& RedHat

Red Hat Enterprise Linux 8

Customizing Anaconda

Changing the installer appearance and creating custom add-ons on Red Hat
Enterprise Linux

Last Updated: 2024-05-23






Red Hat Enterprise Linux 8 Customizing Anaconda

Changing the installer appearance and creating custom add-ons on Red Hat Enterprise Linux



Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Anaconda is the installer used by Red Hat Enterprise Linux. You can customize Anaconda for
extending capabilities when you install RHEL in your environment.



Table of Contents

MAKING OPEN SOURCE MOREINCLUSIVE ... . i

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ..........coiiiiiiiiia.t,

CHAPTER 1. INTRODUCTION TO ANACONDA CUSTOMIZATION .........cooiiiiian,

1.1. INTRODUCTION TO ANACONDA CUSTOMIZATION

CHAPTER 2. PERFORMING THE PRE-CUSTOMIZATION TASKS ..............ooial.

2.1. WORKING WITH ISO IMAGES
2.2. DOWNLOADING RH BOOT IMAGES
2.3. EXTRACTING RED HAT ENTERPRISE LINUX BOOT IMAGES

CHAPTER 3. CUSTOMIZING THEBOOTMENU ... ...

3.1. CUSTOMIZING THE BOOT MENU
3.2. SYSTEMS WITH BIOS FIRMWARE
3.3. SYSTEMS WITH UEFI FIRMWARE

CHAPTER 4. BRANDING AND CHROMING THE GRAPHICAL USER INTERFACE .......

4.1. CUSTOMIZING GRAPHICAL ELEMENTS

4.2. CUSTOMIZING THE PRODUCT NAME

4.3. CUSTOMIZING THE DEFAULT CONFIGURATION
4.3.1. Configuring the default configuration files
4.3.2. Configuring the product configuration files
4.3.3. Configuring the custom configuration files

CHAPTER 5. DEVELOPING INSTALLERADD-ONS ... ...

5.1. INTRODUCTION TO ANACONDA AND ADD-ONS

5.2. ANACONDA ARCHITECTURE

5.3. ANACONDA USER INTERFACE

5.4. COMMUNICATION ACROSS ANACONDA THREADS

5.5. ANACONDA MODULES AND D-BUS LIBRARY

5.6. THE HELLO WORLD ADDON EXAMPLE

5.7. ANACONDA ADD-ON STRUCTURE

5.8. ANACONDA SERVICES AND CONFIGURATION FILES

5.9. GUI ADD-ON BASIC FEATURES

5.10. ADDING SUPPORT FOR THE ADD-ON GRAPHICAL USER INTERFACE (GUI)
5.11. ADD-ON GUI ADVANCED FEATURES

5.12. TUIT ADD-ON BASIC FEATURES

5.13. DEFINING A SIMPLE TUI SPOKE

5.14. USING NORMALTUISPOKE TO DEFINE A TEXT INTERFACE SPOKE
5.15. DEPLOYING AND TESTING AN ANACONDA ADD-ON

CHAPTER 6. COMPLETING POST CUSTOMIZATIONTASKS ...,

6.1. CREATING A PRODUCT.IMG FILE
6.2. CREATING CUSTOM BOOT IMAGES

Table of Contents

.................. 22

22
22
24
25
25
26
26
27
28
28
34
35
36
39

41

43
45



Red Hat Enterprise Linux 8 Customizing Anaconda




MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.


https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat Enterprise Linux 8 Customizing Anaconda

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Login to the Jira website.
2. Click Create in the top navigation bar.
3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.


https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. INTRODUCTION TO ANACONDA CUSTOMIZATION

CHAPTER 1. INTRODUCTION TO ANACONDA
CUSTOMIZATION

1.1. INTRODUCTION TO ANACONDA CUSTOMIZATION
The Red Hat Enterprise Linux and Fedora installation program, Anaconda, brings many improvements
in its most recent versions. One of these improvements is enhanced customizability. You can now write

add-ons to extend the base installer functionality, and change the appearance of the graphical user
interface.

This document will explain how to customize the following:
® Boot menu - pre-configured options, color scheme and background
® Appearance of the graphical interface - logo, backgrounds, product name

® |nstaller functionality - add-ons which can enhance the installer by adding new Kickstart
commands and new screens in the graphical and textual user interfaces

Also note that this document applies only to Red Hat Enterprise Linux 8 and Fedora 17 and later.

IMPORTANT

Procedures described in this book are written for Red Hat Enterprise Linux 8 or a similar
system. On other systems, the tools and applications used (such as genisoimage for
creating custom ISO images) may be different, and procedures may need to be adjusted.




Red Hat Enterprise Linux 8 Customizing Anaconda

CHAPTER 2. PERFORMING THE PRE-CUSTOMIZATION TASKS

2.1. WORKING WITH ISO IMAGES
In this section, you will learn how to:
® FExtracta Red Hat ISO.

® Create a new boot image containing your customizations.

2.2. DOWNLOADING RH BOOT IMAGES

Before you begin to customize the installer, download the Red Hat-provided boot images. You can
obtain Red Hat Enterprise Linux 8 boot media from the Red Hat Customer Portal after login to your
account.

NOTE

® Your account must have sufficient entitlements to download Red Hat
Enterprise Linux 8 images.

® You must download either the Binary DVD or Boot ISO image and can use any
of the image variants (Server or ComputeNode).

® You cannot customize the installer using the other available downloads, such as
the KVM Guest Image or Supplementary DVD; other available downloads, such as
the KVM Guest Image or Supplementary DVD.

For more information about the Binary DVD and Boot ISO downloads, see Red Hat Enterprise Linux 8
Performing an advanced RHEL 8 installation.

2.3. EXTRACTING RED HAT ENTERPRISE LINUX BOOT IMAGES

Perform the following procedure to extract the contents of a boot image.

Procedure

1. Ensure that the directory /mnt/iso exists and nothing is currently mounted there.

2. Mount the downloaded image.
I # mount -t is09660 -o loop path/to/image.iso /mnt/iso
Where path/to/image.iso is the path to the downloaded boot image.
3. Create a working directory where you want to place the contents of the ISO image.

I $ mkdir /tmp/ISO

4. Copy all contents of the mounted image to your new working directory. Make sure to use the -p
option to preserve file and directory permissions and ownership.


https://access.redhat.com/downloads/content/479/ver=/rhel---8/8.1/x86_64/product-software
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_an_advanced_rhel_8_installation/index

CHAPTER 2. PERFORMING THE PRE-CUSTOMIZATION TASKS

I # cp -pRf /mnt/iso /tmp/ISO
5. Unmount the image.

I # umount /mnt/iso

Additional resources

® For detailed download instructions and description of the Binary DVD and Boot ISO downloads,
see the Red Hat Enterprise Linux 8.


https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_an_advanced_rhel_8_installation/index

Red Hat Enterprise Linux 8 Customizing Anaconda

CHAPTER 3. CUSTOMIZING THE BOOT MENU

This section provides information about what the Boot menu customization is, and how to customize it.

Prerequisites:

For information about downloading and extracting Boot images, see Extracting Red Hat Enterprise
Linux boot images

The Boot menu customization involves the following high-level tasks:
1. Complete the prerequisites.
2. Customize the Boot menu.

3. Create a custom Boot image.

3.1. CUSTOMIZING THE BOOT MENU

The Boot menu is the menu which appears after you boot your system using an installation image.
Normally, this menu allows you to choose between options such as Install Red Hat Enterprise Linux,
Boot from local drive or Rescue an installed system. To customize the Boot menu, you can:

® Customize the default options.

® Add more options.

® Change the visual style (color and background).
An installation media consists of ISOLINUX and GRUB2 boot loaders. The ISOLINUX boot loader is
used on systems with BIOS firmware, and the GRUB2 boot loader is used on systems with UEF]I
firmware. Both the boot loaders are present on all Red Hat images for AMD64 and Intel 64 systems.
Customizing the boot menu options can especially be useful with Kickstart. Kickstart files must be
provided to the installer before the installation begins. Normally, this is done by manually editing one of

the existing boot options to add the inst.ks= boot option. You can add this option to one of the pre-
configured entries, if you edit boot loader configuration files on the media.

3.2.SYSTEMS WITH BIOS FIRMWARE

The ISOLINUX boot loader is used on systems with BIOS firmware.



Figure 3.1. ISOLINUX Boot Menu

Red Hat Enterprise Linux 8.3

Install Red Hat Enterprise Linux 8.3
Test this media & install Red Hat Enterprise Linux 8.3

Troubleshoot ing

The isolinux/isolinux.cfg configuration file on the boot media contains directives for setting the color
scheme and the menu structure (entries and submenus).

In the configuration file, the default menu entry for Red Hat Enterprise Linux, Test this media & Install
Red Hat Enterprise Linux 8, is defined in the following block:

label check

menu label Test this *media & install Red Hat Enterprise Linux 8.

menu default

kernel vmlinuz

append initrd=initrd.img inst.stage2=hd:LABEL=RHEL-8-BaseOS-x86_64 rd.live.check
quiet

Where:

e menu label - determines how the entry will be named in the menu. The A character determines
its keyboard shortcut (the m key).

e menu default - provides a default selection, even though it is not the first option in the list.
® Kkernel - loads the installer kernel. In most cases it should not be changed.

® append - contains additional kernel options. The initrd= and inst.stage2 options are
mandatory; you can add others.
For information about the options that are applicable to Anaconda refer to Red Hat
Enterprise Linux 8 Performing a standard RHEL 8 installation Guide.

One of the notable options is inst.ks=, which allows you to specify a location of a Kickstart file.
You can place a Kickstart file on the boot ISO image and use the inst.ks= option to specify its
location; for example, you can place a kickstart.ks file into the image’s root directory and use
inst.ks=hd:LABEL=RHEL-8-BaseOS-x86_64:/kickstart.ks.

