
Red Hat Decision Manager 7.3

Getting started with Red Hat Business
Optimizer

Last Updated: 2020-05-26

Red Hat Decision Manager 7.3 Getting started with Red Hat Business
Optimizer

Red Hat Customer Content Services
brms-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This documents describes how to start using Red Hat Business Optimizer.

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. INTRODUCTION TO RED HAT BUSINESS OPTIMIZER
1.1. PLANNING PROBLEMS
1.2. NP-COMPLETENESS IN PLANNING PROBLEMS
1.3. SOLUTIONS TO PLANNING PROBLEMS
1.4. CONSTRAINTS ON PLANNING PROBLEMS

CHAPTER 2. GETTING STARTED WITH SOLVERS IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING
EXAMPLE

2.1. DEPLOYING THE EMPLOYEE ROSTERING SAMPLE PROJECT IN BUSINESS CENTRAL
2.2. RE-CREATING THE EMPLOYEE ROSTERING SAMPLE PROJECT

2.2.1. Setting up the employee rostering project
2.2.2. Problem facts and planning entities
2.2.3. Creating the data model for the employee rostering project

2.2.3.1. Creating the employee roster planning entity
2.2.3.2. Creating the employee roster planning solution

2.2.4. Employee rostering constraints
2.2.4.1. DRL (Drools Rule Language) rules
2.2.4.2. Defining constraints for employee rostering using the DRL designer

2.2.5. Creating rules for employee rostering using guided rules
2.2.5.1. Guided rules
2.2.5.2. Creating a guided rule to balance employee shift numbers
2.2.5.3. Creating a guided rule for no more than one shift per day
2.2.5.4. Creating a guided rule to match skills to shift requirements
2.2.5.5. Creating a guided rule to manage day off requests

2.2.6. Creating a solver configuration for employee rostering
2.2.7. Configuring Solver termination for the employee rostering project

2.3. ACCESSING THE SOLVER USING THE REST API
2.3.1. Registering the Solver using the REST API
2.3.2. Calling the Solver using the REST API

CHAPTER 3. GETTING STARTED WITH JAVA SOLVERS: A CLOUD BALANCING EXAMPLE
3.1. DOMAIN MODEL DESIGN

3.1.1. Designing a domain model
3.1.2. The Computer Class
3.1.3. The Process Class
3.1.4. The CloudBalance Class

3.2. RUNNING THE CLOUD BALANCING HELLO WORLD
3.3. SOLVER CONFIGURATION
3.4. SCORE CONFIGURATION

3.4.1. Configuring score calculation using Java
3.4.2. Configuring score calculation using Drools

3.5. FURTHER DEVELOPMENT OF THE SOLVER

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER
4.1. DOWNLOADING AND RUNNING THE EXAMPLES

4.1.1. Downloading Red Hat Business Optimizer examples
4.1.2. Running Business Optimizer examples
4.1.3. Running the Red Hat Business Optimizer examples in an IDE (IntelliJ, Eclipse, or Netbeans)
4.1.4. Running the web examples

4.2. TABLE OF BUSINESS OPTIMIZER EXAMPLES

4

5
5
6
6
7

8
8
8
9
9

10
11

12
13
14
14
15
15
15
16
17
19

20
20
21
21
22

26
28
29
30
30
31
32
34
35
36
37
39

40
40
40
40
41

42
43

Table of Contents

1

. .

4.3. N QUEENS
4.3.1. Domain model for N queens

4.4. CLOUD BALANCING
4.5. TRAVELING SALESMAN (TSP - TRAVELING SALESMAN PROBLEM)
4.6. DINNER PARTY
4.7. TENNIS CLUB SCHEDULING
4.8. MEETING SCHEDULING
4.9. COURSE TIMETABLING (ITC 2007 TRACK 3 - CURRICULUM COURSE SCHEDULING)
4.10. MACHINE REASSIGNMENT (GOOGLE ROADEF 2012)
4.11. VEHICLE ROUTING

4.11.1. Domain model for Vehicle routing
4.12. PROJECT JOB SCHEDULING
4.13. TASK ASSIGNING
4.14. EXAM TIMETABLING (ITC 2007 TRACK 1 - EXAMINATION)

4.14.1. Domain model for Exam timetabling
4.15. NURSE ROSTERING (INRC 2010)
4.16. TRAVELING TOURNAMENT PROBLEM (TTP)
4.17. CHEAP TIME SCHEDULING
4.18. INVESTMENT ASSET CLASS ALLOCATION (PORTFOLIO OPTIMIZATION)
4.19. CONFERENCE SCHEDULING
4.20. ROCK TOUR
4.21. FLIGHT CREW SCHEDULING

APPENDIX A. VERSIONING INFORMATION

49
51
52
53
53
54
55
56
58
61

66
72
74
76
78
79
84
86
89
89
92
93

94

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

2

Table of Contents

3

PREFACE
As a business rules developer, you can use the Red Hat Business Optimizer to find the optimal solution
to planning problems based on a set of limited resources and under specific constraints.

Use this document to start developing solvers with Red Hat Business Optimizer.

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

4

CHAPTER 1. INTRODUCTION TO RED HAT BUSINESS
OPTIMIZER

Red Hat Business Optimizer is a lightweight, embeddable planning engine that optimizes planning
problems. It helps normal Java programmers solve planning problems efficiently, and it combines
optimization heuristics and metaheuristics with very efficient score calculations.

For example, Red Hat Business Optimizer helps solve various use cases:

Employee/Patient Rosters: It helps create timetables for nurses and keeps track of patient bed
management.

Educational Timetables: It helps schedule lessons, courses, exams, and conference
presentations.

Shop Schedules: It tracks car assembly lines, machine queue planning, and workforce task
planning.

Cutting Stock: It minimizes waste by reducing the consumption of resources such as paper and
steel.

Every organization faces planning problems; that is, they provide products and services with a limited set
of constrained resources (employees, assets, time, and money).

Red Hat Business Optimizer is open source software under the Apache Software License 2.0. It is 100%
pure Java and runs on most Java virtual machines.

1.1. PLANNING PROBLEMS

A planning problem has an optimal goal, based on limited resources and under specific constraints.
Optimal goals can be any number of things, such as:

Maximized profits - the optimal goal results in the highest possible profit.

Minimized ecological footprint - the optimal goal has the least amount of environmental impact.

Maximized satisfaction for employees or customers - the optimal goal prioritizes the needs of
employees or customers.

The ability to achieve these goals relies on the number of resources available. For example, the
following resources might be limited:

The number of people

Amount of time

Budget

Physical assets, for example, machinery, vehicles, computers, buildings, and so on

You must also take into account the specific constraints related to these resources, such as the number
of hours a person works, their ability to use certain machines, or compatibility between pieces of
equipment.

Red Hat Business Optimizer helps Java programmers solve constraint satisfaction problems efficiently.
It combines optimization heuristics and metaheuristics with efficient score calculation.

CHAPTER 1. INTRODUCTION TO RED HAT BUSINESS OPTIMIZER

5

1.2. NP-COMPLETENESS IN PLANNING PROBLEMS

The provided use cases are probably NP-complete or NP-hard, which means the following statements
apply:

It is easy to verify a given solution to a problem in reasonable time.

There is no simple way to find the optimal solution of a problem in reasonable time.

The implication is that solving your problem is probably harder than you anticipated, because the two
common techniques will not suffice:

A brute force algorithm (even a more advanced variant) will take too long.

A quick algorithm, for example in the bin packing problem, putting in the largest items first will
return a solution that is far from optimal.

By using advanced optimization algorithms, Business Optimizer finds a good solution in reasonable time
for such planning problems.

1.3. SOLUTIONS TO PLANNING PROBLEMS

A planning problem has a number of solutions.

There are several categories of solutions:

Possible solution

A possible solution is any solution, whether or not it breaks any number of constraints. Planning
problems often have an incredibly large number of possible solutions. Many of those solutions are
worthless.

Feasible solution

A feasible solution is a solution that does not break any (negative) hard constraints. The number of
feasible solutions tends to be relative to the number of possible solutions. Sometimes there are no
feasible solutions. Every feasible solution is a possible solution.

Optimal solution

An optimal solution is a solution with the highest score. Planning problems usually have a few optimal
solutions. They always have at least one optimal solution, even in the case that there are no feasible
solutions and the optimal solution is not feasible.

Best solution found

The best solution found is the solution with the highest score found by an implementation in a given
amount of time. The best solution found is likely to be feasible and, given enough time, it’s an optimal
solution.

Counterintuitively, the number of possible solutions is huge (if calculated correctly), even with a small
data set.

In the examples provided in the planner-engine distribution folder, most instances have a vast number
of possible solutions. As there is no guaranteed way to find the optimal solution, any implementation is
forced to evaluate at least a subset of all those possible solutions.

Business Optimizer supports several optimization algorithms to efficiently wade through that incredibly
large number of possible solutions.

Depending on the use case, some optimization algorithms perform better than others, but it is

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

6

http://en.wikipedia.org/wiki/NP-complete
https://en.wikipedia.org/wiki/Bin_packing_problem

Depending on the use case, some optimization algorithms perform better than others, but it is
impossible to tell in advance. Using Business Optimizer, you can switch the optimization algorithm by
changing the solver configuration in a few lines of XML or code.

1.4. CONSTRAINTS ON PLANNING PROBLEMS

Usually, a planning problem has at least two levels of constraints:

A (negative) hard constraint must not be broken.
For example, one teacher can not teach two different lessons at the same time.

A (negative) soft constraint should not be broken if it can be avoided.
For example, Teacher A does not like to teach on Friday afternoons.

Some problems also have positive constraints:

A positive soft constraint (or reward) should be fulfilled if possible.
For example, Teacher B likes to teach on Monday mornings.

Some basic problems only have hard constraints. Some problems have three or more levels of
constraints, for example, hard, medium, and soft constraints.

These constraints define the score calculation (otherwise known as the fitness function) of a planning
problem. Each solution of a planning problem can be graded with a score. With Business Optimizer,
score constraints are written in an object oriented language, such as Java code or Drools rules.

This type of code is flexible and scalable.

CHAPTER 1. INTRODUCTION TO RED HAT BUSINESS OPTIMIZER

7

CHAPTER 2. GETTING STARTED WITH SOLVERS IN BUSINESS
CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

You can build and deploy the employee-rostering sample project in Business Central. The project
demonstrates how to create each of the Business Central assets required to solve the shift rostering
planning problem and use Red Hat Business Optimizer to find the best possible solution.

You can deploy the preconfigured employee-rostering project in Business Central. Alternatively, you
can create the project yourself using Business Central.

NOTE

The employee-rostering sample project in Business Central does not include a data set.
You must supply a data set in XML format using a REST API call.

2.1. DEPLOYING THE EMPLOYEE ROSTERING SAMPLE PROJECT IN
BUSINESS CENTRAL

Business Central includes a number of sample projects that you can use to get familiar with the product
and its features. The employee rostering sample project is designed and created to demonstrate the
shift rostering use case for Red Hat Business Optimizer. Use the following procedure to deploy and run
the employee rostering sample in Business Central.

Prerequisites

Red Hat Decision Manager has been downloaded and installed. For installation options, see
Planning a Red Hat Decision Manager installation .

You have started the Decision Server and logged in to Business Central with a user that has
admin permissions. For more information about getting started, see Getting started with
decision services.

Procedure

1. In Business Central, click Menu → Design → Projects.

2. In the preconfigured MySpace space, click Try Samples.

3. Select employee-rostering from the list of sample projects and click Ok in the upper-right
corner to import the project.

4. After the asset list has complied, click Build & Deploy to deploy the employee rostering
example.

The rest of this document explains each of the project assets and their configuration.

2.2. RE-CREATING THE EMPLOYEE ROSTERING SAMPLE PROJECT

The employee rostering sample project is a preconfigured project available in Business Central. You can
learn about how to deploy this project in Section 2.1, “Deploying the employee rostering sample project
in Business Central”.

You can create the employee rostering example "from scratch". You can use the workflow in this

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

8

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.3/html-single/planning_a_red_hat_decision_manager_installation
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.3/html-single/getting_started_with_decision_services

You can create the employee rostering example "from scratch". You can use the workflow in this
example to create a similar project of your own in Business Central.

2.2.1. Setting up the employee rostering project

To start developing a solver in Business Central, you must set up the project.

Prerequisites

Red Hat Decision Manager has been downloaded and installed.

You have deployed Business Central and logged in with a user that has the admin role.

Procedure

1. Create a new project in Business Central by clicking Menu → Design → Projects → Add
Project.

2. In the Add Project window, fill out the following fields:

Name: employee-rostering

Description(optional): Employee rostering problem optimization using Business Optimizer.
Assigns employees to shifts based on their skill.

Optionally, click Show Advanced Options to populate the Group ID, Artifact ID, and Version
information.

Group ID: employeerostering

Artifact ID: employeerostering

Version: 1.0.0-SNAPSHOT

3. Click Add to add the project to the Business Central project repository.

2.2.2. Problem facts and planning entities

Each of the domain classes in the employee rostering planning problem can be categorized as one of the
following:

A unrelated class: not used by any of the score constraints. From a planning standpoint, this
data is obsolete.

A problem fact class: used by the score constraints, but does not change during planning (as
long as the problem stays the same), for example, Shift and Employee. All the properties of a
problem fact class are problem properties.

A planning entity class: used by the score constraints and changes during planning, for example,
ShiftAssignment. The properties that change during planning are planning variables. The other
properties are problem properties.
Ask yourself the following questions:

What class changes during planning?

Which class has variables that I want the Solver to change?

CHAPTER 2. GETTING STARTED WITH SOLVERS IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

9

That class is a planning entity.

A planning entity class needs to be annotated with the @PlanningEntity annotation, or defined
in Business Central using the Red Hat Business Optimizer dock in the domain designer.

Each planning entity class has one or more planning variables, and should also have one or more
defining properties.

Most use cases have only one planning entity class, and only one planning variable per planning
entity class.

2.2.3. Creating the data model for the employee rostering project

Use this section to create the data objects required to run the employee rostering sample project in
Business Central.

Prerequisite

You have completed the project set up described in Section 2.2.1, “Setting up the employee rostering
project”.

Procedure

1. With your new project, either click Data Object in the project perspective, or click Add Asset →
Data Object to create a new data object.

2. Name the first data object Timeslot, and select employeerostering.employeerostering as the
Package.
Click Ok.

3. In the Data Objects perspective, click +add field to add fields to the Timeslot data object.

4. In the id field, type endTime.

5. Click the drop-down menu next to Type and select LocalDateTime.

6. Click Create and continue to add another field.

7. Add another field with the id startTime and Type LocalDateTime.

8. Click Create.

9. Click Save in the upper-right corner to save the Timeslot data object.

10. Click the x in the upper-right corner to close the Data Objects perspective and return to the
Assets menu.

11. Using the previous steps, create the following data objects and their attributes:

Table 2.1. Skill

id Type

name String

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

10

Table 2.2. Employee

id Type

name String

skills employeerostering.employeerostering.Sk
ill[List]

Table 2.3. Shift

id Type

requiredSkill employeerostering.employeerostering.Sk
ill

timeslot employeerostering.employeerostering.Ti
meslot

Table 2.4. DayOffRequest

id Type

date LocalDate

employee employeerostering.employeerostering.E
mployee

Table 2.5. ShiftAssignment

id Type

employee employeerostering.employeerostering.E
mployee

shift employeerostering.employeerostering.Sh
ift

For more examples of creating data objects, see Getting started with decision services .

2.2.3.1. Creating the employee roster planning entity

In order to solve the employee rostering planning problem, you must create a planning entity and a
solver. The planning entity is defined in the domain designer using the attributes available in the Red Hat
Business Optimizer dock.

Use the following procedure to define the ShiftAssignment data object as the planning entity for the
employee rostering example.

CHAPTER 2. GETTING STARTED WITH SOLVERS IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

11

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.3/html-single/getting_started_with_decision_services

Prerequisite

You have created the relevant data objects and planning entity required to run the employee
rostering example by completing the procedures in Section 2.2.3, “Creating the data model for
the employee rostering project”.

Procedure

1. From the project Assets menu, open the ShiftAssignment data object.

2. In the Data Objects perspective, open the Red Hat Business Optimizer dock by clicking the

 on the right.

