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Abstract
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MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .
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PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
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CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN
TWO SYSTEMS WITH OPENSSH

SSH (Secure Shell) is a protocol which provides secure communications between two systems using a
client-server architecture and allows users to log in to server host systems remotely. Unlike other
remote communication protocols, such as FTP or Telnet, SSH encrypts the login session, which prevents
intruders to collect unencrypted passwords from the connection.

Red Hat Enterprise Linux includes the basic OpenSSH packages: the general openssh package, the 
openssh-server package and the openssh-clients package. Note that the OpenSSH packages require
the OpenSSL package openssl-libs, which installs several important cryptographic libraries that enable 
OpenSSH to provide encrypted communications.

1.1. SSH AND OPENSSH

SSH (Secure Shell) is a program for logging into a remote machine and executing commands on that
machine. The SSH protocol provides secure encrypted communications between two untrusted hosts
over an insecure network. You can also forward X11 connections and arbitrary TCP/IP ports over the
secure channel.

The SSH protocol mitigates security threats, such as interception of communication between two
systems and impersonation of a particular host, when you use it for remote shell login or file copying.
This is because the SSH client and server use digital signatures to verify their identities. Additionally, all
communication between the client and server systems is encrypted.

A host key authenticates hosts in the SSH protocol. Host keys are cryptographic keys that are
generated automatically when OpenSSH is first installed, or when the host boots for the first time.

OpenSSH is an implementation of the SSH protocol supported by Linux, UNIX, and similar operating
systems. It includes the core files necessary for both the OpenSSH client and server. The OpenSSH
suite consists of the following user-space tools:

ssh is a remote login program (SSH client).

sshd is an OpenSSH SSH daemon.

scp is a secure remote file copy program.

sftp is a secure file transfer program.

ssh-agent is an authentication agent for caching private keys.

ssh-add adds private key identities to ssh-agent.

ssh-keygen generates, manages, and converts authentication keys for ssh.

ssh-copy-id is a script that adds local public keys to the authorized_keys file on a remote SSH
server.

ssh-keyscan gathers SSH public host keys.

NOTE
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NOTE

In RHEL 9, the Secure copy protocol (SCP) is replaced with the SSH File Transfer
Protocol (SFTP) by default. This is because SCP has already caused security issues, for
example CVE-2020-15778.

If SFTP is unavailable or incompatible in your scenario, you can use the -O option to force
use of the original SCP/RCP protocol.

For additional information, see the OpenSSH SCP protocol deprecation in Red Hat
Enterprise Linux 9 article.

Two versions of SSH currently exist: version 1, and the newer version 2. The OpenSSH suite in RHEL
supports only SSH version 2. It has an enhanced key-exchange algorithm that is not vulnerable to
exploits known in version 1.

OpenSSH, as one of core cryptographic subsystems of RHEL, uses system-wide crypto policies. This
ensures that weak cipher suites and cryptographic algorithms are disabled in the default configuration.
To modify the policy, the administrator must either use the update-crypto-policies command to adjust
the settings or manually opt out of the system-wide crypto policies.

The OpenSSH suite uses two sets of configuration files: one for client programs (that is, ssh, scp, and 
sftp), and another for the server (the sshd daemon).

System-wide SSH configuration information is stored in the /etc/ssh/ directory. User-specific SSH
configuration information is stored in ~/.ssh/ in the user’s home directory. For a detailed list of
OpenSSH configuration files, see the FILES section in the sshd(8) man page.

Additional resources

Man pages listed by using the man -k ssh command

Using system-wide cryptographic policies

1.2. CONFIGURING AND STARTING AN OPENSSH SERVER

Use the following procedure for a basic configuration that might be required for your environment and
for starting an OpenSSH server. Note that after the default RHEL installation, the sshd daemon is
already started and server host keys are automatically created.

Prerequisites

The openssh-server package is installed.

Procedure

1. Start the sshd daemon in the current session and set it to start automatically at boot time:

# systemctl start sshd
# systemctl enable sshd

2. To specify different addresses than the default 0.0.0.0 (IPv4) or :: (IPv6) for the 
ListenAddress directive in the /etc/ssh/sshd_config configuration file and to use a slower
dynamic network configuration, add the dependency on the network-online.target target unit

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH
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to the sshd.service unit file. To achieve this, create the 
/etc/systemd/system/sshd.service.d/local.conf file with the following content:

[Unit]
Wants=network-online.target
After=network-online.target

3. Review if OpenSSH server settings in the /etc/ssh/sshd_config configuration file meet the
requirements of your scenario.

4. Optionally, change the welcome message that your OpenSSH server displays before a client
authenticates by editing the /etc/issue file, for example:

Welcome to ssh-server.example.com
Warning: By accessing this server, you agree to the referenced terms and conditions.

Ensure that the Banner option is not commented out in /etc/ssh/sshd_config and its value
contains /etc/issue:

# less /etc/ssh/sshd_config | grep Banner
Banner /etc/issue

Note that to change the message displayed after a successful login you have to edit the 
/etc/motd file on the server. See the pam_motd man page for more information.

5. Reload the systemd configuration and restart sshd to apply the changes:

# systemctl daemon-reload
# systemctl restart sshd

Verification

1. Check that the sshd daemon is running:

# systemctl status sshd
● sshd.service - OpenSSH server daemon
   Loaded: loaded (/usr/lib/systemd/system/sshd.service; enabled; vendor preset: enabled)
   Active: active (running) since Mon 2019-11-18 14:59:58 CET; 6min ago
     Docs: man:sshd(8)
           man:sshd_config(5)
 Main PID: 1149 (sshd)
    Tasks: 1 (limit: 11491)
   Memory: 1.9M
   CGroup: /system.slice/sshd.service
           └─1149 /usr/sbin/sshd -D -oCiphers=aes128-ctr,aes256-ctr,aes128-cbc,aes256-cbc -
oMACs=hmac-sha2-256,>

Nov 18 14:59:58 ssh-server-example.com systemd[1]: Starting OpenSSH server daemon...
Nov 18 14:59:58 ssh-server-example.com sshd[1149]: Server listening on 0.0.0.0 port 22.
Nov 18 14:59:58 ssh-server-example.com sshd[1149]: Server listening on :: port 22.
Nov 18 14:59:58 ssh-server-example.com systemd[1]: Started OpenSSH server daemon.

2. Connect to the SSH server with an SSH client.

Red Hat Enterprise Linux 9 Securing networks

8



# ssh user@ssh-server-example.com
ECDSA key fingerprint is SHA256:dXbaS0RG/UzlTTku8GtXSz0S1++lPegSy31v3L/FAEc.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added 'ssh-server-example.com' (ECDSA) to the list of known hosts.

user@ssh-server-example.com's password:

Additional resources

sshd(8) and sshd_config(5) man pages.

1.3. SETTING AN OPENSSH SERVER FOR KEY-BASED
AUTHENTICATION

To improve system security, enforce key-based authentication by disabling password authentication on
your OpenSSH server.

Prerequisites

The openssh-server package is installed.

The sshd daemon is running on the server.

Procedure

1. Open the /etc/ssh/sshd_config configuration in a text editor, for example:

# vi /etc/ssh/sshd_config

2. Change the PasswordAuthentication option to no:

PasswordAuthentication no

On a system other than a new default installation, check that PubkeyAuthentication no has not
been set and the KbdInteractiveAuthentication directive is set to no. If you are connected
remotely, not using console or out-of-band access, test the key-based login process before
disabling password authentication.

3. To use key-based authentication with NFS-mounted home directories, enable the 
use_nfs_home_dirs SELinux boolean:

# setsebool -P use_nfs_home_dirs 1

4. Reload the sshd daemon to apply the changes:

# systemctl reload sshd

Additional resources

sshd(8), sshd_config(5), and setsebool(8) man pages.
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1.4. GENERATING SSH KEY PAIRS

Use this procedure to generate an SSH key pair on a local system and to copy the generated public key
to an OpenSSH server. If the server is configured accordingly, you can log in to the OpenSSH server
without providing any password.

IMPORTANT

If you complete the following steps as root, only root is able to use the keys.

Procedure

1. To generate an ECDSA key pair for version 2 of the SSH protocol:

$ ssh-keygen -t ecdsa
Generating public/private ecdsa key pair.
Enter file in which to save the key (/home/joesec/.ssh/id_ecdsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/joesec/.ssh/id_ecdsa.
Your public key has been saved in /home/joesec/.ssh/id_ecdsa.pub.
The key fingerprint is:
SHA256:Q/x+qms4j7PCQ0qFd09iZEFHA+SqwBKRNaU72oZfaCI 
joesec@localhost.example.com
The key's randomart image is:
+---[ECDSA 256]---+
|.oo..o=++        |
|.. o .oo .       |
|. .. o. o        |
|....o.+...       |
|o.oo.o +S .      |
|.=.+.   .o       |
|E.*+.  .  . .    |
|.=..+ +..  o     |
|  .  oo*+o.      |
+----[SHA256]-----+

You can also generate an RSA key pair by using the -t rsa option with the ssh-keygen
command or an Ed25519 key pair by entering the ssh-keygen -t ed25519 command.

2. To copy the public key to a remote machine:

$ ssh-copy-id joesec@ssh-server-example.com
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that are 
already installed
joesec@ssh-server-example.com's password:
...
Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'joesec@ssh-server-example.com'" and check to 
make sure that only the key(s) you wanted were added.

If you do not use the ssh-agent program in your session, the previous command copies the
most recently modified ~/.ssh/id*.pub public key if it is not yet installed. To specify another
public-key file or to prioritize keys in files over keys cached in memory by ssh-agent, use the 
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ssh-copy-id command with the -i option.

NOTE

If you reinstall your system and want to keep previously generated key pairs, back up the 
~/.ssh/ directory. After reinstalling, copy it back to your home directory. You can do this
for all users on your system, including root.

Verification

1. Log in to the OpenSSH server without providing any password:

$ ssh joesec@ssh-server-example.com
Welcome message.
...
Last login: Mon Nov 18 18:28:42 2019 from ::1

Additional resources

ssh-keygen(1) and ssh-copy-id(1) man pages.

1.5. USING SSH KEYS STORED ON A SMART CARD

Red Hat Enterprise Linux enables you to use RSA and ECDSA keys stored on a smart card on OpenSSH
clients. Use this procedure to enable authentication using a smart card instead of using a password.

Prerequisites

On the client side, the opensc package is installed and the pcscd service is running.

Procedure

1. List all keys provided by the OpenSC PKCS #11 module including their PKCS #11 URIs and save
the output to the keys.pub file:

$ ssh-keygen -D pkcs11: > keys.pub
$ ssh-keygen -D pkcs11:
ssh-rsa AAAAB3NzaC1yc2E...KKZMzcQZzx 
pkcs11:id=%02;object=SIGN%20pubkey;token=SSH%20key;manufacturer=piv_II?module-
path=/usr/lib64/pkcs11/opensc-pkcs11.so
ecdsa-sha2-nistp256 AAA...J0hkYnnsM= 
pkcs11:id=%01;object=PIV%20AUTH%20pubkey;token=SSH%20key;manufacturer=piv_II?
module-path=/usr/lib64/pkcs11/opensc-pkcs11.so

2. To enable authentication using a smart card on a remote server (example.com), transfer the
public key to the remote server. Use the ssh-copy-id command with keys.pub created in the
previous step:

$ ssh-copy-id -f -i keys.pub username@example.com

3. To connect to example.com using the ECDSA key from the output of the ssh-keygen -D
command in step 1, you can use just a subset of the URI, which uniquely references your key, for
example:
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$ ssh -i "pkcs11:id=%01?module-path=/usr/lib64/pkcs11/opensc-pkcs11.so" example.com
Enter PIN for 'SSH key':
[example.com] $

4. You can use the same URI string in the ~/.ssh/config file to make the configuration permanent:

$ cat ~/.ssh/config
IdentityFile "pkcs11:id=%01?module-path=/usr/lib64/pkcs11/opensc-pkcs11.so"
$ ssh example.com
Enter PIN for 'SSH key':
[example.com] $

Because OpenSSH uses the p11-kit-proxy wrapper and the OpenSC PKCS #11 module is
registered to PKCS#11 Kit, you can simplify the previous commands:

$ ssh -i "pkcs11:id=%01" example.com
Enter PIN for 'SSH key':
[example.com] $

If you skip the id= part of a PKCS #11 URI, OpenSSH loads all keys that are available in the proxy module.
This can reduce the amount of typing required:

$ ssh -i pkcs11: example.com
Enter PIN for 'SSH key':
[example.com] $

Additional resources

Fedora 28: Better smart card support in OpenSSH

p11-kit(8), opensc.conf(5), pcscd(8), ssh(1), and ssh-keygen(1) man pages

1.6. MAKING OPENSSH MORE SECURE

The following tips help you to increase security when using OpenSSH. Note that changes in the 
/etc/ssh/sshd_config OpenSSH configuration file require reloading the sshd daemon to take effect:

# systemctl reload sshd

IMPORTANT

The majority of security hardening configuration changes reduce compatibility with
clients that do not support up-to-date algorithms or cipher suites.

Disabling insecure connection protocols

To make SSH truly effective, prevent the use of insecure connection protocols that are replaced
by the OpenSSH suite. Otherwise, a user’s password might be protected using SSH for one
session only to be captured later when logging in using Telnet. For this reason, consider
disabling insecure protocols, such as telnet, rsh, rlogin, and ftp.

Enabling key-based authentication and disabling password-based authentication
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Disabling passwords for authentication and allowing only key pairs reduces the attack surface
and it also might save users’ time. On clients, generate key pairs using the ssh-keygen tool and
use the ssh-copy-id utility to copy public keys from clients on the OpenSSH server. To disable
password-based authentication on your OpenSSH server, edit /etc/ssh/sshd_config and
change the PasswordAuthentication option to no:

PasswordAuthentication no

Key types

Although the ssh-keygen command generates a pair of RSA keys by default, you can instruct it
to generate ECDSA or Ed25519 keys by using the -t option. The ECDSA (Elliptic Curve Digital
Signature Algorithm) offers better performance than RSA at the equivalent symmetric key
strength. It also generates shorter keys. The Ed25519 public-key algorithm is an implementation
of twisted Edwards curves that is more secure and also faster than RSA, DSA, and ECDSA.
OpenSSH creates RSA, ECDSA, and Ed25519 server host keys automatically if they are missing.
To configure the host key creation in RHEL, use the sshd-keygen@.service instantiated
service. For example, to disable the automatic creation of the RSA key type:

# systemctl mask sshd-keygen@rsa.service

NOTE

In images with cloud-init enabled, the ssh-keygen units are automatically
disabled. This is because the ssh-keygen template service can interfere with the
cloud-init tool and cause problems with host key generation. To prevent these
problems the etc/systemd/system/sshd-keygen@.service.d/disable-sshd-
keygen-if-cloud-init-active.conf drop-in configuration file disables the ssh-
keygen units if cloud-init is running.

To exclude particular key types for SSH connections, comment out the relevant lines in 
/etc/ssh/sshd_config, and reload the sshd service. For example, to allow only Ed25519 host
keys:

# HostKey /etc/ssh/ssh_host_rsa_key
# HostKey /etc/ssh/ssh_host_ecdsa_key
HostKey /etc/ssh/ssh_host_ed25519_key

IMPORTANT

The Ed25519 algorithm is not FIPS-140-compliant, and OpenSSH does not work
with Ed25519 keys in FIPS mode.

Non-default port

By default, the sshd daemon listens on TCP port 22. Changing the port reduces the exposure
of the system to attacks based on automated network scanning and therefore increase security
through obscurity. You can specify the port using the Port directive in the 
/etc/ssh/sshd_config configuration file.
You also have to update the default SELinux policy to allow the use of a non-default port. To do
so, use the semanage tool from the policycoreutils-python-utils package:

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH

13



# semanage port -a -t ssh_port_t -p tcp <port_number>

Furthermore, update firewalld configuration:

# firewall-cmd --add-port <port_number>/tcp
# firewall-cmd --remove-port=22/tcp
# firewall-cmd --runtime-to-permanent

In the previous commands, replace <port_number> with the new port number specified using the
Port directive.

Root login

PermitRootLogin is set to prohibit-password by default. This enforces the use of key-based
authentication instead of the use of passwords for logging in as root and reduces risks by
preventing brute-force attacks.

WARNING

Enabling logging in as the root user is not a secure practice because the
administrator cannot audit which users run which privileged commands. For
using administrative commands, log in and use sudo instead.

Using the X Security extension

The X server in Red Hat Enterprise Linux clients does not provide the X Security extension.
Therefore, clients cannot request another security layer when connecting to untrusted SSH
servers with X11 forwarding. Most applications are not able to run with this extension enabled
anyway.
By default, the ForwardX11Trusted option in the /etc/ssh/ssh_config.d/50-redhat.conf file is
set to yes, and there is no difference between the ssh -X remote_machine (untrusted host)
and ssh -Y remote_machine (trusted host) command.

If your scenario does not require the X11 forwarding feature at all, set the X11Forwarding
directive in the /etc/ssh/sshd_config configuration file to no.

Restricting access to specific users, groups, or domains

The AllowUsers and AllowGroups directives in the /etc/ssh/sshd_config configuration file
server enable you to permit only certain users, domains, or groups to connect to your OpenSSH
server. You can combine AllowUsers and AllowGroups to restrict access more precisely, for
example:

AllowUsers *@192.168.1.* *@10.0.0.* !*@192.168.1.2
AllowGroups example-group

The previous configuration lines accept connections from all users from systems in 192.168.1.*
and 10.0.0.* subnets except from the system with the 192.168.1.2 address. All users must be in
the example-group group. The OpenSSH server denies all other connections.


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The OpenSSH server permits only connections that pass all Allow and Deny directives in 
/etc/ssh/sshd_config. For example, if the AllowUsers directive lists a user that is not part of a
group listed in the AllowGroups directive, then the user cannot log in.

Note that using allowlists (directives starting with Allow) is more secure than using blocklists
(options starting with Deny) because allowlists block also new unauthorized users or groups.

Changing system-wide cryptographic policies

OpenSSH uses RHEL system-wide cryptographic policies, and the default system-wide
cryptographic policy level offers secure settings for current threat models. To make your
cryptographic settings more strict, change the current policy level:

# update-crypto-policies --set FUTURE
Setting system policy to FUTURE

WARNING

If your system communicates on the internet, you might face
interoperability problems due to the strict setting of the FUTURE policy.

You can also disable only specific ciphers for the SSH protocol through the system-wide cryptographic
policies. See the Customizing system-wide cryptographic policies with subpolicies  section in the
Security hardening document for more information.

To opt out of the system-wide cryptographic policies for your OpenSSH server, specify the
cryptographic policy in a drop-in configuration file located in the /etc/ssh/sshd_config.d/ directory,
with a two-digit number prefix smaller than 50, so that it lexicographically precedes the 50-redhat.conf
file, and with a .conf suffix, for example, 49-crypto-policy-override.conf.

