
Red Hat OpenStack Platform 16.2

Distributed compute node and storage
deployment

Deploying Red Hat OpenStack Platform distributed compute node technologies

Last Updated: 2023-11-22

Red Hat OpenStack Platform 16.2 Distributed compute node and storage
deployment

Deploying Red Hat OpenStack Platform distributed compute node technologies

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

You can deploy Red Hat OpenStack Platform (RHOSP) with a distributed compute node (DCN)
architecture for edge site operability with heat stack separation. Each site can have its own Ceph
storage back end for Image service (glance) multi store.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. UNDERSTANDING DCN
1.1. REQUIRED SOFTWARE FOR DISTRIBUTED COMPUTE NODE ARCHITECTURE
1.2. MULTISTACK DESIGN
1.3. DCN STORAGE
1.4. DCN EDGE

CHAPTER 2. PLANNING A DISTRIBUTED COMPUTE NODE (DCN) DEPLOYMENT
2.1. CONSIDERATIONS FOR STORAGE ON DCN ARCHITECTURE
2.2. CONSIDERATIONS FOR NETWORKING ON DCN ARCHITECTURE
2.3. STORAGE TOPOLOGIES AND ROLES AT THE EDGE

2.3.1. Roles for edge deployments

CHAPTER 3. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD
3.1. CONFIGURING THE SPINE LEAF PROVISIONING NETWORKS
3.2. CONFIGURING A DHCP RELAY
3.3. CREATING FLAVORS AND TAGGING NODES FOR LEAF NETWORKS
3.4. MAPPING BARE METAL NODE PORTS TO CONTROL PLANE NETWORK SEGMENTS
3.5. ADDING A NEW LEAF TO A SPINE-LEAF PROVISIONING NETWORK

CHAPTER 4. PREPARING OVERCLOUD TEMPLATES FOR DCN DEPLOYMENT
4.1. PREREQUISITES FOR USING SEPARATE HEAT STACKS
4.2. LIMITATIONS OF THE EXAMPLE SEPARATE HEAT STACKS DEPLOYMENT
4.3. DESIGNING YOUR SEPARATE HEAT STACKS DEPLOYMENT
4.4. REUSING NETWORK RESOURCES IN MULTIPLE STACKS
4.5. USING MANAGENETWORKS TO REUSE NETWORK RESOURCES
4.6. USING UUIDS TO REUSE NETWORK RESOURCES
4.7. MANAGING SEPARATE HEAT STACKS
4.8. RETRIEVING THE CONTAINER IMAGES
4.9. CREATING FAST DATAPATH ROLES FOR THE EDGE

CHAPTER 5. INSTALLING THE CENTRAL LOCATION
5.1. DEPLOYING THE CENTRAL CONTROLLERS WITHOUT EDGE STORAGE
5.2. DEPLOYING THE CENTRAL SITE WITH STORAGE
5.3. INTEGRATING EXTERNAL CEPH

CHAPTER 6. DEPLOY THE EDGE WITHOUT STORAGE
6.1. DEPLOYING EDGE NODES WITHOUT STORAGE

6.1.1. Configuring the distributed compute node environment files
6.1.2. Deploying the Compute nodes to the DCN site

6.2. EXCLUDING SPECIFIC IMAGE TYPES AT THE EDGE

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE
7.1. DEPLOYING EDGE SITES WITH STORAGE
7.2. DEPLOYING EDGE SITES WITH DEDICATED CEPH NODES
7.3. USING A PRE-INSTALLED RED HAT CEPH STORAGE CLUSTER AT THE EDGE
7.4. CREATING ADDITIONAL DISTRIBUTED COMPUTE NODE SITES
7.5. UPDATING THE CENTRAL LOCATION

7.5.1. Clearing residual data after interrupted Image service processes
7.6. DEPLOYING RED HAT CEPH STORAGE DASHBOARD ON DCN

4

5

6
7
7
7
7

9
9
9
11

14

16
16
17

20
22
23

25
25
25
25
26
26
27
28
28
29

31
31

33
35

38
38
38
39
40

42
42
46
49
52
54
55
55

Table of Contents

1

. .

. .

. .

. .

. .

. .

CHAPTER 8. REPLACING DISTRIBUTEDCOMPUTEHCI NODES
8.1. REMOVING THE COMPUTE (NOVA) SERVICE
8.2. REMOVING RED HAT CEPH STORAGE SERVICES
8.3. REMOVING THE IMAGE SERVICE (GLANCE) SERVICES
8.4. REMOVING THE BLOCK STORAGE (CINDER) SERVICES
8.5. DELETE THE DISTRIBUTEDCOMPUTEHCI NODE
8.6. REPLACING A REMOVED DISTRIBUTEDCOMPUTEHCI NODE

8.6.1. Replacing a removed DistributedComputeHCI node
8.7. VERIFY THE FUNCTIONALITY OF A REPLACED DISTRIBUTEDCOMPUTEHCI NODE
8.8. TROUBLESHOOTING DISTRIBUTEDCOMPUTEHCI STATE DOWN

CHAPTER 9. DEPLOYING WITH KEY MANAGER
9.1. DEPLOYING EDGE SITES WITH KEY MANAGER

CHAPTER 10. PRECACHING GLANCE IMAGES INTO NOVA
10.1. RUNNING THE TRIPLEO_NOVA_IMAGE_CACHE.YML ANSIBLE PLAYBOOK
10.2. PERFORMANCE CONSIDERATIONS
10.3. OPTIMIZING THE IMAGE DISTRIBUTION TO DCN SITES
10.4. CONFIGURING THE NOVA-CACHE CLEANUP

CHAPTER 11. TLS-E FOR DCN
11.1. DEPLOYING DISTRIBUTED COMPUTE NODE ARCHITECTURE WITH TLS-E

CHAPTER 12. CREATING A CEPH KEY FOR EXTERNAL ACCESS
12.1. CREATING A CEPH KEY FOR EXTERNAL ACCESS
12.2. USING EXTERNAL CEPH KEYS

APPENDIX A. DEPLOYMENT MIGRATION OPTIONS
A.1. VALIDATING EDGE STORAGE

A.1.1. Importing from a local file
A.1.2. Importing an image from a web server
A.1.3. Copying an image to a new site
A.1.4. Confirming that an instance at an edge site can boot with image based volumes
A.1.5. Confirming image snapshots can be created and copied between sites

A.2. MIGRATING TO A SPINE AND LEAF DEPLOYMENT
A.3. MIGRATING TO A MULTISTACK DEPLOYMENT
A.4. BACKING UP AND RESTORING ACROSS EDGE SITES
A.5. REMOVING A DCN SITE

58
58
58
62
62
63
63
63
64
66

68
68

69
69
70
71
71

72
72

74
74
75

77
77
77
78
78
79
80
80
81
81

82

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

2

Table of Contents

3

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in
the Red Hat OpenStack Platform Jira project, where you can track the progress of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click the following link to open a the Create Issue page: Create Issue

3. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

4. Click Create.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

5

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. UNDERSTANDING DCN

NOTE

An upgrade from Red Hat OpenStack Platform (RHOSP) 16.2 to RHOSP 17.1 is not
supported for Distributed Compute Node (DCN) deployments.

Distributed compute node (DCN) architecture is for edge use cases allowing remote compute and
storage nodes to be deployed remotely while sharing a common centralised control plane. DCN
architecture allows you to position workloads strategically closer to your operational needs for higher
performance.

The central location can consist of any role, however at a minimum, requires three controllers. Compute
nodes can exist at the edge, as well as at the central location.

DCN architecture is a hub and spoke routed network deployment. DCN is comparable to a spine and
leaf deployment for routed provisioning and control plane networking with Red Hat OpenStack Platform
director.

The hub is the central site with core routers and a datacenter gateway (DC-GW).

The spoke is the remote edge, or leaf.

Edge locations do not have controllers, making them architecturally different from traditional
deployments of Red Hat OpenStack Platform:

Control plane services run remotely, at the central location.

Pacemaker is not installed.

The Block Storage service (cinder) runs in active/active mode.

Etcd is deployed as a distributed lock manager (DLM).

1.1. REQUIRED SOFTWARE FOR DISTRIBUTED COMPUTE NODE

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

6

1.1. REQUIRED SOFTWARE FOR DISTRIBUTED COMPUTE NODE
ARCHITECTURE

The following table shows the software and minimum versions required to deploy Red Hat OpenStack
Platform in a distributed compute node (DCN) architecture:

Platform Version Optional

Red Hat Enterprise Linux 8 No

Red Hat OpenStack Platform 16.1 No

Red Hat Ceph Storage 4 Yes

1.2. MULTISTACK DESIGN

When you deploy Red Hat OpenStack Platform (RHOSP) with a DCN design, you use Red Hat director’s
capabilities for multiple stack deployment and management to deploy each site as a distinct stack.

Managing a DCN architecture as a single stack is unsupported, unless the deployment is an upgrade
from Red Hat OpenStack Platform 13. There are no supported methods to split an existing stack,
however you can add stacks to a pre-existing deployment. For more information, see Section A.3,
“Migrating to a multistack deployment”.

The central location is a traditional stack deployment of RHOSP, however you are not required to deploy
Compute nodes or Red Hat Ceph storage with the central stack.

With DCN, you deploy each location as a distinct availability zone (AZ).

1.3. DCN STORAGE

You can deploy each edge site, either without storage, or with Ceph on hyperconverged nodes. The
storage you deploy is dedicated to the site you deploy it on.

DCN architecture uses Glance multistore. For edge sites deployed without storage, additional tooling is
available so that you can cache and store images in the Compute service (nova) cache. Caching glance
images in nova provides the faster boot times for instances by avoiding the process of downloading
images across a WAN link. For more information, see Chapter 10, Precaching glance images into nova .

1.4. DCN EDGE

With Distributed Compute Node architecture, the central location is deployed with the control nodes
that manage the edge locations. When you then deploy an edge location, you deploy only compute
nodes, making edge sites architecturally different from traditional deployments of Red Hat OpenStack
Platform. At edge locations:

Control plane services run remotely at the central location.

Pacemaker does not run at DCN sites.

The Block Storage service (cinder) runs in active/active mode.

CHAPTER 1. UNDERSTANDING DCN

7

Etcd is deployed as a distributed lock manager (DLM).

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

8

CHAPTER 2. PLANNING A DISTRIBUTED COMPUTE NODE
(DCN) DEPLOYMENT

When you plan your DCN architecture, check that the technologies that you need are available and
supported.

2.1. CONSIDERATIONS FOR STORAGE ON DCN ARCHITECTURE

The following features are not currently supported for DCN architectures:

Fast forward updates (FFU) on a distributed compute node architecture from Red Hat
OpenStack Platform 13 to 16.

Copying a volume snapshot between edge sites. You can work around this by creating an image
from the volume and using glance to copy the image. After the image is copied, you can create a
volume from it.

Ceph Rados Gateway (RGW) at the edge.

CephFS at the edge.

Instance high availability (HA) at the edge sites.

RBD mirroring between sites.

Instance migration, live or cold, either between edge sites, or from the central location to edge
sites. You can still migrate instances within a site boundary. To move an image between sites,
you must snapshot the image, and use glance image-import. For more information see
Confirming image snapshots can be created and copied between sites .

Additionally, you must consider the following:

You must upload images to the central location before copying them to edge sites; a copy of
each image must exist in the Image service (glance) at the central location.

Before you create an instance at an edge site, you must have a local copy of the image at that
edge site.

You must use the RBD storage driver for the Image, Compute and Block Storage services.

For each site, assign a unique availability zone, and use the same value for the
NovaComputeAvailabilityZone and CinderStorageAvailabilityZone parameters.

You can migrate an offline volume from an edge site to the central location, or vice versa. You
cannot migrate volumes directly between edge sites.

2.2. CONSIDERATIONS FOR NETWORKING ON DCN ARCHITECTURE

The following features are not currently supported for DCN architectures:

Octavia

DHCP on DPDK nodes

Conntrack for TC Flower Hardware Offload

CHAPTER 2. PLANNING A DISTRIBUTED COMPUTE NODE (DCN) DEPLOYMENT

9

Conntrack for TC Flower Hardware Offload is available on DCN as a Technology Preview, and therefore
using these solutions together is not fully supported by Red Hat. This feature should only be used with
DCN for testing, and should not be deployed in a production environment. For more information about
Technology Preview features, see Scope of Coverage Details.

The following ML2/OVS technologies are fully supported:

OVS-DPDK without DHCP on the DPDK nodes

SR-IOV

TC flower hardware offload, without conntrack

Neutron availability zones (AZs) with networker nodes at the edge, with one AZ per site

Routed provider networks

The following ML2/OVN networking technologies are fully supported:

OVS-DPDK without DHCP on the DPDK nodes

SR-IOV (without DHCP)

TC flower hardware offload, without conntrack

Routed provider networks

OVN GW (networker node) with Neutron AZs supported

IMPORTANT

Ensure that all router gateway ports reside on the OpenStack Controller nodes
by setting OVNCMSOptions: 'enable-chassis-as-gw' and by providing one or
more AZ values for the OVNAvailabilityZone parameter. Performing these
actions prevent the routers from scheduling all chassis as potential hosts for the
router gateway ports. For more information, see Configuring Network service
availability zones with ML2/OVN in the Networking Guide.

Additionally, you must consider the following:

Network latency: Balance the latency as measured in round-trip time (RTT), with the expected
number of concurrent API operations to maintain acceptable performance. Maximum TCP/IP
throughput is inversely proportional to RTT. You can mitigate some issues with high-latency
connections with high bandwidth by tuning kernel TCP parameters.Contact Red Hat support if a
cross-site communication exceeds 100 ms.

Network drop outs: If the edge site temporarily loses connection to the central site, then no
OpenStack control plane API or CLI operations can be executed at the impacted edge site for
the duration of the outage. For example, Compute nodes at the edge site are consequently
unable to create a snapshot of an instance, issue an auth token, or delete an image. General
OpenStack control plane API and CLI operations remain functional during this outage, and can
continue to serve any other edge sites that have a working connection. Image type: You must
use raw images when deploying a DCN architecture with Ceph storage.

Image sizing:

Overcloud node images - overcloud node images are downloaded from the central

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

10

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/networking_guide/use-azs-make-network-nodes-ha_rhosp-network#config-network-service-azs-ovn_config_azs

Overcloud node images - overcloud node images are downloaded from the central
undercloud node. These images are potentially large files that will be transferred across all
necessary networks from the central site to the edge site during provisioning.

Instance images: If there is no block storage at the edge, then the Image service images
traverse the WAN during first use. The images are copied or cached locally to the target
edge nodes for all subsequent use. There is no size limit for glance images. Transfer times
vary with available bandwidth and network latency.
If there is block storage at the edge, then the image is copied over the WAN asynchronously
for faster boot times at the edge.

Provider networks: This is the recommended networking approach for DCN deployments. If you
use provider networks at remote sites, then you must consider that the Networking service
(neutron) does not place any limits or checks on where you can attach available networks. For
example, if you use a provider network only in edge site A, you must ensure that you do not try
to attach to the provider network in edge site B. This is because there are no validation checks
on the provider network when binding it to a Compute node.

Site-specific networks: A limitation in DCN networking arises if you use networks that are
specific to a certain site: When you deploy centralized neutron controllers with Compute nodes,
there are no triggers in neutron to identify a certain Compute node as a remote node.
Consequently, the Compute nodes receive a list of other Compute nodes and automatically
form tunnels between each other; the tunnels are formed from edge to edge through the
central site. If you use VXLAN or Geneve, every Compute node at every site forms a tunnel with
every other Compute node and Controller node, whether or not they are local or remote. This is
not an issue if you are using the same neutron networks everywhere. When you use VLANs,
neutron expects that all Compute nodes have the same bridge mappings, and that all VLANs
are available at every site.

Additional sites: If you need to expand from a central site to additional remote sites, you can use
the openstack CLI on Red Hat OpenStack Platform director to add new network segments and
subnets.

If edge servers are not pre-provisioned, you must configure DHCP relay for introspection and
provisioning on routed segments.

Routing must be configured either on the cloud or within the networking infrastructure that
connects each edge site to the hub. You should implement a networking design that allocates
an L3 subnet for each Red Hat OpenStack Platform cluster network (external, internal API, and
so on), unique to each site.

2.3. STORAGE TOPOLOGIES AND ROLES AT THE EDGE

When you deploy Red Hat OpenStack platform with a distributed compute node architecture, you must
decide if you need storage at the edge. Based on storage and performance needs, you can deploy each
site with one of three configurations. Not all edge sites must have an identical configuration.

DCN without storage

To deploy this architecture, use the Compute role.

CHAPTER 2. PLANNING A DISTRIBUTED COMPUTE NODE (DCN) DEPLOYMENT

11

Without block storage at the edge:

The Object Storage (swift) service at the control plane is used as an Image (glance) service
backend.

Multi-backend image service is not available.

Images are cached locally at edge sites in Nova. For more information see Chapter 10,
Precaching glance images into nova .

The instances are stored locally on the Compute nodes.

Volume services such as Block Storage (cinder) are not available at edge sites.

IMPORTANT

If you do not deploy the central location with Red Hat Ceph storage, you will
not have the option of deploying an edge site with storage at a later time.

For more information about deploying without block storage at the edge, see Section 6.1,
“Deploying edge nodes without storage”.

DCN with storage

To deploy DCN with storage you must also deploy Red Hat Ceph Storage at the central location. You
need to use the dcn-storage.yaml and ceph-ansible.yaml environment files. For edge sites that
include non-hyperconverged Red Hat Ceph Storage nodes, use the DistributedCompute,
DistributedComputeScaleOut, CephAll, and CephStorage roles.

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

12

With block storage at the edge:

Red Hat Ceph Block Devices (RBD) is used as an Image (glance) service backend.

Multi-backend Image service (glance) is available so that images may be copied between
the central and DCN sites.

The Block Storage (cinder) service is available at all sites and is accessed by using the Red
Hat Ceph Block Devices (RBD) driver.

The Block Storage (cinder) service runs on the Compute nodes, and Red Hat Ceph Storage
runs separately on dedicated storage nodes.

Nova ephemeral storage is backed by Ceph (RBD).
For more information, see Section 5.2, “Deploying the central site with storage” .

DCN with hyperconverged storage

To deploy this configuration you must also deploy Red Hat Ceph Storage at the central location. You
need to configure the dcn-storage.yaml and ceph-ansible.yaml environment files. Use the
DistributedComputeHCI, and DistributedComputeHCIScaleOut roles. You can also use the
DistributedComputeScaleOut role to add Compute nodes that do not participate in providing Red
Hat Ceph Storage services.

CHAPTER 2. PLANNING A DISTRIBUTED COMPUTE NODE (DCN) DEPLOYMENT

13

With hyperconverged storage at the edge:

Red Hat Ceph Block Devices (RBD) is used as an Image (glance) service backend.

Multi-backend Image service (glance) is available so that images may be copied between
the central and DCN sites.

The Block Storage (cinder) service is available at all sites and is accessed by using the Red
Hat Ceph Block Devices (RBD) driver.

Both the Block Storage service and Red Hat Ceph Storage run on the Compute nodes.
For more information, see Section 7.1, “Deploying edge sites with storage” .

When you deploy Red Hat OpenStack Platform in a distributed compute architecture, you have the
option of deploying multiple storage topologies, with a unique configuration at each site. You must
deploy the central location with Red Hat Ceph storage to deploy any of the edge sites with storage.

2.3.1. Roles for edge deployments

The following roles are available for edge deployments. Select the appropriate roles for your
environment based on your chosen configuration.

Compute

The Compute role is used for edge deployments without storage.

DistributedCompute

The DistributedCompute role is used at the edge for storage deployments without hyperconverged
nodes. The DistributedCompute role includes the GlanceApiEdge service, which ensures that
Image services are consumed at the local edge site rather than at the central hub location. You can
deploy up to three nodes using the DistributedCompute role. For any additional nodes use the
DistributedComputeScaleOut role.

DistributedComputeScaleOut

The DistributedComputeScaleOut role includes the HAproxyEdge service, which enables instances
created on the DistributedComputeScaleOut role to proxy requests for Image services to nodes that
provide that service at the edge site. After you deploy three nodes with a role of
DistributedCompute, you can use the DistributedComputeScaleOut role to scale compute

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

14

resources. There is no minimum number of hosts required to deploy with the
DistrubutedComputeScaleOut role. This role is used at the edge for storage deployments without
hyperconverged nodes.

