
Red Hat Enterprise Linux 9

Managing, monitoring, and updating the kernel

A guide to managing the Linux kernel on Red Hat Enterprise Linux 9

Last Updated: 2024-04-09

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

A guide to managing the Linux kernel on Red Hat Enterprise Linux 9

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

As a system administrator, you can configure the Linux kernel to optimize the operating system.
Changes to the Linux kernel can improve system performance, security, and stability, as well as your
ability to audit the system and troubleshoot problems.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. THE LINUX KERNEL
1.1. WHAT THE KERNEL IS
1.2. RPM PACKAGES
1.3. THE LINUX KERNEL RPM PACKAGE OVERVIEW
1.4. DISPLAYING CONTENTS OF A KERNEL PACKAGE
1.5. INSTALLING SPECIFIC KERNEL VERSIONS
1.6. UPDATING THE KERNEL
1.7. SETTING A KERNEL AS DEFAULT

CHAPTER 2. THE 64K PAGE SIZE KERNEL

CHAPTER 3. MANAGING KERNEL MODULES
3.1. INTRODUCTION TO KERNEL MODULES
3.2. KERNEL MODULE DEPENDENCIES
3.3. LISTING INSTALLED KERNEL MODULES
3.4. LISTING CURRENTLY LOADED KERNEL MODULES
3.5. DISPLAYING INFORMATION ABOUT KERNEL MODULES
3.6. LOADING KERNEL MODULES AT SYSTEM RUNTIME
3.7. UNLOADING KERNEL MODULES AT SYSTEM RUNTIME
3.8. UNLOADING KERNEL MODULES AT EARLY STAGES OF THE BOOT PROCESS
3.9. LOADING KERNEL MODULES AUTOMATICALLY AT SYSTEM BOOT TIME
3.10. PREVENTING KERNEL MODULES FROM BEING AUTOMATICALLY LOADED AT SYSTEM BOOT TIME

3.11. COMPILING CUSTOM KERNEL MODULES

CHAPTER 4. CONFIGURING KERNEL COMMAND-LINE PARAMETERS
4.1. WHAT ARE KERNEL COMMAND-LINE PARAMETERS
4.2. UNDERSTANDING BOOT ENTRIES
4.3. CHANGING KERNEL COMMAND-LINE PARAMETERS FOR ALL BOOT ENTRIES
4.4. CHANGING KERNEL COMMAND-LINE PARAMETERS FOR A SINGLE BOOT ENTRY
4.5. CHANGING KERNEL COMMAND-LINE PARAMETERS TEMPORARILY AT BOOT TIME
4.6. CONFIGURING GRUB SETTINGS TO ENABLE SERIAL CONSOLE CONNECTION
4.7. CHANGING BOOT ENTRIES WITH THE GRUB CONFIGURATION FILE

CHAPTER 5. CONFIGURING KERNEL PARAMETERS AT RUNTIME
5.1. WHAT ARE KERNEL PARAMETERS
5.2. CONFIGURING KERNEL PARAMETERS TEMPORARILY WITH SYSCTL
5.3. CONFIGURING KERNEL PARAMETERS PERMANENTLY WITH SYSCTL
5.4. USING CONFIGURATION FILES IN /ETC/SYSCTL.D/ TO ADJUST KERNEL PARAMETERS
5.5. CONFIGURING KERNEL PARAMETERS TEMPORARILY THROUGH /PROC/SYS/
5.6. ADDITIONAL RESOURCES

CHAPTER 6. CONFIGURING KERNEL PARAMETERS PERMANENTLY BY USING THE KERNEL_SETTINGS
RHEL SYSTEM ROLE

6.1. INTRODUCTION TO THE KERNEL_SETTINGS ROLE
6.2. APPLYING SELECTED KERNEL PARAMETERS BY USING THE KERNEL_SETTINGS ROLE

CHAPTER 7. APPLYING PATCHES WITH KERNEL LIVE PATCHING
7.1. LIMITATIONS OF KPATCH
7.2. SUPPORT FOR THIRD-PARTY LIVE PATCHING

6

7

8
8
8
9

10
10
11
11

13

14
14
14
15
15
16
17
18
19
21

21
23

26
26
26
27
28
29
29
30

32
32
33
34
34
35
36

37
37
38

40
40
40

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

7.3. ACCESS TO KERNEL LIVE PATCHES
7.4. COMPONENTS OF KERNEL LIVE PATCHING
7.5. HOW KERNEL LIVE PATCHING WORKS
7.6. SUBSCRIBING THE CURRENTLY INSTALLED KERNELS TO THE LIVE PATCHING STREAM
7.7. AUTOMATICALLY SUBSCRIBING ANY FUTURE KERNEL TO THE LIVE PATCHING STREAM
7.8. DISABLING AUTOMATIC SUBSCRIPTION TO THE LIVE PATCHING STREAM
7.9. UPDATING KERNEL PATCH MODULES
7.10. REMOVING THE LIVE PATCHING PACKAGE
7.11. UNINSTALLING THE KERNEL PATCH MODULE
7.12. DISABLING KPATCH.SERVICE

CHAPTER 8. KEEPING KERNEL PANIC PARAMETERS DISABLED IN VIRTUALIZED ENVIRONMENTS
8.1. WHAT IS A SOFT LOCKUP
8.2. PARAMETERS CONTROLLING KERNEL PANIC
8.3. SPURIOUS SOFT LOCKUPS IN VIRTUALIZED ENVIRONMENTS

CHAPTER 9. ADJUSTING KERNEL PARAMETERS FOR DATABASE SERVERS
9.1. INTRODUCTION TO DATABASE SERVERS
9.2. PARAMETERS AFFECTING PERFORMANCE OF DATABASE APPLICATIONS

CHAPTER 10. GETTING STARTED WITH KERNEL LOGGING
10.1. WHAT IS THE KERNEL RING BUFFER
10.2. ROLE OF PRINTK ON LOG-LEVELS AND KERNEL LOGGING

CHAPTER 11. REINSTALLING GRUB
11.1. REINSTALLING GRUB ON BIOS-BASED MACHINES
11.2. REINSTALLING GRUB ON UEFI-BASED MACHINES
11.3. REINSTALLING GRUB ON IBM POWER MACHINES
11.4. RESETTING GRUB

CHAPTER 12. INSTALLING KDUMP
12.1. WHAT IS KDUMP
12.2. INSTALLING KDUMP USING ANACONDA
12.3. INSTALLING KDUMP ON THE COMMAND LINE

CHAPTER 13. CONFIGURING KDUMP ON THE COMMAND LINE
13.1. ESTIMATING THE KDUMP SIZE
13.2. CONFIGURING KDUMP MEMORY USAGE ON RHEL 9
13.3. CONFIGURING THE KDUMP TARGET
13.4. CONFIGURING THE KDUMP CORE COLLECTOR
13.5. CONFIGURING THE KDUMP DEFAULT FAILURE RESPONSES
13.6. CONFIGURATION FILE FOR KDUMP
13.7. TESTING THE KDUMP CONFIGURATION
13.8. FILES PRODUCED BY KDUMP AFTER SYSTEM CRASH
13.9. ENABLING AND DISABLING THE KDUMP SERVICE
13.10. PREVENTING KERNEL DRIVERS FROM LOADING FOR KDUMP
13.11. RUNNING KDUMP ON SYSTEMS WITH ENCRYPTED DISK

CHAPTER 14. ENABLING KDUMP
14.1. ENABLING KDUMP FOR ALL INSTALLED KERNELS
14.2. ENABLING KDUMP FOR A SPECIFIC INSTALLED KERNEL
14.3. DISABLING THE KDUMP SERVICE

CHAPTER 15. SUPPORTED KDUMP CONFIGURATIONS AND TARGETS
15.1. MEMORY REQUIREMENTS FOR KDUMP

41
41
41

42
44
45
46
47
48
49

51
51
51
52

53
53
53

55
55
55

57
57
57
58
58

60
60
60
61

62
62
62
64
67
68
69
70
72
72
73
74

76
76
76
77

79
79

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

2

. .

. .

. .

. .

. .

. .

15.2. MINIMUM THRESHOLD FOR AUTOMATIC MEMORY RESERVATION
15.3. SUPPORTED KDUMP TARGETS
15.4. SUPPORTED KDUMP FILTERING LEVELS
15.5. SUPPORTED DEFAULT FAILURE RESPONSES
15.6. USING FINAL_ACTION PARAMETER
15.7. USING FAILURE_ACTION PARAMETER

CHAPTER 16. FIRMWARE ASSISTED DUMP MECHANISMS
16.1. FIRMWARE ASSISTED DUMP ON IBM POWERPC HARDWARE
16.2. ENABLING FIRMWARE ASSISTED DUMP MECHANISM
16.3. FIRMWARE ASSISTED DUMP MECHANISMS ON IBM Z HARDWARE
16.4. USING SADUMP ON FUJITSU PRIMEQUEST SYSTEMS

CHAPTER 17. ANALYZING A CORE DUMP
17.1. INSTALLING THE CRASH UTILITY
17.2. RUNNING AND EXITING THE CRASH UTILITY
17.3. DISPLAYING VARIOUS INDICATORS IN THE CRASH UTILITY
17.4. USING KERNEL OOPS ANALYZER
17.5. THE KDUMP HELPER TOOL

CHAPTER 18. USING EARLY KDUMP TO CAPTURE BOOT TIME CRASHES
18.1. WHAT IS EARLY KDUMP
18.2. ENABLING EARLY KDUMP

CHAPTER 19. SIGNING A KERNEL AND MODULES FOR SECURE BOOT
19.1. PREREQUISITES
19.2. WHAT IS UEFI SECURE BOOT
19.3. UEFI SECURE BOOT SUPPORT
19.4. REQUIREMENTS FOR AUTHENTICATING KERNEL MODULES WITH X.509 KEYS
19.5. SOURCES FOR PUBLIC KEYS
19.6. GENERATING A PUBLIC AND PRIVATE KEY PAIR
19.7. EXAMPLE OUTPUT OF SYSTEM KEYRINGS
19.8. ENROLLING PUBLIC KEY ON TARGET SYSTEM BY ADDING THE PUBLIC KEY TO THE MOK LIST
19.9. SIGNING A KERNEL WITH THE PRIVATE KEY
19.10. SIGNING A GRUB BUILD WITH THE PRIVATE KEY
19.11. SIGNING KERNEL MODULES WITH THE PRIVATE KEY
19.12. LOADING SIGNED KERNEL MODULES

CHAPTER 20. UPDATING THE SECURE BOOT REVOCATION LIST
20.1. PREREQUISITES
20.2. WHAT IS UEFI SECURE BOOT
20.3. THE SECURE BOOT REVOCATION LIST
20.4. APPLYING AN ONLINE REVOCATION LIST UPDATE
20.5. APPLYING AN OFFLINE REVOCATION LIST UPDATE

CHAPTER 21. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM
21.1. THE KERNEL INTEGRITY SUBSYSTEM
21.2. TRUSTED AND ENCRYPTED KEYS
21.3. WORKING WITH TRUSTED KEYS
21.4. WORKING WITH ENCRYPTED KEYS
21.5. ENABLING IMA AND EVM
21.6. COLLECTING FILE HASHES WITH INTEGRITY MEASUREMENT ARCHITECTURE
21.7. ADDING IMA SIGNATURES TO PACKAGE FILES
21.8. ENABLING KERNEL RUNTIME INTEGRITY MONITORING
21.9. CREATING CUSTOM IMA KEYS USING OPENSSL

80
81

83
84
84
84

86
86
86
87
88

90
90
90
92
94
95

96
96
96

98
98
99

100
100
101
102
104
105
106
107
108
110

112
112
112
112
113
114

115
115
116
117
118
119
122
123
124
125

Table of Contents

3

. .

. .

. .

. .

21.10. DEPLOYING A CUSTOM SIGNED IMA POLICY FOR UEFI SYSTEMS

CHAPTER 22. USING SYSTEMD TO MANAGE RESOURCES USED BY APPLICATIONS
22.1. ROLE OF SYSTEMD IN RESOURCE MANAGEMENT
22.2. DISTRIBUTION MODELS OF SYSTEM SOURCES
22.3. ALLOCATING SYSTEM RESOURCES USING SYSTEMD
22.4. OVERVIEW OF SYSTEMD HIERARCHY FOR CGROUPS
22.5. LISTING SYSTEMD UNITS
22.6. VIEWING SYSTEMD CGROUPS HIERARCHY
22.7. VIEWING CGROUPS OF PROCESSES
22.8. MONITORING RESOURCE CONSUMPTION
22.9. USING SYSTEMD UNIT FILES TO SET LIMITS FOR APPLICATIONS
22.10. USING SYSTEMCTL COMMAND TO SET LIMITS TO APPLICATIONS
22.11. SETTING GLOBAL DEFAULT CPU AFFINITY THROUGH MANAGER CONFIGURATION
22.12. CONFIGURING NUMA POLICIES USING SYSTEMD
22.13. NUMA POLICY CONFIGURATION OPTIONS FOR SYSTEMD
22.14. CREATING TRANSIENT CGROUPS USING SYSTEMD-RUN COMMAND
22.15. REMOVING TRANSIENT CONTROL GROUPS

CHAPTER 23. UNDERSTANDING CONTROL GROUPS
23.1. INTRODUCING CONTROL GROUPS
23.2. INTRODUCING KERNEL RESOURCE CONTROLLERS
23.3. INTRODUCING NAMESPACES

CHAPTER 24. USING CGROUPFS TO MANUALLY MANAGE CGROUPS
24.1. CREATING CGROUPS AND ENABLING CONTROLLERS IN CGROUPS-V2 FILE SYSTEM
24.2. CONTROLLING DISTRIBUTION OF CPU TIME FOR APPLICATIONS BY ADJUSTING CPU WEIGHT
24.3. MOUNTING CGROUPS-V1
24.4. SETTING CPU LIMITS TO APPLICATIONS USING CGROUPS-V1

CHAPTER 25. ANALYZING SYSTEM PERFORMANCE WITH BPF COMPILER COLLECTION
25.1. INSTALLING THE BCC-TOOLS PACKAGE
25.2. USING SELECTED BCC-TOOLS FOR PERFORMANCE ANALYSES

Using execsnoop to examine the system processes
Using opensnoop to track what files a command opens
Using biotop to examine the I/O operations on the disk
Using xfsslower to expose unexpectedly slow file system operations

126

128
128
128
129
129
131

133
134
135
136
137
137
138
139
139
140

142
142
143
144

146
146
148
151

153

157
157
157
157
158
159
160

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

4

Table of Contents

5

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

6

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

7

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. THE LINUX KERNEL
Learn about the Linux kernel and the Linux kernel RPM package provided and maintained by Red Hat
(Red Hat kernel). Keep the Red Hat kernel updated, which ensures the operating system has all the
latest bug fixes, performance enhancements, and patches, and is compatible with new hardware.

1.1. WHAT THE KERNEL IS

The kernel is a core part of a Linux operating system that manages the system resources and provides
interface between hardware and software applications.

The Red Hat kernel is a custom-built kernel based on the upstream Linux mainline kernel that
Red Hat engineers further develop and harden with a focus on stability and compatibility with the latest
technologies and hardware.

Before Red Hat releases a new kernel version, the kernel needs to pass a set of rigorous quality
assurance tests.

The Red Hat kernels are packaged in the RPM format so that they are easily upgraded and verified by
the DNF package manager.

WARNING

Kernels that have not been compiled by Red Hat are not supported by Red Hat.

1.2. RPM PACKAGES

An RPM package consists of an archive of files and metadata used to install and erase these files.
Specifically, the RPM package contains the following parts:

GPG signature

The GPG signature is used to verify the integrity of the package.

Header (package metadata)

The RPM package manager uses this metadata to determine package dependencies, where to install
files, and other information.

Payload

The payload is a cpio archive that contains files to install to the system.

There are two types of RPM packages. Both types share the file format and tooling, but have different
contents and serve different purposes:

Source RPM (SRPM)

An SRPM contains source code and a SPEC file, which describes how to build the source code into a
binary RPM. Optionally, the SRPM can contain patches to source code.

Binary RPM

A binary RPM contains the binaries built from the sources and patches.



Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

8

1.3. THE LINUX KERNEL RPM PACKAGE OVERVIEW

The kernel RPM is a meta package that does not contain any files, but rather ensures that the following
required sub-packages are properly installed:

kernel-core

Contains the binary image of the Linux kernel (vmlinuz).

kernel-modules-core

Contains the basic kernel modules to ensure core functionality. This includes the modules essential
for the proper functioning of the most commonly used hardware.

kernel-modules

Contains the remaining kernel modules that are not present in kernel-core.

The kernel-core and kernel-modules-core sub-packages together can be used in virtualized and cloud
environments to provide a RHEL 9 kernel with a quick boot time and a small disk size footprint. kernel-
modules sub-package is usually unnecessary for such deployments.

Optional kernel packages are for example:

kernel-modules-extra

Contains kernel modules for rare hardware and modules which loading is disabled by default.

kernel-debug

Contains a kernel with numerous debugging options enabled for kernel diagnosis, at the expense of
reduced performance.

kernel-tools

Contains tools for manipulating the Linux kernel and supporting documentation.

kernel-devel

Contains the kernel headers and makefiles sufficient to build modules against the kernel package.

kernel-abi-stablelists

Contains information pertaining to the RHEL kernel ABI, including a list of kernel symbols that are
needed by external Linux kernel modules and a dnf plug-in to aid enforcement.

kernel-headers

Includes the C header files that specify the interface between the Linux kernel and user-space
libraries and programs. The header files define structures and constants that are needed for building
most standard programs.

kernel-uki-virt

Contains the Unified Kernel Image (UKI) of the RHEL kernel.
UKI combines the Linux kernel, initramfs, and the kernel command line into a single signed binary
which can be booted directly from the UEFI firmware.

kernel-uki-virt contains the required kernel modules to run in virtualized and cloud environments
and can be used instead of the kernel-core sub-package.

IMPORTANT

kernel-uki-virt is provided as Technology Preview in RHEL 9.2.

Additional resources

CHAPTER 1. THE LINUX KERNEL

9

What are the kernel-core, kernel-modules, and kernel-modules-extras packages?

1.4. DISPLAYING CONTENTS OF A KERNEL PACKAGE

To determine if a kernel package provides a specific file, such as a module, you can display the file list of
the package for your architecture by querying the repository. It is not necessary to download or install
the package to display the file list.

Use the dnf utility to query the file list, for example, of the kernel-core, kernel-modules-core, or
kernel-modules package. Note that the kernel package is a meta package that does not contain any
files.

Procedure

1. List the available versions of a package:

$ dnf repoquery <package_name>

For example, list the available versions of the kernel-core package:

$ dnf repoquery kernel-core
kernel-core-0:5.14.0-162.12.1.el9_1.x86_64
kernel-core-0:5.14.0-162.18.1.el9_1.x86_64
kernel-core-0:5.14.0-162.22.2.el9_1.x86_64
kernel-core-0:5.14.0-162.23.1.el9_1.x86_64
...

2. Display the list of files in a package:

$ dnf repoquery -l <package_name>

For example, display the list of files in the kernel-core-0:5.14.0-162.23.1.el9_1.x86_64
package.

$ dnf repoquery -l kernel-core-0:5.14.0-162.23.1.el9_1.x86_64
/boot/System.map-5.14.0-162.23.1.el9_1.x86_64
/boot/config-5.14.0-162.23.1.el9_1.x86_64
/boot/initramfs-5.14.0-162.23.1.el9_1.x86_64.img
/boot/symvers-5.14.0-162.23.1.el9_1.x86_64.gz
/boot/vmlinuz-5.14.0-162.23.1.el9_1.x86_64
/lib/modules
/lib/modules/5.14.0-162.23.1.el9_1.x86_64
/lib/modules/5.14.0-162.23.1.el9_1.x86_64/.vmlinuz.hmac
/lib/modules/5.14.0-162.23.1.el9_1.x86_64/System.map
...

Additional resources

Packaging and distributing software

1.5. INSTALLING SPECIFIC KERNEL VERSIONS

Install new kernels using the dnf package manager.

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

10

https://access.redhat.com/articles/3739611
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/packaging_and_distributing_software/index

Procedure

To install a specific kernel version, enter the following command:

dnf install kernel-{version}

Additional resources

Red Hat Code Browser

Red Hat Enterprise Linux Release Dates

1.6. UPDATING THE KERNEL

Update the kernel using the dnf package manager.

Procedure

1. To update the kernel, enter the following command:

dnf update kernel

This command updates the kernel along with all dependencies to the latest available version.

2. Reboot your system for the changes to take effect.

Additional resources

package manager

The dnf(8) manual page

1.7. SETTING A KERNEL AS DEFAULT

Set a specific kernel as default using the grubby command-line tool and GRUB.

Procedure

Setting the kernel as default, using the grubby tool

Enter the following command to set the kernel as default using the grubby tool:

grubby --set-default $kernel_path

The command uses a machine ID without the .conf suffix as an argument.

NOTE

The machine ID is located in the /boot/loader/entries/ directory.

Setting the kernel as default, using the id argument

List the boot entries using the id argument and then set an intended kernel as default:

CHAPTER 1. THE LINUX KERNEL

11

https://access.redhat.com/labs/rhcb/
https://access.redhat.com/articles/3078
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_software_with_the_dnf_tool/con_software-management-tools-in-red-hat-enterprise-linux-9_managing-software-with-the-dnf-tool

grubby --info ALL | grep id
grubby --set-default /boot/vmlinuz-<version>.<architecture>

NOTE

To list the boot entries using the title argument, execute the # grubby --
info=ALL | grep title command.

Setting the default kernel for only the next boot

Execute the following command to set the default kernel for only the next reboot using the
grub2-reboot command:

grub2-reboot <index|title|id>

WARNING

Set the default kernel for only the next boot with care. Installing new
kernel RPM’s, self-built kernels, and manually adding the entries to the
/boot/loader/entries/ directory may change the index values.



Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

12

CHAPTER 2. THE 64K PAGE SIZE KERNEL
kernel-64k is an additional, optional 64-bit ARM architecture kernel package that supports 64k pages.
This additional kernel exists alongside the RHEL 9 for ARM kernel which supports 4k pages.

Optimal system performance directly relates to different memory configuration requirements. These
requirements are addressed by the two variants of kernel, each suitable for different workloads. RHEL 9
on 64-bit ARM hardware thus offers two MMU page sizes:

4k pages kernel for efficient memory usage in smaller environments,

kernel-64k for workloads with large, contiguous memory working sets.

The 4k pages kernel and kernel-64k do not differ in the user experience as the user space is the same.
You can choose the variant that addresses your situation the best.

4k pages kernel

Use 4k pages for more efficient memory usage in smaller environments, such as those in Edge and
lower-cost, small cloud instances. In these environments, increasing the physical system memory
amounts is not practical due to space, power, and cost constraints. Also, not all 64-bit ARM
architecture processors support a 64k page size.
The 4k pages kernel supports graphical installation using Anaconda, system or cloud image-based
installations, as well as advanced installations using Kickstart.

kernel-64k

The 64k page size kernel is a useful option for large datasets on ARM platforms. kernel-64k is
suitable for memory-intensive workloads as it has significant gains in overall system performance,
namely in large database, HPC, and high network performance.
You must choose page size on 64-bit ARM architecture systems at the time of installation. You can
install kernel-64k only by Kickstart by adding the kernel-64k package to the package list in the
Kickstart file.

Additional resources

Installing RHEL on ARM with Kernel-64k

CHAPTER 2. THE 64K PAGE SIZE KERNEL

13

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/performing_an_advanced_rhel_9_installation/index#installing-rhel-on-arm-with-kernel-64k_installing-rhel-as-an-experienced-user

CHAPTER 3. MANAGING KERNEL MODULES
Learn about kernel modules, how to display their information, and how to perform basic administrative
tasks with kernel modules.

3.1. INTRODUCTION TO KERNEL MODULES

The Red Hat Enterprise Linux kernel can be extended with optional, additional pieces of functionality,
called kernel modules, without having to reboot the system. On Red Hat Enterprise Linux 9, kernel
modules are extra kernel code which is built into compressed <KERNEL_MODULE_NAME>.ko.xz
object files.

The most common functionality enabled by kernel modules are:

Device driver which adds support for new hardware

Support for a file system such as GFS2 or NFS

System calls

On modern systems, kernel modules are automatically loaded when needed. However, in some cases it is
necessary to load or unload modules manually.

Like the kernel itself, the modules can take parameters that customize their behavior if needed.

Tooling is provided to inspect which modules are currently running, which modules are available to load
into the kernel and which parameters a module accepts. The tooling also provides a mechanism to load
and unload kernel modules into the running kernel.

3.2. KERNEL MODULE DEPENDENCIES

Certain kernel modules sometimes depend on one or more other kernel modules. The
/lib/modules/<KERNEL_VERSION>/modules.dep file contains a complete list of kernel module
dependencies for the respective kernel version.

depmod

The dependency file is generated by the depmod program, which is a part of the kmod package. Many
of the utilities provided by kmod take module dependencies into account when performing operations
so that manual dependency-tracking is rarely necessary.

WARNING

The code of kernel modules is executed in kernel-space in the unrestricted mode.
Because of this, you should be mindful of what modules you are loading.

weak-modules

In addition to depmod, Red Hat Enterprise Linux provides the weak-modules script shipped also with
the kmod package. weak-modules determines which modules are kABI-compatible with installed



Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

14

kernels. While checking modules kernel compatibility, weak-modules processes modules symbol
dependencies from higher to lower release of kernel for which they were built. This means that weak-
modules processes each module independently of kernel release they were built against.

Additional resources

The modules.dep(5) manual page

The depmod(8) manual page

What is the purpose of weak-modules script shipped with Red Hat Enterprise Linux?

What is Kernel Application Binary Interface (kABI)?

3.3. LISTING INSTALLED KERNEL MODULES

The grubby --info=ALL command displays an indexed list of installed kernels on !BLS and BLS installs.

Procedure

List the installed kernels using the following command:

grubby --info=ALL | grep title

The list of all installed kernels is displayed as follows:

title="Red Hat Enterprise Linux (5.14.0-1.el9.x86_64) 9.0 (Plow)"
title="Red Hat Enterprise Linux (0-rescue-0d772916a9724907a5d1350bcd39ac92) 9.0
(Plow)"

The above example displays the installed kernels list of grubby-8.40-17, from the GRUB menu.

3.4. LISTING CURRENTLY LOADED KERNEL MODULES

View the currently loaded kernel modules.

Prerequisites

The kmod package is installed.

Procedure

To list all currently loaded kernel modules, enter:

$ lsmod

Module Size Used by
fuse 126976 3
uinput 20480 1
xt_CHECKSUM 16384 1
ipt_MASQUERADE 16384 1
xt_conntrack 16384 1
ipt_REJECT 16384 1

CHAPTER 3. MANAGING KERNEL MODULES

15

https://access.redhat.com/articles/9749
https://access.redhat.com/solutions/444773

nft_counter 16384 16
nf_nat_tftp 16384 0
nf_conntrack_tftp 16384 1 nf_nat_tftp
tun 49152 1
bridge 192512 0
stp 16384 1 bridge
llc 16384 2 bridge,stp
nf_tables_set 32768 5
nft_fib_inet 16384 1
… ​

In the example above:

a. The Module column provides the names of currently loaded modules.

b. The Size column displays the amount of memory per module in kilobytes.

c. The Used by column shows the number, and optionally the names of modules that are
dependent on a particular module.

Additional resources

The /usr/share/doc/kmod/README file

The lsmod(8) manual page

3.5. DISPLAYING INFORMATION ABOUT KERNEL MODULES

Use the modinfo command to display some detailed information about the specified kernel module.

Prerequisites

The kmod package is installed.

Procedure

To display information about any kernel module, enter:

$ modinfo <KERNEL_MODULE_NAME>

For example:

$ modinfo virtio_net

filename: /lib/modules/5.14.0-1.el9.x86_64/kernel/drivers/net/virtio_net.ko.xz
license: GPL
description: Virtio network driver
rhelversion: 9.0
srcversion: 8809CDDBE7202A1B00B9F1C
alias: virtio:d00000001v*
depends: net_failover
retpoline: Y
intree: Y
name: virtio_net
vermagic: 5.14.0-1.el9.x86_64 SMP mod_unload modversions

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

16

… ​
parm: napi_weight:int
parm: csum:bool
parm: gso:bool
parm: napi_tx:bool

You can query information about all available modules, regardless of whether they are loaded or
not. The parm entries show parameters the user is able to set for the module, and what type of
value they expect.

NOTE

When entering the name of a kernel module, do not append the .ko.xz extension
to the end of the name. Kernel module names do not have extensions; their
corresponding files do.

Additional resources

The modinfo(8) manual page

3.6. LOADING KERNEL MODULES AT SYSTEM RUNTIME

The optimal way to expand the functionality of the Linux kernel is by loading kernel modules. Use the
modprobe command to find and load a kernel module into the currently running kernel.

IMPORTANT

The changes described in this procedure will not persist after rebooting the system. For
information about how to load kernel modules to persist across system reboots, see
Loading kernel modules automatically at system boot time .

Prerequisites

Root permissions

The kmod package is installed.

The respective kernel module is not loaded. To ensure this is the case, list the loaded kernel
modules.

Procedure

1. Select a kernel module you want to load.
The modules are located in the /lib/modules/$(uname -r)/kernel/<SUBSYSTEM>/ directory.

2. Load the relevant kernel module:

modprobe <MODULE_NAME>

NOTE

CHAPTER 3. MANAGING KERNEL MODULES

17

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#loading-kernel-modules-automatically-at-system-boot-time_managing-kernel-modules
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#listing-currently-loaded-kernel-modules_managing-kernel-modules

NOTE

When entering the name of a kernel module, do not append the .ko.xz extension
to the end of the name. Kernel module names do not have extensions; their
corresponding files do.

Verification

Optionally, verify the relevant module was loaded:

$ lsmod | grep <MODULE_NAME>

If the module was loaded correctly, this command displays the relevant kernel module. For
example:

$ lsmod | grep serio_raw
serio_raw 16384 0

Additional resources

The modprobe(8) manual page

3.7. UNLOADING KERNEL MODULES AT SYSTEM RUNTIME

At times, you find that you need to unload certain kernel modules from the running kernel. Use the
modprobe command to find and unload a kernel module at system runtime from the currently loaded
kernel.

WARNING

Do not unload kernel modules when they are used by the running system. Doing so
can lead to an unstable or non-operational system.

IMPORTANT

After finishing this procedure, the kernel modules that are defined to be automatically
loaded on boot, will not stay unloaded after rebooting the system. For information about
how to counter this outcome, see Preventing kernel modules from being automatically
loaded at system boot time.

Prerequisites

Root permissions

The kmod package is installed.

Procedure

1. List all loaded kernel modules:



Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

18

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#preventing-kernel-modules-from-being-automatically-loaded-at-system-boot-time_managing-kernel-modules

lsmod

2. Select the kernel module you want to unload.
If a kernel module has dependencies, unload those prior to unloading the kernel module. For
details on identifying modules with dependencies, see Listing currently loaded kernel modules
and Kernel module dependencies.

3. Unload the relevant kernel module:

modprobe -r <MODULE_NAME>

When entering the name of a kernel module, do not append the .ko.xz extension to the end of
the name. Kernel module names do not have extensions; their corresponding files do.

Verification

Optionally, verify the relevant module was unloaded:

$ lsmod | grep <MODULE_NAME>

If the module was unloaded successfully, this command does not display any output.

Additional resources

modprobe(8) manual page

3.8. UNLOADING KERNEL MODULES AT EARLY STAGES OF THE
BOOT PROCESS

In certain situations, it is necessary to unload a kernel module very early in the booting process. For
example, when the kernel module contains a code, which causes the system to become unresponsive,
and the user is not able to reach the stage to permanently disable the rogue kernel module. In that case
it is possible to temporarily block the loading of the kernel module using a boot loader.

You can edit the relevant boot loader entry to unload the desired kernel module before the booting
sequence continues.

IMPORTANT

The changes described in this procedure will not persist after the next reboot. For
information about how to add a kernel module to a denylist so that it will not be
automatically loaded during the boot process, see Preventing kernel modules from being
automatically loaded at system boot time.

Prerequisites

You have a loadable kernel module that you want to prevent from loading for some reason.

Procedure

1. Boot the system into the boot loader.

2. Use the cursor keys to highlight the relevant boot loader entry.

CHAPTER 3. MANAGING KERNEL MODULES

19

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#listing-currently-loaded-kernel-modules_managing-kernel-modules
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#kernel-module-dependencies_managing-kernel-modules
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#preventing-kernel-modules-from-being-automatically-loaded-at-system-boot-time_managing-kernel-modules

3. Press the e key to edit the entry.

Figure 3.1. Kernel boot menu

4. Use the cursor keys to navigate to the line that starts with linux.

5. Append modprobe.blacklist=module_name to the end of the line.

Figure 3.2. Kernel boot entry

The serio_raw kernel module illustrates a rogue module to be unloaded early in the boot
process.

6. Press Ctrl+X to boot using the modified configuration.

Verification

Once the system fully boots, verify that the relevant kernel module is not loaded.

lsmod | grep serio_raw

Additional resources

Managing kernel modules

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

20

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#managing-kernel-modules_managing-monitoring-and-updating-the-kernel

3.9. LOADING KERNEL MODULES AUTOMATICALLY AT SYSTEM
BOOT TIME

Configure a kernel module so that it is loaded automatically during the boot process.

Prerequisites

Root permissions

The kmod package is installed.

Procedure

1. Select a kernel module you want to load during the boot process.
The modules are located in the /lib/modules/$(uname -r)/kernel/<SUBSYSTEM>/ directory.

2. Create a configuration file for the module:

echo <MODULE_NAME> > /etc/modules-load.d/<MODULE_NAME>.conf

NOTE

When entering the name of a kernel module, do not append the .ko.xz extension
to the end of the name. Kernel module names do not have extensions; their
corresponding files do.

3. Optionally, after reboot, verify the relevant module was loaded:

$ lsmod | grep <MODULE_NAME>

The example command above should succeed and display the relevant kernel module.

IMPORTANT

The changes described in this procedure will persist after rebooting the system.

Additional resources

modules-load.d(5) manual page

3.10. PREVENTING KERNEL MODULES FROM BEING AUTOMATICALLY
LOADED AT SYSTEM BOOT TIME

You can prevent the system from loading a kernel module automatically during the boot process by
listing the module in modprobe configuration file with a corresponding command.

Prerequisites

The commands in this procedure require root privileges. Either use su - to switch to the root
user or preface the commands with sudo.

The kmod package is installed.

CHAPTER 3. MANAGING KERNEL MODULES

21

Ensure that your current system configuration does not require a kernel module you plan to
deny.

Procedure

1. List modules loaded to the currently running kernel by using the lsmod command:

$ lsmod
Module Size Used by
tls 131072 0
uinput 20480 1
snd_seq_dummy 16384 0
snd_hrtimer 16384 1
…

In the output, identify the module you want to prevent from being loaded.

