& RedHat

Red Hat OpenStack Platform 17.1

Service Telemetry Framework 1.5

Installing and deploying Service Telemetry Framework 1.5

Last Updated: 2024-03-07

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

Installing and deploying Service Telemetry Framework 1.5

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Install the core components and deploy Service Telemetry Framework 1.5

Table of Contents

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... ittt ittt tttiaeeeeetenneaaeeennnaneennns 5
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ...ttt ittt i itiieeeeeeennnaneennns 6
CHAPTER 1. INTRODUCTION TO SERVICE TELEMETRY FRAMEWORK 1.5 i, 7
1.1. SUPPORT FOR SERVICE TELEMETRY FRAMEWORK 7
1.2. SERVICE TELEMETRY FRAMEWORK ARCHITECTURE 7
1.2.1. STF Architecture Changes 10

1.3. INSTALLATION SIZE OF RED HAT OPENSHIFT CONTAINER PLATFORM 1

CHAPTER 2. PREPARING YOUR RED HAT OPENSHIFT CONTAINER PLATFORM ENVIRONMENT FOR

SERVICE TELEMETRY FRAMEWO O RK .ttt ittt ei ettt eeeteeneeeaneenaneennneenneenns 12
2.1. OBSERVABILITY STRATEGY IN SERVICE TELEMETRY FRAMEWORK 12
2.2. PERSISTENT VOLUMES 13
2.3. RESOURCE ALLOCATION 13
2.4. NETWORK CONSIDERATIONS FOR SERVICE TELEMETRY FRAMEWORK 14
2.5.DEPLOYING STF ON RED HAT OPENSHIFT CONTAINER PLATFORM-DISCONNECTED ENVIRONMENTS

14

CHAPTER 3. INSTALLING THE CORE COMPONENTS OF SERVICE TELEMETRY FRAMEWORK 17
3.1. DEPLOYING SERVICE TELEMETRY FRAMEWORK TO THE RED HAT OPENSHIFT CONTAINER PLATFORM
ENVIRONMENT 17

3.1.1. Deploying Cluster Observability Operator 18
3.1.2. Deploying cert-manager for Red Hat OpenShift 18
3.1.3. Deploying Service Telemetry Operator 20
3.2. CREATING A SERVICETELEMETRY OBJECT IN RED HAT OPENSHIFT CONTAINER PLATFORM 21
3.2.1. Primary parameters of the ServiceTelemetry object 23
The backends parameter 24
Enabling Prometheus as a storage back end for metrics 24
Configuring persistent storage for Prometheus 24
Enabling Elasticsearch as a storage back end for events 25

The clouds parameter 26
The alerting parameter 27
The graphing parameter 27
The highAvailability parameter 27
The transports parameter 28

3.3. ACCESSING USER INTERFACES FOR STF COMPONENTS 28
3.4. CONFIGURING AN ALTERNATE OBSERVABILITY STRATEGY 29

CHAPTER 4. CONFIGURING RED HAT OPENSTACK PLATFORM DIRECTOR FOR

SERVICE TELEMETRY FRAMEW O RK ... ittt it tieee e itnneneeennnnaaeennnnns 30
4.1. DEPLOYING RED HAT OPENSTACK PLATFORM OVERCLOUD FOR SERVICE TELEMETRY FRAMEWORK
USING DIRECTOR 30
4.1.1. Getting CA certificate from Service Telemetry Framework for overcloud configuration 31
4.1.2. Retrieving the AMQ Interconnect password 31
4.1.3. Retrieving the AMQ Interconnect route address 31
4.1.4. Creating the base configuration for STF 32
4.1.5. Configuring the STF connection for the overcloud 33
4.1.6. Deploying the overcloud 35
4.1.7. Validating client-side installation 36

4.2. DISABLING RED HAT OPENSTACK PLATFORM SERVICES USED WITH

SERVICE TELEMETRY FRAMEWORK 39

4.3. CONFIGURING MULTIPLE CLOUDS 40

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

4.3.1. Planning AMQP address prefixes 42
4.3.2. Deploying Smart Gateways 42
4.3.3. Deleting the default Smart Gateways 44
4.3.4. Setting a unique cloud domain 45
4.3.5. Creating the Red Hat OpenStack Platform environment file for multiple clouds 46
4.3.6. Querying metrics data from multiple clouds 49

CHAPTER 5. CONFIGURING RED HAT OPENSTACK PLATFORM DIRECTOR OPERATOR FOR

SERVICE TELEMETRY FRAMEW O RK ...t ittt i ttteee e itnneneeennnnaaeennnnns 50
5.1. DEPLOYING RED HAT OPENSTACK PLATFORM OVERCLOUD FOR SERVICE TELEMETRY FRAMEWORK
USING DIRECTOR OPERATOR 50

5.1.1. Getting CA certificate from Service Telemetry Framework for overcloud configuration 50
5.1.2. Retrieving the AMQ Interconnect route address 51
5.1.3. Creating the base configuration for director Operator for STF 51
5.1.4. Configuring the STF connection for director Operator for the overcloud 53
5.1.5. Deploying the overcloud for director Operator 54

CHAPTER 6. USING OPERATIONAL FEATURES OF SERVICE TELEMETRY FRAMEWORK 56

6.1. DASHBOARDS IN SERVICE TELEMETRY FRAMEWORK 56
6.1.1. Configuring Grafana to host the dashboard 57
6.1.2. Enabling dashboards 58
6.1.3. Connecting an external dashboard system 60

6.2. METRICS RETENTION TIME PERIOD IN SERVICE TELEMETRY FRAMEWORK 61
6.2.1. Editing the metrics retention time period in Service Telemetry Framework 61

6.3. ALERTS IN SERVICE TELEMETRY FRAMEWORK 62
6.3.1. Creating an alert rule in Prometheus 63
6.3.2. Configuring custom alerts 64
6.3.3. Creating a standard alert route in Alertmanager 64
6.3.4. Creating an alert route with templating in Alertmanager 66

6.4. SENDING ALERTS AS SNMP TRAPS 68
6.4.1. Configuration parameters for snmpTraps 68
6.4.2. Overview of the MIB definition 69
6.4.3. Configuring SNMP traps 71
6.4.4. Creating alerts for SNMP traps 72

6.5. CONFIGURING THE DURATION FOR THE TLS CERTIFICATES 72
6.5.1. Configuration parameters for the TLS certificates 73
6.5.2. Configuring TLS certificates duration 73

6.6. HIGH AVAILABILITY 74
6.6.1. Configuring high availability 75

6.7. OBSERVABILITY STRATEGY IN SERVICE TELEMETRY FRAMEWORK 75
6.7.1. Configuring an alternate observability strategy 76

6.8. RESOURCE USAGE OF RED HAT OPENSTACK PLATFORM SERVICES 77
6.8.1. Disabling resource usage monitoring of Red Hat OpenStack Platform services 78

6.9. RED HAT OPENSTACK PLATFORM API STATUS AND CONTAINERIZED SERVICES HEALTH 78
6.9.1. Disabling container health and API status monitoring 78

CHAPTER 7. RENEWING THE AMQ INTERCONNECT CERTIFICATE ..ottt 80
7.1. CHECKING FOR AN EXPIRED AMQ INTERCONNECT CA CERTIFICATE 80
7.2. UPDATING THE AMQ INTERCONNECT CA CERTIFICATE 81

CHAPTER 8. REMOVING SERVICE TELEMETRY FRAMEWORK FROM THE

RED HAT OPENSHIFT CONTAINER PLATFORM ENVIRONMENT 82
8.1. DELETING THE NAMESPACE 82
8.2. REMOVING THE CERT-MANAGER OPERATOR FOR RED HAT OPENSHIFT 82

Table of Contents

8.3. REMOVING THE CLUSTER OBSERVABILITY OPERATOR 82

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in
the Red Hat OpenStack Platform Jira project, where you can track the progress of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click the following link to open a the Create Issue page: Create Issue
3. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not

modify any other fields in the form.

4. Click Create.

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. INTRODUCTION TO SERVICE TELEMETRY FRAMEWORK 1.5

CHAPTER 1. INTRODUCTION TO
SERVICE TELEMETRY FRAMEWORK 1.5

Service Telemetry Framework (STF) collects monitoring data from Red Hat OpenStack Platform
(RHOSP) or third-party nodes. You can use STF to perform the following tasks:

® Store or archive the monitoring data for historical information.
® View the monitoring data graphically on the dashboard.
® Use the monitoring data to trigger alerts or warnings.

The monitoring data can be either metric or event:

Metric

A numeric measurement of an application or system.
Event

Irregular and discrete occurrences that happen in a system.

The components of STF use a message bus for data transport. Other modular components that receive
and store data are deployed as containers on Red Hat OpenShift Container Platform.

IMPORTANT

STF is compatible with Red Hat OpenShift Container Platform Extended Update Support
(EUS) release versions 4.12 and 4.14.

Additional resources
® Red Hat OpenShift Container Platform product documentation
® Service Telemetry Framework Performance and Scaling
® OpenShift Container Platform 4.14 Documentation

® Red Hat OpenShift Container Platform Life Cycle Policy

1.1. SUPPORT FOR SERVICE TELEMETRY FRAMEWORK

Red Hat supports the core Operators and workloads, including AMQ Interconnect,

Cluster Observability Operator (Prometheus, Alertmanager), Service Telemetry Operator, and Smart
Gateway Operator. Red Hat does not support the community Operators or workload components,
inclusive of Elasticsearch, Grafana, and their Operators.

You can deploy Service Telemetry Framework (STF) in fully connected network environments or in
Red Hat OpenShift Container Platform-disconnected environments. You cannot deploy STF in network

proxy environments.

For more information about STF life cycle and support status, see the Service Telemetry Framework
Supported Version Matrix.

1.2. SERVICE TELEMETRY FRAMEWORK ARCHITECTURE

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/
https://access.redhat.com/articles/4907241
https://docs.openshift.com/container-platform/4.14/welcome/index.html#cluster-installer-activities
https://access.redhat.com/support/policy/updates/openshift
https://access.redhat.com/node/6225361

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

Service Telemetry Framework (STF) uses a client-server architecture, in which
Red Hat OpenStack Platform (RHOSP) is the client and Red Hat OpenShift Container Platform is the
server.

By default, STF collects, transports, and stores metrics information.

You can collect RHOSP events data, transport it with the message bus, and forward it to a user-
provided Elasticsearch from the Smart Gateways, but this option is deprecated.

STF consists of the following components:
® Data collection
o collectd: Collects infrastructure metrics and events on RHOSP.
o Ceilometer: Collects RHOSP metrics and events on RHOSP.
® Transport

o AMQ Interconnect: An AMQP 1.x compatible messaging bus that provides fast and reliable
data transport to transfer the metrics from RHOSP to STF for storage or forwarding.

o Smart Gateway: A Golang application that takes metrics and events from the AMQP 1.x bus
to deliver to Prometheus or an external Elasticsearch.

® Datastorage

o Prometheus: Time-series data storage that stores STF metrics received from the Smart
Gateway.

o Alertmanager: An alerting tool that uses Prometheus alert rules to manage alerts.

® User provided components

o Grafana: A visualization and analytics application that you can use to query, visualize, and
explore data.

o Elasticsearch: Events data storage that stores RHOSP events received and forwarded by
the Smart Gateway.

The following table describes the application of the client and server components:

Table 1.1. Client and server components of STF

Component Client Server
An AMQP 1.x compatible messaging bus yes yes
Smart Gateway no yes
Prometheus no yes
Elasticsearch no yes
Grafana no yes

CHAPTER 1. INTRODUCTION TO SERVICE TELEMETRY FRAMEWORK 1.5

Component Client Server
collectd yes no
Ceilometer yes no

IMPORTANT

To ensure that the monitoring platform can report operational problems with your cloud,
do notinstall STF on the same infrastructure that you are monitoring.

Figure 1.1. Service Telemetry Framework architecture overview

OpenStack Platform OpenShift Container Platform
Container Image Container Image Cluster Observability Operator
el igs Cl;i\lometer Prometheus Datastore
gents
collectd
plugin 1
collectd T
plugin 2 Service Telemetry Framework
|
collectd
plugin 3 Smart Gateway Operator
collectd
plugin N Smart Gateway
metrics metrics metrics
Container Image AMQ Interconnect Operator
AMQ Interconnect (AMQP 1.x) AMQ Interconnect (AMQP 1.x)
User provisioned Dashboards <
components o~

For client side metrics, collectd provides infrastructure metrics without project data, and Ceilometer
provides RHOSP platform data based on projects or user workload. Both Ceilometer and collectd
deliver data to Prometheus by using the AMQ Interconnect transport, delivering the data through the
message bus. On the server side, a Golang application called the Smart Gateway takes the data stream
from the bus and exposes it as a local scrape endpoint for Prometheus.

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

When you collect and store events, collectd and Ceilometer deliver event data to the server side by
using the AMQ Interconnect transport. Another Smart Gateway forwards the data to a user-provided
Elasticsearch datastore.
Server-side STF monitoring infrastructure consists of the following layers:

® Service Telemetry Framework 1.5

® Red Hat OpenShift Container Platform Extended Update Support (EUS) releases 4.12 and 4.14

® |nfrastructure platform

For more information about the Red Hat OpenShift Container Platform EUS releases, see Red Hat
OpenShift Container Platform Life Cycle Policy.

Figure 1.2. Server-side STF monitoring infrastructure

OpenShift Container Platform (Virtual) Q

Data Collection
Agent

Service Telemetry Framework
(Containers)

Apps
Internal External
Network Network
Master Node
Compute Node -
Load
balancer

Infrastructure Node

Infrastructure / Platform (Virtual)

Bare Metal (Physical)

1.2.1. STF Architecture Changes

In releases of STF prior to 1.5.3, the Service Telemetry Operator requested instances of Elasticsearch
from the Elastic Cloud on Kubernetes (ECK) Operator. STF now uses a forwarding model, where events
are forwarded from a Smart Gateway instance to a user-provided instance of Elasticsearch.

NOTE

The management of an Elasticsearch instances by Service Telemetry Operator is
deprecated.

-

10

https://access.redhat.com/support/policy/updates/openshift

CHAPTER 1. INTRODUCTION TO SERVICE TELEMETRY FRAMEWORK 1.5

In new ServiceTelemetry deployments, the observabilityStrategy parameter has a value of
use_redhat, that does not request Elasticsearch instances from ECK. Deployments of
ServiceTelemetry with STF version 1.5.2 or older and were updated to 1.5.3 will have the
observabilityStrategy parameter set to use_community, which matches the previous architecture.

If a user previously deployed an Elasticsearch instance with STF, the Service Telemetry Operator
updates the ServiceTelemetry custom resource object to have the observabilityStrategy parameter
set to use_community, and functions similar to previous releases. For more information about
observability strategies, see Section 2.1, “Observability Strategy in Service Telemetry Framework”.

It is recommended that users of STF migrate to the use_redhat observability strategy. For more

information about migration to the use_redhat observability strategy, see the Red Hat Knowledge Base
article Migrating Service Telemetry Framework to fully supported operators.

1.3. INSTALLATION SIZE OF
RED HAT OPENSHIFT CONTAINER PLATFORM

The size of your Red Hat OpenShift Container Platform installation depends on the following factors:
® The infrastructure that you select.
® The number of nodes that you want to monitor.
® The number of metrics that you want to collect.
® The resolution of metrics.
® The length of time that you want to store the data.

Installation of Service Telemetry Framework (STF) depends on an existing
Red Hat OpenShift Container Platform environment.

For more information about minimum resources requirements when you install

Red Hat OpenShift Container Platform on baremetal, see Minimum resource requirements in the
Installing a cluster on bare metal guide. For installation requirements of the various public and private
cloud platforms that you can install, see the corresponding installation documentation for your cloud
platform of choice.

1

https://access.redhat.com/articles/7011708
https://docs.openshift.com/container-platform/4.14/installing/installing_bare_metal/installing-bare-metal.html#minimum-resource-requirements_installing-bare-metal

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

CHAPTER 2. PREPARING YOUR
RED HAT OPENSHIFT CONTAINER PLATFORM
ENVIRONMENT FOR SERVICE TELEMETRY FRAMEWORK

To prepare your Red Hat OpenShift Container Platform environment for Service Telemetry Framework
(STF), you must plan for persistent storage, adequate resources, event storage, and network
considerations:

® Ensure that you have persistent storage available in your Red Hat OpenShift Container Platform
cluster for a production-grade deployment. For more information, see Section 2.2, "Persistent
volumes”.

® Ensure that enough resources are available to run the Operators and the application containers.
For more information, see Section 2.3, “Resource allocation”.

2.1. OBSERVABILITY STRATEGY IN SERVICE TELEMETRY
FRAMEWORK

Service Telemetry Framework (STF) does not include event storage backends or dashboarding tools.
STF can optionally create datasource configurations for Grafana using the community operator to
provide a dashboarding interface.

Instead of having Service Telemetry Operator create custom resource requests, you can use your own
deployments of these applications or other compatible applications, and scrape the metrics Smart
Gateways for delivery to your own Prometheus-compatible system for telemetry storage. If you set the
observabilityStrategy to none, then storage backends will not be deployed so persistent storage will
not be required by STF.

Use the observabilityStrategy property on the STF object to specify which type of observability
components will be deployed.

The following values are available:

value meaning

use_redhat Red Hat supported components are requested by
STF. This includes Prometheus and Alertmanager
from the Cluster Observability Operator, but no
resource requests to Elastic Cloud on Kubernetes
(ECK) Operator. If enabled, resources are also
requested from the Grafana Operator (community
component).

use_hybrid In addition to the Red Hat supported components,
Elasticsearch and Grafana resources are also
requested (if specified in the ServiceTelemetry
object)

12

YOUR RED HAT OPENSHIFT CONTAINER PLATFORM ENVIRONMENT FOR SERVICE TELEMETRY FRAMEWORK

value meaning

use_community The community version of Prometheus Operator is
used instead of Cluster Observability Operator.
Elasticsearch and Grafana resources are also
requested (if specified in the ServiceTelemetry
object)

none No storage or alerting components are deployed

NOTE

Newly deployed STF environments as of 1.5.3 default to use_redhat. Existing STF
deployments created before 1.5.3 default to use_community.

To migrate an existing STF deployment to use_redhat, see the Red Hat Knowledge Base article
Migrating Service Telemetry Framework to fully supported operators.

2.2. PERSISTENT VOLUMES

Service Telemetry Framework (STF) uses persistent storage in Red Hat OpenShift Container Platform
to request persistent volumes so that Prometheus can store metrics.

When you enable persistent storage through the Service Telemetry Operator, the Persistent Volume
Claims (PVC) requested in an STF deployment results in an access mode of RWO (ReadWriteOnce). If
your environment contains pre-provisioned persistent volumes, ensure that volumes of RWO are
available in the Red Hat OpenShift Container Platform default configured storageClass.

Additional resources

® For more information about configuring persistent storage for
Red Hat OpenShift Container Platform, see Understanding persistent storage.

