
Red Hat OpenStack Platform 13

Transitioning to Containerized Services

A basic guide to working with OpenStack Platform containerized services

Last Updated: 2023-01-31

Red Hat OpenStack Platform 13 Transitioning to Containerized Services

A basic guide to working with OpenStack Platform containerized services

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides some basic information to help users get accustomed working with OpenStack
Platform services running in containers.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. CONTAINERIZED SERVICES AND KOLLA

CHAPTER 2. OBTAINING AND MODIFYING CONTAINER IMAGES
2.1. REGISTRY METHODS
2.2. CONTAINER IMAGE PREPARATION COMMAND USAGE
2.3. CONTAINER IMAGES FOR ADDITIONAL SERVICES
2.4. USING THE RED HAT REGISTRY AS A REMOTE REGISTRY SOURCE
2.5. USING THE UNDERCLOUD AS A LOCAL REGISTRY
2.6. USING A SATELLITE SERVER AS A REGISTRY
2.7. MODIFYING CONTAINERS IMAGES

CHAPTER 3. DEPLOYING AND UPDATING AN OVERCLOUD WITH CONTAINERS
3.1. DEPLOYING AN OVERCLOUD
3.2. UPDATING AN OVERCLOUD

CHAPTER 4. WORKING WITH CONTAINERIZED SERVICES
4.1. MANAGING CONTAINERIZED SERVICES
4.2. TROUBLESHOOTING CONTAINERIZED SERVICES

CHAPTER 5. COMPARING SYSTEMD SERVICES TO CONTAINERIZED SERVICES
5.1. SYSTEMD SERVICE COMMANDS VS CONTAINERIZED SERVICE COMMANDS
5.2. SYSTEMD SERVICES VS CONTAINERIZED SERVICES
5.3. SYSTEMD LOG LOCATIONS VS CONTAINERIZED LOG LOCATIONS
5.4. SYSTEMD CONFIGURATION VS CONTAINERIZED CONFIGURATION

3
3

4
4
4
6
9

10
12
15

17
17
17

18
18
19

22
22
22
25
27

Table of Contents

1

Red Hat OpenStack Platform 13 Transitioning to Containerized Services

2

CHAPTER 1. INTRODUCTION
Past versions of Red Hat OpenStack Platform used services managed with Systemd. However, more
recent version of OpenStack Platform now use containers to run services. Some administrators might
not have a good understanding of how containerized OpenStack Platform services operate, and so this
guide aims to help you understand OpenStack Platform container images and containerized services.
This includes:

How to obtain and modify container images

How to manage containerized services in the overcloud

Understanding how containers differ from Systemd services

The main goal is to help you gain enough knowledge of containerized OpenStack Platform services to
transition from a Systemd-based environment to a container-based environment.

1.1. CONTAINERIZED SERVICES AND KOLLA

Each of the main Red Hat OpenStack Platform (RHOSP) services run in containers. This provides a
method to keep each service within its own isolated namespace separated from the host. This has the
following effects:

During deployment, RHOSP pulls and runs container images from the Red Hat Customer Portal.

The podman command operates management functions, like starting and stopping services.

To upgrade containers, you must pull new container images and replace the existing containers
with newer versions.

Red Hat OpenStack Platform uses a set of containers built and managed with the Kolla toolset.

CHAPTER 1. INTRODUCTION

3

CHAPTER 2. OBTAINING AND MODIFYING CONTAINER
IMAGES

A containerized overcloud requires access to a registry with the required container images. This chapter
provides information on how to prepare the registry and your overcloud configuration to use container
images for Red Hat OpenStack Platform.

This guide provides several use cases to configure your overcloud to use a registry. Before attempting
one of these use cases, it is recommended to familiarize yourself with how to use the image preparation
command. See Section 2.2, “Container image preparation command usage” for more information.

2.1. REGISTRY METHODS

Red Hat OpenStack Platform supports the following registry types:

Remote Registry

The overcloud pulls container images directly from registry.redhat.io. This method is the easiest for
generating the initial configuration. However, each overcloud node pulls each image directly from the
Red Hat Container Catalog, which can cause network congestion and slower deployment. In addition,
all overcloud nodes require internet access to the Red Hat Container Catalog.

Local Registry

The undercloud uses the docker-distribution service to act as a registry. This allows the director to
synchronize the images from registry.redhat.io and push them to the docker-distribution registry.
When creating the overcloud, the overcloud pulls the container images from the undercloud’s
docker-distribution registry. This method allows you to store a registry internally, which can speed
up the deployment and decrease network congestion. However, the undercloud only acts as a basic
registry and provides limited life cycle management for container images.

NOTE

The docker-distribution service acts separately from docker. docker is used to pull and
push images to the docker-distribution registry and does not serve the images to the
overcloud. The overcloud pulls the images from the docker-distribution registry.

Satellite Server

Manage the complete application life cycle of your container images and publish them through a Red
Hat Satellite 6 server. The overcloud pulls the images from the Satellite server. This method provides
an enterprise grade solution to store, manage, and deploy Red Hat OpenStack Platform containers.

Select a method from the list and continue configuring your registry details.

NOTE

When building for a multi-architecture cloud, the local registry option is not supported.

2.2. CONTAINER IMAGE PREPARATION COMMAND USAGE

This section provides an overview on how to use the openstack overcloud container image prepare
command, including conceptual information on the command’s various options.

Generating a Container Image Environment File for the Overcloud

Red Hat OpenStack Platform 13 Transitioning to Containerized Services

4

One of the main uses of the openstack overcloud container image prepare command is to create an
environment file that contains a list of images the overcloud uses. You include this file with your
overcloud deployment commands, such as openstack overcloud deploy. The openstack overcloud
container image prepare command uses the following options for this function:

--output-env-file

Defines the resulting environment file name.