DistributedComputeHCI

The DistributedComputeHCI role enables a hyperconverged deployment at the edge by including
Ceph Management and OSD services. You must use exactly three nodes when using the
DistributedComputeHCI role. This role is used for storage deployments with fully converged nodes.

DistributedComputeHCIScaleOut

The DistributedComputeHCIScaleOut role includes the Ceph OSD service, which allows storage
capacity to be scaled with compute when more nodes are added to the edge. This role also includes
the HAproxyEdge service to redirect image download requests to the GlanceAPIEdge nodes at the
edge site. This role enables a hyper converged deployment at the edge. You must use exactly three
nodes when using the DistributedComputeHCI role. This role is used at the edge for storage
deployments with hyperconverged nodes.

CephAll

The CephAll role includes the Ceph OSD, Ceph mon, and Ceph Mgr services. This role is used at the
edge for storage deployments without hyperconverged nodes. You can deploy up to three nodes
using the CephAll role. For any additional storage capacity use the CephStorage role.

CephStorage

The CephStorage role includes the Ceph OSD service. This role is used at the edge for storage
deployments without hyperconverged nodes. If three CephAll nodes do not provide enough storage
capacity, then add as many CephStorage nodes as needed.

CHAPTER 2. PLANNING A DISTRIBUTED COMPUTE NODE (DCN) DEPLOYMENT

15

CHAPTER 3. CONFIGURING ROUTED SPINE-LEAF IN THE
UNDERCLOUD

This section describes a use case about how to configure the undercloud to accommodate routed
spine-leaf with composable networks.

3.1. CONFIGURING THE SPINE LEAF PROVISIONING NETWORKS

To configure the provisioning networks for your spine leaf infrastructure, edit the undercloud.conf file
and set the relevant parameters included in the following procedure.

Procedure

1. Log in to the undercloud as the stack user.

2. If you do not already have an undercloud.conf file, copy the sample template file:

[stack@director ~]$ cp /usr/share/python-tripleoclient/undercloud.conf.sample
~/undercloud.conf

3. Edit the undercloud.conf file.

4. Set the following values in the [DEFAULT] section:

a. Set local_ip to the undercloud IP on leaf0:

local_ip = 192.168.10.1/24

b. Set undercloud_public_host to the externally facing IP address of the undercloud:

undercloud_public_host = 10.1.1.1

c. Set undercloud_admin_host to the administration IP address of the undercloud. This IP
address is usually on leaf0:

undercloud_admin_host = 192.168.10.2

d. Set local_interface to the interface to bridge for the local network:

local_interface = eth1

e. Set enable_routed_networks to true:

enable_routed_networks = true

f. Define your list of subnets using the subnets parameter. Define one subnet for each L2
segment in the routed spine and leaf:

subnets = leaf0,leaf1,leaf2

g. Specify the subnet associated with the physical L2 segment local to the undercloud using
the local_subnet parameter:

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

16

local_subnet = leaf0

h. Set the value of undercloud_nameservers.

undercloud_nameservers = 10.11.5.19,10.11.5.20

TIP

You can find the current IP addresses of the DNS servers that are used for the undercloud
nameserver by looking in /etc/resolv.conf.

5. Create a new section for each subnet that you define in the subnets parameter:

[leaf0]
cidr = 192.168.10.0/24
dhcp_start = 192.168.10.10
dhcp_end = 192.168.10.90
inspection_iprange = 192.168.10.100,192.168.10.190
gateway = 192.168.10.1
masquerade = False

[leaf1]
cidr = 192.168.11.0/24
dhcp_start = 192.168.11.10
dhcp_end = 192.168.11.90
inspection_iprange = 192.168.11.100,192.168.11.190
gateway = 192.168.11.1
masquerade = False

[leaf2]
cidr = 192.168.12.0/24
dhcp_start = 192.168.12.10
dhcp_end = 192.168.12.90
inspection_iprange = 192.168.12.100,192.168.12.190
gateway = 192.168.12.1
masquerade = False

6. Save the undercloud.conf file.

7. Run the undercloud installation command:

[stack@director ~]$ openstack undercloud install

This configuration creates three subnets on the provisioning network or control plane. The overcloud
uses each network to provision systems within each respective leaf.

To ensure proper relay of DHCP requests to the undercloud, you might need to configure a DHCP relay.

3.2. CONFIGURING A DHCP RELAY

You run the DHCP relay service on a switch, router, or server that is connected to the remote network
segment you want to forward the requests from.

NOTE

CHAPTER 3. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

17

NOTE

Do not run the DHCP relay service on the undercloud.

The undercloud uses two DHCP servers on the provisioning network:

An introspection DHCP server.

A provisioning DHCP server.

You must configure the DHCP relay to forward DHCP requests to both DHCP servers on the
undercloud.

You can use UDP broadcast with devices that support it to relay DHCP requests to the L2 network
segment where the undercloud provisioning network is connected. Alternatively, you can use UDP
unicast, which relays DHCP requests to specific IP addresses.

NOTE

Configuration of DHCP relay on specific device types is beyond the scope of this
document. As a reference, this document provides a DHCP relay configuration example
using the implementation in ISC DHCP software. For more information, see manual page
dhcrelay(8).

IMPORTANT

DHCP option 79 is required for some relays, particularly relays that serve DHCPv6
addresses, and relays that do not pass on the originating MAC address. For more
information, see RFC6939.

Broadcast DHCP relay

This method relays DHCP requests using UDP broadcast traffic onto the L2 network segment where the
DHCP server or servers reside. All devices on the network segment receive the broadcast traffic. When
using UDP broadcast, both DHCP servers on the undercloud receive the relayed DHCP request.
Depending on the implementation, you can configure this by specifying either the interface or IP
network address:

Interface

Specify an interface that is connected to the L2 network segment where the DHCP requests are
relayed.

IP network address

Specify the network address of the IP network where the DHCP requests are relayed.

Unicast DHCP relay

This method relays DHCP requests using UDP unicast traffic to specific DHCP servers. When you use
UDP unicast, you must configure the device that provides the DHCP relay to relay DHCP requests to
both the IP address that is assigned to the interface used for introspection on the undercloud and the
IP address of the network namespace that the OpenStack Networking (neutron) service creates to host
the DHCP service for the ctlplane network.

The interface used for introspection is the one defined as inspection_interface in the undercloud.conf
file. If you have not set this parameter, the default interface for the undercloud is br-ctlplane.

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

18

https://www.rfc-editor.org/rfc/rfc6939

NOTE

It is common to use the br-ctlplane interface for introspection. The IP address that you
define as the local_ip in the undercloud.conf file is on the br-ctlplane interface.

The IP address allocated to the Neutron DHCP namespace is the first address available in the IP range
that you configure for the local_subnet in the undercloud.conf file. The first address in the IP range is
the one that you define as dhcp_start in the configuration. For example, 192.168.10.10 is the IP address
if you use the following configuration:

[DEFAULT]
local_subnet = leaf0
subnets = leaf0,leaf1,leaf2

[leaf0]
cidr = 192.168.10.0/24
dhcp_start = 192.168.10.10
dhcp_end = 192.168.10.90
inspection_iprange = 192.168.10.100,192.168.10.190
gateway = 192.168.10.1
masquerade = False

WARNING

The IP address for the DHCP namespace is automatically allocated. In most cases,
this address is the first address in the IP range. To verify that this is the case, run the
following commands on the undercloud:

$ openstack port list --device-owner network:dhcp -c "Fixed IP Addresses"
+--+
| Fixed IP Addresses |
+--+
| ip_address='192.168.10.10', subnet_id='7526fbe3-f52a-4b39-a828-
ec59f4ed12b2' |
+--+
$ openstack subnet show 7526fbe3-f52a-4b39-a828-ec59f4ed12b2 -c name
+-------+--------+
| Field | Value |
+-------+--------+
| name | leaf0 |
+-------+--------+

Example dhcrelay configuration

In the following examples, the dhcrelay command in the dhcp package uses the following configuration:

Interfaces to relay incoming DHCP request: eth1, eth2, and eth3.

Interface the undercloud DHCP servers on the network segment are connected to: eth0.



CHAPTER 3. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

19

The DHCP server used for introspection is listening on IP address: 192.168.10.1.

The DHCP server used for provisioning is listening on IP address 192.168.10.10.

This results in the following dhcrelay command:

dhcrelay version 4.2.x:

$ sudo dhcrelay -d --no-pid 192.168.10.10 192.168.10.1 \
 -i eth0 -i eth1 -i eth2 -i eth3

dhcrelay version 4.3.x and later:

$ sudo dhcrelay -d --no-pid 192.168.10.10 192.168.10.1 \
 -iu eth0 -id eth1 -id eth2 -id eth3

Example Cisco IOS routing switch configuration

This example uses the following Cisco IOS configuration to perform the following tasks:

Configure a VLAN to use for the provisioning network.

Add the IP address of the leaf.

Forward UDP and BOOTP requests to the introspection DHCP server that listens on IP
address: 192.168.10.1.

Forward UDP and BOOTP requests to the provisioning DHCP server that listens on IP address
192.168.10.10.

interface vlan 2
ip address 192.168.24.254 255.255.255.0
ip helper-address 192.168.10.1
ip helper-address 192.168.10.10
!

Now that you have configured the provisioning network, you can configure the remaining overcloud leaf
networks.

3.3. CREATING FLAVORS AND TAGGING NODES FOR LEAF
NETWORKS

Each role in each leaf network requires a flavor and role assignment so that you can tag nodes into their
respective leaf. Complete the following steps to create and assign each flavor to a role.

Procedure

1. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

2. Create flavors for each custom role:

$ ROLES="control compute_leaf0 compute_leaf1 compute_leaf2 ceph-storage_leaf0 ceph-

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

20

storage_leaf1 ceph-storage_leaf2"
$ for ROLE in $ROLES; do openstack flavor create --id auto --ram <ram_size_mb> --disk
<disk_size_gb> --vcpus <no_vcpus> $ROLE ; done
$ for ROLE in $ROLES; do openstack flavor set --property "cpu_arch"="x86_64" --property
"capabilities:boot_option"="local" --property resources:DISK_GB='0' --property
resources:MEMORY_MB='0' --property resources:VCPU='0' $ROLE ; done

Replace <ram_size_mb> with the RAM of the bare metal node, in MB.

Replace <disk_size_gb> with the size of the disk on the bare metal node, in GB.

Replace <no_vcpus> with the number of CPUs on the bare metal node.

3. Retrieve a list of your nodes to identify their UUIDs:

(undercloud)$ openstack baremetal node list

4. Tag each bare metal node to its leaf network and role by using a custom resource class:

(undercloud)$ openstack baremetal node set \
 --resource-class baremetal.LEAF-ROLE <node>

Replace <node> with the ID of the bare metal node.

For example, enter the following command to tag a node with UUID 58c3d07e-24f2-48a7-bbb6-
6843f0e8ee13 to the Compute role on Leaf2:

(undercloud)$ openstack baremetal node set \
 --resource-class baremetal.COMPUTE-LEAF2 58c3d07e-24f2-48a7-bbb6-6843f0e8ee13

5. Associate each leaf network role flavor with the custom resource class:

(undercloud)$ openstack flavor set \
 --property resources:CUSTOM_BAREMETAL_LEAF_ROLE=1 \
<custom_role>

To determine the name of a custom resource class that corresponds to a resource class of a
Bare Metal Provisioning service node, convert the resource class to uppercase, replace each
punctuation mark with an underscore, and prefix with CUSTOM_.

NOTE

A flavor can request only one instance of a bare metal resource class.

6. In the node-info.yaml file, specify the flavor that you want to use for each custom leaf role, and
the number of nodes to allocate for each custom leaf role. For example, the following
configuration specifies the flavor to use, and the number of nodes to allocate for the custom
leaf roles compute_leaf0, compute_leaf1, compute_leaf2, ceph-storage_leaf0, ceph-
storage_leaf1, and ceph-storage_leaf2:

parameter_defaults:
 OvercloudControllerFlavor: control
 OvercloudComputeLeaf0Flavor: compute_leaf0
 OvercloudComputeLeaf1Flavor: compute_leaf1

CHAPTER 3. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

21

 OvercloudComputeLeaf2Flavor: compute_leaf2
 OvercloudCephStorageLeaf0Flavor: ceph-storage_leaf0
 OvercloudCephStorageLeaf1Flavor: ceph-storage_leaf1
 OvercloudCephStorageLeaf2Flavor: ceph-storage_leaf2
 ControllerLeaf0Count: 3
 ComputeLeaf0Count: 3
 ComputeLeaf1Count: 3
 ComputeLeaf2Count: 3
 CephStorageLeaf0Count: 3
 CephStorageLeaf1Count: 3
 CephStorageLeaf2Count: 3

3.4. MAPPING BARE METAL NODE PORTS TO CONTROL PLANE
NETWORK SEGMENTS

To enable deployment on a L3 routed network, you must configure the physical_network field on the
bare metal ports. Each bare metal port is associated with a bare metal node in the OpenStack Bare
Metal (ironic) service. The physical network names are the names that you include in the subnets option
in the undercloud configuration.

NOTE

The physical network name of the subnet specified as local_subnet in the
undercloud.conf file is always named ctlplane.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Check the bare metal nodes:

$ openstack baremetal node list

3. Ensure that the bare metal nodes are either in enroll or manageable state. If the bare metal
node is not in one of these states, the command that sets the physical_network property on
the baremetal port fails. To set all nodes to manageable state, run the following command:

$ for node in $(openstack baremetal node list -f value -c Name); do openstack baremetal
node manage $node --wait; done

4. Check which baremetal ports are associated with which baremetal node:

$ openstack baremetal port list --node <node-uuid>

5. Set the physical-network parameter for the ports. In the example below, three subnets are
defined in the configuration: leaf0, leaf1, and leaf2. The local_subnet is leaf0. Because the
physical network for the local_subnet is always ctlplane, the baremetal port connected to
leaf0 uses ctlplane. The remaining ports use the other leaf names:

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

22

$ openstack baremetal port set --physical-network ctlplane <port-uuid>
$ openstack baremetal port set --physical-network leaf1 <port-uuid>
$ openstack baremetal port set --physical-network leaf2 <port-uuid>

6. Introspect the nodes before you deploy the overcloud. Include the --all-manageable and --
provide options to set the nodes as available for deployment:

$ openstack overcloud node introspect --all-manageable --provide

3.5. ADDING A NEW LEAF TO A SPINE-LEAF PROVISIONING
NETWORK

When increasing network capacity which can include adding new physical sites, you might need to add a
new leaf and a corresponding subnet to your Red Hat OpenStack Platform spine-leaf provisioning
network. When provisioning a leaf on the overcloud, the corresponding undercloud leaf is used.

Prerequisites

Your RHOSP deployment uses a spine-leaf network topology.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the undercloud credentials file:

$ source ~/stackrc

3. In the /home/stack/undercloud.conf file, do the following:

a. Locate the subnets parameter, and add a new subnet for the leaf that you are adding.
A subnet represents an L2 segment in the routed spine and leaf:

Example

In this example, a new subnet (leaf3) is added for the new leaf (leaf3):

subnets = leaf0,leaf1,leaf2,leaf3

b. Create a section for the subnet that you added.

Example

In this example, the section [leaf3] is added for the new subnet (leaf3):

[leaf0]
cidr = 192.168.10.0/24
dhcp_start = 192.168.10.10
dhcp_end = 192.168.10.90
inspection_iprange = 192.168.10.100,192.168.10.190
gateway = 192.168.10.1
masquerade = False

CHAPTER 3. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

23

[leaf1]
cidr = 192.168.11.0/24
dhcp_start = 192.168.11.10
dhcp_end = 192.168.11.90
inspection_iprange = 192.168.11.100,192.168.11.190
gateway = 192.168.11.1
masquerade = False

[leaf2]
cidr = 192.168.12.0/24
dhcp_start = 192.168.12.10
dhcp_end = 192.168.12.90
inspection_iprange = 192.168.12.100,192.168.12.190
gateway = 192.168.12.1
masquerade = False

[leaf3]
cidr = 192.168.13.0/24
dhcp_start = 192.168.13.10
dhcp_end = 192.168.13.90
inspection_iprange = 192.168.13.100,192.168.13.190
gateway = 192.168.13.1
masquerade = False

4. Save the undercloud.conf file.

5. Reinstall your undercloud:

$ openstack undercloud install

Additional resources

Adding a new leaf to a spine-leaf deployment

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

24

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/spine_leaf_networking/index#proc_add-new-leaf_spine-leaf

CHAPTER 4. PREPARING OVERCLOUD TEMPLATES FOR DCN
DEPLOYMENT

4.1. PREREQUISITES FOR USING SEPARATE HEAT STACKS

Your environment must meet the following prerequisites before you create a deployment using separate
heat stacks:

A working Red Hat OpenStack Platform 16 undercloud.

For Ceph Storage users: access to Red Hat Ceph Storage 4.

For the central location: three nodes that are capable of serving as central Controller nodes. All
three Controller nodes must be in the same heat stack. You cannot split Controller nodes, or
any of the control plane services, across separate heat stacks.

Ceph storage is a requirement at the central location if you plan to deploy Ceph storage at the
edge.

For each additional DCN site: three HCI compute nodes.

All nodes must be pre-provisioned or able to PXE boot from the central deployment network.
You can use a DHCP relay to enable this connectivity for DCNs.

All nodes have been introspected by ironic.

Red Hat recommends leaving the <role>HostnameFormat parameter as the default value:
%stackname%-<role>-%index%. If you do not include the %stackname% prefix, your overcloud
uses the same hostnames for distributed compute nodes in different stacks. Ensure that your
distributed compute nodes use the %stackname% prefix to distinguish nodes from different
edge sites. For example, if you deploy two edge sites named dcn0 and dcn1, the stack name
prefix helps you to distinguish between dcn0-distributedcompute-0 and dcn1-
distributedcompute-0 when you run the openstack server list command on the undercloud.

Source the centralrc authentication file to schedule workloads at edge sites as well as at the
central location. You do not require authentication files that are automatically generated for
edge sites.

4.2. LIMITATIONS OF THE EXAMPLE SEPARATE HEAT STACKS
DEPLOYMENT

This document provides an example deployment that uses separate heat stacks on Red Hat OpenStack
Platform. This example environment has the following limitations:

Spine/Leaf networking - The example in this guide does not demonstrate routing requirements,
which are required in distributed compute node (DCN) deployments.

Ironic DHCP Relay - This guide does not include how to configure Ironic with a DHCP relay.

4.3. DESIGNING YOUR SEPARATE HEAT STACKS DEPLOYMENT

To segment your deployment within separate heat stacks, you must first deploy a single overcloud with
the control plane. You can then create separate stacks for the distributed compute node (DCN) sites.
The following example shows separate stacks for different node types:

CHAPTER 4. PREPARING OVERCLOUD TEMPLATES FOR DCN DEPLOYMENT

25

Controller nodes: A separate heat stack named central, for example, deploys the controllers.
When you create new heat stacks for the DCN sites, you must create them with data from the
central stack. The Controller nodes must be available for any instance management tasks.

DCN sites: You can have separate, uniquely named heat stacks, such as dcn0, dcn1, and so on.
Use a DHCP relay to extend the provisioning network to the remote site.

NOTE

You must create a separate availability zone (AZ) for each stack.

NOTE

If you use spine/leaf networking, you must use a specific format to define the Storage
and StorageMgmt networks so that ceph-ansible correctly configures Ceph to use those
networks. Define the Storage and StorageMgmt networks as override values and enclose
the values in single quotes. In the following example the storage network (referred to as
the public_network) spans two subnets, is separated by a comma, and is enclosed in
single quotes:

CephAnsibleExtraConfig:
 public_network: '172.23.1.0/24,172.23.2.0/24'

4.4. REUSING NETWORK RESOURCES IN MULTIPLE STACKS

You can configure multiple stacks to use the same network resources, such as VIPs and subnets. You
can duplicate network resources between stacks by using either the ManageNetworks setting or the
external_resource_* fields.

