
Red Hat JBoss Fuse 6.3

Security on JBoss EAP

Security Guide for JBoss Fuse on JBoss EAP

Last Updated: 2020-10-27

Red Hat JBoss Fuse 6.3 Security on JBoss EAP

Security Guide for JBoss Fuse on JBoss EAP

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2016 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use this guide as a guide to securing JBoss Fuse on JBoss EAP

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. SWITCHYARD SECURITY
1.1. ABOUT SWITCHYARD SECURITY
1.2. CONFIGURING SECURITY FOR SWITCHYARD
1.3. SWITCHYARD SECURITY CONFIGURATION
1.4. USING SECURITY ELEMENTS AND ATTRIBUTES
1.5. SECURITY
1.6. CALLBACK HANDLERS
1.7. LOGIN MODULES
1.8. SWITCHYARD SECURITY QUICKSTARTS
1.9. SECURE WAYS OF RUNNING RED HAT JBOSS FUSE

CHAPTER 2. PATCH INSTALLATION
2.1. ABOUT PATCHING MECHANISMS
2.2. SUBSCRIBE TO PATCH MAILING LISTS
2.3. INSTALL PATCHES IN ZIP FORM
2.4. SEVERITY AND IMPACT RATING OF JBOSS SECURITY PATCHES

CHAPTER 3. KNOWN SECURITY ISSUES
3.1. THE POODLE ISSUE AND JBOSS FUSE

CHAPTER 4. WS-SECURITY
4.1. WS-SECURITY OVERVIEW
4.2. JBOSS WS-SECURITY SUPPORT
4.3. APACHE CXF WS-SECURITY IMPLEMENTATION
4.4. ENABLE WS-SECURITY
4.5. SAMPLE WS-SECURITY CONFIGURATIONS
4.6. SIGNATURE AND ENCRYPTION SUPPORT
4.7. SAMPLE ENDPOINT CONFIGURATIONS
4.8. SAMPLE CLIENT CONFIGURATIONS
4.9. ENDPOINT SERVING MULTIPLE CLIENTS
4.10. SAMPLE CXF INTERCEPTOR CONFIGURATIONS

CHAPTER 5. S-RAMP SECURITY
5.1. S-RAMP BROWSER
5.2. S-RAMP SERVER

CHAPTER 6. POLICY
6.1. ABOUT POLICY
6.2. CONFIGURING POLICY
6.3. INTERACTION POLICY
6.4. IMPLEMENTATION POLICY
6.5. TRANSACTION POLICY
6.6. SECURITY POLICY

3
3
3
4
5
6
6
6
7
7

9
9
9

10
11

13
13

14
14
14
14
17
18
19
19
25
26
26

28
28
28

30
30
30
30
31
31

33

Table of Contents

1

Red Hat JBoss Fuse 6.3 Security on JBoss EAP

2

CHAPTER 1. SWITCHYARD SECURITY
SwitchYard services can be secured by:

Specifying a list of security policies that are required for that service.

Configuring application-level security processing details for the services within a domain.

Configuring system-level security processing details.

Storing sensitive information, such as passwords, in the JBoss AS password vault.

For information on SAML (Security Assertion Markup Language) and Java Security Manager, refer
JBoss Enterprise Application Platform 6.1.1 Security Guide.

See Also:

Section 6.6, “Security Policy”

Section 1.3, “SwitchYard Security Configuration”

Section 1.7, “Login Modules”

1.1. ABOUT SWITCHYARD SECURITY

SOA architecture involves applications to be exposed as services. These services must be protected
against security vulnerabilities such as a SQL injection attack, XML entity expansion, and denial of
service attack. The security implementation covers these security concerns and also provides the ability
to monitor usage of services in SOA. However, you need to address the security concerns as an
application developer if you are building your application on top of the product. For more information on
such security concerns, refer https://www.owasp.org/index.php/Top_10_2013-Top_10.

SwitchYard services are secured in the following ways:

Specify a list of security policies that are required for that service in the SwitchYard application
descriptor (switchyard.xml). Edit the switchyard.xml file using the SwitchYard editor plug-in
and specify the security policy by using the requires attribute of a component service definition
as shown below:

You can configure the security processing details for the services within a domain in the
following ways:

Select the Service for a component and view the Properties View in the SwitchYard editor.

Hover over the Service for a component. A list of tools including the Property Sheet
appears. It contains the security information.

Ensure Authorization, Client Authentication and Confidentiality are checked.

This guide provides information on Red Hat JBoss Fuse security. For information on the security of
underlying application platform, refer JBoss Enterprise Application Platform 6.1.1 Security Guide.

1.2. CONFIGURING SECURITY FOR SWITCHYARD

<service name="WorkService" requires="authorization clientAuthentication confidentiality">

CHAPTER 1. SWITCHYARD SECURITY

3

https://www.owasp.org/index.php/Top_10_2013-Top_10

All services within a domain can define or share their own security configuration, which is specified in
META-INF/switchyard.xml file.

1.3. SWITCHYARD SECURITY CONFIGURATION

All services within a domain share the same security configuration, which is specified in META-
INF/switchyard.xml:

The <security> element

This is an optional element. If not specified, the callbackHandler and moduleName attributes
described below will fallback to their default values.

The callbackHandler attribute

This is an optional attribute. If not specified, a default value of
org.switchyard.security.callback.NamePasswordCallbackHandler will be used.

The moduleName attribute

This is an optional attribute. If not specified, a default value of other will be used. The value maps to a

<sy:switchyard>
 <sca:composite ...>
 <component ...>
 ...
 <service ... sy:security="security-name">
 ...
 </service>
 <reference ... sy:security="default">
 ...
 </reference>
 </component>
 <sca:composite>
 <domain>
 <securities>
 <security callbackHandler="callback-handler-class-name" name="security-name"
rolesAllowed="users, administrators" runAs="leaders" securityDomain="jaas-domain-name">
 <properties>
 <property name="property-name" value="property-value"/>
 </properties>
 </security>
 </securities>
 </domain>
</sy:switchyard>

<switchyard>
 <domain>
 <security callbackHandler="callback-handler-class-name" moduleName="jaas-domain-name"
rolesAllowed="users, administrators" runAs="leaders">
 <properties>
 <property name="property-name" value="property-value"/>
 </properties>
 </security>
 </domain>
</switchyard>

Red Hat JBoss Fuse 6.3 Security on JBoss EAP

4

This is an optional attribute. If not specified, a default value of other will be used. The value maps to a
JAAS security domain name.

The rolesAllowed attribute

This is an optional attribute. If specified, and if a Service has an authorization security policy
requirement, the authenticated user must be in one of the roles listed. The value is a comma-
separated list of roles (whitespace gets trimmed).

The runAs attribute

This is an optional attribute. If specified, the value of this attribute will be added as a role to the
authenticated user.

The <properties> and <property> elements

A <security> element can optionally specify a <properties> element. This can be adjusted to specify
zero to many (0..*) <property> elements. Each <property> element requires a name and a value
attribute.

NOTE

The list of specified name/value properties is made available to the SwitchYard Security
configuration, as well as the configured callbackHandler. Some CallbackHandlers require
configuration information beyond what can be assumed in a no-argument constructor.
See the individual CallbackHandler implementations for details.

1.4. USING SECURITY ELEMENTS AND ATTRIBUTES

The <component><service> and <component><reference> security Attribute

Component Services and Component References can specify an optional sy:security attribute. This
attribute points to a named <security> element in the domain section. If not defined, use the default
value.