® For more information about recommended configurable storage technology in
Red Hat OpenShift Container Platform, see Recommended configurable storage technology .

® For more information about configuring persistent storage for Prometheus in STF, see the
section called "Configuring persistent storage for Prometheus”.

2.3. RESOURCE ALLOCATION

To enable the scheduling of pods within the Red Hat OpenShift Container Platform infrastructure, you
need resources for the components that are running. If you do not allocate enough resources, pods
remain in a Pending state because they cannot be scheduled.

The amount of resources that you require to run Service Telemetry Framework (STF) depends on your
environment and the number of nodes and clouds that you want to monitor.

Additional resources

® For recommendations about sizing for metrics collection, see the Red Hat Knowledge Base
article Service Telemetry Framework Performance and Scaling.

13

https://access.redhat.com/articles/7011708
https://docs.openshift.com/container-platform/4.14/storage/understanding-persistent-storage.html
https://docs.openshift.com/container-platform/4.14/scalability_and_performance/optimizing-storage.html#recommended-configurable-storage-technology_persistent-storage
https://access.redhat.com/articles/4907241

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

2.4. NETWORK CONSIDERATIONS FOR SERVICE TELEMETRY
FRAMEWORK

You can deploy Service Telemetry Framework (STF) in fully connected network environments or in
Red Hat OpenShift Container Platform-disconnected environments. You cannot deploy STF in network
proxy environments.

2.5. DEPLOYING STF ON
RED HAT OPENSHIFT CONTAINER PLATFORM-DISCONNECTED
ENVIRONMENTS

Since Service Telemetry Framework (STF) version 1.5.4, you can deploy STF in
Red Hat OpenShift Container Platform-disconnected environments.

Prerequisites

® Red Hat OpenShift Container Platform Extended Update Support (EUS) version 4.12 or 4.14
deployed in a restricted network.

® A mirror registry so that the Red Hat OpenShift Container Platform cluster can access the
required images. For more information about mirror registries, see Disconnected installation
mirroring in the Red Hat OpenShift Container Platform Installing guide.

® All the STF dependencies are available in the Red Hat OpenShift Container Platform cluster
mirror registry.

Adding STF dependencies to the mirror registry

You can use the oc-mirror plugin to fetch the STF dependencies and add them to the

Red Hat OpenShift Container Platform cluster mirror registry. For more information about installing the
oc-mirror plugin, see Mirroring images for a disconnected installation using the oc-mirror plugin in the
Red Hat OpenShift Container Platform Installing guide.

Procedure

1. Create an imagesetconfig.yaml file in your local working directory:

imagesetconfig.yaml

apiVersion: mirror.openshift.io/vialpha2
kind: ImageSetConfiguration
storageConfig:
local:
path: ./
mirror:
operators:
- catalog: registry.redhat.io/redhat/redhat-operator-index:v4.14
packages:
- name: service-telemetry-operator
channels:
- name: stable-1.5
- name: openshift-cert-manager-operator
channels:
- name: stable-v1

14

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/installing/disconnected-installation-mirroring
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/installing/index#installing-mirroring-disconnected

YOUR RED HAT OPENSHIFT CONTAINER PLATFORM ENVIRONMENT FOR SERVICE TELEMETRY FRAMEWORK

- name: amq7-interconnect-operator
channels:
- name: 1.10.x
- name: smart-gateway-operator
channels:
- name: stable-1.5
- name: cluster-observability-operator
channels:
- name: development

2. (Optional) If your mirror registry is not reachable, you can save the manifests and images that
you fetched with oc-mirror and physically transfer them to the mirror registry and
Red Hat OpenShift Container Platform cluster. Otherwise you can run oc-mirror and point to
the mirror registry.
You can use the oc-mirror plugin differently, depending on your environment, such as:

® mirroring between mirrors.
® mirror from mirror to disk.

® mirror from disk to mirror.
For more information about different oc-mirror scenarios, see Mirroring an image setin a
fully disconnected environment in the Red Hat OpenShift Container Platform Installing
guide.

3. Push the STF operators and their dependencies from the mirror registry and generate the
manifest for the Red Hat OpenShift Container Platform cluster.

I $ oc-mirror --config imagesetconfig.yaml <mirror_registry_location>

® Replace <mirror_registry_location> with the filepath to the mirror registry that you want to
use.

4. Locate the generated manifests and apply them to the target
Red Hat OpenShift Container Platform cluster. For more information, see Configuring your
cluster to use the resources generated by oc-mirror in the
Red Hat OpenShift Container Platform Installing guide.

NOTE

The manifests that you generate with oc-mirror produce catalogs with the full
index name, such as redhat-operator-index instead of redhat-operators for
CatalogSource. Ensure that you use the correct index name for the STF
subscriptions. For more information, see Section 3.1, “Deploying

Service Telemetry Framework to the Red Hat OpenShift Container Platform
environment”. For more information about customizing Operators with oc mirror,
see the Red Hat Knowledgebase solution How to customize the catalog name
and tags of Operators mirrored to the mirror registry using the oc mirror plugin.

Verification

® Check that the catalog sources are applied. You can return the entries for new catalogs that
reference the STF operators and their dependencies:

I $ oc get catalogsources

15

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/installing/disconnected-installation-mirroring#mirroring-image-set-full
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/installing/disconnected-installation-mirroring#oc-mirror-updating-cluster-manifests_installing-mirroring-disconnected
https://access.redhat.com/solutions/7016714

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

® You have deployed STF in a disconnected Red Hat OpenShift Container Platform cluster and
therefore cannot access external networks.

16

CHAPTER 3. INSTALLING THE CORE COMPONENTS OF SERVICE TELEMETRY FRAMEWORF

CHAPTER 3. INSTALLING THE CORE COMPONENTS OF
SERVICE TELEMETRY FRAMEWORK

You can use Operators to load the Service Telemetry Framework (STF) components and objects.
Operators manage each of the following STF core components:

e Certificate Management

® AMQ Interconnect

® Smart Gateways

® Prometheus and Alertmanager
Service Telemetry Framework (STF) uses other supporting Operators as part of the deployment. STF
can resolve most dependencies automatically, but you need to pre-install some Operators, such as

Cluster Observability Operator, which provides an instance of Prometheus and Alertmanager, and cert-
manager for Red Hat OpenShift, which provides management of certificates.

Prerequisites

® An Red Hat OpenShift Container Platform Extended Update Support (EUS) release version 4.12
or 4.14 is running.

® You have prepared your Red Hat OpenShift Container Platform environment and ensured that
there is persistent storage and enough resources to run the STF components on top of the
Red Hat OpenShift Container Platform environment. For more information about STF
performance, see the Red Hat Knowledge Base article Service Telemetry Framework

Performance and Scaling.

® You have deployed STF in a fully connected or Red Hat OpenShift Container Platform-
disconnected environments. STF is unavailable in network proxy environments.

IMPORTANT

STF is compatible with Red Hat OpenShift Container Platform versions 4.12 and 4.14.

Additional resources

® For more information about Operators, see the Understanding Operators guide.
® For more information about Operator catalogs, see Red Hat-provided Operator catalogs .

® For more information about the cert-manager Operator for Red Hat, see cert-manager
Operator for Red Hat OpenShift overview.

® For more information about Cluster Observability Operator, see Cluster Observability Operator
Overview.

® For more information about OpenShift life cycle policy and Extended Update Support (EUS),
see Red Hat OpenShift Container Platform Life Cycle Policy .

3.1. DEPLOYING SERVICE TELEMETRY FRAMEWORK TO THE
RED HAT OPENSHIFT CONTAINER PLATFORM ENVIRONMENT

17

https://access.redhat.com/articles/4907241
https://docs.openshift.com/container-platform/4.14/operators/understanding/olm-what-operators-are.html
https://docs.openshift.com/container-platform/4.14/operators/understanding/olm-rh-catalogs.html
https://docs.openshift.com/container-platform/4.14/security/cert_manager_operator/index.html
https://docs.openshift.com/container-platform/4.14/monitoring/cluster_observability_operator/cluster-observability-operator-overview.html
https://access.redhat.com/support/policy/updates/openshift

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

Deploy Service Telemetry Framework (STF) to collect and store Red Hat OpenStack Platform (RHOSP)
telemetry.

3.1.1. Deploying Cluster Observability Operator

You must install the Cluster Observability Operator (COQ) before you create an instance of
Service Telemetry Framework (STF) if the observabilityStrategy is set to use_redhat and the
backends.metrics.prometheus.enabled is set to true in the ServiceTelemetry object. For more
information about COO, see Cluster Observability Operator overview in the OpenShift Container
Platform Documentation.

Procedure

1. Login to your Red Hat OpenShift Container Platform environment where STF is hosted.

2. To store metrics in Prometheus, enable the Cluster Observability Operator by using the redhat-
operators CatalogSource:

$ oc create -f - <<EOF
apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: cluster-observability-operator
namespace: openshift-operators
spec:
channel: development
installPlanApproval: Automatic
name: cluster-observability-operator
source: redhat-operators
sourceNamespace: openshift-marketplace
EOF

3. Verify that the ClusterServiceVersion for Cluster Observability Operator has a status of
Succeeded:

$ oc wait --for jsonpath="{.status.phase}"=Succeeded csv --namespace=openshift-operators
-l operators.coreos.com/cluster-observability-operator.openshift-operators

clusterserviceversion.operators.coreos.com/observability-operator.v0.0.26 condition met

3.1.2. Deploying cert-manager for Red Hat OpenShift

The cert-manager for Red Hat OpenShift (cert-manager) Operator must be pre-installed before
creating an instance of Service Telemetry Framework (STF). For more information about cert-manager,
see cert-manager for Red Hat OpenShift overview .

In previous versions of STF, the only available cert-manager channel was tech-preview which is available
until Red Hat OpenShift Container Platform v4.12. Installations of cert-manager on versions of
Red Hat OpenShift Container Platform v4.14 and later must be installed from the stable-v1 channel. For
new installations of STF it is recommended to install cert-manager from the stable-v1 channel.

18

https://docs.openshift.com/container-platform/4.14/monitoring/cluster_observability_operator/cluster-observability-operator-overview.html
https://docs.openshift.com/container-platform/4.14/security/cert_manager_operator/index.html

CHAPTER 3. INSTALLING THE CORE COMPONENTS OF SERVICE TELEMETRY FRAMEWORF

' WARNING
A Only one deployment of cert-manager can be installed per

Red Hat OpenShift Container Platform cluster. Subscribing to cert-manager in
more than one project causes the deployments to conflict with each other.

Procedure
1. Login to your Red Hat OpenShift Container Platform environment where STF is hosted.

2. Verify cert-manager is not already installed on the Red Hat OpenShift Container Platform
cluster. If any results are returned, do not install another instance of cert-manager:

$ oc get sub --all-namespaces -o json | jq ".items][] | select(.metadata.name | match("cert-
manager")) | .metadata.name’

3. Create a namespace for the cert-manager Operator:

$ oc create -f - <<EOF
apiVersion: project.openshift.io/v1
kind: Project
metadata:

name: cert-manager-operator
spec:

finalizers:

- kubernetes
EOF

4. Create an OperatorGroup for the cert-manager Operator:

$ oc create -f - <<EOF
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: cert-manager-operator
namespace: cert-manager-operator
spec:
targetNamespaces:
- cert-manager-operator
upgradeStrategy: Default
EOF

5. Subscribe to the cert-manager Operator by using the redhat-operators CatalogSource:

$ oc create -f - <<EOF
apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: openshift-cert-manager-operator
namespace: cert-manager-operator

19

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

labels:
operators.coreos.com/openshift-cert-manager-operator.cert-manager-operator: "

spec:

channel: stable-v1

installPlanApproval: Automatic

name: openshift-cert-manager-operator

source: redhat-operators

sourceNamespace: openshift-marketplace
EOF

6. Validate your ClusterServiceVersion. Ensure that cert-manager Operator displays a phase of
Succeeded:

oc wait --for jsonpath="{.status.phase}"=Succeeded csv --namespace=cert-manager-
operator --selector=operators.coreos.com/openshift-cert-manager-operator.cert-manager-
operator

clusterserviceversion.operators.coreos.com/cert-manager-operator.v1.12.1 condition met

3.1.3. Deploying Service Telemetry Operator

Deploy Service Telemetry Operator on Red Hat OpenShift Container Platform to provide the
supporting Operators and interface for creating an instance of Service Telemetry Framework (STF) to
monitor Red Hat OpenStack Platform (RHOSP) cloud platforms.

Prerequisites

® You have installed Cluster Observability Operator to allow storage of metrics. For more
information, see Section 3.1.1, “Deploying Cluster Observability Operator”.

® You have installed cert-manager for Red Hat OpenShift to allow certificate management. For
more information, see Section 3.1.2, "“Deploying cert-manager for Red Hat OpenShift”.

Procedure

1. Create a namespace to contain the STF components, for example, service-telemetry:

I $ oc new-project service-telemetry

2. Create an OperatorGroup in the namespace so that you can schedule the Operator pods:

$ oc create -f - <<EOF
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: service-telemetry-operator-group
namespace: service-telemetry
spec:
targetNamespaces:
- service-telemetry
EOF

For more information, see OperatorGroups.

20

https://docs.openshift.com/container-platform/4.14/operators/understanding/olm/olm-understanding-operatorgroups.html

CHAPTER 3. INSTALLING THE CORE COMPONENTS OF SERVICE TELEMETRY FRAMEWORF

3. Create the Service Telemetry Operator subscription to manage the STF instances:

$ oc create -f - <<EOF
apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: service-telemetry-operator
namespace: service-telemetry
spec:
channel: stable-1.5
installPlanApproval: Automatic
name: service-telemetry-operator
source: redhat-operators
sourceNamespace: openshift-marketplace
EOF

4. Validate the Service Telemetry Operator and the dependent operators have their phase as
Succeeded:

$ oc wait --for jsonpath="{.status.phase}"=Succeeded csv --namespace=service-telemetry -|
operators.coreos.com/service-telemetry-operator.service-telemetry ; oc get csv --namespace
service-telemetry

clusterserviceversion.operators.coreos.com/service-telemetry-operator.v1.5.1700688542
condition met

NAME DISPLAY VERSION REPLACES
PHASE

amq7-interconnect-operator.v1.10.17 Red Hat Integration - AMQ Interconnect 1.10.17
amq7-interconnect-operator.v1.10.4 Succeeded

observability-operator.v0.0.26 Cluster Observability Operator 0.1.0
Succeeded

service-telemetry-operator.v1.5.1700688542 Service Telemetry Operator

1.5.1700688542 Succeeded
smart-gateway-operator.v5.0.1700688539 Smart Gateway Operator

5.0.1700688539 Succeeded

3.2. CREATING A SERVICETELEMETRY OBJECT IN
RED HAT OPENSHIFT CONTAINER PLATFORM

Create a ServiceTelemetry object in Red Hat OpenShift Container Platform to result in the Service
Telemetry Operator creating the supporting components for a Service Telemetry Framework (STF)
deployment. For more information, see Section 3.2.1, “Primary parameters of the ServiceTelemetry
object”.

Prerequisites

® You have deployed STF and the supporting operators. For more information, see Section 3.1,
“Deploying Service Telemetry Framework to the Red Hat OpenShift Container Platform
environment”,

® You have installed Cluster Observability Operator to allow storage of metrics. For more
information, see Section 3.1.1, “Deploying Cluster Observability Operator”.

21

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

® You have installed cert-manager for Red Hat OpenShift to allow certificate management. For
more information, see Section 3.1.2, "“Deploying cert-manager for Red Hat OpenShift”.

Procedure

1. Login to your Red Hat OpenShift Container Platform environment where STF is hosted.

2. To deploy STF that results in the core components for metrics delivery being configured, create
a ServiceTelemetry object:

$ oc apply -f - <<EOF
apiVersion: infra.watch/vibetat
kind: ServiceTelemetry
metadata:
name: default
namespace: service-telemetry
spec:
alerting:
alertmanager:
storage:
persistent:
pvcStorageRequest: 20G
strategy: persistent
enabled: true
backends:
metrics:
prometheus:
enabled: true
scrapelnterval: 30s
storage:
persistent:
pvcStorageRequest: 20G
retention: 24h
strategy: persistent
clouds:
- metrics:
collectors:
- bridge:
ringBufferCount: 15000
ringBufferSize: 16384
verbose: false
collectorType: collectd
debugEnabled: false
subscriptionAddress: collectd/cloudi-telemetry
- bridge:
ringBufferCount: 15000
ringBufferSize: 16384
verbose: false
collectorType: ceilometer
debugEnabled: false
subscriptionAddress: anycast/ceilometer/cloud1-metering.sample
- bridge:
ringBufferCount: 15000
ringBufferSize: 65535
verbose: false
collectorType: sensubility

22

CHAPTER 3. INSTALLING THE CORE COMPONENTS OF SERVICE TELEMETRY FRAMEWORF

debugEnabled: false
subscriptionAddress: sensubility/cloud-telemetry
name: cloud1
observabilityStrategy: use_redhat
transports:
qdr:
auth: basic
certificates:
caCertDuration: 70080h
endpointCertDuration: 70080h
enabled: true
web:
enabled: false
EOF

To override these defaults, add the configuration to the spec parameter.

3. View the STF deployment logs in the Service Telemetry Operator:

$ oc logs --selector name=service-telemetry-operator

Ansible Task Status Event StdOut -----------------

PLAY RECAP khkkkkhhkkkkkkhkhhhkhkhkkkhkhhhhhkhkhhhhhhhhhhhhhhhkhkhhdhhhhhhhhhhhhkhkhhrdhhhrrrrk

localhost :0k=90 changed=0 unreachable=0 failed=0 skipped=26
rescued=0 ignored=0

Verification

® To determine that all workloads are operating correctly, view the pods and the status of each

pod.
$ oc get pods
NAME READY STATUS RESTARTS AGE
alertmanager-default-0 3/3 Running 0 123m
default-cloud1-ceil-meter-smartgateway-7dfb95fcb6-bs6jl 3/3 Running 0 122m
default-cloud1-coll-meter-smartgateway-674d88d8fc-858jk 3/3 Running 0 122m
default-cloud1-sens-meter-smartgateway-9b869695d-xcssf ~ 3/3 Running 0 122m
default-interconnect-6¢cbf65d797-hk716 1/1 Running 0 123m
interconnect-operator-7bb99c5ff4-16xc2 1/1 Running 0 138m
prometheus-default-0 3/3 Running 0 122m
service-telemetry-operator-7966cf57f-g4tx4 1/1 Running 0 138m
smart-gateway-operator-7d557cb7b7-9ppls 1/1 Running 0 138m

3.2.1. Primary parameters of the ServiceTelemetry object

You can set the following primary configuration parameters of the ServiceTelemetry object to
configure your STF deployment:

e alerting

e backends

23

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

clouds

graphing

highAvailability
® transports

The backends parameter

Set the value of the backends parameter to allocate the storage back ends for metrics and events, and
to enable the Smart Gateways that the clouds parameter defines. For more information, see the
section called “The clouds parameter”.

