& RedHat

Red Hat OpenStack Platform 13

Custom Block Storage Back End Deployment
Guide

A Guide to Deploying a Custom Block Storage Back End in a Red Hat OpenStack
Platform Overcloud

Last Updated: 2023-01-31






Red Hat OpenStack Platform 13 Custom Block Storage Back End
Deployment Guide

A Guide to Deploying a Custom Block Storage Back End in a Red Hat OpenStack Platform
Overcloud

OpenStack Team
rhos-docs@redhat.com



Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to deploy a custom, non-integrated back end for the Block Storage
service in a Red Hat OpenStack Platform 13 Overcloud.



Table of Contents

Table of Contents
MAKING OPEN SOURCE MORE INCLUSIVE ...ttt e e e e e e et e e e e e e, 3
CHAPTER 1. INTRODUCTION . vttt e e e e e e e e e e et e e e, 4
11. CUSTOM BACK ENDS 4
1.2. REQUIREMENTS 5
CHAPTER 2. PROCESS DESCRIPTION .« .ttt e et e e e e e e e e e 6
CHAPTER 3. CREATE THE ENVIRONMENT FILE ..ottt et e e et e e e e e e e 7
CHAPTER 4. DEPLOY THE CONFIGURED BACK ENDS ...ttt et e e e e e e 9
CHAPTER 5. TEST THE CONFIGURED BACK END ... vvve ettt 10
APPENDIX A. APPENDIX ..ttt e e e e e e e e e e 1
A.1. THE STACK USER n
A.2. RESULTING CONFIGURATION FROM SAMPLE ENVIRONMENT FILE il



Red Hat OpenStack Platform 13 Custom Block Storage Back End Deployment Guide




MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.


https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat OpenStack Platform 13 Custom Block Storage Back End Deployment Guide

CHAPTER 1. INTRODUCTION

The Red Hat OpenStack Platform (RHOSP) director is a toolset for installing and managing a complete
RHOSP environment. It is based primarily on the upstream TripleO (OpenStack-on-OpenStack) project.
The primary objective of director is to fully orchestrate a functional, Enterprise-grade RHOSP
deployment with minimal manual configuration. It helps to address many of the issues inherent in
manually configuring individual OpenStack components.

The end-result RHOSP deployment provided by director is called the overcloud. The overcloud contains
all the components that provide services to end users, including Block Storage. This document provides
guidance on how to deploy custom back ends to the Block Storage service of the overcloud.

This document presumes existing knowledge of concepts relating to manual Block Storage
configuration. In a test deployment of OpenStack (for example, through Packstack), configuring this
service involves editing the /etc/cinder/cinder.conf of its host node . Most of the Block Storage
settings in that file are documented in better detail elsewhere; this document describes how to apply
those same settings to the overcloud to attach a custom back end.

' WARNING
A This procedure has been tested successfully in limited use cases. Ensure that you

test your planned deployment on a non-production environment first. If you have
any questions, contact Red Hat support.

1.1. CUSTOM BACK ENDS

For the purposes of this document, a custom back end is defined as a storage server, appliance or
configuration that has yet to be integrated fully into the Red Hat OpenStack Platform director. Some
supported Block Storage back ends are already integrated into the director; this means that pre-
configured director files are already provided. An integrated back end can be configured and deployed
to the overcloud through these files. Examples of integrated back ends include Red Hat Ceph and
single-back end configurations of Dell EMC PS Series, Dell Storage Center, and NetApp appliances.

Further, some storage appliances already integrated into director only support a single-instance back
end. For example, the pre-configured director files for Dell Storage Center only support the deployment
of a single back end. Deploying multiple back end instances of this appliance requires a custom
configuration, as demonstrated in this document.

Although you can manually configure the Block Storage service by directly editing the
/etc/cinder/cinder.conf file of its node, director overwrites your configuration when you run the
openstack overcloud deploy command. For this reason, the recommended method for deploying a
Block Storage back end is through the director, this ensures that your settings persist through overcloud
deployments and updates.

If a back end configuration is already fully integrated, you can edit and invoke its packaged environment
files. With custom back ends, however, you must write your own environment file. For more information,
see Including Environment Files in Overcloud Creation in the Director Installation and Usage guide. This
document includes an annotated sample that you can edit for your own deployment:
/home/stack/templates/custom-env.yaml. This sample file is suitable for configuring the Block Storage
service to use two NetApp back ends.


https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage#sect-Including_Environment_Files_in_Overcloud_Creation

CHAPTER 1. INTRODUCTION

1.2. REQUIREMENTS

Prerequisites

In addition to prior knowledge about manually configuring Block Storage and the back end you
want to deploy.

If you are using third-party back end appliances, then they must already be properly configured
as storage repositories.

The overcloud has already been deployed through director. See the Director Installation and
Usage guide.

You have the username and password of an account with elevated privileges. You can use the
same account that you created to deploy the overcloud. See Creating the stack user, in the
Director Installation and Usage guide. The stack user is created for this purpose.

