
Red Hat AMQ 7.7

Using AMQ Streams on RHEL

For use with AMQ Streams 1.5 on Red Hat Enterprise Linux

Last Updated: 2020-08-06

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

For use with AMQ Streams 1.5 on Red Hat Enterprise Linux

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install, configure, and manage Red Hat AMQ Streams to build a large-
scale messaging network.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW OF AMQ STREAMS
1.1. KAFKA CAPABILITIES
1.2. KAFKA USE CASES
1.3. SUPPORTED CONFIGURATIONS
1.4. DOCUMENT CONVENTIONS

CHAPTER 2. GETTING STARTED
2.1. AMQ STREAMS DISTRIBUTION
2.2. DOWNLOADING AN AMQ STREAMS ARCHIVE
2.3. INSTALLING AMQ STREAMS
2.4. DATA STORAGE CONSIDERATIONS

2.4.1. Apache Kafka and ZooKeeper storage support
2.4.2. File systems

2.5. RUNNING A SINGLE NODE AMQ STREAMS CLUSTER
2.6. USING THE CLUSTER
2.7. STOPPING THE AMQ STREAMS SERVICES
2.8. CONFIGURING AMQ STREAMS

CHAPTER 3. CONFIGURING ZOOKEEPER
3.1. BASIC CONFIGURATION
3.2. ZOOKEEPER CLUSTER CONFIGURATION
3.3. RUNNING MULTI-NODE ZOOKEEPER CLUSTER
3.4. AUTHENTICATION

3.4.1. Authentication with SASL
3.4.2. Enabling Server-to-server authentication using DIGEST-MD5
3.4.3. Enabling Client-to-server authentication using DIGEST-MD5

3.5. AUTHORIZATION
3.6. TLS
3.7. ADDITIONAL CONFIGURATION OPTIONS
3.8. LOGGING

CHAPTER 4. CONFIGURING KAFKA
4.1. ZOOKEEPER
4.2. LISTENERS
4.3. COMMIT LOGS
4.4. BROKER ID
4.5. RUNNING A MULTI-NODE KAFKA CLUSTER
4.6. ZOOKEEPER AUTHENTICATION

4.6.1. JAAS Configuration
4.6.2. Enabling ZooKeeper authentication

4.7. AUTHORIZATION
4.7.1. Simple ACL authorizer

4.7.1.1. ACL rules
4.7.1.2. Principals
4.7.1.3. Authentication of users
4.7.1.4. Super users
4.7.1.5. Replica broker authentication
4.7.1.6. Supported resources
4.7.1.7. Supported operations
4.7.1.8. ACL management options

4.7.2. Enabling authorization
4.7.3. Adding ACL rules

8
9
9

10
10

11
11
11
11

12
12
12
13
14
15
15

17
17
17
19
21
21
23
24
25
25
25
26

27
27
27
28
28
28
30
30
30
31
31
31
32
32
32
33
33
33
34
38
38

Table of Contents

1

. .

. .

4.7.4. Listing ACL rules
4.7.5. Removing ACL rules

4.8. ZOOKEEPER AUTHORIZATION
4.8.1. ACL Configuration
4.8.2. Enabling ZooKeeper ACLs for a new Kafka cluster
4.8.3. Enabling ZooKeeper ACLs in an existing Kafka cluster

4.9. ENCRYPTION AND AUTHENTICATION
4.9.1. Listener configuration
4.9.2. TLS Encryption
4.9.3. Enabling TLS encryption
4.9.4. Authentication

4.9.4.1. TLS client authentication
4.9.4.2. SASL authentication

4.9.5. Enabling TLS client authentication
4.9.6. Enabling SASL PLAIN authentication
4.9.7. Enabling SASL SCRAM authentication
4.9.8. Adding SASL SCRAM users
4.9.9. Deleting SASL SCRAM users

4.10. USING OAUTH 2.0 TOKEN-BASED AUTHENTICATION
4.10.1. OAuth 2.0 authentication mechanism

4.10.1.1. Configuring OAuth 2.0 with properties or variables
4.10.2. OAuth 2.0 Kafka broker configuration

4.10.2.1. OAuth 2.0 client configuration on an authorization server
4.10.2.2. OAuth 2.0 authentication configuration in the Kafka cluster
4.10.2.3. Fast local JWT token validation configuration
4.10.2.4. OAuth 2.0 introspection endpoint configuration

4.10.3. OAuth 2.0 Kafka client configuration
4.10.4. OAuth 2.0 client authentication flow

4.10.4.1. Example client authentication flows
4.10.5. Configuring OAuth 2.0 authentication

4.10.5.1. Configuring Red Hat Single Sign-On as an OAuth 2.0 authorization server
4.10.5.2. Configuring OAuth 2.0 support for Kafka brokers
4.10.5.3. Configuring Kafka Java clients to use OAuth 2.0

4.11. USING OAUTH 2.0 TOKEN-BASED AUTHORIZATION
Authorizing access to Kafka brokers
4.11.1. OAuth 2.0 authorization mechanism

4.11.1.1. Kafka broker custom authorizer
4.11.2. Configuring OAuth 2.0 authorization support

4.12. LOGGING

CHAPTER 5. TOPICS
5.1. PARTITIONS AND REPLICAS
5.2. MESSAGE RETENTION
5.3. TOPIC AUTO-CREATION
5.4. TOPIC DELETION
5.5. TOPIC CONFIGURATION
5.6. INTERNAL TOPICS
5.7. CREATING A TOPIC
5.8. LISTING AND DESCRIBING TOPICS
5.9. MODIFYING A TOPIC CONFIGURATION
5.10. DELETING A TOPIC

CHAPTER 6. SCALING CLUSTERS

39
40
41
41
41

42
42
43
43
44
45
45
46
49
50
51
52
52
53
54
54
54
54
55
57
58
59
59
60
62
62
64
67
68
68
69
69
69
71

72
72
72
73
73
73
74
75
76
76
78

79

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

2

. .