NOTE

Do not use the ManageNetworks setting if you are using the external_resource_* fields.

If you are not reusing networks between stacks, each network that is defined in network_data.yaml
must have a unique name across all deployed stacks. For example, the network name internal_api
cannot be reused between stacks, unless you intend to share the network between the stacks. Give the
network a different name and name_lower property, such as InternalApiCompute0 and
internal_api_compute_0.

4.5. USING MANAGENETWORKS TO REUSE NETWORK RESOURCES

With the ManageNetworks setting, multiple stacks can use the same network_data.yaml file and the
setting is applied globally to all network resources. The network_data.yaml file defines the network
resources that the stack uses:

- name: StorageBackup
 vip: true
 name_lower: storage_backup
 ip_subnet: '172.21.1.0/24'
 allocation_pools: [{'start': '171.21.1.4', 'end': '172.21.1.250'}]
 gateway_ip: '172.21.1.1'

When you set ManageNetworks to false, the nodes will use the existing networks that were already

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

26

When you set ManageNetworks to false, the nodes will use the existing networks that were already
created in the central stack.

Use the following sequence so that the new stack does not manage the existing network resources.

Procedure

1. Deploy the central stack with ManageNetworks: true or leave unset.

2. Deploy the additional stack with ManageNetworks: false.

When you add new network resources, for example when you add new leaves in a spine/leaf deployment,
you must update the central stack with the new network_data.yaml. This is because the central stack
still owns and manages the network resources. After the network resources are available in the central
stack, you can deploy the additional stack to use them.

4.6. USING UUIDS TO REUSE NETWORK RESOURCES

If you need more control over which networks are reused between stacks, you can use the
external_resource_* field for resources in the network_data.yaml file, including networks, subnets,
segments, or VIPs. These resources are marked as being externally managed, and heat does not perform
any create, update, or delete operations on them.

Add an entry for each required network definition in the network_data.yaml file. The resource is then
available for deployment on the separate stack:

external_resource_network_id: Existing Network UUID
external_resource_subnet_id: Existing Subnet UUID
external_resource_segment_id: Existing Segment UUID
external_resource_vip_id: Existing VIP UUID

This example reuses the internal_api network from the control plane stack in a separate stack.

Procedure

1. Identify the UUIDs of the related network resources:

$ openstack network show internal_api -c id -f value
$ openstack subnet show internal_api_subnet -c id -f value
$ openstack port show internal_api_virtual_ip -c id -f value

2. Save the values that are shown in the output of the above commands and add them to the
network definition for the internal_api network in the network_data.yaml file for the separate
stack:

- name: InternalApi
 external_resource_network_id: 93861871-7814-4dbc-9e6c-7f51496b43af
 external_resource_subnet_id: c85c8670-51c1-4b17-a580-1cfb4344de27
 external_resource_vip_id: 8bb9d96f-72bf-4964-a05c-5d3fed203eb7
 name_lower: internal_api
 vip: true
 ip_subnet: '172.16.2.0/24'
 allocation_pools: [{'start': '172.16.2.4', 'end': '172.16.2.250'}]
 ipv6_subnet: 'fd00:fd00:fd00:2000::/64'

CHAPTER 4. PREPARING OVERCLOUD TEMPLATES FOR DCN DEPLOYMENT

27

 ipv6_allocation_pools: [{'start': 'fd00:fd00:fd00:2000::10', 'end':
'fd00:fd00:fd00:2000:ffff:ffff:ffff:fffe'}]
 mtu: 1400

4.7. MANAGING SEPARATE HEAT STACKS

The procedures in this guide show how to organize the environment files for three heat stacks: central,
dcn0, and dcn1. Red Hat recommends that you store the templates for each heat stack in a separate
directory to keep the information about each deployment isolated.

Procedure

1. Define the central heat stack:

$ mkdir central
$ touch central/overrides.yaml

2. Extract data from the central heat stack into a common directory for all DCN sites:

$ mkdir dcn-common
$ touch dcn-common/overrides.yaml
$ touch dcn-common/central-export.yaml

The central-export.yaml file is created later by the openstack overcloud export command. It
is in the dcn-common directory because all DCN deployments in this guide must use this file.

3. Define the dcn0 site.

$ mkdir dcn0
$ touch dcn0/overrides.yaml

To deploy more DCN sites, create additional dcn directories by number.

NOTE

The touch is used to provide an example of file organization. Each file must contain the
appropriate content for successful deployments.

4.8. RETRIEVING THE CONTAINER IMAGES

Use the following procedure, and its example file contents, to retrieve the container images you need
for deployments with separate heat stacks. You must ensure the container images for optional or edge-
specific services are included by running the openstack container image prepare command with edge
site’s environment files.

For more information, see Preparing container images.

Procedure

1. Add your Registry Service Account credentials to containers.yaml.

parameter_defaults:
 ContainerImagePrepare:

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

28

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/transitioning_to_containerized_services/assembly_obtaining-and-modifying-container-images#proc_preparing-container-images_obtaining-and-modifying-container-images

 - push_destination: true
 set:
 ceph_namespace: registry.redhat.io/rhceph
 ceph_image: rhceph-4-rhel8
 ceph_tag: latest
 name_prefix: openstack-
 namespace: registry.redhat.io/rhosp16-rhel8
 tag: latest
 ContainerImageRegistryCredentials:
 # https://access.redhat.com/RegistryAuthentication
 registry.redhat.io:
 registry-service-account-username: registry-service-account-password

2. Generate the environment file as images-env.yaml:

sudo openstack tripleo container image prepare \
-e containers.yaml \
--output-env-file images-env.yaml

The resulting images-env.yaml file is included as part of the overcloud deployment procedure
for the stack for which it is generated.

4.9. CREATING FAST DATAPATH ROLES FOR THE EDGE

To use fast datapath services at the edge, you must create a custom role that defines both fast
datapath and edge services. When you create the roles file for deployment, you can include the newly
created role that defines services needed for both distributed compute node architecture and fast
datapath services such as DPDK or SR-IOV.

For example, create a custom role for distributedCompute with DPDK:

Prerequisites

A successful undercloud installation. For more information, see Installing the undercloud.

Procedure

1. Log in to the undercloud host as the stack user.

2. Copy the default roles directory:

cp -r /usr/share/openstack-tripleo-heat-templates/roles ~/.

3. Create a new file named DistributedComputeDpdk.yaml from the DistributedCompute.yaml
file:

cp roles/DistributedCompute.yaml roles/DistributedComputeDpdk.yaml

4. Add DPDK services to the new DistributedComputeDpdk.yaml file. You can identify the
parameters that you need to add by identifying the parameters in the ComputeOvsDpdk.yaml
file that are not present in the DistributedComputeDpdk.yaml file.

diff -u roles/DistributedComputeDpdk.yaml roles/ComputeOvsDpdk.yaml

In the output, the parameters that are preceded by + are present in the ComputeOvsDpdk.yaml

CHAPTER 4. PREPARING OVERCLOUD TEMPLATES FOR DCN DEPLOYMENT

29

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/director_installation_and_usage/index#installing-the-undercloud

In the output, the parameters that are preceded by + are present in the ComputeOvsDpdk.yaml
file but are not present in the DistributedComputeDpdk.yaml file. Include these parameters in
the new DistributedComputeDpdk.yaml file.

5. Use the DistributedComputeDpdk.yaml to create a DistributedComputeDpdk roles file :

openstack overcloud roles generate --roles-path ~/roles/ -o ~/roles/roles-custom.yaml
DistributedComputeDpdk

You can use this same method to create fast datapath roles for SR-IOV, or a combination of SR-IOV
and DPDK for the edge to meet your requirements.

Additional Resources

Creating a custom role

Supported custom roles

If you are planning to deploy edge sites without block storage, see the following:

Chapter 5, Installing the central location

Section 6.1, “Deploying edge nodes without storage”

If you plan to deploy edge sites with Red Hat Ceph Storage, see the following:

Chapter 5, Installing the central location

Section 7.1, “Deploying edge sites with storage”

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

30

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/advanced_overcloud_customization/index#sect-Creating_a_Custom_Roles_File
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/advanced_overcloud_customization/index#supported-custom-roles

CHAPTER 5. INSTALLING THE CENTRAL LOCATION
When you deploy the central location for distributed compute node (DCN) architecture, you can deploy
the cluster:

With or without Compute nodes

With or without Red Hat Ceph Storage

If you deploy Red Hat OpenStack Platform without Red Hat Ceph Storage at the central location, you
cannot deploy any of your edge sites with Red Hat Ceph storage. Additionally, you do not have the
option of adding Red Hat Ceph Storage to the central location later by redeploying.

5.1. DEPLOYING THE CENTRAL CONTROLLERS WITHOUT EDGE
STORAGE

You can deploy a distributed compute node cluster without Block storage at edge sites if you use the
Object Storage service (swift) as a back end for the Image service (glance) at the central location. A site
deployed without block storage cannot be updated later to have block storage due to the differing role
and networking profiles for each architecture.

Important: The following procedure uses lvm as the backend for Cinder which is not supported for
production. You must deploy a certified block storage solution as a backend for Cinder.

Deploy the central controller cluster in a similar way to a typical overcloud deployment. This cluster does
not require any Compute nodes, so you can set the Compute count to 0 to override the default of 1.
The central controller has particular storage and Oslo configuration requirements. Use the following
procedure to address these requirements.

Procedure

The following procedure outlines the steps for the initial deployment of the central location.

NOTE

The following steps detail the deployment commands and environment files associated
with an example DCN deployment without glance multistore. These steps do not include
unrelated, but necessary, aspects of configuration, such as networking.

1. In the home directory, create directories for each stack that you plan to deploy.

mkdir /home/stack/central
mkdir /home/stack/dcn0
mkdir /home/stack/dcn1

2. Create a file called central/overrides.yaml with settings similar to the following:

parameter_defaults:
 NtpServer:
 - 0.pool.ntp.org
 - 1.pool.ntp.org
 ControllerCount: 3
 ComputeCount: 0
 OvercloudControllerFlavor: baremetal

CHAPTER 5. INSTALLING THE CENTRAL LOCATION

31

 OvercloudComputeFlavor: baremetal
 ControllerSchedulerHints:
 'capabilities:node': '0-controller-%index%'
 GlanceBackend: swift

ControllerCount: 3 specifies that three nodes will be deployed. These will use swift for
glance, lvm for cinder, and host the control-plane services for edge compute nodes.

ComputeCount: 0 is an optional parameter to prevent Compute nodes from being
deployed with the central Controller nodes.

GlanceBackend: swift uses Object Storage (swift) as the Image Service (glance) back
end.
The resulting configuration interacts with the distributed compute nodes (DCNs) in the
following ways:

The Image service on the DCN creates a cached copy of the image it receives from the
central Object Storage back end. The Image service uses HTTP to copy the image from
Object Storage to the local disk cache.

NOTE

The central Controller node must be able to connect to the distributed
compute node (DCN) site. The central Controller node can use a routed
layer 3 connection.

3. Generate roles for the central location using roles appropriate for your environment:

openstack overcloud roles generate Controller \
-o ~/central/control_plane_roles.yaml

4. Generate an environment file ~/central/central-images-env.yaml:

sudo openstack tripleo container image prepare \
-e containers.yaml \
--output-env-file ~/central/central-images-env.yaml

5. Configure the naming conventions for your site in the site-name.yaml environment file. The
Nova availability zone, Cinder storage availability zone must match:

cat > /home/stack/central/site-name.yaml << EOF
parameter_defaults:
 NovaComputeAvailabilityZone: central
 ControllerExtraConfig:
 nova::availability_zone::default_schedule_zone: central
 NovaCrossAZAttach: false
 CinderStorageAvailabilityZone: central
EOF

6. Deploy the central Controller node. For example, you can use a deploy.sh file with the following
contents:

#!/bin/bash

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

32

source ~/stackrc
time openstack overcloud deploy \
--stack central \
--templates /usr/share/openstack-tripleo-heat-templates/ \
-e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
-e ~/central/containers-env-file.yaml \
-e ~/central/overrides.yaml \
-e ~/central/site-name.yaml

NOTE

You must include heat templates for the configuration of networking in your openstack
overcloud deploy command. Designing for edge architecture requires spine and leaf
networking. See Spine Leaf Networking for more details.

5.2. DEPLOYING THE CENTRAL SITE WITH STORAGE

To deploy the Image service with multiple stores and Ceph Storage as the back end, complete the
following steps:

Prerequisites

Hardware for a Ceph cluster at the central location and in each availability zone, or in each
geographic location where storage services are required.

Hardware for three Image Service servers at central location and in each availability zone, or in
each geographic location where storage services are required.

The following is an example deployment of two or more stacks:

One stack at the central location called central.

One stack at an edge site called dcn0.

Additional stacks deployed similarly to dcn0, such as dcn1, dcn2, and so on.

Procedure

The following procedure outlines the steps for the initial deployment of the central location.

NOTE

The following steps detail the deployment commands and environment files associated
with an example DCN deployment that uses the Image service with multiple stores. These
steps do not include unrelated, but necessary, aspects of configuration, such as
networking.

1. In the home directory, create directories for each stack that you plan to deploy.

mkdir /home/stack/central
mkdir /home/stack/dcn0
mkdir /home/stack/dcn1

2. Set the name of the Ceph cluster, as well as configuration parameters relative to the available

CHAPTER 5. INSTALLING THE CENTRAL LOCATION

33

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/spine_leaf_networking/index

2. Set the name of the Ceph cluster, as well as configuration parameters relative to the available
hardware. For more information, see Configuring Ceph with Custom Config Settings :

cat > /home/stack/central/ceph.yaml << EOF
parameter_defaults:
 CephClusterName: central
 CephAnsibleDisksConfig:
 osd_scenario: lvm
 osd_objectstore: bluestore
 devices:
 - /dev/sda
 - /dev/sdb
 CephPoolDefaultSize: 3
 CephPoolDefaultPgNum: 128

EOF

3. Generate roles for the central location using roles appropriate for your environment:

openstack overcloud roles generate Compute Controller CephStorage \
-o ~/central/central_roles.yaml

cat > /home/stack/central/role-counts.yaml << EOF
parameter_defaults:
 ControllerCount: 3
 ComputeCount: 2
 CephStorage: 3
EOF

4. Generate an environment file ~/central/central-images-env.yaml

sudo openstack tripleo container image prepare \
-e containers.yaml \
--output-env-file ~/central/central-images-env.yaml

5. Configure the naming conventions for your site in the site-name.yaml environment file. The
Nova availability zone and the Cinder storage availability zone must match:

cat > /home/stack/central/site-name.yaml << EOF
parameter_defaults:
 NovaComputeAvailabilityZone: central
 ControllerExtraConfig:
 nova::availability_zone::default_schedule_zone: central
 NovaCrossAZAttach: false
 CinderStorageAvailabilityZone: central
 GlanceBackendID: central
EOF

6. Configure a glance.yaml template with contents similar to the following:

parameter_defaults:
 GlanceEnabledImportMethods: web-download,copy-image
 GlanceBackend: rbd

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

34

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/index

 GlanceStoreDescription: 'central rbd glance store'
 GlanceBackendID: central
 CephClusterName: central

7. After you prepare all of the other templates, deploy the central stack:

openstack overcloud deploy \
 --stack central \
 --templates /usr/share/openstack-tripleo-heat-templates/ \
 -r ~/central/central_roles.yaml \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-
ansible.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
 -e ~/central/central-images-env.yaml \
 -e ~/central/role-counts.yaml \
 -e ~/central/site-name.yaml \
 -e ~/central/ceph.yaml \
 -e ~/central/glance.yaml

NOTE

You must include heat templates for the configuration of networking in your openstack
overcloud deploy command. Designing for edge architecture requires spine and leaf
networking. See Spine Leaf Networking for more details.

The ceph-ansible.yaml file is configured with the following parameters:

NovaEnableRbdBackend: true

GlanceBackend: rbd

When you use these settings together, the glance.conf parameter image_import_plugins is configured
by heat to have a value image_conversion, automating the conversion of QCOW2 images with
commands such as glance image-create-via-import --disk-format qcow2.

This is optimal for the Ceph RBD. If you want to disable image conversion, use the
GlanceImageImportPlugin parameter:

 parameter_defaults:
 GlanceImageImportPlugin: []

5.3. INTEGRATING EXTERNAL CEPH

You can deploy the central location of a distributed compute node (DCN) architecture and integrate a
pre-deployed Red Hat Ceph Storage solution.

Prerequisites

Hardware for a Ceph cluster at the central location and in each availability zone, or in each
geographic location where storage services are required.

Hardware for three Image Service servers at the central location and in each availability zone, or
in each geographic location where storage services are required.

CHAPTER 5. INSTALLING THE CENTRAL LOCATION

35

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/spine_leaf_networking/index

The following is an example deployment of two or more stacks:

One stack at the central location called central.

One stack at an edge site called dcn0.

Additional stacks deployed similarly to dcn0, such as dcn1, dcn2, and so on.

You can install the central location so that it is integrated with a pre-existing Red Hat Ceph Storage
solution by following the process documented in Integrating an Overcloud with an Existing Red Hat
Ceph Cluster. There are no special requirements for integrating Red Hat Ceph Storage with the central
site of a DCN deployment, however you must still complete DCN specific steps before deploying the
overcloud:

1. In the home directory, create directories for each stack that you plan to deploy. Use this to
separate templates designed for their respective sites.

mkdir /home/stack/central
mkdir /home/stack/dcn0
mkdir /home/stack/dcn1

2. Use roles that RHOSP director manages to generate roles for the central location. When you
integrate with external Ceph, do not use Ceph roles:

cat > /home/stack/central/role-counts.yaml << EOF
parameter_defaults:
 ControllerCount: 3
 ComputeCount: 2
EOF

3. Generate an environment file ~/central/central-images-env.yaml:

sudo openstack tripleo container image prepare \
-e containers.yaml \
--output-env-file ~/central/central-images-env.yaml

4. Configure the naming conventions for your site in the site-name.yaml environment file. The
Compute (nova) availability zone and the Block Storage (cinder) availability zone must match:

cat > /home/stack/central/site-name.yaml << EOF
parameter_defaults:
 NovaComputeAvailabilityZone: central

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

36

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/integrating_an_overcloud_with_an_existing_red_hat_ceph_storage_cluster/assembly-integrate-with-an-existing-ceph-storage-cluster_preparing-overcloud-nodes

 ControllerExtraConfig:
 nova::availability_zone::default_schedule_zone: central
 NovaCrossAZAttach: false
 CinderStorageAvailabilityZone: central
 GlanceBackendID: central
EOF

5. Configure a glance.yaml template with contents similar to the following:

parameter_defaults:
 GlanceEnabledImportMethods: web-download,copy-image
 GlanceBackend: rbd
 GlanceStoreDescription: 'central rbd glance store'
 GlanceBackendID: central
 CephClusterName: central

6. When Ceph is deployed without Red Hat OpenStack Platform director, do not use the ceph-
ansible.yaml environment file. Use the ceph-ansible-external.yaml environment file instead.

openstack overcloud deploy \
 --stack central \
 --templates /usr/share/openstack-tripleo-heat-templates/ \
 -r ~/central/central_roles.yaml \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-ansible-
external.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
 -e ~/central/central-images-env.yaml \
 -e ~/central/role-counts.yaml \
 -e ~/central/site-name.yaml \
 -e ~/central/ceph.yaml \
 -e ~/central/glance.yaml

CHAPTER 5. INSTALLING THE CENTRAL LOCATION

37

CHAPTER 6. DEPLOY THE EDGE WITHOUT STORAGE
You can deploy a distributed compute node cluster without Block storage at edge sites if you use the
Object Storage service (swift) as a back end for the Image service (glance) at the central location. A site
deployed without block storage cannot be updated later to have block storage due to the differing role
and networking profiles for each architecture.

IMPORTANT

The following procedure uses lvm as the back end for the Block Storage service (cinder),
which is not supported for production. You must deploy a certified block storage solution
as a back end for the Block Storage service.

6.1. DEPLOYING EDGE NODES WITHOUT STORAGE

You can deploy edge compute nodes that will use the central location as the control plane. This
procedure shows how to add a new DCN stack to your deployment and reuse the configuration from the
existing heat stack to create new environment files. The first heat stack deploys an overcloud within a
centralized datacenter. Create additional heat stacks to deploy Compute nodes to a remote location.