The callbackHandler Attribute

This is an optional attribute. If not specified, use the default value of
org.switchyard.security.callback.NamePasswordCallbackHandler.

The name Attribute

This is an optional attribute. If not specified, use the default value of default. Component Services
and Component References point to this name.

The rolesAllowed Attribute

This is an optional attribute. If specified, and if a Service has an authorization security policy
requirement, the authenticated user must be in one of the roles listed.

The runAs Attribute

This is an optional attribute. If specified, add the value of this attribute as a role to the authenticated
user.

The securityDomain Attribute

This is an optional attribute. If not specified, use the default value.

CHAPTER 1. SWITCHYARD SECURITY

5

The <properties> and <property> Elements

A <security> element can optionally specify a <properties> element, which can optionally specify zero
to many <property> elements. Each <property> element has two required attributes: name and value.
The list of specified name/value properties are made available to the SwitchYard Security
configuration, as well as the configured callbackHandler.

The <securities> Element

This is an optional element. Contains any number of <security> elements. If not defined, use the
default security configuration.

The <security> Element

This is an optional element. If not specified, the callbackHandler, name, and securityDomain
attributes will fallback to their default values.

1.5. SECURITY

SwitchYard allows you to make services secure by specifying a list of security properties for a service.
You may also configure the security processing details for services within a domain.

1.6. CALLBACK HANDLERS

The following is a list of available CallbackHandlers within the org.switchyard.security.callback Java
package:

NamePasswordCallbackHandler

Provides name and password credentials to a configured LoginModule stack.

STSTokenCallbackHandler

Provides assertion credentials to a configured LoginModule stack.

STSIssueCallbackHandler

Utilizes the NamePasswordCallbackHandler and the STSTokenCallbackHandler to provide name,
password and assertion credentials to a configured LoginModule stack.

CertificateCallbackHandler

Provides Certificate credentials to a configured LoginModule stack.

1.7. LOGIN MODULES

Login modules provide user information including logins, passwords and roles within JBoss Fuse. They
provide services with customizable user authentication and the ability to reuse existing login modules
defined for the platform.

JBoss Fuse bundles various PicketBox (underlying security capability) LoginModules, as well as various
PicketLink (federated trust security capability) LoginModules. They can be stacked underneath a single
security domain.

For more information on Login Module examples, refer JBoss Enterprise Application Platform 6.1
Security Guide.

Red Hat JBoss Fuse 6.3 Security on JBoss EAP

6

1.8. SWITCHYARD SECURITY QUICKSTARTS

The SwitchYard distribution contains security examples in the form of quickstart demos. The following is
a brief description of each of the quickstarts:

NOTE

All the security quickstarts for SwitchYard are located in the
EAP_HOME/quickstarts/switchyard/demos directory. You can find out more
information from the Readme.md file packaged with each.

policy-security-basic

This quickstart exposes a bean service through a soap binding. Confidentiality is provided via SSL,
and client authentication via a HTTP Basic Authorization header.

policy-security-basic-propagate

This quickstart is similar to policy-security-basic, however the bean service additionally invokes a
different back end bean service which also has security policy requirements. The client's security
context (authenticated subject and credentials) is propagated to this secondary service.

policy-security-cert

This quickstart exposes a bean service through a soap binding. Confidentiality is provided via SSL,
and client authentication via an X509 Certificate.

policy-security-saml

This quickstart exposes a bean service through a soap binding. Confidentiality is provided via SSL,
and client authentication via a SAML assertion in the form of a token retrieved from PicketLink STS.

policy-security-wss-signencrypt

This quickstart exposes a bean service through a soap binding. Proper Signature and Encryption are
enforced by JBossWS-CXF.

policy-security-wss-username

This quickstart exposes a bean service through a soap binding. Confidentiality is provided via SSL,
and client authentication via a WS-Security UsernameToken which is handled by JBossWS-CXF.

1.9. SECURE WAYS OF RUNNING RED HAT JBOSS FUSE

Enabling the Java Security Manager (JSM) to sandbox the evaluation of MVEL may introduce a
performance hit in high load environments. Following are some secure ways of running Red Hat JBoss
Fuse:

If you run Red Hat JBoss Fuse without Runtime Governance, you can disable JSM as it does not
introduce MVEL security risks.

If you need Runtime Governance in high performance environment, Red Hat recommends
running Runtime Governance in a separate JVM. The JVM instance running Runtime
Governance must have JSM enabled, whereas other application server instances can run
without JSM.

If you are working on testing and development environments without high loads, it is okay to run

CHAPTER 1. SWITCHYARD SECURITY

7

If you are working on testing and development environments without high loads, it is okay to run
one JVM with the server, Runtime Governance, and JSM enabled as the performance hit is not
dramatic.

WARNING

Red Hat does not recommend running the server with Runtime Governance
enabled and JSM disabled in one JVM instance, as this is not secure.

Red Hat JBoss Fuse 6.3 Security on JBoss EAP

8

CHAPTER 2. PATCH INSTALLATION

2.1. ABOUT PATCHING MECHANISMS

JBoss patches are released in two forms.

Asynchronous updates: one-off patches which are released outside the normal update cycle of
the existing product. These may include security patches, as well as other one-off patches
provided by Red Hat Global Support Services (GSS) to fix specific issues.

Planned updates: These include cumulative patches, as well as micro, minor or major upgrades
of an existing product. Cumulative patches include all previously developed asynchronous
updates for that version of the product.

Deciding whether a patch is released as part of a planned update or an asynchronous update depends on
the severity of the issue being fixed. An issue of low impact is typically deferred, and is resolved in the
next cumulative patch or minor release of the affected product. Issues of moderate or higher impact are
typically addressed in order of importance as an asynchronous update to the affected product, and
contain a fix for only a specific issue.

Cumulative and security patches for JBoss products are distributed in two forms: zip (for all products)
and RPM (for a subset of products).

IMPORTANT

A JBoss product installation must always only be updated using one patch method: either
zip or RPM patches. Not all patches will be available via RPM, therefore customers using
the RPM installation will not be able to update via the zip patch, and will not have the
option to patch their instance.

Security updates for JBoss products are provided by an erratum (for both zip and RPM methods). The
erratum encapsulates a list of the resolved flaws, their severity ratings, the affected products, textual
description of the flaws, and a reference to the patches. Bug fix updates are not announced via an
erratum.

For more information on how Red Hat rates JBoss security flaws, refer to: Section 2.4, “Severity and
Impact Rating of JBoss Security Patches”

Red Hat maintains a mailing list for notifying subscribers about security related flaws. See Section 2.2,
“Subscribe to Patch Mailing Lists”

2.2. SUBSCRIBE TO PATCH MAILING LISTS

Summary

The JBoss team at Red Hat maintains a mailing list for security announcements for Red Hat JBoss
Enterprise Middleware products. This section covers what you need to do to subscribe to this list.

Prerequisites

None

Procedure 2.1. Subscribe to the JBoss Watch List

CHAPTER 2. PATCH INSTALLATION

9

1. Click the following link to go to the JBoss Watch mailing list page: JBoss Watch Mailing List.

2. Enter your email address in the Subscribing to Jboss-watch-list section.

3. [You may also wish to enter your name and select a password. Doing so is optional but
recommended.]