The following snippet is an example of this file’s contents:

parameter_defaults:
 DockerAodhApiImage: registry.redhat.io/rhosp13/openstack-aodh-api:13.0-34
 DockerAodhConfigImage: registry.redhat.io/rhosp13/openstack-aodh-api:13.0-34
...

The environment file also contains the DockerInsecureRegistryAddress parameter set to the IP
address and port of the undercloud registry. This parameter configures overcloud nodes to access
images from the undercloud registry without SSL/TLS certification.

Generating a Container Image List for Import Methods

If you aim to import the OpenStack Platform container images to a different registry source, you can
generate a list of images. The syntax of list is primarily used to import container images to the container
registry on the undercloud, but you can modify the format of this list to suit other import methods, such
as Red Hat Satellite 6.

The openstack overcloud container image prepare command uses the following options for this
function:

--output-images-file

Defines the resulting file name for the import list.

The following is an example of this file’s contents:

container_images:
- imagename: registry.redhat.io/rhosp13/openstack-aodh-api:13.0-34
- imagename: registry.redhat.io/rhosp13/openstack-aodh-evaluator:13.0-34
...

Setting the Namespace for Container Images

Both the --output-env-file and --output-images-file options require a namespace to generate the
resulting image locations. The openstack overcloud container image prepare command uses the
following options to set the source location of the container images to pull:

--namespace

Defines the namespace for the container images. This is usually a hostname or IP address with a
directory.

--prefix

Defines the prefix to add before the image names.

As a result, the director generates the image names using the following format:

[NAMESPACE]/[PREFIX][IMAGE NAME]

CHAPTER 2. OBTAINING AND MODIFYING CONTAINER IMAGES

5

Setting Container Image Tags

Use the --tag and --tag-from-label options together to set the tag for each container images.

--tag

Sets the specific tag for all images from the source. If you only use this option, director pulls all
container images using this tag. However, if you use this option in combination with --tag-from-label,
director uses the --tag as a source image to identify a specific version tag based on labels. The --tag
option is set to latest by default.

--tag-from-label

Use the value of specified container image labels to discover and pull the versioned tag for every
image. Director inspects each container image tagged with the value that you set for --tag, then uses
the container image labels to construct a new tag, which director pulls from the registry. For example,
if you set --tag-from-label {version}-{release}, director uses the version and release labels to
construct a new tag. For one container, version might be set to 13.0 and release might be set to 34,
which results in the tag 13.0-34.

IMPORTANT

The Red Hat Container Registry uses a specific version format to tag all Red Hat
OpenStack Platform container images. This version format is {version}-{release}, which
each container image stores as labels in the container metadata. This version format
helps facilitate updates from one {release} to the next. For this reason, you must always
use the --tag-from-label {version}-{release} when running the openstack overcloud
container image prepare command. Do not only use --tag on its own to to pull container
images. For example, using --tag latest by itself causes problems when performing
updates because director requires a change in tag to update a container image.

2.3. CONTAINER IMAGES FOR ADDITIONAL SERVICES

The director only prepares container images for core OpenStack Platform Services. Some additional
features use services that require additional container images. You enable these services with
environment files. The openstack overcloud container image prepare command uses the following
option to include environment files and their respective container images:

-e

Include environment files to enable additional container images.

The following table provides a sample list of additional services that use container images and their
respective environment file locations within the /usr/share/openstack-tripleo-heat-templates
directory.

Service Environment File

Ceph Storage environments/ceph-ansible/ceph-ansible.yaml

Collectd environments/services-docker/collectd.yaml

Congress environments/services-docker/congress.yaml

Fluentd environments/services-docker/fluentd.yaml

Red Hat OpenStack Platform 13 Transitioning to Containerized Services

6

OpenStack Bare Metal (ironic) environments/services-docker/ironic.yaml

OpenStack Data Processing
(sahara)

environments/services-docker/sahara.yaml

OpenStack EC2-API environments/services-docker/ec2-api.yaml

OpenStack Key Manager
(barbican)

environments/services-docker/barbican.yaml

OpenStack Load Balancing-as-a-
Service (octavia)

environments/services-docker/octavia.yaml

OpenStack Shared File System
Storage (manila)

environments/manila-{backend-name}-config.yaml

NOTE: See OpenStack Shared File System (manila) for more
information.

Open Virtual Network (OVN) environments/services-docker/neutron-ovn-dvr-ha.yaml

Sensu environments/services-docker/sensu-client.yaml

Service Environment File

The next few sections provide examples of including additional services.

Ceph Storage

If deploying a Red Hat Ceph Storage cluster with your overcloud, you need to include the
/usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-ansible.yaml
environment file. This file enables the composable containerized services in your overcloud and the
director needs to know these services are enabled to prepare their images.

In addition to this environment file, you also need to define the Ceph Storage container location, which is
different from the OpenStack Platform services. Use the --set option to set the following parameters
specific to Ceph Storage:

--set ceph_namespace

Defines the namespace for the Ceph Storage container image. This functions similar to the --
namespace option.

--set ceph_image

Defines the name of the Ceph Storage container image. Usually,this is rhceph-3-rhel7.

--set ceph_tag

Defines the tag to use for the Ceph Storage container image. This functions similar to the --tag
option. When --tag-from-label is specified, the versioned tag is discovered starting from this tag.

The following snippet is an example that includes Ceph Storage in your container image files:

$ openstack overcloud container image prepare \
 ...