Alternatively, identify an unloaded kernel module you want to prevent from potentially
loading in the /lib/modules/<KERNEL-VERSION>/kernel/<SUBSYSTEM>/ directory, for
example:

$ ls /lib/modules/4.18.0-477.20.1.el8_8.x86_64/kernel/crypto/
ansi_cprng.ko.xz chacha20poly1305.ko.xz md4.ko.xz
serpent_generic.ko.xz
anubis.ko.xz cmac.ko.xz…

2. Create a configuration file serving as a denylist:

touch /etc/modprobe.d/denylist.conf

3. In a text editor of your choice, combine the names of modules you want to exclude from
automatic loading to the kernel with the blacklist configuration command, for example:

Prevents <KERNEL-MODULE-1> from being loaded
blacklist <MODULE-NAME-1>
install <MODULE-NAME-1> /bin/false

Prevents <KERNEL-MODULE-2> from being loaded
blacklist <MODULE-NAME-2>
install <MODULE-NAME-2> /bin/false
…

Because the blacklist command does not prevent the module from being loaded as a
dependency for another kernel module that is not in a denylist, you must also define the install
line. In this case, the system runs /bin/false instead of installing the module. The lines starting
with a hash sign are comments you can use to make the file more readable.

NOTE

When entering the name of a kernel module, do not append the .ko.xz extension
to the end of the name. Kernel module names do not have extensions; their
corresponding files do.

4. Create a backup copy of the current initial RAM disk image before rebuilding:

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

22

cp /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).bak.$(date +%m-%d-
%H%M%S).img

Alternatively, create a backup copy of an initial RAM disk image which corresponds to the
kernel version for which you want to prevent kernel modules from automatic loading:

cp /boot/initramfs-<VERSION>.img /boot/initramfs-<VERSION>.img.bak.$(date +%m-
%d-%H%M%S)

5. Generate a new initial RAM disk image to apply the changes:

dracut -f -v

If you build an initial RAM disk image for a different kernel version than your system
currently uses, specify both target initramfs and kernel version:

dracut -f -v /boot/initramfs-<TARGET-VERSION>.img <CORRESPONDING-TARGET-
KERNEL-VERSION>

6. Restart the system:

$ reboot

IMPORTANT

The changes described in this procedure will take effect and persist after rebooting the
system. If you incorrectly list a key kernel module in the denylist, you can switch the
system to an unstable or non-operational state.

Additional resources

How do I prevent a kernel module from loading automatically? solution article

modprobe.d(5) and dracut(8) man pages

3.11. COMPILING CUSTOM KERNEL MODULES

You can build a sampling kernel module as requested by various configurations at hardware and
software level.

Prerequisites

You installed the kernel-devel, gcc, and elfutils-libelf-devel packages.

dnf install kernel-devel-$(uname -r) gcc elfutils-libelf-devel

You have root permissions.

You created the /root/testmodule/ directory where you compile the custom kernel module.

Procedure

CHAPTER 3. MANAGING KERNEL MODULES

23

https://access.redhat.com/solutions/41278

1. Create the /root/testmodule/test.c file with the following content.

The test.c file is a source file that provides the main functionality to the kernel module. The file
has been created in a dedicated /root/testmodule/ directory for organizational purposes. After
the module compilation, the /root/testmodule/ directory will contain multiple files.

The test.c file includes from the system libraries:

The linux/kernel.h header file is necessary for the printk() function in the example code.

The linux/module.h file contains function declarations and macro definitions to be shared
between several source files written in C programming language.

2. Follow the init_module() and cleanup_module() functions to start and end the kernel logging
function printk(), which prints text.

3. Create the /root/testmodule/Makefile file with the following content.

The Makefile contains instructions that the compiler has to produce an object file specifically
named test.o. The obj-m directive specifies that the resulting test.ko file is going to be
compiled as a loadable kernel module. Alternatively, the obj-y directive would instruct to build
test.ko as a built-in kernel module.

4. Compile the kernel module.

make -C /lib/modules/$(uname -r)/build M=/root/testmodule modules
make: Entering directory '/usr/src/kernels/5.14.0-70.17.1.el9_0.x86_64'
 CC [M] /root/testmodule/test.o
 MODPOST /root/testmodule/Module.symvers
 CC [M] /root/testmodule/test.mod.o
 LD [M] /root/testmodule/test.ko
 BTF [M] /root/testmodule/test.ko
Skipping BTF generation for /root/testmodule/test.ko due to unavailability of vmlinux
make: Leaving directory '/usr/src/kernels/5.14.0-70.17.1.el9_0.x86_64'

The compiler creates an object file (test.o) for each source file (test.c) as an intermediate step
before linking them together into the final kernel module (test.ko).

After a successful compilation, /root/testmodule/ contains additional files that relate to the
compiled custom kernel module. The compiled module itself is represented by the test.ko file.

Verification

#include <linux/module.h>
#include <linux/kernel.h>

int init_module(void)
 { printk("Hello World\n This is a test\n"); return 0; }

void cleanup_module(void)
 { printk("Good Bye World"); }

MODULE_LICENSE("GPL");

obj-m := test.o

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

24

1. Optional: check the contents of the /root/testmodule/ directory:

ls -l /root/testmodule/
total 152
-rw-r— ​r--. 1 root root 16 Jul 26 08:19 Makefile
-rw-r— ​r--. 1 root root 25 Jul 26 08:20 modules.order
-rw-r— ​r--. 1 root root 0 Jul 26 08:20 Module.symvers
-rw-r— ​r--. 1 root root 224 Jul 26 08:18 test.c
-rw-r— ​r--. 1 root root 62176 Jul 26 08:20 test.ko
-rw-r— ​r--. 1 root root 25 Jul 26 08:20 test.mod
-rw-r— ​r--. 1 root root 849 Jul 26 08:20 test.mod.c
-rw-r— ​r--. 1 root root 50936 Jul 26 08:20 test.mod.o
-rw-r— ​r--. 1 root root 12912 Jul 26 08:20 test.o

2. Copy the kernel module to the /lib/modules/$(uname -r)/ directory:

cp /root/testmodule/test.ko /lib/modules/$(uname -r)/

3. Update the modular dependency list:

depmod -a

4. Load the kernel module:

modprobe -v test
insmod /lib/modules/5.14.0-1.el9.x86_64/test.ko

5. Verify that the kernel module was successfully loaded:

lsmod | grep test
test 16384 0

6. Read the latest messages from the kernel ring buffer:

dmesg
[74422.545004] Hello World
 This is a test

Additional resources

Managing kernel modules

CHAPTER 3. MANAGING KERNEL MODULES

25

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#managing-kernel-modules_managing-monitoring-and-updating-the-kernel

CHAPTER 4. CONFIGURING KERNEL COMMAND-LINE
PARAMETERS

With kernel command-line parameters, you can change the behavior of certain aspects of the Red Hat
Enterprise Linux kernel at boot time. As a system administrator, you have full control over what options
get set at boot. Certain kernel behaviors can only be set at boot time, so understanding how to make
these changes is a key administration skill.

IMPORTANT

Changing the behavior of the system by modifying kernel command-line parameters may
have negative effects on your system. Always test changes prior to deploying them in
production. For further guidance, contact Red Hat Support.

4.1. WHAT ARE KERNEL COMMAND-LINE PARAMETERS

With kernel command-line parameters, you can overwrite default values and set specific hardware
settings. At boot time, you can configure the following features:

The Red Hat Enterprise Linux kernel

The initial RAM disk

The user space features

By default, the kernel command-line parameters for systems using the GRUB boot loader are defined in
the boot entry configuration file for each kernel boot entry.

You can manipulate boot loader configuration files by using the grubby utility. With grubby, you can
perform these actions:

Change the default boot entry.

Add or remove arguments from a GRUB menu entry.

Additional resources

kernel-command-line(7), bootparam(7) and dracut.cmdline(7) manual pages

How to install and boot custom kernels in Red Hat Enterprise Linux 8

The grubby(8) manual page

4.2. UNDERSTANDING BOOT ENTRIES

A boot entry is a collection of options which are stored in a configuration file and tied to a particular
kernel version. In practice, you have at least as many boot entries as your system has installed kernels.
The boot entry configuration file is located in the /boot/loader/entries/ directory and can look like this:

d8712ab6d4f14683c5625e87b52b6b6e-5.14.0-1.el9.x86_64.conf

The file name above consists of a machine ID stored in the /etc/machine-id file, and a kernel version.

The boot entry configuration file contains information about the kernel version, the initial ramdisk image,

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

26

https://access.redhat.com/articles/3938081

The boot entry configuration file contains information about the kernel version, the initial ramdisk image,
and the kernel command-line parameters. The example contents of a boot entry config can be seen
below:

title Red Hat Enterprise Linux (5.14.0-1.el9.x86_64) 9.0 (Plow)
version 5.14.0-1.el9.x86_64
linux /vmlinuz-5.14.0-1.el9.x86_64
initrd /initramfs-5.14.0-1.el9.x86_64.img
options root=/dev/mapper/rhel_kvm--02--guest08-root ro crashkernel=1G-4G:192M,4G-
64G:256M,64G-:512M resume=/dev/mapper/rhel_kvm--02--guest08-swap rd.lvm.lv=rhel_kvm-02-
guest08/root rd.lvm.lv=rhel_kvm-02-guest08/swap console=ttyS0,115200
grub_users $grub_users
grub_arg --unrestricted
grub_class kernel

4.3. CHANGING KERNEL COMMAND-LINE PARAMETERS FOR ALL
BOOT ENTRIES

Change kernel command-line parameters for all boot entries on your system.

IMPORTANT

When installing a newer version of the kernel in RHEL 9 systems, the grubby tool passes
the kernel command-line arguments from the previous kernel version.

However, this does not apply to RHEL version 9.0 in which newly installed kernels lose
previous command-line options. You must run the grub2-mkconfig command on the
newly installed kernel to pass the parameters to your new kernel. For more information
about this known issue, see Boot loader.

Prerequisites

Verify that the grubby utility is installed on your system.

Verify that the zipl utility is installed on your IBM Z system.

Procedure

To add a parameter:

grubby --update-kernel=ALL --args="<NEW_PARAMETER>"

For systems that use the GRUB boot loader and, on IBM Z that use the zIPL boot loader, the
command adds a new kernel parameter to each /boot/loader/entries/<ENTRY>.conf file.

On IBM Z, update the boot menu:

zipl

To remove a parameter:

grubby --update-kernel=ALL --remove-args="<PARAMETER_TO_REMOVE>"

CHAPTER 4. CONFIGURING KERNEL COMMAND-LINE PARAMETERS

27

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/9.0_release_notes/index#known-issue_boot-loader

On IBM Z, update the boot menu:

zipl

Additional resources

What are kernel command-line parameters

grubby(8) and zipl(8) manual pages

grubby tool

4.4. CHANGING KERNEL COMMAND-LINE PARAMETERS FOR A
SINGLE BOOT ENTRY

Make changes in kernel command-line parameters for a single boot entry on your system.

Prerequisites

Verify that the grubby and zipl utilities are installed on your system.

Procedure

To add a parameter:

grubby --update-kernel=/boot/vmlinuz-$(uname -r) --args="<NEW_PARAMETER>"

On IBM Z, update the boot menu:

zipl

To remove a parameter:

grubby --update-kernel=/boot/vmlinuz-$(uname -r) --remove-args="
<PARAMETER_TO_REMOVE>"

On IBM Z, update the boot menu:

zipl

IMPORTANT

grubby modifies and stores the kernel command-line parameters of an individual
kernel boot entry in the /boot/loader/entries/<ENTRY>.conf file.

Additional resources

What are kernel command-line parameters

grubby(8) and zipl(8) manual pages

grubby tool

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

28

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/ch-working_with_the_grub_2_boot_loader#sec-Making_Persistent_Changes_to_a_GRUB_2_Menu_Using_the_grubby_Tool
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/ch-working_with_the_grub_2_boot_loader#sec-Making_Persistent_Changes_to_a_GRUB_2_Menu_Using_the_grubby_Tool

4.5. CHANGING KERNEL COMMAND-LINE PARAMETERS
TEMPORARILY AT BOOT TIME

Make temporary changes to a Kernel Menu Entry by changing the kernel parameters only during a single
boot process.

NOTE

This procedure applies only for a single boot and does not persistently make the changes.

Procedure

1. Boot into the GRUB 2 boot menu.

2. Select the kernel you want to start.

3. Press the e key to edit the kernel parameters.

4. Find the kernel command line by moving the cursor down. The kernel command line starts with
linux on 64-Bit IBM Power Series and x86-64 BIOS-based systems, or linuxefi on UEFI
systems.

5. Move the cursor to the end of the line.

NOTE

Press Ctrl+a to jump to the start of the line and Ctrl+e to jump to the end of the
line. On some systems, Home and End keys might also work.

6. Edit the kernel parameters as required. For example, to run the system in emergency mode, add
the emergency parameter at the end of the linux line:

linux ($root)/vmlinuz-5.14.0-63.el9.x86_64 root=/dev/mapper/rhel-root ro crashkernel=1G-
4G:192M,4G-64G:256M,64G-:512M resume=/dev/mapper/rhel-swap rd.lvm.lv=rhel/root
rd.lvm.lv=rhel/swap rhgb quiet emergency

To enable the system messages, remove the rhgb and quiet parameters.

7. Press Ctrl+x to boot with the selected kernel and the modified command line parameters.

IMPORTANT

If you press the Esc key to leave command line editing, it will drop all the user made
changes.

4.6. CONFIGURING GRUB SETTINGS TO ENABLE SERIAL CONSOLE
CONNECTION

The serial console is beneficial when you need to connect to a headless server or an embedded system
and the network is down. Or when you need to avoid security rules and obtain login access on a different
system.

You need to configure some default GRUB settings to use the serial console connection.

CHAPTER 4. CONFIGURING KERNEL COMMAND-LINE PARAMETERS

29

Prerequisites

You have root permissions.

Procedure

1. Add the following two lines to the /etc/default/grub file:

GRUB_TERMINAL="serial"
GRUB_SERIAL_COMMAND="serial --speed=9600 --unit=0 --word=8 --parity=no --stop=1"

The first line disables the graphical terminal. The GRUB_TERMINAL key overrides values of
GRUB_TERMINAL_INPUT and GRUB_TERMINAL_OUTPUT keys.

The second line adjusts the baud rate (--speed), parity and other values to fit your environment
and hardware. Note that a much higher baud rate, for example 115200, is preferable for tasks
such as following log files.

2. Update the GRUB configuration file.

On BIOS-based machines:

grub2-mkconfig -o /boot/grub2/grub.cfg

On UEFI-based machines:

grub2-mkconfig -o /boot/grub2/grub.cfg

3. Reboot the system for the changes to take effect.

4.7. CHANGING BOOT ENTRIES WITH THE GRUB CONFIGURATION
FILE

The /etc/default/grub GRUB configuration file contains the GRUB_CMDLINE_LINUX key, which lists
kernel command-line arguments to add to boot entries for the Linux kernel. For example:

GRUB_CMDLINE_LINUX="crashkernel=1G-4G:192M,4G-64G:256M,64G-:512M
resume=/dev/mapper/rhel-swap rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap"

To change the boot entries, overwrite Boot Loader Specification (BLS) snippets with the contents of
the GRUB_CMDLINE_LINUX values.

Prerequisites

A fresh RHEL 9 installation.

Procedure

1. Add or remove a kernel parameter for individual kernels in a post installation script with grubby:

grubby --update-kernel <PATH_TO_KERNEL> --args "<NEW_ARGUMENTS>"

For example, add the noapic parameter to the chosen kernel:

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

30

grubby --update-kernel /boot/vmlinuz-5.14.0-362.8.1.el9_3.x86_64 --args "noapic"

The parameter is propagated into the BLS snippets, but not into the /etc/default/grub file.

2. Overwrite BLS snippets with the contents of the GRUB_CMDLINE_LINUX values present in
the /etc/default/grub file:

grub2-mkconfig -o /boot/grub2/grub.cfg --update-bls-cmdline
Generating grub configuration file … ​
Adding boot menu entry for UEFI Firmware Settings … ​
done

NOTE

Other changes, such as changes made to GRUB_TIMEOUT key (also included in
the /etc/default/grub GRUB configuration file), do get propagated to the new
grub.cfg by default.

Verification

1. Reboot your operating system.

2. Verify that the parameters are included in the /proc/cmdline file.
For example, /proc/cmdline contains the noapic kernel parameter:

BOOT_IMAGE=(hd0,gpt2)/vmlinuz-4.18.0-425.3.1.el8.x86_64 root=/dev/mapper/RHELCSB-
Root ro vconsole.keymap=us crashkernel=auto rd.lvm.lv=RHELCSB/Root rd.luks.uuid=luks-
d8a28c4c-96aa-4319-be26-96896272151d rhgb quiet noapic rd.luks.key=d8a28c4c-96aa-
4319-be26-96896272151d=/keyfile:UUID=c47d962e-4be8-41d6-8216-8cf7a0d3b911
ipv6.disable=1

CHAPTER 4. CONFIGURING KERNEL COMMAND-LINE PARAMETERS

31

CHAPTER 5. CONFIGURING KERNEL PARAMETERS AT
RUNTIME

As a system administrator, you can modify many facets of the Red Hat Enterprise Linux kernel’s
behavior at runtime. Configure kernel parameters at runtime by using the sysctl command and by
modifying the configuration files in the /etc/sysctl.d/ and /proc/sys/ directories.

IMPORTANT

Configuring kernel parameters on a production system requires careful planning.
Unplanned changes may render the kernel unstable, requiring a system reboot. Verify
that you are using valid options before changing any kernel values.

5.1. WHAT ARE KERNEL PARAMETERS

Kernel parameters are tunable values which you can adjust while the system is running. There is no
requirement to reboot or recompile the kernel for changes to take effect.

It is possible to address the kernel parameters through:

The sysctl command

The virtual file system mounted at the /proc/sys/ directory

The configuration files in the /etc/sysctl.d/ directory

Tunables are divided into classes by the kernel subsystem. Red Hat Enterprise Linux has the following
tunable classes:

Table 5.1. Table of sysctl classes

Tunable class Subsystem

abi Execution domains and personalities

crypto Cryptographic interfaces

debug Kernel debugging interfaces

dev Device-specific information

fs Global and specific file system tunables

kernel Global kernel tunables

net Network tunables

sunrpc Sun Remote Procedure Call (NFS)

user User Namespace limits

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

32

vm Tuning and management of memory, buffers, and cache

Tunable class Subsystem

Additional resources

sysctl(8), and sysctl.d(5) manual pages

5.2. CONFIGURING KERNEL PARAMETERS TEMPORARILY WITH
SYSCTL

Use the sysctl command to temporarily set kernel parameters at runtime. The command is also useful
for listing and filtering tunables.

Prerequisites

Root permissions

Procedure

1. List all parameters and their values.

sysctl -a

NOTE

The # sysctl -a command displays kernel parameters, which can be adjusted at
runtime and at boot time.

2. To configure a parameter temporarily, enter:

sysctl <TUNABLE_CLASS>.<PARAMETER>=<TARGET_VALUE>

The sample command above changes the parameter value while the system is running. The
changes take effect immediately, without a need for restart.

NOTE

The changes return back to default after your system reboots.

Additional resources

The sysctl(8) manual page

Configuring kernel parameters permanently with sysctl

Using configuration files in /etc/sysctl.d/ to adjust kernel parameters

5.3. CONFIGURING KERNEL PARAMETERS PERMANENTLY WITH

CHAPTER 5. CONFIGURING KERNEL PARAMETERS AT RUNTIME

33

5.3. CONFIGURING KERNEL PARAMETERS PERMANENTLY WITH
SYSCTL

Use the sysctl command to permanently set kernel parameters.

Prerequisites

Root permissions

Procedure

1. List all parameters.

sysctl -a

The command displays all kernel parameters that can be configured at runtime.

2. Configure a parameter permanently:

sysctl -w <TUNABLE_CLASS>.<PARAMETER>=<TARGET_VALUE> >> /etc/sysctl.conf

The sample command changes the tunable value and writes it to the /etc/sysctl.conf file, which
overrides the default values of kernel parameters. The changes take effect immediately and
persistently, without a need for restart.

NOTE

To permanently modify kernel parameters you can also make manual changes to the
configuration files in the /etc/sysctl.d/ directory.

Additional resources

The sysctl(8) and sysctl.conf(5) manual pages

Using configuration files in /etc/sysctl.d/ to adjust kernel parameters

5.4. USING CONFIGURATION FILES IN /ETC/SYSCTL.D/ TO ADJUST
KERNEL PARAMETERS

Modify configuration files in the /etc/sysctl.d/ directory manually to permanently set kernel parameters.

Prerequisites

Root permissions

Procedure

1. Create a new configuration file in /etc/sysctl.d/.

vim /etc/sysctl.d/<some_file.conf>

2. Include kernel parameters, one per line.

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

34

<TUNABLE_CLASS>.<PARAMETER>=<TARGET_VALUE>
<TUNABLE_CLASS>.<PARAMETER>=<TARGET_VALUE>

3. Save the configuration file.

4. Reboot the machine for the changes to take effect.

Alternatively, to apply changes without rebooting, enter:

sysctl -p /etc/sysctl.d/<some_file.conf>

The command enables you to read values from the configuration file, which you created
earlier.

Additional resources

sysctl(8), sysctl.d(5) manual pages

5.5. CONFIGURING KERNEL PARAMETERS TEMPORARILY THROUGH
/PROC/SYS/

Set kernel parameters temporarily through the files in the /proc/sys/ virtual file system directory.

Prerequisites

Root permissions

Procedure

1. Identify a kernel parameter you want to configure.

ls -l /proc/sys/<TUNABLE_CLASS>/

The writable files returned by the command can be used to configure the kernel. The files with
read-only permissions provide feedback on the current settings.

2. Assign a target value to the kernel parameter.

echo <TARGET_VALUE> > /proc/sys/<TUNABLE_CLASS>/<PARAMETER>

The command makes configuration changes that will disappear once the system is restarted.

3. Optionally, verify the value of the newly set kernel parameter.

cat /proc/sys/<TUNABLE_CLASS>/<PARAMETER>

Additional resources

Configuring kernel parameters permanently with sysctl

Using configuration files in /etc/sysctl.d/ to adjust kernel parameters

CHAPTER 5. CONFIGURING KERNEL PARAMETERS AT RUNTIME

35

5.6. ADDITIONAL RESOURCES

Tuning Red Hat Enterprise Linux for IBM DB2

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

36

https://access.redhat.com/solutions/3530941

CHAPTER 6. CONFIGURING KERNEL PARAMETERS
PERMANENTLY BY USING THE KERNEL_SETTINGS RHEL SYSTEM

ROLE
You can use the kernel_settings RHEL system role to configure kernel parameters on multiple clients
at once. This solution:

Provides a friendly interface with efficient input setting.

Keeps all intended kernel parameters in one place.

After you run the kernel_settings role from the control machine, the kernel parameters are applied to
the managed systems immediately and persist across reboots.

IMPORTANT

Note that RHEL system role delivered over RHEL channels are available to RHEL
customers as an RPM package in the default AppStream repository. RHEL system role
are also available as a collection to customers with Ansible subscriptions over Ansible
Automation Hub.

6.1. INTRODUCTION TO THE KERNEL_SETTINGS ROLE

RHEL system roles is a set of roles that provide a consistent configuration interface to remotely manage
multiple systems.

RHEL system roles were introduced for automated configurations of the kernel using the
kernel_settings RHEL system role. The rhel-system-roles package contains this system role, and also
the reference documentation.

To apply the kernel parameters on one or more systems in an automated fashion, use the
kernel_settings role with one or more of its role variables of your choice in a playbook. A playbook is a
list of one or more plays that are human-readable, and are written in the YAML format.

You can use an inventory file to define a set of systems that you want Ansible to configure according to
the playbook.

With the kernel_settings role you can configure:

The kernel parameters using the kernel_settings_sysctl role variable

Various kernel subsystems, hardware devices, and device drivers using the
kernel_settings_sysfs role variable

The CPU affinity for the systemd service manager and processes it forks using the
kernel_settings_systemd_cpu_affinity role variable

The kernel memory subsystem transparent hugepages using the
kernel_settings_transparent_hugepages and
kernel_settings_transparent_hugepages_defrag role variables

Additional resources

/usr/share/ansible/roles/rhel-system-roles.kernel_settings/README.md file

CHAPTER 6. CONFIGURING KERNEL PARAMETERS PERMANENTLY BY USING THE KERNEL_SETTINGS RHEL SYSTEM ROLE

37

/usr/share/doc/rhel-system-roles/kernel_settings/ directory

Working with playbooks

How to build your inventory

6.2. APPLYING SELECTED KERNEL PARAMETERS BY USING THE
KERNEL_SETTINGS ROLE

Follow these steps to prepare and apply an Ansible playbook to remotely configure kernel parameters
with persisting effect on multiple managed operating systems.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

name: optional key which associates an arbitrary string with the play as a label and identifies
what the play is for.

hosts: key in the play which specifies the hosts against which the play is run. The value or
values for this key can be provided as individual names of managed hosts or as groups of
hosts as defined in the inventory file.

vars: section of the playbook which represents a list of variables containing selected kernel
parameter names and values to which they have to be set.

role: key which specifies what RHEL system role is going to configure the parameters and
values mentioned in the vars section.

NOTE

- name: Configure kernel settings
 hosts: managed-node-01.example.com
 roles:
 - rhel-system-roles.kernel_settings
 vars:
 kernel_settings_sysctl:
 - name: fs.file-max
 value: 400000
 - name: kernel.threads-max
 value: 65536
 kernel_settings_sysfs:
 - name: /sys/class/net/lo/mtu
 value: 65000
 kernel_settings_transparent_hugepages: madvise

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

38

https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

NOTE

You can modify the kernel parameters and their values in the playbook to fit
your needs.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

4. Restart your managed hosts and check the affected kernel parameters to verify that the
changes have been applied and persist across reboots.

Additional resources

/usr/share/ansible/roles/rhel-system-roles.kernel_settings/README.md file

/usr/share/doc/rhel-system-roles/kernel_settings/ directory

Working With Playbooks

Using Variables

Roles

CHAPTER 6. CONFIGURING KERNEL PARAMETERS PERMANENTLY BY USING THE KERNEL_SETTINGS RHEL SYSTEM ROLE

39

https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html

CHAPTER 7. APPLYING PATCHES WITH KERNEL LIVE
PATCHING

You can use the Red Hat Enterprise Linux kernel live patching solution to patch a running kernel without
rebooting or restarting any processes.

With this solution, system administrators:

Can immediately apply critical security patches to the kernel.

Do not have to wait for long-running tasks to complete, for users to log off, or for scheduled
downtime.

Control the system’s uptime more and do not sacrifice security or stability.

Note that not every critical or important CVE will be resolved using the kernel live patching solution. Our
goal is to reduce the required reboots for security-related patches, not to eliminate them entirely. For
more details about the scope of live patching, see the Customer Portal Solutions article .

WARNING

Some incompatibilities exist between kernel live patching and other kernel
subcomponents. Read the

Limitations of kpatch carefully before using kernel live patching.

7.1. LIMITATIONS OF KPATCH

The kpatch feature is not a general-purpose kernel upgrade mechanism. It is used for applying
simple security and bug fix updates when rebooting the system is not immediately possible.

Do not use the SystemTap or kprobe tools during or after loading a patch. The patch could fail
to take effect until after such probes have been removed.

7.2. SUPPORT FOR THIRD-PARTY LIVE PATCHING

The kpatch utility is the only kernel live patching utility supported by Red Hat with the RPM modules
provided by Red Hat repositories. Red Hat will not support any live patches which were not provided by
Red Hat itself.

If you require support for an issue that arises with a third-party live patch, Red Hat recommends that you
open a case with the live patching vendor at the outset of any investigation in which a root cause
determination is necessary. This allows the source code to be supplied if the vendor allows, and for their
support organization to provide assistance in root cause determination prior to escalating the
investigation to Red Hat Support.

For any system running with third-party live patches, Red Hat reserves the right to ask for reproduction
with Red Hat shipped and supported software. In the event that this is not possible, we require a similar
system and workload be deployed on your test environment without live patches applied, to confirm if
the same behavior is observed.



Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

40

https://access.redhat.com/solutions/2206511

For more information about third-party software support policies, see How does Red Hat Global
Support Services handle third-party software, drivers, and/or uncertified hardware/hypervisors or guest
operating systems?

7.3. ACCESS TO KERNEL LIVE PATCHES

Kernel live patching capability is implemented as a kernel module (kmod) that is delivered as an RPM
package.

All customers have access to kernel live patches, which are delivered through the usual channels.
However, customers who do not subscribe to an extended support offering will lose access to new
patches for the current minor release once the next minor release becomes available. For example,
customers with standard subscriptions will only be able to live patch RHEL 9.1 kernel until the RHEL 9.2
kernel is released.

7.4. COMPONENTS OF KERNEL LIVE PATCHING

The components of kernel live patching are as follows:

Kernel patch module

The delivery mechanism for kernel live patches.

A kernel module which is built specifically for the kernel being patched.

The patch module contains the code of the desired fixes for the kernel.

The patch modules register with the livepatch kernel subsystem and provide information
about original functions to be replaced, with corresponding pointers to the replacement
functions. Kernel patch modules are delivered as RPMs.

The naming convention is kpatch_<kernel version>_<kpatch version>_<kpatch release>.
The "kernel version" part of the name has dots replaced with underscores.

The kpatch utility

A command-line utility for managing patch modules.

The kpatch service

A systemd service required by multiuser.target. This target loads the kernel patch module at boot
time.

The kpatch-dnf package

A DNF plugin delivered in the form of an RPM package. This plugin manages automatic subscription
to kernel live patches.

7.5. HOW KERNEL LIVE PATCHING WORKS

The kpatch kernel patching solution uses the livepatch kernel subsystem to redirect old functions to
new ones. When a live kernel patch is applied to a system, the following things happen:

1. The kernel patch module is copied to the /var/lib/kpatch/ directory and registered for re-
application to the kernel by systemd on next boot.

2. The kpatch module is loaded into the running kernel and the new functions are registered to the
ftrace mechanism with a pointer to the location in memory of the new code.

CHAPTER 7. APPLYING PATCHES WITH KERNEL LIVE PATCHING

41

https://access.redhat.com/articles/1067

3. When the kernel accesses the patched function, it is redirected by the ftrace mechanism which
bypasses the original functions and redirects the kernel to patched version of the function.

Figure 7.1. How kernel live patching works

7.6. SUBSCRIBING THE CURRENTLY INSTALLED KERNELS TO THE
LIVE PATCHING STREAM

A kernel patch module is delivered in an RPM package, specific to the version of the kernel being
patched. Each RPM package will be cumulatively updated over time.

The following procedure explains how to subscribe to all future cumulative live patching updates for a
given kernel. Because live patches are cumulative, you cannot select which individual patches are
deployed for a given kernel.

WARNING

Red Hat does not support any third party live patches applied to a Red Hat
supported system.

Prerequisites

Root permissions

Procedure

1. Optionally, check your kernel version:

uname -r
5.14.0-1.el9.x86_64



Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

42

2. Search for a live patching package that corresponds to the version of your kernel:

dnf search $(uname -r)

3. Install the live patching package:

dnf install "kpatch-patch = $(uname -r)"

The command above installs and applies the latest cumulative live patches for that specific
kernel only.

If the version of a live patching package is 1-1 or higher, the package will contain a patch module.
In that case the kernel will be automatically patched during the installation of the live patching
package.

The kernel patch module is also installed into the /var/lib/kpatch/ directory to be loaded by the
systemd system and service manager during the future reboots.

NOTE

An empty live patching package will be installed when there are no live patches
available for a given kernel. An empty live patching package will have a
kpatch_version-kpatch_release of 0-0, for example kpatch-patch-5_14_0-1-0-
0.x86_64.rpm. The installation of the empty RPM subscribes the system to all
future live patches for the given kernel.

Verification

Verify that all installed kernels have been patched:

kpatch list
Loaded patch modules:
kpatch_5_14_0_1_0_1 [enabled]

Installed patch modules:
kpatch_5_14_0_1_0_1 (5.14.0-1.el9.x86_64)
… ​

The output shows that the kernel patch module has been loaded into the kernel that is now
patched with the latest fixes from the kpatch-patch-5_14_0-1-0-1.el9.x86_64.rpm package.

NOTE

Entering the kpatch list command does not return an empty live patching
package. Use the rpm -qa | grep kpatch command instead.

rpm -qa | grep kpatch
kpatch-dnf-0.4-3.el9.noarch
kpatch-0.9.7-2.el9.noarch
kpatch-patch-5_14_0-284_25_1-0-0.el9_2.x86_64

Additional resources

CHAPTER 7. APPLYING PATCHES WITH KERNEL LIVE PATCHING

43

kpatch(1) manual page

Installing RHEL 9 content

7.7. AUTOMATICALLY SUBSCRIBING ANY FUTURE KERNEL TO THE
LIVE PATCHING STREAM

You can use the kpatch-dnf DNF plugin to subscribe your system to fixes delivered by the kernel patch
module, also known as kernel live patches. The plugin enables automatic subscription for any kernel the
system currently uses, and also for kernels to-be-installed in the future.

Prerequisites

You have root permissions.

Procedure

1. Optionally, check all installed kernels and the kernel you are currently running:

dnf list installed | grep kernel
Updating Subscription Management repositories.
Installed Packages
...
kernel-core.x86_64 5.14.0-1.el9 @beaker-BaseOS
kernel-core.x86_64 5.14.0-2.el9 @@commandline
...

uname -r
5.14.0-2.el9.x86_64

2. Install the kpatch-dnf plugin:

dnf install kpatch-dnf

3. Enable automatic subscription to kernel live patches:

dnf kpatch auto
Updating Subscription Management repositories.
Last metadata expiration check: 1:38:21 ago on Fri 17 Sep 2021 07:29:53 AM EDT.
Dependencies resolved.
==
 Package Architecture
==
Installing:
 kpatch-patch-5_14_0-1 x86_64
 kpatch-patch-5_14_0-2 x86_64

Transaction Summary
===
Install 2 Packages
… ​

This command subscribes all currently installed kernels to receiving kernel live patches. The

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

44

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_software_with_the_dnf_tool/assembly_installing-rhel-9-content_managing-software-with-the-dnf-tool

This command subscribes all currently installed kernels to receiving kernel live patches. The
command also installs and applies the latest cumulative live patches, if any, for all installed
kernels.

In the future, when you update the kernel, live patches will automatically be installed during the
new kernel installation process.

The kernel patch module is also installed into the /var/lib/kpatch/ directory to be loaded by the
systemd system and service manager during future reboots.

NOTE

An empty live patching package will be installed when there are no live patches
available for a given kernel. An empty live patching package will have a
kpatch_version-kpatch_release of 0-0, for example kpatch-patch-5_14_0-1-0-
0.el9.x86_64.rpm. The installation of the empty RPM subscribes the system to all
future live patches for the given kernel.