You can also use dracut options which are listed on the dracut.cmdline(7) man page.


https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_a_standard_rhel_8_installation/index#types-of-boot-options_booting-the-installer

Red Hat Enterprise Linux 8 Customizing Anaconda

IMPORTANT

When using a disk label to refer to a certain drive (as seenin the
inst.stage2=hd:LABEL=RHEL-8-BaseOS-x86_64 option above), replace all
spaces with \x20.

Other important options which are not included in the menu entry definition are:

e timeout - determines the time for which the boot menu is displayed before the default menu
entry is automatically used. The default value is 600, which means the menu is displayed for 60
seconds. Setting this value to 0 disables the timeout option.

NOTE

Setting the timeout to a low value such as 1 is useful when performing a headless
installation. This helps to avoid the default timeout to finish.

e menu begin and menu end - determines a start and end of a submenu block, allowing you to
add additional options such as troubleshooting and grouping them in a submenu. A simple
submenu with two options (one to continue and one to go back to the main menu) looks similar
to the following:

menu begin ATroubleshooting
menu title Troubleshooting

label rescue

menu label "Rescue a Red Hat Enterprise Linux system

kernel vmlinuz

append initrd=initrd.img inst.stage2=hd:LABEL=RHEL-8-BaseOS-x86_64 rescue quiet
menu separator
label returntomain

menu label Return to “main menu

menu exit

menu end

The submenu entry definitions are similar to normal menu entries, but grouped between menu
begin and menu end statements. The menu exit line in the second option exits the submenu
and returns to the main menu.

e menu background - the menu background can either be a solid color (see  menu color below),
or animage in a PNG, JPEG or LSS16 format. When using an image, make sure that its
dimensions correspond to the resolution set using the set resolution statement. Default
dimensions are 640x480.

® menu color - determines the color of a menu element. The full format is:
I menu color element ansi foreground background shadow

Most important parts of this command are:

® element - determines which element the color will apply to.

10



CHAPTER 3. CUSTOMIZING THE BOOT MENU

foreground and background - determine the actual colors.
The colors are described using an #4ARRGGBB notation in hexadecimal format determines
opacity:

00 for fully transparent.
ff for fully opaque.

menu help textfile - creates a menu entry which, when selected, displays a help text file.

Additional resources

For a complete list of ISOLINUX configuration file options, see the Syslinux Wiki.

3.3.SYSTEMS WITH UEFI FIRMWARE

The GRUB2 boot loader is used on systems with UEF| firmware.

The EFI/BOOT/grub.cfg configuration file on the boot media contains a list of preconfigured menu
entries and other directives which controls the appearance and the Boot menu functionality.

In the configuration file, the default menu entry for Red Hat Enterprise Linux (Test this media & install
Red Hat Enterprise Linux 8) is defined in the following block:

menuentry 'Test this media & install Red Hat Enterprise Linux 8' --class fedora --class gnu-linux -
-class gnu --class os {

linuxefi /images/pxeboot/vmlinuz inst.stage2=hd:LABEL=RHEL-8-BaseOS-x86_64 rd.live.check
quiet

initrdefi /images/pxeboot/initrd.img

}

Where:

menuentry - Defines the title of the entry. It is specified in single or double quotes ( " or "). You
can use the --class option to group menu entries into different classes, which can then be styled
differently using GRUB2 themes.

NOTE

As shown in the above example, you must enclose each menu entry definition in
curly braces ({}).

linuxefi - Defines the kernel that boots ( /images/pxeboot/vmlinuz in the above example) and
the other additional options, if any.

You can customize these options to change the behavior of the boot entry. For details about
the options that are applicable to Anaconda, see Performing an advanced RHEL 8 installation .

One of the notable options is inst.ks=, which allows you to specify a location of a Kickstart file.
You can place a Kickstart file on the boot ISO image and use the inst.ks= option to specify its
location; for example, you can place a kickstart.ks file into the image’s root directory and use
inst.ks=hd:LABEL=RHEL-8-BaseOS-x86_64:/kickstart.ks.

You can also use dracut options which are listed on the dracut.cmdline(7) man page.

1


http://www.syslinux.org/wiki/index.php/Comboot/menu.c32
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_an_advanced_rhel_8_installation/index#kickstart-and-advanced-boot-options_installing-rhel-as-an-experienced-user

Red Hat Enterprise Linux 8 Customizing Anaconda

IMPORTANT

When using a disk label to refer to a certain drive (as seenin the
inst.stage2=hd:LABEL=RHEL-8-BaseO0S-x86_64 option above), replace all
spaces with \x20.

o initrdefi - location of the initial RAM disk (initrd) image to be loaded.
Other options used in the grub.cfg configuration file are:
e set timeout - determines how long is the boot menu displayed before the default menu entry is

automatically used. The default value is 60, which means the menu is displayed for 60 seconds.
Setting this value to -1 disables the timeout completely.

NOTE

Setting the timeout to 0 is useful when performing a headless installation,
because this setting immediately activates the default boot entry.

® submenu - A submenu block allows you to create a sub-menu and group some entries under it,
instead of displaying them in the main menu. The Troubleshooting submenu in the default
configuration contains entries for rescuing an existing system.
The title of the entry is in single or double quotes (" or ™).

The submenu block contains one or more menuentry definitions as described above, and the
entire block is enclosed in curly braces ({}). For example:

submenu 'Submenu title' {
menuentry 'Submenu option 1' {
linuxefi /images/vmlinuz inst.stage2=hd:LABEL=RHEL-8-BaseOS-x86_64 xdriver=vesa
nomodeset quiet
initrdefi /images/pxeboot/initrd.img
}
menuentry 'Submenu option 2' {
linuxefi /images/vmlinuz inst.stage2=hd:LABEL=RHEL-8-BaseOS-x86_64 rescue quiet
initrdefi /images/initrd.img
}
}

o set default - Determines the default entry. The entry numbers start from 0. If you want to make
the third entry the default one, use set default=2 and so on.

e theme - determines the directory which contains GRUB2 theme files. You can use the themes

to customize visual aspects of the boot loader - background, fonts, and colors of specific
elements.

Additional resources

® For additional information about customizing the boot menu, see GNU GRUB Manual 2.00.

® For more general information about GRUB2, see Managing, monitoring and updating the kernel.

12


https://www.gnu.org/software/grub/manual/grub.html#Theme-file-format
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#configuring-kernel-command-line-parameters_managing-monitoring-and-updating-the-kernel

CHAPTER 4. BRANDING AND CHROMING THE GRAPHICAL USER INTERFACE

CHAPTER 4. BRANDING AND CHROMING THE GRAPHICAL
USER INTERFACE

The customization of Anaconda user interface may include the customization of graphical elements and
the customization of product name.

This section provides information about how to customize the graphical elements and the product name.

Prerequisites

1. You have downloaded and extracted the ISO image.
2. You have created your own branding material.

For information about downloading and extracting boot images, see Extracting Red Hat Enterprise
Linux boot images

The user interface customization involves the following high-level tasks:
1. Complete the prerequisites.
2. Create custom branding material (if you plan to customize the graphical elements)
3. Customize the graphical elements (if you plan to customize it)
4. Customize the product name (if you plan to customize it)
5. Create a product.img file

6. Create a custom Boot image

NOTE

To create the custom branding material, first refer to the default graphical element files
type and dimensions. You can accordingly create the custom material. Details about
default graphical elements are available in the sample files that are provided in the
Customizing graphical elements section.

4.1. CUSTOMIZING GRAPHICAL ELEMENTS

To customize the graphical elements, you can modify or replace the customisable elements with the
custom branded material, and update the container files.

The customisable graphical elements of the installer are stored in the /usr/share/anaconda/pixmaps/
directory in the installer runtime file system. This directory contains the following customisable files:

pixmaps

— anaconda-password-show-off.svg
— anaconda-password-show-on.svg
— right-arrow-icon.png

— sidebar-bg.png

— sidebar-logo.png

— topbar-bg.png

13



Red Hat Enterprise Linux 8 Customizing Anaconda

Additionally, the /usr/share/anaconda/ directory contains a CSS stylesheet named anaconda-gtk.css,
which determines the file names and parameters of the main Ul elements - the logo and the
backgrounds for the sidebar and top bar. The file has the following contents that can be customized as
per your requirement:

/* theme colors/images */
@define-color product_bg_color @redhat;
/* logo and sidebar classes */

.logo-sidebar {
background-image: url('/usr/share/anaconda/pixmaps/sidebar-bg.png');
background-color: @product_bg_color;
background-repeat: no-repeat;

}

/* Add a logo to the sidebar */

Jogo {
background-image: url('/usr/share/anaconda/pixmaps/sidebar-logo.png');
background-position: 50% 20px;
background-repeat: no-repeat;
background-color: transparent;

}

/* This is a placeholder to be filled by a product-specific logo. */

.product-logo {
background-image: none;
background-color: transparent;

}

AnacondaSpokeWindow #nav-box {
background-color: @product_bg_color;
background-image: url('/usr/share/anaconda/pixmaps/topbar-bg.png’);
background-repeat: no-repeat;
color: white;

}

The most important part of the CSS file is the way in which it handles scaling based on resolution. The
PNG image backgrounds do not scale, they are always displayed in their true dimensions. Instead, the

backgrounds have a transparent background, and the stylesheet defines a matching background color
on the @define-color line. Therefore, the background images "fade" into the background color, which
means that the backgrounds work on all resolutions without a need for image scaling.

You could also change the background-repeat parameters to tile the background, or, if you are
confident that every system you will be installing on will have the same display resolution, you can use
background images which fill the entire bar.

Any of the files listed above can be customized. Once you do so, follow the instructions in Section 2.2,
“Creating a product.img File” to create your own product.img with custom graphics, and then Section
2.3, “Creating Custom Boot Images” to create a new bootable ISO image with your changes included.