6.1.1. Configuring the distributed compute node environment files

This procedure creates a new central-export.yaml environment file and uses the passwords in the plan-
environment.yaml file from the overcloud. The central-export.yaml file contains sensitive security
data. To improve security, you can remove the file when you no longer require it.

When you specify the directory for the --config-download-dir option, use the central hub Ansible
configuration that director creates in /var/lib/mistral during deployment. Do not use Ansible
configuration that you manually generate with the openstack overcloud config download command.
The manually generated configuration lacks certain files that are created only during a deployment
operation.

You must upload images to the central location before copying them to edge sites; a copy of each
image must exist in the Image service (glance) at the central location.

You must use the RBD storage driver for the Image, Compute, and Block Storage services.

Procedure

1. Generate the configuration files that the DCN sites require:

openstack overcloud export \
--config-download-dir /var/lib/mistral/central \
--stack central --output-file ~/dcn-common/central-export.yaml

2. Generate roles for the edge location using roles appropriate for your environment:

openstack overcloud roles generate Compute -o ~/dcn0/dcn0_roles.yaml

NOTE

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

38

NOTE

If you are using ML2/OVS for networking overlay, you must edit the roles file that you
created to include the NeutronDhcpAgent and NeutronMetadataAgent roles:

...
 - OS::TripleO::Services::MySQLClient
 - OS::TripleO::Services::NeutronBgpVpnBagpipe
+ - OS::TripleO::Services::NeutronDhcpAgent
+ - OS::TripleO::Services::NeutronMetadataAgent
 - OS::TripleO::Services::NeutronLinuxbridgeAgent
 - OS::TripleO::Services::NeutronVppAgent
 - OS::TripleO::Services::NovaAZConfig
 - OS::TripleO::Services::NovaCompute

...

For more information, see Preparing for a routed provider network .

6.1.2. Deploying the Compute nodes to the DCN site

This procedure uses the Compute role to deploy Compute nodes to an availability zone (AZ) named
dcn0. In a distributed compute node (DC) context, this role is used for sites without storage.

Procedure

1. Review the overrides for the distributed compute (DCN) site in dcn0/overrides.yaml

parameter_defaults:
 ComputeCount: 3
 ComputeFlavor: baremetal
 ComputeSchedulerHints:
 'capabilities:node': '0-compute-%index%'
 NovaAZAttach: false

2. Create a new file called site-name.yaml in the ~/dcn0 directory with the following contents:

resource_registry:
 OS::TripleO::Services::NovaAZConfig: /usr/share/openstack-tripleo-heat-
templates/deployment/nova/nova-az-config.yaml
parameter_defaults:
 NovaComputeAvailabilityZone: dcn0
 RootStackName: dcn0

3. Retrieve the container images for the DCN Site:

sudo openstack tripleo container image prepare \
--environment-directory dcn0 \
-r ~/dcn0/roles_data.yaml \
-e ~/dcn-common/central-export.yaml \
-e ~/containers-prepare-parameter.yaml \
--output-env-file ~/dcn0/dcn0-images-env.yaml

4. Run the deploy.sh deployment script for dcn0:

CHAPTER 6. DEPLOY THE EDGE WITHOUT STORAGE

39

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/networking_guide/index#prepare-routed-prov-network_deploy-routed-prov-networks

#!/bin/bash
STACK=dcn0
source ~/stackrc
time openstack overcloud deploy \
 --stack $STACK \
 --templates /usr/share/openstack-tripleo-heat-templates/ \
 -e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
 -e ~/dcn-common/central-export.yaml \
 -e ~/dcn0/dcn0-images-env.yaml \
 -e ~/dcn0/site-name.yaml \
 -e ~/dcn0/overrides.yaml

If you deploy additional edge sites that require edits to the network_data.yaml file, you must
execute a stack update at the central location.

5. You must ensure that nova cell_v2 host mappings are created in the nova API database after
the edge locations are deployed. Run the following command on the undercloud:

TRIPLEO_PLAN_NAME=central \
ansible -i /usr/bin/tripleo-ansible-inventory \
nova_api[0] -b -a \
"{{ container_cli }} exec -it nova_api \
nova-manage cell_v2 discover_hosts --by-service --verbose"

If you scale up an edge site, you must run this command again.

NOTE

You must include heat templates for the configuration of networking in your openstack
overcloud deploy command. Designing for edge architecture requires spine and leaf
networking. See Spine Leaf Networking for more details.

6.2. EXCLUDING SPECIFIC IMAGE TYPES AT THE EDGE

By default, Compute nodes advertise all image formats that they support. If your Compute nodes do not
use Ceph storage, you can exclude RAW images from the image format advertisement. The RAW image
format consumes more network bandwidth and local storage than QCOW2 images and is inefficient
when used at edge sites without Ceph storage. Use the NovaImageTypeExcludeList parameter to
exclude specific image formats:

IMPORTANT

Do not use this parameter at edge sites with Ceph, because Ceph requires RAW images.

NOTE

Compute nodes that do not advertise RAW images cannot host instances created from
RAW images. This can affect snapshot-redeploy and shelving.

Prerequisites

Red Hat OpenStack Platform director is installed

The central location is installed

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

40

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/spine_leaf_networking/index

Compute nodes are available for a DCN deployment

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc credentials file:

$ source ~/stackrc

3. Include the NovaImageTypeExcludeList parameter in your custom templates:

parameter_defaults:
 NovaImageTypeExcludeList:
 - raw

4. Include the environment file that contains the NovaImageTypeExcludeList parameter in the
overcloud deployment command, along with any other environment files relevant to your
deployment:

openstack overcloud deploy --templates \
-n network_data.yaml \
-r roles_data.yaml \
-e <environment_files> \
-e <new_environment_file>

CHAPTER 6. DEPLOY THE EDGE WITHOUT STORAGE

41

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE
You can leverage Red Hat OpenStack Platform director to extend distributed compute node
deployments to include distributed image management and persistent storage at the edge with the
benefits of using Red Hat OpenStack Platform and Ceph Storage.

7.1. DEPLOYING EDGE SITES WITH STORAGE

After you deploy the central site, build out the edge sites and ensure that each edge location connects
primarily to its own storage backend, as well as to the storage back end at the central location.

A spine and leaf networking configuration should be included with this configuration, with the addition of
the storage and storage_mgmt networks that ceph needs. For more information see Spine leaf
networking.

You must have connectivity between the storage network at the central location and the storage
network at each edge site so that you can move glance images between sites.

Ensure that the central location can communicate with the mons and osds at each of the edge sites.
However, you should terminate the storage management network at site location boundaries, because
the storage management network is used for OSD rebalancing.

Procedure

1. Export stack information from the central stack. You must deploy the central stack before
running this command:

openstack overcloud export \
 --config-download-dir /var/lib/mistral/central/ \
 --stack central \
 --output-file ~/dcn-common/central-export.yaml

NOTE

The config-download-dir value defaults to /var/lib/mistral/<stack>/.

2. Create the central_ceph_external.yaml file. This environment file connects DCN sites to the

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

42

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/spine_leaf_networking/index

2. Create the central_ceph_external.yaml file. This environment file connects DCN sites to the
central hub Ceph cluster, so the information is specific to the Ceph cluster deployed in the
previous steps.

sudo -E openstack overcloud export ceph \
--stack central \
--config-download-dir /var/lib/mistral \
--output-file ~/dcn-common/central_ceph_external.yaml

When Ceph is deployed without Red Hat OpenStack Platform director, you cannot run the
openstack overcloud export ceph command. Manually create the
central_ceph_external.yaml file:

parameter_defaults:
 CephExternalMultiConfig:
 - cluster: "central"
 fsid: "3161a3b4-e5ff-42a0-9f53-860403b29a33"
 external_cluster_mon_ips: "172.16.11.84, 172.16.11.87, 172.16.11.92"
 keys:
 - name: "client.openstack"
 caps:
 mgr: "allow *"
 mon: "profile rbd"
 osd: "profile rbd pool=vms, profile rbd pool=volumes, profile rbd pool=images"
 key: "AQD29WteAAAAABAAphgOjFD7nyjdYe8Lz0mQ5Q=="
 mode: "0600"
 dashboard_enabled: false
 ceph_conf_overrides:
 client:
 keyring: /etc/ceph/central.client.openstack.keyring

The fsid parameter is the file system ID of your Ceph Storage cluster: This value is specified
in the cluster configuration file in the [global] section:

[global]
fsid = 4b5c8c0a-ff60-454b-a1b4-9747aa737d19
...

The key parameter is the ceph client key for the openstack account:

[root@ceph ~]# ceph auth list
...
[client.openstack]
 key = AQC+vYNXgDAgAhAAc8UoYt+OTz5uhV7ItLdwUw==
 caps mgr = "allow *"
 caps mon = "profile rbd"
 caps osd = "profile rbd pool=volumes, profile rbd pool=vms, profile rbd pool=images,
profile rbd pool=backups, profile rbd pool=metrics"
...

For more information about the parameters shown in the sample
central_ceph_external.yaml file, see Creating a custom environment file .

3. Create the ~/dcn0/glance.yaml file for Image service configuration overrides:

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE

43

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/integrating_an_overcloud_with_an_existing_red_hat_ceph_storage_cluster/assembly-integrate-with-an-existing-ceph-storage-cluster_preparing-overcloud-nodes#proc-creating-a-custom-environment-file_integrate-with-existing-cs-cluster

parameter_defaults:
 GlanceEnabledImportMethods: web-download,copy-image
 GlanceBackend: rbd
 GlanceStoreDescription: 'dcn0 rbd glance store'
 GlanceBackendID: dcn0
 GlanceMultistoreConfig:
 central:
 GlanceBackend: rbd
 GlanceStoreDescription: 'central rbd glance store'
 CephClusterName: central
 GlanceRbdPoolName: images
 CephClientUserName: openstack

NOTE

If you do not use the GlanceRbdPoolName and CephClientUserName
parameters for the glance multi-store configuration, then the values are inherited
from the parameters that you used to configure the central location. These
values might not be the same, and can result in a failed deployment.

4. Configure the ceph.yaml file with configuration parameters relative to the available hardware.

cat > /home/stack/dcn0/ceph.yaml << EOF
parameter_defaults:
 CephClusterName: dcn0
 CephAnsibleDisksConfig:
 osd_scenario: lvm
 osd_objectstore: bluestore
 devices:
 - /dev/sda
 - /dev/sdb
 CephPoolDefaultSize: 3
 CephPoolDefaultPgNum: 128
EOF

For more information, see Mapping the Ceph Storage node disk layout .

5. Implement system tuning by using a file that contains the following parameters tuned to the
requirements of you environment:

cat > /home/stack/dcn0/tuning.yaml << EOF
parameter_defaults:
 CephAnsibleExtraConfig:
 is_hci: true
 CephConfigOverrides:
 osd_recovery_op_priority: 3
 osd_recovery_max_active: 3
 osd_max_backfills: 1
 ## Set relative to your hardware:
 # DistributedComputeHCIParameters:
 # NovaReservedHostMemory: 181000
 # DistributedComputeHCIExtraConfig:
 # nova::cpu_allocation_ratio: 8.2
EOF

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

44

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/index#Mapping_the_Ceph_Storage_Node_Disk_Layout

For more information about setting the values for the parameters
CephAnsibleExtraConfig, see Setting ceph-ansible group variables.

For more information about setting the values for the parameters CephConfigOverrides,
see Customizing the Ceph Storage cluster .

6. Configure the naming conventions for your site in the site-name.yaml environment file. The
Nova availability zone and the Cinder storage availability zone must match. The
CinderVolumeCluster parameter is included when deploying an edge site with storage. This
parameter is used when cinder-volume is deployed as active/active, which is required at edge
sites. As a best practice, set the Cinder cluster name to match the availability zone:

cat > /home/stack/central/site-name.yaml << EOF
parameter_defaults:
 ...
 NovaComputeAvailabilityZone: dcn0
 NovaCrossAZAttach: false
 CinderStorageAvailabilityZone: dcn0
 CinderVolumeCluster: dcn0

7. Generate the roles.yaml file to be used for the dcn0 deployment, for example:

openstack overcloud roles generate DistributedComputeHCI
DistributedComputeHCIScaleOut -o ~/dcn0/roles_data.yaml

8. Set the number systems in each role by creating the ~/dcn0/roles-counts.yaml file with the
desired values for each role.
+ You must allocate three nodes to satisfy requirements for GlanceApiEdge services. Use the
DistributedComputeHCICount parameter for hyperconverged infrastructure. For other
architectures, use the DistributedComputeCount parameter.

parameter_defaults:
 ControllerCount: 0
 ComputeCount: 0
 DistributedComputeHCICount: 3
 DistributedComputeHCIScaleOutCount: 1 # Optional
 DistributedComputeScaleOutCount: 1 # Optional

9. Retrieve the container images for the edge site:

sudo openstack tripleo container image prepare \
--environment-directory dcn0 \
-r ~/dcn0/roles_data.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-ansible.yaml
\
...
-e /home/stack/dcn-common/central-export.yaml \
-e /home/stack/containers-prepare-parameter.yaml \
--output-env-file ~/dcn0/dcn0-images-env.yaml

NOTE

You must include all environment files to be used for the deployment in the
openstack tripleo container image prepare command.

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE

45

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/index#setting_ceph_ansible_group_variables
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/index#Configuring_Ceph_Storage_Cluster_Settings

10. Deploy the edge site:

openstack overcloud deploy \
 --stack dcn0 \
 --templates /usr/share/openstack-tripleo-heat-templates/ \
 -r ~/dcn0/roles_data.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-
ansible.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/dcn-storage.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
 -e ~/dnc0/dcn0-images-env.yaml \

 -e ~/dcn-common/central-export.yaml \
 -e ~/dcn-common/central_ceph_external.yaml \
 -e ~/dcn0/dcn_ceph_keys.yaml \
 -e ~/dcn0/role-counts.yaml \
 -e ~/dcn0/ceph.yaml \
 -e ~/dcn0/site-name.yaml \
 -e ~/dcn0/tuning.yaml \
 -e ~/dcn0/glance.yaml

NOTE

You must include heat templates for the configuration of networking in your
openstack overcloud deploy command. Designing for edge architecture
requires spine and leaf networking. See Spine Leaf Networking for more details.

11. You must ensure that nova cell_v2 host mappings are created in the nova API database after
the edge locations are deployed. Run the following command on the undercloud:

TRIPLEO_PLAN_NAME=central \
ansible -i /usr/bin/tripleo-ansible-inventory \
nova_api[0] -b -a \
"{{ container_cli }} exec -it nova_api \
nova-manage cell_v2 discover_hosts --by-service --verbose"

If you scale up an edge site, you must run this command again.

7.2. DEPLOYING EDGE SITES WITH DEDICATED CEPH NODES

You can deploy dedicated Ceph nodes using Red Hat OpenStack Platform director.

Procedure

1. Export stack information from the central stack. You must deploy the central stack before
running this command:

openstack overcloud export \
 --config-download-dir /var/lib/mistral/central/ \
 --stack central \
 --output-file ~/dcn-common/central-export.yaml

NOTE

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

46

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/spine_leaf_networking/index

NOTE

The config-download-dir value defaults to /var/lib/mistral/<stack>/.

2. Create the central_ceph_external.yaml file. This environment file connects DCN sites to the
central hub Ceph cluster, so the information is specific to the Ceph cluster deployed in the
previous steps.

sudo -E openstack overcloud export ceph \
--stack central \
--config-download-dir /var/lib/mistral \
--output-file ~/dcn-common/central_ceph_external.yaml

3. Create the ~/dcn0/glance.yaml file for glance configuration overrides:

parameter_defaults:
 GlanceEnabledImportMethods: web-download,copy-image
 GlanceBackend: rbd
 GlanceStoreDescription: 'dcn0 rbd glance store'
 GlanceBackendID: dcn0
 GlanceMultistoreConfig:
 central:
 GlanceBackend: rbd
 GlanceStoreDescription: 'central rbd glance store'
 CephClientUserName: 'openstack'
 CephClusterName: central

4. Configure the ceph.yaml file with configuration parameters relative to the available hardware.

cat > /home/stack/dcn0/ceph.yaml << EOF
parameter_defaults:
 CephClusterName: dcn0
 CephAnsibleDisksConfig:
 osd_scenario: lvm
 osd_objectstore: bluestore
 devices:
 - /dev/sda
 - /dev/sdb
 CephPoolDefaultSize: 3
 CephPoolDefaultPgNum: 128
EOF

For more information, see Mapping the Ceph Storage node disk layout .

5. Configure the naming conventions for your site in the site-name.yaml environment file. The
Nova availability zone and the Cinder storage availability zone must match. The
CinderVolumeCluster parameter is included when deploying an edge site with storage. This
parameter is used when cinder-volume is deployed as active/active, which is required at edge
sites. As a best practice, set the Cinder cluster name to match the availability zone:

cat > /home/stack/dcn0/site-name.yaml << EOF
parameter_defaults:
 ...
 NovaComputeAvailabilityZone: dcn0

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE

47

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/index#Mapping_the_Ceph_Storage_Node_Disk_Layout

 NovaCrossAZAttach: false
 CinderStorageAvailabilityZone: dcn0
 CinderVolumeCluster: dcn0

6. Generate the roles.yaml file to be used for the dcn0 deployment, for example:

openstack overcloud roles generate DistributedCompute DistributedComputeScaleOut
CephAll-o ~/dcn0/roles_data.yaml

7. Set the number systems in each role by creating the ~/dcn0/roles-counts.yaml file with the
desired values for each role.
You must allocate three nodes for the DistributedCompute role to satisfy requirements for
GlanceApiEdge services, and three nodes for the CephAll role.

parameter_defaults:
 ControllerCount: 0
 ComputeCount: 0
 DistributedComputeCount: 3
 CephAll: 3
 DistributedComputeScaleOutCount: 1 # Optional

8. Retrieve the container images for the edge site:

sudo openstack tripleo container image prepare \
--environment-directory dcn0 \
-r ~/dcn0/roles_data.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-ansible.yaml
\
...
-e /home/stack/dcn-common/central-export.yaml \
-e /home/stack/containers-prepare-parameter.yaml \
--output-env-file ~/dcn0/dcn0-images-env.yaml

NOTE

You must include all environment files to be used for the deployment in the
openstack tripleo container image prepare command.

9. Deploy the edge site:

openstack overcloud deploy \
 --stack dcn0 \
 --templates /usr/share/openstack-tripleo-heat-templates/ \
 -r ~/dcn0/roles_data.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-
ansible.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/dcn-storage.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
 -e ~/dnc0/dcn0-images-env.yaml \

 -e ~/dcn-common/central-export.yaml \
 -e ~/dcn-common/central_ceph_external.yaml \
 -e ~/dcn0/dcn_ceph_keys.yaml \

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

48

 -e ~/dcn0/role-counts.yaml \
 -e ~/dcn0/ceph.yaml \
 -e ~/dcn0/site-name.yaml \
 -e ~/dcn0/tuning.yaml \
 -e ~/dcn0/glance.yaml

NOTE

You must include heat templates for the configuration of networking in your
openstack overcloud deploy command. Designing for edge architecture
requires spine and leaf networking. See Spine Leaf Networking for more details.

10. You must ensure that nova cell_v2 host mappings are created in the nova API database after
the edge locations are deployed. Run the following command on the undercloud:

TRIPLEO_PLAN_NAME=central \
ansible -i /usr/bin/tripleo-ansible-inventory \
nova_api[0] -b -a \
"{{ container_cli }} exec -it nova_api \
nova-manage cell_v2 discover_hosts --by-service --verbose"

If you scale up an edge site, you must run this command again.

7.3. USING A PRE-INSTALLED RED HAT CEPH STORAGE CLUSTER AT
THE EDGE

You can configure Red Hat OpenStack Platform to use a pre-existing Ceph cluster. This is called an
external Ceph deployment.

Prerequisites

You must have a preinstalled Ceph cluster that is local to your DCN site so that latency
requirements are not exceeded.