Verification

Verify that all installed kernels have been patched:

kpatch list
Loaded patch modules:
kpatch_5_14_0_2_0_1 [enabled]

Installed patch modules:
kpatch_5_14_0_1_0_1 (5.14.0-1.el9.x86_64)
kpatch_5_14_0_2_0_1 (5.14.0-2.el9.x86_64)

The output shows that both the kernel you are running, and the other installed kernel have been
patched with fixes from kpatch-patch-5_14_0-1-0-1.el9.x86_64.rpm and kpatch-patch-
5_14_0-2-0-1.el9.x86_64.rpm packages respectively.

NOTE

Entering the kpatch list command does not return an empty live patching
package. Use the rpm -qa | grep kpatch command instead.

rpm -qa | grep kpatch
kpatch-dnf-0.4-3.el9.noarch
kpatch-0.9.7-2.el9.noarch
kpatch-patch-5_14_0-284_25_1-0-0.el9_2.x86_64

Additional resources

kpatch(1) and dnf-kpatch(8) manual pages

7.8. DISABLING AUTOMATIC SUBSCRIPTION TO THE LIVE PATCHING
STREAM

When you subscribe your system to fixes delivered by the kernel patch module, your subscription is

CHAPTER 7. APPLYING PATCHES WITH KERNEL LIVE PATCHING

45

When you subscribe your system to fixes delivered by the kernel patch module, your subscription is
automatic. You can disable this feature, and thus disable automatic installation of kpatch-patch
packages.

Prerequisites

You have root permissions.

Procedure

1. Optionally, check all installed kernels and the kernel you are currently running:

dnf list installed | grep kernel
Updating Subscription Management repositories.
Installed Packages
...
kernel-core.x86_64 5.14.0-1.el9 @beaker-BaseOS
kernel-core.x86_64 5.14.0-2.el9 @@commandline
...

uname -r
5.14.0-2.el9.x86_64

2. Disable automatic subscription to kernel live patches:

dnf kpatch manual
Updating Subscription Management repositories.

Verification step

You can check for the successful outcome:

yum kpatch status
...
Updating Subscription Management repositories.
Last metadata expiration check: 0:30:41 ago on Tue Jun 14 15:59:26 2022.
Kpatch update setting: manual

Additional resources

kpatch(1) and dnf-kpatch(8) manual pages

7.9. UPDATING KERNEL PATCH MODULES

Since kernel patch modules are delivered and applied through RPM packages, updating a cumulative
kernel patch module is like updating any other RPM package.

Prerequisites

The system is subscribed to the live patching stream, as described in Subscribing the currently
installed kernels to the live patching stream.

Procedure

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

46

Update to a new cumulative version for the current kernel:

dnf update "kpatch-patch = $(uname -r)"

The command above automatically installs and applies any updates that are available for the
currently running kernel. Including any future released cumulative live patches.

Alternatively, update all installed kernel patch modules:

dnf update "kpatch-patch"

NOTE

When the system reboots into the same kernel, the kernel is automatically live patched
again by the kpatch.service systemd service.

Additional resources

Updating software packages in RHEL

7.10. REMOVING THE LIVE PATCHING PACKAGE

Disable the Red Hat Enterprise Linux kernel live patching solution by removing the live patching
package.

Prerequisites

Root permissions

The live patching package is installed.

Procedure

1. Select the live patching package.

dnf list installed | grep kpatch-patch
kpatch-patch-5_14_0-1.x86_64 0-1.el9 @@commandline
… ​

The example output above lists live patching packages that you installed.

2. Remove the live patching package.

dnf remove kpatch-patch-5_14_0-1.x86_64

When a live patching package is removed, the kernel remains patched until the next reboot, but
the kernel patch module is removed from disk. On future reboot, the corresponding kernel will
no longer be patched.

3. Reboot your system.

4. Verify that the live patching package has been removed.

CHAPTER 7. APPLYING PATCHES WITH KERNEL LIVE PATCHING

47

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_software_with_the_dnf_tool/assembly_updating-rhel-9-content_managing-software-with-the-dnf-tool#proc_updating-packages-with-yum_assembly_updating-rhel-9-content

dnf list installed | grep kpatch-patch

The command displays no output if the package has been successfully removed.

5. Optionally, verify that the kernel live patching solution is disabled.

kpatch list
Loaded patch modules:

The example output shows that the kernel is not patched and the live patching solution is not
active because there are no patch modules that are currently loaded.

IMPORTANT

Currently, Red Hat does not support reverting live patches without rebooting your
system. In case of any issues, contact our support team.

Additional resources

The kpatch(1) manual page

Removing installed packages in RHEL

7.11. UNINSTALLING THE KERNEL PATCH MODULE

Prevent the Red Hat Enterprise Linux kernel live patching solution from applying a kernel patch module
on subsequent boots.

Prerequisites

Root permissions

A live patching package is installed.

A kernel patch module is installed and loaded.

Procedure

1. Select a kernel patch module:

kpatch list
Loaded patch modules:
kpatch_5_14_0_1_0_1 [enabled]

Installed patch modules:
kpatch_5_14_0_1_0_1 (5.14.0-1.el9.x86_64)
… ​

2. Uninstall the selected kernel patch module.

kpatch uninstall kpatch_5_14_0_1_0_1
uninstalling kpatch_5_14_0_1_0_1 (5.14.0-1.el9.x86_64)

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

48

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_software_with_the_dnf_tool/assembly_removing-rhel-9-content_managing-software-with-the-dnf-tool#proc_removing-installed-packages-with-yum_assembly_removing-rhel-9-content

Note that the uninstalled kernel patch module is still loaded:

kpatch list
Loaded patch modules:
kpatch_5_14_0_1_0_1 [enabled]

Installed patch modules:
<NO_RESULT>

When the selected module is uninstalled, the kernel remains patched until the next reboot,
but the kernel patch module is removed from disk.

3. Reboot your system.

4. Optionally, verify that the kernel patch module has been uninstalled.

kpatch list
Loaded patch modules:
… ​

The example output above shows no loaded or installed kernel patch modules, therefore the
kernel is not patched and the kernel live patching solution is not active.

IMPORTANT

Currently, Red Hat does not support reverting live patches without rebooting your
system. In case of any issues, contact our support team.

Additional resources

The kpatch(1) manual page

7.12. DISABLING KPATCH.SERVICE

Prevent the Red Hat Enterprise Linux kernel live patching solution from applying all kernel patch
modules globally on subsequent boots.

Prerequisites

Root permissions

A live patching package is installed.

A kernel patch module is installed and loaded.

Procedure

1. Verify kpatch.service is enabled.

systemctl is-enabled kpatch.service
enabled

2. Disable kpatch.service:

CHAPTER 7. APPLYING PATCHES WITH KERNEL LIVE PATCHING

49

systemctl disable kpatch.service
Removed /etc/systemd/system/multi-user.target.wants/kpatch.service.

Note that the applied kernel patch module is still loaded:

kpatch list
Loaded patch modules:
kpatch_5_14_0_1_0_1 [enabled]

Installed patch modules:
kpatch_5_14_0_1_0_1 (5.14.0-1.el9.x86_64)

3. Reboot your system.

4. Optionally, verify the status of kpatch.service.

systemctl status kpatch.service
● kpatch.service - "Apply kpatch kernel patches"
 Loaded: loaded (/usr/lib/systemd/system/kpatch.service; disabled; vendor preset: disabled)
 Active: inactive (dead)

The example output testifies that kpatch.service has been disabled and is not running.
Thereby, the kernel live patching solution is not active.

5. Verify that the kernel patch module has been unloaded.

kpatch list
Loaded patch modules:

Installed patch modules:
kpatch_5_14_0_1_0_1 (5.14.0-1.el9.x86_64)

The example output above shows that a kernel patch module is still installed but the kernel is
not patched.

IMPORTANT

Currently, Red Hat does not support reverting live patches without rebooting your
system. In case of any issues, contact our support team.

Additional resources

The kpatch(1) manual page Managing systemd

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

50

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings

CHAPTER 8. KEEPING KERNEL PANIC PARAMETERS
DISABLED IN VIRTUALIZED ENVIRONMENTS

When configuring a Virtual Machine in RHEL 9, you should not enable the softlockup_panic and
nmi_watchdog kernel parameters, because the Virtual Machine might suffer from a spurious soft
lockup. And that should not require a kernel panic.

Find the reasons behind this advice in the following sections.

8.1. WHAT IS A SOFT LOCKUP

A soft lockup is a situation usually caused by a bug, when a task is executing in kernel space on a CPU
without rescheduling. The task also does not allow any other task to execute on that particular CPU. As a
result, a warning is displayed to a user through the system console. This problem is also referred to as
the soft lockup firing.

Additional resources

What is a CPU soft lockup?

8.2. PARAMETERS CONTROLLING KERNEL PANIC

The following kernel parameters can be set to control a system’s behavior when a soft lockup is
detected.

softlockup_panic

Controls whether or not the kernel will panic when a soft lockup is detected.

Type Value Effect

Integer 0 kernel does not panic on soft lockup

Integer 1 kernel panics on soft lockup

By default, on RHEL8 this value is 0.

The system needs to detect a hard lockup first to be able to panic. The detection is controlled by the
nmi_watchdog parameter.

nmi_watchdog

Controls whether lockup detection mechanisms (watchdogs) are active or not. This parameter is of
integer type.

Value Effect

0 disables lockup detector

1 enables lockup detector

The hard lockup detector monitors each CPU for its ability to respond to interrupts.

CHAPTER 8. KEEPING KERNEL PANIC PARAMETERS DISABLED IN VIRTUALIZED ENVIRONMENTS

51

https://access.redhat.com/articles/371803

watchdog_thresh

Controls frequency of watchdog hrtimer, NMI events, and soft/hard lockup thresholds.

Default threshold Soft lockup threshold

10 seconds 2 * watchdog_thresh

Setting this parameter to zero disables lockup detection altogether.

Additional resources

Softlockup detector and hardlockup detector

Kernel sysctl

8.3. SPURIOUS SOFT LOCKUPS IN VIRTUALIZED ENVIRONMENTS

The soft lockup firing on physical hosts, as described in What is a soft lockup , usually represents a kernel
or hardware bug. The same phenomenon happening on guest operating systems in virtualized
environments may represent a false warning.

Heavy work-load on a host or high contention over some specific resource such as memory, usually
causes a spurious soft lockup firing. This is because the host may schedule out the guest CPU for a
period longer than 20 seconds. Then when the guest CPU is again scheduled to run on the host, it
experiences a time jump which triggers due timers. The timers include also watchdog hrtimer, which can
consequently report a soft lockup on the guest CPU.

Because a soft lockup in a virtualized environment may be spurious, you should not enable the kernel
parameters that would cause a system panic when a soft lockup is reported on a guest CPU.

IMPORTANT

To understand soft lockups in guests, it is essential to know that the host schedules the
guest as a task, and the guest then schedules its own tasks.

Additional resources

What is a soft lockup

Virtual machine components and their interaction

Virtual machine reports a "BUG: soft lockup"

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

52

https://www.kernel.org/doc/Documentation/lockup-watchdogs.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/configuring_and_managing_virtualization/index#rhel-virtual-machine-components-and-their-interaction_introducing-virtualization-in-rhel
https://access.redhat.com/solutions/1503333

CHAPTER 9. ADJUSTING KERNEL PARAMETERS FOR
DATABASE SERVERS

There are different sets of kernel parameters which can affect performance of specific database
applications. To secure efficient operation of database servers and databases, configure the respective
kernel parameters accordingly.

9.1. INTRODUCTION TO DATABASE SERVERS

A database server is a service that provides features of a database management system (DBMS). DBMS
provides utilities for database administration and interacts with end users, applications, and databases.

Red Hat Enterprise Linux 9 provides the following database management systems:

MariaDB 10.5

MySQL 8.0

PostgreSQL 13

PostgreSQL 15 - available since RHEL 9.2

Redis 6

9.2. PARAMETERS AFFECTING PERFORMANCE OF DATABASE
APPLICATIONS

The following kernel parameters affect performance of database applications.

fs.aio-max-nr

Defines the maximum number of asynchronous I/O operations the system can handle on the server.

NOTE

Raising the fs.aio-max-nr parameter produces no additional changes beyond
increasing the aio limit.

fs.file-max

Defines the maximum number of file handles (temporary file names or IDs assigned to open files) the
system supports at any instance.
The kernel dynamically allocates file handles whenever a file handle is requested by an application.
The kernel however does not free these file handles when they are released by the application. The
kernel recycles these file handles instead. This means that over time the total number of allocated
file handles will increase even though the number of currently used file handles may be low.

kernel.shmall

Defines the total number of shared memory pages that can be used system-wide. To use the entire
main memory, the value of the kernel.shmall parameter should be ≤ total main memory size.

kernel.shmmax

Defines the maximum size in bytes of a single shared memory segment that a Linux process can
allocate in its virtual address space.

CHAPTER 9. ADJUSTING KERNEL PARAMETERS FOR DATABASE SERVERS

53

kernel.shmmni

Defines the maximum number of shared memory segments the database server is able to handle.

net.ipv4.ip_local_port_range

Defines the port range the system can use for programs which want to connect to a database server
without a specific port number.

net.core.rmem_default

Defines the default receive socket memory through Transmission Control Protocol (TCP).

net.core.rmem_max

Defines the maximum receive socket memory through Transmission Control Protocol (TCP).

net.core.wmem_default

Defines the default send socket memory through Transmission Control Protocol (TCP).

net.core.wmem_max

Defines the maximum send socket memory through Transmission Control Protocol (TCP).

vm.dirty_bytes / vm.dirty_ratio

Defines a threshold in bytes / in percentage of dirty-able memory at which a process generating
dirty data is started in the write() function.

NOTE

Either vm.dirty_bytes or vm.dirty_ratio can be specified at a time.

vm.dirty_background_bytes / vm.dirty_background_ratio

Defines a threshold in bytes / in percentage of dirty-able memory at which the kernel tries to actively
write dirty data to hard-disk.

NOTE

Either vm.dirty_background_bytes or vm.dirty_background_ratio can be specified at
a time.

vm.dirty_writeback_centisecs

Defines a time interval between periodic wake-ups of the kernel threads responsible for writing dirty
data to hard-disk.
This kernel parameters measures in 100th’s of a second.

vm.dirty_expire_centisecs

Defines the time after which dirty data is old enough to be written to hard-disk.
This kernel parameters measures in 100th’s of a second.

Additional resources

Dirty pagecache writeback and vm.dirty parameters

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

54

https://access.redhat.com/articles/45002#control-parameters-4

CHAPTER 10. GETTING STARTED WITH KERNEL LOGGING
Log files are files that contain messages about the system, including the kernel, services, and
applications running on it. The logging system in Red Hat Enterprise Linux is based on the built-in
syslog protocol. Various utilities use this system to record events and organize them into log files.
These files are useful when auditing the operating system or troubleshooting problems.

10.1. WHAT IS THE KERNEL RING BUFFER

During the boot process, the console provides a lot of important information about the initial phase of
the system startup. To avoid loss of the early messages the kernel utilizes what is called a ring buffer.
This buffer stores all messages, including boot messages, generated by the printk() function within the
kernel code. The messages from the kernel ring buffer are then read and stored in log files on
permanent storage, for example, by the syslog service.

The buffer mentioned above is a cyclic data structure which has a fixed size, and is hard-coded into the
kernel. Users can display data stored in the kernel ring buffer through the dmesg command or the
/var/log/boot.log file. When the ring buffer is full, the new data overwrites the old.

Additional resources

syslog(2) and dmesg(1) manual page

10.2. ROLE OF PRINTK ON LOG-LEVELS AND KERNEL LOGGING

Each message the kernel reports has a log-level associated with it that defines the importance of the
message. The kernel ring buffer, as described in What is the kernel ring buffer , collects kernel messages
of all log-levels. It is the kernel.printk parameter that defines what messages from the buffer are
printed to the console.

The log-level values break down in this order:

0

Kernel emergency. The system is unusable.

1

Kernel alert. Action must be taken immediately.

2

Condition of the kernel is considered critical.

3

General kernel error condition.

4

General kernel warning condition.

5

Kernel notice of a normal but significant condition.

6

Kernel informational message.

7

Kernel debug-level messages.

CHAPTER 10. GETTING STARTED WITH KERNEL LOGGING

55

By default, kernel.printk in RHEL 9 contains the following four values:

sysctl kernel.printk
kernel.printk = 7 4 1 7

The four values define the following, in order:

1. Console log-level, defines the lowest priority of messages printed to the console.

2. Default log-level for messages without an explicit log-level attached to them.

3. Sets the lowest possible log-level configuration for the console log-level.

4. Sets default value for the console log-level at boot time.
Each of these values above defines a different rule for handling error messages.

IMPORTANT

The default 7 4 1 7 printk value allows for better debugging of kernel activity. However,
when coupled with a serial console, this printk setting might cause intense I/O bursts that
might lead to a RHEL system becoming temporarily unresponsive. To avoid these
situations, setting a printk value of 4 4 1 7 typically works, but at the expense of losing
the extra debugging information.

Also note that certain kernel command line parameters, such as quiet or debug, change
the default kernel.printk values.

Additional resources

syslog(2) manual page

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

56

CHAPTER 11. REINSTALLING GRUB
You can reinstall the GRUB boot loader to fix certain problems, usually caused by an incorrect
installation of GRUB, missing files, or a broken system. You can resolve these issues by restoring the
missing files and updating the boot information.

Reasons to reinstall GRUB:

Upgrading the GRUB boot loader packages.

Adding the boot information to another drive.

The user requires the GRUB boot loader to control installed operating systems. However, some
operating systems are installed with their own boot loaders and reinstalling GRUB returns
control to the desired operating system.

NOTE

GRUB restores files only if they are not corrupted.

11.1. REINSTALLING GRUB ON BIOS-BASED MACHINES

You can reinstall the GRUB boot loader on your BIOS-based system. Always reinstall GRUB after
updating the GRUB packages.

IMPORTANT

This overwrites the existing GRUB to install the new GRUB. Ensure that the system does
not cause data corruption or boot crash during the installation.

Procedure

1. Reinstall GRUB on the device where it is installed. For example, if sda is your device:

grub2-install /dev/sda

2. Reboot your system for the changes to take effect:

reboot

Additional resources

The grub-install(1) man page

11.2. REINSTALLING GRUB ON UEFI-BASED MACHINES

You can reinstall the GRUB boot loader on your UEFI-based system.

IMPORTANT

Ensure that the system does not cause data corruption or boot crash during the
installation.

CHAPTER 11. REINSTALLING GRUB

57

Procedure

1. Reinstall the grub2-efi and shim boot loader files:

yum reinstall grub2-efi shim

2. Reboot your system for the changes to take effect:

reboot

11.3. REINSTALLING GRUB ON IBM POWER MACHINES

You can reinstall the GRUB boot loader on the Power PC Reference Platform (PReP) boot partition of
your IBM Power system. Always reinstall GRUB after updating the GRUB packages.

IMPORTANT

This overwrites the existing GRUB to install the new GRUB. Ensure that the system does
not cause data corruption or boot crash during the installation.

Procedure

1. Determine the disk partition that stores GRUB:

bootlist -m normal -o
sda1

2. Reinstall GRUB on the disk partition:

grub2-install partition

Replace partition with the GRUB partition that you found in the previous step, such as
/dev/sda1.

3. Reboot your system for the changes to take effect:

reboot

Additional resources

The grub-install(1) man page

11.4. RESETTING GRUB

Resetting GRUB completely removes all GRUB configuration files and system settings and reinstalls the
bootloader. You can reset all the configuration settings to their default values, and thus fix failures
caused by corrupted files and incorrect configuration.

IMPORTANT

The following procedure will remove all the customization the user has made.

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

58

Procedure

1. Remove the configuration files.

rm /etc/grub.d/*
rm /etc/sysconfig/grub

2. Reinstall packages.

On BIOS-based machines, enter:

yum reinstall grub2-tools

On UEFI-based machines, enter:

yum reinstall grub2-efi shim grub2-tools

3. Rebuild the grub.cfg file for the changes to take effect.

On BIOS-based machines, enter:

grub2-mkconfig -o /boot/grub2/grub.cfg

On UEFI-based machines, enter:

grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg

4. Follow Reinstalling GRUB procedure to restore GRUB on the /boot/ partition.

CHAPTER 11. REINSTALLING GRUB

59

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#assembly_reinstalling-grub_managing-monitoring-and-updating-the-kernel

CHAPTER 12. INSTALLING KDUMP
The kdump service is installed and activated by default on the new versions of Red Hat Enterprise Linux
9 installations. With the provided information and procedures, learn what kdump is and how to install if
kdump is not enabled by default.

12.1. WHAT IS KDUMP

kdump is a service which provides a crash dumping mechanism and generates a dump file, known as
crash dump or a vmcore file. The vmcore file has the contents of the system memory that helps in
analysis and troubleshooting. kdump uses the kexec system call to boot into the second kernel, a
capture kernel without a reboot and then captures the contents of the crashed kernel’s memory and
saves it into a file. The second kernel is available in a reserved part of the system memory.

IMPORTANT

A kernel crash dump can be the only information available if a system failure occur.
Therefore, operational kdump is important in mission-critical environments. Red Hat
advises to regularly update and test kexec-tools in your normal kernel update cycle. This
is especially important when you install new kernel features.

You can enable kdump for all installed kernels on a machine or only for specified kernels. This is useful
when there are multiple kernels used on a machine, some of which are stable enough that there is no
concern that they could crash. When you install kdump, a default /etc/kdump.conf file is created. The
/etc/kdump.conf file includes the default minimum kdump configuration, which you can edit to
customize the kdump configuration.

12.2. INSTALLING KDUMP USING ANACONDA

The Anaconda installer provides a graphical interface screen for kdump configuration during an
interactive installation. The installer screen is titled as KDUMP and is available from the main
Installation Summary screen. You can enable kdump and reserve the required amount of memory.

Procedure

1. Under the KDUMP field, enable kdump if not already enabled.

2. Under Kdump Memory Reservation, select Manual` if you must customize the memory
reserve.

3. Under KDUMP field, in Memory To Be Reserved (MB), set the required memory reserve for

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

60

3. Under KDUMP field, in Memory To Be Reserved (MB), set the required memory reserve for
kdump.

12.3. INSTALLING KDUMP ON THE COMMAND LINE

Some installation options, such as custom Kickstart installations, in some cases do not install or enable
kdump by default. If this is your case, follow the procedure below.

Prerequisites

An active RHEL subscription.

A repository containing the kexec-tools package for your system CPU architecture.

Fulfilled requirements for kdump configurations and targets. For details, see Supported kdump
configurations and targets.

Procedure

1. Check whether kdump is installed on your system:

rpm -q kexec-tools

Output if the package is installed:

kexec-tools-2.0.22-13.el9.x86_64

Output if the package is not installed:

package kexec-tools is not installed

2. Install kdump and other necessary packages by:

dnf install kexec-tools

CHAPTER 12. INSTALLING KDUMP

61

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#supported-kdump-configurations-and-targets_managing-monitoring-and-updating-the-kernel

CHAPTER 13. CONFIGURING KDUMP ON THE COMMAND
LINE

The memory for kdump is reserved during the system boot. The memory size is configured in the
system’s Grand Unified Bootloader (GRUB) configuration file. The memory size depends on the
crashkernel= value specified in the configuration file and the size of the system’s physical memory.

13.1. ESTIMATING THE KDUMP SIZE

When planning and building your kdump environment, it is important to know how much space the crash
dump file requires.

The makedumpfile --mem-usage command estimates how much space the crash dump file requires. It
generates a memory usage report. The report helps you determine the dump level and which pages are
safe to be excluded.

Procedure

Execute the following command to generate a memory usage report:

makedumpfile --mem-usage /proc/kcore

TYPE PAGES EXCLUDABLE DESCRIPTION

ZERO 501635 yes Pages filled with zero
CACHE 51657 yes Cache pages
CACHE_PRIVATE 5442 yes Cache pages + private
USER 16301 yes User process pages
FREE 77738211 yes Free pages
KERN_DATA 1333192 no Dumpable kernel data

IMPORTANT

The makedumpfile --mem-usage command reports required memory in pages. This
means that you must calculate the size of memory in use against the kernel page size.

By default the RHEL kernel uses 4 KB sized pages on AMD64 and Intel 64 CPU
architectures, and 64 KB sized pages on IBM POWER architectures.

13.2. CONFIGURING KDUMP MEMORY USAGE ON RHEL 9

The kexec-tools package maintains the default crashkernel= memory reservation values. The kdump
service uses the default value to reserve the crash kernel memory for each kernel. The default value can
also serve as the reference base value to estimate the required memory size when you set the
crashkernel= value manually. The minimum size of the crash kernel can vary depending on the hardware
and machine specifications.

The automatic memory allocation for kdump also varies based on the system hardware architecture and
available memory size. For example, on AMD and Intel 64-bit architectures, the default value for the
crashkernel= parameter will work only when the available memory is more than 1 GB. The kexec-tools
utility configures the following default memory reserves on AMD64 and Intel 64-bit architecture:

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

62

crashkernel=1G-4G:192M,4G-64G:256M,64G:512M

You can also run kdumpctl estimate to query a rough estimate value without triggering a crash. The
estimated crashkernel= value might not be an accurate one but can serve as a reference to set an
appropriate crashkernel= value.

NOTE

The crashkernel=auto option in the boot command line is no longer supported on RHEL
9 and later releases.

Prerequisites

You have root permissions on the system.

You have fulfilled kdump requirements for configurations and targets. For details, see
Supported kdump configurations and targets .

You have installed the zipl utility if it is the IBM Z system.

Procedure

1. Configure the default value for crash kernel.

kdumpctl reset-crashkernel --kernel=ALL

When configuring the crashkernel= value, test the configuration by rebooting with kdump
enabled. If the kdump kernel fails to boot, increase the memory size gradually to set an
acceptable value.

2. To use a custom crashkernel= value:

a. Configure the required memory reserve.

crashkernel=192M

Alternatively, you can set the amount of reserved memory to a variable depending on the
total amount of installed memory using the syntax crashkernel=<range1>:<size1>,
<range2>:<size2>. For example:

crashkernel=1G-4G:192M,2G-64G:256M

The example reserves 192 MB of memory if the total amount of system memory is 1 GB or
higher and lower than 4 GB. If the total amount of memory is more than 4 GB, 256 MB is
reserved for kdump.

b. (Optional) Offset the reserved memory.
Some systems require to reserve memory with a certain fixed offset since crashkernel
reservation is very early, and it wants to reserve some area for special usage. If the offset is
set, the reserved memory begins there. To offset the reserved memory, use the following
syntax:

crashkernel=192M@16M

The example reserves 192 MB of memory starting at 16 MB (physical address 0x01000000).

CHAPTER 13. CONFIGURING KDUMP ON THE COMMAND LINE

63

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/supported-kdump-configurations-and-targets_managing-monitoring-and-updating-the-kernel

The example reserves 192 MB of memory starting at 16 MB (physical address 0x01000000).
If you offset to 0 or do not specify a value, kdump offsets the reserved memory
automatically. You can also offset memory when setting a variable memory reservation by
specifying the offset as the last value. For example, crashkernel=1G-4G:192M,2G-
64G:256M@16M.

c. Update the bootloader configuration.

grubby --update-kernel ALL --args "crashkernel=<custom-value>"

The <custom-value> must contain the custom crashkernel= value that you have
configured for the crash kernel.

3. Reboot for changes to take effect.

reboot

Verification

Cause the kernel to crash by activating the sysrq key. The address-YYYY-MM-DD-HH:MM:SS/vmcore
file is saved to the target location as specified in the /etc/kdump.conf file. If you choose the default
target location, the vmcore file is saved in the partition mounted under /var/crash/.

WARNING

The commands to test kdump configuration will cause the kernel to crash with data
loss. Follow the instructions with care and do not use an active production system to
test the kdump configuration

1. Activate the sysrq key to boot into the kdump kernel.

echo c > /proc/sysrq-trigger

The command causes the kernel to crash and reboots the kernel if required.

2. Display the /etc/kdump.conf file and check if the vmcore file is saved in the target destination.

Additional resources

How to manually modify the boot parameter in grub before the system boots

grubby(8) man page

13.3. CONFIGURING THE KDUMP TARGET

The crash dump is usually stored as a file in a local file system, written directly to a device. Alternatively,
you can set up for the crash dump to be sent over a network using the NFS or SSH protocols. Only one
of these options to preserve a crash dump file can be set at a time. The default behavior is to store it in
the /var/crash/ directory of the local file system.



Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

64

https://access.redhat.com/solutions/32726

Prerequisites

You have root permissions on the system.

Fulfilled requirements for kdump configurations and targets. For details, see Supported kdump
configurations and targets.

Procedure

To store the crash dump file in /var/crash/ directory of the local file system, edit the
/etc/kdump.conf file and specify the path:

path /var/crash

The option path /var/crash represents the path to the file system in which kdump saves the
crash dump file.

NOTE

When you specify a dump target in the /etc/kdump.conf file, then the path is
relative to the specified dump target.

When you do not specify a dump target in the /etc/kdump.conf file, then the
path represents the absolute path from the root directory.

Depending on what is mounted in the current system, the dump target and the adjusted dump
path are taken automatically.

To secure the crash dump file and the accompanying files produced by kdump, you should set
up proper attributes for the target destination directory, such as user permissions and SELinux
contexts. Additionally, you can define a script, for example kdump_post.sh in the kdump.conf
file as follows:

kdump_post <path_to_kdump_post.sh>

The kdump_post directive specifies a shell script or a command that is executed after kdump
has completed capturing and saving a crash dump to the specified destination. You can use this
mechanism to extend the functionality of kdump to perform actions including the adjustment
of file permissions.

Example 13.1. The kdump target configuration

grep -v ^# /etc/kdump.conf | grep -v ^$
ext4 /dev/mapper/vg00-varcrashvol
path /var/crash
core_collector makedumpfile -c --message-level 1 -d 31

Here, the dump target is specified (ext4 /dev/mapper/vg00-varcrashvol), and thus mounted at
/var/crash. The path option is also set to /var/crash, so the kdump saves the vmcore file in the
/var/crash/var/crash directory.

To change the local directory in which the crash dump is to be saved, as root, edit the
/etc/kdump.conf configuration file:

CHAPTER 13. CONFIGURING KDUMP ON THE COMMAND LINE

65

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#supported-kdump-configurations-and-targets_managing-monitoring-and-updating-the-kernel

a. Remove the hash sign (#) from the beginning of the #path /var/crash line.

b. Replace the value with the intended directory path. For example:

path /usr/local/cores

IMPORTANT

In Red Hat Enterprise Linux 9, the directory defined as the kdump target
using the path directive must exist when the kdump systemd service starts
to avoid failures. This behavior is different from versions earlier than RHEL,
where the directory is created automatically if it did not exist when the
service starts.

To write the file to a different partition, edit the /etc/kdump.conf configuration file:

a. Remove the hash sign (#) from the beginning of the #ext4 line, depending on your choice.

device name (the #ext4 /dev/vg/lv_kdump line)

file system label (the #ext4 LABEL=/boot line)

UUID (the #ext4 UUID=03138356-5e61-4ab3-b58e-27507ac41937 line)

b. Change the file system type and the device name, label or UUID, to the required values. The
correct syntax for specifying UUID values is both UUID="correct-uuid" and UUID=correct-
uuid. For example:

ext4 UUID=03138356-5e61-4ab3-b58e-27507ac41937

IMPORTANT

It is recommended to specify storage devices using a LABEL= or UUID=.
Disk device names such as /dev/sda3 are not guaranteed to be consistent
across reboot.

When you use Direct Access Storage Device (DASD) on IBM Z hardware,
ensure the dump devices are correctly specified in /etc/dasd.conf before
you proceed with kdump.

To write the crash dump directly to a device, edit the /etc/kdump.conf configuration file:

a. Remove the hash sign (#) from the beginning of the #raw /dev/vg/lv_kdump line.

b. Replace the value with the intended device name. For example:

raw /dev/sdb1

To store the crash dump to a remote machine using the NFS protocol:

a. Remove the hash sign (#) from the beginning of the #nfs my.server.com:/export/tmp line.

b. Replace the value with a valid hostname and directory path. For example:

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

66

nfs penguin.example.com:/export/cores

c. Restart the kdump service for the changes to take effect:

sudo systemctl restart kdump.service

NOTE

When using the NFS directive to specify the NFS target, kdump.service
automatically attempts to mount the NFS target to check the disk space.
There is no need to mount the NFS target beforehand. To prevent
kdump.service from mounting the target, use the dracut_args --mount
directive in kdump.conf so that kdump.service calls the dracut utility with
the --mount argument to specify the NFS target.

To store the crash dump to a remote machine using the SSH protocol:

a. Remove the hash sign (#) from the beginning of the #ssh user@my.server.com line.

b. Replace the value with a valid username and hostname.

c. Include your SSH key in the configuration.

i. Remove the hash sign from the beginning of the #sshkey /root/.ssh/kdump_id_rsa
line.

ii. Change the value to the location of a key valid on the server you are trying to dump to.
For example:

ssh john@penguin.example.com
sshkey /root/.ssh/mykey

Additional resources

Section 13.8, “Files produced by kdump after system crash”

13.4. CONFIGURING THE KDUMP CORE COLLECTOR

The kdump service uses a core_collector program to capture the crash dump image. In RHEL, the
makedumpfile utility is the default core collector. It helps shrink the dump file by:

Compressing the size of a crash dump file and copying only necessary pages using various
dump levels.

Excluding unnecessary crash dump pages.

Filtering the page types to be included in the crash dump.

Syntax

core_collector makedumpfile -l --message-level 1 -d 31

Options

CHAPTER 13. CONFIGURING KDUMP ON THE COMMAND LINE

67

-c, -l or -p: specify compress dump file format by each page using either, zlib for -c option, lzo
for -l option or snappy for -p option.

-d (dump_level): excludes pages so that they are not copied to the dump file.

--message-level : specify the message types. You can restrict outputs printed by specifying
message_level with this option. For example, specifying 7 as message_level prints common
messages and error messages. The maximum value of message_level is 31

Prerequisites

You have root permissions on the system.

Fulfilled requirements for kdump configurations and targets. For details, see Supported kdump
configurations and targets.

Procedure

1. As root, edit the /etc/kdump.conf configuration file and remove the hash sign ("#") from the
beginning of the #core_collector makedumpfile -l --message-level 1 -d 31.

2. To enable crash dump file compression, execute:

core_collector makedumpfile -l --message-level 1 -d 31

The -l option specifies the dump compressed file format. The -d option specifies dump level as 31. The
--message-level option specifies message level as 1.

Also, consider following examples with the -c and -p options:

To compress a crash dump file using -c:

core_collector makedumpfile -c -d 31 --message-level 1

To compress a crash dump file using -p:

core_collector makedumpfile -p -d 31 --message-level 1

Additional resources

makedumpfile(8) man page

Configuration file for kdump

13.5. CONFIGURING THE KDUMP DEFAULT FAILURE RESPONSES

By default, when kdump fails to create a crash dump file at the configured target location, the system
reboots and the dump is lost in the process. You can change the default failure response and configure
kdump to perform a different operation in case it fails to save the core dump to the primary target. The
additional actions are:

dump_to_rootfs

Saves the core dump to the root file system.

