
Red Hat Decision Manager 7.0

Designing a decision service using DRL rules

Last Updated: 2018-11-20





Red Hat Decision Manager 7.0 Designing a decision service using DRL
rules

Red Hat Customer Content Services
brms-docs@redhat.com



Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to design a decision service using DRL rules in Red Hat Decision
Manager 7.0.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

PREFACE

CHAPTER 1. RULE-AUTHORING ASSETS IN RED HAT DECISION MANAGER

CHAPTER 2. DRL RULES

CHAPTER 3. DATA OBJECTS
3.1. CREATING DATA OBJECTS

CHAPTER 4. CREATING DRL FILES IN DECISION CENTRAL
4.1. ADDING WHEN CONDITIONS IN DRL RULES
4.2. ADDING THEN ACTIONS IN DRL RULES

4.2.1. Rule attributes

CHAPTER 5. OTHER METHODS FOR CREATING DRL FILES
5.1. CREATING DRL FILES IN RED HAT JBOSS DEVELOPER STUDIO
5.2. CREATING DRL FILES USING JAVA
5.3. CREATING DRL FILES USING MAVEN

CHAPTER 6. NEXT STEPS

APPENDIX A. VERSIONING INFORMATION

3

4

6

7
7

9
12
16
17

20
20
23
26

32

33

Table of Contents

1



Red Hat Decision Manager 7.0 Designing a decision service using DRL rules

2



PREFACE
As a business rules developer, you can define business rules using the DRL (Drools Rule Language)
designer in Decision Central. DRL rules are defined directly in free-form .drl text files instead of in a
guided or tabular format like other types of rule assets in Decision Central. These DRL files form the
core of the decision service for your project.

Prerequisite

The team and project for the DRL rules have been created in Decision Central. Each asset is associated
with a project assigned to a team. For details, see Getting started with decision services.

PREFACE

3

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/getting_started_with_decision_services


CHAPTER 1. RULE-AUTHORING ASSETS IN RED HAT
DECISION MANAGER

Red Hat Decision Manager provides several assets that you can use to create business rules for your
decision service. Each rule-authoring asset has different advantages, and you might prefer to use one or
a combination of multiple assets depending on your goals and needs.

The following table highlights each rule-authoring asset in Decision Central to help you decide or confirm
the best method for creating rules in your decision service.

Table 1.1. Rule-authoring assets in Decision Central

Asset Highlights Documentation

Guided decision tables
Are tables of rules that you create in a
UI-based table designer in Decision
Central

Are a wizard-led alternative to
uploaded decision table spreadsheets

Provide fields and options for
acceptable input

Support template keys and values for
creating rule templates

Support hit policies, real-time
validation, and other additional
features not supported in other assets

Are optimal for creating rules in a
controlled tabular format to minimize
compilation errors

Designing a decision service
using guided decision tables

Uploaded decision tables
Are XLS or XLSX decision table
spreadsheets that you upload into
Decision Central

Support template keys and values for
creating rule templates

Are optimal for creating rules in
decision tables already managed
outside of Decision Central

Have strict syntax requirements for
rules to be compiled properly when
uploaded

Designing a decision service
using uploaded decision
tables

Red Hat Decision Manager 7.0 Designing a decision service using DRL rules

4

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/designing_a_decision_service_using_guided_decision_tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/designing_a_decision_service_using_uploaded_decision_tables


Guided rules
Are individual rules that you create in
a UI-based rule designer in Decision
Central

Provide fields and options for
acceptable input

Are optimal for creating single rules in
a controlled format to minimize
compilation errors

Designing a decision service
using guided rules

Guided rule templates
Are reusable rule structures that you
create in a UI-based template
designer in Decision Central

Provide fields and options for
acceptable input

Support template keys and values for
creating rule templates (fundamental
to the purpose of this asset)

Are optimal for creating many rules
with the same rule structure but with
different defined field values

Designing a decision service
using guided rule templates

DRL rules
Are individual rules that you define
directly in .drl text files

Provide the most flexibility for defining
rules and other technicalities of rule
behavior

Can be created in certain standalone
environments and integrated with Red
Hat Decision Manager

Are optimal for creating rules that
require advanced DRL options

Have strict syntax requirements for
rules to be compiled properly

Designing a decision service
using DRL rules

Asset Highlights Documentation

CHAPTER 1. RULE-AUTHORING ASSETS IN RED HAT DECISION MANAGER

5

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/designing_a_decision_service_using_guided_rules
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/designing_a_decision_service_using_guided_rule_templates
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/designing_a_decision_service_using_drl_rules


CHAPTER 2. DRL RULES
DRL rules are business rules that you define directly in .drl text files. These DRL files are the source in
which all other rule assets in Decision Central are ultimately rendered. You can create and manage DRL
files within the Decision Central interface, or create them externally using Red Hat Developer Studio,
Java objects, or Maven archetypes. A DRL file can contain one or more rules that define at minimum the
rule conditions (when) and actions (then). The DRL designer in Decision Central provides syntax
highlighting for Java, DRL, and XML.

All data objects related to a DRL rule must be in the same project package as the DRL rule in Decision
Central. Assets in the same package are imported by default. Existing assets in other packages can be
imported with the DRL rule.

Red Hat Decision Manager 7.0 Designing a decision service using DRL rules

6



CHAPTER 3. DATA OBJECTS
Data objects are the building blocks for the rule assets that you create. Data objects are custom data
types implemented as Java objects in specified packages of your project. For example, you might create
a Person object with data fields Name, Address, and Date of Birth to specify personal details for
loan application rules. These custom data types determine what data your assets and your decision
service are based on.

3.1. CREATING DATA OBJECTS

The data objects that you define are the building blocks for rule assets in your project and determine
what data your assets and your decision service are based on.

