‘® redhat.

Red Hat JBoss Fuse 7.0-TP

Deploying into Apache Karaf

Deploying application packages into the Apache Karaf container

Last Updated: 2018-04-03

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

Deploying application packages into the Apache Karaf container

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

.In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is areqgistered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The guide describes the options for deploying applications into an Apache Karaf container.

Table of Contents

Table of Contents

PART L DEVELOPER GUIDE ... iiiitiiittttittinenneeesosssennsessossssnnssssossssnssssssssssnnssssosss 9
CHAPTER 1. DEPLOYING USING AN OSGIBUNDLEiiiiiiiuiuttiieeninnneerosessonnssssosssnnnnnss 10
1.1. OSGI OVERVIEW 10
1.2. PREREQUISITES 10
1.3. PREPARING THE OSGI BUNDLE 10
1.4. DEPLOYING THE OSGI BUNDLE 10
CHAPTER 2. INTRODUCTION TO OSGI ..uvttiiiiiiineeetrennnnnseesoosssnsssssossssnsssssosssnnnsssoos 12
2.1. OVERVIEW 12
2.2. ARCHITECTURE OF APACHE KARAF 12
2.3. 0SGI FRAMEWORK 13
2.3.1. Overview 13
2.3.2. 0SGi architecture 13

2.4. OSGI SERVICES 14
2.4.1. Overview 14
2.4.2. OSGi service registry 14
Event notification 14
Service invocation model 15
OSGi framework services 15
OSGi Compendium services 16
2.5.0SGI BUNDLES 16
Overview 16
Class Loading in OSGi 16
CHAPTER 3. BUILDING AN OSGI BUNDLEiiiitiiitttiieeninnneessossssnnsssssssssnnssssossssnnnsss 18
3.1. GENERATING A BUNDLE PROJECT 18
3.1.1. Generating bundle projects with Maven archetypes 18
3.1.2. Apache CXF karaf-soap-archetype archetype 18
3.1.3. Apache Camel archetype 18
3.1.4. Building the bundle 19
3.2. MODIFYING AN EXISTING MAVEN PROJECT 19
3.2.1. Overview 19
3.2.2. Change the package type to bundle 19
3.2.3. Add the bundle plug-in to your POM 19
3.2.4. Customize the bundle plug-in 20
3.2.5. Customize the JDK compiler version 20

3.3. PACKAGING A WEB SERVICE IN A BUNDLE 21
3.3.1. Overview 21
3.3.2. Modifying the POM file to generate a bundle 21
3.3.3. Mandatory import packages 21
3.3.4. Sample Maven bundle plug-in instructions 21
3.3.5. Add a code generation plug-in 22
3.3.6. OSGi configuration properties 22
CHAPTER 4. CONFIGURING THE BUNDLE PLUG-IN .. .iiiiiiiiiiitiiiiiiinneeteoessnnnssssocssnnnnnss 23
OVERVIEW 23
CONFIGURATION PROPERTIES 23
SETTING A BUNDLE’S SYMBOLIC NAME 23
SETTING A BUNDLE’S NAME 24
SETTING A BUNDLE’S VERSION 24
SPECIFYING EXPORTED PACKAGES 25

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

SPECIFYING PRIVATE PACKAGES
SPECIFYING IMPORTED PACKAGES
MORE INFORMATION

CHAPTER 5. HOT DEPLOYMENT VS MANUAL DEPLOYMENTcciiiiiiiinaan,

5.1.HOT DEPLOYMENT
5.1.1. Hot deploy directory
5.2. HOT UNDEPLOYING A BUNDLE
5.3. MANUAL DEPLOYMENT
5.3.1. Overview
5.3.2. Installing a bundle
5.3.3. Uninstalling a bundle
5.3.4. URL schemes for locating bundles

CHAPTER 6. LIFECYCLE MANAGEMENT ...ttt ittt ittt ieineeens

6.1. BUNDLE LIFECYCLE STATES

6.2. INSTALLING AND RESOLVING BUNDLES
6.3. STARTING AND STOPPING BUNDLES
6.4. BUNDLE START LEVEL

6.5. SPECIFYING A BUNDLE’S START LEVEL
6.6. SYSTEM START LEVEL

CHAPTER 7. TROUBLESHOOTING DEPENDENCIEScciiiiiiiiiiiiiiiiiinnenn,

7.1. MISSING DEPENDENCIES

7.2. REQUIRED FEATURES OR BUNDLES ARE NOT INSTALLED
7.3. IMPORT-PACKAGE HEADER IS INCOMPLETE

7.4.HOW TO TRACK DOWN MISSING DEPENDENCIES

CHAPTER 8. DEPLOYING FEATURES . .iiiiiiiiiiiiiiiiiiiiiiiiiiiiiietenneennnnenns

8.1. CREATING A FEATURE
8.1.1. Overview
8.2. CREATE A CUSTOM FEATURE REPOSITORY
8.3. ADD A FEATURE TO THE CUSTOM FEATURE REPOSITORY
8.4. ADD THE LOCAL REPOSITORY URL TO THE FEATURES SERVICE
8.5. ADD DEPENDENT FEATURES TO THE FEATURE
8.6. ADD OSGI CONFIGURATIONS TO THE FEATURE
8.7. AUTOMATICALLY DEPLOY AN OSGI CONFIGURATION

CHAPTER 9. DEPLOYING AFEATURE . .iiiiiiiiiiiiii ittt iiiiiiiiienineenns

9.1. OVERVIEW

9.2. INSTALLING AT THE CONSOLE

9.3. UNINSTALLING AT THE CONSOLE

9.4. HOT DEPLOYMENT

HOT UNDEPLOYING A FEATURES FILE

9.5. ADDING A FEATURE TO THE BOOT CONFIGURATION

CHAPTER10. DEPLOYING APLAINJAR . ittt ittt iiiiiiiieeenneenns

10.1. CONVERTING A JAR USING THE WRAP SCHEME
Overview
Syntax
Default properties
WRAP AND INSTALL
Reference

CHAPTER 11. CONTEXTS AND DEPENDENCY INJECTION (CDI)ccvviinviinnannn.

25
26
27

28
28
28
28
28
28
28
29
29

31
31
31
32
32
32
32

34
34
34
34
34

36
36
36
36
36
37
38
38
39

40
40
40
40
40
41
41

44
44
44
44
44
44
45

Table of Contents

CHAPTER 12. INTRODUCTION TO CDI t.tttttttiiiiiinnettteessnneessossssnsssssssssonnssssossssnnnsss 47
12.1. JBOSS WELD CDI IMPLEMENTATION 47
CHAPTER 13. USE CDI TO DEVELOP AN APPLICATION ... iiiiiittiiiiiiiinnnetooensonnssssosssnnnnans 48
13.1. AMBIGUOUS OR UNSATISFIED DEPENDENCIES 50
13.2. MANAGED BEANS 52
13.3. CONTEXTS AND SCOPES 53
13.4. BEAN LIFECYCLE 54
13.5. NAMED BEANS 56
13.6. ALTERNATIVE BEANS 56
13.6.1. Stereotypes 57
13.7. OBSERVER METHODS 59
13.8. INTERCEPTORS 61
13.9. DECORATORS 63
13.10. PORTABLE EXTENSIONS 63
13.11. BEAN PROXIES 64
13.11.1. Use a Proxy in an Injection 64
CHAPTER 14, CAMEL CDI 1.ttt iiiiiiitettteentnnnsesooosssnsssssossssnsssssossssnnsssssssssnnnsss 66
14.1. BASIC FEATURES 66
Overview 66
How to enable Camel CDI in Apache Karaf 66
AUTO-CONFIGURED CAMEL CONTEXT 67
Auto-detecting Camel routes 68
AUTO-CONFIGURED CAMEL PRIMITIVES 68
CAMEL CONTEXT CONFIGURATION 68
MULTIPLE CAMEL CONTEXTS 70
CONFIGURATION PROPERTIES 71
AUTO-CONFIGURED TYPE CONVERTERS 72
LAZY INJECTION / PROGRAMMATIC LOOKUP 72
INJECTING A CAMEL CONTEXT FROM SPRING XML 74
CHAPTER 15. CAMEL BEAN INTEGRATION ... iiiiiiiittiiieiiinneetsocsssnssssssssssnsssssossssnnnsss 75
CAMEL ANNOTATIONS 75
BEAN COMPONENT 76
REFERRING BEANS FROM ENDPOINT URIS 76
CHAPTER 16. CDIEVENTS IN CAMELiutttiiiiiiiintttteensnneessossssnsssssossssnnssssossssnnnnss 77
CAMEL EVENTS TO CDI EVENTS 77
CDIEVENTS ENDPOINT 77
PART L. OSGIINTEGRATION ..t iiiiiiitttitiineeneeteosssenneessossssnssssssssssnnssssssssnnnsssssss 80
AUTO-CONFIGURED OSGI INTEGRATION 80
CHAPTER 17. PAX CDI AND OSGI SERVICES ... iitiiitttiiiiiiinnetttoensonnssssssssnnssssossssnnnnss 81
17.1. PAX CDI ARCHITECTURE 81
17.1.1. Overview 81
17.2. PAX CDI 81
JBOSS WELD 81
BEAN BUNDLE 81
CDI CONTAINER 82
CAMEL CDI AND OTHER CUSTOMIZATIONS 82
17.3. ENABLING PAX CDI 82
Overview 82
Pax CDI features 82

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

Requirements and capabilities 83
How to enable Pax CDI in Apache Karaf 83
17.4. OSGI SERVICES EXTENSION 84
Overview 84
Enabling the OSGi Services Extension 84
Maven dependency for the OSGi Services extensions API 85
INJECTING AN OSGI SERVICE 86
DISAMBIGUATING OSGI SERVICES 86
Selecting OSGi Services at run time 86
Publishing a bean as OSGi Service with singleton scope 86
Publishing a bean as OSGi Service with prototype scope 86
Publishing a bean as OSGi Service with bundle scope 87
Setting OSGi Service properties 87
Publishing an OSGi Service with explicit interfaces 87
CHAPTER 18. DEPLOYING USING AWAR PACKAGEiiiiiiiiiiiiiiiiiinetteoennsnnssssocssonnnnss 88
CHAPTER 19. DEPLOYING USING THE OSGI SERVICELAYERciiiiiiiiiiiiiiiiiiinneetsocnnnnnnnns 89
CHAPTER 20.0SGI SERVICES . .iiiiiiiiittttiieiiinneeteoessnnssssossssnsssssssssssnsssssssssnnnsss 920
CHAPTER 21. THE BLUEPRINT CONTAINER .. i iitttiiiiiiiittteinnnneessosssnnsssssosssnnnsssoon 91
21.1. BLUEPRINT CONFIGURATION 91
21.2. DEFINING A SERVICE BEAN 92
21.3. EXPORTING A SERVICE 93
21.4. IMPORTING A SERVICE 98
CHAPTER 22. PUBLISHING AN OSGI SERVICE .. itutttiiiiiiiiiettiteensnnossssossssnsssssosssnnnnns 105
22.1. OVERVIEW 105
22.2. PREREQUISITES 105
22.3. GENERATING A MAVEN PROJECT 105
22.4. CUSTOMIZING THE POM FILE 105
22.5. WRITING THE SERVICE INTERFACE 106
22.6. WRITING THE SERVICE CLASS 106
22.7.WRITING THE BLUEPRINT FILE 107
22.8. RUNNING THE SERVICE BUNDLE 107
CHAPTER 23. ACCESSING AN OSGI SERVICEuuutttiiiiiinneeetooessonsssssossssnsssssosssnnnnss 109
23.1. OVERVIEW 109
23.2. PREREQUISITES 109
23.3. GENERATING A MAVEN PROJECT 109
23.4. CUSTOMIZING THE POM FILE 109
23.5. WRITING THE BLUEPRINT FILE 10
23.6. WRITING THE CLIENT CLASS 10
23.7. RUNNING THE CLIENT BUNDLE m
CHAPTER 24. INTEGRATION WITH APACHE CAMEL .. . iiiiiiiiiiiiiiiineetteennnnnsessocssnnnnsnss 13
24.1. OVERVIEW 13
24.2. REGISTRY CHAINING 13
24.3. SAMPLE OSGI SERVICE INTERFACE 13
24.4. SAMPLE SERVICE EXPORT 13
24.5. INVOKING THE OSGI SERVICE FROM JAVA DSL 13
24.6. INVOKING THE OSGI SERVICE FROM XML DSL 14
CHAPTER 25. DEPLOYING USING A UJMSBROKERciiiiiiiiitttiieiiinneeetooennnnsssssossonnnssss 115

Table of Contents

APPENDIX A.URLHANDLERS ... ittiiiiiiiiintetttenennaeeesoosssnnssssosssssnsssssssssnnsssssssssnas 116
A1.FILE URL HANDLER 16
SYNTAX 16
EXAMPLES 16

CHAPTER 26. HTTPURL HANDLER .. .tiitttiiiiiiiiittttteeninnaeessossssnsssssosssnnssssoosssnnsssss 17
SYNTAX 17

CHAPTER 27.MVN URL HANDLER ittttiiiiiiiiinettteeninnneessosssnnsssssossssnnssssssssnnnnss. 118
OVERVIEW 18
SYNTAX 18
OMITTING COORDINATES 18
SPECIFYING A VERSION RANGE 18
CONFIGURING THE MVN URL HANDLER 19
CHECK THE MVN URL SETTINGS 19
EDIT THE CONFIGURATION FILE 120
CUSTOMIZE THE LOCATION OF THE LOCAL REPOSITORY 120
REFERENCE 120

CHAPTER 28. WRAP URL HANDLER .. .iittttiiiiiiineetteeessnnsssssossssnsssssossssnsssssosssnnsssss 121
OVERVIEW 121
SYNTAX 121
DEFAULT INSTRUCTIONS 121
EXAMPLES 121
REFERENCE 122

CHAPTER 29. WARURL HANDLER ... ititttiiiiiiinaeeteoessnnassssossssnsssssossssnsssssosssnnnnss 123
OVERVIEW 123
SYNTAX 123
WAR-SPECIFIC PROPERTIES/INSTRUCTIONS 123
DEFAULT INSTRUCTIONS 123
EXAMPLES 124
REFERENCE 124

PART L USER GUIDE 1. .itttttiiiiiiiinetteoeneenneesossssensassossssonssssssssssnsssssssssnnssssoss 125

CHAPTER 30.INTRODUCTION TO THE DEPLOYING INTO APACHE KARAF USER GUIDE PART 126
30.1. DIRECTORY STRUCTURE 126

CHAPTER 31. CONFIGURATION ..o iiiiiiiiiiiiiiinaetttoessnnassssossssnssssssssssnsssssosssnnnnss 127
31.1. FILES 127

31.1.1. config:* commands 128
31.1.1.1. config:list 128
31.1.1.2. config:edit 129
31.1.1.3. config:property-list 130
31.1.1.4. config:property-set 130
31.1.1.5. config:property-append 131
31.1.1.6. config:property-delete 131
31.1.1.7. config:update and config:cancel 132
31.1.1.8. config:delete 133
31.1.1.9. config:meta 133

31.1.2. JMX ConfigMBean 134
31.1.2.1. Attributes 134
31.1.2.2. Operations 134

31.2. USING THE CONSOLE 134

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

31.2.1. Available commands 134
31.2.2. Subshell and completion mode 135
31.2.3. Unix like environment 137
31.2.3.1. Help or man 137
31.2.3.2. Completion 138
31.2.3.3. Alias 138
31.2.3.4. Key binding 139
31.2.3.5. Pipe 140
31.2.3.6. Grep, more, find, ... 140
31.2.3.7. Scripting 141
31.2.4. Security 143
CHAPTER 32. PROVISIONING ... iiiiiiiiiittiieiiinnneetsoesssnassssossssnssssssssssnsssssosssnnnnss 144
32.1. APPLICATION 144
32.2. OSGl 144
32.3. FEATURE AND RESOLVER 144
32.4. FEATURES REPOSITORIES 145
32.5.BOOT FEATURES 146
32.6. FEATURES UPGRADE 146
32.7. OVERRIDES 146
32.8. FEATURE BUNDLES 146
32.8.1. Start Level 146
32.8.2. Simulate, Start and stop 147
32.8.3. Dependency 147
32.9. DEPENDENT FEATURES 147
32.9.1. Feature prerequisites 148
32.10. FEATURE CONFIGURATIONS 148
32.11. FEATURE CONFIGURATION FILES 148
32.11.1. Requirements 149
32.12. COMMANDS 149
32.12.1. feature:repo-list 149
32.12.2. feature:repo-add 150
32.12.3. feature:repo-refresh 152
32.12.4. feature:repo-remove 152
32.12.5. feature:list 153
32.12.6. feature:install 155
32.12.7. feature:start 156
32.12.8. feature:stop 156
32.12.9. feature:uninstall 156
32.13.DEPLOYER 156
32.14. IMX FEATUREMBEAN 157
32.14.1. Attributes 157
32.14.2. Operations 158
32.14.3. Notifications 158
CHAPTER 33. REMOTE . i iiiitttiiiiiiinneeteoessnnasessossssnsssssossssnssssssssssnnssssosssnnnnss 159
33.1. SSHD SERVER 159
33.1.1. Configuration 159
33.1.2. Console clients 161
33.1.2.1. System native clients 161
33.1.2.2. ssh:ssh command 162
33.1.2.3. Apache Karaf client 163
33.1.2.4. Logout 165

Table of Contents

33.1.3. Filsystem clients 165
33.1.3.1. Native SCP/SFTP clients 165
33.1.3.2. Apache Maven 166

33.2. JMX MBEANSERVER 166
CHAPTER 34. BUILDING WITH MAVEN ...ttt iiiiiiiitttieeiinnaeessossssnsssssossssnsssssosssnnnnss 167
CHAPTER 35. MAVEN DIRECTORY STRUCTUREitiiiiiiiiettiteennnnnessoosssnnsssssosssnnnnss 168

35.1. OVERVIEW 168

35.2. STANDARD DIRECTORY LAYOUT 168

35.3. POM.XML FILE 168

35.4. SRC AND TARGET DIRECTORIES 169

35.5. MAIN AND TEST DIRECTORIES 169

35.6. JAVA DIRECTORY 169

35.7. RESOURCES DIRECTORY 169

35.8. BLUEPRINT CONTAINER 169
CHAPTER 36. PREPARING TOUSE MAVEN ... iiiiiittiiiiiiinnetteoessnnsssssosssnnsssssosssnnnnss 170

36.1. OVERVIEW 170

36.2. PREREQUISITES 170

36.3. ADDING THE RED HAT MAVEN REPOSITORIES 170

36.4. ARTIFACTS 172

36.5. MAVEN COORDINATES 172
CHAPTER 37. MAVEN INDEXER PLUGIN .. .iiiiiiiiiiittiiiiiiinaetteoessnnsssssosssnnsssssosssnnnnss 174
CHAPTER 38. SECURITY L iiiitttiiiiiiinettteessnnneessoesssnsssssossssnssssssssssnsssssssssnnnnss 175

38.1. REALMS 175

38.1.1. Users, groups, roles, and passwords 176

38.1.1.1. Commands 177
38.1.1.1.1. jaas:realm-list 177
38.1.1.1.2. jaas:realm-manage 177
38.1.1.1.3. jaas:user-list 178
38.1.1.1.4. jaas:user-add 178
38.1.1.1.5. jaas:user-delete 178
38.1.1.1.6. jaas:group-add 179
38.1.1.1.7. jaas:group-delete 179
38.1.1.1.8. jaas:group-role-add 179
38.1.1.1.9. jaas:group-role-delete 179
38.1.1.1.10. jaas:update 179
38.1.1.1.11. jaas:cancel 179

38.1.2. Passwords encryption 179

38.1.3. Managing authentication by key 181

38.1.4.RBAC 182
38.1.4.1. OSGi services 182
38.1.4.2. Console 183
38.1.4.3. JMX 184
38.1.4.4. WebConsole 185

38.1.5. SecurityMBean 185
38.1.5.1. Operations 185

38.1.6. Security providers 186

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

PART |. DEVELOPER GUIDE

PART |. DEVELOPER GUIDE

This part contains information for developers.

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

CHAPTER 1. DEPLOYING USING AN OSGI BUNDLE

Abstract

The usual and most common method of deploying into Apache Karaf is using an OSGi bundle.

1.1.0SGI OVERVIEW

Apache Karaf is structured to use OSGi functionality. For more information about the structure of
Apache Karaf see Chapter 2, Introduction to OSGi.

An OSGi bundle is a collection of JAR files with configuration files, bundled up into a JAR. For more
information about creating OSGi bundles see Chapter 3, Building an OSGi Bundle.

1.2. PREREQUISITES
Before following the instructions make sure that you have completed the following prerequisites:
e Install Apache Karaf, following the instructions in the
https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse/7.0-

TP/single/installing_on_apache_karaf/index JBoss Fuselnstalling on Apache Karaf Guide

o Make sure you have installed and configured Maven as shown in Chapter 34, Building with
Maven

1.3. PREPARING THE OSGI BUNDLE

For this example we will use a quickstart, which is a ready-prepared bundle. Quickstarts can be found in
FUSE_HOME/quickstarts

To find out more about how to build your own OSGi bundle, see Section 3.1, “Generating a Bundle
Project”.

1.4. DEPLOYING THE OSGI BUNDLE
The OSGi bundle is deployed into a running Apache Karaf instance.

1. Start Apache Karaf from the bin direction by executing the . /karaf scriptin the
FUSE_HOME/bin/ directory.
You will see the prompt:

I karaf@root()>

2. On a separate terminal, navigate to the FUSE_HOME/quickstarts/beginner/camel-1log
directory. camel-1logis the name of the quickstart we will use to create a bundle.

3. Compile the camel-1og quickstart using Maven:

I $ mvn clean install

4. Return to the Karaf terminal and install the project:

10

https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse/7.0-TP/single/installing_on_apache_karaf/index

CHAPTER 1. DEPLOYING USING AN OSGI BUNDLE

karaf@root()> osgi:install -s
mvn:org.jboss.fuse.quickstarts/beginner-camel-1log/7.0.0.fuse-000145-
redhat-1

You will see a bundle ID returned:
I Bundle ID: 228

This is a unique identifier for this bundle on this instance of Apache Karaf

5. To see the output of project, look in the log file at FUSE_HOME/data/log/fuse.log The
output will look like this:

12:07:34.542 INFO [Camel (log-example-context) thread #1 - timer://foo]
>>> Hello from Fuse based Camel route!
12:07:39.530 INFO [Camel (log-example-context) thread #1 - timer://foo]
>>> Hello from Fuse based Camel route!
12:07:44.530 INFO [Camel (log-example-context) thread #1 - timer://foo]
>>> Hello from Fuse based Camel route!

For more information about deploying OSGi bundles, see Chapter 5, Hot deployment vs manual
deployment.

1

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

CHAPTER 2. INTRODUCTION TO OSGI

Abstract

The OSGi specification supports modular application development by defining a runtime framework
that simplifies building, deploying, and managing complex applications.

2.1.OVERVIEW

Apache Karaf is an OSGi-based runtime container for deploying and managing bundles. Apache Karaf
also provides native operating system integration, and can be integrated into the operating system as
a service so that the lifecycle is bound to the operating system.
Apache Karaf has the following structure:
e Apache Karaf - a wrapper layer around the OSGi container implementation, which provides
support for deploying the OSGi container as a runtime server. Runtime features provided by
the JBoss Fuse include hot deployment, management, and administration features.

e OSGi Framework - implements OSGi functionality, including managing dependencies and
bundle lifecycles

2.2. ARCHITECTURE OF APACHE KARAF
Figure 2.1, “Apache Karaf Architecture” shows the architecture of Apache Karaf.

Figure 2.1. Apache Karaf Architecture

Red Hat JBoss Fuse

4 ™
Console J [Logging J [DeploymantJ [FAB J [Pruvisiuning} E:::nﬂguratiuﬂ [Blueprint J [Springl.‘.lhnl
\ w

Service

Bundles .
Lifecycle

Security

Module

Execution Environment

OSGi Framework

Apache Karaf extends the OSGi layers with the following functionality:

12

CHAPTER 2. INTRODUCTION TO OSGI

e Console - the console manages services, installs and manages applications and libraries, and
interacts with the JBoss Fuse runtime. It provides console commands to administer instances
of JBoss Fuse. See the olink:FMQCommandRef/FMQCommandRef.

e Logging - the logging subsystem provides console commands to display, view and change log
levels.

e Deployment - supports both manual deployment of OSGi bundles using the osgi:install
and osgi:start commands and hot deployment of applications. See Section 5.1, “Hot
Deployment”.

e Provisioning - provides multiple mechanisms for installing applications and libraries. See
Chapter 8, Deploying Features.

e *Configuration - the properties files stored in the InstallDir/etc folder are continuously
monitored, and changes to them are automatically propagated to the relevant services at
configurable intervals.

e Blueprint - is a dependency injection framework that simplifies interaction with the OSGi
container. For example, providing standard XML elements to import and export OSGi services.
When a Blueprint configuration file is copied to the hot deployment folder, Red Hat JBoss Fuse
generates an OSGi bundle on-the-fly and instantiates the Blueprint context.

2.3. 0SGI FRAMEWORK

2.3.1. Overview

The OSGi Alliance is an independent organization responsible for defining the features and capabilities
of the OSGi Service Platform Release 4. The OSGi Service Platform is a set of open specifications that
simplify building, deploying, and managing complex software applications.

OSGi technology is often referred to as the dynamic module system for Java. OSGi is a framework for
Java that uses bundles to modularly deploy Java components and handle dependencies, versioning,
classpath control, and class loading. OSGi’s lifecycle management allows you to load, start, and stop
bundles without shutting down the JVM.

OSGi provides the best runtime platform for Java, a superior class loading architecture, and a reqgistry
for services. Bundles can export services, run processes, and have their dependencies managed. Each
bundle can have its requirements managed by the OSGi container.

JBoss Fuse uses Apache Felix as its default OSGi implementation. The framework layers form the

container where you install bundles. The framework manages the installation and updating of bundles
in a dynamic, scalable manner, and manages the dependencies between bundles and services.

2.3.2. 0SGi architecture

As shown in Figure 2.1, “Apache Karaf Architecture”, the OSGi framework contains the following:
e Bundles — Logical modules that make up an application. See Section 2.5, “OSGi Bundles”.

e Service layer — Provides communication among modules and their contained components.
This layer is tightly integrated with the lifecycle layer. See Section 2.4, “OSGi Services”.

13

olink:FMQCommandRef/FMQCommandRef
http://www.osgi.org
http://www.osgi.org/Specifications/HomePage?section=2
http://felix.apache.org/

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

e Lifecycle layer — Provides access to the underlying OSGi framework. This layer handles the
lifecycle of individual bundles so you can manage your application dynamically, including
starting and stopping bundles.

e Module layer — Provides an API to manage bundle packaging, dependency resolution, and
class loading.

e Execution environment — A configuration of a JVM. This environment uses profiles that define
the environment in which bundles can work.

e Security layer — Optional layer based on Java 2 security, with additional constraints and
enhancements.

Each layer in the framework depends on the layer beneath it. For example, the lifecycle layer requires
the module layer. The module layer can be used without the lifecycle and service layers.

2.4. OSGI SERVICES

2.4.1. Overview

An OSGi service is a Java class or service interface with service properties defined as name/value
pairs. The service properties differentiate among service providers that provide services with the same
service interface.

An OSGi service is defined semantically by its service interface, and it is implemented as a service
object. A service’s functionality is defined by the interfaces it implements. Thus, different applications
can implement the same service.

Service interfaces allow bundles to interact by binding interfaces, not implementations. A service
interface should be specified with as few implementation details as possible.

2.4.2. 0SGi service registry

In the OSGi framework, the service layer provides communication between Section 2.5, “OSGi
Bundles” and their contained components using the publish, find, and bind service model. The service
layer contains a service registry where:

e Service providers register services with the framework to be used by other bundles

e Service requesters find services and bind to service providers
Services are owned by, and run within, a bundle. The bundle registers an implementation of a service
with the framework service registry under one or more Java interfaces. Thus, the service’s
functionality is available to other bundles under the control of the framework, and other bundles can
look up and use the service. Lookup is performed using the Java interface and service properties.
Each bundle can register multiple services in the service registry using the fully qualified name of its
interface and its properties. Bundles use names and properties with LDAP syntax to query the service
registry for services.
A bundle is responsible for runtime service dependency management activities including publication,

discovery, and binding. Bundles can also adapt to changes resulting from the dynamic availability
(arrival or departure) of the services that are bound to the bundle.

Event notification

14

CHAPTER 2. INTRODUCTION TO OSGI

Service interfaces are implemented by objects created by a bundle. Bundles can:
o Register services
e Search for services
e Receive notifications when their registration state changes

The OSGi framework provides an event notification mechanism so service requesters can receive
notification events when changes in the service registry occur. These changes include the publication
or retrieval of a particular service and when services are registered, modified, or unregistered.

Service invocation model

When a bundle wants to use a service, it looks up the service and invokes the Java object as a normal
Java call. Therefore, invocations on services are synchronous and occur in the same thread. You can
use callbacks for more asynchronous processing. Parameters are passed as Java object references.

No marshalling or intermediary canonical formats are required as with XML. OSGi provides solutions
for the problem of services being unavailable.

OSGi framework services

In addition to your own services, the OSGi framework provides the following optional services to
manage the operation of the framework:

e Package Admin service—allows a management agent to define the policy for managing Java
package sharing by examining the status of the shared packages. It also allows the
management agent to refresh packages and to stop and restart bundles as required. This
service enables the management agent to make decisions regarding any shared packages
when an exporting bundle is uninstalled or updated.

The service also provides methods to refresh exported packages that were removed or
updated since the last refresh, and to explicitly resolve specific bundles. This service can also
trace dependencies between bundles at runtime, allowing you to see what bundles might be
affected by upgrading.

e Start Level service—enables a management agent to control the starting and stopping order of
bundles. The service assigns each bundle a start level. The management agent can modify the
start level of bundles and set the active start level of the framework, which starts and stops the
appropriate bundles. Only bundles that have a start level less than, or equal to, this active start
level can be active.

e URL Handlers service—dynamically extends the Java runtime with URL schemes and content
handlers enabling any component to provide additional URL handlers.

o Permission Admin service —enables the OSGi framework management agent to administer the
permissions of a specific bundle and to provide defaults for all bundles. A bundle can have a
single set of permissions that are used to verify that it is authorized to execute privileged code.
You can dynamically manipulate permissions by changing policies on the fly and by adding new
policies for newly installed components. Policy files are used to control what bundles can do.

e Conditional Permission Admin service —extends the Permission Admin service with
permissions that can apply when certain conditions are either true or false at the time the
permission is checked. These conditions determine the selection of the bundles to which the
permissions apply. Permissions are activated immediately after they are set.

15

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

The OSGi framework services are described in detail in separate chapters in the OSGi Service
Platform Release 4 specification available from the release 4 download page on the OSGi Alliance
web site.

OSGi Compendium services

In addition to the OSGi framework services, the OSGi Alliance defines a set of optional, standardized
compendium services. The OSGi compendium services provide APIs for tasks such as logging and
preferences. These services are described in the OSGi Service Platform, Service Compendium
available from the release 4 download page on the OSGi Alliance Web site.

The Configuration Admin compendium service is like a central hub that persists configuration
information and distributes it to interested parties. The Configuration Admin service specifies the
configuration information for deployed bundles and ensures that the bundles receive that data when
they are active. The configuration data for a bundle is a list of name-value pairs. See Section 2.2,
“Architecture of Apache Karaf”.

2.5.0SGI BUNDLES

Overview

With OSGi, you modularize applications into bundles. Each bundle is a tightly coupled, dynamically
loadable collection of classes, JARs, and configuration files that explicitly declare any external
dependencies. In OSGi, a bundle is the primary deployment format. Bundles are applications that are
packaged in JARs, and can be installed, started, stopped, updated, and removed.

OSGi provides a dynamic, concise, and consistent programming model for developing bundles.
Development and deployment are simplified by decoupling the service’s specification (Java interface)
from its implementation.

The OSGi bundle abstraction allows modules to share Java classes. This is a static form of reuse. The
shared classes must be available when the dependent bundle is started.

A bundle is a JAR file with metadata in its OSGi manifest file. A bundle contains class files and,
optionally, other resources and native libraries. You can explicitly declare which packages in the
bundle are visible externally (exported packages) and which external packages a bundle requires
(imported packages).

The module layer handles the packaging and sharing of Java packages between bundles and the hiding
of packages from other bundles. The OSGi framework dynamically resolves dependencies among

bundles. The framework performs bundle resolution to match imported and exported packages. It can
also manage multiple versions of a deployed bundle.

Class Loading in OSGi

OSGi uses a graph model for class loading rather than a tree model (as used by the JVM). Bundles can
share and re-use classes in a standardized way, with no runtime class-loading conflicts.

Each bundle has its own internal classpath so that it can serve as an independent unit if required.
The benefits of class loading in OSGi include:

e Sharing classes directly between bundles. There is no requirement to promote JARs to a
parent class-loader.

16

https://www.osgi.org/developer/downloads/
https://www.osgi.org/developer/downloads/

CHAPTER 2. INTRODUCTION TO OSGI

e You can deploy different versions of the same class at the same time, with no conflict.

17

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

CHAPTER 3. BUILDING AN OSGI BUNDLE

Abstract

This chapter describes how to build an OSGi bundle using Maven. For building bundles, the Maven
bundle plug-in plays a key role, because it enables you to automate the generation of OSGi bundle
headers (which would otherwise be a tedious task). Maven archetypes, which generate a complete
sample project, can also provide a starting point for your bundle projects.

3.1. GENERATING A BUNDLE PROJECT

3.1.1. Generating bundle projects with Maven archetypes

To help you get started quickly, you can invoke a Maven archetype to generate the initial outline of a
Maven project (a Maven archetype is analogous to a project wizard). The following Maven archetypes
can generate projects for building OSGi bundles:

e Section 3.1.2, “Apache CXF karaf-soap-archetype archetype”.

e Section 3.1.3, “Apache Camel archetype”.

3.1.2. Apache CXF karaf-soap-archetype archetype

The Apache CXF karaf-soap-archetype archetype creates a project for building a service from Java. To
generate a Maven project with the coordinates, Groupld: Artifactid: Version, enter the following
command:

mvn archetype:generate \
-DarchetypeGroupId=io.fabric8.archetypes \
-DarchetypeArtifactId=karaf-soap-archetype \
-DarchetypeVersion={fabricVersion} \
-DgroupId=GroupId \
-DartifactId=ArtifactId \
-Dversion=Version \
-Dfabric8-profile=ProfileName

NOTE

The backslash character, \, indicates line continuation on Linux and UNIX operating
systems. On Windows platforms, you must omit the backslash character and put all of
the arguments on a single line.

3.1.3. Apache Camel archetype

The Apache Camel OSGi archetype creates a project for building a route that can be deployed into the
OSGi container. To generate a Maven project with the coordinates, Groupld: Artifactld: Version, enter
the following command:

mvn archetype:generate \
-DarchetypeGroupId=org.apache.camel.archetypes \
-DarchetypeArtifactId=camel-archetype-blueprint \
-DarchetypeVersion=2.21.0.fuse-000055-redhat-2 \

18

CHAPTER 3. BUILDING AN OSGI BUNDLE

-DgroupId=GroupId \
-DartifactId=ArtifactId \
-Dversion=Version

3.1.4. Building the bundle

By default, the preceding archetypes create a project in a new directory, whose names is the same as
the specified artifact ID, Artifactld. To build the bundle defined by the new project, open a command
prompt, go to the project directory (that is, the directory containing the pom. xml file), and enter the
following Maven command:

I mvn install

The effect of this command is to compile all of the Java source files, to generate a bundle JAR under
the Artifactid/ target directory, and then to install the generated JAR in the local Maven repository.

3.2. MODIFYING AN EXISTING MAVEN PROJECT

3.2.1. Overview

If you already have a Maven project and you want to modify it so that it generates an OSGi bundle,
perform the following steps:

1. Section 3.2.2, “Change the package type to bundle”.
2. Section 3.2.3, “Add the bundle plug-in to your POM” .
3. Section 3.2.4, “Customize the bundle plug-in”.

4. Section 3.2.5, “Customize the JDK compiler version” .

3.2.2. Change the package type to bundle

Configure Maven to generate an OSGi bundle by changing the package type to bundle in your
project’s pom.xml file. Change the contents of the packagingelement to bundle, as shown in the
following example:

<project ... >
;béckaging>bundle</packaging>
</6}6ject>
The effect of this setting is to select the Maven bundle plug-in,maven-bundle-plugin, to perform

packaging for this project. This setting on its own, however, has no effect until you explicitly add the
bundle plug-in to your POM.

3.2.3. Add the bundle plug-in to your POM

To add the Maven bundle plug-in, copy and paste the following sample plugin element into the
project/build/plugins section of your project’s pom.xml file:

19

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

<project ... >
<build>
<defaultGoal>install</defaultGoal>
<plugins>

<plugin> <groupld>org.apache.felix</groupIld> <artifactId>maven-
bundle-plugin</artifactId> <version>2.3.7</version>
<extensions>true</extensions> <configuration> <instructions> <Bundle-
SymbolicName>${project.groupIld}.${project.artifactId}</Bundle-
SymbolicName> <Import-Package></Import-Package>
</instructions>
</configuration>
</plugin>*
</plugins>
</build>

</project>
Where the bundle plug-in is configured by the settings in the instructions element.

3.2.4. Customize the bundle plug-in

For some specific recommendations on configuring the bundle plug-in for Apache CXF, see Section 3.3,
“Packaging a Web Service in a Bundle”.

For an in-depth discussion of bundle plug-in configuration, in the context of the OSGi framework and
versioning policy, see olink:OsgiDependencies/OsgiDependencies.

3.2.5. Customize the JDK compiler version

It is almost always necessary to specify the JDK version in your POM file. If your code uses any modern
features of the Java language—such as generics, static imports, and so on—and you have not
customized the JDK version in the POM, Maven will fail to compile your source code. It is not sufficient
to set the JAVA_HOME and the PATH environment variables to the correct values for your JDK, you
must also modify the POM file.

To configure your POM file, so that it accepts the Java language features introduced in JDK 1.7, add
the following maven-compiler-plugin plug-in settings to your POM (if they are not already
present):

<project ... >
<pbuild>
<defaultGoal>install</defaultGoal>
<plugins>

<plugin> <groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId> <configuration>
<source>1.7</source> <target>1.7</target> </configuration> </plugin>
</plugins>
</build>

</project>

20

olink:OsgiDependencies/OsgiDependencies

CHAPTER 3. BUILDING AN OSGI BUNDLE

3.3. PACKAGING A WEB SERVICE IN A BUNDLE

3.3.1. Overview

This section explains how to modify an existing Maven project for a Apache CXF application, so that
the project generates an OSGi bundle suitable for deployment in the Red Hat JBoss Fuse OSGi
container. To convert the Maven project, you need to modify the project’s POM file and the project’s
Blueprint file(s) (located in META-INF/spring).