You can use Prometheus as the metrics storage back end and Elasticsearch as the events storage back
end. The Service Telemetry Operator can create custom resource objects that the Prometheus
Operator watches to create a Prometheus workload. You need an external deployment of Elasticsearch
to store events.

Enabling Prometheus as a storage back end for metrics
To enable Prometheus as a storage back end for metrics, you must configure the ServiceTelemetry
object.

Procedure

1. Edit the ServiceTelemetry object:

I $ oc edit stf default

2. Set the value of the backends.metrics.prometheus.enabled parameter to true:

apiVersion: infra.watch/vibetat
kind: ServiceTelemetry
metadata:

name: default

namespace: service-telemetry
spec:

[..]

backends:

metrics:
prometheus:
enabled: true

Configuring persistent storage for Prometheus
Set the additional parameters in backends.metrics.prometheus.storage.persistent to configure
persistent storage options for Prometheus, such as storage class and volume size.

Define the back end storage class with the storageClass parameter. If you do not set this parameter,
the Service Telemetry Operator uses the default storage class for the
Red Hat OpenShift Container Platform cluster.

Define the minimum required volume size for the storage request with the pvcStorageRequest
parameter. By default, Service Telemetry Operator requests a volume size of 20G (20 Gigabytes).

Procedure

24

CHAPTER 3. INSTALLING THE CORE COMPONENTS OF SERVICE TELEMETRY FRAMEWORF

1. List the available storage classes:

$ oc get storageclasses

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
ALLOWVOLUMEEXPANSION AGE

csi-manila-ceph ~ manila.csi.openstack.org Delete Immediate false
20h

standard (default) kubernetes.io/cinder Delete WaitForFirstConsumer true
20h

standard-csi cinder.csi.openstack.org Delete WaitForFirstConsumer true
20h

2. Edit the ServiceTelemetry object:

I $ oc edit stf default

3. Set the value of the backends.metrics.prometheus.enabled parameter to true and the value
of backends.metrics.prometheus.storage.strategy to persistent:

apiVersion: infra.watch/vibetat
kind: ServiceTelemetry
metadata:
name: default
namespace: service-telemetry
spec:
[...]
backends:
metrics:
prometheus:
enabled: true
storage:
strategy: persistent
persistent:
storageClass: standard-csi
pvcStorageRequest: 50G

Enabling Elasticsearch as a storage back end for events

NOTE

Previous versions of STF managed Elasticsearch objects for the community supported
Elastic Cloud on Kubernetes Operator (ECK). Elasticsearch management functionality is
deprecated in STF 1.5.3. You can still forward to an existing Elasticsearch instance that
you deploy and manage with ECK, but you cannot manage the creation of Elasticsearch
objects. When you upgrade your STF deployment, existing Elasticsearch objects and
deployments remain, but are no longer managed by STF.

For more information about using Elasticsearch with STF, see the Red Hat Knowledge
Base article Using Service Telemetry Framework with Elasticsearch.

To enable events forwarding to Elasticsearch as a storage back end, you must configure the
ServiceTelemetry object.

Procedure

25

https://access.redhat.com/articles/7031236

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

1. Edit the ServiceTelemetry object:

I $ oc edit stf default

2. Set the value of the backends.events.elasticsearch.enabled parameter to true and configure
the hostUrl with the relevant Elasticsearch instance:

apiVersion: infra.watch/vibetat
kind: ServiceTelemetry
metadata:
name: default
namespace: service-telemetry
spec:
[...]
backends:
events:
elasticsearch:
enabled: true
forwarding:
hostUrl: https://external-elastic-http.domain:9200
tlsServerName: ""
tlsSecretName: elasticsearch-es-cert
userSecretName: elasticsearch-es-elastic-user
useBasicAuth: true
useTls: true

3. Create the secret named in the userSecretName parameter to store the basic auth credentials

$ oc create secret generic elasticsearch-es-elastic-user --from-
literal=elastic='<PASSWORD>'

4. Copy the CA certificate into a file named EXTERNAL-ES-CA.pem, then create the secret
named in the tiIsSecretName parameter to make it available to STF

$ cat EXTERNAL-ES-CA.pem

$ oc create secret generic elasticsearch-es-cert --from-file=ca.crt=EXTERNAL-ES-CA.pem

The clouds parameter

Configure the clouds parameter to define which Smart Gateway objects deploy and provide the
interface for monitored cloud environments to connect to an instance of STF. If a supporting back end is
available, metrics and events Smart Gateways for the default cloud configuration are created. By
default, the Service Telemetry Operator creates Smart Gateways for cloud1.

You can create a list of cloud objects to control which Smart Gateways are created for the defined
clouds. Each cloud consists of data types and collectors. Data types are metrics or events. Each data
type consists of a list of collectors, the message bus subscription address, and a parameter to enable
debugging. Available collectors for metrics are collectd, ceilometer, and sensubility. Available
collectors for events are collectd and ceilometer. Ensure that the subscription address for each of
these collectors is unique for every cloud, data type, and collector combination.

26

CHAPTER 3. INSTALLING THE CORE COMPONENTS OF SERVICE TELEMETRY FRAMEWORF

The default cloud1 configuration is represented by the following ServiceTelemetry object, which
provides subscriptions and data storage of metrics and events for collectd, Ceilometer, and Sensubility
data collectors for a particular cloud instance:

apiVersion: infra.watch/vibetat
kind: ServiceTelemetry
metadata:
name: default
namespace: service-telemetry
spec:
clouds:
- name: cloud1
metrics:
collectors:
- collectorType: collectd
subscriptionAddress: collectd/cloudi-telemetry
- collectorType: ceilometer
subscriptionAddress: anycast/ceilometer/cloudi-metering.sample
- collectorType: sensubility
subscriptionAddress: sensubility/cloud1-telemetry
debugEnabled: false
events:
collectors:
- collectorType: collectd
subscriptionAddress: collectd/cloud1-notify
- collectorType: ceilometer
subscriptionAddress: anycast/ceilometer/cloud1-event.sample

Each item of the clouds parameter represents a cloud instance. A cloud instance consists of three top-
level parameters: name, metrics, and events. The metrics and events parameters represent the
corresponding back end for storage of that data type. The collectors parameter specifies a list of
objects made up of two required parameters, collectorType and subscriptionAddress, and these
represent an instance of the Smart Gateway. The collectorType parameter specifies data collected by
either collectd, Ceilometer, or Sensubility. The subscriptionAddress parameter provides the

AMQ Interconnect address to which a Smart Gateway subscribes.

You can use the optional Boolean parameter debugEnabled within the collectors parameter to enable
additional console debugging in the running Smart Gateway pod.

Additional resources

® For more information about deleting default Smart Gateways, see Section 4.3.3, “Deleting the
default Smart Gateways”.

® For more information about how to configure multiple clouds, see Section 4.3, “Configuring
multiple clouds”.

The alerting parameter

Set the alerting parameter to create an Alertmanager instance and a storage back end. By default,
alerting is enabled. For more information, see Section 6.3, “Alerts in Service Telemetry Framework”.
The graphing parameter

Set the graphing parameter to create a Grafana instance. By default, graphing is disabled. For more

information, see Section 6.1, “Dashboards in Service Telemetry Framework”.

The highAvailability parameter

27

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

' WARNING
A STF high availability (HA) mode is deprecated and is not supported in production

environments. Red Hat OpenShift Container Platform is a highly-available platform,
and you can cause issues and complicate debugging in STF if you enable HA mode.

Set the highAvailability parameter to instantiate multiple copies of STF components to reduce
recovery time of components that fail or are rescheduled. By default, highAvailability is disabled. For
more information, see Section 6.6, “High availability”.

The transports parameter
Set the transports parameter to enable the message bus for a STF deployment. The only transport
currently supported is AMQ Interconnect. By default, the qdr transport is enabled.

3.3. ACCESSING USER INTERFACES FOR STF COMPONENTS

In Red Hat OpenShift Container Platform, applications are exposed to the external network through a
route. For more information about routes, see Configuring ingress cluster traffic.

In Service Telemetry Framework (STF), HTTPS routes are exposed for each service that has a web-
based interface and protected by Red Hat OpenShift Container Platform role-based access control
(RBAQ).

You need the following permissions to access the corresponding component Ul's:

{"namespace":"service-telemetry", "resource":"grafana”, "group":"grafana.integreatly.org",
llverbll:"getll}
{"namespace":"service-telemetry", "resource":"prometheus”, "group":"monitoring.rhobs", "verb":"get"}

{"namespace":"service-telemetry", "resource":"alertmanager", "group":"monitoring.rhobs",
llverbll:"getll}

For more information about RBAC, see Using RBAC to define and apply permissions .

Procedure

1. Login to Red Hat OpenShift Container Platform.

2. Change to the service-telemetry namespace:

I $ oc project service-telemetry

3. List the available web Ul routes in the service-telemetry project:

$ oc get routes | grep web

default-alertmanager-proxy default-alertmanager-proxy-service-telemetry.apps.infra.watch
default-alertmanager-proxy web reencrypt/Redirect None

default-prometheus-proxy default-prometheus-proxy-service-telemetry.apps.infra.watch
default-prometheus-proxy web reencrypt/Redirect None

28

https://docs.openshift.com/container-platform/4.14/networking/configuring_ingress_cluster_traffic/overview-traffic.html
https://docs.openshift.com/container-platform/4.14/authentication/using-rbac.html

CHAPTER 3. INSTALLING THE CORE COMPONENTS OF SERVICE TELEMETRY FRAMEWORF

4. In a web browser, navigate to https://<route_address> to access the web interface for the
corresponding service.

3.4. CONFIGURING AN ALTERNATE OBSERVABILITY STRATEGY

To skip the deployment of storage, visualization, and alerting backends, add observabilityStrategy:
none to the ServiceTelemetry spec. In this mode, you only deploy AMQ Interconnect routers and Smart
Gateways, and you must configure an external Prometheus-compatible system to collect metrics from
the STF Smart Gateways, and an external Elasticsearch to receive the forwarded events.

Procedure

1. Create a ServiceTelemetry object with the property observabilityStrategy: none in the spec
parameter. The manifest shows results in a default deployment of STF that is suitable for
receiving telemetry from a single cloud with all metrics collector types.

$ oc apply -f - <<EOF
apiVersion: infra.watch/vibetat
kind: ServiceTelemetry
metadata:

name: default

namespace: service-telemetry
spec:

observabilityStrategy: none
EOF

2. Delete the remaining objects that are managed by community operators

$ for o in alertmanagers.monitoring.rhobs/default prometheuses.monitoring.rhobs/default
elasticsearch/elasticsearch grafana/default-grafana; do oc delete $o; done

3. To verify that all workloads are operating correctly, view the pods and the status of each pod:

$ oc get pods

NAME READY STATUS RESTARTS AGE
default-cloud1-ceil-event-smartgateway-618547df6¢c-p2db5 3/3 Running 0 132m
default-cloud1-ceil-meter-smartgateway-59¢845d65b-gzhcs 3/3 Running 0 132m
default-cloud1-coll-event-smartgateway-bf859f8d77-tzb66 3/3 Running 0 132m
default-cloud1-coll-meter-smartgateway-75bbd948b9-d5phm 3/3 Running 0 132m
default-cloud1-sens-meter-smartgateway-7fdbb57b6d-dh2g9 3/3 Running 0 132m
default-interconnect-668d5bbcd6-57b2| 1/1 Running 0 132m
interconnect-operator-b8f5bb647-tlp5t 1/1 Running 0 47h
service-telemetry-operator-56609dd695-wkvjq 1/1 Running 0 156m
smart-gateway-operator-58d77dcf7-6xsq7 1/1 Running 0 47h

Additional resources

® For more information about configuring additional clouds or to change the set of supported
collectors, see Section 4.3.2, "Deploying Smart Gateways”.

® To migrate an existing STF deployment to use_redhat, see the Red Hat Knowledge Base article
Migrating Service Telemetry Framework to fully supported operators.

29

https:
https://access.redhat.com/articles/7011708

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

CHAPTER 4. CONFIGURING
RED HAT OPENSTACK PLATFORM DIRECTOR FOR
SERVICE TELEMETRY FRAMEWORK

To collect metrics, events, or both, and to send them to the Service Telemetry Framework (STF)
storage domain, you must configure the Red Hat OpenStack Platform (RHOSP) overcloud to enable
data collection and transport.

STF can support both single and multiple clouds. The default configuration in RHOSP and STF set up
for a single cloud installation.

® Forasingle RHOSP overcloud deployment with default configuration, see Section 4.1,
“Deploying Red Hat OpenStack Platform overcloud for Service Telemetry Framework using

director”.

® To plan your RHOSP installation and configuration STF for multiple clouds, see Section 4.3,
“Configuring multiple clouds”.

® As part of an RHOSP overcloud deployment, you might need to configure additional features in
your environment:

o To disable the data collector services, see Section 4.2, “Disabling
Red Hat OpenStack Platform services used with Service Telemetry Framework”.

4.1. DEPLOYING RED HAT OPENSTACK PLATFORM OVERCLOUD FOR
SERVICE TELEMETRY FRAMEWORK USING DIRECTOR

As part of the Red Hat OpenStack Platform (RHOSP) overcloud deployment using director, you must
configure the data collectors and the data transport to Service Telemetry Framework (STF).

Procedure

1. Section 4.1.1, "Getting CA certificate from Service Telemetry Framework for overcloud
configuration”

2. Retrieving the AMQ Interconnect password

3. Retrieving the AMQ Interconnect route address
4. Creating the base configuration for STF

5. Configuring the STF connection for the overcloud
6. Deploying the overcloud

7. Validating client-side installation

Additional resources

® For more information about deploying an OpenStack cloud using director, see Installing and
managing Red Hat OpenStack Platform with director.

® To collect data through AMQ Interconnect, see the amqgpl plug-in.

30

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/managing_overcloud_observability/collectd-plugins_assembly#collectd_plugin_amqp1

>TER 4. CONFIGURING RED HAT OPENSTACK PLATFORM DIRECTOR FOR SERVICE TELEMETRY FRAMEWORK
4.1.1. Getting CA certificate from Service Telemetry Framework for overcloud
configuration
To connect your Red Hat OpenStack Platform (RHOSP) overcloud to Service Telemetry Framework

(STF), retrieve the CA certificate of AMQ Interconnect that runs within STF and use the certificate in
RHOSP configuration.

Procedure

1. View a list of available certificates in STF:

I $ oc get secrets

2. Retrieve and note the content of the default-interconnect-selfsigned Secret:

I $ oc get secret/default-interconnect-selfsigned -o jsonpath='{.data.ca\.crt}' | base64 -d

4.1.2. Retrieving the AMQ Interconnect password
When you configure the Red Hat OpenStack Platform (RHOSP) overcloud for

Service Telemetry Framework (STF), you must provide the AMQ Interconnect password in the STF
connection file.

You can disable basic authentication on the AMQ Interconnect connection by setting the value of the
transports.qdr.auth parameter of the ServiceTelemetry spec to none. The transports.qdr.auth
parameter is absent in versions of STF before 1.5.3, so the default behavior is that basic authentication

is disabled. In a new install of STF 1.5.3 or later, the default value of transports.qdr.auth is basic, but if
you upgraded to STF 1.5.3, the default value of transports.qdr.auth is none.

Procedure
1. Login to your Red Hat OpenShift Container Platform environment where STF is hosted.

2. Change to the service-telemetry project:
I $ oc project service-telemetry
3. Retrieve the AMQ Interconnect password:

I $ oc get secret default-interconnect-users -o json | jq -r .data.guest | base64 -d

4.1.3. Retrieving the AMQ Interconnect route address
When you configure the Red Hat OpenStack Platform (RHOSP) overcloud for

Service Telemetry Framework (STF), you must provide the AMQ Interconnect route address in the STF
connection file.

Procedure
1. Login to your Red Hat OpenShift Container Platform environment where STF is hosted.

2. Change to the service-telemetry project:

31

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

I $ oc project service-telemetry

3. Retrieve the AMQ Interconnect route address:

$ oc get routes -ogo-template="{{ range .items }}{{printf "%s\n" .spec.host }}{{ end }}' | grep "\-
5671"
default-interconnect-5671-service-telemetry.apps.infra.watch

4.1.4. Creating the base configuration for STF

To configure the base parameters to provide a compatible data collection and transport for
Service Telemetry Framework (STF), you must create a file that defines the default data collection
values.

Procedure

1. Login to the undercloud host as the stack user.

2. Create a configuration file called enable-stf.yaml in the /home/stack directory.

IMPORTANT

Setting PipelinePublishers to an empty list results in no metric data passing to
RHOSP telemetry components, such as Gnocchi or Panko. If you need to send
data to additional pipelines, the Ceilometer polling interval of 30 seconds, that
you specify in ExtraConfig, might overwhelm the RHOSP telemetry components.
You must increase the interval to a larger value, such as 300, which results in less
telemetry resolution in STF.

enable-stf.yaml

parameter_defaults:
only send to STF, not other publishers
PipelinePublishers: []

manage the polling and pipeline configuration files for Ceilometer agents
ManagePolling: true

ManagePipeline: true

ManageEventPipeline: false

enable Ceilometer metrics
CeilometerQdrPublishMetrics: true

enable collection of API status
CollectdEnableSensubility: true
CollectdSensubility Transport: amqp1

enable collection of containerized service metrics
CollectdEnableLibpodstats: true

set collectd overrides for higher telemetry resolution and extra plugins

to load
CollectdConnectionType: amqgp1

32

>TER 4. CONFIGURING RED HAT OPENSTACK PLATFORM DIRECTOR FOR SERVICE TELEMETRY FRAMEWORK

CollectdAmgplnterval: 30
CollectdDefaultPollinglInterval: 30
CollectdExtraPlugins:

- vmem

set standard prefixes for where metrics are published to QDR

MetricsQdrAddresses:

- prefix: 'collectd’

distribution: multicast

- prefix: 'anycast/ceilometer'

distribution: multicast

ExtraConfig:

ceilometer::agent::polling::polling_interval: 30
ceilometer::agent::polling::polling_meters:

- cpu

- memory.usage

to avoid filling the memory buffers if disconnected from the message bus
note: this may need an adjustment if there are many metrics to be sent.
collectd::plugin::amqp1::send_queue_limit: 5000

receive extra information about virtual memory
collectd::plugin::vmem::verbose: true

provide name and uuid in addition to hostname for better correlation
to ceilometer data
collectd::plugin::virt::hostname_format: "name uuid hostname"

provide the human-friendly name of the virtual instance
collectd::plugin::virt::plugin_instance_format: metadata

set memcached collectd plugin to report its metrics by hostname
rather than host IP, ensuring metrics in the dashboard remain uniform
collectd::plugin::memcached::instances:

local:
host: "%{hiera('fqdn_canonical’)}"
port: 11211

4.1.5. Configuring the STF connection for the overcloud

To configure the Service Telemetry Framework (STF) connection, you must create a file that contains
the connection configuration of the AMQ Interconnect for the overcloud to the STF deployment. Enable
the collection of metrics and storage of the metrics in STF and deploy the overcloud. The default
configuration is for a single cloud instance with the default message bus topics. For configuration of
multiple cloud deployments, see Section 4.3, “Configuring multiple clouds”.