Procedure

1. Go to Menu → Design → Projects and click the project name.

2. Click Create New Asset → Data Object.

3. Enter a unique Data Object name and select the Package where you want the data object to be
available for other rule assets. Data objects with the same name cannot exist in the same
package. The package that you specify must be the same package where the rule assets that
require those data objects have been assigned or will be assigned.

IMPORTING DATA OBJECTS FROM OTHER PACKAGES

You can also import an existing data object from another package into the
package of the rule asset. In the Project Explorer, expand the asset panel (such
as for guided decision tables or guided rules), select the specific asset, and in the
asset designer, go to Data Objects → New item to select the object to be
imported.

4. To make your data object persistable, select the Persistable checkbox. Persistable data objects
are able to be stored in a database according to the JPA specification. The default JPA is
Hibernate.

5. Click Ok.

6. In the data object designer, click add field to add a field to the object with the attributes Id,
Label, and Type. Required attributes are marked with an asterisk (*).

Id: Enter the unique ID of the field.

Label: (Optional) Enter a label for the field.

Type: Enter the data type of the field.

List: Select this check box to enable the field to hold multiple items for the specified type.

CHAPTER 3. DATA OBJECTS

7



Figure 3.1. Add data fields to a data object

7. Click Create to add the new field, or click Create and continue to add the new field and
continue adding other fields.

NOTE

To edit a field, select the field row and use the general properties on the right
side of the screen.

Red Hat Decision Manager 7.0 Designing a decision service using DRL rules

8



CHAPTER 4. CREATING DRL FILES IN DECISION CENTRAL
You can create and manage DRL files for your project in Decision Central. In each DRL file, you define
rule conditions, actions, and other components related to the rule, based on the data objects you create
or import in the package.

Procedure

1. Go to Menu → Design → Projects and click the project name.

2. Click Create New Asset → DRL file.

3. Enter an informative DRL file name and select the appropriate Package. The package that you
specify must be the same package where the required data objects have been assigned or will
be assigned.
You can also select Use Domain Specific Language (DSL) if any DSL assets have been
defined in your project (in the Domain Specific Language Definitions panel in the Project
Explorer). These DSL assets will then become usable objects for conditions and actions that
you define in the DRL designer.

4. Click Ok to create the rule asset.
The new DRL file is now listed in the DRL panel of the Project Explorer, or in the DSLR panel if
you selected the Use Domain Specific Language (DSL) option. The package to which you
assigned this DRL file is listed at the top of the file.

5. In the Fact types list in the left panel of the DRL designer, confirm that all data objects and data
object fields (expand each) required for your rules are listed. If not, you can either import
relevant data objects from other packages by using import statements in the DRL file, or
create data objects within your package.

6. After all data objects are in place, return to the Editor tab of the DRL designer and define the
DRL file with any of the following components:

Components of a DRL file

package  //automatic

import

function  //optional

query  //optional

declare   //optional

rule

rule

...

package: (automatic) This was defined for you when you created the DRL file and selected
the package.

CHAPTER 4. CREATING DRL FILES IN DECISION CENTRAL

9



import: Use this to identify the data objects from either this package or another package
that you want to use in the DRL file. Specify the package and data object in the format 
package.name.object.name, one import per line.

Importing data objects

function: (optional) Use this to include a function to be used by rules in the DRL file.
Functions put semantic code in your rule source file. Functions are especially useful if an
action (then) part of a rule is used repeatedly and only the parameters differ for each rule.
Above the rules in the DRL file, you can declare the function or import a static method as a
function, and then use the function by name in an action (then) part of the rule.

Declaring and using a function with a rule (option 1)

Importing and using the function with a rule (option 2)

query: (optional) Use this to search the decision engine for facts related to the rules in the
DRL file. Queries search for a set of defined conditions and do not require when or then
specifications. Query names are global to the KIE base and therefore must be unique
among all other rule queries in the project. To return the results of a query, construct a
traditional QueryResults definition using ksession.getQueryResults("name"),
where "name" is the query name. This returns a list of query results, which enable you to
retrieve the objects that matched the query. Define the query and query results parameters
above the rules in the DRL file.

Query and query results for people under the age of 21, with a rule

import mortgages.mortgages.LoanApplication;

function String hello(String applicantName) {
    return "Hello " + applicantName + "!";
}

rule "Using a function"
  when
    eval( true )
  then
    System.out.println( hello( "James" ) );
end

import function my.package.applicant.hello;

rule "Using a function"
  when
    eval( true )
  then
    System.out.println( hello( "James" ) );
end

query "people under the age of 21"
    person : Person( age < 21 )
end

QueryResults results = ksession.getQueryResults( "people under 

Red Hat Decision Manager 7.0 Designing a decision service using DRL rules

10



declare: (optional) Use this to declare a new fact type to be used by rules in the DRL file.
The default fact type in the java.lang package of Red Hat Decision Manager is Object,
but you can declare other types in DRL files as needed. Declaring fact types in DRL files
enables you to define a new fact model directly in the decision engine, without creating
models in a lower-level language like Java.

Declaring and using a new fact type

rule: Use this to define each rule in the DRL file. Rules consist of a rule name in the format 
rule "name", followed by optional attributes that define rule behavior (such as salience
or no-loop), followed by when and then definitions. The same rule name cannot be used
more than once in the same package. The when part of the rule contains the conditions that
must be met to execute an action. For example, if a bank requires loan applicants to have
over 21 years of age, then the when condition for an "Underage" rule would be Applicant( 
age < 21 ). The then part of the rule contains the actions to be performed when the
conditional part of the rule has been met. For example, when the loan applicant is under 21
years old, the then action would be setApproved( false ), declining the loan because
the applicant is under age. Conditions (when) and actions (then) consist of a series of
stated fact patterns with optional constraints, bindings, and other supported DRL elements,
based on the available data objects in the package. These patterns determine how defined
objects are affected by the rule.