3.3.2. Modifying the POM file to generate a bundle

To configure a Maven POM file to generate a bundle, there are essentially two changes you need to
make: change the POM’s package type to bundle; and add the Maven bundle plug-in to your POM. For
details, see Section 3.1, “Generating a Bundle Project”.

3.3.3. Mandatory import packages

In order for your application to use the Apache CXF components, you need to import their packages
into the application’s bundle. Because of the complex nature of the dependencies in Apache CXF, you
cannot rely on the Maven bundle plug-in, or the bnd tool, to automatically determine the needed
imports. You will need to explicitly declare them.

You need to import the following packages into your bundle:

javax.jws

javax.wsdl

javax.xml.bind
javax.xml.bind.annotation
javax.xml.namespace

javax.xml.ws

org.apache.cxf.bus
org.apache.cxf.bus.spring
org.apache.cxf.bus.resource
org.apache.cxf.configuration.spring
org.apache.cxf.resource
org.apache.cxf.jaxws
org.springframework.beans.factory.config

3.3.4. Sample Maven bundle plug-in instructions

Example 3.1, “Configuration of Mandatory Import Packages” shows how to configure the Maven bundle
plug-in in your POM to import the mandatory packages. The mandatory import packages appear as a
comma-separated list inside the Import-Package element. Note the appearance of the wildcard, *,
as the last element of the list. The wildcard ensures that the Java source files from the current bundle
are scanned to discover what additional packages need to be imported.

<plugins>

Example 3.1. Configuration of Mandatory Import Packages
<plugin>

<project ... >
<build>

21

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf
org.apache.cxf.bus,

<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<extensions>true</extensions>
<configuration>
<instructions>
<Import-Package>
org.apache.cxf.bus.spring,

javax.jws,
javax.wsdl,
javax.xml.bind,
javax.xml.bind.annotation,
javax.xml.namespace,
javax.xml.ws,
org.apache.cxf.bus.resource,
org.apache.cxf.configuration.spring,
org.apache.cxf.resource,
org.apache.cxf.jaxws,
org.springframework.beans.factory.config,
*

</Import-Package>

</instructions>
</configuration>
</plugin>
</plugins>
</build>

</project>

3.3.5. Add a code generation plug-in

A Web services project typically requires code to be generated. Apache CXF provides two Maven plug-
ins for the JAX-WS front-end, which enable tyou to integrate the code generation step into your build.
The choice of plug-in depends on whether you develop your service using the Java-first approach or
the WSDL-first approach, as follows:

e Java-first approach—use the cxf-java2ws-plugin plug-in.

o WSDL-first approach—use the cxf-codegen-plugin plug-in.

3.3.6. OSGi configuration properties

The OSGi Configuration Admin service defines a mechanism for passing configuration settings to an
OSGi bundle. You do not have to use this service for configuration, but it is typically the most
convenient way of configuring bundle applications. Both Spring DM and Blueprint provide support for
OSGi configuration, enabling you to substitute variables in a Blueprint file using values obtained from
the OSGi Configuration Admin service.

For details of how to use OSGi configuration properties, see Chapter 4, Configuring the Bundle Plug-In
and Section 8.6, “Add OSGi configurations to the feature”.

22

CHAPTER 4. CONFIGURING THE BUNDLE PLUG-IN

CHAPTER 4. CONFIGURING THE BUNDLE PLUG-IN

OVERVIEW

A bundle plug-in requires very little information to function. All of the required properties use default
settings to generate a valid OSGi bundle.

While you can create a valid bundle using just the default values, you will probably want to modify some
of the values. You can specify most of the properties inside the plug-in’s instructions element.

CONFIGURATION PROPERTIES
Some of the commonly used configuration properties are:
e Bundle-SymbolicName
e Bundle-Name
e Bundle-Version
e Export-Package
e Private-Package

e |mport-Package

SETTING A BUNDLE’S SYMBOLIC NAME

By default, the bundle plug-in sets the value for the Bundle-SymbolicName property to groupld +
"." + artifactld, with the following exceptions:

e If groupldhas only one section (no dots), the first package name with classes is returned.
For example, if the group Id is commons -1ogging: commons-1ogging, the bundle’s symbolic
name isorg.apache.commons.logging.

e |f artifactldis equal to the last section of groupld, then groupldis used.
For example, if the POM specifies the group ID and artifact ID as org.apache.maven:maven,
the bundle’s symbolic name is org.apache.maven.

e |f artifactld starts with the last section of groupld, that portion is removed.
For example, if the POM specifies the group ID and artifact ID as
org.apache.maven:maven-core, the bundle’s symbolic name is
org.apache.maven.core.

To specify your own value for the bundle’s symbolic name, add a Bundle-SymbolicName child in the
plug-in’s instructions element, as shown in Example 4.1, “Setting a bundle’s symbolic name”.

<artifactId>maven-bundle-plugin</artifactId>

Example 4.1. Setting a bundle’s symbolic name
<configuration>

<plugin>
<groupId>org.apache.felix</groupIld>

23

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

</instructions>
</configuration>

<instructions>
<Bundle-SymbolicName>${project.artifactId}</Bundle-SymbolicName>
</plugin>

SETTING A BUNDLE’S NAME

By default, a bundle’s name is set to ${project.name}.

To specify your own value for the bundle’s name, add a Bundle-Name child to the plug-in’s
instructions element, as shownin Example 4.2, “Setting a bundle’s name”.

Example 4.2. Setting a bundle’s name
<plugin>
<groupIld>org.apache.felix</groupIld>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Bundle-Name>JoeFred</Bundle-Name>
</instructions>

</configuration>
</plugin>

SETTING A BUNDLE’S VERSION

By default, a bundle’s version is set to ${project.version}. Any dashes (-) are replaced with dots
(.) and the number is padded up to four digits. For example, 4.2-SNAPSHOT becomes
4.2.0.SNAPSHOT.

To specify your own value for the bundle’s version, add a Bundle-Version child to the plug-in’s
instructions element, as shownin Example 4.3, “Setting a bundle’s version”.

Example 4.3. Setting a bundle’s version
<plugin>
<groupIld>org.apache.felix</groupIld>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>

<Bundle-Version>1.0.3.1</Bundle-Version>
</instructions>

</configuration>
</plugin>

24

CHAPTER 4. CONFIGURING THE BUNDLE PLUG-IN

SPECIFYING EXPORTED PACKAGES

By default, the OSGi manifest’s Export-Package list is populated by all of the packages in your local
Java source code (under src/main/java), except for the deault package, ., and any packages
containing .impl or .internal.

IMPORTANT

If you use a Private-Package element in your plug-in configuration and you do not
specify a list of packages to export, the default behavior includes only the packages
listed in the Private-Package element in the bundle. No packages are exported.

The default behavior can result in very large packages and in exporting packages that should be kept
private. To change the list of exported packages you can add an Export -Package child to the plug-
in’s instructions element.

The Export-Package element specifies a list of packages that are to be included in the bundle and
that are to be exported. The package names can be specified using the * wildcard symbol. For example,
the entry com. fuse.demo. * includes all packages on the project’s classpath that start with

com. fuse.demo.

You can specify packages to be excluded be prefixing the entry with !. For example, the entry
Icom.fuse.demo.private excludes the package com.fuse.demo.private.

When excluding packages, the order of entries in the list is important. The list is processed in order
from the beginning and any subsequent contradicting entries are ignored.

For example, to include all packages starting with com. fuse . demo except the package
com.fuse.demo.private, list the packages using:

I Icom.fuse.demo.private, com.fuse.demo.*

However, if you list the packages using com. fuse.demo. *, 'com. fuse.demo.private, then
com. fuse.demo.privateisincluded in the bundle because it matches the first pattern.

SPECIFYING PRIVATE PACKAGES

If you want to specify a list of packages to include in a bundle without exporting them, you can add a
Private-Package instruction to the bundle plug-in configuration. By default, if you do not specify a
Private-Package instruction, all packages in your local Java source are included in the bundle.

IMPORTANT

If a package matches an entry in both the Private-Package element and the
Export-Package element, the Export-Package element takes precedence. The
package is added to the bundle and exported.

The Private-Package element works similarly to the Export-Package element in that you specify
a list of packages to be included in the bundle. The bundle plug-in uses the list to find all classes on the
project’s classpath that are to be included in the bundle. These packages are packaged in the bundle,
but not exported (unless they are also selected by the Export -Package instruction).

25

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

Example 4.4, “Including a private package in a bundle” shows the configuration for including a private
package in a bundle

<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Private-Package>org.apache.cxf.wsdlFirst.impl</Private-Package>

</instructions>
</configuration>

<plugin>
<groupIld>org.apache.felix</groupIld>
</plugin>

| Example 4.4. Including a private package in a bundle

SPECIFYING IMPORTED PACKAGES

By default, the bundle plug-in populates the OSGi manifest’s Import -Package property with a list of
all the packages referred to by the contents of the bundle.

While the default behavior is typically sufficient for most projects, you might find instances where you
want to import packages that are not automatically added to the list. The default behavior can also
result in unwanted packages being imported.

To specify a list of packages to be imported by the bundle, add an Import-Package child to the plug-
in’s instructions element. The syntax for the package list is the same as for the Export-Package
element and the Private-Package element.

IMPORTANT

When you use the Import-Package element, the plug-in does not automatically scan
the bundle’s contents to determine if there are any required imports. To ensure that the
contents of the bundle are scanned, you must place an * as the last entry in the package
list.

Example 4.5, “Specifying the packages imported by a bundle” shows the configuration for specifying
the packages imported by a bundle

<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Import-Package>javax.jws, javax.wsdl, org.apache.cxf.bus,
org.apache.cxf.bus.spring, org.apache.cxf.bus.resource,
org.apache.cxf.configuration.spring, org.apache.cxf.resource,

Example 4.5. Specifying the packages imported by a bundle
org. sprlngframework beans.factory.config, * </Import-Package>

<plugin>
<groupId>org.apache.felix</groupIld>

26

CHAPTER 4. CONFIGURING THE BUNDLE PLUG-IN

</instructions>
</configuration>
</plugin>
MORE INFORMATION
For more information on configuring a bundle plug-in, see:
e olink:OsgiDependencies/OsgiDependencies
o Apache Felix documentation

o Peter Kriens' aQute Software Consultancy web site

27

olink:OsgiDependencies/OsgiDependencies
http://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

CHAPTER 5. HOT DEPLOYMENT VS MANUAL DEPLOYMENT

Abstract

Apache Karaf provides two different approaches for deploying a single OSGi bundle: hot deployment or
manual deployment. If you need to deploy a collection of related bundles, on the other hand, it is
recommended that you deploy them together as a feature, rather than singly (see Chapter 8, Deploying
Features).

5.1.HOT DEPLOYMENT

5.1.1. Hot deploy directory

JBoss Fuse monitors JAR files in the FUSE_HOME/deploy directory and hot deploys everything in this
directory. Each time a JAR file is copied to this directory, it is installed in the runtime and also started.
You can subsequently update or delete the JARs, and the changes are handled automatically.

For example, if you have just built the bundle, ProjectDir/target/foo-1.0-SNAPSHOT. jar, you can
deploy this bundle by copying it to the FUSE_HOME/deploy directory as follows (assuming you are
working on a UNIX platform):

I % cp ProjectDir/target/foo-1.0-SNAPSHOT.jar FUSE_HOME/deploy

5.2. HOT UNDEPLOYING A BUNDLE

To undeploy a bundle from the hot deploy directory, simply delete the bundle file from the
FUSE_HOME/deploy directory while the Apache Karaf container is running .

IMPORTANT

The hot undeploy mechanism does not work while the container is shut down. If you shut
down the Karaf container, delete the bundle file from deploy/, and then restart the
Karaf container, the bundle will not be undeployed after you restart the container (you
can, however, undeploy the bundle manually using the osgi:uninstall console
command).

5.3. MANUAL DEPLOYMENT

5.3.1. Overview

You can manually deploy and undeploy bundles by issuing commands at the Red Hat JBoss Fuse
console.

5.3.2. Installing a bundle

Use the osgi:install command to install one or more bundles in the OSGi container. This command
has the following syntax:

I osgi:install [-s] [--start] [--help] UrlList

28

CHAPTER 5. HOT DEPLOYMENT VS MANUAL DEPLOYMENT

Where UrlListis a whitespace-separated list of URLs that specify the location of each bundle to deploy.
The following command arguments are supported:
-S
Start the bundle after installing.
--start
Same as -s.
--help

Show and explain the command syntax.

For example, to install and start the bundle, ProjectDir/target/foo-1.0-SNAPSHOT. jar, enter the
following command at the Karaf console prompt:

I osgi:install -s file:ProjectDir/target/foo-1.0-SNAPSHOT. jar

NOTE

On Windows platforms, you must be careful to use the correct syntax for the file URL
in this command. See Section A.1, “File URL Handler” for details.

5.3.3. Uninstalling a bundle

To uninstall a bundle, you must first obtain its bundle ID using the 0sgi:1list command. You can then
uninstall the bundle using the 0sgi:uninstall command (which takes the bundle ID as its
argument).

For example, if you have already installed the bundle named A Camel 0SGi Service Unit,
entering osgi:list at the console prompt might produce output like the following:

[181] [Resolved 11 11 11 60] A Camel 0SGi
Service Unit (1.0.0.SNAPSHOT)

You can now uninstall the bundle with the ID, 181, by entering the following console command:

I osgi:uninstall 181

5.3.4. URL schemes for locating bundles

When specifying the location URL to the osgi:install command, you can use any of the URL
schemes supported by Red Hat JBoss Fuse, which includes the following scheme types:

e Section A.1, “File URL Handler”.
[}
e === Redeploying bundles automatically using dev:watch

In a development environment—where a developer is constantly changing and rebuilding a bundle—it is
typically necessary to re-install the bundle multiple times. Using the dev:watch command, you can
instruct Karaf to monitor your local Maven repository and re-install a particular bundle automatically,

29

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

as soon as it changes in your local Maven repository.

For example, given a particular bundle—with bundle ID, 751—you can enable automatic redeployment
by entering the command:

I dev:watch 751

Now, whenever you rebuild and install the Maven artifact into your local Maven repository (for
example, by executingmvn install in your Maven project), the Karaf container automatically re-
installs the changed Maven artifact. For more details, see olink:FMQCommandRef/ConsoleDevWatch.

IMPORTANT

Using the dev:watch command is intended for a development environment only. It is
not recommended for use in a production environment.

30

olink:FMQCommandRef/ConsoleDevWatch

CHAPTER 6. LIFECYCLE MANAGEMENT

CHAPTER 6. LIFECYCLE MANAGEMENT

6.1. BUNDLE LIFECYCLE STATES

Applications in an OSGi environment are subject to the lifecycle of its bundles. Bundles have six
lifecycle states:

1. Installed — All bundles start in the installed state. Bundles in the installed state are waiting for
all of their dependencies to be resolved, and once they are resolved, bundles move to the
resolved state.

2. Resolved —Bundles are moved to the resolved state when the following conditions are met:
e The runtime environment meets or exceeds the environment specified by the bundle.

e All of the packages imported by the bundle are exposed by bundles that are either in the
resolved state or that can be moved into the resolved state at the same time as the
current bundle.

o All of the required bundles are either in the resolved state or they can be resolved at the
same time as the current bundle.

IMPORTANT

All of an application’s bundles must be in the resolved state before the
application can be started.

If any of the above conditions ceases to be satisfied, the bundle is moved back into the
installed state. For example, this can happen when a bundle that contains an imported
package is removed from the container.

3. Starting— The starting state is a transitory state between the resolved state and the active
state. When a bundle is started, the container must create the resources for the bundle. The
container also calls the start () method of the bundle’s bundle activator when one is
provided.

4. Active —Bundles in the active state are available to do work. What a bundle does in the active
state depends on the contents of the bundle. For example, a bundle containing a JAX-WS
service provider indicates that the service is available to accept requests.

5. Stopping — The stopping state is a transitory state between the active state and the resolved
state. When a bundle is stopped, the container must clean up the resources for the bundle. The
container also calls the stop () method of the bundle’s bundle activator when one is provided.

6. Uninstalled — When a bundle is uninstalled it is moved from the resolved state to the
uninstalled state. A bundle in this state cannot be transitioned back into the resolved state or
any other state. It must be explicitly re-installed.

The most important lifecycle states for application developers are the starting state and the stopping

state. The endpoints exposed by an application are published during the starting state. The published
endpoints are stopped during the stopping state.

6.2. INSTALLING AND RESOLVING BUNDLES

31

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

When you install a bundle using the osgi:install command (without the -s flag), the kernel installs
the specified bundle and attempts to put it into the resolved state. If the resolution of the bundle fails
for some reason (for example, if one of its dependencies is unsatisfied), the kernel leaves the bundle in
the installed state.

At a later time (for example, after you have installed missing dependencies) you can attempt to move
the bundle into the resolved state by invoking the osgi: resolve command, as follows:

I osgi:resolve 181

Where the argument (181, in this example) is the ID of the bundle you want to resolve.

6.3. STARTING AND STOPPING BUNDLES

You can start one or more bundles (from either the installed or the resolved state) using the
osgi:start command. For example, to start the bundles with IDs, 181,185, and 186, enter the
following console command:

I osgi:start 181 185 186

You can stop one or more bundles using the osgi: stop command. For example, to stop the bundles
with IDs, 181,185, and 186, enter the following console command:

I osgi:stop 181 185 186
You can restart one or more bundles (that is, moving from the started state to the resolved state, and
then back again to the started state) using the osgi:restart command. For example, to restart the

bundles with IDs, 181,185, and 186, enter the following console command:

I osgi:restart 181 185 186

6.4. BUNDLE START LEVEL

A start levelis associated with every bundle. The start level is a positive integer value that controls the
order in which bundles are activated/started. Bundles with a low start level are started before bundles
with a high start level. Hence, bundles with the start level, 1, are started first and bundles belonging to
the kernel tend to have lower start levels, because they provide the prerequisites for running most
other bundles.

Typically, the start level of user bundles is 60 or higher.

6.5. SPECIFYING A BUNDLE’S START LEVEL

Use the osgi:bundle-level command to set the start level of a particular bundle. For example, to
configure the bundle with ID, 181, to have a start level of 70, enter the following console command:

I osgi:bundle-level 181 70

6.6. SYSTEM START LEVEL

32

CHAPTER 6. LIFECYCLE MANAGEMENT

The OSGi container itself has a start level associated with it and this system start leveldetermines
which bundles can be active and which cannot: only those bundles whose start level is less than or
equal to the system start level can be active.

To discover the current system start level, enter osgi:start-1level in the console, as follows:

JBossFuse:karaf@root> osgi:start-level
Level 100

If you want to change the system start level, provide the new start level as an argument to the

osgi:start-level command, as follows:

I osgi:start-level 200

33

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

CHAPTER 7. TROUBLESHOOTING DEPENDENCIES

7.1. MISSING DEPENDENCIES

The most common issue that can arise when you deploy an OSGi bundle into the Red Hat JBoss Fuse
container is that one or more dependencies are missing. This problem shows itself when you try to
resolve the bundle in the OSGi container, usually as a side effect of starting the bundle. The bundle

fails to resolve (or start) and a ClassNotFound error is logged (to view the log, use the log:display
console command or look at the log file in the FUSE_HOME/data/log directory).

There are two basic causes of a missing dependency: either a required feature or bundle is not installed
in the container; or your bundle’s Import -Package header is incomplete.

7.2. REQUIRED FEATURES OR BUNDLES ARE NOT INSTALLED

Evidently, all features and bundles required by your bundle must already be installed in the OSGi
container, before you attempt to resolve your bundle. In particular, because Apache Camel has a
modular architecture, where each component is installed as a separate feature, it is easy to forget to
install one of the required components.

NOTE

Consider packaging your bundle as a feature. Using a feature, you can package your
bundle together with all of its dependencies and thus ensure that they are all installed
simultaneously. For details, see Chapter 8, Deploying Features.

7.3. IMPORT-PACKAGE HEADER IS INCOMPLETE

If all of the required features and bundles are already installed and you are still getting a
ClassNotFound error, this means that the Import-Package header in your bundle’s MANIFEST.MF
file is incomplete. The maven-bundle-plugin (see Section 3.2, “Modifying an Existing Maven
Project”) is a great help when it comes to generating your bundle’s Import-Package header, but you
should note the following points:

e Make sure that you include the wildcard, *, in the Import-Package element of the Maven
bundle plug-in configuration. The wildcard directs the plug-in to scan your Java source code
and automatically generates a list of package dependencies.

e The Maven bundle plug-in is not able to figure out dynamic dependencies. For example, if your
Java code explicitly calls a class loader to load a class dynamically, the bundle plug-in does not
take this into account and the required Java package will not be listed in the generated
Import-Package header.

o If you define a Blueprint XML file (for example, in the 0SGI -INF/blueprint directory), any
dependencies arising from the Blueprint XML file are automatically resolved at run time.

7.4. HOW TO TRACK DOWN MISSING DEPENDENCIES
To track down missing dependencies, perform the following steps:

1. Perform a quick check to ensure that all of the required bundles and features are actually
installed in the OSGi container. You can use osgi:1list to check which bundles are installed
and features:1list to check which features are installed.

34

CHAPTER 7. TROUBLESHOOTING DEPENDENCIES

2. Install (but do not start) your bundle, using the osgi:install console command. For
example:

I JBossFuse:karaf@root> osgi:install MyBundleURL

3. Use thedev:dynamic-import console command to enable dynamic imports on the bundle
you just installed. For example, if the bundle ID of your bundle is 218, you would enable dynamic
imports on this bundle by entering the following command:

I JBossFuse: karaf@root> dev:dynamic-import 218

This setting allows OSGi to resolve dependencies using any of the bundles already installed in
the container, effectively bypassing the usual dependency resolution mechanism (based on the
Import-Package header). Thisis not recommemded for normal deployment, because it
bypasses version checks: you could easily pick up the wrong version of a package, causing
your application to malfunction.

4. You should now be able to resolve your bundle. For example, if your bundle ID is 218, enter the
followng console command:

I JBossFuse: karaf@root> osgi:resolve 218

5. Assuming your bundle is now resolved (check the bundle status using osgi:1list), you can
get a complete list of all the packages wired to your bundle using the package: imports
command. For example, if your bundle ID is 218, enter the following console command:

I JBossFuse: karaf@root> package:imports 218

You should see a list of dependent packages in the console window (where the package names
are highlighted in this example):

Spring Beans (67): org.springframework.beans.factory.xml;
version=3.0.5.RELEASE

Web Services Metadata 2.0 (104): javax.jws; version=2.0.0

Apache CXF Bundle Jar (125): org.apache.cxf.helpers;
version=2.4.2.fuse-00-08

Apache CXF Bundle Jar (125): org.apache.cxf.transport.jms.wsdlil1l;
version=2.4.2.fuse-00-08

6. Unpack your bundle JAR file and look at the packages listed under the Import-Package
header in the META-INF/MANIFEST .MF file. Compare this list with the list of packages found
in the previous step. Now, compile a list of the packages that are missing from the manifest’s
Import-Package header and add these package names to the Import-Package element of
the Maven bundle plug-in configuration in your project’s POM file.

7. To cancel the dynamic import option, you must uninstall the old bundle from the OSGi
container. For example, if your bundle ID is 218, enter the following command:

I JBossFuse:karaf@root> osgi:uninstall 218

8. You can now rebuild your bundle with the updated list of imported packages and test it in the
OSGi container.

35

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

CHAPTER 8. DEPLOYING FEATURES

Abstract

Because applications and other tools typically consist of multiple OSGi bundles, it is often convenient
to aggregate inter-dependent or related bundles into a larger unit of deployment. Red Hat JBoss Fuse
therefore provides a scalable unit of deployment, the feature, which enables you to deploy multiple
bundles (and, optionally, dependencies on other features) in a single step.

8.1.CREATING A FEATURE

8.1.1. Overview

Essentially, a feature is created by adding a new feature element to a special kind of XML file, known
as a feature repository. To create a feature, perform the following steps:

1. Section 8.2, “Create a custom feature repository” .

2. Section 8.3, “Add a feature to the custom feature repository” .

3. Section 8.4, “Add the local repository URL to the features service” .
4. Section 8.5, “Add dependent features to the feature”.

5. Section 8.6, “Add OSGi configurations to the feature”.

8.2. CREATE A CUSTOM FEATURE REPOSITORY

If you have not already defined a custom feature repository, you can create one as follows. Choose a
convenient location for the feature repository on your file system—for example,
C:\Projects\features.xml—-and use your favorite text editor to add the following lines to it:

<?xml version="1.0" encoding="UTF-8"?>
<features name="CustomRepository">
</features>

Where you must specify a name for the repository, CustomRepository, by setting the name attribute.

NOTE

In contrast to a Maven repository or an OBR, a feature repository does not provide a
storage location for bundles. A feature repository merely stores an aggregate of
references to bundles. The bundles themselves are stored elsewhere (for example, in
the file system or in a Maven repository).

8.3. ADD A FEATURE TO THE CUSTOM FEATURE REPOSITORY

To add a feature to the custom feature repository, insert a new feature element as a child of the root
features element. You must give the feature a name and you can list any number of bundles
belonging to the feature, by inserting bundle child elements. For example, to add a feature named
example-camel-bundle containing the single bundle, C:\Projects\camel-
bundle\target\camel-bundle-1.0-SNAPSHOT. jar, add a feature element as follows:

36

CHAPTER 8. DEPLOYING FEATURES

<?xml version="1.0" encoding="UTF-8"?>
<features name="MyFeaturesRepo">
<feature name="example-camel-bundle">
<bundle>file:C:/Projects/camel-bundle/target/camel-bundle-1.0-
SNAPSHOT. jar</bundle>
</feature>
</features>

The contents of the bundle element can be any valid URL, giving the location of a bundle (see
Appendix A, URL Handlers). You can optionally specify a version attribute on the feature element, to
assign a non-zero version to the feature (you can then specify the version as an optional argument to
the features:install command).

To check whether the features service successfully parses the new feature entry, enter the following
pair of console commands:

JBossFuse: karaf@root> features:refreshurl
JBossFuse:karaf@root> features:list

[uninstalled] [0.0.0] example-camel-bundle
MyFeaturesRepo

The features:list command typically produces a rather long listing of features, but you should be
able to find the entry for your new feature (in this case, example-camel-bundle) by scrolling back
through the listing. The features:refreshUrl command forces the kernel to reread all the feature
repositories: if you did not issue this command, the kernel would not be aware of any recent changes
that you made to any of the repositories (in particular, the new feature would not appear in the listing).

To avoid scrolling through the long list of features, you can grep for the example-camel-bundle
feature as follows:

JBossFuse:karaf@root> features:1list | grep example-camel-bundle
[uninstalled] [0.0.0] example-camel-bundle
MyFeaturesRepo

Where the grep command (a standard UNIX pattern matching utility) is built into the shell, so this
command also works on Windows platforms.

8.4. ADD THE LOCAL REPOSITORY URL TO THE FEATURES SERVICE

In order to make the new feature repository available to Apache Karaf, you must add the feature
repository using the features:addUr1l console command. For example, to make the contents of the
repository, C:\Projects\features.xml, available to the kernel, you would enter the following
console command:

I features:addUrl file:C:/Projects/features.xml

Where the argument to features:addUrl can be specified using any of the supported URL formats
(see Appendix A, URL Handlers).

You can check that the repository’s URL is registered correctly by entering the features:listUrl
console command, to get a complete listing of all registered feature repository URLs, as follows:

37

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

JBossFuse:karaf@root> features:listUrl
file:C:/Projects/features.xml
mvn:org.apache.ode/ode-jbi-karaf/1.3.3-fuse-01-00/xml/features
mvn:org.apache.felix.karaf/apache-felix-karaf/1.2.0-fuse-01-
00/xml/features

8.5. ADD DEPENDENT FEATURES TO THE FEATURE

If your feature depends on other features, you can specify these dependencies by adding feature
elements as children of the original feature element. Each child feature element contains the name
of a feature on which the current feature depends. When you deploy a feature with dependent features,
the dependency mechanism checks whether or not the dependent features are installed in the
container. If not, the dependency mechanism automatically installs the missing dependencies (and any
recursive dependencies).

For example, for the custom Apache Camel feature, example-camel-bundle, you can specify
explicitly which standard Apache Camel features it depends on. This has the advantage that the
application could now be successfully deployed and run, even if the OSGi container does not have the
required features pre-deployed. For example, you can define the example-camel-bundle feature
with Apache Camel dependencies as follows:

<?xml version="1.0" encoding="UTF-8"?>
<features name="MyFeaturesRepo">
<feature name="example-camel-bundle">
<bundle>file:C:/Projects/camel-bundle/target/camel-bundle-1.0-
SNAPSHOT. jar</bundle>
<feature version="7.0.0.fuse-000163-redhat-2">camel-core</feature>
<feature version="7.0.0.fuse-000163-redhat-2">camel-spring-
osgi</feature>
</feature>
</features>

Specifying the version attribute is optional. When present, it enables you to select the specified
version of the feature.

8.6. ADD OSGI CONFIGURATIONS TO THE FEATURE

If your application uses the OSGi Configuration Admin service, you can specify configuration settings for
this service using the config child element of your feature definition. For example, to specify that the
prefix property has the value, MyTransform, add the following config child element to your
feature’s configuration:

<?xml version="1.0" encoding="UTF-8"7?>
<features name="MyFeaturesRepo">
<feature name="example-camel-bundle">
<config name="org.fusesource.fuseesb.example">
prefix=MyTransform
</config>
</feature>
</features>

38

CHAPTER 8. DEPLOYING FEATURES

Where the name attribute of the config element specifies the persistent ID of the property settings
(where the persistent ID acts effectively as a name scope for the property names). The content of the
config element is parsed in the same way as a Java properties file.

The settings in the config element can optionally be overridden by the settings in the Java properties
file located in the InstallDir/etc directory, which is named after the persistent ID, as follows:

I InstallDir/etc/org.fusesource.fuseesb.example.cfg

As an example of how the preceding configuration properties can be used in practice, consider the
following Blueprint XML file that accesses the OSGi configuration properties:

<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmlns="http://www.o0sgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-

cm/v1i.1.0">

<!-- o0sgi blueprint property placeholder -->
<cm:property-placeholder id="placeholder"
persistent-

id="org.fusesource.fuseesh.example">
<cm:default-properties>
<cm:property name="prefix" value="DefaultValue"/>
</cm:default-properties>
</cm:property-placeholder>

<bean id="myTransform"
class="org.fusesource.fuseesb.example.MyTransform">
<property name="prefix" value="${prefix}"/>
</bean>

</blueprint>

When this Blueprint XML file is deployed in the example-camel-bundle bundle, the property
reference, ${prefix},is replaced by the value, MyTransform, which is specified by the config
element in the feature repository.

8.7. AUTOMATICALLY DEPLOY AN OSGI CONFIGURATION

By adding a configfile element to a feature, you can ensure that an OSGi configuration file gets
added to the Installbir/etc directory at the same time that the feature is installed. This means
that you can conveniently install a feature and its associated configuration at the same time.

For example, given that the org. fusesource. fuseesbh.example.cfg configuration file is archived
in a Maven repository at mvn:org. fusesource. fuseesb.example/configadmin/1.0/cfg, you
could deploy the configuration file by adding the following element to the feature:

<configfile finalname="etc/org.fusesource.fuseesh.example.cfg">
mvn:org.fusesource.fuseesb.example/configadmin/1.0/cfg
</configfile>

39

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Properties.html#load%28java.io.InputStream%29

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

CHAPTER 9. DEPLOYING A FEATURE

9.1. OVERVIEW

You can deploy a feature in one of the following ways:
e Install at the console, using features:install.
e Use hot deployment.

e Modify the boot configuration (first boot only!).

9.2. INSTALLING AT THE CONSOLE

After you have created a feature (by adding an entry for it in a feature repository and registering the
feature repository), it is relatively easy to deploy the feature using the features:install console
command. For example, to deploy the example-camel-bundle feature, enter the following pair of
console commands:

JBossFuse:karaf@root> features:refreshurl

JBossFuse: karaf@root> features:install example-camel-bundle
It is recommended that you invoke the features:refreshUrl command before calling
features:install,in case any recent changes were made to the features in the feature repository

which the kernel has not picked up yet. The features:install command takes the feature name as
its argument (and, optionally, the feature version as its second argument).

NOTE

Features use a flat namespace. So when naming your features, be careful to avoid name
clashes with existing features.

9.3. UNINSTALLING AT THE CONSOLE

To uninstall a feature, invoke the features:uninstall command as follows:

I JBossFuse:karaf@root> features:uninstall example-camel-bundle

NOTE

After uninstalling, the feature will still be visible when you invoke features:1list, but
its status will now be flagged as [uninstalled].

9.4. HOT DEPLOYMENT

You can hot deploy all of the features in a feature repository simply by copying the feature repository
file into the Installbir/deploy directory.

As it is unlikely that you would want to hot deploy an entire feature repository at once, it is often more

convenient to define a reduced feature repository or feature descriptor, which references only those
features you want to deploy. The feature descriptor has exactly the same syntax as a feature

40

CHAPTER 9. DEPLOYING A FEATURE

repository, but it is written in a different style. The difference is that a feature descriptor consists only
of references to existing features from a feature repository.

For example, you could define a feature descriptor to load the example-camel-bundle feature as
follows:

<?xml version="1.0" encoding="UTF-8"?>
<features name="CustomDescriptor">
<repository>RepositoryURL</repository>
<feature name="hot-example-camel-bundle">
<feature>example-camel-bundle</feature>
</feature>
</features>

The repository element specifies the location of the custom feature repository, RepositoryURL (where
you can use any of the URL formats described in Appendix A, URL Handlers). The feature, hot -
example-camel-bundle,is just a reference to the existing feature, example-camel-bundle.

HOT UNDEPLOYING A FEATURES FILE

To undeploy a features file from the hot deploy directory, simply delete the features file from the
InstallDir/deploy directory while the Apache Karaf container is running .

IMPORTANT

The hot undeploy mechanism does not work while the container is shut down. If you shut
down the Karaf container, delete the features file from deploy/, and then restart the
Karaf container, the features will not be undeployed after you restart the container (you
can, however, undeploy the features manually using the features:uninstall
console command).

9.5. ADDING A FEATURE TO THE BOOT CONFIGURATION

If you want to provision copies of Apache Karaf for deployment on multiple hosts, you might be
interested in adding a feature to the boot configuration, which determines the collection of features
that are installed when Apache Karaf boots up for the very first time.

The configuration file, /etc/org.apache. karaf.features.cfg, in your install directory contains
the following settings:

#
Comma separated list of features repositories to register by default
#
featuresRepositories=\
mvn:org.apache.karaf.assemblies.features/standard/2.4.0.redhat-
630187/xml/features, \
mvn:org.apache.karaf.assemblies.features/spring/2.4.0.redhat-
630187/xml/features, \
mvn:org.apache.karaf.assemblies.features/enterprise/2.4.0.redhat-
630187/xml/features, \
mvn:org.apache.cxf.karaf/apache-cxf/3.1.5.redhat-
630187/xml/features, \
mvn:org.apache.camel.karaf/apache-camel/2.17.0.redhat-

41

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

630187/xml/features, \
mvn:org.apache.activemq/activemq-karaf/5.11.0.redhat-
630187/xml/features-core, \
mvn:io.fabric8/fabric8-karaf/1.2.0.redhat-630187/xml/features, \
mvn:org.jboss.fuse/jboss-fuse/6.3.0.redhat-187/xml/features, \
mvn:io.fabric8.patch/patch-features/1.2.0.redhat-
630187/xml/features, \
mvn:io.hawt/hawtio-karaf/1.4.0.redhat-630187/xml/features, \
mvn:io.fabric8.support/support-features/1.2.0.redhat-
630187/xml/features, \
mvn:org.fusesource/camel-sap/6.3.0.redhat-187/xml/features, \
mvn:org.switchyard.karaf/switchyard/2.1.0.redhat-630187/xml/core-
features

#

Comma separated list of features to install at startup

#

featuresBoot=\
jasypt-encryption, \
pax-url-classpath,\
deployer, \
config, \
management, \
fabric-cxf,\
fabric, \
fabric-maven-proxy, \
patch, \
transaction, \
jms-spec;version=2.0,\
mq-fabric,\
swagger, \
camel, \
camel-cxf,\
camel-jms, \
camel-amg, \
camel-blueprint,\
camel-csv, \
camel-ftp,\
camel-bindy, \
camel-jdbc, \
camel-exec, \
camel-jasypt, \
camel-saxon, \
camel-snmp, \
camel-ognl, \
camel-routebox, \
camel-script,\
camel-spring-javaconfig, \
camel-jaxb, \
camel-jmx, \
camel-mail, \
camel-paxlogging, \
camel-rmi, \
war, \
fabric-redirect, \
hawtio-offline, \

42

CHAPTER 9. DEPLOYING A FEATURE

support,\
hawtio-redhat-fuse-branding, \
jsr-311

featuresBlackList=\
pax-cdi-openwebbeans, \
pax-cdi-web-openwebbeans, \
spring-struts, \
cxf-bean-validation-java6, \
pax-cdi-1.2-web,\
pax-jsf-support,\
camel-ignite, \
camel-jetty8,\
camel-ironmg, \
camel-gae

This configuration file has two properties:
o featuresRepositories—comma separated list of feature repositories to load at startup.
e featuresBoot—comma separated list of features to install at startup.

e featuresBlackList—comma separated list of features that are prevented from being
installed (to protect against unsupported or buggy features).

You can modify the configuration to customize the features that are installed as JBoss Fuse starts up.
You can also modify this configuration file, if you plan to distribute JBoss Fuse with pre-installed
features.

IMPORTANT

This method of adding a feature is only effective the first time a particular Apache Karaf
instance boots up. Any changes made subsequently to the featuresRepositories
setting and the featuresBoot setting are ignored, even if you restart the container.

You could force the container to revert back to its initial state, however, by deleting the
complete contents of the InstallDir/data/cache (thereby losing all of the
container’s custom settings).

43

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

CHAPTER 10. DEPLOYING A PLAIN JAR

Abstract

An alternative method of deploying applications into Apache Karaf is to use plain JAR files. These are
usually libraries that contain no deployment metadata. A plain JAR is neither a WAR, nor an OSGi
bundle.