See the sshd_config(5) man page for more information.

To opt out of system-wide cryptographic policies for your OpenSSH client, perform one of the following
tasks:

For a given user, override the global ssh_config with a user-specific configuration in the 
~/.ssh/config file.

For the entire system, specify the cryptographic policy in a drop-in configuration file located in
the /etc/ssh/ssh_config.d/ directory, with a two-digit number prefix smaller than 50, so that it
lexicographically precedes the 50-redhat.conf file, and with a .conf suffix, for example, 49-
crypto-policy-override.conf.

Additional resources

sshd_config(5), ssh-keygen(1), crypto-policies(7), and update-crypto-policies(8) man pages.

Using system-wide cryptographic policies  in the Security hardening document.

How to disable specific algorithms and ciphers for ssh service only  article.


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1.7. CONNECTING TO A REMOTE SERVER USING AN SSH JUMP HOST

Use this procedure for connecting your local system to a remote server through an intermediary server,
also called jump host.

Prerequisites

A jump host accepts SSH connections from your local system.

A remote server accepts SSH connections only from the jump host.

Procedure

1. Define the jump host by editing the ~/.ssh/config file on your local system, for example:

Host jump-server1
  HostName jump1.example.com

The Host parameter defines a name or alias for the host you can use in ssh commands. The
value can match the real host name, but can also be any string.

The HostName parameter sets the actual host name or IP address of the jump host.

2. Add the remote server jump configuration with the ProxyJump directive to ~/.ssh/config file
on your local system, for example:

Host remote-server
  HostName remote1.example.com
  ProxyJump jump-server1

3. Use your local system to connect to the remote server through the jump server:

$ ssh remote-server

The previous command is equivalent to the ssh -J jump-server1 remote-server command if
you omit the configuration steps 1 and 2.

NOTE

You can specify more jump servers and you can also skip adding host definitions to the
configurations file when you provide their complete host names, for example:

$ ssh -J jump1.example.com,jump2.example.com,jump3.example.com 
remote1.example.com

Change the host name-only notation in the previous command if the user names or SSH
ports on the jump servers differ from the names and ports on the remote server, for
example:

$ ssh -J 
johndoe@jump1.example.com:75,johndoe@jump2.example.com:75,johndoe@jump3.e
xample.com:75 joesec@remote1.example.com:220
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Additional resources

ssh_config(5) and ssh(1) man pages.

1.8. CONNECTING TO REMOTE MACHINES WITH SSH KEYS USING
SSH-AGENT

To avoid entering a passphrase each time you initiate an SSH connection, you can use the ssh-agent
utility to cache the private SSH key. The private key and the passphrase remain secure.

Prerequisites

You have a remote host with SSH daemon running and reachable through the network.

You know the IP address or hostname and credentials to log in to the remote host.

You have generated an SSH key pair with a passphrase and transferred the public key to the
remote machine.

Procedure

1. Optional: Verify you can use the key to authenticate to the remote host:

a. Connect to the remote host using SSH:

$ ssh example.user1@198.51.100.1 hostname

b. Enter the passphrase you set while creating the key to grant access to the private key.

$ ssh example.user1@198.51.100.1 hostname
 host.example.com

2. Start the ssh-agent.

$ eval $(ssh-agent)
Agent pid 20062

3. Add the key to ssh-agent.

$ ssh-add ~/.ssh/id_rsa
Enter passphrase for ~/.ssh/id_rsa:
Identity added: ~/.ssh/id_rsa (example.user0@198.51.100.12)

Verification

Optional: Log in to the host machine using SSH.

$ ssh example.user1@198.51.100.1

Last login: Mon Sep 14 12:56:37 2020

Note that you did not have to enter the passphrase.
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1.9. ADDITIONAL RESOURCES

sshd(8), ssh(1), scp(1), sftp(1), ssh-keygen(1), ssh-copy-id(1), ssh_config(5), 
sshd_config(5), update-crypto-policies(8), and crypto-policies(7) man pages.

OpenSSH Home Page

Configuring SELinux for applications and services with non-standard configurations

Controlling network traffic using firewalld
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CHAPTER 2. CONFIGURING SECURE COMMUNICATION WITH
THE SSH SYSTEM ROLES

As an administrator, you can use the sshd system role to configure SSH servers and the ssh system
role to configure SSH clients consistently on any number of RHEL systems at the same time using the
Ansible Core package.

2.1. VARIABLES OF THE SSH SERVER SYSTEM ROLE

In an sshd system role playbook, you can define the parameters for the SSH configuration file
according to your preferences and limitations.

If you do not configure these variables, the system role produces an sshd_config file that matches the
RHEL defaults.

In all cases, Booleans correctly render as yes and no in sshd configuration. You can define multi-line
configuration items using lists. For example:

sshd_ListenAddress:
  - 0.0.0.0
  - '::'

renders as:

ListenAddress 0.0.0.0
ListenAddress ::

Additional resources

/usr/share/ansible/roles/rhel-system-roles.sshd/README.md file

/usr/share/doc/rhel-system-roles/sshd/ directory

2.2. CONFIGURING OPENSSH SERVERS BY USING THE SSHD SYSTEM
ROLE

You can use the sshd system role to configure multiple SSH servers by running an Ansible playbook.

NOTE

You can use the sshd system role with other system roles that change SSH and SSHD
configuration, for example the Identity Management RHEL system roles. To prevent the
configuration from being overwritten, make sure that the sshd role uses namespaces
(RHEL 8 and earlier versions) or a drop-in directory (RHEL 9).

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.
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Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

The playbook configures the managed node as an SSH server configured so that:

password and root user login is disabled

password and root user login is enabled only from the subnet 192.0.2.0/24

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

1. Log in to the SSH server:

$ ssh <username>@<ssh_server>

2. Verify the contents of the sshd_config file on the SSH server:

$ cat /etc/ssh/sshd_config.d/00-ansible_system_role.conf
#
# Ansible managed
#
PasswordAuthentication no
PermitRootLogin no
Match Address 192.0.2.0/24
  PasswordAuthentication yes
  PermitRootLogin yes

---
- name: SSH server configuration
  hosts: managed-node-01.example.com
  tasks:
    - name: Configure sshd to prevent root and password login except from particular subnet
      ansible.builtin.include_role:
        name: rhel-system-roles.sshd
      vars:
        sshd:
          PermitRootLogin: no
          PasswordAuthentication: no
          Match:
            - Condition: "Address 192.0.2.0/24"
              PermitRootLogin: yes
              PasswordAuthentication: yes
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3. Check that you can connect to the server as root from the 192.0.2.0/24 subnet:

a. Determine your IP address:

$ hostname -I
192.0.2.1

If the IP address is within the 192.0.2.1 - 192.0.2.254 range, you can connect to the server.

b. Connect to the server as root:

$ ssh root@<ssh_server>

Additional resources

/usr/share/ansible/roles/rhel-system-roles.sshd/README.md file

/usr/share/doc/rhel-system-roles/sshd/ directory

2.3. VARIABLES OF THE SSH SYSTEM ROLE

In an ssh system role playbook, you can define the parameters for the client SSH configuration file
according to your preferences and limitations.

If you do not configure these variables, the system role produces a global ssh_config file that matches
the RHEL defaults.

In all cases, booleans correctly render as yes or no in ssh configuration. You can define multi-line
configuration items using lists. For example:

LocalForward:
  - 22 localhost:2222
  - 403 localhost:4003

renders as:

LocalForward 22 localhost:2222
LocalForward 403 localhost:4003

NOTE

The configuration options are case sensitive.

Additional resources

/usr/share/ansible/roles/rhel-system-roles.ssh/README.md file

/usr/share/doc/rhel-system-roles/ssh/ directory

2.4. CONFIGURING OPENSSH CLIENTS BY USING THE SSH SYSTEM
ROLE
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You can use the ssh system role to configure multiple SSH clients by running an Ansible playbook.

NOTE

You can use the ssh system role with other system roles that change SSH and SSHD
configuration, for example the Identity Management RHEL system roles. To prevent the
configuration from being overwritten, make sure that the ssh role uses a drop-in
directory (default in RHEL 8 and later).

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

This playbook configures the root user’s SSH client preferences on the managed nodes with the
following configurations:

Compression is enabled.

ControlMaster multiplexing is set to auto.

The example alias for connecting to the server.example.com host is user1.

The example host alias is created, which represents a connection to the 
server.example.com host the with the user1 user name.

X11 forwarding is disabled.

2. Validate the playbook syntax:

---
- name: SSH client configuration
  hosts: managed-node-01.example.com
  tasks:
    - name: "Configure ssh clients"
      ansible.builtin.include_role:
        name: rhel-system-roles.ssh
      vars:
        ssh_user: root
        ssh:
          Compression: true
          GSSAPIAuthentication: no
          ControlMaster: auto
          ControlPath: ~/.ssh/.cm%C
          Host:
            - Condition: example
              Hostname: server.example.com
              User: user1
        ssh_ForwardX11: no
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$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

Verify that the managed node has the correct configuration by displaying the SSH configuration
file:

# cat ~root/.ssh/config
# Ansible managed
Compression yes
ControlMaster auto
ControlPath ~/.ssh/.cm%C
ForwardX11 no
GSSAPIAuthentication no
Host example
  Hostname example.com
  User user1

Additional resources

/usr/share/ansible/roles/rhel-system-roles.ssh/README.md file

/usr/share/doc/rhel-system-roles/ssh/ directory

2.5. USING THE SSHD SYSTEM ROLE FOR NON-EXCLUSIVE
CONFIGURATION

Normally, applying the sshd system role overwrites the entire configuration. This may be problematic if
you have previously adjusted the configuration, for example, with a different system role or playbook. To
apply the sshd system role for only selected configuration options while keeping other options in place,
you can use the non-exclusive configuration.

You can apply a non-exclusive configuration:

In RHEL 8 and earlier by using a configuration snippet.

In RHEL 9 and later by using files in a drop-in directory. The default configuration file is already
placed in the drop-in directory as /etc/ssh/sshd_config.d/00-ansible_system_role.conf.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.
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Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

For managed nodes that run RHEL 8 or earlier:

For managed nodes that run RHEL 9 or later:

In the sshd_config_file variable, define the .conf file into which the sshd system role
writes the configuration options. Use a two-digit prefix, for example 42- to specify the order
in which the configuration files will be applied.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

---
- name: Non-exclusive sshd configuration
  hosts: managed-node-01.example.com
  tasks:
    - name: <Configure SSHD to accept some useful environment variables>
      ansible.builtin.include_role:
        name: rhel-system-roles.sshd
      vars:
        sshd_config_namespace: <my-application>
        sshd:
          # Environment variables to accept
          AcceptEnv:
            LANG
            LS_COLORS
            EDITOR

- name: Non-exclusive sshd configuration
  hosts: managed-node-01.example.com
  tasks:
    - name: <Configure sshd to accept some useful environment variables>
      ansible.builtin.include_role:
        name: rhel-system-roles.sshd
      vars:
        sshd_config_file: /etc/ssh/sshd_config.d/<42-my-application>.conf
        sshd:
          # Environment variables to accept
          AcceptEnv:
            LANG
            LS_COLORS
            EDITOR
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Verification

Verify the configuration on the SSH server:

For managed nodes that run RHEL 8 or earlier:

# cat /etc/ssh/sshd_config.d/42-my-application.conf
# Ansible managed
#
AcceptEnv LANG LS_COLORS EDITOR

For managed nodes that run RHEL 9 or later:

# cat /etc/ssh/sshd_config
...
# BEGIN sshd system role managed block: namespace <my-application>
Match all
  AcceptEnv LANG LS_COLORS EDITOR
# END sshd system role managed block: namespace <my-application>

Additional resources

/usr/share/ansible/roles/rhel-system-roles.sshd/README.md file

/usr/share/doc/rhel-system-roles/sshd/ directory
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CHAPTER 3. CREATING AND MANAGING TLS KEYS AND
CERTIFICATES

You can encrypt communication transmitted between two systems by using the TLS (Transport Layer
Security) protocol. This standard uses asymmetric cryptography with private and public keys, digital
signatures, and certificates.

3.1. TLS CERTIFICATES

TLS (Transport Layer Security) is a protocol that enables client-server applications to pass information
securely. TLS uses a system of public and private key pairs to encrypt communication transmitted
between clients and servers. TLS is the successor protocol to SSL (Secure Sockets Layer).

TLS uses X.509 certificates to bind identities, such as hostnames or organizations, to public keys using
digital signatures. X.509 is a standard that defines the format of public key certificates.

Authentication of a secure application depends on the integrity of the public key value in the
application’s certificate. If an attacker replaces the public key with its own public key, it can impersonate
the true application and gain access to secure data. To prevent this type of attack, all certificates must
be signed by a certification authority (CA). A CA is a trusted node that confirms the integrity of the
public key value in a certificate.

A CA signs a public key by adding its digital signature and issues a certificate. A digital signature is a
message encoded with the CA’s private key. The CA’s public key is made available to applications by
distributing the certificate of the CA. Applications verify that certificates are validly signed by decoding
the CA’s digital signature with the CA’s public key.

To have a certificate signed by a CA, you must generate a public key, and send it to a CA for signing. This
is referred to as a certificate signing request (CSR). A CSR contains also a distinguished name (DN) for
the certificate. The DN information that you can provide for either type of certificate can include a two-
letter country code for your country, a full name of your state or province, your city or town, a name of
your organization, your email address, and it can also be empty. Many current commercial CAs prefer the
Subject Alternative Name extension and ignore DNs in CSRs.

RHEL provides two main toolkits for working with TLS certificates: GnuTLS and OpenSSL. You can
create, read, sign, and verify certificates using the openssl utility from the openssl package. The 
certtool utility provided by the gnutls-utils package can do the same operations using a different
syntax and above all a different set of libraries in the back end.

Additional resources

RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile

openssl(1), x509(1), ca(1), req(1), and certtool(1) man pages

3.2. CREATING A PRIVATE CA USING OPENSSL

Private certificate authorities (CA) are useful when your scenario requires verifying entities within your
internal network. For example, use a private CA when you create a VPN gateway with authentication
based on certificates signed by a CA under your control or when you do not want to pay a commercial
CA. To sign certificates in such use cases, the private CA uses a self-signed certificate.

Prerequisites
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You have root privileges or permissions to enter administrative commands with sudo.
Commands that require such privileges are marked with #.

Procedure

1. Generate a private key for your CA. For example, the following command creates a 256-bit
Elliptic Curve Digital Signature Algorithm (ECDSA) key:

$ openssl genpkey -algorithm ec -pkeyopt ec_paramgen_curve:P-256 -out <ca.key>

The time for the key-generation process depends on the hardware and entropy of the host, the
selected algorithm, and the length of the key.

2. Create a certificate signed using the private key generated in the previous command:

$ openssl req -key <ca.key> -new -x509 -days 3650 -addext 
keyUsage=critical,keyCertSign,cRLSign -subj "/CN=<Example CA>" -out <ca.crt>

The generated ca.crt file is a self-signed CA certificate that you can use to sign other
certificates for ten years. In the case of a private CA, you can replace <Example CA> with any
string as the common name (CN).

3. Set secure permissions on the private key of your CA, for example:

# chown <root>:<root> <ca.key>
# chmod 600 <ca.key>

Next steps

To use a self-signed CA certificate as a trust anchor on client systems, copy the CA certificate
to the client and add it to the clients' system-wide truststore as root:

# trust anchor <ca.crt>

See Chapter 4, Using shared system certificates  for more information.

Verification

1. Create a certificate signing request (CSR), and use your CA to sign the request. The CA must
successfully create a certificate based on the CSR, for example:

$ openssl x509 -req -in <client-cert.csr> -CA <ca.crt> -CAkey <ca.key> -CAcreateserial -
days 365 -extfile <openssl.cnf> -extensions <client-cert> -out <client-cert.crt>
Signature ok
subject=C = US, O = Example Organization, CN = server.example.com
Getting CA Private Key

See Section 3.5, “Using a private CA to issue certificates for CSRs with OpenSSL”  for more
information.

2. Display the basic information about your self-signed CA:

$ openssl x509 -in <ca.crt> -text -noout
Certificate:
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…
        X509v3 extensions:
            …
            X509v3 Basic Constraints: critical
                CA:TRUE
            X509v3 Key Usage: critical
                Certificate Sign, CRL Sign
…

3. Verify the consistency of the private key:

$ openssl pkey -check -in <ca.key>
Key is valid
-----BEGIN PRIVATE KEY-----
MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgcagSaTEBn74xZAwO

18wRpXoCVC9vcPki7WlT+gnmCI+hRANCAARb9NxIvkaVjFhOoZbGp/HtIQxbM78E
lwbDP0BI624xBJ8gK68ogSaq2x4SdezFdV1gNeKScDcU+Pj2pELldmdF
-----END PRIVATE KEY-----

Additional resources

openssl(1), ca(1), genpkey(1), x509(1), and req(1) man pages

3.3. CREATING A PRIVATE KEY AND A CSR FOR A TLS SERVER
CERTIFICATE USING OPENSSL

You can use TLS-encrypted communication channels only if you have a valid TLS certificate from a
certificate authority (CA). To obtain the certificate, you must create a private key and a certificate
signing request (CSR) for your server first.

Procedure

1. Generate a private key on your server system, for example:

$ openssl genpkey -algorithm ec -pkeyopt ec_paramgen_curve:P-256 -out <server-
private.key>

2. Optional: Use a text editor of your choice to prepare a configuration file that simplifies creating
your CSR, for example:

$ vim <example_server.cnf>
[server-cert]
keyUsage = critical, digitalSignature, keyEncipherment, keyAgreement
extendedKeyUsage = serverAuth
subjectAltName = @alt_name

[req]
distinguished_name = dn
prompt = no

[dn]
C = <US>
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O = <Example Organization>
CN = <server.example.com>

[alt_name]
DNS.1 = <example.com>
DNS.2 = <server.example.com>
IP.1 = <192.168.0.1>
IP.2 = <::1>
IP.3 = <127.0.0.1>

The extendedKeyUsage = serverAuth option limits the use of a certificate.

3. Create a CSR using the private key you created previously:

$ openssl req -key <server-private.key> -config <example_server.cnf> -new -out <server-
cert.csr>

If you omit the -config option, the req utility prompts you for additional information, for
example:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [XX]: <US>
State or Province Name (full name) []: <Washington>
Locality Name (eg, city) [Default City]: <Seattle>
Organization Name (eg, company) [Default Company Ltd]: <Example Organization>
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []: <server.example.com>
Email Address []: <server@example.com>

Next steps

Submit the CSR to a CA of your choice for signing. Alternatively, for an internal use scenario
within a trusted network, use your private CA for signing. See Section 3.5, “Using a private CA to
issue certificates for CSRs with OpenSSL” for more information.