Prerequisites

Retrieve the CA certificate from the AMQ Interconnect deployed by STF. For more information,
see Section 4.1.1, "Getting CA certificate from Service Telemetry Framework for overcloud
configuration”.

Retrieve the AMQ Interconnect password. For more information, see Section 4.1.2, “Retrieving
the AMQ Interconnect password”.

33

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

® Retrieve the AMQ Interconnect route address. For more information, see Section 4.1.3,
“Retrieving the AMQ Interconnect route address”.

Procedure

1. Login to the undercloud host as the stack user.
2. Create a configuration file called stf-connectors.yaml in the /home/stack directory.

3. In the stf-connectors.yaml file, configure the MetricsQdrConnectors address to connect the
AMQ Interconnect on the overcloud to the STF deployment. You configure the topic addresses
for Sensubility, Ceilometer, and collectd in this file to match the defaults in STF. For more
information about customizing topics and cloud configuration, see Section 4.3, “Configuring
multiple clouds”.

stf-connectors.yaml

resource_registry:
OS::TripleO::Services::Collectd: /usr/share/openstack-tripleo-heat-
templates/deployment/metrics/collectd-container-puppet.yaml

parameter_defaults:
ExtraConfig:
qdr::router_id: "%{::hostname}.cloudi”

MetricsQdrConnectors:
- host: default-interconnect-5671-service-telemetry.apps.infra.watch
port: 443
role: edge
verifyHostname: false
sslProfile: sslProfile
saslUsername: guest@default-interconnect
sas|Password: pass:<password_from_stf>

MetricsQdrSSLProfiles:
- name: sslProfile
caCertFileContent: |

CeilometerQdrMetricsConfig:
driver: amqgp
topic: cloud1-metering

CollectdAmgplnstances:
cloud1-telemetry:
format: JSON
presettle: false

CollectdSensubilityResultsChannel: sensubility/cloudi-telemetry

e The qdr::router_id configuration is to override the default value which uses the fully-
qualified domain name (FQDN) of the host. In some cases the FQDN can result in a router
ID length of greater than 61 characters which results in failed QDR connections. For

34

>TER 4. CONFIGURING RED HAT OPENSTACK PLATFORM DIRECTOR FOR SERVICE TELEMETRY FRAMEWORK

deployments with shorter FQDN values this is not necessary.

® The resource_registry configuration directly loads the collectd service because you do not
include the collectd-write-qdr.yaml environment file for multiple cloud deployments.

® Replace the host sub-parameter of MetricsQdrConnectors with the value that you
retrieved in Section 4.1.3, "Retrieving the AMQ Interconnect route address”.

® Replace the <password_from_stf> portion of the saslPassword sub-parameter of
MetricsQdrConnectors with the value you retrieved in Section 4.1.2, “Retrieving the
AMQ Interconnect password”.

® Replace the caCertFileContent parameter with the contents retrieved in Section 4.1.1,
“Getting CA certificate from Service Telemetry Framework for overcloud configuration”.

® Set topic value of CeilometerQdrMetricsConfig.topic to define the topic for Ceilometer
metrics. The value is a unique topic identifier for the cloud such as cloud1-metering.

e Set CollectdAmqplinstances sub-parameter to define the topic for collectd metrics. The
section name is a unique topic identifier for the cloud such as cloud1-telemetry.

e Set CollectdSensubilityResultsChannel to define the topic for collectd-sensubility
events. The value is a unique topic identifier for the cloud such as sensubility/cloudi-
telemetry.

NOTE

When you define the topics for collectd and Ceilometer, the value you provide is
transposed into the full topic that the Smart Gateway client uses to listen for messages.

Ceilometer topic values are transposed into the topic address
anycast/ceilometer/<TOPIC>.sample and collectd topic values are transposed into the
topic address collectd/<TOPIC>. The value for sensubility is the full topic path and has
no transposition from topic value to topic address.

For an example of a cloud configuration in the ServiceTelemetry object referring to the
full topic address, see the section called “The clouds parameter”.

4.1.6. Deploying the overcloud

Deploy or update the overcloud with the required environment files so that data is collected and
transmitted to Service Telemetry Framework (STF).

Procedure

1. Login to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

I $ source ~/stackrc

3. Add your data collection and AMQ Interconnect environment files to the stack with your other
environment files and deploy the overcloud:

I (undercloud)$ openstack overcloud deploy --templates \

35

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

-e [your environment files] \

-e /usr/share/openstack-tripleo-heat-templates/environments/metrics/ceilometer-write-
qdr.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/metrics/qdr-edge-only.yaml \
-e /home/stack/enable-stf.yaml \
-e /home/stack/stf-connectors.yaml

® |nclude the ceilometer-write-qdr.yaml file to ensure that Ceilometer telemetry is sent to
STF.

® |nclude the qdr-edge-only.yaml file to ensure that the message bus is enabled and
connected to STF message bus routers.

® |nclude the enable-stf.yaml environment file to ensure that the defaults are configured
correctly.

® Include the stf-connectors.yaml environment file to define the connection to STF.

4.1.7. Validating client-side installation
To validate data collection from the Service Telemetry Framework (STF) storage domain, query the

data sources for delivered data. To validate individual nodes in the Red Hat OpenStack Platform
(RHOSP) deployment, use SSH to connect to the console.

TIP

Some telemetry data is available only when RHOSP has active workloads.

Procedure

1. Login to an overcloud node, for example, controller-0.

2. Ensure that the metrics_qdr and collection agent containers are running on the node:

$ sudo podman container inspect --format '{{.State.Status}}' metrics_qdr collectd
ceilometer_agent_notification ceilometer_agent_central

running

running

running

running

NOTE

Use this command on compute nodes:

$ sudo podman container inspect --format '{{.State.Status}}' metrics_qgdr
collectd ceilometer_agent_compute

3. Return the internal network address on which AMQ Interconnect is running, for example,
172.17.1.44 listening on port 5666:

$ sudo podman exec -it metrics_qdr cat /etc/qpid-dispatch/qdrouterd.conf

36

>TER 4. CONFIGURING RED HAT OPENSTACK PLATFORM DIRECTOR FOR SERVICE TELEMETRY FRAMEWORK

listener {
host: 172.17.1.44
port: 5666
authenticatePeer: no
saslMechanisms: ANONYMOUS

4. Return a list of connections to the local AMQ Interconnect:

$ sudo podman exec -it metrics_qdr gdstat --bus=172.17.1.44:5666 --connections

Connections
id host container
role dir security authentication tenant

1 default-interconnect-5671-service-telemetry.apps.infra.watch:443 default-
interconnect-7458fd4d69-bgzfb edge out
TLSv1.2(DHE-RSA-AES256-GCM-SHA384) anonymous-user

12 172.17.1.44:60290

openstack.org/om/container/controller-0/ceilometer-agent-
notification/25/5c02cee550f143ec9ea030db5cccbal4 normal in no-security

no-auth

16 172.17.1.44:36408 metrics

normal in no-security anonymous-user

899 172.17.1.44:39500 10a2e99d-1b8a-4329-b48c-
4335e5f75c84 normal in no-security
no-auth

There are four connections:
® Qutbound connection to STF
® |nbound connection from ceilometer
® |nbound connection from collectd

® |nbound connection from our qdstat client
The outbound STF connection is provided to the MetricsQdrConnectors host parameter
and is the route for the STF storage domain. The other hosts are internal network addresses
of the client connections to this AMQ Interconnect.

5. To ensure that messages are delivered, list the links, and view the _edge address in the deliv
column for delivery of messages:

$ sudo podman exec -it metrics_qdr gdstat --bus=172.17.1.44:5666 --links

Router Links

type dir connid id peer class addr phs cap pri undel unsett deliv
presett psdrop acc rej rel mod delay rate

37

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

endpoint out 1 5 local _edge 2500 0 O 2979926 0 0
0 0 29799260 0 O

endpoint in 1 6 250 0 0 O 0 0 0 0 0
0 0 0 O

endpoint in 1 7 250 0 0 O 0 0 0 0 0
0 0 0 O

endpoint out 1 8 2500 0 O 0 0 0 0 0
0 0 0 O

endpoint in 1 9 250 0 0 O 0 0 0 0 0
0 0 0 O

endpoint out 1 10 250 0 0 O 911 911 0 0
0 o0 0 911 0

endpoint in 1 11 250 0 0 O 0 911 0 0
0 o0 0 0 O

endpoint out 12 32 local temp.ISY6Mcicol4J2Kp 2500 0 O 0 0
0 0 0O 0 0 O

endpoint in 16 41 250 0 0 O 2979924 0 0

0 0 29799240 0 O

endpoint in 912 1834 mobile $management 0 2500 0 O 1 0

0 100 0O O
endpoint out 912 1835 local temp.90k2resI9tmt+CT 250 0 0 O 0
0 0O 00O OO0 O

6. To list the addresses from RHOSP nodes to STF, connect to
Red Hat OpenShift Container Platform to retrieve the AMQ Interconnect pod name and list the
connections. List the available AMQ Interconnect pods:

$ oc get pods -I application=default-interconnect

NAME READY STATUS RESTARTS AGE
default-interconnect-7458fd4d69-bgzfb 1/1 Running 0 6d21h

7. Connect to the pod and list the known connections. In this example, there are three edge
connections from the RHOSP nodes with connection id 22, 23, and 24:

$ oc exec -it deploy/default-interconnect -- qdstat --connections

2020-04-21 18:25:47.243852 UTC
default-interconnect-7458fd4d69-bgzfb

Connections
id host container role dir security
authentication tenant lastdlv uptime

5 10.129.0.110:48498 bridge-3f5 edge in no-security
anonymous-user 000:00:00:02 000:17:36:29

6 10.129.0.111:43254 rcv[default-cloud1-ceil-meter-smartgateway-58f885c76d-xmxwn]
edge in no-security anonymous-user 000:00:00:02 000:17:36:20
7 10.130.0.109:50518 rcv[default-cloud1-coll-event-smartgateway-58fbbd4485-rI9bd]
normal in no-security anonymous-user - 000:17:36:11

8 10.130.0.110:33802 rcv[default-cloud1-ceil-event-smartgateway-6¢fb65478c-g5982]
normal in no-security anonymous-user 000:01:26:18 000:17:36:05

38

>TER 4. CONFIGURING RED HAT OPENSTACK PLATFORM DIRECTOR FOR SERVICE TELEMETRY FRAMEWORK

22 10.128.0.1:51948 Router.ceph-0.redhat.local edge in
TLSv1/SSLv3(DHE-RSA-AES256-GCM-SHA384) anonymous-user 000:00:00:03
000:22:08:43

23 10.128.0.1:51950 Router.compute-0.redhat.local edge in
TLSv1/SSLv3(DHE-RSA-AES256-GCM-SHA384) anonymous-user 000:00:00:03
000:22:08:43

24 10.128.0.1:52082 Router.controller-0.redhat.local edge in
TLSv1/SSLv3(DHE-RSA-AES256-GCM-SHA384) anonymous-user 000:00:00:00
000:22:08:34

27 127.0.0.1:42202 c2f541c1-4¢c97-4b37-a189-a396c08fb079 normal in
no-security no-auth 000:00:00:00 000:00:00:00

8. To view the number of messages delivered by the network, use each address with the oc exec
command:

$ oc exec -it deploy/default-interconnect -- qdstat --address

2020-04-21 18:20:10.293258 UTC
default-interconnect-7458fd4d69-bgzfb

Router Addresses

class addr phs distrib pri local remote in out thru
fallback

mobile anycast/ceilometer/event.sample 0 balanced - 1 0 970 970

0 O

mobile anycast/ceilometer/metering.sample 0 balanced - 1 0 2,344,833
2,344833 0 O

mobile collectd/notify 0 multicast - 1 0 70 70 0 O
mobile collectd/telemetry 0 multicast - 1 0 216,128,890 216,128,890
0 O

4.2. DISABLING RED HAT OPENSTACK PLATFORM SERVICES USED
WITH SERVICE TELEMETRY FRAMEWORK

Disable the services used when deploying Red Hat OpenStack Platform (RHOSP) and connecting it to
Service Telemetry Framework (STF). There is no removal of logs or generated configuration files as
part of the disablement of the services.

Procedure

1. Login to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:
I $ source ~/stackrc
3. Create the disable-stf.yaml environment file:

$ cat > ~/disable-stf.yaml <<EOF

resource_registry:

39

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

OS::TripleO::Services::CeilometerAgentCentral: OS::Heat::None
OS::TripleO::Services::CeilometerAgentNotification: OS::Heat::None
OS::TripleO::Services::CeilometerAgentlpmi: OS::Heat::None
OS::TripleO::Services::ComputeCeilometerAgent: OS::Heat::None
OS::TripleO::Services::Redis: OS::Heat::None
OS::TripleO::Services::Collectd: OS::Heat::None
OS::TripleO::Services::MetricsQdr: OS::Heat::None

EOF

4. Remove the following files from your RHOSP director deployment:

e ceilometer-write-qdr.yaml
e qdr-edge-only.yaml

® enable-stf.yaml

e stf-connectors.yaml

5. Update the RHOSP overcloud. Ensure that you use the disable-stf.yaml file early in the list of
environment files. By adding disable-stf.yaml early in the list, other environment files can
override the configuration that would disable the service:

(undercloud)$ openstack overcloud deploy --templates \
-e /home/stack/disable-stf.yaml \
-e [your environment files]

4.3. CONFIGURING MULTIPLE CLOUDS

You can configure multiple Red Hat OpenStack Platform (RHOSP) clouds to target a single instance of
Service Telemetry Framework (STF). When you configure multiple clouds, every cloud must send
metrics and events on their own unique message bus topic. In the STF deployment, Smart Gateway
instances listen on these topics to save information to the common data store. Data that is stored by the
Smart Gateway in the data storage domain is filtered by using the metadata that each of Smart
Gateways creates.

' WARNING
A Ensure that you deploy each cloud with a unique cloud domain configuration. For

more information about configuring the domain for your cloud deployment, see
Section 4.3.4, “Setting a unique cloud domain”.

40

>TER 4. CONFIGURING RED HAT OPENSTACK PLATFORM DIRECTOR FOR SERVICE TELEMETRY FRAMEWORK

Figure 4.1. Two RHOSP clouds connect to STF

OpenStack Cloud 1 OpenStack Cloud 2
OpenStack Nodes OpenStack Nodes
collectd container collectd container
I |
metrics/events metrics/events
AMQ Interconnect container AMQ Interconnect container

Service Telemetry Framework

AMQ Interconnect

collectd /cloudi-telemetry collectd /cloud2-telemetry
Cloud 1 Metrics Smart Gateway Cloud 2 Metrics Smart Gateway
scrape endpoints scrape endpoints

Prometheus Datastore

User provisioned N Dashboards
components

To configure the RHOSP overcloud for a multiple cloud scenario, complete the following tasks:

1. Plan the AMQP address prefixes that you want to use for each cloud. For more information, see
Section 4.3.1, “Planning AMQP address prefixes”.

2. Deploy metrics and events consumer Smart Gateways for each cloud to listen on the
corresponding address prefixes. For more information, see Section 4.3.2, “Deploying Smart
Gateways”.

3. Configure each cloud with a unique domain name. For more information, see Section 4.3.4,
“Setting a unique cloud domain”.

4. Create the base configuration for STF. For more information, see Section 4.1.4, “Creating the
base configuration for STF".

41

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

5. Configure each cloud to send its metrics and events to STF on the correct address. For more
information, see Section 4.3.5, “Creating the Red Hat OpenStack Platform environment file for
multiple clouds”.

4.3.1. Planning AMQP address prefixes

By default, Red Hat OpenStack Platform (RHOSP) nodes retrieve data through two data collectors;
collectd and Ceilometer. The collectd-sensubility plugin requires a unique address. These components
send telemetry data or notifications to the respective AMQP addresses, for example,
collectd/telemetry. STF Smart Gateways listen on those AMQP addresses for data. To support multiple
clouds and to identify which cloud generated the monitoring data, configure each cloud to send data to
a unique address. Add a cloud identifier prefix to the second part of the address. The following list
shows some example addresses and identifiers:

e collectd/cloudi-telemetry

e collectd/cloud1-notify

e sensubility/cloudi-telemetry

e anycast/ceilometer/cloud1-metering.sample

® anycast/ceilometer/cloud1-event.sample

e collectd/cloud2-telemetry

e collectd/cloud2-notify

e sensubility/cloud2-telemetry

® anycast/ceilometer/cloud2-metering.sample

® anycast/ceilometer/cloud2-event.sample

e collectd/us-east-1-telemetry

e collectd/us-west-3-telemetry

4.3.2. Deploying Smart Gateways

You must deploy a Smart Gateway for each of the data collection types for each cloud; one for collectd
metrics, one for collectd events, one for Ceilometer metrics, one for Ceilometer events, and one for
collectd-sensubility metrics. Configure each of the Smart Gateways to listen on the AMQP address that
you define for the corresponding cloud. To define Smart Gateways, configure the clouds parameter in
the ServiceTelemetry manifest.

When you deploy STF for the first time, Smart Gateway manifests are created that define the initial
Smart Gateways for a single cloud. When you deploy Smart Gateways for multiple cloud support, you
deploy multiple Smart Gateways for each of the data collection types that handle the metrics and the

events data for each cloud. The initial Smart Gateways are defined in cloud1 with the following
subscription addresses:

collector type default subscription address

collectd metrics collectd/telemetry

42

>TER 4. CONFIGURING RED HAT OPENSTACK PLATFORM DIRECTOR FOR SERVICE TELEMETRY FRAMEWORK

collectd

collectd-sensubility

Ceilometer

Ceilometer

Prerequisites

events

metrics

metrics

events

collectd/notify

sensubility/telemetry

anycast/ceilometer/metering.sam
ple

anycast/ceilometer/event.sample

® You have determined your cloud naming scheme. For more information about determining your
naming scheme, see Section 4.3.1, “Planning AMQP address prefixes”.

® You have created your list of clouds objects. For more information about creating the content
for the clouds parameter, see the section called “The clouds parameter”.

Procedure

1. Login to Red Hat OpenShift Container Platform.

2. Change to the service-telemetry namespace:

I $ oc project service-telemetry

3. Edit the default ServiceTelemetry object and add a clouds parameter with your configuration:

WARNING

Long cloud names might exceed the maximum pod name of 63 characters.
Ensure that the combination of the ServiceTelemetry name default and
the clouds.name does not exceed 19 characters. Cloud names cannot
contain any special characters, such as -. Limit cloud names to alphanumeric

(a-z, 0-9).

Topic addresses have no character limitation and can be different from the

clouds.name value.