Procedure

1. Create the following pools in your Ceph cluster. If you are deploying at the central location,
include the backups and metrics pools:

[root@ceph ~]# ceph osd pool create volumes <_PGnum_>
[root@ceph ~]# ceph osd pool create images <_PGnum_>
[root@ceph ~]# ceph osd pool create vms <_PGnum_>
[root@ceph ~]# ceph osd pool create backups <_PGnum_>
[root@ceph ~]# ceph osd pool create metrics <_PGnum_>

Replace <_PGnum_> with the number of placement groups. You can use the Ceph Placement
Groups (PGs) per Pool Calculator to determine a suitable value.

2. Create the OpenStack client user in Ceph to provide the Red Hat OpenStack Platform
environment access to the appropriate pools:

ceph auth add client.openstack mon 'allow r' osd 'allow class-read object_prefix rbd_children,
allow rwx pool=volumes, allow rwx pool=vms, allow rwx pool=images'

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE

49

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/spine_leaf_networking/index
https://access.redhat.com/labs/cephpgc/

Save the provided Ceph client key that is returned. Use this key as the value for the
CephClientKey parameter when you configure the undercloud.

NOTE

If you run this command at the central location and plan to use Cinder backup or
telemetry services, add allow rwx pool=backups, allow pool=metrics to the
command.

3. Save the file system ID of your Ceph Storage cluster. The value of the fsid parameter in the
[global] section of your Ceph configuration file is the file system ID:

[global]
fsid = 4b5c8c0a-ff60-454b-a1b4-9747aa737d19
...

Use this value as the value for the CephClusterFSID parameter when you configure the
undercloud.

4. On the undercloud, create an environment file to configure your nodes to connect to the
unmanaged Ceph cluster. Use a recognizable naming convention, such as ceph-external-
<SITE>.yaml where SITE is the location for your deployment, such as ceph-external-
central.yaml, ceph-external-dcn1.yaml, and so on.

 parameter_defaults:
 # The cluster FSID
 CephClusterFSID: '4b5c8c0a-ff60-454b-a1b4-9747aa737d19'
 # The CephX user auth key
 CephClientKey: 'AQDLOh1VgEp6FRAAFzT7Zw+Y9V6JJExQAsRnRQ=='
 # The list of IPs or hostnames of the Ceph monitors
 CephExternalMonHost: '172.16.1.7, 172.16.1.8, 172.16.1.9'
 # The desired name of the generated key and conf files
 CephClusterName: dcn1

a. Use the previously saved values for the CephClusterFSID and CephClientKey parameters.

b. Use a comma delimited list of ip addresses from the Ceph monitors as the value for the
CephExternalMonHost parameter.

c. You must select a unique value for the CephClusterName parameter amongst edge sites.
Reusing a name will result in the configuration file being overwritten.

5. If you deployed Red Hat Ceph storage using Red Hat OpenStack Platform director at the
central location, then you can export the ceph configuration to an environment file
central_ceph_external.yaml. This environment file connects DCN sites to the central hub
Ceph cluster, so the information is specific to the Ceph cluster deployed in the previous steps:

sudo -E openstack overcloud export ceph \
--stack central \
--config-download-dir /var/lib/mistral \
--output-file ~/dcn-common/central_ceph_external.yaml

If the central location has Red Hat Ceph Storage deployed externally, then you cannot use the
openstack overcloud export ceph command to generate the central_ceph_external.yaml
file. You must create the central_ceph_external.yaml file manually instead:

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

50

parameter_defaults:
 CephExternalMultiConfig:
 - cluster: "central"
 fsid: "3161a3b4-e5ff-42a0-9f53-860403b29a33"
 external_cluster_mon_ips: "172.16.11.84, 172.16.11.87, 172.16.11.92"
 keys:
 - name: "client.openstack"
 caps:
 mgr: "allow *"
 mon: "profile rbd"
 osd: "profile rbd pool=vms, profile rbd pool=volumes, profile rbd pool=images"
 key: "AQD29WteAAAAABAAphgOjFD7nyjdYe8Lz0mQ5Q=="
 mode: "0600"
 dashboard_enabled: false
 ceph_conf_overrides:
 client:
 keyring: /etc/ceph/central.client.openstack.keyring

6. Create an environment file with similar details about each site with an unmanaged Red Hat
Ceph Storage cluster for the central location. The openstack overcloud export ceph
command does not work for sites with unmanaged Red Hat Ceph Storage clusters. When you
update the central location, this file will allow the central location the storage clusters at your
edge sites as secondary locations

parameter_defaults:
 CephExternalMultiConfig:
cluster: dcn1
…
cluster: dcn2
…

7. Use the ceph-ansible-external.yaml, ceph-external-<SITE>.yaml, and the
central_ceph_external.yaml environment files when deploying the overcloud:

openstack overcloud deploy \
 --stack dcn1 \
 --templates /usr/share/openstack-tripleo-heat-templates/ \
 -r ~/dcn1/roles_data.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-ansible-
external.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/dcn-hci.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
 -e ~/dnc1/ceph-external-dcn1.yaml \

 -e ~/dcn-common/central-export.yaml \
 -e ~/dcn-common/central_ceph_external.yaml \
 -e ~/dcn1/dcn_ceph_keys.yaml \
 -e ~/dcn1/role-counts.yaml \
 -e ~/dcn1/ceph.yaml \
 -e ~/dcn1/site-name.yaml \
 -e ~/dcn1/tuning.yaml \
 -e ~/dcn1/glance.yaml

8. Redeploy the central location after all edge locations have been deployed.

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE

51

7.4. CREATING ADDITIONAL DISTRIBUTED COMPUTE NODE SITES

A new distributed compute node (DCN) site has its own directory of YAML files on the undercloud. For
more information, see Section 4.7, “Managing separate heat stacks” . This procedure contains example
commands.

Procedure

1. As the stack user on the undercloud, create a new directory for dcn9:

$ cd ~
$ mkdir dcn9

2. Copy the existing dcn0 templates to the new directory and replace the dcn0 strings with dcn9:

$ cp dcn0/ceph.yaml dcn9/ceph.yaml
$ sed s/dcn0/dcn9/g -i dcn9/ceph.yaml
$ cp dcn0/overrides.yaml dcn9/overrides.yaml
$ sed s/dcn0/dcn9/g -i dcn9/overrides.yaml
$ sed s/"0-ceph-%index%"/"9-ceph-%index%"/g -i dcn9/overrides.yaml
$ cp dcn0/deploy.sh dcn9/deploy.sh
$ sed s/dcn0/dcn9/g -i dcn9/deploy.sh

3. Review the files in the dcn9 directory to confirm that they suit your requirements.

4. Edit undercloud.conf to add a new leaf. In the following example, leaf9 is added to
undercloud.conf:

[leaf0]
cidr = 192.168.10.0/24
dhcp_start = 192.168.10.10
dhcp_end = 192.168.10.90
inspection_iprange = 192.168.10.100,192.168.10.190
gateway = 192.168.10.1
masquerade = False

…
[leaf9]
cidr = 192.168.19.0/24
dhcp_start = 192.168.19.10
dhcp_end = 192.168.19.90
inspection_iprange = 192.168.19.100,192.168.19.190
gateway = 192.168.10.1
masquerade = False

5. Rerun the openstack undercloud install command to update the environment configuration.

6. In your overcloud templates, update the value of the NetworkDeploymentActions parameter
from a value of ["CREATE"], to a value of ["CREATE", "UPDATE"]. If this parameter is not
currently included in your templates, add it to one of your environment files, or create a new
environment file.

cat > /home/stack/central/network-environment.yaml << EOF
parameter_defaults:

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

52

 NetworkDeploymentActions: ["CREATE", "UPDATE"]
EOF

7. Run the deploy script for the central location. Include all templates that you used when you first
deployed the central location, as well as the newly created or edited network-environment.yaml
file:

openstack overcloud deploy \
 --stack central \
 --templates /usr/share/openstack-tripleo-heat-templates/ \
 -r ~/central/roles_data.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-
ansible.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/dcn-hci.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
 -e ~/central/dcn9-images-env.yaml \

 -e ~/dcn-common/central-export.yaml \
 -e ~/dcn-common/central_ceph_external.yaml \
 -e ~/central/dcn_ceph_keys.yaml \
 -e ~/central/role-counts.yaml \
 -e ~/central/ceph.yaml \
 -e ~/central/site-name.yaml \
 -e ~/central/tuning.yaml \
 -e ~/central/glance.yaml

8. Verify that your nodes are available and in Provisioning state:

$ openstack baremetal node list

9. When your nodes are available, deploy the new edge site with all appropriate templates:

openstack overcloud deploy \
 --stack dcn9 \
 --templates /usr/share/openstack-tripleo-heat-templates/ \
 -r ~/dcn9/roles_data.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-
ansible.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/dcn-hci.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
 -e ~/dnc9/dcn9-images-env.yaml \

 -e ~/dcn-common/central-export.yaml \
 -e ~/dcn-common/central_ceph_external.yaml \
 -e ~/dcn9/dcn_ceph_keys.yaml \
 -e ~/dcn9/role-counts.yaml \
 -e ~/dcn9/ceph.yaml \
 -e ~/dcn9/site-name.yaml \
 -e ~/dcn9/tuning.yaml \
 -e ~/dcn9/glance.yaml

10. If you’ve deployed the locations with direct edge-to-edge communication, you must redeploy
each edge site to update routes and establish communication with the new location.

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE

53

7.5. UPDATING THE CENTRAL LOCATION

After you configure and deploy all of the edge sites using the sample procedure, update the
configuration at the central location so that the central Image service can push images to the edge
sites.

WARNING

This procedure restarts the Image service (glance) and interrupts any long running
Image service process. For example, if an image is being copied from the central
Image service server to a DCN Image service server, that image copy is interrupted
and you must restart it. For more information, see Clearing residual data after
interrupted Image service processes.

Procedure

1. Create a ~/central/glance_update.yaml file similar to the following. This example includes a
configuration for two edge sites, dcn0 and dcn1:

 parameter_defaults:
 GlanceEnabledImportMethods: web-download,copy-image
 GlanceBackend: rbd
 GlanceStoreDescription: 'central rbd glance store'
 CephClusterName: central
 GlanceBackendID: central
 GlanceMultistoreConfig:
 dcn0:
 GlanceBackend: rbd
 GlanceStoreDescription: 'dcn0 rbd glance store'
 CephClientUserName: 'openstack'
 CephClusterName: dcn0
 GlanceBackendID: dcn0
 dcn1:
 GlanceBackend: rbd
 GlanceStoreDescription: 'dcn1 rbd glance store'
 CephClientUserName: 'openstack'
 CephClusterName: dcn1
 GlanceBackendID: dcn1

2. Create the dcn_ceph.yaml file. In the following example, this file configures the glance service
at the central site as a client of the Ceph clusters of the edge sites, dcn0 and dcn1.

sudo -E openstack overcloud export ceph \
--stack dcn0,dcn1 \
--config-download-dir /var/lib/mistral \
--output-file ~/central/dcn_ceph.yaml

3. Redeploy the central site using the original templates and include the newly created
dcn_ceph.yaml and glance_update.yaml files.



Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

54

openstack overcloud deploy \
 --stack central \
 --templates /usr/share/openstack-tripleo-heat-templates/ \
 -r ~/central/central_roles.yaml \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-
ansible.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
 -e ~/central/central-images-env.yaml \
 -e ~/central/role-counts.yaml \
 -e ~/central/site-name.yaml
 -e ~/central/ceph.yaml \
 -e ~/central/ceph_keys.yaml \
 -e ~/central/glance.yaml \
 -e ~/central/dcn_ceph_external.yaml

4. On a controller at the central location, restart the cinder-volume service. If you deployed the
central location with the cinder-backup service, then restart the cinder-backup service too:

ssh heat-admin@controller-0 sudo pcs resource restart openstack-cinder-volume
ssh heat-admin@controller-0 sudo pcs resource restart openstack-cinder-backup

7.5.1. Clearing residual data after interrupted Image service processes

When you restart the central location, any long-running Image service (glance) processes are
interrupted. Before you can restart these processes, you must first clean up residual data on the
Controller node that you rebooted, and in the Ceph and Image service databases.

Procedure

1. Check and clear residual data in the Controller node that was rebooted. Compare the files in the
glance-api.conf file for staging store with the corresponding images in the Image service
database, for example <image_ID>.raw.

If these corresponding images show importing status, you must recreate the image.

If the images show active status, you must delete the data from staging and restart the
copy import.

2. Check and clear residual data in Ceph stores. The images that you cleaned from the staging
area must have matching records in their stores property in the Ceph stores that contain the
image. The image name in Ceph is the image id in the Image service database.

3. Clear the Image service database. Clear any images that are in importing status from the import
jobs there were interrupted:

$ glance image-delete <image_id>

7.6. DEPLOYING RED HAT CEPH STORAGE DASHBOARD ON DCN

Procedure

To deploy the Red Hat Ceph Storage Dashboard to the central location, see Adding the Red Hat Ceph

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE

55

To deploy the Red Hat Ceph Storage Dashboard to the central location, see Adding the Red Hat Ceph
Storage Dashboard to an overcloud deployment. These steps should be completed prior to deploying
the central location.

To deploy Red Hat Ceph Storage Dashboard to edge locations, complete the same steps that you
completed for central, however you must complete the following following:

Ensure that the ManageNetworks parameter has a value of false in your templates for
deploying the edge site. When you set ManageNetworks to false, Edge sites will use the
existing networks that were already created in the central stack:

parameter_defaults:
 ManageNetworks: false

You must deploy your own solution for load balancing in order to create a high availability virtual
IP. Edge sites do not deploy haproxy, nor pacemaker. When you deploy Red Hat Ceph Storage
Dashboard to edge locations, the deployment is exposed on the storage network. The
dashboard is installed on each of the three DistributedComputeHCI nodes with distinct IP
addresses without a load balancing solution.

You can create an additional network to host virtual IP where the Ceph dashboard can be exposed. You
must not be reusing network resources for multiple stacks. For more information on reusing network
resources, see Reusing network resources in multiple stacks .

To create this additional network resource, use the provided network_data_dashboard.yaml heat
template. The name of the created network is StorageDashboard.

Procedure

1. Log in to Red Hat OpenStack Platform Director as stack.

2. Generate the DistributedComputeHCIDashboard role and any other roles appropriate for your
environment:

openstack overcloud roles generate DistributedComputeHCIDashboard -o ~/dnc0/roles.yaml

3. Include the roles.yaml and the network_data_dashboard.yaml in the overcloud deploy
command:

$ openstack overcloud deploy --templates \
-r ~/<dcn>/<dcn_site_roles>.yaml \
-n /usr/share/openstack-tripleo-heat-templates/network_data_dashboard.yaml \
-e <overcloud_environment_files> \
...
-e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-ansible.yaml
\
-e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-
dashboard.yaml

NOTE

The deployment provides the three ip addresses where the dashboard is enabled on the
storage network.

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

56

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/index#adding-ceph-dashboard
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/distributed_compute_node_and_storage_deployment/preparing_overcloud_templates_for_dcn_deployment#proc_reusing-network-resources-in-multiple-stacks

Verification

To confirm the dashboard is operational at the central location and that the data it displays from the
Ceph cluster is correct, see Accessing Ceph Dashboard .

You can confirm that the dashboard is operating at an edge location through similar steps, however,
there are exceptions as there is no load balancer at edge locations.

1. Retrieve dashboard admin login credentials specific to the selected stack from
/var/lib/mistral/<stackname>/ceph-ansible/group_vars/all.yml

2. Within the inventory specific to the selected stack, /var/lib/mistral/<stackname>/ceph-
ansible/inventory.yml, locate the DistributedComputeHCI role hosts list and save all three of
the storage_ip values. In the example below the first two dashboard IPs are 172.16.11.84 and
172.16.11.87:

DistributedComputeHCI:
 hosts:
 dcn1-distributed-compute-hci-0:
 ansible_host: 192.168.24.16
...
storage_hostname: dcn1-distributed-compute-hci-0.storage.localdomain
storage_ip: 172.16.11.84
...
 dcn1-distributed-compute-hci-1:
ansible_host: 192.168.24.22
...
storage_hostname: dcn1-distributed-compute-hci-1.storage.localdomain
storage_ip: 172.16.11.87

3. You can check that the Ceph Dashboard is active at one of these IP addresses if they are
accessible to you. These IP addresses are on the storage network and are not routed. If these IP
addresses are not available, you must configure a load balancer for the three IP addresses that
you get from the inventory to obtain a virtual IP address for verification.

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE

57

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/index#proc_accessing-ceph-dashboard

CHAPTER 8. REPLACING DISTRIBUTEDCOMPUTEHCI NODES
During hardware maintenance you may need to scale down, scale up, or replace a
DistributedComputeHCI node at an edge site. To replace a DistributedComputeHCI node, remove
services from the node you are replacing, scale the number of nodes down, and then follow the
procedures for scaling those nodes back up.

8.1. REMOVING THE COMPUTE (NOVA) SERVICE

Disable the nova-compute service and delete the relevant network agent.

Procedure

1. Delete the node that you are removing from the stack:

`openstack overcloud node delete --stack <dcn2> \
<computehci2-1>

2. Delete the network agent on the node you are removing:

(central) [stack@site-undercloud-0 ~]$ openstack network agent list | grep dcn2
…
| 17726d1a-e9d1-4e57-b40d-e742be5d073c | Open vSwitch agent | dcn2-computehci2-
1.redhat.local | None | XXX | UP | neutron-openvswitch-agent |
…
(central) [stack@site-undercloud-0 ~]$ openstack network agent delete 17726d1a-e9d1-
4e57-b40d-e742be5d073c

8.2. REMOVING RED HAT CEPH STORAGE SERVICES

To remove the Red Hat Ceph services mon, mgr and osd, you must disable and remove ceph-osd from
the cluster services on the node you are removing, then stop and disable the mon, mgr and osd
services.

Procedure

1. Use SSH to connect to the DistributedComputeHCI node you want to remove and log in as the
root user.

$ ssh heat-admin@<dcn-computehci-node>
$ sudo su -
#

2. Identify the OSDs associated with the DistributedComputeHCI node you are removing:

[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dnc2-computehci2-1 ceph osd tree -
c /etc/ceph/dcn2.conf
…
-3 0.24399 host dcn2-computehci2-1
 1 hdd 0.04880 osd.1 up 1.00000 1.00000
 7 hdd 0.04880 osd.7 up 1.00000 1.00000
11 hdd 0.04880 osd.11 up 1.00000 1.00000

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

58

15 hdd 0.04880 osd.15 up 1.00000 1.00000
18 hdd 0.04880 osd.18 up 1.00000 1.00000
…

3. Disable the OSDs on the relevant Ceph node:

[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dcn2-computehci2-1 ceph osd out 1
7 11 15 18 -c /etc/ceph/dcn2.conf
marked out osd.1. marked out osd.7. marked out osd.11. marked out osd.15. marked out
osd.18.

4. Wait for Ceph osd rebalancing to finish. Monitor progress with the following command:

[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dcn2-computehci2-1 ceph -w -c
/etc/ceph/dcn2.conf
…
mon.dcn2-computehci2-2 has auth_allow_insecure_global_id_reclaim set to true

The rebalancing is complete when you see that auth_allow_insecure_global_id_reclaim is set
to true.

5. Stop and disable the OSDs:

[root@dcn2-computehci2-1 ~]# systemctl stop ceph-osd@1
[root@dcn2-computehci2-1 ~]# systemctl stop ceph-osd@7
[root@dcn2-computehci2-1 ~]# systemctl stop ceph-osd@11
[root@dcn2-computehci2-1 ~]# systemctl stop ceph-osd@15
[root@dcn2-computehci2-1 ~]# systemctl stop ceph-osd@18
[root@dcn2-computehci2-1 ~]# systemctl disable ceph-osd@1
Removed /etc/systemd/system/multi-user.target.wants/ceph-osd@1.service.
[root@dcn2-computehci2-1 ~]# systemctl disable ceph-osd@7
Removed /etc/systemd/system/multi-user.target.wants/ceph-osd@7.service.
[root@dcn2-computehci2-1 ~]# systemctl disable ceph-osd@11
Removed /etc/systemd/system/multi-user.target.wants/ceph-osd@11.service.
[root@dcn2-computehci2-1 ~]# systemctl disable ceph-osd@15
Removed /etc/systemd/system/multi-user.target.wants/ceph-osd@15.service.
[root@dcn2-computehci2-1 ~]# systemctl disable ceph-osd@18
Removed /etc/systemd/system/multi-user.target.wants/ceph-osd@18.service.