Rule for loan application age limit

the age of 21" );
System.out.println( "we have " + results.size() + " people under 
the age  of 21" );

System.out.println( "These people are are under 21:" );

rule "Underage"
  when
    application : LoanApplication( )
    Applicant( age < 21 )
  then
    application.setApproved( false );
    application.setExplanation( "Underage" );
end

declare Person
  name : String
  dateOfBirth : java.util.Date
  address : Address
end

rule "Using a declared type"
  when
    $p : Person( name == "James" )
  then   // Insert Mark, who is a customer of James.
    Person mark = new Person();
    mark.setName("Mark");
    insert( mark );
end

CHAPTER 4. CREATING DRL FILES IN DECISION CENTRAL

11



At minimum, each DRL file must specify the package, import, and rule components. All
other components are optional.

Figure 4.1. Sample DRL file with required components and optional rule attributes

7. After you define all components of the rule, click Validate in the upper-right toolbar of the DRL
designer to validate the DRL file. If the file validation fails, address any problems described in the
error message, review all syntax and components in the DRL file, and try again to validate the
file until the file passes.

8. Click Save in the DRL designer to save your work.

For more details about adding conditions to DRL rules, see Section 4.1, “Adding WHEN conditions in
DRL rules”.

For more details about adding actions to DRL rules, see Section 4.2, “Adding THEN actions in DRL
rules”.

4.1. ADDING WHEN CONDITIONS IN DRL RULES

The when part of the rule contains the conditions that must be met to execute an action. For example, if a
bank requires loan applicants to have over 21 years of age, then the when condition of an "Underage"
rule would be Applicant( age < 21 ). Conditions consist of a series of stated patterns and
constraints, with optional bindings and other supported DRL elements, based on the available data
objects in the package.

Prerequisites

rule "Underage"
  salience 15
  dialect "mvel"
  when
    application : LoanApplication( )
    Applicant( age < 21 )
  then
    application.setApproved( false );
    application.setExplanation( "Underage" );
end

Red Hat Decision Manager 7.0 Designing a decision service using DRL rules

12



Prerequisites

The package is defined at the top of the DRL file. This should have been done for you when you
created the file.

The import list of data objects used in the rule is defined below the package line of the DRL
file. Data objects can be from this package or from another package in Decision Central.

The rule name is defined in the format rule "name" below the package, import, and other
lines that apply to the entire DRL file. The same rule name cannot be used more than once in
the same package. Optional rule attributes (such as salience or no-loop) that define rule
behavior are below the rule name, before the when section.

Procedure

1. In the DRL designer, enter when within the rule to begin adding condition statements. The when
section consists of zero or more fact patterns that define conditions for the rule.
If the when section is empty, then actions in the then section are executed every time a 
fireAllRules() call is made in the decision engine. This is useful if you want to use rules to
set up the decision engine state.

Rule without conditions

2. Enter a pattern for the first condition to be met, with optional constraints, bindings, and other
supported DRL elements. A basic pattern format is patternBinding : patternType ( 
constraints ). Patterns are based on the available data objects in the package and define
the conditions to be met in order to trigger actions in the then section.

Simple pattern: A simple pattern with no constraints matches against a fact of the given
type. For example, the following condition is only that the applicant exists.

Pattern with constraints: A pattern with constraints matches against a fact of the given
type and the additional restrictions in parentheses that are true or false. For example, the
following condition is that the applicant is under the age of 21.

rule "bootstrap"
  when   // empty

  then   // actions to be executed once
    insert( new Applicant() );
end

// The above rule is internally rewritten as:

rule "bootstrap"
  when
    eval( true )
  then
    insert( new Applicant() );
end

when
  Applicant( )

CHAPTER 4. CREATING DRL FILES IN DECISION CENTRAL

13



Pattern with binding: A binding on a pattern is a shorthand reference that other
components of the rule can use to refer back to the defined pattern. For example, the
following binding a on LoanApplication is used in a related action for underage
applicants.

3. Continue defining all condition patterns that apply to this rule. The following are some of the
keyword options for defining DRL conditions:

and: Use this to group conditional components into a logical conjunction. Infix and prefix 
and are supported. By default, all listed conditions or actions are combined with and when
no conjunction is specified.

or: Use this to group conditional components into a logical disjunction. Infix and prefix or
are supported.

exists: Use this to specify facts and constraints that must exist. Note that this does not
mean that a fact exists, but that a fact must exist. This option is triggered on only the first
match, not subsequent matches.

not: Use this to specify facts and constraints that must not exist.

when
  Applicant( age < 21 )

when
  a : LoanApplication( )
  Applicant( age < 21 )
then
  a.setApproved( false );
  a.setExplanation( "Underage" )

a : LoanApplication( ) and Applicant( age < 21 )

a : LoanApplication( )
and Applicant( age < 21 )

a : LoanApplication( )
Applicant( age < 21 )

// All of the above are the same.

( Bankruptcy( amountOwed == 100000 ) or IncomeSource( amount == 
20000 ) )

Bankruptcy( amountOwed == 100000 )
or IncomeSource( amount == 20000 )

exists (Bankruptcy( yearOfOccurrence > 1990 || amountOwed > 10000 
))

not (Applicant( age < 21 ))

Red Hat Decision Manager 7.0 Designing a decision service using DRL rules

14



forall: Use this to set up a construct where all facts that match the first pattern match all
the remaining patterns.

from: Use this to specify a source for data to be matched by the conditional pattern.

entry-point: Use this to define an Entry Point corresponding to a data source for the
pattern. Typically used with from.

collect: Use this to define a collection of objects that the construct can use as part of the
condition. In the example, all pending applications in the decision engine for each given
mortgage are grouped in ArrayLists. If three or more pending applications are found, the
rule is executed.

accumulate: Use this to iterate over a collection of objects, execute custom actions for
each of the elements, and return one or more result objects (if the constraints evaluate to 
true). This option is a more flexible and powerful form of collect. Use the format 
accumulate( <source pattern>; <functions> [;<constraints>] ). In the
example, min, max, and average are accumulate functions that calculate the minimum,
maximum and average temperature values over all the readings for each sensor. Other
supported functions include count, sum, variance, standardDeviation, 
collectList, and collectSet.