3. Select Planning Entity.

4. Select employee from the list of fields under the ShiftAssignment data object.

5. In the Red Hat Business Optimizer dock, select Planning Variable.
In the Value Range Id input field, type employeeRange. This adds the @ValueRangeProvider
annotation to the planning entity, which you can view by clicking the Source tab in the designer.

The value range of a planning variable is defined with the @ValueRangeProvider annotation. A
@ValueRangeProvider annotation always has a property id, which is referenced by the
@PlanningVariable property valueRangeProviderRefs.

6. Close the dock and click Save to save the data object.

2.2.3.2. Creating the employee roster planning solution

The employee roster problem relies on a defined planning solution. The planning solution is defined in
the domain designer using the attributes available in the Red Hat Business Optimizer dock.

Prerequisite

You have created the relevant data objects and planning entity required to run the employee
rostering example by completing the procedures in Section 2.2.3, “Creating the data model for
the employee rostering project” and Section 2.2.3.1, “Creating the employee roster planning
entity”.

Procedure

1. Create a new data object with the identifier EmployeeRoster.

2. Create the following fields:

Table 2.6. EmployeeRoster

id Type

dayOffRequestList employeerostering.employeerostering.Da
yOffRequest[List]

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

12

shiftAssignmentList employeerostering.employeerostering.Sh
iftAssignment[List]

shiftList employeerostering.employeerostering.Sh
ift[List]

skillList employeerostering.employeerostering.Sk
ill[List]

timeslotList employeerostering.employeerostering.Ti
meslot[List]

id Type

3. In the Data Objects perspective, open the Red Hat Business Optimizer dock by clicking the

 on the right.

4. Select Planing Solution.

5. Leave the default Hard soft score as the Solution Score Type. This automatically generates a
score field in the EmployeeRoster data object with the solution score as the type.

6. Add a new field with the following attributes:

id Type

employeeList employeerostering.employeerostering.E
mployee[List]

7. With the employeeList field selected, open the Red Hat Business Optimizer dock and select
the Planning Value Range Provider box.
In the id field, type employeeRange. Close the dock.

8. Click Save in the upper-right corner to save the asset.

2.2.4. Employee rostering constraints

Employee rostering is a planning problem. All planning problems include constraints that must be
satisfied in order to find an optimal solution.

The employee rostering sample project in Business Central includes the following hard and soft
constraints:

Hard constraint

Employees are only assigned one shift per day.

All shifts that require a particular employee skill are assigned an employee with that particular
skill.

CHAPTER 2. GETTING STARTED WITH SOLVERS IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

13

Soft constraints

All employees are assigned a shift.

If an employee requests a day off, their shift can be reassigned to another employee.

Hard and soft constraints can be defined in Business Central using either the free-form DRL designer, or
using guided rules.

2.2.4.1. DRL (Drools Rule Language) rules

DRL (Drools Rule Language) rules are business rules that you define directly in .drl text files. These DRL
files are the source in which all other rule assets in Business Central are ultimately rendered. You can
create and manage DRL files within the Business Central interface, or create them externally using Red
Hat Developer Studio, Java objects, or Maven archetypes. A DRL file can contain one or more rules that
define at minimum the rule conditions (when) and actions (then). The DRL designer in Business Central
provides syntax highlighting for Java, DRL, and XML.

All data objects related to a DRL rule must be in the same project package as the DRL rule in Business
Central. Assets in the same package are imported by default. Existing assets in other packages can be
imported with the DRL rule.

2.2.4.2. Defining constraints for employee rostering using the DRL designer

You can create constraint definitions for the employee rostering example using the free-form DRL
designer in Business Central.

Use this procedure to create a hard constraint where no employee can be assigned a shift that begins
less than 10 hours after their previous shift ended.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → DRL file.

3. In the DRL file name field, type ComplexScoreRules.

4. Select the employeerostering.employeerostering package.

5. Click +Ok to create the DRL file.

6. In the Model tab of the DRL designer, define the Employee10HourShiftSpace rule as a DRL
file:

package employeerostering.employeerostering;

rule "Employee10HourShiftSpace"
 dialect "mvel"
 when
 $shiftAssignment : ShiftAssignment($employee : employee != null, $shiftEndDateTime :
shift.timeslot.endTime)
 ShiftAssignment(this != $shiftAssignment, $employee == employee, $shiftEndDateTime
<= shift.timeslot.endTime,
 $shiftEndDateTime.until(shift.timeslot.startTime,

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

14

7. Click Save to save the DRL file.

For more information about creating DRL files, see Designing a decision service using DRL rules .

2.2.5. Creating rules for employee rostering using guided rules

You can create rules that define hard and soft constraints for employee rostering using the guided rules
designer in Business Central.

2.2.5.1. Guided rules

Guided rules are business rules that you create in a UI-based guided rules designer in Business Central
that leads you through the rule-creation process. The guided rules designer provides fields and options
for acceptable input based on the data objects for the rule being defined. The guided rules that you
define are compiled into Drools Rule Language (DRL) rules as with all other rule assets.

All data objects related to a guided rule must be in the same project package as the guided rule. Assets
in the same package are imported by default. After you create the necessary data objects and the
guided rule, you can use the Data Objects tab of the guided rules designer to verify that all required
data objects are listed or to import other existing data objects by adding a New item.

2.2.5.2. Creating a guided rule to balance employee shift numbers

The BalanceEmployeesShiftNumber guided rule creates a soft constraint that ensures shifts are
assigned to employees in a way that is balanced as evenly as possible. It does this by creating a score
penalty that increases when shift distribution is less even. The score formula, implemented by the rule,
incentivizes the Solver to distribute shifts in a more balanced way.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Guided Rule.

3. Enter BalanceEmployeesShiftNumber as the Guided Rule name and select the
employeerostering.employeerostering Package.

java.time.temporal.ChronoUnit.HOURS) <10)
 then
 scoreHolder.addHardConstraintMatch(kcontext, -1);
end

CHAPTER 2. GETTING STARTED WITH SOLVERS IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

15

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.3/html-single/designing_a_decision_service_using_drl_rules

4. Click Ok to create the rule asset.

5. Add a WHEN condition by clicking the in the WHEN field.

6. Select Employee in the Add a condition to the rule window. Click +Ok.

7. Click on the Employee condition to modify the constraints and add the variable name
$employee.

8. Add the WHEN condition From Accumulate.

a. Above the From Accumulate condition, click click to add pattern and select Number as
the fact type from the drop-down list.

b. Add the variable name $shiftCount to the Number condition.

c. Below the From Accumulate condition, click click to add pattern and select the
ShiftAssignment fact type from the drop-down list.

d. Add the variable name $shiftAssignment to the ShiftAssignment fact type.

e. Click on the ShiftAssignment condition again and from the Add a restriction on a field
drop-down list, select employee.

f. Select equal to from the drop-down list next to the employee constraint.

g. Click the icon next to the drop-down button to add a variable, and click Bound variable
in the Field value window.

h. Select $employee from the drop-down list.

i. In the Function box type count($shiftAssignment).

9. Add the THEN condition by clicking the in the THEN field.

10. Select Modify Soft Score in the Add a new action window. Click +Ok.

a. Type the following expression into the box: -
($shiftCount.intValue()*$shiftCount.intValue())

11. Click Validate in the upper-right corner to check all rule conditions are valid. If the rule validation
fails, address any problems described in the error message, review all components in the rule,
and try again to validate the rule until the rule passes.

12. Click Save to save the rule.

For more information about creating guided rules, see Designing a decision service using guided rules .

2.2.5.3. Creating a guided rule for no more than one shift per day

The OneEmployeeShiftPerDay guided rule creates a hard constraint that employees are not assigned
more than one shift per day. In the employee rostering example, this constraint is created using the
guided rule designer.

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

16

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.3/html-single/designing_a_decision_service_using_guided_rules

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Guided Rule.

3. Enter OneEmployeeShiftPerDay as the Guided Rule name and select the
employeerostering.employeerostering Package.

4. Click Ok to create the rule asset.

5. Add a WHEN condition by clicking the in the WHEN field.

6. Select Free form DRL from the Add a condition to the rule window.

7. In the free form DRL box, type the following condition:

This condition states that a shift cannot be assigned to an employee that already has another
shift assignment on the same day.

8. Add the THEN condition by clicking the in the THEN field.

9. Select Add free form DRL from the Add a new action window.

10. In the free form DRL box, type the following condition:

11. Click Validate in the upper-right corner to check all rule conditions are valid. If the rule validation
fails, address any problems described in the error message, review all components in the rule,
and try again to validate the rule until the rule passes.

12. Click Save to save the rule.

For more information about creating guided rules, see Designing a decision service using guided rules .

2.2.5.4. Creating a guided rule to match skills to shift requirements

$shiftAssignment : ShiftAssignment(employee != null)
 ShiftAssignment(this != $shiftAssignment , employee == $shiftAssignment.employee ,
shift.timeslot.startTime.toLocalDate() ==
$shiftAssignment.shift.timeslot.startTime.toLocalDate())

scoreHolder.addHardConstraintMatch(kcontext, -1);

CHAPTER 2. GETTING STARTED WITH SOLVERS IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

17

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.3/html-single/designing_a_decision_service_using_guided_rules

The ShiftReqiredSkillsAreMet guided rule creates a hard constraint that ensures all shifts are assigned
an employee with the correct set of skills. In the employee rostering example, this constraint is created
using the guided rule designer.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Guided Rule.

3. Enter ShiftReqiredSkillsAreMet as the Guided Rule name and select the
employeerostering.employeerostering Package.

4. Click Ok to create the rule asset.

5. Add a WHEN condition by clicking the in the WHEN field.

6. Select ShiftAssignment in the Add a condition to the rule window. Click +Ok.

7. Click on the ShiftAssignment condition, and select employee from the Add a restriction on a
field drop-down list.

8. In the designer, click the drop-down list next to employee and select is not null.

9. Click on the ShiftAssignment condition, and click Expression editor.

a. In the designer, click [not bound] to open the Expression editor, and bind the expression
to the variable $requiredSkill. Click Set.

b. In the designer, next to $requiredSkill, select shift from the first drop-down list, then
requiredSkill from the next drop-down list.

10. Click on the ShiftAssignment condition, and click Expression editor.

a. In the designer, next to [not bound], select employee from the first drop-down list, then
skills from the next drop-down list.

b. Leave the next drop-down list as Choose.

c. In the next drop-down box, change please choose to excludes.

d. Click the icon next to excludes, and in the Field value window, click the New formula
button.

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

18

e. Type $requiredSkill into the formula box.

11. Add the THEN condition by clicking the in the THEN field.

12. Select Modify Hard Score in the Add a new action window. Click +Ok.

13. Type -1 into the score actions box.

14. Click Validate in the upper-right corner to check all rule conditions are valid. If the rule validation
fails, address any problems described in the error message, review all components in the rule,
and try again to validate the rule until the rule passes.

15. Click Save to save the rule.

For more information about creating guided rules, see Designing a decision service using guided rules .

2.2.5.5. Creating a guided rule to manage day off requests

The DayOffRequest guided rule creates a soft constraint. This constraint allows a shift to be reassigned
to another employee in the event the employee who was originally assigned the shift is no longer able to
work that day. In the employee rostering example, this constraint is created using the guided rule
designer.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Guided Rule.

3. Enter DayOffRequest as the Guided Rule name and select the
employeerostering.employeerostering Package.

4. Click Ok to create the rule asset.

5. Add a WHEN condition by clicking the in the WHEN field.

6. Select Free form DRL from the Add a condition to the rule window.

7. In the free form DRL box, type the following condition:

$dayOffRequest : DayOffRequest()
 ShiftAssignment(employee == $dayOffRequest.employee ,
shift.timeslot.startTime.toLocalDate() == $dayOffRequest.date)

CHAPTER 2. GETTING STARTED WITH SOLVERS IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

19

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.3/html-single/designing_a_decision_service_using_guided_rules

This condition states if a shift is assigned to an employee who has made a day off request, the
employee can be unassigned the shift on that day.

8. Add the THEN condition by clicking the in the THEN field.

9. Select Add free form DRL from the Add a new action window.

10. In the free form DRL box, type the following condition:

11. Click Validate in the upper-right corner to check all rule conditions are valid. If the rule validation
fails, address any problems described in the error message, review all components in the rule,
and try again to validate the rule until the rule passes.

12. Click Save to save the rule.

For more information about creating guided rules, see Designing a decision service using guided rules .

2.2.6. Creating a solver configuration for employee rostering

You can create and edit Solver configurations in Business Central. The Solver configuration designer
creates a solver configuration that can be run after the project is deployed.

Prerequisite

Red Hat Decision Manager has been downloaded and installed. You have created and configured all of
the relevant assets for the employee rostering example.

Procedure

1. In Business Central, click Menu → Projects, and click on your project to open it.

2. In the Assets perspective, click Add Asset → Solver configuration

3. In the Create new Solver configuration window, type the name
EmployeeRosteringSolverConfig for your Solver and click Ok.
This opens the Solver configuration designer.

4. In the Score Director Factory configuration section, define a KIE base that contains scoring
rule definitions. The employee rostering sample project uses defaultKieBase.

a. Select one of the KIE sessions defined within the KIE base. The employee rostering sample
project uses defaultKieSession.

5. Click Validate in the upper-right corner to check the Score Director Factory configuration is
correct. If validation fails, address any problems described in the error message, and try again to
validate until the configuration passes.

6. Click Save to save the Solver configuration.

2.2.7. Configuring Solver termination for the employee rostering project

You can configure the Solver to terminate after a specified amount of time. By default, the planning
engine is given an unlimited time period to solve a problem instance.

scoreHolder.addSoftConstraintMatch(kcontext, -100);

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

20

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.3/html-single/designing_a_decision_service_using_guided_rules

The employee rostering sample project is set up to run for 30 seconds.

Prerequisite

You have created all relevant assets for the employee rostering project and created the
EmployeeRosteringSolverConfig solver configuration in Business Central as described in
Section 2.2.6, “Creating a solver configuration for employee rostering” .

Procedure

1. Open the EmployeeRosteringSolverConfig from the Assets perspective. This will open the
Solver configuration designer.

2. In the Termination section, click Add to create new termination element within the selected
logical group.

3. Select the Time spent termination type from the drop-down list. This is added as an input field
in the termination configuration.

4. Use the arrows next to the time elements to adjust the amount of time spent to 30 seconds.

5. Click Validate in the upper-right corner to check the Score Director Factory configuration is
correct. If validation fails, address any problems described in the error message, and try again to
validate until the configuration passes.

6. Click Save to save the Solver configuration.

2.3. ACCESSING THE SOLVER USING THE REST API

After deploying or re-creating the sample solver, you can access it using the REST API.

You must register a solver instance using the REST API. Then you can supply data sets and retrieve
optimized solutions.

Prerequisite

The employee rostering project is set up and deployed according to the previous sections in this
document. You can either deploy the sample project, as described in Section 2.1, “Deploying the
employee rostering sample project in Business Central”, or re-create the project, as described
in Section 2.2, “Re-creating the employee rostering sample project”.

2.3.1. Registering the Solver using the REST API

You must register the solver instance using the REST API before you can use the solver.

Each solver instance is capable of optimizing one planning problem at a time.

Procedure

1. Create a HTTP request using the following header:

authorization: admin:admin
X-KIE-ContentType: xstream
content-type: application/xml

CHAPTER 2. GETTING STARTED WITH SOLVERS IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

21

2. Register the Solver using the following request:

PUT

http://localhost:8080/kie-
server/services/rest/server/containers/employeerostering_1.0.0-
SNAPSHOT/solvers/EmployeeRosteringSolver

Request body

2.3.2. Calling the Solver using the REST API

After registering the solver instance, you can use the REST API to submit a data set to the solver and to
retrieve an optimized solution.