6. Remove the OSDs from the CRUSH map:

[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dcn2-computehci2-1 ceph osd
crush remove osd.1 -c /etc/ceph/dcn2.conf
removed item id 1 name 'osd.1' from crush map
[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dcn2-computehci2-1 ceph osd
crush remove osd.7 -c /etc/ceph/dcn2.conf
removed item id 7 name 'osd.7' from crush map
[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dcn2-computehci2-1 ceph osd
crush remove osd.11 -c /etc/ceph/dcn2.conf
removed item id 11 name 'osd.11' from crush map
[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dcn2-computehci2-1 ceph osd
crush remove osd.15 -c /etc/ceph/dcn2.conf
removed item id 15 name 'osd.15' from crush map

CHAPTER 8. REPLACING DISTRIBUTEDCOMPUTEHCI NODES

59

[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dcn2-computehci2-1 ceph osd
crush remove osd.18 -c /etc/ceph/dcn2.conf
removed item id 18 name 'osd.18' from crush map

7. Remove the OSD auth keys:

[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dcn2-computehci2-1 ceph auth del
osd.1 -c /etc/ceph/dcn2.conf
updated
[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dcn2-computehci2-1 ceph auth del
osd.7 -c /etc/ceph/dcn2.conf
updated
[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dcn2-computehci2-1 ceph auth del
osd.11 -c /etc/ceph/dcn2.conf
updated
[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dcn2-computehci2-1 ceph auth del
osd.15 -c /etc/ceph/dcn2.conf
updated
[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dcn2-computehci2-1 ceph auth del
osd.18 -c /etc/ceph/dcn2.conf
updated

8. Remove the OSDs from the cluster:

[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dcn2-computehci2-1 ceph osd rm 1
-c /etc/ceph/dcn2.conf
removed osd.1
[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dcn2-computehci2-1 ceph osd rm 7
-c /etc/ceph/dcn2.conf
removed osd.7
[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dcn2-computehci2-1 ceph osd rm
11 -c /etc/ceph/dcn2.conf
removed osd.11
[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dcn2-computehci2-1 ceph osd rm
15 -c /etc/ceph/dcn2.conf
removed osd.15
[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dcn2-computehci2-1 ceph osd rm
18 -c /etc/ceph/dcn2.conf
removed osd.18

9. Remove the DistributedComputeHCI node from the CRUSH map:

[root@dcn2-computehci2-1 ~]# podman exec ceph-mon-dcn2-computehci2-1 ceph osd
crush rm dcn2-computehci2-1 -c /etc/ceph/dcn2.conf
removed item id -3 name 'dcn2-computehci2-1' from crush map

10. Stop and disable the mon service:

[root@dcn2-computehci2-1 ~]# systemctl --type=service | grep ceph
 ceph-crash@dcn2-computehci2-1.service loaded active running Ceph crash dump
collector
 ceph-mgr@dcn2-computehci2-1.service loaded active running Ceph Manager
 ceph-mon@dcn2-computehci2-1.service loaded active running Ceph Monitor

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

60

[root@dcn2-computehci2-1 ~]# systemctl stop ceph-mon@dcn2-computehci2-1

[root@dcn2-computehci2-1 ~]# systemctl disable ceph-mon@dcn2-computehci2-1
Removed /etc/systemd/system/multi-user.target.wants/ceph-mon@dcn2-computehci2-
1.service.

11. Use SSH to connect to another node in the same cluster and remove the monitor from the
cluster. Note the v1 and v2 entries in the output:

[root@dcn2-computehci2-0 ~]# podman exec ceph-mon-dcn2-computehci2-0 ceph mon
remove dcn2-computehci2-1 -c /etc/ceph/dcn2.conf
removing mon.dcn2-computehci2-1 at [v2:172.23.3.153:3300/0,v1:172.23.3.153:6789/0],
there will be 2 monitors

12. On all dcn2 nodes, remove the v1 and v2 monitor entries in /etc/ceph/dcn2.conf that were
output in the previous step, and the node name from the ‘mon initial members’:

Before

mon host = [v2:172.23.3.150:3300,v1:172.23.3.150:6789],*
[v2:172.23.3.153:3300,v1:172.23.3.153:6789]*,[v2:172.23.3.124:3300,v1:172.23.3.124:6789]
+ mon initial members = dcn2-computehci2-0,*dcn2-computehci2-1*,dcn2-computehci2-2

After

mon host = [v2:172.23.3.150:3300,v1:172.23.3.150:6789],
[v2:172.23.3.124:3300,v1:172.23.3.124:6789] + mon initial members = dcn2-computehci2-
0,dcn2-computehci2-2

13. Stop and disable the mgr service:

[root@dcn2-computehci2-1 ~]# systemctl --type=service | grep ceph
 ceph-crash@dcn2-computehci2-1.service loaded active running Ceph crash dump
collector
 ceph-mgr@dcn2-computehci2-1.service loaded active running Ceph Manager
[root@dcn2-computehci2-1 ~]# systemctl stop ceph-mgr@dcn2-computehci2-1
[root@dcn2-computehci2-1 ~]# systemctl --type=service | grep ceph
 ceph-crash@dcn2-computehci2-1.service loaded active running Ceph crash dump
collector
[root@dcn2-computehci2-1 ~]# systemctl disable ceph-mgr@dcn2-computehci2-1
Removed /etc/systemd/system/multi-user.target.wants/ceph-mgr@dcn2-computehci2-
1.service.

14. Verify that the mgr service for the node is removed from the cluster.

[root@dcn2-computehci2-0 ~]# podman exec ceph-mon-dcn2-computehci2-0 ceph -s -c
/etc/ceph/dcn2.conf
cluster:
 id: b9b53581-d590-41ac-8463-2f50aa985001
 health: HEALTH_WARN
 3 pools have too many placement groups
 mons are allowing insecure global_id reclaim

 services:
 mon: 2 daemons, quorum dcn2-computehci2-2,dcn2-computehci2-0 (age 2h)
 mgr: dcn2-computehci2-2(active, since 20h), standbys: dcn2-computehci2-0 1

CHAPTER 8. REPLACING DISTRIBUTEDCOMPUTEHCI NODES

61

1

 osd: 15 osds: 15 up (since 3h), 15 in (since 3h)

 data:
 pools: 3 pools, 384 pgs
 objects: 32 objects, 88 MiB
 usage: 16 GiB used, 734 GiB / 750 GiB avail
 pgs: 384 active+clean

The node that the mgr service is removed from is no longer listed when the mgr service is
successfully removed.

8.3. REMOVING THE IMAGE SERVICE (GLANCE) SERVICES

Remove image services from a node when you remove it from service.

Procedure

To disable the Image service services, disable them using systemctl on the node you are
removing:

[root@dcn2-computehci2-1 ~]# systemctl stop tripleo_glance_api.service
[root@dcn2-computehci2-1 ~]# systemctl stop tripleo_glance_api_tls_proxy.service

[root@dcn2-computehci2-1 ~]# systemctl disable tripleo_glance_api.service
Removed /etc/systemd/system/multi-user.target.wants/tripleo_glance_api.service.
[root@dcn2-computehci2-1 ~]# systemctl disable tripleo_glance_api_tls_proxy.service
Removed /etc/systemd/system/multi-user.target.wants/tripleo_glance_api_tls_proxy.service.

8.4. REMOVING THE BLOCK STORAGE (CINDER) SERVICES

You must remove the cinder-volume and etcd services from the DistributedComputeHCI node when
you remove it from service.

Procedure

1. Identify and disable the cinder-volume service on the node you are removing:

(central) [stack@site-undercloud-0 ~]$ openstack volume service list --service cinder-volume
| cinder-volume | dcn2-computehci2-1@tripleo_ceph | az-dcn2 | enabled | up | 2022-03-
23T17:41:43.000000 |
(central) [stack@site-undercloud-0 ~]$ openstack volume service set --disable dcn2-
computehci2-1@tripleo_ceph cinder-volume

2. Log on to a different DistributedComputeHCI node in the stack:

$ ssh heat-admin@dcn2-computehci2-0

3. Remove the cinder-volume service associated with the node that you are removing:

[root@dcn2-computehci2-0 ~]# podman exec -it cinder_volume cinder-manage service
remove cinder-volume dcn2-computehci2-1@tripleo_ceph
Service cinder-volume on host dcn2-computehci2-1@tripleo_ceph removed.

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

62

4. Stop and disable the tripleo_cinder_volume service on the node that you are removing:

[root@dcn2-computehci2-1 ~]# systemctl stop tripleo_cinder_volume.service
[root@dcn2-computehci2-1 ~]# systemctl disable tripleo_cinder_volume.service
Removed /etc/systemd/system/multi-user.target.wants/tripleo_cinder_volume.service

8.5. DELETE THE DISTRIBUTEDCOMPUTEHCI NODE

To preserve the environment, the openstack overcloud node delete command must include all
relevant templates and environment files:

Procedure

1. Delete the DistributedComputeHCI node

$ openstack overcloud node delete /
--stack <stack-name> /
<node_UUID>

2. If you are going to reuse the node, use ironic to clean the disk. This is required if the node will
host Ceph OSDs:

openstack baremetal node manage $UUID
openstack baremetal node clean $UUID --clean-steps '[{"interface":"deploy", "step":
"erase_devices_metadata"}]'
openstack baremetal provide $UUID

8.6. REPLACING A REMOVED DISTRIBUTEDCOMPUTEHCI NODE

8.6.1. Replacing a removed DistributedComputeHCI node

To add new HCI nodes to your DCN deployment, you must redeploy the edge stack with the additional
node, perform a ceph export of that stack, and then perform a stack update for the central location. A
stack update of the central location adds configurations specific to edge-sites.

Prerequisites

The node counts are correct in the nodes_data.yaml file of the stack that you want to replace the node
in or add a new node to.

Procedure

1. You must set the EtcdIntialClusterState parameter to existing in one of the templates called
by your deploy script:

parameter_defaults:
 EtcdInitialClusterState: existing

2. Redeploy using the deployment script specific to the stack:

CHAPTER 8. REPLACING DISTRIBUTEDCOMPUTEHCI NODES

63

(undercloud) [stack@site-undercloud-0 ~]$./overcloud_deploy_dcn2.sh
…
Overcloud Deployed without error

3. Export the Red Hat Ceph Storage data from the stack:

(undercloud) [stack@site-undercloud-0 ~]$ sudo -E openstack overcloud export ceph --stack
dcn1,dcn2 --config-download-dir /var/lib/mistral --output-file
~/central/dcn2_scale_up_ceph_external.yaml

4. Replace dcn_ceph_external.yaml with the newly generated dcn2_scale_up_ceph_external.yaml
in the deploy script for the central location.

5. Perform a stack update at central:

(undercloud) [stack@site-undercloud-0 ~]$./overcloud_deploy.sh
...
Overcloud Deployed without error

8.7. VERIFY THE FUNCTIONALITY OF A REPLACED
DISTRIBUTEDCOMPUTEHCI NODE

1. Ensure the value of the status field is enabled, and that the value of the State field is up:

(central) [stack@site-undercloud-0 ~]$ openstack compute service list -c Binary -c Host -c
Zone -c Status -c State
+----------------+---+------------+---------+-------+
| Binary | Host | Zone | Status | State |
+----------------+---+------------+---------+-------+
...
nova-compute	dcn1-compute1-0.redhat.local	az-dcn1	enabled	up
nova-compute	dcn1-compute1-1.redhat.local	az-dcn1	enabled	up
nova-compute	dcn2-computehciscaleout2-0.redhat.local	az-dcn2	enabled	up
nova-compute	dcn2-computehci2-0.redhat.local	az-dcn2	enabled	up
nova-compute	dcn2-computescaleout2-0.redhat.local	az-dcn2	enabled	up
nova-compute	dcn2-computehci2-2.redhat.local	az-dcn2	enabled	up
...

2. Ensure that all network agents are in the up state:

(central) [stack@site-undercloud-0 ~]$ openstack network agent list -c "Agent Type" -c Host -
c Alive -c State
+--------------------+---+-------+-------+
| Agent Type | Host | Alive | State |
+--------------------+---+-------+-------+
DHCP agent	dcn3-compute3-1.redhat.local	:-)	UP
Open vSwitch agent	central-computehci0-1.redhat.local	:-)	UP
DHCP agent	dcn3-compute3-0.redhat.local	:-)	UP
DHCP agent	central-controller0-2.redhat.local	:-)	UP
Open vSwitch agent	dcn3-compute3-1.redhat.local	:-)	UP
Open vSwitch agent	dcn1-compute1-1.redhat.local	:-)	UP
Open vSwitch agent	central-computehci0-0.redhat.local	:-)	UP
DHCP agent	central-controller0-1.redhat.local	:-)	UP

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

64

L3 agent	central-controller0-2.redhat.local	:-)	UP
Metadata agent	central-controller0-1.redhat.local	:-)	UP
Open vSwitch agent	dcn2-computescaleout2-0.redhat.local	:-)	UP
Open vSwitch agent	dcn2-computehci2-5.redhat.local	:-)	UP
Open vSwitch agent	central-computehci0-2.redhat.local	:-)	UP
DHCP agent	central-controller0-0.redhat.local	:-)	UP
Open vSwitch agent	central-controller0-1.redhat.local	:-)	UP
Open vSwitch agent	dcn2-computehci2-0.redhat.local	:-)	UP
Open vSwitch agent	dcn1-compute1-0.redhat.local	:-)	UP
...

3. Verify the status of the Ceph Cluster:

a. Use SSH to connect to the new DistributedComputeHCI node and check the status of the
Ceph cluster:

[root@dcn2-computehci2-5 ~]# podman exec -it ceph-mon-dcn2-computehci2-5 \
ceph -s -c /etc/ceph/dcn2.conf

b. Verify that both the ceph mon and ceph mgr services exist for the new node:

services:
 mon: 3 daemons, quorum dcn2-computehci2-2,dcn2-computehci2-0,dcn2-
computehci2-5 (age 3d)
 mgr: dcn2-computehci2-2(active, since 3d), standbys: dcn2-computehci2-0, dcn2-
computehci2-5
 osd: 20 osds: 20 up (since 3d), 20 in (since 3d)

c. Verify the status of the ceph osds with ‘ceph osd tree’. Ensure all osds for our new node are
in STATUS up:

[root@dcn2-computehci2-5 ~]# podman exec -it ceph-mon-dcn2-computehci2-5 ceph
osd tree -c /etc/ceph/dcn2.conf
ID CLASS WEIGHT TYPE NAME STATUS REWEIGHT PRI-AFF
-1 0.97595 root default
-5 0.24399 host dcn2-computehci2-0
 0 hdd 0.04880 osd.0 up 1.00000 1.00000
 4 hdd 0.04880 osd.4 up 1.00000 1.00000
 8 hdd 0.04880 osd.8 up 1.00000 1.00000
13 hdd 0.04880 osd.13 up 1.00000 1.00000
17 hdd 0.04880 osd.17 up 1.00000 1.00000
-9 0.24399 host dcn2-computehci2-2
 3 hdd 0.04880 osd.3 up 1.00000 1.00000
 5 hdd 0.04880 osd.5 up 1.00000 1.00000
10 hdd 0.04880 osd.10 up 1.00000 1.00000
14 hdd 0.04880 osd.14 up 1.00000 1.00000
19 hdd 0.04880 osd.19 up 1.00000 1.00000
-3 0.24399 host dcn2-computehci2-5
 1 hdd 0.04880 osd.1 up 1.00000 1.00000
 7 hdd 0.04880 osd.7 up 1.00000 1.00000
11 hdd 0.04880 osd.11 up 1.00000 1.00000
15 hdd 0.04880 osd.15 up 1.00000 1.00000
18 hdd 0.04880 osd.18 up 1.00000 1.00000
-7 0.24399 host dcn2-computehciscaleout2-0
 2 hdd 0.04880 osd.2 up 1.00000 1.00000

CHAPTER 8. REPLACING DISTRIBUTEDCOMPUTEHCI NODES

65

 6 hdd 0.04880 osd.6 up 1.00000 1.00000
 9 hdd 0.04880 osd.9 up 1.00000 1.00000
12 hdd 0.04880 osd.12 up 1.00000 1.00000
16 hdd 0.04880 osd.16 up 1.00000 1.00000

4. Verify the cinder-volume service for the new DistributedComputeHCI node is in Status
‘enabled’ and in State ‘up’:

(central) [stack@site-undercloud-0 ~]$ openstack volume service list --service cinder-volume
-c Binary -c Host -c Zone -c Status -c State
+---------------+---------------------------------+------------+---------+-------+
| Binary | Host | Zone | Status | State |
+---------------+---------------------------------+------------+---------+-------+
cinder-volume	hostgroup@tripleo_ceph	az-central	enabled	up
cinder-volume	dcn1-compute1-1@tripleo_ceph	az-dcn1	enabled	up
cinder-volume	dcn1-compute1-0@tripleo_ceph	az-dcn1	enabled	up
cinder-volume	dcn2-computehci2-0@tripleo_ceph	az-dcn2	enabled	up
cinder-volume	dcn2-computehci2-2@tripleo_ceph	az-dcn2	enabled	up
cinder-volume	dcn2-computehci2-5@tripleo_ceph	az-dcn2	enabled	up
+---------------+---------------------------------+------------+---------+-------+

NOTE

If the State of the cinder-volume service is down, then the service has not been
started on the node.

5. Use ssh to connect to the new DistributedComputeHCI node and check the status of the
Glance services with ‘systemctl’:

[root@dcn2-computehci2-5 ~]# systemctl --type service | grep glance
 tripleo_glance_api.service loaded active running glance_api container
 tripleo_glance_api_healthcheck.service loaded activating start start glance_api
healthcheck
 tripleo_glance_api_tls_proxy.service loaded active running
glance_api_tls_proxy container

8.8. TROUBLESHOOTING DISTRIBUTEDCOMPUTEHCI STATE DOWN

If the replacement node was deployed without the EtcdInitialClusterState parameter value set to
existing, then the cinder-volume service of the replaced node shows down when you run openstack
volume service list.

Procedure

1. Log onto the replacement node and check logs for the etcd service. Check that the logs show
the etcd service is reporting a cluster ID mismatch in the /var/log/containers/stdouts/etcd.log
log file:

2022-04-06T18:00:11.834104130+00:00 stderr F 2022-04-06 18:00:11.834045 E | rafthttp:
request cluster ID mismatch (got 654f4cf0e2cfb9fd want 918b459b36fe2c0c)

2. Set the EtcdInitialClusterState parameter to the value of existing in your deployment
templates and rerun the deployment script.

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

66

3. Use SSH to connect to the replacement node and run the following commands as root:

[root@dcn2-computehci2-4 ~]# systemctl stop tripleo_etcd
[root@dcn2-computehci2-4 ~]# rm -rf /var/lib/etcd/*
[root@dcn2-computehci2-4 ~]# systemctl start tripleo_etcd

4. Recheck the /var/log/containers/stdouts/etcd.log log file to verify that the node successfully
joined the cluster:

2022-04-06T18:24:22.130059875+00:00 stderr F 2022-04-06 18:24:22.129395 I |
etcdserver/membership: added member 96f61470cd1839e5 [https://dcn2-computehci2-
4.internalapi.redhat.local:2380] to cluster 654f4cf0e2cfb9fd

5. Check the state of the cinder-volume service, and confirm it reads up on the replacement node
when you run openstack volume service list.

CHAPTER 8. REPLACING DISTRIBUTEDCOMPUTEHCI NODES

67

CHAPTER 9. DEPLOYING WITH KEY MANAGER
If you have deployed edge sites previous to the release of Red Hat OpenStack Platform 16.1.2, you will
need to regenerate roles.yaml to implement this feature: To implement the feature, regenerate the
roles.yaml file used for the DCN site’s deployment.