You have already mapped out the resulting configuration you want for the Block Storage back
end in /etc/cinder/cinder.conf.


https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage/index#creating-the-stack-user

Red Hat OpenStack Platform 13 Custom Block Storage Back End Deployment Guide

CHAPTER 2. PROCESS DESCRIPTION

The Block Storage service's settings are stored in /etc/cinder/cinder.conf; these settings include back
end definitions. Most third-party back ends usable with (or even supported by) the Block Storage service
provide setup instructions that involve editing /etc/cinder/cinder.conf settings. As mentioned in
Chapter 1, Introduction, doing so will configure the Block Storage service; however, those settings will
get overwritten in future Overcloud updates.

Regardless, any documentation relating to manual configuration through /etc/cinder/cinder.conf is still
useful for Overcloud deployments. The Director, after all, applies the same configuration to
/etc/cinder/cinder.conf, albeit through heat. As such, planning the back end configuration requires that
you:

® Thoroughly plan the Block Storage back end configuration you want, and

® Map out the resulting /etc/cinder/cinder.conf file for this configuration.
Once you map out the resulting /etc/cinder/cinder.conf file, create the environment file that will
orchestrate the back end settings. environment file describes this step in greater detail, using the

sample file /home/stack/templates/custom-env.yaml. Having the environment file handy will help
ensure that the back end settings persist through future Overcloud updates.



CHAPTER 3. CREATE THE ENVIRONMENT FILE

CHAPTER 3. CREATE THE ENVIRONMENT FILE

The environment file contains the settings for each back end that you want to define, and other relevant
settings. For more information about environment files, see Environment Files in the Advanced
Overcloud Customization guide.

The following sample environment file defines two NetApp back ends: netappland netapp2:

/home/stack/templates/custom-env.yaml

parameter_defaults: # ﬂ
CinderEnablelscsiBackend: false
CinderEnableRbdBackend: false
CinderEnableNfsBackend: false
NovaEnableRbdBackend: false
GlanceBackend: file # 9
ControllerExtraConfig: # 6

cinder::config::cinder_config:

netappi/volume_driver: #

value: cinder.volume.drivers.netapp.common.NetAppDriver
netappi1/netapp_storage_family:

value: ontap_7mode
netapp1/netapp_storage_protocol:

value: iscsi
netappi/netapp_server_hostname:

value: 10.35.64.11
netapp1/netapp_server_port:

value: 80
netappi/netapp_login:

value: root
netapp1/netapp_password:

value: p@$$wOrd
netapp1/volume_backend_name:

value: netapp1
netapp2/volume_driver: #

value: cinder.volume.drivers.netapp.common.NetAppDriver # G
netapp2/netapp_storage_family:

value: ontap_7mode
netapp2/netapp_storage_protocol:

value: iscsi
netapp2/netapp_server_hostname:

value: 10.35.64.11
netapp2/netapp_server_port:

value: 80
netapp2/netapp_login:

value: root
netapp2/netapp_password:

value: p@$$wOrd
netapp2/volume_backend_name:

value: netapp2

cinder_user_enabled_backends: ['netapp1','netapp2'] # ﬂ

ﬂ The following parameters are set to false, and thereby disable other back end types:


https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/#sect-Environment_Files

Red Hat OpenStack Platform 13 Custom Block Storage Back End Deployment Guide

o

e CinderEnablelscsiBackend: other iSCSI back ends.

e CinderEnableRbdBackend: Red Hat Ceph.

e CinderEnableNfsBackend: NFS.

o NovaEnableRbdBackend: ephemeral Red Hat Ceph storage.

The GlanceBackend parameter sets what the Image service should use to store images. The
following values are supported:

e file: store images on /var/lib/glance/images on each Controller node.
e swift: use the Object Storage service for image storage.
e cinder: use the Block Storage service for image storage.

ControllerExtraConfig defines custom settings that will be applied to all Controller nodes. The
cinder::config::cinder_config class means the settings should be applied to the Block Storage
(cinder) service. This, in turn, means that the back end settings will ultimately end in the
/etc/cinder/cinder.conf file of each Controller node.

The netapp1/volume_driver and netapp2/volume_driver settings follow the section/setting
syntax. With the Block Storage service, each back end is defined in its own section in
/etc/cinder/cinder.conf. Each setting that uses the netapp1 prefix will be defined in a new
[netapp1] back end section.

Likewise, netapp2 settings are defined in a separate [netapp2] section.
The value prefix configures the preceding setting.

The cinder_user_enabled_backends class sets and enables custom back ends. As the name
implies, this class should only be used for user-enabled back ends; specifically, those defined in the
cinder::config::cinder_config class.

Do not use cinder_user_enabled_backends to list back ends you can enable natively through
Director. These include Red Hat Ceph, NFS, and single back ends for supported NetApp or Dell
appliances. For example, if you are also enabling a Red Hat Ceph back end, do not list it in
cinder_user_enabled_backends; rather, enable it using CinderEnableRbdBackend: true.