Procedure

1. Create a HTTP request using the following header:

authorization: admin:admin
X-KIE-ContentType: xstream
content-type: application/xml

2. Submit a request to the Solver with a data set, as in the following example:

POST

http://localhost:8080/kie-
server/services/rest/server/containers/employeerostering_1.0.0-
SNAPSHOT/solvers/EmployeeRosteringSolver/state/solving

Request body

<solver-instance>
 <solver-config-
file>employeerostering/employeerostering/EmployeeRosteringSolverConfig.solver.xml</s
olver-config-file>
</solver-instance>

<employeerostering.employeerostering.EmployeeRoster>
 <employeeList>
 <employeerostering.employeerostering.Employee>
 <name>John</name>
 <skills>
 <employeerostering.employeerostering.Skill>
 <name>reading</name>
 </employeerostering.employeerostering.Skill>
 </skills>
 </employeerostering.employeerostering.Employee>
 <employeerostering.employeerostering.Employee>
 <name>Mary</name>
 <skills>
 <employeerostering.employeerostering.Skill>
 <name>writing</name>
 </employeerostering.employeerostering.Skill>
 </skills>
 </employeerostering.employeerostering.Employee>

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

22

 <employeerostering.employeerostering.Employee>
 <name>Petr</name>
 <skills>
 <employeerostering.employeerostering.Skill>
 <name>speaking</name>
 </employeerostering.employeerostering.Skill>
 </skills>
 </employeerostering.employeerostering.Employee>
 </employeeList>
 <shiftList>
 <employeerostering.employeerostering.Shift>
 <timeslot>
 <startTime>2017-01-01T00:00:00</startTime>
 <endTime>2017-01-01T01:00:00</endTime>
 </timeslot>
 <requiredSkill
reference="../../../employeeList/employeerostering.employeerostering.Employee/skills/emplo
yeerostering.employeerostering.Skill"/>
 </employeerostering.employeerostering.Shift>
 <employeerostering.employeerostering.Shift>
 <timeslot reference="../../employeerostering.employeerostering.Shift/timeslot"/>
 <requiredSkill
reference="../../../employeeList/employeerostering.employeerostering.Employee[3]/skills/emp
loyeerostering.employeerostering.Skill"/>
 </employeerostering.employeerostering.Shift>
 <employeerostering.employeerostering.Shift>
 <timeslot reference="../../employeerostering.employeerostering.Shift/timeslot"/>
 <requiredSkill
reference="../../../employeeList/employeerostering.employeerostering.Employee[2]/skills/emp
loyeerostering.employeerostering.Skill"/>
 </employeerostering.employeerostering.Shift>
 </shiftList>
 <skillList>
 <employeerostering.employeerostering.Skill
reference="../../employeeList/employeerostering.employeerostering.Employee/skills/employe
erostering.employeerostering.Skill"/>
 <employeerostering.employeerostering.Skill
reference="../../employeeList/employeerostering.employeerostering.Employee[3]/skills/emplo
yeerostering.employeerostering.Skill"/>
 <employeerostering.employeerostering.Skill
reference="../../employeeList/employeerostering.employeerostering.Employee[2]/skills/emplo
yeerostering.employeerostering.Skill"/>
 </skillList>
 <timeslotList>
 <employeerostering.employeerostering.Timeslot
reference="../../shiftList/employeerostering.employeerostering.Shift/timeslot"/>
 </timeslotList>
 <dayOffRequestList/>
 <shiftAssignmentList>
 <employeerostering.employeerostering.ShiftAssignment>
 <shift reference="../../../shiftList/employeerostering.employeerostering.Shift"/>
 </employeerostering.employeerostering.ShiftAssignment>
 <employeerostering.employeerostering.ShiftAssignment>
 <shift reference="../../../shiftList/employeerostering.employeerostering.Shift[3]"/>
 </employeerostering.employeerostering.ShiftAssignment>
 <employeerostering.employeerostering.ShiftAssignment>

CHAPTER 2. GETTING STARTED WITH SOLVERS IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

23

3. Request the best solution to the planning problem:

GET

http://localhost:8080/kie-
server/services/rest/server/containers/employeerostering_1.0.0-
SNAPSHOT/solvers/EmployeeRosteringSolver/bestsolution

Example response

 <shift reference="../../../shiftList/employeerostering.employeerostering.Shift[2]"/>
 </employeerostering.employeerostering.ShiftAssignment>
 </shiftAssignmentList>
</employeerostering.employeerostering.EmployeeRoster>

<solver-instance>
 <container-id>employee-rostering</container-id>
 <solver-id>solver1</solver-id>
 <solver-config-
file>employeerostering/employeerostering/EmployeeRosteringSolverConfig.solver.xml</s
olver-config-file>
 <status>NOT_SOLVING</status>
 <score
scoreClass="org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore">0hard/0soft<
/score>
 <best-solution class="employeerostering.employeerostering.EmployeeRoster">
 <employeeList>
 <employeerostering.employeerostering.Employee>
 <name>John</name>
 <skills>
 <employeerostering.employeerostering.Skill>
 <name>reading</name>
 </employeerostering.employeerostering.Skill>
 </skills>
 </employeerostering.employeerostering.Employee>
 <employeerostering.employeerostering.Employee>
 <name>Mary</name>
 <skills>
 <employeerostering.employeerostering.Skill>
 <name>writing</name>
 </employeerostering.employeerostering.Skill>
 </skills>
 </employeerostering.employeerostering.Employee>
 <employeerostering.employeerostering.Employee>
 <name>Petr</name>
 <skills>
 <employeerostering.employeerostering.Skill>
 <name>speaking</name>
 </employeerostering.employeerostering.Skill>
 </skills>
 </employeerostering.employeerostering.Employee>
 </employeeList>
 <shiftList>
 <employeerostering.employeerostering.Shift>
 <timeslot>
 <startTime>2017-01-01T00:00:00</startTime>

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

24

 <endTime>2017-01-01T01:00:00</endTime>
 </timeslot>
 <requiredSkill
reference="../../../employeeList/employeerostering.employeerostering.Employee/skills/emplo
yeerostering.employeerostering.Skill"/>
 </employeerostering.employeerostering.Shift>
 <employeerostering.employeerostering.Shift>
 <timeslot reference="../../employeerostering.employeerostering.Shift/timeslot"/>
 <requiredSkill
reference="../../../employeeList/employeerostering.employeerostering.Employee[3]/skills/emp
loyeerostering.employeerostering.Skill"/>
 </employeerostering.employeerostering.Shift>
 <employeerostering.employeerostering.Shift>
 <timeslot reference="../../employeerostering.employeerostering.Shift/timeslot"/>
 <requiredSkill
reference="../../../employeeList/employeerostering.employeerostering.Employee[2]/skills/emp
loyeerostering.employeerostering.Skill"/>
 </employeerostering.employeerostering.Shift>
 </shiftList>
 <skillList>
 <employeerostering.employeerostering.Skill
reference="../../employeeList/employeerostering.employeerostering.Employee/skills/employe
erostering.employeerostering.Skill"/>
 <employeerostering.employeerostering.Skill
reference="../../employeeList/employeerostering.employeerostering.Employee[3]/skills/emplo
yeerostering.employeerostering.Skill"/>
 <employeerostering.employeerostering.Skill
reference="../../employeeList/employeerostering.employeerostering.Employee[2]/skills/emplo
yeerostering.employeerostering.Skill"/>
 </skillList>
 <timeslotList>
 <employeerostering.employeerostering.Timeslot
reference="../../shiftList/employeerostering.employeerostering.Shift/timeslot"/>
 </timeslotList>
 <dayOffRequestList/>
 <shiftAssignmentList/>
 <score>0hard/0soft</score>
 </best-solution>
</solver-instance>

CHAPTER 2. GETTING STARTED WITH SOLVERS IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

25

CHAPTER 3. GETTING STARTED WITH JAVA SOLVERS: A
CLOUD BALANCING EXAMPLE

An example demonstrates development of a basic Red Hat Business Optimizer solver using Java code.

Suppose your company owns a number of cloud computers and needs to run a number of processes on
those computers. You must assign each process to a computer.

The following hard constraints must be fulfilled:

Every computer must be able to handle the minimum hardware requirements of the sum of its
processes:

CPU capacity: The CPU power of a computer must be at least the sum of the CPU power
required by the processes assigned to that computer.

Memory capacity: The RAM memory of a computer must be at least the sum of the RAM
memory required by the processes assigned to that computer.

Network capacity: The network bandwidth of a computer must be at least the sum of the
network bandwidth required by the processes assigned to that computer.

The following soft constraints should be optimized:

Each computer that has one or more processes assigned incurs a maintenance cost (which is
fixed per computer).

Cost: Minimize the total maintenance cost.

This problem is a form of bin packing. In the following simplified example, we assign four processes to
two computers with two constraints (CPU and RAM) with a simple algorithm:

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

26

The simple algorithm used here is the First Fit Decreasing algorithm, which assigns the bigger processes
first and assigns the smaller processes to the remaining space. As you can see, it is not optimal, as it does
not leave enough room to assign the yellow process D.

Business Optimizer finds a more optimal solution by using additional, smarter algorithms. It also scales:
both in data (more processes, more computers) and constraints (more hardware requirements, other
constraints).

The following summary applies to this example, as well as to an advanced implementation with more
constraints that is described in Section 4.10, “Machine reassignment (Google ROADEF 2012)” :

CHAPTER 3. GETTING STARTED WITH JAVA SOLVERS: A CLOUD BALANCING EXAMPLE

27

Table 3.1. Cloud balancing problem size

Problem size Computers Processes Search space

2computers-6processes 2 6 64

3computers-9processes 3 9 10^4

4computers-
012processes

4 12 10^7

100computers-
300processes

100 300 10^600

200computers-
600processes

200 600 10^1380

400computers-
1200processes

400 1200 10^3122

800computers-
2400processes

800 2400 10^6967

3.1. DOMAIN MODEL DESIGN

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

28

Using a domain model helps determine which classes are planning entities and which of their properties
are planning variables. It also helps to simplify contraints, improve performance, and increase flexibility
for future needs.

3.1.1. Designing a domain model

To create a domain model, define all the objects that represent the input data for the problem. In this
example, the objects are processes and computers.

A separate object in the domain model must represent a full data set of the problem, which contains the
input data as well as a solution. In this example, this object holds a list of computers and a list of
processes. Each process is assigned to a computer; the distribution of processes between computers is
the solution.

Procedure

1. Draw a class diagram of your domain model.

2. Normalize it to remove duplicate data.

3. Write down some sample instances for each class. Sample instances are entity properties that
are relevant for planning purposes.

Computer: Represents a computer with certain hardware and maintenance costs.
In this example, the sample instances for the Computer class are cpuPower, memory,
networkBandwidth, cost.

Process: Represents a process with a demand. Needs to be assigned to a Computer by
Planner.
Sample instances for Process are requiredCpuPower, requiredMemory, and
requiredNetworkBandwidth.

CloudBalance: Represents the distribution of processes between computers. Contains
every Computer and Process for a certain data set.
For an object representing the full data set and solution, a sample instance holding the
score must be present. Business Optimizer can calculate and compare the scores for
different solutions; the solution with the highest score is the optimal solution. Therefore, the
sample instance for CloudBalance is score.

4. Determine which relationships (or fields) change during planning:

Planning entity : The class (or classes) that Business Optimizer can change during solving. In
this example, it is the class Process, because we can move processes to different
computers.

A class representing input data that Business Optimizer can not change is known as a
problem fact.

Planning variable : The property (or properties) of a planning entity class that changes during
solving. In this example, it is the property computer on the class Process.

Planning solution: The class that represents a solution to the problem. This class must
represent the full data set and contain all planning entities. In this example that is the class
CloudBalance.

In the UML class diagram below, the Business Optimizer concepts are already annotated:

CHAPTER 3. GETTING STARTED WITH JAVA SOLVERS: A CLOUD BALANCING EXAMPLE

29

You can find the class definitions for this example in the
examples/sources/src/main/java/org/optaplanner/examples/cloudbalancing/domain directory.

3.1.2. The Computer Class

The Computer class is a Java object that stores data, sometimes known as a POJO (Plain Old Java
Object). Usually, you will have more of this kind of classes with input data.

Example 3.1. CloudComputer.java

3.1.3. The Process Class

The Process class is the class that is modified during solving.

We need to tell Business Optimizer that it can change the property computer. To do this, annotate the

public class CloudComputer ... {

 private int cpuPower;
 private int memory;
 private int networkBandwidth;
 private int cost;

 ... // getters
}

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

30

We need to tell Business Optimizer that it can change the property computer. To do this, annotate the
class with @PlanningEntity and annotate the getComputer() getter with @PlanningVariable.

Of course, the property computer needs a setter too, so Business Optimizer can change it during
solving.

Example 3.2. CloudProcess.java

Business Optimizer needs to know which values it can choose from to assign to the property computer.
Those values are retrieved from the method CloudBalance.getComputerList() on the planning
solution, which returns a list of all computers in the current data set.

The @PlanningVariable's valueRangeProviderRefs parameter on CloudProcess.getComputer()
needs to match with the @ValueRangeProvider's id on CloudBalance.getComputerList().

NOTE

You can also use annotations on fields instead of getters.

3.1.4. The CloudBalance Class

The CloudBalance class has a @PlanningSolution annotation.

This class holds a list of all computers and processes. It represents both the planning problem and (if it is
initialized) the planning solution.

@PlanningEntity(...)
public class CloudProcess ... {

 private int requiredCpuPower;
 private int requiredMemory;
 private int requiredNetworkBandwidth;

 private CloudComputer computer;

 ... // getters

 @PlanningVariable(valueRangeProviderRefs = {"computerRange"})
 public CloudComputer getComputer() {
 return computer;
 }

 public void setComputer(CloudComputer computer) {
 computer = computer;
 }

 // **
 // Complex methods
 // **

 ...

}

CHAPTER 3. GETTING STARTED WITH JAVA SOLVERS: A CLOUD BALANCING EXAMPLE

31

The CloudBalance class has the following key attributes:

It holds a collection of processes that Business Optimizer can change. We annotate the getter
getProcessList() with @PlanningEntityCollectionProperty, so that Business Optimizer can
retrieve the processes that it can change. To save a solution, Business Optimizer initializes a new
instance of the class with the list of changed processes.

1. It also has a @PlanningScore annotated property score, which is the Score of that solution
in its current state. Business Optimizer automatically updates it when it calculates a Score
for a solution instance; therefore, this property needs a setter.

2. Especially for score calculation with Drools, the property computerList needs to be
annotated with a @ProblemFactCollectionProperty so that Business Optimizer can
retrieve a list of computers (problem facts) and make it available to the decision engine.

Example 3.3. CloudBalance.java

3.2. RUNNING THE CLOUD BALANCING HELLO WORLD

You can run a sample "hello world" application to demonstrate the solver.

@PlanningSolution
public class CloudBalance ... {

 private List<CloudComputer> computerList;

 private List<CloudProcess> processList;

 private HardSoftScore score;

 @ValueRangeProvider(id = "computerRange")
 @ProblemFactCollectionProperty
 public List<CloudComputer> getComputerList() {
 return computerList;
 }

 @PlanningEntityCollectionProperty
 public List<CloudProcess> getProcessList() {
 return processList;
 }

 @PlanningScore
 public HardSoftScore getScore() {
 return score;
 }

 public void setScore(HardSoftScore score) {
 this.score = score;
 }

 ...
}

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

32

Procedure

1. Download and configure the examples in your preferred IDE. For instructions on downloading
and configiring examples in an IDE, see Section 4.1.3, “Running the Red Hat Business Optimizer
examples in an IDE (IntelliJ, Eclipse, or Netbeans)”.

2. Create a run configuration with the following main class:
org.optaplanner.examples.cloudbalancing.app.CloudBalancingHelloWorld
By default, the Cloud Balancing Hello World is configured to run for 120 seconds.

Result

The application executes the following code:

Example 3.4. CloudBalancingHelloWorld.java

The code example does the following:

1. Build the Solver based on a solver configuration (in this case an XML file,
cloudBalancingSolverConfig.xml, from the classpath).
Building the Solver is the most complicated part of this procedure. For more details, see
Section 3.3, “Solver Configuration”.

2. Load the problem.

CloudBalancingGenerator generates a random problem: you will replace this with a class that

public class CloudBalancingHelloWorld {

 public static void main(String[] args) {
 // Build the Solver
 SolverFactory<CloudBalance> solverFactory =
SolverFactory.createFromXmlResource("org/optaplanner/examples/cloudbalancing/solver/cloudBal
ancingSolverConfig.xml");
 Solver<CloudBalance> solver = solverFactory.buildSolver();

 // Load a problem with 400 computers and 1200 processes
 CloudBalance unsolvedCloudBalance = new
CloudBalancingGenerator().createCloudBalance(400, 1200);

 // Solve the problem
 CloudBalance solvedCloudBalance = solver.solve(unsolvedCloudBalance);

 // Display the result
 System.out.println("\nSolved cloudBalance with 400 computers and 1200 processes:\n" +
toDisplayString(solvedCloudBalance));
 }

 ...
}

 SolverFactory<CloudBalance> solverFactory = SolverFactory.createFromXmlResource(

"org/optaplanner/examples/cloudbalancing/solver/cloudBalancingSolverConfig.xml");
 Solver solver<CloudBalance> = solverFactory.buildSolver();

CHAPTER 3. GETTING STARTED WITH JAVA SOLVERS: A CLOUD BALANCING EXAMPLE

33

CloudBalancingGenerator generates a random problem: you will replace this with a class that
loads a real problem, for example from a database.

