
Red Hat OpenStack Platform 16.2

Bare Metal Provisioning

Install and configure the Bare Metal Provisioning service (ironic)

Last Updated: 2023-11-09

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

Install and configure the Bare Metal Provisioning service (ironic)

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Install and configure the Bare Metal Provisioning service in the overcloud of a Red Hat OpenStack
Platform environment to provision and manage physical machines for cloud users.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. BARE METAL PROVISIONING SERVICE (IRONIC) FUNCTIONALITY

CHAPTER 2. REQUIREMENTS FOR BARE METAL PROVISIONING
2.1. HARDWARE REQUIREMENTS
2.2. NETWORKING REQUIREMENTS

2.2.1. The default bare metal network
2.2.2. The custom composable bare metal network

CHAPTER 3. DEPLOYING AN OVERCLOUD WITH THE BARE METAL PROVISIONING SERVICE
3.1. CONFIGURING THE DEFAULT FLAT NETWORK
3.2. CONFIGURING A CUSTOM IPV4 PROVISIONING NETWORK
3.3. CONFIGURING A CUSTOM IPV6 PROVISIONING NETWORK
3.4. CONFIGURING THE OVERCLOUD TO ENABLE BARE METAL PROVISIONING
3.5. TESTING THE BARE METAL PROVISIONING SERVICE
3.6. ADDITIONAL RESOURCES

CHAPTER 4. CONFIGURING THE BARE METAL PROVISIONING SERVICE AFTER DEPLOYMENT
4.1. CONFIGURING THE NETWORKING SERVICE FOR BARE METAL PROVISIONING

4.1.1. Configuring the Networking service to integrate with the Bare Metal Provisioning service on a flat network

4.1.2. Configuring the Networking service to integrate with the Bare Metal Provisioning service on a custom
composable network

4.2. CLEANING BARE-METAL NODES
4.2.1. Configuring automatic node cleaning
4.2.2. Cleaning nodes manually

4.3. CREATING FLAVORS FOR LAUNCHING BARE-METAL INSTANCES
4.4. CREATING IMAGES FOR LAUNCHING BARE-METAL INSTANCES

4.4.1. Uploading the deploy images to the Image service
4.5. CONFIGURING DEPLOY INTERFACES

Prerequisites
Workflow
4.5.1. Configuring the direct deploy interface on the overcloud

4.6. ADDING PHYSICAL MACHINES AS BARE METAL NODES
4.6.1. Enrolling a bare metal node with an inventory file
4.6.2. Enrolling a bare-metal node manually
4.6.3. Bare-metal node provisioning states

4.7. CONFIGURING REDFISH VIRTUAL MEDIA BOOT
4.7.1. Deploying a bare metal server with Redfish virtual media boot

4.8. USING HOST AGGREGATES TO SEPARATE PHYSICAL AND VIRTUAL MACHINE PROVISIONING

CHAPTER 5. ADMINISTERING BARE METAL NODES
5.1. LAUNCHING BARE METAL INSTANCES

5.1.1. Launching instances with the command line interface
5.1.2. Launching instances with the dashboard

5.2. CONFIGURING PORT GROUPS IN THE BARE METAL PROVISIONING SERVICE
5.2.1. Configuring port groups on switches manually
5.2.2. Configuring port groups in the Bare Metal Provisioning service

5.3. DETERMINING THE HOST TO IP ADDRESS MAPPING
5.4. ATTACHING AND DETACHING VIRTUAL NETWORK INTERFACES

4

5

6

8
8
8
9
9

11
11

12
13
15
17
17

18
18

18

20
21
21
22
23
24
25
25
26
26
27
28
28
30
34
39
39
41

43
43
43
44
44
45
45
46
48

Table of Contents

1

. .

. .

. .

. .

5.5. CONFIGURING NOTIFICATIONS FOR THE BARE METAL PROVISIONING SERVICE
5.6. CONFIGURING AUTOMATIC POWER FAULT RECOVERY
5.7. INTROSPECTING OVERCLOUD NODES

CHAPTER 6. BOOTING FROM CINDER VOLUMES
6.1. CINDER VOLUME BOOT FOR BARE METAL NODES
6.2. CONFIGURING NODES FOR CINDER VOLUME BOOT
6.3. CONFIGURING ISCSI KERNEL PARAMETERS ON THE BOOT DISK
6.4. CREATING AND USING A BOOT VOLUME IN CINDER

CHAPTER 7. ML2 NETWORKING-ANSIBLE
7.1. MODULAR LAYER 2 (ML2) NETWORKING-ANSIBLE
7.2. NETWORKING REQUIREMENTS FOR NETWORKING-ANSIBLE
7.3. OPENSTACK BARE METAL (IRONIC) REQUIREMENTS FOR NETWORKING-ANSIBLE
7.4. ENABLING NETWORKING-ANSIBLE ML2 FUNCTIONALITY
7.5. CONFIGURING NETWORKS FOR NETWORKING-ANSIBLE

7.5.1. Configuring networks for networking-ansible in access mode
7.5.2. Configuring ports for bare metal guests in access mode
7.5.3. Configuring networks for networking-ansible in trunk mode
7.5.4. Configuring ports for bare metal guests in trunk mode

7.6. TESTING NETWORKING-ANSIBLE ML2 FUNCTIONS

CHAPTER 8. TROUBLESHOOTING THE BARE METAL PROVISIONING SERVICE
8.1. PXE BOOT ERRORS
8.2. LOGIN ERRORS AFTER THE BARE METAL NODE BOOTS
8.3. BOOT-TO-DISK ERRORS ON DEPLOYED NODES
8.4. THE BARE METAL PROVISIONING SERVICE DOES NOT RECEIVE THE CORRECT HOST NAME
8.5. INVALID OPENSTACK IDENTITY SERVICE CREDENTIALS WHEN EXECUTING BARE METAL
PROVISIONING SERVICE COMMANDS
8.6. HARDWARE ENROLMENT
8.7. TROUBLESHOOTING IDRAC ISSUES
8.8. CONFIGURING THE SERVER CONSOLE

CHAPTER 9. BARE METAL DRIVERS
9.1. INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI) POWER MANAGEMENT DRIVER
9.2. REDFISH
9.3. DELL REMOTE ACCESS CONTROLLER (DRAC)
9.4. INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
9.5. INTEGRATED LIGHTS-OUT (ILO)

50
51
52

53
53
53
53
57

58
58
58
59
59
61

62
62
63
64
64

66
66
67
68
69

69
69
69
70

72
72
74
74
75
75

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

2

Table of Contents

3

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in
the Red Hat OpenStack Platform Jira project, where you can track the progress of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click the following link to open a the Create Issue page: Create Issue

3. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

4. Click Create.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

5

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. BARE METAL PROVISIONING SERVICE (IRONIC)
FUNCTIONALITY

You use the Bare Metal Provisioning service (ironic) components to provision and manage physical
machines as bare metal instances for your cloud users. To provision and manage bare metal instances,
the Bare Metal Provisioning service interacts with the following Red Hat OpenStack Platform (RHOSP)
services in the overcloud:

The Compute service (nova) provides scheduling, tenant quotas, and a user-facing API for
virtual machine instance management. The Bare Metal Provisioning service provides the
administrative API for hardware management.

The Identity service (keystone) provides request authentication and assists the Bare Metal
Provisioning service to locate other RHOSP services.

The Image service (glance) manages disk and instance images and image metadata.

The Networking service (neutron) provides DHCP and network configuration, and provisions
the virtual or physical networks that instances connect to on boot.

The Object Storage service (swift) exposes temporary image URLs for some drivers.

Bare Metal Provisioning service components

The Bare Metal Provisioning service consists of services, named ironic-*. The following services are the
core Bare Metal Provisioning services:

Bare Metal Provisioning API (ironic-api)

This service provides the external REST API to users. The API sends application requests to the Bare
Metal Provisioning conductor over remote procedure call (RPC).

Bare Metal Provisioning conductor (ironic-conductor)

This service uses drivers to perform the following bare metal node management tasks:

Adds, edits, and deletes bare metal nodes.

Powers bare metal nodes on and off with IPMI, Redfish, or other vendor-specific protocol.

Provisions, deploys, and cleans bare metal nodes.

Bare Metal Provisioning inspector (ironic-inspector)

This service discovers the hardware properties of a bare metal node that are required for scheduling
bare metal instances, and creates the Bare Metal Provisioning service ports for the discovered
ethernet MACs.

Bare Metal Provisioning database

This database tracks hardware information and state.

Message queue

All services use this messaging service to communicate with each other, including implementing the
RPC between ironic-api and ironic-conductor.

Bare Metal Provisioning agent (ironic-python-agent)

This service runs in a temporary ramdisk to provide ironic-conductor and ironic-inspector services
with remote access, in-band hardware control, and hardware introspection.

Provisioning a bare metal instance

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

6

The Bare Metal Provisioning service uses iPXE to provision physical machines as bare metal instances.
The following diagram outlines how the RHOSP services interact during the provisioning process when a
cloud user launches a new bare metal instance with the default drivers.

CHAPTER 1. BARE METAL PROVISIONING SERVICE (IRONIC) FUNCTIONALITY

7

CHAPTER 2. REQUIREMENTS FOR BARE METAL
PROVISIONING

To provide an overcloud where cloud users can launch bare metal instances, your Red Hat OpenStack
Platform (RHOSP) environment must have the required hardware and network configuration.

2.1. HARDWARE REQUIREMENTS

The hardware requirements for the bare metal machines that you want to make available to your cloud
users for provisioning depend on the operating system. For information about the hardware
requirements for Red Hat Enterprise Linux installations, see Product Documentation for Red Hat
Enterprise Linux.

All bare metal machines that you want to make available to your cloud users for provisioning must have
the following capabilities:

A NIC to connect to the bare metal network.

A power management interface, for example, Redfish or IPMI, that is connected to a network
that is reachable from the ironic-conductor service. By default, ironic-conductor runs on all of
the Controller nodes, unless you use composable roles and run ironic-conductor elsewhere.

PXE boot on the bare metal network. Disable PXE boot on all other NICs in the deployment.

2.2. NETWORKING REQUIREMENTS

The bare metal network must be a private network for the Bare Metal Provisioning service to use for the
following operations:

The provisioning and management of bare metal machines on the overcloud.

Cleaning bare metal nodes when a node is unprovisioned.

Tenant access to the bare metal machines.

The bare metal network provides DHCP and PXE boot functions to discover bare metal systems. This
network must use a native VLAN on a trunked interface so that the Bare Metal Provisioning service can
serve PXE boot and DHCP requests.

The Bare Metal Provisioning service in the overcloud is designed for a trusted tenant environment
because the bare metal machines have direct access to the control plane network of your Red Hat
OpenStack Platform (RHOSP) environment. Therefore, the default bare metal network uses a flat
network for ironic-conductor services.

The default flat provisioning network can introduce security concerns in a customer environment
because a tenant can interfere with the control plane network. To prevent this risk, you can configure a
custom composable bare metal provisioning network for the Bare Metal Provisioning service that does
not have access to the control plane.

The bare metal network must be untagged for provisioning, and must also have access to the Bare
Metal Provisioning API. The control plane network, also known as the director provisioning network, is
always untagged. Other networks can be tagged.

The Controller nodes that host the Bare Metal Provisioning service must have access to the bare metal
network.

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

8

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/

The NIC that the bare metal machine is configured to PXE-boot from must have access to the bare
metal network.

The bare metal network is created by the OpenStack operator. Cloud users have direct access to the
public OpenStack APIs, and to the bare metal network. With the default flat bare metal network, cloud
users also have indirect access to the control plane.

The Bare Metal Provisioning service uses the bare metal network for node cleaning.

2.2.1. The default bare metal network

In the default Bare Metal Provisioning service deployment architecture, the bare metal network is
separate from the control plane network. The bare metal network is a flat network that also acts as the
tenant network. This network must route to the Bare Metal Provisioning services on the control plane,
known as the director provisioning network. If you define an isolated bare metal network, the bare metal
nodes cannot PXE boot.

Default bare metal network architecture diagram

2.2.2. The custom composable bare metal network

When you use a custom composable bare metal network in your Bare Metal Provisioning service

CHAPTER 2. REQUIREMENTS FOR BARE METAL PROVISIONING

9

deployment architecture, the bare metal network is a custom composable network that does not have
access to the control plane. Use a custom composable bare metal network if you want to limit access to
the control plane.

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

10

CHAPTER 3. DEPLOYING AN OVERCLOUD WITH THE BARE
METAL PROVISIONING SERVICE

To deploy an overcloud with the Bare Metal Provisioning service (ironic), you must create and configure
the bare metal network, and configure the overcloud to enable bare metal provisioning.

1. Create the bare metal network. You can reuse the provisioning network interface on the
Controller nodes to create a flat network, or you can create a custom network:

Configuring the default flat network

Configuring a custom IPv4 provisioning network

Configuring a custom IPv6 provisioning network

2. Configure the overcloud to enable bare metal provisioning:

Configuring the overcloud to enable bare metal provisioning

NOTE

If you use Open Virtual Network (OVN), the Bare Metal Provisioning service is supported
only with the DHCP agent defined in the ironic-overcloud.yaml file, neutron-dhcp-
agent. The built-in DHCP server on OVN cannot provision bare metal nodes or serve
DHCP for the provisioning networks. To enable iPXE chain loading you must set the --
dhcp-match tag in dnsmasq, which is not supported by the OVN DHCP server.

Prerequisites

Your environment meets the minimum requirements. For more information, see Requirements
for bare metal provisioning.

3.1. CONFIGURING THE DEFAULT FLAT NETWORK

To use the default flat bare metal network, you reuse the provisioning network interface on the
Controller nodes to create a bridge for the Bare Metal Provisioning service (ironic).

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Modify the /home/stack/templates/nic-configs/controller.yaml file to reuse the provisioning
network interface on the Controller nodes, eth1, to create a bridge for the bare metal network:

network_config:
- type: ovs_bridge
 name: br-baremetal
 use_dhcp: false
 members:
 - type: interface

CHAPTER 3. DEPLOYING AN OVERCLOUD WITH THE BARE METAL PROVISIONING SERVICE

11

 name: eth1
 addresses:
 - ip_netmask:
 list_join:
 - /
 - - get_param: ControlPlaneIp
 - get_param: ControlPlaneSubnetCidr

NOTE

You cannot VLAN tag the bare metal network when you create it by reusing the
provisioning network.

4. Add br-baremetal to the NeutronBridgeMappings parameter in your network-
environment.yaml file:

parameter_defaults:
 NeutronBridgeMappings: datacentre:br-ex,baremetal:br-baremetal

5. Add baremetal to the list of networks specified by the NeutronFlatNetworks parameter in your
network-environment.yaml file:

parameter_defaults:
 NeutronBridgeMappings: datacentre:br-ex,baremetal:br-baremetal
 NeutronFlatNetworks: datacentre,baremetal

Next steps

Configuring the overcloud to enable bare metal provisioning

3.2. CONFIGURING A CUSTOM IPV4 PROVISIONING NETWORK

Create a custom IPv4 provisioning network to provision and deploy the overcloud over IPv4.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Copy the network_data.yaml file to your environment file directory:

(undercloud) [stack@host01 ~]$ cp /usr/share/openstack-tripleo-heat-
templates/network_data.yaml /home/stack/templates/network_data.yaml

4. Add a new network for overcloud provisioning to your network_data.yaml file:

custom network for overcloud provisioning
- name: OcProvisioning
 name_lower: oc_provisioning

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

12

 vip: true
 vlan: 205
 ip_subnet: '<ipv4_subnet_address>/<ipv4_mask>'
 allocation_pools: [{'start': '<ipv4_start_address>', 'end': '<ipv4_end_address>'}]

Replace <ipv4_subnet_address> with the IPv4 address of your IPv4 subnet.

Replace <ipv4_mask> with the IPv4 network mask for your IPv4 subnet.

Replace <ipv4_start_address> and <ipv4_end_address> with the IPv4 range that you
want to use for address allocation.