NOTE

For more information on defining a Red Hat Ceph back end for OpenStack Block
Storage, see Deploying an Overcloud with Containerized Red Hat Ceph .

Deploy the Configured Back Ends describes how to use the environment file
/home/stack/templates/custom-env.yaml to orchestrate the custom back end’s deployment. To see
the resulting /etc/cinder/cinder.conf settings from /home/stack/templates/custom-env.yaml, see
Section A.2, "Resulting Configuration from Sample Environment File” .


https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/

CHAPTER 4. DEPLOY THE CONFIGURED BACK ENDS

CHAPTER 4. DEPLOY THE CONFIGURED BACK ENDS

When you have created the custom-env.yaml file in /home/stack/templates/, log in as the stack user.
Then, deploy the custom back end configuration by running:

I $ openstack overcloud deploy --templates -e /home/stack/templates/custom-env.yami

IMPORTANT

If you passed any extra environment files when you created the overcloud, pass them
again here by using the -e option to avoid making undesired changes to the overcloud.
For more information, see Modifying the Overcloud Environment in the Director
Installation and Usage guide.

Test the back end after director orchestration is complete. See Chapter 5, Test the Configured Back
End.


https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage#sect-Modifying_the_Overcloud_Environment

Red Hat OpenStack Platform 13 Custom Block Storage Back End Deployment Guide

CHAPTERS5. TEST THE CONFIGURED BACK END

After you deploy the back ends to the overcloud, test if you can successfully create volumes on them.
You must load the necessary environment variables first. The variables are defined in
/home/stack/overcloudrc by default.

1. To load the variables, run the following command as the stack user:

I $ source /home/stack/overcloudrc

NOTE

For more information, see Accessing the overcloud in the Director Installation and Usage
guide.

1. Create a volume type for each back end. Log in to the Controller node of the overcloud as the
stack user and run the following command:

$ cinder type-create backend1
$ cinder type-create backend2

These commands create the volume types backend1 and backend2, one for each back end defined
through the cinder::config::cinder_config class of envfile.

1. Map each volume type to the volume_backend_name of a back end enabled through the
cinder_user_enabled_backends class of envfile. The following commands map the volume
type backend1 to netapp1 and backend2 to netapp2:

$ cinder type-key backend1 set volume_backend_name=netapp1
$ cinder type-key backend?2 set volume_backend_name=netapp2

1. You can now test each back end. Create a 1GB volume named netapp_volume_1 on the
netapp1 back end by invoking the backend1 volume type:

I $ cinder create --volume-type backend1 --display_name netappvolume_1 1

1. Create a similar volume on the netapp2 back end by invoking the backend2 volume type:

I $ cinder create --volume-type backend2 --display_name netappvolume_2 1

10


https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/director_installation_and_usage/chap-configuring_basic_overcloud_requirements_with_the_cli_tools#sect-Accessing_the_Overcloud

APPENDIX A. APPENDIX

APPENDIX A. APPENDIX

A.1l. THE STACK USER

You can use the stack user account to run commands that require elevated privileges such as deploying
the back end or loading environment variables for accessing the overcloud. For more information about
the stack user, see Creating the stack user in the Director Installation and Usage guide.

A.2. RESULTING CONFIGURATION FROM SAMPLE ENVIRONMENT
FILE

The environment file in Chapter 3, Create the Environment File, configures the Block Storage service to
use two NetApp back ends. The following snippet displays the relevant settings:

enabled_backends = netapp1,netapp2

[netapp1]

volume_backend_name=netapp_1
volume_driver=cinder.volume.drivers.netapp.common.NetAppDriver
netapp_login=root

netapp_storage_protocol=iscsi

netapp_password=p@$$wO0rd
netapp_storage_family=ontap_7mode

netapp_server_port=80

netapp_server_hostname=10.35.64.11

[netapp2]

volume_backend_name=netapp_2
volume_driver=cinder.volume.drivers.netapp.common.NetAppDriver
netapp_login=root

netapp_storage_protocol=iscsi

netapp_password=p@$$wO0rd
netapp_storage_family=ontap_7mode

netapp_server_port=80

netapp_server_hostname=10.35.64.11

1


https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/director_installation_and_usage/installing-the-undercloud#creating-the-stack-user

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION
	1.1. CUSTOM BACK ENDS
	1.2. REQUIREMENTS

	CHAPTER 2. PROCESS DESCRIPTION
	CHAPTER 3. CREATE THE ENVIRONMENT FILE
	CHAPTER 4. DEPLOY THE CONFIGURED BACK ENDS
	CHAPTER 5. TEST THE CONFIGURED BACK END
	APPENDIX A. APPENDIX
	A.1. THE STACK USER
	A.2. RESULTING CONFIGURATION FROM SAMPLE ENVIRONMENT FILE