3. Solve the problem.

4. Display the result.

3.3. SOLVER CONFIGURATION

The solver configuration file determines how the solving process works; it is considered a part of the
code. The file is named
examples/sources/src/main/resources/org/optaplanner/examples/cloudbalancing/solver/cloudBal
ancingSolverConfig.xml.

Example 3.5. cloudBalancingSolverConfig.xml

This solver configuration consists of three parts:

1. Domain model configuration: What can Business Optimizer change?
We need to make Business Optimizer aware of our domain classes. In this configuration, it will
automatically scan all classes in your classpath (for a @PlanningEntity or @PlanningSolution
annotation):

 CloudBalance unsolvedCloudBalance = new
CloudBalancingGenerator().createCloudBalance(400, 1200);

 CloudBalance solvedCloudBalance = solver.solve(unsolvedCloudBalance);

 System.out.println("\nSolved cloudBalance with 400 computers and 1200 processes:\n"
 + toDisplayString(solvedCloudBalance));

<?xml version="1.0" encoding="UTF-8"?>
<solver>
 <!-- Domain model configuration -->
 <scanAnnotatedClasses/>

 <!-- Score configuration -->
 <scoreDirectorFactory>

<easyScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.optional.score.CloudBalanci
ngEasyScoreCalculator</easyScoreCalculatorClass>
 <!--
<scoreDrl>org/optaplanner/examples/cloudbalancing/solver/cloudBalancingScoreRules.drl</scoreDrl
>-->
 </scoreDirectorFactory>

 <!-- Optimization algorithms configuration -->
 <termination>
 <secondsSpentLimit>30</secondsSpentLimit>
 </termination>
</solver>

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

34

2. Score configuration: How should Business Optimizer optimize the planning variables? What is
our goal?
Since we have hard and soft constraints, we use a HardSoftScore. But we need to tell Business
Optimizer how to calculate the score, depending on our business requirements. Further down,
we will look into two alternatives to calculate the score: using a basic Java implementation and
using Drools DRL.

3. Optimization algorithms configuration: How should Business Optimizer optimize it? In this case,
we use the default optimization algorithms (because no explicit optimization algorithms are
configured) for 30 seconds:

Business Optimizer should get a good result in seconds (and even in less than 15 milliseconds if
the real-time planning feature is used), but the more time it has, the better the result will be.
Advanced use cases might use different termination criteria than a hard time limit.

The default algorithms will already easily surpass human planners and most in-house
implementations. You can use the advanced Benchmarker feature to power tweak to get even
better results.

3.4. SCORE CONFIGURATION

Business Optimizer will search for the Solution with the highest Score. This example uses a
HardSoftScore, which means Business Optimizer will look for the solution with no hard constraints
broken (fulfill hardware requirements) and as little as possible soft constraints broken (minimize
maintenance cost).

 <scanAnnotatedClasses/>

 <scoreDirectorFactory>

<easyScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.optional.score.CloudBal
ancingEasyScoreCalculator</easyScoreCalculatorClass>
 <!--
<scoreDrl>org/optaplanner/examples/cloudbalancing/solver/cloudBalancingScoreRules.drl</scor
eDrl>-->
 </scoreDirectorFactory>

 <termination>
 <secondsSpentLimit>30</secondsSpentLimit>
 </termination>

CHAPTER 3. GETTING STARTED WITH JAVA SOLVERS: A CLOUD BALANCING EXAMPLE

35

Of course, Business Optimizer needs to be told about these domain-specific score constraints. You can
define constraints using the Java or Drools languages.

3.4.1. Configuring score calculation using Java

One way to define a score function is to implement the interface EasyScoreCalculator in plain Java.

Procedure

1. In the cloudBalancingSolverConfig.xml file, add or uncomment the setting:

2. Implement the calculateScore(Solution) method to return a HardSoftScore instance.

Example 3.6. CloudBalancingEasyScoreCalculator.java

 <scoreDirectorFactory>

<easyScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.optional.score.CloudBal
ancingEasyScoreCalculator</easyScoreCalculatorClass>
 </scoreDirectorFactory>

public class CloudBalancingEasyScoreCalculator implements
EasyScoreCalculator<CloudBalance> {

 /**
 * A very simple implementation. The double loop can easily be removed by using
Maps as shown in

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

36

Even if we optimize the code above to use Maps to iterate through the processList only once, it is still
slow because it does not do incremental score calculation.

To fix that, either use incremental Java score calculation or Drools score calculation. Incremental Java
score calculation is not covered in this guide.

3.4.2. Configuring score calculation using Drools

 * {@link
CloudBalancingMapBasedEasyScoreCalculator#calculateScore(CloudBalance)}.
 */
 public HardSoftScore calculateScore(CloudBalance cloudBalance) {
 int hardScore = 0;
 int softScore = 0;
 for (CloudComputer computer : cloudBalance.getComputerList()) {
 int cpuPowerUsage = 0;
 int memoryUsage = 0;
 int networkBandwidthUsage = 0;
 boolean used = false;

 // Calculate usage
 for (CloudProcess process : cloudBalance.getProcessList()) {
 if (computer.equals(process.getComputer())) {
 cpuPowerUsage += process.getRequiredCpuPower();
 memoryUsage += process.getRequiredMemory();
 networkBandwidthUsage += process.getRequiredNetworkBandwidth();
 used = true;
 }
 }

 // Hard constraints
 int cpuPowerAvailable = computer.getCpuPower() - cpuPowerUsage;
 if (cpuPowerAvailable < 0) {
 hardScore += cpuPowerAvailable;
 }
 int memoryAvailable = computer.getMemory() - memoryUsage;
 if (memoryAvailable < 0) {
 hardScore += memoryAvailable;
 }
 int networkBandwidthAvailable = computer.getNetworkBandwidth() -
networkBandwidthUsage;
 if (networkBandwidthAvailable < 0) {
 hardScore += networkBandwidthAvailable;
 }

 // Soft constraints
 if (used) {
 softScore -= computer.getCost();
 }
 }
 return HardSoftScore.valueOf(hardScore, softScore);
 }

}

CHAPTER 3. GETTING STARTED WITH JAVA SOLVERS: A CLOUD BALANCING EXAMPLE

37

You can use Drools rule language (DRL) to define constraints. Drools score calculation uses incremental
calculation, where every score constraint is written as one or more score rules.

Using the decision engine for score calculation enables you to integrate with other Drools technologies,
such as decision tables (XLS or web based), Business Central, and other supported features.

Procedure

1. Add a scoreDrl resource in the classpath to use the decision engine as a score function. In the
cloudBalancingSolverConfig.xml file, add or uncomment the setting:

2. Create the hard constraints. These constraints ensure that all computers have enough CPU,
RAM and network bandwidth to support all their processes:

Example 3.7. cloudBalancingScoreRules.drl - Hard Constraints

...

import org.optaplanner.examples.cloudbalancing.domain.CloudBalance;
import org.optaplanner.examples.cloudbalancing.domain.CloudComputer;
import org.optaplanner.examples.cloudbalancing.domain.CloudProcess;

global HardSoftScoreHolder scoreHolder;

//
##
####
// Hard constraints
//
##
####

rule "requiredCpuPowerTotal"
 when
 $computer : CloudComputer($cpuPower : cpuPower)
 accumulate(
 CloudProcess(
 computer == $computer,
 $requiredCpuPower : requiredCpuPower);
 $requiredCpuPowerTotal : sum($requiredCpuPower);
 $requiredCpuPowerTotal > $cpuPower
)
 then
 scoreHolder.addHardConstraintMatch(kcontext, $cpuPower -
$requiredCpuPowerTotal);
end

rule "requiredMemoryTotal"
 ...
end

 <scoreDirectorFactory>

<scoreDrl>org/optaplanner/examples/cloudbalancing/solver/cloudBalancingScoreRules.drl</s
coreDrl>
 </scoreDirectorFactory>

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

38

rule "requiredNetworkBandwidthTotal"
 ...
end

3. Create a soft constraint. This constraint miminizes the maintenance cost. It is applied only if
hard constraints are met:

Example 3.8. cloudBalancingScoreRules.drl - Soft Constraints

//
##
####
// Soft constraints
//
##
####

rule "computerCost"
 when
 $computer : CloudComputer($cost : cost)
 exists CloudProcess(computer == $computer)
 then
 scoreHolder.addSoftConstraintMatch(kcontext, - $cost);
end

3.5. FURTHER DEVELOPMENT OF THE SOLVER

Now that this example works, you can try developing it further. For example, you can enrich the domain
model and add extra constraints such as these:

Each Process belongs to a Service. A computer might crash, so processes running the same
service should (or must) be assigned to different computers.

Each Computer is located in a Building. A building might burn down, so processes of the same
services should (or must) be assigned to computers in different buildings.

CHAPTER 3. GETTING STARTED WITH JAVA SOLVERS: A CLOUD BALANCING EXAMPLE

39

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS
OPTIMIZER

Several Red Hat Business Optimizer examples are shipped with Red Hat Decision Manager. You can
review the code for examples and modify it as necessary to suit your needs.

4.1. DOWNLOADING AND RUNNING THE EXAMPLES

You can download the Red Hat Business Optimizer examples from the Red Hat Software Downloads
website and run them.

4.1.1. Downloading Red Hat Business Optimizer examples

You can download the examples as a part of the Red Hat Decision Manager add-ons package.

Procedure

1. Download the rhdm-7.3.0-add-ons.zip file from the Software Downloads page.

2. Decompress the file.

3. Decompress the rhdm-7.3-planner-engine.zip file from the decompressed directory.

Result

In the decompressed rhdm-7.3-planner-engine directory, you can find example source code under the
following subdirectories: * examples/sources/src/main/java/org/optaplanner/examples *
examples/sources/src/main/resources/org/optaplanner/examples *
webexamples/sources/src/main/java/org/optaplanner/examples *
webexamples/sources/src/main/resources/org/optaplanner/examples

The table of examples in Section 4.2, “Table of Business Optimizer examples” lists directory names that
are used for individual examples.

4.1.2. Running Business Optimizer examples

Red Hat Business Optimizer includes a number of examples to demonstrate a variety of use cases.

Prerequisite

You have downloaded and decompressed the examples. For instructions about these actions, see
Section 4.1.1, “Downloading Red Hat Business Optimizer examples” .

Procedure

1. In the rhdm-7.3.0-planner-engine folder, open the examples directory and use the appropriate
script to run the examples:
Linux or Mac:

$ cd examples
$./runExamples.sh

Windows:

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

40

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=rhdm&productChanged=yes

$ cd examples
$ runExamples.bat

Select and run an example from the GUI application window:

NOTE

Red Hat Business Optimizer itself has no GUI dependencies. It runs just as well on a
server or a mobile JVM as it does on the desktop.

4.1.3. Running the Red Hat Business Optimizer examples in an IDE (IntelliJ, Eclipse,
or Netbeans)

If you use an integrated development environment (IDE), such as IntelliJ, Eclipse, or Netbeans, you can
run your downloaded Red Hat Business Optimizer examples within your development environment.

Prerequisite

You have downloaded and extracted the examples. For instructions about these actions, see
Section 4.1.1, “Downloading Red Hat Business Optimizer examples” .

Procedure

1. Open the Red Hat Business Optimizer examples as a new project:

a. For IntelliJ or Netbeans, open examples/sources/pom.xml as the new project. The Maven
integration guides you through the rest of the installation; skip the rest of the steps in this
procedure.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

41

b. For Eclipse, open a new project for the directory examples/sources.

2. Add all the JARs to the classpath from the directory binaries and the directory
examples/binaries , except for the examples/binaries/optaplanner-examples-*.jar file.

3. Add the Java source directory src/main/java and the Java resources directory
src/main/resources.

4. Create a run configuration:

Main class: org.optaplanner.examples.app.OptaPlannerExamplesApp

VM parameters (optional): -Xmx512M -server -
Dorg.optaplanner.examples.dataDir=examples/sources/data

Working directory: examples/sources

5. Run the run configuration.

4.1.4. Running the web examples

Besides the GUI examples, Red Hat Decision Manager also includes a set of web examples for Red Hat
Business Optimizer. The web examples include:

Vehicle routing: Calculating the shortest possible route to pick up all items required for a
number of different customers using either Leaflet or Google Maps visualizations.

Cloud balancing: Assigning processes across computers with different specifications and costs.

Prerequisites

You have downloaded and decompressed the Red Hat Business Optimizer examples from the Red Hat
Decision Manager add-ons package. For instructions, see Section 4.1.1, “Downloading Red Hat Business
Optimizer examples”.

The web examples require several JEE APIs to run, such as the following APIs:

Servlet

JAX-RS

CDI

These APIs are not required for Business Optimizer itself.

Procedure

1. Download a JEE application server, such as JBoss EAP or WildFly and unzip it.

2. In the decompressed rhdm-7.3.0-planner-engine directory, open the subdirectory
webexamples/binaries and deploy the optaplanner-webexamples-*.war file on the JEE
application server.
If using JBoss EAP in standalone mode, this can be done by adding the optaplanner-
webexamples-*.war file to the JBOSS_home/standalone/deployments folder.

3. Open the following address in a web browser: http://localhost:8080/optaplanner-
webexamples/.

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

42

http://leafletjs.com/
http://google.com/maps
http://www.wildfly.org/

4.2. TABLE OF BUSINESS OPTIMIZER EXAMPLES

Some of the Business Optimizer examples solve problems that are presented in academic contests. The
Contest column in the following table lists the contests. It also identifies an example as being either
realistic or unrealistic for the purpose of a contest. A realistic contest is an official, independent contest :

A realistic contest is an official, independent contest that meets the following standards:

Clearly defined real-world use cases

Real-world constraints

Multiple real-world datasets

Reproducible results within a specific time limit on specific hardware

Serious participation from the academic and/or enterprise Operations Research community.

Realistic contests provide an objective comparison of Business Optimizer with competitive software and
academic research.

Table 4.1. Examples overview

Example Domain Size Contest Directory name

N queens
1 entity
class

1
varia
ble

Entity ⇐
256

Value ⇐
256

Search
space ⇐
10^616

Pointless
(cheatabl
e)

nqueens

Cloud balancing
1 entity
class

1
varia
ble

Entity ⇐
2400

Value ⇐
800

Search
space ⇐
10^6967

No

Defined
by us

cloudbalancing

Traveling salesman
1 entity
class

1
chain
ed
varia
ble

Entity ⇐
980

Value ⇐
980

Search
space ⇐
10^2504

Unrealisti
c

TSP web

tsp

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

43

https://en.wikipedia.org/wiki/Eight_queens_puzzle#Explicit_solutions
http://www.math.uwaterloo.ca/tsp/

Dinner party
1 entity
class

1
varia
ble

Entity ⇐
144

Value ⇐
72

Search
space ⇐
10^310

Unrealisti
c

dinnerParty

Tennis club
scheduling 1 entity

class

1
varia
ble

Entity ⇐
72

Value ⇐ 7

Search
space ⇐
10^60

No

Defined
by us

tennis

Meeting
scheduling 1 entity

class

2
varia
bles

Entity ⇐
10

Value ⇐
320 and
⇐ 5

Search
space ⇐
10^320

No

Defined
by us

meetingschedul
ing

Course timetabling
1 entity
class

2
varia
bles

Entity ⇐
434

Value ⇐
25 and ⇐
20

Search
space ⇐
10^1171

Realistic

ITC 2007
track 3

curriculumCour
se

Example Domain Size Contest Directory name

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

44

http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm

Machine
reassignment 1 entity

class

1
varia
ble

Entity ⇐
50000

Value ⇐
5000

Search
space ⇐
10^1849
48

Nearly
realistic

ROADEF
2012

machineReassi
gnment

Vehicle routing
1 entity
class

1
chain
ed
varia
ble

1 shadow
entity
class

1
auto
matic
shad
ow
varia
ble

Entity ⇐
2740

Value ⇐
2795

Search
space ⇐
10^8380

Unrealisti
c

VRP web

vehiclerouting

Vehicle routing
with time windows All of

Vehicle
routing

1 shadow
variable

Entity ⇐
2740

Value ⇐
2795

Search
space ⇐
10^8380

Unrealisti
c

VRP web

vehiclerouting

Example Domain Size Contest Directory name

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

45

http://challenge.roadef.org/2012/en/
http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/

Project job
scheduling 1 entity

class

2
varia
bles

1
shad
ow
varia
ble

Entity ⇐
640

Value ⇐ ?
and ⇐ ?

