& RedHat

Red Hat OpenShift Dev Spaces 3.4

User guide

Using Red Hat OpenShift Dev Spaces 3.4

Last Updated: 2023-02-08

Red Hat OpenShift Dev Spaces 3.4 User guide

Using Red Hat OpenShift Dev Spaces 3.4

Robert Kratky
rkratky@redhat.com

Fabrice Flore-Thébault
ffloreth@redhat.com

Jana Vrbkova
jvrbkova@redhat.com

Max Leonov
mleonov@redhat.com

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Information for users using Red Hat OpenShift Dev Spaces.

Table of Contents

Table of Contents

CHAPTER 1. ADOPTING DEV SPACES . ittt ittt ettt et ettt et eeeeeneenaneennneennn, 4
1.1. DEVELOPER WORKSPACES 4
1.1.1. Microsoft Visual Studio Code - Open Source 4
1.2. STACK SAMPLES 5
1.3. BADGE FOR FIRST-TIME CONTRIBUTORS 7
1.4. REVIEWING PULL AND MERGE REQUESTS 7
CHAPTER 2. USER ONBOARDING ...ttt titttittteittteitetaeeeneeeaeeeaneeaaneeanneeaneeeaneennneenns 9
2.1. STARTING A NEW WORKSPACE WITH A CLONE OF A GIT REPOSITORY 9
2.2. OPTIONAL PARAMETERS FOR THE URLS FOR STARTING A NEW WORKSPACE 1
2.2.1. URL parameter concatenation n
2.2.2. URL parameter for the workspace IDE 12
2.2.3. URL parameter for starting duplicate workspaces 13
2.2.4. URL parameter for the devfile file name 13
2.2.5. URL parameter for the devfile file path 13
2.2.6. URL parameter for the workspace storage 14
2.2.7. URL parameter for additional remotes 14
2.3.BASIC ACTIONS YOU CAN PERFORM ON A WORKSPACE 15
2.4. AUTHENTICATING TO A GIT SERVER FROM A WORKSPACE 15
CHAPTER 3. CUSTOMIZING WORKSPACE COMPONENTS ...ttt et ieieraneennnennnnenns 16
CHAPTER 4. INTRODUCTION TODEVFILEINDEV SPACES ...ttt eitenaneennnennneenns 17
CHAPTERGS. SELECTING AWORKSPACE IDE ..ottt ettt eat et eaneenaneenaneenneenns 18
5.1. SELECTING AN IN-BROWSER IDE FOR ONE NEW WORKSPACE 18
5.2. SELECTING AN IN-BROWSER IDE FOR ALL WORKSPACES THAT CLONE THE SAME GIT REPOSITORY
19
5.2.1. Setting up che-editor.yaml 19
5.2.2. Parameters for che-editor.yaml 19
CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS INWORKSPACEScccviiiivnnnnnn. 21
6.1. MOUNTING SECRETS 21
6.1.1. Creating image pull Secrets 23
6.1.1.1. Creating an image pull Secret with oc 23
6.1.1.2. Creating an image pull Secret from a .dockercfg file 23
6.1.1.3. Creating an image pull Secret from a config.json file 24
6.1.2. Using a Git-provider access token 25
6.2. MOUNTING CONFIGMAPS 27
6.3. ENABLING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT 28
6.3.1. Maven 29
6.3.2. Gradle 31
6.3.3. npm 33
6.3.4. Python 34
6.3.5.Go 35
6.3.6. NuGet 36
CHAPTER 7. REQUESTING PERSISTENT STORAGE FORWORKSPACESciiiiiiiiiiiiiiiii e, 38
7.1. REQUESTING PERSISTENT STORAGE IN A DEVFILE 38
7.2. REQUESTING PERSISTENT STORAGE IN A PVC 39
CHAPTER 8. INTEGRATING WITH OPENSHIF T .ottt ittt ittt ee et et eaieennnennneenns 41
8.1. MANAGING WORKSPACES WITH OPENSHIFT APIS 41

Red Hat OpenShift Dev Spaces 3.4 User guide

8.1.1. Listing all workspaces
8.1.2. Creating workspaces
8.1.3. Stopping workspaces
8.1.4. Starting stopped workspaces
8.1.5. Removing workspaces
8.2. AUTOMATIC OPENSHIFT TOKEN INJECTION
8.3. NAVIGATING DEV SPACES FROM OPENSHIFT DEVELOPER PERSPECTIVE
8.3.1. OpenShift Developer Perspective integration with OpenShift Dev Spaces

8.3.2. Editing the code of applications running in OpenShift Container Platform using OpenShift Dev Spaces

8.3.3. Accessing OpenShift Dev Spaces from Red Hat Applications menu
8.4. NAVIGATING OPENSHIFT WEB CONSOLE FROM DEV SPACES

CHAPTER 9. TROUBLESHOOTING DEV SPACES e

9.1. VIEWING DEV SPACES WORKSPACES LOGS
9.1.1. Workspace logs in CLI
9.1.2. Workspace logs in OpenShift console
9.1.3. Language servers and debug adapters logs in the editor
9.2. TROUBLESHOOTING WORKSPACE START FAILURES
9.2.1. Restarting a OpenShift Dev Spaces workspace in Verbose mode after start failure
9.2.2. Starting a OpenShift Dev Spaces workspace in Verbose mode
9.3. TROUBLESHOOTING SLOW WORKSPACES
9.3.1. Improving workspace start time
9.3.2. Improving workspace runtime performance
9.4. TROUBLESHOOTING NETWORK PROBLEMS

41
42
45
46
46
47
48
49

49
50
50

52
52
52
53
53
53
53
54
54
54
55
57

Table of Contents

Red Hat OpenShift Dev Spaces 3.4 User guide

CHAPTER 1. ADOPTING DEV SPACES

To get started with adopting OpenShift Dev Spaces for your organization, you can read the following:
® Section 1.1, "Developer workspaces”
® Section 1.3, “Badge for first-time contributors”
® Section 1.4, “Reviewing pull and merge requests”

® Section 1.2, “Stack samples”

1.1. DEVELOPER WORKSPACES

Red Hat OpenShift Dev Spaces provides developer workspaces with everything you need to code, build,
test, run, and debug applications:

® Project source code

® Web-based integrated development environment (IDE)

® Tool dependencies needed by developers to work on a project

® Application runtime: a replica of the environment where the application runs in production
Pods manage each component of a OpenShift Dev Spaces workspace. Therefore, everything running in
a OpenShift Dev Spaces workspace is running inside containers. This makes a OpenShift Dev Spaces

workspace highly portable.

The embedded browser-based IDE is the point of access for everything running in a OpenShift Dev
Spaces workspace.

1.1.1. Microsoft Visual Studio Code - Open Source
Microsoft Visual Studio Code - Open Source is the default browser-based IDE.
OpenShift Dev Spaces adds these features:

Open VSX registry

The IDE uses the Open VSX registry to list and download extensions. The OpenShift Dev Spaces
administrator can configure the Open VSX registry URL .

Recommended extensions

The IDE installs automatically the recommended extensions.
OpenShift Dev Spaces adds these extensions:

Commands

Translates Devfile commands to Microsoft Visual Studio Code - Open Source tasks.

Procedure

® To see the drop-down list of available tasks, type: F1 Tasks: Run Task Enter che.

Activity tracker

https://www.open-vsx.org/
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.4/html-single/administration_guide/index#administration-guide:configuring-the-open-vsx-registry-url
https://code.visualstudio.com/docs/editor/extension-marketplace#_workspace-recommended-extensions

CHAPTER 1. ADOPTING DEV SPACES

Tracks events provided by the Microsoft Visual Studio Code - Open Source to determine and stop
inactive workspaces. This extension does not save, collect, or store data.

API
Provides helpers to interact with Dev Workspace and OpenShift Dev Spaces.
GitHub authentication

Provides support for authenticating to GitHub. It registers the github Authentication Provider that
can be leveraged by other extensions. This also provides the GitHub authentication used by Settings
Sync.

Port

Detects opening ports and provides redirect URI. When a process starts listening to a port,
OpenShift Dev Spaces displays a notification with a link to open the resulting resource.

Procedure

® To display the endpoint list, type: F1 Explorer: Focus on endpoints View Enter.

Remote

Provides commands for the remote authority.
Resource monitor

Monitors resources such as CPU and RAM.
Telemetry

Detects and sends the following events to a backend telemetry plugin listening on
http://localhost:${DEVWORKSPACE_TELEMETRY_BACKEND_PORT}:

WORKSPACE_OPENED
Sent when the telemetry extension activates
EDITOR_USED
Sent on the vscode.workspace.onDidChangeTextDocument event

Terminal

Opens a terminal to a Dev Workspace container.

1.2. STACK SAMPLES

To demonstrate the capabilities of Red Hat OpenShift Dev Spaces as remote development
environment, Red Hat OpenShift Dev Spaces contains stack samples using various programming
languages. Each sample includes a devfile and you can use them as a reference to bootstrap a new
project. You can customize the samples if you are a OpenShift Dev Spaces administrator.

Table 1.1. Supported languages

Language Builders, runtimes, and Maturity

databases

Apache Camel K GA
® RedHatFuse

Red Hat OpenShift Dev Spaces 3.4 User guide

Language Builders, runtimes, and Maturity

databases

Java GA
o OpendDKTI

® Maven 3.6

e Gradle 6.1

® Quarkus Tools
e Lombok118

e JBossEAP 7.4

® JBoss EAP XP 3.0

Node.js i GA
e Node,s16

e NPM8
® Express

® MongoDB 3.6

Python GA
e Python 3.8
® Pip222
C/C++ Technolo review
/ e GCC P
® cmake
® make
C# Technology preview

e Dotnet3.1on AMD64
and Intel 64 (x86_64)

® Dotnet 6.0 on AMD64

and Intel 64 (x86_64),
and IBM Z (s390x)

Go Technology preview
e Golang

PHP Technolo review
o CakePHP yP

e Composer

CHAPTER 1. ADOPTING DEV SPACES

1.3. BADGE FOR FIRST-TIME CONTRIBUTORS

To enable a first-time contributor to start a workspace with a project, add a badge with a link to your
OpenShift Dev Spaces instance.

Figure 1.1. Factory badge

c Developer Workspace

Procedure

1. Substitute your OpenShift Dev Spaces URL
("https://devspaces-&It;openshift_deployment_nameé>.&It;domain_name>") and

repository URL (<your_repository_url>), and add the link to your repository in the project
README.md file.

['[Contribute](https://www.eclipse.org/che/contribute.svg)]

("https://devspaces- <openshift_deployment_name>. <,domain_nameé>"/#https://<you
r_repository _url>)

2. The README.md file in your Git provider web interface displays the
c Developer Workspace

factory badge. Click the badge to
open a workspace with your project in your OpenShift Dev Spaces instance.

1.4. REVIEWING PULL AND MERGE REQUESTS

Red Hat OpenShift Dev Spaces workspace contains all tools you need to review pull and merge requests
from start to finish. By clicking a OpenShift Dev Spaces link, you get access to Red Hat OpenShift Dev
Spaces-supported web IDE with a ready-to-use workspace where you can run a linter, unit tests, the
build and more.

