Attackers might be trying to steal your information from quay-server.example.com (for

example, passwords, messages or credit cards). Learn more

NET::ERR_CERT_AUTHORITY_INVALID

Q To get Chrome’s highest level of security, turn on enhanced protection

Advanced Back to safety

Proceed to the log in screen, and the browser will notify you that the connection is not secure:

& > C (A Notsecure quay-server.example.com

X
Your connection to this site is not
@RED | L

secure

You should not enter any sensitive
information on this site (for example,

passwords or credit cards) because it could ®
be stolen by attackers. Learn more @ R E D H AT Q U AY

You have chosen to disable security
warnings for this site. Re-enable warnings

B Certificate (Invalid)

& Cookies (4 in use)

Username or E-mail Addre

£ Site settings

word

Sign in to Project Quay

Configuring the system to trust the root Certificate Authority (CA) is covered in the subsequent

section.

3.1.6. Configuring podman to trust the Certificate Authority

Podman uses two paths to locate the CA file, namely, /etc/containers/certs.d/ and /etc/docker/certs.d/.

® Copy the root CA file to one of these locations, with the exact path determined by the server

hostname, and naming the file ca.crt:

I $ sudo cp rootCA.pem /etc/containers/certs.d/quay-server.example.com/ca.crt

® Alternatively, if you are using Docker, you can copy the root CA file to the equivalent Docker

directory:

21

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

I $ sudo cp rootCA.pem /etc/docker/certs.d/quay-server.example.com/ca.crt
You should no longer need to use the --tls-verify=false option when logging in to the registry:

$ sudo podman login quay-server.example.com

Username: quayadmin
Password:
Login Succeeded!

3.1.7. Configuring the system to trust the certificate authority

Use the following procedure to configure your system to trust the certificate authority.

Procedure

1. Enter the following command to copy the rootCA.pem file to the consolidated system-wide
trust store:

I $ sudo cp rootCA.pem /etc/pki/ca-trust/source/anchors/

2. Enter the following command to update the system-wide trust store configuration:

I $ sudo update-ca-trust extract

3. Optional. You can use the trust list command to ensure that the Quay server has been
configured:

$ trust list | grep quay
label: quay-server.example.com

Now, when you browse to the registry at https://quay-server.example.com, the lock icon
shows that the connection is secure:

&« > C & quay-server.example.com

Connection is secure
@RED | L

Your information (for example, passwords
or credit card numbers) is private when it is

sent to this site. Learn more

@ RED HAT QUAY

@ Certificate (Valid)
@& Cookies (4 in use)

R Site settings

Sign in to Project Quay

4. Toremove the rootCA.pem file from system-wide trust, delete the file and update the
configuration:

22

https://quay-server.example.com

CHAPTER 3. ADVANCED RED HAT QUAY DEPLOYMENT

I $ sudo rm /etc/pki/ca-trust/source/anchors/rootCA.pem
I $ sudo update-ca-trust extract

I $ trust list | grep quay

More information can be found in the RHEL 8 documentation in the chapter Using shared system
certificates.

3.2. RED HAT QUAY SUPERUSER
A superuser is a Quay user account that has extended privileges, including the ability to:
® Manage users
® Manage organizations
® Manage service keys
® \iew the change log
® Query the usage logs

® Create globally visible user messages

3.2.1. Adding a superuser to Quay using the Ul

This section covers how to add a superuser using the Quay Ul. To add a superuser using the command
line interface, see the following section.

1. Start the Quay container in configuration mode, loading the existing configuration as a volume:

$ sudo podman run --rm -it --name quay_config \
-p 8080:8080 \
-p 443:8443 \
-v $QUAY/config:/conf/stack:Z \
registry.redhat.io/quay/quay-rhel8:v3.8.15 config secret

2. Under the Access Settings section of the Ul, enter the name of the user (in this instance,
quayadmin) in the Super Users field and click Add.

3. Validate and download the configuration file and then terminate the Quay container that is
running in config mode. Extract the config.yaml file to the configuration directory and restart
the Quay container in registry mode:

$ sudo podman rm -f quay

$ sudo podman run -d --rm -p 80:8080 -p 443:8443 \
--name=quay \

-v $QUAY/config:/conf/stack:Z \

-v $QUAY/storage:/datastorage:Z \
registry.redhat.io/quay/quay-rhel8:v3.8.15

3.2.2. Editing the config.yaml file to add a superuser

23

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/securing_networks/index#using-shared-system-certificates_securing-networks

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

You can also add a superuser by editing the config.yaml file directly. The list of superuser accounts is
stored as an array in the field SUPER_USERS.

