& RedHat

Red Hat build of Eclipse Vert.x 4.1

Eclipse Vert.x Runtime Guide

Use Eclipse Vert.x to develop reactive, non-blocking, asynchronous applications that
run on OpenShift and on stand-alone RHEL

Last Updated: 2022-03-31

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

Use Eclipse Vert.x to develop reactive, non-blocking, asynchronous applications that run on
OpenShift and on stand-alone RHEL

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides details on using the Eclipse Vert.x runtime.

Table of Contents

Table of Contents

[3 Y O AP 3
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ..ottt iee i eieeeeneennnes, 4
MAKING OPEN SOURCE MORE INCLUSIVE ..ttt it et eeaeeanneeaneeeaneennneeaneens 5
CHAPTER 1. INTRODUCTION TO APPLICATION DEVELOPMENT WITH ECLIPSEVERT.X 6
1.1. OVERVIEW OF APPLICATION DEVELOPMENT WITH RED HAT RUNTIMES 6
1.2. OVERVIEW OF ECLIPSE VERT.X 6
1.2.1. Key concepts of Eclipse Vert.x 6
1.2.2. Supported Architectures by Eclipse Vert.x 8
1.2.3. Support for Federal Information Processing Standard (FIPS) 8
1.2.3.1. Additional resources 8
CHAPTER 2. CONFIGURING YOUR APPLICATIONS . ittt eeiten e eaeennneanns 9
2.1. CONFIGURING YOUR APPLICATION TO USE ECLIPSE VERT.X 9
CHAPTER 3. DEVELOPING AND DEPLOYING ECLIPSE VERT.X RUNTIME APPLICATION 1
3.1. DEVELOPING ECLIPSE VERT.X APPLICATION 11
3.2. DEPLOYING ECLIPSE VERT.X APPLICATION TO OPENSHIFT 14
3.2.1. Supported Java images for Eclipse Vert.x 14
3.2.2. Preparing Eclipse Vert.x application for OpenShift deployment 15
3.2.3. Deploying Eclipse Vert.x application to OpenShift using OpenShift Maven plugin 16
3.3. DEPLOYING ECLIPSE VERT.X APPLICATION TO STAND-ALONE RED HAT ENTERPRISE LINUX 18
3.3.1. Preparing Eclipse Vert.x application for stand-alone Red Hat Enterprise Linux deployment 18
3.3.2. Deploying Eclipse Vert.x application to stand-alone Red Hat Enterprise Linux using jar 19
CHAPTER 4. DEBUGGING ECLIPSE VERT.X BASED APPLICATION ... iiitiiiiiiiiiiiiiieiennneenn, 20
4.1. REMOTE DEBUGGING 20
4.1.1. Starting your application locally in debugging mode 20
4..2. Starting your application on OpenShift in debugging mode 20
4.1.3. Attaching a remote debugger to the application 21
4.2. DEBUG LOGGING 22
4.2.1. Configuring logging for your Eclipse Vert.x application using java.util.logging 22
4.2.2. Adding log output to your Eclipse Vert.x application. 23
4.2.3. Specifying a custom logging framework for your application 23
4.2.4. Configuring Netty logging for your Eclipse Vert.x application. 23
4.2.5. Accessing debug logs on OpenShift 24
CHAPTER 5. MONITORING YOUR APPLICATION ..ttt ittt i eeieeeaneennneeannenaneenn, 26
5.1. ACCESSING JVM METRICS FOR YOUR APPLICATION ON OPENSHIFT 26
5.1.1. Accessing JVM metrics using Jolokia on OpenShift 26
5.2. EXPOSING APPLICATION METRICS USING PROMETHEUS WITH ECLIPSE VERT.X 27
APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESSttt it iiitieiiieaneennnnns 31
APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION 32
APPENDIX C. CONFIGURING A JENKINS FREESTYLE PROJECT TO DEPLOY YOUR APPLICATION WITH
THE OPENSHIFT MAVEN PLUGIN ottt it ittt ei e eeeenteeaneernneennneeanens 34
Next steps 35
APPENDIX D. ADDITIONAL ECLIPSE VERT. X RESOURCES i iiiiiiitiiiiiiinieenneennneennnes, 36
APPENDIX E. APPLICATION DEVELOPMENT RESOURCES ittt iiiieeiieeaneennen, 37

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

PREFACE

PREFACE

This guide covers concepts as well as practical details needed by developers to use the Eclipse Vert.x
runtime.

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our documentation. To provide feedback, you can highlight the textin a
document and add comments.

This section explains how to submit feedback.

Prerequisites

® You are logged in to the Red Hat Customer Portal.
® |nthe Red Hat Customer Portal, view the document in Multi-page HTML format.

Procedure

To provide your feedback, perform the following steps:

1. Click the Feedback button in the top-right corner of the document to see existing feedback.

NOTE

The feedback feature is enabled only in the Multi-page HTML format.

2. Highlight the section of the document where you want to provide feedback.

3. Click the Add Feedback pop-up that appears near the highlighted text.
A text box appears in the feedback section on the right side of the page.

4. Enter your feedback in the text box and click Submit.
A documentation issue is created.

5. To view the issue, click the issue tracker link in the feedback view.

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

CHAPTER 1. INTRODUCTION TO APPLICATION
DEVELOPMENT WITH ECLIPSE VERT.X

This section explains the basic concepts of application development with Red Hat runtimes. It also
provides an overview about the Eclipse Vert.x runtime.

1.1. OVERVIEW OF APPLICATION DEVELOPMENT WITH RED HAT
RUNTIMES

Red Hat OpenShift is a container application platform, which provides a collection of cloud-native
runtimes. You can use the runtimes to develop, build, and deploy Java or JavaScript applications on
OpenShift.

Application development using Red Hat Runtimes for OpenShift includes:

® A collection of runtimes, such as, Eclipse Vert.x, Thorntail, Spring Boot, and so on, designed to
run on OpenShift.

® A prescriptive approach to cloud-native development on OpenShift.

OpenShift helps you manage, secure, and automate the deployment and monitoring of your
applications. You can break your business problems into smaller microservices and use OpenShift to
deploy, monitor, and maintain the microservices. You can implement patterns such as circuit breaker,
health check, and service discovery, in your applications.

Cloud-native development takes full advantage of cloud computing.
You can build, deploy, and manage your applications on:

OpenShift Container Platform
A private on-premise cloud by Red Hat.

Red Hat CodeReady Studio
An integrated development environment (IDE) for developing, testing, and deploying applications.

This guide provides detailed information about the Eclipse Vert.x runtime. For more information on other
runtimes, see the relevant runtime documentation.

1.2. OVERVIEW OF ECLIPSE VERT.X

Eclipse Vert.x is a toolkit used for creating reactive, non-blocking, and asynchronous applications that
run on the Java Virtual Machine (JVM).