Verification

1. After you obtain the requested certificate from the CA, check that the human-readable parts of
the certificate match your requirements, for example:

$ openssl x509 -text -noout -in <server-cert.crt>
Certificate:
…
        Issuer: CN = Example CA
        Validity
            Not Before: Feb  2 20:27:29 2023 GMT
            Not After : Feb  2 20:27:29 2024 GMT
        Subject: C = US, O = Example Organization, CN = server.example.com
        Subject Public Key Info:
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            Public Key Algorithm: id-ecPublicKey
                Public-Key: (256 bit)
…
        X509v3 extensions:
            X509v3 Key Usage: critical
                Digital Signature, Key Encipherment, Key Agreement
            X509v3 Extended Key Usage:
                TLS Web Server Authentication
            X509v3 Subject Alternative Name:
                DNS:example.com, DNS:server.example.com, IP Address:192.168.0.1, IP
…

Additional resources

openssl(1), x509(1), genpkey(1), req(1), and config(5) man pages

3.4. CREATING A PRIVATE KEY AND A CSR FOR A TLS CLIENT
CERTIFICATE USING OPENSSL

You can use TLS-encrypted communication channels only if you have a valid TLS certificate from a
certificate authority (CA). To obtain the certificate, you must create a private key and a certificate
signing request (CSR) for your client first.

Procedure

1. Generate a private key on your client system, for example:

$ openssl genpkey -algorithm ec -pkeyopt ec_paramgen_curve:P-256 -out <client-
private.key>

2. Optional: Use a text editor of your choice to prepare a configuration file that simplifies creating
your CSR, for example:

$ vim <example_client.cnf>
[client-cert]
keyUsage = critical, digitalSignature, keyEncipherment
extendedKeyUsage = clientAuth
subjectAltName = @alt_name

[req]
distinguished_name = dn
prompt = no

[dn]
CN = <client.example.com>

[clnt_alt_name]
email= <client@example.com>

The extendedKeyUsage = clientAuth option limits the use of a certificate.

3. Create a CSR using the private key you created previously:

Red Hat Enterprise Linux 9 Securing networks

30



$ openssl req -key <client-private.key> -config <example_client.cnf> -new -out <client-
cert.csr>

If you omit the -config option, the req utility prompts you for additional information, for
example:

You are about to be asked to enter information that will be incorporated
into your certificate request.
…
Common Name (eg, your name or your server's hostname) []: <client.example.com>
Email Address []: <client@example.com>

Next steps

Submit the CSR to a CA of your choice for signing. Alternatively, for an internal use scenario
within a trusted network, use your private CA for signing. See Section 3.5, “Using a private CA to
issue certificates for CSRs with OpenSSL” for more information.

Verification

1. Check that the human-readable parts of the certificate match your requirements, for example:

$ openssl x509 -text -noout -in <client-cert.crt>
Certificate:
…
            X509v3 Extended Key Usage:
                TLS Web Client Authentication
            X509v3 Subject Alternative Name:
                email:client@example.com
…

Additional resources

openssl(1), x509(1), genpkey(1), req(1), and config(5) man pages

3.5. USING A PRIVATE CA TO ISSUE CERTIFICATES FOR CSRS WITH
OPENSSL

To enable systems to establish a TLS-encrypted communication channel, a certificate authority (CA)
must provide valid certificates to them. If you have a private CA, you can create the requested
certificates by signing certificate signing requests (CSRs) from the systems.

Prerequisites

You have already configured a private CA. See Section 3.2, “Creating a private CA using
OpenSSL” for more information.

You have a file containing a CSR. You can find an example of creating the CSR in Section 3.3,
“Creating a private key and a CSR for a TLS server certificate using OpenSSL” .

Procedure

1. Optional: Use a text editor of your choice to prepare an OpenSSL configuration file for adding
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1. Optional: Use a text editor of your choice to prepare an OpenSSL configuration file for adding
extensions to certificates, for example:

$ vim <openssl.cnf>
[server-cert]
extendedKeyUsage = serverAuth

[client-cert]
extendedKeyUsage = clientAuth

2. Use the x509 utility to create a certificate based on a CSR, for example:

$ openssl x509 -req -in <server-cert.csr> -CA <ca.crt> -CAkey <ca.key> -days 365 -extfile 
<openssl.cnf> -extensions <server-cert> -out <server-cert.crt>
Signature ok
subject=C = US, O = Example Organization, CN = server.example.com
Getting CA Private Key

Additional resources

openssl(1), ca(1), and x509(1) man pages

3.6. CREATING A PRIVATE CA USING GNUTLS

Private certificate authorities (CA) are useful when your scenario requires verifying entities within your
internal network. For example, use a private CA when you create a VPN gateway with authentication
based on certificates signed by a CA under your control or when you do not want to pay a commercial
CA. To sign certificates in such use cases, the private CA uses a self-signed certificate.

Prerequisites

You have root privileges or permissions to enter administrative commands with sudo.
Commands that require such privileges are marked with #.

You have already installed GnuTLS on your system. If you did not, you can use this command:

$ dnf install gnutls-utils

Procedure

1. Generate a private key for your CA. For example, the following command creates a 256-bit
ECDSA (Elliptic Curve Digital Signature Algorithm) key:

$ certtool --generate-privkey --sec-param High --key-type=ecdsa --outfile <ca.key>

The time for the key-generation process depends on the hardware and entropy of the host, the
selected algorithm, and the length of the key.

2. Create a template file for a certificate.

a. Create a file with a text editor of your choice, for example:

$ vi <ca.cfg>

Red Hat Enterprise Linux 9 Securing networks

32



b. Edit the file to include the necessary certification details:

organization = "Example Inc."
state = "Example"
country = EX
cn = "Example CA"
serial = 007
expiration_days = 365
ca
cert_signing_key
crl_signing_key

3. Create a certificate signed using the private key generated in step 1:
The generated <ca.crt> file is a self-signed CA certificate that you can use to sign other
certificates for one year. <ca.crt> file is the public key (certificate). The loaded file <ca.key> is
the private key. You should keep this file in safe location.

$ certtool --generate-self-signed --load-privkey <ca.key> --template <ca.cfg> --outfile 
<ca.crt>

4. Set secure permissions on the private key of your CA, for example:

# chown <root>:<root> <ca.key>
# chmod 600 <ca.key>

Next steps

To use a self-signed CA certificate as a trust anchor on client systems, copy the CA certificate
to the client and add it to the clients' system-wide truststore as root:

# trust anchor <ca.crt>

See Chapter 4, Using shared system certificates  for more information.

Verification

1. Display the basic information about your self-signed CA:

$ certtool --certificate-info --infile <ca.crt>
Certificate:
…
     X509v3 extensions:
         …
         X509v3 Basic Constraints: critical
             CA:TRUE
         X509v3 Key Usage: critical
             Certificate Sign, CRL Sign

2. Create a certificate signing request (CSR), and use your CA to sign the request. The CA must
successfully create a certificate based on the CSR, for example:

a. Generate a private key for your CA:
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$ certtool --generate-privkey --outfile <example-server.key>

b. Open a new configuration file in a text editor of your choice, for example:

$ vi <example-server.cfg>

c. Edit the file to include the necessary certification details:

signing_key
encryption_key
key_agreement

tls_www_server

country = "US"
organization = "Example Organization"
cn = "server.example.com"

dns_name = "example.com"
dns_name = "server.example.com"
ip_address = "192.168.0.1"
ip_address = "::1"
ip_address = "127.0.0.1"

d. Generate a request with the previously created private key:

$ certtool --generate-request --load-privkey <example-server.key> --template <example-
server.cfg> --outfile <example-server.crq>

e. Generate the certificate and sign it with the private key of the CA:

$ certtool --generate-certificate --load-request <example-server.crq> --load-ca-certificate 
<ca.crt> --load-ca-privkey <ca.key> --outfile <example-server.crt>

Additional resources

certtool(1) and trust(1) man pages

3.7. CREATING A PRIVATE KEY AND A CSR FOR A TLS SERVER
CERTIFICATE USING GNUTLS

To obtain the certificate, you must create a private key and a certificate signing request (CSR) for your
server first.

Procedure

1. Generate a private key on your server system, for example:

$ certtool --generate-privkey --sec-param High --outfile <example-server.key>

2. Optional: Use a text editor of your choice to prepare a configuration file that simplifies creating
your CSR, for example:
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$ vim <example_server.cnf>
signing_key
encryption_key
key_agreement

tls_www_server

country = "US"
organization = "Example Organization"
cn = "server.example.com"

dns_name = "example.com"
dns_name = "server.example.com"
ip_address = "192.168.0.1"
ip_address = "::1"
ip_address = "127.0.0.1"

3. Create a CSR using the private key you created previously:

$ certtool --generate-request --template <example-server.cfg> --load-privkey <example-
server.key> --outfile <example-server.crq>

If you omit the --template option, the certool utility prompts you for additional information, for
example:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Generating a PKCS #10 certificate request...
Country name (2 chars): <US>
State or province name: <Washington>
Locality name: <Seattle>
Organization name: <Example Organization>
Organizational unit name:
Common name: <server.example.com>

Next steps

Submit the CSR to a CA of your choice for signing. Alternatively, for an internal use scenario
within a trusted network, use your private CA for signing. See Section 3.9, “Using a private CA to
issue certificates for CSRs with GnuTLS” for more information.

Verification

1. After you obtain the requested certificate from the CA, check that the human-readable parts of
the certificate match your requirements, for example:

$ certtool --certificate-info --infile <example-server.crt>
Certificate:
…
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        Issuer: CN = Example CA
        Validity
            Not Before: Feb  2 20:27:29 2023 GMT
            Not After : Feb  2 20:27:29 2024 GMT
        Subject: C = US, O = Example Organization, CN = server.example.com
        Subject Public Key Info:
            Public Key Algorithm: id-ecPublicKey
                Public-Key: (256 bit)
…
        X509v3 extensions:
            X509v3 Key Usage: critical
                Digital Signature, Key Encipherment, Key Agreement
            X509v3 Extended Key Usage:
                TLS Web Server Authentication
            X509v3 Subject Alternative Name:
                DNS:example.com, DNS:server.example.com, IP Address:192.168.0.1, IP
…

Additional resources

certtool(1) man page

3.8. CREATING A PRIVATE KEY AND A CSR FOR A TLS CLIENT
CERTIFICATE USING GNUTLS

To obtain the certificate, you must create a private key and a certificate signing request (CSR) for your
client first.

Procedure

1. Generate a private key on your client system, for example:

$ certtool --generate-privkey --sec-param High --outfile <example-client.key>

2. Optional: Use a text editor of your choice to prepare a configuration file that simplifies creating
your CSR, for example:

$ vim <example_client.cnf>
signing_key
encryption_key

tls_www_client

cn = "client.example.com"
email = "client@example.com"

3. Create a CSR using the private key you created previously:

$ certtool --generate-request --template <example-client.cfg> --load-privkey <example-
client.key> --outfile <example-client.crq>

If you omit the --template option, the certtool utility prompts you for additional information, for
example:
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Generating a PKCS #10 certificate request...
Country name (2 chars): <US>
State or province name: <Washington>
Locality name: <Seattle>
Organization name: <Example Organization>
Organizational unit name:
Common name: <server.example.com>

Next steps

Submit the CSR to a CA of your choice for signing. Alternatively, for an internal use scenario
within a trusted network, use your private CA for signing. See Section 3.9, “Using a private CA to
issue certificates for CSRs with GnuTLS” for more information.

Verification

1. Check that the human-readable parts of the certificate match your requirements, for example:

$ certtool --certificate-info --infile <example-client.crt>
Certificate:
…
            X509v3 Extended Key Usage:
                TLS Web Client Authentication
            X509v3 Subject Alternative Name:
                email:client@example.com
…

Additional resources

certtool(1) man page

3.9. USING A PRIVATE CA TO ISSUE CERTIFICATES FOR CSRS WITH
GNUTLS

To enable systems to establish a TLS-encrypted communication channel, a certificate authority (CA)
must provide valid certificates to them. If you have a private CA, you can create the requested
certificates by signing certificate signing requests (CSRs) from the systems.

Prerequisites

You have already configured a private CA. See Section 3.6, “Creating a private CA using
GnuTLS” for more information.

You have a file containing a CSR. You can find an example of creating the CSR in Section 3.7,
“Creating a private key and a CSR for a TLS server certificate using GnuTLS” .

Procedure

1. Optional: Use a text editor of your choice to prepare an GnuTLS configuration file for adding
extensions to certificates, for example:
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$ vi <server-extensions.cfg>
honor_crq_extensions
ocsp_uri = "http://ocsp.example.com"

2. Use the certtool utility to create a certificate based on a CSR, for example:

$ certtool --generate-certificate --load-request <example-server.crq> --load-ca-privkey 
<ca.key> --load-ca-certificate <ca.crt> --template <server-extensions.cfg> --outfile 
<example-server.crt>

Additional resources

certtool(1) man page
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CHAPTER 4. USING SHARED SYSTEM CERTIFICATES
The shared system certificates storage enables NSS, GnuTLS, OpenSSL, and Java to share a default
source for retrieving system certificate anchors and block-list information. By default, the truststore
contains the Mozilla CA list, including positive and negative trust. The system allows updating the core
Mozilla CA list or choosing another certificate list.

4.1. THE SYSTEM-WIDE TRUSTSTORE

In RHEL, the consolidated system-wide truststore is located in the /etc/pki/ca-trust/ and 
/usr/share/pki/ca-trust-source/ directories. The trust settings in /usr/share/pki/ca-trust-source/ are
processed with lower priority than settings in /etc/pki/ca-trust/.

Certificate files are treated depending on the subdirectory they are installed to:

Trust anchors belong to

/usr/share/pki/ca-trust-source/anchors/ or

/etc/pki/ca-trust/source/anchors/.

Distrusted certificates are stored in

/usr/share/pki/ca-trust-source/blocklist/ or

/etc/pki/ca-trust/source/blocklist/.

Certificates in the extended BEGIN TRUSTED file format are located in

/usr/share/pki/ca-trust-source/ or

/etc/pki/ca-trust/source/.

NOTE

In a hierarchical cryptographic system, a trust anchor is an authoritative entity that other
parties consider trustworthy. In the X.509 architecture, a root certificate is a trust anchor
from which a chain of trust is derived. To enable chain validation, the trusting party must
have access to the trust anchor first.

Additional resources

update-ca-trust(8) and trust(1) man pages

4.2. ADDING NEW CERTIFICATES

To acknowledge applications on your system with a new source of trust, add the corresponding
certificate to the system-wide store, and use the update-ca-trust command.

Prerequisites

The ca-certificates package is present on the system.

Procedure

1. To add a certificate in the simple PEM or DER file formats to the list of CAs trusted on the
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1. To add a certificate in the simple PEM or DER file formats to the list of CAs trusted on the
system, copy the certificate file to the /usr/share/pki/ca-trust-source/anchors/ or /etc/pki/ca-
trust/source/anchors/ directory, for example:

# cp ~/certificate-trust-examples/Cert-trust-test-ca.pem /usr/share/pki/ca-trust-
source/anchors/

2. To update the system-wide truststore configuration, use the update-ca-trust command:

# update-ca-trust

NOTE

Even though the Firefox browser can use an added certificate without a prior execution
of update-ca-trust, enter the update-ca-trust command after every CA change. Also
note that browsers, such as Firefox, Chromium, and GNOME Web cache files, and you
might have to clear your browser’s cache or restart your browser to load the current
system certificate configuration.

Additional resources

update-ca-trust(8) and trust(1) man pages

4.3. MANAGING TRUSTED SYSTEM CERTIFICATES

The trust command provides a convenient way for managing certificates in the shared system-wide
truststore.

To list, extract, add, remove, or change trust anchors, use the trust command. To see the built-
in help for this command, enter it without any arguments or with the --help directive:

$ trust
usage: trust command <args>...

Common trust commands are:
  list             List trust or certificates
  extract          Extract certificates and trust
  extract-compat   Extract trust compatibility bundles
  anchor           Add, remove, change trust anchors
  dump             Dump trust objects in internal format

See 'trust <command> --help' for more information

To list all system trust anchors and certificates, use the trust list command:

$ trust list
pkcs11:id=%d2%87%b4%e3%df%37%27%93%55%f6%56%ea%81%e5%36%cc%8c%1e%3
f%bd;type=cert
    type: certificate
    label: ACCVRAIZ1
    trust: anchor
    category: authority

pkcs11:id=%a6%b3%e1%2b%2b%49%b6%d7%73%a1%aa%94%f5%01%e7%73%65%4c%
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ac%50;type=cert
    type: certificate
    label: ACEDICOM Root
    trust: anchor
    category: authority
...

To store a trust anchor into the system-wide truststore, use the trust anchor sub-command
and specify a path to a certificate. Replace <path.to/certificate.crt> by a path to your certificate
and its file name:

# trust anchor <path.to/certificate.crt>

To remove a certificate, use either a path to a certificate or an ID of a certificate:

# trust anchor --remove <path.to/certificate.crt>
# trust anchor --remove "pkcs11:id=<%AA%BB%CC%DD%EE>;type=cert"

Additional resources

All sub-commands of the trust commands offer a detailed built-in help, for example:

$ trust list --help
usage: trust list --filter=<what>

  --filter=<what>     filter of what to export
                        ca-anchors        certificate anchors
...
  --purpose=<usage>   limit to certificates usable for the purpose
                        server-auth       for authenticating servers
...

Additional resources

update-ca-trust(8) and trust(1) man pages
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CHAPTER 5. PLANNING AND IMPLEMENTING TLS
TLS (Transport Layer Security) is a cryptographic protocol used to secure network communications.
When hardening system security settings by configuring preferred key-exchange protocols,
authentication methods, and encryption algorithms, it is necessary to bear in mind that the broader the
range of supported clients, the lower the resulting security. Conversely, strict security settings lead to
limited compatibility with clients, which can result in some users being locked out of the system. Be sure
to target the strictest available configuration and only relax it when it is required for compatibility
reasons.

5.1. SSL AND TLS PROTOCOLS

The Secure Sockets Layer (SSL) protocol was originally developed by Netscape Corporation to provide
a mechanism for secure communication over the Internet. Subsequently, the protocol was adopted by
the Internet Engineering Task Force (IETF) and renamed to Transport Layer Security (TLS).

The TLS protocol sits between an application protocol layer and a reliable transport layer, such as
TCP/IP. It is independent of the application protocol and can thus be layered underneath many different
protocols, for example: HTTP, FTP, SMTP, and so on.

Protocol version Usage recommendation

SSL v2 Do not use. Has serious security vulnerabilities. Removed from the core crypto libraries
since RHEL 7.

SSL v3 Do not use. Has serious security vulnerabilities. Removed from the core crypto libraries
since RHEL 8.