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

68

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_monitoring_and_updating_the_kernel/index#supported-kdump-configurations-and-targets_managing-monitoring-and-updating-the-kernel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#configuration-file-for-kdump_configuring-kdump-on-the-command-line

reboot

Reboots the system, losing the core dump in the process.

halt

Stops the system, losing the core dump in the process.

poweroff

Power the system off, losing the core dump in the process.

shell

Runs a shell session from within the initramfs, you can record the core dump manually.

final_action

Enables additional operations such as reboot, halt, and poweroff after a successful kdump or when
shell or dump_to_rootfs failure action completes. The default is reboot.

failure_action

Specifies the action to perform when a dump might fail in a kernel crash. The default is reboot.

Prerequisites

Root permissions.

Fulfilled requirements for kdump configurations and targets. For details, see Supported kdump
configurations and targets.

Procedure

1. As root, remove the hash sign (#) from the beginning of the #failure_action line in the
/etc/kdump.conf configuration file.

2. Replace the value with a desired action.

failure_action poweroff

Additional resources

Configuring the kdump target

13.6. CONFIGURATION FILE FOR KDUMP

The configuration file for kdump kernel is /etc/sysconfig/kdump. This file controls the kdump kernel
command line parameters. For most configurations, use the default options. However, in some
scenarios you might need to modify certain parameters to control the kdump kernel behavior. For
example, modifying the KDUMP_COMMANDLINE_APPEND option to append the kdump kernel
command-line to obtain a detailed debugging output or the KDUMP_COMMANDLINE_REMOVE
option to remove arguments from the kdump command line.

KDUMP_COMMANDLINE_REMOVE

This option removes arguments from the current kdump command line. It removes parameters that
may cause kdump errors or kdump kernel boot failures. These parameters may have been parsed
from the previous KDUMP_COMMANDLINE process or inherited from the /proc/cmdline file.
When this variable is not configured, it inherits all values from the /proc/cmdline file. Configuring this
option also provides information that is helpful in debugging an issue.

CHAPTER 13. CONFIGURING KDUMP ON THE COMMAND LINE

69

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#supported-kdump-configurations-and-targets_managing-monitoring-and-updating-the-kernel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_monitoring_and_updating_the_kernel/index#configuring-the-kdump-target_configuring-kdump-on-the-command-line

To remove certain arguments, add them to KDUMP_COMMANDLINE_REMOVE as follows:

KDUMP_COMMANDLINE_REMOVE="hugepages hugepagesz slub_debug quiet log_buf_len
swiotlb"

KDUMP_COMMANDLINE_APPEND

This option appends arguments to the current command line. These arguments may have been
parsed by the previous KDUMP_COMMANDLINE_REMOVE variable.
For the kdump kernel, disabling certain modules such as mce, cgroup, numa, hest_disable can help
prevent kernel errors. These modules may consume a significant portion of the kernel memory
reserved for kdump or cause kdump kernel boot failures.

To disable memory cgroups on the kdump kernel command line, run the command as follows:

KDUMP_COMMANDLINE_APPEND="cgroup_disable=memory"

Additional resources

The Documentation/admin-guide/kernel-parameters.txt file

The /etc/sysconfig/kdump file

13.7. TESTING THE KDUMP CONFIGURATION

After configuring kdump, you must manually test a system crash and ensure that the vmcore file is
generated in the defined kdump target. The vmcore file is captured from the context of the freshly
booted kernel and therefore has critical information to help debug a kernel crash.

WARNING

Do not test kdump on active production systems. The commands to test kdump
will cause the kernel to crash with loss of data. Depending on your system
architecture, ensure that you schedule significant maintenance time because
kdump testing might require several reboots with a long boot time.

If the vmcore file is not generated during the kdump test, identify and fix issues
before you run the test again for a successful kdump testing.

IMPORTANT



Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

70

IMPORTANT

Ensure that you schedule significant maintenance time, because kdump testing might
require several reboots with a long boot time.

If you make any manual system modifications, you must test the kdump configuration at
the end of any system modification. For example, if you make any of the following
changes, ensure that you test the kdump configuration for an optimal kdump
performance:

Package upgrades.

Hardware level changes, for example, storage or networking changes.

Firmware and BIOS upgrades.

New installation and application upgrades that include third party modules.

If you use the hot-plugging mechanism to add more memory on hardware that
support this mechanism.

After you make changes in the /etc/kdump.conf or /etc/sysconfig/kdump file.

Prerequisites

You have root permissions on the system.

You have saved all important data. The commands to test kdump cause the kernel to crash with
loss of data.

You have scheduled significant machine maintenance time depending on the system
architecture.

Procedure

1. Enable the kdump service:

kdumpctl restart

2. Check the status of the kdump service. With the kdumpctl command, you can print the output
at the console.

kdumpctl status
 kdump:Kdump is operational

Alternatively, if you use the systemctl command, the output prints in the systemd journal.

3. Initiate a kernel crash to test the kdump configuration. The sysrq-trigger key combination
causes the kernel to crash and might reboot the system if required.

echo c > /proc/sysrq-trigger

On a kernel reboot, the address-YYYY-MM-DD-HH:MM:SS/vmcore file is created at the
location you have specified in the /etc/kdump.conf file. The default is /var/crash/.

Additional resources

CHAPTER 13. CONFIGURING KDUMP ON THE COMMAND LINE

71

Additional resources

Configuring the kdump target

13.8. FILES PRODUCED BY KDUMP AFTER SYSTEM CRASH

After your system crashes, the kdump service captures the kernel memory in a dump file (vmcore) and
it also generates additional diagnostic files to aid in troubleshooting and post-mortem analysis.

Files produced by kdump:

vmcore - main kernel memory dump file containing system memory at the time of the crash. It
includes data as per the configuration of the core_collector program specified in kdump
configuration. By default the kernel data structures, process information, stack traces, and other
diagnostic information.

vmcore-dmesg.txt - contents of the kernel ring buffer log (dmesg) from the primary kernel
that panicked.

kexec-dmesg.log - contains kernel and system log messages from the execution of the
secondary kexec kernel that collects the vmcore data.

Additional resources

What is the kernel ring buffer

What is kdump

13.9. ENABLING AND DISABLING THE KDUMP SERVICE

You can configure to enable or disable the kdump functionality on a specific kernel or on all installed
kernels. You must routinely test the kdump functionality and validate that it is working properly.

Prerequisites

You have root permissions on the system.

You have completed kdump requirements for configurations and targets. See Supported
kdump configurations and targets.

All configurations for installing kdump are set up as required.

Procedure

Enable the kdump service for multi-user.target:

systemctl enable kdump.service

Start the service in the current session:

systemctl start kdump.service

Stop the kdump service:

systemctl stop kdump.service

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

72

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#configuring-the-kdump-target_configuring-kdump-on-the-command-line
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_monitoring_and_updating_the_kernel/index#what-is-the-kernel-ring-buffer_getting-started-with-kernel-logging
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_monitoring_and_updating_the_kernel/index#what-is-kdumpinstalling-kdump
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/supported-kdump-configurations-and-targets_managing-monitoring-and-updating-the-kernel

Disable the kdump service:

systemctl disable kdump.service

WARNING

It is recommended to set kptr_restrict=1 as default. When kptr_restrict is set to (1)
as default, the kdumpctl service loads the crash kernel even if Kernel Address
Space Layout (KASLR) is enabled or not enabled.

If kptr_restrict is not set to 1 and KASLR is enabled, the contents of /proc/kore file
are generated as all zeros. The kdumpctl service fails to access the /proc/kcore file
and load the crash kernel. The kexec-kdump-howto.txt file displays a warning
message, which recommends you to set kptr_restrict=1. Verify for the following in
the sysctl.conf file to ensure that kdumpctl service loads the crash kernel:

Kernel kptr_restrict=1 in the sysctl.conf file.

13.10. PREVENTING KERNEL DRIVERS FROM LOADING FOR KDUMP

You can control the capture kernel from loading certain kernel drivers by adding the
KDUMP_COMMANDLINE_APPEND= variable in the /etc/sysconfig/kdump configuration file. By using
this method, you can prevent the kdump initial RAM disk image initramfs from loading the specified
kernel module. This helps to prevent the out-of-memory (OOM) killer errors or other crash kernel
failures.

You can append the KDUMP_COMMANDLINE_APPEND= variable using one of the following
configuration options:

rd.driver.blacklist=<modules>

modprobe.blacklist=<modules>

Prerequisites

You have root permissions on the system.

Procedure

1. Display the list of modules that are loaded to the currently running kernel. Select the kernel
module that you intend to block from loading.

$ lsmod

Module Size Used by
fuse 126976 3
xt_CHECKSUM 16384 1



CHAPTER 13. CONFIGURING KDUMP ON THE COMMAND LINE

73

ipt_MASQUERADE 16384 1
uinput 20480 1
xt_conntrack 16384 1

2. Update the KDUMP_COMMANDLINE_APPEND= variable in the /etc/sysconfig/kdump file.
For example:

KDUMP_COMMANDLINE_APPEND="rd.driver.blacklist=hv_vmbus,hv_storvsc,hv_utils,hv_net
vsc,hid-hyperv"

Also, consider the following example using the modprobe.blacklist=<modules> configuration
option:

KDUMP_COMMANDLINE_APPEND="modprobe.blacklist=emcp modprobe.blacklist=bnx2fc
modprobe.blacklist=libfcoe modprobe.blacklist=fcoe"

3. Restart the kdump service:

systemctl restart kdump

Additional resources

dracut.cmdline man page

13.11. RUNNING KDUMP ON SYSTEMS WITH ENCRYPTED DISK

When you run a LUKS encrypted partition, systems require certain amount of available memory. If the
system has less than the required amount of available memory, the cryptsetup utility fails to mount the
partition. As a result, capturing the vmcore file to an encrypted target location fails in the second kernel
(capture kernel).

The kdumpctl estimate command helps you estimate the amount of memory you need for kdump.
kdumpctl estimate prints the recommended crashkernel value, which is the most suitable memory size
required for kdump.

The recommended crashkernel value is calculated based on the current kernel size, kernel module,
initramfs, and the LUKS encrypted target memory requirement.

In case you are using the custom crashkernel= option, kdumpctl estimate prints the LUKS required
size value. The value is the memory size required for LUKS encrypted target.

Procedure

1. Print the estimate crashkernel= value:

kdumpctl estimate

Encrypted kdump target requires extra memory, assuming using the keyslot with minimum
memory requirement
 Reserved crashkernel: 256M
 Recommended crashkernel: 652M

 Kernel image size: 47M
 Kernel modules size: 8M

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

74

 Initramfs size: 20M
 Runtime reservation: 64M
 LUKS required size: 512M
 Large modules: <none>
 WARNING: Current crashkernel size is lower than recommended size 652M.

2. Configure the amount of required memory by increasing the crashkernel= value.

3. Reboot the system.

NOTE

If the kdump service still fails to save the dump file to the encrypted target, increase the
crashkernel= value as required.

CHAPTER 13. CONFIGURING KDUMP ON THE COMMAND LINE

75

CHAPTER 14. ENABLING KDUMP
For your Red Hat Enterprise Linux 9 systems, you can configure to enable or disable the kdump
functionality on a specific kernel or on all installed kernels. However, you must routinely test the kdump
functionality and validate that it’s working properly.

14.1. ENABLING KDUMP FOR ALL INSTALLED KERNELS

The kdump service starts by enabling kdump.service after the kexec tool is installed. You can enable
and start the kdump service for all kernels installed on the machine.

Prerequisites

You have administrator privileges.

Procedure

1. Add the crashkernel= command-line parameter to all installed kernels.

grubby --update-kernel=ALL --args="crashkernel=xxM"

xxM is the required memory in megabytes.

2. Enable the kdump service.

systemctl enable --now kdump.service

Verification

Check that the kdump service is running.

systemctl status kdump.service

○ kdump.service - Crash recovery kernel arming
 Loaded: loaded (/usr/lib/systemd/system/kdump.service; enabled; vendor preset:
disabled)
 Active: active (live)

14.2. ENABLING KDUMP FOR A SPECIFIC INSTALLED KERNEL

You can enable the kdump service for a specific kernel on the machine.

Prerequisites

You have administrator privileges.

Procedure

1. List the kernels installed on the machine.

ls -a /boot/vmlinuz-*
/boot/vmlinuz-0-rescue-2930657cd0dc43c2b75db480e5e5b4a9

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

76

/boot/vmlinuz-4.18.0-330.el8.x86_64
/boot/vmlinuz-4.18.0-330.rt7.111.el8.x86_64

2. Add a specific kdump kernel to the system’s Grand Unified Bootloader (GRUB) configuration.
For example:

grubby --update-kernel=vmlinuz-4.18.0-330.el8.x86_64 --args="crashkernel=xxM"

xxM is the required memory reserve in megabytes.

3. Enable the kdump service.

systemctl enable --now kdump.service

Verification

Check that the kdump service is running.

systemctl status kdump.service

○ kdump.service - Crash recovery kernel arming
 Loaded: loaded (/usr/lib/systemd/system/kdump.service; enabled; vendor preset:
disabled)
 Active: active (live)

14.3. DISABLING THE KDUMP SERVICE

You can stop the kdump.service and disable the service from starting on your Red Hat Enterprise Linux
9 systems.

Prerequisites

Fulfilled requirements for kdump configurations and targets. For details, see Supported kdump
configurations and targets.

All configurations for installing kdump are set up according to your needs. For details, see
Installing kdump .

Procedure

1. To stop the kdump service in the current session:

systemctl stop kdump.service

2. To disable the kdump service:

systemctl disable kdump.service

CHAPTER 14. ENABLING KDUMP

77

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#supported-kdump-configurations-and-targets_managing-monitoring-and-updating-the-kernel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/installing-kdump_managing-monitoring-and-updating-the-kernel

WARNING

It is recommended to set kptr_restrict=1 as default. When kptr_restrict is set to (1)
as default, the kdumpctl service loads the crash kernel even if Kernel Address
Space Layout (KASLR) is enabled or not enabled.

If kptr_restrict is not set to 1 and KASLR is enabled, the contents of /proc/kore
file are generated as all zeros. The kdumpctl service fails to access the /proc/kcore
file and load the crash kernel. The kexec-kdump-howto.txt file displays a warning
message, which recommends you to set kptr_restrict=1. Verify for the following in
the sysctl.conf file to ensure that kdumpctl service loads the crash kernel:

Kernel kptr_restrict=1 in the sysctl.conf file.

Additional resources

Managing systemd



Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

78

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings

CHAPTER 15. SUPPORTED KDUMP CONFIGURATIONS AND
TARGETS

The kdump mechanism is a feature of the Linux kernel that generates a crash dump file when a kernel
crash occurs. The kernel dump file has critical information that helps to analyze and determine the root
cause of a kernel crash. The crash can be because of various factors, hardware issues or third-party
kernel modules problems, to name a few.

With the provided information and procedures, you understand the supported configurations and
targets on your Red Hat Enterprise Linux 9 systems and properly configure kdump and validate it’s
working.

15.1. MEMORY REQUIREMENTS FOR KDUMP

For kdump to capture a kernel crash dump and save it for further analysis, a part of the system memory
should be permanently reserved for the capture kernel. When reserved, this part of the system memory
is not available to the main kernel.

The memory requirements vary based on certain system parameters. One of the major factors is the
system’s hardware architecture. To find out the exact machine architecture (such as Intel 64 and
AMD64, also known as x86_64) and print it to standard output, use the following command:

$ uname -m

With the stated list of minimum memory requirements, you can set the appropriate memory size to
automatically reserve a memory for kdump on the latest available versions. The memory size depends
on the system’s architecture and total available physical memory.

Table 15.1. Minimum amount of reserved memory required for kdump

Architecture Available Memory Minimum Reserved Memory

AMD64 and Intel 64 (x86_64) 1 GB to 4 GB 192 MB of RAM

4 GB to 64 GB 256 MB of RAM

64 GB and more 512 MB of RAM

64-bit ARM (4k pages) 1 GB to 4 GB 256 MB of RAM

4 GB to 64 GB 320 MB of RAM

64 GB and more 576 MB of RAM

64-bit ARM (64k pages) 1 GB to 4 GB 356 MB of RAM

4 GB to 64 GB 420 MB of RAM

64 GB and more 676 MB of RAM

CHAPTER 15. SUPPORTED KDUMP CONFIGURATIONS AND TARGETS

79

IBM Power Systems (ppc64le) 2 GB to 4 GB 384 MB of RAM

4 GB to 16 GB 512 MB of RAM

16 GB to 64 GB 1 GB of RAM

64 GB to 128 GB 2 GB of RAM

128 GB and more 4 GB of RAM

IBM Z (s390x) 1 GB to 4 GB 192 MB of RAM

4 GB to 64 GB 256 MB of RAM

64 GB and more 512 MB of RAM

Architecture Available Memory Minimum Reserved Memory

On many systems, kdump is able to estimate the amount of required memory and reserve it
automatically. This behavior is enabled by default, but only works on systems that have more than a
certain amount of total available memory, which varies based on the system architecture.

IMPORTANT

The automatic configuration of reserved memory based on the total amount of memory
in the system is a best effort estimation. The actual required memory may vary due to
other factors such as I/O devices. Using not enough of memory might cause that a debug
kernel is not able to boot as a capture kernel in case of a kernel panic. To avoid this
problem, sufficiently increase the crash kernel memory.

Additional resources

Technology capabilities and limits tables

15.2. MINIMUM THRESHOLD FOR AUTOMATIC MEMORY
RESERVATION

The kexec-tools utility, by default, configures the crashkernel command line parameter and reserves a
certain amount of memory for kdump. On some systems however, it is still possible to allocate memory
for kdump either by using the crashkernel=auto parameter in the boot loader configuration file, or by
enabling this option in the graphical configuration utility. For this automatic reservation to work, a certain
amount of total memory needs to be available in the system. The memory requirement varies based on
the system’s architecture. If the system memory is less than the specified threshold value, you must
configure the memory manually.

Table 15.2. Minimum amount of memory required for memory reservation

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

80

https://access.redhat.com/articles/rhel-limits++

Architecture Required Memory

AMD64 and Intel 64 (x86_64) 1 GB

IBM Power Systems (ppc64le) 2 GB

IBM Z (s390x) 1 GB

64-bit ARM 1 GB

NOTE

The crashkernel=auto option in the boot command line is no longer supported on RHEL
9 and later releases.

15.3. SUPPORTED KDUMP TARGETS

When a kernel crash occurs, the operating system saves the dump file on the configured or default
target location. You can save the dump file either directly to a device, store as a file on a local file
system, or send the dump file over a network. With the following list of dump targets, you can know the
targets that are currently supported or not supported by kdump.

Table 15.3. kdump targets on RHEL 9

Target type Supported Targets Unsupported Targets

CHAPTER 15. SUPPORTED KDUMP CONFIGURATIONS AND TARGETS

81

Physical Storage
Logical Volume Manager
(LVM).

Thin provisioning volume.

Fibre Channel (FC) disks
such as qla2xxx, lpfc,
bnx2fc, and bfa.

An iSCSI software-
configured logical device
on a networked storage
server.

The mdraid subsystem
as a software RAID
solution.

Hardware RAID such as
smartpqi, hpsa,
megaraid, mpt3sas,
aacraid, and mpi3mr.

SCSI and SATA disks.

iSCSI and HBA
offloads.

Hardware FCoE such as
qla2xxx and lpfc.

Software FCoE such as
bnx2fc. For software
FCoE to function,
additional memory
configuration might be
required.

BIOS RAID.

Software iSCSI with
iBFT. Currently
supported transports are
bnx2i, cxgb3i, and
cxgb4i.

Software iSCSI with
hybrid device driver such
as be2iscsi.

Fibre Channel over
Ethernet (FCoE).

Legacy IDE.

GlusterFS servers.

GFS2 file system.

Clustered Logical
Volume Manager
(CLVM).

High availability LVM
volumes (HA-LVM).

Network
Hardware using kernel
modules such as igb,
ixgbe, ice, i40e,
e1000e, igc, tg3,
bnx2x, bnxt_en, qede,
cxgb4, be2net, enic,
sfc, mlx4_en,
mlx5_core, r8169,
atlantic, nfp, and nicvf
on 64-bit ARM
architecture only.

Hardware using kernel
modules such as sfc
SRIOV, cxgb4vf, and
pch_gbe.

IPv6 protocol.

Wireless connections.

InfiniBand networks.

VLAN network over
bridge and team.

Target type Supported Targets Unsupported Targets

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

82

Hypervisor
Kernel-based virtual
machines (KVM).

Xen hypervisor in certain
configurations only.

ESXi 6.6, 6.7, 7.0.

Hyper-V 2012 R2 on
RHEL Gen1 UP Guest
only and later version.

Filesystem The ext[234]fs, XFS, virtiofs,
and NFS file systems.

The Btrfs file system.

Firmware
BIOS-based systems.

UEFI Secure Boot.

Target type Supported Targets Unsupported Targets

Additional resources

Configuring the kdump target

15.4. SUPPORTED KDUMP FILTERING LEVELS

To reduce the size of the dump file, kdump uses the makedumpfile core collector to compress the
data and also exclude unwanted information, for example, you can remove hugepages and hugetlbfs
pages by using the -8 level. The levels that makedumpfile currently supports can be seen in the table
for Filtering levels for `kdump` .

Table 15.4. Filtering levels for kdump

Option Description

1 Zero pages

2 Cache pages

4 Cache private

8 User pages

16 Free pages

Additional resources

Configuring the core collector

CHAPTER 15. SUPPORTED KDUMP CONFIGURATIONS AND TARGETS

83

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/configuring-kdump-on-the-command-line_managing-monitoring-and-updating-the-kernel#configuring-the-kdump-target_configuring-kdump-on-the-command-line
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/configuring-kdump-on-the-command-line_managing-monitoring-and-updating-the-kernel#configuring-the-kdump-core-collectorconfiguring-kdump-on-the-command-line

15.5. SUPPORTED DEFAULT FAILURE RESPONSES

By default, when kdump fails to create a core dump, the operating system reboots. You can, however,
configure kdump to perform a different operation in case it fails to save the core dump to the primary
target.

dump_to_rootfs

Attempt to save the core dump to the root file system. This option is especially useful in combination
with a network target: if the network target is unreachable, this option configures kdump to save the
core dump locally. The system is rebooted afterwards.

reboot

Reboot the system, losing the core dump in the process.

halt

Halt the system, losing the core dump in the process.

poweroff

Power off the system, losing the core dump in the process.

shell

Run a shell session from within the initramfs, allowing the user to record the core dump manually.

final_action

Enable additional operations such as reboot, halt, and poweroff actions after a successful kdump or
when shell or dump_to_rootfs failure action completes. The default final_action option is reboot.

failure_action

Specifies the action to perform when a dump might fail in the event of a kernel crash. The default
failure_action option is reboot.

Additional resources

Configuring the kdump default failure responses

15.6. USING FINAL_ACTION PARAMETER

When kdump succeeds or if kdump fails to save the vmcore file at the configured target, you can
perform additional operations like reboot, halt, and poweroff by using the final_action parameter. If the
final_action parameter is not specified, reboot is the default response.

Procedure

1. To configure final_action, edit the /etc/kdump.conf file and add one of the following options:

final_action reboot

final_action halt

final_action poweroff

2. Restart the kdump service for the changes to take effect.

kdumpctl restart

15.7. USING FAILURE_ACTION PARAMETER

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

84

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/configuring-kdump-on-the-command-line_managing-monitoring-and-updating-the-kernel#configuring-the-kdump-default-failure-responses_configuring-kdump-on-the-command-line

The failure_action parameter specifies the action to perform when a dump fails in the event of a kernel
crash. The default action for failure_action is reboot, which reboots the system.

The parameter recognizes the following actions to take:

reboot

Reboots the system after a dump failure.

dump_to_rootfs

Saves the dump file on a root file system when a non-root dump target is configured.

halt

Halts the system.

poweroff

Stops the running operations on the system.

shell

Starts a shell session inside initramfs, from which you can manually perform additional recovery
actions.

Procedure:

1. To configure an action to take if the dump fails, edit the /etc/kdump.conf file and specify one
of the failure_action options:

failure_action reboot

failure_action halt

failure_action poweroff

failure_action shell

failure_action dump_to_rootfs

2. Restart the kdump service for the changes to take effect.

kdumpctl restart

CHAPTER 15. SUPPORTED KDUMP CONFIGURATIONS AND TARGETS

85

CHAPTER 16. FIRMWARE ASSISTED DUMP MECHANISMS
Firmware assisted dump (fadump) is a dump capturing mechanism, provided as an alternative to the
kdump mechanism on IBM POWER systems. The kexec and kdump mechanisms are useful for
capturing core dumps on AMD64 and Intel 64 systems. However, some hardware such as mini systems
and mainframe computers, leverage the onboard firmware to isolate regions of memory and prevent
any accidental overwriting of data that is important to the crash analysis. The fadump utility, is
optimized for the fadump mechanisms and their integration with RHEL on IBM POWER systems.

16.1. FIRMWARE ASSISTED DUMP ON IBM POWERPC HARDWARE

The fadump utility captures the vmcore file from a fully-reset system with PCI and I/O devices. This
mechanism uses firmware to preserve memory regions during a crash and then reuses the kdump
userspace scripts to save the vmcore file. The memory regions consist of all system memory contents,
except the boot memory, system registers, and hardware Page Table Entries (PTEs).

The fadump mechanism offers improved reliability over the traditional dump type, by rebooting the
partition and using a new kernel to dump the data from the previous kernel crash. The fadump requires
an IBM POWER6 processor-based or later version hardware platform.

For further details about the fadump mechanism, including PowerPC specific methods of resetting
hardware, see the /usr/share/doc/kexec-tools/fadump-howto.txt file.

NOTE

The area of memory that is not preserved, known as boot memory, is the amount of RAM
required to successfully boot the kernel after a crash event. By default, the boot memory
size is 256MB or 5% of total system RAM, whichever is larger.

Unlike kexec-initiated event, the fadump mechanism uses the production kernel to recover a crash
dump. When booting after a crash, PowerPC hardware makes the device node /proc/device-
tree/rtas/ibm.kernel-dump available to the proc filesystem (procfs). The fadump-aware kdump
scripts, check for the stored vmcore, and then complete the system reboot cleanly.

16.2. ENABLING FIRMWARE ASSISTED DUMP MECHANISM

You can enhance the crash dumping capabilities of IBM POWER systems by enabling the firmware
assisted dump (fadump) mechanism.

In the Secure Boot environment, the GRUB boot loader allocates a boot memory region, known as the
Real Mode Area (RMA). The RMA has a size of 512 MB, which is divided among the boot components
and, if a component exceeds its size allocation, GRUB fails with an out-of-memory (OOM) error.

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

86

WARNING

Do not enable firmware assisted dump (fadump) mechanism in the Secure Boot
environment on RHEL 9.1 and earlier versions. The GRUB boot loader fails with the
following error:

error: ../../grub-core/kern/mm.c:376:out of memory.
Press any key to continue…

The system is recoverable only if you increase the default initramfs size due to the
fadump configuration.

For information about workaround methods to recover the system, see the System
boot ends in GRUB Out of Memory (OOM) article.

Prerequisites

You have root permissions on the system.

Procedure

1. Install the kexec-tools package.

2. Configure the default value for crashkernel.

kdumpctl reset-crashkernel --fadump=on --kernel=ALL

3. (Optional) Reserve boot memory instead of the default value.

grubby --update-kernel ALL --args="fadump=on crashkernel=xxM"

xxM is the required memory size in megabytes.

NOTE

When specifying boot configuration options, test the configurations by rebooting
the kernel with kdump enabled. If the kdump kernel fails to boot, increase the
crashkernel value gradually to set an appropriate value.

4. Reboot for changes to take effect.

reboot

16.3. FIRMWARE ASSISTED DUMP MECHANISMS ON IBM Z
HARDWARE

IBM Z systems support the following firmware assisted dump mechanisms:



CHAPTER 16. FIRMWARE ASSISTED DUMP MECHANISMS

87

https://www.ibm.com/support/pages/node/6846531

Stand-alone dump (sadump)

VMDUMP

The kdump infrastructure is supported and utilized on IBM Z systems. However, using one of the
firmware assisted dump (fadump) methods for IBM Z can provide various benefits:

The sadump mechanism is initiated and controlled from the system console, and is stored on an
IPL bootable device.

The VMDUMP mechanism is similar to sadump. This tool is also initiated from the system
console, but retrieves the resulting dump from hardware and copies it to the system for analysis.

These methods (similarly to other hardware based dump mechanisms) have the ability to
capture the state of a machine in the early boot phase, before the kdump service starts.

Although VMDUMP contains a mechanism to receive the dump file into a Red Hat Enterprise
Linux system, the configuration and control of VMDUMP is managed from the IBM Z Hardware
console.

Additional resources

Using the Dump Tools on Red Hat Enterprise Linux 8.5

Stand-alone dump

Creating dumps on z/VM with VMDUMP

16.4. USING SADUMP ON FUJITSU PRIMEQUEST SYSTEMS

The Fujitsu sadump mechanism is designed to provide a fallback dump capture in an event when
kdump is unable to complete successfully. The sadump mechanism is invoked manually from the
system Management Board (MMB) interface. Using MMB, configure kdump like for an Intel 64 or AMD
64 server and then proceed to enable sadump.

Procedure

1. Add or edit the following lines in the /etc/sysctl.conf file to ensure that kdump starts as
expected for sadump:

kernel.panic=0
kernel.unknown_nmi_panic=1

WARNING

In particular, ensure that after kdump, the system does not reboot. If the
system reboots after kdump has failed to save the vmcore file, then it is
not possible to invoke the sadump.

2. Set the failure_action parameter in /etc/kdump.conf appropriately as halt or shell.



Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

88

https://www.ibm.com/docs/en/linux-on-systems?topic=tools-red-hat-enterprise-linux-85
https://www.ibm.com/docs/en/zos/2.3.0?topic=aids-stand-alone-dump
https://www.ibm.com/docs/en/linux-on-systems?topic=tools-zvm-dump-vmdump

failure_action shell

Additional resources

The FUJITSU Server PRIMEQUEST 2000 Series Installation Manual

CHAPTER 16. FIRMWARE ASSISTED DUMP MECHANISMS

89

CHAPTER 17. ANALYZING A CORE DUMP
To determine the cause of the system crash, you can use the crash utility, which provides an interactive
prompt very similar to the GNU Debugger (GDB). This utility allows you to interactively analyze a core
dump created by kdump, netdump, diskdump or xendump as well as a running Linux system.
Alternatively, you have the option to use Kernel Oops Analyzer or the Kdump Helper tool.

17.1. INSTALLING THE CRASH UTILITY

With the provided information, understand the required packages and the procedure to install the crash
utility. The crash utility may not be installed by default on your Red Hat Enterprise Linux 9 systems.
crash is a tool to interactively analyze a system' state while it is running or after a kernel crash occurs
and a core dump file is created. The core dump file is also known as the vmcore file.

Procedure

1. Enable the relevant repositories:

subscription-manager repos --enable baseos repository

subscription-manager repos --enable appstream repository

subscription-manager repos --enable rhel-9-for-x86_64-baseos-debug-rpms

2. Install the crash package:

dnf install crash

3. Install the kernel-debuginfo package:

dnf install kernel-debuginfo

The package kernel-debuginfo will correspond to the running kernel and provides the data
necessary for the dump analysis.

17.2. RUNNING AND EXITING THE CRASH UTILITY

With the provided information, understand the required parameters and the procedure to run and exit
the crash utility. crash is a tool to interactively analyze a system' state while it is running or after a
kernel crash occurs and a core dump file is created. The core dump file is also known as the vmcore file.

Prerequisites

Identify the currently running kernel (for example 5.14.0-1.el9.x86_64).

Procedure

1. To start the crash utility, two necessary parameters need to be passed to the command:

The debug-info (a decompressed vmlinuz image), for example
/usr/lib/debug/lib/modules/5.14.0-1.el9.x86_64/vmlinux provided through a specific
kernel-debuginfo package.

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

90

The actual vmcore file, for example /var/crash/127.0.0.1-2021-09-13-14:05:33/vmcore
The resulting crash command then looks like this:

crash /usr/lib/debug/lib/modules/5.14.0-1.el9.x86_64/vmlinux /var/crash/127.0.0.1-
2021-09-13-14:05:33/vmcore

Use the same <kernel> version that was captured by kdump.

Example 17.1. Running the crash utility

The following example shows analyzing a core dump created on September 13 2021 at
14:05 PM, using the 5.14.0-1.el9.x86_64 kernel.

...
WARNING: kernel relocated [202MB]: patching 90160 gdb minimal_symbol values

 KERNEL: /usr/lib/debug/lib/modules/5.14.0-1.el9.x86_64/vmlinux
 DUMPFILE: /var/crash/127.0.0.1-2021-09-13-14:05:33/vmcore [PARTIAL DUMP]
 CPUS: 2
 DATE: Mon Sep 13 14:05:16 2021
 UPTIME: 01:03:57
LOAD AVERAGE: 0.00, 0.00, 0.00
 TASKS: 586
 NODENAME: localhost.localdomain
 RELEASE: 5.14.0-1.el9.x86_64
 VERSION: #1 SMP Wed Aug 29 11:51:55 UTC 2018
 MACHINE: x86_64 (2904 Mhz)
 MEMORY: 2.9 GB
 PANIC: "sysrq: SysRq : Trigger a crash"
 PID: 10635
 COMMAND: "bash"
 TASK: ffff8d6c84271800 [THREAD_INFO: ffff8d6c84271800]
 CPU: 1
 STATE: TASK_RUNNING (SYSRQ)

crash>

2. To exit the interactive prompt and stop crash, type exit or q.

Example 17.2. Exiting the crash utility

crash> exit
~]#

NOTE

The crash command can also be used as a powerful tool for debugging a live system.
However use it with caution so as not to break your system.

Additional resources

A Guide to Unexpected System Restarts

CHAPTER 17. ANALYZING A CORE DUMP

91

https://access.redhat.com/articles/206873

17.3. DISPLAYING VARIOUS INDICATORS IN THE CRASH UTILITY

Use the crash utility to display various indicators, such as a kernel message buffer, a backtrace, a
process status, virtual memory information and open files.