I $ oc edit stf default

apiVersion: infra.watch/vibetat
kind: ServiceTelemetry

metadata:

spec:

clouds:

43

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

- name: cloud1
events:
collectors:
- collectorType: collectd
subscriptionAddress: collectd/cloud-notify
- collectorType: ceilometer
subscriptionAddress: anycast/ceilometer/cloud1-event.sample
metrics:
collectors:
- collectorType: collectd
subscriptionAddress: collectd/cloudi-telemetry
- collectorType: sensubility
subscriptionAddress: sensubility/cloudi-telemetry
- collectorType: ceilometer
subscriptionAddress: anycast/ceilometer/cloud1-metering.sample
- name: cloud2
events:

4. Save the ServiceTelemetry object.

5. Verify that each Smart Gateway is running. This can take several minutes depending on the
number of Smart Gateways:

$ oc get po -I app=smart-gateway

NAME READY STATUS RESTARTS AGE
default-cloud1-ceil-event-smartgateway-6¢fb65478c-g5g82 2/2 Running 0 13h
default-cloud1-ceil-meter-smartgateway-58f885c76d-xmxwn 2/2 Running 0 13h
default-cloud1-coll-event-smartgateway-58fbbd4485-rl9bd 2/2 Running 0 13h
default-cloud1-coll-meter-smartgateway-7c6fc495c4-jin728 2/2 Running 0 13h
default-cloud1-sens-meter-smartgateway-8h4tc445a2-mme683 2/2 Running 0 13h

4.3.3. Deleting the default Smart Gateways

After you configure Service Telemetry Framework (STF) for multiple clouds, you can delete the default
Smart Gateways if they are no longer in use. The Service Telemetry Operator can remove
SmartGateway objects that were created but are no longer listed in the ServiceTelemetry clouds list of
objects. To enable the removal of SmartGateway objects that are not defined by the clouds parameter,
you must set the cloudsRemoveOnMissing parameter to true in the ServiceTelemetry manifest.

TIP

If you do not want to deploy any Smart Gateways, define an empty clouds list by using the clouds: []
parameter.

' WARNING
A The cloudsRemoveOnMissing parameter is disabled by default. If you enable the

cloudsRemoveOnMissing parameter, you remove any manually-created
SmartGateway objects in the current namespace without any possibility to restore.

44

>TER 4. CONFIGURING RED HAT OPENSTACK PLATFORM DIRECTOR FOR SERVICE TELEMETRY FRAMEWORK

Procedure

1. Define your clouds parameter with the list of cloud objects that you want the Service Telemetry

Operator to manage. For more information, see the section called “The clouds parameter”.

2. Edit the ServiceTelemetry object and add the cloudsRemoveOnMissing parameter:

apiVersion: infra.watch/vibetat
kind: ServiceTelemetry
metadata:

spec:

cloudsRemoveOnMissing: true
clouds:

3. Save the modifications.

4. Verify that the Operator deleted the Smart Gateways. This can take several minutes while the

Operators reconcile the changes:

I $ oc get smartgateways

4.3.4. Setting a unique cloud domain

To ensure that telemetry from different Red Hat OpenStack Platform (RHOSP) clouds to
Service Telemetry Framework (STF) can be uniquely identified and do not conflict, configure the
CloudDomain parameter.

' WARNING
A Ensure that you do not change host or domain names in an existing deployment.

Host and domain name configuration is supported in new cloud deployments only.

Procedure

1. Create a new environment file, for example, hostnames.yaml.
2. Set the CloudDomain parameter in the environment file, as shown in the following example:

hostnames.yaml

parameter_defaults:
CloudDomain: newyork-west-04
CephStorageHostnameFormat: 'ceph-%index%'
ObjectStorageHostnameFormat: 'swift-%index%'
ComputeHostnameFormat: 'compute-%index%'

3. Add the new environment file to your deployment.

45

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

Additional resources

® Section 4.3.5, “Creating the Red Hat OpenStack Platform environment file for multiple clouds”

® Core Overcloud Parameters in the Overcloud Parameters guide

4.3.5. Creating the Red Hat OpenStack Platform environment file for multiple
clouds

To label traffic according to the cloud of origin, you must create a configuration with cloud-specific
instance names. Create an stf-connectors.yaml file and adjust the values of
CeilometerQdrMetricsConfig and CollectdAmqplnstances to match the AMQP address prefix
scheme.

NOTE

If you enabled container health and API status monitoring, you must also modify the
CollectdSensubilityResultsChannel parameter. For more information, see Section 6.9,
“Red Hat OpenStack Platform API status and containerized services health”.

Prerequisites

® You have retrieved the CA certificate from the AMQ Interconnect deployed by STF. For more
information, see Section 4.1.1, “Getting CA certificate from Service Telemetry Framework for
overcloud configuration”.

® You have created your list of clouds objects. For more information about creating the content
for the clouds parameter, see the clouds configuration parameter.

® You have retrieved the AMQ Interconnect route address. For more information, see
Section 4.1.3, “"Retrieving the AMQ Interconnect route address”.

® You have created the base configuration for STF. For more information, see Section 4.1.4,
“Creating the base configuration for STF”.

® You have created a unique domain name environment file. For more information, see
Section 4.3.4, "Setting a unique cloud domain”.

Procedure

1. Login to the undercloud host as the stack user.
2. Create a configuration file called stf-connectors.yaml in the /home/stack directory.

3. In the stf-connectors.yaml file, configure the MetricsQdrConnectors address to connect to
the AMQ Interconnect on the overcloud deployment. Configure the
CeilometerQdrMetricsConfig, CollectdAmgplnstances, and
CollectdSensubilityResultsChannel topic values to match the AMQP address that you want
for this cloud deployment.

stf-connectors.yaml

resource_registry:
OS::TripleO::Services::Collectd: /usr/share/openstack-tripleo-heat-
templates/deployment/metrics/collectd-container-puppet.yaml

46

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/overcloud_parameters/index#ref_core-overcloud-parameters_overcloud_parameters

>TER 4. CONFIGURING RED HAT OPENSTACK PLATFORM DIRECTOR FOR SERVICE TELEMETRY FRAMEWORK

parameter_defaults:
ExtraConfig:
qdr::router_id: %f{::hostname}.cloud1

MetricsQdrConnectors:
- host: default-interconnect-5671-service-telemetry.apps.infra.watch
port: 443
role: edge
verifyHostname: false
sslProfile: sslProfile

MetricsQdrSSLProfiles:
- name: sslProfile
caCertFileContent: |

CeilometerQdrMetricsConfig:
driver: amqgp
topic: cloud1-metering

CollectdAmgplnstances:
cloud1-telemetry:
format: JSON
presettle: false

CollectdSensubilityResultsChannel: sensubility/cloudi-telemetry

e The qdr::router_id configuration is to override the default value which uses the fully-
qualified domain name (FQDN) of the host. In some cases the FQDN can result in a router
ID length of greater than 61 characters which results in failed QDR connections. For
deployments with shorter FQDN values this is not necessary.

® The resource_registry configuration directly loads the collectd service because you do not
include the collectd-write-qdr.yaml environment file for multiple cloud deployments.

® Replace the host parameter with the value that you retrieved in Section 4.1.3, "Retrieving
the AMQ Interconnect route address”.

® Replace the caCertFileContent parameter with the contents retrieved in Section 4.1.1,
“Getting CA certificate from Service Telemetry Framework for overcloud configuration”.

® Replace the host sub-parameter of MetricsQdrConnectors with the value that you
retrieved in Section 4.1.3, "Retrieving the AMQ Interconnect route address”.

® Set topic value of CeilometerQdrMetricsConfig.topic to define the topic for Ceilometer
metrics. The value is a unique topic identifier for the cloud such as cloud1-metering.

e Set CollectdAmqplinstances sub-parameter to define the topic for collectd metrics. The
section name is a unique topic identifier for the cloud such as cloud1-telemetry.

e Set CollectdSensubilityResultsChannel to define the topic for collectd-sensubility

events. The value is a unique topic identifier for the cloud such as sensubility/cloudi-
telemetry.

47

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

NOTE

When you define the topics for collectd and Ceilometer, the value you
provide is transposed into the full topic that the Smart Gateway client uses
to listen for messages.

Ceilometer topic values are transposed into the topic address
anycast/ceilometer/<TOPIC>.sample and collectd topic values are
transposed into the topic address collectd/<TOPIC>. The value for
sensubility is the full topic path and has no transposition from topic value to
topic address.

For an example of a cloud configuration in the ServiceTelemetry object
referring to the full topic address, see the section called “The clouds
parameter”.

4. Ensure that the naming convention in the stf-connectors.yaml file aligns with the
spec.bridge.amqpUrl field in the Smart Gateway configuration. For example, configure the
CeilometerQdrMetricsConfig.topic field to a value of cloud1-metering.

5. Login to the undercloud host as the stack user.

6. Source the stackrc undercloud credentials file:

I $ source stackrc

7. Include the stf-connectors.yaml file and unique domain name environment file
hostnames.yaml in the openstack overcloud deployment command, with any other
environment files relevant to your environment:

' WARNING
A If you use the collectd-write-qdr.yaml file with a custom

CollectdAmgplnstances parameter, data publishes to the custom and
default topics. In a multiple cloud environment, the configuration of the
resource_registry parameter in the stf-connectors.yamil file loads the
collectd service.

(undercloud)$ openstack overcloud deploy --templates \

-e [your environment files] \

-e /usr/share/openstack-tripleo-heat-templates/environments/metrics/ceilometer-write-
qdr.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/metrics/qdr-edge-only.yaml \
-e /home/stack/hostnames.yaml\

-e /home/stack/enable-stf.yaml \

-e /home/stack/stf-connectors.yaml

8. Deploy the Red Hat OpenStack Platform overcloud.

Additional resources

48

>TER 4. CONFIGURING RED HAT OPENSTACK PLATFORM DIRECTOR FOR SERVICE TELEMETRY FRAMEWORK

e Forinformation about how to validate the deployment, see Section 4.1.7, “Validating client-side
installation”.

4.3.6. Querying metrics data from multiple clouds

Data stored in Prometheus has a service label according to the Smart Gateway it was scraped from.
You can use this label to query data from a specific cloud.

To query data from a specific cloud, use a Prometheus promg/ query that matches the associated
service label; for example: collectd_uptime{service="default-cloudi-coll-meter"}.

49

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

CHAPTER 5. CONFIGURING
RED HAT OPENSTACK PLATFORM DIRECTOR OPERATOR
FOR SERVICE TELEMETRY FRAMEWORK

To collect metrics, events, or both, and to send them to the Service Telemetry Framework (STF)
storage domain, you must configure the Red Hat OpenStack Platform (RHOSP) overcloud to enable
data collection and transport.

STF can support both single and multiple clouds. The default configuration in RHOSP and STF set up
for a single cloud installation.

® Forasingle RHOSP overcloud deployment using director Operator with default configuration,
see Section 5.1, “Deploying Red Hat OpenStack Platform overcloud for
Service Telemetry Framework using director Operator”.

5.1. DEPLOYING RED HAT OPENSTACK PLATFORM OVERCLOUD FOR
SERVICE TELEMETRY FRAMEWORK USING DIRECTOR OPERATOR

When you deploy the Red Hat OpenStack Platform (RHOSP) overcloud deployment using director
Operator, you must configure the data collectors and the data transport for
Service Telemetry Framework (STF).

Prerequisites

® You are familiar with deploying and managing RHOSP with the RHOSP director Operator.

Procedure

1. Section 4.1.1, "Getting CA certificate from Service Telemetry Framework for overcloud
configuration”

2. Retrieving the AMQ Interconnect route address
3. Creating the base configuration for director Operator for STF
4. Configuring the STF connection for the overcloud

5. Deploying the overcloud for director operator

Additional resources

® For more information about deploying an OpenStack cloud using director Operator, see
https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/17.1/html/deploying_an_overcloud_in_a_red_hat_openshift_conta

® To collect data through AMQ Interconnect, see the amqgp] plug-in.
5.1.1. Getting CA certificate from Service Telemetry Framework for overcloud
configuration
To connect your Red Hat OpenStack Platform (RHOSP) overcloud to Service Telemetry Framework

(STF), retrieve the CA certificate of AMQ Interconnect that runs within STF and use the certificate in
RHOSP configuration.

50

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/deploying_an_overcloud_in_a_red_hat_openshift_container_platform_cluster_with_director_operator/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/managing_overcloud_observability/collectd-plugins_assembly#collectd_plugin_amqp1

IFIGURING RED HAT OPENSTACK PLATFORM DIRECTOR OPERATOR FOR SERVICE TELEMETRY FRAMEWORK

Procedure

1. View a list of available certificates in STF:
I $ oc get secrets

2. Retrieve and note the content of the default-interconnect-selfsigned Secret:

I $ oc get secret/default-interconnect-selfsigned -o jsonpath='{.data.ca\.crt}' | base64 -d

5.1.2. Retrieving the AMQ Interconnect route address

When you configure the Red Hat OpenStack Platform (RHOSP) overcloud for
Service Telemetry Framework (STF), you must provide the AMQ Interconnect route address in the STF
connection file.

Procedure

1. Login to your Red Hat OpenShift Container Platform environment where STF is hosted.

2. Change to the service-telemetry project:
I $ oc project service-telemetry
3. Retrieve the AMQ Interconnect route address:

$ oc get routes -ogo-template="{{ range .items }}{{printf "%s\n" .spec.host }}{{ end }}' | grep "\-
5671"
default-interconnect-5671-service-telemetry.apps.infra.watch

5.1.3. Creating the base configuration for director Operator for STF

Edit the heat-env-config-deploy ConfigMap to add the base Service Telemetry Framework (STF)
configuration to the overcloud nodes.

Procedure

1. Login to the Red Hat OpenShift Container Platform environment where RHOSP director
Operator is deployed and change to the project that hosts your RHOSP deployment:

I $ oc project openstack
2. Open the heat-env-config-deploy ConfigMap CR for editing:
I $ oc edit heat-env-config-deploy

3. Add the enable-stf.yaml configuration to the heat-env-config-deploy ConfigMap, save your
edits and close the file:

enable-stf.yaml

I apiVersion: v1

51

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

52

enable-stf.yaml: |
parameter_defaults:
only send to STF, not other publishers

PipelinePublishers: []

manage the polling and pipeline configuration files for Ceilometer agents

ManagePolling: true
ManagePipeline: true
ManageEventPipeline: false

enable Ceilometer metrics and events
CeilometerQdrPublishMetrics: true

enable collection of API status
CollectdEnableSensubility: true
CollectdSensubility Transport: amqgp1

enable collection of containerized service metrics
CollectdEnableLibpodstats: true

set collectd overrides for higher telemetry resolution and extra plugins
to load

CollectdConnectionType: amqp1

CollectdAmqgplnterval: 30

CollectdDefaultPollingInterval: 30

CollectdExtraPlugins:

-vmem

set standard prefixes for where metrics are published to QDR
MetricsQdrAddresses:
- prefix: 'collectd’

distribution: multicast

- prefix: 'anycast/ceilometer’

distribution: multicast

ExtraConfig:
ceilometer::agent::polling::polling_interval: 30
ceilometer::agent::polling::polling_meters:

- cpu
- memory.usage

to avoid filling the memory buffers if disconnected from the message bus
note: this may need an adjustment if there are many metrics to be sent.
collectd::plugin::amqgpi::send_queue_limit: 5000

receive extra information about virtual memory
collectd::plugin::vmem::verbose: true

provide name and uuid in addition to hostname for better correlation
to ceilometer data
collectd::plugin::virt::hostname_format: "name uuid hostname”

provide the human-friendly name of the virtual instance
collectd::plugin:ConfigMap :virt::plugin_instance_format: metadata

IFIGURING RED HAT OPENSTACK PLATFORM DIRECTOR OPERATOR FOR SERVICE TELEMETRY FRAMEWORK

set memcached collectd plugin to report its metrics by hostname
rather than host IP, ensuring metrics in the dashboard remain uniform
collectd::plugin::memcached::instances:

local:
host: "%{hiera('fqdn_canonical')}"
port: 11211

Additional resources

® For more information about configuring the enable-stf.yaml environment file, see Section 4.1.4,
“Creating the base configuration for STF”

® For more information about adding heat templates to a Red Hat OpenStack Platform director
Operator deployment, see Adding heat templates and environment files with the director
Operator

5.1.4. Configuring the STF connection for director Operator for the overcloud

Edit the heat-env-config-deploy ConfigMap to create a connection from Red Hat OpenStack Platform
(RHOSP) to Service Telemetry Framework.

Procedure

1. Login to the Red Hat OpenShift Container Platform environment where RHOSP director
Operator is deployed and change to the project that hosts your RHOSP deployment:

I $ oc project openstack
2. Open the heat-env-config-deploy ConfigMap for editing:
I $ oc edit configmap heat-env-config-deploy

3. Add your stf-connectors.yaml configuration to the heat-env-config-deploy ConfigMap,
appropriate to your environment, save your edits and close the file:

stf-connectors.yaml

apiVersion: vi
data:
[.-]
stf-connectors.yaml: |
resource_registry:
OS::TripleO::Services::Collectd: /usr/share/openstack-tripleo-heat-
templates/deployment/metrics/collectd-container-puppet.yaml

parameter_defaults:
MetricsQdrConnectors:
- host: default-interconnect-5671-service-telemetry.apps.ostest.test. metalkube.org

port: 443
role: edge
verifyHostname: false
sslProfile: sslProfile
saslUsername: guest@default-interconnect

53

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/rhosp_director_operator_for_openshift_container_platform/assembly_adding-heat-templates-and-environment-files-with-the-director-operator_rhosp-director-operator#doc-wrapper

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

saslPassword: pass:<password_from_stf>

MetricsQdrSSLProfiles:
- name: sslProfile

CeilometerQdrMetricsConfig:
driver: amgp
topic: cloud1-metering

CollectdAmgplnstances:
cloud1-telemetry:
format: JSON
presettle: false

CollectdSensubilityResultsChannel: sensubility/cloud1-telemetry

Additional resources

® For more information about the stf-connectors.yaml environment file, see Section 4.1.5,
“Configuring the STF connection for the overcloud”.

® For more information about adding heat templates to a RHOSP director Operator deployment,
see Adding heat templates and environment files with the director Operator
5.1.5. Deploying the overcloud for director Operator

Deploy or update the overcloud with the required environment files so that data is collected and
transmitted to Service Telemetry Framework (STF).

Procedure

1. Login to the Red Hat OpenShift Container Platform environment where RHOSP director
Operator is deployed and change to the project that hosts your RHOSP deployment:

I $ oc project openstack
2. Open the OpenStackConfigGenerator custom resource for editing:

I $ oc edit OpenStackConfigGenerator

3. Add the metrics/ceilometer-write-qdr.yaml and metrics/qdr-edge-only.yaml environment
files as values for the heatEnvs parameter. Save your edits, and close the
OpenStackConfigGenerator custom resource:

NOTE

If you already deployed a Red Hat OpenStack Platform environment using
director Operator, you must delete the existing OpenStackConfigGenerator
and create a new object with the full configuration in order to re-generate the
OpenStackConfigVersion.