If the plain JAR occurs as a dependency of a bundle, you must add bundle headers to the JAR. If the
JAR exposes a public API, typically the best solution is to convert the existing JAR into a bundle,
enabling the JAR to be shared with other bundles. Use the instructions in this chapter to perform the
conversion process automatically, using the open source Bnd tool.

For more information on the Bnd tool, see Bnd tools website.

10.1. CONVERTING A JAR USING THE WRAP SCHEME

Overview

You have the option of converting a JAR into a bundle using the wrap: protocol, which can be used
with any existing URL format. The wrap: protocol is based on the Bnd utility.

Syntax

The wrap: protocol has the following basic syntax:
I wrap:LocationURL

Thewrap: protocol can prefix any URL that locates a JAR. The locating part of the URL, LocationURL,
is used to obtain the plain JAR and the URL handler for the wrap: protocol then converts the JAR
automatically into a bundle.

NOTE

Thewrap: protocol also supports a more elaborate syntax, which enables you to
customize the conversion by specifying a Bnd properties file or by specifying individual
Bnd properties in the URL. Typically, however, the wrap: protocol is used just with the
default settings.

Default properties

Thewrap: protocol is based on the Bnd utility, so it uses exactly the same default properties to
generate the bundle as Bnd does.

WRAP AND INSTALL

The following example shows how you can use a single console command to download the plain
commons -1logging JAR from a remote Maven repository, dynamically convert it into an OSGi bundle,
and then install it and start it in the OSGi container:

I karaf@root> osgi:install -s wrap:mvn:commons-logging/commons-logging/1.1.1

44

http://http//bndtools.org/

CHAPTER 10. DEPLOYING A PLAIN JAR

Reference

Thewrap: protocol is provided by the Pax project, which is the umbrella project for a variety of open
source OSGi utilities. For full documentation on the wrap: protocol, see the Wrap Protocol reference

page.

45

http://team.ops4j.org/wiki/display/ops4j/Pax
http://team.ops4j.org/wiki/display/paxurl/Wrap+Protocol

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

CHAPTER 11. CONTEXTS AND DEPENDENCY INJECTION (CDI)

46

CHAPTER 12. INTRODUCTION TO CDI

CHAPTER 12. INTRODUCTION TO CDI

Contexts and Dependency Injection (CDI) 1.2 is a JSR specification, which defines a general-purpose

dependency injection framework in the Java language. Originally conceived for the Java EE platform,
CDlI can also be used in the context of an OSGi container. An adapter layer, which is a combination of

Pax CDI and JBoss Weld, must be installed and enabled.

CDI 1.2 is treated as a maintenance release of 1.1. Details about CDI 1.1 can be found in JSR 346:
Contexts and Dependency Injection for Java™ EE 1.1.

JBoss Fuse includes Weld, which is the reference implementation of JSR-346:Contexts and
Dependency Injection for Java™ EE 1.1.

Benefits of CDI
The benefits of CDI include:

e Simplifying and shrinking your code base by replacing big chunks of code with annotations.

e Flexibility, allowing you to disable and enable injections and events, use alternative beans, and
inject non-CDI objects easily.

e Optionally, allowing you to include beans.xml in your META-INF/ or WEB-INF/ directory if
you need to customize the configuration to differ from the default. The file can be empty.

e Simplifying packaging and deployments and reducing the amount of XML you need to add to
your deployments.

e Providing lifecycle management via contexts. You can tie injections to requests, sessions,
conversations, or custom contexts.

e Providing type-safe dependency injection, which is safer and easier to debug than string-based
injection.

e Decoupling interceptors from beans.

e Providing complex event notification.

12.1. JBOSS WELD CDI IMPLEMENTATION

Weld is the reference implementation of CDI, which is defined in JSR 346: Contexts and Dependency
Injection for Java™ EE 1.1. Weld was inspired by Seam 2 and other dependency injection frameworks,
andisincluded in JBoss Fuse.

47

https://www.jcp.org/en/jsr/detail?id=346
https://www.jcp.org/en/jsr/detail?id=346
https://www.jcp.org/en/jsr/detail?id=346

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

CHAPTER13.USE CDI TO DEVELOP AN APPLICATION

CDl is not enabled by default in the Apache Karaf container. To enable CDI in Karaf, follow the
instructions in Section 17.3, “Enabling Pax CDI”.

These tasks show you how to use CDI in your enterprise applications.

Exclude Beans From the Scanning Process

One of the features of Weld is the ability to exclude classes in your archive from scanning, having
container lifecycle events fired, and being deployed as beans. This is not part of the JSR-346
specification.

The following example has several <weld:exclude> tags:

<?xml version="1.0" encoding="UTF-8"7?>
<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:weld="http://jboss.org/schema/weld/beans"
xsi:schemaLocation="
http://java.sun.com/xml/ns/javaee
http://docs. jboss.org/cdi/beans_1_0.xsd
http://jboss.org/schema/weld/beans
http://jboss.org/schema/weld/beans_1_1.xsd">

<weld:scan>

<!-- Don't deploy the classes for the swing app! -->
<weld:exclude name='"com.acme.swing.**" />

<!-- Don't include GWT support if GWT is not installed -->
<weld:exclude name="com.acme.gwt.**">

<weld:if-class-available name="!com.google.GWT"/>
</weld:exclude>

<l--

Exclude classes which end in Blether if the system property

verbosity is set to low
i.e.
java ... -Dverbosity=low

-->
<weld:exclude pattern="A(.*)Blether$">

<weld:if-system-property name="verbosity" value="low"/>
</weld:exclude>

<!--
Don't include JSF support if Wicket classes are present, and
the viewlayer system
property is not set
-->
<weld:exclude name='"com.acme.jsf.**">
<weld:if-class-available name="org.apache.wicket.Wicket"/>
<weld:if-system-property name="!viewlayer"/>
</weld:exclude>
</weld:scan>
</beans>

48

CHAPTER 13.USE CDI TO DEVELOP AN APPLICATION

The four Weld exclude statements in the code above perform the following functions:

<weld:exclude name="com.acme.swing.**" /> excludes all Swing classes.

<weld:exclude name="com.acme.gwt.**">
<weld:if-class-available name="!com.google.GWT"/>
</weld:exclude>

excludes Google Web Toolkit classes if Google Web Toolkit is not installed.

<weld:exclude pattern="A(.*)Blether$">
<weld:if-system-property name="verbosity" value="low"/>
</weld:exclude>

excludes classes which end in the string Blether (using a reqular expression), if the system property
verbosity is set to low.

<weld:exclude name='"com.acme.jsf.**">
<weld:if-class-available name="org.apache.wicket.wWicket"/>
<weld:if-system-property name="!viewlayer"/>
</weld:exclude>

excludes Java Server Faces (JSF) classes if Wicket classes are present and the viewlayer system
property is not set.

The formal specification of Weld-specific configuration options can be found at
http://jboss.org/schema/weld/beans_1_1.xsd.

Use an Injection to Extend an Implementation

You can use an injection to add or change a feature of your existing code.

The following example adds a translation ability to an existing class, and assumes you already have a
Welcome class, which has a method buildPhrase. The buildPhrase method takes as an argument
the name of a city, and outputs a phrase like "Welcome to Boston!".

Example: Inject a Translator Bean Into the Welcome Class

The following injects a hypothetical Translator object into the Welcome class. The Translator
object can be an EJB stateless bean or another type of bean, which can translate sentences from one
language to another. In this instance, the Translator is used to translate the entire greeting, without
modifying the original Welcome class. The Translator is injected before the buildPhrase method
is called.

public class TranslatingWelcome extends Welcome {
@Inject Translator translator;

public String buildPhrase(String city) {
return translator.translate("Welcome to " + city + "!");

}

49

http://jboss.org/schema/weld/beans_1_1.xsd

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

13.1. AMBIGUOUS OR UNSATISFIED DEPENDENCIES

Ambiguous dependencies exist when the container is unable to resolve an injection to exactly one
bean.

Unsatisfied dependencies exist when the container is unable to resolve an injection to any bean at all.
The container takes the following steps to try to resolve dependencies:

1. It resolves the qualifier annotations on all beans that implement the bean type of an injection
point.

2. It filters out disabled beans. Disabled beans are @Alternative beans which are not explicitly
enabled.

In the event of an ambiguous or unsatisfied dependency, the container aborts deployment and throws
an exception.

To fix an ambiguous dependency, see Use a Qualifier to Resolve an Ambiguous Injection .

Qualifiers

Qualifiers are annotations used to avoid ambiguous dependencies when the container can resolve
multiple beans, which fit into an injection point. A qualifier declared at an injection point provides the
set of eligible beans, which declare the same Qualifier.

Qualifiers have to be declared with a retention and target as shown in the example below.

Example: Define the @Synchronous and @ Asynchronous Qualifiers

@Qualifier

@Retention(RUNTIME)

@Target ({TYPE, METHOD, FIELD, PARAMETER})
public @interface Synchronous {}

@Qualifier

@Retention(RUNTIME)

@Target ({TYPE, METHOD, FIELD, PARAMETER})
public @interface Asynchronous {}

Example: Use the @Synchronous and @Asynchronous Qualifiers

@Synchronous

public class SynchronousPaymentProcessor implements PaymentProcessor {
public void process(Payment payment) { ... }

}

@Asynchronous

public class AsynchronousPaymentProcessor implements PaymentProcessor {
public void process(Payment payment) { ... }

}

Use a Qualifier to Resolve an Ambiguous Injection

50

CHAPTER 13.USE CDI TO DEVELOP AN APPLICATION

You can resolve an ambiguous injection using a qualifier. Read more about ambiguous injections at
Ambiguous or Unsatisfied Dependencies.

The following example is ambiguous and features two implementations of Welcome, one which
translates and one which does not. The injection needs to be specified to use the translating Welcome.

Example: Ambiguous injection

public class Greeter {
private Welcome welcome;

@Inject
void init(Welcome welcome) {
this.welcome = welcome;

}

Resolve an Ambiguous Injection with a Qualifier

1. Toresolve the ambiguous injection, create a qualifier annotation called @Translating:

@Qualifier

@Retention(RUNTIME)

@Target ({TYPE, METHOD, FIELD, PARAMETERS})
public @interface Translating{}

2. Annotate your translating Welcome with the @Translating annotation:

@Translating
public class TranslatingWelcome extends Welcome {
@Inject Translator translator;
public String buildPhrase(String city) {
return translator.translate("wWelcome to " + city + "!");

}

3. Request the translating Welcome in your injection. You must request a qualified
implementation explicitly, similar to the factory method pattern. The ambiquity is resolved at
the injection point.

public class Greeter {
private Welcome welcome;
@Inject
void init(@Translating Welcome welcome) {
this.welcome = welcome;
3
public void welcomeVisitors() {
System.out.println(welcome.buildPhrase("San Francisco"));
b
3

51

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

13.2. MANAGED BEANS

Managed Beans are defined as container-managed objects with minimal programming restrictions,
otherwise known by the acronym POJO (Plain Old Java Object). They support a small set of basic
services, such as resource injection, lifecycle callbacks, and interceptors. Companion specifications,
such as EJB and CDI, build on this basic model.

With very few exceptions, almost every concrete Java class that has a constructor with no parameters
(or a constructor designated with the annotation @Inject) is a bean.

Types of Classes That are Beans

A managed bean is a Java class. The basic lifecycle and semantics of a managed bean are defined by
the Managed Beans specification. You can explicitly declare a managed bean by annotating the bean
class @ManagedBean, but in CDI you do not need to. According to the specification, the CDI container
treats any class that satisfies the following conditions as a managed bean:

e [tis not a non-static inner class.
e Itis aconcrete class, or is annotated @Decorator.

e |tis not annotated with an EJB component-defining annotation or declared as an EJB bean
classinejb-jar.xml.

e It does notimplement interface javax.enterprise.inject.spi.Extension.
e It has either a constructor with no parameters, or a constructor annotated with @Inject.

The unrestricted set of bean types for a managed bean contains the bean class, every superclass and
all interfaces it implements directly or indirectly.

If a managed bean has a public field, it must have the default scope @Dependent.

Use CDI to Inject an Object Into a Bean

CDl is activated automatically if CDI components are detected in an application. If you wish to
customize your configuration to differ from the default, you can include META-INF/beans.xml or
WEB-INF/beans.xml to your deployment archive.

Inject Objects into Other Objects

1. To obtain an instance of a class, annotate the field with @Inject within your bean:

public class TranslateController {
@Inject TextTranslator textTranslator;

2. Use your injected object’s methods directly. Assume that TextTranslator has a method
translate:

// in TranslateController class

public void translate() {
translation = textTranslator.translate(inputText);

}

52

CHAPTER 13.USE CDI TO DEVELOP AN APPLICATION

3. Use aninjection in the constructor of a bean. You can inject objects into the constructor of a
bean as an alternative to using a factory or service locator to create them:

public class TextTranslator {

private SentenceParser sentenceParser;
private Translator sentenceTranslator;

@Inject
TextTranslator(SentenceParser sentenceParser, Translator
sentenceTranslator) {
this.sentenceParser = sentenceParser;
this.sentenceTranslator = sentenceTranslator;

}

// Methods of the TextTranslator class

4. Use the Instance(<T>) interface to get instances programatically. The Instance interface
can return an instance of TextTranslator when parameterized with the bean type.

@Inject Instance<TextTranslator> textTranslatorInstance;

public void translate() {
textTranslatorInstance.get().translate(inputText);

}

When you inject an object into a bean, all of the object’s methods and properties are available to your
bean. If you inject into your bean’s constructor, instances of the injected objects are created when your
bean’s constructor is called, unless the injection refers to an instance that already exists. For instance,
a new instance would not be created if you inject a session-scoped bean during the lifetime of the
session.

13.3. CONTEXTS AND SCOPES

A context, in terms of CDI, is a storage area that holds instances of beans associated with a specific
scope.

A scope is the link between a bean and a context. A scope/context combination may have a specific
lifecycle. Several pre-defined scopes exist, and you can create your own. Examples of pre-defined
scopes are @RequestScoped, @SessionScoped, and @ConversationScope.

Table 13.1. Available contexts

Context Description

@Dependent The bean is bound to the lifecycle of the bean
holding the reference.

@ApplicationScoped The bean is bound to the lifecycle of the application.

@RequestScoped The bean is bound to the lifecycle of the request.

53

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

Context Description

@SessionScoped The bean is bound to the lifecycle of the session.

@ConversationScoped The bean is bound to the lifecycle of the
conversation. The conversation scope is between
the lengths of the request and the session, and is
controlled by the application.

Custom scopes If the above contexts do not meet your needs, you
can define custom scopes.

13.4. BEAN LIFECYCLE
This task shows you how to save a bean for the life of a request.

The default scope for an injected bean is @Dependent. This means that the bean’s lifecycle is
dependent upon the lifecycle of the bean that holds the reference. Several other scopes exist, and you
can define your own scopes. For more information, see “Contexts and Scopes”.

Manage Bean

Lifecycles
Annotate the bean with the desired scope:

@RequestScoped
@Named('"greeter")
public class GreeterBean {
private Welcome welcome;
private String city; // getter & setter not shown
@Inject void init(Welcome welcome) {
this.welcome = welcome;
3
public void welcomeVisitors() {
System.out.println(welcome.buildPhrase(city));
}
}

Your bean is saved in the context relating to the scope that you specify, and lasts as long as the scope
applies.

Use a Producer Method

This task shows how to use producer methods to produce a variety of different objects that are not
beans for injection.

Example: Use a producer method instead of an alternative, to allow

polymorphism after deployment
The “@Preferred” annotation in the example is a qualifier
annotation. For more information about qualifiers, see
<<about_qualifiers,Qualifiers>>.

54

CHAPTER 13.USE CDI TO DEVELOP AN APPLICATION

@SessionScoped
public class Preferences implements Serializable {
private PaymentStrategyType paymentStrategy;

@Produces @Preferred
public PaymentStrategy getPaymentStrategy() {
switch (paymentStrategy) {
case CREDIT_CARD: return new CreditCardPaymentStrategy();
case CHECK: return new CheckPaymentStrategy();
default: return null;

The following injection point has the same type and qualifier annotations as the producer method, so it
resolves to the producer method using the usual CDI injection rules. The producer method is called by
the container to obtain an instance to service this injection point.

I @Inject @Preferred PaymentStrategy paymentStrategy;

Example: Assign a scope to a producer method

The default scope of a producer method is @Dependent. If you assign a scope to a bean, it is bound to
the appropriate context. The producer method in this example is only called once per session.

@Produces @Preferred @SessionScoped
public PaymentStrategy getPaymentStrategy() {

}

Example: Use an injection inside a producer method

Objects instantiated directly by an application cannot take advantage of dependency injection and do
not have interceptors. However, you can use dependency injection into the producer method to obtain
bean instances.

@Produces @Preferred @SessionScoped
public PaymentStrategy getPaymentStrategy(CreditCardPaymentStrategy ccps,
CheckPaymentStrategy cps) {
switch (paymentStrategy) {
case CREDIT_CARD: return ccps;
case CHEQUE: return cps;
default: return null;

If you inject a request-scoped bean into a session-scoped producer, the producer method promotes
the current request-scoped instance into session scope. This is almost certainly not the desired
behavior, so use caution when you use a producer method in this way.

NOTE

The scope of the producer method is not inherited from the bean that declares the
producer method.

55

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

Producer methods allow you to inject non-bean objects and change your code dynamically.

13.5. NAMED BEANS

You can name a bean by using the @Named annotation. Naming a bean allows you to use it directly in
Java Server Faces (JSF) and Expression Language (EL).

The @Named annotation takes an optional parameter, which is the bean name. If this parameter is
omitted, the bean name defaults to the class name of the bean with its first letter converted to lower-
case.

Configure Bean Names Using the @Named Annotation

1. Use the @Named annotation to assign a name to a bean.

@Named('"greeter")
public class GreeterBean {
private Welcome welcome;

@Inject

void init (Welcome welcome) {
this.welcome = welcome;

}

public void welcomeVisitors() {
System.out.println(welcome.buildPhrase("San Francisco"));

}
}

In the example above, the default name would be greeterBean if no name had been specified.

2. In the context of Camel CDI, the named bean is automatically added to the registry and can be
accessed from a Camel route, as follows:

I from("direct:inbound").bean("greeter");

13.6. ALTERNATIVE BEANS

Alternatives are beans whose implementation is specific to a particular client module or deployment
scenario.

By default, @Alternative beans are disabled. They are enabled for a specific bean archive by editing its
beans . xml file.

Example: Defining Alternatives

This alternative defines a implementation of both @Synchronous PaymentProcessor and
@Asynchronous PaymentProcessor, all in one:

@Alternative @Synchronous @Asynchronous

public class MockPaymentProcessor implements PaymentProcessor {

56

CHAPTER 13.USE CDI TO DEVELOP AN APPLICATION

public void process(Payment payment) { ... }

Override an Injection with an Alternative

You can use alternative beans to override existing beans. They can be thought of as a way to plug in a
class which fills the same role, but functions differently. They are disabled by default.

This task shows you how to specify and enable an alternative.

Override an Injection

This task assumes that you already have a TranslatingWelcome class in your project, but you want to
override it with a "mock" TranslatingWelcome class. This would be the case for a test deployment,
where the true Translator bean cannot be used.

1. Define the alternative.

@Alternative
@Translating
public class MockTranslatingWelcome extends Welcome {
public String buildPhrase(string city) {
return "Bienvenue A " + city + "!");

}
}

2. Activate the substitute implementation by adding the fully-qualified class name to your META -
INF/beans.xml or WEB-INF/beans.xml file.

<beans>
<alternatives>
<class>com.acme.MockTranslatingWelcome</class>
</alternatives>
</beans>

The alternative implementation is now used instead of the original one.

13.6.1. Stereotypes

In many systems, use of architectural patterns produces a set of recurring bean roles. A stereotype
allows you to identify such a role and declare some common metadata for beans with that rolein a
central place.

A stereotype encapsulates any combination of:
e Default scope
e A set of interceptor bindings
A stereotype can also specify either:
e All beans where the stereotypes are defaulted bean EL names

e All beans where the stereotypes are alternatives

57

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

A bean may declare zero, one, or multiple stereotypes. A stereotype is an @Stereotype annotation that
packages several other annotations. Stereotype annotations may be applied to a bean class, producer
method, or field.

A class that inherits a scope from a stereotype may override that stereotype and specify a scope
directly on the bean.

In addition, if a stereotype has a @Named annotation, any bean it is placed on has a default bean name.
The bean may override this name if the @Named annotation is specified directly on the bean. For more
information about named beans, see Named Beans.

Use Stereotypes

Without stereotypes, annotations can become cluttered. This task shows you how to use stereotypes
to reduce the clutter and streamline your code.

Example: Annotation clutter

@Secure
@Transactional
@RequestScoped
@Named
public class AccountManager {
public boolean transfer(Account a, Account b) {

}
}

Define and Use

Stereotypes
Define the stereotype.

+

@Secure

@Transactional

@RequestScoped

@Named

@Stereotype

@Retention(RUNTIME)

@Target(TYPE)

public @interface BusinessComponent {

}
1. Use the stereotype.
@BusinessComponent

public class AccountManager {
public boolean transfer(Account a, Account b) {

}
¥

58

CHAPTER 13.USE CDI TO DEVELOP AN APPLICATION

13.7. OBSERVER METHODS
Observer methods receive notifications when events occur.

CDlI also provides transactional observer methods, which receive event notifications during the before
completion or after completion phase of the transaction in which the event was fired.

Transactional Observers

Transactional observers receive the event notifications before or after the completion phase of the
transaction in which the event was raised. Transactional observers are important in a stateful object
model because state is often held for longer than a single atomic transaction.

There are five kinds of transactional observers:
o [IN_PROGRESS: By default, observers are invoked immediately.

o AFTER_SUCCESS: Observers are invoked after the completion phase of the transaction, but
only if the transaction completes successfully.

o AFTER_FAILURE: Observers are invoked after the completion phase of the transaction, but
only if the transaction fails to complete successfully.

o AFTER_COMPLETION: Observers are invoked after the completion phase of the transaction.

o BEFORE_COMPLETION: Observers are invoked before the completion phase of the
transaction.

The following observer method refreshes a query result set cached in the application context, but only
when transactions that update the Category tree are successful:

public void refreshCategoryTree(@O0Observes(during = AFTER_SUCCESS)
CategoryUpdateEvent event) { ... }

Assume we have cached a JPA query result set in the application scope:

import javax.ejb.Singleton;
import javax.enterprise.inject.Produces;

@ApplicationScoped @Singleton

public class Catalog {
@PersistenceContext EntityManager em;
List<Product> products;
@Produces @Catalog
List<Product> getCatalog() {
if (products==null) {
products = em.createQuery("select p from Product p where
p.deleted = false")
.getResultlList();
}

return products;

59

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

Occasionally a Product is created or deleted. When this occurs, we need to refresh the Product catalog.
But we have to wait for the transaction to complete successfully before performing this refresh.

The bean that creates and deletes Products triggers events, for example:

import javax.enterprise.event.Event;
@Stateless

public class ProductManager {
@PersistenceContext EntityManager em;
@Inject @Any Event<Product> productEvent;
public void delete(Product product) {
em.delete(product);
productEvent.select(new AnnotationLiteral<Deleted>()
{}).fire(product);

}

public void persist(Product product) {
em.persist(product);
productEvent.select(new AnnotationLiteral<Created>()
{}).fire(product);

}

The Catalog can now observe the events after successful completion of the transaction:
import javax.ejb.Singleton;

@ApplicationScoped @Singleton
public class Catalog {

void addProduct(@Observes(during = AFTER_SUCCESS) @Created Product
product) {
products.add(product);

}
void removeProduct(@Observes(during = AFTER_SUCCESS) @Deleted Product

product) {
products.remove(product);

}

Example: Fire an event

The following code shows an event being injected and used in a method.

public class AccountManager {
@Inject Event<wWithdrawal> event;

public boolean transfer(Account a, Account b) {

60

CHAPTER 13.USE CDI TO DEVELOP AN APPLICATION

event.fire(new Withdrawal(a));

}
¥

Example: Fire an event with a qualifier

You can annotate your event injection with a qualifier, to make it more specific. For more information
about qualifiers, see Qualifiers.

public class AccountManager {
@Inject @Suspicious Event <Withdrawal> event;

public boolean transfer(Account a, Account b) {

event.fire(new Withdrawal(a));

}
¥

Example: Observe an event

To observe an event, use the @0bserves annotation.

public class AccountObserver {
void checkTran(@Observes Withdrawal w) {

}
¥

You can use qualifiers to observe only specific types of events.

public class AccountObserver {
void checkTran(@Observes @Suspicious Withdrawal w) {

}
}

13.8. INTERCEPTORS

Interceptors allow you to add functionality to the business methods of a bean without modifying the
bean’s method directly. The interceptor is executed before any of the business methods of the bean.
Interceptors are defined as part of the Enterprise JavaBeans specification, which can be found at
https://jcp.org/aboutJava/communityprocess/final/jsr318/index.html.

CDI enhances this functionality by allowing you to use annotations to bind interceptors to beans.

Interception points

e Business method interception: A business method interceptor applies to invocations of
methods of the bean by clients of the bean.

e Lifecycle callback interception: A lifecycle callback interceptor applies to invocations of
lifecycle callbacks by the container.

e Timeout method interception: A timeout method interceptor applies to invocations of the EJB
timeout methods by the container.

61

https://jcp.org/aboutJava/communityprocess/final/jsr318/index.html

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

Use Interceptors with CDI

CDI can simplify your interceptor code and make it easier to apply to your business code.
Without CDI, interceptors have two problems:
e The bean must specify the interceptor implementation directly.

e Every bean in the application must specify the full set of interceptors in the correct order. This
makes adding or removing interceptors on an application-wide basis time-consuming and
error-prone.

Example: Interceptors without CDI

@Interceptors({
SecurityInterceptor.class,
TransactionInterceptor.class,
LoggingInterceptor.class

1)

@Stateful public class BusinessComponent {

}
Use interceptors

with CDI
Define the interceptor binding type:

+

@InterceptorBinding
@Retention(RUNTIME)

@Target ({TYPE, METHOD})
public @interface Secure {}

1. Mark the interceptor implementation:

@Secure
@Interceptor
public class SecurityInterceptor {
@AroundInvoke
public Object aroundInvoke(InvocationContext ctx) throws Exception
{
// enforce security ...
return ctx.proceed();

}

2. Use the interceptor in your business code:
@Secure

public class AccountManager {
public boolean transfer(Account a, Account b) {

62

CHAPTER 13.USE CDI TO DEVELOP AN APPLICATION

3. Enable the interceptor in your deployment, by adding it to META-INF/beans.xml or WEB-
INF/beans.xml:

<beans>
<interceptors>
<class>com.acme.SecurityInterceptor</class>
<class>com.acme.TransactionInterceptor</class>
</interceptors>
</beans>

The interceptors are applied in the order listed.

13.9. DECORATORS

A decorator intercepts invocations from a specific Java interface, and is aware of all the semantics
attached to that interface. Decorators are useful for modeling some kinds of business concerns, but do
not have the generality of interceptors. A decorator is a bean, or even an abstract class, that

implements the type it decorates, and is annotated with @Decorator. To invoke a decorator in a CDI
application, it must be specified in the beans . xml file.

A decorator must have exactly one @Delegate injection point to obtain a reference to the decorated
object.

Example: Example Decorator

@Decorator
public abstract class LargeTransactionDecorator implements Account {

@Inject @Delegate @Any Account account;
@PersistenceContext EntityManager em;

public void withdraw(BigDecimal amount) {

}

public void deposit(BigDecimal amount);

}

13.10. PORTABLE EXTENSIONS

CDlis intended to be a foundation for frameworks, extensions, and for integration with other
technologies. Therefore, CDI exposes a set of SPIs for the use of developers of portable extensions to
CDl.

Extensions can provide the following types of functionality:

e |Integration with Business Process Management engines

63

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

e |Integration with third-party frameworks, such as Spring, Seam, GWT, or Wicket
e New technology based upon the CDI programming model

According to the JSR-346 specification, a portable extension can integrate with the container in the
following ways:

e Providing its own beans, interceptors, and decorators to the container
e Injecting dependencies into its own objects using the dependency injection service
e Providing a context implementation for a custom scope

e Augmenting or overriding the annotation-based metadata with metadata from another source

13.11. BEAN PROXIES

Clients of an injected bean do not usually hold a direct reference to a bean instance. Unless the bean is
a dependent object (scope @Dependent), the container must redirect all injected references to the
bean using a proxy object.

A bean proxy, which can be referred to as client proxy, is responsible for ensuring the bean instance
that receives a method invocation is the instance associated with the current context. The client proxy
also allows beans bound to contexts, such as the session context, to be serialized to disk without
recursively serializing other injected beans.

Due to Java limitations, some Java types cannot be proxied by the container. If an injection point
declared with one of these types resolves to a bean with a scope other than @Dependent, the container
aborts the deployment.

Certain Java types cannot be proxied by the container. These include:
e Classes that do not have a non-private constructor with no parameters
e Classes that are declared final or have a final method

e Arrays and primitive types

13.11.1. Use a Proxy in an Injection

A proxy is used for injection when the lifecycles of the beans are different from each other. The proxy
is a subclass of the bean that is created at run-time, and overrides all the non-private methods of the
bean class. The proxy forwards the invocation onto the actual bean instance.

In this example, the PaymentProcessor instance is not injected directly into Shop. Instead, a proxy is
injected, and when the processPayment () method is called, the proxy looks up the current
PaymentProcessor beaninstance and calls the processPayment () method onit.

Example: Proxy Injection

@ConversationScoped
class PaymentProcessor

{

public void processPayment(int amount)

{

System.out.println("I'm taking $" + amount);

64

CHAPTER 13.USE CDI TO DEVELOP AN APPLICATION

}
}

@ApplicationScoped
public class Shop
{

@Inject
PaymentProcessor paymentProcessor;

public void buyStuff()
{
paymentProcessor.processPayment (100);
}
}

65

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

CHAPTER 14. CAMEL CDI

14.1. BASIC FEATURES

Overview

The Camel CDI component provides auto-configuration for Apache Camel using CDI as the dependency
injection framework, based on convention-over-configuration. It auto-detects Camel routes available
in the application and provides beans for common Camel primitives like Endpoint,
ProducerTemplate or TypeConverter. It implements standard Camel bean integration so that
Camel annotations like @Consume, @Produce and @PropertyInject can be used seamlessly in CDI
beans. Besides, it bridges Camel events (for example RouteAddedEvent,
CamelContextStartedEvent, ExchangeCompletedEvent,...) as CDI events and provides a CDI
events endpoint that can be used to consume / produce CDI events from / to Camel routes.

How to enable Camel CDI in Apache Karaf

To enable Camel CDI in Apache Karaf, perform the following steps:

1. Add the required pax-cdi, pax-cdi-weld, and camel-cdi features to the Karaf container,
as follows:

I JBossFuse:karaf@root> features:install pax-cdi pax-cdi-weld camel-
cdi

2. To enable Camel CDI in a bundle, open the pom. xml file in your bundle’s Maven project and
add the following Require-Capability element to the configuration of the Maven bundle

plug-in:
<project ...>
<build>
<plugins>
<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<extensions>true</extensions>
<configuration>
<instructions>
<Bundle-
SymbolicName>${project.groupId}.${project.artifactId}</Bundle-
SymbolicName>
<Import-Package>*</Import-Package>
<Require-Capability>
osgi.extender; filter:="(osgi.extender=pax.cdi)",
org.ops4j.pax.cdi.extension; filter:="
(extension=camel-cdi-extension)"
</Require-Capability>
</instructions>

</configuration>
</plugin>

66

CHAPTER 14. CAMEL CDI

</plugins>
</build>

</project>

3. To access the CDI annotations in Java, you must add a dependency on the CDI API package
and on the Camel CDI package. Edit your bundle’s POM file, pom.xml, to add the CDI API
package as a Maven dependency:

<project ...>
<dependencies>

<!-- CDI API -->

<dependency>
<groupId>javax.enterprise</groupId>
<artifactId>cdi-api</artifactId>
<version>${cdi-api-1.2-version}</version>
<scope>provided</scope>

</dependency>

<!-- Camel CDI API -->

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-cdi</artifactId>
<version>2.21.0.fuse-000055-redhat-2</version>

</dependency>

</dependencies>
</project>
4. Rebuild your bundle in the usual way for your Maven project. For example, using the command:

I mvn clean install

5. Deploy the bundle to the Karaf container in the usual way (for example, using the
osgi:install console command).

AUTO-CONFIGURED CAMEL CONTEXT

Camel CDI automatically deploys and configures a CamelContext bean. That CamelContext bean is
automatically instantiated, configured and started (resp. stopped) when the CDI container initialises
(resp. shuts down). It can be injected in the application, for example:

CamelContext context;

I @Inject

The default CamelContext bean is qualified with the built-in @Default qualifier, is scoped
@ApplicationScoped and is of type DefaultCamelContext.

Note that this bean can be customised programmatically and other Camel context beans can be
deployed in the application as well.

67

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

Auto-detecting Camel routes

Camel CDI automatically collects all the RoutesBuilder beans in the application, instantiates and
add them to the CamelContext bean instance when the CDI container initialises. For example, adding
a Camel route is as simple as declaring a class, for example:

class MyRouteBean extends RouteBuilder {

@Override
public void configure() {
from("jms:invoices").to("file:/invoices");

}

Note that you can declare as many RoutesBuilder beans as you want. Besides, RouteContainer
beans are also automatically collected, instantiated and added to the CamelContext bean instance
managed by Camel CDI when the container initialises.

AUTO-CONFIGURED CAMEL PRIMITIVES

Camel CDI provides beans for common Camel primitives that can be injected in any CDI beans, for
example:

@Inject
@Uri("direct:inbound")
ProducerTemplate producerTemplate;

@Inject
MockEndpoint outbound; // URI defaults to the member name, i.e.
mock :outbound

@Inject
@Uri("direct:inbound")
Endpoint endpoint;

@Inject
TypeConverter converter;

CAMEL CONTEXT CONFIGURATION

If you just want to change the name of the default CamelContext bean, you can used the
@ContextName qualifier provided by Camel CDI, for example:

@ContextName("camel-context")
class MyRouteBean extends RouteBuilder {

@Override
public void configure() {
from("jms:invoices").to("file:/invoices");

}

68

CHAPTER 14. CAMEL CDI

Else, if more customisation is needed, any CamelContext class can be used to declare a custom
Camel context bean. Then, the @PostConstruct and @PreDestroy lifecycle callbacks can be done
to do the customisation, for example:

@ApplicationScoped
class CustomCamelContext extends DefaultCamelContext {

@PostConstruct
void customize() {
// Set the Camel context name
setName("custom");
// Disable JMX
disableJMX();

}

@PreDestroy
void cleanUp() {
//

}

Producer and disposer methods can also be used as well to customize the Camel context bean, for
example:

class CamelContextFactory {

@Produces

@ApplicationScoped

CamelContext customize() {
DefaultCamelContext context = new DefaultCamelContext();
context.setName("custom");
return context;

}

void cleanUp(@Disposes CamelContext context) {
//

}

Similarly, producer fields can be used, for example:

@Produces
@ApplicationScoped
CamelContext context = new CustomCamelContext();

class CustomCamelContext extends DefaultCamelContext {

CustomCamelContext() {
setName("custom");

}

This pattern can be used for example to avoid having the Camel context routes started automatically
when the container initialises by calling the setAutoStartup method, for example:

69

http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#producer_method
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#disposer_method
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#producer_field

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

@ApplicationScoped
class ManualStartupCamelContext extends DefaultCamelContext {

@PostConstruct

void manual() {
setAutoStartup(false);

}

MULTIPLE CAMEL CONTEXTS

Any number of CamelContext beans can actually be declared in the application as documented
above. In that case, the CDI qualifiers declared on these CamelContext beans are used to bind the
Camel routes and other Camel primitives to the corresponding Camel contexts. From example, if the
following beans get declared:

@ApplicationScoped
@ContextName("foo")
class FooCamelContext extends DefaultCamelContext {

}

@ApplicationScoped
@BarContextQualifier
class BarCamelContext extends DefaultCamelContext {

}

@ContextName("foo")
class RouteAdddedToFooCamelContext extends RouteBuilder {

@Ooverride
public void configure() {
//
}
3

@BarContextQualifier
class RouteAdddedToBarCamelContext extends RouteBuilder {

@Ooverride
public void configure() {
//
}
3

@ContextName("baz")
class RouteAdddedToBazCamelContext extends RouteBuilder {

@Ooverride
public void configure() {
//
}
3

@MyOotherQualifier
class RouteNotAddedToAnyCamelContext extends RouteBuilder {

70

CHAPTER 14. CAMEL CDI

@Override
public void configure() {
//

}

The RoutesBuilder beans qualified with @ContextName are automatically added to the
corresponding CamelContext beans by Camel CDLI. If no such CamelContext bean exists, it gets
automatically created, as for the RouteAddedToBazCamelContext bean. Note this only happens for
the @ContextName qualifier provided by Camel CDI. Hence the
RouteNotAddedToAnyCamelContext bean qualified with the user-defined @MyOtherQualifier
qualifier does not get added to any Camel contexts. That may be useful, for example, for Camel routes
that may be required to be added later during the application execution.

Since Camel version 2.17.0, Camel CDl is capable of managing any kind of CamelContext beans. In
previous versions, it is only capable of managing beans of type CdiCamelContext so it is required to
extend it.

The CDI qualifiers declared on the CamelContext beans are also used to bind the corresponding
Camel primitives, for example:

@Inject

@ContextName("foo")
@Uri("direct:inbound")
ProducerTemplate producerTemplate;

@Inject

@BarContextQualifier

MockEndpoint outbound; // URI defaults to the member name, i.e.
mock :outbound

@Inject
@ContextName("baz")
@Uri("direct:inbound")
Endpoint endpoint;

CONFIGURATION PROPERTIES

To configure the sourcing of the configuration properties used by Camel to resolve properties
placeholders, you can declare a PropertiesComponent bean qualified with
@Named("properties"), for example:

@Produces

@ApplicationScoped

@Named("properties")

PropertiesComponent propertiesComponent() {
Properties properties = new Properties();
properties.put("property", "value");
PropertiesComponent component = new PropertiesComponent();
component.setInitialProperties(properties);
component.setLocation("classpath:placeholder.properties");
return component;

I

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

If you want to use DeltaSpike configuration mechanism you can declare the following
PropertiesComponent bean:

@Produces

@ApplicationScoped

@Named("properties")

PropertiesComponent properties(PropertiesParser parser) {
PropertiesComponent component = new PropertiesComponent();
component.setPropertiesParser(parser);
return component;

}

// PropertiesParser bean that uses DeltaSpike to resolve properties
static class DeltaSpikeParser extends DefaultPropertiesParser {
@Ooverride
public String parseProperty(String key, String value, Properties
properties) {
return ConfigResolver.getPropertyValue(key);
}

You can see the camel -example-cdi-properties example for a working example of a Camel CDI
application using DeltaSpike configuration mechanism.