6.1. SCALING KAFKA CLUSTERS
6.1.1. Adding brokers to a cluster
6.1.2. Removing brokers from the cluster

6.2. REASSIGNMENT OF PARTITIONS
6.2.1. Reassignment JSON file
6.2.2. Generating reassignment JSON files
6.2.3. Creating reassignment JSON files manually

6.3. REASSIGNMENT THROTTLES
6.4. SCALING UP A KAFKA CLUSTER
6.5. SCALING DOWN A KAFKA CLUSTER
6.6. SCALING UP A ZOOKEEPER CLUSTER
6.7. SCALING DOWN A ZOOKEEPER CLUSTER

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX
7.1. JMX CONFIGURATION OPTIONS
7.2. DISABLING THE JMX AGENT
7.3. CONNECTING TO THE JVM FROM A DIFFERENT MACHINE
7.4. MONITORING USING JCONSOLE
7.5. IMPORTANT KAFKA BROKER METRICS

7.5.1. Kafka server metrics
7.5.2. Kafka network metrics
7.5.3. Kafka log metrics
7.5.4. Kafka controller metrics
7.5.5. Yammer metrics

7.6. PRODUCER MBEANS
7.6.1. MBeans matching kafka.producer:type=producer-metrics,client-id=*
7.6.2. MBeans matching kafka.producer:type=producer-metrics,client-id=*,node-id=*
7.6.3. MBeans matching kafka.producer:type=producer-topic-metrics,client-id=*,topic=*

7.7. CONSUMER MBEANS
7.7.1. MBeans matching kafka.consumer:type=consumer-metrics,client-id=*
7.7.2. MBeans matching kafka.consumer:type=consumer-metrics,client-id=*,node-id=*
7.7.3. MBeans matching kafka.consumer:type=consumer-coordinator-metrics,client-id=*
7.7.4. MBeans matching kafka.consumer:type=consumer-fetch-manager-metrics,client-id=*
7.7.5. MBeans matching kafka.consumer:type=consumer-fetch-manager-metrics,client-id=*,topic=*
7.7.6. MBeans matching kafka.consumer:type=consumer-fetch-manager-metrics,client-id=*,topic=*,partition=*

7.8. KAFKA CONNECT MBEANS
7.8.1. MBeans matching kafka.connect:type=connect-metrics,client-id=*
7.8.2. MBeans matching kafka.connect:type=connect-metrics,client-id=*,node-id=*
7.8.3. MBeans matching kafka.connect:type=connect-worker-metrics
7.8.4. MBeans matching kafka.connect:type=connect-worker-rebalance-metrics
7.8.5. MBeans matching kafka.connect:type=connector-metrics,connector=*
7.8.6. MBeans matching kafka.connect:type=connector-task-metrics,connector=*,task=*
7.8.7. MBeans matching kafka.connect:type=sink-task-metrics,connector=*,task=*
7.8.8. MBeans matching kafka.connect:type=source-task-metrics,connector=*,task=*
7.8.9. MBeans matching kafka.connect:type=task-error-metrics,connector=*,task=*

7.9. KAFKA STREAMS MBEANS
7.9.1. MBeans matching kafka.streams:type=stream-metrics,client-id=*
7.9.2. MBeans matching kafka.streams:type=stream-task-metrics,client-id=*,task-id=*
7.9.3. MBeans matching kafka.streams:type=stream-processor-node-metrics,client-id=*,task-id=*,processor-
node-id=*
7.9.4. MBeans matching kafka.streams:type=stream-[store-scope]-metrics,client-id=*,task-id=*,[store-scope]-
id=*

79
79
79
79
80
80
81
81
81

83
84
85

87
87
87
87
88
88
88
90
92
93
93
94
94
96
97
97
98
99
99

100
101

101
102
102
103
104
105
105
105
106
107
108
109
109
110

111

112

Table of Contents

3

. .

. .

. .

. .

. .

7.9.5. MBeans matching kafka.streams:type=stream-record-cache-metrics,client-id=*,task-id=*,record-cache-
id=*

CHAPTER 8. KAFKA CONNECT
8.1. KAFKA CONNECT IN STANDALONE MODE

8.1.1. Configuring Kafka Connect in standalone mode
8.1.2. Configuring connectors in Kafka Connect in standalone mode
8.1.3. Running Kafka Connect in standalone mode

8.2. KAFKA CONNECT IN DISTRIBUTED MODE
8.2.1. Configuring Kafka Connect in distributed mode
8.2.2. Configuring connectors in distributed Kafka Connect
8.2.3. Running distributed Kafka Connect
8.2.4. Creating connectors
8.2.5. Deleting connectors

8.3. CONNECTOR PLUG-INS
8.4. ADDING CONNECTOR PLUGINS

CHAPTER 9. USING AMQ STREAMS WITH MIRRORMAKER 2.0
9.1. MIRRORMAKER 2.0 DATA REPLICATION
9.2. CLUSTER CONFIGURATION

9.2.1. Bidirectional replication
9.2.2. Topic configuration synchronization
9.2.3. Data integrity
9.2.4. Offset tracking
9.2.5. Connectivity checks

9.3. ACL RULES SYNCHRONIZATION
9.4. SYNCHRONIZING DATA BETWEEN KAFKA CLUSTERS USING MIRRORMAKER 2.0
9.5. USING MIRRORMAKER 2.0 IN LEGACY MODE

CHAPTER 10. KAFKA CLIENTS
10.1. ADDING KAFKA CLIENTS AS A DEPENDENCY TO YOUR MAVEN PROJECT

CHAPTER 11. KAFKA STREAMS API OVERVIEW
11.1. ADDING THE KAFKA STREAMS API AS A DEPENDENCY TO YOUR MAVEN PROJECT

CHAPTER 12. KAFKA BRIDGE
12.1. KAFKA BRIDGE OVERVIEW

12.1.1. Authentication and encryption
12.1.2. Requests to the Kafka Bridge

12.1.2.1. Content Type headers
12.1.2.2. Embedded data format
12.1.2.3. Accept headers

12.1.3. Configuring loggers for the Kafka Bridge
12.1.4. Kafka Bridge API resources
12.1.5. Downloading a Kafka Bridge archive
12.1.6. Configuring Kafka Bridge properties
12.1.7. Installing the Kafka Bridge

12.2. KAFKA BRIDGE QUICKSTART
12.2.1. Deploying the Kafka Bridge locally
12.2.2. Producing messages to topics and partitions
12.2.3. Creating a Kafka Bridge consumer
12.2.4. Subscribing a Kafka Bridge consumer to topics
12.2.5. Retrieving the latest messages from a Kafka Bridge consumer
12.2.6. Commiting offsets to the log

114

115
115
115
116
116
117
117
118
119

120
121
121
122

123
123
124
124
125
125
125
126
126
126
128

130
130

132
132

134
134
134
135
135
135
136
136
137
137
138
139
140
140
141

142
143
144
145

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

4

. .

. .

. .

. .