ADVANCED DRL OPTIONS

These are examples of basic keyword options and pattern constructs for
defining conditions. For more advanced DRL options and syntax supported in
the DRL designer, visit the Drools Documentation online.

4. After you define all condition components of the rule, click Validate in the upper-right toolbar of
the DRL designer to validate the DRL file. If the file validation fails, address any problems
described in the error message, review all syntax and components in the DRL file, and try again
to validate the file until the file passes.

forall( app : Applicant( age < 21 )
              Applicant( this == app, status = 'underage' ) )

Applicant( ApplicantAddress : address )
Address( zipcode == "23920W" ) from ApplicantAddress

Applicant( ) from entry-point "LoanApplication"

m : Mortgage()
a : ArrayList( size >= 3 )
    from collect( LoanApplication( Mortgage == m, status == 
'pending' ) )

s : Sensor()
accumulate( Reading( sensor == s, temp : temperature );
            min : min( temp ),
            max : max( temp ),
            avg : average( temp );
            min < 20, avg > 70 )

CHAPTER 4. CREATING DRL FILES IN DECISION CENTRAL

15

http://docs.jboss.org/drools/release/7.0.0.CR3/drools-docs/html_single/#_droolslanguagereferencechapter


5. Click Save in the DRL designer to save your work.

4.2. ADDING THEN ACTIONS IN DRL RULES

The then part of the rule contains the actions to be performed when the conditional part of the rule has
been met. For example, when a loan applicant is under 21 years old, the then action of an "Underage"
rule would be setApproved( false ), declining the loan because the applicant is under age. Actions
execute consequences based on the rule conditions and on available data objects in the package.

Prerequisites

The package is defined at the top of the DRL file. This should have been done for you when you
created the file.

The import list of data objects used in the rule is defined below the package line of the DRL
file. Data objects can be from this package or from another package in Decision Central.

The rule name is defined in the format rule "name" below the package, import, and other
lines that apply to the entire DRL file. The same rule name cannot be used more than once in
the same package. Optional rule attributes (such as salience or no-loop) that define rule
behavior are below the rule name, before the when section.

Procedure

1. In the DRL designer, enter then after the when section of the rule to begin adding action
statements.

2. Enter one or more actions to be executed on fact patterns based on the conditions for the rule.
The following are some of the keyword options for defining DRL actions:

and: Use this to group action components into a logical conjunction. Infix and prefix and are
supported. By default, all listed conditions or actions are combined with and when no
conjunction is specified.

set: Use this to set the value of a field.

modify: Use this to specify fields to be modified for a fact and to notify the decision engine
of the change.

application.setApproved ( false ) and application.setExplanation( 
"has been bankrupt" );

application.setApproved ( false );
and application.setExplanation( "has been bankrupt" );

application.setApproved ( false );
application.setExplanation( "has been bankrupt" );

// All of the above are the same.

application.setApproved ( false );
application.setExplanation( "has been bankrupt" );

modify( LoanApplication ) {

Red Hat Decision Manager 7.0 Designing a decision service using DRL rules

16



update: Use this to specify fields and the entire related fact to be modified and to notify the
decision engine of the change. After a fact has changed, you must call update before
changing another fact that might be affected by the updated values. The modify keyword
avoids this added step.

delete: Use this to remove an object from the decision engine. The keyword retract is
also supported in the DRL designer and executes the same action, but delete is preferred
for consistency with the keyword insert.

insert: Use this to insert a new fact and define resulting fields and values as needed for
the fact.

insertLogical: Use this to insert a new fact logically into the decision engine and define
resulting fields and values as needed for the fact. The Red Hat Decision Manager decision
engine is responsible for logical decisions on insertions and retractions of facts. After regular
or stated insertions, facts have to be retracted explicitly. After logical insertions, facts are
automatically retracted when the conditions that originally asserted the facts are no longer
true.

ADVANCED DRL OPTIONS

These are examples of basic keyword options and pattern constructs for
defining actions. For more advanced DRL options and syntax supported in
the DRL designer, visit the Drools Documentation online.

3. After you define all action components of the rule, click Validate in the upper-right toolbar of the
DRL designer to validate the DRL file. If the file validation fails, address any problems described
in the error message, review all syntax and components in the DRL file, and try again to validate
the file until the file passes.

4. Click Save in the DRL designer to save your work.

4.2.1. Rule attributes

Rule attributes are additional specifications that you can add to business rules to modify rule behavior.
The following table lists the names and supported values of the attributes that you can assign to rules:

Table 4.1. Rule attributes

        setAmount( 100 )
}

update( LoanApplication ) {
        setAmount( 100 )
}

delete( LoanApplication );

insert( new Applicant() );

insertLogical( new Applicant() );

CHAPTER 4. CREATING DRL FILES IN DECISION CENTRAL

17

http://docs.jboss.org/drools/release/7.0.0.CR3/drools-docs/html_single/#_droolslanguagereferencechapter


Attribute Value

salience An integer defining the priority of the rule. Rules with a higher salience value
are given higher priority when ordered in the activation queue.

Example: salience 10

enabled A Boolean value. When the option is selected, the rule is enabled. When the
option is not selected, the rule is disabled.

Example: enabled true

date-effective A string containing a date and time definition. The rule can be activated only
if the current date and time is after a date-effective attribute.

Example: date-effective "4-Sep-2018"

date-expires A string containing a date and time definition. The rule cannot be activated if
the current date and time is after the date-expires attribute.

Example: date-expires "4-Oct-2018"

no-loop A Boolean value. When the option is selected, the rule cannot be
reactivated (looped) if a consequence of the rule re-triggers a previously met
condition. When the condition is not selected, the rule can be looped in
these circumstances.