$ openstack overcloud roles generate DistributedComputeHCI DistributedComputeHCIScaleOut -o
~/dcn0/roles_data.yaml

9.1. DEPLOYING EDGE SITES WITH KEY MANAGER

If you want to include access to the Key Manager (barbican) service at edge sites, you must configure
barbican at the central location. For information on installing and configuring barbican, see Deploying
Barbican.

You can configure access to barbican from DCN sites by including the /usr/share/openstack-
tripleo-heat-templates/environments/services/barbican-edge.yaml.

openstack overcloud deploy \
 --stack dcn0 \
 --templates /usr/share/openstack-tripleo-heat-templates/ \
 -r ~/dcn0/roles_data.yaml \

 -e /usr/share/openstack-tripleo-heat-templates/environments/services/barbican-edge.yaml

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

68

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/manage_secrets_with_openstack_key_manager/index#deploying_barbican

CHAPTER 10. PRECACHING GLANCE IMAGES INTO NOVA
When you configure OpenStack Compute to use local ephemeral storage, glance images are cached to
quicken the deployment of instances. If an image that is necessary for an instance is not already cached,
it is downloaded to the local disk of the Compute node when you create the instance.

The process of downloading a glance image takes a variable amount of time, depending on the image
size and network characteristics such as bandwidth and latency.

If you attempt to start an instance, and the image is not available on the on the Ceph cluster that is local,
launching an instance will fail with the following message:

Build of instance 3c04e982-c1d1-4364-b6bd-f876e399325b aborted: Image 20c5ff9d-5f54-4b74-830f-
88e78b9999ed is unacceptable: No image locations are accessible

You see the following in the Compute service log:

'Image %s is not on my ceph and [workarounds]/ never_download_image_if_on_rbd=True; refusing
to fetch and upload.',

The instance fails to start due to a parameter in the nova.conf configuration file called
never_download_image_if_on_rbd, which is set to true by default for DCN deployments. You can
control this value using the heat parameter NovaDisableImageDownloadToRbd which you can find in
the dcn-hci.yaml file.

If you set the value of NovaDisableImageDownloadToRbd to false prior to deploying the overcloud,
the following occurs:

The Compute service (nova) will automatically stream images available at the central location if
they are not available locally.

You will not be using a COW copy from glance images.

The Compute (nova) storage will potentially contain multiple copies of the same image,
depending on the number of instances using it.

You may saturate both the WAN link to the central location as well as the nova storage pool.

Red Hat recommends leaving this value set to true, and ensuring required images are available locally
prior to launching an instance. For more information on making images available to the edge, see
Section A.1.3, “Copying an image to a new site” .

For images that are local, you can speed up the creation of VMs by using the
tripleo_nova_image_cache.yml ansible playbook to pre-cache commonly used images or images that
are likely to be deployed in the near future.

10.1. RUNNING THE TRIPLEO_NOVA_IMAGE_CACHE.YML ANSIBLE PLAYBOOK

Prerequisites

Authentication credentials to the correct API in the shell environment.

Before the command provided in each step, you must ensure that the correct authentication file is
sourced.

CHAPTER 10. PRECACHING GLANCE IMAGES INTO NOVA

69

Procedure

1. Create an ansible inventory file for the stack. You can specify multiple stacks in a comma
delimited list to cache images at more than one site:

$ source stackrc

$ tripleo-ansible-inventory --plan central,dcn0,dcn1 \
--static-yaml-inventory inventory.yaml

2. Create a list of image IDs that you want to pre-cache:

a. Retrieve a comprehensive list of available images:

$ source centralrc

$ openstack image list
+--------------------------------------+---------+--------+
| ID | Name | Status |
+--------------------------------------+---------+--------+
| 07bc2424-753b-4f65-9da5-5a99d8383fe6 | image_0 | active |
| d5187afa-c821-4f22-aa4b-4e76382bef86 | image_1 | active |
+--------------------------------------+---------+--------+

b. Create an ansible playbook argument file called nova_cache_args.yml, and add the IDs of
the images that you want to pre-cache:

tripleo_nova_image_cache_images:
 - id: 07bc2424-753b-4f65-9da5-5a99d8383fe6
 - id: d5187afa-c821-4f22-aa4b-4e76382bef86

3. Run the tripleo_nova_image_cache.yml ansible playbook:

$ source centralrc

$ ansible-playbook -i inventory.yaml \
--extra-vars "@nova_cache_args.yml" \
/usr/share/ansible/tripleo-playbooks/tripleo_nova_image_cache.yml

10.2. PERFORMANCE CONSIDERATIONS

You can specify the number of images that you want to download concurrently with the ansible forks
parameter, which defaults to a value of 5. You can reduce the time to distribute this image by increasing
the value of the forks parameter, however you must balance this with the increase in network and
glance-api load.

Use the --forks parameter to adjust concurrency as shown:

ansible-playbook -i inventory.yaml \
--forks 10 \
--extra-vars "@nova_cache_args.yml" \
/usr/share/ansible/tripleo-playbooks/tripleo_nova_image_cache.yml

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

70

10.3. OPTIMIZING THE IMAGE DISTRIBUTION TO DCN SITES

You can reduce WAN traffic by using a proxy for glance image distribution. When you configure a proxy:

Glance images are downloaded to a single Compute node that acts as the proxy.

The proxy redistributes the glance image to other Compute nodes in the inventory.

You can place the following parameters in the nova_cache_args.yml ansible argument file to configure
a proxy node.

Set the tripleo_nova_image_cache_use_proxy parameter to true to enable the image cache proxy.

The image proxy uses secure copy scp to distribute images to other nodes in the inventory. SCP is
inefficient over networks with high latency, such as a WAN between DCN sites. Red Hat recommends
that you limit the playbook target to a single DCN location, which correlates to a single stack.

Use the tripleo_nova_image_cache_proxy_hostname parameter to select the image cache proxy.
The default proxy is the first compute node in the ansible inventory file. Use the
tripleo_nova_image_cache_plan parameter to limit the playbook inventory to a single site:

tripleo_nova_image_cache_use_proxy: true
tripleo_nova_image_cache_proxy_hostname: dcn0-novacompute-1
tripleo_nova_image_cache_plan: dcn0

10.4. CONFIGURING THE NOVA-CACHE CLEANUP

A background process runs periodically to remove images from the nova cache when both of the
following conditions are true:

The image is not in use by an instance.

The age of the image is greater than the value for the nova parameter
remove_unused_original_minimum_age_seconds.

The default value for the remove_unused_original_minimum_age_seconds parameter is 86400. The
value is expressed in seconds and is equal to 24 hours. You can control this value with the
NovaImageCachTTL tripleo-heat-templates parameter during the initial deployment, or during a stack
update of your cloud:

parameter_defaults:
 NovaImageCacheTTL: 604800 # Default to 7 days for all compute roles
 Compute2Parameters:
 NovaImageCacheTTL: 1209600 # Override to 14 days for the Compute2 compute role

When you instruct the playbook to pre-cache an image that already exists on a Compute node, ansible
does not report a change, but the age of the image is reset to 0. Run the ansible play more frequently
than the value of the NovaImageCacheTTL parameter to maintain a cache of images.

CHAPTER 10. PRECACHING GLANCE IMAGES INTO NOVA

71

CHAPTER 11. TLS-E FOR DCN
You can enable TLS (transport layer security) on clouds designed for distributed compute node
infrastructure. You have the option of either enabling TLS for public access only, or enabling TLS on
every network with TLS-e, which allows for encryption on all internal and external dataflows.

You cannot enable public access on edge stacks as edge sites do not have public endpoints. For more
information on TLS for public access, see Enabling SSL/TLS on Overcloud Public Endpoints .

11.1. DEPLOYING DISTRIBUTED COMPUTE NODE ARCHITECTURE
WITH TLS-E

Prerequisites

When you configure TLS-e on Red Hat OpenStack Platform (RHOSP) distributed compute node
architecture with Red Hat Identity Manager (IdM), take the following actions based on the version of
Red Hat Enterprise Linux deployed for Red Hat Identity Manager.

Red Hat Enterprise Linux 8.4

1. On the Red Hat Identity Management node, allowed trusted subnets to an ACL In the ipa-
ext.conf file:

 acl "trusted_network" {
 localnets;
 localhost;
 192.168.24.0/24;
 192.168.25.0/24;
 };

1. In the /etc/named/ipa-options-ext.conf file, allow recursion, and query cache:

allow-recursion { trusted_network; };
allow-query-cache { trusted_network; };

2. Restart the `named-pkcs11 service:

systemctl restart named-pkcs11

Red Hat Enterprise Linux 8.2

If you have Red Hat Identity Manager (IdM) on Red Hat Enterprise Linux (RHEL) 8.2, you must
upgrade Red Hat Enterprise Linux and then follow the directions for RHEL 8.4

Red Hat Enterprise Linux 7.x

If you have Red Hat Identity Manager (IdM) on Red Hat Enterprise Linux (RHEL) 7.x, you must add an
access control instruction (ACI) for your domain name manually. For example, if the domain name is
redhat.local, run the following commands on Red Hat Identity Manager to configure the ACI:

ADMIN_PASSWORD=redhat_01
DOMAIN_LEVEL_1=local
DOMAIN_LEVEL_2=redhat

cat << EOF | ldapmodify -x -D "cn=Directory Manager" -w ${ADMIN_PASSWORD}

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

72

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/advanced_overcloud_customization/assembly_enabling-ssl-tls-on-overcloud-public-endpoints

dn: cn=dns,dc=${DOMAIN_LEVEL_2},dc=${DOMAIN_LEVEL_1}
changetype: modify
add: aci
aci: (targetattr = "aaaarecord || arecord || cnamerecord || idnsname || objectclass || ptrrecord")
(targetfilter = "(&(objectclass=idnsrecord)(|(aaaarecord=)(arecord=)(cnamerecord=)(ptrrecord=)
(idnsZoneActive=TRUE)))")(version 3.0; acl "Allow hosts to read DNS A/AAA/CNAME/PTR records";
allow (read,search,compare) userdn =
"ldap:///fqdn=*,cn=computers,cn=accounts,dc=${DOMAIN_LEVEL_2},dc=${DOMAIN_LEVEL_1}";)
EOF

Procedure

For distributed compute node (DCN) architectures, it is required to use the ansible-based tripleo-ipa
method of implementing TLS-e as opposed to the previous novajoin method. For more information on
deploying TLS-e with tripleo-ipa see Implementing TLS-e with Ansible .

To deploy TLS-e with tripleo-ipa for DCN architectures, you will need to also complete the following
steps:

1. If you are deploying storage at the edge, include the following parameters in your modified
tripleo heat templates for edge stacks:

TEMPLATES=/usr/share/openstack-tripleo-heat-templates

resource_registry:
 OS::TripleO::Services::IpaClient:
 ${TEMPLATES}/deployment/ipa/ipaservices-baremetal-ansible.yaml

parameter_defaults:
 EnableEtcdInternalTLS: true

Due to differences in design between the central and edge locations, do not include the following files in
edge stacks:

tls-everywhere-endpoints-dns.yaml

This file is ignored at edge sites, the endpoints that it sets are overridden by the endpoints exported
from the central stack.

haproxy-public-tls-certmonger.yaml

This file causes a failed deployment as there are no public endpoints at the edge.

CHAPTER 11. TLS-E FOR DCN

73

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/advanced_overcloud_customization/assembly_enabling-ssl-tls-on-internal-and-public-endpoints-with-identity-management#proc_implementing-tls-e-with-ansible_enabling-ssl-tls-on-internal-and-public-endpoints-with-identity-management

CHAPTER 12. CREATING A CEPH KEY FOR EXTERNAL
ACCESS

External access to Ceph storage is access to Ceph from any site that is not local. Ceph storage at the
cental location is external for edge (DCN) sites, just as Ceph storage at the edge is external for the
central location.

When you deploy the central or DCN sites with Ceph storage, you have the option of using the default
openstack keyring for both local and external access. Altenatively, you can create a separate key for
access by non-local sites.

If you decide to use additional Ceph keys for access to your external sites, each key must have the same
name. The key name is external in the examples that follow.

If you use a separate key for access by non-local sites, you have the additional security benefit of being
able to revoke and re-issue the external key in response to a security event without interrupting local
access. However, using a separate key for external access will result in the loss of access to some
features, such as cross availability zone backups and offline volume migration. You must balance the
needs of your security posture against the desired feature set.

By default, the keys for the central and all DCN sites will be shared.

12.1. CREATING A CEPH KEY FOR EXTERNAL ACCESS

Complete the following steps to create an external key for non-local access.

Process

1. Create a Ceph key for external access. This key is sensitive. You can generate the key using the
following:

python3 -c 'import os,struct,time,base64; key = os.urandom(16) ; \
header = struct.pack("<hiih", 1, int(time.time()), 0, len(key)) ; \
print(base64.b64encode(header + key).decode())'

2. In the directory of the stack you are deploying, create a ceph_keys.yaml environment file with
contents like the following, using the output from the previous command for the key:

parameter_defaults:
 CephExtraKeys:
 - name: "client.external"
 caps:
 mgr: "allow *"
 mon: "profile rbd"
 osd: "profile rbd pool=vms, profile rbd pool=volumes, profile rbd pool=images"
 key: "AQD29WteAAAAABAAphgOjFD7nyjdYe8Lz0mQ5Q=="
 mode: "0600"

3. Include the ceph_keys.yaml environment file in the deployment of the site. For example, to
deploy the central site with with the ceph_keys.yaml environment file, run a command like the
following:

 overcloud deploy \
 --stack central \

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

74

 --templates /usr/share/openstack-tripleo-heat-templates/ \
 ….
 -e ~/central/ceph_keys.yaml

12.2. USING EXTERNAL CEPH KEYS

You can only use keys that have already been deployed. For information on deploying a site with an
external key, see Section 12.1, “Creating a Ceph key for external access” . This should be done for both
central and edge sites.

When you deploy an edge site that will use an external key provided by central, complete the
following:

1. Create dcn_ceph_external.yaml environment file for the edge site. You must include the
cephx-key-client-name option to specify the deployed key to include.

sudo -E openstack overcloud export ceph \
--stack central \
--config-download-dir /var/lib/mistral \
--cephx-key-client-name external \
--output-file ~/dcn-common/dcn_ceph_external.yaml

2. Include the dcn_ceph_external.yaml file so that the edge site can access the Ceph cluster
at the central site. Include the ceph_keys.yaml file to deploy an external key for the Ceph
cluster at the edge site.

When you update the central location after deploying your edge sites, ensure the central
location to use the dcn external keys:

1. Ensure that the CephClientUserName parameter matches the key being exported. If you
are using the name external as shown in these examples, create glance_update.yaml to be
similar to the following:

 parameter_defaults:
 GlanceEnabledImportMethods: web-download,copy-image
 GlanceBackend: rbd
 GlanceStoreDescription: 'central rbd glance store'
 CephClusterName: central
 GlanceBackendID: central
 GlanceMultistoreConfig:
 dcn0:
 GlanceBackend: rbd
 GlanceStoreDescription: 'dcn0 rbd glance store'
 CephClientUserName: 'external'
 CephClusterName: dcn0
 GlanceBackendID: dcn0
 dcn1:
 GlanceBackend: rbd
 GlanceStoreDescription: 'dcn1 rbd glance store'
 CephClientUserName: 'external'
 CephClusterName: dcn1
 GlanceBackendID: dcn1

2. Use the openstack overcloud export ceph command to include the external keys for
DCN edge access from the central location. To do this you must provide a a comma-

CHAPTER 12. CREATING A CEPH KEY FOR EXTERNAL ACCESS

75

delimited list of stacks for the --stack argument, and include the cephx-key-client-name
option:

sudo -E openstack overcloud export ceph \
--stack dcn0,dcn1,dcn2 \
--config-download-dir /var/lib/mistral \
--cephx-key-client-name external \
--output-file ~/central/dcn_ceph_external.yaml

3. Redeploy the central site using the original templates and include the newly created
dcn_ceph_external.yaml and glance_update.yaml files.

openstack overcloud deploy \
 --stack central \
 --templates /usr/share/openstack-tripleo-heat-templates/ \
 -r ~/central/central_roles.yaml \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-
ansible.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
 -e ~/central/central-images-env.yaml \
 -e ~/central/role-counts.yaml \
 -e ~/central/site-name.yaml
 -e ~/central/ceph.yaml \
 -e ~/central/ceph_keys.yaml \
 -e ~/central/glance.yaml \
 -e ~/central/dcn_ceph_external.yaml

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

76

APPENDIX A. DEPLOYMENT MIGRATION OPTIONS
This section includes topics related validation of DCN storage, as well as migrating or changing
architectures.

A.1. VALIDATING EDGE STORAGE

Ensure that the deployment of central and edge sites are working by testing glance multi-store and
instance creation.

You can import images into glance that are available on the local filesystem or available on a web server.

NOTE

Always store an image copy in the central site, even if there are no instances using the
image at the central location.

Prerequisites

1. Check the stores that are available through the Image service by using the glance stores-info
command. In the following example, three stores are available: central, dcn1, and dcn2. These
correspond to glance stores at the central location and edge sites, respectively:

 $ glance stores-info
 +----------+--+
 | Property | Value |
 +----------+--+
stores	[{"default": "true", "id": "central", "description": "central rbd glance
	store"}, {"id": "dcn0", "description": "dcn0 rbd glance store"},
	{"id": "dcn1", "description": "dcn1 rbd glance store"}]
 +----------+--+

A.1.1. Importing from a local file

You must upload the image to the central location’s store first, then copy the image to remote sites.

1. Ensure that your image file is in RAW format. If the image is not in raw format, you must convert
the image before importing it into the Image service:

file cirros-0.5.1-x86_64-disk.img
cirros-0.5.1-x86_64-disk.img: QEMU QCOW2 Image (v3), 117440512 bytes

qemu-img convert -f qcow2 -O raw cirros-0.5.1-x86_64-disk.img cirros-0.5.1-x86_64-
disk.raw

Import the image into the default back end at the central site:

glance image-create \
--disk-format raw --container-format bare \
--name cirros --file cirros-0.5.1-x86_64-disk.raw \
--store central

APPENDIX A. DEPLOYMENT MIGRATION OPTIONS

77

A.1.2. Importing an image from a web server

If the image is hosted on a web server, you can use the GlanceImageImportPlugins parameter to
upload the image to multiple stores.

This procedure assumes that the default image conversion plugin is enabled in glance. This feature
automatically converts QCOW2 file formats into RAW images, which are optimal for Ceph RBD. You can
confirm that a glance image is in RAW format by running the glance image-show ID | grep
disk_format.

Procedure

1. Use the image-create-via-import parameter of the glance command to import an image from a
web server. Use the --stores parameter.

glance image-create-via-import \
--disk-format qcow2 \
--container-format bare \
--name cirros \
--uri http://download.cirros-cloud.net/0.4.0/cirros-0.4.0-x86_64-disk.img \
--import-method web-download \
--stores central,dcn1

In this example, the qcow2 cirros image is downloaded from the official Cirros site, converted to
RAW by glance, and imported into the central site and edge site 1 as specified by the --stores
parameter.

Alternatively you can replace --stores with --all-stores True to upload the image to all of the stores.

A.1.3. Copying an image to a new site

You can copy existing images from the central location to edge sites, which gives you access to
previously created images at newly established locations.

1. Use the UUID of the glance image for the copy operation:

ID=$(openstack image show cirros -c id -f value)

glance image-import $ID --stores dcn0,dcn1 --import-method copy-image

NOTE

In this example, the --stores option specifies that the cirros image will be copied
from the central site to edge sites dcn1 and dcn2. Alternatively, you can use the --
all-stores True option, which uploads the image to all the stores that don’t
currently have the image.