5. Configure IronicApiNetwork and IronicNetwork in your ServiceNetMap configuration to use
the new IPv4 provisioning network:

ServiceNetMap:
 IronicApiNetwork: oc_provisioning
 IronicNetwork: oc_provisioning

6. Add the new network as an interface to your local Controller NIC configuration file:

network_config:
- type: vlan
 vlan_id:
 get_param: OcProvisioningNetworkVlanID
 addresses:
 - ip_netmask:
 get_param: OcProvisioningIpSubnet

7. Copy the roles_data.yaml file to your environment file directory:

(undercloud) [stack@host01 ~]$ cp /usr/share/openstack-tripleo-heat-
templates/roles_data.yaml /home/stack/templates/roles_data.yaml

8. Add the new network for the controller to your roles_data.yaml file:

networks:
 ...
 OcProvisioning:
 subnet: oc_provisioning_subnet

9. Include the IronicInspector service in the Ironic role in your roles_data.yaml file, if not already
present:

ServicesDefault:
 OS::TripleO::Services::IronicInspector

Next steps

Configuring the overcloud to enable bare metal provisioning

3.3. CONFIGURING A CUSTOM IPV6 PROVISIONING NETWORK

CHAPTER 3. DEPLOYING AN OVERCLOUD WITH THE BARE METAL PROVISIONING SERVICE

13

Create a custom IPv6 provisioning network to provision and deploy the overcloud over IPv6.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Copy the network_data.yaml file to your environment file directory:

(undercloud) [stack@host01 ~]$ cp /usr/share/openstack-tripleo-heat-
templates/network_data.yaml /home/stack/templates/network_data.yaml

4. Add a new IPv6 network for overcloud provisioning to your network_data.yaml file:

custom network for IPv6 overcloud provisioning
- name: OcProvisioningIPv6
 vip: true
 name_lower: oc_provisioning_ipv6
 vlan: 10
 ipv6: true
 ipv6_subnet: '<ipv6_subnet_address>/<ipv6_prefix>'
 ipv6_allocation_pools: [{'start': '<ipv6_start_address>', 'end': '<ipv6_end_address>'}]
 gateway_ipv6: '<ipv6_gw_address>'

Replace <ipv6_subnet_address> with the IPv6 address of your IPv6 subnet.

Replace <ipv6_prefix> with the IPv6 network prefix for your IPv6 subnet.

Replace <ipv6_start_address> and <ipv6_end_address> with the IPv6 range that you
want to use for address allocation.

Replace <ipv6_gw_address> with the IPv6 address of your gateway.

5. Create a new file network_environment_overrides.yaml in your environment file directory:

$ touch /home/stack/templates/network_environment_overrides.yaml

6. Configure IronicApiNetwork and IronicNetwork in your
network_environment_overrides.yaml file to use the new IPv6 provisioning network:

ServiceNetMap:
 IronicApiNetwork: oc_provisioning_ipv6
 IronicNetwork: oc_provisioning_ipv6

7. Set the IronicIpVersion parameter to 6:

parameter_defaults:
 IronicIpVersion: 6

8. Enable the RabbitIPv6, MysqlIPv6, and RedisIPv6 parameters:

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

14

parameter_defaults:
 RabbitIPv6: True
 MysqlIPv6: True
 RedisIPv6: True

9. Add the new network as an interface to your local Controller NIC configuration file:

network_config:
- type: vlan
 vlan_id:
 get_param: OcProvisioningIPv6NetworkVlanID
 addresses:
 - ip_netmask:
 get_param: OcProvisioningIPv6IpSubnet

10. Copy the roles_data.yaml file to your environment file directory:

(undercloud) [stack@host01 ~]$ cp /usr/share/openstack-tripleo-heat-
templates/roles_data.yaml /home/stack/templates/roles_data.yaml

11. Add the new network for the Controller role to your roles_data.yaml file:

networks:
 ...
 - OcProvisioningIPv6

12. Include the IronicInspector service in the Ironic role in your roles_data.yaml file, if not already
present:

ServicesDefault:
 OS::TripleO::Services::IronicInspector

Next steps

Configuring the overcloud to enable bare metal provisioning

3.4. CONFIGURING THE OVERCLOUD TO ENABLE BARE METAL
PROVISIONING

Use one of the default templates located in the /usr/share/openstack-tripleo-heat-
templates/environments/services directory to deploy the overcloud with the Bare Metal Provisioning
service (ironic) enabled:

For deployments that use OVS: ironic.yaml

For deployments that use OVN: ironic-overcloud.yaml

You can create a local environment file to override the default configuration, as required by your
deployment.

Procedure

1. Create an environment file in your local directory to configure the Bare Metal Provisioning

CHAPTER 3. DEPLOYING AN OVERCLOUD WITH THE BARE METAL PROVISIONING SERVICE

15

1. Create an environment file in your local directory to configure the Bare Metal Provisioning
service for your deployment, for example, ironic-overrides.yaml.

2. Optional: Configure the type of cleaning that is performed on the bare metal machines before
and between provisioning:

parameter_defaults:
 IronicCleaningDiskErase: <cleaning_type>

Replace <cleaning_type> with one of the following values:

full: (Default) Performs a full clean.

metadata: Clean only the partition table. This type of cleaning substantially speeds up the
cleaning process. However, because the deployment is less secure in a multi-tenant
environment, use this option only in a trusted tenant environment.

3. Optional: Add additional drivers to the default drivers:

parameter_defaults:
 IronicEnabledHardwareTypes: ipmi,idrac,ilo,[additional_driver_1],...,[additional_driver_n]

Replace [additional_driver_1], and optionally all drivers up to [additional_driver_n], with the
additional drivers you want to enable.

4. To enable bare metal introspection, add the following configuration to your local Bare Metal
Provisioning service environment file, ironic-overrides.yaml:

parameter_defaults:
 IronicInspectorSubnets:
 - ip_range: <ip_range>
 IPAImageURLs: '["http://<ip_address>:<port>/agent.kernel", "http://<ip_address>:
<port>/agent.ramdisk"]'
 IronicInspectorInterface: '<baremetal_interface>'

Replace <ip_range> with the IP ranges for your environments, for example,
192.168.0.100,192.168.0.120.

Replace <ip_address>:<port> with the IP address and port of the web server that hosts
the IPA kernel and ramdisk. To use the same images that you use on the undercloud, set the
IP address to the undercloud IP address, and the port to 8088. If you omit this parameter,
you must include alternatives on each Controller node.

Replace <baremetal_interface> with the bare metal network interface, for example, br-
baremetal.

5. Add your new role and custom environment files to the stack with your other environment files
and deploy the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/node-info.yaml \
 -r /home/stack/templates/roles_data.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/network-environment.yaml \
 -e /usr/share/openstack-tripleo-heat-
templates/environments/services/<default_ironic_template> \

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

16

 -e /usr/share/openstack-tripleo-heat-templates/environments/services/ironic-inspector.yaml
\
 -e /home/stack/templates/network_environment_overrides.yaml \
 -n /home/stack/templates/network_data.yaml \
 -e /home/stack/templates/ironic-overrides.yaml

Replace <default_ironic_template> with either ironic.yaml or ironic-overcloud.yaml,
depending on the Networking service mechanism driver for your deployment.

NOTE

The order that you pass your environment files to the openstack overcloud
deploy command is important, as the configuration in the later files takes
precedence. Therefore, your environment file that enables and configures bare
metal provisioning on your overcloud must be passed to the command after any
network configuration files.

For more information on using the openstack overcloud deploy command, see
Including environment files in an overcloud deployment .

3.5. TESTING THE BARE METAL PROVISIONING SERVICE

You can use the OpenStack Integration Test Suite to validate your Red Hat OpenStack deployment.
For more information, see the OpenStack Integration Test Suite Guide .

Additional verification methods for the Bare Metal Provisioning service:

1. Configure the shell to access Identity as the administrative user:

$ source ~/overcloudrc

2. Check that the nova-compute service is running on the Controller nodes:

$ openstack compute service list -c Binary -c Host -c Status

3. If you changed the default ironic drivers, ensure that the required drivers are enabled:

$ openstack baremetal driver list

4. Ensure that the ironic endpoints are listed:

$ openstack catalog list

3.6. ADDITIONAL RESOURCES

Deployment command options in the Director Installation and Usage guide

Including environment files in an overcloud deployment in the Director Installation and Usage
guide

IPv6 Networking for the Overcloud

Bare Metal (ironic) Parameters in the Overcloud Parameters guide

CHAPTER 3. DEPLOYING AN OVERCLOUD WITH THE BARE METAL PROVISIONING SERVICE

17

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/director_installation_and_usage/index#ref_including-environment-files-in-an-overcloud-deployment_basic
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/openstack_integration_test_suite_guide/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/director_installation_and_usage/index#deployment-command-options
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/director_installation_and_usage/index#ref_including-environment-files-in-an-overcloud-deployment_basic
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/ipv6_networking_for_the_overcloud/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/overcloud_parameters/index#bare-metal-ironic-parameters

CHAPTER 4. CONFIGURING THE BARE METAL PROVISIONING
SERVICE AFTER DEPLOYMENT

When you have deployed your overcloud with the Bare Metal Provisioning service (ironic), you must
prepare your overcloud for bare-metal workloads. To prepare your overcloud for bare-metal workloads
and enable your cloud users to create bare-metal instances, complete the following tasks:

Configure the Networking service (neutron) to integrate with the Bare Metal Provisioning
service.

Configure node cleaning.

Create the bare-metal flavor and resource class.

Optional: Create the bare-metal images.

Add physical machines as bare-metal nodes.

Optional: Configure Redfish virtual media boot.

Optional: Create host aggregates to separate physical and virtual machine provisioning.

4.1. CONFIGURING THE NETWORKING SERVICE FOR BARE METAL
PROVISIONING

You can configure the Networking service (neutron) to integrate with the Bare Metal Provisioning
service (ironic). You can configure the bare-metal network by using one of the following methods:

Create a single flat bare-metal network for the Bare Metal Provisioning conductor services,
ironic-conductor. This network must route to the Bare Metal Provisioning services on the
control plane network.

Create a custom composable network to implement Bare Metal Provisioning services in the
overcloud.

4.1.1. Configuring the Networking service to integrate with the Bare Metal
Provisioning service on a flat network

You can configure the Networking service (neutron) to integrate with the Bare Metal Provisioning
service (ironic) by creating a single flat bare-metal network for the Bare Metal Provisioning conductor
services, ironic-conductor. This network must route to the Bare Metal Provisioning services on the
control plane network.

Procedure

1. Log in to the node that hosts the Networking service (neutron) as the root user.

2. Source your overcloud credentials file:

source ~/<credentials_file>

Replace <credentials_file> with the name of your credentials file, for example,
overcloudrc.

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

18

3. Create the flat network over which to provision bare-metal instances:

openstack network create \
 --provider-network-type flat \
 --provider-physical-network <provider_physical_network> \
 --share <network_name>

Replace <provider_physical_network> with the name of the physical network over which
you implement the virtual network, which is configured with the parameter
NeutronBridgeMappings in your network-environment.yaml file.

Replace <network_name> with a name for this network.

4. Create the subnet on the flat network:

openstack subnet create \
 --network <network_name> \
 --subnet-range <network_cidr> \
 --ip-version 4 \
 --gateway <gateway_ip> \
 --allocation-pool start=<start_ip>,end=<end_ip> \
 --dhcp <subnet_name>

Replace <network_name> with the name of the provisioning network that you created in
the previous step.

Replace <network_cidr> with the Classless Inter-Domain Routing (CIDR) representation of
the block of IP addresses that the subnet represents. The block of IP addresses that you
specify in the range starting with <start_ip> and ending with <end_ip> must be within the
block of IP addresses specified by <network_cidr>.

Replace <gateway_ip> with the IP address or host name of the router interface that acts as
the gateway for the new subnet. This address must be within the block of IP addresses
specified by <network_cidr>, but outside of the block of IP addresses specified by the
range that starts with <start_ip> and ends with <end_ip>.

Replace <start_ip> with the IP address that denotes the start of the range of IP addresses
within the new subnet from which floating IP addresses are allocated.

Replace <end_ip> with the IP address that denotes the end of the range of IP addresses
within the new subnet from which floating IP addresses are allocated.

Replace <subnet_name> with a name for the subnet.

5. Create a router for the network and subnet to ensure that the Networking service serves
metadata requests:

openstack router create <router_name>

Replace <router_name> with a name for the router.

6. Attach the subnet to the new router to enable the metadata requests from cloud-init to be
served and the node to be configured: :

openstack router add subnet <router_name> <subnet>

CHAPTER 4. CONFIGURING THE BARE METAL PROVISIONING SERVICE AFTER DEPLOYMENT

19

Replace <router_name> with the name of your router.

Replace <subnet> with the ID or name of the bare-metal subnet that you created in the
step 4.

4.1.2. Configuring the Networking service to integrate with the Bare Metal
Provisioning service on a custom composable network

You can configure the Networking service (neutron) to integrate with the Bare Metal Provisioning
service (ironic) by creating a custom composable network to implement Bare Metal Provisioning
services in the overcloud.

Procedure

1. Log in to the undercloud host.

2. Source your overcloud credentials file:

$ source ~/<credentials_file>

Replace <credentials_file> with the name of your credentials file, for example,
overcloudrc.

3. Retrieve the UUID for the provider network that hosts the Bare Metal Provisioning service:

(overcloud)$ openstack network show <network_name> -f value -c id

Replace <network_name> with the name of the provider network that you want to use for
the bare-metal instance provisioning network.

4. Open your local environment file that configures the Bare Metal Provisioning service for your
deployment, for example, ironic-overrides.yaml.

5. Configure the network to use as the bare-metal instance provisioning network:

parameter_defaults:
 IronicProvisioningNetwork: <network_uuid>

Replace <network_uuid> with the UUID of the provider network retrieved in step 3.

6. Source the stackrc undercloud credentials file:

$ source ~/stackrc

7. To apply the bare-metal instance provisioning network configuration, add your Bare Metal
Provisioning environment files to the stack with your other environment files and deploy the
overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/node-info.yaml \
 -r /home/stack/templates/roles_data.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/network-environment.yaml \
 -e /usr/share/openstack-tripleo-heat-

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

20

templates/environments/services/<default_ironic_template> \
 -e /usr/share/openstack-tripleo-heat-templates/environments/services/ironic-inspector.yaml
\
 -e /home/stack/templates/network_environment_overrides.yaml \
 -n /home/stack/templates/network_data.yaml \
 -e /home/stack/templates/ironic-overrides.yaml

Replace <default_ironic_template> with either ironic.yaml or ironic-overcloud.yaml,
depending on the Networking service mechanism driver for your deployment.

4.2. CLEANING BARE-METAL NODES

The Bare Metal Provisioning service cleans nodes to prepare them for provisioning. You can clean bare-
metal nodes by using one of the following methods:

Automatic: You can configure your overcloud to automatically perform node cleaning when you
unprovision a node.

Manual: You can manually clean individual nodes when required.

4.2.1. Configuring automatic node cleaning

Automatic bare-metal node cleaning runs after you enroll a node, and before the node reaches the
available provisioning state. Automatic cleaning is run each time the node is unprovisioned.

By default, the Bare Metal Provisioning service uses a network named provisioning for node cleaning.
However, network names are not unique in the Networking service (neutron), so it is possible for a
project to create a network with the same name, which causes a conflict with the Bare Metal
Provisioning service. To avoid the conflict, use the network UUID to configure the node cleaning
network.

Procedure

1. Log in to the undercloud host.

2. Source your overcloud credentials file:

$ source ~/<credentials_file>

Replace <credentials_file> with the name of your credentials file, for example,
overcloudrc.

3. Retrieve the UUID for the provider network that hosts the Bare Metal Provisioning service:

(overcloud)$ openstack network show <network_name> -f value -c id

Replace <network_name> with the name of the network that you want to use for the bare-
metal node cleaning network.

4. Open your local environment file that configures the Bare Metal Provisioning service for your
deployment, for example, ironic-overrides.yaml.

5. Configure the network to use as the node cleaning network:

CHAPTER 4. CONFIGURING THE BARE METAL PROVISIONING SERVICE AFTER DEPLOYMENT

21

parameter_defaults:
 IronicCleaningNetwork: <network_uuid>

Replace <network_uuid> with the UUID of the provider network that you retrieved in step
3.