Example: no-loop true

agenda-group A string identifying an agenda group to which you want to assign the rule.
Agenda groups allow you to partition the agenda to provide more execution
control over groups of rules. Only rules in an agenda group that has acquired
a focus are able to be activated.

Example: agenda-group "GroupName"

activation-group A string identifying an activation (or XOR) group to which you want to assign
the rule. In activation groups, only one rule can be activated. The first rule to
fire will cancel all pending activations of all rules in the activation group.

Example: activation-group "GroupName"

duration A long integer value defining the duration of time in milliseconds after which
the rule can be activated, if the rule conditions are still met.

Example: duration 10000

timer A string identifying either int (interval) or cron timer definition for
scheduling the rule.

Example: timer "*/5 * * * *" (every 5 minutes)

Red Hat Decision Manager 7.0 Designing a decision service using DRL rules

18



calendar A Quartz calendar definition for scheduling the rule.

Example: calendars "* * 0-7,18-23 ? * *" (exclude non-
business hours)

auto-focus A Boolean value, applicable only to rules within agenda groups. When the
option is selected, the next time the rule is activated, a focus is automatically
given to the agenda group to which the rule is assigned.

Example: auto-focus true

lock-on-active A Boolean value, applicable only to rules within rule flow groups or agenda
groups. When the option is selected, the next time the ruleflow group for the
rule becomes active or the agenda group for the rule receives a focus, the
rule cannot be activated again until the ruleflow group is no longer active or
the agenda group loses the focus. This is a stronger version of the no-
loop attribute, because the activation of a matching rule is discarded
regardless of the origin of the update (not only by the rule itself). This
attribute is ideal for calculation rules where you have a number of rules that
modify a fact and you do not want any rule re-matching and firing again.

Example: lock-on-active true

ruleflow-group A string identifying a rule flow group. In rule flow groups, rules can fire only
when the group is activated by the associated rule flow.

Example: ruleflow-group "GroupName"

dialect A string identifying either JAVA or MVEL as the language to be used for
code expressions in the rule. By default, the rule uses the dialect specified
at the package level. Any dialect specified here overrides the package
dialect setting for the rule.

Example: dialect "JAVA"

Attribute Value

CHAPTER 4. CREATING DRL FILES IN DECISION CENTRAL

19



CHAPTER 5. OTHER METHODS FOR CREATING DRL FILES
As an alternative to creating and managing DRL files within the Decision Central interface, you can
create DRL files in external standalone projects using Red Hat Developer Studio, Java objects, or Maven
archetypes. These standalone projects can then be integrated as knowledge JAR (kJAR) dependencies
in existing Red Hat Decision Manager projects in Decision Central. The DRL files in your standalone
project must contain at minimum the required package specification, import lists, and rule definitions.
Any other DRL components, such as global variables and functions, are optional. All data objects related
to a DRL rule must be included with your standalone DRL project or deployment.

5.1. CREATING DRL FILES IN RED HAT JBOSS DEVELOPER STUDIO

You can use Red Hat JBoss Developer Studio to create DRL files with rules and integrate the files with
your Red Hat Decision Manager decision service. This method of creating DRL rules is helpful if you
already use Red Hat Developer Studio for your decision service and want to continue with the same work
flow. If you do not already use this method, then the Decision Central interface of Red Hat Decision
Manager is recommended for creating DRL files and other rule assets.

Prerequisite

Red Hat JBoss Developer Studio has been installed from the Red Hat Customer Portal.

Procedure

1. In the Red Hat JBoss Developer Studio, click File → New → Project.

2. In the New Project window that opens, select Drools → Drools Project and click Next.

3. Click the second icon to Create a project and populate it with some example files to help
you get started quickly. Click Next.

4. Enter a Project name and select the Maven radio button as the project building option. The
GAV values are generated automatically. You can update these values as needed for your
project:

Group ID: com.sample

Artifact ID: my-project

Version: 1.0.0-SNAPSHOT

5. Click Finish to create the project.
This configuration sets up a basic project structure, class path, and sample rules. The following
is an overview of the project structure:

my-project
 `-- src/main/java
    | `-- com.sample
    |    `-- DecisionTable.java
    |    `-- DroolsTest.java
    |    `-- ProcessTest.java
    |
 `-- src/main/resources
    | `-- dtables
    |    `-- Sample.xls
    | `-- process

Red Hat Decision Manager 7.0 Designing a decision service using DRL rules

20

https://access.redhat.com/downloads/


    |    `-- sample.bpmn
    | `-- rules
    |    `-- Sample.drl
    | `-- META-INF
    |
 `-- JRE System Library
    |
 `-- Maven Dependencies
    |
 `-- Drools Library
    |
 `-- src
    |
 `-- target
    |
 `-- pom.xml

Notice the following elements:

A Sample.drl rule file in the src/main/resources directory, containing an example 
Hello World and GoodBye rules.

A DroolsTest.java file under the src/main/java directory in the com.sample
package. The DroolsTest class can be used to execute rules.

The Drools Library directory, which acts as a custom class path containing JAR files
necessary for execution.

6. Create a fact model with all necessary data objects for the DRL file.
The DroolsTest.java file contains a sample Java object Message with getter and setter
methods. You can edit this class or create a different Java object. In this example, a class 
Person containing methods to set and retrieve the first name, last name, hourly rate, and wage
of a person is used.

public static class Person {

  private String firstName;
  private String lastName;
  private Integer hourlyRate;
  private Integer wage;

  public String getFirstName() {
    return firstName;
  }

  public void setFirstName(String firstName) {
    this.firstName = firstName;
  }

  public String getLastName() {
    return lastName;
  }

  public void setLastName(String lastName) {
    this.lastName = lastName;
  }

CHAPTER 5. OTHER METHODS FOR CREATING DRL FILES

21



7. Update the main() method to pass the Java object to a rule.
The DroolsTest.java file contains a main() method that loads the knowledge base, inserts
facts, and executes rules. The following method update passes the object Person to a rule:

To load the knowledge base, get a KieServices instance and a class-path-based 
KieContainer and build the KieSession with the KieContainer. In the previous example,
a session ksession-rules matching the one defined in kmodule.xml file is passed.