4. Press the Subscribe button to start the subscription process.

5. You can browse the archives of the mailing list by going to: JBoss Watch Mailing List Archives.

Result

After confirmation of your email address, you will be subscribed to receive security related
announcements from the JBoss patch mailing list.

2.3. INSTALL PATCHES IN ZIP FORM

Summary

JBoss bug fix patches are distributed in zip format. This task describes the steps you need to take to
install the patches (security or bug fixes) via the zip format.

Prerequisites

Valid access and subscription to the Red Hat Customer Portal.

A current subscription to a JBoss product installed in a zip format.

Procedure 2.2. Apply a patch to a JBoss product via the zip method

Security updates for JBoss products are provided by an erratum (for both zip and RPM methods). The
erratum encapsulates a list of the resolved flaws, their severity ratings, the affected products, textual
description of the flaws, and a reference to the patches. Bug fix updates are not announced via an
erratum.

For zip distributions of JBoss products, the ERRATA includes a link to a URL on the Customer Portal
where the patch zip can be downloaded. This download contains the patched versions of existing JBoss
products and only includes the files that have been changed from the previous install.

WARNING

Before installing a patch, you must backup your JBoss product along with all
customized configuration files.

1. Get notified about the security patch either via being a subscriber to the JBoss watch mailing
list or by browsing the JBoss watch mailing list archives.

NOTE

Only security patches are announced on the JBoss watch mailing list.

Red Hat JBoss Fuse 6.3 Security on JBoss EAP

10

http://www.redhat.com/mailman/listinfo/jboss-watch-list
https://www.redhat.com/archives/jboss-watch-list/

2. Read the ERRATA for the security patch and confirm that it applies to a JBoss product in your
environment.

3. If the security patch applies to a JBoss product in your environment, then follow the link to
download the patch from the Red Hat Customer Portal.

4. The downloadable zip file from the customer portal will contain all the files required to fix the
security issue or bug. Download this patch zip file in the same location as your JBoss product.

5. Unzip the patch file in the same location where the JBoss product is installed. The patched
versions overwrite the existing files.

Result

The JBoss product is patched with the latest update using the zip format.

2.4. SEVERITY AND IMPACT RATING OF JBOSS SECURITY PATCHES

To communicate the risk of each JBoss security flaw, Red Hat uses a four-point severity scale of low,
moderate, important and critical, in addition to Common Vulnerability Scoring System (CVSS) version 2
base scores which can be used to identify the impact of the flaw.

Table 2.1. Severity Ratings of JBoss Security Patches

Severity Description

Critical This rating is given to flaws that could be easily
exploited by a remote unauthenticated attacker and
lead to system compromise (arbitrary code
execution) without requiring user interaction. These
are the types of vulnerabilities that can be exploited
by worms. Flaws that require an authenticated
remote user, a local user, or an unlikely configuration
are not classed as critical impact.

Important This rating is given to flaws that can easily
compromise the confidentiality, integrity, or
availability of resources. These are the types of
vulnerabilities that allow local users to gain privileges,
allow unauthenticated remote users to view
resources that should otherwise be protected by
authentication, allow authenticated remote users to
execute arbitrary code, or allow local or remote users
to cause a denial of service.

Moderate This rating is given to flaws that may be more difficult
to exploit but could still lead to some compromise of
the confidentiality, integrity, or availability of
resources, under certain circumstances. These are
the types of vulnerabilities that could have had a
critical impact or important impact but are less easily
exploited based on a technical evaluation of the flaw,
or affect unlikely configurations.

CHAPTER 2. PATCH INSTALLATION

11

Low This rating is given to all other issues that have a
security impact. These are the types of vulnerabilities
that are believed to require unlikely circumstances to
be able to be exploited, or where a successful exploit
would give minimal consequences.

Severity Description

The impact component of a CVSS v2 score is based on a combined assessment of three potential
impacts: Confidentiality (C), Integrity (I) and Availability (A). Each of these can be rated as None (N),
Partial (P) or Complete (C).

Because the JBoss server process runs as an unprivileged user and is isolated from the host operating
system, JBoss security flaws are only rated as having impacts of either None (N) or Partial (P).

Example 2.1. CVSS v2 Impact Score

The example below shows a CVSS v2 impact score, where exploiting the flaw would have no impact
on system confidentiality, partial impact on system integrity and complete impact on system
availability (that is, the system would become completely unavailable for any use, for example, via a
kernel crash).

C:N/I:P/A:C

Combined with the severity rating and the CVSS score, organizations can make informed decisions on
the risk each issue places on their unique environment and schedule upgrades accordingly.

For more information about CVSS2, please see: CVSS2 Guide.

Red Hat JBoss Fuse 6.3 Security on JBoss EAP

12

https://access.redhat.com/security/updates/classification/

CHAPTER 3. KNOWN SECURITY ISSUES

3.1. THE POODLE ISSUE AND JBOSS FUSE

The Poodle SSLv3 vulnerability is an issue with SSLv3 which could allow man-in-the-middle attacks. Red
Hat has provided a description of the issue and its effect on some Red Hat proucts in this article
POODLE: SSLv3 vulnerability (CVE-2014-3566) .

The Poodle SSLv3 vulnerability will affect some of the components of Red Hat JBoss Fuse. The
structure of the product offers some protection by providing a layer of abstraction. Red Hat JBoss Fuse
will have the same protections in place as Red Hat JBoss Enterprise Application Platform. See the Red
Hat JBoss Enterprise Application Platform section of the article mentioned above for links to how to
disable SSLv3 for various products.

NOTE

Please note that some of the instructions in the article links are not available for Red Hat
JBoss Fuse. The layers of abstraction in the product remove the ability to directly
interact with some of the components. Contact the Red Hat helpdesk with specific
queries regarding any Red Hat JBoss Fuse components that your company uses.

A best practice for maximum security is to adapt new product releases and product patches soon after
they are made available. Please work with your operations team to implement this best practice.

CHAPTER 3. KNOWN SECURITY ISSUES

13

https://access.redhat.com/articles/1232123

CHAPTER 4. WS-SECURITY

4.1. WS-SECURITY OVERVIEW

WS-Security standards allow policies to be applied to SOA for controlled service usage and monitoring.
WS-Security provides the means to secure your services beyond transport level protocols such as
HTTPS. Through a number of standards such as XML-Encryption, and headers defined in the WS-
Security standard, it allows you to:

Pass authentication tokens between services

Encrypt messages or parts of messages

Sign messages

Timestamp messages

WS-Security makes heavy use of public and private key cryptography. It is helpful to understand these
basics to really understand how to configure WS-Security. With public key cryptography, a user has a
pair of public and private keys. These are generated using a large prime number and a key function. The
keys are related mathematically, but cannot be derived from one another. With these keys we can
encrypt messages. For example, if Bob wants to send a message to Alice, he can encrypt a message
using her public key. Alice can then decrypt this message using her private key. Only Alice can decrypt
this message as she is the only one with the private key. Messages can also be signed. This allows you to
ensure the authenticity of the message. If Alice wants to send a message to Bob, and Bob wants to be
sure that it is from Alice, Alice can sign the message using her private key. Bob can then verify that the
message is from Alice by using her public key.