OpenStackConfigGenerator

54

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/rhosp_director_operator_for_openshift_container_platform/assembly_adding-heat-templates-and-environment-files-with-the-director-operator_rhosp-director-operator#doc-wrapper

IFIGURING RED HAT OPENSTACK PLATFORM DIRECTOR OPERATOR FOR SERVICE TELEMETRY FRAMEWORK

apiVersion: osp-director.openstack.org/vibetal
kind: OpenStackConfigGenerator
metadata:
name: default
namespace: openstack
spec:
heatEnvConfigMap: heat-env-config-deploy
heatEnvs:
- <existing_environment_file_references>
- metrics/ceilometer-write-qdr.yaml
- metrics/qdr-edge-only.yaml

4. If you already deployed a Red Hat OpenStack Platform environment using director Operator
and generated a new OpenStackConfigVersion, edit the OpenStackDeploy object of your
deployment, and set the value of spec.configVersion to the new OpenStackConfigVersion in
order to update the overcloud deployment.

Additional resources

e For more information about getting the latest OpenStackConfigVersion, see Obtain the latest
OpenStackConfigVersion

® For more information about applying the overcloud configuration with director Operator, see
Applying overcloud configuration with the director Operator

55

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/rhosp_director_operator_for_openshift_container_platform/assembly_configuring-overcloud-software-with-the-director-operator_rhosp-director-operator#proc_obtain-the-latest-openstackconfigversion.adoc_assembly_configuring-overcloud-software-with-the-director-operator
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/rhosp_director_operator_for_openshift_container_platform/assembly_configuring-overcloud-software-with-the-director-operator_rhosp-director-operator#proc_applying-overcloud-configuration-with-the-director-operator_assembly_configuring-overcloud-software-with-the-director-operator

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

CHAPTER 6. USING OPERATIONAL FEATURES OF
SERVICE TELEMETRY FRAMEWORK

You can use the following operational features to provide additional functionality to the
Service Telemetry Framework (STF):

® Configuring dashboards

® Configuring the metrics retention time period

® Configuring alerts

® Configuring SNMP traps

® Configuring high availability

® Configuring an alternate observability strategy

® Monitoring the resource use of OpenStack services

® Monitoring container health and API status

6.1. DASHBOARDS IN SERVICE TELEMETRY FRAMEWORK

Use the third-party application, Grafana, to visualize system-level metrics that the data collectors
collectd and Ceilometer gather for each individual host node.

For more information about configuring data collectors, see Section 4.1, “Deploying
Red Hat OpenStack Platform overcloud for Service Telemetry Framework using director”.

You can use dashboards to monitor a cloud:

Infrastructure dashboard

Use the infrastructure dashboard to view metrics for a single node at a time. Select a node from the
upper left corner of the dashboard.

Cloud view dashboard

Use the cloud view dashboard to view panels to monitor service resource usage, API stats, and cloud
events. You must enable API health monitoring and service monitoring to provide the data for this
dashboard. APl health monitoring is enabled by default in the STF base configuration. For more
information, see Section 4.1.4, “Creating the base configuration for STF”.

® For more information about APl health monitoring, see Section 6.9,
“Red Hat OpenStack Platform API status and containerized services health”.

® For more information about RHOSP service monitoring, see Section 6.8, “Resource usage of
Red Hat OpenStack Platform services”.

Virtual machine view dashboard

Use the virtual machine view dashboard to view panels to monitor virtual machine infrastructure
usage. Select a cloud and project from the upper left corner of the dashboard. You must enable
event storage if you want to enable the event annotations on this dashboard. For more information,
see Section 3.2, “Creating a ServiceTelemetry object in Red Hat OpenShift Container Platform” .

Memcached view dashboard

56

CHAPTER 6. USING OPERATIONAL FEATURES OF SERVICE TELEMETRY FRAMEWORK

Use the memcached view dashboard to view panels to monitor connections, availability, system
metrics and cache performance. Select a cloud from the upper left corner of the dashboard.

6.1.1. Configuring Grafana to host the dashboard

Grafanais not included in the default Service Telemetry Framework (STF) deployment, so you must
deploy the Grafana Operator from community-operators CatalogSource. If you use the Service
Telemetry Operator to deploy Grafana, it results in a Grafana instance and the configuration of the
default data sources for the local STF deployment.

Procedure
1. Login to your Red Hat OpenShift Container Platform environment where STF is hosted.

2. Subscribe to the Grafana Operator by using the community-operators CatalogSource:

' WARNING
A Community Operators are Operators which have not been vetted or

verified by Red Hat. Community Operators should be used with caution
because their stability is unknown. Red Hat provides no support for
community Operators.

Learn more about Red Hat's third party software support policy

$ oc apply -f - <<EOF
apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
labels:
operators.coreos.com/grafana-operator.openshift-operators: "
name: grafana-operator
namespace: openshift-operators
spec:
channel: v5
installPlanApproval: Automatic
name: grafana-operator
source: community-operators
sourceNamespace: openshift-marketplace
EOF

3. Verify that the Operator launched successfully. In the command output, if the value of the
PHASE column is Succeeded, the Operator launched successfully:

$ oc wait --for jsonpath="{.status.phase}"=Succeeded csv --namespace openshift-operators -
| operators.coreos.com/grafana-operator.openshift-operators

clusterserviceversion.operators.coreos.com/grafana-operator.v5.6.0 condition met

57

https://access.redhat.com/third-party-software-support

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

4. Tolaunch a Grafana instance, create or modify the ServiceTelemetry object. Set
graphing.enabled and graphing.grafana.ingressEnabled to true. Optionally, set the value of
graphing.grafana.baselmage to the Grafana workload container image that will be deployed:

$ oc edit stf default

apiVersion: infra.watch/vibetat
kind: ServiceTelemetry

spec:
graphing:
enabled: true
grafana:

ingressEnabled: true
baselmage: 'registry.redhat.io/rhel8/grafana:9'

5. Verify that the Grafana instance deployed:

$ oc wait --for jsonpath="{.status.phase}"=Running pod -l app=default-grafana --
timeout=600s

pod/default-grafana-deployment-669968df64-wz5s2 condition met

6. Verify that the Grafana data sources installed correctly:

$ oc get grafanadatasources.grafana.integreatly.org

NAME NO MATCHING INSTANCES LAST RESYNC AGE
default-ds-stf-prometheus 2m35s 2m56s

7. Verify that the Grafana route exists:

$ oc get route default-grafana-route

NAME HOST/PORT PATH SERVICES
PORT TERMINATION WILDCARD

default-grafana-route default-grafana-route-service-telemetry.apps.infra.watch
default-grafana-service web reencrypt None

6.1.2. Enabling dashboards

The Grafana Operator can import and manage dashboards by creating GrafanaDashboard objects.
Service Telemetry Operator can enable a set of default dashboards that create the GrafanaDashboard
objects that load dashboards into the Grafana instance.

Set the value of graphing.grafana.dashboards.enabled to true to load the following dashboards into
Grafana:

® |nfrastructure dashboard
® Cloud view dashboard

® Virtual machine view dashboard

58

CHAPTER 6. USING OPERATIONAL FEATURES OF SERVICE TELEMETRY FRAMEWORK

® Memcached view dashboard

You can use the GrafanaDashboard object to create and load additional dashboards into Grafana. For
more information about managing dashboards with Grafana Operator, see Dashboards in the Grafana
Operator project documentation.

Prerequisites

® You enabled graphing in the ServiceTelemetry object. For more information about graphing,
see Section 6.1.1, “Configuring Grafana to host the dashboard” .

Procedure

1. To enable the managed dashboards, create or modify the ServiceTelemetry object. Set
graphing.grafana.dashboards.enabled to true:

$ oc edit stf default

apiVersion: infra.watch/vibetat
kind: ServiceTelemetry

spec:
graphing:
enabled: true
grafana:

dashboards:
enabled: true

2. Verify that the Grafana dashboards are created. The process of Service Telemetry Operator
creating the dashboards might take some time.

$ oc get grafanadashboards.grafana.integreatly.org

NAME NO MATCHING INSTANCES LAST RESYNC AGE
memcached-dashboard-1 38s 38s
rhos-cloud-dashboard-1 39s 39s

rhos-dashboard-1 39s 39s
virtual-machine-dashboard-1 37s 37s

3. Retrieve the Grafana route address:

$ oc get route default-grafana-route -ojsonpath="{.spec.host}'

default-grafana-route-service-telemetry.apps.infra.watch

4. In a web browser, navigate to https://<grafana_route_address>. Replace
<grafana_route_address> with the value that you retrieved in the previous step.

5. Login with OpenShift credentials. For more information about logging in, see Section 3.3,
“Accessing user interfaces for STF components”.

6. To view the dashboard, click Dashboards and Browse. The managed dashboards are available in
the service-telemetry folder.

59

https://grafana.github.io/grafana-operator/docs/dashboards/

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

6.1.3. Connecting an external dashboard system

It is possible to configure third-party visualization tools to connect to the STF Prometheus for metrics
retrieval. Access is controlled via an OAuth token, and a ServiceAccount is already created that has
(only) the required permissions. A new OAuth token can be generated against this account for the
external system to use.

To use the authentication token, the third-party tool must be configured to supply an HTTP Bearer
Token Authorization header as described in RFC6750. Consult the documentation of the third-party
tool for how to configure this header. For example Configure Prometheus - Custom HTTP Headers in
the Grafana Documentation.

Procedure

60

1. Login to Red Hat OpenShift Container Platform.

2. Change to the service-telemetry namespace:

I $ oc project service-telemetry

3. Create a new token secret for the stf-prometheus-reader service account

$ oc create -f - <<EOF
apiVersion: v1
kind: Secret
metadata:

name: my-prometheus-reader-token

namespace: service-telemetry

annotations:

kubernetes.io/service-account.name: stf-prometheus-reader

type: kubernetes.io/service-account-token
EOF

4. Retrieve the token from the secret

$ TOKEN=$(oc get secret my-prometheus-reader-token -o template="{{.data.token}}' |
base64 -d)

5. Retrieve the Prometheus host name

I $ PROM_HOST=$(oc get route default-prometheus-proxy -ogo-template="{{ .spec.host }}')

6. Test the access token

$ curl -k -H "Authorization: Bearer ${TOKEN}" https://${PROM_HOST}/api/v1i/query?
query=up

{"status":"success"[...]

7. Configure your third-party tool with the PROM_HOST and TOKEN values from above

$ echo $PROM_HOST
$ echo $TOKEN

https://grafana.com/docs/grafana/latest/datasources/prometheus/configure-prometheus-data-source/#custom-http-headers

CHAPTER 6. USING OPERATIONAL FEATURES OF SERVICE TELEMETRY FRAMEWORK

8. The token remains valid as long as the secret exists. You can revoke the token by deleting the
secret.

$ oc delete secret my-prometheus-reader-token
secret "my-prometheus-reader-token" deleted

Additional information

For more information about service account token secrets, see Creating a service account token secret
in the OpenShift Container Platform Documentation.

6.2. METRICS RETENTION TIME PERIOD IN
SERVICE TELEMETRY FRAMEWORK

The default retention time for metrics stored in Service Telemetry Framework (STF) is 24 hours, which
provides enough data for trends to develop for the purposes of alerting.

For long-term storage, use systems designed for long-term data retention, for example, Thanos.

Additional resources

® To adjust STF for additional metrics retention time, see Section 6.2.1, "Editing the metrics
retention time period in Service Telemetry Framework”.

® Forrecommendations about Prometheus data storage and estimating storage space, see
https://prometheus.io/docs/prometheus/latest/storage/#operational-aspects

® For more information about Thanos, see https://thanos.io/

6.2.1. Editing the metrics retention time period in Service Telemetry Framework

You can adjust Service Telemetry Framework (STF) for additional metrics retention time.

Procedure

1. Login to Red Hat OpenShift Container Platform.

2. Change to the service-telemetry namespace:
I $ oc project service-telemetry
3. Edit the ServiceTelemetry object:

I $ oc edit stf default

4. Add retention: 7d to the storage section of backends.metrics.prometheus.storage to increase
the retention period to seven days:

NOTE

If you set a long retention period, retrieving data from heavily populated
Prometheus systems can result in queries returning results slowly.

61

https://docs.openshift.com/container-platform/4.14/nodes/pods/nodes-pods-secrets.html#nodes-pods-secrets-creating-sa_nodes-pods-secrets
https://prometheus.io/docs/prometheus/latest/storage/#operational-aspects
https://thanos.io/

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

apiVersion: infra.watch/vibetat
kind: ServiceTelemetry
metadata:
name: default
namespace: service-telemetry
spec:
backends:
metrics:
prometheus:
enabled: true
storage:

strategy: persistent
retention: 7d

5. Save your changes and close the object.

6. Wait for prometheus to restart with the new settings.
I $ oc get po -I app.kubernetes.io/name=prometheus -w

7. Verify the new retention setting by checking the command line arguments used in the pod.

$ oc describe po prometheus-default-0 | grep retention.time
--storage.tsdb.retention.time=24h

Additional resources

® [For more information about the metrics retention time, see Section 6.2, “Metrics retention time
period in Service Telemetry Framework”.

6.3. ALERTS IN SERVICE TELEMETRY FRAMEWORK

You create alert rules in Prometheus and alert routes in Alertmanager. Alert rules in Prometheus servers
send alerts to an Alertmanager, which manages the alerts. Alertmanager can silence, inhibit, or
aggregate alerts, and send notifications by using email, on-call notification systems, or chat platforms.

To create an alert, complete the following tasks:

1. Create an alert rule in Prometheus. For more information, see Section 6.3.1, “Creating an alert
rule in Prometheus”.

2. Create an alert route in Alertmanager. There are two ways in which you can create an alert route:

® Creating a standard alert route in Alertmanager .
® Creating an alert route with templating in Alertmanager .

Additional resources

For more information about alerts or notifications with Prometheus and Alertmanager, see
https://prometheus.io/docs/alerting/overview/

62

https://prometheus.io/docs/alerting/overview/

CHAPTER 6. USING OPERATIONAL FEATURES OF SERVICE TELEMETRY FRAMEWORK

To view an example set of alerts that you can use with Service Telemetry Framework (STF), see
https://github.com/infrawatch/service-telemetry-operator/tree/master/deploy/alerts

6.3.1. Creating an alert rule in Prometheus

Prometheus evaluates alert rules to trigger notifications. If the rule condition returns an empty result set,
the condition is false. Otherwise, the rule is true and it triggers an alert.

Procedure
1. Login to Red Hat OpenShift Container Platform.

2. Change to the service-telemetry namespace:

I $ oc project service-telemetry

3. Create a PrometheusRule object that contains the alert rule. The Prometheus Operator loads
the rule into Prometheus:

$ oc apply -f - <<EOF
apiVersion: monitoring.rhobs/v1
kind: PrometheusRule
metadata:
creationTimestamp: null
labels:
prometheus: default
role: alert-rules
name: prometheus-alarm-rules
namespace: service-telemetry

spec:
groups:
- name: ./openstack.rules
rules:
- alert: Collectd metrics receive rate is zero
expr: rate(sg_total_collectd_msg_received_count[1m]) == 0
EOF

To change the rule, edit the value of the expr parameter.

4. To verify that the Operator loaded the rules into Prometheus, run the curl command against
the default-prometheus-proxy route with basic authentication:

$ curl -k -H "Authorization: Bearer $(oc create token stf-prometheus-reader)" https://$(oc get
route default-prometheus-proxy -ogo-template="{{ .spec.host }}')/api/vi/rules
{"status":"success","data":{"groups":
[{"name™:"./openstack.rules","file":"/etc/prometheus/rules/prometheus-default-rulefiles-
0/service-telemetry-prometheus-alarm-rules.yaml”,"rules":
[{"state":"inactive","name":"Collectd metrics receive count is
zero","query":"rate(sg_total_collectd_msg_received_count[1m]) == 0","duration":0,"labels":
{},"annotations":{},"alerts":
[],"health":"ok","evaluationTime":0.00034627,"lastEvaluation":"2021-12-
07T17:23:22.160448028Z","type" "alerting"}],"interval":30,"evaluationTime":0.000353787,"last
Evaluation":"2021-12-07T17:23:22.160444017Z"}]}}

63

https://github.com/infrawatch/service-telemetry-operator/tree/master/deploy/alerts

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

Additional resources

® For more information on alerting, see https://github.com/coreos/prometheus-
operator/blob/master/Documentation/user-guides/alerting.md

6.3.2. Configuring custom alerts

You can add custom alerts to the PrometheusRule object that you created in Section 6.3.1, “Creating
an alert rule in Prometheus”.

Procedure

1. Use the oc edit command:
I $ oc edit prometheusrules.monitoring.rhobs prometheus-alarm-rules

2. Edit the PrometheusRules manifest.

3. Save and close the manifest.

Additional resources

® For more information about how to configure alerting rules, see
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/.

® For more information about PrometheusRules objects, see
https://github.com/coreos/prometheus-operator/blob/master/Documentation/user-
guides/alerting.md

6.3.3. Creating a standard alert route in Alertmanager

Use Alertmanager to deliver alerts to an external system, such as email, IRC, or other notification
channel. The Prometheus Operator manages the Alertmanager configuration as a

Red Hat OpenShift Container Platform secret. By default, Service Telemetry Framework (STF) deploys
a basic configuration that results in no receivers:

alertmanager.yaml: |-

global:
resolve_timeout: 5m

route:
group_by: [job']
group_wait: 30s
group_interval: 5m
repeat_interval: 12h
receiver: 'null’

receivers:

- name: 'null’

To deploy a custom Alertmanager route with STF, you must add a alertmanagerConfigManifest
parameter to the Service Telemetry Operator that results in an updated secret, managed by the
Prometheus Operator.

64

https://github.com/coreos/prometheus-operator/blob/master/Documentation/user-guides/alerting.md
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://github.com/coreos/prometheus-operator/blob/master/Documentation/user-guides/alerting.md

CHAPTER 6. USING OPERATIONAL FEATURES OF SERVICE TELEMETRY FRAMEWORK

NOTE

If your alertmanagerConfigManifest contains a custom template, for example, to
construct the title and text of the sent alert, you must deploy the contents of the
alertmanagerConfigManifest using a base64-encoded configuration. For more

information, see Section 6.3.4, “Creating an alert route with templating in Alertmanager” .