Eclipse Vert.x is designed to be cloud-native. It allows applications to use very few threads. This avoids
the overhead caused when new threads are created. This enables Eclipse Vert.x applications and services
to effectively use their memory as well as CPU quotas in cloud environments.

Using the Eclipse Vert.x runtime in OpenShift makes it simpler and easier to build reactive systems. The
OpenShift platform features, such as, rolling updates, service discovery, and canary deployments, are
also available. With OpenShift, you can implement microservice patterns, such as externalized
configuration, health check, circuit breaker, and failover, in your applications.

1.2.1. Key concepts of Eclipse Vert.x

https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.openshift.com/products/container-platform/
https://access.redhat.com/products/red-hat-codeready-studio
https://access.redhat.com/documentation/en-us

CHAPTER 1. INTRODUCTION TO APPLICATION DEVELOPMENT WITH ECLIPSE VERT.X

This section describes some key concepts associated with the Eclipse Vert.x runtime. It also provides a
brief overview of reactive systems.

Cloud and Container-Native Applications

Cloud-native applications are typically built using microservices. They are designed to form distributed
systems of decoupled components. These components usually run inside containers, on top of clusters
that contain a large number of nodes. These applications are expected to be resistant to the failure of
individual components, and may be updated without requiring any service downtime. Systems based on
cloud-native applications rely on automated deployment, scaling, and administrative and maintenance
tasks provided by an underlying cloud platform, such as, OpenShift. Management and administration
tasks are carried out at the cluster level using off-the-shelf management and orchestration tools, rather
than on the level of individual machines.

Reactive Systems

A reactive system, as defined in the reactive manifesto, is a distributed systems with the following
characteristics:

Elastic

The system remains responsive under varying workload, with individual components scaled and load-
balanced as necessary to accommodate the differences in workload. Elastic applications deliver the
same quality of service regardless of the number of requests they receive at the same time.

Resilient

The system remains responsive even if any of its individual components fail. In the system, the
components are isolated from each other. This helps individual components to recover quickly in
case of failure. Failure of a single component should never affect the functioning of other
components. This prevents cascading failure, where the failure of an isolated component causes
other components to become blocked and gradually fail.

Responsive

Responsive systems are designed to always respond to requests in a reasonable amount of time to
ensure a consistent quality of service. To maintain responsiveness, the communication channel
between the applications must never be blocked.

Message-Driven

The individual components of an application use asynchronous message-passing to communicate
with each other. If an event takes place, such as a mouse click or a search query on a service, the
service sends a message on the common channel, that is, the event bus. The messages are in turn
caught and handled by the respective component.

Reactive Systems are distributed systems. They are designed so that their asynchronous properties can
be used for application development.

Reactive Programming

While the concept of reactive systems describes the architecture of a distributed system, reactive
programming refers to practices that make applications reactive at the code level. Reactive
programming is a development model to write asynchronous and event-driven applications. In reactive
applications, the code reacts to events or messages.

There are several implementations of reactive programming. For example, simple implementations using
callbacks, complex implementations using Reactive Extensions (Rx), and coroutines.

The Reactive Extensions (Rx) is one of the most mature forms of reactive programming in Java. It uses
the RxJava library.

https://reactivemanifesto.org

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

1.2.2. Supported Architectures by Eclipse Vert.x
Eclipse Vert.x supports the following architectures:
® x86_64 (AMD64)
® |BM Z (s390x) in the OpenShift environment
® |BM Power Systems (ppc64le) in the OpenShift environment

Refer to the section Supported Java images for Eclipse Vert.x for more information about the image
names.

1.2.3. Support for Federal Information Processing Standard (FIPS)

The Federal Information Processing Standards (FIPS) provides guidelines and requirements for
improving security and interoperability across computer systems and networks. The FIPS 140-2 and
140-3 series apply to cryptographic modules at both the hardware and software levels.

The Federal Information Processing Standard (FIPS) Publication 140-2 is a computer security standard
developed by the U.S. Government and industry working group to validate the quality of cryptographic
modules. See the official FIPS publications at NIST Computer Security Resource Center.

Red Hat Enterprise Linux (RHEL) provides an integrated framework to enable FIPS 140-2 compliance
system-wide. When operating in the FIPS mode, software packages using cryptographic libraries are
self-configured according to the global policy.

To learn about compliance requirements, see the Red Hat Government Standards page.

Red Hat build of Eclipse Vert.x runs on a FIPS enabled RHEL system and uses FIPS certified libraries
provided by RHEL.

1.2.3.1. Additional resources

® For more information on how to install RHEL with FIPS mode enabled, see Installing a RHEL 8
system with FIPS mode enabled.

® For more information on how to enable FIPS mode after installing RHEL, see Switching the
system to FIPS mode.

https://csrc.nist.gov/publications/fips
https://access.redhat.com/articles/2918071
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/assembly_installing-a-rhel-8-system-with-fips-mode-enabled_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#switching-the-system-to-fips-mode_using-the-system-wide-cryptographic-policies

CHAPTER 2. CONFIGURING YOUR APPLICATIONS

CHAPTER 2. CONFIGURING YOUR APPLICATIONS

This section explains how to configure your applications to work with Eclipse Vert.x runtime.

2.1. CONFIGURING YOUR APPLICATION TO USE ECLIPSE VERT.X

When you start configuring your applications to use Eclipse Vert.x, you must reference the Eclipse Vert.x
BOM (Bill of Materials) artifact in the pom.xml file at the root directory of your application. The BOM is
used to set the correct versions of the artifacts.

Prerequisites

® A Maven-based application

Procedure

1. Open the pom.xml file, add the io.vertx:vertx-dependencies artifact to the
<dependencyManagements section. Specify the type as pom and scope as import.

<project>

<dependencyManagement>
<dependencies>
<dependency>
<groupld>io.vertx</groupld>
<artifactld>vertx-dependencies</artifactld>
<version>${vertx.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

</project>

2. Include the following properties to track the version of Eclipse Vert.x and the Eclipse Vert.x
Maven Plugin you are using.
Properties can be used to set values that change in every release. For example, versions of
product or plugins.

<project>
<properties>
<vertx.version>${vertx.version}</vertx.version>
<vertx-maven-plugin.version>${vertx-maven-plugin.version}</vertx-maven-plugin.version>

</properties>
<}b.roject>
3. Specify vertx-maven-plugin as the plugin used to package your application:
<project>

<build>

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

<plugins>

<plugin>
<groupld>io.reactiverse</groupld>
<artifactld>vertx-maven-plugin</artifactid>
<version>${vertx-maven-plugin.version}</version>
<executions>
<execution>
<id>vmp</id>
<goals>
<goal>initialize</goal>
<goal>package</goal>
</goals>
</execution>
</executions>
<configuration>
<redeploy>true</redeploy>
</configuration>
</plugin>

</plugins>
</build>

</project>

4. Include repositories and pluginRepositories to specify the repositories that contain the
artifacts and plugins to build your application:

<project>

<repositories>
<repository>
<id>redhat-ga</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>redhat-ga</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</pluginRepository>
</pluginRepositories>

</project>
Additional resources

® For more information about packaging your Eclipse Vert.x application, see the Vert.x Maven
Plugin documentation.