4.2. JBOSS WS-SECURITY SUPPORT

JBoss Web Services supports many real world scenarios requiring WS-Security functionalities. This
includes signature and encryption support through X509 certificates, authentication and authorization
through username tokens as well as all ws-security configurations covered by WS-SecurityPolicy
specification. The core of WS-Security functionalities is provided through the Apache CXF engine. On
top of that the JBossWS integration adds few configuration enhancements to simplify the setup of WS-
Security enabled endpoints.

4.3. APACHE CXF WS-SECURITY IMPLEMENTATION

Apache CXF features a WS-Security module that supports multiple configurations and is easily
extendible. The system is based on interceptors that delegate to Apache WSS4J for the low level
security operations. Interceptors can be configured in different ways, either through Spring
configuration files or directly using Apache CXF client API. For more details, refer to the Apache CXF
documentation.

Recent versions of Apache CXF introduced support for WS-Security Policy, which aims at moving most
of the security configuration into the service contract (through policies), so that clients can easily be
configured almost completely automatically from that. This way users do not need to manually deal with
configuring or installing the required interceptors. The Apache CXF WS-Policy engine internally takes
care of that.

4.3.1. WS-Security Policy Support

WS-SecurityPolicy describes the actions that are required to securely communicate with a service

Red Hat JBoss Fuse 6.3 Security on JBoss EAP

14

advertised in a given WSDL contract. The WSDL bindings and operations reference WS-Policy
fragments with the security requirements to interact with the service. The WS-SecurityPolicy
specification allows for specifying things like asymmetric and symmetric keys, using transports (https)
for encryption, which parts or headers to encrypt or sign, whether to sign then encrypt or encrypt then
sign, whether to include timestamps, and whether to use derived keys.

Some mandatory configuration elements are not covered by WS-SecurityPolicy because they are not
meant to be public or part of the published endpoint contract. These include things such as keystore
locations, usernames and passwords. Apache CXF allows configuring these elements either through
Spring xml descriptors or using the client API or annotations. Below is the list of supported configuration
properties:

Table 4.1. Supported Configuration Properties

Property Description

ws-security.username The username used for UsernameToken policy
assertions.

ws-security.password The password used for UsernameToken policy
assertions. If not specified, the callback handler is
called.

ws-security.callback-handler The WSS4J security CallbackHandler that is used to
retrieve passwords for keystores and
UsernameTokens.

ws-security.signature.properties The properties file or object that contains the
WSS4J properties for configuring the signature
keystore and crypto objects.

ws-security.encryption.properties The properties file or object that contains the
WSS4J properties for configuring the encryption
keystore and crypto objects.

ws-security.signature.username The username or alias for the key in the signature
keystore. If not specified, it uses the default alias set
in the properties file. If that is also not set, and the
keystore only contains a single key, that key is used.

ws-security.encryption.username The username or alias for the key in the encryption
keystore. If not specified, it uses the default alias set
in the properties file. If that is also not set, and the
keystore only contains a single key, that key is used.
For the web service provider, the useReqSigCert
keyword can be used to accept (encrypt to) any
client whose public key is in the service's truststore
(defined in ws-security.encryption.properties.)

ws-security.signature.crypto Instead of specifying the signature properties, this
can point to the full WSS4J Crypto object. This can
allow easier programmatic configuration of the
Crypto information.

CHAPTER 4. WS-SECURITY

15

ws-security.encryption.crypto Instead of specifying the encryption properties, this
can point to the full WSS4J Crypto object. This can
allow easier programmatic configuration of the
Crypto information.

Property Description

Here is an example of configuration using the client API:

For additional configuration details, refer to the Apache CXF documentation.

4.3.2. JBossWS Configuration Additions

In order for removing the need of Spring on server side for setting up WS-Security configuration
properties not covered by policies, the JBossWS integration allows for getting those pieces of
information from a defined endpoint configuration. Endpoint configurations can include property
declarations and endpoint implementations can be associated with a given endpoint configuration using
the @EndpointConfig annotation.

 Map<String, Object> ctx = ((BindingProvider)port).getRequestContext();
ctx.put("ws-security.encryption.properties", properties);
port.echoString("hello");

<?xml version="1.0" encoding="UTF-8"?>
<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:javaee="http://java.sun.com/xml/ns/javaee" xsi:schemaLocation="urn:jboss:jbossws-jaxws-
config:4.0 schema/jbossws-jaxws-config_4_0.xsd">
 <endpoint-config>
 <config-name>Custom WS-Security Endpoint</config-name>
 <property>
 <property-name>ws-security.signature.properties</property-name>
 <property-value>bob.properties</property-value>
 </property>
 <property>
 <property-name>ws-security.encryption.properties</property-name>
 <property-value>bob.properties</property-value>
 </property>
 <property>
 <property-name>ws-security.signature.username</property-name>
 <property-value>bob</property-value>
 </property>
 <property>
 <property-name>ws-security.encryption.username</property-name>
 <property-value>alice</property-value>
 </property>
 <property>
 <property-name>ws-security.callback-handler</property-name>
 <property-
value>org.jboss.test.ws.jaxws.samples.wsse.policy.basic.KeystorePasswordCallback</property-
value>

Red Hat JBoss Fuse 6.3 Security on JBoss EAP

16

4.3.3. Apache CXF Annotations

The JBossWS configuration additions allow for a descriptor approach to the WS-Security Policy engine
configuration. If you prefer to provide the same information through an annotation approach, you can
leverage the Apache CXF @org.apache.cxf.annotations.EndpointProperties annotation:

4.4. ENABLE WS-SECURITY

Procedure 4.1. Enable WS-Security

1. Define a Policy within your WSDL and reference it with a PolicyReference inside your binding.

 </property>
 </endpoint-config>
</jaxws-config>

import javax.jws.WebService;
import org.jboss.ws.api.annotation.EndpointConfig;

@WebService
(
 portName = "SecurityServicePort",
 serviceName = "SecurityService",
 wsdlLocation = "WEB-INF/wsdl/SecurityService.wsdl",
 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",
 endpointInterface = "org.jboss.test.ws.jaxws.samples.wsse.policy.basic.ServiceIface"
)
@EndpointConfig(configFile = "WEB-INF/jaxws-endpoint-config.xml", configName = "Custom WS-
Security Endpoint")
public class ServiceImpl implements ServiceIface
{
 public String sayHello()
 {
 return "Secure Hello World!";
 }
}

@WebService(
 ...
)
@EndpointProperties(value = {
 @EndpointProperty(key = "ws-security.signature.properties", value = "bob.properties"),
 @EndpointProperty(key = "ws-security.encryption.properties", value = "bob.properties"),
 @EndpointProperty(key = "ws-security.signature.username", value = "bob"),
 @EndpointProperty(key = "ws-security.encryption.username", value = "alice"),
 @EndpointProperty(key = "ws-security.callback-handler", value =
"org.jboss.test.ws.jaxws.samples.wsse.policy.basic.KeystorePasswordCallback")
 }
)
public class ServiceImpl implements ServiceIface {
 ...
}

CHAPTER 4. WS-SECURITY

17

2. Configure your <soap.binding> with <securityAction>.

This is so that JBossWS-CXF knows which tokens to respect within incoming SOAP requests.

3. Include a WEB-INF/jboss-web.xml file in your application with a <security-domain> specified.

This is so that JBossWS-CXF knows which modules to use for authentication and rolemapping.