TLS 1.0 Not recommended to use. Has known issues that cannot be mitigated in a way that
guarantees interoperability, and does not support modern cipher suites. In RHEL 9,
disabled in all cryptographic policies.

TLS 1.1 Use for interoperability purposes where needed. Does not support modern cipher suites.
In RHEL 9, disabled in all cryptographic policies.

TLS 1.2 Supports the modern AEAD cipher suites. This version is enabled in all system-wide
crypto policies, but optional parts of this protocol contain vulnerabilities and TLS 1.2 also
allows outdated algorithms.

TLS 1.3 Recommended version. TLS 1.3 removes known problematic options, provides
additional privacy by encrypting more of the negotiation handshake and can be faster
thanks usage of more efficient modern cryptographic algorithms. TLS 1.3 is also
enabled in all system-wide crypto policies.

Additional resources

IETF: The Transport Layer Security (TLS) Protocol Version 1.3 .

5.2. SECURITY CONSIDERATIONS FOR TLS IN RHEL 9

In RHEL 9, TLS configuration is performed using the system-wide cryptographic policies mechanism.
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In RHEL 9, TLS configuration is performed using the system-wide cryptographic policies mechanism.
TLS versions below 1.2 are not supported anymore. DEFAULT, FUTURE, and LEGACY cryptographic
policies allow only TLS 1.2 and 1.3. See Using system-wide cryptographic policies  for more information.

The default settings provided by libraries included in RHEL 9 are secure enough for most deployments.
The TLS implementations use secure algorithms where possible while not preventing connections from
or to legacy clients or servers. Apply hardened settings in environments with strict security requirements
where legacy clients or servers that do not support secure algorithms or protocols are not expected or
allowed to connect.

The most straightforward way to harden your TLS configuration is switching the system-wide
cryptographic policy level to FUTURE using the update-crypto-policies --set FUTURE command.

WARNING

Algorithms disabled for the LEGACY cryptographic policy do not conform to Red
Hat’s vision of RHEL 9 security, and their security properties are not reliable.
Consider moving away from using these algorithms instead of re-enabling them. If
you do decide to re-enable them, for example for interoperability with old
hardware, treat them as insecure and apply extra protection measures, such as
isolating their network interactions to separate network segments. Do not use them
across public networks.

If you decide to not follow RHEL system-wide crypto policies or create custom cryptographic policies
tailored to your setup, use the following recommendations for preferred protocols, cipher suites, and
key lengths on your custom configuration:

5.2.1. Protocols

The latest version of TLS provides the best security mechanism. TLS 1.2 is now the minimum version
even when using the LEGACY cryptographic policy. Re-enabling older protocol versions is possible
through either opting out of cryptographic policies or providing a custom policy, but the resulting
configuration will not be supported.

Note that even though that RHEL 9 supports TLS version 1.3, not all features of this protocol are fully
supported by RHEL 9 components. For example, the 0-RTT (Zero Round Trip Time) feature, which
reduces connection latency, is not yet fully supported by the Apache web server.

WARNING

A RHEL 9.2 and later system running in FIPS mode enforces that any TLS 1.2
connection must use the Extended Master Secret (EMS) extension (RFC 7627) as
requires the FIPS 140-3 standard. Thus, legacy clients not supporting EMS or TLS
1.3 cannot connect to RHEL 9 servers running in FIPS mode, RHEL 9 clients in FIPS
mode cannot connect to servers that support only TLS 1.2 without EMS. See TLS
Extension "Extended Master Secret" enforced with Red Hat Enterprise Linux 9.2




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5.2.2. Cipher suites

Modern, more secure cipher suites should be preferred to old, insecure ones. Always disable the use of
eNULL and aNULL cipher suites, which do not offer any encryption or authentication at all. If at all
possible, ciphers suites based on RC4 or HMAC-MD5, which have serious shortcomings, should also be
disabled. The same applies to the so-called export cipher suites, which have been intentionally made
weaker, and thus are easy to break.

While not immediately insecure, cipher suites that offer less than 128 bits of security should not be
considered for their short useful life. Algorithms that use 128 bits of security or more can be expected to
be unbreakable for at least several years, and are thus strongly recommended. Note that while 3DES
ciphers advertise the use of 168 bits, they actually offer 112 bits of security.

Always prefer cipher suites that support (perfect) forward secrecy (PFS), which ensures the
confidentiality of encrypted data even in case the server key is compromised. This rules out the fast
RSA key exchange, but allows for the use of ECDHE and DHE. Of the two, ECDHE is the faster and
therefore the preferred choice.

You should also prefer AEAD ciphers, such as AES-GCM, over CBC-mode ciphers as they are not
vulnerable to padding oracle attacks. Additionally, in many cases, AES-GCM is faster than AES in CBC
mode, especially when the hardware has cryptographic accelerators for AES.

Note also that when using the ECDHE key exchange with ECDSA certificates, the transaction is even
faster than a pure RSA key exchange. To provide support for legacy clients, you can install two pairs of
certificates and keys on a server: one with ECDSA keys (for new clients) and one with RSA keys (for
legacy ones).

5.2.3. Public key length

When using RSA keys, always prefer key lengths of at least 3072 bits signed by at least SHA-256, which
is sufficiently large for true 128 bits of security.

WARNING

The security of your system is only as strong as the weakest link in the chain. For
example, a strong cipher alone does not guarantee good security. The keys and the
certificates are just as important, as well as the hash functions and keys used by the
Certification Authority (CA) to sign your keys.

5.3. HARDENING TLS CONFIGURATION IN APPLICATIONS

In RHEL, system-wide crypto policies  provide a convenient way to ensure that your applications that use
cryptographic libraries do not allow known insecure protocols, ciphers, or algorithms.

If you want to harden your TLS-related configuration with your customized cryptographic settings, you
can use the cryptographic configuration options described in this section, and override the system-wide
crypto policies just in the minimum required amount.

Regardless of the configuration you choose to use, always ensure that your server application enforces
server-side cipher order , so that the cipher suite to be used is determined by the order you configure.


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5.3.1. Configuring the Apache HTTP server to use TLS

The Apache HTTP Server can use both OpenSSL and NSS libraries for its TLS needs. RHEL 9
provides the mod_ssl functionality through eponymous packages:

# dnf install mod_ssl

The mod_ssl package installs the /etc/httpd/conf.d/ssl.conf configuration file, which can be used to
modify the TLS-related settings of the Apache HTTP Server.

Install the httpd-manual package to obtain complete documentation for the Apache HTTP Server,
including TLS configuration. The directives available in the /etc/httpd/conf.d/ssl.conf configuration file
are described in detail in the /usr/share/httpd/manual/mod/mod_ssl.html file. Examples of various
settings are described in the /usr/share/httpd/manual/ssl/ssl_howto.html file.

When modifying the settings in the /etc/httpd/conf.d/ssl.conf configuration file, be sure to consider the
following three directives at the minimum:

SSLProtocol

Use this directive to specify the version of TLS or SSL you want to allow.

SSLCipherSuite

Use this directive to specify your preferred cipher suite or disable the ones you want to disallow.

SSLHonorCipherOrder

Uncomment and set this directive to on to ensure that the connecting clients adhere to the order of
ciphers you specified.

For example, to use only the TLS 1.2 and 1.3 protocol:

SSLProtocol             all -SSLv3 -TLSv1 -TLSv1.1

See the Configuring TLS encryption on an Apache HTTP Server  chapter in the Deploying web servers
and reverse proxies document for more information.

5.3.2. Configuring the Nginx HTTP and proxy server to use TLS

To enable TLS 1.3 support in Nginx, add the TLSv1.3 value to the ssl_protocols option in the server
section of the /etc/nginx/nginx.conf configuration file:

server {
    listen 443 ssl http2;
    listen [::]:443 ssl http2;
    ....
    ssl_protocols TLSv1.2 TLSv1.3;
    ssl_ciphers
    ....
}

See the Adding TLS encryption to an Nginx web server  chapter in the Deploying web servers and
reverse proxies document for more information.

5.3.3. Configuring the Dovecot mail server to use TLS

To configure your installation of the Dovecot mail server to use TLS, modify the 
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/etc/dovecot/conf.d/10-ssl.conf configuration file. You can find an explanation of some of the basic
configuration directives available in that file in the 
/usr/share/doc/dovecot/wiki/SSL.DovecotConfiguration.txt file, which is installed along with the
standard installation of Dovecot.

When modifying the settings in the /etc/dovecot/conf.d/10-ssl.conf configuration file, be sure to
consider the following three directives at the minimum:

ssl_protocols

Use this directive to specify the version of TLS or SSL you want to allow or disable.

ssl_cipher_list

Use this directive to specify your preferred cipher suites or disable the ones you want to disallow.

ssl_prefer_server_ciphers

Uncomment and set this directive to yes to ensure that the connecting clients adhere to the order of
ciphers you specified.

For example, the following line in /etc/dovecot/conf.d/10-ssl.conf allows only TLS 1.1 and later:

ssl_protocols = !SSLv2 !SSLv3 !TLSv1

Additional resources

Deploying web servers and reverse proxies

config(5) and ciphers(1) man pages.

Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS).

Mozilla SSL Configuration Generator.

SSL Server Test.
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CHAPTER 6. CONFIGURING A VPN WITH IPSEC
In RHEL 9, a virtual private network (VPN) can be configured using the IPsec protocol, which is
supported by the [application]Libreswan application.

6.1. LIBRESWAN AS AN IPSEC VPN IMPLEMENTATION

In RHEL, a Virtual Private Network (VPN) can be configured using the IPsec protocol, which is supported
by the Libreswan application. Libreswan is a continuation of the Openswan application, and many
examples from the Openswan documentation are interchangeable with Libreswan.

The IPsec protocol for a VPN is configured using the Internet Key Exchange (IKE) protocol. The terms
IPsec and IKE are used interchangeably. An IPsec VPN is also called an IKE VPN, IKEv2 VPN, XAUTH
VPN, Cisco VPN or IKE/IPsec VPN. A variant of an IPsec VPN that also uses the Layer 2 Tunneling
Protocol (L2TP) is usually called an L2TP/IPsec VPN, which requires the xl2tpd package provided by the
optional repository.

Libreswan is an open-source, user-space IKE implementation. IKE v1 and v2 are implemented as a user-
level daemon. The IKE protocol is also encrypted. The IPsec protocol is implemented by the Linux kernel,
and Libreswan configures the kernel to add and remove VPN tunnel configurations.

The IKE protocol uses UDP port 500 and 4500. The IPsec protocol consists of two protocols:

Encapsulated Security Payload (ESP), which has protocol number 50.

Authenticated Header (AH), which has protocol number 51.

The AH protocol is not recommended for use. Users of AH are recommended to migrate to ESP with null
encryption.

The IPsec protocol provides two modes of operation:

Tunnel Mode (the default)

Transport Mode.

You can configure the kernel with IPsec without IKE. This is called manual keying. You can also configure
manual keying using the ip xfrm commands, however, this is strongly discouraged for security reasons.
Libreswan communicates with the Linux kernel using the Netlink interface. The kernel performs packet
encryption and decryption.

Libreswan uses the Network Security Services (NSS) cryptographic library. NSS is certified for use with
the Federal Information Processing Standard  (FIPS) Publication 140-2.

IMPORTANT

IKE/IPsec VPNs, implemented by Libreswan and the Linux kernel, is the only VPN
technology recommended for use in RHEL. Do not use any other VPN technology
without understanding the risks of doing so.

In RHEL, Libreswan follows system-wide cryptographic policies by default. This ensures that
Libreswan uses secure settings for current threat models including IKEv2 as a default protocol. See
Using system-wide crypto policies  for more information.

Libreswan does not use the terms "source" and "destination" or "server" and "client" because IKE/IPsec
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are peer to peer protocols. Instead, it uses the terms "left" and "right" to refer to end points (the hosts).
This also allows you to use the same configuration on both end points in most cases. However,
administrators usually choose to always use "left" for the local host and "right" for the remote host.

The leftid and rightid options serve as identification of the respective hosts in the authentication
process. See the ipsec.conf(5) man page for more information.

6.2. AUTHENTICATION METHODS IN LIBRESWAN

Libreswan supports several authentication methods, each of which fits a different scenario.

Pre-Shared key (PSK)

Pre-Shared Key (PSK) is the simplest authentication method. For security reasons, do not use PSKs
shorter than 64 random characters. In FIPS mode, PSKs must comply with a minimum-strength
requirement depending on the integrity algorithm used. You can set PSK by using the authby=secret
connection.

Raw RSA keys

Raw RSA keys are commonly used for static host-to-host or subnet-to-subnet IPsec configurations.
Each host is manually configured with the public RSA keys of all other hosts, and Libreswan sets up an
IPsec tunnel between each pair of hosts. This method does not scale well for large numbers of hosts.

You can generate a raw RSA key on a host using the ipsec newhostkey command. You can list
generated keys by using the ipsec showhostkey command. The leftrsasigkey= line is required for
connection configurations that use CKA ID keys. Use the authby=rsasig connection option for raw RSA
keys.

X.509 certificates

X.509 certificates are commonly used for large-scale deployments with hosts that connect to a common
IPsec gateway. A central certificate authority (CA) signs RSA certificates for hosts or users. This central
CA is responsible for relaying trust, including the revocations of individual hosts or users.

For example, you can generate X.509 certificates using the openssl command and the NSS certutil
command. Because Libreswan reads user certificates from the NSS database using the certificates'
nickname in the leftcert= configuration option, provide a nickname when you create a certificate.

If you use a custom CA certificate, you must import it to the Network Security Services (NSS) database.
You can import any certificate in the PKCS #12 format to the Libreswan NSS database by using the 
ipsec import command.

WARNING

Libreswan requires an Internet Key Exchange (IKE) peer ID as a subject alternative
name (SAN) for every peer certificate as described in section 3.1 of RFC 4945 .
Disabling this check by changing the require-id-on-certificated= option can make
the system vulnerable to man-in-the-middle attacks.

Use the authby=rsasig connection option for authentication based on X.509 certificates using RSA
with SHA-2. You can further limit it for ECDSA digital signatures using SHA-2 by setting authby= to 


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ecdsa and RSA Probabilistic Signature Scheme (RSASSA-PSS) digital signatures based authentication
with SHA-2 through authby=rsa-sha2. The default value is authby=rsasig,ecdsa.

The certificates and the authby= signature methods should match. This increases interoperability and
preserves authentication in one digital signature system.

NULL authentication

NULL authentication  is used to gain mesh encryption without authentication. It protects against passive
attacks but not against active attacks. However, because IKEv2 allows asymmetric authentication
methods, NULL authentication can also be used for internet-scale opportunistic IPsec. In this model,
clients authenticate the server, but servers do not authenticate the client. This model is similar to secure
websites using TLS. Use authby=null for NULL authentication.

Protection against quantum computers

In addition to the previously mentioned authentication methods, you can use the Post-quantum Pre-
shared Key (PPK) method to protect against possible attacks by quantum computers. Individual clients
or groups of clients can use their own PPK by specifying a PPK ID that corresponds to an out-of-band
configured pre-shared key.

Using IKEv1 with pre-shared keys protects against quantum attackers. The redesign of IKEv2 does not
offer this protection natively. Libreswan offers the use of a Post-quantum Pre-shared Key  (PPK) to
protect IKEv2 connections against quantum attacks.

To enable optional PPK support, add ppk=yes to the connection definition. To require PPK, add 
ppk=insist. Then, each client can be given a PPK ID with a secret value that is communicated out-of-
band (and preferably quantum-safe). The PPK’s should be very strong in randomness and not based on
dictionary words. The PPK ID and PPK data are stored in the ipsec.secrets file, for example:

@west @east : PPKS "user1" "thestringismeanttobearandomstr"

The PPKS option refers to static PPKs. This experimental function uses one-time-pad-based Dynamic
PPKs. Upon each connection, a new part of the one-time pad is used as the PPK. When used, that part
of the dynamic PPK inside the file is overwritten with zeros to prevent re-use. If there is no more one-
time-pad material left, the connection fails. See the ipsec.secrets(5) man page for more information.

WARNING

The implementation of dynamic PPKs is provided as an unsupported Technology
Preview. Use with caution.

6.3. INSTALLING LIBRESWAN

Before you can set a VPN through the Libreswan IPsec/IKE implementation, you must install the
corresponding packages, start the ipsec service, and allow the service in your firewall.

Prerequisites

The AppStream repository is enabled.


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Procedure

1. Install the libreswan packages:

# dnf install libreswan

2. If you are re-installing Libreswan, remove its old database files and create a new database:

# systemctl stop ipsec
# rm /var/lib/ipsec/nss/*db
# ipsec initnss

3. Start the ipsec service, and enable the service to be started automatically on boot:

# systemctl enable ipsec --now

4. Configure the firewall to allow 500 and 4500/UDP ports for the IKE, ESP, and AH protocols by
adding the ipsec service:

# firewall-cmd --add-service="ipsec"
# firewall-cmd --runtime-to-permanent

6.4. CREATING A HOST-TO-HOST VPN

You can configure Libreswan to create a host-to-host IPsec VPN between two hosts referred to as left
and right using authentication by raw RSA keys.

Prerequisites

Libreswan is installed and the ipsec service is started on each node.

Procedure

1. Generate a raw RSA key pair on each host:

# ipsec newhostkey

2. The previous step returned the generated key’s ckaid. Use that ckaid with the following
command on left, for example:

# ipsec showhostkey --left --ckaid 2d3ea57b61c9419dfd6cf43a1eb6cb306c0e857d

The output of the previous command generated the leftrsasigkey= line required for the
configuration. Do the same on the second host (right):

# ipsec showhostkey --right --ckaid a9e1f6ce9ecd3608c24e8f701318383f41798f03

3. In the /etc/ipsec.d/ directory, create a new my_host-to-host.conf file. Write the RSA host keys
from the output of the ipsec showhostkey commands in the previous step to the new file. For
example:

conn mytunnel
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    leftid=@west
    left=192.1.2.23
    leftrsasigkey=0sAQOrlo+hOafUZDlCQmXFrje/oZm [...] W2n417C/4urYHQkCvuIQ==
    rightid=@east
    right=192.1.2.45
    rightrsasigkey=0sAQO3fwC6nSSGgt64DWiYZzuHbc4 [...] D/v8t5YTQ==
    authby=rsasig

4. After importing keys, restart the ipsec service:

# systemctl restart ipsec

5. Load the connection:

# ipsec auto --add mytunnel

6. Establish the tunnel:

# ipsec auto --up mytunnel

7. To automatically start the tunnel when the ipsec service is started, add the following line to the
connection definition:

auto=start

6.5. CONFIGURING A SITE-TO-SITE VPN

To create a site-to-site IPsec VPN, by joining two networks, an IPsec tunnel between the two hosts, is
created. The hosts thus act as the end points, which are configured to permit traffic from one or more
subnets to pass through. Therefore you can think of the host as gateways to the remote portion of the
network.