Search
space ⇐
?

Nearly
realistic

MISTA
2013

projectjobsche
duling

Task assigning
1 entity
class

1
chain
ed
varia
ble

1
shad
ow
varia
ble

1 shadow
entity
class

1
auto
matic
shad
ow
varia
ble

Entity ⇐
500

Value ⇐
520

Search
space ⇐
10^1168

No

Defined
by us

taskassigning

Exam timetabling
2 entity
classes
(same
hierarchy)

2
varia
bles

Entity ⇐
1096

Value ⇐
80 and ⇐
49

Search
space ⇐
10^3374

Realistic

ITC 2007
track 1

examina
tion

Example Domain Size Contest Directory name

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

46

http://gent.cs.kuleuven.be/mista2013challenge/
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm

Nurse rostering
1 entity
class

1
varia
ble

Entity ⇐
752

Value ⇐
50

Search
space ⇐
10^1277

Realistic

INRC
2010

nurserostering

Traveling
tournament 1 entity

class

1
varia
ble

Entity ⇐
1560

Value ⇐
78

Search
space ⇐
10^2301

Unrealisti
c

TTP

travelingtourna
ment

Cheap time
scheduling 1 entity

class

2
varia
bles

Entity ⇐
500

Value ⇐
100 and
⇐ 288

Search
space ⇐
10^2007
8

Nearly
realistic

ICON
Energy

cheaptimesche
duling

Investment
1 entity
class

1 variable

Entity ⇐
11

Value =
1000

Search
space ⇐
10^4

No

Defined
by us

investment

Example Domain Size Contest Directory name

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

47

http://www.kuleuven-kortrijk.be/nrpcompetition
http://mat.tepper.cmu.edu/TOURN/
https://web.archive.org/web/20170223060433/http://iconchallenge.insight-centre.org/challenge-energy

Conference
scheduling 1 entity

class

2
varia
bles

Entity ⇐
216

Value ⇐
18 and ⇐
20

Search
space ⇐
10^552

No

Defined
by us

conferencesche
duling

Rock tour
1 entity
class

1
chain
ed
varia
ble

4
shad
ow
varia
bles

1 shadow
entity
class

1
auto
matic
shad
ow
varia
ble

Entity ⇐
47

Value ⇐
48

Search
space ⇐
10^59

No

Defined
by us

rocktour

Example Domain Size Contest Directory name

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

48

Flight crew
scheduling 1 entity

class

1
varia
ble

1 shadow
entity
class

1
auto
matic
shad
ow
varia
ble

Entity ⇐
4375

Value ⇐
750

Search
space ⇐
10^1257
8

No

Defined
by us

flightcrewsched
uling

Example Domain Size Contest Directory name

4.3. N QUEENS

Place n queens on a n sized chessboard so that no two queens can attack each other. The most
common n queens puzzle is the eight queens puzzle, with n = 8 :

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

49

Constraints:

Use a chessboard of n columns and n rows.

Place n queens on the chessboard.

No two queens can attack each other. A queen can attack any other queen on the same
horizontal, vertical or diagonal line.

This documentation heavily uses the four queens puzzle as the primary example.

A proposed solution could be:

Figure 4.1. A wrong solution for the Four queens puzzle

The above solution is wrong because queens A1 and B0 can attack each other (so can queens B0 and
D0). Removing queen B0 would respect the "no two queens can attack each other" constraint, but would
break the "place n queens" constraint.

Below is a correct solution:

Figure 4.2. A correct solution for the Four queens puzzle

All the constraints have been met, so the solution is correct.

Note that most n queens puzzles have multiple correct solutions. We will focus on finding a single
correct solution for a given n, not on finding the number of possible correct solutions for a given n.

Problem size

4queens has 4 queens with a search space of 256.
8queens has 8 queens with a search space of 10^7.
16queens has 16 queens with a search space of 10^19.

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

50

32queens has 32 queens with a search space of 10^48.
64queens has 64 queens with a search space of 10^115.
256queens has 256 queens with a search space of 10^616.

The implementation of the n queens example has not been optimized because it functions as a beginner
example. Nevertheless, it can easily handle 64 queens. With a few changes it has been shown to easily
handle 5000 queens and more.

4.3.1. Domain model for N queens

This example uses the domain model to solve the four queens problem.

Creating a Domain Model
A good domain model will make it easier to understand and solve your planning problem.

This is the domain model for the n queens example:

Calculating the Search Space.
A Queen instance has a Column (for example: 0 is column A, 1 is column B, …​) and a Row (its
row, for example: 0 is row 0, 1 is row 1, …​).

The ascending diagonal line and the descending diagonal line can be calculated based on the
column and the row.

The column and row indexes start from the upper left corner of the chessboard.

public class Column {

 private int index;

 // ... getters and setters
}

public class Row {

 private int index;

 // ... getters and setters
}

public class Queen {

 private Column column;
 private Row row;

 public int getAscendingDiagonalIndex() {...}
 public int getDescendingDiagonalIndex() {...}

 // ... getters and setters
}

public class NQueens {

 private int n;

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

51

1. Finding the Solution
A single NQueens instance contains a list of all Queen instances. It is the Solution
implementation which will be supplied to, solved by, and retrieved from the Solver.

Notice that in the four queens example, NQueens’s getN() method will always return four.

Figure 4.3. A solution for Four Queens

Table 4.2. Details of the solution in the domain model

 columnIndex rowIndex ascendingDiagonalIndex
(columnIndex + rowIndex)

descendingDiagonalIndex
(columnIndex - rowIndex)

A1 0 1 1 (**) -1

B0 1 0 (*) 1 (**) 1

C2 2 2 4 0

D0 3 0 (*) 3 3

When two queens share the same column, row or diagonal line, such as (*) and (**), they can attack each
other.

4.4. CLOUD BALANCING

For information about this example, see Chapter 3, Getting started with Java solvers: A cloud balancing
example.

4.5. TRAVELING SALESMAN (TSP - TRAVELING SALESMAN

 private List<Column> columnList;
 private List<Row> rowList;

 private List<Queen> queenList;

 private SimpleScore score;

 // ... getters and setters
}

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

52

4.5. TRAVELING SALESMAN (TSP - TRAVELING SALESMAN
PROBLEM)

Given a list of cities, find the shortest tour for a salesman that visits each city exactly once.

The problem is defined by Wikipedia. It is one of the most intensively studied problems in computational
mathematics. Yet, in the real world, it is often only part of a planning problem, along with other
constraints, such as employee shift rostering constraints.

Problem size

dj38 has 38 cities with a search space of 10^43.
europe40 has 40 cities with a search space of 10^46.
st70 has 70 cities with a search space of 10^98.
pcb442 has 442 cities with a search space of 10^976.
lu980 has 980 cities with a search space of 10^2504.

Problem difficulty

Despite TSP’s simple definition, the problem is surprisingly hard to solve. Because it is an NP-hard
problem (like most planning problems), the optimal solution for a specific problem dataset can change a
lot when that problem dataset is slightly altered:

4.6. DINNER PARTY

Miss Manners is throwing another dinner party.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

53

https://en.wikipedia.org/wiki/Travelling_salesman_problem
http://www.math.uwaterloo.ca/tsp/

This time she invited 144 guests and prepared 12 round tables with 12 seats each.

Every guest should sit next to someone (left and right) of the opposite gender.

And that neighbour should have at least one hobby in common with the guest.

At every table, there should be two politicians, two doctors, two socialites, two coaches, two
teachers and two programmers.

And the two politicians, two doctors, two coaches and two programmers should not be the
same kind at a table.

Drools Expert also has the normal Miss Manners example (which is much smaller) and employs an
exhaustive heuristic to solve it. Planner’s implementation is far more scalable because it uses heuristics
to find the best solution and Drools Expert to calculate the score of each solution.

Problem size

wedding01 has 18 jobs, 144 guests, 288 hobby practicians, 12 tables and 144 seats with a search
space of 10^310.

4.7. TENNIS CLUB SCHEDULING

Every week the tennis club has four teams playing round robin against each other. Assign those four
spots to the teams fairly.

Hard constraints:

Conflict: A team can only play once per day.

Unavailability: Some teams are unavailable on some dates.

Medium constraints:

Fair assignment: All teams should play an (almost) equal number of times.

Soft constraints:

Evenly confrontation: Each team should play against every other team an equal number of
times.

Problem size

munich-7teams has 7 teams, 18 days, 12 unavailabilityPenalties and 72 teamAssignments with a
search space of 10^60.

Figure 4.4. Domain model

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

54

Figure 4.4. Domain model

4.8. MEETING SCHEDULING

Assign each meeting to a starting time and a room. Meetings have different durations.

Hard constraints:

Room conflict: two meetings must not use the same room at the same time.

Required attendance: A person cannot have two required meetings at the same time.

Required room capacity: A meeting must not be in a room that doesn’t fit all of the meeting’s
attendees.

Start and end on same day: A meeting shouldn’t be scheduled over multiple days.

Medium constraints:

Preferred attendance: A person cannot have two preferred meetings at the same time, nor a
preferred and a required meeting at the same time.

Soft constraints:

Sooner rather than later: Schedule all meetings as soon as possible.

A break between meetings: Any two meetings should have at least one time grain break
between them.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

55

Overlapping meetings: To minimize the number of meetings in parallel so people don’t have to
choose one meeting over the other.

Assign larger rooms first: If a larger room is available any meeting should be assigned to that
room in order to accommodate as many people as possible even if they haven’t signed up to
that meeting.

Room stability: If a person has two consecutive meetings with two or less time grains break
between them they better be in the same room.

Problem size

50meetings-160timegrains-5rooms has 50 meetings, 160 timeGrains and 5 rooms with a search
space of 10^145.
100meetings-320timegrains-5rooms has 100 meetings, 320 timeGrains and 5 rooms with a search
space of 10^320.
200meetings-640timegrains-5rooms has 200 meetings, 640 timeGrains and 5 rooms with a search
space of 10^701.
400meetings-1280timegrains-5rooms has 400 meetings, 1280 timeGrains and 5 rooms with a search
space of 10^1522.
800meetings-2560timegrains-5rooms has 800 meetings, 2560 timeGrains and 5 rooms with a search
space of 10^3285.

4.9. COURSE TIMETABLING (ITC 2007 TRACK 3 - CURRICULUM
COURSE SCHEDULING)

Schedule each lecture into a timeslot and into a room.

Hard constraints:

Teacher conflict: A teacher must not have two lectures in the same period.

Curriculum conflict: A curriculum must not have two lectures in the same period.

Room occupancy: Two lectures must not be in the same room in the same period.

Unavailable period (specified per dataset): A specific lecture must not be assigned to a specific
period.

Soft constraints:

Room capacity: A room’s capacity should not be less than the number of students in its lecture.

Minimum working days: Lectures of the same course should be spread out into a minimum
number of days.

Curriculum compactness: Lectures belonging to the same curriculum should be adjacent to
each other (so in consecutive periods).

Room stability: Lectures of the same course should be assigned to the same room.

The problem is defined by the International Timetabling Competition 2007 track 3 .

Problem size

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

56

http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm

comp01 has 24 teachers, 14 curricula, 30 courses, 160 lectures, 30 periods, 6 rooms and 53
unavailable period constraints with a search space of 10^360.
comp02 has 71 teachers, 70 curricula, 82 courses, 283 lectures, 25 periods, 16 rooms and 513
unavailable period constraints with a search space of 10^736.
comp03 has 61 teachers, 68 curricula, 72 courses, 251 lectures, 25 periods, 16 rooms and 382
unavailable period constraints with a search space of 10^653.
comp04 has 70 teachers, 57 curricula, 79 courses, 286 lectures, 25 periods, 18 rooms and 396
unavailable period constraints with a search space of 10^758.
comp05 has 47 teachers, 139 curricula, 54 courses, 152 lectures, 36 periods, 9 rooms and 771
unavailable period constraints with a search space of 10^381.
comp06 has 87 teachers, 70 curricula, 108 courses, 361 lectures, 25 periods, 18 rooms and 632
unavailable period constraints with a search space of 10^957.
comp07 has 99 teachers, 77 curricula, 131 courses, 434 lectures, 25 periods, 20 rooms and 667
unavailable period constraints with a search space of 10^1171.
comp08 has 76 teachers, 61 curricula, 86 courses, 324 lectures, 25 periods, 18 rooms and 478
unavailable period constraints with a search space of 10^859.
comp09 has 68 teachers, 75 curricula, 76 courses, 279 lectures, 25 periods, 18 rooms and 405
unavailable period constraints with a search space of 10^740.
comp10 has 88 teachers, 67 curricula, 115 courses, 370 lectures, 25 periods, 18 rooms and 694
unavailable period constraints with a search space of 10^981.
comp11 has 24 teachers, 13 curricula, 30 courses, 162 lectures, 45 periods, 5 rooms and 94
unavailable period constraints with a search space of 10^381.
comp12 has 74 teachers, 150 curricula, 88 courses, 218 lectures, 36 periods, 11 rooms and 1368
unavailable period constraints with a search space of 10^566.
comp13 has 77 teachers, 66 curricula, 82 courses, 308 lectures, 25 periods, 19 rooms and 468
unavailable period constraints with a search space of 10^824.
comp14 has 68 teachers, 60 curricula, 85 courses, 275 lectures, 25 periods, 17 rooms and 486
unavailable period constraints with a search space of 10^722.

Figure 4.5. Domain model

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

57

Figure 4.5. Domain model

4.10. MACHINE REASSIGNMENT (GOOGLE ROADEF 2012)

Assign each process to a machine. All processes already have an original (unoptimized) assignment. Each
process requires an amount of each resource (such as CPU or RAM). This is a more complex version of
the Cloud Balancing example.

Hard constraints:

Maximum capacity: The maximum capacity for each resource for each machine must not be
exceeded.

Conflict: Processes of the same service must run on distinct machines.

Spread: Processes of the same service must be spread out across locations.

Dependency: The processes of a service depending on another service must run in the
neighborhood of a process of the other service.

Transient usage: Some resources are transient and count towards the maximum capacity of
both the original machine as the newly assigned machine.

Soft constraints:

Load: The safety capacity for each resource for each machine should not be exceeded.

Balance: Leave room for future assignments by balancing the available resources on each

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

58

Balance: Leave room for future assignments by balancing the available resources on each
machine.

Process move cost: A process has a move cost.

Service move cost: A service has a move cost.

Machine move cost: Moving a process from machine A to machine B has another A-B specific
move cost.

The problem is defined by the Google ROADEF/EURO Challenge 2012 .

Figure 4.6. Value proposition

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

59

http://challenge.roadef.org/2012/en/

Figure 4.6. Value proposition

Problem size

model_a1_1 has 2 resources, 1 neighborhoods, 4 locations, 4 machines, 79 services, 100
processes and 1 balancePenalties with a search space of 10^60.
model_a1_2 has 4 resources, 2 neighborhoods, 4 locations, 100 machines, 980 services, 1000
processes and 0 balancePenalties with a search space of 10^2000.
model_a1_3 has 3 resources, 5 neighborhoods, 25 locations, 100 machines, 216 services, 1000
processes and 0 balancePenalties with a search space of 10^2000.
model_a1_4 has 3 resources, 50 neighborhoods, 50 locations, 50 machines, 142 services, 1000
processes and 1 balancePenalties with a search space of 10^1698.
model_a1_5 has 4 resources, 2 neighborhoods, 4 locations, 12 machines, 981 services, 1000
processes and 1 balancePenalties with a search space of 10^1079.
model_a2_1 has 3 resources, 1 neighborhoods, 1 locations, 100 machines, 1000 services, 1000
processes and 0 balancePenalties with a search space of 10^2000.
model_a2_2 has 12 resources, 5 neighborhoods, 25 locations, 100 machines, 170 services, 1000
processes and 0 balancePenalties with a search space of 10^2000.
model_a2_3 has 12 resources, 5 neighborhoods, 25 locations, 100 machines, 129 services, 1000
processes and 0 balancePenalties with a search space of 10^2000.
model_a2_4 has 12 resources, 5 neighborhoods, 25 locations, 50 machines, 180 services, 1000
processes and 1 balancePenalties with a search space of 10^1698.
model_a2_5 has 12 resources, 5 neighborhoods, 25 locations, 50 machines, 153 services, 1000
processes and 0 balancePenalties with a search space of 10^1698.
model_b_1 has 12 resources, 5 neighborhoods, 10 locations, 100 machines, 2512 services, 5000
processes and 0 balancePenalties with a search space of 10^10000.
model_b_2 has 12 resources, 5 neighborhoods, 10 locations, 100 machines, 2462 services, 5000
processes and 1 balancePenalties with a search space of 10^10000.