AUTO-CONFIGURED TYPE CONVERTERS

CDI beans annotated with the @Converter annotation are automatically registered into the deployed
Camel contexts, for example:

@Converter
public class MyTypeConverter {

@Converter
public Output convert(Input input) {
/7. ..

}

Note that CDI injection is supported within the type converters.

LAZY INJECTION / PROGRAMMATIC LOOKUP
Available as of Camel 2.17

While the CDI programmatic model favors a type-safe resolution mechanism that occurs at application
initialization time, it is possible to perform dynamic / lazy injection later during the application
execution using the programmatic lookup mechanism.

Camel CDI provides for convenience the annotation literals corresponding to the CDI qualifiers that
you can use for standard injection of Camel primitives. These annotation literals can be used in
conjunction with thejavax.enterprise.inject.Instance interface which is the CDI entry point
to perform lazy injection / programmatic lookup.

72

http://deltaspike.apache.org/documentation/configuration.html
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#typesafe_resolution
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#programmatic_lookup

CHAPTER 14. CAMEL CDI

For example, you can use the provided annotation literal for the @Ur iqualifier to lazily lookup for
Camel primitives, for example for ProducerTemplatebeans:

@Any
@Inject
Instance<ProducerTemplate> producers;

ProducerTemplate inbound = producers
.select(Uri.Literal.of("direct:inbound"))

.get();

Or for Endpoint beans, for example:

@Any
@Inject
Instance<Endpoint> endpoints;

MockEndpoint outbound = endpoints
.select(MockEndpoint.class, Uri.Literal.of("mock:outbound"))

.get();

Similarly, you can use the provided annotation literal for the@ContextName qualifier to lazily lookup
for CamelContext beans, for example:

@Any
@Inject
Instance<CamelContext> contexts;

CamelContext context = contexts
.select(ContextName.Literal.of("foo0"))

.get();

You can also refined the selection based on the Camel context type, for example:

@Any
@Inject
Instance<CamelContext> contexts;

// Refine the selection by type
Instance<DefaultCamelContext> context =
contexts.select(DefaultCamelContext.class);

// Check if such a bean exists then retrieve a reference

if (!context.isUnsatisfied())
context.get();

Or even iterate over a selection of Camel contexts, for example:

@Any
@Inject
Instance<CamelContext> contexts;

for (CamelContext context : contexts)
context.setUseBreadcrumb(true);

73

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

INJECTING A CAMEL CONTEXT FROM SPRING XML

While CDI favors a type safe dependency injection mechanism, it may be useful to reuse existing Camel
XML configurations by injecting them into a Camel CDI application. In other use cases, it might be
handy to rely on the Camel XML DSL to configure its Camel context(s).

To inject by CDI a camelContext defined in Spring XML, you need to use the Java @Resource
annotation, instead of the @Inject @ContextName annotationsinthe Camel CDI extension. For
example,

public class RouteCaller {

@Resource(name = "java:jboss/camel/context/simple-context")
private CamelContext context;

The string java: jboss/camel/context/simple-context is the name of the deployed context
registered in the JNDI registry. simple-context is the xml:id of the camelContext elementin the
Spring XML file.

IMPORTANT

Using the @Inject @ContextName annotations can resultin the creation of a new
camelContext instead of injecting the named context, which later causes endpoint
lookups to fail.

74

CHAPTER 15. CAMEL BEAN INTEGRATION

CAMEL ANNOTATIONS

As part of the Camel bean integration, Camel comes with a set of annotations that are seamlessly
supported by Camel CDI. So you can use any of these annotations in your CDI beans, for example:

Configuration property

Producer template injection
(default Camel context)

Endpoint injection (default Camel

context)

Endpoint injection (Camel context

by name)

Bean injection (by type)

Bean injection (by name)

Camel annotation

@PropertyInject("key

Il)

String value;

@Produce(uri =
"mock:outbound")
ProducerTemplate
producer;

@EndpointInject(uri
= "direct:inbound")
Endpoint endpoint;

@EndpointInject(uri
= "direct:inbound",
context = "foo")
Endpoint
contextEndpoint;

@BeanInject
MyBean bean;

@BeanInject("foo")
MyBean bean;

CDlI equivalent

If using DeltaSpike configuration
mechanism:

@Inject
@ConfigProperty(name
= llkeyll)

String value;

See configuration properties for
more details.

@Inject
@Uri("direct:outboun
dll)

ProducerTemplate
producer;

@Inject
@Uri("direct:inbound
Il)

Endpoint endpoint;

@Inject
@ContextName("foo")
@Uri("direct:inbound
Il)

Endpoint
contextEndpoint;

@Inject
MyBean bean;

@Inject
@Named("foo")
MyBean bean;

CHAPTER 15. CAMEL BEAN INTEGRATION

75

http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html#BeanIntegration-Annotations
http://deltaspike.apache.org/documentation/configuration.html

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

POJO consuming
@Consume(uri =
"seda:inbound")
void consume(@Body
String body) {
/7. ..

}

BEAN COMPONENT

You can refer to CDI beans, either by type or name, From the Camel DSL, for example with the Java
Camel DSL:

class MyBean {
// ...

}

from("direct:inbound").bean(MyBean.class);
Or to lookup a CDI bean by name from the Java DSL:

@Named("foo")
class MyNamedBean {
/7. ..

}

from("direct:inbound").bean("foo");

REFERRING BEANS FROM ENDPOINT URIS

When configuring endpoints using the URI syntax you can refer to beans in the Registry using the #
notation. If the URI parameter value starts with a # sign then Camel CDI will lookup for a bean of the
given type by name, for example:

from("jms:queue: {{destination}}?
transacted=true&transactionManager=#jtaTransactionManager").to("...");

Having the following CDI bean qualified with @Named (" jtaTransactionManager"):

@Produces

@Named("jtaTransactionManager")

PlatformTransactionManager createTransactionManager (TransactionManager

transactionManager, UserTransaction userTransaction) {
JtaTransactionManager jtaTransactionManager = new

JtaTransactionManager();
jtaTransactionManager.setUserTransaction(userTransaction);
jtaTransactionManager.setTransactionManager (transactionManager);
jtaTransactionManager.afterPropertiesSet();
return jtaTransactionManager;

76

CHAPTER 16. CDI EVENTS IN CAMEL

CHAPTER 16.CDI EVENTS IN CAMEL

CAMEL EVENTS TO CDI EVENTS

Camel provides a set of management events that can be subscribed to for listening to Camel context,
service, route and exchange events. Camel CDI seamlessly translates these Camel events into CDI
events that can be observed using CDI observer methods, for example:

void onContextStarting(@Observes CamelContextStartingEvent event) {
// Called before the default Camel context is about to start

}

When multiple Camel contexts exist in the CDI container, the Camel context bean qualifiers, like
@ContextName, can be used to refine the observer method resolution to a particular Camel context as
specified in observer resolution, for example:

void onRouteStarted(@Observes @ContextName("foo") RouteStartedEvent event)

{
// Called after the route 'event.getRoute()' for the Camel context

'foo' has started

}

void onContextStarted(@Observes @Manual CamelContextStartedEvent event) {
// Called after the the Camel context qualified with '@Manual' has
started

}

Similarly, the @Default qualifier can be used to observe Camel events for the default Camel context
if multiples contexts exist, for example:

void onExchangeCompleted(@Observes @Default ExchangeCompletedEvent event)

{

// Called after the exchange 'event.getExchange()' processing has
completed

}

In that example, if no qualifier is specified, the @Any qualifier is implicitly assumed, so that
corresponding events for all the Camel contexts get received.

Note that the support for Camel events translation into CDI events is only activated if observer
methods listening for Camel events are detected in the deployment, and that per Camel context.

CDI EVENTS ENDPOINT

The CDI event endpoint bridges the CDI events with the Camel routes so that CDI events can be
seamlessly observed / consumed (resp. produced / fired) from Camel consumers (resp. by Camel
producers).

The CdiEventEndpoint<T> bean provided by Camel CDI can be used to observe / consume CDI
events whose event type is T, for example:

@Inject
CdiEventEndpoint<String> cdiEventEndpoint;

77

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/management/event/package-summary.html
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#observer_methods
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#observer_resolution
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#events

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

I from(cdiEventEndpoint).log("CDI event received: ${body}");
This is equivalent to writing:

@Inject
@Uri("direct:event")
ProducerTemplate producer;

void observeCdiEvents(@Observes String event) {
producer.sendBody(event);

}

from("direct:event").log("CDI event received: ${body}");

Conversely, the CdiEventEndpoint<T> bean can be used to produce / fire CDI events whose event
typeis T, for example:

@Inject
CdiEventEndpoint<String> cdiEventEndpoint;

from("direct:event").to(cdiEventEndpoint).log("CDI event sent: ${body}");
This is equivalent to writing:

@Inject
Event<String> event;

from("direct:event").process(new Processor() {
@Ooverride
public void process(Exchange exchange) {
event.fire(exchange.getBody(String.class));

}
}).log("CDI event sent: ${body}");

Or using a Java 8 lambda expression:

@Inject
Event<String> event;

from("direct:event")
.process(exchange ->
event.fire(exchange.getIn().getBody(String.class)))
.log("CDI event sent: ${body}");

The type variable T (resp. the qualifiers) of a particular CdiEventEndpoint<T>injection point are
automatically translated into the parameterized event type (resp. into the event qualifiers) for
example:

@Inject
@FooQualifier
CdiEventEndpoint<List<String>> cdiEventEndpoint;

from("direct:event").to(cdiEventEndpoint);

78

CHAPTER 16. CDI EVENTS IN CAMEL

void observeCdiEvents(@Observes @FooQualifier List<String> event) {
logger.info("CDI event: {}", event);

}

When multiple Camel contexts exist in the CDI container, the Camel context bean qualifiers, like
@ContextName, can be used to qualify the CdiEventEndpoint<T> injection points, for example:

@Inject

@ContextName("foo")

CdiEventEndpoint<List<String>> cdiEventEndpoint;

// 0Only observes / consumes events having the @ContextName("foo") qualifier
from(cdiEventEndpoint).log("Camel context (foo) > CDI event received:
${body}");

// Produces / fires events with the @ContextName("foo") qualifier
from("...").to(cdiEventEndpoint);

void observeCdiEvents(@Observes @ContextName("foo") List<String> event) {
logger.info("Camel context (foo) > CDI event: {}", event);

}

Note that the CDI event Camel endpoint dynamically adds an observer method for each unique
combination of event type and event qualifiers and solely relies on the container typesafe observer
resolution, which leads to an implementation as efficient as possible.

Besides, as the impedance between the typesafe nature of CDI and the dynamic nature of the Camel
component model is quite high, it is not possible to create an instance of the CDI event Camel endpoint
via URIs. Indeed, the URI format for the CDI event component is:

cdi-event://PayloadType<Tl, ..., Tn>[?qualifiers=QualifierTypell[, ...
[,QualifierTypeN]...]]
With the authority PayloadType (resp. the QualifierType) being the URI escaped fully qualified

name of the payload (resp. qualifier) raw type followed by the type parameters section delimited by
angle brackets for payload parameterized type. Which leads to unfriendly URIs, for example:

cdi-
event://org.apache.camel.cdi.example.EventPayload%3Cjava.lang.Integer%3E?
qualifiers=org.apache.camel.cdi.example.FooQualifier%2Corg.apache.camel.cd
i.example.BarQualifier

But more fundamentally, that would prevent efficient binding between the endpoint instances and the
observer methods as the CDI container doesn’t have any ways of discovering the Camel context model
during the deployment phase.

79

http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#observer_methods
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#observer_resolution
http://camel.apache.org/component.html
http://camel.apache.org/uris.html

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

PART Il. OSGI INTEGRATION

AUTO-CONFIGURED OSGI INTEGRATION

The Camel context beans are automatically adapted by Camel CDI so that they are registered as OSGi
services and the various resolvers (like ComponentResolver and DataFormatResolver) integrate
with the OSGi registry. That means that the Karaf Camel commands can be used to operate the Camel
contexts auto-configured by Camel CDI, for example:

karaf@root()> camel:context-list

Context Status Total # Failed # Inflight #
Uptime
camel-cdi Started 1 0

0 1 minute

See the camel-example-cdi-osgi example, available in the list of camel examples for a working
example of the Camel CDI OSGi integration.

80

https://github.com/apache/camel/tree/master/examples/camel-example-cdi-osgi

CHAPTER 17. PAX CDI AND OSGI SERVICES

CHAPTER 17. PAX CDI AND OSGI SERVICES

17.1. PAX CDI ARCHITECTURE

17.1.1. Overview

Figure 17.1, “Pax CDI Architecture” gives an overview of the technology stack underlying Pax CDI.

Figure 17.1. Pax CDI Architecture

Bean Bundle
Bean Bundle

Camel CDI

CDI API

JBoss Weld

Pax CDI

Apache Karaf / OSGi

17.2. PAX CDI

Pax CDI is the integration layer that makes it possible to deploy a CDI container within the Apache
Karaf OSGi container.

JBOSS WELD

JBoss Weld provides the CDI implementation for the Pax CDI integration. JBoss Weld is the reference
implementation for CDI and comes with its own extensive documentation, CDI Reference
Implementation.

BEAN BUNDLE

81

https://ops4j1.jira.com/wiki/display/PAXCDI/Pax+CDI
http://weld.cdi-spec.org/
https://docs.jboss.org/weld/reference/2.3.4.Final/en-US/html/

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

A bean bundle is an OSGi bundle that has been enabled to use Pax CDI. A bundle cannot use CDI by
default, it must be explicitly enabled to do so (see the section called “Requirements and capabilities™).

CDI CONTAINER

A CDI container effectively defines the scope for a collection of managed beans under CDI, which are
capable of being published and injected within this scope. In the context of 0SGi, a CDI container maps
to a single bundle. That is, each bean bundle gets its own CDI container.

CAMEL CDI AND OTHER CUSTOMIZATIONS

JBoss Fuse provides additional features that define CDI customizations (that is, non-standard CDI
annotations) targeted at different aspects of middleware development. For example:
camel-cdi

Provides custom annotations for defining and injecting Camel contexts and routes. See Chapter 14,
Camel CDI.

switchyard-cdi

Provides custom annotations for use with SwitchYard. For example, see the quickstart example
under the following directory of your JBoss Fuse installation:

I quickstarts/switchyard/camel-bus-cdi
For more information, see olink:SYDev/chap-Service_Implementations.

cxf-jaxrs-cdi

Provides support for CDI in JAX-RS, as defined in the JAX-RS 2.0 Specification (see section
10.2.3).

deltaspike

Apache Deltaspike is a general-purpose collection of CDI customizations.
17.3. ENABLING PAX CDI

Overview

Pax CDl is not enabled by default in the Karaf container in JBoss Fuse, so you must enable it explicitly.
There are two aspects of enabling Pax CDI in the Karaf container: first, installing the requisite Karaf
features in the container; second, enabling CDI for a particular bundle, by adding the Require-
Capability header to the bundle’s manifest (turning the bundle into a bean bundle).

Pax CDI features

To make Pax CDI functionality available in the Karaf container, install the requisite Karaf features into
your container. JBoss Fuse provides the following Karaf features for Pax CDI:

pax-cdi

Deploys the core components of Pax CDI. This feature must be combined with the pax-cdi-weld
CDI implementation.

pax-cdi-weld

82

olink:SYDev/chap-Service_Implementations
http://download.oracle.com/otn-pub/jcp/jaxrs-2_0-pfd-spec/339-spec.pdf
https://deltaspike.apache.org/

CHAPTER 17. PAX CDI AND OSGI SERVICES

Deploys the JBoss Weld CDI implementation (which is the only CDIl implementation supported on
JBoss Fuse)

pax-cdi-web

Adds support for deploying a CDI application as a Web application (that is, deploying the CDI
application into the Pax Web Undertow container). This enables support for the CDI features
associated with servlet deployment, such as session-scoped beans, request-scoped beans, injection
into servlets, and so on. This feature must be combined with the pax-cdi-web-weld feature (CDI
implementation).

pax-cdi-web-weld

Deploys the JBoss Weld CDI implementation for Web applications.

Requirements and capabilities

CDI requires you to organize your Java code in a very specific way, so it cannot be enabled arbitrarily
for any bundle. It only makes sense to enable CDI for each bundle that needs it, not for the entire
container. Hence, it is necessary to use an OSGi extension mechanism that switches on the CDI
capability on a bundle-by-bundle basis. The relevant OSGi mechanism is known as the requirements and
capabilities mechanism.

The CDI capability is provided by the relevant Pax CDI packages (installed as Karaf features); and the
CDIrequirement is specified for each bundle by adding a Require-Capability bundle header to the
bundle’s manifest file. For example, to enable the base Pax CDI functionality, you would add the
following Require-Capability header to the bundle’s manifest file:

I Require-Capability : osgi.extender; filter:="(osgi.extender=pax.cdi)"

A bundle that includes the preceding Require-Capability bundle header effectively becomes a
bean bundle (a CDI enabled bundile).

How to enable Pax CDI in Apache Karaf

To enable Pax CDI in Apache Karaf, perform the following steps:

1. Add the required pax-cdi and pax-cdi-weld features to the Karaf container, as follows:

I JBossFuse: karaf@root> features:install pax-cdi pax-cdi-weld

2. When the Pax CDI features are installed in the Karaf container, this is not sufficient to enable
CDI. You must also explicitly enable Pax CDI in each bundle that uses CDI (so that it becomes a
bean bundle). To enable Pax CDI in a bundle, open the pom.xml file in your bundle’s Maven
project and add the following Require-Capability element to the configuration of the
Maven bundle plug-in:

<project ...>
<build>
<plugins>
<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>

<extensions>true</extensions>
<configuration>

83

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

<instructions>
<Bundle-
SymbolicName>${project.groupId}.${project.artifactId}</Bundle-
SymbolicName>
<Import-Package>*</Import-Package>
<Require-Capability>
osgi.extender; filter:="(osgi.extender=pax.cdi)"
</Require-Capability>
</instructions>
</configuration>
</plugin>

</plugins>
</build>

</project>

3. To access the CDI annotations in Java, you must add a dependency on the CDI API package.
Edit your bundle’s POM file, pom. xml, to add the CDI API package as a Maven dependency:

<project ...>
<dependencies>
<!-- CDI API -->
<dependency>
<groupId>javax.enterprise</groupId>
<artifactId>cdi-api</artifactId>
<version>${cdi-api-1.2-version}</version>
<scope>provided</scope>
</dependency>
</dependencies>
</project>
4. Rebuild your bundle in the usual way for your Maven project. For example, using the command:

I mvn clean install

5. Deploy the bundle to the Karaf container in the usual way (for example, using the
osgi:install console command).

17.4. OSGI SERVICES EXTENSION

Overview
Pax CDI also provides an integration with OSGi services, enabling you to reference an OSGi service or

to publish an OSGi service using CDI annotations. This capability is provided by the Pax CDI OSGi
Services Extension, which is not enabled by default.

Enabling the OSGi Services Extension

To enable the Pax CDI OSGi Services Extension, you must include the following bundle header in the

84

CHAPTER 17. PAX CDI AND OSGI SERVICES

manifest file:

Require-Capability : org.ops4j.pax.cdi.extension; filter:="(extension=pax-
cdi-extension)"

In a Maven project, you would normally add a Require-Capability element to the configuration of
the Maven bundle plug-in. For example, to add both the Pax CDI Extender and the Pax CDI OSGi
Services Extension to the bundle, configure your project’s POM file, pom. xml, as follows:

<project ...>
<build>
<plugins>
<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<extensions>true</extensions>
<configuration>
<instructions>
<Bundle-SymbolicName>${project.groupId}.${project.artifactId}
</Bundle-SymbolicName>
<Import-Package>*</Import-Package>
<Require-Capability>
osgi.extender; filter:="(osgi.extender=pax.cdi)",
org.ops4j.pax.cdi.extension; filter:="(extension=pax-cdi-
extension)"
</Require-Capability>
</instructions>
</configuration>
</plugin>

</plugins>
</build>

</project>

Maven dependency for the OSGi Services extensions API

To access the OSGi Services annotations in your Java code, you need to add a dependency on the
pax-cdi-api package. Edit your bundle’s POM file, pom.xml, to add the Pax CDI APl package as a
Maven dependency:

<project ...>
<dependencies>

<!-- CDI API -->

<dependency>
<groupId>org.ops4j.pax.cdi</groupId>
<artifactId>pax-cdi-api</artifactId>
<version>1.0.0.RCi</version>

</dependency>

85

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

</dependencies>

</project>

INJECTING AN OSGI SERVICE

You can inject an OSGi service into a field using the following annotation:

@Inject @0sgiService
private IceCreamService iceCream;

Pax CDI finds the OSGi service to inject by matching the type of the OSGi service to the type of the
field.

DISAMBIGUATING OSGI SERVICES

If more than one OSGi service of a particular type exists, you can disambiguate the match by filtering
on the OSGi service properties—for example:

@Inject @0sgiService(filter = "(&(flavour=chocolate)(lactose=false))")
private IceCreamService iceCream;

As usual for OSGi services, the properties filter is defined using LDAP filter syntax (see Matching
service properties with a filter for more details). For an example of how to set properties on an OSGi
service, see the section called “Setting OSGi Service properties”.

Selecting OSGi Services at run time

You can reference an OSGi service dynamically by injecting it as follows:
@Inject

@0sgiService(dynamic = true)
private Instance<IceCreamService> iceCreamServices;

Calling iceCreamServices.get () will return aninstance of the IceCreamService service at run
time. With this approach, it is possible to reference an OSGi service that is created after your bean is
created.

Publishing a bean as OSGi Service with singleton scope
You can publish an OSGi service with OSGi singleton scope (which is the default), as follows:

@0sgiServiceProvider
public class ChocolateService implements IceCreamService {

}

OSGi singleton scopemeans that the bean manager creates a single instance of the bean and returns
that instance every time a bean instance is requested.

Publishing a bean as OSGi Service with prototype scope

86

CHAPTER 17. PAX CDI AND OSGI SERVICES

You can publish an OSGi service with OSGi prototype scope, as follows:

@0sgiServiceProvider
@PrototypeScoped
public class ChocolateService implements IceCreamService {

}

OSGi prototype scopemeans that the bean manager creates a new bean instance every time a bean
instance is requested.

Publishing a bean as OSGi Service with bundle scope

You can publish an OSGi service with bundle scope, as follows:

@0sgiServiceProvider
@BundleScoped
public class ChocolateService implements IceCreamService {

}

Bundle scope means that the bean manger creates a new bean instance for every client bundle. That is,
the @BundleScoped beans are registered with an org.osgi. framework.ServiceFactory.

Setting OSGi Service properties

You can set properties on an OSGi service by annotating the service bean as follows:

@0sgiServiceProvider

@Properties({
@Property(name = "flavour", value = "chocolate"),
@Property(name = "lactose", value = "false")

})

public class ChocolateService implements IceCreamService {

}

Publishing an OSGi Service with explicit interfaces

You can explicitly specify the Java interfaces supported by an OSGi Service bean, as follows:

@0sgiServiceProvider(classes = {ChocolateService.class,
IceCreamService.class})
public class ChocolateService implements IceCreamService {

}

87

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

CHAPTER 18. DEPLOYING USING A WAR PACKAGE

Abstract

The OSGi specification supports modular application development by defining a runtime framework
that simplifies building, deploying, and managing complex applications.

88

CHAPTER 19. DEPLOYING USING THE OSGI SERVICE LAYER

CHAPTER 19. DEPLOYING USING THE OSGI SERVICE LAYER

Abstract

The OSGi specification supports modular application development by defining a runtime framework
that simplifies building, deploying, and managing complex applications.

89

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

90

CHAPTER 20. OSGI SERVICES

Abstract

The OSGi core framework defines the OSGi Service Layer, which provides a simple mechanism for
bundles to interact by registering Java objects as services in the OSGi service registry. One of the
strengths of the OSGi service model is that any Java object can be offered as a service: there are no
particular constraints, inheritance rules, or annotations that must be applied to the service class. This
chapter describes how to deploy an OSGi service using the OSGi Blueprint container.

CHAPTER 21. THE BLUEPRINT CONTAINER

CHAPTER 21. THE BLUEPRINT CONTAINER

Abstract

The Blueprint container is a dependency injection framework that simplifies interaction with the OSGi
container. The Blueprint container supports a configuration-based approach to using the OSGi service
registry—for example, providing standard XML elements to import and export OSGi services.

21.1. BLUEPRINT CONFIGURATION

Location of Blueprint files in a JAR file

Relative to the root of the bundle JAR file, the standard location for Blueprint configuration files is the
following directory:

I OSGI-INF/blueprint

Any files with the suffix, . xm1, under this directory are interpreted as Blueprint configuration files; in
other words, any files that match the pattern, 0SGI-INF/blueprint/*.xml.

Location of Blueprint files in a Maven project

In the context of a Maven project, ProjectDir, the standard location for Blueprint configuration files is
the following directory:

I ProjectDir/src/main/resources/0SGI-INF/blueprint

Blueprint namespace and root element

Blueprint configuration elements are associated with the following XML namespace:
I http://www.osgi.org/xmlns/blueprint/v1.0.0

The root element for Blueprint configuration is blueprint, so a Blueprint XML configuration file
normally has the following outline form:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

</blueprint>

NOTE

In the blueprint root element, there is no need to specify the location of the Blueprint
schema using an xsi:schemaLocation attribute, because the schema location is
already known to the Blueprint framework.

Blueprint Manifest configuration

Some aspects of Blueprint configuration are controlled by headers in the JAR’s manifest file, META -
INF/MANIFEST . MF, as follows:

o Custom Blueprint file locations.

91

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

e Mandatory dependencies.

Custom Blueprint file locations

If you need to place your Blueprint configuration files in a non-standard location (that is, somewhere
other than 0SGI-INF/blueprint/*.xml), you can specify a comma-separated list of alternative
locations in the Bundle-Blueprint header in the manifest file—for example:

I Bundle-Blueprint: lib/account.xml, security.bp, cnf/*.xml

Mandatory dependencies

Dependencies on an OSGi service are mandatory by default (although this can be changed by setting
the availability attribute to optional ona reference elementora reference-list element).
Declaring a dependency to be mandatory means that the bundle cannot function properly without that
dependency and the dependency must be available at all times.

Normally, while a Blueprint container is initializing, it passes through a grace period, during which time it
attempts to resolve all mandatory dependencies. If the mandatory dependencies cannot be resolved in
this time (the default timeout is 5 minutes), container initialization is aborted and the bundle is not
started. The following settings can be appended to the Bundle-SymbolicName manifest header to
configure the grace period:

blueprint.graceperiod

If true (the default), the grace period is enabled and the Blueprint container waits for mandatory
dependencies to be resolved during initialization; if false, the grace period is skipped and the
container does not check whether the mandatory dependencies are resolved.

blueprint.timeout
Specifies the grace period timeout in milliseconds. The default is 300000 (5 minutes).

For example, to enable a grace period of 10 seconds, you could define the following Bundle -
SymbolicName header in the manifest file:

Bundle-SymbolicName: org.fusesource.example.osgi-client;
blueprint.graceperiod:=true;
blueprint.timeout:= 10000

The value of the Bundle-SymbolicName header is a semi-colon separated list, where the first item is
the actual bundle symbolic name, the second item, blueprint.graceperiod:=true, enables the
grace period and the third item, blueprint. timeout:= 10000, specifies a10 second timeout.

21.2. DEFINING A SERVICE BEAN

Overview

The Blueprint container enables you to instantiate Java classes using a bean element. You can create
all of your main application objects this way. In particular, you can use the bean element to create a
Java object that represents an OSGi service instance.

Blueprint bean element

The Blueprint bean element is defined in the Blueprint schema namespace,
http://www.o0sgi.org/xmlns/blueprint/v1.0.0.

92

http://www.osgi.org/xmlns/blueprint/v1.0.0

CHAPTER 21. THE BLUEPRINT CONTAINER

Sample beans

The following example shows how to create a few different types of bean using Blueprint’s bean
element:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
<bean id="label" class="java.lang.String">

<argument value="LABEL_VALUE"/>
</bean>

<bean id="myList" class="java.util.ArraylList">
<argument type="int" value="10"/>

</bean>

<bean id="account" class="org.fusesource.example.Account">
<property name="accountName" value="john.doe"/>
<property name="balance" value="10000"/>

</bean>

</blueprint>
Where the Account class referenced by the last bean example could be defined as follows:

package org.fusesource.example;
public class Account
{
private String accountName;
private int balance;

public Account () { }

public void setAccountName(String name) {
this.accountName = name;

}

public void setBalance(int bal) {
this.balance = bal;

}

References

For more details on defining Blueprint beans, consult the following references:
e Spring Dynamic Modules Reference Guide v2.0, Blueprint chapter .

e Section 121 Blueprint Container Specification, from the OSGi Compendium Services R4.2
specification.

21.3. EXPORTING A SERVICE

Overview

93

https://docs.spring.io/spring-osgi/docs/2.0.0.M1/reference/html/blueprint.html
http://www.osgi.org/Release4/Download

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

This section describes how to export a Java object to the OSGi service registry, thus making it
accessible as a service to other bundles in the OSGi container.

Exporting with a single interface

To export a service to the OSGi service registry under a single interface name, define a service
element that references the relevant service bean, using the ref attribute, and specifies the published
interface, using the interface attribute.

For example, you could export an instance of the SavingsAccountImpl class under the
org.fusesource.example.Account interface name using the Blueprint configuration code shown
in Example 21.1, “Sample Service Export with a Single Interface” .

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
<bean id="savings" class="org.fusesource.example.SavingsAccountImpl"/>
<service ref="savings" interface="org.fusesource.example.Account"/>

Example 21.1. Sample Service Export with a Single Interface
</blueprint>

Where the ref attribute specifies the ID of the corresponding bean instance and the interface
attribute specifies the name of the public Java interface under which the service is registered in the
OSGi service registry. The classes and interfaces used in this example are shown in Example 21.2,
“Sample Account Classes and Interfaces”

Example 21.2. Sample Account Classes and Interfaces
package org.fusesource.example
public interface Account { ... }

public interface SavingsAccount { ... }
public interface CheckingAccount { ... }

public class SavingsAccountImpl implements SavingsAccount

{
¥

public class CheckingAccountImpl implements CheckingAccount

{
¥

Exporting with multiple interfaces

To export a service to the OSGi service registry under multiple interface names, define a service
element that references the relevant service bean, using the ref attribute, and specifies the published
interfaces, using the interfaces child element.

94

CHAPTER 21. THE BLUEPRINT CONTAINER

For example, you could export an instance of the SavingsAccountImpl class under the list of public
Javainterfaces, org. fusesource.example.Account and
org.fusesource.example.SavingsAccount, using the following Blueprint configuration code:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
<bean id="savings" class="org.fusesource.example.SavingsAccountImpl"/>
<service ref="savings">
<interfaces>
<value>org.fusesource.example.Account</value>
<value>org.fusesource.example.SavingsAccount</value>
</interfaces>
</service>

</blueprint>

NOTE

The interface attribute and the interfaces element cannot be used simultaneously
in the same service element. You must use either one or the other.

_,f"

Exporting with auto-export

If you want to export a service to the OSGi service registry under all of its implemented public Java
interfaces, there is an easy way of accomplishing this using the auto-export attribute.

For example, to export an instance of the SavingsAccountImpl class under all of its implemented
public interfaces, use the following Blueprint configuration code:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
<bean id="savings" class="org.fusesource.example.SavingsAccountImpl"/>
<service ref="savings" auto-export="interfaces"/>

</blueprint>

Where the interfaces value of the auto-export attribute indicates that Blueprint should register
all of the public interfaces implemented by SavingsAccountImpl. The auto-export attribute can
have the following valid values:

disabled

Disables auto-export. This is the default.
interfaces

Registers the service under all of its implemented public Java interfaces.
class-hierarchy

Registers the service under its own type (class) and under all super-types (super-classes), except
for the Object class.

all-classes

Like the class-hierarchy option, but including all of the implemented public Java interfaces as
well.

Setting service properties

95

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

The OSGi service registry also allows you to associate service properties with a registered service.
Clients of the service can then use the service properties to search for or filter services. To associate
service properties with an exported service, add a service-properties child element that contains
one or more bheans:entry elements (one beans:entry element for each service property).

For example, to associate the bank .name string property with a savings account service, you could
use the following Blueprint configuration:

<blueprint xmlns="http://www.o0sgi.org/xmlns/blueprint/v1.0.0"
xmlns:beans="http://www.springframework.org/schema/beans"
>

<service ref="savings" auto-export="interfaces">
<service-properties>
<beans:entry key="bank.name" value="HighStreetBank"/>
</service-properties>
</service>

</blueprint>

Where the bank . name string property has the value, HighStreetBank. It is possible to define service
properties of type other than string: that is, primitive types, arrays, and collections are also supported.
For details of how to define these types, see Controlling the Set of Advertised Properties.in the Spring
Reference Guide.

NOTE

The entry element ought to belong to the Blueprint namespace. The use of the
beans:entry element in Spring’s implementation of Blueprint is non-standard.

Default service properties

There are two service properties that might be set automatically when you export a service using the
service element, as follows:

e osgi.service.blueprint.compname—is always set to the id of the service’s bean
element, unless the bean is inlined (that is, the bean is defined as a child element of the
service element). Inlined beans are always anonymous.

e service.ranking-is automatically set, if the ranking attribute is non-zero.

Specifying a ranking attribute

If a bundle looks up a service in the service registry and finds more than one matching service, you can
use ranking to determine which of the services is returned. The rule is that, whenever a lookup matches
multiple services, the service with the highest rank is returned. The service rank can be any non-
negative integer, with 0 being the default. You can specify the service ranking by setting the ranking
attribute on the service element—for example:

<service ref="savings" interface="org.fusesource.example.Account"
ranking="10"/>

Specifying a registration listener

96

http://docs.spring.io/osgi/docs/2.0.0.M1/reference/html/service-registry.html#service-registry:export:props

CHAPTER 21. THE BLUEPRINT CONTAINER

If you want to keep track of service registration and unregistration events, you can define a registration
listener callback bean that receives registration and unregistration event notifications. To define a
registration listener, add a registration-listener child elementto a service element.

For example, the following Blueprint configuration defines a listener bean, 1istenerBean, which is
referenced by aregistration-listener element, so that the listener bean receives callbacks
whenever an Account service is registered or unregistered:

<blueprint xmlns="http://www.o0sgi.org/xmlns/blueprint/v1.0.0" ...>
<bean id="listenerBean" class="org.fusesource.example.Listener"/>

<service ref="savings" auto-export="interfaces">
<registration-listener
ref="1listenerBean"
registration-method="register"
unregistration-method="unregister"/>
</service>

</blueprint>

Where the registration-listener element’s ref attribute references the id of the listener bean,
the registration-method attribute specifies the name of the listener method that receives the
registration callback, and unregistration-method attribute specifies the name of the listener
method that receives the unregistration callback.

The following Java code shows a sample definition of the Listener class that receives notifications of
registration and unregistration events:

package org.fusesource.example;

public class Listener

{
{

public void register(Account service, java.util.Map serviceProperties)

}

public void unregister(Account service, java.util.Map
serviceProperties) {

}

The method names, register and unregister, are specified by the registration-method and
unregistration-method attributes respectively. The signatures of these methods must conform to
the following syntax:

o First method argument—any type T that is assignable from the service object’s type. In other
words, any supertype class of the service class or any interface implemented by the service
class. This argument contains the service instance, unless the service bean declares the scope
to be prototype, in which case this argument is null (when the scope is prototype, no
service instance is available at registration time).

97

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

e Second method argument—must be of either java.util.Map type or
java.util.Dictionary type. This map contains the service properties associated with this
service registration.

21.4. IMPORTING A SERVICE

Overview

This section describes how to obtain and use references to OSGi services that have been exported to
the OSGi service registry. You can use either the reference element or the reference-1list
element to import an OSGi service. The reference element is suitable for accessing stateless
services, while the reference-1ist element is suitable for accessing stateful services.

Managing service references

The following models for obtaining OSGi services references are supported:
o Reference manager.
e Reference list manager.

Reference manager

A reference managerinstance is created by the Blueprint reference element. This element returns a
single service reference and is the preferred approach for accessing stateless services. Figure 21.1,
“Reference to Stateless Service” shows an overview of the model for accessing a stateless service
using the reference manager.

Figure 21.1. Reference to Stateless Service

Injected Proxy Backing
beans services

Beans in the client Blueprint container get injected with a proxy object (the provided object), which is
backed by a service object (the backing service) from the OSGi service registry. This model explicitly
takes advantage of the fact that stateless services are interchangeable, in the following ways:

e If multiple services instances are found that match the criteria in the reference element, the
reference manager can arbitrarily choose one of them as the backing instance (because they
are interchangeable).

98

CHAPTER 21. THE BLUEPRINT CONTAINER

e If the backing service disappears, the reference manager can immediately switch to using one
of the other available services of the same type. Hence, there is no guarantee, from one
method invocation to the next, that the proxy remains connected to the same backing service.

The contract between the client and the backing service is thus stateless, and the client must not
assume that it is always talking to the same service instance. If no matching service instances are
available, the proxy will wait for a certain length of time before throwing the ServiceUnavailable
exception. The length of the timeout is configurable by setting the timeout attribute on the
reference element.

Reference list manager

A reference list managerinstance is created by the Blueprint reference-1ist element. This element
returns a list of service references and is the preferred approach for accessing stateful services.
Figure 21.2, “List of References to Stateful Services” shows an overview of the model for accessing a
stateful service using the reference list manager.

Figure 21.2. List of References to Stateful Services

Injected Backing

Proxy list

beans services
*|-————- -i i
*—-————- — . i .
L i L]
L ! L

Beans in the client Blueprint container get injected with a java.util.List object (the provided
object), which contains a list of proxy objects. Each proxy is backed by a unique service instance in the
OSGi service registry. Unlike the stateless model, backing services are not considered to be
interchangeable here. In fact, the lifecycle of each proxy in the list is tightly linked to the lifecycle of
the corresponding backing service: when a service gets registered in the OSGi registry, a
corresponding proxy is synchronously created and added to the proxy list; and when a service gets
unregistered from the OSGi registry, the corresponding proxy is synchronously removed from the
proxy list.