8. Create a DRL file containing at minimum a package specification, an import list of data objects to
be used by the rule or rules, and one or more rules with when conditions and then actions.
The rule file Sample.drl contains an example of two rules. You can edit this file or create a
new one.

  public Integer getHourlyRate() {
    return hourlyRate;
  }

  public void setHourlyRate(Integer hourlyRate) {
    this.hourlyRate = hourlyRate;
  }

  public Integer getWage(){
    return wage;
  }

  public void setWage(Integer wage){
    this.wage = wage;
  }
}

public static final void main(String[] args) {
  try {
    // Load the knowledge base:
    KieServices ks = KieServices.Factory.get();
    KieContainer kContainer = ks.getKieClasspathContainer();
    KieSession kSession = kContainer.newKieSession("ksession-
rules");

    // Go!
    Person p = new Person();
    p.setWage(12);
    p.setFirstName("Tom");
    p.setLastName("Summers");
    p.setHourlyRate(10);

    kSession.insert(p);
    kSession.fireAllRules();
  }

  catch (Throwable t) {
    t.printStackTrace();
  }
}

Red Hat Decision Manager 7.0 Designing a decision service using DRL rules

22



9. Go to File → Save to save the file.

10. After you create and save all DRL assets in your project, right-click your project folder and select
Run As → Java Application to build the project. If the project build fails, address any problems
described in the Problems tab of the lower window in Developer Studio, and try again to validate
the project until the project builds.

IF THE RUN AS → JAVA APPLICATION OPTION IS NOT AVAILABLE

If Java Application is not an option when you right-click your project and select Run As,
then go to Run As → Run Configurations, right-click Java Application, and click New.
Then in the Main tab, browse for and select your Project and the associated Main class.
Click Apply and then click Run to test the project. The next time you right-click your
project folder, the Java Application option will appear.

To integrate the new rule assets with an existing project in Red Hat Decision Manager, you can compile
the new project as a knowledge JAR (kJAR) and add it as a dependency in the pom.xml file of the
project in Decision Central.

5.2. CREATING DRL FILES USING JAVA

You can use Java objects to create DRL files with rules and integrate the objects with your Red Hat
Decision Manager decision service. This method of creating DRL rules is helpful if you already use
external Java objects for your decision service and want to continue with the same work flow. If you do
not already use this method, then the Decision Central interface of Red Hat Decision Manager is
recommended for creating DRL files and other rule assets.

Procedure

1. Create a Java object on which the rule or rules will operate.
In this example, a Person.java file in a directory my-project is created. The Person class
contains getter and setter methods to set and retrieve the first name, last name, hourly rate, and
the wage of a person:

package com.sample

import com.sample.DroolsTest.Person;

dialect "java"

rule "Wage"
  when
    Person(hourlyRate * wage > 100)
    Person(name : firstName, surname : lastName)
  then
    System.out.println("Hello" + " " + name + " " + surname + "!");
    System.out.println("You are rich!");
end

  public class Person {
    private String firstName;
    private String lastName;
    private Integer hourlyRate;
    private Integer wage;

CHAPTER 5. OTHER METHODS FOR CREATING DRL FILES

23



2. Create a rule file in .drl format under the my-project directory.
The following Person.drl rule calculates the wage and hourly rate values and displays a
message based on the result:

3. Create a main class and save it to the same directory as the Java object that you created. The
main class will load the knowledge base and execute rules.

4. In the main class, add the required import statements to import KIE services, a KIE container,
and a KIE session. Then load the knowledge base, insert facts, and execute the rule from the 
main() method that passes the fact model to the rule.

    public String getFirstName() {
      return firstName;
    }

    public void setFirstName(String firstName) {
      this.firstName = firstName;
    }

    public String getLastName() {
      return lastName;
    }

    public void setLastName(String lastName) {
      this.lastName = lastName;
    }

    public Integer getHourlyRate() {
      return hourlyRate;
    }

    public void setHourlyRate(Integer hourlyRate) {
      this.hourlyRate = hourlyRate;
    }

    public Integer getWage(){
      return wage;
    }

    public void setWage(Integer wage){
      this.wage = wage;
    }
  }

dialect "java"

rule "Wage"
  when
    Person(hourlyRate * wage > 100)
    Person(name : firstName, surname : lastName)
  then
    System.out.println("Hello" + " " + name + " " + surname + "!");
    System.out.println("You are rich!");
end

Red Hat Decision Manager 7.0 Designing a decision service using DRL rules

24



In the following example, the required imports are listed and a main class DroolsTest.java is
created:

5. Download the Red Hat Decision Manager 7.0 Core Engine ZIP file from the Red Hat Customer
Portal and extract it under my-project/dm-engine-jars/.

6. In the my-project/META-INF directory, create a kmodule.xml metadata file with the
following content:

This kmodule.xml file is a descriptor that selects resources to knowledge bases and configures
sessions. This file enables you to define and configure one or more KIE bases, and to include
DRL files from specific packages in a specific KIE base. You can also create one or more KIE
sessions from each KIE base.

The following example shows a more advanced kmodule.xml file:

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public class DroolsTest {
  public static final void main(String[] args) {
    try {
      // Load the knowledge base:
      KieServices ks = KieServices.Factory.get();
      KieContainer kContainer = ks.getKieClasspathContainer();
      KieSession kSession = kContainer.newKieSession();

      // Go!
      Person p = new Person();
      p.setWage(12);
      p.setFirstName("Tom");
      p.setLastName("Summers");
      p.setHourlyRate(10);

      kSession.insert(p);
      kSession.fireAllRules();
    }

    catch (Throwable t) {
      t.printStackTrace();
    }
  }
}

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns="http://www.drools.org/xsd/kmodule">
</kmodule>

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns="http://www.drools.org/xsd/kmodule">
  <kbase name="KBase1" default="true" eventProcessingMode="cloud" 
equalsBehavior="equality" declarativeAgenda="enabled" 
packages="org.domain.pkg1">

CHAPTER 5. OTHER METHODS FOR CREATING DRL FILES

25

https://access.redhat.com/downloads/


This example defines two KIE bases. Two KIE sessions are instantiated from the KBase1 KIE
base, and one KIE session from KBase2. Specific packages of rule assets are included with
both KIE bases. When you specify packages in this way, you must organize your DRL files in a
folder structure that reflects the specified packages.