4.5. SAMPLE WS-SECURITY CONFIGURATIONS

JBoss Fuse provides the policy-security-wss-username quickstart application as an example. The
following are the pertinent sections:

META-INF/WorkService.wsdl:

META-INF/switchyard.xml:

META-INF/jaxws-endpoint-config.xml:

<binding name="WorkServiceBinding" type="tns:WorkService">
 <wsp:PolicyReference URI="#WorkServicePolicy"/>
 ...
</binding>
<wsp:Policy wsu:Id="WorkServicePolicy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SupportingTokens xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702">
 <wsp:Policy>
 <sp:UsernameToken sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702/IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SupportingTokens>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<binding.soap xmlns="urn:switchyard-component-soap:config:1.0">
 <wsdl>META-INF/WorkService.wsdl</wsdl>
 <contextPath>policy-security-wss-username</contextPath>
 <endpointConfig configFile="META-INF/jaxws-endpoint-config.xml"
configName="SwitchYard-Endpoint-Config"/>
 <inInterceptors>
 <interceptor
class="org.jboss.wsf.stack.cxf.security.authentication.SubjectCreatingPolicyInterceptor"/>
 </inInterceptors>
</binding.soap>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"
xmlns:javaee="http://java.sun.com/xml/ns/javaee"

Red Hat JBoss Fuse 6.3 Security on JBoss EAP

18

WEB-INF/jboss-web.xml:

With these in place, JBossWS-CXF intercepts incoming SOAP requests, extract the UsernameToken,
attempt to authenticate it against the LoginModule(s) configured in the application server's "other"
security domain, and provide any authorized roles. If successful, the request is handed over to
SwitchYard, which processes it further, including enforcing your own policies. In the case of WS-Security,
SwitchYard does not attempt a second clientAuthentication, but instead respects the outcome from
JBossWS-CXF.

NOTE

If the original clientAuthentication fails, this is a "fail-fast" scenario, and the request is not
channeled into SwitchYard.

4.6. SIGNATURE AND ENCRYPTION SUPPORT

To add the support for WS-Security Signature and Encryption, ensure the following:

Include the added requirements to the Policy in your WSDL. See Section 4.7, “Sample Endpoint
Configurations”, Section 4.8, “Sample Client Configurations” , and Section 4.9, “Endpoint
Serving Multiple Clients”.

Add a CXF Interceptor which sets certain CXF security properties. See Section 4.10, “Sample
CXF Interceptor Configurations”.

4.7. SAMPLE ENDPOINT CONFIGURATIONS

An endpoint declares all the abstract methods that are exposed to the client. You can use endpoint
configurations to include property declarations. The endpoint implementations can be associated with a
given endpoint configuration using the @EndpointConfig annotation. The following steps describe a
sample endpoint configuration:

1. Create the web service endpoint using JAX-WS. Use a contract-first approach when using WS-
Security as the policies declared in the WSDL are parsed by the Apache CXF engine on both
server and client sides. Here is an example of WSDL contract enforcing signature and
encryption using X 509 certificates:

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-
config_4_0.xsd">
 <endpoint-config>
 <config-name>SwitchYard-Endpoint-Config</config-name>
 <property>
 <property-name>ws-security.validate.token</property-name>
 <property-value>false</property-value>
 </property>
 </endpoint-config>
</jaxws-config>

<jboss-web>
 <security-domain>java:/jaas/other</security-domain>
</jboss-web>

CHAPTER 4. WS-SECURITY

19

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions targetNamespace="http://www.jboss.org/jbossws/ws-
extensions/wssecuritypolicy" name="SecurityService"
 xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsp="http://www.w3.org/ns/ws-policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:wsaws="http://www.w3.org/2005/08/addressing"
 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <types>
 <xsd:schema>
 <xsd:import namespace="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"
schemaLocation="SecurityService_schema1.xsd"/>
 </xsd:schema>
 </types>
 <message name="sayHello">
 <part name="parameters" element="tns:sayHello"/>
 </message>
 <message name="sayHelloResponse">
 <part name="parameters" element="tns:sayHelloResponse"/>
 </message>
 <portType name="ServiceIface">
 <operation name="sayHello">
 <input message="tns:sayHello"/>
 <output message="tns:sayHelloResponse"/>
 </operation>
 </portType>
 <binding name="SecurityServicePortBinding" type="tns:ServiceIface">
 <wsp:PolicyReference URI="#SecurityServiceSignThenEncryptPolicy"/>
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
 <operation name="sayHello">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="SecurityService">
 <port name="SecurityServicePort" binding="tns:SecurityServicePortBinding">
 <soap:address location="http://localhost:8080/jaxws-samples-wssePolicy-sign-encrypt"/>
 </port>
 </service>

 <wsp:Policy wsu:Id="SecurityServiceSignThenEncryptPolicy"
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>

Red Hat JBoss Fuse 6.3 Security on JBoss EAP

20

 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Always
ToRecipient">
 <wsp:Policy>
 <sp:WssX509V1Token11/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Never"
>
 <wsp:Policy>
 <sp:WssX509V1Token11/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp-cxf:Basic128GCM xmlns:sp-cxf="http://cxf.apache.org/custom/security-
policy"/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:EncryptSignature/>
 <sp:OnlySignEntireHeadersAndBody/>
 <sp:SignBeforeEncrypting/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:SignedParts xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <sp:Body/>
 </sp:EncryptedParts>
 <sp:Wss10 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:MustSupportRefIssuerSerial/>
 </wsp:Policy>
 </sp:Wss10>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
</definitions>

CHAPTER 4. WS-SECURITY

21

You can generate the service endpoint using the wsconsume tool and then use a
@EndpointConfig annotation as shown below:

2. Use the referenced jaxws-endpoint-config.xml descriptor to provide a custom endpoint
configuration with the required server side configuration properties as shown below. This tells
the engine which certificate or key to use for signature, signature verification, encryption, and
decryption.

package org.jboss.test.ws.jaxws.samples.wsse.policy.basic;

import javax.jws.WebService;
import org.jboss.ws.api.annotation.EndpointConfig;

@WebService
(
 portName = "SecurityServicePort",
 serviceName = "SecurityService",
 wsdlLocation = "WEB-INF/wsdl/SecurityService.wsdl",
 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",
 endpointInterface = "org.jboss.test.ws.jaxws.samples.wsse.policy.basic.ServiceIface"
)
@EndpointConfig(configFile = "WEB-INF/jaxws-endpoint-config.xml", configName = "Custom
WS-Security Endpoint")
public class ServiceImpl implements ServiceIface
{
 public String sayHello()
 {
 return "Secure Hello World!";
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:javaee="http://java.sun.com/xml/ns/javaee" xsi:schemaLocation="urn:jboss:jbossws-
jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">
 <endpoint-config>
 <config-name>Custom WS-Security Endpoint</config-name>
 <property>
 <property-name>ws-security.signature.properties</property-name>
 <property-value>bob.properties</property-value>
 </property>
 <property>
 <property-name>ws-security.encryption.properties</property-name>
 <property-value>bob.properties</property-value>
 </property>
 <property>
 <property-name>ws-security.signature.username</property-name>
 <property-value>bob</property-value>
 </property>
 <property>
 <property-name>ws-security.encryption.username</property-name>
 <property-value>alice</property-value>

Red Hat JBoss Fuse 6.3 Security on JBoss EAP

22

Here,

The bob.properties configuration file includes the WSS4J Crypto properties which in turn
links to the keystore file, type, alias, and password for accessing it. For example:

The callback handler enables Apache CXF to access the keystore. For example:

 </property>
 <property>
 <property-name>ws-security.callback-handler</property-name>
 <property-
value>org.jboss.test.ws.jaxws.samples.wsse.policy.basic.KeystorePasswordCallback</prope
rty-value>
 </property>
 </endpoint-config>
</jaxws-config>

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=password
org.apache.ws.security.crypto.merlin.keystore.alias=bob
org.apache.ws.security.crypto.merlin.keystore.file=bob.jks

package org.jboss.test.ws.jaxws.samples.wsse.policy.basic;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
import org.apache.ws.security.WSPasswordCallback;

public class KeystorePasswordCallback implements CallbackHandler {
 private Map<String, String> passwords = new HashMap<String, String>();

 public KeystorePasswordCallback() {
 passwords.put("alice", "password");
 passwords.put("bob", "password");
 }

 /**
 * It attempts to get the password from the private
 * alias/passwords map.
 */
 public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {
 for (int i = 0; i < callbacks.length; i++) {
 WSPasswordCallback pc = (WSPasswordCallback)callbacks[i];

 String pass = passwords.get(pc.getIdentifier());

CHAPTER 4. WS-SECURITY

23

3. Assuming the bob.jks keystore is properly generated and contains the server Bob's full key as
well as the client Alice's public key, you can proceed to packaging the endpoint. Here is the
expected content:

 if (pass != null) {
 pc.setPassword(pass);
 return;
 }
 }
 }

 /**
 * Add an alias/password pair to the callback mechanism.
 */
 public void setAliasPassword(String alias, String password) {
 passwords.put(alias, password);
 }
}

 /dati/jbossws/stack/cxf/trunk $ jar -tvf ./modules/testsuite/cxf-tests/target/test-libs/jaxws-
samples-wsse-policy-sign-encrypt.war
 0 Thu Jun 16 18:50:48 CEST 2011 META-INF/
 140 Thu Jun 16 18:50:46 CEST 2011 META-INF/MANIFEST.MF
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/
 586 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/web.xml
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/samples/
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-
INF/classes/org/jboss/test/ws/jaxws/samples/wsse/
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-
INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-
INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/basic/
 1687 Thu Jun 16 18:50:48 CEST 2011 WEB-
INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/basic/KeystorePasswordCallback.class

 383 Thu Jun 16 18:50:48 CEST 2011 WEB-
INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/basic/ServiceIface.class
 1070 Thu Jun 16 18:50:48 CEST 2011 WEB-
INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/basic/ServiceImpl.class
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-
INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/
 705 Thu Jun 16 18:50:48 CEST 2011 WEB-
INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/SayHello.class
 1069 Thu Jun 16 18:50:48 CEST 2011 WEB-
INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/SayHelloResponse.class
 1225 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/jaxws-endpoint-config.xml
 0 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/wsdl/
 4086 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/wsdl/SecurityService.wsdl

Red Hat JBoss Fuse 6.3 Security on JBoss EAP

24

Here, the jaxws classes generated by the tools and a basic web.xml referencing the endpoint
bean are also included:

NOTE

If you are deploying the endpoint archive to JBoss Application Server 7, add a
dependency to org.apache.ws.security module in the MANIFEST.MF file:

4.8. SAMPLE CLIENT CONFIGURATIONS

On the client side, use the wsconsume tool to consume the published WSDL and then invoke the
endpoint as a standard JAX-WS one as shown below:

 653 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/wsdl/SecurityService_schema1.xsd
 1820 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/classes/bob.jks
 311 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/classes/bob.properties

<?xml version="1.0" encoding="UTF-8"?>
<web-app
 version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <servlet>
 <servlet-name>TestService</servlet-name>
 <servlet-class>org.jboss.test.ws.jaxws.samples.wsse.policy.basic.ServiceImpl</servlet-
class>
 </servlet>
 <servlet-mapping>
 <servlet-name>TestService</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.7.1
Created-By: 17.0-b16 (Sun Microsystems Inc.)
Dependencies: org.apache.ws.security

QName serviceName = new QName("http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",
"SecurityService");
URL wsdlURL = new URL(serviceURL + "?wsdl");
Service service = Service.create(wsdlURL, serviceName);
ServiceIface proxy = (ServiceIface)service.getPort(ServiceIface.class);

((BindingProvider)proxy).getRequestContext().put(SecurityConstants.CALLBACK_HANDLER, new
KeystorePasswordCallback());
((BindingProvider)proxy).getRequestContext().put(SecurityConstants.SIGNATURE_PROPERTIES,
 Thread.currentThread().getContextClassLoader().getResource("META-INF/alice.properties"));
((BindingProvider)proxy).getRequestContext().put(SecurityConstants.ENCRYPT_PROPERTIES,
 Thread.currentThread().getContextClassLoader().getResource("META-INF/alice.properties"));

CHAPTER 4. WS-SECURITY

25

The WS-Security properties are set in the request context. Here, the KeystorePasswordCallback is
same as that on the server side. The alice.properties file is the client side equivalent of the server side
bob.properties file and references the alice.jks keystore file, which has been populated with client
Alice's full key as well as server Bob's public key:

The Apache CXF WS-Policy engine consumes the security requirements in the contract and ensures
that a valid secure communication is in place for interacting with the server endpoint.

4.9. ENDPOINT SERVING MULTIPLE CLIENTS

n the endpoint and client configuration examples, the server side configuration implies that the endpoint
is configured for serving a given client which a service agreement is established for. In real world
scenarios, a server should be able to decrypt and encrypt messages coming from and being sent to
multiple clients. Apache CXF supports that through the useReqSigCert value for the ws-
security.encryption.username configuration parameter. The referenced server side keystore then
needs to contain the public key of all the clients that are expected to be served.

4.10. SAMPLE CXF INTERCEPTOR CONFIGURATIONS

For adding a CXF Interceptor, perform the following configuration settings:

META-INF/switchyard.xml

 com/example/MyInterceptor.java

((BindingProvider)proxy).getRequestContext().put(SecurityConstants.SIGNATURE_USERNAME,
"alice");
((BindingProvider)proxy).getRequestContext().put(SecurityConstants.ENCRYPT_USERNAME,
"bob");

proxy.sayHello();

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=password
org.apache.ws.security.crypto.merlin.keystore.alias=alice
org.apache.ws.security.crypto.merlin.keystore.file=META-INF/alice.jks

<binding.soap xmlns="urn:switchyard-component-soap:config:1.0">
 <wsdl>META-INF/WorkService.wsdl</wsdl>
 <contextPath>policy-security-wss-username</contextPath>
 <inInterceptors>
 <interceptor class="com.example.MyInterceptor"/>
 </inInterceptors>
</binding.soap>

public class MyInterceptor extends WSS4JInterceptor {

Red Hat JBoss Fuse 6.3 Security on JBoss EAP

26

 META-INF/bob.properties

 private static final PROPS;
 static {
 Map<String,String> props = new HashMap<String,String>();
 props.put("action", "Signature Encryption");
 props.put("signaturePropFile", "META-INF/bob.properties");
 props.put("decryptionPropFile", "META-INF/bob.properties");
 props.put("passwordCallbackClass", "com.example.MyCallbackHandler");
 PROPS = props;
 }
 public MyInterceptor() {
 super(PROPS);
 }
}

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=password
org.apache.ws.security.crypto.merlin.keystore.alias=bob
org.apache.ws.security.crypto.merlin.file=META-INF/bob.jks

CHAPTER 4. WS-SECURITY

27

CHAPTER 5. S-RAMP SECURITY

5.1. S-RAMP BROWSER

S-RAMP comes with a user interface that allows you to browse all of the artifacts in the S-RAMP
repository. This UI is capable of viewing and manipulating all S-RAMP artifacts in a very generic way,
supporting all aspects of the S-RAMP specification such as properties, classifiers, and relationships.