4.2. CUSTOMIZING THE PRODUCT NAME

14



CHAPTER 4. BRANDING AND CHROMING THE GRAPHICAL USER INTERFACE

To customize the product name, you must create a custom .buildstamp file. To do so, create a new file
.buildstamp.py with the following content:

[Main]

Product=My Distribution

Version=8
BugURL=https://bugzilla.redhat.com/
IsFinal=True
UUID=202007011344.x86_64
[Compose]

Lorax=28.14.49-1

Change My Distribution to the name which you want to display in the installer.

After you create the custom .buildstamp file, follow the steps in Creating a product.img file section to
create a new product.img file containing your customizations, and the Creating custom boot images
section to create a new bootable ISO file with your changes included.

4.3. CUSTOMIZING THE DEFAULT CONFIGURATION

You can create your own configuration file and use it to customize the configuration of the installer.

4.3.1. Configuring the default configuration files

You can write the Anaconda configuration files in the .ini file format. The Anaconda configuration file
consists of sections, options and comments. Each section is defined by a [section] header, the
comments starting with a # character and the keys to define the options. The resulting configuration
file is processed with the configparser configuration file parser.

The default configuration file, located at /etc/anaconda/anaconda.conf, contains the documented
sections and options that are supported. The file provides a full default configuration of the installer.
You can modify the configuration of the product configuration files from /etc/anaconda/product.d/ and
the custom configuration files from /etc/anaconda/conf.d/.

The following configuration file describes the default configuration of RHEL 8:

[Anaconda]
# Run Anaconda in the debugging mode.
debug = False

# Enable Anaconda addons.
addons_enabled = True

# List of enabled Anaconda DBus modules for RHEL.

kickstart_modules =
org.fedoraproject.Anaconda.Modules.Timezone
org.fedoraproject.Anaconda.Modules.Network
org.fedoraproject.Anaconda.Modules.Localization
org.fedoraproject.Anaconda.Modules.Security
org.fedoraproject.Anaconda.Modules.Users
org.fedoraproject.Anaconda.Modules.Payloads
org.fedoraproject.Anaconda.Modules.Storage
org.fedoraproject.Anaconda.Modules.Services

[Installation System]

15



Red Hat Enterprise Linux 8 Customizing Anaconda

# Should the installer show a warning about enabled SMT?
can_detect_enabled _smt = False

[Installation Target]
# Type of the installation target.
type = HARDWARE

# A path to the physical root of the target.
physical_root = /mnt/sysimage

# A path to the system root of the target.
system_root = /mnt/sysroot

# Should we install the network configuration?
can_configure_network = True

[Network]

# Network device to be activated on boot if none was configured so.
# Valid values:

#

# NONE No device

# DEFAULT _ROUTE_DEVICE A default route device

# FIRST_WIRED_WITH_LINK The first wired device with link

#

d

efault_on_boot = NONE

[Payload]
# Default package environment.
default_environment =

# List of ignored packages.
ignored_packages =

# Enable installation of latest updates.
enable_updates = True

# List of .treeinfo variant types to enable.
# Valid items:

#
# addon

# optional

# variant

#

enabled_repositories_from_treeinfo = addon optional variant

# Enable installation from the closest mirror.
enable_closest_mirror = True

# Default installation source.
# Valid values:

#

# CLOSEST_MIRROR Use closest public repository mirror.
# CDN Use Content Delivery Network (CDN).

#

default_source = CLOSEST_MIRROR

16



CHAPTER 4. BRANDING AND CHROMING THE GRAPHICAL USER INTERFACE

# Enable ssl verification for all HTTP connection
verify_ssl = True

[Security]

# Enable SELinux usage in the installed system.
# Valid values:

#

# -1 The value is not set.

# 0 SELinux is disabled.

# 1 SELinux is enabled.

#
selinux = -1
[Bootloader]

# Type of the bootloader.

# Supported values:

#

# DEFAULT Choose the type by platform.

# EXTLINUX Use extlinux as the bootloader.
#

type = DEFAULT

# Name of the EFI directory.
efi_dir = default

# Hide the GRUB menu.
menu_auto_hide = False

# Are non-iBFT iSCSI disks allowed?
nonibft_iscsi_boot = False

# Arguments preserved from the installation system.
preserved_arguments =
cio_ignore rd.znet rd_ZNET zfcp.allow_lun_scan
speakup_synth apic noapic apm ide noht acpi video
pci nodmraid nompath nomodeset noiswmd fips selinux
biosdevname ipv6.disable net.ifnames net.ifnames.prefix
nosmt

[Storage]
# Enable dmraid usage during the installation.
dmraid = True

# Enable iBFT usage during the installation.
ibft = True

# Do you prefer creation of GPT disk labels?
gpt = False

# Tell multipathd to use user friendly names when naming devices during the installation.
multipath_friendly_names = True

# Do you want to allow imperfect devices (for example, degraded mdraid array devices)?
allow_imperfect_devices = False

# Default file system type. Use whatever Blivet uses by default.

17



Red Hat Enterprise Linux 8 Customizing Anaconda

file_system_type =

# Default partitioning.

# Specify a mount point and its attributes on each line.

#

# Valid attributes:

#

# size <SIZE> The size of the mount point.

# min <MIN_SIZE> The size will grow from MIN_SIZE to MAX_SIZE.
# max <MAX_SIZE> The max size is unlimited by default.
# free <SIZE> The required available space.

#

d

efault_partitioning =
/ (min 1 GiB, max 70 GiB)
/home (min 500 MiB, free 50 GiB)
swap

# Default partitioning scheme.
# Valid values:

#

# PLAIN  Create standard partitions.

# BTRFS  Use the Btrfs scheme.

# LVM Use the LVM scheme.

# LVM_THINP Use LVM Thin Provisioning.
#

default_scheme = LVM

# Default version of LUKS.

# Valid values:

#

# luks1 Use version 1 by default.
# luks2 Use version 2 by default.
#

luks_version = luks2

[Storage Constraints]
# Minimal size of the total memory.
min_ram = 320 MiB

# Minimal size of the available memory for LUKS2.
luks2_min_ram = 128 MiB

# Should we recommend to specify a swap partition?
swap_is_recommended = True

# Recommended minimal sizes of partitions.
# Specify a mount point and a size on each line.
min_partition_sizes =

/250 MiB

/usr 250 MiB

/tmp 50 MiB

/var 384 MiB

/home 100 MiB

/boot 200 MiB

# Required minimal sizes of partitions.

18



CHAPTER 4. BRANDING AND CHROMING THE GRAPHICAL USER INTERFACE

# Specify a mount point and a size on each line.

# Allowed device types of the / partition if any.
# Valid values:

#

LVM Allow LVM.

MD Allow RAID.

PARTITION Allow standard partitions.
BTRFS  Allow Btrfs.

DISK  Allow disks.

LVM_THINP Allow LVM Thin Provisioning.

CTE T T N T S

root_device_types =

# Mount points that must be on a linux file system.
# Specify a list of mount points.
must_be_on_linuxfs =/ /var /tmp /usr /home /usr/share /usr/lib

# Paths that must be directories on the / file system.
# Specify a list of paths.
must_be_on_root = /bin /dev /sbin /etc /lib /root /mnt lost+found /proc

# Paths that must NOT be directories on the / file system.
# Specify a list of paths.
must_not_be on_root =

[User Interface]
# The path to a custom stylesheet.
custom_stylesheet =

# The path to a directory with help files.
help_directory =

# A list of spokes to hide in UL.
# FIXME: Use other identification then names of the spokes.
hidden_spokes =

[License]

# A path to EULA (if any)

#

# If the given distribution has an EULA & feels the need to
# tell the user about it fill in this variable by a path

# pointing to a file with the EULA on the installed system.
#

# This is currently used just to show the path to the file to
# the user at the end of the installation.

eula =

4.3.2. Configuring the product configuration files

The product configuration files have one or two extra sections that identify the product. The [Product]
section specifies the product name of a product. The [Base Product] section specifies the product
name of a base product if any. For example, Red Hat Enterprise Linux is a base product of Red Hat
Virtualization.

19



Red Hat Enterprise Linux 8 Customizing Anaconda

The installer loads configuration files of the base products before it loads the configuration file of the
specified product. For example, it will first load the configuration for Red Hat Enterprise Linux and then
the configuration for Red Hat Virtualization.

See an example of the product configuration file for Red Hat Enterprise Linux:

# Anaconda configuration file for Red Hat Enterprise Linux.

[Product]
product_name = Red Hat Enterprise Linux

[Anaconda]

kickstart_modules =
org.fedoraproject.Anaconda.Modules.Timezone
org.fedoraproject.Anaconda.Modules.Network
org.fedoraproject.Anaconda.Modules.Localization
org.fedoraproject.Anaconda.Modules.Security
org.fedoraproject.Anaconda.Modules.Users
org.fedoraproject.Anaconda.Modules.Payloads
org.fedoraproject.Anaconda.Modules.Storage
org.fedoraproject.Anaconda.Modules.Services
org.fedoraproject.Anaconda.Modules.Subscription

[Installation System]
can_detect_enabled_smt = True

[Network]
default_on_boot = DEFAULT_ROUTE_DEVICE

[Payload]

ignored_packages =
ntfsprogs
btrfs-progs
dmraid

enable closest_mirror = False
default_source = CDN

[Bootloader]
efi_dir = redhat

[Storage]

file_system_type = xfs

default_partitioning =
/ (min 1 GiB, max 70 GiB)
/home (min 500 MiB, free 50 GiB)
swap

[Storage Constraints]
swap_is_recommended = True

[User Interface]

help_directory = /usr/share/anaconda/help/rhel
custom_stylesheet = /usr/share/anaconda/pixmaps/redhat.css

20



CHAPTER 4. BRANDING AND CHROMING THE GRAPHICAL USER INTERFACE

[License]
eula = /usr/share/redhat-release/EULA

See an example of the product configuration file for Red Hat Virtualization:

# Anaconda configuration file for Red Hat Virtualization.

[Product]
product_name = Red Hat Virtualization (RHVH)

[Base Product]
product_name = Red Hat Enterprise Linux

[Storage]
default_scheme = LVM_THINP
default_partitioning =

/ (min 6 GiB)
/home (size 1 GiB)
/tmp (size 1 GiB)
Ivar (size 15 GiB)

/var/crash  (size 10 GiB)
/var/log (size 8 GiB)
/var/log/audit (size 2 GiB)
swap

[Storage Constraints]
root_device_types = LVM_THINP
must_not_be on_root = /var
req_partition_sizes =

/var 10 GiB

/boot 1 GiB

To customize the installer configuration for your product, you must create a product configuration file.
Create a new file named my-distribution.conf, with content similar to the example above. Change
product_name in the [Product] section to the name of your product, for example My Distribution. The
product name should be the same as the name used in the .buildstamp file.