The configuration of the site-to-site VPN only differs from the host-to-host VPN in that one or more
networks or subnets must be specified in the configuration file.

Prerequisites

A host-to-host VPN  is already configured.

Procedure

1. Copy the file with the configuration of your host-to-host VPN to a new file, for example:

# cp /etc/ipsec.d/my_host-to-host.conf /etc/ipsec.d/my_site-to-site.conf

2. Add the subnet configuration to the file created in the previous step, for example:

conn mysubnet
     also=mytunnel
     leftsubnet=192.0.1.0/24
     rightsubnet=192.0.2.0/24
     auto=start

CHAPTER 6. CONFIGURING A VPN WITH IPSEC

51



conn mysubnet6
     also=mytunnel
     leftsubnet=2001:db8:0:1::/64
     rightsubnet=2001:db8:0:2::/64
     auto=start

# the following part of the configuration file is the same for both host-to-host and site-to-site 
connections:

conn mytunnel
    leftid=@west
    left=192.1.2.23
    leftrsasigkey=0sAQOrlo+hOafUZDlCQmXFrje/oZm [...] W2n417C/4urYHQkCvuIQ==
    rightid=@east
    right=192.1.2.45
    rightrsasigkey=0sAQO3fwC6nSSGgt64DWiYZzuHbc4 [...] D/v8t5YTQ==
    authby=rsasig

6.6. CONFIGURING A REMOTE ACCESS VPN

Road warriors are traveling users with mobile clients and a dynamically assigned IP address. The mobile
clients authenticate using X.509 certificates.

The following example shows configuration for IKEv2, and it avoids using the IKEv1 XAUTH protocol.

On the server:

conn roadwarriors
    ikev2=insist
    # support (roaming) MOBIKE clients (RFC 4555)
    mobike=yes
    fragmentation=yes
    left=1.2.3.4
    # if access to the LAN is given, enable this, otherwise use 0.0.0.0/0
    # leftsubnet=10.10.0.0/16
    leftsubnet=0.0.0.0/0
    leftcert=gw.example.com
    leftid=%fromcert
    leftxauthserver=yes
    leftmodecfgserver=yes
    right=%any
    # trust our own Certificate Agency
    rightca=%same
    # pick an IP address pool to assign to remote users
    # 100.64.0.0/16 prevents RFC1918 clashes when remote users are behind NAT
    rightaddresspool=100.64.13.100-100.64.13.254
    # if you want remote clients to use some local DNS zones and servers
    modecfgdns="1.2.3.4, 5.6.7.8"
    modecfgdomains="internal.company.com, corp"
    rightxauthclient=yes
    rightmodecfgclient=yes
    authby=rsasig
    # optionally, run the client X.509 ID through pam to allow or deny client
    # pam-authorize=yes
    # load connection, do not initiate
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    auto=add
    # kill vanished roadwarriors
    dpddelay=1m
    dpdtimeout=5m
    dpdaction=clear

On the mobile client, the road warrior’s device, use a slight variation of the previous configuration:

conn to-vpn-server
    ikev2=insist
    # pick up our dynamic IP
    left=%defaultroute
    leftsubnet=0.0.0.0/0
    leftcert=myname.example.com
    leftid=%fromcert
    leftmodecfgclient=yes
    # right can also be a DNS hostname
    right=1.2.3.4
    # if access to the remote LAN is required, enable this, otherwise use 0.0.0.0/0
    # rightsubnet=10.10.0.0/16
    rightsubnet=0.0.0.0/0
    fragmentation=yes
    # trust our own Certificate Agency
    rightca=%same
    authby=rsasig
    # allow narrowing to the server’s suggested assigned IP and remote subnet
    narrowing=yes
    # support (roaming) MOBIKE clients (RFC 4555)
    mobike=yes
    # initiate connection
    auto=start

6.7. CONFIGURING A MESH VPN

A mesh VPN network, which is also known as an any-to-any VPN, is a network where all nodes
communicate using IPsec. The configuration allows for exceptions for nodes that cannot use IPsec. The
mesh VPN network can be configured in two ways:

To require IPsec.

To prefer IPsec but allow a fallback to clear-text communication.

Authentication between the nodes can be based on X.509 certificates or on DNS Security Extensions
(DNSSEC).

NOTE
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NOTE

You can use any regular IKEv2 authentication method for opportunistic IPsec, because
these connections are regular Libreswan configurations, except for the opportunistic
IPsec that is defined by right=%opportunisticgroup entry. A common authentication
method is for hosts to authenticate each other based on X.509 certificates using a
commonly shared certification authority (CA). Cloud deployments typically issue
certificates for each node in the cloud as part of the standard procedure.

Do not use PreSharedKey (PSK) authentication because one compromised host would
result in group PSK secret being compromised as well.

You can use NULL authentication to deploy encryption between nodes without
authentication, which protects only against passive attackers.

The following procedure uses X.509 certificates. You can generate these certificates by
using any kind of CA management system, such as the Dogtag Certificate System.
Dogtag assumes that the certificates for each node are available in the PKCS #12 format
(.p12 files), which contain the private key, the node certificate, and the Root CA
certificate used to validate other nodes' X.509 certificates.

Each node has an identical configuration with the exception of its X.509 certificate. This
allows for adding new nodes without reconfiguring any of the existing nodes in the
network. The PKCS #12 files require a "friendly name", for which we use the name "node"
so that the configuration files referencing the friendly name can be identical for all nodes.

Prerequisites

Libreswan is installed, and the ipsec service is started on each node.

A new NSS database is initialized.

1. If you already have an old NSS database, remove the old database files:

# systemctl stop ipsec
# rm /var/lib/ipsec/nss/*db

2. You can initialize a new database with the following command:

# ipsec initnss

Procedure

1. On each node, import PKCS #12 files. This step requires the password used to generate the
PKCS #12 files:

# ipsec import nodeXXX.p12

2. Create the following three connection definitions for the IPsec required (private), IPsec 
optional (private-or-clear), and No IPsec (clear) profiles:

# cat /etc/ipsec.d/mesh.conf
conn clear
 auto=ondemand 1
 type=passthrough
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1

2

 authby=never
 left=%defaultroute
 right=%group

conn private
 auto=ondemand
 type=transport
 authby=rsasig
 failureshunt=drop
 negotiationshunt=drop
 ikev2=insist
 left=%defaultroute
 leftcert=nodeXXXX
 leftid=%fromcert 2
 rightid=%fromcert
 right=%opportunisticgroup

conn private-or-clear
 auto=ondemand
 type=transport
 authby=rsasig
 failureshunt=passthrough
 negotiationshunt=passthrough
 # left
 left=%defaultroute
 leftcert=nodeXXXX 3
 leftid=%fromcert
 leftrsasigkey=%cert
 # right
 rightrsasigkey=%cert
 rightid=%fromcert
 right=%opportunisticgroup

The auto variable has several options:

You can use the ondemand connection option with opportunistic IPsec to initiate the IPsec
connection, or for explicitly configured connections that do not need to be active all the time. This
option sets up a trap XFRM policy in the kernel, enabling the IPsec connection to begin when it
receives the first packet that matches that policy.

You can effectively configure and manage your IPsec connections, whether you use Opportunistic
IPsec or explicitly configured connections, by using the following options:

The add option
Loads the connection configuration and prepares it for responding to remote initiations.
However, the connection is not automatically initiated from the local side. You can manually
start the IPsec connection by using the command ipsec auto --up.

The start option
Loads the connection configuration and prepares it for responding to remote initiations.
Additionally, it immediately initiates a connection to the remote peer. You can use this option
for permanent and always active connections.

leftid and rightid variables identifies the right and the left channel of the IPsec tunnel connection.
You can use these variables to obtain the value of the local IP address or the subject DN of the
local certificate, if you have configured one.
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3 leftcert variable defines the nickname of the NSS database, which you want to use.

3. Add the IP address of the network to the corresponding category. For example, if all nodes
reside in the 10.15.0.0/16 network, and all nodes must use IPsec encryption:

# echo "10.15.0.0/16" >> /etc/ipsec.d/policies/private

4. To allow certain nodes, for example, 10.15.34.0/24, to work with and without IPsec, add
those nodes to the private-or-clear group:

# echo "10.15.34.0/24" >> /etc/ipsec.d/policies/private-or-clear

5. To define a host, for example, 10.15.1.2, that is not capable of IPsec into the clear group,
use:

# echo "10.15.1.2/32" >> /etc/ipsec.d/policies/clear

You have the option to create the files in the /etc/ipsec.d/policies directory from a
template for each new node, or you can provision them by using Puppet or Ansible.

Note that every node has the same list of exceptions or different traffic flow expectations.
Two nodes, therefore, might not be able to communicate because one requires IPsec and
the other cannot use IPsec.

6. Restart the node to add it to the configured mesh:

# systemctl restart ipsec

Verification

You can verify the procedure by opening a IPsec tunnel between two nodes.

1. Open an IPsec tunnel by using the ping command:

# ping <nodeYYY>

2. Display the NSS database with the imported certification:

# certutil -L -d sql:/etc/ipsec.d

Certificate Nickname    Trust Attributes
                        SSL,S/MIME,JAR/XPI

west                    u,u,u
ca                      CT,,

3. See which tunnels a node has opened:

# ipsec trafficstatus
006 #2: "private#10.15.0.0/16"[1] ...nodeYYY, type=ESP, add_time=1691399301, 
inBytes=512, outBytes=512, maxBytes=2^63B, id='C=US, ST=NC, O=Example 
Organization, CN=east'
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Additional resources

ipsec.conf(5) man page.

For more information about the authby variable, see 6.2. Authentication methods in Libreswan .

6.8. DEPLOYING A FIPS-COMPLIANT IPSEC VPN

Use this procedure to deploy a FIPS-compliant IPsec VPN solution based on Libreswan. The following
steps also enable you to identify which cryptographic algorithms are available and which are disabled for
Libreswan in FIPS mode.

Prerequisites

The AppStream repository is enabled.

Procedure

1. Install the libreswan packages:

# dnf install libreswan

2. If you are re-installing Libreswan, remove its old NSS database:

# systemctl stop ipsec

# rm /var/lib/ipsec/nss/*db

3. Start the ipsec service, and enable the service to be started automatically on boot:

# systemctl enable ipsec --now

4. Configure the firewall to allow 500 and 4500/UDP ports for the IKE, ESP, and AH protocols by
adding the ipsec service:

# firewall-cmd --add-service="ipsec"
# firewall-cmd --runtime-to-permanent

5. Switch the system to FIPS mode:

# fips-mode-setup --enable

6. Restart your system to allow the kernel to switch to FIPS mode:

# reboot

Verification

1. To confirm Libreswan is running in FIPS mode:

# ipsec whack --fipsstatus
000 FIPS mode enabled
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2. Alternatively, check entries for the ipsec unit in the systemd journal:

$ journalctl -u ipsec
...
Jan 22 11:26:50 localhost.localdomain pluto[3076]: FIPS Mode: YES

3. To see the available algorithms in FIPS mode:

# ipsec pluto --selftest 2>&1 | head -6
Initializing NSS using read-write database "sql:/var/lib/ipsec/nss"
FIPS Mode: YES
NSS crypto library initialized
FIPS mode enabled for pluto daemon
NSS library is running in FIPS mode
FIPS HMAC integrity support [disabled]

4. To query disabled algorithms in FIPS mode:

# ipsec pluto --selftest 2>&1 | grep disabled
Encryption algorithm CAMELLIA_CTR disabled; not FIPS compliant
Encryption algorithm CAMELLIA_CBC disabled; not FIPS compliant
Encryption algorithm NULL disabled; not FIPS compliant
Encryption algorithm CHACHA20_POLY1305 disabled; not FIPS compliant
Hash algorithm MD5 disabled; not FIPS compliant
PRF algorithm HMAC_MD5 disabled; not FIPS compliant
PRF algorithm AES_XCBC disabled; not FIPS compliant
Integrity algorithm HMAC_MD5_96 disabled; not FIPS compliant
Integrity algorithm HMAC_SHA2_256_TRUNCBUG disabled; not FIPS compliant
Integrity algorithm AES_XCBC_96 disabled; not FIPS compliant
DH algorithm MODP1536 disabled; not FIPS compliant
DH algorithm DH31 disabled; not FIPS compliant

5. To list all allowed algorithms and ciphers in FIPS mode:

# ipsec pluto --selftest 2>&1 | grep ESP | grep FIPS | sed "s/^.*FIPS//"
aes_ccm, aes_ccm_c
aes_ccm_b
aes_ccm_a
NSS(CBC)  3des
NSS(GCM)  aes_gcm, aes_gcm_c
NSS(GCM)  aes_gcm_b
NSS(GCM)  aes_gcm_a
NSS(CTR)  aesctr
NSS(CBC)  aes
aes_gmac
NSS       sha, sha1, sha1_96, hmac_sha1
NSS       sha512, sha2_512, sha2_512_256, hmac_sha2_512
NSS       sha384, sha2_384, sha2_384_192, hmac_sha2_384
NSS       sha2, sha256, sha2_256, sha2_256_128, hmac_sha2_256
aes_cmac
null
NSS(MODP) null, dh0
NSS(MODP) dh14
NSS(MODP) dh15
NSS(MODP) dh16
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NSS(MODP) dh17
NSS(MODP) dh18
NSS(ECP)  ecp_256, ecp256
NSS(ECP)  ecp_384, ecp384
NSS(ECP)  ecp_521, ecp521

Additional resources

Using system-wide cryptographic policies .

6.9. PROTECTING THE IPSEC NSS DATABASE BY A PASSWORD

By default, the IPsec service creates its Network Security Services (NSS) database with an empty
password during the first start. Add password protection by using the following steps.

Prerequisites

The /var/lib/ipsec/nss/ directory contains NSS database files.

Procedure

1. Enable password protection for the NSS database for Libreswan:

# certutil -N -d sql:/var/lib/ipsec/nss
Enter Password or Pin for "NSS Certificate DB":
Enter a password which will be used to encrypt your keys.
The password should be at least 8 characters long,
and should contain at least one non-alphabetic character.

Enter new password:

2. Create the /etc/ipsec.d/nsspassword file containing the password you have set in the previous
step, for example:

# cat /etc/ipsec.d/nsspassword
NSS Certificate DB:MyStrongPasswordHere

Note that the nsspassword file use the following syntax:

token_1_name:the_password
token_2_name:the_password

The default NSS software token is NSS Certificate DB. If your system is running in FIPS mode,
the name of the token is NSS FIPS 140-2 Certificate DB.

3. Depending on your scenario, either start or restart the ipsec service after you finish the 
nsspassword file:

# systemctl restart ipsec

Verification

1. Check that the ipsec service is running after you have added a non-empty password to its NSS
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1. Check that the ipsec service is running after you have added a non-empty password to its NSS
database:

# systemctl status ipsec
● ipsec.service - Internet Key Exchange (IKE) Protocol Daemon for IPsec
   Loaded: loaded (/usr/lib/systemd/system/ipsec.service; enabled; vendor preset: disable>
   Active: active (running)...

2. Optionally, check that the Journal log contains entries confirming a successful initialization:

# journalctl -u ipsec
...
pluto[6214]: Initializing NSS using read-write database "sql:/var/lib/ipsec/nss"
pluto[6214]: NSS Password from file "/etc/ipsec.d/nsspassword" for token "NSS Certificate 
DB" with length 20 passed to NSS
pluto[6214]: NSS crypto library initialized
...

Additional resources

certutil(1) man page.

Government Standards Knowledgebase article.

6.10. CONFIGURING AN IPSEC VPN TO USE TCP

Libreswan supports TCP encapsulation of IKE and IPsec packets as described in RFC 8229. With this
feature, you can establish IPsec VPNs on networks that prevent traffic transmitted via UDP and
Encapsulating Security Payload (ESP). You can configure VPN servers and clients to use TCP either as a
fallback or as the main VPN transport protocol. Because TCP encapsulation has bigger performance
costs, use TCP as the main VPN protocol only if UDP is permanently blocked in your scenario.

Prerequisites

A remote-access VPN is already configured.

Procedure

1. Add the following option to the /etc/ipsec.conf file in the config setup section:

listen-tcp=yes

2. To use TCP encapsulation as a fallback option when the first attempt over UDP fails, add the
following two options to the client’s connection definition:

enable-tcp=fallback
tcp-remoteport=4500

Alternatively, if you know that UDP is permanently blocked, use the following options in the
client’s connection configuration:

enable-tcp=yes
tcp-remoteport=4500
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Additional resources

IETF RFC 8229: TCP Encapsulation of IKE and IPsec Packets .

6.11. CONFIGURING AUTOMATIC DETECTION AND USAGE OF ESP
HARDWARE OFFLOAD TO ACCELERATE AN IPSEC CONNECTION

Offloading Encapsulating Security Payload (ESP) to the hardware accelerates IPsec connections over
Ethernet. By default, Libreswan detects if hardware supports this feature and, as a result, enables ESP
hardware offload. In case that the feature was disabled or explicitly enabled, you can switch back to
automatic detection.

Prerequisites

The network card supports ESP hardware offload.

The network driver supports ESP hardware offload.

The IPsec connection is configured and works.

Procedure

1. Edit the Libreswan configuration file in the /etc/ipsec.d/ directory of the connection that should
use automatic detection of ESP hardware offload support.

2. Ensure the nic-offload parameter is not set in the connection’s settings.

3. If you removed nic-offload, restart the ipsec service:

# systemctl restart ipsec

Verification

If the network card supports ESP hardware offload support, following these steps to verify the result:

1. Display the tx_ipsec and rx_ipsec counters of the Ethernet device the IPsec connection uses:

# ethtool -S enp1s0 | egrep "_ipsec"
     tx_ipsec: 10
     rx_ipsec: 10

2. Send traffic through the IPsec tunnel. For example, ping a remote IP address:

# ping -c 5 remote_ip_address

3. Display the tx_ipsec and rx_ipsec counters of the Ethernet device again:

# ethtool -S enp1s0 | egrep "_ipsec"
     tx_ipsec: 15
     rx_ipsec: 15

If the counter values have increased, ESP hardware offload works.

Additional resources
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Configuring a VPN with IPsec

6.12. CONFIGURING ESP HARDWARE OFFLOAD ON A BOND TO
ACCELERATE AN IPSEC CONNECTION

Offloading Encapsulating Security Payload (ESP) to the hardware accelerates IPsec connections. If you
use a network bond for fail-over reasons, the requirements and the procedure to configure ESP
hardware offload are different from those using a regular Ethernet device. For example, in this scenario,
you enable the offload support on the bond, and the kernel applies the settings to the ports of the bond.

Prerequisites

All network cards in the bond support ESP hardware offload.