12.2.7. Seeking to offsets for a partition
12.2.8. Deleting a Kafka Bridge consumer

CHAPTER 13. CRUISE CONTROL FOR CLUSTER REBALANCING
13.1. WHY USE CRUISE CONTROL?
13.2. DOWNLOADING A CRUISE CONTROL ARCHIVE
13.3. DEPLOYING THE CRUISE CONTROL METRICS REPORTER
13.4. CONFIGURING AND STARTING CRUISE CONTROL

Auto-created topics
13.5. OPTIMIZATION GOALS OVERVIEW

Goals configuration in the Cruise Control properties file
Master optimization goals
Hard goals and soft goals
Default optimization goals
User-provided optimization goals

13.6. OPTIMIZATION PROPOSALS OVERVIEW
Cached optimization proposal
Contents of optimization proposals

13.7. CRUISE CONTROL CONFIGURATION
Capacity configuration
Log cleanup policy for Cruise Control Metrics topic
Logging configuration

13.8. GENERATING OPTIMIZATION PROPOSALS
Asynchronous responses

13.9. INITIATING A CLUSTER REBALANCE
13.10. STOPPING AN ACTIVE CLUSTER REBALANCE

CHAPTER 14. DISTRIBUTED TRACING
14.1. OVERVIEW OF DISTRIBUTED TRACING

14.1.1. OpenTracing and Jaeger
14.2. CONFIGURING KAFKA CLIENTS FOR TRACING

14.2.1. Enabling a Jaeger tracer for Kafka clients
14.2.2. Instrumenting Kafka Producers and Consumers for tracing

14.2.2.1. Custom span names in a Decorator pattern
14.2.2.2. Built-in span names

14.2.3. Instrumenting Kafka Streams applications for tracing
14.3. CONFIGURING MIRRORMAKER AND KAFKA CONNECT FOR TRACING

14.3.1. Enabling tracing for MirrorMaker
14.3.2. Enabling tracing for Kafka Connect

14.4. ENABLING TRACING FOR THE KAFKA BRIDGE
14.5. TRACING ENVIRONMENT VARIABLES

CHAPTER 15. KAFKA EXPORTER
15.1. CONSUMER LAG
15.2. KAFKA EXPORTER ALERTING RULE EXAMPLES
15.3. KAFKA EXPORTER METRICS
15.4. RUNNING KAFKA EXPORTER
15.5. PRESENTING KAFKA EXPORTER METRICS IN GRAFANA

CHAPTER 16. AMQ STREAMS AND KAFKA UPGRADES
16.1. UPGRADE PREREQUISITES
16.2. UPGRADE PROCESS
16.3. KAFKA VERSIONS
16.4. UPGRADING TO AMQ STREAMS 1.5

145
147

148
148
149
149
151
152
153
154
154
154
155
155
156
156
156
157
158
159
159
160
162
162
163

165
165
165
166
166
167
169
170
170
171
171
171
172
173

175
175
176
176
177
178

180
180
180
180
181

Table of Contents

5

. .

. .

. .

. .

. .

. .

. .

. .

16.4.1. Upgrading ZooKeeper
16.4.2. Upgrading Kafka brokers
16.4.3. Upgrading Kafka Connect

16.5. UPGRADING KAFKA
16.5.1. Upgrading Kafka brokers to use the new inter-broker protocol version
16.5.2. Strategies for upgrading clients
16.5.3. Upgrading client applications to the new Kafka version
16.5.4. Upgrading consumers and Kafka Streams applications to cooperative rebalancing
16.5.5. Upgrading Kafka brokers to use the new message format version

APPENDIX A. BROKER CONFIGURATION PARAMETERS

APPENDIX B. TOPIC CONFIGURATION PARAMETERS

APPENDIX C. CONSUMER CONFIGURATION PARAMETERS

APPENDIX D. PRODUCER CONFIGURATION PARAMETERS

APPENDIX E. ADMIN CLIENT CONFIGURATION PARAMETERS

APPENDIX F. KAFKA CONNECT CONFIGURATION PARAMETERS

APPENDIX G. KAFKA STREAMS CONFIGURATION PARAMETERS

APPENDIX H. USING YOUR SUBSCRIPTION
Accessing Your Account
Activating a Subscription
Downloading Zip and Tar Files
Registering Your System for Packages

181
182
183
185
185
186
187
188
189

191

227

233

245

256

264

278

284
284
284
284
284

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

6

Table of Contents

7

CHAPTER 1. OVERVIEW OF AMQ STREAMS
Red Hat AMQ Streams is a massively-scalable, distributed, and high-performance data streaming
platform based on the Apache ZooKeeper and Apache Kafka projects.

The main components comprise:

Kafka Broker

Messaging broker responsible for delivering records from producing clients to consuming clients.
Apache ZooKeeper is a core dependency for Kafka, providing a cluster coordination service for highly
reliable distributed coordination.

Kafka Streams API

API for writing stream processor applications.

Producer and Consumer APIs

Java-based APIs for producing and consuming messages to and from Kafka brokers.

Kafka Bridge

AMQ Streams Kafka Bridge provides a RESTful interface that allows HTTP-based clients to interact
with a Kafka cluster.

Kafka Connect

A toolkit for streaming data between Kafka brokers and other systems using Connector plugins.

Kafka MirrorMaker

Replicates data between two Kafka clusters, within or across data centers.

Kafka Exporter

An exporter used in the extraction of Kafka metrics data for monitoring.

A cluster of Kafka brokers is the hub connecting all these components. The broker uses Apache
ZooKeeper for storing configuration data and for cluster coordination. Before running Apache Kafka, an
Apache ZooKeeper cluster has to be ready.

Figure 1.1. AMQ Streams architecture

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

8

Figure 1.1. AMQ Streams architecture

1.1. KAFKA CAPABILITIES

The underlying data stream-processing capabilities and component architecture of Kafka can deliver:

Microservices and other applications to share data with extremely high throughput and low
latency

Message ordering guarantees

Message rewind/replay from data storage to reconstruct an application state

Message compaction to remove old records when using a key-value log

Horizontal scalability in a cluster configuration

Replication of data to control fault tolerance

Retention of high volumes of data for immediate access

1.2. KAFKA USE CASES

Kafka’s capabilities make it suitable for:

Event-driven architectures

Event sourcing to capture changes to the state of an application as a log of events

Message brokering

Website activity tracking

CHAPTER 1. OVERVIEW OF AMQ STREAMS

9

Operational monitoring through metrics

Log collection and aggregation

Commit logs for distributed systems

Stream processing so that applications can respond to data in real time

1.3. SUPPORTED CONFIGURATIONS

In order to be running in a supported configuration, AMQ Streams must be running in one of the
following JVM versions and on one of the supported operating systems.