2. Confirm a copy of the image is in each store. Note that the stores key, which is the last item in
the properties map, is set to central,dcn0,dcn1.:

 $ openstack image show $ID | grep properties
 | properties | direct_url=rbd://d25504ce-459f-432d-b6fa-
79854d786f2b/images/8083c7e7-32d8-4f7a-b1da-0ed7884f1076/snap, locations=[{u'url:
u'rbd://d25504ce-459f-432d-b6fa-79854d786f2b/images/8083c7e7-32d8-4f7a-b1da-

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

78

0ed7884f1076/snap', u'metadata': {u'store': u'central'}}, {u'url': u'rbd://0c10d6b5-a455-4c4d-
bd53-8f2b9357c3c7/images/8083c7e7-32d8-4f7a-b1da-0ed7884f1076/snap', u'metadata':
{u'store': u'dcn0'}}, {u'url': u'rbd://8649d6c3-dcb3-4aae-8c19-8c2fe5a853ac/images/8083c7e7-
32d8-4f7a-b1da-0ed7884f1076/snap', u'metadata': {u'store': u'dcn1'}}],
os_glance_failed_import=', os_glance_importing_to_stores=', os_hash_algo='sha512,
os_hash_value=b795f047a1b10ba0b7c95b43b2a481a59289dc4cf2e49845e60b194a911819d
3ada03767bbba4143b44c93fd7f66c96c5a621e28dff51d1196dae64974ce240e,
os_hidden=False, stores=central,dcn0,dcn1 |

NOTE

Always store an image copy in the central site even if there is no VM using it on that site.

A.1.4. Confirming that an instance at an edge site can boot with image based
volumes

You can use an image at the edge site to create a persistent root volume.

Procedure

1. Identify the ID of the image to create as a volume, and pass that ID to the openstack volume
create command:

IMG_ID=$(openstack image show cirros -c id -f value)
openstack volume create --size 8 --availability-zone dcn0 pet-volume-dcn0 --image $IMG_ID

2. Identify the volume ID of the newly created volume and pass it to the openstack server create
command:

VOL_ID=$(openstack volume show -f value -c id pet-volume-dcn0)
openstack server create --flavor tiny --key-name dcn0-key --network dcn0-network --security-
group basic --availability-zone dcn0 --volume $VOL_ID pet-server-dcn0

3. You can verify that the volume is based on the image by running the rbd command within a
ceph-mon container at the dcn0 edge site to list the volumes pool.

$ sudo podman exec ceph-mon-$HOSTNAME rbd --cluster dcn0 -p volumes ls -l
NAME SIZE PARENT FMT PROT LOCK
volume-28c6fc32-047b-4306-ad2d-de2be02716b7 8 GiB images/8083c7e7-32d8-4f7a-b1da-
0ed7884f1076@snap 2 excl
$

4. Confirm that you can create a cinder snapshot of the root volume of the instance. Ensure that
the server is stopped to quiesce data to create a clean snapshot. Use the --force option,
because the volume status remains in-use when the instance is off.

openstack server stop pet-server-dcn0
openstack volume snapshot create pet-volume-dcn0-snap --volume $VOL_ID --force
openstack server start pet-server-dcn0

5. List the contents of the volumes pool on the dcn0 Ceph cluster to show the newly created
snapshot.

APPENDIX A. DEPLOYMENT MIGRATION OPTIONS

79

$ sudo podman exec ceph-mon-$HOSTNAME rbd --cluster dcn0 -p volumes ls -l
NAME SIZE PARENT
FMT PROT LOCK
volume-28c6fc32-047b-4306-ad2d-de2be02716b7 8 GiB
images/8083c7e7-32d8-4f7a-b1da-0ed7884f1076@snap 2 excl
volume-28c6fc32-047b-4306-ad2d-de2be02716b7@snapshot-a1ca8602-6819-45b4-a228-
b4cd3e5adf60 8 GiB images/8083c7e7-32d8-4f7a-b1da-0ed7884f1076@snap 2 yes

A.1.5. Confirming image snapshots can be created and copied between sites

1. Verify that you can create a new image at the dcn0 site. Ensure that the server is stopped to
quiesce data to create a clean snapshot:

NOVA_ID=$(openstack server show pet-server-dcn0 -f value -c id)
openstack server stop $NOVA_ID
openstack server image create --name cirros-snapshot $NOVA_ID
openstack server start $NOVA_ID

2. Copy the image from the dcn0 edge site back to the hub location, which is the default back end
for glance:

IMAGE_ID=$(openstack image show cirros-snapshot -f value -c id)
glance image-import $IMAGE_ID --stores central --import-method copy-image

For more information on glance multistore operations, see Image service with multiple stores.

A.2. MIGRATING TO A SPINE AND LEAF DEPLOYMENT

It is possible to migrate an existing cloud with a pre-existing network configuration to one with a spine
leaf architecture. For this, the following conditions are needed:

All bare metal ports must have their physical-network property value set to ctlplane.

The parameter enable_routed_networks is added and set to true in undercloud.conf, followed
by a re-run of the undercloud installation command, openstack undercloud install.

Once the undercloud is re-deployed, the overcloud is considered a spine leaf, with a single leaf leaf0.
You can add additional provisioning leaves to the deployment through the following steps.

1. Add the desired subnets to undercloud.conf as shown in Configuring routed spine-leaf in the
undercloud.

2. Re-run the undercloud installation command, openstack undercloud install.

3. Add the desired additional networks and roles to the overcloud templates, network_data.yaml
and roles_data.yaml respectively.

NOTE

If you are using the {{network.name}}InterfaceRoutes parameter in the network
configuration file, then you’ll need to ensure that the
NetworkDeploymentActions parameter includes the value UPDATE.

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

80

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/creating_and_managing_images/index#using-image-service-with-mulitple-stores
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/spine_leaf_networking/index#configuring-routed-spine-leaf-in-the-undercloud

 NetworkDeploymentActions: ['CREATE','UPDATE'])

4. Finally, re-run the overcloud installation script that includes all relevant heat templates for your
cloud deployment.

A.3. MIGRATING TO A MULTISTACK DEPLOYMENT

You can migrate from a single stack deployment to a multistack deployment by treating the existing
deployment as the central site, and adding additional edge sites.

The ability to migrate from single to multistack in this release is a Technology Preview , and therefore is
not fully supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see Scope of
Coverage Details.

You cannot split the existing stack. You can scale down the existing stack to remove compute nodes if
needed. These compute nodes can then be added to edge sites.

NOTE

This action creates workload interruptions if all compute nodes are removed.

A.4. BACKING UP AND RESTORING ACROSS EDGE SITES

You can back up and restore Block Storage service (cinder) volumes across distributed compute node
(DCN) architectures in edge site and availability zones. The cinder-backup service runs in the central
availability zone (AZ), and backups are stored in the central AZ. The Block Storage service does not
store backups at DCN sites.

Prerequisites

The central site is deployed with the cinder-backup.yaml environment file located in
/usr/share/openstack-tripleo-heat-templates/environments. For more information, see Block
Storage backup service deployment.

The Block Storage service (cinder) CLI is available.

All sites must use a common openstack cephx client name. For more information, see Creating
a Ceph key for external access.

Procedure

1. Create a backup of a volume in the first DCN site:

$ cinder --os-volume-api-version 3.51 backup-create --name <volume_backup> --availability-
zone <az_central> <edge_volume>

Replace <volume_backup> with a name for the volume backup.

Replace <az_central> with the name of the central availability zone that hosts the cinder-
backup service.

Replace <edge_volume> with the name of the volume that you want to back up.

NOTE

APPENDIX A. DEPLOYMENT MIGRATION OPTIONS

81

https://access.redhat.com/support/offerings/production/scope_moredetail
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/block_storage_backup_guide/index.xml#assembly_backup_install
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/distributed_compute_node_and_storage_deployment/index#external-option

NOTE

If you experience issues with Ceph keyrings, you might need to restart the
cinder-backup container so that the keyrings copy from the host to the
container successfully.

2. Restore the backup to a new volume in the second DCN site:

$ cinder --os-volume-api-version 3.51 create --availability-zone <az_2> --name
<new_volume> --backup-id <volume_backup> <volume_size>

Replace <az_2> with the name of the availability zone where you want to restore the
backup.

Replace <new_volume> with a name for the new volume.

Replace <volume_backup> with the name of the volume backup that you created in the
previous step.

Replace <volume_size> with a value in GB equal to or greater than the size of the original
volume.

A.5. REMOVING A DCN SITE

To remove an edge site, remove the stack, storage, and associated services from your Red Hat
OpenStack deployment. In the following example, dcn2 is being decommissioned and removed from the
DCN (distributed compute node) deployment. Adjust the commands to suit your environment.

Prerequisites

You have a site available to be decommissioned that is part of a fully deployed DCN architected
Red Hat OpenStack Platform cluster

All instances active on the edge site to be deleted must be removed.

All volumes active on the edge site to be deleted must be removed.

Procedure

1. If this site is provisioned with Red Hat Ceph Storage, you must first remove the glance store,
Ceph configuration, and associated permissions associated with the edge location you are
removing. If you have not deployed storage at the edge, you can proceed to step 2:

a. Log in to Red Hat Openstack Platform director and source the RC credentials file for the
central site:

source /home/stack/centralrc

b. Delete all images associated with the stack:

glance stores-delete --store dcn2 <IMAGE>

Replace <_IMAGE_> with the name of the image that you want to delete.

c. Remove the stanza associated with the stack from the dcn_ceph_external.yaml file. In this

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

82

c. Remove the stanza associated with the stack from the dcn_ceph_external.yaml file. In this
example, remove the dcn2 configuration.

...
 - cluster: "dcn1"
 fsid: "e70c3c80-4eca-4f1a-8cbb-3e9753b401c9"
 external_cluster_mon_ips: "172.23.2.58, 172.23.2.153, 172.23.2.32"
 keys:
 - name: "client.external"
 caps:
 mgr: "allow *"
 mon: "profile rbd"
 osd: "profile rbd pool=vms, profile rbd pool=volumes, profile rbd pool=images"
 key: "AQD4Ae9gAAAAABAAeeG5N0E3Jka7bXRDhB8CtQ=="
 mode: "0600"
 dashboard_enabled: false
 ceph_conf_overrides:
 client:
 keyring: /etc/ceph/dcn1.client.external.keyring
- - cluster: "dcn2"
- fsid: "c699978c-876d-4c65-984f-2179d22244ea"
- external_cluster_mon_ips: "172.23.3.239, 172.23.3.99, 172.23.3.67"
- keys:
- - name: "client.external"
- caps:
- mgr: "allow *"
- mon: "profile rbd"
- osd: "profile rbd pool=vms, profile rbd pool=volumes, profile rbd pool=images"
- key: "AQA1Du9gAAAAABAAMOBAczLIw1SzBR7vxwYqJg=="
- mode: "0600"
- dashboard_enabled: false
- ceph_conf_overrides:
- client:
- keyring: /etc/ceph/dcn2.client.external.keyring

d. Remove the stanza associated with the stack from the glance_update.yaml file. In this
example, remove the dcn2 configuration.

parameter_defaults:
 GlanceMultistoreConfig:
 dcn0:
 GlanceBackend: rbd
 GlanceStoreDescription: 'dcn0 rbd glance store'
 CephClientUserName: 'openstack'
 CephClusterName: dcn0
 dcn1:
 GlanceBackend: rbd
 GlanceStoreDescription: 'dcn1 rbd glance store'
 CephClientUserName: 'openstack'
 CephClusterName: dcn1
- dcn2:
- GlanceBackend: rbd
- GlanceStoreDescription: 'dcn2 rbd glance store'
- CephClientUserName: 'openstack'
- CephClusterName: dcn2

APPENDIX A. DEPLOYMENT MIGRATION OPTIONS

83

e. Delete files in /etc/ceph that relate to the site you are removing. Perform this step on each
Controller node.

source /home/stack/stackrc
for i in $(openstack server list | awk '/controller/ {print $8}' | cut -d= -f2); do
 ssh heat-admin@${i} sudo -E \
 rm -f /etc/ceph/dcn2.conf /etc/ceph/dcn2.client.openstack.keyring
done

f. Disable the cinder-volume service for the stack:

i. Identify the cinder-volume service for the stack that you want to delete:

source /home/stack/centralrc
VOLUME_HOST=openstack volume service list --service cinder-volume

ii. Disable the cinder-volume service

openstack volume service set --disable ${VOLUME_HOST} cinder-volume

iii. Remove the cinder-volume service from the cinder_api container on one of the
Controller nodes at the central location:

ssh heat-admin@CONTROLLER_IP sudo podman exec cinder_api cinder-manage
service remove cinder-volume ${VOLUME_HOST}

2. If you use OVS, clean the neutron agents for the stack that you deleted:

a. Identify the UUIDs of the network agents:

source /home/stack/centralrc
openstack network agent list

b. Use the UUIDs from the previous step to identify the network agents to delete. Run the
following command for each UUID:

openstack network agent delete $UUID

NOTE

You cannot delete OVN agents.

3. Delete the compute services associated with the stack:

a. Find the IDs of the compute services associated with dcn2. You can use the unique
hostnames for this step. If the hostnames include the stacknames, you can use grep to list
only the compute services that you want to delete:

source /home/stack/centralrc
openstack compute service list | grep dcn2

b. Use the IDs shown in the first field to delete the compute services. Run the following
command for each ID:

Red Hat OpenStack Platform 16.2 Distributed compute node and storage deployment

84

openstack compute service delete <ID>

4. Delete the host aggregate associated with the site:

source /home/stack/centralrc
openstack aggregate delete dcn2

5. Remove the subnets for the stack that you want to delete from the
/home/stack/central/network/network_data.yaml file:

 - name: Tenant
 name_lower: tenant
 vip: false # Tenant network does not use VIPs
 vlan: 1189
 ip_subnet: '172.19.1.0/24'
 allocation_pools: [{'start': '172.19.1.4', 'end': '172.19.1.250'}]
 gateway_ip: '172.19.1.254'
 subnets:
 tenant_leaf1:
 vlan: 1179
 ip_subnet: '172.19.2.0/24'
 allocation_pools: [{'start': '172.19.2.4', 'end': '172.19.2.250'}]
 gateway_ip: '172.19.2.254'
- tenant_leaf2:
- vlan: 1169
- ip_subnet: '172.19.3.0/24'
- allocation_pools: [{'start': '172.19.3.4', 'end': '172.19.3.250'}]
- gateway_ip: '172.19.3.254

6. Delete the stack:

source /home/stack/stackrc
openstack overcloud delete -y dcn2

7. Optional: Delete the bare metal nodes from the decommissioned site:

a. List the nodes and identify those associated with the deleted stack dcn2

source /home/stack/stackrc
openstack baremetal node list

b. Use the node UUIDs from the previous step to remove each node from ironic:

openstack baremetal node delete $UUID

APPENDIX A. DEPLOYMENT MIGRATION OPTIONS

85

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. UNDERSTANDING DCN
	1.1. REQUIRED SOFTWARE FOR DISTRIBUTED COMPUTE NODE ARCHITECTURE
	1.2. MULTISTACK DESIGN
	1.3. DCN STORAGE
	1.4. DCN EDGE

	CHAPTER 2. PLANNING A DISTRIBUTED COMPUTE NODE (DCN) DEPLOYMENT
	2.1. CONSIDERATIONS FOR STORAGE ON DCN ARCHITECTURE
	2.2. CONSIDERATIONS FOR NETWORKING ON DCN ARCHITECTURE
	2.3. STORAGE TOPOLOGIES AND ROLES AT THE EDGE
	2.3.1. Roles for edge deployments

	CHAPTER 3. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD
	3.1. CONFIGURING THE SPINE LEAF PROVISIONING NETWORKS
	3.2. CONFIGURING A DHCP RELAY
	3.3. CREATING FLAVORS AND TAGGING NODES FOR LEAF NETWORKS
	3.4. MAPPING BARE METAL NODE PORTS TO CONTROL PLANE NETWORK SEGMENTS
	3.5. ADDING A NEW LEAF TO A SPINE-LEAF PROVISIONING NETWORK

	CHAPTER 4. PREPARING OVERCLOUD TEMPLATES FOR DCN DEPLOYMENT
	4.1. PREREQUISITES FOR USING SEPARATE HEAT STACKS
	4.2. LIMITATIONS OF THE EXAMPLE SEPARATE HEAT STACKS DEPLOYMENT
	4.3. DESIGNING YOUR SEPARATE HEAT STACKS DEPLOYMENT
	4.4. REUSING NETWORK RESOURCES IN MULTIPLE STACKS
	4.5. USING MANAGENETWORKS TO REUSE NETWORK RESOURCES
	4.6. USING UUIDS TO REUSE NETWORK RESOURCES
	4.7. MANAGING SEPARATE HEAT STACKS
	4.8. RETRIEVING THE CONTAINER IMAGES
	4.9. CREATING FAST DATAPATH ROLES FOR THE EDGE

	CHAPTER 5. INSTALLING THE CENTRAL LOCATION
	5.1. DEPLOYING THE CENTRAL CONTROLLERS WITHOUT EDGE STORAGE
	5.2. DEPLOYING THE CENTRAL SITE WITH STORAGE
	5.3. INTEGRATING EXTERNAL CEPH

	CHAPTER 6. DEPLOY THE EDGE WITHOUT STORAGE
	6.1. DEPLOYING EDGE NODES WITHOUT STORAGE
	6.1.1. Configuring the distributed compute node environment files
	6.1.2. Deploying the Compute nodes to the DCN site

	6.2. EXCLUDING SPECIFIC IMAGE TYPES AT THE EDGE

	CHAPTER 7. DEPLOYING STORAGE AT THE EDGE
	7.1. DEPLOYING EDGE SITES WITH STORAGE
	7.2. DEPLOYING EDGE SITES WITH DEDICATED CEPH NODES
	7.3. USING A PRE-INSTALLED RED HAT CEPH STORAGE CLUSTER AT THE EDGE
	7.4. CREATING ADDITIONAL DISTRIBUTED COMPUTE NODE SITES
	7.5. UPDATING THE CENTRAL LOCATION
	7.5.1. Clearing residual data after interrupted Image service processes

	7.6. DEPLOYING RED HAT CEPH STORAGE DASHBOARD ON DCN

	CHAPTER 8. REPLACING DISTRIBUTEDCOMPUTEHCI NODES
	8.1. REMOVING THE COMPUTE (NOVA) SERVICE
	8.2. REMOVING RED HAT CEPH STORAGE SERVICES
	8.3. REMOVING THE IMAGE SERVICE (GLANCE) SERVICES
	8.4. REMOVING THE BLOCK STORAGE (CINDER) SERVICES
	8.5. DELETE THE DISTRIBUTEDCOMPUTEHCI NODE
	8.6. REPLACING A REMOVED DISTRIBUTEDCOMPUTEHCI NODE
	8.6.1. Replacing a removed DistributedComputeHCI node

	8.7. VERIFY THE FUNCTIONALITY OF A REPLACED DISTRIBUTEDCOMPUTEHCI NODE
	8.8. TROUBLESHOOTING DISTRIBUTEDCOMPUTEHCI STATE DOWN

	CHAPTER 9. DEPLOYING WITH KEY MANAGER
	9.1. DEPLOYING EDGE SITES WITH KEY MANAGER

	CHAPTER 10. PRECACHING GLANCE IMAGES INTO NOVA
	10.1. RUNNING THE TRIPLEO_NOVA_IMAGE_CACHE.YML ANSIBLE PLAYBOOK
	10.2. PERFORMANCE CONSIDERATIONS
	10.3. OPTIMIZING THE IMAGE DISTRIBUTION TO DCN SITES
	10.4. CONFIGURING THE NOVA-CACHE CLEANUP

	CHAPTER 11. TLS-E FOR DCN
	11.1. DEPLOYING DISTRIBUTED COMPUTE NODE ARCHITECTURE WITH TLS-E

	CHAPTER 12. CREATING A CEPH KEY FOR EXTERNAL ACCESS
	12.1. CREATING A CEPH KEY FOR EXTERNAL ACCESS
	12.2. USING EXTERNAL CEPH KEYS

	APPENDIX A. DEPLOYMENT MIGRATION OPTIONS
	A.1. VALIDATING EDGE STORAGE
	A.1.1. Importing from a local file
	A.1.2. Importing an image from a web server
	A.1.3. Copying an image to a new site
	A.1.4. Confirming that an instance at an edge site can boot with image based volumes
	A.1.5. Confirming image snapshots can be created and copied between sites

	A.2. MIGRATING TO A SPINE AND LEAF DEPLOYMENT
	A.3. MIGRATING TO A MULTISTACK DEPLOYMENT
	A.4. BACKING UP AND RESTORING ACROSS EDGE SITES
	A.5. REMOVING A DCN SITE