The contract between a proxy and its backing service is thus stateful, and the client may assume when
it invokes methods on a particular proxy, that it is always communicating with the same backing
service. It could happen, however, that the backing service becomes unavailable, in which case the
proxy becomes stale. Any attempt to invoke a method on a stale proxy will generate the
ServiceUnavailable exception.

99

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

Matching by interface (stateless)

The simplest way to obtain a stateles service reference is by specifying the interface to match, using
the interface attribute on the reference element. The service is deemed to match, if the
interface attribute value is a super-type of the service or if the attribute value is a Java interface
implemented by the service (the interface attribute can specify either a Java class or a Java
interface).

For example, to reference a stateless SavingsAccount service (see Example 21.1, “Sample Service
Export with a Single Interface”), define a reference element as follows:

<blueprint xmlns="http://www.o0sgi.org/xmlns/blueprint/v1.0.0">

<reference id="savingsRef"
interface="org.fusesource.example.SavingsAccount"/>

<bean id="client" class="org.fusesource.example.client.Client">
<property name="savingsAccount" ref="savingsRef'"/>
</bean>

</blueprint>

Where the reference element creates a reference manager bean with the ID, savingsRef. To use
the referenced service, inject the savingsRef bean into one of your client classes, as shown.

The bean property injected into the client class can be any type that is assignable from
SavingsAccount. For example, you could define the Client class as follows:

package org.fusesource.example.client;
import org.fusesource.example.SavingsAccount;

public class Client {
SavingsAccount savingsAccount;

// Bean properties
public SavingsAccount getSavingsAccount() {
return savingsAccount;

}

public void setSavingsAccount(SavingsAccount savingsAccount) {
this.savingsAccount = savingsAccount;

}

Matching by interface (stateful)

The simplest way to obtain a stateful service reference is by specifying the interface to match, using
the interface attribute on the reference-1list element. The reference list manager then obtains a
list of all the services, whose interface attribute value is either a super-type of the service or a Java
interface implemented by the service (the interface attribute can specify either a Java class or a
Javainterface).

100

CHAPTER 21. THE BLUEPRINT CONTAINER

For example, to reference a stateful SavingsAccount service (see Example 21.1, “Sample Service
Export with a Single Interface”), define a reference-1ist element as follows:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

<reference-list id="savingsListRef"
interface="org.fusesource.example.SavingsAccount"/>

<bean id="client" class="org.fusesource.example.client.Client">
<property name="savingsAccountList" ref="savingsListRef"/>
</bean>

</blueprint>

Where the reference-1ist element creates a reference list manager bean with the ID,
savingsListRef. To use the referenced service list, inject the savingsListRef bean reference into
one of your client classes, as shown.

By default, the savingsAccountList bean property is a list of service objects (for example,
java.util.List<SavingsAccount>). You could define the client class as follows:

package org.fusesource.example.client;
import org.fusesource.example.SavingsAccount;

public class Client {
java.util.List<SavingsAccount> accountList;

// Bean properties
public java.util.List<SavingsAccount> getSavingsAccountList() {
return accountlList;

}

public void setSavingsAccountList(
java.util.List<SavingsAccount> accountlList

) {
}

this.accountList = accountList;

Matching by interface and component name

To match both the interface and the component name (bean ID) of a stateless service, specify both the
interface attribute and the component -name attribute on the reference element, as follows:

<reference id="savingsRef"
interface="org.fusesource.example.SavingsAccount"
component -name="savings"/>

To match both the interface and the component name (bean ID) of a stateful service, specify both the
interface attribute and the component -name attribute on the reference-1list element, as
follows:

101

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

<reference-list id="savingsRef"
interface="org.fusesource.example.SavingsAccount"
component -name="savings"/>

Matching service properties with a filter

You can select services by matching service properties against a filter. The filter is specified using the
filter attribute on the reference element or on the reference-1ist element. The value of the
filter attribute must be an LDAP filter expression For example, to define a filter that matches when
the bank . name service property equals HighStreetBank, you could use the following LDAP filter
expression:

I (bank.name=HighStreetBank)

To match two service property values, you can use & conjunction, which combines expressions with a
logical and.For example, to require that the foo property is equal to FoovValue and the bar property
is equal to BarValue, you could use the following LDAP filter expression:

I (&(foo=FooValue) (bar=BarVvalue))

For the complete syntax of LDAP filter expressions, see section 3.2.7 of the OSGi Core Specification.

Filters can also be combined with the interface and component -name settings, in which case all of
the specified conditions are required to match.

For example, to match a stateless service of SavingsAccount type, with a bank.name service
property equal to HighStreetBank, you could define a reference element as follows:

<reference id="savingsRef"
interface="org.fusesource.example.SavingsAccount"
filter="(bank.name=HighStreetBank)"/>

To match a stateful service of SavingsAccount type, with a bank.name service property equal to
HighStreetBank, you could define a reference-1list element as follows:

<reference-1list id="savingsRef"
interface="org.fusesource.example.SavingsAccount"
filter="(bank.name=HighStreetBank)"/>

Specifying whether mandatory or optional

By default, a reference to an OSGi service is assumed to be mandatory (see Mandatory dependencies).
It is possible to customize the dependency behavior of a reference element or a reference-1list
element by setting the availability attribute on the element.

There are two possible values of the availability attribute:

e mandatory (the default), means that the dependency must be resolved during a normal
Blueprint container initialization

e optional, means that the dependency need not be resolved during initialization.

The following example of a reference element shows how to declare explicitly that the referenceis a
mandatory dependency:

102

CHAPTER 21. THE BLUEPRINT CONTAINER

<reference id="savingsRef"
interface="org.fusesource.example.SavingsAccount"
availability="mandatory"/>

Specifying a reference listener

To cope with the dynamic nature of the OSGi environment—for example, if you have declared some of
your service references to have optional availability—it is often useful to track when a backing
service gets bound to the registry and when it gets unbound from the registry. To receive notifications
of service binding and unbinding events, you can define areference-1listener element as the child
of either the reference element or the reference-list element.

For example, the following Blueprint configuration shows how to define a reference listener as a child
of the reference manager with the ID, savingsRef:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

<reference id="savingsRef"
interface="org.fusesource.example.SavingsAccount"
>
<reference-listener bind-method="onBind" unbind-method="onUnbind">
<bean class="org.fusesource.example.client.Listener"/>
</reference-listener>
</reference>

<bean id="client" class="org.fusesource.example.client.Client">
<property name="savingsAcc" ref="savingsRef"/>

</bean>

</blueprint>

The preceding configuration registers an instance of
org.fusesource.example.client.Listener type as a callback that listens for bind and
unbind events. Events are generated whenever the savingsRef reference manager’s backing
service binds or unbinds.

The following example shows a sample implementation of the Listener class:

package org.fusesource.example.client;
import org.osgi.framework.ServiceReference;
public class Listener {

public void onBind(ServiceReference ref) {
System.out.println("Bound service: " + ref);

}

public void onUnbind(ServiceReference ref) {
System.out.println("Unbound service: " + ref);

}

103

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

The method names, onBind and onUnbind, are specified by the bind-method and unbind-method
attributes respectively. Both of these callback methods take an
org.osgi.framework.ServiceReference argument.

104

CHAPTER 22. PUBLISHING AN OSGI SERVICE

CHAPTER 22. PUBLISHING AN OSGI SERVICE

22.1. OVERVIEW

This section explains how to generate, build, and deploy a simple OSGi service in the OSGi container.
The service is a simple Hello World Java class and the OSGi configuration is defined using a Blueprint
configuration file.

22.2. PREREQUISITES

In order to generate a project using the Maven Quickstart archetype, you must have the following
prerequisites:

e Maven installation—Maven is a free, open source build tool from Apache. You can download
the latest version from http://maven.apache.org/download.html (minimum is 2.0.9).

e Internet connection—whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. In order for this to work, your
build machine must be connected to the Internet.

22.3. GENERATING A MAVEN PROJECT

Themaven-archetype-quickstart archetype creates a generic Maven project, which you can then
customize for whatever purpose you like. To generate a Maven project with the coordinates,
org.fusesource.example:osgi-service, enter the following command:

mvn archetype:create
-DarchetypeArtifactId=maven-archetype-quickstart
-DgroupId=org.fusesource.example
-DartifactId=osgi-service

The result of this command is a directory, ProjectDir/osgi-service, containing the files for the
generated project.

NOTE

Be careful not to choose a group ID for your artifact that clashes with the group ID of
an existing product! This could lead to clashes between your project’s packages and
the packages from the existing product (because the group ID is typically used as the
root of a project’s Java package names).

22.4. CUSTOMIZING THE POMFILE
You must customize the POM file in order to generate an OSGi bundle, as follows:
1. Follow the POM customization steps described in Section 3.1, “Generating a Bundle Project”.

2. In the configuration of the Maven bundle plug-in, modify the bundle instructions to export the
org.fusesource.example.service package, as follows:

<project ... >
<build>

105

http://maven.apache.org/download.html

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

<plugins>
<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<extensions>true</extensions>
<configuration>
<instructions>
<Bundle-SymbolicName>${pom.groupId}.${pom.artifactId}
</Bundle-SymbolicName>
<Export-Package>org.fusesource.example.service</Export-
Package>
</instructions>
</configuration>
</plugin>
</plugins>
</build>

</project>

22.5. WRITING THE SERVICE INTERFACE

Create the ProjectDir/osgi-service/src/main/java/org/fusesource/example/service
sub-directory. In this directory, use your favorite text editor to create the file, HelloWorldSvc. java,
and add the code from Example 22.1, “The HelloWorldSvc Interface” toit.

package org.fusesource.example.service;
public interface HelloWorldSvc

Example 22.1. The HelloWorldSvc Interface
{
public void sayHello();
}

22.6. WRITING THE SERVICE CLASS

Create the ProjectDir/osgi-
service/src/main/java/org/fusesource/example/service/impl sub-directory. In this
directory, use your favorite text editor to create the file, Hellowor1ldSvcImpl. java, and add the
code from Example 22.2, “The HelloWorldSvcimpl Class” to it.

import org.fusesource.example.service.HelloWorldSvc;

Example 22.2. The HelloWorldSvclimpl Class
public class HellowWorldSvcImpl implements HelloWorldSvc {

‘ package org.fusesource.example.service.impl;

public void sayHello()

106

CHAPTER 22. PUBLISHING AN OSGI SERVICE

{
System.out.println("Hello World!");
}
}

22.7.WRITING THE BLUEPRINT FILE

The Blueprint configuration file is an XML file stored under the 0SGI -INF/blueprint directory on
the class path. To add a Blueprint file to your project, first create the following sub-directories:

ProjectDir/osgi-service/src/main/resources
ProjectDir/osgi-service/src/main/resources/0SGI-INF
ProjectDir/osgi-service/src/main/resources/0SGI-INF/blueprint

Where the src/main/resources is the standard Maven location for all JAR resources. Resource
files under this directory will automatically be packaged in the root scope of the generated bundle

JAR.

Example 22.3, “Blueprint File for Exporting a Service” shows a sample Blueprint file that creates a
HelloWorldSvc bean, using the bean element, and then exports the bean as an OSGi service, using
the service element.

Under the ProjectDir/osgi-service/src/main/resources/0SGI-INF/blueprint directory,
use your favorite text editor to create the file, config.xml, and add the XML code from Example 22.3,
“Blueprint File for Exporting a Service”.

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

<bean id="hello"
class="org.fusesource.example.service.impl.HelloWorldSvcImpl"/>

<service ref="hello"
interface="org.fusesource.example.service.HellowWorldSvc"/>

<?xml version="1.0" encoding="UTF-8"?>
</blueprint>

| Example 22.3. Blueprint File for Exporting a Service

22.8. RUNNING THE SERVICE BUNDLE

Toinstall and run the osgi-service project, perform the following steps:

1. Build the project—open a command prompt and change directory to ProjectDir/osgi-
service. Use Maven to build the demonstration by entering the following command:

I mvn install

107

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

108

If this command runs successfully, the ProjectDir/osgi-service/target directory
should contain the bundle file, 0sgi-service-1.0-SNAPSHOT. jar.

. Install and start the osgi-service bundle —at the Red Hat JBoss Fuse console, enter the

following command:

JBossFuse: karaf@root> osgi:install -s file:ProjectDir/osgi-
service/target/osgi-service-1.0-SNAPSHOT. jar

Where ProjectDir is the directory containing your Maven projects and the -s flag directs the

container to start the bundle right away. For example, if your project directory is

C:\Projects on a Windows machine, you would enter the following command:

JBossFuse:karaf@root> osgi:install -s file:C:/Projects/osgi-
service/target/osgi-service-1.0-SNAPSHOT. jar

NOTE

On Windows machines, be careful how you format the file URL—for details of
the syntax understood by the file URL handler, see Section A.1, “File URL
Handler”.

. Check that the service has been created —to check that the bundle has started successfully,

enter the following Red Hat JBoss Fuse console command:
I JBossFuse: karaf@root> osgi:list

Somewhere in this listing, you should see a line for the 0sgi-service bundle, for example:

[236] [Active] [Created 11 11 60] osgi-service
(1.0.0.SNAPSHOT)

To check that the service is registered in the OSGi service registry, enter a console command
like the following:

I JBossFuse: karaf@root> osgi:ls 236

Where the argument to the preceding command is the osgi-service bundle ID. You should
see some output like the following at the console:

osgi-service (236) provides:
osgi.service.blueprint.compname = hello

objectClass = org.fusesource.example.service.HelloWorldSvc
service.id = 272

osgi.blueprint.container.version = 1.0.0.SNAPSHOT
0sgi.blueprint.container.symbolicname = org.fusesource.example.osgi-
service

objectClass =
org.osgi.service.blueprint.container.BlueprintContainer

service.id = 273

CHAPTER 23. ACCESSING AN OSGI SERVICE

CHAPTER 23. ACCESSING AN OSGI SERVICE

23.1. OVERVIEW

This section explains how to generate, build, and deploy a simple OSGi client in the OSGi container. The
client finds the simple Hello World service in the OSGi registry and invokes the sayHello () method
onit.

23.2. PREREQUISITES

In order to generate a project using the Maven Quickstart archetype, you must have the following
prerequisites:

e Maven installation—Maven is a free, open source build tool from Apache. You can download
the latest version from http://maven.apache.org/download.html (minimum is 2.0.9).

e Internet connection—whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. In order for this to work, your
build machine must be connected to the Internet.

23.3. GENERATING A MAVEN PROJECT

Themaven-archetype-quickstart archetype creates a generic Maven project, which you can then
customize for whatever purpose you like. To generate a Maven project with the coordinates,
org.fusesource.example:osgi-client, enter the following command:

mvn archetype:create
-DarchetypeArtifactId=maven-archetype-quickstart
-DgroupId=org.fusesource.example
-DartifactId=osgi-client

The result of this command is a directory, ProjectDir/osgi-client, containing the files for the
generated project.

NOTE

Be careful not to choose a group ID for your artifact that clashes with the group ID of
an existing product! This could lead to clashes between your project’s packages and
the packages from the existing product (because the group ID is typically used as the
root of a project’s Java package names).

23.4. CUSTOMIZING THE POMFILE
You must customize the POM file in order to generate an OSGi bundle, as follows:
1. Follow the POM customization steps described in Section 3.1, “Generating a Bundle Project”.

2. Because the client uses the HelloWorldSvc Java interface, which is defined in the osgi-
service bundle, it is necessary to add a Maven dependency on the osgi-service bundle.
Assuming that the Maven coordinates of the osgi-service bundle are
org.fusesource.example:osgi-service:1.0-SNAPSHOT, you should add the following
dependency to the client’s POM file:

109

http://maven.apache.org/download.html

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

<project ... >
<dependencies>

<dependency>
<groupId>org.fusesource.example</groupIld>
<artifactId>osgi-service</artifactId>
<version>1.0-SNAPSHOT</version>
</dependency>
</dependencies>

</project>

23.5. WRITING THE BLUEPRINT FILE

To add a Blueprint file to your client project, first create the following sub-directories:

ProjectDir/osgi-client/src/main/resources
ProjectDir/osgi-client/src/main/resources/0SGI-INF
ProjectDir/osgi-client/src/main/resources/0SGI-INF/blueprint

Under the ProjectDir/osgi-client/src/main/resources/0SGI-INF/blueprint directory,
use your favorite text editor to create the file,config.xml, and add the XML code from Example 23.1,
“Blueprint File for Importing a Service”.

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

<reference id="helloWorld"
interface="org.fusesource.example.service.HellowWorldSvc"/>

<bean id="client"
class="org.fusesource.example.client.Client"
init-method="init">
<property name="helloWorldSvc" ref="helloworld"/>
</bean>

<?xml version="1.0" encoding="UTF-8"?>
</blueprint>

‘ Example 23.1. Blueprint File for Importing a Service

Where the reference element creates a reference manager that finds a service of HelloWorldSvc
type in the OSGiregistry. The bean element creates an instance of the Client class and injects the
service reference as the bean property, helloWorldSvc. In addition, the init-method attribute
specifies that the Client.init () method is called during the bean initialization phase (that is, after
the service reference has been injected into the client bean).

23.6. WRITING THE CLIENT CLASS

110

CHAPTER 23. ACCESSING AN OSGI SERVICE

Under the ProjectDir/osgi-client/src/main/java/org/fusesource/example/client
directory, use your favorite text editor to create the file,Client. java, and add the Java code from
Example 23.2, “The Client Class”.

Example 23.2. The Client Class
package org.fusesource.example.client;
import org.fusesource.example.service.HelloWorldSvc;
public class Client {

// Bean properties
public HelloWorldSvc getHelloWorldSvc() {
return helloWorldSvc;

HellowWorldSvc helloWorldSvc;

}

public void setHelloWorldSvc(HellowWorldSvc helloWorldSvc) {
this.hellowWorldSvc = helloWorldSvc;

}

public void init() {
System.out.println("0SGi client started.");
if (hellowWorldSvc != null) {
System.out.println("Calling sayHello()");
helloWorldSvc.sayHello(); // Invoke the 0SGi service!

}

The Client class defines a getter and a setter method for the helloWorldSvc bean property, which
enables it to receive the reference to the Hello World service by injection. The init () method is
called during the bean initialization phase, after property injection, which means that it is normally
possible to invoke the Hello World service within the scope of this method.

23.7.RUNNING THE CLIENT BUNDLE

Toinstall and run the osgi-client project, perform the following steps:

1. Build the project—open a command prompt and change directory to ProjectDir/osgi-
client. Use Maven to build the demonstration by entering the following command:

I mvn install

If this command runs successfully, the ProjectDir/osgi-client/target directory should
contain the bundle file, 0sgi-client-1.0-SNAPSHOT. jar.

2. Install and start the osgi-service bundle —at the Red Hat JBoss Fuse console, enter the
following command:

m

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

JBossFuse: karaf@root> osgi:install -s file:ProjectDir/osgi-
client/target/osgi-client-1.0-SNAPSHOT. jar

Where ProjectDir is the directory containing your Maven projects and the -s flag directs the

container to start the bundle right away. For example, if your project directory is

C:\Projects on a Windows machine, you would enter the following command:

JBossFuse:karaf@root> osgi:install -s file:C:/Projects/osgi-
client/target/osgi-client-1.0-SNAPSHOT. jar

NOTE

On Windows machines, be careful how you format the file URL—for details of
the syntax understood by the file URL handler, see Section A.1, “File URL
Handler”.

3. Client output—f the client bundle is started successfully, you should immediately see output
like the following in the console:

Bundle ID: 239

0SGi client started.
Calling sayHello()
Hello World!

112

CHAPTER 24. INTEGRATION WITH APACHE CAMEL

CHAPTER 24.INTEGRATION WITH APACHE CAMEL

24.1. OVERVIEW
Apache Camel provides a simple way to invoke OSGi services using the Bean language. This feature is

automatically available whenever a Apache Camel application is deployed into an OSGi container and
requires no special configuration.

24.2. REGISTRY CHAINING

When a Apache Camel route is deployed into the OSGi container, the CamelContext automatically
sets up aregistry chain for resolving bean instances: the registry chain consists of the OSGi registry,
followed by the Blueprint registry. Now, if you try to reference a particular bean class or bean instance,
the registry resolves the bean as follows:

1. Look up the bean in the OSGi registry first. If a class name is specified, try to match this with
the interface or class of an OSGi service.

2. If no match is found in the OSGi registry, fall back on the Blueprint registry.

24.3. SAMPLE OSGI SERVICE INTERFACE

Consider the OSGi service defined by the following Java interface, which defines the single method,
getGreeting():

package org.fusesource.example.hello.boston;

public interface HelloBoston {
public String getGreeting();

}

24.4. SAMPLE SERVICE EXPORT

When defining the bundle that implements the Hel1loBoston OSGi service, you could use the
following Blueprint configuration to export the service:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

<bean id="hello"
class="org.fusesource.example.hello.boston.HelloBostonImpl"/>

<service ref="hello"
interface="org.fusesource.example.hello.boston.HelloBoston"/>

</blueprint>

Where it is assumed that the HelloBoston interface is implemented by the HelloBostonImpl class
(not shown).

24.5. INVOKING THE OSGI SERVICE FROM JAVA DSL

113

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

After you have deployed the bundle containing the Hel1loBoston OSGi service, you can invoke the
service from a Apache Camel application using the Java DSL. In the Java DSL, you invoke the OSGi
service through the Bean language, as follows:

from("timer:foo?period=5000")
.bean(org.fusesource.example.hello.boston.HelloBoston.class,
"getGreeting")
.1log("The message contains: ${body}")

In the bean command, the first argument is the OSGi interface or class, which must match the
interface exported from the OSGi service bundle. The second argument is the name of the bean
method you want to invoke. For full details of the bean command syntax, see
olink:CamelDev/BasicPrinciples-Beanintegration.

NOTE

When you use this approach, the OSGi service is implicitly imported. It is not necessary
to import the OSGi service explicitly in this case.

24.6.INVOKING THE OSGI SERVICE FROM XML DSL

In the XML DSL, you can also use the Bean language to invoke the Hel1loBoston OSGi service, but the
syntax is slightly different. In the XML DSL, you invoke the OSGi service through the Bean language,
using the method element, as follows:

<beans ...>
<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="timer:foo?period=5000"/>
<setBody>

<method ref="org.fusesource.example.hello.boston.HelloBoston"
method="getGreeting"/>
</setBody>
<log message="The message contains: ${body}"/>
</route>
</camelContext>
</beans>

NOTE

When you use this approach, the OSGi service is implicitly imported. It is not necessary
to import the OSGi service explicitly in this case.

114

olink:CamelDev/BasicPrinciples-BeanIntegration

CHAPTER 25. DEPLOYING USING A JMS BROKER

CHAPTER 25. DEPLOYING USING A JMS BROKER

Abstract

The OSGi specification supports modular application development by defining a runtime framework
that simplifies building, deploying, and managing complex applications.

115

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

APPENDIX A. URL HANDLERS

Abstract

There are many contexts in Red Hat JBoss Fuse where you need to provide a URL to specify the
location of a resource (for example, as the argument to a console command). In general, when
specifying a URL, you can use any of the schemes supported by JBoss Fuse’s built-in URL handlers.
This appendix describes the syntax for all of the available URL handlers.

A1 . FILE URL HANDLER

SYNTAX

A file URL has the syntax, file: PathName, where PathName is the relative or absolute pathname of a
file that is available on the Classpath. The provided PathName is parsed by Java’s built-in file URL
handler. Hence, the PathName syntax is subject to the usual conventions of a Java pathname: in
particular, on Windows, each backslash must either be escaped by another backslash or replaced by a
forward slash.

EXAMPLES

For example, consider the pathname, C:\Projects\camel-bundle\target\foo-1.0-
SNAPSHOT . jar, on Windows. The following example shows the correct alternatives for the file URL on
Windows:

file:C:/Projects/camel-bundle/target/foo-1.0-SNAPSHOT. jar
file:C:\\Projects\\camel-bundle\\target\\foo-1.0-SNAPSHOT. jar
The following example shows some incorrect alternatives for the file URL on Windows:

file:C:\Projects\camel-bundle\target\foo-1.0-SNAPSHOT. jar // WRONG!
file://C:/Projects/camel-bundle/target/foo-1.0-SNAPSHOT. jar // WRONG!
file://C:\\Projects\\camel-bundle\\target\\foo-1.0-SNAPSHOT.jar // WRONG!

116

file://c/Projects/camel-bundle/target/foo-1.0-SNAPSHOT.jar

CHAPTER 26. HTTP URL HANDLER

CHAPTER 26. HTTP URL HANDLER

SYNTAX

A HTTP URL has the standard syntax, http:Host[:Port]/[Path][#AnchorName][?Query]. You
can also specify a secure HTTP URL using the https scheme. The provided HTTP URL is parsed by
Java’s built-in HTTP URL handler, so the HTTP URL behaves in the normal way for a Java application.

17

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

CHAPTER 27. MVN URL HANDLER

OVERVIEW

If you use Maven to build your bundles or if you know that a particular bundle is available from a Maven
repository, you can use the Mvn handler scheme to locate the bundle.

NOTE

To ensure that the Mvn URL handler can find local and remote Maven artifacts, you
might find it necessary to customize the Mvn URL handler configuration. For details, see
the section called “Configuring the Mvn URL handler” .

SYNTAX

An Mvn URL has the following syntax:

mvn:[repositoryUrl!]groupId/artifactId[/[version][/[packaging]
[/[classifier]]]]

Where repositoryUrl optionally specifies the URL of a Maven repository. The groupld, artifactld, version,

packaging, and classifier are the standard Maven coordinates for locating Maven artifacts.

OMITTING COORDINATES

When specifying an Mvn URL, only the groupld and the artifactld coordinates are required. The
following examples reference a Maven bundle with the groupld, org. fusesource.example, and with
the artifactld, bundle-demo:
mvn:org.fusesource.example/bundle-demo
mvn:org.fusesource.example/bundle-demo/1.1

When the versionis omitted, as in the first example, it defaults to LATEST, which resolves to the latest
version based on the available Maven metadata.

In order to specify a classifier value without specifying a packaging or a versionvalue, it is permissible to
leave gaps in the Mvn URL. Likewise, if you want to specify a packaging value without a version value.
For example:

mvn:groupId/artifactId///classifier
mvn:groupId/artifactId/version//classifier
mvn:groupId/artifactId//packaging/classifier
mvn:groupId/artifactId//packaging

SPECIFYING A VERSION RANGE

When specifying the version value in an Mvn URL, you can specify a version range (using standard
Maven version range syntax) in place of a simple version number. You use square brackets—[and]—to
denote inclusive ranges and parentheses—(and)—to denote exclusive ranges. For example, the range,
[1.0.4,2.0), matches any version, v, that satisfies 1.0.4 « v < 2.0. You can use this version
range in an Mvn URL as follows:

118

CHAPTER 27. MVN URL HANDLER

I mvn:org.fusesource.example/bundle-demo/[1.0.4,2.0)

CONFIGURING THE MVN URL HANDLER

Before using Mvn URLs for the first time, you might need to customize the Mvn URL handler settings,
as follows:

1. the section called “Check the Mvn URL settings”.
2. the section called “Edit the configuration file” .

3. the section called “Customize the location of the local repository” .

CHECK THE MVN URL SETTINGS

The Mvn URL handler resolves a reference to a local Maven repository and maintains a list of remote
Maven repositories. When resolving an Mvn URL, the handler searches first the local repository and
then the remote repositories in order to locate the specified Maven artifiact. If there is a problem with
resolving an Mvn URL, the first thing you should do is to check the handler settings to see which local
repository and remote repositories it is using to resolve URLs.

To check the Mvn URL settings, enter the following commands at the console:

JBossFuse:karaf@root> config:edit org.ops4j.pax.url.mvn
JBossFuse: karaf@root> config:proplist

The config:edit command switches the focus of the config utility to the properties belonging to
the org.ops4j.pax.url.mvn persistent ID. The config:proplist command outputs all of the
property settings for the current persistent ID. With the focus on org.ops4j.pax.url.mvn, you
should see a listing similar to the following:

org.ops4j.pax.url.mvn.defaultRepositories =
file:/path/to/JBossFuse/jboss-fuse-7.0.0.fuse-000163-redhat-
2/system@snapshots@id=karaf.system, file:/home/userid/.m2/repository@snapsh
ots@id=local, file:/path/to/JBossFuse/jboss-fuse-7.0.0.fuse-000163-redhat-
2/1local-repo@snapshots@id=karaf.local-repo,file:/path/to/JBossFuse/jboss-
fuse-7.0.0.fuse-000163-redhat-2/system@snapshots@id=child.karaf.system

org.ops4j.pax.url.mvn.globalChecksumPolicy = warn

org.ops4j.pax.url.mvn.globalUpdatePolicy = daily

org.ops4j.pax.url.mvn.localRepository = /path/to/JBossFuse/jboss-fuse-
7.0.0.fuse-000163-redhat-2/data/repository

org.ops4j.pax.url.mvn.repositories =
http://repol.maven.org/maven2@id=maven.central.repo,
https://maven.repository.redhat.com/ga@id=redhat.ga.repo,
https://maven.repository.redhat.com/earlyaccess/all@id=redhat.ea.repo,
https://repository.jboss.org/nexus/content/groups/ea@id=fuseearlyaccess

org.ops4j.pax.url.mvn.settings =
/home/fbolton/Programs/JBossFuse/jboss-fuse-7.0.0.fuse-000163-redhat-
2/etc/maven-settings.xml

org.ops4j.pax.url.mvn.useFallbackRepositories = false

service.pid = org.ops4j.pax.url.mvn

Where the localRepository setting shows the local repository location currently used by the
handler and the repositories setting shows the remote repository list currently used by the

119

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

handler.

EDIT THE CONFIGURATION FILE

To customize the property settings for the Mvn URL handler, edit the following configuration file:
I InstallDir/etc/org.ops4j.pax.url.mvn.cfg

The settings in this file enable you to specify explicitly the location of the local Maven repository,
remove Maven repositories, Maven proxy server settings, and more. Please see the comments in the
configuration file for more details about these settings.

CUSTOMIZE THE LOCATION OF THE LOCAL REPOSITORY

In particular, if your local Maven repository is in a non-default location, you might find it necessary to
configure it explicitly in order to access Maven artifacts that you build locally. In your
org.ops4j.pax.url.mvn.cfg configuration file,uncomment the
org.ops4j.pax.url.mvn.localRepository property and set it to the location of your local
Maven repository. For example:

Path to the local maven repository which is used to avoid downloading
artifacts when they already exist locally.

The value of this property will be extracted from the settings.xml file
above, or defaulted to:

System.getProperty("user.home") + "/.m2/repository"

org.ops4j.pax.url.mvn.localRepository=file:E:/Data/.m2/repository

REFERENCE

For more details about the mvn URL syntax, see the original Pax URL Mvn Protocol documentation.

120

http://team.ops4j.org/wiki/display/paxurl/Mvn+Protocol

CHAPTER 28. WRAP URL HANDLER

CHAPTER 28. WRAP URL HANDLER

OVERVIEW

If you need to reference a JAR file that is not already packaged as a bundle, you can use the Wrap URL
handler to convert it dynamically. The implementation of the Wrap URL handler is based on Peter
Krien’s open source Bnd utility.

SYNTAX

A Wrap URL has the following syntax:
I wrap:locationURL[,instructionsURL] [$instructions]

The locationURL can be any URL that locates a JAR (where the referenced JAR is not formatted as a
bundle). The optional instructionsURL references a Bnd properties file that specifies how the bundle
conversion is performed. The optional instructions is an ampersand, &, delimited list of Bnd properties
that specify how the bundle conversion is performed.

DEFAULT INSTRUCTIONS

In most cases, the default Bnd instructions are adequate for wrapping an API JAR file. By default, Wrap
adds manifest headers to the JAR’s META-INF/Manifest .mf file as shownin Table 28.1, “Default

Instructions for Wrapping a JAR”.

Table 28.1. Default Instructions for Wrapping a JAR

Manifest Header Default Value

Import-Package *,resolution:=optional
Export-Package All packages from the wrapped JAR.
Bundle-SymbolicName The name of the JAR file, where any characters not
inthe set [a-zA-Z0-9_-] are replaced by
underscore, _.
EXAMPLES

The following Wrap URL locates version 1.1 of the commons -1ogging JAR in a Maven repository and
converts it to an OSGi bundle using the default Bnd properties:

I wrap:mvn:commons-logging/commons-logging/1.1
The following Wrap URL uses the Bnd properties from the file, E: \Data\Examples\commons-

logging-1.1.bnd:

wrap:mvn:commons-logging/commons-
logging/1.1,file:E:/Data/Examples/commons-logging-1.1.bnd

121

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

The following Wrap URL specifies the Bundle-SymbolicName property and the Bundle-Version
property explicitly:

wrap:mvn:commons-logging/commons-logging/1.1$Bundle-SymbolicName=apache-
comm-log&Bundle-Version=1.1

If the preceding URL is used as a command-line argument, it might be necessary to escape the dollar
sign, \$, to prevent it from being processed by the command line, as follows:

wrap:mvn:commons-logging/commons-logging/1.1\$Bundle-SymbolicName=apache-
comm-log&Bundle-Version=1.1

REFERENCE

For more details about the wrap URL handler, see the following references:
e The Bnd tool documentation, for more details about Bnd properties and Bnd instruction files.

e The original Pax URL Wrap Protocol documentation.

122

http://bndtools.org/
http://team.ops4j.org/wiki/display/paxurl/Wrap+Protocol

CHAPTER 29. WAR URL HANDLER

CHAPTER 29. WAR URL HANDLER

OVERVIEW

If you need to deploy a WAR file in an OSGi container, you can automatically add the requisite manifest
headers to the WAR file by prefixing the WAR URL with war :, as described here.

SYNTAX

A War URL is specified using either of the following syntaxes:

war :warURL
warref:instructionsURL

The first syntax, using the war scheme, specifies a WAR file that is converted into a bundle using the
default instructions. The warURL can be any URL that locates a WAR file.

The second syntax, using the warref scheme, specifies a Bnd properties file, instructionsURL, that
contains the conversion instructions (including some instructions that are specific to this handler). In
this syntax, the location of the referenced WAR file does not appear explicitly in the URL. The WAR file
is specified instead by the (mandatory) WAR-URL property in the properties file.

WAR-SPECIFIC PROPERTIES/INSTRUCTIONS

Some of the properties in the .bnd instructions file are specific to the War URL handler, as follows:

WAR-URL
(Mandatory) Specifies the location of the War file that is to be converted into a bundle.
Web-ContextPath

Specifies the piece of the URL path that is used to access this Web application, after it has been
deployed inside the Web container.

NOTE

Earlier versions of PAX Web used the property, Webapp-Context, which is now
P deprecated.

L

DEFAULT INSTRUCTIONS

By default, the War URL handler adds manifest headers to the WAR’s META-INF/Manifest .mf file as
shown in Table 29.1, “Default Instructions for Wrapping a WAR File” .

Table 29.1. Default Instructions for Wrapping a WAR File

Manifest Header Default Value

Import-Package javax.,org.xml.,org.w3c.*

123

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

Manifest Header Default Value

Export-Package No packages are exported.

Bundle-SymbolicName The name of the WAR file, where any characters not
inthe set [a-zA-Z0-9_-\.] are replaced by
period, ..

Web-ContextPath No default value. But the WAR extender will use the

value of Bundle-SymbolicName by default.

Bundle-ClassPath In addition to any class path entries specified
explicitly, the following entries are added
automatically:

[)
e WEB-INF/classes

e All of the JARs from the WEB-INF/11ib
directory.

EXAMPLES

The following War URL locates version 1.4.7 of the wicket -examples WAR in a Maven repository and
converts it to an OSGi bundle using the default instructions:

I war:mvn:org.apache.wicket/wicket-examples/1.4.7/war

The following Wrap URL specifies the Web-ContextPath explicitly:

I war:mvn:org.apache.wicket/wicket-examples/1.4.7/war?Web-ContextPath=wicket
The following War URL converts the WAR file referenced by the WAR-URL property in the wicket -
examples-1.4.7.bnd file and then converts the WAR into an OSGi bundle using the other

instructions in the . bnd file:

I warref:file:E:/Data/Examples/wicket-examples-1.4.7.bnd

REFERENCE

For more details about the war URL syntax, see the original Pax URL War Protocol documentation.

124

http://team.ops4j.org/wiki/display/paxurl/War+Protocol

PART Ill. USER GUIDE

PART Ill. USER GUIDE

This part contains configuration and preparation information for Apache Karaf on Red Hat JBoss Fuse.

125

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

CHAPTER 30.INTRODUCTION TO THE DEPLOYING INTO

APACHE KARAF USER GUIDE PART

Abstract

Before you use this User Guide part of the Deploying into Apache Karaf guide, you must have installed
the latest version of Red Hat JBoss Fuse, following the instructions in Installing on Apache Karaf.

30.1.DIRECTORY STRUCTURE

The directory layout of a Karaf installation is as follows:

126

/bin: control scripts to start, stop, login, ...
/demos: contains some simple Karaf samples
/etc: configuration files

/data: working directory

o /data/cache: OSGi framework bundle cache
o /data/generated-bundles: temporary folder used by the deployers
o /data/log:log files

/deploy: hot deploy directory

/instances: directory containing [instances|instances]

/1ib: contains libraries

o /lib/boot: contains the systeu libraries used at Karaf bootstrap
o /lib/endorsed: directory for endorsed libraries
o /lib/ext:directory for JRE extensions

/system: OSGi bundles repository, laid out as a Maven 2 repository

NOTE

The data folder contains all the working and temporary files for Karaf. If you want to
restart from a clean state, you can wipe out this directory, which has the same effect as
using the clean option to the Karaf start.

https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse/7.0-TP/single/installing_on_apache_karaf/index#installing_on_Apache_Karaf

CHAPTER 31. CONFIGURATION

CHAPTER 31. CONFIGURATION

31.1. FILES

Apache Karaf stores and loads all configuration in files located in the etc folder.

By default, the etc folder is located relatively to the KARAF_BASE folder. You can define another
location using the KARAF_ETC variable.

Each configuration is identified by a ID (the ConfigAdmin PID). The configuration files name follows the
pid.cfgname convention.

For instance,etc/org.apache.karaf.shell.cfg means that this file is the file used by the
configuration with org.apache. karaf.shell as PID.