® Stop the container registry if it is running, and add the SUPER_USERS array to the
config.yaml file:

SERVER_HOSTNAME: quay-server.example.com
SETUP_COMPLETE: true
SUPER_USERS:

- quayadmin

3.2.3. Accessing the superuser admin panel

1. Restart the Quay registry:

$ sudo podman rm -f quay

$ sudo podman run -d --rm -p 80:8080 -p 443:8443 \
--name=quay \

-v $QUAY/config:/conf/stack:Z \

-v $QUAY/storage:/datastorage:Z \
registry.redhat.io/quay/quay-rhel8:v3.8.15

2. Access the Super User Admin Panel by clicking on the current user’s name or avatar in the top
right-hand corner of the Ul. If the user has been added as a superuser, an extra itemis
presented in the drop-down list called Super User Admin Panel.

@RED HAT QUAY EXPLORE REPOSITORIES TUTORIAL +- 4 E quayad.

Account Settings

Repositories + Create New R(

Super User Admin Panel
Sign out all sessions.

ind Organization:
1-10f1 Filter Repositories. Users and Organizations

m quayadmin
LAST MODIFIED ACTVITY | STAR

Create New Organization
m quayadmin / ubuntu 02123/2021 all

3.2.3.1. Creating a globally visible user message

Using the Superuser Admin Panel, you can create Normal, Warning, or Error messages for your
organization.

1. Click your user name in the top right-hand corner of the Ul. Select Super User Admin Panel.

2. On the Red Hat Quay Management page, click Globally visible user messages on the left
hand pane.

3. Click Create Message to show a drop-down menu containing Normal, Warning, and Error
message types:

24

CHAPTER 3. ADVANCED RED HAT QUAY DEPLOYMENT

4. Enter a message by selecting Click to set message, then click Create Message.

Messages can be deleted by clicking Options and then Delete Message.
3.3. REPOSITORY MIRRORING

3.3.1. Repository mirroring
Red Hat Quay repository mirroring lets you mirror images from external container registries, or another
local registry, into your Red Hat Quay cluster. Using repository mirroring, you can synchronize images to
Red Hat Quay based on repository names and tags.
From your Red Hat Quay cluster with repository mirroring enabled, you can perform the following:

® Choose a repository from an external registry to mirror

® Add credentials to access the external registry

e |dentify specific container image repository names and tags to sync

® Setintervals at which a repository is synced

® Check the current state of synchronization
To use the mirroring functionality, you need to perform the following actions:

® Enable repository mirroring in the Red Hat Quay configuration file

® Run arepository mirroring worker

® Create mirrored repositories

All repository mirroring configurations can be performed using the configuration tool Ul or by the Red
Hat Quay APL.

3.3.2. Mirroring configuration Ul

1. Start the Quay container in configuration mode and select the Enable Repository Mirroring
check box. If you want to require HTTPS communications and verify certificates during
mirroring, select the HTTPS and cert verification check box.

& Repository Mirroring

If enabled, scheduled mirroring of repositories from remote registries will be available.

b4 Enable Repository Mirroring
A repository mirror service must be running to use this feature. Documentation on setting up and running this service can be found at Running Repository Mirroring Service.

Require HTTPS and verify certificates of Quay registry during mirror.

2. Validate and download the configuration file, and then restart Quay in registry mode using the
updated config file.

3.3.3. Mirroring worker

25

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

Use the following procedure to start the repository mirroring worker.

Procedure

e |f you have not configured TLS communications using a /root/ca.crt certificate, enter the
following command to start a Quay pod with the repomirror option:

$ sudo podman run -d --name mirroring-worker \
-v $QUAY/config:/conf/stack:Z \
registry.redhat.io/quay/quay-rhel8:v3.8.15 repomirror

e |f you have configured TLS communications using a /root/ca.crt certificate, enter the following
command to start the repository mirroring worker:

$ sudo podman run -d --name mirroring-worker \
-v $QUAY/config:/conf/stack:Z \
-v /root/ca.crt:/etc/pki/ca-trust/source/anchors/ca.crt:Z \
registry.redhat.io/quay/quay-rhel8:v3.8.15 repomirror

3.3.4. Creating a mirrored repository

When mirroring a repository from an external container registry, you must create a new private
repository. Typically, the same name is used as the target repository, for example, quay-rhel8.

@ RED HAT QUAY EXPLORE REPOSITORIES TUTORIAL

& Repositories Create New Repository

Click to set repository description

o Ppublic

jore can see and pull from this repository. You choose who can push.

<, pull and push fromto this repositary.