10

https://reactiverse.io/vertx-maven-plugin/#packaging

CHAPTER 3. DEVELOPING AND DEPLOYING ECLIPSE VERT.X RUNTIME APPLICATION

CHAPTER 3. DEVELOPING AND DEPLOYING ECLIPSE VERT.X
RUNTIME APPLICATION

You can create a new Eclipse Vert.x application and deploy it to OpenShift or stand-alone Red Hat
Enterprise Linux.

3.1. DEVELOPING ECLIPSE VERT.X APPLICATION
For a basic Eclipse Vert.x application, you need to create the following:
® A Java class containing Eclipse Vert.x methods.
e A pom.xml file containing information required by Maven to build the application.

The following procedure creates a simple Greeting application that returns "Greetings!" as response.

NOTE
For building and deploying your applications to OpenShift, Eclipse Vert.x 4.1 only supports

builder images based on OpenJDK 8 and OpenJDK 11. Oracle JDK and OpenJDK 9
builder images are not supported.

Prerequisites
® OpendDK 8 or OpenJDK 11installed.

® Maven installed.

Procedure

1. Create a new directory myApp, and navigate to it.

$ mkdir myApp
$ cd myApp
This is the root directory for the application.

2. Create directory structure src/main/java/com/example/ in the root directory, and navigate to it.

$ mkdir -p src/main/java/com/example/
$ cd src/main/java/com/example/

3. Create a Java class file MyApp.java containing the application code.

package com.example;

import io.vertx.core.AbstractVerticle;
import io.vertx.core.Promise;

public class MyApp extends AbstractVerticle {

@Override
public void start(Promise<Void> promise) {

1

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

vertx
.createHttpServer()
.requestHandler(r ->
r.response().end("Greetings!"))
.listen(8080, result -> {
if (result.succeeded()) {
promise.complete();
}else {
promise.fail(result.cause());

D;

4. Create a pom.xml file in the application root directory myApp with the following content:

<?xml version="1.0" encoding="UTF-8"7>
<project xmins="http://maven.apache.org/POM/4.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupld>com.example</groupld>
<artifactld>my-app</artifactid>
<version>1.0.0-SNAPSHOT </version>
<packaging>jar</packaging>

<name>My Application</name>
<description>Example application using Vert.x</description>

<properties>
<vertx.version>4.1.8.redhat-00003</vertx.version>
<vertx-maven-plugin.version>1.0.24</vertx-maven-plugin.version>
<vertx.verticle>com.example.MyApp</vertx.verticle>

<!I-- Specify the JDK builder image used to build your application. -->
<jkube.generator.from>registry.access.redhat.com/ubi8/openjdk-11</jkube.generator.from>

<maven.compiler.source>1.8</maven.compiler.source>

<maven.compiler.target>1.8</maven.compiler.target>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
</properties>

<I-- Import dependencies from the Vert.x BOM. -->
<dependencyManagement>
<dependencies>
<dependency>
<groupld>io.vertx</groupld>
<artifactld>vertx-dependencies</artifactld>
<version>${vertx.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>

12

CHAPTER 3. DEVELOPING AND DEPLOYING ECLIPSE VERT.X RUNTIME APPLICATION

</dependencyManagement>

<!I-- Specify the Vert.x artifacts that your application depends on. -->
<dependencies>
<dependency>
<groupld>io.vertx</groupld>
<artifactld>vertx-core</artifactld>
</dependency>
<dependency>
<groupld>io.vertx</groupld>
<artifactld>vertx-web</artifactld>
</dependency>
</dependencies>

<!I-- Specify the repositories containing Vert.x artifacts. -->
<repositories>
<repository>
<id>redhat-ga</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</repository>
</repositories>

<!I-- Specify the repositories containing the plugins used to execute the build of your
application. -->
<pluginRepositories>
<pluginRepository>
<id>redhat-ga</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</pluginRepository>
</pluginRepositories>

<!I-- Configure your application to be packaged using the Vert.x Maven Plugin. -->
<build>
<plugins>
<plugin>
<groupld>io.reactiverse</groupld>
<artifactld>vertx-maven-plugin</artifactid>
<version>${vertx-maven-plugin.version}</version>
<executions>
<execution>
<id>vmp</id>
<goals>
<goal>initialize</goal>
<goal>package</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

5. Build the application using Maven from the root directory of the application.

13

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

I $ mvn vertx:run

6. Verify that the application is running.
Using curl or your browser, verify your application is running at http://localhost:8080.

$ curl http://localhost:8080
Greetings!

Additional information

® Asarecommended practice, you can configure liveness and readiness probes to enable health
monitoring for your application when running on OpenShift.

3.2. DEPLOYING ECLIPSE VERT.X APPLICATION TO OPENSHIFT

To deploy your Eclipse Vert.x application to OpenShift, configure the pom.xml file in your application
and then use the OpenShift Maven plugin.

NOTE
The Fabric8 Maven plugin is no longer supported. Use the OpenShift Maven plugin to

deploy your Eclipse Vert.x applications on OpenShift. For more information, see the
section migrating from Fabric8 Maven Plugin to Eclipse JKube .

You can specify a Java image by replacing the jkube.generator.from URL in the pom.xml file. The
images are available in the Red Hat Ecosystem Catalog.

I <jkube.generator.from>IMAGE_NAME</jkube.generator.from>

For example, the Java image for RHEL 7 with OpenJDK 8 is specified as:

<jkube.generator.from>registry.access.redhat.com/redhat-openjdk-18/openjdk18-
openshift:latest</jkube.generator.from>

3.2.1. Supported Java images for Eclipse Vert.x

Eclipse Vert.x is certified and tested with various Java images that are available for different operating
systems. For example, Java images are available for RHEL 7 with OpenJDK 8 or OpenJDK 11.

Eclipse Vert.x introduces support for building and deploying Eclipse Vert.x applications to OpenShift
with OCl-compliant Universal Base Images for Red Hat OpenJDK 8 and Red Hat OpenJDK 11 on RHEL
8.

You require Docker or podman authentication to access the RHEL 8 images in the Red Hat Ecosystem
Catalog.

The following table lists the container images supported by Eclipse Vert.x for different architectures.
These container images are available in the Red Hat Ecosystem Catalog. In the catalog, you can search
and download the images listed in the table below. The image pages contain authentication procedures
required to access the images.

Table 3.1. OpenJDK images and architectures

14

http://localhost:8080
https://developers.redhat.com/blog/2020/09/21/migrating-from-fabric8-maven-plugin-to-eclipse-jkube-1-0-0/
https://catalog.redhat.com/
https://www.redhat.com/en/blog/introducing-red-hat-universal-base-image
https://catalog.redhat.com/software/containers/search?