Displaying the message buffer

To display the kernel message buffer, type the log command at the interactive prompt:

crash> log
... several lines omitted ...
EIP: 0060:[<c068124f>] EFLAGS: 00010096 CPU: 2
EIP is at sysrq_handle_crash+0xf/0x20
EAX: 00000063 EBX: 00000063 ECX: c09e1c8c EDX: 00000000
ESI: c0a09ca0 EDI: 00000286 EBP: 00000000 ESP: ef4dbf24
 DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068
Process bash (pid: 5591, ti=ef4da000 task=f196d560 task.ti=ef4da000)
Stack:
 c068146b c0960891 c0968653 00000003 00000000 00000002 efade5c0 c06814d0
<0> fffffffb c068150f b7776000 f2600c40 c0569ec4 ef4dbf9c 00000002 b7776000
<0> efade5c0 00000002 b7776000 c0569e60 c051de50 ef4dbf9c f196d560 ef4dbfb4
Call Trace:
 [<c068146b>] ? __handle_sysrq+0xfb/0x160
 [<c06814d0>] ? write_sysrq_trigger+0x0/0x50
 [<c068150f>] ? write_sysrq_trigger+0x3f/0x50
 [<c0569ec4>] ? proc_reg_write+0x64/0xa0
 [<c0569e60>] ? proc_reg_write+0x0/0xa0
 [<c051de50>] ? vfs_write+0xa0/0x190
 [<c051e8d1>] ? sys_write+0x41/0x70
 [<c0409adc>] ? syscall_call+0x7/0xb
Code: a0 c0 01 0f b6 41 03 19 d2 f7 d2 83 e2 03 83 e0 cf c1 e2 04 09 d0 88 41 03 f3 c3 90 c7
05 c8 1b 9e c0 01 00 00 00 0f ae f8 89 f6 <c6> 05 00 00 00 00 01 c3 89 f6 8d bc 27 00 00 00
00 8d 50 d0 83
EIP: [<c068124f>] sysrq_handle_crash+0xf/0x20 SS:ESP 0068:ef4dbf24
CR2: 0000000000000000

Type help log for more information about the command usage.

NOTE

The kernel message buffer includes the most essential information about the
system crash and, as such, it is always dumped first in to the vmcore-dmesg.txt
file. This is useful when an attempt to get the full vmcore file failed, for example
because of lack of space on the target location. By default, vmcore-dmesg.txt is
located in the /var/crash/ directory.

Displaying a backtrace

To display the kernel stack trace, use the bt command.

crash> bt
PID: 5591 TASK: f196d560 CPU: 2 COMMAND: "bash"
 #0 [ef4dbdcc] crash_kexec at c0494922
 #1 [ef4dbe20] oops_end at c080e402
 #2 [ef4dbe34] no_context at c043089d

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

92

 #3 [ef4dbe58] bad_area at c0430b26
 #4 [ef4dbe6c] do_page_fault at c080fb9b
 #5 [ef4dbee4] error_code (via page_fault) at c080d809
 EAX: 00000063 EBX: 00000063 ECX: c09e1c8c EDX: 00000000 EBP: 00000000
 DS: 007b ESI: c0a09ca0 ES: 007b EDI: 00000286 GS: 00e0
 CS: 0060 EIP: c068124f ERR: ffffffff EFLAGS: 00010096
 #6 [ef4dbf18] sysrq_handle_crash at c068124f
 #7 [ef4dbf24] __handle_sysrq at c0681469
 #8 [ef4dbf48] write_sysrq_trigger at c068150a
 #9 [ef4dbf54] proc_reg_write at c0569ec2
#10 [ef4dbf74] vfs_write at c051de4e
#11 [ef4dbf94] sys_write at c051e8cc
#12 [ef4dbfb0] system_call at c0409ad5
 EAX: ffffffda EBX: 00000001 ECX: b7776000 EDX: 00000002
 DS: 007b ESI: 00000002 ES: 007b EDI: b7776000
 SS: 007b ESP: bfcb2088 EBP: bfcb20b4 GS: 0033
 CS: 0073 EIP: 00edc416 ERR: 00000004 EFLAGS: 00000246

Type bt <pid> to display the backtrace of a specific process or type help bt for more
information about bt usage.

Displaying a process status

To display the status of processes in the system, use the ps command.

crash> ps
 PID PPID CPU TASK ST %MEM VSZ RSS COMM
> 0 0 0 c09dc560 RU 0.0 0 0 [swapper]
> 0 0 1 f7072030 RU 0.0 0 0 [swapper]
 0 0 2 f70a3a90 RU 0.0 0 0 [swapper]
> 0 0 3 f70ac560 RU 0.0 0 0 [swapper]
 1 0 1 f705ba90 IN 0.0 2828 1424 init
... several lines omitted ...
 5566 1 1 f2592560 IN 0.0 12876 784 auditd
 5567 1 2 ef427560 IN 0.0 12876 784 auditd
 5587 5132 0 f196d030 IN 0.0 11064 3184 sshd
> 5591 5587 2 f196d560 RU 0.0 5084 1648 bash

Use ps <pid> to display the status of a single specific process. Use help ps for more information
about ps usage.

Displaying virtual memory information

To display basic virtual memory information, type the vm command at the interactive prompt.

crash> vm
PID: 5591 TASK: f196d560 CPU: 2 COMMAND: "bash"
 MM PGD RSS TOTAL_VM
f19b5900 ef9c6000 1648k 5084k
 VMA START END FLAGS FILE
f1bb0310 242000 260000 8000875 /lib/ld-2.12.so
f26af0b8 260000 261000 8100871 /lib/ld-2.12.so
efbc275c 261000 262000 8100873 /lib/ld-2.12.so
efbc2a18 268000 3ed000 8000075 /lib/libc-2.12.so
efbc23d8 3ed000 3ee000 8000070 /lib/libc-2.12.so

CHAPTER 17. ANALYZING A CORE DUMP

93

efbc2888 3ee000 3f0000 8100071 /lib/libc-2.12.so
efbc2cd4 3f0000 3f1000 8100073 /lib/libc-2.12.so
efbc243c 3f1000 3f4000 100073
efbc28ec 3f6000 3f9000 8000075 /lib/libdl-2.12.so
efbc2568 3f9000 3fa000 8100071 /lib/libdl-2.12.so
efbc2f2c 3fa000 3fb000 8100073 /lib/libdl-2.12.so
f26af888 7e6000 7fc000 8000075 /lib/libtinfo.so.5.7
f26aff2c 7fc000 7ff000 8100073 /lib/libtinfo.so.5.7
efbc211c d83000 d8f000 8000075 /lib/libnss_files-2.12.so
efbc2504 d8f000 d90000 8100071 /lib/libnss_files-2.12.so
efbc2950 d90000 d91000 8100073 /lib/libnss_files-2.12.so
f26afe00 edc000 edd000 4040075
f1bb0a18 8047000 8118000 8001875 /bin/bash
f1bb01e4 8118000 811d000 8101873 /bin/bash
f1bb0c70 811d000 8122000 100073
f26afae0 9fd9000 9ffa000 100073
... several lines omitted ...

Use vm <pid> to display information about a single specific process, or use help vm for more
information about vm usage.

Displaying open files

To display information about open files, use the files command.

crash> files
PID: 5591 TASK: f196d560 CPU: 2 COMMAND: "bash"
ROOT: / CWD: /root
 FD FILE DENTRY INODE TYPE PATH
 0 f734f640 eedc2c6c eecd6048 CHR /pts/0
 1 efade5c0 eee14090 f00431d4 REG /proc/sysrq-trigger
 2 f734f640 eedc2c6c eecd6048 CHR /pts/0
 10 f734f640 eedc2c6c eecd6048 CHR /pts/0
255 f734f640 eedc2c6c eecd6048 CHR /pts/0

Use files <pid> to display files opened by only one selected process, or use help files for more
information about files usage.

17.4. USING KERNEL OOPS ANALYZER

The Kernel Oops Analyzer tool analyzes the crash dump by comparing the oops messages with known
issues in the knowledge base.

Prerequisites

Secure an oops message to feed the Kernel Oops Analyzer.

Procedure

1. Access the Kernel Oops Analyzer tool.

2. To diagnose a kernel crash issue, upload a kernel oops log generated in vmcore.

Alternatively you can also diagnose a kernel crash issue by providing a text message or a
vmcore-dmesg.txt as an input.

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

94

3. Click DETECT to compare the oops message based on information from the makedumpfile
against known solutions.

Additional resources

The Kernel Oops Analyzer article

A Guide to Unexpected System Restarts

17.5. THE KDUMP HELPER TOOL

The Kdump Helper tool helps to set up the kdump using the provided information. Kdump Helper
generates a configuration script based on your preferences. Initiating and running the script on your
server sets up the kdump service.

Additional resources

Kdump Helper

CHAPTER 17. ANALYZING A CORE DUMP

95

https://access.redhat.com/labs/kerneloopsanalyzer/
https://access.redhat.com/articles/206873
https://access.redhat.com/labs/kdumphelper/wizard

CHAPTER 18. USING EARLY KDUMP TO CAPTURE BOOT TIME
CRASHES

Early kdump is a feature of the kdump mechanism to capture the vmcore file if a system or kernel crash
occurs during the early phases of the boot process before the system services start. Early kdump loads
the crash kernel and the crash kernel’s initramfs in the memory much earlier.

18.1. WHAT IS EARLY KDUMP

A kernel crash can sometimes occur during the early boot phase before the kdump service starts and is
able to capture and save the contents of the crashed kernel memory. Therefore, crucial information
related to the crash, which is important for troubleshooting, is lost. To address this problem, you can use
the early kdump feature, which is part of the kdump service.

18.2. ENABLING EARLY KDUMP

The early kdump feature sets up the crash kernel and the initial RAM disk image (initramfs) to load
early enough to capture the vmcore information for an early crash. This helps to eliminate the risk of
losing information about the early boot kernel crashes.

Prerequisites

An active RHEL subscription.

A repository containing the kexec-tools package for your system CPU architecture.

Fulfilled kdump configuration and targets requirements. For more information see, Supported
kdump configurations and targets.

Procedure

1. Verify that the kdump service is enabled and active:

systemctl is-enabled kdump.service && systemctl is-active kdump.service
enabled
active

If kdump is not enabled and running, set all required configurations and verify that kdump
service is enabled.

2. Rebuild the initramfs image of the booting kernel with the early kdump functionality:

dracut -f --add earlykdump

3. Add the rd.earlykdump kernel command line parameter:

grubby --update-kernel=/boot/vmlinuz-$(uname -r) --args="rd.earlykdump"

4. Reboot the system to reflect the changes

reboot

Verification step

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

96

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_monitoring_and_updating_the_kernel/index#supported-kdump-configurations-and-targets_managing-monitoring-and-updating-the-kernel

Verification step

Verify that rd.earlykdump was successfully added and early kdump feature was enabled:

cat /proc/cmdline
BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.14.0-1.el9.x86_64 root=/dev/mapper/rhel-root ro
crashkernel=auto resume=/dev/mapper/rhel-swap rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap
rhgb quiet rd.earlykdump

journalctl -x | grep early-kdump
Sep 13 15:46:11 redhat dracut-cmdline[304]: early-kdump is enabled.
Sep 13 15:46:12 redhat dracut-cmdline[304]: kexec: loaded early-kdump kernel

Additional resources

The /usr/share/doc/kexec-tools/early-kdump-howto.txt file

What is early kdump support and how do I configure it?

Enabling kdump

CHAPTER 18. USING EARLY KDUMP TO CAPTURE BOOT TIME CRASHES

97

https://access.redhat.com/solutions/3700611
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/enabling-kdumpmanaging-monitoring-and-updating-the-kernel

CHAPTER 19. SIGNING A KERNEL AND MODULES FOR
SECURE BOOT

You can enhance the security of your system by using a signed kernel and signed kernel modules. On
UEFI-based build systems where Secure Boot is enabled, you can self-sign a privately built kernel or
kernel modules. Furthermore, you can import your public key into a target system where you want to
deploy your kernel or kernel modules.

If Secure Boot is enabled, all of the following components have to be signed with a private key and
authenticated with the corresponding public key:

UEFI operating system boot loader

The Red Hat Enterprise Linux kernel

All kernel modules

If any of these components are not signed and authenticated, the system cannot finish the booting
process.

Red Hat Enterprise Linux 9 includes:

Signed boot loaders

Signed kernels

Signed kernel modules

In addition, the signed first-stage boot loader and the signed kernel include embedded Red Hat public
keys. These signed executable binaries and embedded keys enable Red Hat Enterprise Linux 9 to install,
boot, and run with the Microsoft UEFI Secure Boot Certification Authority keys that are provided by the
UEFI firmware on systems that support UEFI Secure Boot.

NOTE

Not all UEFI-based systems include support for Secure Boot.

The build system, where you build and sign your kernel module, does not need to
have UEFI Secure Boot enabled and does not even need to be a UEFI-based
system.

19.1. PREREQUISITES

To be able to sign externally built kernel modules, install the utilities from the following
packages:

dnf install pesign openssl kernel-devel mokutil keyutils

Table 19.1. Required utilities

Utility Provided by
package

Used on Purpose

efikeygen pesign Build system Generates public and private X.509 key pair

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

98

openssl openssl Build system Exports the unencrypted private key

sign-file kernel-devel Build system Executable file used to sign a kernel
module with the private key

mokutil mokutil Target system Optional utility used to manually enroll the
public key

keyctl keyutils Target system Optional utility used to display public keys
in the system keyring

Utility Provided by
package

Used on Purpose

19.2. WHAT IS UEFI SECURE BOOT

With the Unified Extensible Firmware Interface (UEFI) Secure Boot technology, you can prevent the
execution of the kernel-space code that has not been signed by a trusted key. The system boot loader is
signed with a cryptographic key. The database of public keys, which is contained in the firmware,
authorizes the signing key. You can subsequently verify a signature in the next-stage boot loader and
the kernel.

UEFI Secure Boot establishes a chain of trust from the firmware to the signed drivers and kernel
modules as follows:

An UEFI private key signs, and a public key authenticates the shim first-stage boot loader. A
certificate authority (CA) in turn signs the public key. The CA is stored in the firmware database.

The shim file contains the Red Hat public key Red Hat Secure Boot (CA key 1) to authenticate
the GRUB boot loader and the kernel.

The kernel in turn contains public keys to authenticate drivers and modules.

Secure Boot is the boot path validation component of the UEFI specification. The specification defines:

Programming interface for cryptographically protected UEFI variables in non-volatile storage.

Storing the trusted X.509 root certificates in UEFI variables.

Validation of UEFI applications such as boot loaders and drivers.

Procedures to revoke known-bad certificates and application hashes.

UEFI Secure Boot helps in the detection of unauthorized changes but does not:

Prevent installation or removal of second-stage boot loaders.

Require explicit user confirmation of such changes.

Stop boot path manipulations. Signatures are verified during booting, not when the boot loader
is installed or updated.

CHAPTER 19. SIGNING A KERNEL AND MODULES FOR SECURE BOOT

99

If the boot loader or the kernel are not signed by a system trusted key, Secure Boot prevents them from
starting.

19.3. UEFI SECURE BOOT SUPPORT

You can install and run Red Hat Enterprise Linux 9 on systems with enabled UEFI Secure Boot if the
kernel and all the loaded drivers are signed with a trusted key. Red Hat provides kernels and drivers that
are signed and authenticated by the relevant Red Hat keys.

If you want to load externally built kernels or drivers, you must sign them as well.

Restrictions imposed by UEFI Secure Boot

The system only runs the kernel-mode code after its signature has been properly authenticated.

GRUB module loading is disabled because there is no infrastructure for signing and verification
of GRUB modules. Allowing them to be loaded constitutes execution of untrusted code inside
the security perimeter that Secure Boot defines.

Red Hat provides a signed GRUB binary that contains all the supported modules on Red Hat
Enterprise Linux 9.

Additional resources

Restrictions Imposed by UEFI Secure Boot

19.4. REQUIREMENTS FOR AUTHENTICATING KERNEL MODULES
WITH X.509 KEYS

In Red Hat Enterprise Linux 9, when a kernel module is loaded, the kernel checks the signature of the
module against the public X.509 keys from the kernel system keyring (.builtin_trusted_keys) and the
kernel platform keyring (.platform). The .platform keyring contains keys from third-party platform
providers and custom public keys. The keys from the kernel system .blacklist keyring are excluded from
verification.

You need to meet certain conditions to load kernel modules on systems with enabled UEFI Secure Boot
functionality:

If UEFI Secure Boot is enabled or if the module.sig_enforce kernel parameter has been
specified:

You can only load those signed kernel modules whose signatures were authenticated
against keys from the system keyring (.builtin_trusted_keys) and the platform keyring
(.platform).

The public key must not be on the system revoked keys keyring (.blacklist).

If UEFI Secure Boot is disabled and the module.sig_enforce kernel parameter has not been
specified:

You can load unsigned kernel modules and signed kernel modules without a public key.

If the system is not UEFI-based or if UEFI Secure Boot is disabled:

Only the keys embedded in the kernel are loaded onto .builtin_trusted_keys and

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

100

https://access.redhat.com/articles/1351013

Only the keys embedded in the kernel are loaded onto .builtin_trusted_keys and
.platform.

You have no ability to augment that set of keys without rebuilding the kernel.

Table 19.2. Kernel module authentication requirements for loading

Module signed Public key
found and
signature valid

UEFI Secure
Boot state

sig_enforce Module load Kernel
tainte
d

Unsigned - Not enabled Not enabled Succeeds Yes

Not enabled Enabled Fails -

Enabled - Fails -

Signed No Not enabled Not enabled Succeeds Yes

Not enabled Enabled Fails -

Enabled - Fails -

Signed Yes Not enabled Not enabled Succeeds No

Not enabled Enabled Succeeds No

Enabled - Succeeds No

19.5. SOURCES FOR PUBLIC KEYS

During boot, the kernel loads X.509 keys from a set of persistent key stores into the following keyrings:

The system keyring (.builtin_trusted_keys)

The .platform keyring

The system .blacklist keyring

Table 19.3. Sources for system keyrings

Source of X.509 keys User can add
keys

UEFI Secure Boot
state

Keys loaded during boot

Embedded in kernel No - .builtin_trusted_keys

UEFI db Limited Not enabled No

Enabled .platform

CHAPTER 19. SIGNING A KERNEL AND MODULES FOR SECURE BOOT

101

Embedded in the shim boot
loader

No Not enabled No

Enabled .platform

Machine Owner Key (MOK)
list

Yes Not enabled No

Enabled .platform

Source of X.509 keys User can add
keys

UEFI Secure Boot
state

Keys loaded during boot

.builtin_trusted_keys

A keyring that is built on boot

Contains trusted public keys

root privileges are needed to view the keys

.platform

A keyring that is built on boot

Contains keys from third-party platform providers and custom public keys

root privileges are needed to view the keys

.blacklist

A keyring with X.509 keys which have been revoked

A module signed by a key from .blacklist will fail authentication even if your public key is in
.builtin_trusted_keys

UEFI Secure Boot db

A signature database

Stores keys (hashes) of UEFI applications, UEFI drivers, and boot loaders

The keys can be loaded on the machine

UEFI Secure Boot dbx

A revoked signature database

Prevents keys from being loaded

The revoked keys from this database are added to the .blacklist keyring

19.6. GENERATING A PUBLIC AND PRIVATE KEY PAIR

To use a custom kernel or custom kernel modules on a Secure Boot-enabled system, you must generate

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

102

To use a custom kernel or custom kernel modules on a Secure Boot-enabled system, you must generate
a public and private X.509 key pair. You can use the generated private key to sign the kernel or the
kernel modules. You can also validate the signed kernel or kernel modules by adding the corresponding
public key to the Machine Owner Key (MOK) for Secure Boot.

WARNING

Apply strong security measures and access policies to guard the contents of your
private key. In the wrong hands, the key could be used to compromise any system
which is authenticated by the corresponding public key.

Procedure

Create an X.509 public and private key pair:

If you only want to sign custom kernel modules:

efikeygen --dbdir /etc/pki/pesign \
 --self-sign \
 --module \
 --common-name 'CN=Organization signing key' \
 --nickname 'Custom Secure Boot key'

If you want to sign custom kernel:

efikeygen --dbdir /etc/pki/pesign \
 --self-sign \
 --kernel \
 --common-name 'CN=Organization signing key' \
 --nickname 'Custom Secure Boot key'

When the RHEL system is running FIPS mode:

efikeygen --dbdir /etc/pki/pesign \
 --self-sign \
 --kernel \
 --common-name 'CN=Organization signing key' \
 --nickname 'Custom Secure Boot key'
 --token 'NSS FIPS 140-2 Certificate DB'

NOTE

In FIPS mode, you must use the --token option so that efikeygen finds the
default "NSS Certificate DB" token in the PKI database.

The public and private keys are now stored in the /etc/pki/pesign/ directory.

IMPORTANT



CHAPTER 19. SIGNING A KERNEL AND MODULES FOR SECURE BOOT

103

IMPORTANT

It is a good security practice to sign the kernel and the kernel modules within the validity
period of its signing key. However, the sign-file utility does not warn you and the key will
be usable in Red Hat Enterprise Linux 9 regardless of the validity dates.

Additional resources

openssl(1) manual page

RHEL Security Guide

Enrolling public key on target system by adding the public key to the MOK list

19.7. EXAMPLE OUTPUT OF SYSTEM KEYRINGS

You can display information about the keys on the system keyrings using the keyctl utility from the
keyutils package.

Prerequisites

You have root permissions.

You have installed the keyctl utility from the keyutils package.

Example 19.1. Keyrings output

The following is a shortened example output of .builtin_trusted_keys, .platform, and .blacklist
keyrings from a Red Hat Enterprise Linux 9 system where UEFI Secure Boot is enabled.

keyctl list %:.builtin_trusted_keys
6 keys in keyring:
...asymmetric: Red Hat Enterprise Linux Driver Update Program (key 3): bf57f3e87...
...asymmetric: Red Hat Secure Boot (CA key 1): 4016841644ce3a810408050766e8f8a29...
...asymmetric: Microsoft Corporation UEFI CA 2011: 13adbf4309bd82709c8cd54f316ed...
...asymmetric: Microsoft Windows Production PCA 2011: a92902398e16c49778cd90f99e...
...asymmetric: Red Hat Enterprise Linux kernel signing key: 4249689eefc77e95880b...
...asymmetric: Red Hat Enterprise Linux kpatch signing key: 4d38fd864ebe18c5f0b7...

keyctl list %:.platform
4 keys in keyring:
...asymmetric: VMware, Inc.: 4ad8da0472073...
...asymmetric: Red Hat Secure Boot CA 5: cc6fafe72...
...asymmetric: Microsoft Windows Production PCA 2011: a929f298e1...
...asymmetric: Microsoft Corporation UEFI CA 2011: 13adbf4e0bd82...

keyctl list %:.blacklist
4 keys in keyring:
...blacklist: bin:f5ff83a...
...blacklist: bin:0dfdbec...
...blacklist: bin:38f1d22...
...blacklist: bin:51f831f...

The .builtin_trusted_keys keyring in the example shows the addition of two keys from the UEFI

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

104

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/security_guide/index#sec-Using_OpenSSL

The .builtin_trusted_keys keyring in the example shows the addition of two keys from the UEFI
Secure Boot db keys as well as the Red Hat Secure Boot (CA key 1), which is embedded in the
shim boot loader.

Example 19.2. Kernel console output

The following example shows the kernel console output. The messages identify the keys with an
UEFI Secure Boot related source. These include UEFI Secure Boot db, embedded shim, and MOK
list.

dmesg | egrep 'integrity.*cert'
[1.512966] integrity: Loading X.509 certificate: UEFI:db
[1.513027] integrity: Loaded X.509 cert 'Microsoft Windows Production PCA 2011: a929023...
[1.513028] integrity: Loading X.509 certificate: UEFI:db
[1.513057] integrity: Loaded X.509 cert 'Microsoft Corporation UEFI CA 2011: 13adbf4309...
[1.513298] integrity: Loading X.509 certificate: UEFI:MokListRT (MOKvar table)
[1.513549] integrity: Loaded X.509 cert 'Red Hat Secure Boot CA 5: cc6fa5e72868ba494e93...

Additional resources

keyctl(1), dmesg(1) manual pages

19.8. ENROLLING PUBLIC KEY ON TARGET SYSTEM BY ADDING THE
PUBLIC KEY TO THE MOK LIST

You must enroll your public key on all systems where you want to authenticate and load your kernel or
kernel modules. You can import the public key on a target system in different ways so that the platform
keyring (.platform) is able to use the public key to authenticate the kernel or kernel modules.

When RHEL 9 boots on a UEFI-based system with Secure Boot enabled, the kernel loads onto the
platform keyring (.platform) all public keys that are in the Secure Boot db key database. At the same
time, the kernel excludes the keys in the dbx database of revoked keys.

You can use the Machine Owner Key (MOK) facility feature to expand the UEFI Secure Boot key
database. When RHEL 9 boots on an UEFI-enabled system with Secure Boot enabled, the keys on the
MOK list are also added to the platform keyring (.platform) in addition to the keys from the key
database. The MOK list keys are also stored persistently and securely in the same fashion as the Secure
Boot database keys, but these are two separate facilities. The MOK facility is supported by shim,
MokManager, GRUB, and the mokutil utility.

NOTE

To facilitate authentication of your kernel module on your systems, consider requesting
your system vendor to incorporate your public key into the UEFI Secure Boot key
database in their factory firmware image.

Prerequisites

You have generated a public and private key pair and know the validity dates of your public
keys. For details, see Generating a public and private key pair .

Procedure

CHAPTER 19. SIGNING A KERNEL AND MODULES FOR SECURE BOOT

105

Procedure

1. Export your public key to the sb_cert.cer file:

certutil -d /etc/pki/pesign \
 -n 'Custom Secure Boot key' \
 -Lr \
 > sb_cert.cer

2. Import your public key into the MOK list:

mokutil --import sb_cert.cer

3. Enter a new password for this MOK enrollment request.

4. Reboot the machine.
The shim boot loader notices the pending MOK key enrollment request and it launches
MokManager.efi to enable you to complete the enrollment from the UEFI console.

5. Choose Enroll MOK, enter the password you previously associated with this request when
prompted, and confirm the enrollment.
Your public key is added to the MOK list, which is persistent.

Once a key is on the MOK list, it will be automatically propagated to the .platform keyring on
this and subsequent boots when UEFI Secure Boot is enabled.

19.9. SIGNING A KERNEL WITH THE PRIVATE KEY

You can obtain enhanced security benefits on your system by loading a signed kernel if the UEFI Secure
Boot mechanism is enabled.

Prerequisites

You have generated a public and private key pair and know the validity dates of your public
keys. For details, see Generating a public and private key pair .

You have enrolled your public key on the target system. For details, see Enrolling public key on
target system by adding the public key to the MOK list.

You have a kernel image in the ELF format available for signing.

Procedure

On the x64 architecture:

a. Create a signed image:

pesign --certificate 'Custom Secure Boot key' \
 --in vmlinuz-version \
 --sign \
 --out vmlinuz-version.signed

Replace version with the version suffix of your vmlinuz file, and Custom Secure Boot key
with the name that you chose earlier.

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

106

b. Optional: Check the signatures:

pesign --show-signature \
 --in vmlinuz-version.signed

c. Overwrite the unsigned image with the signed image:

mv vmlinuz-version.signed vmlinuz-version

On the 64-bit ARM architecture:

a. Decompress the vmlinuz file:

zcat vmlinuz-version > vmlinux-version

b. Create a signed image:

pesign --certificate 'Custom Secure Boot key' \
 --in vmlinux-version \
 --sign \
 --out vmlinux-version.signed

c. Optional: Check the signatures:

pesign --show-signature \
 --in vmlinux-version.signed

d. Compress the vmlinux file:

gzip --to-stdout vmlinux-version.signed > vmlinuz-version

e. Remove the uncompressed vmlinux file:

rm vmlinux-version*

19.10. SIGNING A GRUB BUILD WITH THE PRIVATE KEY

On a system where the UEFI Secure Boot mechanism is enabled, you can sign a GRUB build with a
custom existing private key. You must do this if you are using a custom GRUB build, or if you have
removed the Microsoft trust anchor from your system.

Prerequisites

You have generated a public and private key pair and know the validity dates of your public
keys. For details, see Generating a public and private key pair .

You have enrolled your public key on the target system. For details, see Enrolling public key on
target system by adding the public key to the MOK list.

You have a GRUB EFI binary available for signing.

Procedure

CHAPTER 19. SIGNING A KERNEL AND MODULES FOR SECURE BOOT

107

On the x64 architecture:

a. Create a signed GRUB EFI binary:

pesign --in /boot/efi/EFI/redhat/grubx64.efi \
 --out /boot/efi/EFI/redhat/grubx64.efi.signed \
 --certificate 'Custom Secure Boot key' \
 --sign

Replace Custom Secure Boot key with the name that you chose earlier.

b. Optional: Check the signatures:

pesign --in /boot/efi/EFI/redhat/grubx64.efi.signed \
 --show-signature

c. Overwrite the unsigned binary with the signed binary:

mv /boot/efi/EFI/redhat/grubx64.efi.signed \
 /boot/efi/EFI/redhat/grubx64.efi

On the 64-bit ARM architecture:

a. Create a signed GRUB EFI binary:

pesign --in /boot/efi/EFI/redhat/grubaa64.efi \
 --out /boot/efi/EFI/redhat/grubaa64.efi.signed \
 --certificate 'Custom Secure Boot key' \
 --sign

Replace Custom Secure Boot key with the name that you chose earlier.

b. Optional: Check the signatures:

pesign --in /boot/efi/EFI/redhat/grubaa64.efi.signed \
 --show-signature

c. Overwrite the unsigned binary with the signed binary:

mv /boot/efi/EFI/redhat/grubaa64.efi.signed \
 /boot/efi/EFI/redhat/grubaa64.efi

19.11. SIGNING KERNEL MODULES WITH THE PRIVATE KEY

You can enhance the security of your system by loading signed kernel modules if the UEFI Secure Boot
mechanism is enabled.

Your signed kernel module is also loadable on systems where UEFI Secure Boot is disabled or on a non-
UEFI system. As a result, you do not need to provide both a signed and unsigned version of your kernel
module.

Prerequisites

You have generated a public and private key pair and know the validity dates of your public

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

108

You have generated a public and private key pair and know the validity dates of your public
keys. For details, see Generating a public and private key pair .

You have enrolled your public key on the target system. For details, see Enrolling public key on
target system by adding the public key to the MOK list.

You have a kernel module in ELF image format available for signing.

Procedure

1. Export your public key to the sb_cert.cer file:

certutil -d /etc/pki/pesign \
 -n 'Custom Secure Boot key' \
 -Lr \
 > sb_cert.cer

2. Extract the key from the NSS database as a PKCS #12 file:

pk12util -o sb_cert.p12 \
 -n 'Custom Secure Boot key' \
 -d /etc/pki/pesign

3. When the previous command prompts you, enter a new password that encrypts the private key.

4. Export the unencrypted private key:

openssl pkcs12 \
 -in sb_cert.p12 \
 -out sb_cert.priv \
 -nocerts \
 -noenc

IMPORTANT

Handle the unencrypted private key with care.

5. Sign your kernel module. The following command appends the signature directly to the ELF
image in your kernel module file:

/usr/src/kernels/$(uname -r)/scripts/sign-file \
 sha256 \
 sb_cert.priv \
 sb_cert.cer \
 my_module.ko

Your kernel module is now ready for loading.

IMPORTANT

CHAPTER 19. SIGNING A KERNEL AND MODULES FOR SECURE BOOT

109

IMPORTANT

In Red Hat Enterprise Linux 9, the validity dates of the key pair matter. The key does not
expire, but the kernel module must be signed within the validity period of its signing key.
The sign-file utility will not warn you of this. For example, a key that is only valid in 2021
can be used to authenticate a kernel module signed in 2021 with that key. However, users
cannot use that key to sign a kernel module in 2022.

Verification

1. Display information about the kernel module’s signature:

modinfo my_module.ko | grep signer
 signer: Your Name Key

Check that the signature lists your name as entered during generation.

NOTE

The appended signature is not contained in an ELF image section and is not a
formal part of the ELF image. Therefore, utilities such as readelf cannot display
the signature on your kernel module.

2. Load the module:

insmod my_module.ko

3. Remove (unload) the module:

modprobe -r my_module.ko

Additional resources

Displaying information about kernel modules

19.12. LOADING SIGNED KERNEL MODULES

Once your public key is enrolled in the system keyring (.builtin_trusted_keys) and the MOK list, and
after you have signed the respective kernel module with your private key, you can load your signed
kernel module with the modprobe command.

Prerequisites

You have generated the public and private key pair. For details, see Generating a public and
private key pair.

You have enrolled the public key into the system keyring. For details, see Enrolling public key on
target system by adding the public key to the MOK list.

You have signed a kernel module with the private key. For details, see Signing kernel modules
with the private key.

Install the kernel-modules-extra package, which creates the /lib/modules/$(uname -r)/extra/

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

110

Install the kernel-modules-extra package, which creates the /lib/modules/$(uname -r)/extra/
directory:

dnf -y install kernel-modules-extra

Procedure

1. Verify that your public keys are on the system keyring:

keyctl list %:.platform

2. Copy the kernel module into the extra/ directory of the kernel that you want:

cp my_module.ko /lib/modules/$(uname -r)/extra/

3. Update the modular dependency list:

depmod -a

4. Load the kernel module:

modprobe -v my_module

5. Optionally, to load the module on boot, add it to the /etc/modules-loaded.d/my_module.conf
file:

echo "my_module" > /etc/modules-load.d/my_module.conf

Verification

Verify that the module was successfully loaded:

lsmod | grep my_module

Additional resources

Managing kernel modules

CHAPTER 19. SIGNING A KERNEL AND MODULES FOR SECURE BOOT

111

CHAPTER 20. UPDATING THE SECURE BOOT REVOCATION
LIST

You can update the UEFI Secure Boot Revocation List on your system so that Secure Boot identifies
software with known security issues and prevents it from compromising your boot process.

20.1. PREREQUISITES

Secure Boot is enabled on your system.

20.2. WHAT IS UEFI SECURE BOOT

With the Unified Extensible Firmware Interface (UEFI) Secure Boot technology, you can prevent the
execution of the kernel-space code that has not been signed by a trusted key. The system boot loader is
signed with a cryptographic key. The database of public keys, which is contained in the firmware,
authorizes the signing key. You can subsequently verify a signature in the next-stage boot loader and
the kernel.

UEFI Secure Boot establishes a chain of trust from the firmware to the signed drivers and kernel
modules as follows:

An UEFI private key signs, and a public key authenticates the shim first-stage boot loader. A
certificate authority (CA) in turn signs the public key. The CA is stored in the firmware database.

The shim file contains the Red Hat public key Red Hat Secure Boot (CA key 1) to authenticate
the GRUB boot loader and the kernel.

The kernel in turn contains public keys to authenticate drivers and modules.

Secure Boot is the boot path validation component of the UEFI specification. The specification defines:

Programming interface for cryptographically protected UEFI variables in non-volatile storage.

Storing the trusted X.509 root certificates in UEFI variables.

Validation of UEFI applications such as boot loaders and drivers.

Procedures to revoke known-bad certificates and application hashes.

UEFI Secure Boot helps in the detection of unauthorized changes but does not:

Prevent installation or removal of second-stage boot loaders.

Require explicit user confirmation of such changes.

Stop boot path manipulations. Signatures are verified during booting, not when the boot loader
is installed or updated.

If the boot loader or the kernel are not signed by a system trusted key, Secure Boot prevents them from
starting.

20.3. THE SECURE BOOT REVOCATION LIST

The UEFI Secure Boot Revocation List, or the Secure Boot Forbidden Signature Database (dbx), is a list

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

112

The UEFI Secure Boot Revocation List, or the Secure Boot Forbidden Signature Database (dbx), is a list
that identifies software that Secure Boot no longer allows to run.