CHAPTER 2. OBTAINING AND MODIFYING CONTAINER IMAGES

7

 -e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-ansible.yaml \
 --set ceph_namespace=registry.redhat.io/rhceph \
 --set ceph_image=rhceph-3-rhel7 \
 --tag-from-label {version}-{release} \
 ...

OpenStack Bare Metal (ironic)

If deploying OpenStack Bare Metal (ironic) in your overcloud, you need to include the
/usr/share/openstack-tripleo-heat-templates/environments/services-docker/ironic.yaml
environment file so the director can prepare the images. The following snippet is an example on how to
include this environment file:

$ openstack overcloud container image prepare \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/ironic.yaml \
 ...

OpenStack Data Processing (sahara)

If deploying OpenStack Data Processing (sahara) in your overcloud, you need to include the
/usr/share/openstack-tripleo-heat-templates/environments/services-docker/sahara.yaml
environment file so the director can prepare the images. The following snippet is an example on how to
include this environment file:

$ openstack overcloud container image prepare \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/sahara.yaml \
 ...

OpenStack Neutron SR-IOV

If deploying OpenStack Neutron SR-IOV in your overcloud, include the /usr/share/openstack-tripleo-
heat-templates/environments/services-docker/neutron-sriov.yaml environment file so the director
can prepare the images. The default Controller and Compute roles do not support the SR-IOV service,
so you must also use the -r option to include a custom roles file that contains SR-IOV services. The
following snippet is an example on how to include this environment file:

$ openstack overcloud container image prepare \
 ...
 -r ~/custom_roles_data.yaml
 -e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/neutron-sriov.yaml \
 ...

OpenStack Load Balancing-as-a-Service (octavia)

If deploying OpenStack Load Balancing-as-a-Service in your overcloud, include the
/usr/share/openstack-tripleo-heat-templates/environments/services-docker/octavia.yaml
environment file so the director can prepare the images. The following snippet is an example on how to
include this environment file:

$ openstack overcloud container image prepare \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/octavia.yaml

Red Hat OpenStack Platform 13 Transitioning to Containerized Services

8

\
 ...

OpenStack Shared File System (manila)

Using the format manila-{backend-name}-config.yaml, you can choose a supported back end to
deploy the Shared File System with that back end. Shared File System service containers can be
prepared by including any of the following environment files:

 environments/manila-isilon-config.yaml
 environments/manila-netapp-config.yaml
 environments/manila-vmax-config.yaml
 environments/manila-cephfsnative-config.yaml
 environments/manila-cephfsganesha-config.yaml
 environments/manila-unity-config.yaml
 environments/manila-vnx-config.yaml

For more information about customizing and deploying environment files, see the following resources:

Deploying the updated environment in CephFS via NFS Back End Guide for the Shared File
System Service

Deploy the Shared File System Service with NetApp Back Ends in NetApp Back End Guide for
the Shared File System Service

Deploy the Shared File System Service with a CephFS Back End in CephFS Back End Guide for
the Shared File System Service

2.4. USING THE RED HAT REGISTRY AS A REMOTE REGISTRY
SOURCE

Red Hat hosts the overcloud container images on registry.redhat.io. Pulling the images from a remote
registry is the simplest method because the registry is already configured and all you require is the URL
and namespace of the image that you want to pull. However, during overcloud creation, the overcloud
nodes all pull images from the remote repository, which can congest your external connection. As a
result, this method is not recommended for production environments. For production environments, use
one of the following methods instead:

Setup a local registry

Host the images on Red Hat Satellite 6

Procedure

1. To pull the images directly from registry.redhat.io in your overcloud deployment, an
environment file is required to specify the image parameters. Run the following command to
generate the container image environment file:

(undercloud) $ sudo openstack overcloud container image prepare \
 --namespace=registry.redhat.io/rhosp13 \
 --prefix=openstack- \
 --tag-from-label {version}-{release} \
 --output-env-file=/home/stack/templates/overcloud_images.yaml

Use the -e option to include any environment files for optional services.

CHAPTER 2. OBTAINING AND MODIFYING CONTAINER IMAGES

9

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/cephfs_via_nfs_back_end_guide_for_the_shared_file_system_service/#proc-deploy-env_CephFS-install
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/netapp_back_end_guide_for_the_shared_file_system_service/#deploy-be
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/cephfs_back_end_guide_for_the_shared_file_system_service/#deploy-be

Use the -r option to include a custom roles file.

If using Ceph Storage, include the additional parameters to define the Ceph Storage
container image location: --set ceph_namespace, --set ceph_image, --set ceph_tag.

2. Modify the overcloud_images.yaml file and include the following parameters to authenticate
with registry.redhat.io during deployment:

ContainerImageRegistryLogin: true
ContainerImageRegistryCredentials:
 registry.redhat.io:
 <USERNAME>: <PASSWORD>

Replace <USERNAME> and <PASSWORD> with your credentials for registry.redhat.io.
The overcloud_images.yaml file contains the image locations on the undercloud. Include
this file with your deployment.

NOTE

Before you run the openstack overcloud deploy command, you must log in
to the remote registry:

(undercloud) $ sudo docker login registry.redhat.io

The registry configuration is ready.

2.5. USING THE UNDERCLOUD AS A LOCAL REGISTRY

You can configure a local registry on the undercloud to store overcloud container images.

You can use director to pull each image from the registry.redhat.io and push each image to the
docker-distribution registry that runs on the undercloud. When you use director to create the
overcloud, during the overcloud creation process, the nodes pull the relevant images from the
undercloud docker-distribution registry.

This keeps network traffic for container images within your internal network, which does not congest
your external network connection and can speed the deployment process.

Procedure

1. Find the address of the local undercloud registry. The address uses the following pattern:

<REGISTRY_IP_ADDRESS>:8787

Use the IP address of your undercloud, which you previously set with the local_ip parameter in
your undercloud.conf file. For the commands below, the address is assumed to be
192.168.24.1:8787.