Table 1.1. List of supported Java Virtual Machines

Java Virtual Machine Version

OpenJDK 1.8, 11

OracleJDK 1.8

IBM JDK 1.8

Table 1.2. List of supported Operating Systems

Operating System Architecture Version

Red Hat Enterprise Linux x86_64 7.x, 8.x

1.4. DOCUMENT CONVENTIONS

Replaceables

In this document, replaceable text is styled in monospace, with italics, uppercase, and hyphens.

For example, in the following code, you will want to replace BOOTSTRAP-ADDRESS and TOPIC-NAME
with your own address and topic name:

bin/kafka-console-consumer.sh --bootstrap-server BOOTSTRAP-ADDRESS --topic TOPIC-NAME --
from-beginning

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

10

CHAPTER 2. GETTING STARTED

2.1. AMQ STREAMS DISTRIBUTION

AMQ Streams is distributed as single ZIP file. This ZIP file contains AMQ Streams components:

Apache ZooKeeper

Apache Kafka

Apache Kafka Connect

Apache Kafka MirrorMaker

Kafka Bridge

Kafka Exporter

2.2. DOWNLOADING AN AMQ STREAMS ARCHIVE

An archived distribution of AMQ Streams is available for download from the Red Hat website. You can
download a copy of the distribution by following the steps below.

Procedure

Download the latest version of the Red Hat AMQ Streams archive from the Customer Portal.

2.3. INSTALLING AMQ STREAMS

Follow this procedure to install the latest version of AMQ Streams on Red Hat Enterprise Linux.

For instructions on upgrading an existing cluster to AMQ Streams 1.5, see AMQ Streams and Kafka
upgrades.

Prerequisites

Download the installation archive.

Review the Section 1.3, “Supported Configurations”

Procedure

1. Add new kafka user and group.

2. Create directory /opt/kafka.

3. Create a temporary directory and extract the contents of the AMQ Streams ZIP file.

sudo groupadd kafka
sudo useradd -g kafka kafka
sudo passwd kafka

sudo mkdir /opt/kafka

CHAPTER 2. GETTING STARTED

11

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams&productChanged=yes

4. Move the extracted contents into /opt/kafka directory and delete the temporary directory.

5. Change the ownership of the /opt/kafka directory to the kafka user.

6. Create directory /var/lib/zookeeper for storing ZooKeeper data and set its ownership to the
kafka user.

7. Create directory /var/lib/kafka for storing Kafka data and set its ownership to the kafka user.

2.4. DATA STORAGE CONSIDERATIONS

An efficient data storage infrastructure is essential to the optimal performance of AMQ Streams.

AMQ Streams requires block storage and works well with cloud-based block storage solutions, such as
Amazon Elastic Block Store (EBS). The use of file storage is not recommended.

Choose local storage when possible. If local storage is not available, you can use a Storage Area Network
(SAN) accessed by a protocol such as Fibre Channel or iSCSI.

2.4.1. Apache Kafka and ZooKeeper storage support

Use separate disks for Apache Kafka and ZooKeeper.

Kafka supports JBOD (Just a Bunch of Disks) storage, a data storage configuration of multiple disks or
volumes. JBOD provides increased data storage for Kafka brokers. It can also improve performance.

Solid-state drives (SSDs), though not essential, can improve the performance of Kafka in large clusters
where data is sent to and received from multiple topics asynchronously. SSDs are particularly effective
with ZooKeeper, which requires fast, low latency data access.

NOTE

You do not need to provision replicated storage because Kafka and ZooKeeper both have
built-in data replication.

2.4.2. File systems

It is recommended that you configure your storage system to use the XFS file system. AMQ Streams is

mkdir /tmp/kafka
unzip amq-streams_y.y-x.x.x.zip -d /tmp/kafka

sudo mv /tmp/kafka/kafka_y.y-x.x.x/* /opt/kafka/
rm -r /tmp/kafka

sudo chown -R kafka:kafka /opt/kafka

sudo mkdir /var/lib/zookeeper
sudo chown -R kafka:kafka /var/lib/zookeeper

sudo mkdir /var/lib/kafka
sudo chown -R kafka:kafka /var/lib/kafka

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

12

It is recommended that you configure your storage system to use the XFS file system. AMQ Streams is
also compatible with the ext4 file system, but this might require additional configuration for best results.

Additional resources

For more information about XFS, see The XFS File System .

2.5. RUNNING A SINGLE NODE AMQ STREAMS CLUSTER

This procedure shows how to run a basic AMQ Streams cluster consisting of single ZooKeeper and
single Apache Kafka node both running on the same host. The default configuration files are used for
ZooKeeper and Kafka.

WARNING

A single node AMQ Streams cluster does not provide reliability and high availability
and is suitable only for development purposes.

Prerequisites

AMQ Streams is installed on the host

Running the cluster

1. Edit the ZooKeeper configuration file /opt/kafka/config/zookeeper.properties. Set the dataDir
option to /var/lib/zookeeper/.

2. Start ZooKeeper.

3. Make sure that Apache ZooKeeper is running.

Returns:

4. Edit the Kafka configuration file /opt/kafka/config/server.properties. Set the log.dirs option to
/var/lib/kafka/.

5. Start Kafka.



dataDir=/var/lib/zookeeper/

su - kafka
/opt/kafka/bin/zookeeper-server-start.sh -daemon /opt/kafka/config/zookeeper.properties

jcmd | grep zookeeper

number org.apache.zookeeper.server.quorum.QuorumPeerMain config/zookeeper.properties

log.dirs=/var/lib/kafka/

CHAPTER 2. GETTING STARTED

13

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/storage_administration_guide/#ch-xfs

6. Make sure that Kafka is running.

Returns:

Additional resources

For more information about installing AMQ Streams, see Section 2.3, “Installing AMQ Streams” .

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

2.6. USING THE CLUSTER

This procedure shows how to start the Kafka producer and consumer to send and receive messages.

Prerequisites

AMQ Streams is installed on the host

ZooKeeper and Kafka are up and running

A topic is created automatically in this procedure. Alternatively, you can configure and create topics
before using the cluster. For more information on creating and managing topics, see Topics.