After you create the custom configuration file, follow the steps in Creating a product.img file section to
create a new product.img file containing your customizations, and the Creating custom boot images to
create a new bootable ISO file with your changes included.

4.3.3. Configuring the custom configuration files

To customize the installer configuration independently of the product name, you must create a custom
configuration file. To do so, create a new file named 100-my-configuration.conf with the content similar
to the example in Configuring the default configuration files and omit the [Product] and [Base
Product] sections.

After you create the custom configuration file, follow the steps in Creating a product.img file section to

create a new product.img file containing your customizations, and the Creating custom boot images to
create a new bootable ISO file with your changes included.

21



Red Hat Enterprise Linux 8 Customizing Anaconda

CHAPTER 5. DEVELOPING INSTALLER ADD-ONS

This section provides details about Anaconda and it's architecture, and how to develop your own add-
ons. The details about Anaconda and its architecture helps you to understand Anaconda backend and
various plug points for the add-ons to work. It also helps to accordingly develop the add-ons.

S5.1. INTRODUCTION TO ANACONDA AND ADD-ONS

Anaconda is the operating system installer used in Fedora, Red Hat Enterprise Linux, and their
derivatives. It is a set of Python modules and scripts together with some additional files like Gtk widgets
(written in C), systemd units, and dracut libraries. Together, they form a tool that allows users to set
parameters of the resulting (target) system and then set up this system on a machine. The installation
process has four major steps:

1. Prepare installation destination (usually disk partitioning)
2. Install package and data

3. Install and configure boot loader

4. Configure newly installed system

Using Anaconda enables you to install Fedora, Red Hat Enterprise Linux, and their derivatives, in the
following three ways:

Using graphical user interface (GUI):
This is the most common installation method. The interface allows users to install the system
interactively with little or no configuration required before starting the installation. This method covers

all common use cases, including setting up complicated partitioning layouts.

The graphical interface supports remote access over VNC, which allows you to use the GUI even on
systems with no graphics cards or attached monitor.

Using text user interface (TUI):

The TUI works similar to a monochrome line printer, which allows it to work on serial consoles that do not
support cursor movement, colors and other advanced features. The text mode is limited and allows you
to customize only the most common options, such as network settings, language options or installation
(package) source; advanced features such as manual partitioning are not available in this interface.

Using Kickstart file:

A Kickstart file is a plain text file with shell-like syntax that can contain data to drive the installation
process. A Kickstart file allows you to partially or completely automate the installation. A set of
commands which configures all required areas is necessary to completely automate the installation. If

one or more commands are missed, the installation requires interaction.

Apart from automation of the installer itself, Kickstart files can contain custom scripts that are run at
specific moments during the installation process.

5.2. ANACONDA ARCHITECTURE

Anaconda is a set of Python modules and scripts. It also uses several external packages and libraries.
The major components of this toolset include the following packages:

22



CHAPTER 5. DEVELOPING INSTALLER ADD-ONS

pykickstart - parses and validates the Kickstart files. Also, provides data structure that stores
values that drive the installation.

yum - the package manager that installs packages and resolves dependencies
blivet - handles all activities related to storage management

pyanaconda - contains the user interface and modules for Anaconda, such as keyboard and
timezone selection, network configuration, and user creation. Also provides various utilities to
perform system-oriented functions

python-meh - contains an exception handler that gathers and stores additional system
information in case of a crash and passes this information to the libreport library, which itself is a
part of the ABRT Project

dasbus - enables communication between the D-Bus library with modules of anaconda and
with external components

python-simpleline - text Ul framework library to manage user interaction in the Anaconda text
mode

gtk - the Gnome toolkit library for creating and managing GUI

Apart from the division into packages previously mentioned, Anaconda is internally divided into the user
interface and a set of modules that run as separate processes and communicate using the D-Bus library.
These modules are:

Boss - manages the internal module discovery, lifecycle, and coordination

Localization - manages locales

Network - handles network

Payloads - handles data for installation in different formats, such as rpm, ostree, tar and other
installation formats. Payloads manage the sources of data for installation; sources can vary in
format such as CD-ROM, HDD, NFS, URLs, and other sources

Security - manages security related aspects

Services - handles services

Storage - manages storage using blivet

Subscription - handles the subscription-manager tool and Insights.

Timezone - deals with time, date, zones, and time synchronization.

Users - creates users and groups.

Each module declares which parts of Kickstart it handles, and has methods to apply the configuration
from Kickstart to the installation environment and to the installed system.

The Python code portion of Anaconda (pyanaconda) starts as a “main” process that owns the user
interface. Any Kickstart data you provide are parsed using the pykickstart module and the Boss module
is started, it discovers all other modules, and starts them. Main process then sends Kickstart data to the
modules according to their declared capabilities. Modules process the data, apply the configuration to

23


https://fedorahosted.org/abrt/

Red Hat Enterprise Linux 8 Customizing Anaconda

the installation environment, and the Ul validates if all required choices have been made. If not, you must
supply the data in an interactive installation mode. Once all required choices have been made, the
installation can start - the modules write data to the installed system.

5.3. ANACONDA USER INTERFACE
The Anaconda user interface (Ul) has a non-linear structure, also known as hub and spoke model.
The advantages of Anaconda hub and spoke model are:

® Flexibility to follow the installer screens.

® Flexibility to retain the default settings.

® Provides an overview of the configured values.

® Supports extensibility. You can add hubs without the need to reorder anything and can resolve
some complex ordering dependencies.

® Supports installation in graphical and text mode.

The following diagram shows the installer layout and the possible interactions between hubs and spokes
(screens):

Figure 5.1. Hub and spoke model

SCREEN SCREEN
3 9
SCREEN SCREEN SCREEN SCREEN
2 A 4 8 A 10
A = A A ’ A
SCREEN HUB HUB SCREEN
1 } | h 2 . 14
v \ 4 \ 4 v
SCREEN SCREEN SCREEN SCREEN
5 T 1 13
SCREEN SCREEN
6 12

In the diagram, screens 2-13 are called normal spokes, and screens 1and 14 are standalone spokes.
Standalone spokes are the screens that can be used before or after the standalone spoke or hub. For
example, the Welcome screen at the beginning of the installation which prompts you to choose your
language for the rest of the installation.

NOTE

® The Installation Summary is the only hub in Anaconda. It shows a summary of
configured options before the installation begins

Each spoke has the following predefined properties that reflect the hub.

24



CHAPTER 5. DEVELOPING INSTALLER ADD-ONS

® ready - states whether or not you can visit a spoke. For example, when the installer is
configuring a package source, the spoke is colored in gray, and you cannot access it until the
configuration is complete.

o completed - marks whether or not the spoke is complete (all required values are set).

e mandatory - determines whether you must visit the spoke before continuing the installation; for
example, you must visit the Installation Destination spoke, even if you want to use automatic
disk partitioning

e status - provides a short summary of values configured within the spoke (displayed under the
spoke name in the hub)

To make the user interface clearer, spokes are grouped together into categories. For example, the
Localization category groups together spokes for keyboard layout selection, language support and
time zone settings.

Each spoke contains Ul controls which display and allow you to modify values from one or more modules.
The same applies to spokes that add-ons provide.

5.4. COMMUNICATION ACROSS ANACONDA THREADS

Some of the actions that you need to perform during the installation process may take a long time. For
example, scanning disks for existing partitions or downloading package metadata. To prevent you from
waiting and remaining responsive, Anaconda runs these actions in separate threads.

The Gtk toolkit does not support element changes from multiple threads. The main event loop of Gtk
runs in the main thread of the Anaconda process. Therefore, all actions pertaining to the GUI must be
performed in the main thread. To do so, use GLib.idle_add, which is not always easy or desired. Several
helper functions and decorators that are defined in the pyanaconda.ui.gui.utils module may add to the
difficulty.

The @gtk_action_wait and @gtk_action_nowait decorators change the decorated function or
method in such a way that when this function or method is called, it is automatically queued into Gtk’s
main loop that runs in the main thread. The return value is either returned to the caller or dropped,
respectively.

In a spoke and hub communication, a spoke announces when it is ready and is not blocked. The hubQ
message queue handles this function, and periodically checks the main event loop. When a spoke
becomes accessible, it sends a message to the queue announcing the change and that it should no
longer be blocked.

The same applies in a situation where a spoke needs to refresh its status or complete a flag. The
Configuration and Progress hub has a different queue called progressQ which serves as a medium to

transfer installation progress updates.

These mechanisms are also used for the text-based interface. In the text mode, there is no main loop,
but the keyboard input takes most of the time.