2. Log in to registry.redhat.io:

(undercloud) $ docker login registry.redhat.io --username $RH_USER --password
$RH_PASSWD

Red Hat OpenStack Platform 13 Transitioning to Containerized Services

10

3. Create a template to upload the images to the local registry, and the environment file to refer
to those images:

(undercloud) $ openstack overcloud container image prepare \
 --namespace=registry.redhat.io/rhosp13 \
 --push-destination=192.168.24.1:8787 \
 --prefix=openstack- \
 --tag-from-label {version}-{release} \
 --output-env-file=/home/stack/templates/overcloud_images.yaml \
 --output-images-file /home/stack/local_registry_images.yaml

Use the -e option to include any environment files for optional services.

Use the -r option to include a custom roles file.

If using Ceph Storage, include the additional parameters to define the Ceph Storage
container image location: --set ceph_namespace, --set ceph_image, --set ceph_tag.

4. Verify that the following two files have been created:

local_registry_images.yaml, which contains container image information from the remote
source. Use this file to pull the images from the Red Hat Container Registry
(registry.redhat.io) to the undercloud.

overcloud_images.yaml, which contains the eventual image locations on the undercloud.
You include this file with your deployment.

5. Pull the container images from the remote registry and push them to the undercloud registry:

(undercloud) $ openstack overcloud container image upload \
 --config-file /home/stack/local_registry_images.yaml \
 --verbose

Pulling the required images might take some time depending on the speed of your network and
your undercloud disk.

NOTE

The container images consume approximately 10 GB of disk space.

6. The images are now stored on the undercloud’s docker-distribution registry. To view the list of
images on the undercloud’s docker-distribution registry, run the following command:

(undercloud) $ curl http://192.168.24.1:8787/v2/_catalog | jq .repositories[]

NOTE

The _catalog resource by itself displays only 100 images. To display more
images, use the ?n=<interger> query string with the _catalog resource to
display a larger number of images:

(undercloud) $ curl http://192.168.24.1:8787/v2/_catalog?n=150 | jq
.repositories[]

CHAPTER 2. OBTAINING AND MODIFYING CONTAINER IMAGES

11

To view a list of tags for a specific image, use the skopeo command:

(undercloud) $ curl -s http://192.168.24.1:8787/v2/rhosp13/openstack-keystone/tags/list | jq
.tags

To verify a tagged image, use the skopeo command:

(undercloud) $ skopeo inspect --tls-verify=false
docker://192.168.24.1:8787/rhosp13/openstack-keystone:13.0-44

The registry configuration is ready.

2.6. USING A SATELLITE SERVER AS A REGISTRY

Red Hat Satellite 6 offers registry synchronization capabilities. This provides a method to pull multiple
images into a Satellite server and manage them as part of an application life cycle. The Satellite also acts
as a registry for other container-enabled systems to use. For more details information on managing
container images, see "Managing Container Images" in the Red Hat Satellite 6 Content Management
Guide.

The examples in this procedure use the hammer command line tool for Red Hat Satellite 6 and an
example organization called ACME. Substitute this organization for your own Satellite 6 organization.

Procedure

1. Create a template to pull images to the local registry:

$ source ~/stackrc
(undercloud) $ openstack overcloud container image prepare \
 --namespace=rhosp13 \
 --prefix=openstack- \
 --output-images-file /home/stack/satellite_images

Use the -e option to include any environment files for optional services.

Use the -r option to include a custom roles file.

If using Ceph Storage, include the additional parameters to define the Ceph Storage
container image location: --set ceph_namespace, --set ceph_image, --set ceph_tag.

NOTE

This version of the openstack overcloud container image prepare command
targets the registry on the registry.redhat.io to generate an image list. It uses
different values than the openstack overcloud container image prepare
command used in a later step.

2. This creates a file called satellite_images with your container image information. You will use
this file to synchronize container images to your Satellite 6 server.

3. Remove the YAML-specific information from the satellite_images file and convert it into a flat
file containing only the list of images. The following sed commands accomplish this:

Red Hat OpenStack Platform 13 Transitioning to Containerized Services

12

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.2/html/content_management_guide/managing_container_images

(undercloud) $ awk -F ':' '{if (NR!=1) {gsub("[[:space:]]", ""); print $2}}' ~/satellite_images >
~/satellite_images_names

This provides a list of images that you pull into the Satellite server.

4. Copy the satellite_images_names file to a system that contains the Satellite 6 hammer tool.
Alternatively, use the instructions in the Hammer CLI Guide to install the hammer tool to the
undercloud.

5. Run the following hammer command to create a new product (OSP13 Containers) to your
Satellite organization:

$ hammer product create \
 --organization "ACME" \
 --name "OSP13 Containers"

This custom product will contain our images.

6. Add the base container image to the product:

$ hammer repository create \
 --organization "ACME" \
 --product "OSP13 Containers" \
 --content-type docker \
 --url https://registry.redhat.io \
 --docker-upstream-name rhosp13/openstack-base \
 --name base

7. Add the overcloud container images from the satellite_images file.

$ while read IMAGE; do \
 IMAGENAME=$(echo $IMAGE | cut -d"/" -f2 | sed "s/openstack-//g" | sed "s/:.*//g") ; \
 hammer repository create \
 --organization "ACME" \
 --product "OSP13 Containers" \
 --content-type docker \
 --url https://registry.redhat.io \
 --docker-upstream-name $IMAGE \
 --name $IMAGENAME ; done < satellite_images_names

8. Synchronize the container images:

$ hammer product synchronize \
 --organization "ACME" \
 --name "OSP13 Containers"

Wait for the Satellite server to complete synchronization.