The browser is a web based application built using Google Web Toolkit (GWT) and Errai projects, and is
compatible with all modern web browsers. Additionally, it is capable of scaling the interface down to a
size that is useful on a smart phone.

5.1.1. S-RAMP Browser Authentication

The installer handles the following S-RAMP Browser Authentication configurations automatically:

Security domain configuration (for both S-RAMP Browser and S-RAMP Server)

Web based single-sign-on configuration

IDP web application configuration

Managing Admin user

5.1.2. S-RAMP Browser Authorization

The S-RAMP Browser UI does not support any sort of fine grained authorization. You only need to have
the following role in order to log in and use the UI:

5.2. S-RAMP SERVER

The S-RAMP implementation is a fully compliant reference implementation of the S-RAMP
specification. It provides a Java based client library that you can use to integrate your own applications
with an S-RAMP compliant server. The server implementation is a conventional Java web application
(WAR). The following technologies are used to provide the various components that make up the server
implementation:

JCR (ModeShape): Used as the persistence engine, where all S-RAMP data is stored. Artifacts
and ontologies are both stored as nodes in a JCR tree. All S-RAMP queries are mapped to
JCRSQL2 queries for processing by the JCR API. The ModeShape JCR implementation is used
by default. However, the persistence layer is pluggable allowing alternative providers to be
implemented in the future.

JAX-RS (RESTEasy): Used to provide the S-RAMP Atom based REST API. The S-RAMP
specification documents an Atom based REST API that implementations should make available.
The S-RAMP implementation uses JAX-RS (specifically RESTEasy) to expose all of the REST
endpoints defined by the specification.

JAXB: Used to expose a Java data model based on the S-RAMP data structures defined by the
specification (S-RAMP XSD schemas).

For more information on the underlying runtime, refer JBoss Enterprise Application Platform 6.1

overlorduser

Red Hat JBoss Fuse 6.3 Security on JBoss EAP

28

For more information on the underlying runtime, refer JBoss Enterprise Application Platform 6.1
Security Guide.

5.2.1. S-RAMP Server Authorization

When accessing the S-RAMP Atom API, the authenticated user must have certain roles. As the
implementation leverages ModeShape as its persistence store by default, the authenticated user must
have the following JAAS role, which is required by ModeShape:

Additionally, the S-RAMP Atom API web application requires the user to have the following role:

admin.sramp

overlorduser

CHAPTER 5. S-RAMP SECURITY

29

CHAPTER 6. POLICY

6.1. ABOUT POLICY

Policy enables you to verify the runtime behavior of a service in a declarative manner, free of the service
implementation and binding details. For example, if you require a service to always participate in a global
transaction only, you can add logic to your service implementation which checks the current transaction
state, associates with an active global transaction, and handles error cases. Also, ensure that the
gateway used to expose the service is transactional and that it propagates the transaction to the service
implementation.

The SwitchYard runtime reads these policy definitions during deployment and enforces them on a per-
message basis as services are invoked.

6.2. CONFIGURING POLICY

The Policy definition is comprised of two aspects:

Policy that the service provider requires

Policy support that the service consumer provides

You can define the policy that a service requires by annotating the service's configuration in the
SwitchYard application descriptor. You can also define how a service is consumed through a gateway
binding, which effectively determines how the policy requirements are satisfied or provided. The
SwitchYard runtime takes care of determining whether the consumer satisfies the policy requirements
by evaluating the configuration of the application and the runtime state of the messages exchanged
between the consumer and provider. Here is an example configuration:

6.3. INTERACTION POLICY

In SwitchYard, the component service and component reference both are marked by policies using

<composite name="policy-transaction">
 <service name="WorkService" promote="WorkService">
 <camel:binding.camel configURI="jms://policyQSTransacted?
connectionFactory=%23JmsXA&transactionManager=%23jtaTransactionManager&transacted=true"/>

 <camel:binding.camel configURI="jms://policyQSNonTransacted?
connectionFactory=#ConnectionFactory"/>
 </service>
 <component name="WorkService">
 <implementation.bean
class="org.switchyard.quickstarts.demo.policy.transaction.WorkServiceBean"
requires="managedTransaction.Global"/>
 <service name="WorkService" requires="propagatesTransaction">
 <interface.java interface="org.switchyard.quickstarts.demo.policy.transaction.WorkService"/>
 </service>
 <reference name="TaskAService" requires="propagatesTransaction">
 <interface.java interface="org.switchyard.quickstarts.demo.policy.transaction.TaskAService"/>
 </reference>
 </component>
</composite>

Red Hat JBoss Fuse 6.3 Security on JBoss EAP

30

requires attribute. You can use the Interaction policy on component service and component reference
and is not allowed to be marked on component implementation. This policy enables you to manage the
communication between the service provider and consumer.

6.4. IMPLEMENTATION POLICY

In SwitchYard, the component service and component reference both are marked by policies using
requires attribute. You can use the Implementation policy on component implementation and is not
allowed to be marked on component service nor component reference.

6.5. TRANSACTION POLICY

Transaction Policy defines implementation and interaction policies that relate to transactional quality of
service in components and their interactions. The transaction policies are specified as intents which
represent the transaction quality of service behavior offered by specific component implementations or
bindings.

6.5.1. Transaction Interaction Policy

You can specify the Transaction Interaction Policy by using a component service or component
reference definition's requires attribute. Here is an example:

Valid values for the Transaction Interaction Policy intents are:

propagatesTransaction: Indicates that a global transaction is required when a service is
invoked. If no transaction is present, the SwitchYard generates an error at runtime.

suspendsTransaction: Indicates that if a transaction exists, the SwitchYard runtime suspends
it before the service implementation is invoked and resumes it after the service invocation. This
setting allows you to separate a gateway binding's transactional context from the transactional
context of the service implementation.

You can attach the mutually exclusive propagatesTransaction and suspendsTransaction intents
either to an interface or explicitly to a service and reference XML element in order to describe how any
client transaction context is made available and used by the target service component.

Figure 6.1. Transaction Interaction Policy

6.5.2. Transaction Implementation Policy

You can specify the Implementation Interaction Policy by using a component service or component
reference definition's requires attribute. Here is an example:

<service name="WorkService" requires="propagatesTransaction">

CHAPTER 6. POLICY

31

Valid values for Transaction Implementation Policy intents are:

managedTransaction.Global: Indicates that this service implementation runs under a global
transaction. If no transaction is present, the SwitchYard runtime creates a new JTA transaction
before the execution. The SwitchYard runtime commits this newly created transaction at the
end of service execution.

managedTransaction.Local: Indicates that this service implementation runs under a local
transaction. If a transaction exists, the SwitchYard runtime suspends it. SwitchYard always
creates a new JTA transaction before execution. The SwitchYard runtime commits this newly
created transaction and resumes the suspended transcation after the service invocation.