Procedure

1. Login to Red Hat OpenShift Container Platform.

2. Change to the service-telemetry namespace:

I $ oc project service-telemetry

3. Edit the ServiceTelemetry object for your STF deployment:

I $ oc edit stf default

4. Add the new parameter alertmanagerConfigManifest and the Secret object contents to
define the alertmanager.yaml configuration for Alertmanager:

NOTE

This step loads the default template that the Service Telemetry Operator
manages. To verify that the changes are populating correctly, change a value,
return the alertmanager-default secret, and verify that the new value is loaded
into memory. For example, change the value of the parameter
global.resolve_timeout from 5m to 10m.

apiVersion: infra.watch/vibetat
kind: ServiceTelemetry
metadata:
name: default
namespace: service-telemetry
spec:
backends:
metrics:
prometheus:
enabled: true
alertmanagerConfigManifest: |
apiVersion: v1
kind: Secret
metadata:
name: 'alertmanager-default’
namespace: 'service-telemetry
type: Opaque
stringData:
alertmanager.yaml: |-
global:
resolve_timeout: 10m
route:
group_by: ['job]
group_wait: 30s

65

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

group_interval: 5m
repeat_interval: 12h
receiver: 'null’
receivers:
- name: 'null'

5. Verify that the configuration has been applied to the secret:

$ oc get secret alertmanager-default -o go-template='{{index .data "alertmanager.yaml" |
base64decode }}'

global:
resolve_timeout: 10m

route:
group_by: [job']
group_wait: 30s
group_interval: 5m
repeat_interval: 12h
receiver: 'null’

receivers:

- name: 'null’

6. Run the wget command from the prometheus pod against the alertmanager-proxy service to
retrieve the status and configYAML contents, and verify that the supplied configuration
matches the configuration in Alertmanager:

$ oc exec -it prometheus-default-0 -¢ prometheus -- sh -¢ "wget --header \"Authorization:
Bearer \$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)\" https://default-
alertmanager-proxy:9095/api/vi/status -q -O -"

{"status":"success","data":{"configYAML":"...",...}}

7. Verify that the configY AML field contains the changes you expect.

Additional resources

® For more information about the Red Hat OpenShift Container Platform secret and the
Prometheus operator, see Prometheus user guide on alerting.

6.3.4. Creating an alert route with templating in Alertmanager

Use Alertmanager to deliver alerts to an external system, such as email, IRC, or other notification
channel. The Prometheus Operator manages the Alertmanager configuration as a

Red Hat OpenShift Container Platform secret. By default, Service Telemetry Framework (STF) deploys
a basic configuration that results in no receivers:

66

alertmanager.yaml: |-
resolve_timeout: 5m

group_by: [job']
group_wait: 30s
group_interval: 5m
repeat_interval: 12h

https://github.com/coreos/prometheus-operator/blob/master/Documentation/user-guides/alerting.md

CHAPTER 6. USING OPERATIONAL FEATURES OF SERVICE TELEMETRY FRAMEWORK

receiver: 'null’
receivers:
- name: 'null’

If the alertmanagerConfigManifest parameter contains a custom template, for example, to construct
the title and text of the sent alert, you must deploy the contents of the alertmanagerConfigManifest by
using a base64-encoded configuration.

Procedure

1. Login to Red Hat OpenShift Container Platform.

2. Change to the service-telemetry namespace:

I $ oc project service-telemetry

3. Create the necessary alertmanager config in a file called alertmanager.yaml, for example:

$ cat > alertmanager.yaml <<EOF
global:
resolve_timeout: 10m
slack_api_url: <slack_api_url>
receivers:
- name: slack
slack_configs:
- channel: #stf-alerts
title: |-

text: >-

route:
group_by: [job']
group_wait: 30s
group_interval: 5m
repeat_interval: 12h
receiver: 'slack'’
EOF

4. Generate the config manifest and add it to the ServiceTelemetry object for your STF
deployment:

$ CONFIG_MANIFEST=$(oc create secret --dry-run=client generic alertmanager-default --
from-file=alertmanager.yaml -0 json)

$ oc patch stf default --type=merge -p '{"spec":
{"alertmanagerConfigManifest":""$CONFIG_MANIFEST"}}'

5. Verify that the configuration has been applied to the secret:

NOTE

There will be a short delay as the operators update each object

I $ oc get secret alertmanager-default -o go-template="{{index .data "alertmanager.yaml" |

67

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

base64decode }}'

global:
resolve_timeout: 10m
slack_api_url: <slack_api_url>
receivers:
- name: slack
slack_configs:
- channel: #stf-alerts
title: |-

text: >-

route:
group_by: [job']
group_wait: 30s
group_interval: 5m
repeat_interval: 12h
receiver: 'slack'’

6. Run the wget command from the prometheus pod against the alertmanager-proxy service to
retrieve the status and configYAML contents, and verify that the supplied configuration
matches the configuration in Alertmanager:

$ oc exec -it prometheus-default-0 -¢c prometheus -- /bin/sh -c "wget --header \"Authorization:
Bearer \$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)\" https://default-
alertmanager-proxy:9095/api/vi/status -q -O -"

{"status":"success","data":{"configYAML":"...",...}}

7. Verify that the configY AML field contains the changes you expect.

Additional resources

® For more information about the Red Hat OpenShift Container Platform secret and the
Prometheus operator, see Prometheus user guide on alerting.

6.4. SENDING ALERTS AS SNMP TRAPS

To enable SNMP traps, modify the ServiceTelemetry object and configure the snmpTraps
parameters. SNMP traps are sent using version 2c.

6.4.1. Configuration parameters for snmpTraps
The snmpTraps parameter contains the following sub-parameters for configuring the alert receiver:

enabled

Set the value of this sub-parameter to true to enable the SNMP trap alert receiver. The default value
is false.

target

Target address to send SNMP traps. Value is a string. Default is 192.168.24.254.
port

Target port to send SNMP traps. Value is an integer. Default is 162.

68

https://github.com/coreos/prometheus-operator/blob/master/Documentation/user-guides/alerting.md

CHAPTER 6. USING OPERATIONAL FEATURES OF SERVICE TELEMETRY FRAMEWORK

community

Target community to send SNMP traps to. Value is a string. Default is public.
retries

SNMP trap retry delivery limit. Value is an integer. Default is 5.
timeout

SNMP trap delivery timeout defined in seconds. Value is an integer. Default is 1.
alertOidLabel

Label name in the alert that defines the OID value to send the SNMP trap as. Value is a string.
Default is oid.

trapOidPrefix
SNMP trap OID prefix for variable bindings. Value is a string. Default is 1.3.6.1.4.1.50495.15.
trapDefaultOid

SNMP trap OID when no alert OID label has been specified with the alert. Value is a string. Default is
1.3.6.1.4.1.50495.15.1.2.1.

trapDefaultSeverity

SNMP trap severity when no alert severity has been set. Value is a string. Defaults to an empty string.

Configure the snmpTraps parameter as part of the alerting.alertmanager.receivers definition in the
ServiceTelemetry object:

apiVersion: infra.watch/vibetat
kind: ServiceTelemetry
metadata:
name: default
namespace: service-telemetry
spec:
alerting:
alertmanager:
receivers:
snmpTraps:
alertOidLabel: oid
community: public
enabled: true
port: 162
retries: 5
target: 192.168.25.254
timeout: 1
trapDefaultOid: 1.3.6.1.4.1.50495.15.1.2.1
trapDefaultSeverity: ™
trapOidPrefix: 1.3.6.1.4.1.50495.15

6.4.2. Overview of the MIB definition

Delivery of SNMP traps uses object identifier (OID) value 1.3.6.1.4.1.50495.15.1.2.1 by default. The
management information base (MIB) schema is available at
https://github.com/infrawatch/prometheus-webhook-snmp/blob/master/PROMETHEUS-ALERT-
CEPH-MIB.txt.

69

https://github.com/infrawatch/prometheus-webhook-snmp/blob/master/PROMETHEUS-ALERT-CEPH-MIB.txt

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

The OID number is comprised of the following component values: * The value 1.3.6.1.4.1 is a global OID
defined for private enterprises. * The next identifier 50495 is a private enterprise number assigned by
IANA for the Ceph organization. * The other values are child OIDs of the parent.

15

prometheus objects
15.1

prometheus alerts
15.1.2

prometheus alert traps
15.1.2.1

prometheus alert trap default

The prometheus alert trap default is an object comprised of several other sub-objects to OID
1.3.6.1.4.1.50495.15 which is defined by the
alerting.alertmanager.receivers.snmpTraps.trapOidPrefix parameter:

<trapOidPrefix>.1.1.1
alert name
<trapOidPrefix>.1.1.2
status
<trapOidPrefix>.1.1.3
severity
<trapOidPrefix>.1.1.4
instance
<trapOidPrefix>.1.1.5
job
<trapOidPrefix>.1.1.6
description
<trapOidPrefix>.1.1.7
labels
<trapOidPrefix>.1.1.8
timestamp
<trapOidPrefix>.1.1.9

rawdata

The following is example output from a simple SNMP trap receiver that outputs the received trap to the
console:

SNMPv2-MIB::snmpTrapOID.0 = OID: SNMPv2-SMI::enterprises.50495.15.1.2.1

SNMPv2-SMI::enterprises.50495.15.1.1.1 = STRING: "TEST ALERT FROM PROMETHEUS
PLEASE ACKNOWLEDGE"

SNMPv2-SMI::enterprises.50495.15.1.1.2 = STRING: "firing"

SNMPv2-SMI::enterprises.50495.15.1.1.3 = STRING: "warning"

SNMPv2-SMI::enterprises.50495.15.1.1.4 =™

SNMPv2-SMI::enterprises.50495.15.1.1.5 ="

SNMPv2-SMI::enterprises.50495.15.1.1.6 = STRING: "TEST ALERT FROM "

SNMPv2-SMI::enterprises.50495.15.1.1.7 = STRING: "{\"cluster\": \"TEST\", \"container\": \"sg-

70

CHAPTER 6. USING OPERATIONAL FEATURES OF SERVICE TELEMETRY FRAMEWORK

core\", \"endpoint\": \"prom-https\", \"prometheus\": \"service-telemetry/default\", \"service\": \"default-
cloudi-coll-meter\", \"source\": \"SG\"}"

SNMPv2-SMI::enterprises.50495.15.1.1.8 = Timeticks: (1676476389) 194 days, 0:52:43.89

SNMPv2-SMI::enterprises.50495.15.1.1.9 = STRING: "{\"status\": \"firing\", \"labels\": {\"cluster\":
\"TEST\", \"container\": \"sg-core\", \"endpoint\": \"prom-https\", \"prometheus\": \"service-
telemetry/default\", \"service\": \"default-cloud1-coll-meter\", \"source\": \"SG\"}, \"annotations\":
{\"action\": \"TESTING PLEASE ACKNOWLEDGE, NO FURTHER ACTION REQUIRED ONLY A
TEST\"}, \"startsAt\": \"2023-02-15T15:53:09.1092\", \"endsAt\": \"0001-01-01T00:00:002\",
\"generatorURL\": \"http://prometheus-default-0:9090/graph?
g0.expr=sg_total_collectd_msg_received_count+%3E+1&g0.tab=1\", \"fingerprint\":
\"feefeb77c577a02f\"}"

6.4.3. Configuring SNMP traps

Prerequisites

® Ensure that you know the IP address or hostname of the SNMP trap receiver where you want to
send the alerts to.

Procedure

1. Login to Red Hat OpenShift Container Platform.

2. Change to the service-telemetry namespace:
I $ oc project service-telemetry

3. To enable SNMP traps, modify the ServiceTelemetry object:

I $ oc edit stf default

4. Set the alerting.alertmanager.receivers.snmpTraps parameters:

apiVersion: infra.watch/vibetat
kind: ServiceTelemetry

spec:

alerting:
alertmanager:
receivers:
snmpTraps:
enabled: true
target: 10.10.10.10

5. Ensure that you set the value of target to the IP address or hostname of the SNMP trap
receiver.

Additional Information

For more information about available parameters for snmpTraps, see Section 6.4.1, “Configuration
parameters for snmpTraps”.

71

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

6.4.4. Creating alerts for SNMP traps

You can create alerts that are configured for delivery by SNMP traps by adding labels that are parsed by
the prometheus-webhook-snmp middleware to define the trap information and delivered object
identifiers (OID). Adding the oid or severity labels is only required if you need to change the default
values for a particular alert definition.

NOTE

When you set the oid label, the top-level SNMP trap OID changes, but the sub-OIDs
remain defined by the global trapOidPrefix value plus the child OID values .1.1.1 through
.1.1.9. For more information about the MIB definition, see Section 6.4.2, “Overview of the
MIB definition”.

Procedure

1. Login to Red Hat OpenShift Container Platform.

2. Change to the service-telemetry namespace:

I $ oc project service-telemetry

3. Create a PrometheusRule object that contains the alert rule and an oid label that contains the
SNMP trap OID override value:

$ oc apply -f - <<EOF
apiVersion: monitoring.rhobs/v1
kind: PrometheusRule
metadata:
creationTimestamp: null
labels:
prometheus: default
role: alert-rules
name: prometheus-alarm-rules-snmp
namespace: service-telemetry
spec:
groups:
- name: ./openstack.rules
rules:

- alert: Collectd metrics receive rate is zero
expr: rate(sg_total_collectd_msg_received_count[1m]) == 0
labels:

oid: 1.3.6.1.4.1.50495.15.1.2.1
severity: critical
EOF

Additional information

For more information about configuring alerts, see Section 6.3, "Alerts in Service Telemetry Framework”.

6.5. CONFIGURING THE DURATION FOR THE TLS CERTIFICATES

To configure the duration of the TLS certificates that you use for the AMQ Interconnect connection in
Service Telemetry Framework (STF), modify the ServiceTelemetry object and configure the
certificates parameter.

72

CHAPTER 6. USING OPERATIONAL FEATURES OF SERVICE TELEMETRY FRAMEWORK

6.5.1. Configuration parameters for the TLS certificates

You can configure the duration of the certificate with the following sub-parameters of the certificates
parameter:

endpointCertDuration

The requested duration or lifetime of the endpoint Certificate. Minimum accepted duration is 1 hour.
Value must be in units accepted by Go time.ParseDuration
https://golang.org/pkg/time/#ParseDuration. The default value is 70080h.

caCertDuration

The requested duration or lifetime of the CA Certificate. Minimum accepted duration is 1 hour. Value
must be in units accepted by Go time.ParseDuration https://golang.org/pkg/time/#ParseDuration.
Default value is 70080h.

NOTE

The default duration of certificates is long, because you usually copy a subset of them in
the Red Hat OpenStack Platform deployment when the certificates renew. For more
information about the QDR CA Certificate renewal process, see Chapter 7, Renewing the
AMQ Interconnect certificate.

You can configure the certificates parameter for QDR that is part of the transports.qdr definition in
the ServiceTelemetry object:

apiVersion: infra.watch/vibetat
kind: ServiceTelemetry
metadata:

name: default

namespace: service-telemetry
spec:

transports:
qdr:
enabled: true
certificates:

endpointCertDuration: 70080h
caCertDuration: 70080h

6.5.2. Configuring TLS certificates duration

To configure the duration of the TLS certificates to use with Service Telemetry Framework (STF),
modify the ServiceTelemetry object and configure the certificates parameter.

Prerequisites

® You didn't deploy an instance of Service Telemetry Operator already.

73

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

NOTE

When you create the ServiceTelemetry object, the required certificates and their secrets
for STF are also created. For more information about how to modify the certificates and
the secrets, see: Chapter 7, Renewing the AMQ Interconnect certificate. The following
procedure is valid for new STF deployments.

Procedure

1. To edit the duration of the TLS certificate, you can set the QDR caCertDuration, for example
87600h for 10 years:

$ oc apply -f - <<EOF
apiVersion: infra.watch/vibetat
kind: ServiceTelemetry
metadata:
name: default
namespace: service-telemetry
spec:
transport:
qdr:
enabled: true
certificates:
caCertDuration: 87600h
EOF

Verification

1. Verify that the expiry date for the certificate is correct:

$ oc get secret default-interconnect-selfsigned -o jsonpath="{.data.tls\.crt}' | base64 -d |
openssl x509 -in - -text | grep "Not After"
Not After : Mar 9 21:00:16 2033 GMT

6.6. HIGH AVAILABILITY

' WARNING
A STF high availability (HA) mode is deprecated and is not supported in production

environments. Red Hat OpenShift Container Platform is a highly-available platform,
and you can cause issues and complicate debugging in STF if you enable HA mode.

With high availability, Service Telemetry Framework (STF) can rapidly recover from failures in its
component services. Although Red Hat OpenShift Container Platform restarts a failed pod if nodes are
available to schedule the workload, this recovery process might take more than one minute, during which
time events and metrics are lost. A high availability configuration includes multiple copies of STF
components, which reduces recovery time to approximately 2 seconds. To protect against failure of an
Red Hat OpenShift Container Platform node, deploy STF to an Red Hat OpenShift Container Platform
cluster with three or more nodes.

74

CHAPTER 6. USING OPERATIONAL FEATURES OF SERVICE TELEMETRY FRAMEWORK

Enabling high availability has the following effects:

® The following components run two pods instead of the default one:

o AMQ Interconnect

o Alertmanager

o Prometheus

o Events Smart Gateway
o Metrics Smart Gateway

® Recovery time from a lost pod in any of these services reduces to approximately 2 seconds.

6.6.1. Configuring high availability

To configure Service Telemetry Framework (STF) for high availability, add highAvailability.enabled:
true to the ServiceTelemetry object in Red Hat OpenShift Container Platform. You can set this
parameter at installation time or, if you already deployed STF, complete the following steps:

Procedure

1. Login to Red Hat OpenShift Container Platform.

2. Change to the service-telemetry namespace:

I $ oc project service-telemetry

3. Use the oc command to edit the ServiceTelemetry object:

I $ oc edit stf default

4. Add highAvailability.enabled: true to the spec section:

apiVersion: infra.watch/vibetat
kind: ServiceTelemetry

spec:

highAvailability:
enabled: true

5. Save your changes and close the object.

6.7. OBSERVABILITY STRATEGY IN SERVICE TELEMETRY
FRAMEWORK

Service Telemetry Framework (STF) does not include event storage backends or dashboarding tools.
STF can optionally create datasource configurations for Grafana using the community operator to

provide a dashboarding interface.

Instead of having Service Telemetry Operator create custom resource requests, you can use your own

75

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

deployments of these applications or other compatible applications, and scrape the metrics Smart
Gateways for delivery to your own Prometheus-compatible system for telemetry storage. If you set the
observabilityStrategy to none, then storage backends will not be deployed so persistent storage will
not be required by STF.

Use the observabilityStrategy property on the STF object to specify which type of observability
components will be deployed.

The following values are available:

value meaning

use_redhat Red Hat supported components are requested by
STF. This includes Prometheus and Alertmanager
from the Cluster Observability Operator, but no
resource requests to Elastic Cloud on Kubernetes
(ECK) Operator. If enabled, resources are also
requested from the Grafana Operator (community
component).

use_hybrid In addition to the Red Hat supported components,
Elasticsearch and Grafana resources are also
requested (if specified in the ServiceTelemetry
object)

use_community The community version of Prometheus Operator is
used instead of Cluster Observability Operator.
Elasticsearch and Grafana resources are also
requested (if specified in the ServiceTelemetry
object)

none No storage or alerting components are deployed

NOTE

Newly deployed STF environments as of 1.5.3 default to use_redhat. Existing STF
deployments created before 1.5.3 default to use_community.