Procedure

1. Start the Kafka console producer.

For example:

2. Type your message into the console where the producer is running.

3. Press Enter to send.
When Kafka creates a new topic automatically, you might receive warning messages to say the
topic does not exist:

su - kafka
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

jcmd | grep kafka

number kafka.Kafka config/server.properties

/opt/kafka/bin/kafka-console-producer.sh --broker-list <bootstrap-address> --topic <topic-
name>

/opt/kafka/bin/kafka-console-producer.sh --broker-list localhost:9092 --topic my-topic

WARN Error while fetching metadata with correlation id 39 :
{4-3-16-topic1=LEADER_NOT_AVAILABLE} (org.apache.kafka.clients.NetworkClient)

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

14

The warning messages should not reappear after you start sending messages to the new topic.

The auto.create.topics.enable configuration property enables the automatic creation of
topics.

4. Start the message receiver.

For example:

5. Confirm that you see the incoming messages in the consumer console.

6. Press Crtl+C to exit the Kafka console producer and consumer.

2.7. STOPPING THE AMQ STREAMS SERVICES

You can stop the Kafka and ZooKeeper services by running a script. All connections to the Kafka and
ZooKeeper services will be terminated.

Prerequisites

AMQ Streams is installed on the host

ZooKeeper and Kafka are up and running

Procedure

1. Stop the Kafka broker.

2. Confirm that the Kafka broker is stopped.

3. Stop ZooKeeper.

2.8. CONFIGURING AMQ STREAMS

Prerequisites

WARN [Producer clientId=console-producer] Error while fetching metadata with correlation id
4 :
{my-topic=LEADER_NOT_AVAILABLE} (org.apache.kafka.clients.NetworkClient)

/opt/kafka/bin/kafka-console-consumer.sh --bootstrap-server <bootstrap-address> --topic
<topic-name> --from-beginning

/opt/kafka/bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic my-topic -
-from-beginning

su - kafka
/opt/kafka/bin/kafka-server-stop.sh

jcmd | grep kafka

su - kafka
/opt/kafka/bin/zookeeper-server-stop.sh

CHAPTER 2. GETTING STARTED

15

Prerequisites

AMQ Streams is downloaded and installed on the host

Procedure

1. Open ZooKeeper and Kafka broker configuration files in a text editor. The configuration files are
located at :

ZooKeeper

/opt/kafka/config/zookeeper.properties

Kafka

/opt/kafka/config/server.properties

2. Edit the configuration options. The configuration files are in the Java properties format. Every
configuration option should be on separate line in the following format:

<option> = <value>

Lines starting with # or ! will be treated as comments and will be ignored by AMQ Streams
components.

This is a comment

Values can be split into multiple lines by using \ directly before the newline / carriage return.

sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required \
 username="bob" \
 password="bobs-password";

3. Save the changes

4. Restart the ZooKeeper or Kafka broker

5. Repeat this procedure on all the nodes of the cluster.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

16

CHAPTER 3. CONFIGURING ZOOKEEPER
Kafka uses ZooKeeper to store configuration data and for cluster coordination. It is strongly
recommended to run a cluster of replicated ZooKeeper instances.

3.1. BASIC CONFIGURATION

The most important ZooKeeper configuration options are:

tickTime

ZooKeeper’s basic time unit in milliseconds. It is used for heartbeats and session timeouts. For
example, minimum session timeout will be two ticks.

dataDir

The directory where ZooKeeper stores its transaction logs and snapshots of its in-memory database.
This should be set to the /var/lib/zookeeper/ directory that was created during installation.

clientPort

Port number where clients can connect. Defaults to 2181.

An example ZooKeeper configuration file named config/zookeeper.properties is located in the AMQ
Streams installation directory. It is recommended to place the dataDir directory on a separate disk
device to minimize the latency in ZooKeeper.

ZooKeeper configuration file should be located in /opt/kafka/config/zookeeper.properties. A basic
example of the configuration file can be found below. The configuration file has to be readable by the
kafka user.

3.2. ZOOKEEPER CLUSTER CONFIGURATION

For reliable ZooKeeper service, you should deploy ZooKeeper in a cluster. Hence, for production use
cases, you must run a cluster of replicated ZooKeeper instances. ZooKeeper clusters are also referred to
as ensembles.

ZooKeeper clusters usually consist of an odd number of nodes. ZooKeeper requires that a majority of
the nodes in the cluster are up and running. For example:

In a cluster with three nodes, at least two of the nodes must be up and running. This means it
can tolerate one node being down.

In a cluster consisting of five nodes, at least three nodes must be available. This means it can
tolerate two nodes being down.

In a cluster consisting of seven nodes, at least four nodes must be available. This means it can
tolerate three nodes being down.

Having more nodes in the ZooKeeper cluster delivers better resiliency and reliability of the whole cluster.

ZooKeeper can run in clusters with an even number of nodes. The additional node, however, does not
increase the resiliency of the cluster. A cluster with four nodes requires at least three nodes to be
available and can tolerate only one node being down. Therefore it has exactly the same resiliency as a

tickTime=2000
dataDir=/var/lib/zookeeper/
clientPort=2181

CHAPTER 3. CONFIGURING ZOOKEEPER

17

cluster with only three nodes.

Ideally, the different ZooKeeper nodes should be located in different data centers or network segments.
Increasing the number of ZooKeeper nodes increases the workload spent on cluster synchronization. For
most Kafka use cases, a ZooKeeper cluster with 3, 5 or 7 nodes should be sufficient.

WARNING

A ZooKeeper cluster with 3 nodes can tolerate only 1 unavailable node. This means
that if a cluster node crashes while you are doing maintenance on another node your
ZooKeeper cluster will be unavailable.

Replicated ZooKeeper configuration supports all configuration options supported by the standalone
configuration. Additional options are added for the clustering configuration:

initLimit

Amount of time to allow followers to connect and sync to the cluster leader. The time is specified as
a number of ticks (see the timeTick option for more details).

syncLimit

Amount of time for which followers can be behind the leader. The time is specified as a number of
ticks (see the timeTick option for more details).

reconfigEnabled

Enables or disables dynamic reconfiguration. Must be enabled in order to add or remove servers to a
ZooKeeper cluster.

standaloneEnabled

Enables or disables standalone mode, where ZooKeeper runs with only one server.

In addition to the options above, every configuration file should contain a list of servers which should be
members of the ZooKeeper cluster. The server records should be specified in the format
server.id=hostname:port1:port2, where:

id

The ID of the ZooKeeper cluster node.

hostname

The hostname or IP address where the node listens for connections.

port1

The port number used for intra-cluster communication.

port2

The port number used for leader election.