CHAPTER 3. DEVELOPING AND DEPLOYING ECLIPSE VERT.X RUNTIME APPLICATION

JDK (0OS) Architecture supported Images available in Red Hat

Ecosystem Catalog

OpenJDK8 (RHEL 7) x86_64 redhat-openjdk-18/openjdki18-
openshift
OpenJDK11 (RHEL 7) x86_64 openjdk/openjdk-11-rhel7
OpenJDK8 (RHEL 8) x86_64 ubi8/openjdk-8-runtime
OpenJDKI1 (RHEL 8) x86_64,I1BM Z, and IBM Power ubi8/openjdk-11
Systems
NOTE

The use of a RHEL 8-based container on a RHEL 7 host, for example with OpenShift 3 or
OpenShift 4, has limited support. For more information, see the Red Hat Enterprise Linux
Container Compatibility Matrix.

3.2.2. Preparing Eclipse Vert.x application for OpenShift deployment

For deploying your Eclipse Vert.x application to OpenShift, it must contain:
® | auncher profile information in the application’s pom.xml file.

In the following procedure, a profile with OpenShift Maven plugin is used for building and deploying the
application to OpenShift.

Prerequisites

® Maven is installed.

® Docker or podman authentication into Red Hat Ecosystem Catalog to access RHEL 8 images.

Procedure

1. Add the following content to the pom.xml file in the application root directory:

<!I-- Specify the JDK builder image used to build your application. -->

<properties>
<jkube.generator.from>registry.access.redhat.com/redhat-openjdk-18/openjdk18-

openshift:latest</jkube.generator.from>

</properties>

<profiles>
<profile>
<id>openshift</id>
<build>
<plugins>
<plugin>

15

https://access.redhat.com/support/policy/rhel-container-compatibility
https://access.redhat.com/containers/

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

<groupld>org.eclipse.jkube</groupld>
<artifactld>openshift-maven-plugin</artifactid>
<version>1.1.1</version>
<executions>
<execution>
<goals>
<goal>resource</goal>
<goal>build</goal>
<goal>apply</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</profile>
</profiles>

2. Replace the jkube.generator.from property in the pom.xml file to specify the OpenJDK image
that you want to use.

® x86_64 architecture

o RHEL 7 with OpenJDK 8

<jkube.generator.from>registry.access.redhat.com/redhat-openjdk-18/openjdk18-
openshift:latest</jkube.generator.from>

o RHEL 7 with OpenJDK

<jkube.generator.from>registry.access.redhat.com/openjdk/openjdk-11-
rhel7:latest</jkube.generator.from>

o RHEL 8 with OpenJDK 8

<jkube.generator.from>registry.access.redhat.com/ubi8/openjdk-
8:latest</jkube.generator.from>

® x86_64,s390x (IBM Z), and ppc64le (IBM Power Systems) architectures

o RHEL 8 with OpenJDK 11

<jkube.generator.from>registry.access.redhat.com/ubi8/openjdk-
11:latest</jkube.generator.from>

3.2.3. Deploying Eclipse Vert.x application to OpenShift using OpenShift Maven
plugin

To deploy your Eclipse Vert.x application to OpenShift, you must perform the following:

® | ogin to your OpenShift instance.

® Deploy the application to the OpenShift instance.

CHAPTER 3. DEVELOPING AND DEPLOYING ECLIPSE VERT.X RUNTIME APPLICATION

rrerecyuisites

® oc CLl clientinstalled.

® Maven installed.

Procedure

1. Login to your OpenShift instance with the oc client.
I $ oc login ...
2. Create a new project in the OpenShift instance.

I $ oc new-project MY_PROJECT_NAME

3. Deploy the application to OpenShift using Maven from the application’s root directory. The root

directory of an application contains the pom.xml file.

I $ mvn clean oc:deploy -Popenshift

This command uses the OpenShift Maven plugin to launch the S2I process on OpenShift and

start the pod.
4. Verify the deployment.

a. Check the status of your application and ensure your pod is running.

$ oc get pods -w

NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

The MY_APP_NAME-1-aaaaa pod should have a status of Running once it is fully
deployed and started.

Your specific pod name will vary.
b. Determine the route for the pod.

Example Route Information

$ oc get routes

NAME HOST/PORT PATH SERVICES

PORT TERMINATION
MY_APP_NAME MY_APP_NAME-
MY_PROJECT NAME.OPENSHIFT_HOSTNAME MY_APP_NAME 8080

The route information of a pod gives you the base URL which you use to access it.

In this example, http:/MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME

is the base URL to access the application.

c. Verify that your application is running in OpenShift.

17

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
Greetings!

3.3. DEPLOYING ECLIPSE VERT.X APPLICATION TO STAND-ALONE
RED HAT ENTERPRISE LINUX

To deploy your Eclipse Vert.x application to stand-alone Red Hat Enterprise Linux, configure the
pom.xml file in the application, package it using Maven and deploy using the java -jar command.

Prerequisites

® RHEL 7 or RHEL 8 installed.

3.3.1. Preparing Eclipse Vert.x application for stand-alone Red Hat Enterprise Linux
deployment

For deploying your Eclipse Vert.x application to stand-alone Red Hat Enterprise Linux, you must first
package the application using Maven.

Prerequisites

® Maven installed.

Procedure

1. Add the following content to the pom.xml file in the application’s root directory:

<build>
<plugins>
<plugin>
<groupld>io.reactiverse</groupld>
<artifactld>vertx-maven-plugin</artifactid>
<version>1.0.24</version>
<executions>
<execution>
<id>vmp</id>
<goals>
<goal>initialize</goal>
<goal>package</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

2. Package your application using Maven.
I $ mvn clean package

The resulting JAR file is in the target directory.

18

CHAPTER 3. DEVELOPING AND DEPLOYING ECLIPSE VERT.X RUNTIME APPLICATION

3.3.2. Deploying Eclipse Vert.x application to stand-alone Red Hat Enterprise Linux
using jar

To deploy your Eclipse Vert.x application to stand-alone Red Hat Enterprise Linux, use java -jar
command.

Prerequisites

® RHEL 7 or RHEL 8 installed.
® OpendDK 8 or OpenJDK 11installed.

o A JAR file with the application.

Procedure

1. Deploy the JAR file with the application.
I $ java -jar my-app-fat.jar

2. Verify the deployment.
Use curl or your browser to verify your application is running at http://localhost:8080:

I $ curl http://localhost:8080

19

http://localhost:8080

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

CHAPTER 4. DEBUGGING ECLIPSE VERT.X BASED
APPLICATION

This sections contains information about debugging your Eclipse Vert.x-based application both in local
and remote deployments.

4.1. REMOTE DEBUGGING

To remotely debug an application, you must first configure it to start in a debugging mode, and then
attach a debugger to it.