NOTE

Depending on your configuration, hammer might ask for your Satellite server
username and password. You can configure hammer to automatically login using
a configuration file. See the "Authentication" section in the Hammer CLI Guide .

CHAPTER 2. OBTAINING AND MODIFYING CONTAINER IMAGES

13

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.2/html-single/hammer_cli_guide/
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html-single/hammer_cli_guide/#sect-CLI_Guide-Authentication

9. If your Satellite 6 server uses content views, create a new content view version to incorporate
the images.

10. Check the tags available for the base image:

$ hammer docker tag list --repository "base" \
 --organization "ACME" \
 --product "OSP13 Containers"

This displays tags for the OpenStack Platform container images.

11. Return to the undercloud and generate an environment file for the images on your Satellite
server. The following is an example command for generating the environment file:

(undercloud) $ openstack overcloud container image prepare \
 --namespace=satellite6.example.com:5000 \
 --prefix=acme-osp13_containers- \
 --tag-from-label {version}-{release} \
 --output-env-file=/home/stack/templates/overcloud_images.yaml

NOTE

This version of the openstack overcloud container image prepare command
targets the Satellite server. It uses different values than the openstack
overcloud container image prepare command used in a previous step.

When running this command, include the following data:

--namespace - The URL and port of the registry on the Satellite server. The registry port
on Red Hat Satellite is 5000. For example, --namespace=satellite6.example.com:5000.

NOTE

If you are using Red Hat Satellite version 6.10, you do not need to specify a
port. The default port of 443 is used. For more information, see "How can we
adapt RHOSP13 deployment to Red Hat Satellite 6.10?".

--prefix= - The prefix is based on a Satellite 6 convention for labels, which uses lower case
characters and substitutes spaces for underscores. The prefix differs depending on whether
you use content views:

If you use content views, the structure is [org]-[environment]-[content view]-
[product]-. For example: acme-production-myosp13-osp13_containers-.

If you do not use content views, the structure is [org]-[product]-. For example: acme-
osp13_containers-.

--tag-from-label {version}-{release} - Identifies the latest tag for each image.

-e - Include any environment files for optional services.

-r - Include a custom roles file.

--set ceph_namespace, --set ceph_image, --set ceph_tag - If using Ceph Storage,
include the additional parameters to define the Ceph Storage container image location.

Red Hat OpenStack Platform 13 Transitioning to Containerized Services

14

https://access.redhat.com/solutions/6971239

Note that ceph_image now includes a Satellite-specific prefix. This prefix is the same value
as the --prefix option. For example:

--set ceph_image=acme-osp13_containers-rhceph-3-rhel7

This ensures the overcloud uses the Ceph container image using the Satellite naming
convention.

12. The overcloud_images.yaml file contains the image locations on the Satellite server. Include
this file with your deployment.

The registry configuration is ready.

2.7. MODIFYING CONTAINERS IMAGES

Red Hat provides a set of pre-built container images through the Red Hat Container Catalog
(registry.redhat.io). It is possible to modify these images and add additional layers to them. This is
useful for adding RPMs for certified 3rd party drivers to the containers.

NOTE

To ensure continued support for modified OpenStack Platform container images, ensure
that the resulting images comply with the "Red Hat Container Support Policy" .

This example shows how to customize the latest openstack-keystone image. However, these
instructions can also apply to other images:

Procedure

1. Pull the image you aim to modify. For example, for the openstack-keystone image:

$ sudo docker pull registry.redhat.io/rhosp13/openstack-keystone:latest

2. Check the default user on the original image. For example, for the openstack-keystone image:

$ sudo docker run -it registry.redhat.io/rhosp13/openstack-keystone:latest whoami
root

NOTE

The openstack-keystone image uses root as the default user. Other images use
specific users. For example, openstack-glance-api uses glance for the default
user.

3. Create a Dockerfile to build an additional layer on an existing container image. The following is
an example that pulls the latest OpenStack Identity (keystone) image from the Container
Catalog and installs a custom RPM file to the image:

FROM registry.redhat.io/rhosp13/openstack-keystone
MAINTAINER Acme
LABEL name="rhosp13/openstack-keystone-acme" vendor="Acme" version="2.1"
release="1"

CHAPTER 2. OBTAINING AND MODIFYING CONTAINER IMAGES

15

https://access.redhat.com/articles/2726611

switch to root and install a custom RPM, etc.
USER root
COPY custom.rpm /tmp
RUN rpm -ivh /tmp/custom.rpm

switch the container back to the default user
USER root

4. Build and tag the new image. For example, to build with a local Dockerfile stored in the
/home/stack/keystone directory and tag it to your undercloud’s local registry:

$ docker build /home/stack/keystone -t "192.168.24.1:8787/rhosp13/openstack-keystone-
acme:rev1"

5. Push the resulting image to the undercloud’s local registry:

$ docker push 192.168.24.1:8787/rhosp13/openstack-keystone-acme:rev1

6. Edit your overcloud container images environment file (usually overcloud_images.yaml) and
change the appropriate parameter to use the custom container image.

WARNING

The Container Catalog publishes container images with a complete software stack
built into it. When the Container Catalog releases a container image with updates
and security fixes, your existing custom container will not include these updates and
will require rebuilding using the new image version from the Catalog.

Red Hat OpenStack Platform 13 Transitioning to Containerized Services

16

CHAPTER 3. DEPLOYING AND UPDATING AN OVERCLOUD
WITH CONTAINERS

This chapter provides info on how to create a container-based overcloud and keep it updated.