6. Source the stackrc undercloud credentials file:

$ source ~/stackrc

7. To apply the node cleaning network configuration, add your Bare Metal Provisioning
environment files to the stack with your other environment files and deploy the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/node-info.yaml \
 -r /home/stack/templates/roles_data.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/network-environment.yaml \
 -e /usr/share/openstack-tripleo-heat-
templates/environments/services/<default_ironic_template> \
 -e /usr/share/openstack-tripleo-heat-templates/environments/services/ironic-inspector.yaml
\
 -e /home/stack/templates/network_environment_overrides.yaml \
 -n /home/stack/templates/network_data.yaml \
 -e /home/stack/templates/ironic-overrides.yaml

Replace <default_ironic_template> with either ironic.yaml or ironic-overcloud.yaml,
depending on the Networking service mechanism driver for your deployment.

4.2.2. Cleaning nodes manually

You can clean specific nodes manually as required. Node cleaning has two modes:

Metadata only clean: Removes partitions from all disks on the node. The metadata only mode of
cleaning is faster than a full clean, but less secure because it erases only partition tables. Use
this mode only on trusted tenant environments.

Full clean: Removes all data from all disks, using either ATA secure erase or by shredding. A full
clean can take several hours to complete.

Procedure

1. Source your overcloud credentials file:

$ source ~/<credentials_file>

Replace <credentials_file> with the name of your credentials file, for example,
overcloudrc.

2. Check the current state of the node:

$ openstack baremetal node show \
 -f value -c provision_state <node>

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

22

Replace <node> with the name or UUID of the node to clean.

3. If the node is not in the manageable state, then set it to manageable:

$ openstack baremetal node manage <node>

4. Clean the node:

$ openstack baremetal node clean <node> \
 --clean-steps '[{"interface": "deploy", "step": "<clean_mode>"}]'

Replace <node> with the name or UUID of the node to clean.

Replace <clean_mode> with the type of cleaning to perform on the node:

erase_devices: Performs a full clean.

erase_devices_metadata: Performs a metadata only clean.

5. Wait for the clean to complete, then check the status of the node:

manageable: The clean was successful, and the node is ready to provision.

clean failed: The clean was unsuccessful. Inspect the last_error field for the cause of
failure.

4.3. CREATING FLAVORS FOR LAUNCHING BARE-METAL INSTANCES

You must create flavors that your cloud users can use to request bare-metal instances. You can specify
which bare-metal nodes should be used for bare-metal instances launched with a particular flavor by
using a resource class. You can tag bare-metal nodes with resource classes that identify the hardware
resources on the node, for example, GPUs. The cloud user can select a flavor with the GPU resource
class to create an instance for a vGPU workload. The Compute scheduler uses the resource class to
identify suitable host bare-metal nodes for instances.

Procedure

1. Source the overcloud credentials file:

$ source ~/overcloudrc

2. Create a flavor for bare-metal instances:

(overcloud)$ openstack flavor create --id auto \
 --ram <ram_size_mb> --disk <disk_size_gb> \
 --vcpus <no_vcpus> baremetal

Replace <ram_size_mb> with the RAM of the bare metal node, in MB.

Replace <disk_size_gb> with the size of the disk on the bare metal node, in GB.

Replace <no_vcpus> with the number of CPUs on the bare metal node.

NOTE

CHAPTER 4. CONFIGURING THE BARE METAL PROVISIONING SERVICE AFTER DEPLOYMENT

23

NOTE

These properties are not used for scheduling instances. However, the
Compute scheduler does use the disk size to determine the root partition
size.

3. Retrieve a list of your nodes to identify their UUIDs:

(overcloud)$ openstack baremetal node list

4. Tag each bare-metal node with a custom bare-metal resource class:

(overcloud)$ openstack baremetal node set \
 --resource-class baremetal.<CUSTOM> <node>

Replace <CUSTOM> with a string that identifies the purpose of the resource class. For
example, set to GPU to create a custom GPU resource class that you can use to tag bare
metal nodes that you want to designate for GPU workloads.

Replace <node> with the ID of the bare metal node.

5. Associate the flavor for bare-metal instances with the custom resource class:

(overcloud)$ openstack flavor set \
 --property resources:CUSTOM_BAREMETAL_<CUSTOM>=1 \
 baremetal

To determine the name of a custom resource class that corresponds to a resource class of a
bare-metal node, convert the resource class to uppercase, replace each punctuation mark with
an underscore, and prefix with CUSTOM_.

NOTE

A flavor can request only one instance of a bare-metal resource class.

6. Set the following flavor properties to prevent the Compute scheduler from using the bare-
metal flavor properties to schedule instances:

(overcloud)$ openstack flavor set \
 --property resources:VCPU=0 \
 --property resources:MEMORY_MB=0 \
 --property resources:DISK_GB=0 baremetal

7. Verify that the new flavor has the correct values:

(overcloud)$ openstack flavor list

4.4. CREATING IMAGES FOR LAUNCHING BARE-METAL INSTANCES

An overcloud that includes the Bare Metal Provisioning service (ironic) requires two sets of images:

Deploy images: The deploy images are the agent.ramdisk and agent.kernel images that the
Bare Metal Provisioning agent (ironic-python-agent) requires to boot the RAM disk over the

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

24

network and copy the user image for the overcloud nodes to the disk. You install the deploy
images as part of the undercloud installation. For more information, see Obtaining images for
overcloud nodes.

User images: The images the cloud user uses to provision their bare-metal instances. The user
image consists of a kernel image, a ramdisk image, and a main image. The main image is either
a root partition, or a whole-disk image:

Whole-disk image: An image that contains the partition table and boot loader.

Root partition image: Contains only the root partition of the operating system.

Compatible whole-disk RHEL guest images should work without modification. To create your own
custom disk image, see Creating images in the Creating and Managing Images guide.

4.4.1. Uploading the deploy images to the Image service

You must upload the deploy images installed by director to the Image service. The deploy image
consists of the following two images:

The kernel image: /tftpboot/agent.kernel

The ramdisk image: /tftpboot/agent.ramdisk

These images are installed in the home directory. For more information on how the deploy images were
installed, see Obtaining images for overcloud nodes .

Procedure

Extract the images and upload them to the Image service:

$ openstack image create \
 --container-format aki \
 --disk-format aki \
 --public \
 --file ./tftpboot/agent.kernel bm-deploy-kernel
$ openstack image create \
 --container-format ari \
 --disk-format ari \
 --public \
 --file ./tftpboot/agent.ramdisk bm-deploy-ramdisk

4.5. CONFIGURING DEPLOY INTERFACES

When you provision bare metal nodes, the Bare Metal Provisioning service (ironic) on the overcloud
writes a base operating system image to the disk on the bare metal node. By default, the deploy
interface mounts the image on an iSCSI mount and then copies the image to disk on each node.
Alternatively, you can use direct deploy, which writes disk images from a HTTP location directly to disk
on bare metal nodes.

NOTE

Support for the iSCSI deploy interface will be deprecated in Red Hat OpenStack
Platform (RHOSP) version 17.0, and will be removed in RHOSP 18.0. Direct deploy will be
the default deploy interface from RHOSP 17.0.

CHAPTER 4. CONFIGURING THE BARE METAL PROVISIONING SERVICE AFTER DEPLOYMENT

25

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/director_installation_and_usage/assembly_installing-director-on-the-undercloud#assembly_obtaining-images-for-overcloud-nodes
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1-beta/html/creating_and_managing_images/assembly_managing-images_osp#proc_creating-images_managing-images
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/director_installation_and_usage/assembly_installing-director-on-the-undercloud#assembly_obtaining-images-for-overcloud-nodes

Deploy interfaces have a critical role in the provisioning process. Deploy interfaces orchestrate the
deployment and define the mechanism for transferring the image to the target disk.

Prerequisites

Dependent packages configured on the bare metal service nodes that run ironic-conductor.

Configure OpenStack Compute (nova) to use the bare metal service endpoint.

Create flavors for the available hardware, and nova must boot the new node from the correct
flavor.

Images must be available in the Image service (glance):

bm-deploy-kernel

bm-deploy-ramdisk

user-image

user-image-vmlinuz

user-image-initrd

Hardware to enroll with the Ironic API service.

Workflow
Use the following example workflow to understand the standard deploy process. Depending on the
ironic driver interfaces that you use, some of the steps might differ:

1. The Nova scheduler receives a boot instance request from the Nova API.

2. The Nova scheduler identifies the relevant hypervisor and identifies the target physical node.

3. The Nova compute manager claims the resources of the selected hypervisor.

4. The Nova compute manager creates unbound tenant virtual interfaces (VIFs) in the Networking
service according to the network interfaces that the nova boot request specifies.

5. Nova compute invokes driver.spawn from the Nova compute virt layer to create a spawn task
that contains all of the necessary information. During the spawn process, the virt driver
completes the following steps.

a. Updates the target ironic node with information about the deploy image, instance UUID,
requested capabilities, and flavor properties.

b. Calls the ironic API to validate the power and deploy interfaces of the target node.

c. Attaches the VIFs to the node. Each neutron port can be attached to any ironic port or
group. Port groups have higher priority than ports.

d. Generates config drive.

6. The Nova ironic virt driver issues a deploy request with the Ironic API to the Ironic conductor
that services the bare metal node.

7. Virtual interfaces are plugged in and the Neutron API updates DHCP to configure PXE/TFTP
options.

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

26

8. The ironic node boot interface prepares (i)PXE configuration and caches the deploy kernel and
ramdisk.

9. The ironic node management interface issues commands to enable network boot of the node.

10. The ironic node deploy interface caches the instance image, kernel, and ramdisk, if necessary.

11. The ironic node power interface instructs the node to power on.

12. The node boots the deploy ramdisk.

13. With iSCSI deployment, the conductor copies the image over iSCSI to the physical node. With
direct deployment, the deploy ramdisk downloads the image from a temporary URL. This URL
must be a Swift API compatible object store or a HTTP URL.

14. The node boot interface switches PXE configuration to refer to instance images and instructs
the ramdisk agent to soft power off the node. If the soft power off fails, the bare metal node is
powered off with IPMI/BMC.

15. The deploy interface instructs the network interface to remove any provisioning ports, binds the
tenant ports to the node, and powers the node on.

The provisioning state of the new bare metal node is now active.

4.5.1. Configuring the direct deploy interface on the overcloud

The iSCSI deploy interface is the default deploy interface. However, you can enable the direct deploy
interface to download an image from a HTTP location to the target disk.

NOTE

Support for the iSCSI deploy interface will be deprecated in Red Hat OpenStack
Platform (RHOSP) version 17.0, and will be removed in RHOSP 18.0. Direct deploy will be
the default deploy interface from RHOSP 17.0.

Prerequisites

Your overcloud node memory tmpfs must have at least 8GB of RAM.

Procedure

1. Create or modify a custom environment file /home/stack/templates/direct_deploy.yaml and
specify the IronicEnabledDeployInterfaces and the IronicDefaultDeployInterface
parameters.

parameter_defaults:
 IronicEnabledDeployInterfaces: direct
 IronicDefaultDeployInterface: direct

If you register your nodes with iSCSI, retain the iscsi value in the
IronicEnabledDeployInterfaces parameter:

parameter_defaults:
 IronicEnabledDeployInterfaces: direct,iscsi
 IronicDefaultDeployInterface: direct

CHAPTER 4. CONFIGURING THE BARE METAL PROVISIONING SERVICE AFTER DEPLOYMENT

27

2. By default, the Bare Metal Provisioning service (ironic) agent on each node obtains the image
stored in the Object Storage Service (swift) through a HTTP link. Alternatively, ironic can stream
this image directly to the node through the ironic-conductor HTTP server. To change the
service that provides the image, set the IronicImageDownloadSource to http in the
/home/stack/templates/direct_deploy.yaml file:

parameter_defaults:
 IronicEnabledDeployInterfaces: direct
 IronicDefaultDeployInterface: direct
 IronicImageDownloadSource: http

3. Include the custom environment with your overcloud deployment:

$ openstack overcloud deploy \
 --templates \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/services/ironic.yaml \
 -e /home/stack/templates/direct_deploy.yaml \
 ...

Wait until deployment completes.

NOTE

If you did not specify IronicDefaultDeployInterface or want to use a different deploy
interface, specify the deploy interface when you create or update a node:

$ openstack baremetal node create --driver ipmi --deploy-interface direct
$ openstack baremetal node set <NODE> --deploy-interface direct

4.6. ADDING PHYSICAL MACHINES AS BARE METAL NODES

Use one of the following methods to enroll a bare metal node:

Prepare an inventory file with the node details, import the file into the Bare Metal Provisioning
service, and make the nodes available.

Register a physical machine as a bare metal node, and then manually add its hardware details
and create ports for each of its Ethernet MAC addresses. You can perform these steps on any
node that has your overcloudrc file.

4.6.1. Enrolling a bare metal node with an inventory file

Prepare an inventory file with the node details, import the file into the Bare Metal Provisioning service
(ironic), and make the nodes available.

Prerequisites

An overcloud deployment that includes the Bare Metal Provisioning service. For more
information, see Deploying an overcloud with the Bare Metal Provisioning service .

Procedure

1. Create an inventory file, overcloud-nodes.yaml, that includes the node details. You can enroll

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

28

1. Create an inventory file, overcloud-nodes.yaml, that includes the node details. You can enroll
multiple nodes with one file.

nodes:
 - name: node0
 driver: ipmi
 driver_info:
 ipmi_address: <ipmi_ip>
 ipmi_username: <user>
 ipmi_password: <password>
 [<property>: <value>]
 properties:
 cpus: <cpu_count>
 cpu_arch: <cpu_arch>
 memory_mb: <memory>
 local_gb: <root_disk>
 root_device:
 serial: <serial>
 ports:
 - address: <mac_address>

Replace <ipmi_ip> with the address of the Bare Metal controller.

Replace <user> with your username.

Replace <password> with your password.

Optional: Replace <property>: <value> with an IPMI property that you want to configure,
and the property value. For information on the available properties, see Intelligent Platform
Management Interface (IPMI) power management driver.

Replace <cpu_count> with the number of CPUs.

Replace <cpu_arch> with the type of architecture of the CPUs.

Replace <memory> with the amount of memory in MiB.

Replace <root_disk> with the size of the root disk in GiB. Only required when the machine
has multiple disks.

Replace <serial> with the serial number of the disk that you want to use for deployment.

Replace <mac_address> with the MAC address of the NIC used to PXE boot.

--driver-info <property>=<value>

2. Source the overcloudrc file:

$ source ~/overcloudrc

3. Import the inventory file into the Bare Metal Provisioning service:

$ openstack baremetal create overcloud-nodes.yaml

The nodes are now in the enroll state.

CHAPTER 4. CONFIGURING THE BARE METAL PROVISIONING SERVICE AFTER DEPLOYMENT

29

4. Specify the deploy kernel and deploy ramdisk on each node:

$ openstack baremetal node set <node> \
 --driver-info deploy_kernel=<kernel_file> \
 --driver-info deploy_ramdisk=<initramfs_file>

Replace <node> with the name or ID of the node.

Replace <kernel_file> with the path to the .kernel image, for example,
file:///var/lib/ironic/httpboot/agent.kernel.

Replace <initramfs_file> with the path to the .initramfs image, for example,
file:///var/lib/ironic/httpboot/agent.ramdisk.

5. Optional: Specify the IPMI cipher suite for each node:

$ openstack baremetal node set <node> \
 --driver-info ipmi_cipher_suite=<version>

Replace <node> with the name or ID of the node.

Replace <version> with the cipher suite version to use on the node. Set to one of the
following valid values:

3 - The node uses the AES-128 with SHA1 cipher suite.

17 - The node uses the AES-128 with SHA256 cipher suite.

6. Set the provisioning state of the node to available:

$ openstack baremetal node manage <node>
$ openstack baremetal node provide <node>

The Bare Metal Provisioning service cleans the node if you enabled node cleaning.

7. Set the local boot option on the node:

$ openstack baremetal node set <node> --property capabilities="boot_option:local"

8. Check that the nodes are enrolled:

$ openstack baremetal node list

There might be a delay between enrolling a node and its state being shown.

4.6.2. Enrolling a bare-metal node manually

Register a physical machine as a bare metal node, then manually add its hardware details and create
ports for each of its Ethernet MAC addresses. You can perform these steps on any node that has your
overcloudrc file.