3.3.4.1. Repository mirroring settings

Use the following procedure to adjust the settings of your mirrored repository.

Prerequisites
® You have enabled repository mirroring in your Red Hat Quay configuration file.

® You have deployed a mirroring worker.

Procedure

1. In the Settings tab, set the Repository State to Mirror:

26

CHAPTER 3. ADVANCED RED HAT QUAY DEPLOYMENT

@RED HAT QUAY EXPLORE REFOSITORIES TUTORIAL +- 4 quayad

€ Repositories

(i}

&, quayadmin /quay-rhel8 ¢

Repository Settings

@ User and Robot Permissions

[g < o
@ [wie ~ o
e

& Events and Notifications

No notifications have been setup for this repository.

& Repository Visibility

This Reposi ently private. Only users on the pe: list interact with it

& Make Public

& Repository State

This Repository state is currently Mirror. The images and tags are maintained by Quay and Users can not push or modify them.

2. Inthe Mirror tab, enter the details for connecting to the external registry, along with the tags,
scheduling and access information:

€ Repositries &, testorg/ busybox Yr

i]
»

Repository Mirroring
This feature will convert testorg/busybex into a mirror. Changes to the external repasitory will be duplicated here. While enabled, users will be unable to push images to this repository.

External Repository
Registry Location
Tags
Comma-segarated st ot tag
pattens to syncnrenize.
Start Date May 16, 2022 11:30 AM
Syne Interval

seconds v
Rabot User eam or user... -

Credentials
Reguired if the extemai repasitory s private.

Username

Password

Advanced Settings

Verity TLS

Fequire HTTPS and verity o
certiticates when talking la the
external registry.

Accept Unsigned Images
Amow unsigned images to be o

mirrosed

HTTP Proxy
HTTPs Proxy

Ho Praxy

3. Enter the details as required in the following fields:

® Registry Location: The external repository you want to mirror, for example,
registry.redhat.io/quay/quay-rhel8

® Tags: This field is required. You may enter a comma-separated list of individual tags or tag
patterns. (See Tag Patterns section for details.)

® Start Date: The date on which mirroring begins. The current date and time is used by
default.

® Sync Interval: Defaults to syncing every 24 hours. You can change that based on hours or
days.

27

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

® Robot User: Create a new robot account or choose an existing robot account to do the
mirroring.

e Username: The username for accessing the external registry holding the repository you are
mirroring.

® Password: The password associated with the Username. Note that the password cannot
include characters that require an escape character (\).

3.3.4.2. Advanced settings

In the Advanced Settings section, you can configure SSL/TLS and proxy with the following options:

e Verify TLS: Select this option if you want to require HTTPS and to verify certificates when
communicating with the target remote registry.

® Accept Unsigned Images: Selecting this option allows unsigned images to be mirrored.

e HTTP Proxy: Select this option if you want to require HTTPS and to verify certificates when
communicating with the target remote registry.

e HTTPS PROXY: Identify the HTTPS proxy server needed to access the remote site, if a proxy
server is needed.

® No Proxy: List of locations that do not require proxy.

3.3.4.3. Synchronize now

Use the following procedure to initiate the mirroring operation.

Procedure

® To perform an immediate mirroring operation, press the Sync Now button on the repository’s

Mirroring tab. The logs are available on the Usage Logs tab:
(i}

W o omam

E o

& Q

When the mirroring is complete, the images will appear in the Tags tab:

28

CHAPTER 3. ADVANCED RED HAT QUAY DEPLOYMENT

€ Repostories &, quayuser / quay-rhel8 v¥

@ ReposioyTags e
. 107

‘> TAG EXPIRES

Below is an example of a completed Repository Mirroring screen:

@RED HAT QUAY ExPLORE ITORIES TUTORIAL + A
€ Repostories &, quayadmin/quay-rhel8 v

© Repository Mirroring

3.3.5. Mirroring tag patterns

At least one tag must be entered. The following table references possible image tag patterns.
3.3.5.1. Pattern syntax

Pattern Description

Matches all characters

? Matches any single character
[seq] Matches any character in seq
[lseq] Matches any character not in seq

3.3.5.2. Example tag patterns

Example Pattern Example Matches
v3* v32,v3.1,v3.2, v3.2-4beta, v3.3
v3.* v3.1,v3.2, v3.2-4beta

29

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

v3.? v3.1,v3.2,v3.3

v3.[12] v3.1,v3.2

v3.[12]* v3.1,v3.2,v3.2-4beta
v3.[1n]* v3.2,v3.2-4beta, v3.3

3.4. CLAIR FOR RED HAT QUAY

Clair v4 (Clair) is an open source application that leverages static code analyses for parsing image
content and reporting vulnerabilities affecting the content. Clair is packaged with Red Hat Quay and can
be used in both standalone and Operator deployments. It can be run in highly scalable configurations,
where components can be scaled separately as appropriate for enterprise environments.