Prerequisites

® You have access to the repository hosted by your Git provider.

https://www.eclipse.org/che/contribute.svg

Red Hat OpenShift Dev Spaces 3.4 User guide

® You have access to a OpenShift Dev Spaces instance.

Procedure

1. Open the feature branch to review in OpenShift Dev Spaces. A clone of the branch opensin a
workspace with tools for debugging and testing.

2. Check the pull or merge request changes.

3. Run your desired debugging and testing tools:

® Run alinter.

® Run unit tests.

® Run the build.

® Run the application to check for problems.

4. Navigate to Ul of your Git provider to leave comment and pull or merge your assigned request.

Verification

® (optional) Open a second workspace using the main branch of the repository to reproduce a
problem.

CHAPTER 2. USER ONBOARDING

CHAPTER 2. USER ONBOARDING

If your organization is already running a OpenShift Dev Spaces instance, you can get started as a new
user by learning how to start a new workspace, manage your workspaces, and authenticate yourself to a
Git server from a workspace:

1.

Section 2.1, “Starting a new workspace with a clone of a Git repository”

2. Section 2.2, "Optional parameters for the URLs for starting a new workspace”

3. Section 2.3, "Basic actions you can perform on a workspace”

4. Section 2.4, "Authenticating to a Git server from a workspace”

2.1.STARTING A NEW WORKSPACE WITH A CLONE OF AGIT
REPOSITORY

Working with OpenShift Dev Spaces in your browser involves multiple URLs:

The URL of your organization’s OpenShift Dev Spaces instance, used as part of all the following
URLs

The URL of the Workspaces page of your OpenShift Dev Spaces dashboard with the
workspace control panel

The URLs for starting a new workspace

The URLs of your workspaces in use

With OpenShift Dev Spaces, you can visit a URL in your browser to start a new workspace that contains a
clone of a Git repository. This way, you can clone a Git repository that is hosted on GitHub, a GitLab
instance, or a Bitbucket server.

TIP

You can also use the Git Repo URL *field on the Create Workspace page of your OpenShift Dev
Spaces dashboard to enter the URL of a Git repository to start a new workspace.

Prerequisites

Your organization has a running instance of OpenShift Dev Spaces.

You know the FQDN URL of your organization’s OpenShift Dev Spaces instance:
"https://devspaces- &/t;openshift_deployment_name>.&It;domain_name>".

Optional: You have authentication to the Git server configured.
Your Git repository maintainer keeps the devfile.yaml or .devfile.yaml file in the root directory

of the Git repository. (For alternative file names and file paths, see Section 2.2, “Optional
parameters for the URLs for starting a new workspace”.)

Red Hat OpenShift Dev Spaces 3.4 User guide

TIP

You can also start a new workspace by supplying the URL of a Git repository that contains no
devfile. Doing so results in a workspace with Universal Developer Image and with Microsoft
Visual Studio Code - Open Source as the workspace IDE.

Procedure

To start a new workspace with a clone of a Git repository:

1. Optional: Visit your OpenShift Dev Spaces dashboard pages to authenticate to your
organization’s instance of OpenShift Dev Spaces.

2. Visit the URL to start a new workspace using the basic syntax:

I "https://devspaces-<openshift_deployment _nameé>. <domain_name>,"#<gqit_repositor
y_url>

TIP

You can extend this URL with optional parameters:

"https://devspaces-<openshift_deployment _nameé>. <:domain_name>,"#<git_repositor
y_url>?<optional_parameters>

ﬂ See Section 2.2, “Optional parameters for the URLs for starting a new workspace” .

Example 2.1. A URL for starting a new workspace

"https://devspaces-&/t;openshift_deployment_name>.&It;domain_nameé> #https:
/Igithub.com/che-samples/cpp-hello-world

Example 2.2. The URL syntax for starting a new workspace with a clone of a GitHub-
hosted repository

With GitHub and GitLab, you can even use the URL of a specific branch of the repository to
be cloned:

o "https://devspaces-&l/t;openshift_deployment_name>.&It;domain_name> #ht
tps://github.com/<user_or_orgs/<repositorys starts a new workspace with a clone of
the default branch.

e "https:/devspaces-&l/t;openshift_deployment_name>.&It;domain_name> #ht
tps://github.com/<user_or_orgs/<repositorys/tree/<branch_names starts a new
workspace with a clone of the specified branch.

o "https:/devspaces-&l/t;openshift_deployment_name>.&It;domain_name> #ht

tps://github.com/<user_or_orgs/<repositorys/pull/ <pull_request_id> starts a new
workspace with a clone of the branch of the pull request.

After you enter the URL to start a new workspace in a browser tab, it renders the workspace-
starting page.

10

CHAPTER 2. USER ONBOARDING

When the new workspace is ready, the workspace IDE loads in the browser tab.
A clone of the Git repository is present in the filesystem of the new workspace.
The workspace has a unique URL:

"https://devspaces- &/t;openshift_deployment_name>.&It;domain_nameé>"#workspa
ce<unique_urls.

TIP

Although this is not possible in the address bar, you can add a URL for starting a new workspace as a
bookmark by using the browser bookmark manager:

® |n Mozilla Firefox, go to = > Bookmarks > Manage bookmarks Ctrl+Shift+O > Bookmarks
Toolbar > Organize > Add bookmark.

® |n Google Chrome, goto i >Bookmarks > Bookmark manager > Bookmarks bar > : > Add
new bookmark.

Additional resources

® Section 2.2, "Optional parameters for the URLs for starting a new workspace”

® Section 2.3, "Basic actions you can perform on a workspace”

2.2. OPTIONAL PARAMETERS FOR THE URLS FOR STARTING A NEW
WORKSPACE

When you start a new workspace, OpenShift Dev Spaces configures the workspace according to the
instructions in the devfile. When you use a URL to start a new workspace, you can append optional
parameters to the URL that further configure the workspace. You can use these parameters to specify a
workspace IDE, start duplicate workspaces, and specify a devfile file name or path.

® Section 2.2.1, "URL parameter concatenation”

® Section 2.2.2, "URL parameter for the workspace IDE”

® Section 2.2.3, "URL parameter for starting duplicate workspaces”

® Section 2.2.4, "URL parameter for the devfile file name”

® Section 2.2.5, "URL parameter for the devfile file path”

® Section 2.2.6, "URL parameter for the workspace storage”

® Section 2.2.7, "URL parameter for additional remotes”

2.2.1. URL parameter concatenation

The URL for starting a new workspace supports concatenation of multiple optional URL parameters by
using & with the following URL syntax:

"https://devspaces-&/t;openshift_deployment_name>.&It;domain_nameé>"#<git _repository
url>? <url_parameter_1>&<url_parameter_2>&<url_parameter_3>

1

Red Hat OpenShift Dev Spaces 3.4 User guide

Example 2.3. A URL for starting a new workspace with the URL of a Git repository and optional
URL parameters

The complete URL for the browser:

"https://devspaces- &/t;openshift_deployment_name>.&It;domain_nameé>"#https://github
.com/che-samples/cpp-hello-world?new&che-editor=che-incubator/intellij-
community/latest&devfilePath=tests/testdevfile.yaml

Explanation of the parts of the URL:

"https://devspaces-<openshift_deployment_nameé>. <domain_name>" ﬂ
#https://github.com/che-samples/cpp-hello-world g
?newé&che-editor=che-incubator/intellij-community/latest&devfilePath=tests/testdevfile.yaml 6

ﬂ OpenShift Dev Spaces URL.
9 The URL of the Git repository to be cloned into the new workspace.

9 The concatenated optional URL parameters.

2.2.2. URL parameter for the workspace IDE

If the URL for starting a new workspace doesn’t contain a URL parameter specifying the integrated
development environment (IDE), the workspace loads with the default in-browser IDE, which is
Microsoft Visual Studio Code - Open Source.

The URL parameter for specifying another supported IDE is che-editor=<editor_keys:

"https://devspaces-<openshift_deployment_nameé>. <domain_name>,"#<git_repository _url>?
che-editor=<editor_key>

NOTE

The workspace IDE might be already set for a remote Git repository in the che-
editor.yaml file of the repository.

Table 2.1. The URL parameter <editor_key> values for supported IDEs

IDE <editor_key> value Note

Microsoft Visual Studio Code - che-incubator/che- This is the default IDE that loads

Open Source code/insiders in a new workspace when the URL
parameter or che-editor.yaml is
not used.

JetBrains IntelliJ IDEA che-incubator/che- Technology Preview.

Community Edition idea/latest

12

https://github.com/redhat-developer/devspaces-images/tree/devspaces-3-rhel-8/devspaces-code
https://github.com/redhat-developer/devspaces-images/tree/devspaces-3-rhel-8/devspaces-idea
https://access.redhat.com/support/offerings/techpreview

CHAPTER 2. USER ONBOARDING

IDE <editor_key> value Note

Eclipse Theia eclipse/che-theia/latest Deprecated and will be removed
in a future release.

2.2.3. URL parameter for starting duplicate workspaces

Visiting a URL for starting a new workspace results in a new workspace according to the devfile and with
a clone of the linked Git repository.

In some situations, you might need to have multiple workspaces that are duplicates in terms of the
devfile and the linked Git repository. You can do this by visiting the same URL for starting a new

workspace with a URL parameter.

The URL parameter for starting a duplicate workspace is new:

"https://devspaces-<openshift_deployment_nameé>. <domain_name>,"#<git_repository _url>?
new
NOTE

If you currently have a workspace that you started using a URL, then visiting the URL
again without the new URL parameter results in an error message.

2.2.4. URL parameter for the devfile file name

When you visit a URL for starting a new workspace, OpenShift Dev Spaces searches the linked Git
repository for a devfile with the file name .devfile.yaml or devfile.yaml. The devfile in the linked Git
repository must follow this file-naming convention.

In some situations, you might need to specify a different, unconventional file name for the devfile.

The URL parameter for specifying an unconventional file name of the devfile is df=<filenames.yamil:

"https://devspaces-<openshift_deployment_nameé>. <domain_name>,"#<git_repository _url>?
df=<filename>.yaml

ﬂ <filenames.yaml is an unconventional file name of the devfile in the linked Git repository.

TIP

The df=<filenames.yaml parameter also has a long version: devfilePath=<filenames.yaml.

2.2.5. URL parameter for the devfile file path

When you visit a URL for starting a new workspace, OpenShift Dev Spaces searches the root directory of
the linked Git repository for a devfile with the file name .devfile.yaml or devfile.yaml. The file path of
the devfile in the linked Git repository must follow this path convention.

In some situations, you might need to specify a different, unconventional file path for the devfile in the

linked Git repository.

13

https://github.com/redhat-developer/devspaces-images/tree/devspaces-3-rhel-8/devspaces-theia

Red Hat OpenShift Dev Spaces 3.4 User guide

The URL parameter for specifying an unconventional file path of the devfile is
devfilePath=<relative_file_paths:

"https://devspaces-<openshift_deployment_nameé>. <domain_name>,"#<git_repository _url>?
devfilePath=<relative_file_path> @)

ﬂ <relative_file_path> is an unconventional file path of the devfile in the linked Git repository.

2.2.6. URL parameter for the workspace storage

If the URL for starting a new workspace does not contain a URL parameter specifying the storage type,
the new workspace is created in ephemeral or persistent storage, whichever is defined as the default
storage type in the CheCluster Custom Resource.