7. After you create and save all DRL assets in your Java object, navigate to the my-project
directory in the command line and run the following command to build your Java files. Replace 
DroolsTest.java with the name of your Java main class.

javac -classpath "./dm-engine-jars/*:." DroolsTest.java

If the build fails, address any problems described in the command line error messages, and try
again to validate the Java object until the object passes.

8. After your Java files build successfully, run the following command to execute the rules. Replace 
DroolsTest with the prefix of your Java main class.

javac -classpath "./dm-engine-jars/*:." DroolsTest

9. Review the rules to ensure that they executed properly, and address any needed changes in the
Java files.

To integrate the new rule assets with an existing project in Red Hat Decision Manager, you can compile
the new Java project as a knowledge JAR (kJAR) and add it as a dependency in the pom.xml file of the
project in Decision Central.

5.3. CREATING DRL FILES USING MAVEN

    <ksession name="KSession1_1" type="stateful" default="true" />
    <ksession name="KSession1_2" type="stateless" default="false" 
beliefSystem="jtms" />
  </kbase>
  <kbase name="KBase2" default="false" eventProcessingMode="stream" 
equalsBehavior="equality" declarativeAgenda="enabled" 
packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1">
    <ksession name="KSession2_1" type="stateful" default="false" 
clockType="realtime">
      <fileLogger file="debugInfo" threaded="true" interval="10" />
      <workItemHandlers>
        <workItemHandler name="name" type="new 
org.domain.WorkItemHandler()" />
      </workItemHandlers>
      <listeners>
        <ruleRuntimeEventListener 
type="org.domain.RuleRuntimeListener" />
        <agendaEventListener type="org.domain.FirstAgendaListener" 
/>
        <agendaEventListener type="org.domain.SecondAgendaListener" 
/>
        <processEventListener type="org.domain.ProcessListener" />
      </listeners>
    </ksession>
  </kbase>
</kmodule>

Red Hat Decision Manager 7.0 Designing a decision service using DRL rules

26



You can use Maven archetypes to create DRL files with rules and integrate the archetypes with your
Red Hat Decision Manager decision service. This method of creating DRL rules is helpful if you already
use external Maven archetypes for your decision service and want to continue with the same work flow.
If you do not already use this method, then the Decision Central interface of Red Hat Decision Manager
is recommended for creating DRL files and other rule assets.

Procedure

1. Navigate to a directory where you want to create a Maven archetype and run the following
command:

mvn archetype:generate -DgroupId=com.sample.app -DartifactId=my-app 
-DarchetypeArtifactId=maven-archetype-quickstart -
DinteractiveMode=false

This creates a directory my-app with the following structure:

my-app
|-- pom.xml
`-- src
    |-- main
    |   `-- java
    |       `-- com
    |           `-- sample
    |               `-- app
    |                   `-- App.java
    `-- test
        `-- java
            `-- com
                `-- sample
                    `-- app
                        `-- AppTest.java

The my-app directory contains the following key components:

A src/main directory for storing the application sources

A src/test directory for storing the test sources

A pom.xml file with the project configuration

2. Create a Java object on which the rule or rules will operate within the Maven archetype.
In this example, a Person.java file in the directory my-
app/src/main/java/com/sample/app is created. The Person class contains getter and
setter methods to set and retrieve the first name, last name, hourly rate, and the wage of a
person:

package com.sample.app;

  public class Person {

    private String firstName;
    private String lastName;
    private Integer hourlyRate;
    private Integer wage;

CHAPTER 5. OTHER METHODS FOR CREATING DRL FILES

27



3. Create a rule file in .drl format under the my-app/src/main/resources/rules directory.
The following Person.drl rule imports the Person class and calculates the wage and hourly
rate values and displays a message based on the result:

4. In the my-app/src/main/resources/META-INF directory, create a kmodule.xml
metadata file with the following content:

    public String getFirstName() {
      return firstName;
    }

    public void setFirstName(String firstName) {
      this.firstName = firstName;
    }

    public String getLastName() {
      return lastName;
    }

    public void setLastName(String lastName) {
      this.lastName = lastName;
    }

    public Integer getHourlyRate() {
      return hourlyRate;
    }

    public void setHourlyRate(Integer hourlyRate) {
      this.hourlyRate = hourlyRate;
    }

    public Integer getWage(){
      return wage;
    }

    public void setWage(Integer wage){
      this.wage = wage;
    }
  }

package com.sample.app;
import com.sample.app.Person;

dialect "java"

rule "Wage"
  when
    Person(hourlyRate * wage > 100)
    Person(name : firstName, surname : lastName)
  then
    System.out.println("Hello " + name + " " + surname + "!");
    System.out.println("You are rich!");
end

Red Hat Decision Manager 7.0 Designing a decision service using DRL rules

28



This kmodule.xml file is a descriptor that selects resources to knowledge bases and configures
sessions. This file enables you to define and configure one or more KIE bases, and to include
DRL files from specific packages in a specific KIE base. You can also create one or more KIE
sessions from each KIE base.

The following example shows a more advanced kmodule.xml file:

This example defines two KIE bases. Two KIE sessions are instantiated from the KBase1 KIE
base, and one KIE session from KBase2. Specific packages of rule assets are included with
both KIE bases. When you specify packages in this way, you must organize your DRL files in a
folder structure that reflects the specified packages.