4.1.1. Starting your application locally in debugging mode

One of the ways of debugging a Maven-based project is manually launching the application while
specifying a debugging port, and subsequently connecting a remote debugger to that port. This method
is applicable at least to the following deployments of the application:

® When launching the application manually using the mvn vertx:debug goal. This starts the
application with debugging enabled.

Prerequisites

® A Maven-based application

Procedure

1. In a console, navigate to the directory with your application.

2. Launch your application and specify the debug port using the -Ddebug.port argument:
I $ mvn vertx:debug -Ddebug.port=$PORT_NUMBER

Here, $PORT_NUMBER is an unused port number of your choice. Remember this number for
the remote debugger configuration.

Use the -Ddebug.suspend=true argument to make the application wait until a debugger is
attached to start.

4.1.2. Starting your application on OpenShift in debugging mode

To debug your Eclipse Vert.x-based application on OpenShift remotely, you must set the
JAVA_DEBUG environment variable inside the container to true and configure port forwarding so that
you can connect to your application from a remote debugger.

Prerequisites

® Your application running on OpenShift.
® The oc binary installed.

® The ability to execute the oc port-forward command in your target OpenShift environment.

Procedure

20

CHAPTER 4. DEBUGGING ECLIPSE VERT.X BASED APPLICATION

1. Using the oc command, list the available deployment configurations:
I $ oc getdc

2. Set the JAVA_DEBUG environment variable in the deployment configuration of your
application to true, which configures the JVM to open the port number 5005 for debugging. For
example:

I $ oc set env dc/MY_APP_NAME JAVA DEBUG=true

3. Redeploy the application if it is not set to redeploy automatically on configuration change. For
example:

I $ oc rollout latest de/MY_APP_NAME

4. Configure port forwarding from your local machine to the application pod:

a. List the currently running pods and find one containing your application:

$ oc get pod
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-3-1xrsp 0/1 Running 0 6s

b. Configure port forwarding:
I $ oc port-forward MY_APP_NAME-3-1xrsp $LOCAL_PORT_NUMBER:5005

Here, SLOCAL_PORT_NUMBER is an unused port number of your choice on your local
machine. Remember this number for the remote debugger configuration.

5. When you are done debugging, unset the JAVA_DEBUG environment variable in your
application pod. For example:

I $ oc set env dc/MY_APP_NAME JAVA DEBUG-

Additional resources

You can also set the JAVA_DEBUG_PORT environment variable if you want to change the debug port
from the default, which is 5005.

4.1.3. Attaching a remote debugger to the application

When your application is configured for debugging, attach a remote debugger of your choice to it. In this
guide, Red Hat CodeReady Studio is covered, but the procedure is similar when using other programs.

Prerequisites

® The application running either locally or on OpenShift, and configured for debugging.
® The port number that your application is listening on for debugging.

® Red Hat CodeReady Studio installed on your machine. You can download it from the Red Hat
CodeReady Studio download page.

21

https://www.redhat.com/en/technologies/jboss-middleware/codeready-studio
https://developers.redhat.com/products/codeready-studio/download

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

Procedure
1. Start Red Hat CodeReady Studio.
2. Create a new debug configuration for your application:
a. Click Run-Debug Configurations.

b. In the list of configurations, double-click Remote Java application. This creates a new
remote debugging configuration.

c. Enter a suitable name for the configuration in the Name field.

d. Enter the path to the directory with your application into the Project field. You can use the
Browse... button for convenience.

e. Set the Connection Type field to Standard (Socket Attach) if it is not already.
f. Set the Port field to the port number that your application is listening on for debugging.
g. Click Apply.

3. Start debugging by clicking the Debug button in the Debug Configurations window.
To quickly launch your debug configuration after the first time, click Run-Debug History and
select the configuration from the list.

Additional resources

® Debug an OpenShift Java Application with JBoss Developer Studio on Red Hat
Knowledgebase.
Red Hat CodeReady Studio was previously called JBoss Developer Studio.

® A Debugging Java Applications On OpenShift and Kubernetes article on OpenShift Blog.

4.2. DEBUG LOGGING

Eclipse Vert.x provides a built-in logging API. The default logging implementation for Eclipse Vert.x uses
the java.util.logging library that is provided with the Java JDK. Alternatively, Eclipse Vert.x allows you
to use a different logging framework, for example, Log4J (Eclipse Vert.x supports Log4J vl and v2) or
SLF4J.

4.2.1. Configuring logging for your Eclipse Vert.x application using java.util.logging
To configure debug logging for your Eclipse Vert.x application using java.util.logging:

e Set the java.util.logging.config.file system property in the application.properties file. The
value of this variable must correspond to the name of your java.util.logging configuration file.
This ensures that LogManager initializes java.util.logging at application startup.

e Alternatively, add a java.util.logging configuration file with the vertx-default-jul-
logging.properties name to the classpath of your Maven project. Eclipse Vert.x will use that file
to configure java.util.logging on application startup.

Eclipse Vert.x allows you to specify a custom logging backend using the LogDelegateFactory that

provides pre-built implementations for the Log4dJ, Log4J2 and SLF4J libraries. Unlike java.util.logging,
which is included with Java by default, the other backends require that you specify their respective

22

https://access.redhat.com/articles/1290703
https://blog.openshift.com/debugging-java-applications-on-openshift-kubernetes/
https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
https://logging.apache.org/log4j/2.x/javadoc.html
https://www.slf4j.org/docs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/logging/overview.html#a1.8
https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html

CHAPTER 4. DEBUGGING ECLIPSE VERT.X BASED APPLICATION
libraries as dependencies for your application.

4.2.2. Adding log output to your Eclipse Vert.x application.

1. To add logging to your application, create a io.vertx.core.logging.Logger:

Logger logger = LoggerFactory.getLogger(className);

logger.info("something happened”);
logger.error("oops!", exception);
logger.debug("debug message");
logger.warn("warning");

CAUTION

Logging backends use different formats to represent replaceable tokens in parameterized
messages. If you rely on parameterized logging methods, you will not be able to switch logging
backends without changing your code.

4.2.3. Specifying a custom logging framework for your application

If you do not want Eclipse Vert.x to use java.util.logging, configure io.vertx.core.logging.Logger to
use a different logging framework, for example, Log4d or SLF4J:

1. Set the value of the vertx.logger-delegate-factory-class-name system property to the name
of the class that implements the LogDelegateFactory interface. Eclipse Vert.x provides the
pre-built implementations for the following libraries with their corresponding pre-defined
classnames listed below:

Library Class hame

Log4d vi io.vertx.core.logging.Log4jLogDelegateF
actory

Log4d v2 io.vertx.core.logging.Log4j2LogDelegate
Factory

SLF4J io.vertx.core.logging.SLF4JLogDelegateF
actory

When implementing logging using a custom library, ensure that the relevant Log4d or SLF4J
jars are included among the dependencies for your application.

CAUTION
The Log4J vl delegate provided with Eclipse Vert.x does not support parameterized messages.