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

60

model_b_3 has 6 resources, 5 neighborhoods, 10 locations, 100 machines, 15025 services, 20000
processes and 0 balancePenalties with a search space of 10^40000.
model_b_4 has 6 resources, 5 neighborhoods, 50 locations, 500 machines, 1732 services, 20000
processes and 1 balancePenalties with a search space of 10^53979.
model_b_5 has 6 resources, 5 neighborhoods, 10 locations, 100 machines, 35082 services, 40000
processes and 0 balancePenalties with a search space of 10^80000.
model_b_6 has 6 resources, 5 neighborhoods, 50 locations, 200 machines, 14680 services, 40000
processes and 1 balancePenalties with a search space of 10^92041.
model_b_7 has 6 resources, 5 neighborhoods, 50 locations, 4000 machines, 15050 services,
40000 processes and 1 balancePenalties with a search space of 10^144082.
model_b_8 has 3 resources, 5 neighborhoods, 10 locations, 100 machines, 45030 services, 50000
processes and 0 balancePenalties with a search space of 10^100000.
model_b_9 has 3 resources, 5 neighborhoods, 100 locations, 1000 machines, 4609 services,
50000 processes and 1 balancePenalties with a search space of 10^150000.
model_b_10 has 3 resources, 5 neighborhoods, 100 locations, 5000 machines, 4896 services,
50000 processes and 1 balancePenalties with a search space of 10^184948.

Figure 4.7. Domain model

4.11. VEHICLE ROUTING

Using a fleet of vehicles, pick up the objects of each customer and bring them to the depot. Each vehicle
can service multiple customers, but it has a limited capacity.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

61

Besides the basic case (CVRP), there is also a variant with time windows (CVRPTW).

Hard constraints:

Vehicle capacity: a vehicle cannot carry more items then its capacity.

Time windows (only in CVRPTW):

Travel time: Traveling from one location to another takes time.

Customer service duration: a vehicle must stay at the customer for the length of the service
duration.

Customer ready time: a vehicle may arrive before the customer’s ready time, but it must
wait until the ready time before servicing.

Customer due time: a vehicle must arrive on time, before the customer’s due time.

Soft constraints:

Total distance: minimize the total distance driven (fuel consumption) of all vehicles.

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

62

The capacitated vehicle routing problem (CVRP) and its timewindowed variant (CVRPTW) are defined
by the VRP web.

Figure 4.8. Value proposition

Problem size

CVRP instances (without time windows):

belgium-n50-k10 has 1 depots, 10 vehicles and 49 customers with a search space of
10^74.
belgium-n100-k10 has 1 depots, 10 vehicles and 99 customers with a search space of
10^170.
belgium-n500-k20 has 1 depots, 20 vehicles and 499 customers with a search space of
10^1168.
belgium-n1000-k20 has 1 depots, 20 vehicles and 999 customers with a search space of
10^2607.
belgium-n2750-k55 has 1 depots, 55 vehicles and 2749 customers with a search space of
10^8380.
belgium-road-km-n50-k10 has 1 depots, 10 vehicles and 49 customers with a search space of
10^74.
belgium-road-km-n100-k10 has 1 depots, 10 vehicles and 99 customers with a search space of
10^170.
belgium-road-km-n500-k20 has 1 depots, 20 vehicles and 499 customers with a search space of
10^1168.
belgium-road-km-n1000-k20 has 1 depots, 20 vehicles and 999 customers with a search space of
10^2607.
belgium-road-km-n2750-k55 has 1 depots, 55 vehicles and 2749 customers with a search space of

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

63

http://neo.lcc.uma.es/vrp/

10^8380.
belgium-road-time-n50-k10 has 1 depots, 10 vehicles and 49 customers with a search space of
10^74.
belgium-road-time-n100-k10 has 1 depots, 10 vehicles and 99 customers with a search space of
10^170.
belgium-road-time-n500-k20 has 1 depots, 20 vehicles and 499 customers with a search space of
10^1168.
belgium-road-time-n1000-k20 has 1 depots, 20 vehicles and 999 customers with a search space of
10^2607.
belgium-road-time-n2750-k55 has 1 depots, 55 vehicles and 2749 customers with a search space of
10^8380.
belgium-d2-n50-k10 has 2 depots, 10 vehicles and 48 customers with a search space of
10^74.
belgium-d3-n100-k10 has 3 depots, 10 vehicles and 97 customers with a search space of
10^170.
belgium-d5-n500-k20 has 5 depots, 20 vehicles and 495 customers with a search space of
10^1168.
belgium-d8-n1000-k20 has 8 depots, 20 vehicles and 992 customers with a search space of
10^2607.
belgium-d10-n2750-k55 has 10 depots, 55 vehicles and 2740 customers with a search space of
10^8380.

A-n32-k5 has 1 depots, 5 vehicles and 31 customers with a search space of 10^40.
A-n33-k5 has 1 depots, 5 vehicles and 32 customers with a search space of 10^41.
A-n33-k6 has 1 depots, 6 vehicles and 32 customers with a search space of 10^42.
A-n34-k5 has 1 depots, 5 vehicles and 33 customers with a search space of 10^43.
A-n36-k5 has 1 depots, 5 vehicles and 35 customers with a search space of 10^46.
A-n37-k5 has 1 depots, 5 vehicles and 36 customers with a search space of 10^48.
A-n37-k6 has 1 depots, 6 vehicles and 36 customers with a search space of 10^49.
A-n38-k5 has 1 depots, 5 vehicles and 37 customers with a search space of 10^49.
A-n39-k5 has 1 depots, 5 vehicles and 38 customers with a search space of 10^51.
A-n39-k6 has 1 depots, 6 vehicles and 38 customers with a search space of 10^52.
A-n44-k7 has 1 depots, 7 vehicles and 43 customers with a search space of 10^61.
A-n45-k6 has 1 depots, 6 vehicles and 44 customers with a search space of 10^62.
A-n45-k7 has 1 depots, 7 vehicles and 44 customers with a search space of 10^63.
A-n46-k7 has 1 depots, 7 vehicles and 45 customers with a search space of 10^65.
A-n48-k7 has 1 depots, 7 vehicles and 47 customers with a search space of 10^68.
A-n53-k7 has 1 depots, 7 vehicles and 52 customers with a search space of 10^77.
A-n54-k7 has 1 depots, 7 vehicles and 53 customers with a search space of 10^79.
A-n55-k9 has 1 depots, 9 vehicles and 54 customers with a search space of 10^82.
A-n60-k9 has 1 depots, 9 vehicles and 59 customers with a search space of 10^91.
A-n61-k9 has 1 depots, 9 vehicles and 60 customers with a search space of 10^93.
A-n62-k8 has 1 depots, 8 vehicles and 61 customers with a search space of 10^94.
A-n63-k9 has 1 depots, 9 vehicles and 62 customers with a search space of 10^97.
A-n63-k10 has 1 depots, 10 vehicles and 62 customers with a search space of 10^98.
A-n64-k9 has 1 depots, 9 vehicles and 63 customers with a search space of 10^99.
A-n65-k9 has 1 depots, 9 vehicles and 64 customers with a search space of 10^101.
A-n69-k9 has 1 depots, 9 vehicles and 68 customers with a search space of 10^108.
A-n80-k10 has 1 depots, 10 vehicles and 79 customers with a search space of 10^130.
F-n45-k4 has 1 depots, 4 vehicles and 44 customers with a search space of 10^60.
F-n72-k4 has 1 depots, 4 vehicles and 71 customers with a search space of 10^108.
F-n135-k7 has 1 depots, 7 vehicles and 134 customers with a search space of 10^240.

CVRPTW instances (with time windows):

belgium-tw-d2-n50-k10 has 2 depots, 10 vehicles and 48 customers with a search space of

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

64

10^74.
belgium-tw-d3-n100-k10 has 3 depots, 10 vehicles and 97 customers with a search space of
10^170.
belgium-tw-d5-n500-k20 has 5 depots, 20 vehicles and 495 customers with a search space of
10^1168.
belgium-tw-d8-n1000-k20 has 8 depots, 20 vehicles and 992 customers with a search space of
10^2607.
belgium-tw-d10-n2750-k55 has 10 depots, 55 vehicles and 2740 customers with a search space of
10^8380.
belgium-tw-n50-k10 has 1 depots, 10 vehicles and 49 customers with a search space of
10^74.
belgium-tw-n100-k10 has 1 depots, 10 vehicles and 99 customers with a search space of
10^170.
belgium-tw-n500-k20 has 1 depots, 20 vehicles and 499 customers with a search space of
10^1168.
belgium-tw-n1000-k20 has 1 depots, 20 vehicles and 999 customers with a search space of
10^2607.
belgium-tw-n2750-k55 has 1 depots, 55 vehicles and 2749 customers with a search space of
10^8380.

Solomon_025_C101 has 1 depots, 25 vehicles and 25 customers with a search space of
10^40.
Solomon_025_C201 has 1 depots, 25 vehicles and 25 customers with a search space of
10^40.
Solomon_025_R101 has 1 depots, 25 vehicles and 25 customers with a search space of
10^40.
Solomon_025_R201 has 1 depots, 25 vehicles and 25 customers with a search space of
10^40.
Solomon_025_RC101 has 1 depots, 25 vehicles and 25 customers with a search space of
10^40.
Solomon_025_RC201 has 1 depots, 25 vehicles and 25 customers with a search space of
10^40.
Solomon_100_C101 has 1 depots, 25 vehicles and 100 customers with a search space of
10^185.
Solomon_100_C201 has 1 depots, 25 vehicles and 100 customers with a search space of
10^185.
Solomon_100_R101 has 1 depots, 25 vehicles and 100 customers with a search space of
10^185.
Solomon_100_R201 has 1 depots, 25 vehicles and 100 customers with a search space of
10^185.
Solomon_100_RC101 has 1 depots, 25 vehicles and 100 customers with a search space of
10^185.
Solomon_100_RC201 has 1 depots, 25 vehicles and 100 customers with a search space of
10^185.
Homberger_0200_C1_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of
10^429.
Homberger_0200_C2_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of
10^429.
Homberger_0200_R1_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of
10^429.
Homberger_0200_R2_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of
10^429.
Homberger_0200_RC1_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of
10^429.
Homberger_0200_RC2_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of
10^429.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

65

Homberger_0400_C1_4_1 has 1 depots, 100 vehicles and 400 customers with a search space of
10^978.
Homberger_0400_C2_4_1 has 1 depots, 100 vehicles and 400 customers with a search space of
10^978.
Homberger_0400_R1_4_1 has 1 depots, 100 vehicles and 400 customers with a search space of
10^978.
Homberger_0400_R2_4_1 has 1 depots, 100 vehicles and 400 customers with a search space of
10^978.
Homberger_0400_RC1_4_1 has 1 depots, 100 vehicles and 400 customers with a search space of
10^978.
Homberger_0400_RC2_4_1 has 1 depots, 100 vehicles and 400 customers with a search space of
10^978.
Homberger_0600_C1_6_1 has 1 depots, 150 vehicles and 600 customers with a search space of
10^1571.
Homberger_0600_C2_6_1 has 1 depots, 150 vehicles and 600 customers with a search space of
10^1571.
Homberger_0600_R1_6_1 has 1 depots, 150 vehicles and 600 customers with a search space of
10^1571.
Homberger_0600_R2_6_1 has 1 depots, 150 vehicles and 600 customers with a search space of
10^1571.
Homberger_0600_RC1_6_1 has 1 depots, 150 vehicles and 600 customers with a search space of
10^1571.
Homberger_0600_RC2_6_1 has 1 depots, 150 vehicles and 600 customers with a search space of
10^1571.
Homberger_0800_C1_8_1 has 1 depots, 200 vehicles and 800 customers with a search space of
10^2195.
Homberger_0800_C2_8_1 has 1 depots, 200 vehicles and 800 customers with a search space of
10^2195.
Homberger_0800_R1_8_1 has 1 depots, 200 vehicles and 800 customers with a search space of
10^2195.
Homberger_0800_R2_8_1 has 1 depots, 200 vehicles and 800 customers with a search space of
10^2195.
Homberger_0800_RC1_8_1 has 1 depots, 200 vehicles and 800 customers with a search space of
10^2195.
Homberger_0800_RC2_8_1 has 1 depots, 200 vehicles and 800 customers with a search space of
10^2195.
Homberger_1000_C110_1 has 1 depots, 250 vehicles and 1000 customers with a search space of
10^2840.
Homberger_1000_C210_1 has 1 depots, 250 vehicles and 1000 customers with a search space of
10^2840.
Homberger_1000_R110_1 has 1 depots, 250 vehicles and 1000 customers with a search space of
10^2840.
Homberger_1000_R210_1 has 1 depots, 250 vehicles and 1000 customers with a search space of
10^2840.
Homberger_1000_RC110_1 has 1 depots, 250 vehicles and 1000 customers with a search space of
10^2840.
Homberger_1000_RC210_1 has 1 depots, 250 vehicles and 1000 customers with a search space of
10^2840.

4.11.1. Domain model for Vehicle routing

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

66

The vehicle routing with timewindows domain model makes heavily use of the shadow variable feature.
This allows it to express its constraints more naturally, because properties such as arrivalTime and
departureTime, are directly available on the domain model.

Road Distances Instead of Air Distances

In the real world, vehicles cannot follow a straight line from location to location: they have to use roads
and highways. From a business point of view, this matters a lot:

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

67

For the optimization algorithm, this does not matter much, as long as the distance between two points
can be looked up (and are preferably precalculated). The road cost does not even need to be a distance,
it can also be travel time, fuel cost, or a weighted function of those. There are several technologies
available to precalculate road costs, such as GraphHopper (embeddable, offline Java engine), Open
MapQuest (web service) and Google Maps Client API (web service).

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

68

https://graphhopper.com/
http://open.mapquestapi.com/directions/#matrix
https://developers.google.com/maps/documentation/webservices/client-library

There are also several technologies to render it, such as Leaflet and Google Maps for developers : the
optaplanner-webexamples-*.war has an example which demonstrates such rendering:

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

69

http://leafletjs.com
https://developers.google.com/maps/

It is even possible to render the actual road routes with GraphHopper or Google Map Directions, but
because of route overlaps on highways, it can become harder to see the standstill order:

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

70

Take special care that the road costs between two points use the same optimization criteria as the one
used in Planner. For example, GraphHopper etc will by default return the fastest route, not the shortest
route. Don’t use the km (or miles) distances of the fastest GPS routes to optimize the shortest trip in
Planner: this leads to a suboptimal solution as shown below:

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

71

Contrary to popular belief, most users do not want the shortest route: they want the fastest route
instead. They prefer highways over normal roads. They prefer normal roads over dirt roads. In the real
world, the fastest and shortest route are rarely the same.

4.12. PROJECT JOB SCHEDULING

Schedule all jobs in time and execution mode to minimize project delays. Each job is part of a project. A
job can be executed in different ways: each way is an execution mode that implies a different duration
but also different resource usages. This is a form of flexible job shop scheduling.

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

72

Hard constraints:

Job precedence: a job can only start when all its predecessor jobs are finished.

Resource capacity: do not use more resources than available.

Resources are local (shared between jobs of the same project) or global (shared between all
jobs)

Resource are renewable (capacity available per day) or nonrenewable (capacity available for
all days)

Medium constraints:

Total project delay: minimize the duration (makespan) of each project.

Soft constraints:

Total makespan: minimize the duration of the whole multi-project schedule.

The problem is defined by the MISTA 2013 challenge.