5.5. ANACONDA MODULES AND D-BUS LIBRARY

Anaconda’s modules run as independent processes. To communicate with these processes via their D-
Bus AP, use the dasbus library.

Calls to methods via D-Bus API are asynchronous, but with the dasbus library you can convert them to
synchronous method calls in Python. You can also write either of the following programs:

25



Red Hat Enterprise Linux 8 Customizing Anaconda

® program with asynchronous calls and return handlers
® A program with synchronous calls that makes the caller wait until the call is complete.
For more information about threads and communication, see Communication across Anaconda threads.

Additionally, Anaconda uses Task objects running in modules. Tasks have a D-Bus APl and methods that
are automatically executed in additional threads. To successfully run the tasks, use the sync_run_task
and async_run_task helper functions.

5.6. THE HELLO WORLD ADDON EXAMPLE

Anaconda developers publish an example addon called “Hello World”, available on GitHub:
https://github.com/rhinstaller/hello-world-anaconda-addon/ The descriptions in further sections are
reproduced in this.

5.7. ANACONDA ADD-ON STRUCTURE

An Anaconda add-on is a Python package that contains a directory with an __init__.py and other
source directories (subpackages). Because Python allows you to import each package name only once,
specify a unique name for the package top-level directory. You can use an arbitrary name, because add-
ons are loaded regardless of their name - the only requirement is that they must be placed in a specific
directory.

The suggested naming convention for add-ons is similar to Java packages or D-Bus service names.
To make the directory name a unique identifier for a Python package, prefix the add-on name with the

reversed domain name of your organization, using underscores (_) instead of dots. For example,
com_example_hello_world.

IMPORTANT

Make sure to create an __init__.py file in each directory. Directories missing this file are
considered as invalid Python packages.

When writing an add-on, ensure the following:
® Support for each interface (graphical interface and text interface) is available in a separate

subpackage and these subpackages are named gui for the graphical interface and tui for the
text-based interface.

® The guiand tui packages contain a spokes subpackage. [1]
® Modules contained in the packages have an arbitrary name.
® The gui/ and tui/ directories contain Python modules with any name.

® There is a service that performs the actual work of the addon. This service can be written in
Python or any other language.

® The service implements support for D-Bus and Kickstart.

® The addon contains files that enable automatic startup of the service.

26


https://github.com/rhinstaller/hello-world-anaconda-addon/

CHAPTER 5. DEVELOPING INSTALLER ADD-ONS

Following is a sample directory structure for an add-on which supports every interface (Kickstart, GUI
and TUI):

Example 5.1. Sample add-on structure

com_example_hello_world
— gui
| | initpy
| L—spokes
| L initpy
L— tui
I init.py
L— spokes
L— init.py

Each package must contain at least one module with an arbitrary name defining the classes that are
inherited from one or more classes defined in the API.

NOTE

For all add-ons, follow Python’s PEP 8 and PEP 257 guidelines for docstring conventions.
There is no consensus on the format of the actual content of docstrings in Anaconda; the
only requirement is that they are human-readable. If you plan to use auto-generated
documentation for your add-on, docstrings should follow the guidelines for the toolkit
you use to accomplish this.

You can include a category subpackage if an add-on needs to define a new category, but this is not
recommended.

5.8. ANACONDA SERVICES AND CONFIGURATION FILES

Anaconda services and configuration files are included in data/ directory. These files are required to
start the add-ons service and to configure D-Bus.

Following are some examples of Anaconda Hello World add-on:

"-//freedesktop//DTD D-BUS Bus Configuration 1.0/EN"
"http://www.freedesktop.org/standards/dbus/1.0/busconfig.dtd">
<busconfig>
<policy user="root">
<allow own="org.fedoraproject.Anaconda.Addons.HelloWorld"/>
<allow send_destination="org.fedoraproject.Anaconda.Addons.HelloWorld"/>
</policy>
<policy context="default">
<deny own="org.fedoraproject.Anaconda.Addons.HelloWorld"/>
<allow send_destination="org.fedoraproject.Anaconda.Addons.HelloWorld"/>
</policy>

<!IDOCTYPE busconfig PUBLIC
</busconfig>

‘ Example 5.2. Example of addon-name.conf:

27


http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0257/

Red Hat Enterprise Linux 8 Customizing Anaconda

This file must be placed in the /usr/share/anaconda/dbus/confs/ directory in the installation
environment. The string org.fedoraproject.Anaconda.Addons.HelloWorld must correspond to the
location of addon'’s service on D-Bus.

# Runs org_fedora_hello_world/service/ main.py
Name=org.fedoraproject.Anaconda.Addons.HelloWorld
Exec=/usr/libexec/anaconda/start-module org_fedora_hello_world.service

[D-BUS Service]
# Start the org.fedoraproject.Anaconda.Addons.HelloWorld service.
User=root

| Example 5.3. Example of addon-name.service:

This file must be placed in the /usr/share/anaconda/dbus/services/ directory in the installation
environment. The string org.fedoraproject.Anaconda.Addons.HelloWorld must correspond to the
location of addon’s service on D-Bus. The value on the line starting with Exec= must be a valid
command that starts the service in the installation environment.

5.9. GUI ADD-ON BASIC FEATURES

Similarly to Kickstart support in add-ons, GUI support requires that every part of the add-on must
contain at least one module with a definition of a class inherited from a particular class defined by the
API. For the graphical add-on support, the only class you should add is the NormalSpoke class, defined
in pyanaconda.ui.gui.spokes, as a class for the normal spoke type of screen. To learn more about it,

see Anaconda user interface.

To implement a new class inherited from NormalSpoke, you must define the following class attributes
that the API requires:

e builderObjects - lists all top-level objects from the spoke’s .glade file that should be exposed
to the spoke with their children objects (recursively). In case everything should be exposed to

the spoke, which is not recommended, the list should be empty.

e mainWidgetName - contains the id of the main window widget (Add Link) as defined in the
.glade file.

e uijFile - contains the name of the .glade file.
e category - contains the class of the category the spoke belongs to.
® jcon - contains the identifier of the icon that will be used for the spoke on the hub.

e title - defines the title that will be used for the spoke on the hub.

5.10. ADDING SUPPORT FOR THE ADD-ON GRAPHICAL USER
INTERFACE (GUI)

This section describes how to add support to the graphical user interface (GUI) of your add-on by
performing the following high-level steps:

1. Define Attributes Required for the Normalspoke Class

2. Define the __init__ and initialize Methods

28



CHAPTER 5. DEVELOPING INSTALLER ADD-ONS

3. Define the refresh, apply, and execute Methods

4. Define the status and the ready, completed and mandatory Properties

Prerequisites

® Your add-on includes support for Kickstart. See Anaconda add-on structure.

® |[nstall the anaconda-widgets and anaconda-widgets-devel packages, which contain Gtk widgets
specific for Anaconda, such as SpokeWindow.

Procedure

® Create the following modules with all required definitions to add support for the Add-on
graphical user interface (GUI), according to the following examples.

Example 5.4. Defining Attributes Required for the Normalspoke Class:
# will never be translated
_ = lambda x: x
N_ = lambda x: x
# the path to addons is in sys.path so we can import things from org_fedora_hello_world
from org_fedora_hello_world.gui.categories.hello_world import HelloWorldCategory

from pyanaconda.ui.gui.spokes import NormalSpoke

# export only the spoke, no helper functions, classes or constants
all = ["HelloWorldSpoke"]

class HelloWorldSpoke(FirstbootSpokeMixIn, NormalSpoke):
Class for the Hello world spoke. This spoke will be in the Hello world
category and thus on the Summary hub. It is a very simple example of a unit
for the Anaconda's graphical user interface. Since it is also inherited form
the FirstbootSpokeMixIn, it will also appear in the Initial Setup (successor
of the Firstboot tool).

:see: pyanaconda.ui.common.UIObject

:see: pyanaconda.ui.common.Spoke

:see: pyanaconda.ui.gui.GUIObject

:see: pyanaconda.ui.common.FirstbootSpokeMixIn
:see: pyanaconda.ui.gui.spokes.NormalSpoke

# class attributes defined by APl #
# list all top-level objects from the .glade file that should be exposed
# to the spoke or leave empty to extract everything

builderObjects = ["helloWorldSpokeWindow", "buttonimage"]

# the name of the main window widget
mainWidgetName = "helloWorldSpokeWindow"

# name of the .glade file in the same directory as this source

29



Red Hat Enterprise Linux 8 Customizing Anaconda

uiFile = "hello_world.glade"

# category this spoke belongs to

category = HelloWorldCategory

# spoke icon (will be displayed on the hub)

# preferred are the -symbolic icons as these are used in Anaconda's spokes
icon = "face-cool-symbolic"

# title of the spoke (will be displayed on the hub)
titte = N_("_HELLO WORLD")

The __all__ attribute exports the spoke class, followed by the first lines of its definition including
definitions of attributes previously mentioned in GUI Add-on basic features. These attribute values are
referencing widgets defined in the com_example_hello_world/gui/spokes/hello.glade file. Two other
notable attributes are present:

e category, which has its value imported from the HelloWorldCategory class from the
com_example_hello_world.gui.categories module. The HelloWorldCategory that the path
to add-ons is in sys.path so that values can be imported from the com_example_hello_world
package. The category attribute is part of the N_ function name, which marks the string for
translation; but returns the non-translated version of the string, as the translation happens in a
later stage.

e title, which contains one underscore in its definition. The title attribute underscore marks the
beginning of the title itself and makes the spoke reachable by using the Alt+H keyboard
shortcut.

What usually follows the header of the class definition and the class attributes definitions is the
constructor that initializes an instance of the class. In case of the Anaconda graphical interface objects,
there are two methods initializing a new instance: the __init__ method and the initialize method.