The delegates for Log4J v2 and SLF4J both use the {} syntax. The java.util.logging delegate
relies on java.text.MessageFormat that uses the {n} syntax.

4.2.4. Configuring Netty logging for your Eclipse Vert.x application.

Netty is a library used by VertX to manage asynchronous network communication in applications.

23

https://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html
https://netty.io/wiki/user-guide-for-4.x.html

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

Netty:

® Allows quick and easy development of network applications, such as protocol servers and
clients.

e Simplifies and streamlines network programming, such as TCP and UDP socket server
development.

® Provides a unified API for managing blocking and non-blocking connections.
Netty does not rely on an external logging configuration using system properties. Instead, it implements
a logging configuration based on logging libraries visible to Netty classes in your project. Netty tries to
use the libraries in the following order:

1. SLF4J

2. Log4d

3. java.util.logging as a fallback option

You can set io.netty.util.internal.logging.InternalLoggerFactory directly to a particular logger by
adding the following code at the beginning of the main method of your application:

// Force logging to Log4j
InternalLoggerFactory.setDefaultFactory(Log4JLoggerFactory.INSTANCE);

4.2.5. Accessing debug logs on OpenShift

Start your application and interact with it to see the debugging statements in OpenShift.

Prerequisites

® The oc CLlI client installed and authenticated.

® A Maven-based application with debug logging enabled.

Procedure

1. Deploy your application to OpenShift:
I $ mvn clean oc:deploy -Popenshift

2. View the logs:

1. Get the name of the pod with your application:
I $ oc get pods

2. Start watching the log output:
I $ oc logs -f pod/MY_APP_NAME-2-aaaaa

Keep the terminal window displaying the log output open so that you can watch the log
output.

24

CHAPTER 4. DEBUGGING ECLIPSE VERT.X BASED APPLICATION

3. Interact with your application:
For example, the following command is based on an example REST API level O application where
debug logging is set to log the message variable in the /api/greeting method:

1. Get the route of your application:
I $ oc get routes

2. Make an HTTP request on the /api/greeting endpoint of your application:
I $ curl SAPPLICATION_ROUTE/api/greeting?name=Sarah

4. Return to the window with your pod logs and inspect debug logging messages in the logs.

Feb 11,2017 10:23:42 AM io.openshift. MY_APP_NAME
INFO: Greeting: Hello, Sarah

5. To disable debug logging, update your logging configuration file, for example
src/main/resources/vertx-default-jul-logging.properties, remove the logging configuration
for your class and redeploy your application.

25

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

CHAPTER 5. MONITORING YOUR APPLICATION

This section contains information about monitoring your Eclipse Vert.x-based application running on
OpenShift.

5.1. ACCESSING JVM METRICS FOR YOUR APPLICATION ON
OPENSHIFT

5.1.1. Accessing JVM metrics using Jolokia on OpenShift

Jolokia is a built-in lightweight solution for accessing JMX (Java Management Extension) metrics over
HTTP on OpenShift. Jolokia allows you to access CPU, storage, and memory usage data collected by
JMX over an HTTP bridge. Jolokia uses a REST interface and JSON-formatted message payloads. It is
suitable for monitoring cloud applications thanks to its comparably high speed and low resource
requirements.

For Java-based applications, the OpenShift Web console provides the integrated hawt.io console that
collects and displays all relevant metrics output by the JVM running your application.

Prerequistes

® the oc client authenticated
® 3 Java-based application container running in a project on OpenShift

® |atest JDK1.8.0 image

Procedure

1. List the deployment configurations of the pods inside your project and select the one that
corresponds to your application.

I oc getdc

NAME REVISION DESIRED CURRENT TRIGGERED BY
MY_APP_NAME 2 1 1 config,image(my-app:6)
2. Open the YAML deployment template of the pod running your application for editing.

I oc edit de/MY_APP_NAME

3. Add the following entry to the ports section of the template and save your changes:

spec:

ports:

- containerPort: 8778
name: jolokia
protocol: TCP

26

https://jolokia.org/documentation.html
https://docs.openshift.com/container-platform/3.6/architecture/infrastructure_components/web_console.html#jvm-console
https://github.com/jboss-container-images/openjdk/blob/openjdk18-dev/image.yaml

CHAPTER 5. MONITORING YOUR APPLICATION

4. Redeploy the pod running your application.
I oc rollout latest dc/MY_APP_NAME

The pod is redeployed with the updated deployment configuration and exposes the port 8778.
5. Log into the OpenShift Web console.

6. Inthe sidebar, navigate to Applications > Pods, and click on the name of the pod running your
application.

7. In the pod details screen, click Open Java Console to access the hawt.io console.

Additional resources

® hawt.io documentation

5.2. EXPOSING APPLICATION METRICS USING PROMETHEUS WITH
ECLIPSE VERT.X

Prometheus connects to a monitored application to collect data; the application does not send metrics
to a server.

Prerequisites

® Prometheus server running on your cluster

Procedure

1. Include the vertx-micrometer and vertx-web dependencies in the pom.xml file of your
application:

pom.xml

<dependency>
<groupld>io.vertx</groupld>
<artifactld>vertx-micrometer-metrics</artifactld>
</dependency>
<dependency>
<groupld>io.vertx</groupld>
<artifactld>vertx-web</artifactld>
</dependency>

2. Starting with version 3.5.4, exposing metrics for Prometheus requires that you configure the
Eclipse Vert.x options in a custom Launcher class.

In your custom Launcher class, override the beforeStartingVertx and afterStartingVertx
methods to configure the metrics engine, for example:

Example CustomLauncher.java file

package org.acme;

27

https://hawt.io/docs/index.html

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

import io.micrometer.core.instrument.Meter;

import io.micrometer.core.instrument.config.MeterFilter;

import io.micrometer.core.instrument.distribution.DistributionStatisticConfig;
import io.micrometer.prometheus.PrometheusMeterRegistry;

import io.vertx.core.Vertx;

import io.vertx.core.VertxOptions;

import io.vertx.core.http.HttpServerOptions;

import io.vertx.micrometer.MicrometerMetricsOptions;

import io.vertx.micrometer.VertxPrometheusOptions;

import io.vertx.micrometer.backends.BackendRegistries;

public class CustomLauncher extends Launcher {

@Override
public void beforeStartingVertx(VertxOptions options) {
options.setMetricsOptions(new MicrometerMetricsOptions()
.setPrometheusOptions(new VertxPrometheusOptions().setEnabled(true)
.setStartEmbeddedServer(true)
.setEmbeddedServerOptions(new HitpServerOptions().setPort(8081))
.setEmbeddedServerEndpoint("/metrics"))
.setEnabled(true));

}

@Override
public void afterStartingVertx(Vertx vertx) {
PrometheusMeterRegistry registry = (PrometheusMeterRegistry)
BackendRegistries.getDefaultNow();
registry.config().meterFilter(
new MeterFilter() {
@Override
public DistributionStatisticConfig configure(Meter.ld id, DistributionStatisticConfig config)

return DistributionStatisticConfig.builder()
.percentilesHistogram(true)
.build()
.merge(config);

D;
}

3. Create a custom Verticle class and override the start method to collect metrics. For example,
measure the execution time using the Timer class:

Example CustomVertxApp.java file

package org.acme;

import io.micrometer.core.instrument.MeterRegistry;
import io.micrometer.core.instrument.Timer;

import io.vertx.core.AbstractVerticle;

import io.vertx.core.Vertx;

import io.vertx.core.VertxOptions;

import io.vertx.core.http.HttpServerOptions;

import io.vertx.micrometer.backends.BackendRegistries;

public class CustomVertxApp extends AbstractVerticle {

28

4.