Problem size

Schedule A-1 has 2 projects, 24 jobs, 64 execution modes, 7 resources and 150 resource
requirements.
Schedule A-2 has 2 projects, 44 jobs, 124 execution modes, 7 resources and 420 resource
requirements.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

73

http://gent.cs.kuleuven.be/mista2013challenge/

Schedule A-3 has 2 projects, 64 jobs, 184 execution modes, 7 resources and 630 resource
requirements.
Schedule A-4 has 5 projects, 60 jobs, 160 execution modes, 16 resources and 390 resource
requirements.
Schedule A-5 has 5 projects, 110 jobs, 310 execution modes, 16 resources and 900 resource
requirements.
Schedule A-6 has 5 projects, 160 jobs, 460 execution modes, 16 resources and 1440 resource
requirements.
Schedule A-7 has 10 projects, 120 jobs, 320 execution modes, 22 resources and 900 resource
requirements.
Schedule A-8 has 10 projects, 220 jobs, 620 execution modes, 22 resources and 1860 resource
requirements.
Schedule A-9 has 10 projects, 320 jobs, 920 execution modes, 31 resources and 2880 resource
requirements.
Schedule A-10 has 10 projects, 320 jobs, 920 execution modes, 31 resources and 2970 resource
requirements.
Schedule B-1 has 10 projects, 120 jobs, 320 execution modes, 31 resources and 900 resource
requirements.
Schedule B-2 has 10 projects, 220 jobs, 620 execution modes, 22 resources and 1740 resource
requirements.
Schedule B-3 has 10 projects, 320 jobs, 920 execution modes, 31 resources and 3060 resource
requirements.
Schedule B-4 has 15 projects, 180 jobs, 480 execution modes, 46 resources and 1530 resource
requirements.
Schedule B-5 has 15 projects, 330 jobs, 930 execution modes, 46 resources and 2760 resource
requirements.
Schedule B-6 has 15 projects, 480 jobs, 1380 execution modes, 46 resources and 4500 resource
requirements.
Schedule B-7 has 20 projects, 240 jobs, 640 execution modes, 61 resources and 1710 resource
requirements.
Schedule B-8 has 20 projects, 440 jobs, 1240 execution modes, 42 resources and 3180 resource
requirements.
Schedule B-9 has 20 projects, 640 jobs, 1840 execution modes, 61 resources and 5940 resource
requirements.
Schedule B-10 has 20 projects, 460 jobs, 1300 execution modes, 42 resources and 4260 resource
requirements.

4.13. TASK ASSIGNING

Assign each task to a spot in an employee’s queue. Each task has a duration which is affected by the
employee’s affinity level with the task’s customer.

Hard constraints:

Skill: Each task requires one or more skills. The employee must posses all these skills.

Soft level 0 constraints:

Critical tasks: Complete critical tasks first, sooner than major and minor tasks.

Soft level 1 constraints:

Minimize makespan: Reduce the time to complete all tasks.

Start with the longest working employee first, then the second longest working employee
and so forth, to create fairness and load balancing.

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

74

Soft level 2 constraints:

Major tasks: Complete major tasks as soon as possible, sooner than minor tasks.

Soft level 3 constraints:

Minor tasks: Complete minor tasks as soon as possible.

Figure 4.9. Value proposition

Problem size

24tasks-8employees has 24 tasks, 6 skills, 8 employees, 4 task types and 4 customers with a
search space of 10^30.
50tasks-5employees has 50 tasks, 5 skills, 5 employees, 10 task types and 10 customers with a
search space of 10^69.
100tasks-5employees has 100 tasks, 5 skills, 5 employees, 20 task types and 15 customers with a
search space of 10^164.
500tasks-20employees has 500 tasks, 6 skills, 20 employees, 100 task types and 60 customers with
a search space of 10^1168.

Figure 4.10. Domain model

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

75

Figure 4.10. Domain model

4.14. EXAM TIMETABLING (ITC 2007 TRACK 1 - EXAMINATION)

Schedule each exam into a period and into a room. Multiple exams can share the same room during the
same period.

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

76

Hard constraints:

Exam conflict: Two exams that share students must not occur in the same period.

Room capacity: A room’s seating capacity must suffice at all times.

Period duration: A period’s duration must suffice for all of its exams.

Period related hard constraints (specified per dataset):

Coincidence: Two specified exams must use the same period (but possibly another room).

Exclusion: Two specified exams must not use the same period.

After: A specified exam must occur in a period after another specified exam’s period.

Room related hard constraints (specified per dataset):

Exclusive: One specified exam should not have to share its room with any other exam.

Soft constraints (each of which has a parametrized penalty):

The same student should not have two exams in a row.

The same student should not have two exams on the same day.

Period spread: Two exams that share students should be a number of periods apart.

Mixed durations: Two exams that share a room should not have different durations.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

77

Front load: Large exams should be scheduled earlier in the schedule.

Period penalty (specified per dataset): Some periods have a penalty when used.

Room penalty (specified per dataset): Some rooms have a penalty when used.

It uses large test data sets of real-life universities.

The problem is defined by the International Timetabling Competition 2007 track 1 . Geoffrey De Smet
finished 4th in that competition with a very early version of Planner. Many improvements have been
made since then.

Problem Size

exam_comp_set1 has 7883 students, 607 exams, 54 periods, 7 rooms, 12 period constraints and
0 room constraints with a search space of 10^1564.
exam_comp_set2 has 12484 students, 870 exams, 40 periods, 49 rooms, 12 period constraints and
2 room constraints with a search space of 10^2864.
exam_comp_set3 has 16365 students, 934 exams, 36 periods, 48 rooms, 168 period constraints and
15 room constraints with a search space of 10^3023.
exam_comp_set4 has 4421 students, 273 exams, 21 periods, 1 rooms, 40 period constraints and
0 room constraints with a search space of 10^360.
exam_comp_set5 has 8719 students, 1018 exams, 42 periods, 3 rooms, 27 period constraints and
0 room constraints with a search space of 10^2138.
exam_comp_set6 has 7909 students, 242 exams, 16 periods, 8 rooms, 22 period constraints and
0 room constraints with a search space of 10^509.
exam_comp_set7 has 13795 students, 1096 exams, 80 periods, 15 rooms, 28 period constraints and
0 room constraints with a search space of 10^3374.
exam_comp_set8 has 7718 students, 598 exams, 80 periods, 8 rooms, 20 period constraints and
1 room constraints with a search space of 10^1678.

4.14.1. Domain model for Exam timetabling

The following diagram shows the main examination domain classes:

Figure 4.11. Examination domain class diagram

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

78

http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm

Figure 4.11. Examination domain class diagram

Notice that we’ve split up the exam concept into an Exam class and a Topic class. The Exam instances
change during solving (this is the planning entity class), when their period or room property changes.
The Topic, Period and Room instances never change during solving (these are problem facts, just like
some other classes).

4.15. NURSE ROSTERING (INRC 2010)

For each shift, assign a nurse to work that shift.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

79

Hard constraints:

No unassigned shifts (built-in): Every shift need to be assigned to an employee.

Shift conflict: An employee can have only one shift per day.

Soft constraints:

Contract obligations. The business frequently violates these, so they decided to define these as
soft constraints instead of hard constraints.

Minimum and maximum assignments: Each employee needs to work more than x shifts
and less than y shifts (depending on their contract).

Minimum and maximum consecutive working days: Each employee needs to work
between x and y days in a row (depending on their contract).

Minimum and maximum consecutive free days: Each employee needs to be free between
x and y days in a row (depending on their contract).

Minimum and maximum consecutive working weekends: Each employee needs to work
between x and y weekends in a row (depending on their contract).

Complete weekends: Each employee needs to work every day in a weekend or not at all.

Identical shift types during weekend: Each weekend shift for the same weekend of the
same employee must be the same shift type.

Unwanted patterns: A combination of unwanted shift types in a row. For example: a late

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

80

Unwanted patterns: A combination of unwanted shift types in a row. For example: a late
shift followed by an early shift followed by a late shift.

Employee wishes:

Day on request: An employee wants to work on a specific day.

Day off request: An employee does not want to work on a specific day.

Shift on request: An employee wants to be assigned to a specific shift.

Shift off request: An employee does not want to be assigned to a specific shift.

Alternative skill: An employee assigned to a skill should have a proficiency in every skill required
by that shift.

The problem is defined by the International Nurse Rostering Competition 2010 .

Figure 4.12. Value proposition

Problem size

There are three dataset types:

sprint: must be solved in seconds.

medium: must be solved in minutes.

long: must be solved in hours.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

81

http://www.kuleuven-kortrijk.be/nrpcompetition

toy1 has 1 skills, 3 shiftTypes, 2 patterns, 1 contracts, 6 employees, 7 shiftDates, 35
shiftAssignments and 0 requests with a search space of 10^27.
toy2 has 1 skills, 3 shiftTypes, 3 patterns, 2 contracts, 20 employees, 28 shiftDates, 180
shiftAssignments and 140 requests with a search space of 10^234.

sprint01 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint02 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint03 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint04 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint05 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint06 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint07 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint08 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint09 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint10 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint_hint01 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint_hint02 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint_hint03 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint_late01 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint_late02 has 1 skills, 3 shiftTypes, 4 patterns, 3 contracts, 10 employees, 28 shiftDates, 144
shiftAssignments and 139 requests with a search space of 10^144.
sprint_late03 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 160
shiftAssignments and 150 requests with a search space of 10^160.
sprint_late04 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 160
shiftAssignments and 150 requests with a search space of 10^160.
sprint_late05 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint_late06 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint_late07 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint_late08 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 0 requests with a search space of 10^152.
sprint_late09 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 0 requests with a search space of 10^152.
sprint_late10 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.

medium01 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608
shiftAssignments and 403 requests with a search space of 10^906.
medium02 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608
shiftAssignments and 403 requests with a search space of 10^906.

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

82

medium03 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608
shiftAssignments and 403 requests with a search space of 10^906.
medium04 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608
shiftAssignments and 403 requests with a search space of 10^906.
medium05 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608
shiftAssignments and 403 requests with a search space of 10^906.
medium_hint01 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28 shiftDates, 428
shiftAssignments and 390 requests with a search space of 10^632.
medium_hint02 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 employees, 28 shiftDates, 428
shiftAssignments and 390 requests with a search space of 10^632.
medium_hint03 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28 shiftDates, 428
shiftAssignments and 390 requests with a search space of 10^632.
medium_late01 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28 shiftDates, 424
shiftAssignments and 390 requests with a search space of 10^626.
medium_late02 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 employees, 28 shiftDates, 428
shiftAssignments and 390 requests with a search space of 10^632.
medium_late03 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 30 employees, 28 shiftDates, 428
shiftAssignments and 390 requests with a search space of 10^632.
medium_late04 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 employees, 28 shiftDates, 416
shiftAssignments and 390 requests with a search space of 10^614.
medium_late05 has 2 skills, 5 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28 shiftDates, 452
shiftAssignments and 390 requests with a search space of 10^667.

long01 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740
shiftAssignments and 735 requests with a search space of 10^1250.
long02 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740
shiftAssignments and 735 requests with a search space of 10^1250.
long03 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740
shiftAssignments and 735 requests with a search space of 10^1250.
long04 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740
shiftAssignments and 735 requests with a search space of 10^1250.
long05 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740
shiftAssignments and 735 requests with a search space of 10^1250.
long_hint01 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28 shiftDates, 740
shiftAssignments and 0 requests with a search space of 10^1257.
long_hint02 has 2 skills, 5 shiftTypes, 7 patterns, 3 contracts, 50 employees, 28 shiftDates, 740
shiftAssignments and 0 requests with a search space of 10^1257.
long_hint03 has 2 skills, 5 shiftTypes, 7 patterns, 3 contracts, 50 employees, 28 shiftDates, 740
shiftAssignments and 0 requests with a search space of 10^1257.
long_late01 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28 shiftDates, 752
shiftAssignments and 0 requests with a search space of 10^1277.
long_late02 has 2 skills, 5 shiftTypes, 9 patterns, 4 contracts, 50 employees, 28 shiftDates, 752
shiftAssignments and 0 requests with a search space of 10^1277.
long_late03 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28 shiftDates, 752
shiftAssignments and 0 requests with a search space of 10^1277.
long_late04 has 2 skills, 5 shiftTypes, 9 patterns, 4 contracts, 50 employees, 28 shiftDates, 752
shiftAssignments and 0 requests with a search space of 10^1277.
long_late05 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28 shiftDates, 740
shiftAssignments and 0 requests with a search space of 10^1257.

Figure 4.13. Domain model

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

83

Figure 4.13. Domain model

4.16. TRAVELING TOURNAMENT PROBLEM (TTP)

Schedule matches between n teams.

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

84

Hard constraints:

Each team plays twice against every other team: once home and once away.

Each team has exactly one match on each timeslot.

No team must have more than three consecutive home or three consecutive away matches.

No repeaters: no two consecutive matches of the same two opposing teams.

Soft constraints:

Minimize the total distance traveled by all teams.

The problem is defined on Michael Trick’s website (which contains the world records too) .

Problem size

1-nl04 has 6 days, 4 teams and 12 matches with a search space of 10^5.
1-nl06 has 10 days, 6 teams and 30 matches with a search space of 10^19.
1-nl08 has 14 days, 8 teams and 56 matches with a search space of 10^43.
1-nl10 has 18 days, 10 teams and 90 matches with a search space of 10^79.
1-nl12 has 22 days, 12 teams and 132 matches with a search space of 10^126.
1-nl14 has 26 days, 14 teams and 182 matches with a search space of 10^186.
1-nl16 has 30 days, 16 teams and 240 matches with a search space of 10^259.
2-bra24 has 46 days, 24 teams and 552 matches with a search space of 10^692.
3-nfl16 has 30 days, 16 teams and 240 matches with a search space of 10^259.
3-nfl18 has 34 days, 18 teams and 306 matches with a search space of 10^346.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

85

http://mat.tepper.cmu.edu/TOURN/

3-nfl20 has 38 days, 20 teams and 380 matches with a search space of 10^447.
3-nfl22 has 42 days, 22 teams and 462 matches with a search space of 10^562.
3-nfl24 has 46 days, 24 teams and 552 matches with a search space of 10^692.
3-nfl26 has 50 days, 26 teams and 650 matches with a search space of 10^838.
3-nfl28 has 54 days, 28 teams and 756 matches with a search space of 10^999.
3-nfl30 has 58 days, 30 teams and 870 matches with a search space of 10^1175.
3-nfl32 has 62 days, 32 teams and 992 matches with a search space of 10^1367.
4-super04 has 6 days, 4 teams and 12 matches with a search space of 10^5.
4-super06 has 10 days, 6 teams and 30 matches with a search space of 10^19.
4-super08 has 14 days, 8 teams and 56 matches with a search space of 10^43.
4-super10 has 18 days, 10 teams and 90 matches with a search space of 10^79.
4-super12 has 22 days, 12 teams and 132 matches with a search space of 10^126.
4-super14 has 26 days, 14 teams and 182 matches with a search space of 10^186.
5-galaxy04 has 6 days, 4 teams and 12 matches with a search space of 10^5.
5-galaxy06 has 10 days, 6 teams and 30 matches with a search space of 10^19.
5-galaxy08 has 14 days, 8 teams and 56 matches with a search space of 10^43.
5-galaxy10 has 18 days, 10 teams and 90 matches with a search space of 10^79.
5-galaxy12 has 22 days, 12 teams and 132 matches with a search space of 10^126.
5-galaxy14 has 26 days, 14 teams and 182 matches with a search space of 10^186.
5-galaxy16 has 30 days, 16 teams and 240 matches with a search space of 10^259.
5-galaxy18 has 34 days, 18 teams and 306 matches with a search space of 10^346.
5-galaxy20 has 38 days, 20 teams and 380 matches with a search space of 10^447.
5-galaxy22 has 42 days, 22 teams and 462 matches with a search space of 10^562.
5-galaxy24 has 46 days, 24 teams and 552 matches with a search space of 10^692.
5-galaxy26 has 50 days, 26 teams and 650 matches with a search space of 10^838.
5-galaxy28 has 54 days, 28 teams and 756 matches with a search space of 10^999.
5-galaxy30 has 58 days, 30 teams and 870 matches with a search space of 10^1175.
5-galaxy32 has 62 days, 32 teams and 992 matches with a search space of 10^1367.
5-galaxy34 has 66 days, 34 teams and 1122 matches with a search space of 10^1576.
5-galaxy36 has 70 days, 36 teams and 1260 matches with a search space of 10^1801.
5-galaxy38 has 74 days, 38 teams and 1406 matches with a search space of 10^2042.
5-galaxy40 has 78 days, 40 teams and 1560 matches with a search space of 10^2301.