Prerequisites

An overcloud deployment that includes the Bare Metal Provisioning service. For more
information, see Deploying an overcloud with the Bare Metal Provisioning service .

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

30

The driver for the new node must be enabled by using the IronicEnabledHardwareTypes
parameter. For more information about supported drivers, see Bare metal drivers.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the overcloud credentials file:

(undercloud)$ source ~/overcloudrc

3. Add a new node:

$ openstack baremetal node create --driver <driver_name> --name <node_name>

Replace <driver_name> with the name of the driver, for example, ipmi.

Replace <node_name> with the name of your new bare-metal node.

4. Note the UUID assigned to the node when it is created.

5. Set the boot option to local for each registered node:

$ openstack baremetal node set \
 --property capabilities="boot_option:local" <node>

Replace <node> with the UUID of the bare metal node.

6. Specify the deploy kernel and deploy ramdisk for the node driver:

$ openstack baremetal node set <node> \
 --driver-info deploy_kernel=<kernel_file> \
 --driver-info deploy_ramdisk=<initramfs_file>

Replace <node> with the ID of the bare metal node.

Replace <kernel_file> with the path to the .kernel image, for example,
file:///var/lib/ironic/httpboot/agent.kernel.

Replace <initramfs_file> with the path to the .initramfs image, for example,
file:///var/lib/ironic/httpboot/agent.ramdisk.

7. Update the node properties to match the hardware specifications on the node:

$ openstack baremetal node set <node> \
 --property cpus=<cpu> \
 --property memory_mb=<ram> \
 --property local_gb=<disk> \
 --property cpu_arch=<arch>

Replace <node> with the ID of the bare metal node.

Replace <cpu> with the number of CPUs.

Replace <ram> with the RAM in MB.

CHAPTER 4. CONFIGURING THE BARE METAL PROVISIONING SERVICE AFTER DEPLOYMENT

31

Replace <disk> with the disk size in GB.

Replace <arch> with the architecture type.

8. Optional: Specify the IPMI cipher suite for each node:

$ openstack baremetal node set <node> \
 --driver-info ipmi_cipher_suite=<version>

Replace <node> with the ID of the bare metal node.

Replace <version> with the cipher suite version to use on the node. Set to one of the
following valid values:

3 - The node uses the AES-128 with SHA1 cipher suite.

17 - The node uses the AES-128 with SHA256 cipher suite.

9. Optional: Specify the IPMI details for each node:

$ openstack baremetal node set <node> \
 --driver-info <property>=<value>

Replace <node> with the ID of the bare metal node.

Replace <property> with the IPMI property that you want to configure. For information on
the available properties, see Intelligent Platform Management Interface (IPMI) power
management driver.

Replace <value> with the property value.

10. Optional: If you have multiple disks, set the root device hints to inform the deploy ramdisk which
disk to use for deployment:

$ openstack baremetal node set <node> \
 --property root_device='{"<property>": "<value>"}'

Replace <node> with the ID of the bare metal node.

Replace <property> and <value> with details about the disk that you want to use for
deployment, for example root_device='{"size": "128"}'
RHOSP supports the following properties:

model (String): Device identifier.

vendor (String): Device vendor.

serial (String): Disk serial number.

hctl (String): Host:Channel:Target:Lun for SCSI.

size (Integer): Size of the device in GB.

wwn (String): Unique storage identifier.

wwn_with_extension (String): Unique storage identifier with the vendor extension
appended.

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

32

wwn_vendor_extension (String): Unique vendor storage identifier.

rotational (Boolean): True for a rotational device (HDD), otherwise false (SSD).

name (String): The name of the device, for example: /dev/sdb1 Use this property only
for devices with persistent names.

NOTE

If you specify more than one property, the device must match all of those
properties.

11. Inform the Bare Metal Provisioning service of the node network card by creating a port with the
MAC address of the NIC on the provisioning network:

$ openstack baremetal port create --node <node_uuid> <mac_address>

Replace <node> with the unique ID of the bare metal node.

Replace <mac_address> with the MAC address of the NIC used to PXE boot.

12. Validate the configuration of the node:

$ openstack baremetal node validate <node>
+------------+--------+---+
| Interface | Result | Reason |
+------------+--------+---+
boot	False	Cannot validate image information for node
		a02178db-1550-4244-a2b7-d7035c743a9b
		because one or more parameters are missing
		from its instance_info. Missing are:
		['ramdisk', 'kernel', 'image_source']
console	None	not supported
deploy	False	Cannot validate image information for node
		a02178db-1550-4244-a2b7-d7035c743a9b
		because one or more parameters are missing
		from its instance_info. Missing are:
		['ramdisk', 'kernel', 'image_source']
inspect	None	not supported
management	True	
network	True	
power	True	
raid	True	
storage	True	
+------------+--------+---+

The validation output Result indicates the following:

False: The interface has failed validation. If the reason provided includes missing the
instance_info parameters [\'ramdisk', \'kernel', and \'image_source'], this might be
because the Compute service populates those missing parameters at the beginning of the
deployment process, therefore they have not been set at this point. If you are using a whole
disk image, then you might need to only set image_source to pass the validation.

True: The interface has passed validation.

CHAPTER 4. CONFIGURING THE BARE METAL PROVISIONING SERVICE AFTER DEPLOYMENT

33

None: The interface is not supported for your driver.

4.6.3. Bare-metal node provisioning states

A bare-metal node transitions through several provisioning states during its lifetime. API requests and
conductor events performed on the node initiate the transitions. There are two categories of
provisioning states: "stable" and "in transition".

Use the following table to understand the provisioning states a node can be in, and the actions that are
available for you to use to transition the node from one provisioning state to another.

Table 4.1. Provisioning states

State Category Description

enroll Stable The initial state of each node. For information on enrolling a
node, see Adding physical machines as bare metal nodes.

verifying In transition The Bare Metal Provisioning service validates that it can manage
the node by using the driver_info configuration provided
during the node enrollment.

manageable Stable The node is transitioned to the manageable state when the Bare
Metal Provisioning service has verified that it can manage the
node. You can transition the node from the manageable state
to one of the following states by using the following commands:

openstack baremetal node adopt → adopting →
active

openstack baremetal node provide → cleaning
→ available

openstack baremetal node clean → cleaning →
available

openstack baremetal node inspect →
inspecting → manageable

You must move a node to the manageable state after it is
transitioned to one of the following failed states:

adopt failed

clean failed

inspect failed

Move a node into the manageable state when you need to
update the node.

inspecting In transition The Bare Metal Provisioning service uses node introspection to
update the hardware-derived node properties to reflect the
current state of the hardware. The node transitions to
manageable for synchronous inspection, and inspect wait for
asynchronous inspection. The node transitions to inspect
failed if an error occurs.

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

34

inspect wait In transition The provision state that indicates that an asynchronous
inspection is in progress. If the node inspection is successful, the
node transitions to the manageable state.

inspect failed Stable The provisioning state that indicates that the node inspection
failed. You can transition the node from the inspect failed
state to one of the following states by using the following
commands:

openstack baremetal node inspect →
inspecting → manageable

openstack baremetal node manage →
manageable

cleaning In transition Nodes in the cleaning state are being scrubbed and
reprogrammed into a known configuration. When a node is in the
cleaning state, depending on the network management, the
conductor performs the following tasks:

Out-of-band: The conductor performs the clean step.

In-band: The conductor prepares the environment to
boot the ramdisk for running the in-band clean steps.
The preparation tasks include building the PXE
configuration files, and configuring the DHCP.

clean wait In transition Nodes in the clean wait state are being scrubbed and
reprogrammed into a known configuration. This state is similar
to the cleaning state except that in the clean wait state, the
conductor is waiting for the ramdisk to boot or the clean step to
finish.

You can interrupt the cleaning process of a node in the clean
wait state by running openstack baremetal node abort.

State Category Description

CHAPTER 4. CONFIGURING THE BARE METAL PROVISIONING SERVICE AFTER DEPLOYMENT

35

available Stable After nodes have been successfully preconfigured and cleaned,
they are moved into the available state and are ready to be
provisioned. You can transition the node from the available
state to one of the following states by using the following
commands:

openstack baremetal node deploy → deploying
→ active

openstack baremetal node manage →
manageable

deploying In transition Nodes in the deploying state are being prepared for a
workload, which involves performing the following tasks:

Setting appropriate BIOS options for the node
deployment.

Partitioning drives and creating file systems.

Creating any additional resources that may be required
by additional subsystems, such as the node-specific
network configuration, and a configuratin drive
partition.

wait call-back In transition Nodes in the wait call-back state are being prepared for a
workload. This state is similar to the deploying state except
that in the wait call-back state, the conductor is waiting for a
task to complete before preparing the node. For example, the
following tasks must be completed before the conductor can
prepare the node:

The ramdisk has booted.

The bootloader is installed.

The image is written to the disk.

You can interrupt the deployment of a node in the wait call-
back state by running openstack baremetal node delete or
openstack baremetal node undeploy.

State Category Description

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

36

deploy failed Stable The provisioning state that indicates that the node deployment
failed. You can transition the node from the deploy failed state
to one of the following states by using the following commands:

openstack baremetal node deploy → deploying
→ active

openstack baremetal node rebuild → deploying
→ active

openstack baremetal node delete → deleting →
cleaning → clean wait → cleaning → available

openstack baremetal node undeploy → deleting
→ cleaning → clean wait → cleaning → available

active Stable Nodes in the active state have a workload running on them. The
Bare Metal Provisioning service may regularly collect out-of-
band sensor information, including the power state. You can
transition the node from the active state to one of the following
states by using the following commands:

openstack baremetal node delete → deleting →
available

openstack baremetal node undeploy →
cleaning → available

openstack baremetal node rebuild → deploying
→ active

openstack baremetal node rescue → rescuing →
rescue

deleting In transition When a node is in the deleting state, the Bare Metal
Provisioning service disassembles the active workload and
removes any configuration and resources it added to the node
during the node deployment or rescue. Nodes transition quickly
from the deleting state to the cleaning state, and then to the
clean wait state.

error Stable If a node deletion is unsuccessful, the node is moved into the
error state. You can transition the node from the error state to
one of the following states by using the following commands:

openstack baremetal node delete → deleting →
available

openstack baremetal node undeploy →
cleaning → available

State Category Description

CHAPTER 4. CONFIGURING THE BARE METAL PROVISIONING SERVICE AFTER DEPLOYMENT

37

adopting In transition You can use the openstack baremetal node adopt
command to transition a node with an existing workload directly
from manageable to active state without first cleaning and
deploying the node. When a node is in the adopting state the
Bare Metal Provisioning service has taken over management of
the node with its existing workload.

rescuing In transition Nodes in the rescuing state are being prepared to perform the
following rescue operations:

Setting appropriate BIOS options for the node
deployment.

Creating any additional resources that may be required
by additional subsystems, such as node-specific
network configurations.

rescue wait In transition Nodes in the rescue wait state are being rescued. This state is
similar to the rescuing state except that in the rescue wait
state, the conductor is waiting for the ramdisk to boot, or to
execute parts of the rescue which need to run in-band on the
node, such as setting the password for user named rescue.

You can interrupt the rescue operation of a node in the rescue
wait state by running openstack baremetal node abort.

rescue failed Stable The provisioning state that indicates that the node rescue failed.
You can transition the node from the rescue failed state to
one of the following states by using the following commands:

openstack baremetal node rescue → rescuing →
rescue

openstack baremetal node unrescue →
unrescuing → active

openstack baremetal node delete → deleting →
available

rescue Stable Nodes in the rescue state are running a rescue ramdisk. The
Bare Metal Provisioning service may regularly collect out-of-
band sensor information, including the power state. You can
transition the node from the rescue state to one of the
following states by using the following commands:

openstack baremetal node unrescue →
unrescuing → active

openstack baremetal node delete → deleting →
available

State Category Description

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

38

unrescuing In transition Nodes in the unrescuing state are being prepared to transition
from the rescue state to the active state.

unrescue failed Stable The provisioning state that indicates that the node unrescue
operation failed. You can transition the node from the
unrescue failed state to one of the following states by using
the following commands:

openstack baremetal node rescue → rescuing →
rescue

openstack baremetal node unrescue →
unrescuing → active

openstack baremetal node delete → deleting →
available

State Category Description

4.7. CONFIGURING REDFISH VIRTUAL MEDIA BOOT

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

You can use Redfish virtual media boot to supply a boot image to the Baseboard Management
Controller (BMC) of a node so that the BMC can insert the image into one of the virtual drives. The
node can then boot from the virtual drive into the operating system that exists in the image.

Redfish hardware types support booting deploy, rescue, and user images over virtual media. The Bare
Metal Provisioning service (ironic) uses kernel and ramdisk images associated with a node to build
bootable ISO images for UEFI or BIOS boot modes at the moment of node deployment. The major
advantage of virtual media boot is that you can eliminate the TFTP image transfer phase of PXE and
use HTTP GET, or other methods, instead.

4.7.1. Deploying a bare metal server with Redfish virtual media boot

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

To boot a node with the redfish hardware type over virtual media, set the boot interface to redfish-
virtual-media and, for UEFI nodes, define the EFI System Partition (ESP) image. Then configure an
enrolled node to use Redfish virtual media boot.

CHAPTER 4. CONFIGURING THE BARE METAL PROVISIONING SERVICE AFTER DEPLOYMENT

39

https://access.redhat.com/support/offerings/production/scope_moredetail
https://access.redhat.com/support/offerings/production/scope_moredetail

Prerequisites

Redfish driver enabled in the enabled_hardware_types parameter in the undercloud.conf file.

A bare metal node registered and enrolled.

IPA and instance images in the Image Service (glance).

For UEFI nodes, you must also have an EFI system partition image (ESP) available in the Image
Service (glance).

A bare metal flavor.

A network for cleaning and provisioning.

Sushy library installed:

$ sudo yum install sushy

Procedure

1. Set the Bare Metal service (ironic) boot interface to redfish-virtual-media:

$ openstack baremetal node set --boot-interface redfish-virtual-media $NODE_NAME

Replace $NODE_NAME with the name of the node.

2. For UEFI nodes, set the boot mode to uefi:

$ openstack baremetal node set --property capabilities="boot_mode:uefi" $NODE_NAME

Replace $NODE_NAME with the name of the node.

NOTE

For BIOS nodes, do not complete this step.

3. For UEFI nodes, define the EFI System Partition (ESP) image:

$ openstack baremetal node set --driver-info bootloader=$ESP $NODE_NAME

Replace $ESP with the glance image UUID or URL for the ESP image, and replace
$NODE_NAME with the name of the node.

NOTE

For BIOS nodes, do not complete this step.

4. Create a port on the bare metal node and associate the port with the MAC address of the NIC
on the bare metal node:

$ openstack baremetal port create --pxe-enabled True --node $UUID $MAC_ADDRESS

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

40

Replace $UUID with the UUID of the bare metal node, and replace $MAC_ADDRESS with the
MAC address of the NIC on the bare metal node.

5. Create the new bare metal server:

$ openstack server create \
 --flavor baremetal \
 --image $IMAGE \
 --network $NETWORK \
 test_instance

Replace $IMAGE and $NETWORK with the names of the image and network that you want to
use.

4.8. USING HOST AGGREGATES TO SEPARATE PHYSICAL AND
VIRTUAL MACHINE PROVISIONING

OpenStack Compute uses host aggregates to partition availability zones, and group together nodes
that have specific shared properties. When an instance is provisioned, the Compute scheduler compares
properties on the flavor with the properties assigned to host aggregates, and ensures that the instance
is provisioned in the correct aggregate and on the correct host: either on a physical machine or as a
virtual machine.

Complete the steps in this section to perform the following operations:

Add the property baremetal to your flavors and set it to either true or false.

Create separate host aggregates for bare metal hosts and compute nodes with a matching
baremetal property. Nodes grouped into an aggregate inherit this property.

Prerequisites

A successful overcloud deployment that includes the Bare Metal Provisioning service. For more
information, see Deploying an overcloud with the Bare Metal Provisioning service .