3.1. DEPLOYING AN OVERCLOUD

This procedure demonstrates how to deploy an overcloud with minimum configuration. The result will be
a basic two-node overcloud (1 Controller node, 1 Compute node).

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Run the deploy command and include the file containing your overcloud image locations
(usually overcloud_images.yaml):

(undercloud) $ openstack overcloud deploy --templates \
 -e /home/stack/templates/overcloud_images.yaml \
 --ntp-server pool.ntp.org

3. Wait until the overcloud completes deployment.

3.2. UPDATING AN OVERCLOUD

For information on updating a containerized overcloud, see the Keeping Red Hat OpenStack Platform
Updated guide.

CHAPTER 3. DEPLOYING AND UPDATING AN OVERCLOUD WITH CONTAINERS

17

CHAPTER 4. WORKING WITH CONTAINERIZED SERVICES
This chapter provides some examples of commands to manage containers and how to troubleshoot your
OpenStack Platform containers

4.1. MANAGING CONTAINERIZED SERVICES

The overcloud runs most OpenStack Platform services in containers. In certain situations, you might
need to control the individual services on a host. This section provides some common docker
commands you can run on an overcloud node to manage containerized services. For more
comprehensive information on using docker to manage containers, see Working with Docker formatted
containers in the Getting Started with Containers guide.

NOTE

Before running these commands, check that you are logged into an overcloud node and
not running these commands on the undercloud.

Listing containers and images

To list running containers:

$ sudo docker ps

To also list stopped or failed containers, add the --all option:

$ sudo docker ps --all

To list container images:

$ sudo docker images

Inspecting container properties

To view the properties of a container or container images, use the docker inspect command. For
example, to inspect the keystone container:

$ sudo docker inspect keystone

Managing basic container operations

To restart a containerized service, use the docker restart command. For example, to restart the
keystone container:

$ sudo docker restart keystone

To stop a containerized service, use the docker stop command. For example, to stop the keystone
container:

$ sudo docker stop keystone

To start a stopped containerized service, use the docker start command. For example, to start the
keystone container:

Red Hat OpenStack Platform 13 Transitioning to Containerized Services

18

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_containers/using_the_docker_command_and_service#working_with_docker_formatted_containers

$ sudo docker start keystone

NOTE

Any changes to the service configuration files within the container revert after restarting
the container. This is because the container regenerates the service configuration based
upon files on the node’s local file system in /var/lib/config-data/puppet-generated/. For
example, if you edit /etc/keystone/keystone.conf within the keystone container and
restart the container, the container regenerates the configuration using /var/lib/config-
data/puppet-generated/keystone/etc/keystone/keystone.conf on the node’s local file
system, which overwrites any the changes made within the container before the restart.

Monitoring containers

To check the logs for a containerized service, use the docker logs command. For example, to view the
logs for the keystone container:

$ sudo docker logs keystone

Accessing containers

To enter the shell for a containerized service, use the docker exec command to launch /bin/bash. For
example, to enter the shell for the keystone container:

$ sudo docker exec -it keystone /bin/bash

To enter the shell for the keystone container as the root user:

$ sudo docker exec --user 0 -it <NAME OR ID> /bin/bash

To exit from the container:

exit

4.2. TROUBLESHOOTING CONTAINERIZED SERVICES

If a containerized service fails during or after overcloud deployment, use the following recommendations
to determine the root cause for the failure:

NOTE

Before running these commands, check that you are logged into an overcloud node and
not running these commands on the undercloud.

Checking the container logs

Each container retains standard output from its main process. This output acts as a log to help
determine what actually occurs during a container run. For example, to view the log for the keystone
container, use the following command:

$ sudo docker logs keystone

CHAPTER 4. WORKING WITH CONTAINERIZED SERVICES

19

In most cases, this log provides the cause of a container’s failure.

Inspecting the container

In some situations, you might need to verify information about a container. For example, use the
following command to view keystone container data:

$ sudo docker inspect keystone

This provides a JSON object containing low-level configuration data. You can pipe the output to the jq
command to parse specific data. For example, to view the container mounts for the keystone container,
run the following command:

$ sudo docker inspect keystone | jq .[0].Mounts

You can also use the --format option to parse data to a single line, which is useful for running commands
against sets of container data. For example, to recreate the options used to run the keystone container,
use the following inspect command with the --format option:

$ sudo docker inspect --format='{{range .Config.Env}} -e "{{.}}" {{end}} {{range .Mounts}} -v
{{.Source}}:{{.Destination}}{{if .Mode}}:{{.Mode}}{{end}}{{end}} -ti {{.Config.Image}}' keystone

NOTE

The --format option uses Go syntax to create queries.

Use these options in conjunction with the docker run command to recreate the container for
troubleshooting purposes:

$ OPTIONS=$(sudo docker inspect --format='{{range .Config.Env}} -e "{{.}}" {{end}} {{range
.Mounts}} -v {{.Source}}:{{.Destination}}{{if .Mode}}:{{.Mode}}{{end}}{{end}} -ti {{.Config.Image}}'
keystone)
$ sudo docker run --rm $OPTIONS /bin/bash

Running commands in the container

In some cases, you might need to obtain information from within a container through a specific Bash
command. In this situation, use the following docker command to execute commands within a running
container. For example, to run a command in the keystone container:

$ sudo docker exec -ti keystone <COMMAND>

NOTE

The -ti options run the command through an interactive pseudoterminal.