When a security issue or a stability problem is found in software that interfaces with Secure Boot, such
as in the GRUB boot loader, the Revocation List stores its hash signature. Software with such a
recognized signature cannot run during boot, and the system boot fails to prevent compromising the
system.

For example, a certain version of GRUB might contain a security issue that allows an attacker to bypass
the Secure Boot mechanism. When the issue is found, the Revocation List adds hash signatures of all
GRUB versions that contain the issue. As a result, only secure GRUB versions can boot on the system.

The Revocation List requires regular updates to recognize newly found issues. When updating the
Revocation List, make sure to use a safe update method that does not cause your currently installed
system to no longer boot.

20.4. APPLYING AN ONLINE REVOCATION LIST UPDATE

You can update the Secure Boot Revocation List on your system so that Secure Boot prevents known
security issues. This procedure is safe and ensures that the update does not prevent your system from
booting.

Prerequisites

Your system can access the internet for updates.

Procedure

1. Determine the current version of the Revocation List:

fwupdmgr get-devices

See the Current version field under UEFI dbx.

2. Enable the LVFS Revocation List repository:

fwupdmgr enable-remote lvfs

3. Refresh the repository metadata:

fwupdmgr refresh

4. Apply the Revocation List update:

On the command line:

fwupdmgr update

In the graphical interface:

i. Open the Software application

ii. Navigate to the Updates tab.

iii. Find the Secure Boot dbx Configuration Update entry.

CHAPTER 20. UPDATING THE SECURE BOOT REVOCATION LIST

113

iv. Click Update.

5. At the end of the update, fwupdmgr or Software asks you to reboot the system. Confirm the
reboot.

Verification

After the reboot, check the current version of the Revocation List again:

fwupdmgr get-devices

20.5. APPLYING AN OFFLINE REVOCATION LIST UPDATE

On a system with no internet connection, you can update the Secure Boot Revocation List from RHEL
so that Secure Boot prevents known security issues. This procedure is safe and ensures that the update
does not prevent your system from booting.

Procedure

1. Determine the current version of the Revocation List:

fwupdmgr get-devices

See the Current version field under UEFI dbx.

2. List the updates available from RHEL:

ls /usr/share/dbxtool/

3. Select the most recent update file for your architecture. The file names use the following
format:

DBXUpdate-date-architecture.cab

4. Install the selected update file:

fwupdmgr install /usr/share/dbxtool/DBXUpdate-date-architecture.cab

5. At the end of the update, fwupdmgr asks you to reboot the system. Confirm the reboot.

Verification

After the reboot, check the current version of the Revocation List again:

fwupdmgr get-devices

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

114

CHAPTER 21. ENHANCING SECURITY WITH THE KERNEL
INTEGRITY SUBSYSTEM

You can improve the protection of your system by using components of the kernel integrity subsystem.
Learn more about the relevant components and their configuration.

NOTE

You can use the features with cryptographic signatures only for Red Hat products
because the kernel keyring system includes only the certificates for Red Hat signature
keys. Using other hash features results in incomplete tamper-proofing.

21.1. THE KERNEL INTEGRITY SUBSYSTEM

The integrity subsystem is the part of the kernel that maintains overall integrity of system data. This
subsystem helps to keep the state of a system the same from the time it was built. By using this
subsystem, you can prevent undesired modification of specific system files.

The kernel integrity subsystem consists of two major components:

Integrity Measurement Architecture (IMA)

IMA measures file content whenever it is executed or opened by cryptographically hashing or
signing with cryptographic keys. The keys are stored in the kernel keyring subsystem.

IMA places the measured values within the kernel’s memory space. This prevents users of the
system from modifying the measured values.

IMA allows local and remote parties to verify the measured values.

IMA provides local validation of the current content of files against the values previously
stored in the measurement list within the kernel memory. This extension forbids performing
any operation on a specific file in case the current and the previous measures do not match.

Extended Verification Module (EVM)

EVM protects extended attributes of files (also known as xattr) that are related to system
security, such as IMA measurements and SELinux attributes. EVM cryptographically hashes
their corresponding values or signs them with cryptographic keys. The keys are stored in the
kernel keyring subsystem.

The kernel integrity subsystem can use the Trusted Platform Module (TPM) to further harden system
security.

A TPM is a hardware, firmware, or virtual component with integrated cryptographic keys, which is built
according to the TPM specification by the Trusted Computing Group (TCG) for important
cryptographic functions. TPMs are usually built as dedicated hardware attached to the platform’s
motherboard. By providing cryptographic functions from a protected and tamper-proof area of the
hardware chip, TPMs are protected from software-based attacks. TPMs provide the following features:

Random-number generator

Generator and secure storage for cryptographic keys

CHAPTER 21. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM

115

Hashing generator

Remote attestation

Additional resources

Security hardening

Basic and advanced configuration of Security-Enhanced Linux (SELinux)

21.2. TRUSTED AND ENCRYPTED KEYS

Trusted keys and encrypted keys are an important part of enhancing system security.

Trusted and encrypted keys are variable-length symmetric keys generated by the kernel that use the
kernel keyring service. The integrity of the keys can be verified, which means that they can be used, for
example, by the extended verification module (EVM) to verify and confirm the integrity of a running
system. User-level programs can only access the keys in the form of encrypted blobs.

Trusted keys

Trusted keys need the Trusted Platform Module (TPM) chip, which is used to both create and
encrypt (seal) the keys. Each TPM has a master wrapping key, called the storage root key, which is
stored within the TPM itself.

NOTE

RHEL 9 supports only TPM 2.0. If you must use TPM 1.2, use RHEL 8. For more
information, see the Is Trusted Platform Module (TPM) supported by Red Hat?
solution.

You can verify that a TPM 2.0 chip has been enabled by entering the following command:

$ cat /sys/class/tpm/tpm0/tpm_version_major
2

You can also enable a TPM 2.0 chip and manage the TPM 2.0 device through settings in the machine
firmware.

In addition to that, you can seal the trusted keys with a specific set of the TPM’s platform
configuration register (PCR) values. PCR contains a set of integrity-management values that reflect
the firmware, boot loader, and operating system. This means that PCR-sealed keys can only be
decrypted by the TPM on the same system on which they were encrypted. However, when a PCR-
sealed trusted key is loaded (added to a keyring), and thus its associated PCR values are verified, it
can be updated with new (or future) PCR values, so that a new kernel, for example, can be booted.
You can save a single key also as multiple blobs, each with a different PCR value.

Encrypted keys

Encrypted keys do not require a TPM, because they use the kernel Advanced Encryption Standard
(AES), which makes them faster than trusted keys. Encrypted keys are created using kernel-
generated random numbers and encrypted by a master key when they are exported into user-space
blobs.

The master key is either a trusted key or a user key. If the master key is not trusted, the encrypted key is
only as secure as the user key used to encrypt it.

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

116

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/security_hardening/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/using_selinux/index
https://access.redhat.com/solutions/253363

21.3. WORKING WITH TRUSTED KEYS

You can improve system security by using the keyctl utility to create, export, load and update trusted
keys.

Prerequisites

Trusted Platform Module (TPM) is enabled and active. See The kernel integrity subsystem and
Trusted and encrypted keys.
You can verify that your system has a TPM by entering the tpm2_pcrread command. If the
output from this command displays several hashes, you have a TPM.

Procedure

1. Create a 2048-bit RSA key with an SHA-256 primary storage key with a persistent handle of, for
example, 81000001, by using one of the following utilities:

a. By using the tss2 package:

TPM_DEVICE=/dev/tpm0 tsscreateprimary -hi o -st
Handle 80000000
TPM_DEVICE=/dev/tpm0 tssevictcontrol -hi o -ho 80000000 -hp 81000001

b. By using the tpm2-tools package:

tpm2_createprimary --key-algorithm=rsa2048 --key-context=key.ctxt
name-alg:
 value: sha256
 raw: 0xb
…
sym-keybits: 128
rsa: xxxxxx…

tpm2_evictcontrol -c key.ctxt 0x81000001
persistentHandle: 0x81000001
action: persisted

2. Create a trusted key by using a TPM 2.0 with the syntax of keyctl add trusted <NAME> "new
<KEY_LENGTH> keyhandle=<PERSISTENT-HANDLE> [options]" <KEYRING>. In this
example, the persistent handle is 81000001.

keyctl add trusted kmk "new 32 keyhandle=0x81000001" @u
642500861

The command creates a trusted key called kmk with the length of 32 bytes (256 bits) and
places it in the user keyring (@u). The keys may have a length of 32 to 128 bytes (256 to 1024
bits).

3. List the current structure of the kernel keyrings:

keyctl show
Session Keyring
 -3 --alswrv 500 500 keyring: ses 97833714 --alswrv 500 -1 \ keyring: uid.1000
642500861 --alswrv 500 500 \ trusted: kmk

CHAPTER 21. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM

117

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_monitoring_and_updating_the_kernel/index#the-kernel-integrity-subsystem_enhancing-security-with-the-kernel-integrity-subsystem
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_monitoring_and_updating_the_kernel/index#trusted-and-encrypted-keys_enhancing-security-with-the-kernel-integrity-subsystem

4. Export the key to a user-space blob by using the serial number of the trusted key:

keyctl pipe 642500861 > kmk.blob

The command uses the pipe subcommand and the serial number of kmk.

5. Load the trusted key from the user-space blob:

keyctl add trusted kmk "load `cat kmk.blob`" @u
268728824

6. Create secure encrypted keys that use the TPM-sealed trusted key (kmk). Follow this syntax:
keyctl add encrypted <NAME> "new [FORMAT] <KEY_TYPE>:<PRIMARY_KEY_NAME>
<KEY_LENGTH>" <KEYRING>:

keyctl add encrypted encr-key "new trusted:kmk 32" @u
159771175

Additional resources

the keyctl(1) manual page

Trusted and encrypted keys

Kernel Key Retention Service

The kernel integrity subsystem

21.4. WORKING WITH ENCRYPTED KEYS

You can improve system security on systems where a Trusted Platform Module (TPM) is not available by
managing encrypted keys.

Procedure

1. Generate a user key by using a random sequence of numbers.

keyctl add user kmk-user "$(dd if=/dev/urandom bs=1 count=32 2>/dev/null)" @u
427069434

The command generates a user key called kmk-user which acts as a primary key and is used to
seal the actual encrypted keys.

2. Generate an encrypted key using the primary key from the previous step:

keyctl add encrypted encr-key "new user:kmk-user 32" @u
1012412758

3. Optionally, list all keys in the specified user keyring:

keyctl list @u
2 keys in keyring:
427069434: --alswrv 1000 1000 user: kmk-user

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

118

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_monitoring_and_updating_the_kernel/index#trusted-and-encrypted-keys_enhancing-security-with-the-kernel-integrity-subsystem
https://www.kernel.org/doc/html/v4.18/security/keys/core.html#
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_monitoring_and_updating_the_kernel/index#the-kernel-integrity-subsystem_enhancing-security-with-the-kernel-integrity-subsystem

1012412758: --alswrv 1000 1000 encrypted: encr-key

IMPORTANT

Encrypted keys that are not sealed by a trusted primary key are only as secure as the user
primary key (random-number key) that was used to encrypt them. Therefore, load the
primary user key as securely as possible and preferably early during the boot process.

Additional resources

The keyctl(1) manual page

Kernel Key Retention Service

21.5. ENABLING IMA AND EVM

You can enable and configure Integrity measurement architecture (IMA) and extended verification
module (EVM) to improve the security of the operating system.

Prerequisites

Secure Boot is temporarily disabled.

NOTE

When Secure Boot is enabled, the ima_appraise=fix kernel command-line
parameter does not work.

The securityfs file system is mounted on the /sys/kernel/security/ directory and the
/sys/kernel/security/integrity/ima/ directory exists. You can verify where securityfs is mounted
by using the mount command:

mount
...
securityfs on /sys/kernel/security type securityfs (rw,nosuid,nodev,noexec,relatime)
...

The systemd service manager is patched to support IMA and EVM on boot time. Verify by using
the following command:

grep <options> pattern <files>

For example:

dmesg | grep -i -e EVM -e IMA -w
[0.943873] ima: No TPM chip found, activating TPM-bypass!
[0.944566] ima: Allocated hash algorithm: sha256
[0.944579] ima: No architecture policies found
[0.944601] evm: Initialising EVM extended attributes:
[0.944602] evm: security.selinux
[0.944604] evm: security.SMACK64 (disabled)
[0.944605] evm: security.SMACK64EXEC (disabled)
[0.944607] evm: security.SMACK64TRANSMUTE (disabled)

CHAPTER 21. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM

119

https://www.kernel.org/doc/html/v4.18/security/keys/core.html#

[0.944608] evm: security.SMACK64MMAP (disabled)
[0.944609] evm: security.apparmor (disabled)
[0.944611] evm: security.ima
[0.944612] evm: security.capability
[0.944613] evm: HMAC attrs: 0x1
[1.314520] systemd[1]: systemd 252-18.el9 running in system mode (+PAM +AUDIT
+SELINUX -APPARMOR +IMA +SMACK +SECCOMP +GCRYPT +GNUTLS +OPENSSL
+ACL +BLKID +CURL +ELFUTILS -FIDO2 +IDN2 -IDN -IPTC +KMOD +LIBCRYPTSETUP
+LIBFDISK +PCRE2 -PWQUALITY +P11KIT -QRENCODE +TPM2 +BZIP2 +LZ4 +XZ
+ZLIB +ZSTD -BPF_FRAMEWORK +XKBCOMMON +UTMP +SYSVINIT default-
hierarchy=unified)
[1.717675] device-mapper: core: CONFIG_IMA_DISABLE_HTABLE is disabled. Duplicate
IMA measurements will not be recorded in the IMA log.
[4.799436] systemd[1]: systemd 252-18.el9 running in system mode (+PAM +AUDIT
+SELINUX -APPARMOR +IMA +SMACK +SECCOMP +GCRYPT +GNUTLS +OPENSSL
+ACL +BLKID +CURL +ELFUTILS -FIDO2 +IDN2 -IDN -IPTC +KMOD +LIBCRYPTSETUP
+LIBFDISK +PCRE2 -PWQUALITY +P11KIT -QRENCODE +TPM2 +BZIP2 +LZ4 +XZ
+ZLIB +ZSTD -BPF_FRAMEWORK +XKBCOMMON +UTMP +SYSVINIT default-
hierarchy=unified)

Procedure

1. Enable IMA and EVM in the fix mode for the current boot entry and allow users to gather and
update the IMA measurements by adding the following kernel command-line parameters:

grubby --update-kernel=/boot/vmlinuz-$(uname -r) --args="ima_policy=appraise_tcb
ima_appraise=fix evm=fix"

The command enables IMA and EVM in the fix mode for the current boot entry and allows users
to gather and update the IMA measurements.

The ima_policy=appraise_tcb kernel command-line parameter ensures that the kernel uses
the default Trusted Computing Base (TCB) measurement policy and the appraisal step. The
appraisal step forbids access to files whose prior and current measures do not match.

2. Reboot to make the changes come into effect.

3. Optional: Verify that the parameters have been added to the kernel command line:

cat /proc/cmdline
BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.14.0-1.el9.x86_64 root=/dev/mapper/rhel-root ro
crashkernel=1G-4G:192M,4G-64G:256M,64G-:512M resume=/dev/mapper/rhel-swap
rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap rhgb quiet ima_policy=appraise_tcb ima_appraise=fix
evm=fix

4. Create a kernel master key to protect the EVM key:

keyctl add user kmk "$(dd if=/dev/urandom bs=1 count=32 2> /dev/null)" @u
748544121

The kmk is kept entirely in the kernel space memory. The 32-byte long value of the kmk is
generated from random bytes from the /dev/urandom file and placed in the user (@u) keyring.
The key serial number is on the first line of the previous output.

5. Create an encrypted EVM key based on the kmk:

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

120

keyctl add encrypted evm-key "new user:kmk 64" @u
641780271

The command uses the kmk to generate and encrypt a 64-byte long user key (named evm-
key) and places it in the user (@u) keyring. The key serial number is on the first line of the
previous output.

IMPORTANT

It is necessary to name the user key as evm-key because that is the name the
EVM subsystem is expecting and is working with.

6. Create a directory for exported keys.

mkdir -p /etc/keys/

7. Search for the kmk and export its unencrypted value into the new directory.

keyctl pipe $(keyctl search @u user kmk) > /etc/keys/kmk

8. Search for the evm-key and export its encrypted value into the new directory.

keyctl pipe $(keyctl search @u encrypted evm-key) > /etc/keys/evm-key

The evm-key has been encrypted by the kernel master key earlier.

9. Optional: View the newly created keys.

keyctl show
Session Keyring
974575405 --alswrv 0 0 keyring: ses 299489774 --alswrv 0 65534 \ keyring: uid.0
748544121 --alswrv 0 0 \ user: kmk
641780271 --alswrv 0 0 _ encrypted: evm-key

ls -l /etc/keys/
total 8
-rw-r--r--. 1 root root 246 Jun 24 12:44 evm-key
-rw-r--r--. 1 root root 32 Jun 24 12:43 kmk

10. Optional: If the keys have been removed from the keyring, for example after system reboot, you
can import the already exported kmk and evm-key instead of creating new ones.

a. Import the kmk.

keyctl add user kmk "$(cat /etc/keys/kmk)" @u
451342217

b. Import the evm-key.

keyctl add encrypted evm-key "load $(cat /etc/keys/evm-key)" @u
924537557

11. Activate EVM.

CHAPTER 21. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM

121

echo 1 > /sys/kernel/security/evm

12. Relabel the whole system.

find / -fstype xfs -type f -uid 0 -exec head -n 1 '{}' >/dev/null \;

WARNING

Enabling IMA and EVM without relabeling the system might make the
majority of the files on the system inaccessible.

Verification

Verify that EVM has been initialized.

dmesg | tail -1
[… ​] evm: key initialized

Additional resources

grep(1) manpage

The kernel integrity subsystem

Trusted and encrypted keys

21.6. COLLECTING FILE HASHES WITH INTEGRITY MEASUREMENT
ARCHITECTURE

In the measurement phase, you can create file hashes and store them as extended attributes (xattrs) of
those files. With the file hashes, you can generate either an RSA-based digital signature or a Hash-based
Message Authentication Code (HMAC-SHA1) and thus prevent offline tampering attacks on the
extended attributes.

Prerequisites

IMA and EVM are enabled. For more information, see Enabling integrity measurement
architecture and extended verification module.

A valid trusted key or encrypted key is stored in the kernel keyring.

The ima-evm-utils, attr, and keyutils packages are installed.

Procedure

1. Create a test file:

echo <Test_text> > test_file



Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

122

https://man7.org/linux/man-pages/man1/grep.1.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_monitoring_and_updating_the_kernel/index#the-kernel-integrity-subsystem_enhancing-security-with-the-kernel-integrity-subsystem
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_monitoring_and_updating_the_kernel/index#trusted-and-encrypted-keys_enhancing-security-with-the-kernel-integrity-subsystem
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_monitoring_and_updating_the_kernel/index#enabling-integrity-measurement-architecture-and-extended-verification-module_enhancing-security-with-the-kernel-integrity-subsystem

IMA and EVM ensure that the test_file example file has assigned hash values that are stored as
its extended attributes.

2. Inspect the file’s extended attributes:

getfattr -m . -d test_file
file: test_file
security.evm=0sAnDIy4VPA0HArpPO/EqiutnNyBql
security.ima=0sAQOEDeuUnWzwwKYk+n66h/vby3eD

The example output shows extended attributes with the IMA and EVM hash values and SELinux
context. EVM adds a security.evm extended attribute related to the other attributes. At this
point, you can use the evmctl utility on security.evm to generate either an RSA-based digital
signature or a Hash-based Message Authentication Code (HMAC-SHA1).

Additional resources

Security hardening

21.7. ADDING IMA SIGNATURES TO PACKAGE FILES

You need to add IMA signatures to RPM files to allow the kernel, Keylime, fapolicyd, and debuginfo
packages to do their integrity checks. After installing the rpm-plugin-ima plugin, newly installed RPM
files automatically have IMA signatures placed in the security.ima extended file attribute. However, you
need to reinstall existing packages to obtain IMA signatures.

Procedure

1. To install the rpm-plugin-ima plugin, run:

dnf install rpm-plugin-ima -y

2. To reinstall all packages, run:

dnf reinstall “*” -y

Verification

1. Confirm that the reinstalled package file has the valid IMA signature. For example, to check the
IMA signature of the /usr/bin/bash file, run:

getfattr -m security.ima -d /usr/bin/bash
security.ima=0sAwIE0zIESQBnMGUCMFhf0iBeM7NjjhCCHVt4/ORx1eCegjrWSHzFbJMCsAh
R9bYU2hNGjiWUYT2IIqWaaAIxALFGUkqGP5vDLuxQXibO9g7HFcfyZzRBY4rbKPsXcAIZRtD
HVS5dQBZqM3hyS5v1MA==

2. Verify IMA signature of a file with a specified certificate. The IMA code signing key is accessible
by /usr/share/doc/kernel-keys/$(uname -r)/ima.cer.

evmctl ima_verify -k /usr/share/doc/kernel-keys/$(uname -r)/ima.cer /usr/bin/bash
key 1: d3320449 /usr/share/doc/kernel-keys/5.14.0-359.el9.x86-64/ima.cer
/usr/bin/bash: verification is OK

CHAPTER 21. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM

123

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/security_hardening/index

21.8. ENABLING KERNEL RUNTIME INTEGRITY MONITORING

You can enable kernel runtime integrity monitoring that IMA appraisal provides.

Prerequisites

The kernel installed on your system has version 5.14.0-359 or higher.

The dracut package has version 057-43.git20230816 or higher.

The keyutils package is installed.

The ima-evm-utils package is installed.

The files covered by the policy have valid signatures. For instructions, see Adding IMA
signatures to package files.

Procedure

1. To copy the Red Hat IMA code signing key to the /etc/ima/keys file, run:

$ mkdir -p /etc/keys/ima
$ cp /usr/share/doc/kernel-keys/$(uname -r)/ima.cer /etc/ima/keys

2. To add the IMA code signing key to the .ima keyring, run:

keyctl padd asymmetric RedHat-IMA %:.ima < /etc/ima/keys/ima.cer

3. Depending on your threat model, define an IMA policy in the /etc/sysconfig/ima-policy file. For
example, the following IMA policy checks the integrity of both executables and involved
memory mapping library files:

PROC_SUPER_MAGIC = 0x9fa0
dont_appraise fsmagic=0x9fa0
SYSFS_MAGIC = 0x62656572
dont_appraise fsmagic=0x62656572
DEBUGFS_MAGIC = 0x64626720
dont_appraise fsmagic=0x64626720
TMPFS_MAGIC = 0x01021994
dont_appraise fsmagic=0x1021994
RAMFS_MAGIC
dont_appraise fsmagic=0x858458f6
DEVPTS_SUPER_MAGIC=0x1cd1
dont_appraise fsmagic=0x1cd1
BINFMTFS_MAGIC=0x42494e4d
dont_appraise fsmagic=0x42494e4d
SECURITYFS_MAGIC=0x73636673
dont_appraise fsmagic=0x73636673
SELINUX_MAGIC=0xf97cff8c
dont_appraise fsmagic=0xf97cff8c
SMACK_MAGIC=0x43415d53
dont_appraise fsmagic=0x43415d53
NSFS_MAGIC=0x6e736673
dont_appraise fsmagic=0x6e736673
EFIVARFS_MAGIC

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

124

dont_appraise fsmagic=0xde5e81e4
CGROUP_SUPER_MAGIC=0x27e0eb
dont_appraise fsmagic=0x27e0eb
CGROUP2_SUPER_MAGIC=0x63677270
dont_appraise fsmagic=0x63677270
appraise func=BPRM_CHECK
appraise func=FILE_MMAP mask=MAY_EXEC

4. To load the IMA policy to make sure the kernel accepts this IMA policy, run:

echo /etc/sysconfig/ima-policy > /sys/kernel/security/ima/policy
echo $?
0

5. To enable the dracut integrity module to automatically load the IMA code signing key and the
IMA policy, run:

echo 'add_dracutmodules+=" integrity "' > /etc/dracut.conf.d/98-integrity.conf
dracut -f

21.9. CREATING CUSTOM IMA KEYS USING OPENSSL

You can use OpenSSL to generate a CSR for your digital certificates to secure your code.

The kernel searches the .ima keyring for a code signing key to verify an IMA signature. Before you add a
code signing key to the .ima keyring, you need to ensure that IMA CA key signed this key in the
.builtin_trusted_keys or .secondary_trusted_keys keyrings.

Prerequisites

The custom IMA CA key has the following extensions:

the basic constraints extension with the CA boolean asserted.

the KeyUsage extension with the keyCertSign bit asserted but without the
digitalSignature asserted.

The custom IMA code signing key falls under the following criteria:

The IMA CA key signed this custom IMA code signing key.

The custom key includes the subjectKeyIdentifier extension.

Procedure

1. To generate a custom IMA CA key pair, run:

openssl req -new -x509 -utf8 -sha256 -days 3650 -batch -config ima_ca.conf -outform
DER -out custom_ima_ca.der -keyout custom_ima_ca.priv

2. Optional: To check the content of the ima_ca.conf file, run:

cat ima_ca.conf
[req]

CHAPTER 21. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM

125

default_bits = 2048
distinguished_name = req_distinguished_name
prompt = no
string_mask = utf8only
x509_extensions = ca

[req_distinguished_name]
O = YOUR_ORG
CN = YOUR_COMMON_NAME IMA CA
emailAddress = YOUR_EMAIL

[ca]
basicConstraints=critical,CA:TRUE
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid:always,issuer
keyUsage=critical,keyCertSign,cRLSign

3. To generate a private key and a certificate signing request (CSR) for the IMA code signing key,
run:

openssl req -new -utf8 -sha256 -days 365 -batch -config ima.conf -out
custom_ima.csr -keyout custom_ima.priv

4. Optional: To check the content of the ima.conf file, run:

cat ima.conf
[req]
default_bits = 2048
distinguished_name = req_distinguished_name
prompt = no
string_mask = utf8only
x509_extensions = code_signing

[req_distinguished_name]
O = YOUR_ORG
CN = YOUR_COMMON_NAME IMA signing key
emailAddress = YOUR_EMAIL

[code_signing]
basicConstraints=critical,CA:FALSE
keyUsage=digitalSignature
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid:always,issuer

5. Use the IMA CA private key to sign the CSR to create the IMA code signing certificate:

openssl x509 -req -in custom_ima.csr -days 365 -extfile ima.conf -extensions
code_signing -CA custom_ima_ca.der -CAkey custom_ima_ca.priv -CAcreateserial -
outform DER -out ima.der

21.10. DEPLOYING A CUSTOM SIGNED IMA POLICY FOR UEFI
SYSTEMS

In the Secure Boot environment, you may want to only load a signed IMA policy signed by your custom

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

126

In the Secure Boot environment, you may want to only load a signed IMA policy signed by your custom
IMA key.

Prerequisites

The MOK list contains the custom IMA key. For guidance, see Enrolling public key on target
system by adding the public key to the MOK list.

The kernel installed on your system has version 5.14.0-335 or higher.

Procedure

1. Enable Secure Boot.

2. Permanently add the ima_policy=secure_boot kernel parameter.
For instructions, see Configuring kernel parameters permanently with sysctl .

3. Prepare your IMA policy by running the command:

evmctl ima_sign /etc/sysconfig/ima-policy -k
<PATH_TO_YOUR_CUSTOM_IMA_KEY>
Place your public certificate under /etc/keys/ima/ and add it to the .ima keyring

4. Sign the policy with your custom IMA code signing key by running the command:

keyctl padd asymmetric CUSTOM_IMA1 %:.ima < /etc/ima/keys/my_ima.cer

5. Load the IMA policy by running the command:

echo /etc/sysconfig/ima-policy > /sys/kernel/security/ima/policy
echo $?
0

CHAPTER 21. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM

127

CHAPTER 22. USING SYSTEMD TO MANAGE RESOURCES
USED BY APPLICATIONS

RHEL 9 moves the resource management settings from the process level to the application level by
binding the system of cgroup hierarchies with the systemd unit tree. Therefore, you can manage the
system resources with the systemctl command, or by modifying the systemd unit files.

To achieve this, systemd takes various configuration options from the unit files or directly via the
systemctl command. Then systemd applies those options to specific process groups by using the Linux
kernel system calls and features like cgroups and namespaces.

NOTE

You can review the full set of configuration options for systemd in the following manual
pages:

systemd.resource-control(5)

systemd.exec(5)

22.1. ROLE OF SYSTEMD IN RESOURCE MANAGEMENT

The core function of systemd is service management and supervision. The systemd system and
service manager :

ensures that managed services start at the right time and in the correct order during the boot
process.

ensures that managed services run smoothly to use the underlying hardware platform optimally.

provides capabilities to define resource management policies.

provides capabilities to tune various options, which can improve the performance of the service.

IMPORTANT

In general, Red Hat recommends you use systemd for controlling the usage of system
resources. You should manually configure the cgroups virtual file system only in special
cases. For example, when you need to use cgroup-v1 controllers that have no
equivalents in cgroup-v2 hierarchy.

22.2. DISTRIBUTION MODELS OF SYSTEM SOURCES

To modify the distribution of system resources, you can apply one or more of the following distribution
models:

Weights

You can distribute the resource by adding up the weights of all sub-groups and giving each sub-
group the fraction matching its ratio against the sum.
For example, if you have 10 cgroups, each with weight of value 100, the sum is 1000. Each cgroup
receives one tenth of the resource.

Weight is usually used to distribute stateless resources. For example the CPUWeight= option is an
implementation of this resource distribution model.

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

128

Limits

A cgroup can consume up to the configured amount of the resource. The sum of sub-group limits
can exceed the limit of the parent cgroup. Therefore it is possible to overcommit resources in this
model.
For example the MemoryMax= option is an implementation of this resource distribution model.

Protections

You can set up a protected amount of a resource for a cgroup. If the resource usage is below the
protection boundary, the kernel will try not to penalize this cgroup in favor of other cgroups that
compete for the same resource. An overcommit is also possible.
For example the MemoryLow= option is an implementation of this resource distribution model.

Allocations

Exclusive allocations of an absolute amount of a finite resource. An overcommit is not possible. An
example of this resource type in Linux is the real-time budget.

unit file option

A setting for resource control configuration.
For example, you can configure CPU resource with options like CPUAccounting=, or CPUQuota=.
Similarly, you can configure memory or I/O resources with options like AllowedMemoryNodes= and
IOAccounting=.

22.3. ALLOCATING SYSTEM RESOURCES USING SYSTEMD

Procedure

To change the required value of the unit file option of your service, you can adjust the value in the unit
file, or use the systemctl command:

1. Check the assigned values for the service of your choice.

systemctl show --property <unit file option> <service name>

2. Set the required value of the CPU time allocation policy option:

systemctl set-property <service name> <unit file option>=<value>

Verification steps

Check the newly assigned values for the service of your choice.

systemctl show --property <unit file option> <service name>

Additional resources

The systemd.resource-control(5) and systemd.exec(5) man pages

22.4. OVERVIEW OF SYSTEMD HIERARCHY FOR CGROUPS

On the backend, the systemd system and service manager uses the slice, the scope, and the service
units to organize and structure processes in the control groups. You can further modify this hierarchy by

CHAPTER 22. USING SYSTEMD TO MANAGE RESOURCES USED BY APPLICATIONS

129

creating custom unit files or using the systemctl command. Also, systemd automatically mounts
hierarchies for important kernel resource controllers at the /sys/fs/cgroup/ directory.

For resource control, you can use the following three systemd unit types:

Service

A process or a group of processes, which systemd started according to a unit configuration file.
Services encapsulate the specified processes so that they can be started and stopped as one set.
Services are named in the following way:

<name>.service

Scope

A group of externally created processes. Scopes encapsulate processes that are started and stopped
by the arbitrary processes through the fork() function and then registered by systemd at runtime.
For example, user sessions, containers, and virtual machines are treated as scopes. Scopes are
named as follows:

<name>.scope

Slice

A group of hierarchically organized units. Slices organize a hierarchy in which scopes and services are
placed.
The actual processes are contained in scopes or in services. Every name of a slice unit corresponds to
the path to a location in the hierarchy.

The dash (-) character acts as a separator of the path components to a slice from the -.slice root
slice. In the following example:

<parent-name>.slice

parent-name.slice is a sub-slice of parent.slice, which is a sub-slice of the -.slice root slice. parent-
name.slice can have its own sub-slice named parent-name-name2.slice, and so on.

The service, the scope, and the slice units directly map to objects in the control group hierarchy. When
these units are activated, they map directly to control group paths built from the unit names.

The following is an abbreviated example of a control group hierarchy:

Control group /:
-.slice
├─user.slice
│ ├─user-42.slice
│ │ ├─session-c1.scope
│ │ │ ├─ 967 gdm-session-worker [pam/gdm-launch-environment]
│ │ │ ├─1035 /usr/libexec/gdm-x-session gnome-session --autostart
/usr/share/gdm/greeter/autostart
│ │ │ ├─1054 /usr/libexec/Xorg vt1 -displayfd 3 -auth /run/user/42/gdm/Xauthority -background none
-noreset -keeptty -verbose 3
│ │ │ ├─1212 /usr/libexec/gnome-session-binary --autostart /usr/share/gdm/greeter/autostart
│ │ │ ├─1369 /usr/bin/gnome-shell
│ │ │ ├─1732 ibus-daemon --xim --panel disable

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

130

│ │ │ ├─1752 /usr/libexec/ibus-dconf
│ │ │ ├─1762 /usr/libexec/ibus-x11 --kill-daemon
│ │ │ ├─1912 /usr/libexec/gsd-xsettings
│ │ │ ├─1917 /usr/libexec/gsd-a11y-settings
│ │ │ ├─1920 /usr/libexec/gsd-clipboard
… ​
├─init.scope
│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 18
└─system.slice
 ├─rngd.service
 │ └─800 /sbin/rngd -f
 ├─systemd-udevd.service
 │ └─659 /usr/lib/systemd/systemd-udevd
 ├─chronyd.service
 │ └─823 /usr/sbin/chronyd
 ├─auditd.service
 │ ├─761 /sbin/auditd
 │ └─763 /usr/sbin/sedispatch
 ├─accounts-daemon.service
 │ └─876 /usr/libexec/accounts-daemon
 ├─example.service
 │ ├─ 929 /bin/bash /home/jdoe/example.sh
 │ └─4902 sleep 1
 … ​

The example above shows that services and scopes contain processes and are placed in slices that do
not contain processes of their own.

Additional resources

Managing system services with systemctl in Red Hat Enterprise Linux

What are kernel resource controllers

The systemd.resource-control(5), systemd.exec(5), cgroups(7), fork(), fork(2) manual pages

Understanding cgroups

22.5. LISTING SYSTEMD UNITS

Use the systemd system and service manager to list its units.