CHAPTER 5. MONITORING YOUR APPLICATION

@Override
public void start() {
MeterRegistry registry = BackendRegistries.getDefaultNow();
Timer timer = Timer
Jbuilder("my.timer")
.description("a description of what this timer does")
.register(registry);

vertx.setPeriodic(1000, | -> {
timer.record(() -> {

// Do something

Set the <vertx.verticle> and <vertx.launchers properties in the pom.xml file of your
application to point to your custom classes:

<properties>

<vertx.verticle>org.acme.CustomVertxApp</vertx.verticle>
<vertx.launcher>org.acme.CustomLauncher</vertx.launcher>

</properties>

5. Launch your application:

6.

I $ mvn vertx:run

Invoke the traced endpoint several times:

$ curl http://localhost:8080/
Hello

7. Wait at least 15 seconds for collection to occur, and see the metrics in Prometheus Ul:

1. Open the Prometheus Ul at http://localhost:9090/ and type hello into the Expression box.
2. From the suggestions, select for example application:hello_count and click Execute.

3. Inthe table that is displayed, you can see how many times the resource method was
invoked.

4. Alternatively, select application:hello_time_mean_seconds to see the mean time of all
the invocations.

Note that all metrics you created are prefixed with application:. There are other metrics,
automatically exposed by Eclipse Vert.x as the Eclipse MicroProfile Metrics specification
requires. Those metrics are prefixed with base: and vendor: and expose information about the
JVM in which the application runs.

29

http://localhost:9090/

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

Additional resources

® For additional information about using Micrometer metrics with Eclipse Vert.x, see Eclipse
Vert.x} Micrometer Metrics.

30

https://vertx.io/docs/vertx-micrometer-metrics/java/#_prometheus

APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS

APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS

Source-to-Image (S2l) is a build tool for generating reproducible Docker-formatted container images
from online SCM repositories with application sources. With S2I builds, you can easily deliver the latest
version of your application into production with shorter build times, decreased resource and network
usage, improved security, and a number of other advantages. OpenShift supports multiple build
strategies and input sources.

For more information, see the Source-to-Image (S2I) Build chapter of the OpenShift Container
Platform documentation.

You must provide three elements to the S2I process to assemble the final container image:
® The application sources hosted in an online SCM repository, such as GitHub.

® The S2| Builder image, which serves as the foundation for the assembled image and provides
the ecosystem in which your application is running.

® Optionally, you can also provide environment variables and parameters that are used by S2|
scripts.

The process injects your application source and dependencies into the Builder image according to
instructions specified in the S2I script, and generates a Docker-formatted container image that runs the
assembled application. For more information, check the S2I build requirements, build options and how
builds work sections of the OpenShift Container Platform documentation.

31

https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html#build-strategy-s2i_understanding-image-builds
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html#build-strategy-s2i_understanding-image-builds
https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://docs.openshift.com/container-platform/latest/builds/build-strategies.html
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

APPENDIX B. UPDATING THE DEPLOYMENT
CONFIGURATION OF AN EXAMPLE APPLICATION

The deployment configuration for an example application contains information related to deploying and
running the application in OpenShift, such as route information or readiness probe location. The
deployment configuration of an example application is stored in a set of YAML files. For examples that
use the OpenShift Maven plugin, the YAML files are located in the src/main/jkube/ directory. For
examples using Nodeshift, the YAML files are located in the .nodeshift directory.

IMPORTANT

The deployment configuration files used by the OpenShift Maven plugin and Nodeshift
do not have to be full OpenShift resource definitions. Both OpenShift Maven plugin and
Nodeshift can take the deployment configuration files and add some missing information
to create a full OpenShift resource definition. The resource definitions generated by the
OpenShift Maven plugin are available in the target/classes/META-INF/jkube/ directory.
The resource definitions generated by Nodeshift are available in the
tmp/nodeshift/resource/ directory.

Prerequisites

® An existing example project.

® The oc CLI client installed.

Procedure
1. Edit an existing YAML file or create an additional YAML file with your configuration update.

® For example, if your example already has a YAML file with a readinessProbe configured,
you could change the path value to a different available path to check for readiness:

spec:
template:
spec:
containers:
readinessProbe:
httpGet:
path: /path/to/probe
port: 8080
scheme: HTTP

e |f a readinessProbe is not configured in an existing YAML file, you can also create a new
YAML file in the same directory with the readinessProbe configuration.

2. Deploy the updated version of your example using Maven or npm.
3. Verify that your configuration updates show in the deployed version of your example.
$ oc export all --as-template="my-template’

apiVersion: template.openshift.io/v1
kind: Template

32

APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION

metadata:
creationTimestamp: null
name: my-template

objects:

- apiVersion: template.openshift.io/v1
kind: DeploymentConfig

spec:
template:

spec:
containers:

livenessProbe:

failureThreshold: 3
httpGet:

path: /path/to/different/probe

port: 8080

scheme: HTTP
initialDelaySeconds: 60
periodSeconds: 30
successThreshold: 1
timeoutSeconds: 1

Additional resources

If you updated the configuration of your application directly using the web-based console or the oc CLI
client, export and add these changes to your YAML file. Use the oc export all command to show the
configuration of your deployed application.

33

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

APPENDIX C. CONFIGURING A JENKINS FREESTYLE
PROJECT TO DEPLOY YOUR APPLICATION WITH THE
OPENSHIFT MAVEN PLUGIN

Similar to using Maven and the OpenShift Maven plugin from your local host to deploy an application,
you can configure Jenkins to use Maven and the OpenShift Maven plugin to deploy an application.

Prerequisites

® Access to an OpenShift cluster.
® The Jenkins container image running on same OpenShift cluster.
e A JDK and Maven installed and configured on your Jenkins server.

® An application configured to use Maven, the OpenShift Maven plugin in the pom.xml, and built
using a RHEL base image.

NOTE
For building and deploying your applications to OpenShift, Eclipse Vert.x 4.1 only

supports builder images based on OpenJDK 8 and OpenJDK 11. Oracle JDK and
OpenJDK 9 builder images are not supported.

Example pom.xml

<properties>
<jkube.generator.from>registry.access.redhat.com/redhat-openjdk-18/openjdk18-

openshift:latest</jkube.generator.from>
</properties>

® The source of the application available in GitHub.