5. In the my-app/pom.xml configuration file, specify the libraries that your application requires.
Provide the Red Hat Decision Manager dependencies as well as the group ID, artifact ID,
and version (GAV) of your application.

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns="http://www.drools.org/xsd/kmodule">
</kmodule>

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns="http://www.drools.org/xsd/kmodule">
  <kbase name="KBase1" default="true" eventProcessingMode="cloud" 
equalsBehavior="equality" declarativeAgenda="enabled" 
packages="org.domain.pkg1">
    <ksession name="KSession1_1" type="stateful" default="true" />
    <ksession name="KSession1_2" type="stateless" default="false" 
beliefSystem="jtms" />
  </kbase>
  <kbase name="KBase2" default="false" eventProcessingMode="stream" 
equalsBehavior="equality" declarativeAgenda="enabled" 
packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1">
    <ksession name="KSession2_1" type="stateful" default="false" 
clockType="realtime">
      <fileLogger file="debugInfo" threaded="true" interval="10" />
      <workItemHandlers>
        <workItemHandler name="name" type="new 
org.domain.WorkItemHandler()" />
      </workItemHandlers>
      <listeners>
        <ruleRuntimeEventListener 
type="org.domain.RuleRuntimeListener" />
        <agendaEventListener type="org.domain.FirstAgendaListener" 
/>
        <agendaEventListener type="org.domain.SecondAgendaListener" 
/>
        <processEventListener type="org.domain.ProcessListener" />
      </listeners>
    </ksession>
  </kbase>
</kmodule>

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" 

CHAPTER 5. OTHER METHODS FOR CREATING DRL FILES

29



For the Maven artifact version supported in Red Hat Decision Manager, see Installing Red Hat
Decision Manager on premise.

6. Use the testApp method in my-app/src/test/java/com/sample/app/AppTest.java
to test the rule. The AppTest.java file is created by Maven by default.

7. In the AppTest.java file, add the required import statements to import KIE services, a KIE
container, and a KIE session. Then load the knowledge base, insert facts, and execute the rule
from the testApp() method that passes the fact model to the rule.
In the following example, the required imports are listed and a fact model DroolsTest.java is
created:

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.sample.app</groupId>
<artifactId>my-app</artifactId>
<version>1.0.0</version>
<repositories>
  <repository>
    <id>jboss-ga-repository</id>
    <url>http://maven.repository.redhat.com/ga/</url>
  </repository>
</repositories>
<dependencies>
  <dependency>
    <groupId>org.drools</groupId>
    <artifactId>drools-compiler</artifactId>
    <version>VERSION</version>
  </dependency>
  <dependency>
    <groupId>org.kie</groupId>
    <artifactId>kie-api</artifactId>
    <version>VERSION</version>
  </dependency>
  <dependency>
    <groupId>junit</groupId>
    <artifactId>junit</artifactId>
    <version>4.11</version>
    <scope>test</scope>
  </dependency>
</dependencies>
</project>

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public void testApp() {

  // Load the knowledge base:
  KieServices ks = KieServices.Factory.get();
  KieContainer kContainer = ks.getKieClasspathContainer();
  KieSession kSession = kContainer.newKieSession();

Red Hat Decision Manager 7.0 Designing a decision service using DRL rules

30

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/installing_red_hat_decision_manager_on_premise


8. After you create and save all DRL assets in your Maven archetype, navigate to the my-app
directory in the command line and run the following command to build your files:

mvn clean install

The first time you run this command, the build process can take more time than usual. After the
build completes, the results are displayed in the command line:

...

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 
1.194 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO]
...
[INFO] ----------------------------------------------------------
----
[INFO] BUILD SUCCESS
[INFO] ----------------------------------------------------------
----
[INFO] Total time: 6.393 s
...
[INFO] ----------------------------------------------------------
----

9. Review the build results to ensure that the build ran properly, and address any errors in the files.

To integrate the new rule assets with an existing project in Red Hat Decision Manager, you can compile
the new Maven project as a knowledge JAR (kJAR) and add it as a dependency in the pom.xml file of
the project in Decision Central.

  // Set up the fact model:
  Person p = new Person();
  p.setWage(12);
  p.setFirstName("Tom");
  p.setLastName("Summers");
  p.setHourlyRate(10);

  // Insert the person into the session:
  kSession.insert(p);

  // Fire all rules:
  kSession.fireAllRules();
}

CHAPTER 5. OTHER METHODS FOR CREATING DRL FILES

31



CHAPTER 6. NEXT STEPS
Testing a decision service using test scenarios

Packaging and deploying a decision service

Red Hat Decision Manager 7.0 Designing a decision service using DRL rules

32

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/testing_a_decision_service_using_test_scenarios
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/packaging_and_deploying_a_decision_service


APPENDIX A. VERSIONING INFORMATION
Documentation last updated on: Monday, October 1, 2018.

APPENDIX A. VERSIONING INFORMATION

33


	Table of Contents
	PREFACE
	CHAPTER 1. RULE-AUTHORING ASSETS IN RED HAT DECISION MANAGER
	CHAPTER 2. DRL RULES
	CHAPTER 3. DATA OBJECTS
	3.1. CREATING DATA OBJECTS

	CHAPTER 4. CREATING DRL FILES IN DECISION CENTRAL
	4.1. ADDING WHEN CONDITIONS IN DRL RULES
	4.2. ADDING THEN ACTIONS IN DRL RULES
	4.2.1. Rule attributes


	CHAPTER 5. OTHER METHODS FOR CREATING DRL FILES
	5.1. CREATING DRL FILES IN RED HAT JBOSS DEVELOPER STUDIO
	5.2. CREATING DRL FILES USING JAVA
	5.3. CREATING DRL FILES USING MAVEN

	CHAPTER 6. NEXT STEPS
	APPENDIX A. VERSIONING INFORMATION