Procedure

List all active units on the system with the systemctl utility. The terminal returns an output
similar to the following example:

systemctl
UNIT LOAD ACTIVE SUB DESCRIPTION
… ​
init.scope loaded active running System and Service Manager
session-2.scope loaded active running Session 2 of user jdoe
abrt-ccpp.service loaded active exited Install ABRT coredump hook
abrt-oops.service loaded active running ABRT kernel log watcher
abrt-vmcore.service loaded active exited Harvest vmcores for ABRT

CHAPTER 22. USING SYSTEMD TO MANAGE RESOURCES USED BY APPLICATIONS

131

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings#managing-system-services-with-systemctl_managing-systemd
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_monitoring_and_updating_the_kernel/index#setting-limits-for-applications_managing-monitoring-and-updating-the-kernel

abrt-xorg.service loaded active running ABRT Xorg log watcher
… ​
-.slice loaded active active Root Slice
machine.slice loaded active active Virtual Machine and Container
Slice system-getty.slice loaded active active
system-getty.slice
system-lvm2\x2dpvscan.slice loaded active active system-
lvm2\x2dpvscan.slice
system-sshd\x2dkeygen.slice loaded active active system-
sshd\x2dkeygen.slice
system-systemd\x2dhibernate\x2dresume.slice loaded active active system-
systemd\x2dhibernate\x2dresume>
system-user\x2druntime\x2ddir.slice loaded active active system-
user\x2druntime\x2ddir.slice
system.slice loaded active active System Slice
user-1000.slice loaded active active User Slice of UID 1000
user-42.slice loaded active active User Slice of UID 42
user.slice loaded active active User and Session Slice
… ​

UNIT

A name of a unit that also reflects the unit position in a control group hierarchy. The units
relevant for resource control are a slice, a scope, and a service.

LOAD

Indicates whether the unit configuration file was properly loaded. If the unit file failed to load,
the field contains the state error instead of loaded. Other unit load states are: stub, merged,
and masked.

ACTIVE

The high-level unit activation state, which is a generalization of SUB.

SUB

The low-level unit activation state. The range of possible values depends on the unit type.

DESCRIPTION

The description of the unit content and functionality.

List all active and inactive units:

systemctl --all

Limit the amount of information in the output:

systemctl --type service,masked

The --type option requires a comma-separated list of unit types such as a service and a slice, or
unit load states such as loaded and masked.

Additional resources

Managing system services with systemctl in RHEL

The systemd.resource-control(5), systemd.exec(5) manual pages

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

132

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings#managing-system-services-with-systemctl_managing-systemd

22.6. VIEWING SYSTEMD CGROUPS HIERARCHY

Display control groups (cgroups) hierarchy and processes running in specific cgroups.

Procedure

Display the whole cgroups hierarchy on your system with the systemd-cgls command.

systemd-cgls
Control group /:
-.slice
├─user.slice
│ ├─user-42.slice
│ │ ├─session-c1.scope
│ │ │ ├─ 965 gdm-session-worker [pam/gdm-launch-environment]
│ │ │ ├─1040 /usr/libexec/gdm-x-session gnome-session --autostart
/usr/share/gdm/greeter/autostart
… ​
├─init.scope
│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 18
└─system.slice
 … ​
 ├─example.service
 │ ├─6882 /bin/bash /home/jdoe/example.sh
 │ └─6902 sleep 1
 ├─systemd-journald.service
 └─629 /usr/lib/systemd/systemd-journald
 … ​

The example output returns the entire cgroups hierarchy, where the highest level is formed by
slices.

Display the cgroups hierarchy filtered by a resource controller with the systemd-cgls
<resource_controller> command.

systemd-cgls memory
Controller memory; Control group /:
├─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 18
├─user.slice
│ ├─user-42.slice
│ │ ├─session-c1.scope
│ │ │ ├─ 965 gdm-session-worker [pam/gdm-launch-environment]
… ​
└─system.slice
 |
 … ​
 ├─chronyd.service
 │ └─844 /usr/sbin/chronyd
 ├─example.service
 │ ├─8914 /bin/bash /home/jdoe/example.sh
 │ └─8916 sleep 1
 … ​

The example output lists the services that interact with the selected controller.

CHAPTER 22. USING SYSTEMD TO MANAGE RESOURCES USED BY APPLICATIONS

133

Display detailed information about a certain unit and its part of the cgroups hierarchy with the
systemctl status <system_unit> command.

systemctl status example.service
● example.service - My example service
 Loaded: loaded (/usr/lib/systemd/system/example.service; enabled; vendor preset:
disabled)
 Active: active (running) since Tue 2019-04-16 12:12:39 CEST; 3s ago
 Main PID: 17737 (bash)
 Tasks: 2 (limit: 11522)
 Memory: 496.0K (limit: 1.5M)
 CGroup: /system.slice/example.service
 ├─17737 /bin/bash /home/jdoe/example.sh
 └─17743 sleep 1
Apr 16 12:12:39 redhat systemd[1]: Started My example service.
Apr 16 12:12:39 redhat bash[17737]: The current time is Tue Apr 16 12:12:39 CEST 2019
Apr 16 12:12:40 redhat bash[17737]: The current time is Tue Apr 16 12:12:40 CEST 2019

Additional resources

What are kernel resource controllers

The systemd.resource-control(5) and cgroups(7) man pages

22.7. VIEWING CGROUPS OF PROCESSES

You can learn which control group (cgroup) a process belongs to. Then you can check the cgroup to
find which controllers and controller-specific configurations it uses.

Procedure

1. To view which cgroup a process belongs to, run the # cat proc/<PID>/cgroup command:

cat /proc/2467/cgroup
0::/system.slice/example.service

The example output relates to a process of interest. In this case, it is a process identified by PID
2467, which belongs to the example.service unit. You can determine whether the process was
placed in a correct control group as defined by the systemd unit file specifications.

2. To display what controllers and respective configuration files the cgroup uses, check the
cgroup directory:

cat /sys/fs/cgroup/system.slice/example.service/cgroup.controllers
memory pids

ls /sys/fs/cgroup/system.slice/example.service/
cgroup.controllers
cgroup.events
… ​
cpu.pressure
cpu.stat
io.pressure
memory.current

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

134

memory.events
… ​
pids.current
pids.events
pids.max

NOTE

The version 1 hierarchy of cgroups uses a per-controller model. Therefore the output
from the /proc/PID/cgroup file shows, which cgroups under each controller the PID
belongs to. You can find the respective cgroups under the controller directories at
/sys/fs/cgroup/<controller_name>/.

Additional resources

The cgroups(7) manual page

What are kernel resource controllers

Documentation in the /usr/share/doc/kernel-doc-<kernel_version>/Documentation/admin-
guide/cgroup-v2.rst file (after installing the kernel-doc package)

22.8. MONITORING RESOURCE CONSUMPTION

View a list of currently running control groups (cgroups) and their resource consumption in real-time.

Procedure

1. Display a dynamic account of currently running cgroups with the systemd-cgtop command.

systemd-cgtop
Control Group Tasks %CPU Memory Input/s Output/s
/ 607 29.8 1.5G - -
/system.slice 125 - 428.7M - -
/system.slice/ModemManager.service 3 - 8.6M - -
/system.slice/NetworkManager.service 3 - 12.8M - -
/system.slice/accounts-daemon.service 3 - 1.8M - -
/system.slice/boot.mount - - 48.0K - -
/system.slice/chronyd.service 1 - 2.0M - -
/system.slice/cockpit.socket - - 1.3M - -
/system.slice/colord.service 3 - 3.5M - -
/system.slice/crond.service 1 - 1.8M - -
/system.slice/cups.service 1 - 3.1M - -
/system.slice/dev-hugepages.mount - - 244.0K - -
/system.slice/dev-mapper-rhel\x2dswap.swap - - 912.0K - -
/system.slice/dev-mqueue.mount - - 48.0K - -
/system.slice/example.service 2 - 2.0M - -
/system.slice/firewalld.service 2 - 28.8M - -
...

The example output displays currently running cgroups ordered by their resource usage (CPU,
memory, disk I/O load). The list refreshes every 1 second by default. Therefore, it offers a
dynamic insight into the actual resource usage of each control group.

Additional resources

CHAPTER 22. USING SYSTEMD TO MANAGE RESOURCES USED BY APPLICATIONS

135

Additional resources

The systemd-cgtop(1) manual page

22.9. USING SYSTEMD UNIT FILES TO SET LIMITS FOR APPLICATIONS

The systemd service manager supervises each existing or running unit and creates control groups for
them. The units have configuration files in the /usr/lib/systemd/system/ directory.

You can manually modify the unit files to:

set limits.

prioritize.

control access to hardware resources for groups of processes.

Prerequisites

You have the root privileges.

Procedure

1. Edit the /usr/lib/systemd/system/example.service file to limit the memory usage of a service:

… ​
[Service]
MemoryMax=1500K
… ​

The configuration limits the maximum memory that the processes in a control group cannot
exceed. The example.service service is part of such a control group which has imposed
limitations. You can use suffixes K, M, G, or T to identify Kilobyte, Megabyte, Gigabyte, or
Terabyte as a unit of measurement.

2. Reload all unit configuration files:

systemctl daemon-reload

3. Restart the service:

systemctl restart example.service

Verification

1. Check that the changes took effect:

cat /sys/fs/cgroup/system.slice/example.service/memory.max
1536000

The example output shows that the memory consumption was limited at around 1,500 KB.

Additional resources

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

136

Understanding cgroups

Managing system services with systemctl in Red Hat Enterprise Linux

The systemd.resource-control(5), systemd.exec(5), and cgroups(7) man pages

22.10. USING SYSTEMCTL COMMAND TO SET LIMITS TO
APPLICATIONS

CPU affinity settings help you restrict the access of a particular process to some CPUs. Effectively, the
CPU scheduler never schedules the process to run on the CPU that is not in the affinity mask of the
process.

The default CPU affinity mask applies to all services managed by systemd.

To configure CPU affinity mask for a particular systemd service, systemd provides CPUAffinity= both
as:

a unit file option.

a configuration option in the [Manager] section of the /etc/systemd/system.conf file.

The CPUAffinity= unit file option sets a list of CPUs or CPU ranges that are merged and used as the
affinity mask.

Procedure

To set CPU affinity mask for a particular systemd service using the CPUAffinity unit file option:

1. Check the values of the CPUAffinity unit file option in the service of your choice:

$ systemctl show --property <CPU affinity configuration option> <service name>

2. As the root user, set the required value of the CPUAffinity unit file option for the CPU ranges
used as the affinity mask:

systemctl set-property <service name> CPUAffinity=<value>

3. Restart the service to apply the changes.

systemctl restart <service name>

Additional resources

The systemd.resource-control(5), systemd.exec(5), cgroups(7) man pages

22.11. SETTING GLOBAL DEFAULT CPU AFFINITY THROUGH
MANAGER CONFIGURATION

The CPUAffinity option in the /etc/systemd/system.conf file defines an affinity mask for the process
identification number (PID) 1 and all processes forked off of PID1. You can then override the
CPUAffinity on a per-service basis.

To set the default CPU affinity mask for all systemd services using the /etc/systemd/system.conf file:

CHAPTER 22. USING SYSTEMD TO MANAGE RESOURCES USED BY APPLICATIONS

137

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_monitoring_and_updating_the_kernel/index#setting-limits-for-applications_managing-monitoring-and-updating-the-kernel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings#managing-system-services-with-systemctl_managing-systemd

1. Set the CPU numbers for the CPUAffinity= option in the [Manager] section of the
/etc/systemd/system.conf file.

2. Save the edited file and reload the systemd service:

systemctl daemon-reload

3. Reboot the server to apply the changes.

Additional resources

The systemd.resource-control(5) and systemd.exec(5) man pages.

22.12. CONFIGURING NUMA POLICIES USING SYSTEMD

Non-uniform memory access (NUMA) is a computer memory subsystem design, in which the memory
access time depends on the physical memory location relative to the processor.

Memory close to the CPU has lower latency (local memory) than memory that is local for a different
CPU (foreign memory) or is shared between a set of CPUs.

In terms of the Linux kernel, NUMA policy governs where (for example, on which NUMA nodes) the
kernel allocates physical memory pages for the process.

systemd provides unit file options NUMAPolicy and NUMAMask to control memory allocation policies
for services.

Procedure

To set the NUMA memory policy through the NUMAPolicy unit file option:

1. Check the values of the NUMAPolicy unit file option in the service of your choice:

$ systemctl show --property <NUMA policy configuration option> <service name>

2. As a root, set the required policy type of the NUMAPolicy unit file option:

systemctl set-property <service name> NUMAPolicy=<value>

3. Restart the service to apply the changes.

systemctl restart <service name>

To set a global NUMAPolicy setting using the [Manager] configuration option:

1. Search in the /etc/systemd/system.conf file for the NUMAPolicy option in the [Manager]
section of the file.

2. Edit the policy type and save the file.

3. Reload the systemd configuration:

systemd daemon-reload

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

138

4. Reboot the server.

IMPORTANT

When you configure a strict NUMA policy, for example bind, make sure that you also
appropriately set the CPUAffinity= unit file option.

Additional resources

Using systemctl command to set limits to applications

The systemd.resource-control(5), systemd.exec(5), and set_mempolicy(2) man pages.

22.13. NUMA POLICY CONFIGURATION OPTIONS FOR SYSTEMD

Systemd provides the following options to configure the NUMA policy:

NUMAPolicy

Controls the NUMA memory policy of the executed processes. You can use these policy types:

default

preferred

bind

interleave

local

NUMAMask

Controls the NUMA node list which is associated with the selected NUMA policy.
Note that you do not have to specify the NUMAMask option for the following policies:

default

local

For the preferred policy, the list specifies only a single NUMA node.

Additional resources

The systemd.resource-control(5), systemd.exec(5), and set_mempolicy(2) man pages

22.14. CREATING TRANSIENT CGROUPS USING SYSTEMD-RUN
COMMAND

The transient cgroups set limits on resources consumed by a unit (service or scope) during its runtime.

Procedure

To create a transient control group, use the systemd-run command in the following format:

CHAPTER 22. USING SYSTEMD TO MANAGE RESOURCES USED BY APPLICATIONS

139

systemd-run --unit=<name> --slice=<name>.slice <command>

This command creates and starts a transient service or a scope unit and runs a custom command
in such a unit.

The --unit=<name> option gives a name to the unit. If --unit is not specified, the name is
generated automatically.

The --slice=<name>.slice option makes your service or scope unit a member of a specified
slice. Replace <name>.slice with the name of an existing slice (as shown in the output of
systemctl -t slice), or create a new slice by passing a unique name. By default, services and
scopes are created as members of the system.slice.

Replace <command> with the command you want to enter in the service or the scope unit.
The following message is displayed to confirm that you created and started the service or
the scope successfully:

Running as unit <name>.service

Optional: Keep the unit running after its processes finished to collect run-time information:

systemd-run --unit=<name> --slice=<name>.slice --remain-after-exit <command>

The command creates and starts a transient service unit and runs a custom command in the unit.
The --remain-after-exit option ensures that the service keeps running after its processes have
finished.

Additional resources

What are control groups

Managing systemd in RHEL

The systemd-run(1) manual page

22.15. REMOVING TRANSIENT CONTROL GROUPS

You can use the systemd system and service manager to remove transient control groups (cgroups) if
you no longer need to limit, prioritize, or control access to hardware resources for groups of processes.

Transient cgroups are automatically released once all the processes that a service or a scope unit
contains finish.

Procedure

To stop the service unit with all its processes, enter:

systemctl stop <name>.service

To terminate one or more of the unit processes, enter:

systemctl kill <name>.service --kill-who=PID,… ​ --signal=<signal>

The command uses the --kill-who option to select process(es) from the control group you want

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

140

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings

to terminate. To kill multiple processes at the same time, pass a comma-separated list of PIDs.
The --signal option determines the type of POSIX signal to be sent to the specified processes.
The default signal is SIGTERM.

Additional resources

What are control groups

What are kernel resource controllers

The systemd.resource-control(5) and cgroups(7) man pages

Understanding control groups

Managing systemd in RHEL

CHAPTER 22. USING SYSTEMD TO MANAGE RESOURCES USED BY APPLICATIONS

141

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_monitoring_and_updating_the_kernel/index#setting-limits-for-applications_managing-monitoring-and-updating-the-kernel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings

CHAPTER 23. UNDERSTANDING CONTROL GROUPS
Using the control groups (cgroups) kernel functionality, you can control resource usage of applications
to use them more efficiently.

You can use cgroups for the following tasks:

Setting limits for system resource allocation.

Prioritizing the allocation of hardware resources to specific processes.

Isolating certain processes from obtaining hardware resources.

23.1. INTRODUCING CONTROL GROUPS

Using the control groups Linux kernel feature, you can organize processes into hierarchically ordered
groups - cgroups. You define the hierarchy (control groups tree) by providing structure to cgroups
virtual file system, mounted by default on the /sys/fs/cgroup/ directory.

The systemd service manager uses cgroups to organize all units and services that it governs. Manually,
you can manage the hierarchies of cgroups by creating and removing sub-directories in the
/sys/fs/cgroup/ directory.

The resource controllers in the kernel then modify the behavior of processes in cgroups by limiting,
prioritizing or allocating system resources, of those processes. These resources include the following:

CPU time

Memory

Network bandwidth

Combinations of these resources

The primary use case of cgroups is aggregating system processes and dividing hardware resources
among applications and users. This makes it possible to increase the efficiency, stability, and security of
your environment.

Control groups version 1

Control groups version 1 (cgroups-v1) provide a per-resource controller hierarchy. This means that
each resource (such as CPU, memory, or I/O) has its own control group hierarchy. You can combine
different control group hierarchies in a way that one controller can coordinate with another in
managing their respective resources. However, when the two controllers belong to different process
hierarchies, proper coordination is limited.
The cgroups-v1 controllers were developed across a large time span and as a result, the behavior
and naming of their control files is not uniform.

Control groups version 2

Control groups version 2 (cgroups-v2) provide a single control group hierarchy against which all
resource controllers are mounted.
The control file behavior and naming is consistent among different controllers.

IMPORTANT

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

142

IMPORTANT

RHEL 9, by default, mounts and uses cgroups-v2.

Additional resources

Introducing kernel resource controllers

The cgroups(7) manual page

cgroups-v1

cgroups-v2

23.2. INTRODUCING KERNEL RESOURCE CONTROLLERS

Kernel resource controllers enable the functionality of control groups. RHEL 9 supports various
controllers for control groups version 1 (cgroups-v1) and control groups version 2 (cgroups-v2).

A resource controller, also called a control group subsystem, is a kernel subsystem that represents a
single resource, such as CPU time, memory, network bandwidth or disk I/O. The Linux kernel provides a
range of resource controllers that are mounted automatically by the systemd service manager. You can
find a list of the currently mounted resource controllers in the /proc/cgroups file.

Controllers available for cgroups-v1:

blkio

Sets limits on input/output access to and from block devices.

cpu

Adjusts the parameters of the Completely Fair Scheduler (CFS) for a control group’s tasks. The cpu
controller is mounted together with the cpuacct controller on the same mount.

cpuacct

Creates automatic reports on CPU resources used by tasks in a control group. The cpuacct
controller is mounted together with the cpu controller on the same mount.

cpuset

Restricts control group tasks to run only on a specified subset of CPUs and to direct the tasks to use
memory only on specified memory nodes.

devices

Controls access to devices for tasks in a control group.

freezer

Suspends or resumes tasks in a control group.

memory

Sets limits on memory use by tasks in a control group and generates automatic reports on memory
resources used by those tasks.

net_cls

Tags network packets with a class identifier (classid) that enables the Linux traffic controller (the tc
command) to identify packets that originate from a particular control group task. A subsystem of
net_cls, the net_filter (iptables), can also use this tag to perform actions on such packets. The
net_filter tags network sockets with a firewall identifier (fwid) that allows the Linux firewall to identify
packets that originate from a particular control group task (by using the iptables command).

CHAPTER 23. UNDERSTANDING CONTROL GROUPS

143

https://access.redhat.com/labs/rhcb/RHEL-9.0/kernel-5.14.0-70.13.1.el9/source/Documentation/admin-guide/cgroup-v1
https://access.redhat.com/labs/rhcb/RHEL-9.0/kernel-5.14.0-70.13.1.el9/source/blob/Documentation/admin-guide/cgroup-v2.rst

net_prio

Sets the priority of network traffic.

pids

Sets limits for a number of processes and their children in a control group.

perf_event

Groups tasks for monitoring by the perf performance monitoring and reporting utility.

rdma

Sets limits on Remote Direct Memory Access/InfiniBand specific resources in a control group.

hugetlb

Can be used to limit the usage of large size virtual memory pages by tasks in a control group.

Controllers available for cgroups-v2:

io

Sets limits on input/output access to and from block devices.

memory

Sets limits on memory use by tasks in a control group and generates automatic reports on memory
resources used by those tasks.

pids

Sets limits for a number of processes and their children in a control group.

rdma

Sets limits on Remote Direct Memory Access/InfiniBand specific resources in a control group.

cpu

Adjusts the parameters of the Completely Fair Scheduler (CFS) for a control group’s tasks and
creates automatic reports on CPU resources used by tasks in a control group.

cpuset

Restricts control group tasks to run only on a specified subset of CPUs and to direct the tasks to use
memory only on specified memory nodes. Supports only the core functionality (cpus{,.effective},
mems{,.effective}) with a new partition feature.

perf_event

Groups tasks for monitoring by the perf performance monitoring and reporting utility. perf_event is
enabled automatically on the v2 hierarchy.

IMPORTANT

A resource controller can be used either in a cgroups-v1 hierarchy or a cgroups-v2
hierarchy, not simultaneously in both.

Additional resources

The cgroups(7) manual page

Documentation in /usr/share/doc/kernel-doc-<kernel_version>/Documentation/cgroups-v1/
directory (after installing the kernel-doc package).

23.3. INTRODUCING NAMESPACES

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

144

Namespaces are one of the most important methods for organizing and identifying software objects.

A namespace wraps a global system resource (for example, a mount point, a network device, or a
hostname) in an abstraction that makes it appear to processes within the namespace that they have
their own isolated instance of the global resource. One of the most common technologies that use
namespaces are containers.

Changes to a particular global resource are visible only to processes in that namespace and do not
affect the rest of the system or other namespaces.

To inspect which namespaces a process is a member of, you can check the symbolic links in the
/proc/<PID>/ns/ directory.

Table 23.1. Supported namespaces and resources which they isolate:

Namespace Isolates

Mount Mount points

UTS Hostname and NIS domain name

IPC System V IPC, POSIX message queues

PID Process IDs

Network Network devices, stacks, ports, etc

User User and group IDs

Control groups Control group root directory

Additional resources

The namespaces(7) and cgroup_namespaces(7) manual pages

Introducing control groups

CHAPTER 23. UNDERSTANDING CONTROL GROUPS

145

CHAPTER 24. USING CGROUPFS TO MANUALLY MANAGE
CGROUPS

You can manage cgroup hierarchies on your system by creating directories on the cgroupfs virtual file
system. The file system is mounted by default on the /sys/fs/cgroup/ directory and you can specify
desired configurations in dedicated control files.

IMPORTANT

In general, Red Hat recommends you use systemd for controlling the usage of system
resources. You should manually configure the cgroups virtual file system only in special
cases. For example, when you need to use cgroup-v1 controllers that have no
equivalents in cgroup-v2 hierarchy.

24.1. CREATING CGROUPS AND ENABLING CONTROLLERS IN
CGROUPS-V2 FILE SYSTEM

You can manage the control groups (cgroups) by creating or removing directories and by writing to files
in the cgroups virtual file system. The file system is by default mounted on the /sys/fs/cgroup/
directory. To use settings from the cgroups controllers, you also need to enable the desired controllers
for child cgroups. The root cgroup has, by default, enabled the memory and pids controllers for its
child cgroups. Therefore, Red Hat recommends to create at least two levels of child cgroups inside the
/sys/fs/cgroup/ root cgroup. This way you optionally remove the memory and pids controllers from
the child cgroups and maintain better organizational clarity of cgroup files.

Prerequisites

You have root permissions.

Procedure

1. Create the /sys/fs/cgroup/Example/ directory:

mkdir /sys/fs/cgroup/Example/

The /sys/fs/cgroup/Example/ directory defines a child group. When you create the
/sys/fs/cgroup/Example/ directory, some cgroups-v2 interface files are automatically created
in the directory. The /sys/fs/cgroup/Example/ directory contains also controller-specific files
for the memory and pids controllers.

2. Optionally, inspect the newly created child control group:

ll /sys/fs/cgroup/Example/
-r— ​r— ​r--. 1 root root 0 Jun 1 10:33 cgroup.controllers
-r— ​r— ​r--. 1 root root 0 Jun 1 10:33 cgroup.events
-rw-r— ​r--. 1 root root 0 Jun 1 10:33 cgroup.freeze
-rw-r— ​r--. 1 root root 0 Jun 1 10:33 cgroup.procs
… ​
-rw-r— ​r--. 1 root root 0 Jun 1 10:33 cgroup.subtree_control
-r— ​r— ​r--. 1 root root 0 Jun 1 10:33 memory.events.local
-rw-r— ​r--. 1 root root 0 Jun 1 10:33 memory.high
-rw-r— ​r--. 1 root root 0 Jun 1 10:33 memory.low
… ​

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

146

-r— ​r— ​r--. 1 root root 0 Jun 1 10:33 pids.current
-r— ​r— ​r--. 1 root root 0 Jun 1 10:33 pids.events
-rw-r— ​r--. 1 root root 0 Jun 1 10:33 pids.max

The example output shows general cgroup control interface files such as cgroup.procs or
cgroup.controllers. These files are common to all control groups, regardless of enabled
controllers.

The files such as memory.high and pids.max relate to the memory and pids controllers, which
are in the root control group (/sys/fs/cgroup/), and are enabled by default by systemd.

By default, the newly created child group inherits all settings from the parent cgroup. In this
case, there are no limits from the root cgroup.

3. Verify that the desired controllers are available in the /sys/fs/cgroup/cgroup.controllers file:

cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma

4. Enable the desired controllers. In this example it is cpu and cpuset controllers:

echo "+cpu" >> /sys/fs/cgroup/cgroup.subtree_control
echo "+cpuset" >> /sys/fs/cgroup/cgroup.subtree_control

These commands enable the cpu and cpuset controllers for the immediate child groups of the
/sys/fs/cgroup/ root control group. Including the newly created Example control group. A child
group is where you can specify processes and apply control checks to each of the processes
based on your criteria.

Users can read the contents of the cgroup.subtree_control file at any level to get an idea of
what controllers are going to be available for enablement in the immediate child group.

NOTE

By default, the /sys/fs/cgroup/cgroup.subtree_control file in the root control
group contains memory and pids controllers.

5. Enable the desired controllers for child cgroups of the Example control group:

echo "+cpu +cpuset" >> /sys/fs/cgroup/Example/cgroup.subtree_control

This command ensures that the immediate child control group will only have controllers relevant
to regulate the CPU time distribution - not to memory or pids controllers.

6. Create the /sys/fs/cgroup/Example/tasks/ directory:

mkdir /sys/fs/cgroup/Example/tasks/

The /sys/fs/cgroup/Example/tasks/ directory defines a child group with files that relate purely
to cpu and cpuset controllers. You can now assign processes to this control group and utilize
cpu and cpuset controller options for your processes.

7. Optionally, inspect the child control group:

CHAPTER 24. USING CGROUPFS TO MANUALLY MANAGE CGROUPS

147

ll /sys/fs/cgroup/Example/tasks
-r— ​r— ​r--. 1 root root 0 Jun 1 11:45 cgroup.controllers
-r— ​r— ​r--. 1 root root 0 Jun 1 11:45 cgroup.events
-rw-r— ​r--. 1 root root 0 Jun 1 11:45 cgroup.freeze
-rw-r— ​r--. 1 root root 0 Jun 1 11:45 cgroup.max.depth
-rw-r— ​r--. 1 root root 0 Jun 1 11:45 cgroup.max.descendants
-rw-r— ​r--. 1 root root 0 Jun 1 11:45 cgroup.procs
-r— ​r— ​r--. 1 root root 0 Jun 1 11:45 cgroup.stat
-rw-r— ​r--. 1 root root 0 Jun 1 11:45 cgroup.subtree_control
-rw-r— ​r--. 1 root root 0 Jun 1 11:45 cgroup.threads
-rw-r— ​r--. 1 root root 0 Jun 1 11:45 cgroup.type
-rw-r— ​r--. 1 root root 0 Jun 1 11:45 cpu.max
-rw-r— ​r--. 1 root root 0 Jun 1 11:45 cpu.pressure
-rw-r— ​r--. 1 root root 0 Jun 1 11:45 cpuset.cpus
-r— ​r— ​r--. 1 root root 0 Jun 1 11:45 cpuset.cpus.effective
-rw-r— ​r--. 1 root root 0 Jun 1 11:45 cpuset.cpus.partition
-rw-r— ​r--. 1 root root 0 Jun 1 11:45 cpuset.mems
-r— ​r— ​r--. 1 root root 0 Jun 1 11:45 cpuset.mems.effective
-r— ​r— ​r--. 1 root root 0 Jun 1 11:45 cpu.stat
-rw-r— ​r--. 1 root root 0 Jun 1 11:45 cpu.weight
-rw-r— ​r--. 1 root root 0 Jun 1 11:45 cpu.weight.nice
-rw-r— ​r--. 1 root root 0 Jun 1 11:45 io.pressure
-rw-r— ​r--. 1 root root 0 Jun 1 11:45 memory.pressure

IMPORTANT

The cpu controller is only activated if the relevant child control group has at least 2
processes which compete for time on a single CPU.

Verification steps

Optional: confirm that you have created a new cgroup with only the desired controllers active:

cat /sys/fs/cgroup/Example/tasks/cgroup.controllers
cpuset cpu

Additional resources

Understanding control groups

What are kernel resource controllers

Mounting cgroups-v1

cgroups(7), sysfs(5) manual pages

24.2. CONTROLLING DISTRIBUTION OF CPU TIME FOR
APPLICATIONS BY ADJUSTING CPU WEIGHT

You need to assign values to the relevant files of the cpu controller to regulate distribution of the CPU
time to applications under the specific cgroup tree.

Prerequisites

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

148

You have root permissions.

You have applications for which you want to control distribution of CPU time.

You created a two level hierarchy of child control groups inside the /sys/fs/cgroup/ root control
group as in the following example:

… ​
 ├── Example
 │ ├── g1
 │ ├── g2
 │ └── g3
… ​

You enabled the cpu controller in the parent control group and in child control groups similarly
as described in Creating cgroups and enabling controllers in cgroups-v2 file system .

Procedure

1. Configure desired CPU weights to achieve resource restrictions within the control groups:

echo "150" > /sys/fs/cgroup/Example/g1/cpu.weight
echo "100" > /sys/fs/cgroup/Example/g2/cpu.weight
echo "50" > /sys/fs/cgroup/Example/g3/cpu.weight

2. Add the applications' PIDs to the g1, g2, and g3 child groups:

echo "33373" > /sys/fs/cgroup/Example/g1/cgroup.procs
echo "33374" > /sys/fs/cgroup/Example/g2/cgroup.procs
echo "33377" > /sys/fs/cgroup/Example/g3/cgroup.procs

The example commands ensure that desired applications become members of the Example/g*/
child cgroups and will get their CPU time distributed as per the configuration of those cgroups.

The weights of the children cgroups (g1, g2, g3) that have running processes are summed up at
the level of the parent cgroup (Example). The CPU resource is then distributed proportionally
based on the respective weights.

As a result, when all processes run at the same time, the kernel allocates to each of them the
proportionate CPU time based on their respective cgroup’s cpu.weight file:

Child cgroup cpu.weight file CPU time allocation

g1 150 ~50% (150/300)

g2 100 ~33% (100/300)

g3 50 ~16% (50/300)

The value of the cpu.weight controller file is not a percentage.

If one process stopped running, leaving cgroup g2 with no running processes, the calculation

CHAPTER 24. USING CGROUPFS TO MANUALLY MANAGE CGROUPS

149

If one process stopped running, leaving cgroup g2 with no running processes, the calculation
would omit the cgroup g2 and only account weights of cgroups g1 and g3:

Child cgroup cpu.weight file CPU time allocation

g1 150 ~75% (150/200)

g3 50 ~25% (50/200)

IMPORTANT

If a child cgroup had multiple running processes, the CPU time allocated to the
respective cgroup would be distributed equally to the member processes of that
cgroup.

Verification

1. Verify that the applications run in the specified control groups:

cat /proc/33373/cgroup /proc/33374/cgroup /proc/33377/cgroup
0::/Example/g1
0::/Example/g2
0::/Example/g3

The command output shows the processes of the specified applications that run in the
Example/g*/ child cgroups.

2. Inspect the current CPU consumption of the throttled applications:

top
top - 05:17:18 up 1 day, 18:25, 1 user, load average: 3.03, 3.03, 3.00
Tasks: 95 total, 4 running, 91 sleeping, 0 stopped, 0 zombie
%Cpu(s): 18.1 us, 81.6 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.3 hi, 0.0 si, 0.0 st
MiB Mem : 3737.0 total, 3233.7 free, 132.8 used, 370.5 buff/cache
MiB Swap: 4060.0 total, 4060.0 free, 0.0 used. 3373.1 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 33373 root 20 0 18720 1748 1460 R 49.5 0.0 415:05.87 sha1sum
 33374 root 20 0 18720 1756 1464 R 32.9 0.0 412:58.33 sha1sum
 33377 root 20 0 18720 1860 1568 R 16.3 0.0 411:03.12 sha1sum
 760 root 20 0 416620 28540 15296 S 0.3 0.7 0:10.23 tuned
 1 root 20 0 186328 14108 9484 S 0.0 0.4 0:02.00 systemd
 2 root 20 0 0 0 0 S 0.0 0.0 0:00.01 kthread
...

NOTE

We forced all the example processes to run on a single CPU for clearer
illustration. The CPU weight applies the same principles also when used on
multiple CPUs.

Notice that the CPU resource for the PID 33373, PID 33374, and PID 33377 was allocated

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

150

Notice that the CPU resource for the PID 33373, PID 33374, and PID 33377 was allocated
based on the weights, 150, 100, 50, you assigned to the respective child cgroups. The weights
correspond to around 50%, 33%, and 16% allocation of CPU time for each application.

Additional resources

Understanding control groups

What are kernel resource controllers

Creating cgroups and enabling controllers in cgroups-v2 file system

Resource Distribution Models

cgroups(7), sysfs(5) manual pages

24.3. MOUNTING CGROUPS-V1

During the boot process, RHEL 9 mounts the cgroup-v2 virtual filesystem by default. To utilize cgroup-
v1 functionality in limiting resources for your applications, manually configure the system.

NOTE

Both cgroup-v1 and cgroup-v2 are fully enabled in the kernel. There is no default control
group version from the kernel point of view, and is decided by systemd to mount at
startup.

Prerequisites

You have root permissions.