The reason behind two such functions is that the GUI objects may be created in memory at one time
and fully initialized at a different time, as the spoke initialization could be time consuming. Therefore,
the __init__ method should only call the parent’'s __init__method and, for example, initialize non-GUI
attributes. On the other hand, the initialize method that is called when the installer’s graphical user
interface initializes should finish the full initialization of the spoke.

In the Hello World add-on example, define these two methods as follows. Note the number and
description of the arguments passed to the __init__ method.

‘type data: pykickstart.base.BaseHandler

:param storage: object storing storage-related information
(disks, partitioning, bootloader, etc.)

‘type storage: blivet.Blivet

:param payload: object storing packaging-related information

Example 5.5. Defining the __init__ and initialize Methods:
:param data: data object passed to every spoke to load/store data
:type payload: pyanaconda.packaging.Payload

def___init_(self, data, storage, payload):
:see: pyanaconda.ui.common.Spoke.init
from/to it

30



CHAPTER 5. DEVELOPING INSTALLER ADD-ONS

NormalSpoke.inif(self, data, storage, payload)
self._hello_world_module = HELLO_WORLD.get_proxy()

def initialize(self):
The initialize method that is called after the instance is created.
The difference between init and this method is that this may take
a long time and thus could be called in a separate thread.
:see: pyanaconda.ui.common.UIObject.initialize
NormalSpoke.initialize(self)
self._entry = self.builder.get_object("textLines")
self._reverse = self.builder.get_object("reverseCheckButton")

The data parameter passed to the __init__ method is the in-memory tree-like representation of the
Kickstart file where all data is stored. In one of the ancestors' __init__methods it is stored in the
self.data attribute, which allows all other methods in the class to read and modify the structure.

NOTE

The storage object is no longer usable as of RHELS. If your add-on needs to interact with
storage configuration, use the Storage DBus module.

Because the HelloWorldData class has already been defined in The Hello World addon example, there
already is a subtree in self.data for this add-on. Its root, an instance of the class, is available as
self.data.addons.com_example_hello_world.

Another action that an ancestor’s__init__ does is initializing an instance of the GtkBuilder with the
spoke’s .glade file and storing it as self.builder. The initialize method uses this to get the
GtkTextEntry used to show and modify the text from the kickstart file's %addon section.

The __init__ and initialize methods are both important when the spoke is created. However, the main
role of the spoke is to be visited by a user who wants to change or review the spoke’s values shows and
sets. To enable this, three other methods are available:
e refresh - called when the spoke is about to be visited; this method refreshes the state of the
spoke, mainly its Ul elements, to ensure that the displayed data matches internal data structures

and, with that, to ensure that current values stored in the self.data structure are displayed.

e apply - called when the spoke is left and used to store values from Ul elements back into the
self.data structure.

e execute - called when users leave the spoke and used to perform any runtime changes based
on the new state of the spoke.

These functions are implemented in the sample Hello World add-on in the following way:

Example 5.6. Defining the refresh, apply and execute Methods
The refresh method that is called every time the spoke is displayed.

| def refresh(self):

31



def apply(self):

The apply method that is called when user leaves the spoke. It should
update the D-Bus service with values set in the GUI elements.

Red Hat Enterprise Linux 8 Customizing Anaconda
buf = self._entry.get_buffer()
text = buf.get_text(buf.get_start_iter(),

It should update the Ul elements according to the contents of

internal data structures.

:see: pyanaconda.ui.common.UIObject.refresh

lines = self. _hello_world_module.Lines

self._entry.get_buffer().set_text("".join(lines))

reverse = self._hello_world_module.Reverse
buf.get_end_iter(),

self._reverse.set_active(reverse)
True)

lines = text.splitlines(True)
self._hello_world_module.SetLines(lines)

self._hello_world_module.SetReverse(self._reverse.get_active())
def execute(self):

The execute method that is called when the spoke is exited. It is
supposed to do all changes to the runtime environment according to
the values set in the GUI elements.

# nothing to do here
pass

You can use several additional methods to control the spoke’s state:
e ready - determines whether the spoke is ready to be visited; if the value is "False”, the spoke is
not accessible, for example, the Package Selection spoke before a package source is
configured.

e completed - determines if the spoke has been completed.

e mandatory - determines if the spoke is mandatory or not, for example, the Installation
Destination spoke, which must always be visited, even if you want to use automatic partitioning.

All of these attributes need to be dynamically determined based on the current state of the installation
process.

Below is a sample implementation of these methods in the Hello World add-on, which requires a certain
value to be set in the text attribute of the HelloWorldData class:

Example 5.7. Defining the ready, completed and mandatory Methods

@property
def ready(self):

32



CHAPTER 5. DEVELOPING INSTALLER ADD-ONS

The ready property reports whether the spoke is ready, that is, can be visited
or not. The spoke is made (in)sensitive based on the returned value of the ready
property.

:rtype: bool

# this spoke is always ready
return True

@property

def mandatory(self):
The mandatory property that tells whether the spoke is mandatory to be
completed to continue in the installation process.

:rtype: bool

# this is an optional spoke that is not mandatory to be completed
return False

After these properties are defined, the spoke can control its accessibility and completeness, but it
cannot provide a summary of the values configured within - you must visit the spoke to see how it is
configured, which may not be desired. For this reason, an additional property called status exists. This
property contains a single line of text with a short summary of configured values, which can then be
displayed in the hub under the spoke title.

The status property is defined in the Hello World example add-on as follows:

Example 5.8. Defining the status Property
@property
def status(self):
The status property that is a brief string describing the state of the
also the values themselves. The returned value will appear on the hub

spoke. It should describe whether all values are set and if possible
below the spoke's title.

rtype: str
lines = self. _hello_world_module.Lines
if not lines:
return _("No text added")
elif self._hello_world_module.Reverse:
return _("Text set with {} lines to reverse").format(len(lines))
else:
return _("Text set with {} lines").format(len(lines))

33



Red Hat Enterprise Linux 8 Customizing Anaconda

After defining all properties described in the examples, the add-on has full support for showing a
graphical user interface (GUI) as well as Kickstart.

NOTE

The example demonstrated here is very simple and does not contain any controls;
knowledge of Python Gtk programming is required to develop a functional, interactive
spoke in the GUI.

One notable restriction is that each spoke must have its own main window - an instance of the
SpokeWindow widget. This widget, along with other widgets specific to Anaconda, is found in the
anaconda-widgets package. You can find other files required for development of add-ons with GUI
support, such as Glade definitions, in the anaconda-widgets-devel package.

Once your graphical interface support module contains all necessary methods you can continue with the
following section to add support for the text-based user interface, or you can continue with Deploying
and testing an Anaconda add-on and test the add-on.

5.11. ADD-ON GUI ADVANCED FEATURES

The pyanaconda package contains several helper and utility functions, as well as constructs which may
be used by hubs and spokes. Most of them are located in the pyanaconda.ui.gui.utils package.

The sample Hello World add-on demonstrates usage of the englightbox content manager which
Anaconda also uses. This content manager can put a window into a lightbox to increase its visibility and
focus it to prevent users interacting with the underlying window. To demonstrate this function, the
sample add-on contains a button which opens a new dialog window; the dialog itself is a special
HelloWorldDialog inheriting from the GUIObject class, which is defined in pyanaconda.ui.gui.init.

The dialog class defines the run method that runs and destroys an internal Gtk dialog accessible through
the self.window attribute, which is populated using a mainWidgetName class attribute with the same
meaning. Therefore, the code defining the dialog is very simple, as demonstrated in the following
example:

dialog = HelloWorldDialog(self.data)

# show dialog above the lightbox
with self.main_window.enlightbox(dialog.window):

# every GUIObject gets ksdata in init
dialog.run()

| Example 5.9. Defining a englightbox Dialog

The Defining an englightbox Dialog example code creates an instance of the dialog and then uses the
enlightbox context manager to run the dialog within a lightbox. The context manager has a reference to
the window of the spoke and only needs the dialog’s window to instantiate the lightbox for the dialog.

Another useful feature provided by Anaconda is the ability to define a spoke that will appear both
during the installation and after the first reboot. The Initial Setup utility is described in Adding support
for the Add-on graphical user interface (GUI). To make a spoke available in both Anaconda and Initial
Setup, it must inherit the special FirstbootSpokeMixIn class, also known as mixin, as the first inherited
class defined in the pyanaconda.ui.common module.

34



CHAPTER 5. DEVELOPING INSTALLER ADD-ONS

To make a spoke available in Anaconda and the reconfiguration mode of the Initial Setup, it must inherit
the special FirstbootSpokeMixIn class, also known as mixin, as the first inherited class defined in the
pyanaconda.ui.common module.

If you want to make a certain spoke available only in Initial Setup, this spoke should instead inherit the
FirstbootOnlySpokeMixIn class.

To make a spoke always available in both Anaconda and Initial Setup, the spoke should redefine the
should_run method, as demonstrated in the following example:

def should_run(cls, environment, data):
"""Run this spoke for Anaconda and Initial Setup""
return True

Example 5.10. Redefining the should_run method
| @classmethod

The pyanaconda package provides many more advanced features, such as the @gtk_action_wait and
@gtk_action_nowait decorators, but they are out of scope of this guide. For more examples, refer to
the installer’s sources.

5.12. TUI ADD-ON BASIC FEATURES

Anaconda also supports a text-based interface (TUI). This interface is more limited in its capabilities, but
on some systems it might be the only choice for an interactive installation. For more information about
differences between the text-based interface and graphical interface and about limitations of the TUI,
see Introduction to Anaconda and add-ons.

NOTE

To add support for the text interface into your add-on, create a new set of subpackages
under the tui directory as described in Anaconda add-on structure.

The text mode support in the installer is based on the simpleline library, which only allows very simple
user interaction. The text mode interface:

® Does not support cursor movement - instead, it acts like a line printer.
® Does not support any visual enhancements, such as using different colors or fonts, for example.