The following is an example configuration file of a ZooKeeper cluster with three nodes:



timeTick=2000
dataDir=/var/lib/zookeeper/
initLimit=5
syncLimit=2

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

18

https://zookeeper.apache.org/doc/r3.5.7/zookeeperReconfig.html

NOTE

In ZooKeeper 3.5.7, the four letter word commands must be added to the allow list before
they can be used. For more information, see the ZooKeeper documentation.

myid files

Each node in the ZooKeeper cluster must be assigned a unique ID. Each node’s ID must be configured in
a myid file and stored in the dataDir folder, like /var/lib/zookeeper/. The myid files should contain only
a single line with the written ID as text. The ID can be any integer from 1 to 255. You must manually
create this file on each cluster node. Using this file, each ZooKeeper instance will use the configuration
from the corresponding server. line in the configuration file to configure its listeners. It will also use all
other server. lines to identify other cluster members.

In the above example, there are three nodes, so each one will have a different myid with values 1, 2, and
3 respectively.

3.3. RUNNING MULTI-NODE ZOOKEEPER CLUSTER

This procedure will show you how to configure and run ZooKeeper as a multi-node cluster.

NOTE

In ZooKeeper 3.5.7, the four letter word commands must be added to the allow list before
they can be used. For more information, see the ZooKeeper documentation.

Prerequisites

AMQ Streams is installed on all hosts which will be used as ZooKeeper cluster nodes.

Running the cluster

1. Create the myid file in /var/lib/zookeeper/. Enter ID 1 for the first ZooKeeper node, 2 for the
second ZooKeeper node, and so on.

su - kafka
echo "<NodeID>" > /var/lib/zookeeper/myid

For example:

su - kafka
echo "1" > /var/lib/zookeeper/myid

2. Edit the ZooKeeper /opt/kafka/config/zookeeper.properties configuration file for the
following:

reconfigEnabled=true
standaloneEnabled=false

server.1=172.17.0.1:2888:3888:participant;172.17.0.1:2181
server.2=172.17.0.2:2888:3888:participant;172.17.0.2:2181
server.3=172.17.0.3:2888:3888:participant;172.17.0.3:2181

CHAPTER 3. CONFIGURING ZOOKEEPER

19

https://zookeeper.apache.org/doc/r3.5.7/zookeeperAdmin.html#sc_4lw
https://zookeeper.apache.org/doc/r3.5.7/index.html
https://zookeeper.apache.org/doc/r3.5.7/zookeeperAdmin.html#sc_4lw
https://zookeeper.apache.org/doc/r3.5.7/index.html

Set the option dataDir to /var/lib/zookeeper/.

Configure the initLimit and syncLimit options.

Configure the reconfigEnabled and standaloneEnabled options.

Add a list of all ZooKeeper nodes. The list should include also the current node.

Example configuration for a node of ZooKeeper cluster with five members

3. Start ZooKeeper with the default configuration file.

4. Verify that ZooKeeper is running.

5. Repeat this procedure on all the nodes of the cluster.

6. Once all nodes of the clusters are up and running, verify that all nodes are members of the
cluster by sending a stat command to each of the nodes using ncat utility.

Use ncat stat to check the node status

In the output you should see information that the node is either leader or follower.

Example output from the ncat command

ZooKeeper version: 3.4.13-2d71af4dbe22557fda74f9a9b4309b15a7487f03, built on
06/29/2018 00:39 GMT
Clients:
 /0:0:0:0:0:0:0:1:59726[0](queued=0,recved=1,sent=0)

Latency min/avg/max: 0/0/0
Received: 2
Sent: 1
Connections: 1

timeTick=2000
dataDir=/var/lib/zookeeper/
initLimit=5
syncLimit=2
reconfigEnabled=true
standaloneEnabled=false

server.1=172.17.0.1:2888:3888:participant;172.17.0.1:2181
server.2=172.17.0.2:2888:3888:participant;172.17.0.2:2181
server.3=172.17.0.3:2888:3888:participant;172.17.0.3:2181
server.4=172.17.0.4:2888:3888:participant;172.17.0.4:2181
server.5=172.17.0.5:2888:3888:participant;172.17.0.5:2181

su - kafka
/opt/kafka/bin/zookeeper-server-start.sh -daemon /opt/kafka/config/zookeeper.properties

jcmd | grep zookeeper

echo stat | ncat localhost 2181

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

20

Outstanding: 0
Zxid: 0x200000000
Mode: follower
Node count: 4

Additional resources

For more information about installing AMQ Streams, see Section 2.3, “Installing AMQ Streams” .

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

3.4. AUTHENTICATION

By default, ZooKeeper does not use any form of authentication and allows anonymous connections.
However, it supports Java Authentication and Authorization Service (JAAS) which can be used to set up
authentication using Simple Authentication and Security Layer (SASL). ZooKeeper supports
authentication using the DIGEST-MD5 SASL mechanism with locally stored credentials.

3.4.1. Authentication with SASL

JAAS is configured using a separate configuration file. It is recommended to place the JAAS
configuration file in the same directory as the ZooKeeper configuration (/opt/kafka/config/). The
recommended file name is zookeeper-jaas.conf. When using a ZooKeeper cluster with multiple nodes,
the JAAS configuration file has to be created on all cluster nodes.

JAAS is configured using contexts. Separate parts such as the server and client are always configured
with a separate context. The context is a configuration option and has the following format:

ContextName {
 param1
 param2;
};

SASL Authentication is configured separately for server-to-server communication (communication
between ZooKeeper instances) and client-to-server communication (communication between Kafka
and ZooKeeper). Server-to-server authentication is relevant only for ZooKeeper clusters with multiple
nodes.