Procedure
1. Create a new OpenShift project for your application:

a. Open the OpenShift Web console and log in.
b. Click Create Project to create a new OpenShift project.
c. Enter the project information and click Create.

2. Ensure Jenkins has access to that project.

For example, if you configured a service account for Jenkins, ensure that account has edit
access to the project of your application.

3. Create a new freestyle Jenkins project on your Jenkins server:

a. Click New ltem.

b. Enter a name, choose Freestyle project, and click OK.

34

https://docs.openshift.com/container-platform/latest/openshift_images/using_images/images-other-jenkins.html
https://wiki.jenkins.io/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Settinguptheproject

NG A JENKINS FREESTYLE PROJECT TO DEPLOY YOUR APPLICATION WITH THE OPENSHIFT MAVEN PLUGIN

c. Under Source Code Management, choose Git and add the GitHub url of your application.
d. Under Build, choose Add build step and select Invoke top-level Maven targets.

e. Add the following to Goals:

I clean oc:deploy -Popenshift -Djkube.namespace=MY_PROJECT

Substitute MY_PROJECT with the name of the OpenShift project for your application.

a. Click Save.

4. Click Build Now from the main page of the Jenkins project to verify your application builds and
deploys to the OpenShift project for your application.

You can also verify that your application is deployed by opening the route in the OpenShift
project of the application.

Next steps

® Consider adding GITSCM polling or using the Poll SCM build trigger. These options enable
builds to run every time a new commit is pushed to the GitHub repository.

e Consider adding a build step that executes tests before deploying.

35

https://wiki.jenkins.io/display/JENKINS/Github+Plugin#GitHubPlugin-GitHubhooktriggerforGITScmpolling
https://wiki.jenkins.io/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Buildsbysourcechanges

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x Runtime Guide

APPENDIX D. ADDITIONAL ECLIPSE VERT.X RESOURCES

® The Reactive Manifesto

® Eclipse Vert.x project

® Vertxin Action

® FEclipse Vert.x for Reactive Programming

® Building Reactive Microservices in Java

® FEclipse Vert.x Cheat Sheet for Developers

® \ertxx - From zero to (micro)-hero

® Red Hat Summit 2017 Talk - Reactive Programming with Eclipse Vert.x

® Red Hat Summit 2017 Breakout Session - Reactive Systems with Eclipse Vert.x and Red Hat
OpenShift

® Live Coding Reactive Systems with Eclipse Vert.x and OpenShift

36

https://www.reactivemanifesto.org/
https://vertx.io
https://www.manning.com/books/vertx-in-action
https://middlewareblog.redhat.com/2017/05/04/vert-x-for-reactive-programming-in-red-hat-openshift-application-runtimes/
https://developers.redhat.com/promotions/building-reactive-microservices-in-java/
https://developers.redhat.com/cheat-sheets/eclipse-vertx-cheat-sheet/
https://escoffier.me/vertx-hol/#_vert_x
https://github.com/cescoffier/rhsummit17-reactive-programming-with-vertx/blob/master/reactive-programming-with-vertx.pdf
https://www.redhat.com/en/about/videos/reactive-systems-eclipse-vertx-and-red-hat-openshift
https://developers.redhat.com/blog/2017/06/21/live-coding-reactive-systems-weclipse-vert-x-and-openshift/

APPENDIX E. APPLICATION DEVELOPMENT RESOURCES

APPENDIX E. APPLICATION DEVELOPMENT RESOURCES

For additional information about application development with OpenShift, see:
® OpenShift Interactive Learning Portal

To reduce network load and shorten the build time of your application, set up a Nexus mirror for Maven
on your OpenShift Container Platform:

® Setting Up a Nexus Mirror for Maven

37

https://learn.openshift.com/
https://docs.openshift.com/container-platform/3.11/dev_guide/dev_tutorials/maven_tutorial.html

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION TO APPLICATION DEVELOPMENT WITH ECLIPSE VERT.X
	1.1. OVERVIEW OF APPLICATION DEVELOPMENT WITH RED HAT RUNTIMES
	1.2. OVERVIEW OF ECLIPSE VERT.X
	1.2.1. Key concepts of Eclipse Vert.x
	1.2.2. Supported Architectures by Eclipse Vert.x
	1.2.3. Support for Federal Information Processing Standard (FIPS)
	1.2.3.1. Additional resources

	CHAPTER 2. CONFIGURING YOUR APPLICATIONS
	2.1. CONFIGURING YOUR APPLICATION TO USE ECLIPSE VERT.X

	CHAPTER 3. DEVELOPING AND DEPLOYING ECLIPSE VERT.X RUNTIME APPLICATION
	3.1. DEVELOPING ECLIPSE VERT.X APPLICATION
	3.2. DEPLOYING ECLIPSE VERT.X APPLICATION TO OPENSHIFT
	3.2.1. Supported Java images for Eclipse Vert.x
	3.2.2. Preparing Eclipse Vert.x application for OpenShift deployment
	3.2.3. Deploying Eclipse Vert.x application to OpenShift using OpenShift Maven plugin

	3.3. DEPLOYING ECLIPSE VERT.X APPLICATION TO STAND-ALONE RED HAT ENTERPRISE LINUX
	3.3.1. Preparing Eclipse Vert.x application for stand-alone Red Hat Enterprise Linux deployment
	3.3.2. Deploying Eclipse Vert.x application to stand-alone Red Hat Enterprise Linux using jar

	CHAPTER 4. DEBUGGING ECLIPSE VERT.X BASED APPLICATION
	4.1. REMOTE DEBUGGING
	4.1.1. Starting your application locally in debugging mode
	4.1.2. Starting your application on OpenShift in debugging mode
	4.1.3. Attaching a remote debugger to the application

	4.2. DEBUG LOGGING
	4.2.1. Configuring logging for your Eclipse Vert.x application using java.util.logging
	4.2.2. Adding log output to your Eclipse Vert.x application.
	4.2.3. Specifying a custom logging framework for your application
	4.2.4. Configuring Netty logging for your Eclipse Vert.x application.
	4.2.5. Accessing debug logs on OpenShift

	CHAPTER 5. MONITORING YOUR APPLICATION
	5.1. ACCESSING JVM METRICS FOR YOUR APPLICATION ON OPENSHIFT
	5.1.1. Accessing JVM metrics using Jolokia on OpenShift

	5.2. EXPOSING APPLICATION METRICS USING PROMETHEUS WITH ECLIPSE VERT.X

	APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS
	APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION
	APPENDIX C. CONFIGURING A JENKINS FREESTYLE PROJECT TO DEPLOY YOUR APPLICATION WITH THE OPENSHIFT MAVEN PLUGIN
	Next steps

	APPENDIX D. ADDITIONAL ECLIPSE VERT.X RESOURCES
	APPENDIX E. APPLICATION DEVELOPMENT RESOURCES