4.17. CHEAP TIME SCHEDULING

Schedule all tasks in time and on a machine to minimize power cost. Power prices differs in time. This is a
form of job shop scheduling.

Hard constraints:

Start time limits: Each task must start between its earliest start and latest start limit.

Maximum capacity: The maximum capacity for each resource for each machine must not be
exceeded.

Startup and shutdown: Each machine must be active in the periods during which it has assigned
tasks. Between tasks it is allowed to be idle to avoid startup and shutdown costs.

Medium constraints:

Power cost: Minimize the total power cost of the whole schedule.

Machine power cost: Each active or idle machine consumes power, which infers a power cost
(depending on the power price during that time).

Task power cost: Each task consumes power too, which infers a power cost (depending on

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

86

Task power cost: Each task consumes power too, which infers a power cost (depending on
the power price during its time).

Machine startup and shutdown cost: Every time a machine starts up or shuts down, an extra
cost is inflicted.

Soft constraints (addendum to the original problem definition):

Start early: Prefer starting a task sooner rather than later.

The problem is defined by the ICON challenge.

Problem size

sample01 has 3 resources, 2 machines, 288 periods and 25 tasks with a search space of
10^53.
sample02 has 3 resources, 2 machines, 288 periods and 50 tasks with a search space of
10^114.
sample03 has 3 resources, 2 machines, 288 periods and 100 tasks with a search space of
10^226.
sample04 has 3 resources, 5 machines, 288 periods and 100 tasks with a search space of
10^266.
sample05 has 3 resources, 2 machines, 288 periods and 250 tasks with a search space of
10^584.
sample06 has 3 resources, 5 machines, 288 periods and 250 tasks with a search space of
10^673.
sample07 has 3 resources, 2 machines, 288 periods and 1000 tasks with a search space of
10^2388.
sample08 has 3 resources, 5 machines, 288 periods and 1000 tasks with a search space of
10^2748.
sample09 has 4 resources, 20 machines, 288 periods and 2000 tasks with a search space of
10^6668.
instance00 has 1 resources, 10 machines, 288 periods and 200 tasks with a search space of
10^595.
instance01 has 1 resources, 10 machines, 288 periods and 200 tasks with a search space of
10^599.
instance02 has 1 resources, 10 machines, 288 periods and 200 tasks with a search space of
10^599.
instance03 has 1 resources, 10 machines, 288 periods and 200 tasks with a search space of
10^591.
instance04 has 1 resources, 10 machines, 288 periods and 200 tasks with a search space of
10^590.
instance05 has 2 resources, 25 machines, 288 periods and 200 tasks with a search space of
10^667.
instance06 has 2 resources, 25 machines, 288 periods and 200 tasks with a search space of
10^660.
instance07 has 2 resources, 25 machines, 288 periods and 200 tasks with a search space of
10^662.
instance08 has 2 resources, 25 machines, 288 periods and 200 tasks with a search space of
10^651.
instance09 has 2 resources, 25 machines, 288 periods and 200 tasks with a search space of
10^659.
instance10 has 2 resources, 20 machines, 288 periods and 500 tasks with a search space of
10^1657.
instance11 has 2 resources, 20 machines, 288 periods and 500 tasks with a search space of
10^1644.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

87

https://web.archive.org/web/20180318013828/http://iconchallenge.insight-centre.org/

instance12 has 2 resources, 20 machines, 288 periods and 500 tasks with a search space of
10^1637.
instance13 has 2 resources, 20 machines, 288 periods and 500 tasks with a search space of
10^1659.
instance14 has 2 resources, 20 machines, 288 periods and 500 tasks with a search space of
10^1643.
instance15 has 3 resources, 40 machines, 288 periods and 500 tasks with a search space of
10^1782.
instance16 has 3 resources, 40 machines, 288 periods and 500 tasks with a search space of
10^1778.
instance17 has 3 resources, 40 machines, 288 periods and 500 tasks with a search space of
10^1764.
instance18 has 3 resources, 40 machines, 288 periods and 500 tasks with a search space of
10^1769.
instance19 has 3 resources, 40 machines, 288 periods and 500 tasks with a search space of
10^1778.
instance20 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search space of
10^3689.
instance21 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search space of
10^3678.
instance22 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search space of
10^3706.
instance23 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search space of
10^3676.
instance24 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search space of
10^3681.
instance25 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search space of
10^3774.
instance26 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search space of
10^3737.
instance27 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search space of
10^3744.
instance28 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search space of
10^3731.
instance29 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search space of
10^3746.
instance30 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search space of
10^7718.
instance31 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search space of
10^7740.
instance32 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search space of
10^7686.
instance33 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search space of
10^7672.
instance34 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search space of
10^7695.
instance35 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search space of
10^7807.
instance36 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search space of
10^7814.
instance37 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search space of
10^7764.
instance38 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search space of
10^7736.
instance39 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search space of
10^7783.

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

88

instance40 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search space of
10^15976.
instance41 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search space of
10^15935.
instance42 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search space of
10^15887.
instance43 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search space of
10^15896.
instance44 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search space of
10^15885.
instance45 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of
10^20173.
instance46 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of
10^20132.
instance47 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of
10^20126.
instance48 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of
10^20110.
instance49 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of
10^20078.

4.18. INVESTMENT ASSET CLASS ALLOCATION (PORTFOLIO
OPTIMIZATION)

Decide the relative quantity to invest in each asset class.

Hard constraints:

Risk maximum: the total standard deviation must not be higher than the standard deviation
maximum.

Total standard deviation calculation takes asset class correlations into account by applying
Markowitz Portfolio Theory.

Region maximum: Each region has a quantity maximum.

Sector maximum: Each sector has a quantity maximum.

Soft constraints:

Maximize expected return.

Problem size

de_smet_1 has 1 regions, 3 sectors and 11 asset classes with a search space of 10^4.
irrinki_1 has 2 regions, 3 sectors and 6 asset classes with a search space of 10^3.

Larger datasets have not been created or tested yet, but should not pose a problem. A good source of
data is this Asset Correlation website.

4.19. CONFERENCE SCHEDULING

Assign each conference talk to a timeslot and a room. Timeslots can overlap. Read/write to/from an
*.xlsx file that can be edited with LibreOffice or Excel too.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

89

https://en.wikipedia.org/wiki/Modern_portfolio_theory
https://www.portfoliovisualizer.com/asset-correlations

Hard constraints:

Talk type of timeslot: The type of a talk must match the timeslot’s talk type.

Room unavailable timeslots: A talk’s room must be available during the talk’s timeslot.

Room conflict: Two talks can’t use the same room during overlapping timeslots.

Speaker unavailable timeslots: Every talk’s speaker must be available during the talk’s timeslot.

Speaker conflict: Two talks can’t share a speaker during overlapping timeslots.

Generic purpose timeslot and room tags

Speaker required timeslot tag: If a speaker has a required timeslot tag, then all his/her talks
must be assigned to a timeslot with that tag.

Speaker prohibited timeslot tag: If a speaker has a prohibited timeslot tag, then all his/her
talks cannot be assigned to a timeslot with that tag.

Talk required timeslot tag: If a talk has a required timeslot tag, then it must be assigned to a
timeslot with that tag.

Talk prohibited timeslot tag: If a talk has a prohibited timeslot tag, then it cannot be
assigned to a timeslot with that tag.

Speaker required room tag: If a speaker has a required room tag, then all his/her talks must
be assigned to a room with that tag.

Speaker prohibited room tag: If a speaker has a prohibited room tag, then all his/her talks
cannot be assigned to a room with that tag.

Talk required room tag: If a talk has a required room tag, then it must be assigned to a room
with that tag.

Talk prohibited room tag: If a talk has a prohibited room tag, then it cannot be assigned to a
room with that tag.

Talk mutually-exclusive-talks tag: Talks that share such a tag must not be scheduled in
overlapping timeslots.

Talk prerequisite talks: A talk must be scheduled after all its prerequisite talks.

Soft constraints:

Theme track conflict: Minimize the number of talks that share a same theme tag during
overlapping timeslots.

Sector conflict: Minimize the number of talks that share a same sector tag during overlapping
timeslots.

Content audience level flow violation: For every content tag, schedule the introductory talks
before the advanced talks.

Audience level diversity: For every timeslot, maximize the number of talks with a different
audience level.

Language diversity: For every timeslot, maximize the number of talks with a different language.

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

90

Generic purpose timeslot and room tags

Speaker preferred timeslot tag: If a speaker has a preferred timeslot tag, then all his/her
talks should be assigned to a timeslot with that tag.

Speaker undesired timeslot tag: If a speaker has a undesired timeslot tag, then all his/her
talks should not be assigned to a timeslot with that tag.

Talk preferred timeslot tag: If a talk has a preferred timeslot tag, then it should be assigned
to a timeslot with that tag.

Talk undesired timeslot tag: If a talk has a undesired timeslot tag, then it should not be
assigned to a timeslot with that tag.

Speaker preferred room tag: If a speaker has a preferred room tag, then all his/her talks
should be assigned to a room with that tag.

Speaker undesired room tag: If a speaker has a undesired room tag, then all his/her talks
should not be assigned to a room with that tag.

Talk preferred room tag: If a talk has a preferred room tag, then it should be assigned to a
room with that tag.

Talk undesired room tag: If a talk has a undesired room tag, then it should not be assigned to
a room with that tag.

Same day talks: All talks that share a same theme tag or content tag should be scheduled in the
minimum number of days (ideally in the same day).

Figure 4.14. Value proposition

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

91

Figure 4.14. Value proposition

Problem size

18talks-6timeslots-5rooms has 18 talks, 6 timeslots and 5 rooms with a search space of 10^26.
36talks-12timeslots-5rooms has 36 talks, 12 timeslots and 5 rooms with a search space of 10^64.
72talks-12timeslots-10rooms has 72 talks, 12 timeslots and 10 rooms with a search space of
10^149.
108talks-18timeslots-10rooms has 108 talks, 18 timeslots and 10 rooms with a search space of
10^243.
216talks-18timeslots-20rooms has 216 talks, 18 timeslots and 20 rooms with a search space of
10^552.

4.20. ROCK TOUR

Drive the rock bus from show to show, but schedule shows only on available days.

Hard constraints:

Schedule every required show.

Schedule as many shows as possible.

Medium constraints:

Maximize revenue opportunity.

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

92

Minimize driving time.

Visit sooner than later.

Soft constraints:

Avoid long driving times.

Problem size

47shows has 47 shows with a search space of 10^59.

4.21. FLIGHT CREW SCHEDULING

Assign flights to pilots and flight attendants.

Hard constraints:

Required skill: each flight assignment has a required skill. For example, flight AB0001 requires 2
pilots and 3 flight attendants.

Flight conflict: each employee can only attend one flight at the same time

Transfer between two flights: between two flights, an employee must be able to transfer from
the arrival airport to the departure airport. For example, Ann arrives in Brussels at 10:00 and
departs in Amsterdam at 15:00.

Employee unavailability: the employee must be available on the day of the flight. For example,
Ann is on PTO on 1-Feb.

Soft constraints:

First assignment departing from home

Last assignment arriving at home

Load balance flight duration total per employee

Problem size

175flights-7days-Europe has 2 skills, 50 airports, 150 employees, 175 flights and 875 flight
assignments with a search space of 10^1904.
700flights-28days-Europe has 2 skills, 50 airports, 150 employees, 700 flights and 3500 flight
assignments with a search space of 10^7616.
875flights-7days-Europe has 2 skills, 50 airports, 750 employees, 875 flights and 4375 flight
assignments with a search space of 10^12578.
175flights-7days-US has 2 skills, 48 airports, 150 employees, 175 flights and 875 flight
assignments with a search space of 10^1904.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER

93

APPENDIX A. VERSIONING INFORMATION
Documentation last updated on Friday, May 22, 2020.

Red Hat Decision Manager 7.3 Getting started with Red Hat Business Optimizer

94

	Table of Contents
	PREFACE
	CHAPTER 1. INTRODUCTION TO RED HAT BUSINESS OPTIMIZER
	1.1. PLANNING PROBLEMS
	1.2. NP-COMPLETENESS IN PLANNING PROBLEMS
	1.3. SOLUTIONS TO PLANNING PROBLEMS
	1.4. CONSTRAINTS ON PLANNING PROBLEMS

	CHAPTER 2. GETTING STARTED WITH SOLVERS IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE
	2.1. DEPLOYING THE EMPLOYEE ROSTERING SAMPLE PROJECT IN BUSINESS CENTRAL
	2.2. RE-CREATING THE EMPLOYEE ROSTERING SAMPLE PROJECT
	2.2.1. Setting up the employee rostering project
	2.2.2. Problem facts and planning entities
	2.2.3. Creating the data model for the employee rostering project
	2.2.3.1. Creating the employee roster planning entity
	2.2.3.2. Creating the employee roster planning solution

	2.2.4. Employee rostering constraints
	2.2.4.1. DRL (Drools Rule Language) rules
	2.2.4.2. Defining constraints for employee rostering using the DRL designer

	2.2.5. Creating rules for employee rostering using guided rules
	2.2.5.1. Guided rules
	2.2.5.2. Creating a guided rule to balance employee shift numbers
	2.2.5.3. Creating a guided rule for no more than one shift per day
	2.2.5.4. Creating a guided rule to match skills to shift requirements
	2.2.5.5. Creating a guided rule to manage day off requests

	2.2.6. Creating a solver configuration for employee rostering
	2.2.7. Configuring Solver termination for the employee rostering project

	2.3. ACCESSING THE SOLVER USING THE REST API
	2.3.1. Registering the Solver using the REST API
	2.3.2. Calling the Solver using the REST API

	CHAPTER 3. GETTING STARTED WITH JAVA SOLVERS: A CLOUD BALANCING EXAMPLE
	3.1. DOMAIN MODEL DESIGN
	3.1.1. Designing a domain model
	3.1.2. The Computer Class
	3.1.3. The Process Class
	3.1.4. The CloudBalance Class

	3.2. RUNNING THE CLOUD BALANCING HELLO WORLD
	3.3. SOLVER CONFIGURATION
	3.4. SCORE CONFIGURATION
	3.4.1. Configuring score calculation using Java
	3.4.2. Configuring score calculation using Drools

	3.5. FURTHER DEVELOPMENT OF THE SOLVER

	CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUSINESS OPTIMIZER
	4.1. DOWNLOADING AND RUNNING THE EXAMPLES
	4.1.1. Downloading Red Hat Business Optimizer examples
	4.1.2. Running Business Optimizer examples
	4.1.3. Running the Red Hat Business Optimizer examples in an IDE (IntelliJ, Eclipse, or Netbeans)
	4.1.4. Running the web examples

	4.2. TABLE OF BUSINESS OPTIMIZER EXAMPLES
	4.3. N QUEENS
	4.3.1. Domain model for N queens

	4.4. CLOUD BALANCING
	4.5. TRAVELING SALESMAN (TSP - TRAVELING SALESMAN PROBLEM)
	4.6. DINNER PARTY
	4.7. TENNIS CLUB SCHEDULING
	4.8. MEETING SCHEDULING
	4.9. COURSE TIMETABLING (ITC 2007 TRACK 3 - CURRICULUM COURSE SCHEDULING)
	4.10. MACHINE REASSIGNMENT (GOOGLE ROADEF 2012)
	4.11. VEHICLE ROUTING
	4.11.1. Domain model for Vehicle routing

	4.12. PROJECT JOB SCHEDULING
	4.13. TASK ASSIGNING
	4.14. EXAM TIMETABLING (ITC 2007 TRACK 1 - EXAMINATION)
	4.14.1. Domain model for Exam timetabling

	4.15. NURSE ROSTERING (INRC 2010)
	4.16. TRAVELING TOURNAMENT PROBLEM (TTP)
	4.17. CHEAP TIME SCHEDULING
	4.18. INVESTMENT ASSET CLASS ALLOCATION (PORTFOLIO OPTIMIZATION)
	4.19. CONFERENCE SCHEDULING
	4.20. ROCK TOUR
	4.21. FLIGHT CREW SCHEDULING

	APPENDIX A. VERSIONING INFORMATION