3.4.1. Setting up Clair on standalone Red Hat Quay deployments

For standalone Red Hat Quay deployments, you can set up Clair manually.
Procedure
1. In your Red Hat Quay installation directory, create a new directory for the Clair database data:

I $ mkdir /home/<user-name>/quay-poc/postgres-clairv4

2. Set the appropriate permissions for the postgres-clairv4 file by entering the following
command:

I $ setfacl -m u:26:-wx /home/<user-name>/quay-poc/postgres-clairv4

3. Deploy a Clair Postgres database by entering the following command:

$ sudo podman run -d --name postgresql-clairv4 \
-e POSTGRESQL_USER-=clairuser \
-e POSTGRESQL_PASSWORD-=clairpass \
-e POSTGRESQL_DATABASE-=clair \
-e POSTGRESQL_ADMIN_PASSWORD=adminpass \
-p 5433:5433 \
-v /home/<user-name>/quay-poc/postgres-clairv4:/var/lio/pgsql/data:Z \
{postgresimage}

4. Install the Postgres uuid-ossp module for your Clair deployment:

$ podman exec -it postgresql-clairv4 /bin/bash -c 'echo "CREATE EXTENSION IF NOT
EXISTS \"uuid-ossp\"" | psql -d clair -U postgres'

Example output

I CREATE EXTENSION

30

1.

12.

CHAPTER 3. ADVANCED RED HAT QUAY DEPLOYMENT

NOTE

Clair requires the uuid-ossp extension to be added to its Postgres database. For
users with proper privileges, creating the extension will automatically be added
by Clair. If users do not have the proper privileges, the extension must be added
before start Clair.

If the extension is not present, the following error will be displayed when Clair
attempts to start: ERROR: Please load the "uuid-ossp™" extension.
(SQLSTATE 42501).

Stop the Quay container if it is running and restart it in configuration mode, loading the existing
configuration as a volume:

$ sudo podman run --rm -it --name quay_config \
-p 80:8080 -p 443:8443 \
-v $QUAY/config:/conf/stack:Z \
{productrepo}/{quayimage}:{productminv} config secret

Log in to the configuration tool and click Enable Security Scanningin the Security Scanner
section of the UL

Set the HTTP endpoint for Clair using a port that is not already in use on the quay-server
system, for example, 8081.

Create a pre-shared key (PSK) using the Generate PSK button.

Security Scanner Ul

¥& Security Scanner
If enabled, all images pushed to Quay will be scanned via the external security scanning service, with vulnerability information available in the Ul and AP, as well as async notification support.

Enable Security Scanning

o A scanner compliant with the Quay Security Scanning AP1 must be running to use this feature. Documentation on running Clair can be found at Running Clair Security Scanner.

Security Scanner Endpoint: | htip://quay-server:8081

The HTTP URL at which the security scanner is running.

Security Scanner PSK: MTUSYzA4Y2ZkNzJoMQ== Generate PSK

Clair Pre-Shared Key. Make sure to include this value in your Clair config

. Validate and download the config.yaml file for Red Hat Quay, and then stop the Quay

container that is running the configuration editor.

. Extract the new configuration bundle into your Red Hat Quay installation directory, for example:

I $ tar xvf quay-config.tar.gz -d /home/<user-name>/quay-poc/

Create a folder for your Clair configuration file, for example:

I $ mkdir /etc/opt/clairv4/config/

Change into the Clair configuration folder:

I $ cd /etc/opt/clairv4/config/

31

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

13. Create a Clair configuration file, for example:

http_listen_addr: :8081
introspection_addr: :8088
log_level: debug
indexer:

connstring: host=quay-server.example.com port=5433 dbname=clair user=clairuser
password=clairpass sslmode=disable

scanlock_retry: 10

layer_scan_concurrency: 5

migrations: true
matcher:

connstring: host=quay-server.example.com port=5433 dbname=clair user=clairuser
password=clairpass sslmode=disable

max_conn_pool: 100

run: "

migrations: true

indexer_addr: clair-indexer
notifier:

connstring: host=quay-server.example.com port=5433 dbname=clair user=clairuser
password=clairpass sslmode=disable

delivery_interval: 1m

poll_interval: 5m

migrations: true

auth:
psk:
key: "MTU5YzA4Y2ZkNzJoMQ=="
iss: ["quay"]
tracing and metrics
trace:
name: "jaeger"
probability: 1
jaeger:

agent_endpoint: "localhost:6831"
service_name: "clair"
metrics:
name: "prometheus”

For more information about Clair's configuration format, see Clair configuration reference.