The URL parameter for specifying a storage type for a workspace is storageType=<storage_type>:

"https://devspaces-<openshift_deployment_nameé>. <domain_name>,"#<git_repository _url>?
storageType=<storage type>

Q Possible <storage_type> values:
e ephemeral
® per-user (persistent)

® per-workspace (persistent)

TIP

With the ephemeral or per-workspace storage type, you can run multiple workspaces concurrently,
which is not possible with the default per-user storage type.

Additional resources

® Chapter 7, Requesting persistent storage for workspaces

2.2.7. URL parameter for additional remotes

When you visit a URL for starting a new workspace, OpenShift Dev Spaces configures the origin remote
to be the Git repository that you specified with # after the FQDN URL of your organization’s OpenShift
Dev Spaces instance.

The URL parameter for cloning and configuring additional remotes for the workspace is remotes=:

"https://devspaces-<openshift_deployment_nameé>. <domain_name>,"#<git_repository _url>?
remotes={{<name_1>,<url_15},{<name_2>,<url_25}{<name_3>,<url_3>},...}

14

CHAPTER 2. USER ONBOARDING

IMPORTANT

e |f you do not enter the name origin for any of the additional remotes, the remote
from <git_repository_url> will be cloned and named origin by default, and its
expected branch will be checked out automatically.

e |f you enter the name origin for one of the additional remotes, its default branch
will be checked out automatically, but the remote from <git_repository_url> will
NOT be cloned for the workspace.

2.3. BASIC ACTIONS YOU CAN PERFORM ON A WORKSPACE

You manage your workspaces and verify their current states in the Workspaces page
("https://devspaces-<openshift_deployment_nameé>.&It;domain_nameé>"/dashboard/#/wo
rkspaces) of your OpenShift Dev Spaces dashboard.

After you start a new workspace, you can perform the following actions on it in the Workspaces page:

Table 2.2. Basic actions you can perform on a workspace

Action GUI steps in the Workspaces page
Reopen a running workspace Click Open.

Restart a running workspace Goto i >Restart Workspace.
Stop a running workspace Goto i >Stop Workspace.

Start a stopped workspace Click Open.

Delete a workspace Goto i >Delete Workspace.

2.4. AUTHENTICATING TO A GIT SERVER FROM A WORKSPACE

In a workspace, you can run Git commands that require user authentication like cloning a remote private
Git repository or pushing to a remote public or private Git repository.

User authentication to a Git server from a workspace is configured by the administrator or, in some
cases, by the individual user:

® Your administrator sets up an OAuth application on GitHub, GitLab, or Bitbucket for your
organization’s Red Hat OpenShift Dev Spaces instance.

® Asaworkaround, some users create and apply their own Kubernetes Secrets for their personal
Git-provider access tokens.

Additional resources

® Administration Guide: OAuth for GitHub, GitLab, or Bitbucket

® User Guide: Using a Git-provider access token

15

https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.4/html-single/administration_guide/index#administration-guide:oauth-for-github-gitlab-or-bitbucket
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.4/html-single/administration_guide/index#administration-guide:oauth-for-github-gitlab-or-bitbucket

Red Hat OpenShift Dev Spaces 3.4 User guide

CHAPTER 3. CUSTOMIZING WORKSPACE COMPONENTS

To customize workspace components:
® Choose a Git repository for your workspace .
® Use a devfile
® Select and customize your in-browser IDE .

® Add OpenShift Dev Spaces specific attributes in addition to the generic devfile specification.

16

CHAPTER 4. INTRODUCTION TO DEVFILE IN DEV SPACES

CHAPTER 4. INTRODUCTION TO DEVFILE IN DEV SPACES

Devfiles are yaml text files used for development environment customization. Use them to configure a
devfile to suit your specific needs and share the customized devfile across multiple workspaces to
ensure identical user experience and build, run, and deploy behaviours across your team.

Devfile and Universal Developer Image

You do not need a devfile to start a workspace. If you do not include a devfile in your project repository,
Red Hat OpenShift Dev Spaces automatically loads a default devfile with a Universal Developer Image
(UDI).

OpenShift Dev Spaces devfile registry

OpenShift Dev Spaces devfile registry contains ready-to-use devfiles for different languages and
technologies.

NOTE
Devfiles included in the registry are specific to Red Hat OpenShift Dev Spaces and

should be treated as samples rather than templates. They might require updates to work
with other versions of the components featured in the samples.

Additional resources

e Whatis a devfile
® Benefits of devfile

® Devfile customization overview

17

https://devfile.io/
https://github.com/eclipse-che/che-devfile-registry
https://devfile.io/docs/2.1.0/what-is-a-devfile
https://devfile.io/docs/2.1.0/benefits-of-devfile
https://devfile.io/docs/2.1.0/overview

Red Hat OpenShift Dev Spaces 3.4 User guide

CHAPTER 5. SELECTING A WORKSPACE IDE

The default in-browser IDE in a new workspace is Microsoft Visual Studio Code - Open Source.

NOTE

Because the OpenShift Dev Spaces build of Microsoft Visual Studio Code - Open Source
supports custom branding, your organization might be using a branded build.

You can select another supported in-browser IDE by either method:

® When you start a new workspace by visiting a URL, you can choose an IDE for that workspace by
adding the che-editor parameter to the URL. See Section 5.1, “Selecting an in-browser IDE for
one new workspace”.

® You can specify an IDE in the .che/che-editor.yaml file of the Git repository for all new
workspaces that will feature a clone of that repository. See Section 5.2, “Selecting an in-browser

IDE for all workspaces that clone the same Git repository”.

Table 5.1. Supported in-browser IDEs

IDE id Note

Microsoft Visual Studio Code - che-incubator/che- This is the default IDE that loads

Open Source code/insiders in a new workspace when the URL
parameter or che-editor.yaml is
not used.

JetBrains IntelliJ IDEA che-incubator/che- Technology Preview.

Community Edition idea/latest

Eclipse Theia eclipse/che-theia/latest Deprecated and will be removed

in a future release.

5.1. SELECTING AN IN-BROWSER IDE FOR ONE NEW WORKSPACE

You can select your preferred in-browser IDE when using a URL for starting a new workspace. This way,
each developer using OpenShift Dev Spaces can start a workspace with a clone of the same project
repository and the personal choice of the in-browser IDE.

Procedure

1. Include the Section 2.2.2, “URL parameter for the workspace IDE" in the URL for starting a new
workspace.

2. Visit the URL in the browser.

Verification

e Verify that the selected in-browser IDE loads in the browser tab of the started workspace.

18

https://github.com/redhat-developer/devspaces-images/tree/devspaces-3-rhel-8/devspaces-code
https://github.com/redhat-developer/devspaces-images/tree/devspaces-3-rhel-8/devspaces-idea
https://access.redhat.com/support/offerings/techpreview
https://github.com/redhat-developer/devspaces-images/tree/devspaces-3-rhel-8/devspaces-theia

CHAPTER 5. SELECTING A WORKSPACE IDE

5.2. SELECTING AN IN-BROWSER IDE FOR ALL WORKSPACES THAT
CLONE THE SAME GIT REPOSITORY

5.2.1. Setting up che-editor.yaml

To define the same in-browser IDE for all workspaces that will clone the same remote Git repository of
your project, you can use the che-editor.yaml file.

This way, you can set a common default editor for your team and provide new contributors with the
most suitable editor for your project. You can also use the che-editor.yaml file when you need to set a
different IDE default for a particular project repository rather than the default IDE of your organization’s
OpenShift Dev Spaces instance.

Procedure

® |nthe remote Git repository of your project, create a/.che/che-editor.yaml file with lines that
specify the relevant parameter, as described in the next section.

Verification

1. Visit the URL for starting a new workspace .

2. Verify that the selected in-browser IDE loads in the browser tab of the started workspace.

5.2.2. Parameters for che-editor.yami

The simplest way to select an IDE in the che-editor.yaml is to specify the id of an IDE that is available in
the table of supported in-browser IDEs in Chapter 5, Selecting a workspace IDE:

Example 5.1. id selects an IDE from the plugin registry

I id: che-incubator/che-idea/latest

As alternatives to providing the id parameter, the che-editor.yaml file supports a reference to the URL
of another che-editor.yaml file or an inline definition for an IDE outside of a plugin registry:

Example 5.2. reference points to a remoteche-editor.yaml file

I reference: https://<hostname_and_path to_a_remote_file>/che-editor.yaml

Example 5.3. inline specifies a complete definition for a customized IDE without a plugin
registry

inline:
schemaVersion: 2.1.0
metadata:
name: JetBrains IntelliJ IDEA Community IDE
components:
- name: intellij
container:

19

memoryRequest: 32Mi
cpuLimit: 1500m
cpuRequest: 100m
cookiesAuthEnabled: true
urlRewriteSupported: true
discoverable: false

Red Hat OpenShift Dev Spaces 3.4 User guide
endpoints:
- name: intellij
path: /?backgroundColor=434343&wss
targetPort: 8887

image: 'quay.io/che-incubator/che-idea:next'
volumeMounts:
- name: projector-user
path: /home/projector-user
mountSources: true
attributes:
exposure: public

memoryLimit: 2048M
type: main
secure: false

protocol: https
attributes: {}
- hame: projector-user
volume: {}

For more complex scenarios, the che-editor.yaml file supports the registryUrl and override
parameters:

Example 5.4. registryUrl points to a custom plugin registry rather than to the default OpenShift
Dev Spaces plugin registry

id: <editor_id> €))
registryUrl: <url_of custom_plugin_registry>

ﬂ The id of the IDE in the custom plugin registry.

Example 5.5. override of the default value of one or more defined properties of the IDE

override:
containers:

- name: che-idea
memoryLimit: 1280Mi
cpuLimit: 1510m
cpuRequest: 102m

Q id:, registryUrl:, or reference:.

20

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN
WORKSPACES

You can use your credentials and configurations in your workspaces.

To do so, mount your credentials and configurations to the Dev Workspace containers in the OpenShift
cluster of your organization’s OpenShift Dev Spaces instance:

® Mount your credentials and sensitive configurations as Kubernetes Secrets.
® Mount your non-sensitve configurations as Kubernetes ConfigMaps.

If you need to allow the Dev Workspace Pods in the cluster to access container registries that require
authentication, create an image pull Secret for the Dev Workspace Pods.

The mounting process uses the standard Kubernetes mounting mechanism and requires applying
additional labels and annotations to your existing resources. Resources are mounted when starting a new
workspace or restarting an existing one.
You can create permanent mount points for various components:

® Maven configuration, such as the user-specific settings.xml file

® SSH key pairs

® Git-provider access tokens

® AWS authorization tokens

e Configuration files

® Persistent storage

Additional resources

® Kubernetes Documentation: Secrets

® Kubernetes Documentation: ConfigMaps

6.1. MOUNTING SECRETS
To mount confidential data into your workspaces, use Kubernetes Secrets.

Using Kubernetes Secrets, you can mount usernames, passwords, SSH key pairs, authentication tokens
(for example, for AWS), and sensitive configurations.

Mount Kubernetes Secrets to the Dev Workspace containers in the OpenShift cluster of your
organization’s OpenShift Dev Spaces instance.

Prerequisites

® An active oc session with administrative permissions to the destination OpenShift cluster. See
Getting started with the CLI.