A configuration file is a properties file containing key/value pairs:

I property=value

Properties can be referenced inside configuration files using the syntax ${<name>}. Default and
alternate values can be specified using ${<name>: -<default_value>} and ${<name>:+

<alternate_value>} syntaxes respectively.

existing_property=baz

propertyl=${missing_property:-foo} # "foo"
property2=${missing_property:+foo} # empty string
property3=${existing_property:-bar} # "baz"
property4=${existing_property:+bar} # "bar"

Environment variables can be referenced inside configuration files using the syntax ${env:<name>}
(e.g.property=${env:F00} will set "property" to the value of the enviroment variable "FOO").
Default and alternate values can be defined for them as well using the same syntax as above.

In Apache Karaf, a configuration is PID with a set of properties attached.
Apache Karaf automatically loads all * . cfg files from the etc folder.

You can configure the behaviour of the configuration files using some dedicated properties in the
etc/config.properties configuration file:

#

Configuration FileMonitor properties

#

felix.fileinstall.enableConfigSave = true
felix.fileinstall.dir ${karaf.etc}
felix.fileinstall.filter = .*\\.(cfg|config)
felix.fileinstall.poll = 1000
felix.fileinstall.noInitialDelay = true
felix.fileinstall.log.level = 3
felix.fileinstall.log.default = jul

127

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

e felix.fileinstall.enableConfigSave flush back in the configuration file the changes
performed directly on the configuration service (ConfigAdmin). If true, any change (using
config:* commands, MBeans, OSGi service) is persisted back in the configuration false.
Default is true.

e felix.fileinstall.dir is the directory where Apache Karaf is looking for configuration
files. Default is ${karaf.etc} meaning the value of the KARAF_ETC variable.

e felix.fileinstall.filter is the file name pattern used to load only some configuration
files. Only files matching the pattern will be loaded. Default value is . *\\. (cfg|config)
meaning *.cfg and *.config files.

e felix.fileinstall.pollisthe pollinginterval (in milliseconds). Default value is 1000
meaning that Apache Karaf "re-loads" the configuration files every second.

e felix.fileinstall.noInitialDelay is a flagindicating if the configuration file polling
starts as soon as Apache Karaf starts or wait for a certain time. If true, Apache Karaf polls the
configuration files as soon as the configuration service starts.

e felix.fileinstall.log.levelisthe log message verbosity level of the configuration
polling service. More this value is high, more verbose the configuration service is.

e felix.fileinstall.log.default is the logging framework to use, jul meaning Java Util
Logging.

You can change the configuration at runtime by directly editing the configuration file.

You can also do the same using the config:* commands or the ConfigMBean.

31

.1.1.config:* commands

Apache Karaf provides a set of commands to manage the configuration.

31.1.1.1. config:list

config:1list displays the list of all configurations available, or the properties in a given configuration
(PID).

Without the query argument, the config:1list command display all configurations, with PID,
attached bundle and properties defined in the configuration:

128

karaf@root()> config:list
Pid: org.apache.karaf.service.acl.command.system.start-level
BundlelLocation:
mvn:org.apache.karaf.shell/org.apache.karaf.shell.console/4.0.0
Properties:

service.guard = (&(osgi.command.scope=system)
(osgi.command.function=start-level))

* — %

start-level = admin # admin can set any
start level, including < 100

start-level[/[70-9]*/] = viewer # viewer can obtain the
current start level

execute[/.*/,/[N0-9]*/] = viewer # viewer can obtain the

CHAPTER 31. CONFIGURATION

current start level

execute = admin # admin can set any start
level, including < 100

service.pid = org.apache.karaf.service.acl.command.system.start-level

start-level[/.*[0-9][0-9][0-9]+.*/] = manager # manager can set
startlevels above 100

execute[/.*/,/.*[0-9][0-9][0-9]+.*/] = manager # manager can set
startlevels above 100
Pid: org.apache.karaf.log
BundleLocation: mvn:org.apache.karaf.log/org.apache.karaf.log.core/4.0.0
Properties:

service.pid = org.apache.karaf.log

size = 500

pattern = %d{IS08601} | %-5.5p | %-16.16t | %-32.32c{1} | %X{bundle.id}
- %X{bundle.name} - %X{bundle.version} | %m%n

felix.fileinstall.filename = file:/opt/apache-karaf-
4.0.0/etc/org.apache.karaf.log.cfg

The query argument accepts a query using a LDAP syntax.

For instance, you can display details on one specific configuration using the following filter:

karaf@root()> config:list "(service.pid=org.apache.karaf.log)"

Pid: org.apache.karaf.log
BundleLocation: mvn:org.apache.karaf.log/org.apache.karaf.log.core/4.0.0
Properties:

felix.fileinstall.filename = file:/opt/apache-karaf-
4.0.0/etc/org.apache.karaf.log.cfg

pattern = %d{IS08601} | %-5.5p | %-16.16t | %-32.32c{1} | %X{bundle.id}
- %X{bundle.name} - %X{bundle.version} | %m%n

service.pid = org.apache.karaf.log

size = 500

31.1.1.2. config:edit

config:edit is the first command to do when you want to change a configuration. config:edit
command put you in edition mode for a given configuration.

For instance, you can edit the org.apache.karaf . log configuration:

I karaf@root()> config:edit org.apache.karaf.log

The config:edit command doesn’t display anything, it just puts you in configuration edit mode. You
are now ready to use other config commands (like config:property-append, config:property-

delete, config:property-set,...).

If you provide a configuration PID that doesn’t exist yet, Apache Karaf will create a new configuration
(and so a new configuration file) automatically.

129

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

All changes that you do in configuration edit mode are store in your console session: the changes are
not directly applied in the configuration. It allows you to "commit" the changes (see config:update
command) or "rollback" and cancel your changes (see config:cancel command).

31.1.1.3. config:property-list
The config:property-list lists the properties for the currently edited configuration.

Assuming that you edited the org.apache.karaf.log configuration, you can do:

karaf@root()> config:property-list

felix.fileinstall.filename = file:/opt/apache-karaf-
4.0.0/etc/org.apache.karaf.log.cfg

pattern = %d{IS08601} | %-5.5p | %-16.16t | %-32.32c{1} | %X{bundle.id}
- %X{bundle.name} - %X{bundle.version} | %m%n

service.pid = org.apache.karaf.log

size = 500

31.1.1.4.config:property-set

The config:property-set command update the value of a given property in the currently edited
configuration.

For instance, to change the value of the size property of previously edited org.apache.karaf.log
configuration, you can do:

karaf@root()> config:property-set size 1000
karaf@root()> config:property-list

felix.fileinstall.filename = file:/opt/apache-karaf-
4.0.0/etc/org.apache.karaf.log.cfg

pattern = %d{IS08601} | %-5.5p | %-16.16t | %-32.32c{1} | %X{bundle.id}
- %X{bundle.name} - %X{bundle.version} | %m%n

service.pid = org.apache.karaf.log

size = 1000

If the property doesn’t exist, the config:property-set command creates the property.

You can use config:property-set command outside the configuration edit mode, by specifying the
-p (for configuration pid) option:

karaf@root()> config:property-set -p org.apache.karaf.log size 1000
karaf@root()> config:list "(service.pid=org.apache.karaf.log)"

Pid: org.apache.karaf.log
BundleLocation: mvn:org.apache.karaf.log/org.apache.karaf.log.core/4.0.0
Properties:

service.pid = org.apache.karaf.log

size = 1000

pattern = %d{IS08601} | %-5.5p | %-16.16t | %-32.32c{1} | %X{bundle.id}
- %X{bundle.name} - %X{bundle.version} | %m%n

felix.fileinstall.filename = file:/opt/apache-karaf-
4.0.0/etc/org.apache.karaf.log.cfg

130

CHAPTER 31. CONFIGURATION

NOTE

Using the pid option, you bypass the configuration commit and rollback mechanism.

31.1.1.5. config:property-append

The config:property-append is similar to config:property-set command, but instead of
completely replacing the property value, it appends a string at the end of the property value.

For instance, to add 1 at the end of the value of the size property in org.apache.karaf.log
configuration (and so have 5001 for the value instead of 500), you can do:

karaf@root()> config:property-append size 1
karaf@root()> config:property-list

service.pid = org.apache.karaf.log

size = 5001

pattern = %d{IS08601} | %-5.5p | %-16.16t | %-32.32c{1} | %X{bundle.id}
- %X{bundle.name} - %X{bundle.version} | %m%n

felix.fileinstall.filename = file:/opt/apache-karaf-
4.0.0/etc/org.apache.karaf.log.cfg

Like the config:property-set command, if the property doesn’t exist, the config:property-
set command creates the property.

You can use the config:property-append command outside the configuration edit mode, by
specifying the -p (for configuration pid) option:

karaf@root()> config:property-append -p org.apache.karaf.log size 1
karaf@root()> config:list "(service.pid=org.apache.karaf.log)"

Pid: org.apache.karaf.log
BundleLocation: mvn:org.apache.karaf.log/org.apache.karaf.log.core/4.0.0
Properties:

service.pid = org.apache.karaf.log

size = 5001

pattern = %d{IS08601} | %-5.5p | %-16.16t | %-32.32c{1} | %X{bundle.id}
- %X{bundle.name} - %X{bundle.version} | %m%n

felix.fileinstall.filename = file:/opt/apache-karaf-
4.0.0/etc/org.apache.karaf.log.cfg

NOTE

Using the pid option, you bypass the configuration commit and rollback mechanism.

31.1.1.6. config:property-delete
The config:property-delete command delete a property in the currently edited configuration.

For instance, you previously added a test property in org.apache.karaf.log configuration. To
delete this test property, you do:

karaf@root()> config:property-set test test
karaf@root()> config:property-list

131

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

service.pid = org.apache.karaf.log

size = 500

pattern = %d{IS08601} | %-5.5p | %-16.16t | %-32.32c{1} | %X{bundle.id}
- %X{bundle.name} - %X{bundle.version} | %m%n

felix.fileinstall.filename = file:/opt/apache-karaf-
4.0.0/etc/org.apache.karaf.log.cfg

test = test
karaf@root()> config:property-delete test
karaf@root()> config:property-list

service.pid = org.apache.karaf.log

size = 500

pattern = %d{IS08601} | %-5.5p | %-16.16t | %-32.32c{1} | %X{bundle.id}
- %X{bundle.name} - %X{bundle.version} | %m%n

felix.fileinstall.filename = file:/opt/apache-karaf-
4.0.0/etc/org.apache.karaf.log.cfg

You can use the config:property-delete command outside the configuration edit mode, by
specifying the -p (for configuration pid) option:

I karaf@root()> config:property-delete -p org.apache.karaf.log test

31.1.1.7. config:update and config:cancel

When you are in the configuration edit mode, all changes that you do using config:property*
commands are stored in "memory" (actually in the console session).

Thanks to that, you can "commit" your changes using the config:update command. The
config:update command will commit your changes, update the configuration, and (if possible)
update the configuration files.

For instance, after changing org.apache.karaf.log configuration with some config:property*
commands, you have to commit your change like this:

karaf@root()> config:edit org.apache.karaf.log

karaf@root()> config:property-set test test

karaf@root()> config:update

karaf@root()> config:list "(service.pid=org.apache.karaf.log)"

Pid: org.apache.karaf.log
BundleLocation: mvn:org.apache.karaf.log/org.apache.karaf.log.core/4.0.0
Properties:

service.pid = org.apache.karaf.log

size = 500

pattern = %d{IS08601} | %-5.5p | %-16.16t | %-32.32c{1} | %X{bundle.id}
- %X{bundle.name} - %X{bundle.version} | %m%n

felix.fileinstall.filename = file:/opt/apache-karaf-
4.0.0/etc/org.apache.karaf.log.cfg

test = test

On the other hand, if you want to "rollback" your changes, you can use the config:cancel command.
It will cancel all changes that you did, and return of the configuration state just before the
config:edit command. The config:cancel exits from the edit mode.

132

CHAPTER 31. CONFIGURATION

For instance, you added the test property in the org.apache. karaf . log configuration, but it was a
mistake:

karaf@root()> config:edit org.apache.karaf.log

karaf@root()> config:property-set test test

karaf@root()> config:cancel

karaf@root()> config:list "(service.pid=org.apache.karaf.log)"

Pid: org.apache.karaf.log
BundleLocation: mvn:org.apache.karaf.log/org.apache.karaf.log.core/4.0.0
Properties:

service.pid = org.apache.karaf.log

size = 500

pattern = %d{IS08601} | %-5.5p | %-16.16t | %-32.32c{1} | %X{bundle.id}
- %X{bundle.name} - %X{bundle.version} | %m%n

felix.fileinstall.filename = file:/opt/apache-karaf-
4.0.0/etc/org.apache.karaf.log.cfg

31.1.1.8. config:delete

The config:delete command completely delete an existing configuration. You don’t have to be in
edit mode to delete a configuration.

For instance, you added my . config configuration:

karaf@root()> config:edit my.config

karaf@root()> config:property-set test test
karaf@root()> config:update

karaf@root()> config:list "(service.pid=my.config)"

Pid: my.config
BundlelLocation: null
Properties:
service.pid = my.config
test = test

You can delete the my. config configuration (including all properties in the configuration) using the
config:delete command:

karaf@root()> config:delete my.config
karaf@root()> config:list "(service.pid=my.config)"
karaf@root()>

31.1.1.9. config:meta

The config:meta command lists the meta type information related to a given configuration.

It allows you to get details about the configuration properties: key, name, type, default value, and
description:

karaf@root()> config:meta -p org.apache.karaf.log
Meta type informations for pid: org.apache.karaf.log
key | name | type | default

133

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

31.

| description

size | Size | int | 500

| size of the log to keep in memory

pattern | Pattern | String | %d{ABSOLUTE} | %-5.5p | %-16.16t | %-
32.32c{1} | %-32.32C %4L | %m%n | Pattern used to display log entries

1.2. JMX ConfigMBean

On the JMX layer, you have a MBean dedicated to the management of the configurations: the
ConfigMBean.

The ConfigMBean object name is: org.apache. karaf: type=config, name=*.

31.1.2.1. Attributes

The Configs attribute is a list of all configuration PIDs.

31.1.2.2. Operations

e listProperties(pid) returns the list of properties (property=value formatted) for the
configuration pid.

o deleteProperty(pid, property) deletesthe property from the configuration pid.

e appendProperty(pid, property, value) appends value atthe end of the value of the

property of the configuration pid.

e setProperty(pid, property, value) sets value for the value of the property of the

configuration pid.
o delete(pid) deletes the configuration identified by the pid.

e create(pid) creates an empty (without any property) configuration with pid.

e update(pid, properties) updates aconfigurationidentified with pid with the provided

properties map.

31.2. USING THE CONSOLE

31.

2.1. Available commands

To see a list of the available commands in the console, you can use the help:

134

karaf@root()> help

bundle Enter the subshell
bundle:capabilities Displays 0SGi capabilities of a given
bundles.

bundle:classes Displays a list of classes/resources
contained in the bundle

bundle:diag Displays diagnostic information why a

bundle is not Active

CHAPTER 31. CONFIGURATION

bundle:dynamic-import Enables/disables dynamic-import for a
given bundle.

bundle:find-class Locates a specified class in any
deployed bundle

bundle:headers Displays 0SGi headers of a given
bundles.

bundle:id Gets the bundle ID.

You have the list of all commands with a short description.

You can use the tab key to get a quick list of all commands:

I karaf@root()> Display all 294 possibilities? (y or n)

31.2.2. Subshell and completion mode

The commands have a scope and a name. For instance, the command feature:1list has featureas
scope, and 1ist as name.

Karaf "groups" the commands by scope. Each scope form a subshell.

You can directly execute a command with its full qualified name (scope:name):

I karaf@root()> feature:list
or enter in a subshell and type the command contextual to the subshell:

karaf@root()> feature
karaf@root(feature)> list

You can note that you enter in a subshell directly by typing the subshell name (here feature). You can
"switch" directly from a subshell to another:

karaf@root()> feature
karaf@root(feature)> bundle
karaf@root(bundle)>

The prompt displays the current subshell between ().

The exit command goes to the parent subshell:

karaf@root()> feature
karaf@root(feature)> exit
karaf@root()>

The completion mode defines the behaviour of the tab key and the help command.
You have three different modes available:

e GLOBAL

135

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

e FIRST
e SUBSHELL

You can define your default completion mode using the completionMode property in
etc/org.apache.karaf.shell.cfg file. By default, you have:

I completionMode = GLOBAL

You can also change the completion mode “on the fly” (while using the Karaf shell console) using the
shell:completion command:

karaf@root()> shell:completion
GLOBAL

karaf@root()> shell:completion FIRST
karaf@root()> shell:completion
FIRST

shell:completion caninform you about the current completion mode used. You can also provide
the new completion mode that you want.

GLOBAL completion mode is the default one in Karaf 4.0.0 (mostly for transition purpose).
GLOBAL mode doesn’t really use subshell: it’'s the same behavior as in previous Karaf versions.

When you type the tab key, whatever in which subshell you are, the completion will display all
commands and all aliases:

karaf@root()> <TAB>
karaf@root()> Display all 273 possibilities? (y or n)

karaf@root()> feature
karaf@root(feature)> <TAB>
karaf@root(feature)> Display all 273 possibilities? (y or n)

FIRST completion mode is an alternative to the GLOBAL completion mode.

If you type the tab key on the root level subshell, the completion will display the commands and the
aliases from all subshells (as in GLOBAL mode). However, if you type the tab key when you are in a
subshell, the completion will display only the commands of the current subshell:

karaf@root()> shell:completion FIRST
karaf@root()> <TAB>
karaf@root()> Display all 273 possibilities? (y or n)

karaf@root()> feature

karaf@root(feature)> <TAB>

karaf@root(feature)>

info install list repo-add repo-list repo-remove uninstall version-list
karaf@root(feature)> exit

karaf@root()> log

karaf@root(log)> <TAB>

karaf@root(log)>

clear display exception-display get log set tail

136

CHAPTER 31. CONFIGURATION

SUBSHELL completion mode is the real subshell mode.

If you type the tab key on the root level, the completion displays the subshell commands (to go into a
subshell), and the global aliases. Once you are in a subshell, if you type the TAB key, the completion
displays the commands of the current subshell:

karaf@root()> shell:completion SUBSHELL

karaf@root()> <TAB>

karaf@root()>

* bundle cl config dev feature help instance jaas kar la 1ld lde log
log:1list man package region service shell ssh system

karaf@root()> bundle

karaf@root(bundle)> <TAB>

karaf@root(bundle)>

capabilities classes diag dynamic-import find-class headers info install
list refresh requirements resolve restart services start start-level stop
uninstall update watch

karaf@root(bundle)> exit

karaf@root()> camel

karaf@root(camel)> <TAB>

karaf@root(camel)>

backlog-tracer-dump backlog-tracer-info backlog-tracer-start backlog-
tracer-stop context-info context-1list context-start context-stop endpoint-
list route-info route-list route-profile route-reset-stats

route-resume route-show route-start route-stop route-suspend

31.2.3. Unix like environment

Karaf console provides a full Unix like environment.

31.2.3.1. Help or man

We already saw the usage of the help command to display all commands available.

But you can also use the help command to get details about a command or the man command which is
an alias to the help command. You can also use another form to get the command help, by using the -
-help option to the command.

So these commands

karaf@root()> help feature:list
karaf@root()> man feature:list
karaf@root()> feature:list --help

All produce the same help output:

DESCRIPTION
feature:list

Lists all existing features available from the defined
repositories.

SYNTAX
feature:list [options]

137

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

OPTIONS
--help
Display this help message
-0, --ordered
Display a list using alphabetical order
-i, --installed
Display a list of all installed features
--no-format
Disable table rendered output

31.2.3.2. Completion

When you type the tab key, Karaf tries to complete:
e subshell

commands

aliases

command arguments

command options

31.2.3.3. Alias

An alias is another name associated to a given command.

only

The shell:alias command creates a new alias. For instance, to create the list-installed-

features alias to the actual feature:list -icommand, youcando:

karaf@root()> alias "list-features-installed = { feature:
karaf@root()> list-features-installed

Name | Version | Required | State | Repository
feature | 4.0.0 | x | Started | standard-4.0.
Support

shell | 4.0.0 | x | Started | standard-4.0.
deployer | 4.0.0 | x | Started | standard-4.0.
Deployer

bundle | 4.0.0 | x | Started | standard-4.0.
Bundle support

config | 4.0.0 | x | Started | standard-4.0.
ConfigAdmin support

diagnostic | 4.0.0 | x | Started | standard-4.0.
Diagnostic support

instance | 4.0.0 | x | Started | standard-4.0.
Instance support

jaas | 4.0.0 | x | Started | standard-4.0.
support

log | 4.0.0 | x | Started | standard-4.0.
support

package | 4.0.0 | x | Started | standard-4.0.

138

list -i }"

| Description

0 | Features

0 | Karaf Shell
0 | Karaf

0 | Provide

©@ | Provide 0SGi
0 | Provide

0 | Provide

©@ | Provide JAAS
0@ | Provide Log

0 | Package

CHAPTER 31. CONFIGURATION

commands and mbeans

service | 4.0.0 | x | Started | standard-4.0.0 | Provide
Service support

system | 4.0.0 | x | Started | standard-4.0.0 | Provide
System support

kar | 4.0.0 | x | Started | standard-4.0.0 | Provide KAR
(KARaf archive) support

ssh | 4.0.0 | x | Started | standard-4.0.0 | Provide a
SSHd server on Karaf

management | 4.0.0 | x | Started | standard-4.0.0 | Provide a JMX

MBeanServer and a set of MBeans in

At login, the Apache Karaf console reads the etc/shell.init.script file where you can create
your aliases. It’s similar to a bashrc or profile file on Unix.

1d = { log:display $args } ;
lde = { log:exception-display $args } ;

la = { bundle:list -t 0 $args } ;

1ls = { service:list $args } ;

cl = { config:list "(service.pid=%$args)" } ;
halt = { system:shutdown -h -f $args } ;
help = { *:help $args | more } ;

man = { help $args } ;
log:1list = { log:get ALL } ;

You can see here the aliases available by default:

e ldis ashort form to display log (alias to log:display command)

e ldeis ashort form to display exceptions (alias to 1log:exception-display command)
e lais ashort form to list all bundles (alias to bundle:list -t 0 command)

e lsisashort form to list all services (alias to service:list command)

e clisashortform to list all configurations (alias to config:1list command)

e haltis ashort form to shutdown Apache Karaf (alias to system:shutdown -h -f
command)

e helpis ashort form to display help (alias to * :help command)
e man is the same as help (alias to help command)

e log:1list displays all loggers and level (alias to 1log:get ALL command)

You can create your own aliases in the etc/shell.init.script file.

31.2.3.4. Key binding

Like on most Unix environment, Karaf console support some key bindings:

e the arrows key to navigate in the commands history

e CTRL-D to logout/shutdown Karaf

139

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

o CTRL-R to search previously executed command

e CTRL-U toremove the current line

31.2.3.5. Pipe

You can pipe the output of one command as input to another one. It’s a pipe, using the | character:

karaf@root()> feature:list |grep -i war

pax-war | 4.1.4 |

| Uninstalled | org.ops4j.pax.web-4.1.4 | Provide support of a full
WebContainer

pax-war-tomcat | 4.
| Uninstalled | org.ops4j.pax.web-
war | 4.
| Uninstalled | standard-4.0.0 | Turn Karaf as a full
WebContainer

blueprint-web | 4.0.0 |

| Uninstalled | standard-4.0.0 | Provides an 0SGI-aware Servlet
ContextListener fo

o AR

4
1.4 |
0

31.2.3.6. Grep, more, find, ...

Karaf console provides some core commands similar to Unix environment:
e shell:alias creates an alias to an existing command
e shell:cat displays the content of a file or URL
e shell:clear clears the current console display
e shell:completion displays or change the current completion mode
e shell:date displays the current date (optionally using a format)
e shell:each executes aclosure on a list of arguments
e shell:echo echoes and prints arguments to stdout
e shell:edit calls a text editor on the current file or URL
e shell:envdisplays or sets the value of a shell session variable
e shell:exec executes a system command
e shell:grep prints lines matching the given pattern
e shell:head displays the first line of the input
e shell:history prints the commands history
e shell:if allows you to use conditions (if, then, else blocks) in script

e shell:info prints various information about the current Karaf instance

140

e shell:

e shell:

e shell:

e shell:

e shell:

e shell:

e shell:

e shell:

e shell:

java executes a Java application

less file pager

logout disconnects shell from current session

more is a file pager

new creates a new Java object

printf formats and prints arguments

sleep sleeps for a bit then wakes up

sort writes sorted concatenation of all files to stdout

source executes commands contained in a script

CHAPTER 31. CONFIGURATION

e shell:stack-traces-print prints the full stack trace in the console when the execution of
a command throws an exception

e shell:

e shell:

e shell:

e shell:

e shell:

e shell:

tac captures the STDIN and returns it as a string
tail displays the last lines of the input

threads prints the current thread

watch periodically executes a command and refresh the output

wc prints newline, words, and byte counts for each file

while loop while the condition is true

You don’t have to use the fully qualified name of the command, you can directly use the command

name as long as it is unique. So you can use 'head' instead of 'shell:head'

Again, you can find details and all options of these commands using help command or --help option.

31.2.3.7. Scripting

The Apache Karaf Console supports a complete scripting language, similar to bash or csh on Unix.

The each (shell:each) command can iterate in a list:

karaf@root()> list = [1 2 3]; each ($list) { echo $it }

1
2
3

141

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

NOTE

The same loop could be written with the shell:while command:

! karaf@root()> a = 0 ; while { %((a+=1) <= 3) } { echo %a }
1
2

' 3

You can create the list yourself (as in the previous example), or some commands can return a list too.

We can note that the console created a "session" variable with the name 1list that you can access with
$list.

The $it variable is an implicit one corresponding to the current object (here the current iterated
value from the list).

When you create a list with [], Apache Karaf console creates a Java ArrayList. It means that you can
use methods available in the ArrayList objects (like get or size for instance):
karaf@root()> list = ["Hello" world]; echo ($list get 0) ($list get 1)
Hello world

We can note here that calling a method on an object is directly using (object method argument).
Here ($1ist get 0) means $1list.get(0) where $1list is the ArrayList.

The class notation will display details about the object:

karaf@root()> $list class

ProtectionDomain ProtectionDomain null

null

<no principals>

java.security.Permissions@6521c24e (

("java.security.AllPermission" "<all permissions>" '"<all actions>")

)

Signers null
SimpleName ArraylList
TypeParameters [E]

You can "cast" a variable to a given type.

karaf@root()> ("hello world" toCharArray)
[hl el lI lI OI 4 WI OI rI lI d]

If it fails, you will see the casting exception:

karaf@root()> ("hello world" toCharArray)[0]
Error executing command: [C cannot be cast to [Ljava.lang.Object;

You can "call" a script using the shell: source command:

142

CHAPTER 31. CONFIGURATION

karaf@root> shell:source script.txt
True!

where script. txt contains:

foo = "foo"
if { $foo equals "foo" } {
echo "True!"

NOTE

The spaces are important when writing script. For instance, the following script is not
correct:

I if{ $foo equals "foo" }
and will fail with:

karaf@root> shell:source script.txt
Error executing command: Cannot coerce echo "true!"() to any of

[]

because a space is missing after the if statement.

As for the aliases, you can create init scripts in the etc/shell.init.script file. You can also
named you script with an alias. Actually, the aliases are just scripts.

See the Scripting section of the developers guide for details.

31.2.4. Security

The Apache Karaf console supports a Role Based Access Control (RBAC) security mechanism. It
means that depending of the user connected to the console, you can define, depending of the user’s
groups and roles, the permission to execute some commands, or limit the values allowed for the
arguments.

Console security is detailed in the Security section of this user guide.

143

security

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

CHAPTER 32. PROVISIONING

Apache Karaf supports the provisioning of applications and modules using the concept of Karaf
Features.

32.1. APPLICATION

An application consists of all modules, configuration, and transitive applications required for a feature.

32.2. 0SGl
Apache Karaf natively supports the deployment of OSGi applications.

An OSGi application is a set of OSGi bundles. An OSGi bundles is a reqular jar file, with additional
metadata in the jar MANIFEST.

In OSGi, a bundle can depend to other bundles. So, it means that to deploy an OSGi application, most of
the time, you have to firstly deploy a lot of other bundles required by the application.

So, you have to find these bundles first, install the bundles. Again, these "dependency" bundles may
require other bundles to satisfy their own dependencies.

More over, typically, an application requires configuration (see the [Configuration
section|configuration] of the user guide). So, before being able to start your application, in addition of
the dependency bundles, you have to create or deploy the configuration.

As we can see, the provisioning of an application can be very long and fastidious.

32.3. FEATURE AND RESOLVER
Apache Karaf provides a simple and flexible way to provision applications.
In Apache Karaf, the application provisioning is an Apache Karaf "feature".
A feature describes an application as:
e aname
e aversion
e aoptional description (eventually with a long description)
e aset of bundles
e optionally a set configurations or configuration files
e optionally a set of dependency features
When you install a feature, Apache Karaf installs all resources described in the feature. It means that it
will automatically resolves and installs all bundles, configurations, and dependency features described
in the feature.
The feature resolver checks the service requirements, and install the bundles providing the services

matching the requirements. The default mode enables this behavior only for "new style" features
repositories (basically, the features repositories XML with schema equal or greater to 1.3.0). It doesn’t

144

CHAPTER 32. PROVISIONING

apply for "old style" features repositories (coming from Karaf 2 or 3).

You can change the service requirements enforcement mode in
etc/org.apache.karaf.features.cfg file, using the serviceRequirements property.

I serviceRequirements=default

The possible values are:

e disable: service requirements are completely ignored, for both "old style" and "new style"
features repositories

e default: service requirements are ignored for "old style" features repositories, and enabled for
"new style" features repositories.

e enforce: service requirements are always verified, for "old style" and "new style" features
repositories.

Additionally, a feature can also define requirements. In that case, Karaf can automatically additional
bundles or features providing the capabilities to satisfy the requirements.

A feature has a complete lifecycle: install, start, stop, update, uninstall.

32.4. FEATURES REPOSITORIES

The features are described in a features XML descriptor. This XML file contains the description of a set
of features.

A features XML descriptor is named a "features repository". Before being able to install a feature, you
have to register the features repository that provides the feature (using feature:repo-add
command or FeatureMBean as described later).

For instance, the following XML file (or "features repository") describes the featurel and feature2
features:

<features xmlns="http://karaf.apache.org/xmlns/features/v1.3.0">
<feature name="featurel" version="1.0.0">
<bundle>...</bundle>
<bundle>...</bundle>
</feature>
<feature name="feature2" version="1.1.0">
<feature>featurel</feature>
<bundle>...</bundle>
</feature>
</features>

We can note that the features XML has a schema. Take a look on [Features XML Schema
section|provisioning-schema] of the user guide for details. The featurel feature is available in
version1.0.0, and contains two bundles. The <bundle/> element contains a URL to the bundle
artifact (see [Artifacts repositories and URLs section|urls] for details). If you install the featurel
feature (using feature:install or the FeatureMBean as described later), Apache Karaf will
automatically installs the two bundles described. The feature2 feature is available in version 1.1.0,
and contains a reference to the featurel feature and a bundle. The <feature/> element contains
the name of a feature. A specific feature version can be defined using the version attribute to the
<feature/>element (<feature version="1.0.0">featurel</feature>).Ifthe version

145

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

attribute is not specified, Apache Karaf will install the latest version available. If you install the
feature2 feature (using feature:install or the FeatureMBean as described later), Apache Karaf
will automatically installs featurel (if it’s not already installed) and the bundle.

A feature repository is registered using the URL to the features XML file.

The features state is stored in the Apache Karaf cache (in the KARAF_DATA folder). You can restart
Apache Karaf, the previously installed features remain installed and available after restart. If you do a
clean restart or you delete the Apache Karaf cache (delete the KARAF_DATA folder), all previously
features repositories registered and features installed will be lost: you will have to register the features
repositories and install features by hand again. To prevent this behaviour, you can specify features as
boot features.

32.5.BOOT FEATURES

You can describe some features as boot features. A boot feature will be automatically install by
Apache Karaf, even if it has not been previously installed using feature:install or FeatureMBean.

Apache Karaf features configuration is located in the etc/org.apache.karaf.features.cfg
configuration file.

This configuration file contains the two properties to use to define boot features:

e featuresRepositories contains alist (comma-separated) of features repositories
(features XML) URLs.

e featuresBoot contains a list (comma-separated) of features to install at boot.

32.6. FEATURES UPGRADE

You can update a release by installing the same feature (with the same SNAPSHOT version or a
different version).

Thanks to the features lifecycle, you can control the status of the feature (started, stopped, etc).

You can also use a simulation to see what the update will do.

32.7. OVERRIDES

Bundles defined in features can be overridden by using a file etc/overrides.properties. Each line in the
file defines one override. The syntax is: <bundle-uri>[;range="[min,max)"] The given bundle will
override all bundles in feature definitions with the same symbolic name if the version of the override is
greater than the version of the overridden bundle and the range matches. If no range is given then
compatibility on the micro version level is assumed.

So for example the override mvn:org.ops4j.pax.logging/pax-logging-service/1.8.5 would overide pax-
logging-service 1.8.3 but not 1.8.6 or 1.7.0.

32.8. FEATURE BUNDLES

32.8.1. Start Level

146

CHAPTER 32. PROVISIONING

By default, the bundles deployed by a feature will have a start-level equals to the value defined in the
etc/config.properties configuration file,in the karaf.startlevel.bundle property.

This value can be "overrided" by the start-1level attribute of the <bundle/>element, in the
features XML.

<feature name="my-project" version="1.0.0">
<bundle start-level="80">mvn:com.mycompany.myproject/myproject-
dao</bundle>
<bundle start-level="85">mvn:com.mycompany.myproject/myproject-
service</bundle>
</feature>

The start-level attribute insure that the myproject-dao bundle is started before the bundles that use
it.

Instead of using start-level, a better solution is to simply let the OSGi framework know what your
dependencies are by defining the packages or services you need. It is more robust than setting start
levels.

32.8.2. Simulate, Start and stop

You can simulate the installation of a feature using the -t option to feature:install command.

You can install a bundle without starting it. By default, the bundles in a feature are automatically
started.

A feature can specify that a bundle should not be started automatically (the bundle stays in resolved
state). To do so, a feature can specify the start attribute to false in the <bundle/> element:

<feature name="my-project" version="1.0.0">
<bundle start-level="80"
start="false">mvn:com.mycompany.myproject/myproject-dao</bundle>
<bundle start-level="85"
start="false">mvn:com.mycompany.myproject/myproject-service</bundle>
</feature>

32.8.3. Dependency

A bundle can be flagged as being a dependency, using the dependency attribute set to true on the
<bundle/> element.

This information can be used by resolvers to compute the full list of bundles to be installed.

32.9. DEPENDENT FEATURES

A feature can depend to a set of other features:

<feature name="my-project" version="1.0.0">
<feature>other</feature>
<bundle start-level="80"
start="false">mvn:com.mycompany.myproject/myproject-dao</bundle>
<bundle start-level="85"
start="false">mvn:com.mycompany.myproject/myproject-service</bundle>

147

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

I </feature>

When the my -project feature will be installed, the other feature will be automatically installed as
well.

It’s possible to define a version range for a dependent feature:

<feature name="spring-dm">
<feature version="[2.5.6,4)">spring</feature>

</%égture>
The feature with the highest version available in the range will be installed.
If a single version is specified, the range will be considered open-ended.
If nothing is specified, the highest available will be installed.

To specify an exact version, use a closed range suchas [3.1,3.1].

32.9.1. Feature prerequisites

Prerequisite feature is special kind of dependency. If you will add prerequisite attribute to
dependant feature tag then it will force installation and also activation of bundles in dependant feature
before installation of actual feature. This may be handy in case if bundles enlisted in given feature are
not using pre installed URL such wrap or war.

32.10. FEATURE CONFIGURATIONS

The <config/>element in a feature XML allows a feature to create and/or populate a configuration
(identified by a configuration PID).

<config name="com.foo.bar">
myProperty = myValue
</config>

The name attribute of the <config/>element corresponds to the configuration PID (see the
[Configuration section|configuration] for details).

The installation of the feature will have the same effect as dropping a file named com. foo.bar.cfgin
the etc folder.

The content of the <config/>element is a set of properties, following the key=value standard.

32.11. FEATURE CONFIGURATION FILES

Instead of using the <config/> element, a feature can specify <configfile/> elements.
I <configfile finalname="/etc/myfile.cfg" override="false">URL</configfile>
Instead of directly manipulating the Apache Karaf configuration layer (as when using the <config/>

element), the <configfile/> element takes directly a file specified by a URL, and copy the file in the
location specified by the finalname attribute.

148

CHAPTER 32. PROVISIONING

If not specified, the location is relative from the KARAF_BASE variable. It’s also possible to use variable
like ${karaf.nome}, ${karaf.base}, ${karaf.etc}, or even system properties.

For instance:

<configfile finalname="${karaf.etc}/myfile.cfg"
override="false">URL</configfile>

If the file is already present at the desired location it is kept and the deployment of the configuration
file is skipped, as a already existing file might contain customization. This behaviour can be overriden
by override set to true.

The file URL is any URL supported by Apache Karaf (see the [Artifacts repositories and URLs]urls] of
the user quide for details).

32.11.1. Requirements

A feature can also specify expected requirements. The feature resolver will try to satisfy the
requirements. For that, it checks the features and bundles capabilities and will automatically install the
bundles to satisfy the requirements.

For instance, a feature can contain:

<requirement>osgi.ee;filter:=" (& (osgi.ee=JavaSE) (!
(version>=1.8)))"</requirement>

The requirement specifies that the feature will work by only if the JDK version is not 1.8 (so basically

1.7).

The features resolver is also able to refresh the bundles when an optional dependency is satisfy,
rewiring the optional import.

32.12. COMMANDS

32.12.1. feature:repo-list

The feature:repo-list command lists all registered features repository:

karaf@root()> feature:repo-list
Repository | URL

org.ops4j.pax.cdi-0.12.0 | mvn:org.ops4j.pax.cdi/pax-cdi-
features/0.12.0/xml/features

org.ops4j.pax.web-4.1.4 | mvn:org.ops4j.pax.web/pax-web-
features/4.1.4/xml/features

standard-4.0.0 |
mvn:org.apache.karaf.features/standard/4.0.0/xml/features
enterprise-4.0.0 |
mvn:org.apache.karaf.features/enterprise/4.0.0/xml/features
spring-4.0.0 [
mvn:org.apache.karaf.features/spring/4.0.0/xml/features

149

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

Each repository has a name and the URL to the features XML.