Procedure

1. Configure the system to mount cgroups-v1 by default during system boot by the systemd
system and service manager:

grubby --update-kernel=/boot/vmlinuz-$(uname -r) --
args="systemd.unified_cgroup_hierarchy=0
systemd.legacy_systemd_cgroup_controller"

This adds the necessary kernel command-line parameters to the current boot entry.

To add the same parameters to all kernel boot entries:

grubby --update-kernel=ALL --args="systemd.unified_cgroup_hierarchy=0
systemd.legacy_systemd_cgroup_controller"

2. Reboot the system for the changes to take effect.

Verification

1. Optionally, verify that the cgroups-v1 filesystem was mounted:

mount -l | grep cgroup

CHAPTER 24. USING CGROUPFS TO MANUALLY MANAGE CGROUPS

151

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#resource-distribution-models

tmpfs on /sys/fs/cgroup type tmpfs
(ro,nosuid,nodev,noexec,seclabel,size=4096k,nr_inodes=1024,mode=755,inode64)
cgroup on /sys/fs/cgroup/systemd type cgroup
(rw,nosuid,nodev,noexec,relatime,seclabel,xattr,release_agent=/usr/lib/systemd/systemd-
cgroups-agent,name=systemd)
cgroup on /sys/fs/cgroup/perf_event type cgroup
(rw,nosuid,nodev,noexec,relatime,seclabel,perf_event)
cgroup on /sys/fs/cgroup/cpu,cpuacct type cgroup
(rw,nosuid,nodev,noexec,relatime,seclabel,cpu,cpuacct)
cgroup on /sys/fs/cgroup/pids type cgroup (rw,nosuid,nodev,noexec,relatime,seclabel,pids)
cgroup on /sys/fs/cgroup/cpuset type cgroup
(rw,nosuid,nodev,noexec,relatime,seclabel,cpuset)
cgroup on /sys/fs/cgroup/net_cls,net_prio type cgroup
(rw,nosuid,nodev,noexec,relatime,seclabel,net_cls,net_prio)
cgroup on /sys/fs/cgroup/hugetlb type cgroup
(rw,nosuid,nodev,noexec,relatime,seclabel,hugetlb)
cgroup on /sys/fs/cgroup/memory type cgroup
(rw,nosuid,nodev,noexec,relatime,seclabel,memory)
cgroup on /sys/fs/cgroup/blkio type cgroup (rw,nosuid,nodev,noexec,relatime,seclabel,blkio)
cgroup on /sys/fs/cgroup/devices type cgroup
(rw,nosuid,nodev,noexec,relatime,seclabel,devices)
cgroup on /sys/fs/cgroup/misc type cgroup (rw,nosuid,nodev,noexec,relatime,seclabel,misc)
cgroup on /sys/fs/cgroup/freezer type cgroup
(rw,nosuid,nodev,noexec,relatime,seclabel,freezer)
cgroup on /sys/fs/cgroup/rdma type cgroup (rw,nosuid,nodev,noexec,relatime,seclabel,rdma)

The cgroups-v1 filesystems that correspond to various cgroup-v1 controllers, were
successfully mounted on the /sys/fs/cgroup/ directory.

2. Optionally, inspect the contents of the /sys/fs/cgroup/ directory:

ll /sys/fs/cgroup/
dr-xr-xr-x. 10 root root 0 Mar 16 09:34 blkio
lrwxrwxrwx. 1 root root 11 Mar 16 09:34 cpu → cpu,cpuacct
lrwxrwxrwx. 1 root root 11 Mar 16 09:34 cpuacct → cpu,cpuacct
dr-xr-xr-x. 10 root root 0 Mar 16 09:34 cpu,cpuacct
dr-xr-xr-x. 2 root root 0 Mar 16 09:34 cpuset
dr-xr-xr-x. 10 root root 0 Mar 16 09:34 devices
dr-xr-xr-x. 2 root root 0 Mar 16 09:34 freezer
dr-xr-xr-x. 2 root root 0 Mar 16 09:34 hugetlb
dr-xr-xr-x. 10 root root 0 Mar 16 09:34 memory
dr-xr-xr-x. 2 root root 0 Mar 16 09:34 misc
lrwxrwxrwx. 1 root root 16 Mar 16 09:34 net_cls → net_cls,net_prio
dr-xr-xr-x. 2 root root 0 Mar 16 09:34 net_cls,net_prio
lrwxrwxrwx. 1 root root 16 Mar 16 09:34 net_prio → net_cls,net_prio
dr-xr-xr-x. 2 root root 0 Mar 16 09:34 perf_event
dr-xr-xr-x. 10 root root 0 Mar 16 09:34 pids
dr-xr-xr-x. 2 root root 0 Mar 16 09:34 rdma
dr-xr-xr-x. 11 root root 0 Mar 16 09:34 systemd

The /sys/fs/cgroup/ directory, also called the root control group, by default, contains controller-
specific directories such as cpuset. In addition, there are some directories related to systemd.

Additional resources

Understanding control groups

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

152

What are kernel resource controllers

cgroups(7), sysfs(5) manual pages

cgroup-v2 enabled by default in RHEL 9

24.4. SETTING CPU LIMITS TO APPLICATIONS USING CGROUPS-V1

To configure CPU limits to an application by using control groups version 1 (cgroups-v1), use the
/sys/fs/ virtual file system.

Prerequisites

You have root permissions.

You have an application whose CPU consumption you want to restrict.

You configured the system to mount cgroups-v1 by default during system boot by the
systemd system and service manager:

grubby --update-kernel=/boot/vmlinuz-$(uname -r) --
args="systemd.unified_cgroup_hierarchy=0
systemd.legacy_systemd_cgroup_controller"

This adds the necessary kernel command-line parameters to the current boot entry.

Procedure

1. Identify the process ID (PID) of the application that you want to restrict in CPU consumption:

top
top - 11:34:09 up 11 min, 1 user, load average: 0.51, 0.27, 0.22
Tasks: 267 total, 3 running, 264 sleeping, 0 stopped, 0 zombie
%Cpu(s): 49.0 us, 3.3 sy, 0.0 ni, 47.5 id, 0.0 wa, 0.2 hi, 0.0 si, 0.0 st
MiB Mem : 1826.8 total, 303.4 free, 1046.8 used, 476.5 buff/cache
MiB Swap: 1536.0 total, 1396.0 free, 140.0 used. 616.4 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 6955 root 20 0 228440 1752 1472 R 99.3 0.1 0:32.71 sha1sum
 5760 jdoe 20 0 3603868 205188 64196 S 3.7 11.0 0:17.19 gnome-shell
 6448 jdoe 20 0 743648 30640 19488 S 0.7 1.6 0:02.73 gnome-terminal-
 1 root 20 0 245300 6568 4116 S 0.3 0.4 0:01.87 systemd
 505 root 20 0 0 0 0 I 0.3 0.0 0:00.75 kworker/u4:4-events_unbound
...

This example output of the top program reveals that illustrative application sha1sum with PID
6955 consumes a lot of CPU resources.

2. Create a sub-directory in the cpu resource controller directory:

mkdir /sys/fs/cgroup/cpu/Example/

This directory represents a control group, where you can place specific processes and apply
certain CPU limits to the processes. At the same time, a number of cgroups-v1 interface files
and cpu controller-specific files will be created in the directory.

CHAPTER 24. USING CGROUPFS TO MANUALLY MANAGE CGROUPS

153

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/9.0_release_notes/index#BZ-1953515

3. Optional: Inspect the newly created control group:

ll /sys/fs/cgroup/cpu/Example/
-rw-r— ​r--. 1 root root 0 Mar 11 11:42 cgroup.clone_children
-rw-r— ​r--. 1 root root 0 Mar 11 11:42 cgroup.procs
-r— ​r— ​r--. 1 root root 0 Mar 11 11:42 cpuacct.stat
-rw-r— ​r--. 1 root root 0 Mar 11 11:42 cpuacct.usage
-r— ​r— ​r--. 1 root root 0 Mar 11 11:42 cpuacct.usage_all
-r— ​r— ​r--. 1 root root 0 Mar 11 11:42 cpuacct.usage_percpu
-r— ​r— ​r--. 1 root root 0 Mar 11 11:42 cpuacct.usage_percpu_sys
-r— ​r— ​r--. 1 root root 0 Mar 11 11:42 cpuacct.usage_percpu_user
-r— ​r— ​r--. 1 root root 0 Mar 11 11:42 cpuacct.usage_sys
-r— ​r— ​r--. 1 root root 0 Mar 11 11:42 cpuacct.usage_user
-rw-r— ​r--. 1 root root 0 Mar 11 11:42 cpu.cfs_period_us
-rw-r— ​r--. 1 root root 0 Mar 11 11:42 cpu.cfs_quota_us
-rw-r— ​r--. 1 root root 0 Mar 11 11:42 cpu.rt_period_us
-rw-r— ​r--. 1 root root 0 Mar 11 11:42 cpu.rt_runtime_us
-rw-r— ​r--. 1 root root 0 Mar 11 11:42 cpu.shares
-r— ​r— ​r--. 1 root root 0 Mar 11 11:42 cpu.stat
-rw-r— ​r--. 1 root root 0 Mar 11 11:42 notify_on_release
-rw-r— ​r--. 1 root root 0 Mar 11 11:42 tasks

This example output shows files, such as cpuacct.usage, cpu.cfs._period_us, that represent
specific configurations and/or limits, which can be set for processes in the Example control
group. Note that the respective file names are prefixed with the name of the control group
controller to which they belong.

By default, the newly created control group inherits access to the system’s entire CPU
resources without a limit.

4. Configure CPU limits for the control group:

echo "1000000" > /sys/fs/cgroup/cpu/Example/cpu.cfs_period_us
echo "200000" > /sys/fs/cgroup/cpu/Example/cpu.cfs_quota_us

The cpu.cfs_period_us file represents a period of time in microseconds (µs, represented
here as "us") for how frequently a control group’s access to CPU resources should be
reallocated. The upper limit is 1 000 000 microsecond and the lower limit is 1 000
microseconds.

The cpu.cfs_quota_us file represents the total amount of time in microseconds for which
all processes collectively in a control group can run during one period (as defined by
cpu.cfs_period_us). When processes in a control group, during a single period, use up all
the time specified by the quota, they are throttled for the remainder of the period and not
allowed to run until the next period. The lower limit is 1 000 microseconds.
The example commands above set the CPU time limits so that all processes collectively in
the Example control group will be able to run only for 0.2 seconds (defined by
cpu.cfs_quota_us) out of every 1 second (defined by cpu.cfs_period_us).

5. Optional: Verify the limits:

cat /sys/fs/cgroup/cpu/Example/cpu.cfs_period_us
/sys/fs/cgroup/cpu/Example/cpu.cfs_quota_us
1000000
200000

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

154

6. Add the application’s PID to the Example control group:

echo "6955" > /sys/fs/cgroup/cpu/Example/cgroup.procs

This command ensures that a specific application becomes a member of the Example control
group and hence does not exceed the CPU limits configured for the Example control group.
The PID should represent an existing process in the system. The PID 6955 here was assigned to
process sha1sum /dev/zero &, used to illustrate the use case of the cpu controller.

Verification

1. Verify that the application runs in the specified control group:

cat /proc/6955/cgroup
12:cpuset:/
11:hugetlb:/
10:net_cls,net_prio:/
9:memory:/user.slice/user-1000.slice/user@1000.service
8:devices:/user.slice
7:blkio:/
6:freezer:/
5:rdma:/
4:pids:/user.slice/user-1000.slice/user@1000.service
3:perf_event:/
2:cpu,cpuacct:/Example
1:name=systemd:/user.slice/user-1000.slice/user@1000.service/gnome-terminal-
server.service

This example output shows that the process of the desired application runs in the Example
control group, which applies CPU limits to the application’s process.

2. Identify the current CPU consumption of your throttled application:

top
top - 12:28:42 up 1:06, 1 user, load average: 1.02, 1.02, 1.00
Tasks: 266 total, 6 running, 260 sleeping, 0 stopped, 0 zombie
%Cpu(s): 11.0 us, 1.2 sy, 0.0 ni, 87.5 id, 0.0 wa, 0.2 hi, 0.0 si, 0.2 st
MiB Mem : 1826.8 total, 287.1 free, 1054.4 used, 485.3 buff/cache
MiB Swap: 1536.0 total, 1396.7 free, 139.2 used. 608.3 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 6955 root 20 0 228440 1752 1472 R 20.6 0.1 47:11.43 sha1sum
 5760 jdoe 20 0 3604956 208832 65316 R 2.3 11.2 0:43.50 gnome-shell
 6448 jdoe 20 0 743836 31736 19488 S 0.7 1.7 0:08.25 gnome-terminal-
 505 root 20 0 0 0 0 I 0.3 0.0 0:03.39 kworker/u4:4-events_unbound
 4217 root 20 0 74192 1612 1320 S 0.3 0.1 0:01.19 spice-vdagentd
...

Note that the CPU consumption of the PID 6955 has decreased from 99% to 20%.

NOTE

The cgroups-v2 counterpart for cpu.cfs_period_us and cpu.cfs_quota_us is the
cpu.max file. The cpu.max file is available through the cpu controller.

CHAPTER 24. USING CGROUPFS TO MANUALLY MANAGE CGROUPS

155

Additional resources

Understanding control groups

What kernel resource controllers are

cgroups(7), sysfs(5) manual pages

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

156

CHAPTER 25. ANALYZING SYSTEM PERFORMANCE WITH
BPF COMPILER COLLECTION

As a system administrator, you can use the BPF Compiler Collection (BCC) library to create tools for
analyzing the performance of your Linux operating system and gathering information, which could be
difficult to obtain through other interfaces.

25.1. INSTALLING THE BCC-TOOLS PACKAGE

Install the bcc-tools package, which also installs the BPF Compiler Collection (BCC) library as a
dependency.

Procedure

1. Install bcc-tools.

dnf install bcc-tools

The BCC tools are installed in the /usr/share/bcc/tools/ directory.

2. Optionally, inspect the tools:

ll /usr/share/bcc/tools/
...
-rwxr-xr-x. 1 root root 4198 Dec 14 17:53 dcsnoop
-rwxr-xr-x. 1 root root 3931 Dec 14 17:53 dcstat
-rwxr-xr-x. 1 root root 20040 Dec 14 17:53 deadlock_detector
-rw-r--r--. 1 root root 7105 Dec 14 17:53 deadlock_detector.c
drwxr-xr-x. 3 root root 8192 Mar 11 10:28 doc
-rwxr-xr-x. 1 root root 7588 Dec 14 17:53 execsnoop
-rwxr-xr-x. 1 root root 6373 Dec 14 17:53 ext4dist
-rwxr-xr-x. 1 root root 10401 Dec 14 17:53 ext4slower
...

The doc directory in the listing above contains documentation for each tool.

25.2. USING SELECTED BCC-TOOLS FOR PERFORMANCE ANALYSES

Use certain pre-created programs from the BPF Compiler Collection (BCC) library to efficiently and
securely analyze the system performance on the per-event basis. The set of pre-created programs in
the BCC library can serve as examples for creation of additional programs.

Prerequisites

Installed bcc-tools package

Root permissions

Using execsnoop to examine the system processes

1. Run the execsnoop program in one terminal:

/usr/share/bcc/tools/execsnoop

CHAPTER 25. ANALYZING SYSTEM PERFORMANCE WITH BPF COMPILER COLLECTION

157

2. In another terminal run, for example:

$ ls /usr/share/bcc/tools/doc/

The above creates a short-lived process of the ls command.

3. The terminal running execsnoop shows the output similar to the following:

PCOMM PID PPID RET ARGS
ls 8382 8287 0 /usr/bin/ls --color=auto /usr/share/bcc/tools/doc/
...

The execsnoop program prints a line of output for each new process, which consumes system
resources. It even detects processes of programs that run very shortly, such as ls, and most
monitoring tools would not register them.

The execsnoop output displays the following fields:

PCOMM

The parent process name. (ls)

PID

The process ID. (8382)

PPID

The parent process ID. (8287)

RET

The return value of the exec() system call (0), which loads program code into new processes.

ARGS

The location of the started program with arguments.

To see more details, examples, and options for execsnoop, refer to the
/usr/share/bcc/tools/doc/execsnoop_example.txt file.

For more information about exec(), see exec(3) manual pages.

Using opensnoop to track what files a command opens

1. Run the opensnoop program in one terminal:

/usr/share/bcc/tools/opensnoop -n uname

The above prints output for files, which are opened only by the process of the uname command.

2. In another terminal, enter:

$ uname

The command above opens certain files, which are captured in the next step.

3. The terminal running opensnoop shows the output similar to the following:

PID COMM FD ERR PATH
8596 uname 3 0 /etc/ld.so.cache

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

158

8596 uname 3 0 /lib64/libc.so.6
8596 uname 3 0 /usr/lib/locale/locale-archive
...

The opensnoop program watches the open() system call across the whole system, and prints a
line of output for each file that uname tried to open along the way.

The opensnoop output displays the following fields:

PID

The process ID. (8596)

COMM

The process name. (uname)

FD

The file descriptor - a value that open() returns to refer to the open file. (3)

ERR

Any errors.

PATH

The location of files that open() tried to open.

If a command tries to read a non-existent file, then the FD column returns -1 and the ERR
column prints a value corresponding to the relevant error. As a result, opensnoop can help you
identify an application that does not behave properly.

To see more details, examples, and options for opensnoop, refer to the
/usr/share/bcc/tools/doc/opensnoop_example.txt file.

For more information about open(), see open(2) manual pages.

Using biotop to examine the I/O operations on the disk

1. Run the biotop program in one terminal:

/usr/share/bcc/tools/biotop 30

The command enables you to monitor the top processes, which perform I/O operations on the
disk. The argument ensures that the command will produce a 30 second summary.

NOTE

When no argument provided, the output screen by default refreshes every 1
second.

2. In another terminal enter, for example :

dd if=/dev/vda of=/dev/zero

The command above reads the content from the local hard disk device and writes the output to
the /dev/zero file. This step generates certain I/O traffic to illustrate biotop.

3. The terminal running biotop shows the output similar to the following:

CHAPTER 25. ANALYZING SYSTEM PERFORMANCE WITH BPF COMPILER COLLECTION

159

PID COMM D MAJ MIN DISK I/O Kbytes AVGms
9568 dd R 252 0 vda 16294 14440636.0 3.69
48 kswapd0 W 252 0 vda 1763 120696.0 1.65
7571 gnome-shell R 252 0 vda 834 83612.0 0.33
1891 gnome-shell R 252 0 vda 1379 19792.0 0.15
7515 Xorg R 252 0 vda 280 9940.0 0.28
7579 llvmpipe-1 R 252 0 vda 228 6928.0 0.19
9515 gnome-control-c R 252 0 vda 62 6444.0 0.43
8112 gnome-terminal- R 252 0 vda 67 2572.0 1.54
7807 gnome-software R 252 0 vda 31 2336.0 0.73
9578 awk R 252 0 vda 17 2228.0 0.66
7578 llvmpipe-0 R 252 0 vda 156 2204.0 0.07
9581 pgrep R 252 0 vda 58 1748.0 0.42
7531 InputThread R 252 0 vda 30 1200.0 0.48
7504 gdbus R 252 0 vda 3 1164.0 0.30
1983 llvmpipe-1 R 252 0 vda 39 724.0 0.08
1982 llvmpipe-0 R 252 0 vda 36 652.0 0.06
...

The biotop output displays the following fields:

PID

The process ID. (9568)

COMM

The process name. (dd)

DISK

The disk performing the read operations. (vda)

I/O

The number of read operations performed. (16294)

Kbytes

The amount of Kbytes reached by the read operations. (14,440,636)

AVGms

The average I/O time of read operations. (3.69)

To see more details, examples, and options for biotop, refer to the
/usr/share/bcc/tools/doc/biotop_example.txt file.

For more information about dd, see dd(1) manual pages.

Using xfsslower to expose unexpectedly slow file system operations

1. Run the xfsslower program in one terminal:

/usr/share/bcc/tools/xfsslower 1

The command above measures the time the XFS file system spends in performing read, write,
open or sync (fsync) operations. The 1 argument ensures that the program shows only the
operations that are slower than 1 ms.

NOTE

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

160

NOTE

When no arguments provided, xfsslower by default displays operations slower
than 10 ms.

2. In another terminal enter, for example, the following:

$ vim text

The command above creates a text file in the vim editor to initiate certain interaction with the
XFS file system.

3. The terminal running xfsslower shows something similar upon saving the file from the previous
step:

TIME COMM PID T BYTES OFF_KB LAT(ms) FILENAME
13:07:14 b'bash' 4754 R 256 0 7.11 b'vim'
13:07:14 b'vim' 4754 R 832 0 4.03 b'libgpm.so.2.1.0'
13:07:14 b'vim' 4754 R 32 20 1.04 b'libgpm.so.2.1.0'
13:07:14 b'vim' 4754 R 1982 0 2.30 b'vimrc'
13:07:14 b'vim' 4754 R 1393 0 2.52 b'getscriptPlugin.vim'
13:07:45 b'vim' 4754 S 0 0 6.71 b'text'
13:07:45 b'pool' 2588 R 16 0 5.58 b'text'
...

Each line above represents an operation in the file system, which took more time than a certain
threshold. xfsslower is good at exposing possible file system problems, which can take form of
unexpectedly slow operations.

The xfsslower output displays the following fields:

COMM

The process name. (b’bash')

T

The operation type. (R)

Read

Write

Sync

OFF_KB

The file offset in KB. (0)

FILENAME

The file being read, written, or synced.

To see more details, examples, and options for xfsslower, refer to the
/usr/share/bcc/tools/doc/xfsslower_example.txt file.

For more information about fsync, see fsync(2) manual pages.

CHAPTER 25. ANALYZING SYSTEM PERFORMANCE WITH BPF COMPILER COLLECTION

161

Red Hat Enterprise Linux 9 Managing, monitoring, and updating the kernel

162

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. THE LINUX KERNEL
	1.1. WHAT THE KERNEL IS
	1.2. RPM PACKAGES
	1.3. THE LINUX KERNEL RPM PACKAGE OVERVIEW
	1.4. DISPLAYING CONTENTS OF A KERNEL PACKAGE
	1.5. INSTALLING SPECIFIC KERNEL VERSIONS
	1.6. UPDATING THE KERNEL
	1.7. SETTING A KERNEL AS DEFAULT

	CHAPTER 2. THE 64K PAGE SIZE KERNEL
	CHAPTER 3. MANAGING KERNEL MODULES
	3.1. INTRODUCTION TO KERNEL MODULES
	3.2. KERNEL MODULE DEPENDENCIES
	3.3. LISTING INSTALLED KERNEL MODULES
	3.4. LISTING CURRENTLY LOADED KERNEL MODULES
	3.5. DISPLAYING INFORMATION ABOUT KERNEL MODULES
	3.6. LOADING KERNEL MODULES AT SYSTEM RUNTIME
	3.7. UNLOADING KERNEL MODULES AT SYSTEM RUNTIME
	3.8. UNLOADING KERNEL MODULES AT EARLY STAGES OF THE BOOT PROCESS
	3.9. LOADING KERNEL MODULES AUTOMATICALLY AT SYSTEM BOOT TIME
	3.10. PREVENTING KERNEL MODULES FROM BEING AUTOMATICALLY LOADED AT SYSTEM BOOT TIME
	3.11. COMPILING CUSTOM KERNEL MODULES

	CHAPTER 4. CONFIGURING KERNEL COMMAND-LINE PARAMETERS
	4.1. WHAT ARE KERNEL COMMAND-LINE PARAMETERS
	4.2. UNDERSTANDING BOOT ENTRIES
	4.3. CHANGING KERNEL COMMAND-LINE PARAMETERS FOR ALL BOOT ENTRIES
	4.4. CHANGING KERNEL COMMAND-LINE PARAMETERS FOR A SINGLE BOOT ENTRY
	4.5. CHANGING KERNEL COMMAND-LINE PARAMETERS TEMPORARILY AT BOOT TIME
	4.6. CONFIGURING GRUB SETTINGS TO ENABLE SERIAL CONSOLE CONNECTION
	4.7. CHANGING BOOT ENTRIES WITH THE GRUB CONFIGURATION FILE

	CHAPTER 5. CONFIGURING KERNEL PARAMETERS AT RUNTIME
	5.1. WHAT ARE KERNEL PARAMETERS
	5.2. CONFIGURING KERNEL PARAMETERS TEMPORARILY WITH SYSCTL
	5.3. CONFIGURING KERNEL PARAMETERS PERMANENTLY WITH SYSCTL
	5.4. USING CONFIGURATION FILES IN /ETC/SYSCTL.D/ TO ADJUST KERNEL PARAMETERS
	5.5. CONFIGURING KERNEL PARAMETERS TEMPORARILY THROUGH /PROC/SYS/
	5.6. ADDITIONAL RESOURCES

	CHAPTER 6. CONFIGURING KERNEL PARAMETERS PERMANENTLY BY USING THE KERNEL_SETTINGS RHEL SYSTEM ROLE
	6.1. INTRODUCTION TO THE KERNEL_SETTINGS ROLE
	6.2. APPLYING SELECTED KERNEL PARAMETERS BY USING THE KERNEL_SETTINGS ROLE

	CHAPTER 7. APPLYING PATCHES WITH KERNEL LIVE PATCHING
	7.1. LIMITATIONS OF KPATCH
	7.2. SUPPORT FOR THIRD-PARTY LIVE PATCHING
	7.3. ACCESS TO KERNEL LIVE PATCHES
	7.4. COMPONENTS OF KERNEL LIVE PATCHING
	7.5. HOW KERNEL LIVE PATCHING WORKS
	7.6. SUBSCRIBING THE CURRENTLY INSTALLED KERNELS TO THE LIVE PATCHING STREAM
	7.7. AUTOMATICALLY SUBSCRIBING ANY FUTURE KERNEL TO THE LIVE PATCHING STREAM
	7.8. DISABLING AUTOMATIC SUBSCRIPTION TO THE LIVE PATCHING STREAM
	7.9. UPDATING KERNEL PATCH MODULES
	7.10. REMOVING THE LIVE PATCHING PACKAGE
	7.11. UNINSTALLING THE KERNEL PATCH MODULE
	7.12. DISABLING KPATCH.SERVICE

	CHAPTER 8. KEEPING KERNEL PANIC PARAMETERS DISABLED IN VIRTUALIZED ENVIRONMENTS
	8.1. WHAT IS A SOFT LOCKUP
	8.2. PARAMETERS CONTROLLING KERNEL PANIC
	8.3. SPURIOUS SOFT LOCKUPS IN VIRTUALIZED ENVIRONMENTS

	CHAPTER 9. ADJUSTING KERNEL PARAMETERS FOR DATABASE SERVERS
	9.1. INTRODUCTION TO DATABASE SERVERS
	9.2. PARAMETERS AFFECTING PERFORMANCE OF DATABASE APPLICATIONS

	CHAPTER 10. GETTING STARTED WITH KERNEL LOGGING
	10.1. WHAT IS THE KERNEL RING BUFFER
	10.2. ROLE OF PRINTK ON LOG-LEVELS AND KERNEL LOGGING

	CHAPTER 11. REINSTALLING GRUB
	11.1. REINSTALLING GRUB ON BIOS-BASED MACHINES
	11.2. REINSTALLING GRUB ON UEFI-BASED MACHINES
	11.3. REINSTALLING GRUB ON IBM POWER MACHINES
	11.4. RESETTING GRUB

	CHAPTER 12. INSTALLING KDUMP
	12.1. WHAT IS KDUMP
	12.2. INSTALLING KDUMP USING ANACONDA
	12.3. INSTALLING KDUMP ON THE COMMAND LINE

	CHAPTER 13. CONFIGURING KDUMP ON THE COMMAND LINE
	13.1. ESTIMATING THE KDUMP SIZE
	13.2. CONFIGURING KDUMP MEMORY USAGE ON RHEL 9
	13.3. CONFIGURING THE KDUMP TARGET
	13.4. CONFIGURING THE KDUMP CORE COLLECTOR
	13.5. CONFIGURING THE KDUMP DEFAULT FAILURE RESPONSES
	13.6. CONFIGURATION FILE FOR KDUMP
	13.7. TESTING THE KDUMP CONFIGURATION
	13.8. FILES PRODUCED BY KDUMP AFTER SYSTEM CRASH
	13.9. ENABLING AND DISABLING THE KDUMP SERVICE
	13.10. PREVENTING KERNEL DRIVERS FROM LOADING FOR KDUMP
	13.11. RUNNING KDUMP ON SYSTEMS WITH ENCRYPTED DISK

	CHAPTER 14. ENABLING KDUMP
	14.1. ENABLING KDUMP FOR ALL INSTALLED KERNELS
	14.2. ENABLING KDUMP FOR A SPECIFIC INSTALLED KERNEL
	14.3. DISABLING THE KDUMP SERVICE

	CHAPTER 15. SUPPORTED KDUMP CONFIGURATIONS AND TARGETS
	15.1. MEMORY REQUIREMENTS FOR KDUMP
	15.2. MINIMUM THRESHOLD FOR AUTOMATIC MEMORY RESERVATION
	15.3. SUPPORTED KDUMP TARGETS
	15.4. SUPPORTED KDUMP FILTERING LEVELS
	15.5. SUPPORTED DEFAULT FAILURE RESPONSES
	15.6. USING FINAL_ACTION PARAMETER
	15.7. USING FAILURE_ACTION PARAMETER

	CHAPTER 16. FIRMWARE ASSISTED DUMP MECHANISMS
	16.1. FIRMWARE ASSISTED DUMP ON IBM POWERPC HARDWARE
	16.2. ENABLING FIRMWARE ASSISTED DUMP MECHANISM
	16.3. FIRMWARE ASSISTED DUMP MECHANISMS ON IBM Z HARDWARE
	16.4. USING SADUMP ON FUJITSU PRIMEQUEST SYSTEMS

	CHAPTER 17. ANALYZING A CORE DUMP
	17.1. INSTALLING THE CRASH UTILITY
	17.2. RUNNING AND EXITING THE CRASH UTILITY
	17.3. DISPLAYING VARIOUS INDICATORS IN THE CRASH UTILITY
	17.4. USING KERNEL OOPS ANALYZER
	17.5. THE KDUMP HELPER TOOL

	CHAPTER 18. USING EARLY KDUMP TO CAPTURE BOOT TIME CRASHES
	18.1. WHAT IS EARLY KDUMP
	18.2. ENABLING EARLY KDUMP

	CHAPTER 19. SIGNING A KERNEL AND MODULES FOR SECURE BOOT
	19.1. PREREQUISITES
	19.2. WHAT IS UEFI SECURE BOOT
	19.3. UEFI SECURE BOOT SUPPORT
	19.4. REQUIREMENTS FOR AUTHENTICATING KERNEL MODULES WITH X.509 KEYS
	19.5. SOURCES FOR PUBLIC KEYS
	19.6. GENERATING A PUBLIC AND PRIVATE KEY PAIR
	19.7. EXAMPLE OUTPUT OF SYSTEM KEYRINGS
	19.8. ENROLLING PUBLIC KEY ON TARGET SYSTEM BY ADDING THE PUBLIC KEY TO THE MOK LIST
	19.9. SIGNING A KERNEL WITH THE PRIVATE KEY
	19.10. SIGNING A GRUB BUILD WITH THE PRIVATE KEY
	19.11. SIGNING KERNEL MODULES WITH THE PRIVATE KEY
	19.12. LOADING SIGNED KERNEL MODULES

	CHAPTER 20. UPDATING THE SECURE BOOT REVOCATION LIST
	20.1. PREREQUISITES
	20.2. WHAT IS UEFI SECURE BOOT
	20.3. THE SECURE BOOT REVOCATION LIST
	20.4. APPLYING AN ONLINE REVOCATION LIST UPDATE
	20.5. APPLYING AN OFFLINE REVOCATION LIST UPDATE

	CHAPTER 21. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM
	21.1. THE KERNEL INTEGRITY SUBSYSTEM
	21.2. TRUSTED AND ENCRYPTED KEYS
	21.3. WORKING WITH TRUSTED KEYS
	21.4. WORKING WITH ENCRYPTED KEYS
	21.5. ENABLING IMA AND EVM
	21.6. COLLECTING FILE HASHES WITH INTEGRITY MEASUREMENT ARCHITECTURE
	21.7. ADDING IMA SIGNATURES TO PACKAGE FILES
	21.8. ENABLING KERNEL RUNTIME INTEGRITY MONITORING
	21.9. CREATING CUSTOM IMA KEYS USING OPENSSL
	21.10. DEPLOYING A CUSTOM SIGNED IMA POLICY FOR UEFI SYSTEMS

	CHAPTER 22. USING SYSTEMD TO MANAGE RESOURCES USED BY APPLICATIONS
	22.1. ROLE OF SYSTEMD IN RESOURCE MANAGEMENT
	22.2. DISTRIBUTION MODELS OF SYSTEM SOURCES
	22.3. ALLOCATING SYSTEM RESOURCES USING SYSTEMD
	22.4. OVERVIEW OF SYSTEMD HIERARCHY FOR CGROUPS
	22.5. LISTING SYSTEMD UNITS
	22.6. VIEWING SYSTEMD CGROUPS HIERARCHY
	22.7. VIEWING CGROUPS OF PROCESSES
	22.8. MONITORING RESOURCE CONSUMPTION
	22.9. USING SYSTEMD UNIT FILES TO SET LIMITS FOR APPLICATIONS
	22.10. USING SYSTEMCTL COMMAND TO SET LIMITS TO APPLICATIONS
	22.11. SETTING GLOBAL DEFAULT CPU AFFINITY THROUGH MANAGER CONFIGURATION
	22.12. CONFIGURING NUMA POLICIES USING SYSTEMD
	22.13. NUMA POLICY CONFIGURATION OPTIONS FOR SYSTEMD
	22.14. CREATING TRANSIENT CGROUPS USING SYSTEMD-RUN COMMAND
	22.15. REMOVING TRANSIENT CONTROL GROUPS

	CHAPTER 23. UNDERSTANDING CONTROL GROUPS
	23.1. INTRODUCING CONTROL GROUPS
	23.2. INTRODUCING KERNEL RESOURCE CONTROLLERS
	23.3. INTRODUCING NAMESPACES

	CHAPTER 24. USING CGROUPFS TO MANUALLY MANAGE CGROUPS
	24.1. CREATING CGROUPS AND ENABLING CONTROLLERS IN CGROUPS-V2 FILE SYSTEM
	24.2. CONTROLLING DISTRIBUTION OF CPU TIME FOR APPLICATIONS BY ADJUSTING CPU WEIGHT
	24.3. MOUNTING CGROUPS-V1
	24.4. SETTING CPU LIMITS TO APPLICATIONS USING CGROUPS-V1

	CHAPTER 25. ANALYZING SYSTEM PERFORMANCE WITH BPF COMPILER COLLECTION
	25.1. INSTALLING THE BCC-TOOLS PACKAGE
	25.2. USING SELECTED BCC-TOOLS FOR PERFORMANCE ANALYSES
	Using execsnoop to examine the system processes
	Using opensnoop to track what files a command opens
	Using biotop to examine the I/O operations on the disk
	Using xfsslower to expose unexpectedly slow file system operations