21

https://maven.apache.org/settings.html
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://docs.openshift.com/container-platform/4.11/cli_reference/openshift_cli/getting-started-cli.html

Red Hat OpenShift Dev Spaces 3.4 User guide

® |nyour user project, you created a new Secret or determined an existing Secret to mount to all
Dev Workspace containers.

Procedure

1. Add the labels, which are required for mounting the Secret, to the Secret.

$ oc label secret <Secret_name>\
controller.devfile.io/mount-to-devworkspace=true \
controller.devfile.io/watch-secret=true

2. Optional: Use the annotations to configure how the Secret is mounted.

Table 6.1. Optional annotations

Annotation Description

controller.devfile.io/mount-path: Specifies the mount path.

Defaults to /etc/secret/<Secret_names.

controller.devfile.io/mount-as: Specifies how the resource should be mounted:
file, subpath, orenv.

Defaults to file.

mount-as: file mounts the keys and values as
files within the mount path.

mount-as: subpath mounts the keys and
values within the mount path using subpath
volume mounts.

mount-as: env mounts the keys and values as
environment variables in all Dev Workspace
containers.

Example 6.1. Mounting a Secret as a file

apiVersion: vi
kind: Secret
metadata:
name: mvn-settings-secret
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
annotations:
controller.devfile.io/mount-path: '/home/user/.m2'
data:
settings.xml: <Base64 encoded content>

When you start a workspace, the /home/user/.m2/settings.xml file will be available in the Dev
Workspace containers.

22

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

With Maven, you can set a custom path for the settings.xml file. For example:

I $ mvn --settings /home/user/.m2/settings.xml clean install

6.1.1. Creating image pull Secrets

To allow the Dev Workspace Pods in the OpenShift cluster of your organization’s OpenShift Dev
Spaces instance to access container registries that require authentication, create an image pull Secret.

You can create image pull Secrets by using oc or a .dockercfg file or a config.json file.
6.1.1.1. Creating an image pull Secret with oc

Prerequisites

® An active oc session with administrative permissions to the destination OpenShift cluster. See
Getting started with the CLI.

Procedure

1. In your user project, create an image pull Secret with your private container registry details and
credentials:

$ oc create secret docker-registry <Secret_name>\
--docker-server=<registry_server>\
--docker-username=<username>\
--docker-password=<password> \
--docker-email=<email _address>

2. Add the following label to the image pull Secret:

$ oc label secret <Secret_name> controller.devfile.io/devworkspace_pullsecret=true
controller.devfile.io/watch-secret=true

6.1.1.2. Creating an image pull Secret from a .dockercfg file

If you already store the credentials for the private container registry in a .dockercfg file, you can use
that file to create an image pull Secret.

Prerequisites

® An active oc session with administrative permissions to the destination OpenShift cluster. See
Getting started with the CLI.

® pbase64 command line tools are installed in the operating system you are using.

Procedure

1. Encode the .dockercfg file to Base64:

I $ cat .dockercfg | base64 | tr -d "\n'

23

https://docs.openshift.com/container-platform/4.11/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/4.11/cli_reference/openshift_cli/getting-started-cli.html
https://www.gnu.org/software/coreutils/base64

Red Hat OpenShift Dev Spaces 3.4 User guide

2. Create a new OpenShift Secret in your user project:

apiVersion: vi
kind: Secret
metadata:
name: <Secret_name>
labels:
controller.devfile.io/devworkspace_pullsecret: 'true’
controller.devfile.io/watch-secret: 'true’
data:
.dockercfg: <Base64 content_of _.dockercfg>
type: kubernetes.io/dockercfg

3. Apply the Secret:

$ oc apply -f - <<EOF
<Secret _prepared_in_the previous step>
EOF

6.1.1.3. Creating an image pull Secret from a config.json file

If you already store the credentials for the private container registry in a $HOME/.docker/config.json
file, you can use that file to create an image pull Secret.

Prerequisites

® An active oc session with administrative permissions to the destination OpenShift cluster. See
Getting started with the CLI.

® pase64 command line tools are installed in the operating system you are using.

Procedure

1. Encode the $HOME/.docker/config.json file to Base64.
I $ cat config.json | base64 | tr -d "\n'
2. Create a new OpenShift Secret in your user project:

apiVersion: vi
kind: Secret
metadata:
name: <Secret_name>
labels:
controller.devfile.io/devworkspace_pullsecret: 'true’
controller.devfile.io/watch-secret: 'true'
data:
.dockerconfigjson: <Base64_content _of config.json>
type: kubernetes.io/dockerconfigjson

3. Apply the Secret:

24

https://docs.openshift.com/container-platform/4.11/cli_reference/openshift_cli/getting-started-cli.html
https://www.gnu.org/software/coreutils/base64

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

$ oc apply -f - <<EOF
<Secret _prepared_in_the previous step>
EOF

6.1.2. Using a Git-provider access token

OAuth for GitHub, GitLab, or Bitbucket needs to be configured by the administrator of your
organization’s OpenShift Dev Spaces instance. If your administrator could not configure it for OpenShift
Dev Spaces users, the workaround is for you to apply your personal access token as a Kubernetes
Secret.

Mounting your access token as a Secret enables the OpenShift Dev Spaces Server to access the remote
repository that is cloned during workspace creation, including access to the repository’s /.che and
/.vscode folders.

Apply the Secret in your user project of the OpenShift cluster of your organization’s OpenShift Dev
Spaces instance.

After applying the Secret, you can create new workspaces from a private GitHub, GitLab, or Bitbucket-
server repository.

You can create and apply multiple access-token Secrets per a Git provider. You must apply each of
those Secrets in your user project.

Prerequisites

® You have cluster administrator permissions for the cluster on which your organization’s
OpenShift Dev Spaces instance is running.

® You have logged in to the cluster.

TIP
On OpenShift, you can use the oc command-line tool to log in to the cluster:
$ oc login

"https://devspaces- &/t;openshift_deployment_name>.&It;domain_nameé>" -
username=<my_user>

Procedure

1. Generate your access token on your Git provider's website.

2. Encode your access token to Base64.

TIP

If you have the base64 command-line tools installed in the operating system, you can use the
command line:

$ echo -n '<your_access_token_string>' | base64

3. Visit
"https://devspaces-&/t;openshift_deployment_name>.&It;domain_nameé>"/api/user

25

https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.4/html-single/administration_guide/index#administration-guide:oauth-for-github-gitlab-or-bitbucket
https://www.gnu.org/software/coreutils/base64

Red Hat OpenShift Dev Spaces 3.4 User guide

in the web browser and copy the id value from the response. This is your OpenShift Dev Spaces
user ID.

4. Getyour Git provider user ID by following the Git provider's APl documentation:

® GitHub: Get a user. See the id value in the response.

® GitlLab: List users: For normal users, use the username filter: /users?
username=:username. See the id value in the response.

® Bitbucket Server: Get users. See the id value in the response.

5. Prepare a new OpenShift Secret.

kind: Secret
apiVersion: vi
metadata:
name: personal-access-token-<your _choice of name_for_this_token>
labels:
app.kubernetes.io/component: scm-personal-access-token
app.kubernetes.io/part-of: che.eclipse.org
annotations:
che.eclipse.org/che-userid: <devspaces_user_id>0
che.eclipse.org/scm-personal-access-token-name: <git provider_name>9
che.eclipse.org/scm-url: <git_provider_endpoint
che.eclipse.org/scm-userid: '<git provider_user_/d>‘ﬂ
che.eclipse.org/scm-username: <git_provider_username>
data:
token: <Base64_encoded _access_token>
type: Opaque

Your OpenShift Dev Spaces user ID.

The Git provider name: github or gitlab or bitbucket-server.

The Git provider URL.

0009

Your Git provider user ID.

6. Visit
"https://devspaces-&/t;openshift_deployment_name>.&It;domain_name>"/api/kuber
netes/namespace to get your OpenShift Dev Spaces user namespace as hame.

7. Switch to your OpenShift Dev Spaces user namespace in the cluster.

26

https://docs.github.com/en/rest/users/users#get-a-user
https://docs.gitlab.com/ee/api/users.html#for-normal-users
https://developer.atlassian.com/server/bitbucket/rest/v802/api-group-api/#api-api-latest-users-userslug-get

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

TIP
On OpenShift:

® The oc command-line tool can return the namespace you are currently on in the cluster,
which you can use to check your current namespace:
$ oc project

® You can switch to your OpenShift Dev Spaces user namespace on a command line if
needed:

$ oc project <your_user_namespace>
8. Apply the Secret.

TIP

On OpenShift, you can use the oc command-line tool:

$ oc apply -f - <<EOF
<Secret _prepared_in_step 5>
EOF

Verification

1. Start a new workspace by using the URL of a remote Git repository that the Git provider hosts.

2. Make some changes and push to the remote Git repository from the workspace.

6.2. MOUNTING CONFIGMAPS
To mount non-confidential configuration data into your workspaces, use Kubernetes ConfigMaps.

Using Kubernetes ConfigMaps, you can mount non-sensitive data such as configuration values for an
application.

Mount Kubernetes ConfigMaps to the Dev Workspace containers in the OpenShift cluster of your
organization’'s OpenShift Dev Spaces instance.

Prerequisites

® An active oc session with administrative permissions to the destination OpenShift cluster. See
Getting started with the CLI.

® |nyour user project, you created a new ConfigMap or determined an existing ConfigMap to
mount to all Dev Workspace containers.

Procedure
1. Add the labels, which are required for mounting the ConfigMap, to the ConfigMap.

$ oc label configmap <ConfigMap_name> \
controller.devfile.io/mount-to-devworkspace=true \
controller.devfile.io/watch-configmap=true

27

https://docs.openshift.com/container-platform/4.11/cli_reference/openshift_cli/getting-started-cli.html

Red Hat OpenShift Dev Spaces 3.4 User guide

2. Optional: Use the annotations to configure how the ConfigMap is mounted.

Table 6.2. Optional annotations

Annotation Description

controller.devfile.io/mount-path: Specifies the mount path.

Defaults to /etc/config/<ConfigMap_names.

controller.devfile.io/mount-as: Specifies how the resource should be mounted:
file, subpath, orenv.

Defaults to file.

mount-as:file mounts the keys and values as
files within the mount path.

mount-as:subpath mounts the keys and
values within the mount path using subpath
volume mounts.

mount-as:env mounts the keys and values as
environment variables in all Dev Workspace
containers.

kind: ConfigMap
apiVersion: vi
metadata:
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
annotations:
controller.devfile.io/mount-as: env
data:
<env_var_1>: <value 1>
<env_var 2>: <value 2>
When you start a workspace, the <env_var_1s> and <env_var_2> environment variables will be

Example 6.2. Mounting a ConfigMap as environment variables
name: my-settings
available in the Dev Workspace containers.

6.3. ENABLING ARTIFACT REPOSITORIES IN A RESTRICTED
ENVIRONMENT

By configuring technology stacks, you can work with artifacts from in-house repositories using self-
signed certificates:

® Maven

28

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

® Gradle
® npm

® Python
e Go

® NuGet

6.3.1. Maven

You can enable a Maven artifact repository in Maven workspaces that run in a restricted environment.

Prerequisites

® You are not running any Maven workspace.