Internally, the simpleline toolkit has three main classes: App, UlScreen and Widget. Widgets are units
containing information to be printed on the screen. They are placed on UlScreens that are switched by a
single instance of the App class. On top of the basic elements, hubs, spoke’s and "dialogs all contain
various widgets in a way similar to the graphical interface.

The most important classes for an add-on are NormalTUISpoke and various other classes defined in the
pyanaconda.ui.tui.spokes package. All those classes are based on the TUIODbject class, which itself is
an equivalent of the GUIObject class discussed in Add-on GUI advanced features. Each TUl spoke is a
Python class inheriting from the NormalTUISpoke class, overriding special arguments and methods
defined by the API. Because the text interface is simpler than the GUI, there are only two such
arguments:

e title - determines the title of the spoke, similar as the title argument in the GUI.

35



Red Hat Enterprise Linux 8 Customizing Anaconda

e category - determines the category of the spoke as a string; the category name is not displayed
anywhere, it is only used for grouping.

NOTE

The TUI handles categories differently than the GUI. It is recommended to assign a pre-
existing category to your new spoke. Creating a new category would require patching
Anaconda, and brings little benefit.

Each spoke is also expected to override several methods, namely init initialize, refresh, refresh, apply,
execute, input, prompt, and properties (ready, completed, mandatory, and status).

Additional resources

® See Adding support for the Add-on GUI.

5.13. DEFINING A SIMPLE TUI SPOKE

The following example shows the implementation of a simple Text User Interface (TUI) spoke in the
Hello World sample add-on:

Prerequisites

® You have created a new set of subpackages under the tui directory as described in Anaconda
add-on structure.

Procedure

® Create modules with all required definitions to add support for the add-on text user interface
(TUI), according to the following examples:
Example 5.11. Defining a Simple TUI Spoke
def __init__(self, *args, **kwargs):
Create the representation of the spoke.
super().__init__(*args, **kwargs)
self.title = N_("Hello World")

:see: simpleline.render.screen.UIScreen

self._hello_world_module = HELLO_WORLD.get_proxy()
self._container = None

self._reverse = False

self. lines=""

def initialize(self):
The initialize method that is called after the instance is created.
The difference between __init__ and this method is that this may take
a long time and thus could be called in a separated thread.

:see: pyanaconda.ui.common.UIObject.initialize

36



CHAPTER 5. DEVELOPING INSTALLER ADD-ONS

# nothing to do here
super().initialize()

def setup(self, args=None):
The setup method that is called right before the spoke is entered.
It should update its state according to the contents of DBus modules.

:see: simpleline.render.screen.UlScreen.setup

super().setup(args)

self. _reverse = self. _hello_world _module.Reverse
self._lines = self. _hello_world_module.Lines

return True

def refresh(self, args=None):
The refresh method that is called every time the spoke is displayed.
It should generate the Ul elements according to its state.

:see: pyanaconda.ui.common.UIObject.refresh
:see: simpleline.render.screen.UlScreen.refresh

super().refresh(args)

self._container = ListColumnContainer(
columns=1
)
self._container.add(
CheckboxWidget(
title="Reverse",
completed=self._reverse

);

callback=self._change_reverse

)

self._container.add(
EntryWidget(
title="Hello world text",
value="".join(self._lines)

);

callback=self._change_lines

)

self.window.add_with_separator(self._container)

def _change_reverse(self, data):

Callback when user wants to switch checkbox.
Flip state of the "reverse" parameter which is boolean.

self._reverse = not self._reverse
def _change_lines(self, data):

37



Red Hat Enterprise Linux 8 Customizing Anaconda

Callback when user wants to input new lines.
Show a dialog and save the provided lines.
dialog = Dialog("Lines")

result = dialog.run()

self._lines = result.splitlines(True)

def input(self, args, key):

The input method that is called by the main loop on user's input.

* If the input should not be handled here, return it.

* If the input is invalid, return InputState.DISCARDED.

* If the input is handled and the current screen should be refreshed,
return InputState. PROCESSED_AND_REDRAW.

* If the input is handled and the current screen should be closed,
return InputState. PROCESSED_AND_CLOSE.

:see: simpleline.render.screen.UlScreen.input
if self._container.process_user_input(key):
return InputState. PROCESSED_AND_REDRAW

if key.lower() == Prompt.CONTINUE:
self.apply()
self.execute()
return InputState. PROCESSED_AND_CLOSE

return super().input(args, key)

def apply(self):

The apply method is not called automatically for TUI. It should be called
in input() if required. It should update the contents of internal data
structures with values set in the spoke.
self._hello_world_module.SetReverse(self._reverse)
self._hello_world_module.SetLines(self._lines)

def execute(self):

The execute method is not called automatically for TUI. It should be called
in input() if required. It is supposed to do all changes to the runtime
environment according to the values set in the spoke.

# nothing to do here

pass

NOTE

It is not necessary to override the initmethod if it only calls the ancestor’s init but the
comments in the example describe the arguments passed to constructors of spoke

classes in an understandable way.

38



CHAPTER 5. DEVELOPING INSTALLER ADD-ONS

In the previous example:

® The setup method sets up a default value for the internal attribute of the spoke on every entry,
which is then displayed by the refresh method, updated by the input method and used by the
apply method to update internal data structures.

® The execute method has the same purpose as the equivalent method in the GUI; in this case,
the method has no effect.

® The input method is specific to the text interface; there are no equivalents in Kickstart or GUI.
The input methods are responsible for user interaction.

® The input method processes the entered string and takes action depending on its type and
value. The above example asks for any value and then stores it as an internal attribute (key). In
more complex add-ons, you typically need to perform some non-trivial actions, such as parse
letters as actions, convert numbers into integers, show additional screens or toggle boolean
values.

® The return value of the input class must be either the InputState enum or the input string itself,
in case this input should be processed by a different screen. In contrast to the graphical mode,
the apply and execute methods are not called automatically when leaving the spoke; they must
be called explicitly from the input method. The same applies to closing (hiding) the spoke’s
screen: it must be called explicitly from the close method.

To show another screen, for example if you need additional information that was entered in a different
spoke, you can instantiate another TUIObject and use ScreenHandler.push_screen_modal() to show
it.

Due to restrictions of the text-based interface, TUl spokes tend to have a very similar structure, that
consists of a list of checkboxes or entries that should be checked or unchecked and populated by the
user.

5.14. USING NORMALTUISPOKE TO DEFINE A TEXT INTERFACE
SPOKE

The Defining a Simple TUI Spoke example showed a way to implement a TUl spoke where its methods
handle printing and processing the available and provided data. However, there is a different way to
accomplish this using the Normal EditTUISpoke class from the pyanaconda.ui.tui.spokes package. By
inheriting this class, you can implement a typical TUI spoke by only specifying fields and attributes that
should be set in it. The following example demonstrates this:

Prerequisites

® You have added a new set of subpackages under the TUI directory, as described in Anaconda
add-on structure.

Procedure

® Create modules with all required definitions to add support for the Add-on text user interface
(TUI), according to the following examples.

Example 5.12. Using NormalTUISpoke to Define a Text Interface Spoke

class HelloWorldEditSpoke(NormalTUISpoke):
"""Example class demonstrating usage of editing in TUI"™"

39



Red Hat Enterprise Linux 8 Customizing Anaconda

category = HelloWorldCategory
def init(self, data, storage, payload):
:see: simpleline.render.screen.UIScreen
:param data: data object passed to every spoke to load/store data
from/to it
:type data: pykickstart.base.BaseHandler
:param storage: object storing storage-related information

(disks, partitioning, bootloader, etc.)
:type storage: blivet.Blivet
:param payload: object storing packaging-related information
:type payload: pyanaconda.packaging.Payload

NormalTUISpoke.init(self, data, storage, payload)

self.title = N_("Hello World Edit")
self._container = None

# values for user to set
self._checked = False
self._unconditional_input =
self._conditional_input = "

def refresh(self, args=None):
The refresh method that is called every time the spoke is displayed.
It should update the Ul elements according to the contents of
self.data.
:see: pyanaconda.ui.common.UIObject.refresh
:see: simpleline.render.screen.UlScreen.refresh
:param args: optional argument that may be used when the screen is
scheduled
‘type args: anything
super().refresh(args)
self._container = ListColumnContainer(columns=1)

# add ListColumnContainer to window (main window container)
# this will automatically add numbering and will call callbacks when required
self.window.add(self._container)

self._container.add(CheckboxWidget(title="Simple checkbox", completed=self._checked),
callback=self._checkbox_called)
self._container.add(EntryWidget(title="Unconditional text input",
value=self._unconditional_input),
callback=self._get_unconditional_input)

# show conditional input only if the checkbox is checked
if self._checked:
self._container.add(EntryWidget(title="Conditional password input",
value="Password set" if self._conditional_input
else "),
callback=self._get_conditional_input)

self._window.add_separator()

40



CHAPTER 5. DEVELOPING INSTALLER ADD-ONS

@property
def completed(self):
# completed if user entered something non-empty to the Conditioned input
return bool(self._conditional_input)
@property
def status(self):
return "Hidden input %s" % ("entered" if self._conditional_input
else "not entered")

def apply(self):
# nothing needed here, values are set in the self.args tree
pass

5.15. DEPLOYING AND TESTING AN ANACONDA ADD-ON

You can deploy and test your own Anaconda add-on into the installation environment. To do so, follow
the steps:

Prerequisites

You created an Add-on.

You have access to your D-Bus files.

Procedure

1.

2.

3.

Create a directory DIR at the place of your preference.

Add the Add-on python files into DIR/ust/share/anaconda/addons/.

Copy your D-Bus service file into DIR/usr/share/anaconda/dbus/services/.
Copy your D-Bus service configuration file to /usr/share/anaconda/dbus/confs/.