NOTE

As the local transaction does not propagate its transaction through the
reference, you must mark all of the component reference as
suspendsTransaction. If not, the SwitchYard runtime generates an error.

noManagedTransaction: Indicates that this service implementation does not run under any
managed transaction. If a transaction exists, the SwitchYard runtime suspends it before the
service implementation is invoked and resumes it after the service invocation.

You can use the mutually exclusive managedTransaction and noManagedTransaction intents to
describe the transactional environment required by a service component.

Scope of Support

Currently, the following gateways are transaction aware:

Camel JMS Gateway (binding.jms)

Camel JPA Gateway (binding.jpa)

Camel SQL Gateway (binding.sql)

JCA Gateway (binding.jca)

SCA Gateway (binding.sca)

NOTE

BPM service (implementation.bpm) always need a JTA transaction if the persistence is
enabled. It synchronizes with incoming transaction if exists, otherwise it begins a new JTA
Transaction and commit/rollback by itself.

NOTE

If your application has multiple camel-jms bindings which are bound to the same JMS
provider, you need to define distinct connection factory for each binding to get
Transaction Policy working. otherwise, transaction can't be suspended as expected.
Similarly, distinct xa-datasource is needed to get Transaction Policy working on camel-
jpa and camel-sql. (https://issues.jboss.org/browse/SWITCHYARD-1285)

<implementation.bean class="org.switchyard.quickstarts.demo.policy.transaction.WorkServiceBean"
requires="managedTransaction.Global">

Red Hat JBoss Fuse 6.3 Security on JBoss EAP

32

Figure 6.2. Transaction Implementation Policy

6.6. SECURITY POLICY

SwitchYard services can be secured by specifying a list of security policies that are required for that
service and configuring the security processing details for the services within a domain.

NOTE

The security manager gets enabled with additional security policies if you select the
Runtime Governance component during installation. Following are the security policies
included in JBoss Fuse:

security.policy- It defines a JVM level permitAll policy.

kie.policy- It is used by Rule-based services.

rtgov.policy- It is used for the Runtime Governance REST API.

NOTE

Support for security policy is limited to bean services (implementation.bean), SOAP
endpoints via the SOAP gateway (binding.soap), and HTTP endpoints via the HTTP
gateway (binding.http).

6.6.1. Security Interaction Policy

The Security Interaction Policy is defined using the requires attribute of a component service definition.

Valid values for Security Interaction policy are:

clientAuthentication: indicates that the client has been authenticated when a service is invoked.
If the associated authenticated user principal is not available, SwitchYard runtime generates an
error.

NOTE

There are multiple reasons for why the clientAuthentication policy may not be
fulfilled, including incorrect username, incorrect password, or configuration
issues. Please check the credentials again. If they seem to be in order engage the
support team for further analysis.

<service name="WorkService" requires="authorization clientAuthentication confidentiality">

CHAPTER 6. POLICY

33

confidentiality: indicates that the request has been made over a secure channel. When a SOAP
request is made over SSL and its confidentiality is not verified, SwitchYard runtime generates an
error,

Figure 6.3. Security Interaction Policy

6.6.2. Security Implementation Policy

Security Implementation Policy is specified using the requires attribute of a component implementation
definition.

Valid values for Security Implementation policy are:

authorization: indicates that the client is authorized to invoke the service. If the associated
authenticated subject does not have an allowed role, SwitchYard runtime generates an error.

Figure 6.4. Security Implementation Policy

6.6.3. Setting Security Policy

You can define the Security Policy in the following ways:

Edit the SwitchYard application descriptor (switchyard.xml) and add the requires attribute to
a service definition.

Use the @Requires attribute in your service implementation to declare security policy for the
service. When the application project is built, the SwitchYard application finds @Requires
annotations and automatically generates the required configuration.

6.6.4. Security Processing

When the container does not automatically provide certain security policies, the SwitchYard application
can be configured to process security credentials extracted from the binding-specific data, then provide
certain security policies itself (like clientAuthentication). All services within a domain share the same
security configuration, which is specified in the switchyard.xml.

Red Hat JBoss Fuse 6.3 Security on JBoss EAP

34

NOTE

Support for security policy is limited to bean services (implementation.bean), SOAP
endpoints via the SOAP gateway (binding.soap), and HTTP endpoints via the HTTP
gateway (binding.http).

<switchyard>
 <domain>
 <security callbackHandler="callback-handler-class-name" moduleName"="jaas-domain-name"
rolesAllowed="users, administrators" runAs="leaders">
 <properties>
 <property name="property-name" value="property-value"/>
 </properties>
 </security>
 </domain>
</switchyard>

CHAPTER 6. POLICY

35

	Table of Contents
	CHAPTER 1. SWITCHYARD SECURITY
	1.1. ABOUT SWITCHYARD SECURITY
	1.2. CONFIGURING SECURITY FOR SWITCHYARD
	1.3. SWITCHYARD SECURITY CONFIGURATION
	1.4. USING SECURITY ELEMENTS AND ATTRIBUTES
	1.5. SECURITY
	1.6. CALLBACK HANDLERS
	1.7. LOGIN MODULES
	1.8. SWITCHYARD SECURITY QUICKSTARTS
	1.9. SECURE WAYS OF RUNNING RED HAT JBOSS FUSE

	CHAPTER 2. PATCH INSTALLATION
	2.1. ABOUT PATCHING MECHANISMS
	2.2. SUBSCRIBE TO PATCH MAILING LISTS
	2.3. INSTALL PATCHES IN ZIP FORM
	2.4. SEVERITY AND IMPACT RATING OF JBOSS SECURITY PATCHES

	CHAPTER 3. KNOWN SECURITY ISSUES
	3.1. THE POODLE ISSUE AND JBOSS FUSE

	CHAPTER 4. WS-SECURITY
	4.1. WS-SECURITY OVERVIEW
	4.2. JBOSS WS-SECURITY SUPPORT
	4.3. APACHE CXF WS-SECURITY IMPLEMENTATION
	4.3.1. WS-Security Policy Support
	4.3.2. JBossWS Configuration Additions
	4.3.3. Apache CXF Annotations

	4.4. ENABLE WS-SECURITY
	4.5. SAMPLE WS-SECURITY CONFIGURATIONS
	4.6. SIGNATURE AND ENCRYPTION SUPPORT
	4.7. SAMPLE ENDPOINT CONFIGURATIONS
	4.8. SAMPLE CLIENT CONFIGURATIONS
	4.9. ENDPOINT SERVING MULTIPLE CLIENTS
	4.10. SAMPLE CXF INTERCEPTOR CONFIGURATIONS

	CHAPTER 5. S-RAMP SECURITY
	5.1. S-RAMP BROWSER
	5.1.1. S-RAMP Browser Authentication
	5.1.2. S-RAMP Browser Authorization

	5.2. S-RAMP SERVER
	5.2.1. S-RAMP Server Authorization

	CHAPTER 6. POLICY
	6.1. ABOUT POLICY
	6.2. CONFIGURING POLICY
	6.3. INTERACTION POLICY
	6.4. IMPLEMENTATION POLICY
	6.5. TRANSACTION POLICY
	6.5.1. Transaction Interaction Policy
	6.5.2. Transaction Implementation Policy

	6.6. SECURITY POLICY
	6.6.1. Security Interaction Policy
	6.6.2. Security Implementation Policy
	6.6.3. Setting Security Policy
	6.6.4. Security Processing