® You know your user namespace, which is <usernames>-devspaces where <usernames is your
OpenShift Dev Spaces username.

Procedure

1. In the <username>-devspaces namespace, apply the Secret for the TLS certificate:

kind: Secret
apiVersion: vi
metadata:
name: tls-cer
annotations:
controller.devfile.io/mount-path: /home/user/certs
controller.devfile.io/mount-as: file
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
data:
tls.cer: >-
<Base64 _encoded content of public_cert>ﬂ

ﬂ Base64 encoding with disabled line wrapping.

2. In the <username>-devspaces namespace, apply the ConfigMap to create the settings.xml
file:

kind: ConfigMap
apiVersion: vi
metadata:
name: settings-xml
annotations:
controller.devfile.io/mount-as: subpath
controller.devfile.io/mount-path: /home/user/.m2
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’

29

Red Hat OpenShift Dev Spaces 3.4 User guide

data:
settings.xml: |
<settings xmIns="http://maven.apache.org/SETTINGS/1.0.0"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/SETTINGS/1.0.0
https://maven.apache.org/xsd/settings-1.0.0.xsd">
<localRepository/>
<interactiveMode/>
<offline/>
<pluginGroups/>
<servers/>
<mirrors>
<mirror>
<id>redhat-ga-mirror</id>
<name>Red Hat GA</name>
<url>https://<maven_artifact_repository_route>/repository/redhat-ga/</url>
<mirrorOf>redhat-ga</mirrorOf>
</mirror>
<mirror>
<id>maven-central-mirror</id>
<name>Maven Central</name>
<url>https://<maven_artifact_repository route>/repository/maven-central/</url>
<mirrorOf>maven-central</mirrorOf>
</mirror>
<mirror>
<id>jboss-public-repository-mirror</id>
<name>JBoss Public Maven Repository</name>
<url>https://<maven_artifact_repository route>/repository/jboss-public/</url>
<mirrorOf>jboss-public-repository</mirrorOf>
</mirror>
</mirrors>
<proxies/>
<profiles/>
<activeProfiles/>
</settings>

3. Optional: When using EAP-based devfiles, apply a second settings-xml ConfigMap in the
<username>-devspaces namespace, and with the same content, a different name, and the
/home/jboss/.m2 mount path.

4. In the <username>-devspaces namespace, apply the ConfigMap for the TrustStore
initialization script:

Java 8

kind: ConfigMap
apiVersion: vi
metadata:
name: init-truststore
annotations:
controller.devfile.io/mount-as: subpath
controller.devfile.io/mount-path: /home/user/
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true'
data:

30

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

init-java8-truststore.sh: |
#!/usr/bin/env bash

keytool -importcert -noprompt -file /nome/user/certs/ils.cer -trustcacerts -keystore
~/.java/current/jre/lib/security/cacerts -storepass changeit

Java 1l

kind: ConfigMap
apiVersion: vi
metadata:
name: init-truststore
annotations:
controller.devfile.io/mount-as: subpath
controller.devfile.io/mount-path: /home/user/
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
init-javaii-truststore.sh: |
#!/usr/bin/env bash

keytool -importcert -noprompt -file /nome/user/certs/tls.cer -cacerts -storepass changeit

5. Start a Maven workspace.
6. Open a new terminal in the tools container.

7. Run ~/init-truststore.sh.

6.3.2. Gradle

You can enable a Gradle artifact repository in Gradle workspaces that run in a restricted environment.

Prerequisites

® You are not running any Gradle workspace.

Procedure

1. Apply the Secret for the TLS certificate:

kind: Secret
apiVersion: vi
metadata:
name: tls-cer
annotations:
controller.devfile.io/mount-path: /home/user/certs
controller.devfile.io/mount-as: file
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’

31

Red Hat OpenShift Dev Spaces 3.4 User guide

data:
tls.cer: >-
<Base64 _encoded content of public_cert>ﬂ

ﬂ Base64 encoding with disabled line wrapping.

2. Apply the ConfigMap for the TrustStore initialization script:

kind: ConfigMap
apiVersion: vi
metadata:
name: init-truststore
annotations:
controller.devfile.io/mount-as: subpath
controller.devfile.io/mount-path: /home/user/
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
init-truststore.sh: |
#!/usr/bin/env bash

keytool -importcert -noprompt -file /hnome/user/certs/tls.cer -cacerts -storepass changeit

3. Apply the ConfigMap for the Gradle init script:

kind: ConfigMap
apiVersion: vi
metadata:
name: init-gradle
annotations:
controller.devfile.io/mount-as: subpath
controller.devfile.io/mount-path: /home/user/.gradle
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
init.gradle: |
allprojects {
repositories {
mavenLocal ()
maven {
url "https://<gradle_artifact_repository route>/repository/maven-public/"
credentials {
username "admin"
password "passwd"

}
}
}
}

4. Start a Gradle workspace.

5. Open a new terminal in the tools container.

32

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

6. Run ~/init-truststore.sh.

6.3.3. npm

You can enable an npm artifact repository in npm workspaces that run in a restricted environment.

Prerequisites

® You are not running any npm workspace.

' WARNING
A Applying a ConfigMap that sets environment variables might cause a workspace

boot loop.

If you encounter this behavior, remove the ConfigMap and edit the devfile directly.

Procedure

1. Apply the Secret for the TLS certificate:

kind: Secret
apiVersion: vi
metadata:
name: tls-cer
annotations:
controller.devfile.io/mount-path: /home/user/certs
controller.devfile.io/mount-as: file
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
data:
tls.cer: >-
<Base6b4 _encoded content of public_cert>ﬂ

ﬂ Base64 encoding with disabled line wrapping.

2. Apply the ConfigMap to set the following environment variables in the tools container:

kind: ConfigMap
apiVersion: vi
metadata:
name: disconnected-env
annotations:
controller.devfile.io/mount-as: env
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:

33

Red Hat OpenShift Dev Spaces 3.4 User guide

NODE_EXTRA_CA_CERTS: /home/user/certs/tls.cer
NPM_CONFIG_REGISTRY: >-
https://<npm_artifact_repository route>/repository/npm-all/

6.3.4. Python

You can enable a Python artifact repository in Python workspaces that run in a restricted environment.

Prerequisites

® You are not running any Python workspace.

' WARNING
A Applying a ConfigMap that sets environment variables might cause a workspace

boot loop.

If you encounter this behavior, remove the ConfigMap and edit the devfile directly.

Procedure

1. Apply the Secret for the TLS certificate:

kind: Secret
apiVersion: vi
metadata:
name: tls-cer
annotations:
controller.devfile.io/mount-path: /home/user/certs
controller.devfile.io/mount-as: file
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
data:
tls.cer: >-
<Base64 _encoded content of public_cert>ﬂ

ﬂ Base64 encoding with disabled line wrapping.

2. Apply the ConfigMap to set the following environment variables in the tools container:

kind: ConfigMap
apiVersion: vi
metadata:
name: disconnected-env
annotations:
controller.devfile.io/mount-as: env
labels:
controller.devfile.io/mount-to-devworkspace: 'true'

34

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

controller.devfile.io/watch-configmap: 'true’
data:
PIP_INDEX_URL: >-
https://<python_artifact_repository route>/repository/pypi-all/
PIP_CERT: /home/user/certs/tls.cer

6.3.5. Go

You can enable a Go artifact repository in Go workspaces that run in a restricted environment.

Prerequisites

® You are not running any Go workspace.

' WARNING
A Applying a ConfigMap that sets environment variables might cause a workspace

boot loop.

If you encounter this behavior, remove the ConfigMap and edit the devfile directly.

Procedure

1. Apply the Secret for the TLS certificate:

kind: Secret
apiVersion: vi
metadata:
name: tls-cer
annotations:
controller.devfile.io/mount-path: /home/user/certs
controller.devfile.io/mount-as: file
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
data:
tls.cer: >-
<Base64 _encoded content of public_cert>ﬂ

ﬂ Base64 encoding with disabled line wrapping.

2. Apply the ConfigMap to set the following environment variables in the tools container:

kind: ConfigMap
apiVersion: vi
metadata:
name: disconnected-env
annotations:
controller.devfile.io/mount-as: env

35

Red Hat OpenShift Dev Spaces 3.4 User guide

labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
GOPROXY: >-
http://<athens_proxy_route>
SSL_CERT_FILE: /home/user/certs/tls.cer

6.3.6. NuGet

You can enable a NuGet artifact repository in NuGet workspaces that run in a restricted environment.

Prerequisites

® You are not running any NuGet workspace.

' WARNING
A Applying a ConfigMap that sets environment variables might cause a workspace

boot loop.

If you encounter this behavior, remove the ConfigMap and edit the devfile directly.

Procedure

1. Apply the Secret for the TLS certificate:

kind: Secret
apiVersion: vi
metadata:
name: tls-cer
annotations:
controller.devfile.io/mount-path: /home/user/certs
controller.devfile.io/mount-as: file
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
data:
tls.cer: >-
<Base64 _encoded content of public_cert>ﬂ

ﬂ Base64 encoding with disabled line wrapping.

2. Apply the ConfigMap to set the environment variable for the path of the TLS certificate file in
the tools container:

kind: ConfigMap

apiVersion: vi
metadata:

36

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

name: disconnected-env

annotations:
controller.devfile.io/mount-as: env

labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’

data:
SSL_CERT_FILE: /home/user/certs/tls.cer

3. Apply the ConfigMap to create the nuget.config file:

kind: ConfigMap
apiVersion: vi
metadata:
name: init-nuget
annotations:
controller.devfile.io/mount-as: subpath
controller.devfile.io/mount-path: /projects
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
nuget.config: |
<?xml version="1.0" encoding="UTF-8"7?>
<configuration>
<packageSources>
<add key="nexus2" value="https://<nuget_artifact_repository route>/repository/nuget-
group/"/>
</packageSources>
<packageSourceCredentials>
<nexus2>
<add key="Username" value="admin" />
<add key="Password" value="passwd" />
</nexus2>
</packageSourceCredentials>
</configuration>

37

Red Hat OpenShift Dev Spaces 3.4 User guide

CHAPTER 7. REQUESTING PERSISTENT STORAGE FOR
WORKSPACES

OpenShift Dev Spaces workspaces and workspace data are ephemeral and are lost when the workspace
stops.

To preserve the workspace state in persistent storage while the workspace is stopped, request a
Kubernetes PersistentVolume (PV) for the Dev Workspace containers in the OpenShift cluster of your
organization’'s OpenShift Dev Spaces instance.

You can request a PV by using the devfile or a Kubernetes PersistentVolumeClaim (PVC).

An example of a PV is the /projects/ directory of a workspace, which is mounted by default for non-
ephemeral workspaces.

Persistent Volumes come at a cost: attaching a persistent volume slows workspace startup.

' WARNING
A Starting another, concurrently running workspace with a ReadWriteOnce PV might

fail.

Additional resources

® Red Hat OpenShift Documentation: Understanding persistent storage

® Kubernetes Documentation: Persistent Volumes

7.1. REQUESTING PERSISTENT STORAGE IN A DEVFILE

When a workspace requires its own persistent storage, request a PersistentVolume (PV) in the devfile,
and OpenShift Dev Spaces will automatically manage the necessary PersistentVolumeClaims.