The network driver supports ESP hardware offload on a bond device. In RHEL, only the ixgbe
driver supports this feature.

The bond is configured and works.

The bond uses the active-backup mode. The bonding driver does not support any other modes
for this feature.

The IPsec connection is configured and works.

Procedure

1. Enable ESP hardware offload support on the network bond:

# nmcli connection modify bond0 ethtool.feature-esp-hw-offload on

This command enables ESP hardware offload support on the bond0 connection.

2. Reactivate the bond0 connection:

# nmcli connection up bond0

3. Edit the Libreswan configuration file in the /etc/ipsec.d/ directory of the connection that should
use ESP hardware offload, and append the nic-offload=yes statement to the connection entry:

conn example
    ...
    nic-offload=yes

4. Restart the ipsec service:

# systemctl restart ipsec

Verification

1. Display the active port of the bond:

# grep "Currently Active Slave" /proc/net/bonding/bond0
Currently Active Slave: enp1s0
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2. Display the tx_ipsec and rx_ipsec counters of the active port:

# ethtool -S enp1s0 | egrep "_ipsec"
     tx_ipsec: 10
     rx_ipsec: 10

3. Send traffic through the IPsec tunnel. For example, ping a remote IP address:

# ping -c 5 remote_ip_address

4. Display the tx_ipsec and rx_ipsec counters of the active port again:

# ethtool -S enp1s0 | egrep "_ipsec"
     tx_ipsec: 15
     rx_ipsec: 15

If the counter values have increased, ESP hardware offload works.

Additional resources

Configuring network bonding

Configuring a VPN with IPsec

6.13. CONFIGURING IPSEC CONNECTIONS THAT OPT OUT OF THE
SYSTEM-WIDE CRYPTO POLICIES

Overriding system-wide crypto-policies for a connection

The RHEL system-wide cryptographic policies create a special connection called %default. This
connection contains the default values for the ikev2, esp, and ike options. However, you can override
the default values by specifying the mentioned option in the connection configuration file.

For example, the following configuration allows connections that use IKEv1 with AES and SHA-1 or SHA-
2, and IPsec (ESP) with either AES-GCM or AES-CBC:

conn MyExample
  ...
  ikev2=never
  ike=aes-sha2,aes-sha1;modp2048
  esp=aes_gcm,aes-sha2,aes-sha1
  ...

Note that AES-GCM is available for IPsec (ESP) and for IKEv2, but not for IKEv1.

Disabling system-wide crypto policies for all connections

To disable system-wide crypto policies for all IPsec connections, comment out the following line in the 
/etc/ipsec.conf file:

include /etc/crypto-policies/back-ends/libreswan.config

Then add the ikev2=never option to your connection configuration file.
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Additional resources

Using system-wide cryptographic policies .

6.14. TROUBLESHOOTING IPSEC VPN CONFIGURATIONS

Problems related to IPsec VPN configurations most commonly occur due to several main reasons. If you
are encountering such problems, you can check if the cause of the problem corresponds to any of the
following scenarios, and apply the corresponding solution.

Basic connection troubleshooting

Most problems with VPN connections occur in new deployments, where administrators configured
endpoints with mismatched configuration options. Also, a working configuration can suddenly stop
working, often due to newly introduced incompatible values. This could be the result of an administrator
changing the configuration. Alternatively, an administrator may have installed a firmware update or a
package update with different default values for certain options, such as encryption algorithms.

To confirm that an IPsec VPN connection is established:

# ipsec trafficstatus
006 #8: "vpn.example.com"[1] 192.0.2.1, type=ESP, add_time=1595296930, inBytes=5999, 
outBytes=3231, id='@vpn.example.com', lease=100.64.13.5/32

If the output is empty or does not show an entry with the connection name, the tunnel is broken.

To check that the problem is in the connection:

1. Reload the vpn.example.com connection:

# ipsec auto --add vpn.example.com
002 added connection description "vpn.example.com"

2. Next, initiate the VPN connection:

# ipsec auto --up vpn.example.com

Firewall-related problems

The most common problem is that a firewall on one of the IPsec endpoints or on a router between the
endpoints is dropping all Internet Key Exchange (IKE) packets.

For IKEv2, an output similar to the following example indicates a problem with a firewall:

# ipsec auto --up vpn.example.com
181 "vpn.example.com"[1] 192.0.2.2 #15: initiating IKEv2 IKE SA
181 "vpn.example.com"[1] 192.0.2.2 #15: STATE_PARENT_I1: sent v2I1, expected v2R1
010 "vpn.example.com"[1] 192.0.2.2 #15: STATE_PARENT_I1: retransmission; will wait 0.5 
seconds for response
010 "vpn.example.com"[1] 192.0.2.2 #15: STATE_PARENT_I1: retransmission; will wait 1 
seconds for response
010 "vpn.example.com"[1] 192.0.2.2 #15: STATE_PARENT_I1: retransmission; will wait 2 
seconds for
...
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For IKEv1, the output of the initiating command looks like:

# ipsec auto --up vpn.example.com
002 "vpn.example.com" #9: initiating Main Mode
102 "vpn.example.com" #9: STATE_MAIN_I1: sent MI1, expecting MR1
010 "vpn.example.com" #9: STATE_MAIN_I1: retransmission; will wait 0.5 seconds for 
response
010 "vpn.example.com" #9: STATE_MAIN_I1: retransmission; will wait 1 seconds for 
response
010 "vpn.example.com" #9: STATE_MAIN_I1: retransmission; will wait 2 seconds for 
response
...

Because the IKE protocol, which is used to set up IPsec, is encrypted, you can troubleshoot only a limited
subset of problems using the tcpdump tool. If a firewall is dropping IKE or IPsec packets, you can try to
find the cause using the tcpdump utility. However, tcpdump cannot diagnose other problems with IPsec
VPN connections.

To capture the negotiation of the VPN and all encrypted data on the eth0 interface:

# tcpdump -i eth0 -n -n esp or udp port 500 or udp port 4500 or tcp port 4500

Mismatched algorithms, protocols, and policies

VPN connections require that the endpoints have matching IKE algorithms, IPsec algorithms, and IP
address ranges. If a mismatch occurs, the connection fails. If you identify a mismatch by using one of the
following methods, fix it by aligning algorithms, protocols, or policies.

If the remote endpoint is not running IKE/IPsec, you can see an ICMP packet indicating it. For
example:

# ipsec auto --up vpn.example.com
...
000 "vpn.example.com"[1] 192.0.2.2 #16: ERROR: asynchronous network error report on 
wlp2s0 (192.0.2.2:500), complainant 198.51.100.1: Connection refused [errno 111, origin 
ICMP type 3 code 3 (not authenticated)]
...

Example of mismatched IKE algorithms:

# ipsec auto --up vpn.example.com
...
003 "vpn.example.com"[1] 193.110.157.148 #3: dropping unexpected IKE_SA_INIT message 
containing NO_PROPOSAL_CHOSEN notification; message payloads: N; missing payloads: 
SA,KE,Ni

Example of mismatched IPsec algorithms:

# ipsec auto --up vpn.example.com
...
182 "vpn.example.com"[1] 193.110.157.148 #5: STATE_PARENT_I2: sent v2I2, expected 
v2R2 {auth=IKEv2 cipher=AES_GCM_16_256 integ=n/a prf=HMAC_SHA2_256 
group=MODP2048}
002 "vpn.example.com"[1] 193.110.157.148 #6: IKE_AUTH response contained the error 
notification NO_PROPOSAL_CHOSEN
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A mismatched IKE version could also result in the remote endpoint dropping the request
without a response. This looks identical to a firewall dropping all IKE packets.

Example of mismatched IP address ranges for IKEv2 (called Traffic Selectors - TS):

# ipsec auto --up vpn.example.com
...
1v2 "vpn.example.com" #1: STATE_PARENT_I2: sent v2I2, expected v2R2 {auth=IKEv2 
cipher=AES_GCM_16_256 integ=n/a prf=HMAC_SHA2_512 group=MODP2048}
002 "vpn.example.com" #2: IKE_AUTH response contained the error notification 
TS_UNACCEPTABLE

Example of mismatched IP address ranges for IKEv1:

# ipsec auto --up vpn.example.com
...
031 "vpn.example.com" #2: STATE_QUICK_I1: 60 second timeout exceeded after 0 
retransmits.  No acceptable response to our first Quick Mode message: perhaps peer likes 
no proposal

When using PreSharedKeys (PSK) in IKEv1, if both sides do not put in the same PSK, the entire
IKE message becomes unreadable:

# ipsec auto --up vpn.example.com
...
003 "vpn.example.com" #1: received Hash Payload does not match computed value
223 "vpn.example.com" #1: sending notification INVALID_HASH_INFORMATION to 
192.0.2.23:500

In IKEv2, the mismatched-PSK error results in an AUTHENTICATION_FAILED message:

# ipsec auto --up vpn.example.com
...
002 "vpn.example.com" #1: IKE SA authentication request rejected by peer: 
AUTHENTICATION_FAILED

Maximum transmission unit

Other than firewalls blocking IKE or IPsec packets, the most common cause of networking problems
relates to an increased packet size of encrypted packets. Network hardware fragments packets larger
than the maximum transmission unit (MTU), for example, 1500 bytes. Often, the fragments are lost and
the packets fail to re-assemble. This leads to intermittent failures, when a ping test, which uses small-
sized packets, works but other traffic fails. In this case, you can establish an SSH session but the terminal
freezes as soon as you use it, for example, by entering the 'ls -al /usr' command on the remote host.

To work around the problem, reduce MTU size by adding the mtu=1400 option to the tunnel
configuration file.

Alternatively, for TCP connections, enable an iptables rule that changes the MSS value:

# iptables -I FORWARD -p tcp --tcp-flags SYN,RST SYN -j TCPMSS --clamp-mss-to-pmtu

If the previous command does not solve the problem in your scenario, directly specify a lower size in the 
set-mss parameter:
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# iptables -I FORWARD -p tcp --tcp-flags SYN,RST SYN -j TCPMSS --set-mss 1380

Network address translation (NAT)

When an IPsec host also serves as a NAT router, it could accidentally remap packets. The following
example configuration demonstrates the problem:

conn myvpn
    left=172.16.0.1
    leftsubnet=10.0.2.0/24
    right=172.16.0.2
    rightsubnet=192.168.0.0/16
…

The system with address 172.16.0.1 have a NAT rule:

iptables -t nat -I POSTROUTING -o eth0 -j MASQUERADE

If the system on address 10.0.2.33 sends a packet to 192.168.0.1, then the router translates the source
10.0.2.33 to 172.16.0.1 before it applies the IPsec encryption.

Then, the packet with the source address 10.0.2.33 no longer matches the conn myvpn configuration,
and IPsec does not encrypt this packet.

To solve this problem, insert rules that exclude NAT for target IPsec subnet ranges on the router, in this
example:

iptables -t nat -I POSTROUTING -s 10.0.2.0/24 -d 192.168.0.0/16 -j RETURN

Kernel IPsec subsystem bugs

The kernel IPsec subsystem might fail, for example, when a bug causes a desynchronizing of the IKE user
space and the IPsec kernel. To check for such problems:

$ cat /proc/net/xfrm_stat
XfrmInError                 0
XfrmInBufferError           0
...

Any non-zero value in the output of the previous command indicates a problem. If you encounter this
problem, open a new support case, and attach the output of the previous command along with the
corresponding IKE logs.

Libreswan logs

Libreswan logs using the syslog protocol by default. You can use the journalctl command to find log
entries related to IPsec. Because the corresponding entries to the log are sent by the pluto IKE daemon,
search for the “pluto” keyword, for example:

$ journalctl -b | grep pluto

To show a live log for the ipsec service:

$ journalctl -f -u ipsec
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If the default level of logging does not reveal your configuration problem, enable debug logs by adding
the plutodebug=all option to the config setup section in the /etc/ipsec.conf file.

Note that debug logging produces a lot of entries, and it is possible that either the journald or syslogd
service rate-limits the syslog messages. To ensure you have complete logs, redirect the logging to a
file. Edit the /etc/ipsec.conf, and add the logfile=/var/log/pluto.log in the config setup section.

Additional resources

Troubleshooting problems using log files .

tcpdump(8) and ipsec.conf(5) man pages.

Using and configuring firewalld

6.15. ADDITIONAL RESOURCES

ipsec(8), ipsec.conf(5), ipsec.secrets(5), ipsec_auto(8), and ipsec_rsasigkey(8) man pages.

/usr/share/doc/libreswan-version/ directory.

The website of the upstream project .

The Libreswan Project Wiki .

All Libreswan man pages .

NIST Special Publication 800-77: Guide to IPsec VPNs .

Red Hat Enterprise Linux 9 Securing networks

68

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/assembly_troubleshooting-problems-using-log-files_configuring-basic-system-settings
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_firewalls_and_packet_filters/using-and-configuring-firewalld_firewall-packet-filters
https://libreswan.org
https://libreswan.org/wiki
https://libreswan.org/man/
https://doi.org/10.6028/NIST.SP.800-77r1


CHAPTER 7. CONFIGURING VPN CONNECTIONS WITH IPSEC
BY USING THE VPN RHEL SYSTEM ROLE

With the vpn system role, you can configure VPN connections on RHEL systems by using Red Hat
Ansible Automation Platform. You can use it to set up host-to-host, network-to-network, VPN Remote
Access Server, and mesh configurations.

For host-to-host connections, the role sets up a VPN tunnel between each pair of hosts in the list of 
vpn_connections using the default parameters, including generating keys as needed. Alternatively, you
can configure it to create an opportunistic mesh configuration between all hosts listed. The role assumes
that the names of the hosts under hosts are the same as the names of the hosts used in the Ansible
inventory, and that you can use those names to configure the tunnels.

NOTE

The vpn RHEL system role currently supports only Libreswan, which is an IPsec
implementation, as the VPN provider.

7.1. CREATING A HOST-TO-HOST VPN WITH IPSEC BY USING THE VPN

SYSTEM ROLE

You can use the vpn system role to configure host-to-host connections by running an Ansible playbook
on the control node, which configures all managed nodes listed in an inventory file.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

This playbook configures the connection managed-node-01.example.com-to-managed-node-
02.example.com by using pre-shared key authentication with keys auto-generated by the
system role. Because vpn_manage_firewall and vpn_manage_selinux are both set to true,
the vpn role uses the firewall and selinux roles to manage the ports used by the vpn role.

To configure connections from managed hosts to external hosts that are not listed in the

- name: Host to host VPN
  hosts: managed-node-01.example.com, managed-node-02.example.com
  roles:
    - rhel-system-roles.vpn
  vars:
    vpn_connections:
      - hosts:
          managed-node-01.example.com:
          managed-node-02.example.com:
    vpn_manage_firewall: true
    vpn_manage_selinux: true
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To configure connections from managed hosts to external hosts that are not listed in the
inventory file, add the following section to the vpn_connections list of hosts:

This configures one additional connection: managed-node-01.example.com-
to-<external_node>

NOTE

The connections are configured only on the managed nodes and not on the
external node.

2. Optional: You can specify multiple VPN connections for the managed nodes by using additional
sections within vpn_connections, for example, a control plane and a data plane:

3. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

4. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

1. On the managed nodes, confirm that the connection is successfully loaded:

    vpn_connections:
      - hosts:
          managed-node-01.example.com:
          <external_node>:
            hostname: <IP_address_or_hostname>

- name: Multiple VPN
  hosts: managed-node-01.example.com, managed-node-02.example.com
  roles:
    - rhel-system-roles.vpn
  vars:
    vpn_connections:
      - name: control_plane_vpn
        hosts:
          managed-node-01.example.com:
            hostname: 192.0.2.0 # IP for the control plane
          managed-node-02.example.com:
            hostname: 192.0.2.1
      - name: data_plane_vpn
        hosts:
          managed-node-01.example.com:
            hostname: 10.0.0.1 # IP for the data plane
          managed-node-02.example.com:
            hostname: 10.0.0.2
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# ipsec status | grep <connection_name>

Replace <connection_name> with the name of the connection from this node, for example 
managed_node1-to-managed_node2.

NOTE

By default, the role generates a descriptive name for each connection it creates
from the perspective of each system. For example, when creating a connection
between managed_node1 and managed_node2, the descriptive name of this
connection on managed_node1 is managed_node1-to-managed_node2 but
on managed_node2 the connection is named managed_node2-to-
managed_node1.

2. On the managed nodes, confirm that the connection is successfully started:

# ipsec trafficstatus | grep <connection_name>

3. Optional: If a connection does not successfully load, manually add the connection by entering
the following command. This provides more specific information indicating why the connection
failed to establish:

# ipsec auto --add <connection_name>

NOTE

Any errors that may occur during the process of loading and starting the
connection are reported in the /var/log/pluto.log file. Because these logs are
hard to parse, manually add the connection to obtain log messages from the
standard output instead.

Additional resources

/usr/share/ansible/roles/rhel-system-roles.vpn/README.md file

/usr/share/doc/rhel-system-roles/vpn/ directory

7.2. CREATING AN OPPORTUNISTIC MESH VPN CONNECTION WITH
IPSEC BY USING THE VPN SYSTEM ROLE

You can use the vpn system role to configure an opportunistic mesh VPN connection that uses
certificates for authentication by running an Ansible playbook on the control node, which will configure
all the managed nodes listed in an inventory file.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.
The IPsec Network Security Services (NSS) crypto library in the /etc/ipsec.d/ directory contains
the necessary certificates.
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Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

Authentication with certificates is configured by defining the auth_method: cert parameter in
the playbook. By default, the node name is used as the certificate nickname. In this example, this
is managed-node-01.example.com. You can define different certificate names by using the 
cert_name attribute in your inventory.

In this example procedure, the control node, which is the system from which you will run the
Ansible playbook, shares the same classless inter-domain routing (CIDR) number as both of the
managed nodes (192.0.2.0/24) and has the IP address 192.0.2.7. Therefore, the control node
falls under the private policy which is automatically created for CIDR 192.0.2.0/24.

To prevent SSH connection loss during the play, a clear policy for the control node is included in
the list of policies. Note that there is also an item in the policies list where the CIDR is equal to
default. This is because this playbook overrides the rule from the default policy to make it
private instead of private-or-clear.

Because vpn_manage_firewall and vpn_manage_selinux are both set to true, the vpn role
uses the firewall and selinux roles to manage the ports used by the vpn role.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

- name: Mesh VPN
  hosts: managed-node-01.example.com, managed-node-02.example.com, managed-node-
03.example.com
  roles:
    - rhel-system-roles.vpn
  vars:
    vpn_connections:
      - opportunistic: true
        auth_method: cert
        policies:
          - policy: private
            cidr: default
          - policy: private-or-clear
            cidr: 198.51.100.0/24
          - policy: private
            cidr: 192.0.2.0/24
          - policy: clear
            cidr: 192.0.2.7/32
    vpn_manage_firewall: true
    vpn_manage_selinux: true
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/usr/share/ansible/roles/rhel-system-roles.vpn/README.md file

/usr/share/doc/rhel-system-roles/vpn/ directory
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CHAPTER 8. SECURING NETWORK SERVICES
Red Hat Enterprise Linux 9 supports many different types of network servers. Their network services
can expose the system security to risks of various types of attacks, such as denial of service attacks
(DoS), distributed denial of service attacks (DDoS), script vulnerability attacks, and buffer overflow
attacks.