Replace <COMMAND> with your desired command. For example, each container has a health check
script to verify the service connection. You can run the health check script for keystone with the
following command:

$ sudo docker exec -ti keystone /openstack/healthcheck

Red Hat OpenStack Platform 13 Transitioning to Containerized Services

20

To access the container’s shell, run docker exec using /bin/bash as the command:

$ sudo docker exec -ti keystone /bin/bash

Exporting a container

When a container fails, you might need to investigate the full contents of the file. In this case, you can
export the full file system of a container as a tar archive. For example, to export the keystone
container’s file system, run the following command:

$ sudo docker export keystone -o keystone.tar

This command create the keystone.tar archive, which you can extract and explore.

CHAPTER 4. WORKING WITH CONTAINERIZED SERVICES

21

CHAPTER 5. COMPARING SYSTEMD SERVICES TO
CONTAINERIZED SERVICES

This chapter provides some reference material to show how containerized services differ from Systemd
services.

5.1. SYSTEMD SERVICE COMMANDS VS CONTAINERIZED SERVICE
COMMANDS

The following table shows some similarities between Systemd-based commands and their Docker
equivalents. This helps identify the type of service operation you aim to perform.

Function Systemd-based Docker-based

List all services systemctl list-units -t service docker ps --all

List active services systemctl list-units -t service
--state active

docker ps

Check status of service systemctl status openstack-
nova-api

docker ps --filter
"name=nova_api$" --all

Stop service systemctl stop openstack-
nova-api

docker stop nova_api

Start service systemctl start openstack-
nova-api

docker start nova_api

Restart service systemctl restart openstack-
nova-api

docker restart nova_api

Show service configuration systemctl show openstack-
nova-api

systemctl cat openstack-
nova-api

docker inspect nova_api

Show service logs journalctl -u openstack-
nova-api

docker logs nova_api

5.2. SYSTEMD SERVICES VS CONTAINERIZED SERVICES

The following table shows Systemd-based OpenStack services and their container-based equivalents.

OpenStack service Systemd services Docker containers

Red Hat OpenStack Platform 13 Transitioning to Containerized Services

22

aodh openstack-aodh-evaluator

openstack-aodh-listener

openstack-aodh-notifier

httpd (openstack-aodh-api)

aodh_listener

aodh_api

aodh_notifier

aodh_evaluator

ceilometer openstack-ceilometer-
central

openstack-ceilometer-
collector

openstack-ceilometer-
notification

httpd (openstack-ceilometer-
api)

ceilometer_agent_notificatio
n

ceilometer_agent_central

cinder openstack-cinder-api

openstack-cinder-scheduler

openstack-cinder-volume

cinder_scheduler

cinder_api

openstack-cinder-volume-
docker-0

glance openstack-glance-api

openstack-glance-registry

glance_api

gnocchi openstack-gnocchi-metricd

openstack-gnocchi-statsd

httpd (openstack-gnocchi-
api)

gnocchi_statsd

gnocchi_api

gnocchi_metricd

heat openstack-heat-api-cfn

openstack-heat-api-
cloudwatch

openstack-heat-api

openstack-heat-engine

heat_api_cfn

heat_engine

heat_api

horizon httpd (openstack-dashboard) horizon

keystone httpd (openstack-keystone) keystone

OpenStack service Systemd services Docker containers

CHAPTER 5. COMPARING SYSTEMD SERVICES TO CONTAINERIZED SERVICES

23

neutron neutron-dhcp-agent

neutron-l3-agent

neutron-metadata-agent

neutron-openvswitch-agent

neutron-server

neutron_ovs_agent

neutron_l3_agent

neutron_metadata_agent

neutron_dhcp

neutron_api

nova openstack-nova-api

openstack-nova-conductor

openstack-nova-consoleauth

openstack-nova-novncproxy

openstack-nova-scheduler

nova_metadata

nova_api

nova_conductor

nova_vnc_proxy

nova_consoleauth

nova_api_cron

nova_scheduler

nova_placement

panko panko_api

OpenStack service Systemd services Docker containers

Red Hat OpenStack Platform 13 Transitioning to Containerized Services

24

swift openstack-swift-account-
auditor

openstack-swift-account-
reaper

openstack-swift-account-
replicator

openstack-swift-account

openstack-swift-container-
auditor

openstack-swift-container-
replicator

openstack-swift-container-
updater

openstack-swift-container

openstack-swift-object-
auditor

openstack-swift-object-
expirer

openstack-swift-object-
replicator

openstack-swift-object-
updater

openstack-swift-object

openstack-swift-proxy

swift_proxy

swift_account_server

swift_container_auditor

swift_object_expirer

swift_object_updater

swift_container_replicator

swift_account_auditor

swift_object_replicator

swift_container_server

swift_rsync

swift_account_reaper

swift_account_replicator

swift_object_auditor

swift_object_server

swift_container_update

OpenStack service Systemd services Docker containers

5.3. SYSTEMD LOG LOCATIONS VS CONTAINERIZED LOG
LOCATIONS

The following table shows Systemd-based OpenStack logs and their equivalents for containers. All
container-based log locations are available on the physical host and are mounted to the container.