Prerequisites

® You have not started the workspace.

Procedure

1. Add a volume component in the devfile:

components:
- name: <chosen_volume_name>

volume:
size: <requested_volume_size>G

38

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://docs.openshift.com/container-platform/latest/storage/understanding-persistent-storage.html
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

CHAPTER 7. REQUESTING PERSISTENT STORAGE FOR WORKSPACES

2. Add a volumeMount for the relevant container in the devfile:

components:
- name: ...
container:

volumeMounts:
- name: <chosen_volume_name_from_previous _step>
path: <path_where _to_mount _the PV>

Example 7.1. A devfile that provisions a PV for a workspace to a container

When a workspace is started with the following devfile, the cache PV is provisioned to the golang
container in the ./cache container path:

schemaVersion: 2.1.0
metadata:
name: mydevfile
components:
- name: golang
container:
image: golang
memoryLimit: 512Mi
mountSources: true
command: ['sleep’, "infinity']
volumeMounts:
- name: cache
path: /.cache
- name: cache
volume:
size: 2Gi

7.2. REQUESTING PERSISTENT STORAGE IN A PVC

You can opt to apply a PersistentVolumeClaim (PVC) to request a PersistentVolume (PV) for your
workspaces in the following cases:

e Not all developers of the project need the PV.
® The PV lifecycle goes beyond the lifecycle of a single workspace.

® The dataincluded in the PV are shared across workspaces.

TIP

You can apply a PVC to the Dev Workspace containers even if the workspace is ephemeral and its
devfile contains the controller.devfile.io/storage-type: ephemeral attribute.

Prerequisites

® You have not started the workspace.

39

Red Hat OpenShift Dev Spaces 3.4 User guide

® An active oc session with administrative permissions to the destination OpenShift cluster. See
Getting started with the CLI.

® APVCis created in your user project to mount to all Dev Workspace containers.

Procedure

1. Add the controller.devfile.io/mount-to-devworkspace: true label to the PVC.

$ oc label persistentvolumeclaim <PVC_name> \ controller.devfile.io/mount-to-
devworkspace=true

2. Optional: Use the annotations to configure how the PVC is mounted:

Table 7.1. Optional annotations

Annotation Description

controller.devfile.io/mount-path: The mount path for the PVC.

Defaults to /tmp/<PVC_name>.

controller.devfile.io/read-only: Set to 'true’ or'false’ to specify whether the
PVC is to be mounted as read-only.

Defaults to 'false’, resulting in the PVC
mounted as read-write.

Example 7.2. Mounting a read-only PVC

apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: <pvc_name>
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
annotations:
controller.devfile.io/mount-path: </example/directory> ﬂ
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 3Gi g
volumeName: <pv_name>
storageClassName: manual
volumeMode: Filesystem

ﬂ The mounted PV is available at </fexample/directorys in the workspace.

9 Example size value of the requested storage.

40

https://docs.openshift.com/container-platform/4.11/cli_reference/openshift_cli/getting-started-cli.html

CHAPTER 8. INTEGRATING WITH OPENSHIFT

CHAPTER 8. INTEGRATING WITH OPENSHIFT

® Section 8.2, “Automatic OpenShift token injection”
® Section 8.3, “Navigating Dev Spaces from OpenShift Developer Perspective”

® Section 8.4, "Navigating OpenShift web console from Dev Spaces”

8.1. MANAGING WORKSPACES WITH OPENSHIFT APIS

On your organization’s OpenShift cluster, OpenShift Dev Spaces workspaces are represented as
DevWorkspace custom resources of the same name. As a result, if there is a workspace named my-
workspace in the OpenShift Dev Spaces dashboard, there is a corresponding DevWorkspace custom
resource named my-workspace in the user’s project on the cluster.

Because each DevWorkspace custom resource on the cluster represents a OpenShift Dev Spaces
workspace, you can manage OpenShift Dev Spaces workspaces by using OpenShift APIs with clients
such as the command-line oc.

Each DevWorkspace custom resource contains details derived from the devfile of the Git repository

cloned for the workspace. For example, a devfile might provide devfile commands and workspace
container configurations.

8.1.1. Listing all workspaces

As a user, you can list your workspaces by using the command line.

Prerequisites

® An active oc session with permissions to get the DevWorkspace resources in your project on
the cluster. See Getting started with the CLI.

® You know the relevant OpenShift Dev Spaces user namespace on the cluster.

TIP

You can visit
"https://devspaces-&/t;openshift_deployment_name>.&It;domain_name>"/api/kuber
netes/namespace to get your OpenShift Dev Spaces user namespace as hame.

® You are in the OpenShift Dev Spaces user namespace on the cluster.

TIP

On OpenShift, you can use the command-line oc¢ tool to display your current namespace or
switch to a namespace.

Procedure

® To list your workspaces, enter the following on a command line:

I $ oc get devworkspaces

41

https://docs.openshift.com/container-platform/4.11/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/developer-cli-commands.html#oc-project

Red Hat OpenShift Dev Spaces 3.4 User guide

TIP

| Example 8.1. Output

NAMESPACE NAME DEVWORKSPACE ID PHASE INFO
useri-dev spring-petclinic workspace6d99e9ffb9784491 Running https://url-to-
workspace.com

useri-dev golang-example workspacedf64e4a492cd4701 Stopped Stopped
useri-dev python-hello-world workspace69c26884bbc141f2 Failed Container tooling
has state CrashLoopBackOff

You can view PHASE changes live by adding the --watch flag to this command.

NOTE

Users with administrative permissions on the cluster can list all workspaces from all
OpenShift Dev Spaces users by including the --all-namespaces flag.

8.1.2. Creating workspaces

If your use case does not permit use of the OpenShift Dev Spaces dashboard, you can create
workspaces with OpenShift APIs by applying custom resources to the cluster.

NOTE

Creating workspaces through the OpenShift Dev Spaces dashboard provides better user
experience and configuration benefits compared to using the command line:

® Asauser, you are automatically logged in to the cluster.

® OpenShift clients work automatically.

® OpenShift Dev Spaces and its components automatically convert the target Git
repository’s devfile into the DevWorkspace and DevWorkspaceTemplate

custom resources on the cluster.

® Access to the workspace is secured by default with the routingClass: che in the
DevWorkspace of the workspace.

® Recognition of the DevWorkspaceOperatorConfig configuration is managed by
OpenShift Dev Spaces.

® Recognition of configurations in spec.devEnvironments specified in the
CheCluster custom resource including:

o Persistent storage strategy is specified with devEnvironments.storage.
o Default IDE is specified with devEnvironments.defaultEditor.
o Default plugins are specified with devEnvironments.defaultPlugins.

o Container build configuration is specified with
devEnvironments.containerBuildConfiguration.

CHAPTER 8. INTEGRATING WITH OPENSHIFT

Prerequisites

® An active oc session with permissions to create DevWorkspace resources in your project on the
cluster. See Getting started with the CLI.

® You know the relevant OpenShift Dev Spaces user namespace on the cluster.

TIP

You can visit
"https://devspaces-&/t;openshift_deployment_name>.&It;domain_name>"/api/kuber
netes/namespace to get your OpenShift Dev Spaces user namespace as hame.

® You are in the OpenShift Dev Spaces user namespace on the cluster.

TIP

On OpenShift, you can use the command-line oc¢ tool to display your current namespace or
switch to a namespace.

NOTE

OpenShift Dev Spaces administrators who intend to create workspaces for other
users must create the DevWorkspace custom resource in a user namespace
that is provisioned by OpenShift Dev Spaces or by the administrator. See
https://access.redhat.com/documentation/en-
us/red_hat_openshift_dev_spaces/3.4/html-
single/administration_guide/index#administration-guide:configuring-
namespace-provisioning.

Procedure

1. To prepare the DevWorkspace custom resource, copy the contents of the target Git
repository’s devfile.

‘ Example 8.2. Copied devfile contents withschemaVersion: 2.2.0

container:

components:
- name: tooling-container
image: quay.io/devfile/universal-developer-image:ubi8-latest

TIP

For more details, see the devfile v2 documentation.

2. Create a DevWorkspace custom resource, pasting the devfile contents from the previous step
under the spec.template field.

Example 8.3. A DevWorkspace custom resource
apiVersion: workspace.devfile.io/vialpha2

I kind: DevWorkspace

43

https://docs.openshift.com/container-platform/4.11/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/developer-cli-commands.html#oc-project
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.4/html-single/administration_guide/index#administration-guide:configuring-namespace-provisioning
https://devfile.io/docs/2.2.0/what-is-a-devfile

Red Hat OpenShift Dev Spaces 3.4 User guide

metadata:
name: my-devworkspaceﬂ
namespace: user1 -devg
spec:
routingClass: che
started: true
contributions:ﬂ
- name: ide
uri:
"https://devspaces-<openshift_deployment _nameé>. <,domain_nameé>"/plugin-
registry/v3/plugins/che-incubator/che-code/insiders/devfile.yaml
template:
projects:
- hame: my-project-name
git:
remotes:
origin: https://github.com/eclipse-che/che-docs
components:
- name: tooling-container
container:
image: quay.io/devfile/universal-developer-image:ubi8-latest

Name of the DevWorkspace custom resource. This will be the name of the new
workspace.

User namespace, which is the target project for the new workspace.

Determines whether the workspace must be started when the DevWorkspace custom
resource is created.

URL reference to the Microsoft Visual Studio Code - Open Source IDE devfile from the
plugin registry.

Details about the Git repository to clone into the workspace when it starts.

List of components such as workspace containers and volume components.

Q® 0 0 o

3. Apply the DevWorkspace custom resource to the cluster.

Verification

1. Verify that the workspace is starting by checking the PHASE status of the DevWorkspace.

I $ oc get devworkspaces -n <user_project> --watch

Example 8.4. Output

useri-dev my-devworkspace workspacedf64e4a492cd4701 Starting Waiting

NAMESPACE NAME DEVWORKSPACE ID PHASE INFO
for workspace deployment

44

https://github.com/eclipse-che/che-docs
https://github.com/microsoft/vscode

CHAPTER 8. INTEGRATING WITH OPENSHIFT

2. When the workspace has successfully started, its PHASE status changes to Runningin the
output of the oc get devworkspaces command.

Example 8.5. Output

NAMESPACE NAME DEVWORKSPACE ID PHASE INFO
useri-dev my-devworkspace workspacedf64e4a492cd4701 Running
https://url-to-workspace.com

You can then open the workspace by using one of these options:

e Visit the URL provided in the INFO section of the output of the oc get devworkspaces
command.

® Open the workspace from the OpenShift Dev Spaces dashboard.

8.1.3. Stopping workspaces

You can stop a workspace by setting the spec.started field in the Devworkspace custom resource to
false.

Prerequisites
® An active oc session on the cluster. See Getting started with the CLI.

® You know the workspace name.

TIP

You can find the relevant workspace name in the output of $ oc get devworkspaces.
® You know the relevant OpenShift Dev Spaces user namespace on the cluster.

TIP

You can visit
"https://devspaces-&/t;openshift_deployment_name>.&It;domain_name>"/api/kuber
netes/namespace to get your OpenShift Dev Spaces user namespace as hame.

® You are in the OpenShift Dev Spaces user namespace on the cluster.