To increase the system security against attacks, it is important to monitor active network services that
you use. For example, when a network service is running on a machine, its daemon listens for
connections on network ports, and this can reduce the security. To limit exposure to attacks over the
network, all services that are unused should be turned off.

8.1. SECURING THE RPCBIND SERVICE

The rpcbind service is a dynamic port-assignment daemon for remote procedure calls (RPC) services
such as Network Information Service (NIS) and Network File System (NFS). Because it has weak
authentication mechanisms and can assign a wide range of ports for the services it controls, it is
important to secure rpcbind.

You can secure rpcbind by restricting access to all networks and defining specific exceptions using
firewall rules on the server.

NOTE

The rpcbind service is required on NFSv3 servers.

NFSv4 does not require the rpcbind service to listen on the network.

Prerequisites

The rpcbind package is installed.

The firewalld package is installed and the service is running.

Procedure

1. Add firewall rules, for example:

Limit TCP connection and accept packages only from the 192.168.0.0/24 host via the 111
port:

# firewall-cmd --add-rich-rule='rule family="ipv4" port port="111" protocol="tcp" source 
address="192.168.0.0/24" invert="True" drop'

Limit TCP connection and accept packages only from local host via the 111 port:

# firewall-cmd --add-rich-rule='rule family="ipv4" port port="111" protocol="tcp" source 
address="127.0.0.1" accept'

Limit UDP connection and accept packages only from the 192.168.0.0/24 host via the 111
port:

# firewall-cmd --permanent --add-rich-rule='rule family="ipv4" port port="111" 
protocol="udp" source address="192.168.0.0/24" invert="True" drop'

To make the firewall settings permanent, use the --permanent option when adding firewall
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To make the firewall settings permanent, use the --permanent option when adding firewall
rules.

2. Reload the firewall to apply the new rules:

# firewall-cmd --reload

Verification steps

List the firewall rules:

# firewall-cmd --list-rich-rule
rule family="ipv4" port port="111" protocol="tcp" source address="192.168.0.0/24" 
invert="True" drop
rule family="ipv4" port port="111" protocol="tcp" source address="127.0.0.1" accept
rule family="ipv4" port port="111" protocol="udp" source address="192.168.0.0/24" 
invert="True" drop

Additional resources

For more information about NFSv4-only servers, see Configuring an NFSv4-only server

Using and configuring firewalld

8.2. SECURING THE RPC.MOUNTD SERVICE

The rpc.mountd daemon implements the server side of the NFS mount protocol. The NFS mount
protocol is used by NFS version 3 (RFC 1813).

You can secure the rpc.mountd service by adding firewall rules to the server. You can restrict access to
all networks and define specific exceptions using firewall rules.

Prerequisites

The rpc.mountd package is installed.

The firewalld package is installed and the service is running.

Procedure

1. Add firewall rules to the server, for example:

Accept mountd connections from the 192.168.0.0/24 host:

# firewall-cmd --add-rich-rule 'rule family="ipv4" service name="mountd" source 
address="192.168.0.0/24" invert="True" drop'

Accept mountd connections from the local host:

# firewall-cmd --permanent --add-rich-rule 'rule family="ipv4" source address="127.0.0.1" 
service name="mountd" accept'

To make the firewall settings permanent, use the --permanent option when adding firewall
rules.
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2. Reload the firewall to apply the new rules:

# firewall-cmd --reload

Verification steps

List the firewall rules:

# firewall-cmd --list-rich-rule
rule family="ipv4" service name="mountd" source address="192.168.0.0/24" invert="True" 
drop
rule family="ipv4" source address="127.0.0.1" service name="mountd" accept

Additional resources

Using and configuring firewalld

8.3. SECURING THE NFS SERVICE

You can secure Network File System version 4 (NFSv4) by authenticating and encrypting all file system
operations using Kerberos. When using NFSv4 with Network Address Translation (NAT) or a firewall, you
can turn off the delegations by modifying the /etc/default/nfs file. Delegation is a technique by which
the server delegates the management of a file to a client.

In contrast, NFSv3 do not use Kerberos for locking and mounting files.

The NFS service sends the traffic using TCP in all versions of NFS. The service supports Kerberos user
and group authentication, as part of the RPCSEC_GSS kernel module.

NFS allows remote hosts to mount file systems over a network and interact with those file systems as if
they are mounted locally. You can merge the resources on centralized servers and additionally
customize NFS mount options in the /etc/nfsmount.conf file when sharing the file systems.

8.3.1. Export options for securing an NFS server

The NFS server determines a list structure of directories and hosts about which file systems to export to
which hosts in the /etc/exports file.
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WARNING

Extra spaces in the syntax of the exports file can lead to major changes in the
configuration.

In the following example, the /tmp/nfs/ directory is shared with the 
bob.example.com host and has read and write permissions.

/tmp/nfs/     bob.example.com(rw)

The following example is the same as the previous one but shares the same
directory to the bob.example.com host with read-only permissions and shares it to
the world with read and write permissions due to a single space character after the
hostname.

/tmp/nfs/     bob.example.com (rw)

You can check the shared directories on your system by entering the showmount -
e <hostname> command.

Use the following export options on the /etc/exports file:

WARNING

Export an entire file system because exporting a subdirectory of a file system is not
secure. An attacker can possibly access the unexported part of a partially-exported
file system.

ro

Use the ro option to export the NFS volume as read-only.

rw

Use the rw option to allow read and write requests on the NFS volume. Use this option cautiously
because allowing write access increases the risk of attacks.

NOTE

If your scenario requires to mount the directories with the rw option, make sure they
are not writable for all users to reduce possible risks.

root_squash

Use the root_squash option to map requests from uid/gid 0 to the anonymous uid/gid. This does
not apply to any other uids or gids that might be equally sensitive, such as the bin user or the staff
group.




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no_root_squash

Use the no_root_squash option to turn off root squashing. By default, NFS shares change the root
user to the nobody user, which is an unprivileged user account. This changes the owner of all the 
root created files to nobody, which prevents the uploading of programs with the setuid bit set.
When using the no_root_squash option, remote root users can change any file on the shared file
system and leave applications infected by trojans for other users.

secure

Use the secure option to restrict exports to reserved ports. By default, the server allows client
communication only through reserved ports. However, it is easy for anyone to become a root user on
a client on many networks, so it is rarely safe for the server to assume that communication through a
reserved port is privileged. Therefore the restriction to reserved ports is of limited value; it is better
to rely on Kerberos, firewalls, and restriction of exports to particular clients.

Additionally, consider the following best practices when exporting an NFS server:

Exporting home directories is a risk because some applications store passwords in plain text or in
a weakly encrypted format. You can reduce the risk by reviewing and improving the application
code.

Some users do not set passwords on SSH keys which again leads to risks with home directories.
You can reduce these risks by enforcing the use of passwords or using Kerberos.

Restrict the NFS exports only to required clients. Use the showmount -e command on the NFS
server to review what the server is exporting. Do not export anything that is not specifically
required.

Do not allow unnecessary users to log in to a server to reduce the risk of attacks. You can
periodically check who and what can access the server.

Additional resources

Secure NFS with Kerberos  when using Red Hat Identity Management

exports(5) and nfs(5) man pages

8.3.2. Mount options for securing an NFS client

You can pass the following options to the mount command to increase the security of NFS-based
clients:

nosuid

Use the nosuid option to disable the set-user-identifier or set-group-identifier bits. This prevents
remote users from gaining higher privileges by running a setuid program and you can use this option
opposite to setuid option.

noexec

Use the noexec option to disable all executable files on the client. Use this to prevent users from
accidentally executing files placed in the shared file system.

nodev

Use the nodev option to prevent the client’s processing of device files as a hardware device.

resvport

Use the resvport option to restrict communication to a reserved port and you can use a privileged
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Use the resvport option to restrict communication to a reserved port and you can use a privileged
source port to communicate with the server. The reserved ports are reserved for privileged users and
processes such as the root user.

sec

Use the sec option on the NFS server to choose the RPCGSS security flavor for accessing files on
the mount point. Valid security flavors are none, sys, krb5, krb5i, and krb5p.

IMPORTANT

The MIT Kerberos libraries provided by the krb5-libs package do not support the Data
Encryption Standard (DES) algorithm in new deployments. DES is deprecated and
disabled by default in Kerberos libraries because of security and compatibility reasons.
Use newer and more secure algorithms instead of DES, unless your environment requires
DES for compatibility reasons.

Additional resources

Common NFS mount options .

8.3.3. Securing NFS with firewall

To secure the firewall on an NFS server, keep only the required ports open. Do not use the NFS
connection port numbers for any other service.

Prerequisites

The nfs-utils package is installed.

The firewalld package is installed and running.

Procedure

On NFSv4, the firewall must open TCP port 2049.

On NFSv3, open four additional ports with 2049:

1. rpcbind service assigns the NFS ports dynamically, which might cause problems when
creating firewall rules. To simplify this process, use the /etc/nfs.conf file to specify which
ports to use:

a. Set TCP and UDP port for mountd (rpc.mountd) in the [mountd] section in 
port=<value> format.

b. Set TCP and UDP port for statd (rpc.statd) in the [statd] section in port=<value>
format.

2. Set the TCP and UDP port for the NFS lock manager (nlockmgr) in the /etc/nfs.conf file:

a. Set TCP port for nlockmgr (rpc.statd) in the [lockd] section in port=value format.
Alternatively, you can use the nlm_tcpport option in the /etc/modprobe.d/lockd.conf
file.

b. Set UDP port for nlockmgr (rpc.statd) in the [lockd] section in udp-port=value
format. Alternatively, you can use the nlm_udpport option in the 
/etc/modprobe.d/lockd.conf file.
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Verification steps

List the active ports and RPC programs on the NFS server:

$ rpcinfo -p

Additional resources

Secure NFS with Kerberos  when using Red Hat Identity Management

exports(5) and nfs(5) man pages

8.4. SECURING THE FTP SERVICE

You can use the File Transfer Protocol (FTP) to transfer files over a network. Because all FTP
transactions with the server, including user authentication, are unencrypted, you should ensure it is
configured securely.

RHEL 9 provides two FTP servers:

Red Hat Content Accelerator (tux) - a kernel-space web server with FTP capabilities.

Very Secure FTP Daemon (vsftpd) - a standalone, security-oriented implementation of the FTP
service.

The following security guidelines are for setting up the vsftpd FTP service.

8.4.1. Securing the FTP greeting banner

When a user connects to the FTP service, FTP shows a greeting banner, which by default includes
version information that could be useful for attackers to identify weaknesses in a system. You can
prevent the attackers from accessing this information by changing the default banner.

You can define a custom banner by editing the /etc/banners/ftp.msg file to either directly include a
single-line message, or to refer to a separate file, which can contain a multi-line message.

Procedure

To define a single line message, add the following option to the /etc/vsftpd/vsftpd.conf file:

ftpd_banner=Hello, all activity on ftp.example.com is logged.

To define a message in a separate file:

Create a .msg file which contains the banner message, for example /etc/banners/ftp.msg:

######### Hello, all activity on ftp.example.com is logged. #########

To simplify the management of multiple banners, place all banners into the /etc/banners/
directory.

Add the path to the banner file to the banner_file option in the /etc/vsftpd/vsftpd.conf file:

banner_file=/etc/banners/ftp.msg
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Verification

Display the modified banner:

$ ftp localhost
Trying ::1…
Connected to localhost (::1).
Hello, all activity on ftp.example.com is logged.

8.4.2. Preventing anonymous access and uploads in FTP

By default, installing the vsftpd package creates the /var/ftp/ directory and a directory tree for
anonymous users with read-only permissions on the directories. Because anonymous users can access
the data, do not store sensitive data in these directories.

To increase the security of the system, you can configure the FTP server to allow anonymous users to
upload files to a specific directory and prevent anonymous users from reading data. In the following
procedure, the anonymous user must be able to upload files in the directory owned by the root user but
not change it.

Procedure

Create a write-only directory in the /var/ftp/pub/ directory:

# mkdir /var/ftp/pub/upload
# chmod 730 /var/ftp/pub/upload
# ls -ld /var/ftp/pub/upload
drwx-wx---. 2 root ftp 4096 Nov 14 22:57 /var/ftp/pub/upload

Add the following lines to the /etc/vsftpd/vsftpd.conf file:

anon_upload_enable=YES
anonymous_enable=YES

Optional: If your system has SELinux enabled and enforcing, enable SELinux boolean attributes 
allow_ftpd_anon_write and allow_ftpd_full_access.

WARNING

Allowing anonymous users to read and write in directories might lead to the server
becoming a repository for stolen software.

8.4.3. Securing user accounts for FTP

FTP transmits usernames and passwords unencrypted over insecure networks for authentication. You
can improve the security of FTP by denying system users access to the server from their user accounts.

Perform as many of the following steps as applicable for your configuration.


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Procedure

Disable all user accounts in the vsftpd server, by adding the following line to the 
/etc/vsftpd/vsftpd.conf file:

local_enable=NO

Disable FTP access for specific accounts or specific groups of accounts, such as the root user
and users with sudo privileges, by adding the usernames to the /etc/pam.d/vsftpd PAM
configuration file.

Disable user accounts, by adding the usernames to the /etc/vsftpd/ftpusers file.

8.4.4. Additional resources

ftpd_selinux(8) man page

8.5. SECURING HTTP SERVERS

8.5.1. Security enhancements in httpd.conf

You can enhance the security of the Apache HTTP server by configuring security options in the 
/etc/httpd/conf/httpd.conf file.

Always verify that all scripts running on the system work correctly before putting them into production.

Ensure that only the root user has write permissions to any directory containing scripts or Common
Gateway Interfaces (CGI). To change the directory ownership to root user with write permissions, enter
the following commands:

# chown root directory-name
# chmod 755 directory-name

In the /etc/httpd/conf/httpd.conf file, you can configure the following options:

FollowSymLinks

This directive is enabled by default and follows symbolic links in the directory.

Indexes

This directive is enabled by default. Disable this directive to prevent visitors from browsing files on
the server.

UserDir

This directive is disabled by default because it can confirm the presence of a user account on the
system. To activate user directory browsing for all user directories other than /root/, use the UserDir 
enabled and UserDir disabled root directives. To add users to the list of disabled accounts, add a
space-delimited list of users on the UserDir disabled line.

ServerTokens

This directive controls the server response header field which is sent back to clients. You can use the
following parameters to customize the information:

ServerTokens Full

provides all available information such as web server version number, server operating system
details, installed Apache modules, for example:
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Apache/2.4.37 (Red Hat Enterprise Linux) MyMod/1.2

ServerTokens Full-Release

provides all available information with release versions, for example:

Apache/2.4.37 (Red Hat Enterprise Linux) (Release 41.module+el8.5.0+11772+c8e0c271)

ServerTokens Prod / ServerTokens ProductOnly

provides the web server name, for example:

Apache

ServerTokens Major

provides the web server major release version, for example:

Apache/2

ServerTokens Minor

provides the web server minor release version, for example:

Apache/2.4

ServerTokens Min / ServerTokens Minimal

provides the web server minimal release version, for example:

Apache/2.4.37

ServerTokens OS

provides the web server release version and operating system, for example:

Apache/2.4.37 (Red Hat Enterprise Linux)

Use the ServerTokens Prod option to reduce the risk of attackers gaining any valuable
information about your system.

IMPORTANT

Do not remove the IncludesNoExec directive. By default, the Server Side Includes (SSI)
module cannot execute commands. Changing this can allow an attacker to enter
commands on the system.

Removing httpd modules

You can remove the httpd modules to limit the functionality of the HTTP server. To do so, edit
configuration files in the /etc/httpd/conf.modules.d/ or /etc/httpd/conf.d/ directory. For example, to
remove the proxy module:
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echo '# All proxy modules disabled' > /etc/httpd/conf.modules.d/00-proxy.conf

Additional resources

The Apache HTTP server

Customizing the SELinux policy for the Apache HTTP server

8.5.2. Securing the Nginx server configuration

Nginx is a high-performance HTTP and proxy server. You can harden your Nginx configuration with the
following configuration options.

Procedure

To disable version strings, modify the server_tokens configuration option:

server_tokens off;

This option stops displaying additional details such as server version number. This configuration
displays only the server name in all requests served by Nginx, for example:

$ curl -sI http://localhost | grep Server
Server: nginx

Add extra security headers that mitigate certain known web application vulnerabilities in specific
/etc/nginx/ conf files:

For example, the X-Frame-Options header option denies any page outside of your domain
to frame any content served by Nginx, mitigating clickjacking attacks:

add_header X-Frame-Options "SAMEORIGIN";

For example, the x-content-type header prevents MIME-type sniffing in certain older
browsers:

add_header X-Content-Type-Options nosniff;

For example, the X-XSS-Protection header enables Cross-Site Scripting (XSS) filtering,
which prevents browsers from rendering potentially malicious content included in a
response by Nginx:

add_header X-XSS-Protection "1; mode=block";

You can limit the services exposed to the public and limit what they do and accept from the
visitors, for example:

limit_except GET {
    allow 192.168.1.0/32;
    deny  all;
}

The snippet will limit access to all methods except GET and HEAD.
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You can disable HTTP methods, for example:

# Allow GET, PUT, POST; return "405 Method Not Allowed" for all others.
if ( $request_method !~ ^(GET|PUT|POST)$ ) {
    return 405;
}

You can configure SSL to protect the data served by your Nginx web server, consider serving it
over HTTPS only. Furthermore, you can generate a secure configuration profile for enabling SSL
in your Nginx server using the Mozilla SSL Configuration Generator. The generated
configuration ensures that known vulnerable protocols (for example, SSLv2 and SSLv3),
ciphers, and hashing algorithms (for example, 3DES and MD5) are disabled. You can also use
the SSL Server Test to verify that your configuration meets modern security requirements.

Additional resources

Mozilla SSL Configuration Generator

SSL Server Test

8.6. SECURING POSTGRESQL BY LIMITING ACCESS TO
AUTHENTICATED LOCAL USERS

PostgreSQL is an object-relational database management system (DBMS). In Red Hat Enterprise Linux,
PostgreSQL is provided by the postgresql-server package.

You can reduce the risks of attacks by configuring client authentication. The pg_hba.conf configuration
file stored in the database cluster’s data directory controls the client authentication. Follow the
procedure to configure PostgreSQL for host-based authentication.