Procedure

1. Set the baremetal property to true on the baremetal flavor.

$ openstack flavor set baremetal --property baremetal=true

2. Set the baremetal property to false on the flavors that virtual instances use:

$ openstack flavor set FLAVOR_NAME --property baremetal=false

3. Create a host aggregate called baremetal-hosts:

$ openstack aggregate create --property baremetal=true baremetal-hosts

4. Add each Controller node to the baremetal-hosts aggregate:

$ openstack aggregate add host baremetal-hosts HOSTNAME

NOTE

CHAPTER 4. CONFIGURING THE BARE METAL PROVISIONING SERVICE AFTER DEPLOYMENT

41

NOTE

If you have created a composable role with the NovaIronic service, add all the
nodes with this service to the baremetal-hosts aggregate. By default, only the
Controller nodes have the NovaIronic service.

5. Create a host aggregate called virtual-hosts:

$ openstack aggregate create --property baremetal=false virtual-hosts

6. Add each Compute node to the virtual-hosts aggregate:

$ openstack aggregate add host virtual-hosts HOSTNAME

7. If you did not add the following Compute filter scheduler when you deployed the overcloud, add
it now to the existing list under scheduler_default_filters in the _/etc/nova/nova.conf_ file:

AggregateInstanceExtraSpecsFilter

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

42

CHAPTER 5. ADMINISTERING BARE METAL NODES
After you deploy an overcloud that includes the Bare Metal Provisioning service (ironic), you can
provision a physical machine on an enrolled bare metal node and launch bare metal instances in your
overcloud.

Prerequisites

A successful overcloud deployment that includes the Bare Metal Provisioning service. For more
information, see Deploying an overcloud with the Bare Metal Provisioning service .

5.1. LAUNCHING BARE METAL INSTANCES

You can launch instances either from the command line or from the OpenStack dashboard.

Prerequisites

A successful overcloud deployment that includes the Bare Metal Provisioning service. For more
information, see Deploying an overcloud with the Bare Metal Provisioning service .

5.1.1. Launching instances with the command line interface

You can create a bare-metal instance by using the OpenStack Client CLI.

Prerequisites

A successful overcloud deployment that includes the Bare Metal Provisioning service. For more
information, see Deploying an overcloud with the Bare Metal Provisioning service .

Procedure

1. Configure the shell to access the Identity service (keystone) as the administrative user:

$ source ~/overcloudrc

2. Create your bare-metal instance:

$ openstack server create \
 --nic net-id=<network_uuid> \
 --flavor baremetal \
 --image <image_uuid> \
 myBareMetalInstance

Replace <network_uuid> with the unique identifier for the network that you created to use
with the Bare Metal Provisioning service.

Replace <image_uuid> with the unique identifier for the image that has the software
profile that your instance requires.

3. Check the status of the instance:

$ openstack server list --name myBareMetalInstance

CHAPTER 5. ADMINISTERING BARE METAL NODES

43

5.1.2. Launching instances with the dashboard

Use the dashboard graphical user interface to deploy a bare metal instance.

Prerequisites

A successful overcloud deployment that includes the Bare Metal Provisioning service. For more
information, see Deploying an overcloud with the Bare Metal Provisioning service .

Procedure

1. Log in to the dashboard at http[s]://DASHBOARD_IP/dashboard.

2. Click Project > Compute > Instances

3. Click Launch Instance.

In the Details tab, specify the Instance Name and select 1 for Count.

In the Source tab, select an Image from Select Boot Source, then click the + (plus) symbol
to select an operating system disk image. The image that you choose moves to Allocated.

In the Flavor tab, select baremetal.

In the Networks tab, use the + (plus) and - (minus) buttons to move required networks from
Available to Allocated. Ensure that the shared network that you created for the Bare Metal
Provisioning service is selected here.

If you want to assign the instance to a security group, in the Security Groups tab, use the
arrow to move the group to Allocated.

4. Click Launch Instance.

5.2. CONFIGURING PORT GROUPS IN THE BARE METAL
PROVISIONING SERVICE

NOTE

Port group functionality for bare metal nodes is available in this release as a Technology
Preview, and therefore is not fully supported by Red Hat. It should be used only for
testing, and should not be deployed in a production environment. For more information
about Technology Preview features, see Scope of Coverage Details.

Port groups (bonds) provide a method to aggregate multiple network interfaces into a single ‘bonded’
interface. Port group configuration always takes precedence over an individual port configuration.

If a port group has a physical network, then all the ports in that port group must have the same physical
network. The Bare Metal Provisioning service uses configdrive to support configuration of port groups
in the instances.

NOTE

Bare Metal Provisioning service API version 1.26 supports port group configuration.
.Prerequisites

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

44

https://access.redhat.com/support/offerings/production/scope_moredetail

A successful overcloud deployment that includes the Bare Metal Provisioning service. For more
information, see Deploying an overcloud with the Bare Metal Provisioning service .

5.2.1. Configuring port groups on switches manually

To configure port groups in a bare metal deployment, you must configure the port groups on the
switches manually. You must ensure that the mode and properties on the switch correspond to the
mode and properties on the bare metal side as the naming can vary on the switch.

NOTE

You cannot use port groups for provisioning and cleaning if you need to boot a
deployment using iPXE.

With port group fallback, all the ports in a port group can fallback to individual switch ports when a
connection fails. Based on whether a switch supports port group fallback or not, you can use the --
support-standalone-ports and --unsupport-standalone-ports options.

Prerequisites

A successful overcloud deployment that includes the Bare Metal Provisioning service. For more
information, see Deploying an overcloud with the Bare Metal Provisioning service .

5.2.2. Configuring port groups in the Bare Metal Provisioning service

Create a port group to aggregate multiple network interfaces into a single bonded interface.

Prerequisites

A successful overcloud deployment that includes the Bare Metal Provisioning service. For more
information, see Deploying an overcloud with the Bare Metal Provisioning service .

Procedure

1. Create a port group by specifying the node to which it belongs, its name, address, mode,
properties and whether it supports fallback to standalone ports.

openstack baremetal port group create --node NODE_UUID --name NAME --address
MAC_ADDRESS --mode MODE --property miimon=100 --property
xmit_hash_policy="layer2+3" --support-standalone-ports

You can also use the openstack baremetal port group set command to update a port group.

If you do not specify an address, the deployed instance port group address is the same as the
OpenStack Networking port. If you do not attach the neutron port, the port group configuration
fails.

During interface attachment, port groups have a higher priority than the ports, so they are used
first. Currently, it is not possible to specify whether a port group or a port is desired in an
interface attachment request. Port groups that do not have any ports are ignored.

NOTE

CHAPTER 5. ADMINISTERING BARE METAL NODES

45

NOTE

You must configure port groups manually in standalone mode either in the image
or by generating the configdrive and adding it to the node’s instance_info.
Ensure that you have cloud-init version 0.7.7 or later for the port group
configuration to work.

2. Associate a port with a port group:

During port creation:

openstack baremetal port create --node NODE_UUID --address MAC_ADDRESS --
port-group test

During port update:

openstack baremetal port set PORT_UUID --port-group PORT_GROUP_UUID

3. Boot an instance by providing an image that has cloud-init or supports bonding.
To check if the port group is configured properly, run the following command:

cat /proc/net/bonding/bondX

Here, X is a number that cloud-init generates automatically for each configured port group,
starting with a 0 and incremented by one for each configured port group.

5.3. DETERMINING THE HOST TO IP ADDRESS MAPPING

Use the following commands to determine which IP addresses are assigned to which host and bare metal
node. With these commands, you can view the host to IP mapping from the undercloud without
accessing the hosts directly.

Prerequisites

A successful overcloud deployment that includes the Bare Metal Provisioning service. For more
information, see Deploying an overcloud with the Bare Metal Provisioning service .

Procedure

1. Run the following command to display the IP address for each host:

(undercloud) [stack@host01 ~]$ openstack stack output show overcloud HostsEntry --max-
width 80

+--------------+---+
| Field | Value |
+--------------+---+
description	The content that should be appended to your /etc/hosts if you
	want to get
	hostname-based access to the deployed nodes (useful for
	testing without
	setting up a DNS).
output_key	HostsEntry

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

46

output_value	172.17.0.10 overcloud-controller-0.localdomain overcloud-
	controller-0
	10.8.145.18 overcloud-controller-0.external.localdomain
	overcloud-controller-0.external
	172.17.0.10 overcloud-controller-0.internalapi.localdomain
	overcloud-controller-0.internalapi
	172.18.0.15 overcloud-controller-0.storage.localdomain
	overcloud-controller-0.storage
	172.21.2.12 overcloud-controller-0.storagemgmt.localdomain
	overcloud-controller-0.storagemgmt
	172.16.0.15 overcloud-controller-0.tenant.localdomain
	overcloud-controller-0.tenant
	10.8.146.13 overcloud-controller-0.management.localdomain
	overcloud-controller-0.management
	10.8.146.13 overcloud-controller-0.ctlplane.localdomain
	overcloud-controller-0.ctlplane
	172.17.0.21 overcloud-compute-0.localdomain overcloud-
	compute-0
	10.8.146.12 overcloud-compute-0.external.localdomain
	overcloud-compute-0.external
	172.17.0.21 overcloud-compute-0.internalapi.localdomain
	overcloud-compute-0.internalapi
	172.18.0.20 overcloud-compute-0.storage.localdomain
	overcloud-compute-0.storage
	10.8.146.12 overcloud-compute-0.storagemgmt.localdomain
	overcloud-compute-0.storagemgmt
	172.16.0.16 overcloud-compute-0.tenant.localdomain overcloud-
	compute-0.tenant
	10.8.146.12 overcloud-compute-0.management.localdomain
	overcloud-compute-0.management
	10.8.146.12 overcloud-compute-0.ctlplane.localdomain
	overcloud-compute-0.ctlplane
	10.8.145.16 overcloud.localdomain
	10.8.146.7 overcloud.ctlplane.localdomain
	172.17.0.19 overcloud.internalapi.localdomain
	172.18.0.19 overcloud.storage.localdomain
	172.21.2.16 overcloud.storagemgmt.localdomain
+--------------+---+

2. To filter a particular host, run the following command:

(undercloud) [stack@host01 ~]$ openstack stack output show overcloud HostsEntry -c
output_value -f value | grep overcloud-controller-0

172.17.0.12 overcloud-controller-0.localdomain overcloud-controller-0
10.8.145.18 overcloud-controller-0.external.localdomain overcloud-controller-0.external
172.17.0.12 overcloud-controller-0.internalapi.localdomain overcloud-controller-0.internalapi
172.18.0.12 overcloud-controller-0.storage.localdomain overcloud-controller-0.storage
172.21.2.13 overcloud-controller-0.storagemgmt.localdomain overcloud-controller-
0.storagemgmt
172.16.0.19 overcloud-controller-0.tenant.localdomain overcloud-controller-0.tenant

CHAPTER 5. ADMINISTERING BARE METAL NODES

47

10.8.146.13 overcloud-controller-0.management.localdomain overcloud-controller-
0.management
10.8.146.13 overcloud-controller-0.ctlplane.localdomain overcloud-controller-0.ctlplane

3. To map the hosts to bare metal nodes, run the following command:

(undercloud) [stack@host01 ~]$ openstack baremetal node list --fields uuid name
instance_info -f json
[
 {
 "UUID": "c0d2568e-1825-4d34-96ec-f08bbf0ba7ae",
 "Instance Info": {
 "root_gb": "40",
 "display_name": "overcloud-compute-0",
 "image_source": "24a33990-e65a-4235-9620-9243bcff67a2",
 "capabilities": "{\"boot_option\": \"local\"}",
 "memory_mb": "4096",
 "vcpus": "1",
 "local_gb": "557",
 "configdrive": "******",
 "swap_mb": "0",
 "nova_host_id": "host01.lab.local"
 },
 "Name": "host2"
 },
 {
 "UUID": "8c3faec8-bc05-401c-8956-99c40cdea97d",
 "Instance Info": {
 "root_gb": "40",
 "display_name": "overcloud-controller-0",
 "image_source": "24a33990-e65a-4235-9620-9243bcff67a2",
 "capabilities": "{\"boot_option\": \"local\"}",
 "memory_mb": "4096",
 "vcpus": "1",
 "local_gb": "557",
 "configdrive": "******",
 "swap_mb": "0",
 "nova_host_id": "host01.lab.local"
 },
 "Name": "host3"
 }
]

5.4. ATTACHING AND DETACHING VIRTUAL NETWORK INTERFACES

The Bare Metal Provisioning service has an API that you can use to manage the mapping between virtual
network interfaces. For example, the interfaces in the OpenStack Networking service and your physical
interfaces (NICs). You can configure these interfaces for each Bare Metal Provisioning node to set the
virtual network interface (VIF) to physical network interface (PIF) mapping logic. To configure the
interfaces, use the openstack baremetal node vif* commands.

Prerequisites

A successful overcloud deployment that includes the Bare Metal Provisioning service. For more
information, see Deploying an overcloud with the Bare Metal Provisioning service .

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

48

Procedure

1. List the VIF IDs currently connected to the bare metal node:

$ openstack baremetal node vif list baremetal-0
+--------------------------------------+
| ID |
+--------------------------------------+
| 4475bc5a-6f6e-466d-bcb6-6c2dce0fba16 |
+--------------------------------------+

2. After the VIF is attached, the Bare Metal Provisioning service updates the virtual port in the
OpenStack Networking service with the actual MAC address of the physical port. Check this
port address:

$ openstack port show 4475bc5a-6f6e-466d-bcb6-6c2dce0fba16 -c mac_address -c fixed_ips
+-------------+---+
| Field | Value |
+-------------+---+
| fixed_ips | ip_address='192.168.24.9', subnet_id='1d11c677-5946-4733-87c3-
23a9e06077aa' |
| mac_address | 00:2d:28:2f:8d:95 |
+-------------+---+

3. Create a new port on the network where you created the baremetal-0 node:

$ openstack port create --network baremetal --fixed-ip ip-address=192.168.24.24 baremetal-
0-extra

4. Remove a port from the instance:

$ openstack server remove port overcloud-baremetal-0 4475bc5a-6f6e-466d-bcb6-
6c2dce0fba16

5. Check that the IP address no longer exists on the list:

$ openstack server list

6. Check if there are VIFs attached to the node:

$ openstack baremetal node vif list baremetal-0
$ openstack port list

7. Add the newly created port:

$ openstack server add port overcloud-baremetal-0 baremetal-0-extra

8. Verify that the new IP address shows the new port:

$ openstack server list
+--------------------------------------+-------------------------+--------+------------------------+----------
------+---------+
| ID | Name | Status | Networks | Image |

CHAPTER 5. ADMINISTERING BARE METAL NODES

49

Flavor |
+--------------------------------------+-------------------------+--------+------------------------+----------
------+---------+
| 53095a64-1646-4dd1-bbf3-b51cbcc38789 | overcloud-controller-2 | ACTIVE |
ctlplane=192.168.24.7 | overcloud-full | control |
| 3a1bc89c-5d0d-44c7-a569-f2a3b4c73d65 | overcloud-controller-0 | ACTIVE |
ctlplane=192.168.24.8 | overcloud-full | control |
| 6b01531a-f55d-40e9-b3a2-6d02be0b915b | overcloud-controller-1 | ACTIVE |
ctlplane=192.168.24.16 | overcloud-full | control |
| c61cc52b-cc48-4903-a971-073c60f53091 | overcloud-novacompute-0overcloud-baremetal-
0 | ACTIVE | ctlplane=192.168.24.24 | overcloud-full | compute |
+--------------------------------------+-------------------------+--------+------------------------+----------
------+---------+

9. Check if the VIF ID is the UUID of the new port:

$ openstack baremetal node vif list baremetal-0
+--------------------------------------+
| ID |
+--------------------------------------+
| 6181c089-7e33-4f1c-b8fe-2523ff431ffc |
+--------------------------------------+

10. Check if the OpenStack Networking port MAC address is updated and matches one of the Bare
Metal Provisioning service ports:

$ openstack port show 6181c089-7e33-4f1c-b8fe-2523ff431ffc -c mac_address -c fixed_ips
+-------------+--+
| Field | Value |
+-------------+--+
| fixed_ips | ip_address='192.168.24.24', subnet_id='1d11c677-5946-4733-87c3-
23a9e06077aa' |
| mac_address | 00:2d:28:2f:8d:95 |
+-------------+--+

11. Reboot the bare metal node so that it recognizes the new IP address:

$ openstack server reboot overcloud-baremetal-0

After you detach or attach interfaces, the bare metal OS removes, adds, or modifies the
network interfaces that have changed. When you replace a port, a DHCP request obtains the
new IP address, but this might take some time because the old DHCP lease is still valid. To
initiate these changes immediately, reboot the bare metal host.