TIP

On OpenShift, you can use the command-line oc tool to display your current namespace or
switch to a namespace.

Procedure
® Run the following command to stop a workspace:
$ oc patch devworkspace <workspace name>\

-p '{"spec":{"started":false}}' \

45

https://docs.openshift.com/container-platform/4.11/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/developer-cli-commands.html#oc-project

Red Hat OpenShift Dev Spaces 3.4 User guide

--type=merge -n <user_namespace> &&\
oc wait --for=jsonpath="{.status.phase}'=Stopped \
dw/<workspace _name> -n <user_namespace>

8.1.4. Starting stopped workspaces

You can start a stopped workspace by setting the spec.started field in the Devworkspace custom
resource to true.

Prerequisites
® An active oc session on the cluster. See Getting started with the CLI.

® You know the workspace name.

TIP

You can find the relevant workspace name in the output of $ oc get devworkspaces.
® You know the relevant OpenShift Dev Spaces user namespace on the cluster.

TIP
You can visit

"https://devspaces-&/t;openshift_deployment_name>.&It;domain_name>"/api/kuber
netes/namespace to get your OpenShift Dev Spaces user namespace as hame.

® You are in the OpenShift Dev Spaces user namespace on the cluster.

TIP

On OpenShift, you can use the command-line oc¢ tool to display your current namespace or
switch to a namespace.

Procedure

® Run the following command to start a stopped workspace:

$ oc patch devworkspace <workspace name>\
-p '{"spec"{"started":true}}' \

--type=merge -n <user_namespace> &&\

oc wait --for=jsonpath="{.status.phase}'=Running \
dw/<workspace _name> -n <user_namespace>

8.1.5. Removing workspaces

You can remove a workspace by simply deleting the DevWorkspace custom resource.

46

https://docs.openshift.com/container-platform/4.11/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/developer-cli-commands.html#oc-project

CHAPTER 8. INTEGRATING WITH OPENSHIFT

' WARNING
A Deleting the DevWorkspace custom resource will also delete other workspace

resources if they were created by OpenShift Dev Spaces: for example, the
referenced DevWorkspaceTemplate and per-workspace
PersistentVolumeClaims.

TIP

Remove workspaces by using the OpenShift Dev Spaces dashboard whenever possible.

Prerequisites
® An active oc session on the cluster. See Getting started with the CLI.

® You know the workspace name.

TIP

You can find the relevant workspace name in the output of $ oc get devworkspaces.
® You know the relevant OpenShift Dev Spaces user namespace on the cluster.

TIP

You can visit
"https://devspaces-&/t;openshift_deployment_name>.&It;domain_name>"/api/kuber
netes/namespace to get your OpenShift Dev Spaces user namespace as hame.

® You are in the OpenShift Dev Spaces user namespace on the cluster.

TIP

On OpenShift, you can use the command-line oc¢ tool to display your current namespace or
switch to a namespace.

Procedure

® Run the following command to remove a workspace:

I $ oc delete devworkspace <workspace _name> -n <user_namespace>

8.2. AUTOMATIC OPENSHIFT TOKEN INJECTION

This section describes how to use the OpenShift user token that is automatically injected into
workspace containers which allows running OpenShift Dev Spaces CLI commands against OpenShift
cluster.

47

https://docs.openshift.com/container-platform/4.11/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/developer-cli-commands.html#oc-project

Red Hat OpenShift Dev Spaces 3.4 User guide

Procedure

1. Open the OpenShift Dev Spaces dashboard and start a workspace.

2. Once the workspace is started, open a terminal in the container that contains the OpenShift
Dev Spaces CLI.

3. Execute OpenShift Dev Spaces CLI commands which allow you to run commands against
OpenShift cluster. CLI can be used for deploying applications, inspecting and managing cluster
resources, and viewing logs. OpenShift user token will be used during the execution of the
commands.

Selection View Go Run Terminal Help

gotypes > implements main.go >

main

> B3 doc

> B3 hello

' WARNING
A The automatic token injection currently works only on the OpenShift infrastructure.

8.3. NAVIGATING DEV SPACES FROM OPENSHIFT DEVELOPER
PERSPECTIVE

The OpenShift Container Platform web console provides two perspectives; the Administrator
perspective and the Developer perspective.

The Developer perspective provides workflows specific to developer use cases, such as the ability to:

® Create and deploy applications on the OpenShift Container Platform by importing existing
codebases, images, and Dockerfiles.

® Visually interact with applications, components, and services associated with them within a
project and monitor their deployment and build status.

® Group components within an application and connect the components within and across
applications.

® |Integrate serverless capabilities (Technology Preview).

® Create workspaces to edit your application code using OpenShift Dev Spaces.

48

CHAPTER 8. INTEGRATING WITH OPENSHIFT

8.3.1. OpenShift Developer Perspective integration with OpenShift Dev Spaces

This section provides information about OpenShift Developer Perspective support for OpenShift Dev
Spaces.

When the OpenShift Dev Spaces Operator is deployed into OpenShift Container Platform 4.2 and later,
it creates a ConsoleLink Custom Resource (CR). This adds an interactive link to the Red Hat
Applications menu for accessing the OpenShift Dev Spaces installation using the OpenShift Developer
Perspective console.

To access the Red Hat Applications menu, click the three-by-three matrix icon on the main screen of
the OpenShift web console. The OpenShift Dev Spaces Console Link, displayed in the drop-down
menu, creates a new workspace or redirects the user to an existing one.

NOTE

OpenShift Container Platform console links are not created when OpenShift
Dev Spaces is used with HTTP resources

When installing OpenShift Dev Spaces with the From Git option, the OpenShift
Developer Perspective console link is only created if OpenShift Dev Spaces is deployed
with HTTPS. The console link will not be created if an HTTP resource is used.

8.3.2. Editing the code of applications running in OpenShift Container Platform
using OpenShift Dev Spaces

This section describes how to start editing the source code of applications running on OpenShift using
OpenShift Dev Spaces.

Prerequisites

® OpenShift Dev Spaces is deployed on the same OpenShift 4 cluster.

Procedure

1. Open the Topology view to list all projects.
2. Inthe Select an Application search field, type workspace to list all workspaces.

3. Click the workspace to edit.
The deployments are displayed as graphical circles surrounded by circular buttons. One of these
buttons is Edit Source Code.

49

Red Hat OpenShift Dev Spaces 3.4 User guide

Project: test-che-integration ~ Application: all applications =
4> Developer

+Add

Topology

Edit Source Code

4. To edit the code of an application using OpenShift Dev Spaces, click the Edit Source Code
button. This redirects to a workspace with the cloned source code of the application
component.

8.3.3. Accessing OpenShift Dev Spaces from Red Hat Applications menu

This section describes how to access OpenShift Dev Spaces workspaces from the Red Hat Applications
menu on the OpenShift Container Platform.

Prerequisites

® The OpenShift Dev Spaces Operator is available in OpenShift 4.

Procedure

1. Open the Red Hat Applications menu by using the three-by-three matrix icon in the upper right
corner of the main screen.
The drop-down menu displays the available applications.

= RedHat = aibeadh o
OpenShift Container Platform i ube:admin

You are logged in as a temporary administrative user. Update the cluster OAuth configuratio SRR A

«/» Developer €5 Openshift Cluster Manager
+Add ¢ Che Workspace

Topology

Builds

Advanced

2. Click the OpenShift Dev Spaceslink to open the Dev Spaces Dashboard.

8.4. NAVIGATING OPENSHIFT WEB CONSOLE FROM DEV SPACES

50

CHAPTER 8. INTEGRATING WITH OPENSHIFT

This section describes how to access OpenShift web console from OpenShift Dev Spaces.

Prerequisites

® The OpenShift Dev Spaces Operator is available in OpenShift 4.

Procedure

1. Open the OpenShift Dev Spaces dashboard and click the three-by-three matrix icon in the
upper right corner of the main screen.
The drop-down menu displays the available applications.

@ IlyaBuzik v

Applications

Workspaces » & OpenShiftconsole @

A workspace is where your projects live and run. Create workspaces from stacks that define projects, runtimes, and commands. Learn more [

© Add Workspace

a Search Q Delete

Name Last Modified Project(s)
O apache-camel-springboot Jan 26,514 pm fuse-rest-http-booster Open
O bash Mar 09, 3:28 pm. bash Open
[a} cpp Mar 14, 1122 am cpp-hello-world Open
O cpp-spux Mar 10, 1:05 p.m. cpp-hello-world Open

2. Click the OpenShift console link to open the OpenShift web console.

51

Red Hat OpenShift Dev Spaces 3.4 User guide

CHAPTER 9. TROUBLESHOOTING DEV SPACES

This section provides troubleshooting procedures for the most frequent issues a user can come in
conflict with.

Additional resources
® Section 9.1, "Viewing Dev Spaces workspaces logs”
® Section 9.2, “Troubleshooting workspace start failures”
® Section 9.3, “Troubleshooting slow workspaces”

® Section 9.4, "Troubleshooting network problems”

9.1. VIEWING DEV SPACES WORKSPACES LOGS

You can view OpenShift Dev Spaces logs to better understand and debug background processes should
a problem occur.

An IDE extension misbehaves or needs debugging
The logs list the plugins that have been loaded by the editor.
The container runs out of memory

The logs contain an OOMKilled error message. Processes running in the container attempted to
request more memory than is configured to be available to the container.

A process runs out of memory

The logs contain an error message such as OutOfMemoryException. A process inside the container
ran out of memory without the container noticing.

Additional resources

® Section 9.1.1, “Workspace logs in CLI”
® Section 9.1.2, “Workspace logs in OpenShift console”

® Section 9.1.3, “Language servers and debug adapters logs in the editor”

9.1.1. Workspace logs in CLI

You can use the OpenShift CLI to observe the OpenShift Dev Spaces workspace logs.

Prerequisites

® The OpenShift Dev Spaces workspace <workspace_name> is running.

® Your OpenShift CLI session has access to the OpenShift project <namespace_name> containing
this workspace.

Procedure

® Getthe logs from the pod running the <workspace_name> workspace in the <namespace_name>
project:

52

CHAPTER 9. TROUBLESHOOTING DEV SPACES

$ oc logs --follow --namespace='<workspace _namespace>'\
--selector="controller.devfile.io/devworkspace_name=<workspace name>'

9.1.2. Workspace logs in OpenShift console

You can use the OpenShift console to observe the OpenShift Dev Spaces workspace logs.

Procedure

1. In the OpenShift Dev Spaces dashboard, go to Workspaces.

2. Click on a workspace name to display the workspace overview page. This page displays the
OpenShift project name <project_name>.

3. Click on the upper right Applications menu, and click the OpenShift console link.

4. Run the next steps in the OpenShift console, in the Administrator perspective.

5. Click Workloads > Pods to see a list of all the active workspaces.

6. In the Project drop-down menu, select the <project_name> project to narrow the search.

7. Click on the name of the running pod that runs the workspace. The Details tab contains the list
of all containers with additional information.

8. Go to the Logs tab.

9.1.3. Language servers and debug adapters logs in the editor

In the Visual Studio Code editor running in your workspace, you can configure the installed language
server and debug adapter extensions to view their logs.

Procedure

1. Configure the extension: click File > Preferences > Settings, expand the Extensions section,
search for your extension, and set the trace.server or similar configuration to verbose, if such
configuration exists. Refer to the extension documentation for further configuration.