14. Start Clair by using the container image, mounting in the configuration from the file you created:

$ sudo podman run -d --name clairv4 \
-p 8081:8081 -p 8088:8088 \

-e CLAIR_CONF=/clair/config.yaml \

-e CLAIR_MODE=combo \

-v /etc/opt/clairv4/config:/clair:Z \
registry.redhat.io/quay/clair-rhel8:v3.8.15

NOTE

Running multiple Clair containers is also possible, but for deployment scenarios
beyond a single container the use of a container orchestrator like Kubernetes or
OpenShift Container Platform is strongly recommended.

32

https://quay.github.io/clair/reference/config.html

CHAPTER 3. ADVANCED RED HAT QUAY DEPLOYMENT

3.4.2. Testing Clair

Use the following procedure to test Clair on either a standalone Red Hat Quay deployment, or on an

OpenShift Container Platform Operator-based deployment.

Prerequisites

® You have deployed the Clair container image.

Procedure

1. Pull a sample image by entering the following command:

I $ podman pull ubuntu:20.04

2. Tagthe image to your registry by entering the following command:

I $ sudo podman tag docker.io/library/ubuntu:20.04 <quay-server.example.com>/<user-

name>/ubuntu:20.04

3. Push the image to your Red Hat Quay registry by entering the following command:

I $ sudo podman push --tls-verify=false quay-server.example.com/quayadmin/ubuntu:20.04

4. Login to your Red Hat Quay deployment through the UI.

5. Click the repository name, for example, quayadmin/ubuntu.

6. In the navigation pane, click Tags.
Report summary

& clairv4-org / ubuntu

4 Repositories

0 Repository Tags

®»

LAST MODIFIED
!

82 fixable

J, 18.04

12.04 10 days ago o Pa

9 days ago ™ 6

255 MB

264 MB

Compact SdeEhlal]

1-20f2

SHA256 bSBT46cBagsy & £F

SHA256 61844cebldds o

7. Click the image report, for example, 45 medium, to show a more detailed report:

Report details

33

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

€ B clairvd-orgubuntu ‘ b58746C88899

i

' Quay Security Scanner has detected 146 vulnerabilities.

Patches are available for 82 vulnerabilities.

0
@
H

A 6 High-level vulnerabilities.
45 Medium-level vulnerabilities.
57 Low-level vulnerabilities.

&

39% A 38 Negligible-level vulnerabilities.
Vulnerabilities Filt abilities [_] only show fixable
SEVERITY |
CVE-2019-3462 % A High apt 1612 © 1.7.0ubuntuo. file: c3e6bb316dfabbBlddd478aaa3104f532883..
CVE-2013-3462 % A Higr libapt-pkg50 1612 © 1.7.0ubuntuo. file:c3e6bb316dfabbBldd4478aaa3100532883.-
CVE-2018-16864 % A Hig libudlevl 237-3ubuntuln39 © 239-7ubuntul0G file:c3e6bb316dfachBlddad782aa31007532883..

3.4.3. CVE ratings from the National Vulnerability Database

As of Clair v4.2, Common Vulnerability Scoring System (CVSS) enrichment data is now viewable in the
Red Hat Quay Ul. Additionally, Clair v4.2 adds CVSS scores from the National Vulnerability Database for
detected vulnerabilities.

With this change, if the vulnerability has a CVSS score that is within 2 levels of the distribution score, the
Red Hat Quay Ul present’s the distribution’s score by default. For example:

DESCRIPTION
The SUSE coreutils-i18n. patch for GNU coreutils allows context-dependent attackers to cause a denial of service (segmentation fauit and crash) via a long string
to the unig command, which triggers a stack-based buffer overflow in the alloca function.

v GVE-2015-4041 % A unknown * coreutils 8.30-3 © 00 ADD rootfs.tar / # buildkit

SEVERITY NOTE
Note that this vulnerability was originally given a CVSSY3 score of 7.8 by NVD but was subsequently reclassified as A Unknown by Unknown

VECTORS

Attack Vector Attack Complexity ~ Privileges Required User Interaction Scope Confidentiality Impact Integrity Impact Availability Impact
A Low A None © Unchanged A High A High A High
© Local
DESCRIPTION

The keycompare_mb function in sort.c in sortin GNU Coreutls through 8.23 on 64-bit platforms performs a size calculation without considering the number of
bytes occupied by multibyte characters, which allows attackers to cause a denial of service (heap-based buffer overflow and application crash) or possibly have
unspecified other impact via long UTF-8 strings.