Server-to-Server authentication

For server-to-server authentication, the JAAS configuration file contains two parts:

The server configuration

The client configuration

When using DIGEST-MD5 SASL mechanism, the QuorumServer context is used to configure the
authentication server. It must contain all the usernames to be allowed to connect together with their
passwords in an unencrypted form. The second context, QuorumLearner, has to be configured for the
client which is built into ZooKeeper. It also contains the password in an unencrypted form. An example of
the JAAS configuration file for DIGEST-MD5 mechanism can be found below:

QuorumServer {
 org.apache.zookeeper.server.auth.DigestLoginModule required

CHAPTER 3. CONFIGURING ZOOKEEPER

21

 user_zookeeper="123456";
};

QuorumLearner {
 org.apache.zookeeper.server.auth.DigestLoginModule required
 username="zookeeper"
 password="123456";
};

In addition to the JAAS configuration file, you must enable the server-to-server authentication in the
regular ZooKeeper configuration file by specifying the following options:

quorum.auth.enableSasl=true
quorum.auth.learnerRequireSasl=true
quorum.auth.serverRequireSasl=true
quorum.auth.learner.loginContext=QuorumLearner
quorum.auth.server.loginContext=QuorumServer
quorum.cnxn.threads.size=20

Use the KAFKA_OPTS environment variable to pass the JAAS configuration file to the ZooKeeper
server as a Java property:

su - kafka
export KAFKA_OPTS="-Djava.security.auth.login.config=/opt/kafka/config/zookeeper-jaas.conf";
/opt/kafka/bin/zookeeper-server-start.sh -daemon /opt/kafka/config/zookeeper.properties

For more information about server-to-server authentication, see ZooKeeper wiki.

Client-to-Server authentication

Client-to-server authentication is configured in the same JAAS file as the server-to-server
authentication. However, unlike the server-to-server authentication, it contains only the server
configuration. The client part of the configuration has to be done in the client. For information on how to
configure a Kafka broker to connect to ZooKeeper using authentication, see the Kafka installation
section.

Add the Server context to the JAAS configuration file to configure client-to-server authentication. For
DIGEST-MD5 mechanism it configures all usernames and passwords:

Server {
 org.apache.zookeeper.server.auth.DigestLoginModule required
 user_super="123456"
 user_kafka="123456"
 user_someoneelse="123456";
};

After configuring the JAAS context, enable the client-to-server authentication in the ZooKeeper
configuration file by adding the following line:

requireClientAuthScheme=sasl
authProvider.1=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
authProvider.2=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
authProvider.3=org.apache.zookeeper.server.auth.SASLAuthenticationProvider

You must add the authProvider.<ID> property for every server that is part of the ZooKeeper cluster.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

22

https://cwiki.apache.org/confluence/display/ZOOKEEPER/Server-Server+mutual+authentication

Use the KAFKA_OPTS environment variable to pass the JAAS configuration file to the ZooKeeper
server as a Java property:

su - kafka
export KAFKA_OPTS="-Djava.security.auth.login.config=/opt/kafka/config/zookeeper-jaas.conf";
/opt/kafka/bin/zookeeper-server-start.sh -daemon /opt/kafka/config/zookeeper.properties

For more information about configuring ZooKeeper authentication in Kafka brokers, see Section 4.6,
“ZooKeeper authentication”.

3.4.2. Enabling Server-to-server authentication using DIGEST-MD5

This procedure describes how to enable authentication using the SASL DIGEST-MD5 mechanism
between the nodes of the ZooKeeper cluster.

Prerequisites

AMQ Streams is installed on the host

ZooKeeper cluster is configured with multiple nodes.

Enabling SASL DIGEST-MD5 authentication

1. On all ZooKeeper nodes, create or edit the /opt/kafka/config/zookeeper-jaas.conf JAAS
configuration file and add the following contexts:

QuorumServer {
 org.apache.zookeeper.server.auth.DigestLoginModule required
 user_<Username>="<Password>";
};

QuorumLearner {
 org.apache.zookeeper.server.auth.DigestLoginModule required
 username="<Username>"
 password="<Password>";
};

The username and password must be the same in both JAAS contexts. For example:

QuorumServer {
 org.apache.zookeeper.server.auth.DigestLoginModule required
 user_zookeeper="123456";
};

QuorumLearner {
 org.apache.zookeeper.server.auth.DigestLoginModule required
 username="zookeeper"
 password="123456";
};

2. On all ZooKeeper nodes, edit the /opt/kafka/config/zookeeper.properties ZooKeeper
configuration file and set the following options:

quorum.auth.enableSasl=true

CHAPTER 3. CONFIGURING ZOOKEEPER

23

3. Restart all ZooKeeper nodes one by one. To pass the JAAS configuration to ZooKeeper, use the
KAFKA_OPTS environment variable.

su - kafka
export KAFKA_OPTS="-Djava.security.auth.login.config=/opt/kafka/config/zookeeper-
jaas.conf"; /opt/kafka/bin/zookeeper-server-start.sh -daemon
/opt/kafka/config/zookeeper.properties

Additional resources

For more information about installing AMQ Streams, see Section 2.3, “Installing AMQ Streams” .

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For more information about running a ZooKeeper cluster, see Section 3.3, “Running multi-node
ZooKeeper cluster”.

3.4.3. Enabling Client-to-server authentication using DIGEST-MD5

This procedure describes how to enable authentication using the SASL DIGEST-MD5 mechanism
between ZooKeeper clients and ZooKeeper.

Prerequisites

AMQ Streams is installed on the host

ZooKeeper cluster is configured and running.

Enabling SASL DIGEST-MD5 authentication

1. On all ZooKeeper nodes, create or edit the /opt/kafka/config/zookeeper-jaas.conf JAAS
configuration file and add the following context:

Server {
 org.apache.zookeeper.server.auth.DigestLoginModule required
 user_super="<SuperUserPassword>"
 user<Username1>_="<Password1>" user<USername2>_="<Password2>";
};

The super automatically has administrator priviledges. The file can contain multiple users, but
only one additional user is required by the Kafka brokers. The recommended name for the Kafka
user is kafka.

The following example shows the Server context for client-to-server authentication:

Server {
 org.apache.zookeeper.server.auth.DigestLoginModule required

quorum.auth.learnerRequireSasl=true
quorum.auth.serverRequireSasl=true
quorum.auth.learner.loginContext=QuorumLearner
quorum.auth.server.loginContext=QuorumServer
quorum.cnxn.threads.size=20

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

24

 user_super="123456"
 user_kafka="123456";
};

2. On all ZooKeeper nodes, edit the /opt/kafka/config/zookeeper.properties ZooKeeper
configuration file and set the following options:

The authProvider.<ID> property has to be added for every node which is part of the
ZooKeeper cluster. An example three-node ZooKeeper cluster configuration must look like the
following:

3. Restart all ZooKeeper nodes one by one. To pass the JAAS configuration to ZooKeeper, use the
KAFKA_OPTS environment variable.

su - kafka
export KAFKA_OPTS="-Djava.security.auth.login.config=/opt/kafka/config/zookeeper-
jaas.conf"; /opt/kafka/bin/zookeeper-server-start.sh -daemon
/opt/kafka/config/zookeeper.properties

Additional resources

For more information about installing AMQ Streams, see Section 2.3, “Installing AMQ Streams” .