5.5. CONFIGURING NOTIFICATIONS FOR THE BARE METAL
PROVISIONING SERVICE

You can configure the Bare Metal Provisioning service (ironic) to display notifications for different
events that occur within the service. External services can use these notifications for billing purposes,
monitoring a data store, and other purposes. To enable notifications for the Bare Metal Provisioning
service, you must set the following options in your ironic.conf configuration file.

Prerequisites

A successful overcloud deployment that includes the Bare Metal Provisioning service. For more

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

50

A successful overcloud deployment that includes the Bare Metal Provisioning service. For more
information, see Deploying an overcloud with the Bare Metal Provisioning service .

Procedure

The notification_level option in the [DEFAULT] section determines the minimum priority level
for which notifications are sent. You can set the values for this option to debug, info, warning,
error, or critical. If the option is set to warning, all notifications with priority level warning,
error, or critical are sent, but not notifications with priority level debug or info. If this option is
not set, no notifications are sent. The priority level of each available notification is documented
below.

The transport_url option in the [oslo_messaging_notifications] section determines the
message bus used when sending notifications. If this is not set, the default transport used for
RPC is used.

All notifications are emitted on the ironic_versioned_notifications topic in the message bus. Generally,
each type of message that traverses the message bus is associated with a topic that describes the
contents of the message.

5.6. CONFIGURING AUTOMATIC POWER FAULT RECOVERY

The Bare Metal Provisioning service (ironic) has a string field fault that records power, cleaning, and
rescue abort failures for nodes.

Table 5.1. Ironic node faults

Fault Description

power failure The node is in maintenance mode due to power sync
failures that exceed the maximum number of retries.

clean failure The node is in maintenance mode due to the failure
of a cleaning operation.

rescue abort failure The node is in maintenance mode due to the failure
of a cleaning operation during rescue abort.

none There is no fault present.

Conductor checks the value of this field periodically. If the conductor detects a power failure state and
can successfully restore power to the node, the node is removed from maintenance mode and restored
to operation.

NOTE

If the operator places a node in maintenance mode manually, the conductor does not
automatically remove the node from maintenance mode.

The default interval is 300 seconds, however, you can configure this interval with director using
hieradata.

Prerequisites

CHAPTER 5. ADMINISTERING BARE METAL NODES

51

Prerequisites

A successful overcloud deployment that includes the Bare Metal Provisioning service. For more
information, see Deploying an overcloud with the Bare Metal Provisioning service .

Procedure

Include the following hieradata to configure a custom recovery interval:

ironic::conductor::power_failure_recovery_interval

To disable automatic power fault recovery, set the value to 0.

5.7. INTROSPECTING OVERCLOUD NODES

Perform introspection of overcloud nodes to identify and store the specification of your nodes in
director.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the overcloudrc credentials file:

$ source ~/overcloudrc

3. Run the introspection command:

$ openstack baremetal introspection start [--wait] <NODENAME>

Replace <NODENAME> with the name or UUID of the node that you want to inspect.

4. Check the introspection status:

$ openstack baremetal introspection status <NODENAME>

Replace <NODENAME> with the name or UUID of the node.

Next steps

Extract introspection data:

$ openstack baremetal introspection data save <NODE-UUID>

Replace <NODENAME> with the name or UUID of the node.

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

52

CHAPTER 6. BOOTING FROM CINDER VOLUMES
You can create volumes in the Block Storage service (cinder) and connect these volumes to bare metal
instances that you create with the Bare Metal Provisioning service (ironic).

6.1. CINDER VOLUME BOOT FOR BARE METAL NODES

You can boot bare metal nodes from a block storage device that is stored in OpenStack Block Storage
(cinder). OpenStack Bare Metal (ironic) connects bare metal nodes to volumes through an iSCSI
interface.

Ironic enables this feature during the overcloud deployment. However, consider the following conditions
before you deploy the overcloud:

The overcloud requires the cinder iSCSI backend to be enabled. Set the
CinderEnableIscsiBackend heat parameter to true during overcloud deployment.

You cannot use the cinder volume boot feature with a Red Hat Ceph Storage backend.

You must set the rd.iscsi.firmware=1 kernel parameter on the boot disk.

6.2. CONFIGURING NODES FOR CINDER VOLUME BOOT

You must configure certain options for each bare metal node to successfully boot from a cinder volume.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the overcloud credentials:

$ source ~/overcloudrc

3. Set the iscsi_boot capability to true and the storage-interface to cinder for the selected
node:

$ openstack baremetal node set --property capabilities=iscsi_boot:true --storage-interface
cinder <NODEID>

Replace <NODEID> with the ID of the chosen node.

4. Create an iSCSI connector for the node:

$ openstack baremetal volume connector create --node <NODEID> --type iqn --connector-id
iqn.2010-10.org.openstack.node<NUM>

The connector ID for each node must be unique. In this example, the connector is iqn.2010-
10.org.openstack.node<NUM> where <NUM> is an incremented number for each node.

6.3. CONFIGURING ISCSI KERNEL PARAMETERS ON THE BOOT DISK

You must enable the iSCSI booting in the kernel on the image. To accomplish this, mount the QCOW2
image and enable iSCSI components on the image.

CHAPTER 6. BOOTING FROM CINDER VOLUMES

53

Prerequisites

1. Download a Red Hat Enterprise Linux QCOW2 image and copy it to the /home/stack/ directory
on the undercloud. You can download Red Hat Enterprise Linux KVM images in QCOW2 format
from the following pages:

Red Hat Enterprise Linux 7

Red Hat Enterprise Linux 8

Procedure

1. Log in to the undercloud as the stack user.

2. Mount the QCOW2 image and access it as the root user:

a. Load the nbd kernel module:

$ sudo modprobe nbd

b. Connect the QCOW image as /dev/nbd0:

$ sudo qemu-nbd --connect=/dev/nbd0 <IMAGE>

c. Check the partitions on the NBD:

$ sudo fdisk /dev/nbd0 -l

New Red Hat Enterprise Linux QCOW2 images contain only one partition, which is usually
named /dev/nbd0p1 on the NBD.

d. Create a mount point for the image:

mkdir /tmp/mountpoint

e. Mount the image:

sudo mount /dev/nbd0p1 /tmp/mountpoint/

f. Mount your dev directory so that the image has access to device information on the host:

sudo mount -o bind /dev /tmp/mountpoint/dev

g. Change the root directory to the mount point:

sudo chroot /tmp/mountpoint /bin/bash

3. Configure iSCSI on the image:

NOTE

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

54

https://access.redhat.com/downloads/content/69/
https://access.redhat.com/downloads/content/479/

NOTE

Some commands in this step might report the following error:

lscpu: cannot open /proc/cpuinfo: No such file or directory

This error is not critical and you can ignore the error.

a. Move the resolv.conf file to a temporary location:

mv /etc/resolv.conf /etc/resolv.conf.bak

b. Create a temporary resolv.conf file to resolve DNS requests for the Red Hat Content
Delivery Network. This example uses 8.8.8.8 for the nameserver:

echo "nameserver 8.8.8.8" > /etc/resolv.conf

c. Register the mounted image to the Red Hat Content Delivery Network:

subscription-manager register

Enter your user name and password when the command prompts you.

d. Attach a subscription that contains Red Hat Enterprise Linux:

subscription-manager list --all --available
subscription-manager attach --pool <POOLID>

Substitute <POOLID> with the pool ID of the subscription.

e. Disable the default repositories:

subscription-manager repos --disable "*"

f. Enable the Red Hat Enterprise Linux repository:

Red Hat Enterprise Linux 7:

subscription-manager repos --enable "rhel-7-server-rpms"

Red Hat Enterprise Linux 8:

subscription-manager repos --enable "rhel-8-for-x86_64-baseos-eus-rpms"

g. Install the iscsi-initiator-utils package:

yum install -y iscsi-initiator-utils

h. Unregister the mounted image:

subscription-manager unregister

CHAPTER 6. BOOTING FROM CINDER VOLUMES

55

i. Restore the original resolv.conf file:

mv /etc/resolv.conf.bak /etc/resolv.conf

j. Check the kernel version on the mounted image:

rpm -qa kernel

For example, if the output is kernel-3.10.0-1062.el7.x86_64, the kernel version is 3.10.0-
1062.el7.x86_64. Note this kernel version for the next step.

NOTE

New Red Hat Enterprise Linux QCOW2 images have only one kernel version
installed. If more than one kernel version is installed, use the latest one.

k. Add the network and iscsi dracut modules to the initramfs image:

dracut --force --add "network iscsi" /boot/initramfs-<KERNELVERSION>.img
<KERNELVERSION>

Replace <KERNELVERSION> with the version number that you obtained from rpm -qa
kernel. The following example uses 3.10.0-1062.el7.x86_64 as the kernel version:

dracut --force --add "network iscsi" /boot/initramfs-3.10.0-1062.el7.x86_64.img 3.10.0-
1062.el7.x86_64

l. Exit from the mounted image back to your host operating system:

exit

4. Unmount the image:

a. Unmount the dev directory from the temporary mount point:

$ sudo umount /tmp/mountpoint/dev

b. Unmount the image from the mount point:

$ sudo umount /tmp/mountpoint

c. Disconnect the QCOW2 image from /dev/nbd0/:

$ sudo qemu-nbd --disconnect /dev/nbd0

5. Rebuild the grub menu configuration on the image:

a. Install the libguestfs-tools package:

$ sudo yum -y install libguestfs-tools

IMPORTANT

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

56

IMPORTANT

If you install the libguestfs-tools package on the undercloud, disable
iscsid.socket to avoid port conflicts with the tripleo_iscsid service on the
undercloud:

$ sudo systemctl disable --now iscsid.socket

b. Set the libguestfs backend to use QEMU directly:

$ export LIBGUESTFS_BACKEND=direct

c. Update the grub configuration on the image:

$ guestfish -a /tmp/images/{{ dib_image }} -m /dev/sda3 sh "mount /dev/sda2 /boot/efi &&
rm /boot/grub2/grubenv && /sbin/grub2-mkconfig -o /boot/grub2/grub.cfg && cp
/boot/grub2/grub.cfg /boot/efi/EFI/redhat/grub.cfg && grubby --update-kernel=ALL --
args=\"rd.iscsi.firmware=1\" && cp /boot/grub2/grubenv /boot/efi/EFI/redhat/grubenv &&
echo Success"

6.4. CREATING AND USING A BOOT VOLUME IN CINDER

You must upload the iSCSI-enabled image to OpenStack Image Storage (glance) and create the boot
volume in OpenStack Block Storage (cinder).

Procedure

1. Log in to the undercloud as the stack user.

2. Upload the iSCSI-enabled image to glance:

$ openstack image create --disk-format qcow2 --container-format bare --file rhel-server-7.7-
x86_64-kvm.qcow2 rhel-server-7.7-iscsi

3. Create a volume from the image:

$ openstack volume create --size 10 --image rhel-server-7.7-iscsi --bootable rhel-test-volume

4. Create a bare metal instance that uses the boot volume in cinder:

$ openstack server create --flavor baremetal --volume rhel-test-volume --key default rhel-test

CHAPTER 6. BOOTING FROM CINDER VOLUMES

57

CHAPTER 7. ML2 NETWORKING-ANSIBLE
You can enable and configure the networking-ansible ML2 driver on an overcloud with the Networking
service (neutron) and integrate it with the Bare Metal Provisioning service (ironic)

7.1. MODULAR LAYER 2 (ML2) NETWORKING-ANSIBLE

OpenStack Networking (neutron) contains networking-ansible, which is an ML2 driver that uses Ansible
Engine Networking to manage network switches. This driver also integrates with OpenStack Bare Metal
(ironic) to configure VLANs on switch ports for the bare metal guests. This means that any bare metal
guest that uses a VLAN neutron network causes this driver to configure the physical switch using Ansible
Engine Networking.

The current networking-ansible driver includes the following functionality:

Define a VLAN on the switch when creating a network in Red Hat OpenStack Platform (RHOSP)

Assign a VLAN to an access port on the switch when creating or updating a port in RHOSP

Remove a VLAN from an access port on the switch when deleting a port in RHOSP

7.2. NETWORKING REQUIREMENTS FOR NETWORKING-ANSIBLE

To enable networking-ansible functionality, your environment must include the following networking
configuration:

A network switch with Ansible Network Automation support:

Juniper Networks (junos)

Arista Extensible Operating System (eos)

IMPORTANT

Arista Extensible Operating System (eos) support is available in this release as a
Technology Preview , and therefore is not fully supported by Red Hat. It should only be
used for testing, and should not be deployed in a production environment. For more
information about Technology Preview features, see Scope of Coverage Details.

The network switch requires an SSH user so that Ansible Network Automation can interact with
the device. This user requires the following permissions on the switch:

Access mode

Assign a VLAN to a port

Create VLANs

For security purposes, do not provide the SSH user with administrator access to the switch.

Prepare the VLANs that you want the switch to use. To prepare the VLANs, create each VLAN
on the switch, and then delete each VLAN.

The network switch ports reserved for bare metal guests initially require configuration to

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

58

https://access.redhat.com/support/offerings/production/scope_moredetail

The network switch ports reserved for bare metal guests initially require configuration to
connect to the dedicated network for introspection. Beyond this, these ports require no
additional configuration.

7.3. OPENSTACK BARE METAL (IRONIC) REQUIREMENTS FOR
NETWORKING-ANSIBLE

The networking-ansible driver integrates with the Openstack Bare Metal (ironic) service. To ensure
successful integration, deploy the Bare Metal Provisioning service (ironic) to your overcloud with the
following recommendations:

The overcloud requires a provisioning network. Use one of the following options:

A bridged network for ironic services.

A custom composable network for ironic services.

For more information about configuring the provisioning network, see Deploying an overcloud
with the Bare Metal Provisioning service.

The overcloud requires a tenant network for the bare metal systems to use after the
provisioning process. The examples in this guide use the default baremetal network mapped to
a bridge named br-baremetal. This network also requires a range of VLAN IDs. The following
heat parameters set these values to suit examples in this guide:

parameter_defaults:
 NeutronNetworkVLANRanges: baremetal:1200:1299
 NeutronFlatNetworks: datacentre,baremetal
 NeutronBridgeMappings: datacentre:br-ex,baremetal:br-baremetal

The overcloud uses the introspection service to automatically identify certain hardware details
and map them for other services to use. It is recommended that you enable the ironic
introspection service to help map your interface-to-port details for networking-ansible to use.
You can also accomplish this task manually.

For more information about deploying the Bare Metal Provisioning service (ironic), see Deploying an
overcloud with the Bare Metal Provisioning service.

7.4. ENABLING NETWORKING-ANSIBLE ML2 FUNCTIONALITY

To enable the networking-ansible ML2 driver in your overcloud, you must add two environment files to
your deployment:

/usr/share/openstack-tripleo-heat-templates/environments/neutron-ml2-ansible.yaml

This file enables the networking-ansible driver and sets the network type to vlan. This file already
exists in the core heat template collection.

/home/stack/templates/ml2-ansible-hosts.yaml

A file that contains details about your switches. You create this file manually.

Procedure

1. Create the /home/stack/templates/ml2-ansible-hosts.yaml and add the following initial
content:

CHAPTER 7. ML2 NETWORKING-ANSIBLE

59

parameter_defaults:
 ML2HostConfigs:

2. The ML2HostConfigs parameter requires a dict value with details about your switches. Each
initial key in the dict is a name for the switch. This value defines a specific ansible:
[switchname] section in your OpenStack Networking (neutron) ML2 configuration. Each switch
name key requires its own dict that contains the actual switch details. For example, to configure
three switches, add three switch keys:

parameter_defaults:
 ML2HostConfigs:
 switch1:
 [SWITCH DETAILS]
 switch2:
 [SWITCH DETAILS]
 switch3:
 [SWITCH DETAILS]

3. Each switch requires certain key value pairs in the dict:

ansible_network_os

(Required) The operating system of the switch. Options include junos and eos.