This differs from the previous interface, which would only display the following information:

+ CVE-2015-4041 % A unknown coreutils 8303 © 00 ADD rooffs tar / # buildkit

DESCRIPTION
The keycompare_mb function in sort.c in sort in GNU Coreutils through 8.23 on 64-bit platforms performs a size calculation without considering the number of
bytes occupied by multibyte characters, which allows attackers to cause a denial of service (heap-based buffer overflow and application crash) or possibly have
unspeciied other impact via long UTF-8 strings.

Additional resources

® \ulnerability reporting with Clair on Red Hat Quay

3.5. RESTARTING CONTAINERS

Because the --restart option is not fully supported by podman, you can configure podman as a systemd
service, as described in Porting containers to systemd using Podman

3.5.1. Using systemd unit files with Podman

34

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/vulnerability_reporting_with_clair_on_red_hat_quay/index#vulnerability-reporting-clair-quay-overview
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index#porting-containers-to-systemd-using-podman_building-running-and-managing-containers

CHAPTER 3. ADVANCED RED HAT QUAY DEPLOYMENT

By default, Podman generates a unit file for existing containers or pods. You can generate more
portable systemd unit files using the podman generate systemd --new command. The --new flag
instructs Podman to generate unit files that create, start and remove containers.

1. Create the systemd unit files from a running Red Hat Quay registry as follows:

$ sudo podman generate systemd --new --files --name redis

$ sudo podman generate systemd --new --files --name postgresql-quay
$ sudo podman generate systemd --new --files --name quay

$ sudo podman generate systemd --new --files --name postgresql-clairv4
$ sudo podman generate systemd --new --files --name clairv4

2. Copy the unit files to /usr/lib/systemd/system for installing them as a root user:

$ sudo cp -Z container-redis.service /ust/lib/systemd/system

$ sudo cp -Z container-postgresqgl-quay.service /usr/lib/systemd/system
$ sudo cp -Z container-quay.service /usr/lib/systemd/system

$ sudo cp -Z container-postgresql-clairv4.service /usr/lib/systemd/system
$ sudo cp -Z container-clairv4.service /ust/lib/systemd/system

3. Reload systemd manager configuration:
I $ sudo systemctl daemon-reload

4. Enable the services and start them at boot time:

$ sudo systemctl enable --now container-redis.service

$ sudo systemctl enable --now container-postgresql-quay.service
$ sudo systemctl enable --now container-quay.service

$ sudo systemctl enable --now container-postgresql-clairv4.service
$ sudo systemctl enable --now container-clairv4.service

3.5.2. Starting, stopping and checking the status of services

1. Check the status of the Quay components:

$ sudo systemctl status container-redis.service

$ sudo systemctl status container-postgresql-quay.service
$ sudo systemctl status container-quay.service

$ sudo systemctl status container-postgresqgl-clairv4.service
$ sudo systemctl status container-clairv4.service

2. To stop the Quay component services:
$ sudo systemctl stop container-redis.service
$ sudo systemctl stop container-postgresql-quay.service
$ sudo systemctl stop container-quay.service

$ sudo systemctl stop container-postgresql-clairv4.service
$ sudo systemctl stop container-clairv4.service

3. To start the Quay component services:

I $ sudo systemctl start container-redis.service

35

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

$ sudo systemctl start container-postgresql-quay.service
$ sudo systemctl start container-quay.service

$ sudo systemctl start container-postgresql-clairv4.service
$ sudo systemctl start container-clairv4.service

3.5.3. Testing restart after reboot

Once you have the services configured and enabled, reboot the system. When the system has re-
started, use podman ps to check that all the containers for the Quay components have been restarted:

$ sudo podman ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

4e87c7889246 {postgresimage} run-postgresgl 19 seconds ago Up 18 seconds ago
0.0.0.0:5432->5432/tcp postgresql-quay

b8fbac1920d4 registry.redhat.io/rhel8/redis-6:1-110) run-redis 19 seconds ago Up 18
seconds ago 0.0.0.0:6379->6379/tcp redis

d959d5bf7a24 {postgresimage} run-postgresql 18 seconds ago Up 18 seconds ago 0.0.0.0:5433-
>5432/tcp postgresql-clairv4

e75ff8651dbd registry.redhat.io/quay/clair-rhel8:v3.4.0 18 seconds ago Up 17 seconds
ago 0.0.0.0:8081->8080/tcp clairv4

In this instance, the Quay container itself has failed to start up. This is due to the fact that, when security
scanning is enabled in Quay, it tries to connect to Clair on startup. However, Clair has not finished
initializing and cannot accept connections and, as a result, Quay terminates immediately. To overcome
this issue, you need to configure the Quay service to have a dependency on the Clair service, as shown
in the following section.