Procedure

1. Install PostgreSQL:

# yum install postgresql-server

2. Initialize a database storage area using one of the following options:

a. Using the initdb utility:

$ initdb -D /home/postgresql/db1/

The initdb command with the -D option creates the directory you specify if it does not
already exist, for example /home/postgresql/db1/. This directory then contains all the data
stored in the database and also the client authentication configuration file.

b. Using the postgresql-setup script:

$ postgresql-setup --initdb

By default, the script uses the /var/lib/pgsql/data/ directory. This script helps system
administrators with basic database cluster administration.

3. To allow any authenticated local users to access any database with their usernames, modify the
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3. To allow any authenticated local users to access any database with their usernames, modify the
following line in the pg_hba.conf file:

local   all             all                                     trust

This can be problematic when you use layered applications that create database users and no
local users. If you do not want to explicitly control all user names on the system, remove the 
local line entry from the pg_hba.conf file.

4. Restart the database to apply the changes:

# systemctl restart postgresql

The previous command updates the database and also verifies the syntax of the configuration
file.

8.7. SECURING THE MEMCACHED SERVICE

Memcached is an open source, high-performance, distributed memory object caching system. It can
improve the performance of dynamic web applications by lowering database load.

Memcached is an in-memory key-value store for small chunks of arbitrary data, such as strings and
objects, from results of database calls, API calls, or page rendering. Memcached allows assigning
memory from underutilized areas to applications that require more memory.

In 2018, vulnerabilities of DDoS amplification attacks by exploiting Memcached servers exposed to the
public internet were discovered. These attacks took advantage of Memcached communication using the
UDP protocol for transport. The attack was effective because of the high amplification ratio where a
request with the size of a few hundred bytes could generate a response of a few megabytes or even
hundreds of megabytes in size.

In most situations, the memcached service does not need to be exposed to the public Internet. Such
exposure may have its own security problems, allowing remote attackers to leak or modify information
stored in Memcached.

Follow the section to harden the system using Memcached service against possible DDoS attacks.

8.7.1. Hardening Memcached against DDoS

To mitigate security risks, perform as many of the following steps as applicable for your configuration.

Procedure

Configure a firewall in your LAN. If your Memcached server should be accessible only in your
local network, do not route external traffic to ports used by the memcached service. For
example, remove the default port 11211 from the list of allowed ports:

# firewall-cmd --remove-port=11211/udp
# firewall-cmd --runtime-to-permanent

If you use a single Memcached server on the same machine as your application, set up 
memcached to listen to localhost traffic only. Modify the OPTIONS value in the 
/etc/sysconfig/memcached file:
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OPTIONS="-l 127.0.0.1,::1"

Enable Simple Authentication and Security Layer (SASL) authentication:

1. Modify or add the /etc/sasl2/memcached.conf file:

sasldb_path: /path.to/memcached.sasldb

2. Add an account in the SASL database:

# saslpasswd2 -a memcached -c cacheuser -f /path.to/memcached.sasldb

3. Ensure that the database is accessible for the memcached user and group:

# chown memcached:memcached /path.to/memcached.sasldb

4. Enable SASL support in Memcached by adding the -S value to the OPTIONS parameter in
the /etc/sysconfig/memcached file:

OPTIONS="-S"

5. Restart the Memcached server to apply the changes:

# systemctl restart memcached

6. Add the username and password created in the SASL database to the Memcached client
configuration of your application.

Encrypt communication between Memcached clients and servers with TLS:

1. Enable encrypted communication between Memcached clients and servers with TLS by
adding the -Z value to the OPTIONS parameter in the /etc/sysconfig/memcached file:

OPTIONS="-Z"

2. Add the certificate chain file path in the PEM format using the -o ssl_chain_cert option.

3. Add a private key file path using the -o ssl_key option.
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CHAPTER 9. USING MACSEC TO ENCRYPT LAYER-2 TRAFFIC
IN THE SAME PHYSICAL NETWORK

You can use MACsec to secure the communication between two devices (point-to-point). For example,
your branch office is connected over a Metro-Ethernet connection with the central office, you can
configure MACsec on the two hosts that connect the offices to increase the security.

Media Access Control security (MACsec) is a layer 2 protocol that secures different traffic types over
the Ethernet links including:

dynamic host configuration protocol (DHCP)

address resolution protocol (ARP)

Internet Protocol version 4 / 6 (IPv4 / IPv6) and

any traffic over IP such as TCP or UDP

MACsec encrypts and authenticates all traffic in LANs, by default with the GCM-AES-128 algorithm, and
uses a pre-shared key to establish the connection between the participant hosts. If you want to change
the pre-shared key, you need to update the NM configuration on all hosts in the network that uses
MACsec.

A MACsec connection uses an Ethernet device, such as an Ethernet network card, VLAN, or tunnel
device, as parent. You can either set an IP configuration only on the MACsec device to communicate
with other hosts only using the encrypted connection, or you can also set an IP configuration on the
parent device. In the latter case, you can use the parent device to communicate with other hosts using an
unencrypted connection and the MACsec device for encrypted connections.

MACsec does not require any special hardware. For example, you can use any switch, except if you want
to encrypt traffic only between a host and a switch. In this scenario, the switch must also support
MACsec.

In other words, there are 2 common methods to configure MACsec;

host to host and

host to switch then switch to other host(s)

IMPORTANT

You can use MACsec only between hosts that are in the same (physical or virtual) LAN.

9.1. CONFIGURING A MACSEC CONNECTION USING NMCLI

You can configure Ethernet interfaces to use MACsec using the nmcli utility. For example, you can
create a MACsec connection between two hosts that are connected over Ethernet.

Procedure

1. On the first host on which you configure MACsec:

Create the connectivity association key (CAK) and connectivity-association key name
(CKN) for the pre-shared key:
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a. Create a 16-byte hexadecimal CAK:

# dd if=/dev/urandom count=16 bs=1 2> /dev/null | hexdump -e '1/2 "%04x"'
50b71a8ef0bd5751ea76de6d6c98c03a

b. Create a 32-byte hexadecimal CKN:

# dd if=/dev/urandom count=32 bs=1 2> /dev/null | hexdump -e '1/2 "%04x"'
f2b4297d39da7330910a74abc0449feb45b5c0b9fc23df1430e1898fcf1c4550

2. On both hosts you want to connect over a MACsec connection:

3. Create the MACsec connection:

# nmcli connection add type macsec con-name macsec0 ifname macsec0 
connection.autoconnect yes macsec.parent enp1s0 macsec.mode psk macsec.mka-
cak 50b71a8ef0bd5751ea76de6d6c98c03a macsec.mka-ckn 
f2b4297d39da7330910a74abc0449feb45b5c0b9fc23df1430e1898fcf1c4550

Use the CAK and CKN generated in the previous step in the macsec.mka-cak and 
macsec.mka-ckn parameters. The values must be the same on every host in the MACsec-
protected network.

4. Configure the IP settings on the MACsec connection.

a. Configure the IPv4 settings. For example, to set a static IPv4 address, network mask,
default gateway, and DNS server to the macsec0 connection, enter:

# nmcli connection modify macsec0 ipv4.method manual ipv4.addresses 
'192.0.2.1/24' ipv4.gateway '192.0.2.254' ipv4.dns '192.0.2.253'

b. Configure the IPv6 settings. For example, to set a static IPv6 address, network mask,
default gateway, and DNS server to the macsec0 connection, enter:

# nmcli connection modify macsec0 ipv6.method manual ipv6.addresses 
'2001:db8:1::1/32' ipv6.gateway '2001:db8:1::fffe' ipv6.dns '2001:db8:1::fffd'

5. Activate the connection:

# nmcli connection up macsec0

Verification

1. Verify that the traffic is encrypted:

# tcpdump -nn -i enp1s0

2. Optional: Display the unencrypted traffic:

# tcpdump -nn -i macsec0

3. Display MACsec statistics:
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# ip macsec show

4. Display individual counters for each type of protection: integrity-only (encrypt off) and
encryption (encrypt on)

# ip -s macsec show

9.2. CONFIGURING A MACSEC CONNECTION USING NMSTATECTL

You can configure Ethernet interfaces to use MACsec through the nmstatectl utility in a declarative
way. For example, in a YAML file, you describe the desired state of your network, which is supposed to
have a MACsec connection between two hosts connected over Ethernet. The nmstatectl utility
interprets the YAML file and deploys persistent and consistent network configuration across the hosts.

Using the MACsec security standard for securing communication at the link layer, also known as layer 2
of the Open Systems Interconnection (OSI) model provides the following notable benefits:

Encryption at layer 2 eliminates the need for encrypting individual services at layer 7. This
reduces the overhead associated with managing a large number of certificates for each
endpoint on each host.

Point-to-point security between directly connected network devices such as routers and
switches.

No changes needed for applications and higher-layer protocols.

Prerequisites

A physical or virtual Ethernet Network Interface Controller (NIC) exists in the server
configuration.

The nmstate package is installed.

Procedure

1. On the first host on which you configure MACsec, create the connectivity association key (CAK)
and connectivity-association key name (CKN) for the pre-shared key:

a. Create a 16-byte hexadecimal CAK:

# dd if=/dev/urandom count=16 bs=1 2> /dev/null | hexdump -e '1/2 "%04x"'
50b71a8ef0bd5751ea76de6d6c98c03a

b. Create a 32-byte hexadecimal CKN:

# dd if=/dev/urandom count=32 bs=1 2> /dev/null | hexdump -e '1/2 "%04x"'
f2b4297d39da7330910a74abc0449feb45b5c0b9fc23df1430e1898fcf1c4550

2. On both hosts that you want to connect over a MACsec connection, complete the following
steps:

a. Create a YAML file, for example create-macsec-connection.yml, with the following
settings:
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---
routes:
  config:
  - destination: 0.0.0.0/0
    next-hop-interface: macsec0
    next-hop-address: 192.0.2.2
    table-id: 254
  - destination: 192.0.2.2/32
    next-hop-interface: macsec0
    next-hop-address: 0.0.0.0
    table-id: 254
dns-resolver:
  config:
    search:
    - example.com
    server:
    - 192.0.2.200
    - 2001:db8:1::ffbb
interfaces:
- name: macsec0
  type: macsec
  state: up
  ipv4:
    enabled: true
    address:
    - ip: 192.0.2.1
      prefix-length: 32
  ipv6:
    enabled: true
    address:
    - ip: 2001:db8:1::1
      prefix-length: 64
  macsec:
    encrypt: true
    base-iface: enp0s1
    mka-cak: 50b71a8ef0bd5751ea76de6d6c98c03a
    mka-ckn: f2b4297d39da7330910a74abc0449feb45b5c0b9fc23df1430e1898fcf1c4550
    port: 0
    validation: strict
    send-sci: true

b. Use the CAK and CKN generated in the previous step in the mka-cak and mka-ckn
parameters. The values must be the same on every host in the MACsec-protected network.

c. Optional: In the same YAML configuration file, you can also configure the following settings:

A static IPv4 address - 192.0.2.1 with the /32 subnet mask

A static IPv6 address - 2001:db8:1::1 with the /64 subnet mask

An IPv4 default gateway - 192.0.2.2

An IPv4 DNS server - 192.0.2.200

An IPv6 DNS server - 2001:db8:1::ffbb
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A DNS search domain - example.com

3. Apply the settings to the system:

# nmstatectl apply create-macsec-connection.yml

Verification

1. Display the current state in YAML format:

# **nmstatectl show macsec0

2. Verify that the traffic is encrypted:

# tcpdump -nn -i enp0s1

3. Optional: Display the unencrypted traffic:

# tcpdump -nn -i macsec0

4. Display MACsec statistics:

# ip macsec show

5. Display individual counters for each type of protection: integrity-only (encrypt off) and
encryption (encrypt on)

# ip -s macsec show

Additional resources

MACsec: a different solution to encrypt network traffic

9.3. ADDITIONAL RESOURCES

MACsec: a different solution to encrypt network traffic  blog.
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CHAPTER 10. SECURING THE POSTFIX SERVICE
Postfix is a mail transfer agent (MTA) that uses the Simple Mail Transfer Protocol (SMTP) to deliver
electronic messages between other MTAs and to email clients or delivery agents. Although MTAs can
encrypt traffic between one another, they might not do so by default. You can also mitigate risks to
various attacks by changing setting to more secure values.

10.1. REDUCING POSTFIX NETWORK-RELATED SECURITY RISKS

To reduce the risk of attackers invading your system through the network, perform as many of the
following tasks as possible.

Do not share the /var/spool/postfix/ mail spool directory on a Network File System (NFS)
shared volume. NFSv2 and NFSv3 do not maintain control over user and group IDs. Therefore, if
two or more users have the same UID, they can receive and read each other’s mail, which is a
security risk.

NOTE

This rule does not apply to NFSv4 using Kerberos, because the SECRPC_GSS
kernel module does not use UID-based authentication. However, to reduce the
security risks, you should not put the mail spool directory on NFS shared
volumes.

To reduce the probability of Postfix server exploits, mail users must access the Postfix server
using an email program. Do not allow shell accounts on the mail server, and set all user shells in
the /etc/passwd file to /sbin/nologin (with the possible exception of the root user).

To protect Postfix from a network attack, it is set up to only listen to the local loopback address
by default. You can verify this by viewing the inet_interfaces = localhost line in the 
/etc/postfix/main.cf file. This ensures that Postfix only accepts mail messages (such as cron job
reports) from the local system and not from the network. This is the default setting and
protects Postfix from a network attack. To remove the localhost restriction and allow Postfix to
listen on all interfaces, set the inet_interfaces parameter to all in /etc/postfix/main.cf.

10.2. POSTFIX CONFIGURATION OPTIONS FOR LIMITING DOS
ATTACKS

An attacker can flood the server with traffic, or send information that triggers a crash, causing a denial of
service (DoS) attack. You can configure your system to reduce the risk of such attacks by setting limits
in the /etc/postfix/main.cf file. You can change the value of the existing directives or you can add new
directives with custom values in the <directive> = <value>  format.

Use the following list of directives for limiting a DoS attack:

smtpd_client_connection_rate_limit

This directive limits the maximum number of connection attempts any client can make to this service
per time unit. The default value is 0, which means a client can make as many connections per time
unit as Postfix can accept. By default, the directive excludes clients in trusted networks.

anvil_rate_time_unit

This directive is a time unit to calculate the rate limit. The default value is 60 seconds.

smtpd_client_event_limit_exceptions

This directive excludes clients from the connection and rate limit commands. By default, the directive
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This directive excludes clients from the connection and rate limit commands. By default, the directive
excludes clients in trusted networks.

smtpd_client_message_rate_limit

This directive defines the maximum number of message deliveries from client to request per time
unit (regardless of whether or not Postfix actually accepts those messages).

default_process_limit

This directive defines the default maximum number of Postfix child processes that provide a given
service. You can ignore this rule for specific services in the master.cf file. By default, the value is 100.

queue_minfree

This directive defines the minimum amount of free space required to receive mail in the queue file
system. The directive is currently used by the Postfix SMTP server to decide if it accepts any mail at
all. By default, the Postfix SMTP server rejects MAIL FROM commands when the amount of free
space is less than 1.5 times the message_size_limit. To specify a higher minimum free space limit,
specify a queue_minfree value that is at least 1.5 times the message_size_limit. By default, the 
queue_minfree value is 0.

header_size_limit

This directive defines the maximum amount of memory in bytes for storing a message header. If a
header is large, it discards the excess header. By default, the value is 102400 bytes.

message_size_limit

This directive defines the maximum size of a message including the envelope information in bytes. By
default, the value is 10240000 bytes.

10.3. CONFIGURING POSTFIX TO USE SASL

Postfix supports Simple Authentication and Security Layer (SASL) based SMTP Authentication (AUTH).
SMTP AUTH is an extension of the Simple Mail Transfer Protocol. Currently, the Postfix SMTP server
supports the SASL implementations in the following ways:

Dovecot SASL

The Postfix SMTP server can communicate with the Dovecot SASL implementation using either a
UNIX-domain socket or a TCP socket. Use this method if Postfix and Dovecot applications are
running on separate machines.

Cyrus SASL

When enabled, SMTP clients must authenticate with the SMTP server using an authentication
method supported and accepted by both the server and the client.

Prerequisites

The dovecot package is installed on the system

Procedure

1. Set up Dovecot:

a. Include the following lines in the /etc/dovecot/conf.d/10-master.conf file:

service auth {
  unix_listener /var/spool/postfix/private/auth {
    mode = 0660
    user = postfix
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    group = postfix
  }
}

The previous example uses UNIX-domain sockets for communication between Postfix and
Dovecot. The example also assumes default Postfix SMTP server settings, which include
the mail queue located in the /var/spool/postfix/ directory, and the application running
under the postfix user and group.

b. Optional: Set up Dovecot to listen for Postfix authentication requests through TCP:

service auth {
  inet_listener {
      port = port-number
  }
}

c. Specify the method that the email client uses to authenticate with Dovecot by editing the 
auth_mechanisms parameter in /etc/dovecot/conf.d/10-auth.conf file:

auth_mechanisms = plain login

The auth_mechanisms parameter supports different plaintext and non-plaintext
authentication methods.

2. Set up Postfix by modifying the /etc/postfix/main.cf file:

a. Enable SMTP Authentication on the Postfix SMTP server:

smtpd_sasl_auth_enable = yes

b. Enable the use of Dovecot SASL implementation for SMTP Authentication:

smtpd_sasl_type = dovecot

c. Provide the authentication path relative to the Postfix queue directory. Note that the use of
a relative path ensures that the configuration works regardless of whether the Postfix
server runs in chroot or not:

smtpd_sasl_path = private/auth

This step uses UNIX-domain sockets for communication between Postfix and Dovecot.

To configure Postfix to look for Dovecot on a different machine in case you use TCP
sockets for communication, use configuration values similar to the following:

smtpd_sasl_path = inet: ip-address : port-number

In the previous example, replace the ip-address  with the IP address of the Dovecot machine
and port-number with the port number specified in Dovecot’s /etc/dovecot/conf.d/10-
master.conf file.

d. Specify SASL mechanisms that the Postfix SMTP server makes available to clients. Note
that you can specify different mechanisms for encrypted and unencrypted sessions.
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smtpd_sasl_security_options = noanonymous, noplaintext
smtpd_sasl_tls_security_options = noanonymous

The previous directives specify that during unencrypted sessions, no anonymous
authentication is allowed and no mechanisms that transmit unencrypted user names or
passwords are allowed. For encrypted sessions that use TLS, only non-anonymous
authentication mechanisms are allowed.

Additional resources

Postfix SMTP server policy - SASL mechanism properties

Postfix and Dovecot SASL

Configuring SASL authentication in the Postfix SMTP server
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http://www.postfix.org/SASL_README.html#server_sasl
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