IMPORTANT

Arista Extensible Operating System (eos) support is available in this release as
a Technology Preview , and therefore is not fully supported by Red Hat. It
should only be used for testing, and should not be deployed in a production
environment. For more information about Technology Preview features, see
Scope of Coverage Details.

ansible_host

(Required) The IP or hostname of the switch.

ansible_user

(Required) The user that Ansible uses to access the switch.

ansible_ssh_pass

(Required) The SSH password that Ansible uses to access the switch.

mac

Chassis MAC ID of the network device. Used to map the link layer discovery protocol (LLDP)
MAC address value to the switch name defined in the ML2HostConfigs configuration. This is
a required value when using introspection to perform automatic port configuration.

manage_vlans

A Boolean variable to define whether OpenStack Networking (neutron) controls the creation
and deletion of VLANs on the physical device. This functionality causes the switch to create
and delete VLANs with IDs respective to their Neutron networks. If you have predefined
these VLANs on the switch and do not require Neutron to create or delete VLANs on the
switch, set this parameter to false. The default value is true.

4. The following example shows how to map these values to their respective keys in a full
ML2HostConfigs parameter:

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

60

https://access.redhat.com/support/offerings/production/scope_moredetail

parameter_defaults:
 ML2HostConfigs:
 switch1:
 ansible_network_os: juno
 ansible_host: 10.0.0.1
 ansible_user: ansible
 ansible_ssh_pass: "p@55w0rd!"
 mac: 01:23:45:67:89:AB
 manage_vlans: false

5. Save the /home/stack/templates/ml2-ansible-hosts.yaml file.

6. When you run the overcloud deployment command, include the /usr/share/openstack-tripleo-
heat-templates/environments/neutron-ml2-ansible.yaml and /home/stack/templates/ml2-
ansible-hosts.yaml files with the -e option. The following example demonstrates how to
include these files:

$ openstack overcloud deploy --templates \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/neutron-ml2-ansible.yaml \
 -e /home/stack/templates/ml2-ansible-hosts.yaml \
 ...

Director enables the driver as a part of the OpenStack Networking (neutron) API on the neutron_api
container.

7.5. CONFIGURING NETWORKS FOR NETWORKING-ANSIBLE

After you deploy the overcloud with bare metal provisioning and the networking-ansible driver enabled,
you must create provisioning and tenant networks for your bare metal nodes. You must also configure
ports for your bare metal nodes either in access mode or trunk mode, depending on your requirements.

Access mode

In access mode, switch ports carry the traffic of only one VLAN and operate on a single broadcast
domain. All traffic that arrives to access ports belongs to the VLAN that is assigned to the port.

Trunk mode

In trunk mode, switch ports can belong to more than one VLAN. You can use switch ports in trunk
mode to carry the traffic of a group of VLANs, or if you want to exchange traffic between multiple
switches with more than one VLAN.

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not
fully supported by Red Hat. It should only be used for testing, and should not be
deployed in a production environment. For more information about Technology
Preview features, see Scope of Coverage Details.

The Bare Metal service (ironic) uses networking-ansible to assign the switchport of the bare metal
guest to the ironic provisioning network so that the provisioning process can complete successfully.
After provisioning is complete, ironic assigns the switchport of the bare metal guest to the VLAN that
the Networking service (neutron) assigns to the tenant networks of the bare metal guest.

CHAPTER 7. ML2 NETWORKING-ANSIBLE

61

https://access.redhat.com/support/offerings/production/scope_moredetail

7.5.1. Configuring networks for networking-ansible in access mode

After you deploy the overcloud with bare metal provisioning and the networking-ansible driver enabled,
create the following networks for your bare metal nodes:

Provisioning network

Bare metal systems use this network for their initial creation.

Tenant network

Bare metal systems switch to this network after provisioning and use this network for internal
communication.

Procedure

1. Create the provisioning network and subnet. This depends on the type of provisioning network
you are using. For more information about configuring the provisioning network, see
Configuring the Bare Metal Provisioning service after deployment .

2. Create a tenant network and subnet:

$ openstack network create --provider-network-type vlan --provider-physical-network
baremetal tenant-net
$ openstack subnet create --network tenant-net --subnet-range 192.168.3.0/24 --allocation-
pool start=192.168.3.10,end=192.168.3.20 tenant-subnet

Ensure that you set the --provider-network-type option to vlan to ensure networking-ansible
functionality.

7.5.2. Configuring ports for bare metal guests in access mode

Bare metal guests require port information to connect to the switch. There are two methods to
accomplish this:

Automatic: Introspection of nodes. To use the automatic method, set the mac value for the
respective switch as a part of the ML2HostConfigs parameter.

Manual: Set the OpenStack Networking (neutron) port configuration. Use this method if your
overcloud does not include bare metal introspection functionality.

Procedure

Automatic:

a. Run the introspection command:

$ openstack baremetal introspection start [--wait] <NODENAME>

The bare metal nodes obtain the MAC address of the switch during introspection. The
networking-ansible ML2 driver uses this MAC address to map to the same MAC address
that you define with the mac parameter for the respective switch in the ML2HostConfigs
parameter.

b. Wait until the introspection completes.

Manual:

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

62

1. Create a port for the bare metal node. Use the following example command as a basis to
create the port:

$ openstack baremetal port create [NODE NIC MAC] --node [NODE UUID] \
 --local-link-connection port_id=[SWITCH PORT ID] \
 --local-link-connection switch_info=[SWITCH NAME] \
 --local-link-connection switch_id=[SWITCH MAC]

Replace the following values in brackets with your own environment details:

[NODE NIC MAC]

The MAC address of the NIC that is connected to the switch.

--node [NODE UUID]

The UUID of the node that uses the new port.

--local-link-connection port_id=[SWITCH PORT ID]

The port ID on the switch that connects to the bare metal node.

--local-link-connection switch_info=[SWITCH NAME]

The name of the switch that connects to the bare metal node. The switch name must
match the respective switch name that you define in the ML2HostConfigs parameter.

--local-link-connection switch_id=[SWITCH MAC]

The MAC address of the switch. This must match the respective mac value from the
switch configuration from the ML2HostConfigs parameter. This is an alternative option
to using switch_info.

7.5.3. Configuring networks for networking-ansible in trunk mode

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

After you deploy the overcloud with bare metal provisioning and the networking-ansible driver enabled,
create the following networks for your bare metal nodes:

Provisioning network

Bare metal systems use this network for their initial creation.

Tenant network

Bare metal systems switch to this network after provisioning and use this network for internal
communication.

Procedure

1. Create the provisioning network and subnet. This depends on the type of provisioning network
you are using. For more information about configuring the provisioning network, see
Configuring the Bare Metal Provisioning service after deployment .

2. Create a primary tenant VLAN network, a secondary tenant network, and subnets for each
network that use the physical network that the guest is attached to:

CHAPTER 7. ML2 NETWORKING-ANSIBLE

63

https://access.redhat.com/support/offerings/production/scope_moredetail

$ openstack network create --provider-network-type vlan --provider-physical-network
baremetal primary-tenant-net
$ openstack network create --provider-network-type vlan --provider-physical-network
baremetal secondary-tenant-net
$ openstack subnet create --network primary-tenant-net --subnet-range 192.168.3.0/24 --
allocation-pool start=192.168.3.10,end=192.168.3.20 primary-tenant-subnet
$ openstack subnet create --network secondary-tenant-net --subnet-range 192.168.7.0/24 --
allocation-pool start=192.168.7.10,end=192.168.7.20 secondary-tenant-subnet

Ensure that you set the --provider-network-type option to vlan to ensure networking-ansible
functionality.

7.5.4. Configuring ports for bare metal guests in trunk mode

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

Bare metal guests require port information to connect to the switch so that you can use the Bare Metal
Provisioning service (ironic) to deploy on multiple networks with a single switch port. The switch port is
configured in trunk mode using the VLANs that the Networking service (neutron) assigns from the
supplied networks.

Complete the following steps to configure trunk ports for bare metal guests.

Procedure

1. Create a port and a trunk, and assign the port to the trunk as the parent port:

$ port create --network primary-tenant-net primary-port
$ network trunk create --parent-port primary-port my-trunk

2. Create a port for the secondary network and add the new port as a subport to the trunk:

$ port create --network secondary-tenant-net secondary-port
$ network trunk set --subport port=secondary-port,segmentation-type=vlan,segmentation-
id=1234 my-trunk

7.6. TESTING NETWORKING-ANSIBLE ML2 FUNCTIONS

After the networking-ansible configuration for the bare metal node is complete, create a bare metal
workload to verify that the configuration is correct.

Prerequisites

An overcloud with OpenStack Baremetal (ironic) services.

An enabled networking-ansible ML2 driver.

The ML2HostConfigs parameter contains switch access details.

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

64

https://access.redhat.com/support/offerings/production/scope_moredetail

A registered bare metal node.

Configuration of the respective bare metal port used for the node connection on the switch.
This port can be either an access port or a trunk port.

A VLAN-based provisioning network defined in OpenStack Networking (neutron) for initial
provisioning.

A VLAN-based tenant network defined in OpenStack Networking (neutron) for internal
communication.

Disk images and key pairs available in the overcloud.

Procedure

1. Create the bare metal system:

To create a bare metal system that uses an access port, run the following command:

openstack server create --flavor baremetal --image overcloud-full --key default --network
tenant-net test1

To create a bare metal system that uses a trunk port, run the following command:

openstack server create --flavor baremetal --image overcloud-full --port {primary-port-
uuid} --key default test1

The overcloud initially creates the bare metal system on the provisioning network. When the creation
completes, the networking-ansible driver changes the port configuration on the switch so that the bare
metal system uses the tenant network.

CHAPTER 7. ML2 NETWORKING-ANSIBLE

65

CHAPTER 8. TROUBLESHOOTING THE BARE METAL
PROVISIONING SERVICE

Diagnose issues in an environment that includes the Bare Metal Provisioning service (ironic).

8.1. PXE BOOT ERRORS

Use the following troubleshooting procedures to assess and remedy issues you might encounter with
PXE boot.

Permission Denied errors

If the console of your bare metal node returns a Permission Denied error, ensure that you have applied
the appropriate SELinux context to the /httpboot and /tftpboot directories:

semanage fcontext -a -t httpd_sys_content_t "/httpboot(/.*)?"
restorecon -r -v /httpboot
semanage fcontext -a -t tftpdir_t "/tftpboot(/.*)?"
restorecon -r -v /tftpboot

Boot process freezes at /pxelinux.cfg/XX-XX-XX-XX-XX-XX

On the console of your node, if it looks like you receive an IP address but then the process stops, you
might be using the wrong PXE boot template in your ironic.conf file.

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

66

$ grep ^pxe_config_template ironic.conf
pxe_config_template=$pybasedir/drivers/modules/ipxe_config.template

The default template is pxe_config.template, so it is easy to omit the i and inadvertently enter
ipxe_config.template instead.

8.2. LOGIN ERRORS AFTER THE BARE METAL NODE BOOTS

Failure to log in to the node when you use the root password that you set during configuration indicates
that you are not booted into the deployed image. You might be logged in to the deploy-kernel/deploy-
ramdisk image and the system has not yet loaded the correct image.

To fix this issue, verify that the PXE Boot Configuration file in the
/httpboot/pxelinux.cfg/MAC_ADDRESS on the Compute or Bare Metal Provisioning service node and
ensure that all the IP addresses listed in this file correspond to IP addresses on the Bare Metal network.

NOTE

The only network that the Bare Metal Provisioning service node uses is the Bare Metal
network. If one of the endpoints is not on the network, the endpoint cannot reach the
Bare Metal Provisioning service node as a part of the boot process.

CHAPTER 8. TROUBLESHOOTING THE BARE METAL PROVISIONING SERVICE

67

For example, the kernel line in your file is as follows:

kernel http://192.168.200.2:8088/5a6cdbe3-2c90-4a90-b3c6-85b449b30512/deploy_kernel selinux=0
disk=cciss/c0d0,sda,hda,vda iscsi_target_iqn=iqn.2008-10.org.openstack:5a6cdbe3-2c90-4a90-b3c6-
85b449b30512 deployment_id=5a6cdbe3-2c90-4a90-b3c6-85b449b30512
deployment_key=VWDYDVVEFCQJNOSTO9R67HKUXUGP77CK
ironic_api_url=http://192.168.200.2:6385 troubleshoot=0 text nofb nomodeset vga=normal
boot_option=netboot ip=${ip}:${next-server}:${gateway}:${netmask} BOOTIF=${mac} ipa-api-
url=http://192.168.200.2:6385 ipa-driver-name=ipmi boot_mode=bios initrd=deploy_ramdisk
coreos.configdrive=0 || goto deploy

Value in the
above
example
kernel line

Corresponding information

http://192.168.2
00.2:8088

Parameter http_url in /etc/ironic/ironic.conf file. This IP address must be on the Bare
Metal network.

5a6cdbe3-
2c90-4a90-
b3c6-
85b449b30512

UUID of the baremetal node in ironic node-list.

deploy_kernel This is the deploy kernel image in the Image service that is copied down as
/httpboot/<NODE_UUID>/deploy_kernel.

http://192.168.2
00.2:6385

Parameter api_url in /etc/ironic/ironic.conf file. This IP address must be on the Bare
Metal network.

ipmi The IPMI Driver in use by the Bare Metal Provisioning service for this node.

deploy_ramdisk This is the deploy ramdisk image in the Image service that is copied down as
/httpboot/<NODE_UUID>/deploy_ramdisk.

If a value does not correspond between the /httpboot/pxelinux.cfg/MAC_ADDRESS and the
ironic.conf file:

1. Update the value in the ironic.conf file

2. Restart the Bare Metal Provisioning service

3. Re-deploy the Bare Metal instance

8.3. BOOT-TO-DISK ERRORS ON DEPLOYED NODES

With certain hardware, you might experience a problem with deployed nodes where the nodes cannot
boot from disk during successive boot operations as part of a deployment. This usually happens because
the BMC does not honor the persistent boot settings that director requests on the nodes. Instead, the
nodes boot from a PXE target.

In this case, you must update the boot order in the BIOS of the nodes. Set the HDD to be the first boot

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

68

In this case, you must update the boot order in the BIOS of the nodes. Set the HDD to be the first boot
device, and then PXE as a later option, so that the nodes boot from disk by default, but can boot from
the network during introspection or deployment as necessary.

NOTE

This error mostly applies to nodes that use LegacyBIOS firmware.

8.4. THE BARE METAL PROVISIONING SERVICE DOES NOT RECEIVE
THE CORRECT HOST NAME

If the Bare Metal Provisioning service does not receive the right host name, it means that cloud-init is
failing. To fix this, connect the Bare Metal subnet to a router in the OpenStack Networking service. This
configuration routes requests to the meta-data agent correctly.

8.5. INVALID OPENSTACK IDENTITY SERVICE CREDENTIALS WHEN
EXECUTING BARE METAL PROVISIONING SERVICE COMMANDS

If you cannot authenticate to the Identity service, check the identity_uri parameter in the ironic.conf
file and ensure that you remove the /v2.0 from the keystone AdminURL. For example, set the
identity_uri to http://IP:PORT.

8.6. HARDWARE ENROLMENT

Incorrect node registration details can cause issues with enrolled hardware. Ensure that you enter
property names and values correctly. When you input property names incorrectly, the system adds the
properties to the node details but ignores them.

Use the openstack baremetal node set command to update node details. For example, update the
amount of memory that the node is registered to use to 2 GB:

$ openstack baremetal node set --property memory_mb=2048 NODE_UUID

8.7. TROUBLESHOOTING IDRAC ISSUES

Redfish management interface fails to set boot device

When you use the idrac-redfish management interface with certain iDRAC firmware versions and
attempt to set the boot device on a bare metal server with UEFI boot, iDRAC returns the following
error:

Unable to Process the request because the value entered for the
parameter Continuous is not supported by the implementation.