3.5.4. Configuring Quay’s dependency on Clair

In the systemd service file for Quay, set up a dependency on the Clair service in the [Unit] section by
setting After=container-clairv4.service. To give the Clair container time to initialize, add a delay in the
[Service] section, for example RestartSec=30. Here is an example of the modified Quay file, after
configuring the dependency on Clair:

/usr/lib/systemd/system/container-quay.service

container-quay.service
autogenerated by Podman 2.0.5
Tue Feb 16 17:02:26 GMT 2021

[Unit]

Description=Podman container-quay.service
Documentation=man:podman-generate-systemd(1)
Wants=network.target
After=container-clairv4.service

[Service]

Environment=PODMAN_SYSTEMD_UNIT=%n

Restart=on-failure

RestartSec=30

ExecStartPre=/bin/rm -f %t/container-quay.pid %t/container-quay.ctr-id
ExecStart=/usr/bin/podman run --conmon-pidfile %t/container-quay.pid --cidfile %t/container-
quay.ctr-id --cgroups=no-conmon -d --rm -p 8080:8080 --name=quay -v

36

CHAPTER 3. ADVANCED RED HAT QUAY DEPLOYMENT

/home/useri/quay/config:/conf/stack:Z -v /home/useri/quay/storage:/datastorage:Z
registry.redhat.io/quay/quay-rhel8:v3.4.0

ExecStop=/usr/bin/podman stop --ignore --cidfile %t/container-quay.ctr-id -t 10
ExecStopPost=/usr/bin/podman rm --ignore -f --cidfile %t/container-quay.ctr-id
PIDFile=%t/container-quay.pid

KillMode=none

Type=forking

[Install]
WantedBy=multi-user.target default.target

Once you have updated the Quay service configuration, reboot the server and immediately run podman
ps:

$ sudo podman ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

4e87c7889246 {postgresimage} run-postgresqgl 29 seconds ago Up 28 seconds ago
0.0.0.0:5432->5432/tcp postgresql-quay

b8fbac1920d4 registry.redhat.io/rhel8/redis-6:1-110) run-redis 29 seconds ago Up 28
seconds ago 0.0.0.0:6379->6379/tcp redis

d959d5bf7a24 {postgresimage} run-postgresql 28 seconds ago Up 28 seconds ago 0.0.0.0:5433-
>5432/tcp postgresql-clairv4

e75ff8651dbd registry.redhat.io/quay/clair-rhel8:v3.4.0 28 seconds ago Up 27 seconds
ago 0.0.0.0:8081->8080/tcp clairv4

Initially, the Quay container will not be available, but once the RestartSec delay has expired, it should
start up:

$ sudo podman ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

4e87c7889246 {postgresimage} run-postgresqgl 35 seconds ago Up 34 seconds ago
0.0.0.0:5432->5432/tcp postgresql-quay

ab9f0ebad7c3 registry.redhat.io/quay/quay-rhel8:v3.4.0 registry 3 seconds ago Up 2 seconds
ago 0.0.0.0:8080->8080/tcp quay

b8fbac1920d4 registry.redhat.io/rhel8/redis-6:1-110) run-redis 35 seconds ago Up 34
seconds ago 0.0.0.0:6379->6379/tcp redis

d959d5bf7a24 {postgresimage} run-postgresql 34 seconds ago Up 34 seconds ago 0.0.0.0:5433-
>5432/tcp postgresql-clairv4

e75ff8651dbd registry.redhat.io/quay/clair-rhel8:v3.4.0 34 seconds ago Up 33 seconds
ago 0.0.0.0:8081->8080/tcp clairv4

The CREATED field for the Quay container shows the 30 second difference in creation time, as
configured in the service definition.

Login to the Red Hat Quay registry at quay-server.example.com and ensure that everything has
restarted correctly.

3.6. FEDERAL INFORMATION PROCESSING STANDARD (FIPS)
READINESS AND COMPLIANCE

The Federal Information Processing Standard (FIPS) developed by the National Institute of Standards
and Technology (NIST) is regarded as the highly regarded for securing and encrypting sensitive data,

37

Red Hat Quay 3.8 Deploy Red Hat Quay for proof-of-concept (non-production) purposes

notably in highly regulated areas such as banking, healthcare, and the public sector. Red Hat Enterprise
Linux (RHEL) and OpenShift Container Platform support the FIPS standard by providing a FIPS mode,
in which the system only allows usage of specific FIPS-validated cryptographic modules like openssil.
This ensures FIPS compliance.