OpenStack service Systemd service logs Docker container logs

aodh /var/log/aodh/ /var/log/containers/aodh/

/var/log/containers/httpd/aod
h-api/

CHAPTER 5. COMPARING SYSTEMD SERVICES TO CONTAINERIZED SERVICES

25

ceilometer /var/log/ceilometer/ /var/log/containers/ceilomete
r/

cinder /var/log/cinder/ /var/log/containers/cinder/

/var/log/containers/httpd/cin
der-api/

glance /var/log/glance/ /var/log/containers/glance/

gnocchi /var/log/gnocchi/ /var/log/containers/gnocchi/

/var/log/containers/httpd/gno
cchi-api/

heat /var/log/heat/ /var/log/containers/heat/

/var/log/containers/httpd/hea
t-api/

/var/log/containers/httpd/hea
t-api-cfn/

horizon /var/log/horizon/ /var/log/containers/horizon/

/var/log/containers/httpd/hori
zon/

keystone /var/log/keystone/ /var/log/containers/keystone

/var/log/containers/httpd/key
stone/

databases /var/log/mariadb/

/var/log/mongodb/

/var/log/mysqld.log

/var/log/containers/mysql/

neutron /var/log/neutron/ /var/log/containers/neutron/

/var/log/containers/httpd/neu
tron-api/

OpenStack service Systemd service logs Docker container logs

Red Hat OpenStack Platform 13 Transitioning to Containerized Services

26

nova /var/log/nova/ /var/log/containers/nova/

/var/log/containers/httpd/nov
a-api/

/var/log/containers/httpd/nov
a-placement/

panko /var/log/containers/panko/

/var/log/containers/httpd/pan
ko-api/

rabbitmq /var/log/rabbitmq/ /var/log/containers/rabbitmq/

redis /var/log/redis/ /var/log/containers/redis/

swift /var/log/swift/ /var/log/containers/swift/

OpenStack service Systemd service logs Docker container logs

5.4. SYSTEMD CONFIGURATION VS CONTAINERIZED
CONFIGURATION

The following table shows Systemd-based OpenStack configuration and their equivalents for
containers. All container-based configuration locations are available on the physical host, are mounted
to the container, and are merged (via kolla) into the configuration within each respective container.

OpenStack service Systemd service configuration Docker container configuration

aodh /etc/aodh/ /var/lib/config-data/puppet-
generated/aodh/

ceilometer /etc/ceilometer/ /var/lib/config-data/puppet-
generated/ceilometer/etc/ceil
ometer/

cinder /etc/cinder/ /var/lib/config-data/puppet-
generated/cinder/etc/cinder/

glance /etc/glance/ /var/lib/config-data/puppet-
generated/glance_api/etc/gla
nce/

gnocchi /etc/gnocchi/ /var/lib/config-data/puppet-
generated/gnocchi/etc/gnocc
hi/

CHAPTER 5. COMPARING SYSTEMD SERVICES TO CONTAINERIZED SERVICES

27

haproxy /etc/haproxy/ /var/lib/config-data/puppet-
generated/haproxy/etc/hapro
xy/

heat /etc/heat/ /var/lib/config-data/puppet-
generated/heat/etc/heat/

/var/lib/config-data/puppet-
generated/heat_api/etc/heat/

/var/lib/config-data/puppet-
generated/heat_api_cfn/etc/h
eat/

horizon /etc/openstack-dashboard/ /var/lib/config-data/puppet-
generated/horizon/etc/opens
tack-dashboard/

keystone /etc/keystone/ /var/lib/config-data/puppet-
generated/keystone/etc/keys
tone/

databases /etc/my.cnf.d/

/etc/my.cnf

/var/lib/config-data/puppet-
generated/mysql/etc/my.cnf.
d/

neutron /etc/neutron/ /var/lib/config-data/puppet-
generated/neutron/etc/neutr
on/

nova /etc/nova/ /var/lib/config-data/puppet-
generated/nova/etc/nova/

/var/lib/config-data/puppet-
generated/nova_placement/e
tc/nova/

panko /var/lib/config-data/puppet-
generated/panko/etc/panko

rabbitmq /etc/rabbitmq/ /var/lib/config-data/puppet-
generated/rabbitmq/etc/rabbi
tmq/

OpenStack service Systemd service configuration Docker container configuration

Red Hat OpenStack Platform 13 Transitioning to Containerized Services

28

redis /etc/redis/

/etc/redis.conf

/var/lib/config-data/puppet-
generated/redis/etc/redis/

/var/lib/config-data/puppet-
generated/redis/etc/redis.co
nf

swift /etc/swift/ /var/lib/config-data/puppet-
generated/swift/etc/swift/

/var/lib/config-data/puppet-
generated/swift_ringbuilder/
etc/swift/

OpenStack service Systemd service configuration Docker container configuration

CHAPTER 5. COMPARING SYSTEMD SERVICES TO CONTAINERIZED SERVICES

29

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. CONTAINERIZED SERVICES AND KOLLA

	CHAPTER 2. OBTAINING AND MODIFYING CONTAINER IMAGES
	2.1. REGISTRY METHODS
	2.2. CONTAINER IMAGE PREPARATION COMMAND USAGE
	2.3. CONTAINER IMAGES FOR ADDITIONAL SERVICES
	2.4. USING THE RED HAT REGISTRY AS A REMOTE REGISTRY SOURCE
	2.5. USING THE UNDERCLOUD AS A LOCAL REGISTRY
	2.6. USING A SATELLITE SERVER AS A REGISTRY
	2.7. MODIFYING CONTAINERS IMAGES

	CHAPTER 3. DEPLOYING AND UPDATING AN OVERCLOUD WITH CONTAINERS
	3.1. DEPLOYING AN OVERCLOUD
	3.2. UPDATING AN OVERCLOUD

	CHAPTER 4. WORKING WITH CONTAINERIZED SERVICES
	4.1. MANAGING CONTAINERIZED SERVICES
	4.2. TROUBLESHOOTING CONTAINERIZED SERVICES

	CHAPTER 5. COMPARING SYSTEMD SERVICES TO CONTAINERIZED SERVICES
	5.1. SYSTEMD SERVICE COMMANDS VS CONTAINERIZED SERVICE COMMANDS
	5.2. SYSTEMD SERVICES VS CONTAINERIZED SERVICES
	5.3. SYSTEMD LOG LOCATIONS VS CONTAINERIZED LOG LOCATIONS
	5.4. SYSTEMD CONFIGURATION VS CONTAINERIZED CONFIGURATION