Apache Karaf parses the features XML when you register the features repository URL (using
feature:repo-add command or the FeatureMBean as described later). If you want to force Apache
Karaf to reload the features repository URL (and so update the features definition), you can use the -r
option:

karaf@root()> feature:repo-list -r
Reloading all repositories from their urls

Repository | URL

org.ops4j.pax.cdi-0.12.0 | mvn:org.ops4j.pax.cdi/pax-cdi-
features/0.12.0/xml/features

org.ops4j.pax.web-4.1.4 | mvn:org.ops4j.pax.web/pax-web-
features/4.1.4/xml/features

standard-4.0.0 |
mvn:org.apache.karaf.features/standard/4.0.0/xml/features
enterprise-4.0.0 |
mvn:org.apache.karaf.features/enterprise/4.0.0/xml/features
spring-4.0.0 [
mvn:org.apache.karaf.features/spring/4.0.0/xml/features

32.12.2. feature:repo-add

To register a features repository (and so having new features available in Apache Karaf), you have to
use the feature:repo-add command.

The feature:repo-add command requires the name/url argument. This argument accepts:

e afeature repository URL. It’s an URL directly to the features XML file. Any URL described in
the [Artifacts repositories and URLs section|urls] of the user guide is supported.

e afeature repository name defined in the etc/org.apache.karaf.features.repos.cfg
configuration file.

The etc/org.apache.karaf.features.repos.cfgdefines a list of "pre-installed/available"
features repositories:

HEHHHHHHBHAH B HA R HHAHHHH AR A A R R A A R R R AR
HEHHHH

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version

(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,

H o HHHHHENNHHHH K

150

CHAPTER 32. PROVISIONING

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.

See the License for the specific language governing permissions and
limitations under the License.
#

HBHHHHHHBHAH B HA R HHAHHHH R A A R R A A R R R AR
HBHHHH

#

This file describes the features repository URL

It could be directly installed using feature:repo-add command

#
enterprise=mvn:org.apache.karaf.features/enterprise/LATEST/xml/features
spring=mvn:org.apache.karaf.features/spring/LATEST/xml/features
cellar=mvn:org.apache.karaf.cellar/apache-karaf-cellar/LATEST/xml/features
cave=mvn:org.apache.karaf.cave/apache-karaf-cave/LATEST/xml/features
camel=mvn:org.apache.camel.karaf/apache-camel/LATEST/xml/features
camel-extras=mvn:org.apache-extras.camel-extra.karaf/camel-
extra/LATEST/xml/features
cxf=mvn:org.apache.cxf.karaf/apache-cxf/LATEST/xml/features
cxf-dosgi=mvn:org.apache.cxf.dosgi/cxf-dosgi/LATEST/xml/features
cxf-xkms=mvn:org.apache.cxf.services.xkms/cxf-services-xkms-
features/LATEST/xml
activemg=mvn:org.apache.activemq/activemq-karaf/LATEST/xml/features
jclouds=mvn:org.apache.jclouds.karaf/jclouds-karaf/LATEST/xml/features
openejb=mvn:org.apache.openejb/openejb-feature/LATEST/xml/features
wicket=mvn:org.ops4j.pax.wicket/features/LATEST/xml/features
hawtio=mvn:io.hawt/hawtio-karaf/LATEST/xml/features
pax-cdi=mvn:org.ops4j.pax.cdi/pax-cdi-features/LATEST/xml/features
pax-jdbc=mvn:org.ops4j.pax.jdbc/pax-jdbc-features/LATEST/xml/features
pax-jpa=mvn:org.ops4j.pax.jpa/pax-jpa-features/LATEST/xml/features
pax-web=mvn:org.ops4j.pax.web/pax-web-features/LATEST/xml/features
pax-wicket=mvn:org.ops4j.pax.wicket/pax-wicket-
features/LATEST/xml/features
ecf=http://download.eclipse.org/rt/ecf/latest/site.p2/karaf-features.xml
decanter=mvn:org.apache.karaf.decanter/apache-karaf-
decanter/LATEST/xml/features

You can directly provide a features repository name to the feature:repo-add command. For install,
to install Apache Karaf Cellar, you can do:

karaf@root()> feature:repo-add cellar
Adding feature url mvn:org.apache.karaf.cellar/apache-karaf-
cellar/LATEST/xml/features

When you don’t provide the optional version argument, Apache Karaf installs the latest version of the
features repository available. You can specify a target version with the version argument:

karaf@root()> feature:repo-add cellar 4.0.0.RC1
Adding feature url mvn:org.apache.karaf.cellar/apache-karaf-
cellar/4.0.0.RC1/xml/features

Instead of providing a features repository name defined in the
etc/org.apache.karaf.features.repos.cfg configuration file, you can directly provide the
features repository URL to the feature:repo-add command:

151

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

karaf@root()> feature:repo-add mvn:org.apache.karaf.cellar/apache-karaf-
cellar/4.0.0.RC1/xml/features

Adding feature url mvn:org.apache.karaf.cellar/apache-karaf-
cellar/4.0.0.RC1/xml/features

By default, the feature:repo-add command just registers the features repository, it doesn’t install
any feature. If you specify the -1 option, the feature:repo-add command registers the features
repository and installs all features described in this features repository:

I karaf@root()> feature:repo-add -i cellar

32.12.3. feature:repo-refresh

Apache Karaf parses the features repository XML when you register it (using feature:repo-add
command or the FeatureMBean). If the features repository XML changes, you have to indicate to
Apache Karaf to refresh the features repository to load the changes.

The feature:repo-refresh command refreshes the features repository.

Without argument, the command refreshes all features repository:

karaf@root()> feature:repo-refresh

Refreshing feature url mvn:org.ops4j.pax.cdi/pax-cdi-
features/0.12.0/xml/features

Refreshing feature url mvn:org.ops4j.pax.web/pax-web-
features/4.1.4/xml/features

Refreshing feature url
mvn:org.apache.karaf.features/standard/4.0.0/xml/features
Refreshing feature url
mvn:org.apache.karaf.features/enterprise/4.0.0/xml/features
Refreshing feature url
mvn:org.apache.karaf.features/spring/4.0.0/xml/features

Instead of refreshing all features repositories, you can specify the features repository to refresh, by
providing the URL or the features repository name (and optionally version):

karaf@root()> feature:repo-refresh
mvn:org.apache.karaf.features/standard/4.0.0/xml/features
Refreshing feature url
mvn:org.apache.karaf.features/standard/4.0.0/xml/features

karaf@root()> feature:repo-refresh cellar
Refreshing feature url mvn:org.apache.karaf.cellar/apache-karaf-
cellar/LATEST/xml/features

32.12.4. feature:repo-remove

The feature:repo-remove command removes a features repository from the registered ones.

The feature:repo-remove command requires a argument:

152

CHAPTER 32. PROVISIONING

o the features repository name (as displayed in the repository column of the feature:repo-

list command output)

o the features repository URL (as displayed in the URL column of the feature:repo-list

command output)

I karaf@root()> feature:repo-remove karaf-cellar-4.0.0.RC1

karaf-cellar/LATEST/xml/features

I karaf@root()> feature:repo-remove mvn:org.apache.karaf.cellar/apache-

By default, the feature:repo-remove command just removes the features repository from the
registered ones: it doesn’t uninstall the features provided by the features repository.

If you use -u option, the feature:repo-remove command uninstalls all features described by the

features repository:

I karaf@root()> feature:repo-remove -u karaf-cellar-4.0.0.RC1

32.12.5. feature:list

The feature:1list command lists all available features (provided by the different registered features

repositories):

| Version
| Repository

| Description

Name

Required | State

pax-cdi

| Uninstalled | org.ops4j
pax-cdi-1.1

| Uninstalled | org.ops4j
pax-cdi-1.2

| Uninstalled | org.ops4j
pax-cdi-weld

| Uninstalled | org.ops4j
pax-cdi-1.1-weld

| Uninstalled | org.ops4j
pax-cdi-1.2-weld

| Uninstalled | org.ops4j
pax-cdi-openwebbeans

| Uninstalled | org.ops4j
pax-cdi-web

| Uninstalled | org.ops4j
pax-cdi-1.1-web

| Uninstalled | org.ops4]j

.pax.

. pax.

. pax

. pax

.pax.

.pax.

.pax.

.pax.

| 0.12.0

cdi-0.12.

| 0.12.0

cdi-0.12.

| 0.12.0

.cdi-0.12.

| 0.12.0

.cdi-0.12.

| 0.12.0

cdi-0.12.

| 0.12.0

cdi-0.12.

| 0.12.0

cdi-0.12.

| 0.12.0

cdi-0.12.

Provide CDI support

I
Provide CDI 1.1 support

I
Provide CDI 1.2 support

I

I

I

I
OpenWebBeans CDI support

I

Weld CDI support
Weld CDI 1.1 support

Weld CDI 1.2 support

Web CDI support

Web CDI 1.1 support

If you want to order the features by alphabetical name, you can use the -o option:

karaf@root()> feature:list -o

Name

| Version

153

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

Required | State

| Repository

| Description

deltaspike-core

| Uninstalled | org.ops4j.pax
deltaspike-data

| Uninstalled | org.ops4j.pax.
deltaspike-jpa

| Uninstalled | org.ops4j.pax.
deltaspike-partial-bean

| Uninstalled | org.ops4j.pax.
support

pax-cdi

| Uninstalled | org.ops4j.pax.
pax-cdi-1.1

| Uninstalled | org.ops4j.pax.
pax-cdi-1.1-web

| Uninstalled | org.ops4j.pax.
pax-cdi-1.1-web-weld

| Uninstalled | org.ops4j.pax.
pax-cdi-1.1-weld

| Uninstalled | org.ops4j.pax.
pax-cdi-1.2

| Uninstalled | org.ops4j.pax.

cdi-0.12.

| 0.12.0

cdi-0.12.

| 0.12.0

cdi-0.12.

| 0.12.0

cdi-0.12.

| 0.12.0

cdi-0.12.

| 0.12.0

cdi-0.12.

| 0.12.0

cdi-0.12.

Apache
Apache
Apache

Apache

Deltaspike
Deltaspike
Deltaspike

Deltaspike

Provide CDI support

Web CDI 1.1 support

Weld CDI 1.1 support

core support

data support

jpa support

partial bean

Provide CDI 1.1 support

Weld Web CDI 1.1 support

Provide CDI 1.2 support

By default, the feature:list command displays all features, whatever their current state (installed
or not installed).

Using the - i option displays only installed features:

154

karaf@root()> feature:list -1i
Name
Description

| Version | Required |

State

Repository

aries-proxy | 4.0.0 |
Proxy

aries-blueprint | 4.0.0 | x
Blueprint

feature | 4.0.0 | x
Features Support

shell | 4.0.0 | x
Shell

shell-compat | 4.0.0 | x
Shell Compatibility

deployer | 4.0.0 | x
Deployer

bundle | 4.0.0 | x
Bundle support

config | 4.0.0 | x
0SGi ConfigAdmin support
diagnostic | 4.0.0 | x
Diagnostic support

instance | 4.0.0 | x

Started

Started

Started

Started

Started

Started

Started

Started

Started

Started

standard-4.

standard-4.

standard-4.

standard-4.

standard-4.

standard-4.

standard-4.

standard-4.

standard-4.

standard-4.

Aries

Aries

Karaf

Karaf

Karaf

Provide

Provide

Provide

Provide

CHAPTER 32. PROVISIONING

Instance support

jaas | 4.0.0 | x | Started | standard-4.0.0 | Provide
JAAS support

log | 4.0.0 | x | Started | standard-4.0.0 | Provide
Log support

package | 4.0.0 | x | Started | standard-4.0.0 | Package
commands and mbeans

service | 4.0.0 | x | Started | standard-4.0.0 | Provide
Service support

system | 4.0.0 | x | Started | standard-4.0.0 | Provide
System support

kar | 4.0.0 | x | Started | standard-4.0.0 | Provide
KAR (KARaf archive) support

ssh | 4.0.0 | x | Started | standard-4.0.0 | Provide
a SSHd server on Karaf

management | 4.0.0 | x | Started | standard-4.0.0 | Provide
a JMX MBeanServer and a set of MBeans in

wrap | 0.0.0 | x | Started | standard-4.0.0 | Wrap

URL handler

32.12.6. feature:install
The feature:install command installs a feature.

It requires the feature argument. The feature argument is the name of the feature, or the
name/version of the feature. If only the name of the feature is provided (not the version), the latest
version available will be installed.

I karaf@root()> feature:install eventadmin

We can simulate an installation using -t or - -simulate option: it just displays what it would do, but it
doesn’t do it:

karaf@root()> feature:install -t -v eventadmin
Adding features: eventadmin/[4.0.0,4.0.0]
No deployment change.
Managing bundle:
org.apache.felix.metatype / 1.0.12

You can specify a feature version to install:
I karaf@root()> feature:install eventadmin/4.0.0

By default, the feature:install command is not verbose. If you want to have some details about
actions performed by the feature:install command, you can use the -v option:

karaf@root()> feature:install -v eventadmin
Adding features: eventadmin/[4.0.0,4.0.0]
No deployment change.

Done.

155

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

If a feature contains a bundle which is already installed, by default, Apache Karaf will refresh this
bundle. Sometime, this refresh can cause issue to other running applications. If you want to disable the
auto-refresh of installed bundles, you can use the -r option:

karaf@root()> feature:install -v -r eventadmin
Adding features: eventadmin/[4.0.0,4.0.0]

No deployment change.

Done.

You can decide to not start the bundles installed by a feature using the -sor --no-auto-start
option:

I karaf@root()> feature:install -s eventadmin

32.12.7. feature:start

By default, when you install a feature, it’s automatically installed. However, you can specify the -s
option to the feature:install command.

As soon as you install a feature (started or not), all packages provided by the bundles defined in the
feature will be available, and can be used for the wiring in other bundles.

When starting a feature, all bundles are started, and so, the feature also exposes the services.

32.12.8. feature:stop
You can also stop a feature: it means that all services provided by the feature will be stop and removed

from the service registry. However, the packages are still available for the wiring (the bundles are in
resolved state).

32.12.9. feature:uninstall

The feature:uninstall command uninstalls a feature. As the feature:install command,the
feature:uninstall command requires the feature argument. The feature argument is the name
of the feature, or the name/version of the feature. If only the name of the feature is provided (not the
version), the latest version available will be installed.

I karaf@root()> feature:uninstall eventadmin

The features resolver is involved during feature uninstallation: transitive features installed by the
uninstalled feature can be uninstalled themselves if not used by other feature.

32.13. DEPLOYER
You can "hot deploy" a features XML by dropping the file directly in the deploy folder.
Apache Karaf provides a features deployer.

When you drop a features XML in the deploy folder, the features deployer does: * register the features
XML as a features repository * the features with install attribute set to "auto" will be automatically

installed by the features deployer.

156

CHAPTER 32. PROVISIONING

For instance, dropping the following XML in the deploy folder will automatically install featurel and
feature2, whereas feature3 won’t be installed:

<?xml version="1.0" encoding="UTF-8"7?>
<features name="my-features"
xmlns="http://karaf.apache.org/xmlns/features/v1.3.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://karaf.apache.org/xmlns/features/v1.3.0
http://karaf.apache.org/xmlns/features/v1.3.0">
<feature name="featurel" version="1.0" install="auto">
</feature>
<feature name="feature2" version="1.0" install="auto">
</feature>
<feature name="feature3" version="1.0">
</feature>

</features>

32.14. JMX FEATUREMBEAN

On the JMX layer, you have a MBean dedicated to the management of the features and features
repositories: the FeatureMBean.

The FeatureMBean object name is: org.apache.karaf:type=feature, name=*.

32.14.1. Attributes

The FeatureMBean provides two attributes:

e Features is atabular data set of all features available.

e Repositoriesis atabular data set of all registered features repositories.
The Repositories attribute provides the following information:

e Name is the name of the features repository.

e Uriisthe URI to the features XML for this repository.

e Features is a tabular data set of all features (name and version) provided by this features
repository.

e Repositoriesis atabular data set of features repositories "imported" in this features
repository.

The Features attribute provides the following information:

e Name is the name of the feature.

157

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

Version is the version of the feature.

Installedis a boolean. If true, it means that the feature is currently installed.

Bundles is a tabular data set of all bundles (bundles URL) described in the feature.
Configurations is a tabular data set of all configurations described in the feature.
Configuration Filesis atabular data set of all configuration files described in the feature.

Dependencies is a tabular data set of all dependent features described in the feature.

32.14.2. Operations

o addRepository(url) adds the features repository with the url. The url can be a name as

inthe feature:repo-add command.

addRepository(url, install) adds the features repository with the url and
automatically installs all bundles if install is true. The url can be a name like in the
feature:repo-add command.

removeRepository(url) removes the features repository with the url. The url canbea
name as in the feature:repo-remove command.

installFeature(name) installs the feature with the name.
installFeature(name, version) installs the feature with the name and version.

installFeature(name, noClean, noRefresh) installs the feature with the name
without cleaning the bundles in case of failure, and without refreshing already installed
bundles.

installFeature(name, version, noClean, noRefresh) °~ installs the
feature with the “name and version without cleaning the bundles in case of failure, and
without refreshing already installed bundles.

uninstallFeature(name) uninstalls the feature with the name.

uninstallFeature(name, version) uninstalls the feature with the name and version.

32.14.3. Notifications

The FeatureMBean sends two kind of notifications (on which you can subscribe and react):

158

e When a feature repository changes (added or removed).

e When a feature changes (installed or uninstalled).

CHAPTER 33. REMOTE

CHAPTER 33. REMOTE

Apache Karaf supports a complete remote mechanism allowing you to remotely connect to a running
Apache Karaf instance. More over, you can also browse, download, and upload files remotely to a
running Apache Karaf instance.

Apache Karaf embeds a complete SSHd server.

33.1. SSHD SERVER
When you start Apache Karaf, it enables a remote console that can be accessed over SSH.

This remote console provides all the features of the "local" console, and gives a remote user complete
control over the container and services running inside of it. As the "local" console, the remote console
is secured by a RBAC mechanism (see the Security section of the user guide for details).

In addition of the remote console, Apache Karaf also provides a remote filesystem. This remote
filesystem can be accessed using a SCP/SFTP client.

33.1.1. Configuration

The configuration of the SSHd server is stored in the etc/org.apache.karaf.shell.cfgfile:

HBHHHHHHBHAH B HA B HAHHHH R A A R R A A R A R AR
HEHHHH

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version

#

#

#

#

2

(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#

#

#

#

#

#

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.

See the License for the specific language governing permissions and
limitations under the License.
#

HEHHHHHHBHAH B HA B HA R HHH R A R AR R A A R R R R AR
HEHHHH

#
These properties are used to configure Karaf's ssh shell.
#

#
Via sshPort and sshHost you define the address you can login into Karaf.
#

sshPort
sshHost

8101
0.0.0.0

159

security

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

160

#

The sshIdleTimeout defines the inactivity timeout to logout the SSH
session.

The sshIdleTimeout is in milliseconds, and the default is set to 30
minutes.

#

sshIdleTimeout = 1800000

#

sshRealm defines which JAAS domain to use for password authentication.
#

sshRealm = karaf

#

The location of the hostKey file defines where the private/public key of
the server

is located. If no file is at the defined location it will be ignored.

#

hostKey = ${karaf.etc}/host.key

#

Role name used for SSH access authorization

If not set, this defaults to the ${karaf.admin.role} configured in
etc/system.properties

#

sshRole = admin

Self defined key size in 1024, 2048, 3072, or 4096
If not set, this defaults to 4096.

H oH HF OH H*

keySize = 4096

Specify host key algorithm, defaults to RSA

H H HF H

algorithm = RSA

#

Defines the completion mode on the Karaf shell console. The possible
values are:

- GLOBAL: it's the same behavior as in previous Karaf releases. The
completion displays all commands and all aliases

ignoring if you are in a subshell or not.

- FIRST: the completion displays all commands and all aliases only when
you are not in a subshell. When you are

in a subshell, the completion displays only the commands local
to the subshell.

- SUBSHELL: the completion displays only the subshells on the root
level. When you are in a subshell, the completion

displays only the commands local to the subshell.

This property define the default value when you use the Karaf shell
console.

You can change the completion mode directly in the shell console, using

CHAPTER 33. REMOTE

shell:completion command.
#
completionMode = GLOBAL

The etc/org.apache.karaf.shell. cfg configuration file contains different properties to
configure the SSHd server:

e sshPort is the port number where the SSHd server is bound (by default, it’s 8101).

e sshHost is the address of the network interface where the SSHd server is bound. The default
value is 0.0.0.0, meaning that the SSHd server is bound on all network interfaces. You can bind
on a target interface providing the IP address of the network interface.

e hostKey is the location of the host . key file. By defaut, it uses etc/host.key. This file
stores the public and private key pair of the SSHd server.

e sshRole is the default role used for SSH access. The default value is the value of
karaf.admin.role property defined in etc/system.properties. See the [Security
section|security] of this user guide for details.

o keySizeisthe key size used by the SSHd server. The possible values are 1024, 2048, 3072, or
4096. The default value is 1024.

e algorithmis the host key algorithm used by the SSHd server. The possible values are DSA or
RSA. The default value is DSA.

The SSHd server configuration can be changed at runtime:
e by editingtheetc/org.apache.karaf.shell.cfg configuration file
e by using the config:* commands

At runtime, when you change the SSHd server configuration, you have to restart the SSHd server to
load the changes. You can do it with:

I karaf@root()> bundle:restart -f org.apache.karaf.shell.ssh

The Apache Karaf SSHd server supports key/agent authentication and password authentication.
33.1.2. Console clients

33.1.2.1. System native clients

The Apache Karaf SSHd server is a pure SSHd server, similar to OpenSSH daemon.
It means that you can use directly a SSH client from your system.

For instance, on Unix, you can directly use OpenSSH:

~$ ssh -p 8101 karaf@localhost
Authenticated with partial success.
Authenticated with partial success.
Authenticated with partial success.
Password authentication

Password:

161

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

/o< /7 /7 7/
VAVA I VAV Y A A AV S AV A |
/| ZIN,_/_/ \ /_/

-7 —

Apache Karaf (4.0.0)

Hit '<tab>' for a list of available commands

and '[cmd] --help' for help on a specific command.

Hit 'system:shutdown' to shutdown Karaf.

Hit '<ctrl-d>' or type 'logout' to disconnect shell from current session.

karaf@root()>

On Windows, you can use Putty, Kitty, etc.

If you don’t have SSH client installed on your machine, you can use Apache Karaf client.

33.1.2.2. ssh:ssh command

Apache Karaf itself provides a SSH client. When you are on the Apache Karaf console, you have the
ssh:ssh command:

karaf@root()> ssh:ssh --help
DESCRIPTION
ssh:ssh

Connects to a remote SSH server

SYNTAX
ssh:ssh [options] hostname [command]

ARGUMENTS
hostname
The host name to connect to via SSH
command
Optional command to execute

OPTIONS

--help
Display this help message

-p, --port
The port to use for SSH connection
(defaults to 22)

-P, --password
The password for remote login

Quiet Mode. Do not ask for confirmations
-1, --username
The user name for remote login

Thanks to the ssh: ssh command, you can connect to another running Apache Karaf instance:

I karaf@root()> ssh:ssh -p 8101 karaf@192.168.134.2

162

CHAPTER 33. REMOTE

Connecting to host 192.168.134.2 on port 8101

Connecting to unknown server. Add this server to known hosts ? (y/n)
Storing the server key in known_hosts.

Connected

/o< /7 7]/
VAVA I VAV A A A A S AV A |
/| ZIN, ./ _,_/_/

Apache Karaf (4.0.0)

Hit '<tab>' for a list of available commands

and '[cmd] --help' for help on a specific command.

Hit 'system:shutdown' to shutdown Karaf.

Hit '<ctrl-d>' or type 'logout' to disconnect shell from current session.

karaf@root()>

When you don’t provide the command argument to the ssh: ssh command, you are in the interactive
mode: you have a complete remote console available, where you can type commands, etc.

You can also provide directly a command to execute using the command argument. For instance, to
remotely shutdown a Apache Karaf instance:

karaf@root()> ssh:ssh -p 8101 karaf@localhost system:shutdown -f
Connecting to host localhost on port 8101
Connected

As the ssh:ssh command is a pure SSH client, so it means that you can connect to a Unix OpenSSH
daemon:

karaf@root()> ssh:ssh user@localhost

Connecting to host localhost on port 22

Connecting to unknown server. Add this server to known hosts ? (y/n)
Storing the server key in known_hosts.

Agent authentication failed, falling back to password authentication.
Password: Connected

Last login: Sun Sep 8 19:21:12 2013

user@server:~$

33.1.2.3. Apache Karaf client

The ssh:ssh command requires to be run into a running Apache Karaf console.

For commodity, the ssh:ssh command is "wrapped" as a standalone client: the bin/client Unix
script (bin\client.bat on Windows).

bin/client --help
Apache Karaf client

-a [port] specify the port to connect to
-h [host] specify the host to connect to
-u [user] specify the user name

--help shows this help message

163

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

-V raise verbosity
-r [attempts] retry connection establishment (up to attempts times)
-d [delay] intra-retry delay (defaults to 2 seconds)

-b batch mode, specify multiple commands via standard input
-f [file] read commands from the specified file
[commands] commands to run
If no commands are specified, the client will be put in an interactive
mode

For instance, to connect to local Apache Karaf instance (on the default SSHd server 8101 port), you can
directly use bin/client Unix script (bin\client.bat on Windows) without any argument or option:

bin/client

Logging in as karaf

343 [pool-2-thread-4] WARN
org.apache.sshd.client.keyverifier.AcceptAllServerKeyVerifier - Server at
/0.0.0.0:8101 presented unverified key:

/o< /S /7 7/
VAVA I VAV A A S A S AV A |
/| ZIN, ./ _,_/_/

Apache Karaf (4.0.0)

Hit '<tab>' for a list of available commands

and '[cmd] --help' for help on a specific command.

Hit 'system:shutdown' to shutdown Karaf.

Hit '<ctrl-d>' or type 'logout' to disconnect shell from current session.

karaf@root()>

When you don’t provide the command argument to the bin/client Unix script (bin\client.bat on
Windows), you are in the interactive mode: you have a complete remote console available, where you
can type commands, etc.

You can also provide directly a command to execute using the command argument. For instance, to
remotely shutdown a Apache Karaf instance:

bin/client "system:shutdown -f"

Logging in as karaf

330 [pool-2-thread-3] WARN
org.apache.sshd.client.keyverifier.AcceptAllServerKeyVerifier - Server at
/0.0.0.0:8101 presented unverified key:

As the Apache Karaf client is a pure SSH client, you can use to connect to any SSHd daemon (like Unix
OpenSSH daemon):

bin/client -a 22 -h localhost -u user

Logging in as user

353 [pool-2-thread-2] WARN
org.apache.sshd.client.keyverifier.AcceptAllServerKeyVerifier - Server at
localhost/127.0.0.1:22 presented unverified key:

Password:

Welcome to Ubuntu 13.10 (GNU/Linux 3.11.0-13-generic x86_64)

164

CHAPTER 33. REMOTE

* Documentation: https://help.ubuntu.com/

Last login: Tue Dec 3 18:18:31 2013 from localhost

33.1.2.4. Logout

When you are connected to a remote Apache Karaf console, you can logout using:

e using CTRL-D key binding. Note that CTRL-D just logout from the remote console in this case,
it doesn’t shutdown the Apache Karaf instance (as CTRL-D does when used on a local console).

e using shell:logout command (or simply logout)

33.1.3. Filsystem clients

Apache Karaf SSHd server also provides complete fileystem access via SSH. For security reason, the
available filesystem is limited to KARAF_BASE directory.

You can use this remote filesystem with any SCP/SFTP compliant clients.

33.1.3.1. Native SCP/SFTP clients

On Unix, you can directly use scp command to download/upload files to the Apache Karaf filesystem.
For instance, to retrieve the karaf. log file remotely:

~$ scp -P 8101 karaf@localhost:/data/log/karaf.log
Authenticated with partial success.

Authenticated with partial success.

Authenticated with partial success.

Password authentication

Password:

karaf.log

As you have access to the complete KARAF_BASE directory, you can remotely change the
configuration file in the etc folder, retrieve log files, populate the system folder.

On Windows, you can use WinSCP to access the Apache Karaf filesystem.
It’s probably easier to use a SFTP complient client.

For instance, on Unix system, you can use 1ftp or ncftp:

$ 1ftp

1ftp :~> open -u karaf sftp://localhost:8101

Password:

1ftp karaf@localhost:~> 1s

-rw-r--r-- 1 jbonofre jbonofre 27754 Oct 26 10:50 LICENSE
-rw-r--r-- 1 jbonofre jbonofre 1919 Dec 3 05:34 NOTICE
-rw-r--r-- 1 jbonofre jbonofre 3933 Aug 18 2012 README
-rw-r--r-- 1 jbonofre jbonofre 101041 Dec 3 05:34 RELEASE-NOTES
drwxr-xr-x 1 jbonofre jbonofre 4096 Dec 3 12:51 bin
drwxr-xr-x 1 jbonofre jbonofre 4096 Dec 3 18:57 data
drwxr-xr-x 1 jbonofre jbonofre 4096 Dec 3 12:51 demos

165

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

drwxr-xr-x 1 jbonofre jbonofre 4096 Dec 3 13:02 deploy
drwxr-xr-x 1 jbonofre jbonofre 4096 Dec 3 17:59 etc
drwxr-xr-x 1 jbonofre jbonofre 4096 Dec 3 13:02 instances
drwxr-xr-x 1 jbonofre jbonofre 4096 Dec 3 13:02 lib
SrW-r--r-- 1 jbonofre jbonofre 0 Dec 3 13:02 lock
drwxr-xr-x 1 jbonofre jbonofre 4096 Dec 3 12:51 system

1ftp karaf@localhost:/>

You can also use graphic client like filezilla, gftp, nautilus, etc.

On Windows, you can use filezilla, WinSCP, etc.

33.1.3.2. Apache Maven

Apache Karaf system folder is the Karaf repository, that use a Maven directory structure. It’s where
Apache Karaf looks for the artifacts (bundles, features, kars, etc).

Using Apache Maven, you can populate the system folder using the deploy:deploy-file goal.

For instance, you want to add the Apache ServiceMix facebook4j OSGi bundle, you can do:

mvn deploy:deploy-file -Dfile=org.apache.servicemix.bundles.facebook4j-
2.0.2_1.jar -DgroupId=org.apache.servicemix.bundles -
DartifactId=org.apache.servicemix.bundles.facebook4j
Dpackaging=jar -Durl=scp://localhost:8101/system

-Dversion=2.0.2_1 -

NOTE

If you want to turn Apache Karaf as a simple Maven repository, you can use Apache
Karaf Cave.

33.2. JMX MBEANSERVER
Apache Karaf provides a JMX MBeanServer.
This MBeanServer is available remotely, using any JMX client like jconsole.

You can find details on the [Monitoring section|monitoring] of the user guide.

166

http://karaf.apache.org/index/subprojects/cave.html

CHAPTER 34. BUILDING WITH MAVEN

CHAPTER 34. BUILDING WITH MAVEN

Abstract

Maven is an open source build system which is available from the Apache Maven project. This chapter
explains some of the basic Maven concepts and describes how to set up Maven to work with Red Hat
JBoss Fuse. In principle, you could use any build system to build an OSGi bundle. But Maven is strongly
recommended, because it is well supported by Red Hat JBoss Fuse.

167

http://maven.apache.org/

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

CHAPTER 35. MAVEN DIRECTORY STRUCTURE

35.1. OVERVIEW

One of the most important principles of the Maven build system is that there are standard locations
for all of the files in the Maven project. There are several advantages to this principle. One advantage is
that Maven projects normally have an identical directory layout, making it easy to find files in a project.
Another advantage is that the various tools integrated with Maven need almost no initial configuration.
For example, the Java compiler knows that it should compile all of the source files under
src/main/java and put the results into target/classes.

35.2. STANDARD DIRECTORY LAYOUT

Example 35.1, “Standard Maven Directory Layout” shows the elements of the standard Maven directory
layout that are relevant to building OSGi bundle projects. In addition, the standard locations for
Blueprint configuration files (which are not defined by Maven) are also shown.

Example 35.1. Standard Maven Directory Layout

ProjectDir/
pom.xml
src/
main/
java/

resources/
META-INF/

0SGI-INF/
blueprint/
* . xml
test/
java/
resources/
target/

NOTE

It is possible to override the standard directory layout, but this is not a recommended
practice in Maven.

L

35.3. POM. XML FILE

The pom. xml file is the Project Object Model (POM) for the current project, which contains a complete
description of how to build the current project. A pom. xml file can be completely self-contained, but
frequently (particular for more complex Maven projects) it can import settings from a parent POM file.

After building the project, a copy of the pom. xm1l file is automatically embedded at the following
location in the generated JAR file:

168

CHAPTER 35. MAVEN DIRECTORY STRUCTURE

I META-INF/maven/groupId/artifactId/pom.xml

35.4.SRC AND TARGET DIRECTORIES

The src/ directory contains all of the code and resource files that you will work on while developing
the project.

The target/ directory contains the result of the build (typically a JAR file), as well as all all of the
intermediate files generated during the build. For example, after performing a build, the
target/classes/ directory will contain a copy of the resource files and the compiled Java classes.

35.5. MAIN AND TEST DIRECTORIES

The src/main/ directory contains all of the code and resources needed for building the artifact.

The src/test/ directory contains all of the code and resources for running unit tests against the
compiled artifact.

35.6. JAVA DIRECTORY

Each java/ sub-directory contains Java source code (*. java files) with the standard Java directory
layout (that is, where the directory pathnames mirror the Java package names, with / in place of the .
character). The src/main/java/ directory contains the bundle source code and the
src/test/java/ directory contains the unit test source code.

35.7. RESOURCES DIRECTORY

If you have any configuration files, data files, or Java properties to include in the bundle, these should
be placed under the src/main/resources/ directory. The files and directories under
src/main/resources/ will be copied into the root of the JAR file that is generated by the Maven
build process.

The files under src/test/resources/ are used only during the testing phase and will not be copied
into the generated JAR file.

35.8. BLUEPRINT CONTAINER

OSGi R4.2 defines a Blueprint container. Red Hat JBoss Fuse has built-in support for the Blueprint
container, which you can enable simply by including Blueprint configuration files, 0SGI -
INF/blueprint/*.xml, in your project. For more details about the Blueprint container, see
Chapter 20, OSGi Services.

169

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

CHAPTER 36. PREPARING TO USE MAVEN

36.1. OVERVIEW

This section gives a brief overview of how to prepare Maven for building Red Hat JBoss Fuse projects
and introduces the concept of Maven coordinates, which are used to locate Maven artifacts.

36.2. PREREQUISITES
In order to build a project using Maven, you must have the following prerequisites:

e Maven installation —Maven is a free, open source build tool from Apache. You can download
the latest version from the Maven download page.

e Network connection —whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. By default, Maven looks for
repositories that are accessed over the Internet. You can change this behavior so that Maven
will prefer searching repositories that are on a local network.

NOTE

Maven can run in an offline mode. In offline mode Maven only looks for artifacts
in its local repository.

36.3. ADDING THE RED HAT MAVEN REPOSITORIES

In order to access artifacts from the Red Hat Maven repositories, you need to add them to Maven’s
settings.xml file. Maven looks for your settings.xml file in the .m2 directory of the user’s home
directory. If there is not a user specified settings.xml file, Maven will use the system-level
settings.xml file at M2_HOME/conf/settings.xml.

To add the Red Hat repositories to Maven’s list of repositories, you can either create a new
.m2/settings.xml file or modify the system-level settings. In the settings.xml file, add
repository elements for the Red Hat repositories as shown in Adding the Red Hat JBoss Fuse
Repositories to Maven.

Adding the Red Hat JBoss Fuse Repositories to Maven

<?xml version="1.0"?>
<settings>

<profiles>
<profile>
<id>extra-repos</id>
<activation>
<activeByDefault>true</activeByDefault>
</activation>
<repositories>
<repository>
<id>redhat-ga-repository</id>
<url>https://maven.repository.redhat.com/ga</url>
<releases>
<enabled>true</enabled>

170

http://maven.apache.org/download.html

CHAPTER 36. PREPARING TO USE MAVEN

</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
<repository>
<id>redhat-ea-repository</id>

<url>https://maven.repository.redhat.com/earlyaccess/all</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
<repository>
<id>jboss-public</id>
<name>JBoss Public Repository Group</name>

<url>https://repository.jboss.org/nexus/content/groups/public/</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>redhat-ga-repository</id>
<url>https://maven.repository.redhat.com/ga</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
<pluginRepository>
<id>redhat-ea-repository</id>

<url>https://maven.repository.redhat.com/earlyaccess/all</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
<pluginRepository>
<id>jboss-public</id>
<name>JBoss Public Repository Group</name>

<url>https://repository.jboss.org/nexus/content/groups/public</url>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>

<activeProfiles>

17

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

<activeProfile>extra-repos</activeProfile>
</activeProfiles>

</settings>

36.4. ARTIFACTS

The basic building block in the Maven build system is an artifact. The output of an artifact, after
performing a Maven build, is typically an archive, such as a JAR or a WAR.

36.5. MAVEN COORDINATES

A key aspect of Maven functionality is the ability to locate artifacts and manage the dependencies
between them. Maven defines the location of an artifact using the system of Maven coordinates, which
uniquely define the location of a particular artifact. A basic coordinate tuple has the form, {groupId,
artifactId, version}.Sometimes Maven augments the basic set of coordinates with the
additional coordinates, packaging and classifier. A tuple can be written with the basic coordinates, or
with the additional packaging coordinate, or with the addition of both the packaging and classifier
coordinates, as follows:

groupdId:artifactId:version
groupdId:artifactId:packaging:version
groupdId:artifactld:packaging:classifier:version

Each coordinate can be explained as follows:

groupdid

Defines a scope for the name of the artifact. You would typically use all or part of a package name as
a group ID —for example,org. fusesource.example.

artifactid
Defines the artifact name (relative to the group ID).
version

Specifies the artifact’s version. A version number can have up to four parts:n.n.n.n, where the
last part of the version number can contain non-numeric characters (for example, the last part of
1.0-SNAPSHOT is the alphanumeric substring, 0-SNAPSHOT).

packaging

Defines the packaged entity that is produced when you build the project. For OSGi projects, the
packaging is bundle. The default value is jar.

classifier
Enables you to distinguish between artifacts that were built from the same POM, but have different
content.