Red Hat Quay supports running on FIPS-enabled RHEL and OpenShift Container Platform
environments from Red Hat Quay version 3.5.0.

38

CHAPTER 4. NEXT STEPS

CHAPTER 4. NEXT STEPS

This document shows how to configure and deploy a proof-of-concept version of Red Hat Quay. For
more information on deploying to a production environment, see the guide "Deploy Red Hat Quay -
High Availability".

The "Use Red Hat Quay" guide shows you how to:

Add users and repositories

Use tags

Automatically build Dockerfiles with build workers
Set up build triggers

Add notifications for repository events

The "Manage Red Hat Quay" guide shows you how to:

Use SSL and TLS

Enable security scanning with Clair
Use repository mirroring
Configure LDAP authentication

Use georeplication of storage

39

	Table of Contents
	PREFACE
	CHAPTER 1. OVERVIEW
	1.1. ARCHITECTURE
	1.1.1. Internal components
	1.1.2. External components

	CHAPTER 2. GETTING STARTED WITH RED HAT QUAY
	2.1. PREREQUISITES
	2.1.1. Using Podman

	2.2. PREPARING RED HAT ENTERPRISE LINUX FOR A RED HAT QUAY PROOF OF CONCEPT DEPLOYMENT
	2.2.1. Install and register the RHEL server
	2.2.2. Installing Podman
	2.2.3. Registry authentication
	2.2.4. Firewall configuration
	2.2.5. IP addressing and naming services

	2.3. CONFIGURING THE DATABASE
	2.3.1. Setting up Postgres

	2.4. CONFIGURING REDIS
	2.4.1. Setting up Redis

	2.5. CONFIGURING RED HAT QUAY
	2.5.1. Red Hat Quay setup
	2.5.1.1. Basic configuration
	2.5.1.2. Server configuration
	2.5.1.3. Database
	2.5.1.4. Redis

	2.5.2. Validate and download configuration

	2.6. DEPLOYING RED HAT QUAY
	2.6.1. Prerequisites
	2.6.2. Preparing the configuration folder
	2.6.3. Prepare local storage for image data
	2.6.4. Deploy the Red Hat Quay registry

	2.7. USING RED HAT QUAY
	2.7.1. Push and pull images

	CHAPTER 3. ADVANCED RED HAT QUAY DEPLOYMENT
	3.1. USING SSL/TLS
	3.1.1. Creating a certificate authority and signing a certificate
	3.1.1.1. Creating a certificate authority
	3.1.1.2. Signing a certificate

	3.1.2. Configuring SSL/TLS using the Red Hat Quay UI
	3.1.3. Configuring SSL using the command line interface
	3.1.4. Testing SSL configuration using the command line
	3.1.5. Testing SSL configuration using the browser
	3.1.6. Configuring podman to trust the Certificate Authority
	3.1.7. Configuring the system to trust the certificate authority

	3.2. RED HAT QUAY SUPERUSER
	3.2.1. Adding a superuser to Quay using the UI
	3.2.2. Editing the config.yaml file to add a superuser
	3.2.3. Accessing the superuser admin panel
	3.2.3.1. Creating a globally visible user message

	3.3. REPOSITORY MIRRORING
	3.3.1. Repository mirroring
	3.3.2. Mirroring configuration UI
	3.3.3. Mirroring worker
	3.3.4. Creating a mirrored repository
	3.3.4.1. Repository mirroring settings
	3.3.4.2. Advanced settings
	3.3.4.3. Synchronize now

	3.3.5. Mirroring tag patterns
	3.3.5.1. Pattern syntax
	3.3.5.2. Example tag patterns

	3.4. CLAIR FOR RED HAT QUAY
	3.4.1. Setting up Clair on standalone Red Hat Quay deployments
	3.4.2. Testing Clair
	3.4.3. CVE ratings from the National Vulnerability Database

	3.5. RESTARTING CONTAINERS
	3.5.1. Using systemd unit files with Podman
	3.5.2. Starting, stopping and checking the status of services
	3.5.3. Testing restart after reboot
	3.5.4. Configuring Quay’s dependency on Clair

	3.6. FEDERAL INFORMATION PROCESSING STANDARD (FIPS) READINESS AND COMPLIANCE

	CHAPTER 4. NEXT STEPS