2. View your language server logs by clicking View = Output, and selecting your language server
in the drop-down list for the Output view.

Additional resources

® Open VSXregistry

9.2. TROUBLESHOOTING WORKSPACE START FAILURES
Verbose mode allows users to reach an enlarged log output, investigating failures at a workspace start.

In addition to usual log entries, the Verbose mode also lists the container logs of each workspace.

9.2.1. Restarting a OpenShift Dev Spaces workspace in Verbose mode after start
failure

53

https://open-vsx.org/

Red Hat OpenShift Dev Spaces 3.4 User guide

This section describes how to restart a OpenShift Dev Spaces workspace in the Verbose mode after a
failure during the workspace start. Dashboard proposes the restart of a workspace in the Verbose mode
once the workspace fails at its start.

Prerequisites

® Arunning instance of OpenShift Dev Spaces.

® An existing workspace that fails to start.

Procedure
1. Using Dashboard, try to start a workspace.
2. When it fails to start, click on the displayed Open in Verbose modelink.

3. Check the Logs tab to find a reason for the workspace failure.

9.2.2. Starting a OpenShift Dev Spaces workspace in Verbose mode

This section describes how to start the Red Hat OpenShift Dev Spaces workspace in Verbose mode.

Prerequisites

® Arunninginstance of Red Hat OpenShift Dev Spaces.

® An existing workspace defined on this instance of OpenShift Dev Spaces.

Procedure

1. Open the Workspaces tab.

2. On the left side of a row dedicated to the workspace, access the drop-down menu displayed as
three horizontal dots and select the Open in Verbose modeoption. Alternatively, this option is
also available in the workspace details, under the Actions drop-down menu.

3. Check the Logs tab to find a reason for the workspace failure.

9.3. TROUBLESHOOTING SLOW WORKSPACES

Sometimes, workspaces can take a long time to start. Tuning can reduce this start time. Depending on
the options, administrators or users can do the tuning.

This section includes several tuning options for starting workspaces faster or improving workspace
runtime performance.

9.3.1. Improving workspace start time

Caching images with Image Puller

Role: Administrator

When starting a workspace, OpenShift pulls the images from the registry. A workspace can include
many containers meaning that OpenShift pulls Pod’s images (one per container). Depending on the
size of the image and the bandwidth, it can take a long time.

54

CHAPTER 9. TROUBLESHOOTING DEV SPACES

Image Puller is a tool that can cache images on each of OpenShift nodes. As such, pre-pulling
images can improve start times. See https://access.redhat.com/documentation/en-
us/red_hat_openshift_dev_spaces/3.4/html-single/administration_guide/index#administration-
guide:caching-images-for-faster-workspace-start.

Choosing better storage type

Role: Administrator and user

Every workspace has a shared volume attached. This volume stores the project files, so that when
restarting a workspace, changes are still available. Depending on the storage, attach time can take
up to a few minutes, and |/O can be slow.

Installing offline

Role: Administrator

Components of OpenShift Dev Spaces are OCl images. Set up Red Hat OpenShift Dev Spaces in
offline mode to reduce any extra download at runtime because everything needs to be available
from the beginning. See https://access.redhat.com/documentation/en-
us/red_hat_openshift_dev_spaces/3.4/html-single/administration_guide/index#administration-
guide:installing-che-in-a-restricted-environment.

Optimizing workspace plugins
Role: User

When selecting various plugins, each plugin can bring its own sidecar container, which is an OCI
image. OpenShift pulls the images of these sidecar containers.

Reduce the number of plugins, or disable them to see if start time is faster. See also
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.4/html-
single/administration_guide/index#administration-guide:caching-images-for-faster-workspace-
start.

Reducing the number of public endpoints

Role: Administrator

For each endpoint, OpenShift is creating OpenShift Route objects. Depending on the underlying
configuration, this creation can be slow.

To avoid this problem, reduce the exposure. For example, to automatically detect a new port listening
inside containers and redirect traffic for the processes using a local IP address (127.0.0.1), the Che-
Theia IDE plugin has three optional routes.

By reducing the number of endpoints and checking endpoints of all plugins, workspace start can be
faster.

CDN configuration

The IDE editor uses a CDN (Content Delivery Network) to serve content. Check that the content
uses a CDN to the client (or a local route for offline setup).

To check that, open Developer Tools in the browser and check for vendors in the Network tab.
vendors.<random_id>.js or editor.main.* should come from CDN URLs.

9.3.2. Improving workspace runtime performance

Providing enough CPU resources

55

https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.4/html-single/administration_guide/index#administration-guide:caching-images-for-faster-workspace-start
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.4/html-single/administration_guide/index#administration-guide:installing-che-in-a-restricted-environment
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.4/html-single/administration_guide/index#administration-guide:caching-images-for-faster-workspace-start

Red Hat OpenShift Dev Spaces 3.4 User guide

Plugins consume CPU resources. For example, when a plugin provides IntelliSense features, adding
more CPU resources can improve performance.

Ensure the CPU settings in the devfile definition, devfile.yaml, are correct:

apiVersion: 1.0.0

components:

type: chePlugin

id: __<plugin_id>___
cpuLimit: 1360Mi @)
cpuRequest: 100m g

Q Specifies the CPU limit for the plugin.

9 Specifies the CPU request for the plugin.

Providing enough memory

Plug-ins consume CPU and memory resources. For example, when a plugin provides IntelliSense
features, collecting data can consume all the memory allocated to the container.

Providing more memory to the plugin can increase performance. Ensure about the correctness of
memory settings:

® in the plugin definition - meta.yaml file

® in the devfile definition - devfile.yaml file
apiVersion: v2

spec:
containers:

- image: "quay.io/my-image"
name: "vscode-plugin”
memoryLimit: "512Mi" ﬂ

extensions:

- https://link.to/vsix

ﬂ Specifies the memory limit for the plugin.

In the devfile definition (devfile.yaml):

apiVersion: 1.0.0

components:

type: chePlugin

id: __<plugin_id>___
memoryLimit: 1048M 0
memoryRequest: 256M

ﬂ Specifies the memory limit for this plugin.

56

CHAPTER 9. TROUBLESHOOTING DEV SPACES

9.4. TROUBLESHOOTING NETWORK PROBLEMS

This section describes how to prevent or resolve issues related to network policies. OpenShift Dev
Spaces requires the availability of the WebSocket Secure (WSS) connections. Secure WebSocket
connections improve confidentiality and also reliability because they reduce the risk of interference by
bad proxies.

Prerequisites

® The WebSocket Secure (WSS) connections on port 443 must be available on the network.
Firewall and proxy may need additional configuration.

Procedure

1. Verify the browser supports the WebSocket protocol. See: Searching a websocket test.
2. Verify firewalls settings: WebSocket Secure (WSS) connections on port 443 must be available.

3. Verify proxy servers settings: The proxy transmits and intercepts WebSocket Secure (WSS)
connections on port 443.

57

https://www.google.com/search?q=websocket+test

	Table of Contents
	CHAPTER 1. ADOPTING DEV SPACES
	1.1. DEVELOPER WORKSPACES
	1.1.1. Microsoft Visual Studio Code - Open Source

	1.2. STACK SAMPLES
	1.3. BADGE FOR FIRST-TIME CONTRIBUTORS
	1.4. REVIEWING PULL AND MERGE REQUESTS

	CHAPTER 2. USER ONBOARDING
	2.1. STARTING A NEW WORKSPACE WITH A CLONE OF A GIT REPOSITORY
	2.2. OPTIONAL PARAMETERS FOR THE URLS FOR STARTING A NEW WORKSPACE
	2.2.1. URL parameter concatenation
	2.2.2. URL parameter for the workspace IDE
	2.2.3. URL parameter for starting duplicate workspaces
	2.2.4. URL parameter for the devfile file name
	2.2.5. URL parameter for the devfile file path
	2.2.6. URL parameter for the workspace storage
	2.2.7. URL parameter for additional remotes

	2.3. BASIC ACTIONS YOU CAN PERFORM ON A WORKSPACE
	2.4. AUTHENTICATING TO A GIT SERVER FROM A WORKSPACE

	CHAPTER 3. CUSTOMIZING WORKSPACE COMPONENTS
	CHAPTER 4. INTRODUCTION TO DEVFILE IN DEV SPACES
	CHAPTER 5. SELECTING A WORKSPACE IDE
	5.1. SELECTING AN IN-BROWSER IDE FOR ONE NEW WORKSPACE
	5.2. SELECTING AN IN-BROWSER IDE FOR ALL WORKSPACES THAT CLONE THE SAME GIT REPOSITORY
	5.2.1. Setting up che-editor.yaml
	5.2.2. Parameters for che-editor.yaml

	CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES
	6.1. MOUNTING SECRETS
	6.1.1. Creating image pull Secrets
	6.1.1.1. Creating an image pull Secret with oc
	6.1.1.2. Creating an image pull Secret from a .dockercfg file
	6.1.1.3. Creating an image pull Secret from a config.json file

	6.1.2. Using a Git-provider access token

	6.2. MOUNTING CONFIGMAPS
	6.3. ENABLING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT
	6.3.1. Maven
	6.3.2. Gradle
	6.3.3. npm
	6.3.4. Python
	6.3.5. Go
	6.3.6. NuGet

	CHAPTER 7. REQUESTING PERSISTENT STORAGE FOR WORKSPACES
	7.1. REQUESTING PERSISTENT STORAGE IN A DEVFILE
	7.2. REQUESTING PERSISTENT STORAGE IN A PVC

	CHAPTER 8. INTEGRATING WITH OPENSHIFT
	8.1. MANAGING WORKSPACES WITH OPENSHIFT APIS
	8.1.1. Listing all workspaces
	8.1.2. Creating workspaces
	8.1.3. Stopping workspaces
	8.1.4. Starting stopped workspaces
	8.1.5. Removing workspaces

	8.2. AUTOMATIC OPENSHIFT TOKEN INJECTION
	8.3. NAVIGATING DEV SPACES FROM OPENSHIFT DEVELOPER PERSPECTIVE
	8.3.1. OpenShift Developer Perspective integration with OpenShift Dev Spaces
	8.3.2. Editing the code of applications running in OpenShift Container Platform using OpenShift Dev Spaces
	8.3.3. Accessing OpenShift Dev Spaces from Red Hat Applications menu

	8.4. NAVIGATING OPENSHIFT WEB CONSOLE FROM DEV SPACES

	CHAPTER 9. TROUBLESHOOTING DEV SPACES
	9.1. VIEWING DEV SPACES WORKSPACES LOGS
	9.1.1. Workspace logs in CLI
	9.1.2. Workspace logs in OpenShift console
	9.1.3. Language servers and debug adapters logs in the editor

	9.2. TROUBLESHOOTING WORKSPACE START FAILURES
	9.2.1. Restarting a OpenShift Dev Spaces workspace in Verbose mode after start failure
	9.2.2. Starting a OpenShift Dev Spaces workspace in Verbose mode

	9.3. TROUBLESHOOTING SLOW WORKSPACES
	9.3.1. Improving workspace start time
	9.3.2. Improving workspace runtime performance

	9.4. TROUBLESHOOTING NETWORK PROBLEMS