The group ID, artifact ID, packaging, and version are defined by the corresponding elements in an
artifact’s POM file. For example:

<project ... >
<groupId>org.fusesource.example</groupId>

<artifactId>bundle-demo</artifactId>
<packaging>bundle</packaging>

172

CHAPTER 36. PREPARING TO USE MAVEN

<version>1.0-SNAPSHOT</version>
</project>

For example, to define a dependency on the preceding artifact, you could add the following
dependency element to a POM:

<project ... >

<dependencies>
<dependency>
<groupId>org.fusesource.example</groupId>
<artifactId>bundle-demo</artifactId>
<version>1.0-SNAPSHOT</version>
</dependency>
</dependencies>

</project>

NOTE

It is not necessary to specify the bundle package type in the preceding dependency,
because a bundle is just a particular kind of JAR file and jar is the default Maven
package type. If you do need to specify the packaging type explicitly in a dependency,
however, you can use the type element.

173

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

CHAPTER 37. MAVEN INDEXER PLUGIN

The Maven Indexer Plugin is required for the Maven plugin to enable it to quickly search Maven Central
for artifacts.

To Deploy the Maven Indexer plugin use the following commands:

Deploy the Maven Indexer Plugin

1. In the Container perspective go to the Karaf console and enter the following command to

install the Maven Indexer plugin:

I features:install hawtio-maven-indexer
In the Fabric perspective go to the Karaf console and add the feature to a profile:

I fabric:profile-edit --features hawtio-maven-indexer jboss-fuse-full

. For both perspectives, the rest of the commands are the same. Enter the following commands

to configure the Maven Indexer plugin:

config:edit io.hawt.maven.indexer

config:proplist

config:propset repositories 'https://maven.oracle.com'
config:proplist

config:update

3. Wait for the Maven Indexer plugin to be deployed. This may take a few minutes. Look out for

messages like those shown below to appear on the log tab.

O INFO org.apache.felix.fileinstall Creating configuration from io.hawt.maven. indexer.cfg
O INFO io.fabric8.internal ProfileServicelmpl updateProfile: Profile[wver=1.0,id=fabric,atts={parents=karaf hawtio}]
O INFO io.fabric8.internal ProfileServicelmpl updateProfile: Profile[ver=1.0,id=fabric,atts={parents=karaf hawtio}]

When the Maven Indexer plugin has been deployed, use the following commands to add further
external Maven repositories to the Maven Indexer plugin configuration:

174

config:edit io.hawt.maven.indexer
config:proplist

config:propset repositories external repository
config:proplist

config:update

CHAPTER 38. SECURITY

CHAPTER 38. SECURITY

Apache Karaf provides an advanced and flexible security system, powered by JAAS (Java
Authentication and Authorization Service) in an OSGi compliant way.

It provides a dynamic security system.
The Apache Karaf security framework is used internally to control the access to:
e the OSGiservices (described in the developer quide)
e the console commands
e the JMX layer
e the WebConsole

Your applications can also use the security framework (see the developer guide for details).

38.1. REALMS

Apache Karaf is able to manage multiple realms. A realm contains the definition of the login modules
to use for the authentication and/or authorization on this realm. The login modules define the
authentication and authorization for the realm.

The jaas:realm-1list command list the current defined realms:

karaf@root()> jaas:realm-list
Index | Realm Name | Login Module Class Name

1 | karaf |
org.apache.karaf.jaas.modules.properties.PropertiesLoginModule
2 | karaf |
org.apache.karaf.jaas.modules.publickey.PublickeyLoginModule

You can see that the Apache Karaf provides a default realm named karaf.
This realm has two login modules:

e thePropertiesLoginModule uses the etc/users.properties file as backend for users,
groups, roles and password. This login module authenticates the users and returns the users'
roles.

e the PublickeyLoginModule is especially used by the SSHd. It uses the
etc/keys.propertiesfile. This file contains the users and a public key associated to each
user.

Apache Karaf provides additional login modules (see the developer guide for details):
e JDBCLoginModule uses a database as backend
e LDAPLoginModule uses a LDAP server as backend

e SyncopeloginModule uses Apache Syncope as backend

175

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

e OsgiConfigLoginModule uses a configuration as backend
e Krb5LoginModule uses a Kerberos Server as backend

e GSSAPILdapLoginModule uses a LDAP server as backend but delegate LDAP server
authentication to an other backend (typically Krb5LoginModule)

You can manage an existing realm, login module, or create your own realm using the jaas:realm-
manage command.

38.1.1. Users, groups, roles, and passwords

As we saw, by default, Apache Karaf uses a PropertiesLoginModule.

This login module uses the etc/users. properties file as storage for the users, groups, roles and
passwords.

The initial etc/users. properties file contains:

176

HEHHHHHHBHAH B HA B HAHHHH R A A AR R A A R R R R AR
HEHHHH

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version

#

#

#

#

2

(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#

#

#

#

#

#

http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.

See the License for the specific language governing permissions and
limitations under the License.

#

HEHHHHHHBHAH B HARH B HAHHHH AR A A R R A A R R R AR
HEHHHH

This file contains the users, groups, and roles.
Each line has to be of the format:

USER=PASSWORD, ROLE1, ROLE2, . ..
USER=PASSWORD, _g_ : GROUP, . . .
g\:GROUP=ROLE1, ROLE2, ...

H o HFH HHHHH

All users, grousp, and roles entered in this file are available after
Karaf startup

and modifiable via the JAAS command group. These users reside in a JAAS
domain

with the name "karaf".

CHAPTER 38. SECURITY

#
karaf = karaf,_g_:admingroup
g\:admingroup = group,admin,manager,viewer

We can see in this file, that we have one user by default: karaf. The default password is karaf.
The karaf user is member of one group: the admingroup.
A group is always prefixed by g :. An entry without this prefix is an user.

A group defines a set of roles. By default, the admingroup defines group, admin, manager, and
viewer roles.

It means that the karaf user will have the roles defined by the admingroup.

38.1.1.1. Commands

The jaas: * commands manage the realms, users, groups, roles in the console.

38.1.1.1.1. jaas:realm-1list

We already used the jaas:realm-1list previously in this section.

The jaas:realm-1list command list the realm and the login modules for each realm:

karaf@root()> jaas:realm-list
Index | Realm Name | Login Module Class Name

1 | karaf |
org.apache.karaf.jaas.modules.properties.PropertiesLoginModule
2 | karaf |
org.apache.karaf.jaas.modules.publickey.PublickeyLoginModule

We have here one realm (karaf) containing two login modules (PropertiesLoginModule and
PublickeyLoginModule).

The index is used by the jaas:realm-manage command to easily identify the realm/login module
that we want to manage.

38.1.1.1.2. jaas:realm-manage

The jaas:realm-manage command switch in realm/login module edit mode, where you can manage
the users, groups, and roles in the login module.

To identify the realm and login module that you want to manage, you can use the - -index option. The
indexes are displayed by the jaas:realm-1ist command:

I karaf@root()> jaas:realm-manage --index 1

Another way is to use the - -realmand - -module options. The - -realm option expects the realm
name, and the - -module option expects the login module class name:

I karaf@root()> jaas:realm-manage --realm karaf --module

177

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

I org.apache.karaf.jaas.modules.properties.PropertiesLoginModule

38.1.1.1.3. jaas:user-list

When you are in edit mode, you can list the users in the login module using the jaas:user-1list:

karaf@root()> jaas:user-list

User Name | Group | Role
karaf | admingroup | admin
karaf | admingroup | manager
karaf | admingroup | viewer

You can see the user name and the group by role.

38.1.1.1.4. jaas:user-add

The jaas:user-add command adds a new user (and the password) in the currently edited login
module:

I karaf@root()> jaas:user-add foo bar
To "commit" your change (here the user addition), you have to execute the jaas:update command:

karaf@root()> jaas:update
karaf@root()> jaas:realm-manage --index 1
karaf@root()> jaas:user-list

User Name | Group | Role
karaf | admingroup | admin
karaf | admingroup | manager
karaf | admingroup | viewer
foo | |

On the other hand, if you want to rollback the user addition, you can use the jaas:cancel command.

38.1.1.1.5. jaas:user-delete

The jaas:user-delete command deletes an user from the currently edited login module:
I karaf@root()> jaas:user-delete foo

Like for the jaas:user-add command, you have to use the jaas:update to commit your change (or
jaas:cancel to rollback):

karaf@root()> jaas:update
karaf@root()> jaas:realm-manage --index 1
karaf@root()> jaas:user-list

User Name | Group | Role
karaf | admingroup | admin
karaf | admingroup | manager
karaf | admingroup | viewer

178

CHAPTER 38. SECURITY

38.1.1.1.6. jaas:group-add

The jaas:group-add command assigns a group (and eventually creates the group) to an user in the
currently edited login module:

I karaf@root()> jaas:group-add karaf mygroup

38.1.1.1.7. jaas:group-delete

The jaas:group-delete command removes an user from a group in the currently edited login
module:

I karaf@root()> jaas:group-delete karaf mygroup

38.1.1.1.8. jaas:group-role-add

The jaas:group-role-add command adds a role in a group in the currently edited login module:

I karaf@root()> jaas:group-role-add mygroup myrole

38.1.1.1.9. jaas:group-role-delete

The jaas:group-role-delete command removes a role from a group in the currently edited login
module:

I karaf@root()> jaas:group-role-delete mygroup myrole

38.1.1.1.10. jaas:update

The jaas:update command commits your changes in the login module backend. For instance, in the
case of the PropertiesLoginModule, the etc/users.properties will be updated only after the
execution of the jaas:update command.

38.1.1.1.11. jaas:cancel

The jaas:cancel command rollback your changes and doesn’t update the login module backend.

38.1.2. Passwords encryption

By default, the passwords are stored in clear form in the etc/users.properties file.

It’s possible to enable encryption in the etc/org.apache.karaf. jaas.cfg configuration file:

HHHHHHHHHHHH BB BB BB BB BB B BB HHHH PR R R R R RRR R R HHH
FHHEHTH

#

Licensed to the Apache Software Foundation (ASF) under one or more

contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.

179

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

180

The ASF licenses this file to You under the Apache License, Version

(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.

See the License for the specific language governing permissions and

limitations under the License.

#

HHHHHHHHHHHHHBRBR BB BB BB BB HHH R R R R R R R B R BB R

FHHEHIH

#
2
#
#
#
http://www.apache.org/licenses/LICENSE-2.0
#
#
#
#

#

Boolean enabling / disabling encrypted passwords
#

encryption.enabled = false

Encryption Service name
the default one is 'basic'
a more powerful one named 'jasypt' is available
when installing the encryption feature

H R HHHH

encryption.name =

#

Encryption prefix

#

encryption.prefix = {CRYPT}

#

Encryption suffix

#

encryption.suffix = {CRYPT}

Set the encryption algorithm to use in Karaf JAAS login module
Supported encryption algorithms follow:

MD2

MD5

SHA-1

SHA-256

SHA-384

SHA-512

H o H OH O H H HHH

encryption.algorithm = MD5

#

Encoding of the encrypted password.
Can be:

hexadecimal

CHAPTER 38. SECURITY

base64
#
encryption.encoding = hexadecimal

If the encryption.enabled property is set to true, the password encryption is enabled.

With encryption enabled, the password are encrypted at the first time an user logs in. The encrypted
passwords are prefixed and suffixed with \{CRYPT\}. To re-encrypt the password, you can reset the
password in clear (in etc/users.properties file), without the \{CRYPT\} prefix and suffix. Apache
Karaf will detect that this password is in clear (because it’s not prefixed and suffixed with \{CRYPT\})
and encrypt it again.

The etc/org.apache.karaf.jaas.cfg configuration file allows you to define advanced encryption
behaviours:

e the encryption.prefix property defines the prefix to "flag" a password as encrypted. The
default is \{CRYPT\}.

e the encryption.suffix property defines the suffix to "flag" a password as encrypted. The
default is \{CRYPT\}.

e theencryption.algorithm property defines the algorithm to use for encryption (digest).
The possible values are MD2, MD5, SHA-1, SHA-256, SHA-384, SHA-512. The default is MD5.

e the encryption.encoding property defines the encoding of the encrypted password. The
possible values are hexadecimal or base64. The default value is hexadecimal.

38.1.3. Managing authentication by key

For the SSH layer, Karaf supports the authentication by key, allowing to login without providing the
password.

The SSH client (so bin/client provided by Karaf itself, or any ssh client like OpenSSH) uses a
public/private keys pair that will identify himself on Karaf SSHD (server side).

The keys allowed to connect are stored in etc/keys. properties file, following the format:
I user=key, role
By default, Karaf allows a key for the karaf user:

#

karaf=AAAAB3NzaC1kc3MAAACBAP1/U4EddRIpUt9KNC7s50Tf2EbdSPO9EAMMeP4C2USZpRV1A
I1IH7WT2NWPq/xfW6MPbLM1Vs14E7gBOOb/ImYLdrmVClpJ+f6AR7ECLCT7upl/63xhv401fnxq
imFQ8E+4P208UewwI1VBNaFpEy9nXzrithlyrv8iIDGZ3RSAHHAAAAFQCXYFCPFSMLzLKSuUYK1
64QL8FgC9QAAAIEA9+GghdabPd7LvKtcNrhXuXmUr7v60uqC+VdMCzOHgMdRWVeOUutRZT+ZXBX
CBgLRJIFNEj6EwWOFh03zwkyjMim4TwWeotUfI004KOuHiuzpnWRbgN/C/ohNWLX+2J6ASQ7zKTX
vghRkImog9/hWuWfBpKLZ16Ae1U1ZAFMO/7PSS0AAACBAKKSU2PF1/g0LXxIwmBZPPIcJshVe7b
VUpFvy13BbJDow8rXfsk1l8w0630zP/qLmcJIMO+JbcRU/53JjTuyk31drv2qxhI0OsLDCOdGCW]j4
7Y7TyhPdXh/0dthTRBy6bqGtRPXxGa7gJovixm/UuYYXPIUR/3X9MAZVZ5XVEOKYX0+rx, admin

181

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

NOTE

For security reason, this key is disabled. We encourage to create the keys pair per client
and update the etc/keys.properties file.

The easiest way to create key pair is to use OpenSSH.

You can create a key pair using:
I ssh-keygen -t dsa -f karaf.id_dsa -N karaf
You have now the public and private keys:

SrW------- 1 jbonofre jbonofre 771 Jul 25 22:05 karaf.id_dsa
-rw-r--r-- 1 jbonofre jbonofre 607 Jul 25 22:05 karaf.id_dsa.pub

You can copy in the content of the karaf.id_dsa.pub file in the etc/keys.properties:

karaf=AAAAB3NzaC1kc3MAAACBAJLjOvNEhu3/Q9Cvym2jRDaNWKATgQiHZXmErCmiLRuUD5K1f
V+HT/+8WoYdnvjOYaXFP80phYhzzZ7fbIO2LRFhYhPmGLa9nSe0sQlFuX5A9kY1120yB2kxSIZI
0fU2hy1UCgmTxdTQPSYtdwBJyv0/vczoX/8I3FziEfssO7Hj1NAAAAFQD1dKEzkt4e7rBPDokP
OMZigBh4kwAAAIEAiLnpbGNbKm8SNLUEC/fJIFswg4G4VjjngjbPZAjhkYed+H2uYmynry6V+GO
TS2kaFQGZRT9XhSpSwfdxKtx7vCCaoH9bZ6S5Pe@vowWmeBhIX1i/Sww8f2stpitW20q7V71DdDG
81+N/D7/rKDD5PjUyMsVqc1n9wCTmfgmi6XPEWSAAACAHAGWPN/Mv7P9Q9+JZRWtGg+idplLlzs
101uiStCN9e/0k96t3gRVKPheQ6IwLacNjCOKKSKrLtsVyepGA+V5]j/N+Cmsl6csZilnLvMUTV
L/cmHDEEhRTIQNPNrDDv+tED2BFgkajQqYLgMWeGVgXsBUBIT661itZ1Ytrq4v6uDQG/o=, admin

and specify to the client to use the karaf.id_dsa private key:
I bin/client -k ~/karaf.id_dsa
or to ssh

I ssh -p 8101 -i ~/karaf.id_dsa karaf@localhost

38.1.4.RBAC

Apache Karaf uses the roles to control the access to the resources: it’s a RBAC (Role Based Access
Control) system.

The roles are used to control:
e access to OSGi services
e access to the console (control the execution of the commands)
e access to JMX (MBeans and/or operations)

e access to the WebConsole

38.1.4.1. OSGi services

The details about OSGi services RBAC support is explained in the developer guide.

182

CHAPTER 38. SECURITY

38.1.4.2. Console

Console RBAC supports is a specialization of the OSGi service RBAC. Actually, in Apache Karaf, all
console commands are defined as OSGi services.

The console command name follows the scope : name format.

The ACL (Access Lists) are defined in etc/org.apache.karaf.command.acl.<scope>.cfg
configuration files, where <scope> is the commands scope.

For instance, we can define the ACL to the feature: * commands by creating a
etc/org.apache.karaf.command.acl.feature.cfg configuration file. In this
etc/org.apache.karaf.command.acl. feature.cfg configuration file, we can set:

list = viewer
info = viewer
install = admin
uninstall = admin

Here, we define that feature:1list and feature:info commands can be executed by users with
viewer role, whereas the feature:install and feature:uninstall commands can only be
executed by users with admin role. Note that users in the admin group will also have viewer role, so
will be able to do everything.

Apache Karaf command ACLs can control access using (inside a given command scope):
e the command name regex (e.g.name = role)

e the command name and options or arguments values regex (e.g.name[/.[0-9][0-9][0-
9]+./] = roleto execute name only with argument value above 100)

Both command name and options/arguments support exact matching or regex matching.
By default, Apache Karaf defines the following commands ACLs:

e etc/org.apache.karaf.command.acl.bundle.cfg configuration file defines the ACL
for bundle: * commands. This ACL limits the execution of bundle: * commands for system
bundles only to the users with admin role, whereas bundle: * commands for non-system
bundles can be executed by the users with manager role.

e etc/org.apache.karaf.command.acl.config.cfg configuration file defines the ACL
for config: * commands. This ACL limits the execution of config:* commands with
jmx.acl. * org.apache.karaf.command.acl. *, and
org.apache.karaf.service.acl. * configuration PID to the users with admin role. For
the other configuration PID, the users with the manager role can execute config:*
commands.

e etc/org.apache.karaf.command.acl.feature.cfg configuration file defines the ACL
for feature: * commands. Only the users with admin role can execute feature:install
and feature:uninstall commands. The other feature:* commands can be executed by
any user.

e etc/org.apache.karaf.command.acl. jaas.cfg configuration file defines the ACL for

jaas:* commands. Only the users with admin role can execute jaas:update command. The

other jaas:* commands can be executed by any user.

183

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

e etc/org.apache.karaf.command.acl.kar.cfg configuration file defines the ACL for
kar : * commands. Only the users with admin role can execute kar:install and
kar :uninstall commands. The other kar : * commands can be executed by any user.

e etc/org.apache.karaf.command.acl.shell.cfg configuration file defines the ACL for
shell: * and "direct" commands. Only the users with admin role can execute shell:edit,
shell:exec, shell:new, and shell: java commands. The other shell:* commands can
be executed by any user.

You can change these default ACLs, and add your own ACLs for additional command scopes (for
instance etc/org.apache.karaf.command.acl.cluster.cfgfor Apache Karaf Cellar,
etc/org.apache.karaf.command.acl.camel.cfg from Apache Camel,...).

You can fine tuned the command RBAC support by editing the karaf.secured. services property
in etc/system.properties:

#

By default, only Karaf shell commands are secured, but additional
services can be

secured by expanding this filter

#

karaf.secured.services = (&(osgi.command.scope=*)

(osgi.command. function=%*))

38.1.4.3. JMX

Like for the console commands, you can define ACL (AccessLists) to the JMX layer.

The JMX ACL are defined in etc/jmx.acl<ObjectName>.cfg configuration file, where
<ObjectName> is a MBean object name (for instance org.apache.karaf.bundle represents
org.apache.karaf; type=Bundle MBean).

Theetc/jmx.acl.cfgis the most generic configuration file and is used when no specific ones are
found. It contains the "global" ACL definition.

JMX ACLs can control access using (inside a JMX MBean):
e the operation name regex (e.qg. operation* = role)

e the operation arguments value regex (e.g. operation(java.lang.String, int)[/([1-
4]1)?[0-9]/,/.*/] = role)

By default, Apache Karaf defines the following JMX ACLs:

e etc/jmx.acl.org.apache.karaf.bundle.cfgconfiguration file defines the ACL for the
org.apache.karaf:type=bundle MBean. This ACL limits the setStartLevel(),
start(),stop(),and update() operations for system bundles for only users with admin
role. The other operations can be performed by users with the manager role.

e etc/jmx.acl.org.apache.karaf.config.cfgconfiguration file defines the ACL for the
org.apache.karaf:type=config MBean. This ACL limits the change on jmx.acl*,
org.apache.karaf.command.acl* and org.apache.karaf.service.acl*
configuration PIDs for only users with admin role. The other operations can be performed by
users with the manager role.

184

CHAPTER 38. SECURITY

e etc/jmx.acl.org.apache.karaf.security. jmx.cfg configuration file defines the ACL
for the org.apache.karaf:type=security, area=jmx MBean. This ACL limits the
invocation of the canInvoke () operation for the users with viewer role.

e etc/jmx.acl.osgi.compendium.cm.cfg configuration file defines the ACL for the
0sgi.compendium: type=cm MBean. This ACL limits the changes on jmx.acl*,
org.apache.karaf.command.acl* and org.apache.karaf.service.acl*
configuration PIDs for only users with admin role. The other operations can be performed by
users with the manager role.

e etc/jmx.acl.java.lang.Memory.cfg configuration file defines the ACL for the core JVM
Memory MBean. This ACL limits the invocation of the gc operation for only users with the
manager role.

e etc/jmx.acl.cfg configuration file is the most generic file. The ACLs defined here are used
when no other specific ACLs match (by specific ACL, it’s an ACL defined in another MBean
specific etc/jmx.acl. *.cfg configuration file). The list* (), get*(),is*() operations
can be performed by users with the viewer role. The set* () and all other * () operations
can be performed by users with the admin role.

38.1.4.4. WebConsole

The Apache Karaf WebConsole is not available by default. To enable it, you have to install the
webconsole feature:

I karaf@root()> feature:install webconsole

The WebConsole doesn’t support fine grained RBAC like console or JMX for now.

All users with the admin role can logon the WebConsole and perform any operations.

38.1.5. SecurityMBean

Apache Karaf provides a JMX MBean to check if the current user can invoke a given MBean and/or
operation.

The canInvoke () operation gets the roles of the current user, and check if one the roles can invoke
the MBean and/or the operation, eventually with a given argument value.

38.1.5.1. Operations

e canInvoke(objectName) returns true if the current user can invoke the MBean with the
objectName, false else.

e canInvoke(objectName, methodName) returns trueif the current user caninvoke the
operation methodName on the MBean with the objectName, false else.

e canInvoke(objectName, methodName, argumentTypes) returns trueifthe current
user can invoke the operation methodName with the array of arguments types
argumentTypes on the MBean with objectName, false else.

e canInvoke(bulkQuery) returns atabular data containing for each operation in the
bulkQuery tabular data if canInvokeis true or false.

185

Red Hat JBoss Fuse 7.0-TP Deploying into Apache Karaf

38.1.6. Security providers

Some applications require specific security providers to be available, such as
[BouncyCastle|http://www.bouncycastle.org].

The JVM imposes some restrictions about the use of such jars: they have to be signed and be available
on the boot classpath.

One way to deploy those providers is to put them in the JRE folder at $JAVA_HOME/jre/lib/ext
and modify the security policy configuration ($JAVA_HOME/jre/lib/security/java.security)
in order to register such providers.

While this approach works fine, it has a global effect and requires you to configure all your servers
accordingly.

Apache Karaf offers a simple way to configure additional security providers: * put your provider jar in
lib/ext * modify the etc/config.properties configuration file to add the following property

I org.apache.karaf.security.providers = XxX,yyy

The value of this property is a comma separated list of the provider class names to register.

For instance, to add the bouncycastle security provider, you define:

org.apache.karaf.security.providers =
org.bouncycastle.jce.provider.BouncyCastleProvider

In addition, you may want to provide access to the classes from those providers from the system
bundle so that all bundles can access those.

It can be done by modifying the org.osgi.framework.bootdelegation property in the same
configuration file:

I org.osgi.framework.bootdelegation = ...,org.bouncycastle*

186

	Table of Contents
	PART I. DEVELOPER GUIDE
	CHAPTER 1. DEPLOYING USING AN OSGI BUNDLE
	1.1. OSGI OVERVIEW
	1.2. PREREQUISITES
	1.3. PREPARING THE OSGI BUNDLE
	1.4. DEPLOYING THE OSGI BUNDLE

	CHAPTER 2. INTRODUCTION TO OSGI
	2.1. OVERVIEW
	2.2. ARCHITECTURE OF APACHE KARAF
	2.3. OSGI FRAMEWORK
	2.3.1. Overview
	2.3.2. OSGi architecture

	2.4. OSGI SERVICES
	2.4.1. Overview
	2.4.2. OSGi service registry
	Event notification
	Service invocation model
	OSGi framework services
	OSGi Compendium services

	2.5. OSGI BUNDLES
	Overview
	Class Loading in OSGi

	CHAPTER 3. BUILDING AN OSGI BUNDLE
	3.1. GENERATING A BUNDLE PROJECT
	3.1.1. Generating bundle projects with Maven archetypes
	3.1.2. Apache CXF karaf-soap-archetype archetype
	3.1.3. Apache Camel archetype
	3.1.4. Building the bundle

	3.2. MODIFYING AN EXISTING MAVEN PROJECT
	3.2.1. Overview
	3.2.2. Change the package type to bundle
	3.2.3. Add the bundle plug-in to your POM
	3.2.4. Customize the bundle plug-in
	3.2.5. Customize the JDK compiler version

	3.3. PACKAGING A WEB SERVICE IN A BUNDLE
	3.3.1. Overview
	3.3.2. Modifying the POM file to generate a bundle
	3.3.3. Mandatory import packages
	3.3.4. Sample Maven bundle plug-in instructions
	3.3.5. Add a code generation plug-in
	3.3.6. OSGi configuration properties

	CHAPTER 4. CONFIGURING THE BUNDLE PLUG-IN
	OVERVIEW
	CONFIGURATION PROPERTIES
	SETTING A BUNDLE’S SYMBOLIC NAME
	SETTING A BUNDLE’S NAME
	SETTING A BUNDLE’S VERSION
	SPECIFYING EXPORTED PACKAGES
	SPECIFYING PRIVATE PACKAGES
	SPECIFYING IMPORTED PACKAGES
	MORE INFORMATION

	CHAPTER 5. HOT DEPLOYMENT VS MANUAL DEPLOYMENT
	5.1. HOT DEPLOYMENT
	5.1.1. Hot deploy directory

	5.2. HOT UNDEPLOYING A BUNDLE
	5.3. MANUAL DEPLOYMENT
	5.3.1. Overview
	5.3.2. Installing a bundle
	5.3.3. Uninstalling a bundle
	5.3.4. URL schemes for locating bundles

	CHAPTER 6. LIFECYCLE MANAGEMENT
	6.1. BUNDLE LIFECYCLE STATES
	6.2. INSTALLING AND RESOLVING BUNDLES
	6.3. STARTING AND STOPPING BUNDLES
	6.4. BUNDLE START LEVEL
	6.5. SPECIFYING A BUNDLE’S START LEVEL
	6.6. SYSTEM START LEVEL

	CHAPTER 7. TROUBLESHOOTING DEPENDENCIES
	7.1. MISSING DEPENDENCIES
	7.2. REQUIRED FEATURES OR BUNDLES ARE NOT INSTALLED
	7.3. IMPORT-PACKAGE HEADER IS INCOMPLETE
	7.4. HOW TO TRACK DOWN MISSING DEPENDENCIES

	CHAPTER 8. DEPLOYING FEATURES
	8.1. CREATING A FEATURE
	8.1.1. Overview

	8.2. CREATE A CUSTOM FEATURE REPOSITORY
	8.3. ADD A FEATURE TO THE CUSTOM FEATURE REPOSITORY
	8.4. ADD THE LOCAL REPOSITORY URL TO THE FEATURES SERVICE
	8.5. ADD DEPENDENT FEATURES TO THE FEATURE
	8.6. ADD OSGI CONFIGURATIONS TO THE FEATURE
	8.7. AUTOMATICALLY DEPLOY AN OSGI CONFIGURATION

	CHAPTER 9. DEPLOYING A FEATURE
	9.1. OVERVIEW
	9.2. INSTALLING AT THE CONSOLE
	9.3. UNINSTALLING AT THE CONSOLE
	9.4. HOT DEPLOYMENT
	HOT UNDEPLOYING A FEATURES FILE
	9.5. ADDING A FEATURE TO THE BOOT CONFIGURATION

	CHAPTER 10. DEPLOYING A PLAIN JAR
	10.1. CONVERTING A JAR USING THE WRAP SCHEME
	Overview
	Syntax
	Default properties

	WRAP AND INSTALL
	Reference

	CHAPTER 11. CONTEXTS AND DEPENDENCY INJECTION (CDI)
	CHAPTER 12. INTRODUCTION TO CDI
	12.1. JBOSS WELD CDI IMPLEMENTATION

	CHAPTER 13. USE CDI TO DEVELOP AN APPLICATION
	13.1. AMBIGUOUS OR UNSATISFIED DEPENDENCIES
	13.2. MANAGED BEANS
	13.3. CONTEXTS AND SCOPES
	13.4. BEAN LIFECYCLE
	13.5. NAMED BEANS
	13.6. ALTERNATIVE BEANS
	13.6.1. Stereotypes

	13.7. OBSERVER METHODS
	13.8. INTERCEPTORS
	13.9. DECORATORS
	13.10. PORTABLE EXTENSIONS
	13.11. BEAN PROXIES
	13.11.1. Use a Proxy in an Injection

	CHAPTER 14. CAMEL CDI
	14.1. BASIC FEATURES
	Overview
	How to enable Camel CDI in Apache Karaf

	AUTO-CONFIGURED CAMEL CONTEXT
	Auto-detecting Camel routes

	AUTO-CONFIGURED CAMEL PRIMITIVES
	CAMEL CONTEXT CONFIGURATION
	MULTIPLE CAMEL CONTEXTS
	CONFIGURATION PROPERTIES
	AUTO-CONFIGURED TYPE CONVERTERS
	LAZY INJECTION / PROGRAMMATIC LOOKUP
	INJECTING A CAMEL CONTEXT FROM SPRING XML

	CHAPTER 15. CAMEL BEAN INTEGRATION
	CAMEL ANNOTATIONS
	BEAN COMPONENT
	REFERRING BEANS FROM ENDPOINT URIS

	CHAPTER 16. CDI EVENTS IN CAMEL
	CAMEL EVENTS TO CDI EVENTS
	CDI EVENTS ENDPOINT

	PART II. OSGI INTEGRATION
	AUTO-CONFIGURED OSGI INTEGRATION

	CHAPTER 17. PAX CDI AND OSGI SERVICES
	17.1. PAX CDI ARCHITECTURE
	17.1.1. Overview

	17.2. PAX CDI
	JBOSS WELD
	BEAN BUNDLE
	CDI CONTAINER
	CAMEL CDI AND OTHER CUSTOMIZATIONS
	17.3. ENABLING PAX CDI
	Overview
	Pax CDI features
	Requirements and capabilities
	How to enable Pax CDI in Apache Karaf

	17.4. OSGI SERVICES EXTENSION
	Overview
	Enabling the OSGi Services Extension
	Maven dependency for the OSGi Services extensions API

	INJECTING AN OSGI SERVICE
	DISAMBIGUATING OSGI SERVICES
	Selecting OSGi Services at run time
	Publishing a bean as OSGi Service with singleton scope
	Publishing a bean as OSGi Service with prototype scope
	Publishing a bean as OSGi Service with bundle scope
	Setting OSGi Service properties
	Publishing an OSGi Service with explicit interfaces

	CHAPTER 18. DEPLOYING USING A WAR PACKAGE
	CHAPTER 19. DEPLOYING USING THE OSGI SERVICE LAYER
	CHAPTER 20. OSGI SERVICES
	CHAPTER 21. THE BLUEPRINT CONTAINER
	21.1. BLUEPRINT CONFIGURATION
	21.2. DEFINING A SERVICE BEAN
	21.3. EXPORTING A SERVICE
	21.4. IMPORTING A SERVICE

	CHAPTER 22. PUBLISHING AN OSGI SERVICE
	22.1. OVERVIEW
	22.2. PREREQUISITES
	22.3. GENERATING A MAVEN PROJECT
	22.4. CUSTOMIZING THE POM FILE
	22.5. WRITING THE SERVICE INTERFACE
	22.6. WRITING THE SERVICE CLASS
	22.7. WRITING THE BLUEPRINT FILE
	22.8. RUNNING THE SERVICE BUNDLE

	CHAPTER 23. ACCESSING AN OSGI SERVICE
	23.1. OVERVIEW
	23.2. PREREQUISITES
	23.3. GENERATING A MAVEN PROJECT
	23.4. CUSTOMIZING THE POM FILE
	23.5. WRITING THE BLUEPRINT FILE
	23.6. WRITING THE CLIENT CLASS
	23.7. RUNNING THE CLIENT BUNDLE

	CHAPTER 24. INTEGRATION WITH APACHE CAMEL
	24.1. OVERVIEW
	24.2. REGISTRY CHAINING
	24.3. SAMPLE OSGI SERVICE INTERFACE
	24.4. SAMPLE SERVICE EXPORT
	24.5. INVOKING THE OSGI SERVICE FROM JAVA DSL
	24.6. INVOKING THE OSGI SERVICE FROM XML DSL

	CHAPTER 25. DEPLOYING USING A JMS BROKER
	APPENDIX A. URL HANDLERS
	A.1. FILE URL HANDLER
	SYNTAX
	EXAMPLES

	CHAPTER 26. HTTP URL HANDLER
	SYNTAX

	CHAPTER 27. MVN URL HANDLER
	OVERVIEW
	SYNTAX
	OMITTING COORDINATES
	SPECIFYING A VERSION RANGE
	CONFIGURING THE MVN URL HANDLER
	CHECK THE MVN URL SETTINGS
	EDIT THE CONFIGURATION FILE
	CUSTOMIZE THE LOCATION OF THE LOCAL REPOSITORY
	REFERENCE

	CHAPTER 28. WRAP URL HANDLER
	OVERVIEW
	SYNTAX
	DEFAULT INSTRUCTIONS
	EXAMPLES
	REFERENCE

	CHAPTER 29. WAR URL HANDLER
	OVERVIEW
	SYNTAX
	WAR-SPECIFIC PROPERTIES/INSTRUCTIONS
	DEFAULT INSTRUCTIONS
	EXAMPLES
	REFERENCE

	PART III. USER GUIDE
	CHAPTER 30. INTRODUCTION TO THE DEPLOYING INTO APACHE KARAF USER GUIDE PART
	30.1. DIRECTORY STRUCTURE

	CHAPTER 31. CONFIGURATION
	31.1. FILES
	31.1.1. config:* commands
	31.1.1.1. config:list
	31.1.1.2. config:edit
	31.1.1.3. config:property-list
	31.1.1.4. config:property-set
	31.1.1.5. config:property-append
	31.1.1.6. config:property-delete
	31.1.1.7. config:update and config:cancel
	31.1.1.8. config:delete
	31.1.1.9. config:meta

	31.1.2. JMX ConfigMBean
	31.1.2.1. Attributes
	31.1.2.2. Operations

	31.2. USING THE CONSOLE
	31.2.1. Available commands
	31.2.2. Subshell and completion mode
	31.2.3. Unix like environment
	31.2.3.1. Help or man
	31.2.3.2. Completion
	31.2.3.3. Alias
	31.2.3.4. Key binding
	31.2.3.5. Pipe
	31.2.3.6. Grep, more, find, …​
	31.2.3.7. Scripting

	31.2.4. Security

	CHAPTER 32. PROVISIONING
	32.1. APPLICATION
	32.2. OSGI
	32.3. FEATURE AND RESOLVER
	32.4. FEATURES REPOSITORIES
	32.5. BOOT FEATURES
	32.6. FEATURES UPGRADE
	32.7. OVERRIDES
	32.8. FEATURE BUNDLES
	32.8.1. Start Level
	32.8.2. Simulate, Start and stop
	32.8.3. Dependency

	32.9. DEPENDENT FEATURES
	32.9.1. Feature prerequisites

	32.10. FEATURE CONFIGURATIONS
	32.11. FEATURE CONFIGURATION FILES
	32.11.1. Requirements

	32.12. COMMANDS
	32.12.1. feature:repo-list
	32.12.2. feature:repo-add
	32.12.3. feature:repo-refresh
	32.12.4. feature:repo-remove
	32.12.5. feature:list
	32.12.6. feature:install
	32.12.7. feature:start
	32.12.8. feature:stop
	32.12.9. feature:uninstall

	32.13. DEPLOYER
	32.14. JMX FEATUREMBEAN
	32.14.1. Attributes
	32.14.2. Operations
	32.14.3. Notifications

	CHAPTER 33. REMOTE
	33.1. SSHD SERVER
	33.1.1. Configuration
	33.1.2. Console clients
	33.1.2.1. System native clients
	33.1.2.2. ssh:ssh command
	33.1.2.3. Apache Karaf client
	33.1.2.4. Logout

	33.1.3. Filsystem clients
	33.1.3.1. Native SCP/SFTP clients
	33.1.3.2. Apache Maven

	33.2. JMX MBEANSERVER

	CHAPTER 34. BUILDING WITH MAVEN
	CHAPTER 35. MAVEN DIRECTORY STRUCTURE
	35.1. OVERVIEW
	35.2. STANDARD DIRECTORY LAYOUT
	35.3. POM.XML FILE
	35.4. SRC AND TARGET DIRECTORIES
	35.5. MAIN AND TEST DIRECTORIES
	35.6. JAVA DIRECTORY
	35.7. RESOURCES DIRECTORY
	35.8. BLUEPRINT CONTAINER

	CHAPTER 36. PREPARING TO USE MAVEN
	36.1. OVERVIEW
	36.2. PREREQUISITES
	36.3. ADDING THE RED HAT MAVEN REPOSITORIES
	36.4. ARTIFACTS
	36.5. MAVEN COORDINATES

	CHAPTER 37. MAVEN INDEXER PLUGIN
	CHAPTER 38. SECURITY
	38.1. REALMS
	38.1.1. Users, groups, roles, and passwords
	38.1.1.1. Commands

	38.1.2. Passwords encryption
	38.1.3. Managing authentication by key
	38.1.4. RBAC
	38.1.4.1. OSGi services
	38.1.4.2. Console
	38.1.4.3. JMX
	38.1.4.4. WebConsole

	38.1.5. SecurityMBean
	38.1.5.1. Operations

	38.1.6. Security providers