If you encounter this issue, set the force_persistent_boot_device parameter in the driver-info on
the node to Never:

openstack baremetal node set --driver-info force_persistent_boot_device=Never ${node_uuid}

Timeout when powering off

Some servers can be too slow when powering off, and time out. The default retry count is 6, which
results in a 30 second timeout. To increase the timeout duration to 90 seconds, set the

CHAPTER 8. TROUBLESHOOTING THE BARE METAL PROVISIONING SERVICE

69

ironic::agent::rpc_response_timeout value to 18 in the undercloud hieradata overrides file and re-
run the openstack undercloud install command:

ironic::agent::rpc_response_timeout: 18

Vendor passthrough timeout

When iDRAC is not available to execute vendor passthrough commands, these commands take too
long and time out:

openstack baremetal node passthru call --http-method GET \
aed58dca-1b25-409a-a32f-3a817d59e1e0 list_unfinished_jobs
Timed out waiting for a reply to message ID 547ce7995342418c99ef1ea4a0054572 (HTTP 500)

To increase the timeout duration for messaging, increase the value of the
ironic::default::rpc_response_timeout parameter in the undercloud hieradata overrides file and
re-run the openstack undercloud install command:

ironic::default::rpc_response_timeout: 600

8.8. CONFIGURING THE SERVER CONSOLE

Console output from overcloud nodes is not always sent to the server console. If you want to view this
output in the server console, you must configure the overcloud to use the correct console for your
hardware. Use one of the following methods to perform this configuration:

Modify the KernelArgs heat parameter for each overcloud role.

Customize the overcloud-full.qcow2 image that director uses to provision the overcloud
nodes.

Prerequisites

A successful undercloud installation. For more information, see the Director Installation and
Usage guide.

Overcloud nodes ready for deployment.

Modifying KernelArgs with heat during deployment

1. Log in to the undercloud host as the stack user.

2. Source the stackrc credentials file:

$ source stackrc

3. Create an environment file overcloud-console.yaml with the following content:

parameter_defaults:
 <role>Parameters:
 KernelArgs: "console=<console-name>"

Replace <role> with the name of the overcloud role that you want to configure, and replace

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

70

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/director_installation_and_usage/index

Replace <role> with the name of the overcloud role that you want to configure, and replace
<console-name> with the ID of the console that you want to use. For example, use the
following snippet to configure all overcloud nodes in the default roles to use tty0:

parameter_defaults:
 ControllerParameters:
 KernelArgs: "console=tty0"
 ComputeParameters:
 KernelArgs: "console=tty0"
 BlockStorageParameters:
 KernelArgs: "console=tty0"
 ObjectStorageParameters:
 KernelArgs: "console=tty0"
 CephStorageParameters:
 KernelArgs: "console=tty0"

4. Include the overcloud-console-tty0.yaml file in your deployment command with the -e option.

Modifying the overcloud-full.qcow2 image

1. Log in to the undercloud host as the stack user.

2. Source the stackrc credentials file:

$ source stackrc

3. Modify the kernel arguments in the overcloud-full.qcow2 image to set the correct console for
your hardware. For example, set the console to tty0:

$ virt-customize --selinux-relabel -a overcloud-full.qcow2 --run-command 'grubby --update-
kernel=ALL --args="console=tty0"'

4. Import the image into director:

$ openstack overcloud image upload --image-path /home/stack/images/overcloud-full.qcow2

5. Deploy the overcloud.

Verification

1. Log in to an overcloud node from the undercloud:

$ ssh heat-admin@<IP-address>

Replace <IP-address> with the IP address of an overcloud node.

2. Inspect the contents of the /proc/cmdline file and ensure that console= parameter is set to
the value of the console that you want to use:

[heat-admin@controller-0 ~]$ cat /proc/cmdline
BOOT_IMAGE=(hd0,msdos2)/boot/vmlinuz-4.18.0-193.29.1.el8_2.x86_64
root=UUID=0ec3dea5-f293-4729-b676-5d38a611ce81 ro console=tty0
console=ttyS0,115200n81 no_timer_check crashkernel=auto rhgb quiet

CHAPTER 8. TROUBLESHOOTING THE BARE METAL PROVISIONING SERVICE

71

CHAPTER 9. BARE METAL DRIVERS
You can configure bare metal nodes to use one of the drivers that are enabled in the Bare Metal
Provisioning service. Each driver includes a provisioning method and a power management type. Some
drivers require additional configuration. Each driver described in this section uses PXE for provisioning.
Drivers are listed by their power management type.

You can add drivers by configuring the IronicEnabledHardwareTypes parameter in your ironic.yaml
file. By default, ipmi and redfish are enabled.

For the full list of supported plug-ins and drivers, see Component, Plug-In, and Driver Support in Red
Hat OpenStack Platform.

9.1. INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI)
POWER MANAGEMENT DRIVER

IPMI is an interface that provides out-of-band remote management features, including power
management and server monitoring. To use this power management type, all Bare Metal Provisioning
service nodes require an IPMI that is connected to the shared Bare Metal network. IPMI power manager
driver uses the ipmitool utility to remotely manage hardware. You can use the following driver_info
properties to configure the IPMI power manager driver for a node:

Table 9.1. IPMI driver_info properties

Property Description Equivalent ipmitool
option

ipmi_address (Mandatory) The IP address or hostname of the node. -H

ipmi_username The IPMI user name. -U

ipmi_password The IPMI password. The password is written to a temporary
file. You pass the filename to the ipmitool by using the -f
option.

-f

ipmi_hex_kg_key The hexadecimal Kg key for IPMIv2 authentication. -y

ipmi_port The remote IPMI RMCP port. -p

ipmi_priv_level IPMI privilege level. Set to one of the following valid values:

ADMINISTRATOR (default)

CALLBACK

OPERATOR

USER

-L

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

72

https://access.redhat.com/articles/1535373#Ironic

ipmi_protocol_ver
sion

The version of the IPMI protocol. Set to one of the following
valid values:

1.5 for lan

2.0 for lanplus (default)

-I

ipmi_bridging The type of bridging. Use with nested chassis management
controllers (CMCs). Set to one of the following valid values:

single

dual

no (default)

n/a

ipmi_target_chan
nel

Destination channel for a bridged request. Required only if
ipmi_bridging is set to single or dual.

-b

ipmi_target_addre
ss

Destination address for a bridged request. Required only if
ipmi_bridging is set to single or dual.

-t

ipmi_transit_chan
nel

Transit channel for a bridged request. Required only if
ipmi_bridging is set to dual.

-B

ipmi_transit_addr
ess

Transit address for bridged request. Required only if
ipmi_bridging is set to dual.

-T

ipmi_local_addre
ss

Local IPMB address for bridged requests. Use only if
ipmi_bridging is set to single or dual.

-m

ipmi_force_boot_
device

Set to true to specify if the Bare Metal Provisioning service
should specify the boot device to the BMC each time the
server is turned on. The BMC is not capable of remembering
the selected boot device across power cycles. Disabled by
default.

n/a

ipmi_disable_boo
t_timeout

Set to false to not send a raw IPMI command to disable the
60 second timeout for booting on the node.

n/a

ipmi_cipher_suite The IPMI cipher suite version to use on the node. Set to one
of the following valid values:

3 for AES-128 with SHA1

17 for AES-128 with SHA256

n/a

Property Description Equivalent ipmitool
option

CHAPTER 9. BARE METAL DRIVERS

73

9.2. REDFISH

A standard RESTful API for IT infrastructure developed by the Distributed Management Task Force
(DMTF). You can use the following driver_info properties to configure the Bare Metal Provisioning
serive (ironic) connection to Redfish:

Table 9.2. Redfish driver_info properties

Property Description

redfish_address (Mandatory) The IP address of the Redfish controller. The address must
include the authority portion of the URL. If you do not include the scheme it
defaults to https.

redfish_system_id The canonical path to the system resource the Redfish driver interacts with.
The path must include the root service, version, and the unique path to the
system within the same authority as the redfish_address property. For
example: /redfish/v1/Systems/CX34R87. This property is only required if
the target BMC manages more than one resource.

redfish_username The Redfish username.

redfish_password The Redfish password.

redfish_verify_ca Either a Boolean value, a path to a CA_BUNDLE file, or a directory with
certificates of trusted CAs. If you set this value to True the driver verifies the
host certificates. If you set this value to False the driver ignores verifying the
SSL certificate. If you set this value to a path, the driver uses the specified
certificate or one of the certificates in the directory. The default is True.

redfish_auth_type The Redfish HTTP client authentication method. Set to one of the following
valid values:

basic

session (recommended)

auto (default) - Uses the session authentication method when
available, and the basic authentication method when the session
method is not available.

9.3. DELL REMOTE ACCESS CONTROLLER (DRAC)

DRAC is an interface that provides out-of-band remote management features, including power
management and server monitoring. To use this power management type, all Bare Metal Provisioning
service nodes require a DRAC that is connected to the shared Bare Metal Provisioning network. Enable
the idrac driver, and set the following information in the driver_info of the node:

drac_address - The IP address of the DRAC NIC.

drac_username - The DRAC user name.

drac_password - The DRAC password.

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

74

Optional: drac_port - The port to use for the WS-Management endpoint. The default is port
443.

Optional: drac_path - The path to use for the WS-Management endpoint. The default path is
/wsman.

Optional: drac_protocol - The protocol to use for the WS-Management endpoint. Valid values:
http, https. The default protocol is https.

9.4. INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)

iRMC from Fujitsu is an interface that provides out-of-band remote management features including
power management and server monitoring. To use this power management type on a Bare Metal
Provisioning service node, the node requires an iRMC interface that is connected to the shared Bare
Metal network. Enable the irmc driver, and set the following information in the driver_info of the node:

irmc_address - The IP address of the iRMC interface NIC.

irmc_username - The iRMC user name.

irmc_password - The iRMC password.

To use IPMI to set the boot mode or SCCI to get sensor data, you must complete the following
additional steps:

1. Enable the sensor method in the ironic.conf file:

$ openstack-config --set /etc/ironic/ironic.conf \
 irmc sensor_method METHOD

Replace METHOD with scci or ipmitool.

2. If you enabled SCCI, install the python-scciclient package:

dnf install python-scciclient

3. Restart the Bare Metal conductor service:

systemctl restart openstack-ironic-conductor.service

NOTE

To use the iRMC driver, iRMC S4 or higher is required.

9.5. INTEGRATED LIGHTS-OUT (ILO)

iLO from Hewlett-Packard is an interface that provides out-of-band remote management features
including power management and server monitoring. To use this power management type, all Bare
Metal nodes require an iLO interface that is connected to the shared Bare Metal network. Enable the ilo
driver, and set the following information in the driver_info of the node:

ilo_address - The IP address of the iLO interface NIC.

ilo_username - The iLO user name.

CHAPTER 9. BARE METAL DRIVERS

75

ilo_password - The iLO password.

Red Hat OpenStack Platform 16.2 Bare Metal Provisioning

76

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. BARE METAL PROVISIONING SERVICE (IRONIC) FUNCTIONALITY
	CHAPTER 2. REQUIREMENTS FOR BARE METAL PROVISIONING
	2.1. HARDWARE REQUIREMENTS
	2.2. NETWORKING REQUIREMENTS
	2.2.1. The default bare metal network
	2.2.2. The custom composable bare metal network

	CHAPTER 3. DEPLOYING AN OVERCLOUD WITH THE BARE METAL PROVISIONING SERVICE
	3.1. CONFIGURING THE DEFAULT FLAT NETWORK
	3.2. CONFIGURING A CUSTOM IPV4 PROVISIONING NETWORK
	3.3. CONFIGURING A CUSTOM IPV6 PROVISIONING NETWORK
	3.4. CONFIGURING THE OVERCLOUD TO ENABLE BARE METAL PROVISIONING
	3.5. TESTING THE BARE METAL PROVISIONING SERVICE
	3.6. ADDITIONAL RESOURCES

	CHAPTER 4. CONFIGURING THE BARE METAL PROVISIONING SERVICE AFTER DEPLOYMENT
	4.1. CONFIGURING THE NETWORKING SERVICE FOR BARE METAL PROVISIONING
	4.1.1. Configuring the Networking service to integrate with the Bare Metal Provisioning service on a flat network
	4.1.2. Configuring the Networking service to integrate with the Bare Metal Provisioning service on a custom composable network

	4.2. CLEANING BARE-METAL NODES
	4.2.1. Configuring automatic node cleaning
	4.2.2. Cleaning nodes manually

	4.3. CREATING FLAVORS FOR LAUNCHING BARE-METAL INSTANCES
	4.4. CREATING IMAGES FOR LAUNCHING BARE-METAL INSTANCES
	4.4.1. Uploading the deploy images to the Image service

	4.5. CONFIGURING DEPLOY INTERFACES
	Prerequisites
	Workflow
	4.5.1. Configuring the direct deploy interface on the overcloud

	4.6. ADDING PHYSICAL MACHINES AS BARE METAL NODES
	4.6.1. Enrolling a bare metal node with an inventory file
	4.6.2. Enrolling a bare-metal node manually
	4.6.3. Bare-metal node provisioning states

	4.7. CONFIGURING REDFISH VIRTUAL MEDIA BOOT
	4.7.1. Deploying a bare metal server with Redfish virtual media boot

	4.8. USING HOST AGGREGATES TO SEPARATE PHYSICAL AND VIRTUAL MACHINE PROVISIONING

	CHAPTER 5. ADMINISTERING BARE METAL NODES
	5.1. LAUNCHING BARE METAL INSTANCES
	5.1.1. Launching instances with the command line interface
	5.1.2. Launching instances with the dashboard

	5.2. CONFIGURING PORT GROUPS IN THE BARE METAL PROVISIONING SERVICE
	5.2.1. Configuring port groups on switches manually
	5.2.2. Configuring port groups in the Bare Metal Provisioning service

	5.3. DETERMINING THE HOST TO IP ADDRESS MAPPING
	5.4. ATTACHING AND DETACHING VIRTUAL NETWORK INTERFACES
	5.5. CONFIGURING NOTIFICATIONS FOR THE BARE METAL PROVISIONING SERVICE
	5.6. CONFIGURING AUTOMATIC POWER FAULT RECOVERY
	5.7. INTROSPECTING OVERCLOUD NODES

	CHAPTER 6. BOOTING FROM CINDER VOLUMES
	6.1. CINDER VOLUME BOOT FOR BARE METAL NODES
	6.2. CONFIGURING NODES FOR CINDER VOLUME BOOT
	6.3. CONFIGURING ISCSI KERNEL PARAMETERS ON THE BOOT DISK
	6.4. CREATING AND USING A BOOT VOLUME IN CINDER

	CHAPTER 7. ML2 NETWORKING-ANSIBLE
	7.1. MODULAR LAYER 2 (ML2) NETWORKING-ANSIBLE
	7.2. NETWORKING REQUIREMENTS FOR NETWORKING-ANSIBLE
	7.3. OPENSTACK BARE METAL (IRONIC) REQUIREMENTS FOR NETWORKING-ANSIBLE
	7.4. ENABLING NETWORKING-ANSIBLE ML2 FUNCTIONALITY
	7.5. CONFIGURING NETWORKS FOR NETWORKING-ANSIBLE
	7.5.1. Configuring networks for networking-ansible in access mode
	7.5.2. Configuring ports for bare metal guests in access mode
	7.5.3. Configuring networks for networking-ansible in trunk mode
	7.5.4. Configuring ports for bare metal guests in trunk mode

	7.6. TESTING NETWORKING-ANSIBLE ML2 FUNCTIONS

	CHAPTER 8. TROUBLESHOOTING THE BARE METAL PROVISIONING SERVICE
	8.1. PXE BOOT ERRORS
	8.2. LOGIN ERRORS AFTER THE BARE METAL NODE BOOTS
	8.3. BOOT-TO-DISK ERRORS ON DEPLOYED NODES
	8.4. THE BARE METAL PROVISIONING SERVICE DOES NOT RECEIVE THE CORRECT HOST NAME
	8.5. INVALID OPENSTACK IDENTITY SERVICE CREDENTIALS WHEN EXECUTING BARE METAL PROVISIONING SERVICE COMMANDS
	8.6. HARDWARE ENROLMENT
	8.7. TROUBLESHOOTING IDRAC ISSUES
	8.8. CONFIGURING THE SERVER CONSOLE

	CHAPTER 9. BARE METAL DRIVERS
	9.1. INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI) POWER MANAGEMENT DRIVER
	9.2. REDFISH
	9.3. DELL REMOTE ACCESS CONTROLLER (DRAC)
	9.4. INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
	9.5. INTEGRATED LIGHTS-OUT (ILO)