Create the updates image.
Access the DIR directory:

I cd DIR
Locate the updates image.
I find . | cpio -c -0 | pigz -9cv > DIR/updates.img

Extract the contents of the ISO boot image.

Use the resulting updates image:
a. Add the updates.img file into the images directory of your unpacked ISO contents.

b. Repack the image.

41



Red Hat Enterprise Linux 8 Customizing Anaconda

c. Setup aweb server to provide the updates.img file to the Anaconda installer via HTTP.

d. Load updates.img file at boot time by adding the following specification to the boot
options.

I inst.updates=http://your-server/whatever/updates.img to boot options.

For specific instructions on unpacking an existing boot image, creating a product.img file and
repackaging the image, see Extracting Red Hat Enterprise Linux boot images .

[1] The gui package may also contain acategories subpackage if the add-on needs to define a new category, but
this is not recommended.

42



CHAPTER 6. COMPLETING POST CUSTOMIZATION TASKS

CHAPTER 6. COMPLETING POST CUSTOMIZATION TASKS

To complete the customizations made, perform the following tasks:
® Create a product.imgimage file (applies only for graphical customizations).
® Create a custom boot image.

This section provides information about how to create a product.img image file and to create a custom
boot image.

6.1. CREATING A PRODUCT.IMG FILE

A product.img image file is an archive containing new installer files that replace the existing ones at
runtime.

During a system boot, Anaconda loads the product.img file from the images/ directory on the boot
media. It then uses the files that are present in this directory to replace identically named files in the
installer’s file system. The files when replaced customizes the installer (for example, for replacing
default images with custom ones).

Note: The product.imgimage must contain a directory structure identical to the installer. For more
information about the installer directory structure, see the table below.

Table 6.1. Installer directory structure and custom contents

Type of custom content File system location

Pixmaps (logo, sidebar, top bar, and so on.) /usr/share/anaconda/pixmaps/

GUI stylesheet /usr/share/anaconda/anaconda-gtk.css
Anaconda add-ons /usr/share/anaconda/addons/

Product configuration files /etc/anaconda/product.d/

Custom configuration files /etc/anaconda/conf.d/

Anaconda DBus service conf files /usr/share/anaconda/dbus/confs/
Anaconda DBus service files /usr/share/anaconda/dbus/services/

The procedure below explains how to create a product.img file.

Procedure

1. Navigate to a working directory such as /tmp, and create a subdirectory named product/:
I $ cd /tmp

2. Create a subdirectory product/

43



Red Hat Enterprise Linux 8 Customizing Anaconda

8.

I $ mkdir product/

Create a directory structure identical to the location of the file you want to replace. For
example, if you want to test an add-on that is present in the /usr/share/anaconda/addons
directory on the installation system, create the same structure in your working directory:

I $ mkdir -p product/usr/share/anaconda/addons

/ NOTE

To view the installer’s runtime file, boot the installation and switch to virtual
console 1 (Ctrl+Alt+F1) and then switch to the second tmux window (Ctrl+b+2).
A shell prompt that can be used to browse a file system opens.

Place your customized files (in this example, custom add-on for Anaconda) into the newly
created directory:

I $ cp -r ~/path/to/custom/addon/product/usr/share/anaconda/addons/

Repeat steps 3 and 4 (create a directory structure and place the custom files into it) for every
file you want to add to the installer.

Create a .buildstamp file in the root of the directory. The .buildstamp file describes the
system version, the product and several other parameters. The following is an example of a
.buildstamp file from Red Hat Enterprise Linux 8.4:

[Main]

Product=Red Hat Enterprise Linux
Version=8.4
BugURL=https://bugzilla.redhat.com/
IsFinal=True
UUID=202007011344.x86_64
[Compose]

Lorax=28.14.49-1

The IsFinal parameter specifies whether the image is for a release (GA) version of the product
(True), or a pre-release such as Alpha, Beta, or an internal milestone ( False).

Navigate to the product/ directory, and create the product.img archive:

I $ cd product
I $ find . | cpio -c -0 | gzip -9cv > ../product.img

This creates a product.img file one level above the product/ directory.

Move the product.img file to the images/ directory of the extracted ISO image.

The product.img file is now created and the customizations that you want to make are placed in the
respective directories.

44



CHAPTER 6. COMPLETING POST CUSTOMIZATION TASKS

NOTE

Instead of adding the product.img file on the boot media, you can place this file into a
different location and use the inst.updates= boot option at the boot menu to load it. In
that case, the image file can have any name, and it can be placed in any location (USB
flash drive, hard disk, HTTP, FTP or NFS server), as long as this location is reachable from
the installation system.

See the Anaconda Boot Options for more information about Anaconda boot options.

6.2. CREATING CUSTOM BOOT IMAGES

After you customize the boot images and the GUI layout, create a new image that includes the changes
you made.

To create custom boot images, follow the procedure below.

Procedure

1. Make sure that all of your changes are included in the working directory. For example, if you are
testing an add-on, make sure to place the product.imgin the images/ directory.

2. Make sure your current working directory is the top-level directory of the extracted ISO image,
for example, /tmp/ISO/isol.

3. Create a new ISO image using the genisoimage:

# genisoimage -U -r -v -T -J -joliet-long -V "RHEL-8 Server.x86_64" -volset "RHEL-8
Server.x86_64" -A "RHEL-8 Server.x86_64" -b isolinux/isolinux.bin -¢ isolinux/boot.cat -no-
emul-boot -boot-load-size 4 -boot-info-table -eltorito-alt-boot -e images/efiboot.img -no-emul-
boot -0 ../NEWISO.iso .

In the above example:

® Make sure that the values for -V, -volset, and -A options match the image’s boot loader
configuration, if you are using the LABEL= directive for options that require a location to
load a file on the same disk. If your boot loader configuration (isolinux/isolinux.cfg for
BIOS and EFI/BOOT/grub.cfg for UEFI) uses the inst.stage2=LABEL=disk_label stanza
to load the second stage of the installer from the same disk, then the disk labels must
match.

IMPORTANT

In boot loader configuration files, replace all spaces in disk labels with \x20.
For example, if you create an ISO image with a RHEL 8.0 label, boot loader
configuration should use RHEL\x208.0.

® Replace the value of the -0 option (-0 ../NEWISO.iso) with the file name of your new image.
The value in the example creates the NEWISOQ.iso file in the directory above the current
one.

For more information about this command, see the genisoimage(1) man page.

45


https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/chap-anaconda-boot-options

Red Hat Enterprise Linux 8 Customizing Anaconda

4. Implant an MD5 checksum into the image. Note that without an MD5 checksu, the image
verification check might fail (the rd.live.check option in the boot loader configuration) and the
installation can hang.

I # implantisomd5 ../NEWISO.iso

In the above example, replace..,/NEWISQ.iso with the file name and the location of the ISO
image that you have created in the previous step.

You can now write the new ISO image to physical media or a network server to boot it on
physical hardware, or you can use it to start installing a virtual machine.

Additional resources

® Forinstructions on preparing boot media or network server, see Performing an advanced RHEL
8 installation.

® Forinstructions on creating virtual machines with ISO images, see Configuring and Managing
Virtualization.

46


https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_an_advanced_rhel_8_installation/index#kickstart-and-advanced-boot-options_installing-rhel-as-an-experienced-user
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/index

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION TO ANACONDA CUSTOMIZATION
	1.1. INTRODUCTION TO ANACONDA CUSTOMIZATION

	CHAPTER 2. PERFORMING THE PRE-CUSTOMIZATION TASKS
	2.1. WORKING WITH ISO IMAGES
	2.2. DOWNLOADING RH BOOT IMAGES
	2.3. EXTRACTING RED HAT ENTERPRISE LINUX BOOT IMAGES

	CHAPTER 3. CUSTOMIZING THE BOOT MENU
	3.1. CUSTOMIZING THE BOOT MENU
	3.2. SYSTEMS WITH BIOS FIRMWARE
	3.3. SYSTEMS WITH UEFI FIRMWARE

	CHAPTER 4. BRANDING AND CHROMING THE GRAPHICAL USER INTERFACE
	4.1. CUSTOMIZING GRAPHICAL ELEMENTS
	4.2. CUSTOMIZING THE PRODUCT NAME
	4.3. CUSTOMIZING THE DEFAULT CONFIGURATION
	4.3.1. Configuring the default configuration files
	4.3.2. Configuring the product configuration files
	4.3.3. Configuring the custom configuration files


	CHAPTER 5. DEVELOPING INSTALLER ADD-ONS
	5.1. INTRODUCTION TO ANACONDA AND ADD-ONS
	5.2. ANACONDA ARCHITECTURE
	5.3. ANACONDA USER INTERFACE
	5.4. COMMUNICATION ACROSS ANACONDA THREADS
	5.5. ANACONDA MODULES AND D-BUS LIBRARY
	5.6. THE HELLO WORLD ADDON EXAMPLE
	5.7. ANACONDA ADD-ON STRUCTURE
	5.8. ANACONDA SERVICES AND CONFIGURATION FILES
	5.9. GUI ADD-ON BASIC FEATURES
	5.10. ADDING SUPPORT FOR THE ADD-ON GRAPHICAL USER INTERFACE (GUI)
	5.11. ADD-ON GUI ADVANCED FEATURES
	5.12. TUI ADD-ON BASIC FEATURES
	5.13. DEFINING A SIMPLE TUI SPOKE
	5.14. USING NORMALTUISPOKE TO DEFINE A TEXT INTERFACE SPOKE
	5.15. DEPLOYING AND TESTING AN ANACONDA ADD-ON

	CHAPTER 6. COMPLETING POST CUSTOMIZATION TASKS
	6.1. CREATING A PRODUCT.IMG FILE
	6.2. CREATING CUSTOM BOOT IMAGES