To migrate an existing STF deployment to use_redhat, see the Red Hat Knowledge Base article
Migrating Service Telemetry Framework to fully supported operators.
6.7.1. Configuring an alternate observability strategy

To skip the deployment of storage, visualization, and alerting backends, add observabilityStrategy:
none to the ServiceTelemetry spec. In this mode, you only deploy AMQ Interconnect routers and Smart
Gateways, and you must configure an external Prometheus-compatible system to collect metrics from
the STF Smart Gateways, and an external Elasticsearch to receive the forwarded events.

Procedure

76

https://access.redhat.com/articles/7011708

CHAPTER 6. USING OPERATIONAL FEATURES OF SERVICE TELEMETRY FRAMEWORK

1. Create a ServiceTelemetry object with the property observabilityStrategy: none in the spec

parameter. The manifest shows results in a default deployment of STF that is suitable for

receiving telemetry from a single cloud with all metrics collector types.

$ oc apply -f - <<EOF
apiVersion: infra.watch/vibetat
kind: ServiceTelemetry
metadata:

name: default

namespace: service-telemetry
spec:

observabilityStrategy: none
EOF

2. Delete the remaining objects that are managed by community operators

$ for o in alertmanagers.monitoring.rhobs/default prometheuses.monitoring.rhobs/default

I elasticsearch/elasticsearch grafana/default-grafana; do oc delete $o; done

3. To verify that all workloads are operating correctly, view the pods and the status of each pod:

$ oc get pods

NAME READY STATUS RESTARTS AGE
default-cloud1-ceil-event-smartgateway-6f8547dféc-p2db5 3/3 Running 0

default-cloud1-ceil-meter-smartgateway-59c845d65b-gzhcs 3/3 Running 0
default-cloud1-coll-event-smartgateway-bf859f8d77-tzb66 3/3 Running 0

default-cloud1-coll-meter-smartgateway-75bbd948b9-d5phm 3/3 Running 0
default-cloud1-sens-meter-smartgateway-7fdbb57b6d-dh2g9 3/3 Running 0

default-interconnect-668d5bbcd6-57b2| 1/1 Running 0 132m
interconnect-operator-b8f5bb647-tlp5t 1/1 Running 0 47h
service-telemetry-operator-56609dd695-wkvjq 1/1 Running 0 156m
smart-gateway-operator-58d77dcf7-6xsq7 1/1 Running 0 47h

Additional resources

® For more information about configuring additional clouds or to change the set of supported

collectors, see Section 4.3.2, "Deploying Smart Gateways”.

132m
132m

® To migrate an existing STF deployment to use_redhat, see the Red Hat Knowledge Base article

Migrating Service Telemetry Framework to fully supported operators.

6.8. RESOURCE USAGE OF RED HAT OPENSTACK PLATFORM
SERVICES

You can monitor the resource usage of the Red Hat OpenStack Platform (RHOSP) services, such as the

APIs and other infrastructure processes, to identify bottlenecks in the overcloud by showing services

that run out of compute power. Resource usage monitoring is enabled by default.

Additional resources

® To disable resource usage monitoring, see Section 6.8.1, “Disabling resource usage monitoring

of Red Hat OpenStack Platform services”.

77

https://access.redhat.com/articles/7011708

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

6.8.1. Disabling resource usage monitoring of Red Hat OpenStack Platform services

To disable the monitoring of RHOSP containerized service resource usage, you must set the
CollectdEnableLibpodstats parameter to false.

Prerequisites

® You have created the stf-connectors.yaml file. For more information, see Section 4.1,
“Deploying Red Hat OpenStack Platform overcloud for Service Telemetry Framework using
director”.

® You are using the most current version of Red Hat OpenStack Platform (RHOSP) 17.1.

Procedure

1. Open the stf-connectors.yaml file and add the CollectdEnableLibpodstats parameter to
override the setting in enable-stf.yaml. Ensure that stf-connectors.yaml s called from the
openstack overcloud deploy command after enable-stf.yamil:

I CollectdEnableLibpodstats: false

2. Continue with the overcloud deployment procedure. For more information, see Section 4.1.6,
“Deploying the overcloud”.

6.9. RED HAT OPENSTACK PLATFORM API STATUS AND
CONTAINERIZED SERVICES HEALTH

You can use the OCI (Open Container Initiative) standard to assess the container health status of each
Red Hat OpenStack Platform (RHOSP) service by periodically running a health check script. Most

RHOSP services implement a health check that logs issues and returns a binary status. For the RHOSP
APIs, the health checks query the root endpoint and determine the health based on the response time.

Monitoring of RHOSP container health and API status is enabled by default.

Additional resources
® To disable RHOSP container health and API status monitoring, see Section 6.9.1, “Disabling
container health and API status monitoring”.
6.9.1. Disabling container health and API status monitoring

To disable RHOSP containerized service health and API status monitoring, you must set the
CollectdEnableSensubility parameter to false.

Prerequisites

® You have created the stf-connectors.yaml file in your templates directory. For more
information, see Section 4.1, “Deploying Red Hat OpenStack Platform overcloud for
Service Telemetry Framework using director”.

® You are using the most current version of Red Hat OpenStack Platform (RHOSP) 17.1.

Procedure

78

CHAPTER 6. USING OPERATIONAL FEATURES OF SERVICE TELEMETRY FRAMEWORK

1. Open the stf-connectors.yaml and add the CollectdEnableSensubility parameter to override
the setting in enable-stf.yaml. Ensure that stf-connectors.yaml is called from the openstack
overcloud deploy command after enable-stf.yaml:

I CollectdEnableSensubility: false

2. Continue with the overcloud deployment procedure. For more information, see Section 4.1.6,
“Deploying the overcloud”.

Additional resources

® For more information about multiple cloud addresses, see Section 4.3, “Configuring multiple
clouds”.

79

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

CHAPTER 7. RENEWING THE AMQ INTERCONNECT
CERTIFICATE

Periodically, you must renew the CA certificate that secures the AMQ Interconnect connection between
Red Hat OpenStack Platform (RHOSP) and Service Telemetry Framework (STF) when the certificate
expires. The renewal is handled automatically by the cert-manager component in

Red Hat OpenShift Container Platform, but you must manually copy the renewed certificate to your
RHOSP nodes.

7.1. CHECKING FOR AN EXPIRED AMQ INTERCONNECT CA
CERTIFICATE

When the CA certificate expires, the AMQ Interconnect connections remain up, but cannot reconnect if
they are interrupted. Eventually, some or all of the connections from your Red Hat OpenStack Platform

(RHOSP) dispatch routers fail, showing errors on both sides, and the expiry or Not Afterfield in your CA
certificate is in the past.

Procedure

1. Login to Red Hat OpenShift Container Platform.

2. Change to the service-telemetry namespace:
I $ oc project service-telemetry

3. Verify that some or all dispatch router connections have failed:

I $ oc exec -it deploy/default-interconnect -- qdstat --connections | grep Router | wc
0 O 0

4. Check for this error in the Red Hat OpenShift Container Platform-hosted AMQ Interconnect
logs:

$ oc logs -l application=default-interconnect | tail

[.-.]

2022-11-10 20:51:22.863466 +0000 SERVER (info) [C261] Connection from
10.10.10.10:34570 (to 0.0.0.0:5671) failed: amgp:connection:framing-error SSL Failure:
error:140940E5:SSL routines:ssl3_read_bytes:ssl handshake failure

5. Loginto your RHOSP undercloud.

6. Check for this error in the RHOSP-hosted AMQ Interconnect logs of a node with a failed
connection:

$ ssh controller-0.ctlplane -- sudo tail /var/log/containers/metrics_qgdr/metrics_qdr.log

[...]

2022-11-10 20:50:44.311646 +0000 SERVER (info) [C137] Connection to default-
interconnect-5671-service-telemetry.apps.mycluster.com:443 failed:
amgqp:connection:framing-error SSL Failure: error:0A000086:SSL routines::certificate verify
failed

7. Confirm that the CA certificate has expired by examining the file on an RHOSP node:

80

CHAPTER 7. RENEWING THE AMQ INTERCONNECT CERTIFICATE

$ ssh controller-0.ctlplane -- cat /var/lib/config-data/puppet-
generated/metrics_qdr/etc/pki/tls/certs/CA_sslProfile.pem | openssl x509 -text | grep "Not
After"

Not After : Nov 10 20:31:16 2022 GMT

$ date
Mon Nov 14 11:10:40 EST 2022

7.2. UPDATING THE AMQ INTERCONNECT CA CERTIFICATE

To update the AMQ Interconnect certificate, you must export it from
Red Hat OpenShift Container Platform and copy it to your Red Hat OpenStack Platform (RHOSP)

nodes.

Procedure

1.

2.

Log in to Red Hat OpenShift Container Platform.

Change to the service-telemetry namespace:
I $ oc project service-telemetry

Export the CA certificate to STFCA.pem:

$ oc get secret/default-interconnect-selfsigned -o jsonpath='{.data.ca\.crt}' | base64 -d >
STFCA.pem

Copy STFCA.pem to your RHOSP undercloud.
Log into your RHOSP undercloud.

Edit the stf-connectors.yaml file to contain the new caCertFileContent. For more information,
see Section 4.1.5, “Configuring the STF connection for the overcloud”.

Copy the STFCA.pem file to each RHOSP overcloud node:
[stack@undercloud-0 ~]$ ansible -i overcloud-deploy/overcloud/tripleo-ansible-inventory.yaml

allovercloud -b -m copy -a "src=STFCA.pem dest=/var/lib/config-data/puppet-
generated/metrics_qdr/etc/pki/tls/certs/CA_sslProfile.pem"”

Restart the metrics_qdr container on each RHOSP overcloud node:

[stack@undercloud-0 ~]$ ansible -i overcloud-deploy/overcloud/tripleo-ansible-inventory.yaml
allovercloud -m shell -a "sudo podman restart metrics_qdr"
NOTE
You do not need to deploy the overcloud after you copy the STFCA.pem file and

restart the metrics_qdr container. You edit the stf-connectors.yaml file so that
future deployments do not overwrite the new CA certificate.

81

Red Hat OpenStack Platform 17.1 Service Telemetry Framework 1.5

CHAPTER 8. REMOVING SERVICE TELEMETRY FRAMEWORK
FROM THE RED HAT OPENSHIFT CONTAINER PLATFORM
ENVIRONMENT

Remove Service Telemetry Framework (STF) from an Red Hat OpenShift Container Platform
environment if you no longer require the STF functionality.

To remove STF from the Red Hat OpenShift Container Platform environment, you must perform the
following tasks:

1. Delete the namespace.
2. Remove the cert-manager Operator.

3. Remove the Cluster Observability Operator.

8.1. DELETING THE NAMESPACE

To remove the operational resources for STF from Red Hat OpenShift Container Platform, delete the
namespace.

Procedure

1. Run the oc delete command:

I $ oc delete project service-telemetry

2. Verify that the resources have been deleted from the namespace:

No resources found.

I $ oc get all

8.2. REMOVING THE CERT-MANAGER OPERATOR FOR RED HAT
OPENSHIFT

If you are not using the cert-manager Operator for Red Hat OpenShift for any other applications, delete
the Subscription, ClusterServiceVersion, and CustomResourceDefinitions.

For more information about removing the cert-manager for Red Hat OpenShift Operator, see Removing
cert-manager Operator for Red Hat OpenShift in the OpenShift Container Platform Documentation.

Additional resources

® Deleting Operators from a cluster.

8.3. REMOVING THE CLUSTER OBSERVABILITY OPERATOR

If you are not using the Cluster Observability Operator for any other applications, delete the
Subscription, ClusterServiceVersion, and CustomResourceDefinitions.

For more information about removing the Cluster Observability Operator, see Uninstalling the Cluster
Observability Operator using the web console in the OpenShift Container Platform Documentation.

82

https://docs.openshift.com/container-platform/4.14/security/cert_manager_operator/cert-manager-operator-uninstall.html
https://docs.openshift.com/container-platform/4.14/operators/admin/olm-deleting-operators-from-cluster.html
https://docs.openshift.com/container-platform/4.14/monitoring/cluster_observability_operator/installing-the-cluster-observability-operator.html#uninstalling-the-cluster-observability-operator-using-the-web-console_installing_the_cluster_observability_operator

SERVICE TELEMETRY FRAMEWORK FROM THE RED HAT OPENSHIFT CONTAINER PLATFORM ENVIRONMENT

Additional resources

® Deleting Operators from a cluster.

83

https://docs.openshift.com/container-platform/4.14/operators/admin/olm-deleting-operators-from-cluster.html

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION TO SERVICE TELEMETRY FRAMEWORK 1.5
	1.1. SUPPORT FOR SERVICE TELEMETRY FRAMEWORK
	1.2. SERVICE TELEMETRY FRAMEWORK ARCHITECTURE
	1.2.1. STF Architecture Changes

	1.3. INSTALLATION SIZE OF RED HAT OPENSHIFT CONTAINER PLATFORM

	CHAPTER 2. PREPARING YOUR RED HAT OPENSHIFT CONTAINER PLATFORM ENVIRONMENT FOR SERVICE TELEMETRY FRAMEWORK
	2.1. OBSERVABILITY STRATEGY IN SERVICE TELEMETRY FRAMEWORK
	2.2. PERSISTENT VOLUMES
	2.3. RESOURCE ALLOCATION
	2.4. NETWORK CONSIDERATIONS FOR SERVICE TELEMETRY FRAMEWORK
	2.5. DEPLOYING STF ON RED HAT OPENSHIFT CONTAINER PLATFORM-DISCONNECTED ENVIRONMENTS

	CHAPTER 3. INSTALLING THE CORE COMPONENTS OF SERVICE TELEMETRY FRAMEWORK
	3.1. DEPLOYING SERVICE TELEMETRY FRAMEWORK TO THE RED HAT OPENSHIFT CONTAINER PLATFORM ENVIRONMENT
	3.1.1. Deploying Cluster Observability Operator
	3.1.2. Deploying cert-manager for Red Hat OpenShift
	3.1.3. Deploying Service Telemetry Operator

	3.2. CREATING A SERVICETELEMETRY OBJECT IN RED HAT OPENSHIFT CONTAINER PLATFORM
	3.2.1. Primary parameters of the ServiceTelemetry object
	The backends parameter
	The clouds parameter
	The alerting parameter
	The graphing parameter
	The highAvailability parameter
	The transports parameter

	3.3. ACCESSING USER INTERFACES FOR STF COMPONENTS
	3.4. CONFIGURING AN ALTERNATE OBSERVABILITY STRATEGY

	CHAPTER 4. CONFIGURING RED HAT OPENSTACK PLATFORM DIRECTOR FOR SERVICE TELEMETRY FRAMEWORK
	4.1. DEPLOYING RED HAT OPENSTACK PLATFORM OVERCLOUD FOR SERVICE TELEMETRY FRAMEWORK USING DIRECTOR
	4.1.1. Getting CA certificate from Service Telemetry Framework for overcloud configuration
	4.1.2. Retrieving the AMQ Interconnect password
	4.1.3. Retrieving the AMQ Interconnect route address
	4.1.4. Creating the base configuration for STF
	4.1.5. Configuring the STF connection for the overcloud
	4.1.6. Deploying the overcloud
	4.1.7. Validating client-side installation

	4.2. DISABLING RED HAT OPENSTACK PLATFORM SERVICES USED WITH SERVICE TELEMETRY FRAMEWORK
	4.3. CONFIGURING MULTIPLE CLOUDS
	4.3.1. Planning AMQP address prefixes
	4.3.2. Deploying Smart Gateways
	4.3.3. Deleting the default Smart Gateways
	4.3.4. Setting a unique cloud domain
	4.3.5. Creating the Red Hat OpenStack Platform environment file for multiple clouds
	4.3.6. Querying metrics data from multiple clouds

	CHAPTER 5. CONFIGURING RED HAT OPENSTACK PLATFORM DIRECTOR OPERATOR FOR SERVICE TELEMETRY FRAMEWORK
	5.1. DEPLOYING RED HAT OPENSTACK PLATFORM OVERCLOUD FOR SERVICE TELEMETRY FRAMEWORK USING DIRECTOR OPERATOR
	5.1.1. Getting CA certificate from Service Telemetry Framework for overcloud configuration
	5.1.2. Retrieving the AMQ Interconnect route address
	5.1.3. Creating the base configuration for director Operator for STF
	5.1.4. Configuring the STF connection for director Operator for the overcloud
	5.1.5. Deploying the overcloud for director Operator

	CHAPTER 6. USING OPERATIONAL FEATURES OF SERVICE TELEMETRY FRAMEWORK
	6.1. DASHBOARDS IN SERVICE TELEMETRY FRAMEWORK
	6.1.1. Configuring Grafana to host the dashboard
	6.1.2. Enabling dashboards
	6.1.3. Connecting an external dashboard system

	6.2. METRICS RETENTION TIME PERIOD IN SERVICE TELEMETRY FRAMEWORK
	6.2.1. Editing the metrics retention time period in Service Telemetry Framework

	6.3. ALERTS IN SERVICE TELEMETRY FRAMEWORK
	6.3.1. Creating an alert rule in Prometheus
	6.3.2. Configuring custom alerts
	6.3.3. Creating a standard alert route in Alertmanager
	6.3.4. Creating an alert route with templating in Alertmanager

	6.4. SENDING ALERTS AS SNMP TRAPS
	6.4.1. Configuration parameters for snmpTraps
	6.4.2. Overview of the MIB definition
	6.4.3. Configuring SNMP traps
	6.4.4. Creating alerts for SNMP traps

	6.5. CONFIGURING THE DURATION FOR THE TLS CERTIFICATES
	6.5.1. Configuration parameters for the TLS certificates
	6.5.2. Configuring TLS certificates duration

	6.6. HIGH AVAILABILITY
	6.6.1. Configuring high availability

	6.7. OBSERVABILITY STRATEGY IN SERVICE TELEMETRY FRAMEWORK
	6.7.1. Configuring an alternate observability strategy

	6.8. RESOURCE USAGE OF RED HAT OPENSTACK PLATFORM SERVICES
	6.8.1. Disabling resource usage monitoring of Red Hat OpenStack Platform services

	6.9. RED HAT OPENSTACK PLATFORM API STATUS AND CONTAINERIZED SERVICES HEALTH
	6.9.1. Disabling container health and API status monitoring

	CHAPTER 7. RENEWING THE AMQ INTERCONNECT CERTIFICATE
	7.1. CHECKING FOR AN EXPIRED AMQ INTERCONNECT CA CERTIFICATE
	7.2. UPDATING THE AMQ INTERCONNECT CA CERTIFICATE

	CHAPTER 8. REMOVING SERVICE TELEMETRY FRAMEWORK FROM THE RED HAT OPENSHIFT CONTAINER PLATFORM ENVIRONMENT
	8.1. DELETING THE NAMESPACE
	8.2. REMOVING THE CERT-MANAGER OPERATOR FOR RED HAT OPENSHIFT
	8.3. REMOVING THE CLUSTER OBSERVABILITY OPERATOR