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For more information about running a ZooKeeper cluster, see Section 3.3, “Running multi-node
ZooKeeper cluster”.

3.5. AUTHORIZATION

ZooKeeper supports access control lists (ACLs) to protect data stored inside it. Kafka brokers can
automatically configure the ACL rights for all ZooKeeper records they create so no other ZooKeeper
user can modify them.

For more information about enabling ZooKeeper ACLs in Kafka brokers, see Section 4.8, “ZooKeeper
authorization”.

3.6. TLS

ZooKeeper supports TLS for encryption or authentication.

3.7. ADDITIONAL CONFIGURATION OPTIONS

requireClientAuthScheme=sasl
authProvider.<IdOfBroker1>=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
authProvider.<IdOfBroker2>=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
authProvider.<IdOfBroker3>=org.apache.zookeeper.server.auth.SASLAuthenticationProvider

requireClientAuthScheme=sasl
authProvider.1=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
authProvider.2=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
authProvider.3=org.apache.zookeeper.server.auth.SASLAuthenticationProvider

CHAPTER 3. CONFIGURING ZOOKEEPER

25

You can set the following additional ZooKeeper configuration options based on your use case:

maxClientCnxns

The maximum number of concurrent client connections to a single member of the ZooKeeper cluster.

autopurge.snapRetainCount

Number of snapshots of ZooKeeper’s in-memory database which will be retained. Default value is 3.

autopurge.purgeInterval

The time interval in hours for purging snapshots. The default value is 0 and this option is disabled.

All available configuration options can be found in the ZooKeeper documentation.

3.8. LOGGING

ZooKeeper is using log4j as their logging infrastructure. Logging configuration is by default read from
the log4j.properties configuration file which should be placed either in the /opt/kafka/config/ directory
or in the classpath. The location and name of the configuration file can be changed using the Java
property log4j.configuration which can be passed to ZooKeeper using the KAFKA_LOG4J_OPTS
environment variable:

su - kafka
export KAFKA_LOG4J_OPTS="-Dlog4j.configuration=file:/my/path/to/log4j.properties";
/opt/kafka/bin/zookeeper-server-start.sh -daemon /opt/kafka/config/zookeeper.properties

For more information about Log4j configurations, see Log4j documentation.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

26

http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance
http://logging.apache.org/log4j/1.2/manual.html

CHAPTER 4. CONFIGURING KAFKA
Kafka uses a properties file to store static configuration. The recommended location for the
configuration file is /opt/kafka/config/server.properties. The configuration file has to be readable by
the kafka user.

AMQ Streams ships an example configuration file that highlights various basic and advanced features of
the product. It can be found under config/server.properties in the AMQ Streams installation directory.

This chapter explains the most important configuration options. For a complete list of supported Kafka
broker configuration options, see Appendix A, Broker configuration parameters.

4.1. ZOOKEEPER

Kafka brokers need ZooKeeper to store some parts of their configuration as well as to coordinate the
cluster (for example to decide which node is a leader for which partition). Connection details for the
ZooKeeper cluster are stored in the configuration file. The field zookeeper.connect contains a comma-
separated list of hostnames and ports of members of the zookeeper cluster.

For example:

Kafka will use these addresses to connect to the ZooKeeper cluster. With this configuration, all Kafka
znodes will be created directly in the root of ZooKeeper database. Therefore, such a ZooKeeper cluster
could be used only for a single Kafka cluster. To configure multiple Kafka clusters to use single
ZooKeeper cluster, specify a base (prefix) path at the end of the ZooKeeper connection string in the
Kafka configuration file:

4.2. LISTENERS

Kafka brokers can be configured to use multiple listeners. Each listener can be used to listen on a
different port or network interface and can have different configuration. Listeners are configured in the
listeners property in the configuration file. The listeners property contains a list of listeners with each
listener configured as <listenerName>://<hostname>:_<port>_. When the hostname value is empty,
Kafka will use java.net.InetAddress.getCanonicalHostName() as hostname. The following example
shows how multiple listeners might be configured:

listeners=INT1://:9092,INT2://:9093,REPLICATION://:9094

When a Kafka client wants to connect to a Kafka cluster, it first connects to a bootstrap server . The
bootstrap server is one of the cluster nodes. It will provide the client with a list of all other brokers which
are part of the cluster and the client will connect to them individually. By default the bootstrap server
will provide the client with a list of nodes based on the listeners field.

Advertised listeners

It is possible to give the client a different set of addresses than given in the listeners property. It is useful
in situations when additional network infrastructure, such as a proxy, is between the client and the
broker, or when an external DNS name should be used instead of an IP address. Here, the broker allows

zookeeper.connect=zoo1.my-domain.com:2181,zoo2.my-domain.com:2181,zoo3.my-
domain.com:2181

zookeeper.connect=zoo1.my-domain.com:2181,zoo2.my-domain.com:2181,zoo3.my-
domain.com:2181/my-cluster-1

CHAPTER 4. CONFIGURING KAFKA

27

defining the advertised addresses of the listeners in the advertised.listeners configuration property. This
property has the same format as the listeners property. The following example shows how to configure
advertised listeners:

listeners=INT1://:9092,INT2://:9093
advertised.listeners=INT1://my-broker-1.my-domain.com:1234,INT2://my-broker-1.my-
domain.com:1234:9093

NOTE

The names of the listeners have to match the names of the listeners from the listeners
property.

Inter-broker listeners

When the cluster has replicated topics, the brokers responsible for such topics need to communicate
with each other in order to replicate the messages in those topics. When multiple listeners are
configured, the configuration field inter.broker.listener.name can be used to specify the name of the
listener which should be used for replication between brokers. For example:

inter.broker.listener.name=REPLICATION

4.3. COMMIT LOGS

Apache Kafka stores all records it receives from producers in commit logs. The commit logs contain the
actual data, in the form of records, that Kafka needs to deliver. These are not the application log files
which record what the broker is doing.

Log directories

You can configure log directories using the log.dirs property file to store commit logs in one or multiple
log directories. It should be set to /var/lib/kafka directory created during installation:

log.dirs=/var/lib/kafka

For performance reasons, you can configure log.dirs to multiple directories and place each of them on a
different physical device to improve disk I/O performance. For example:

log.dirs=/var/lib/kafka1,/var/lib/kafka2,/var/lib/kafka3

4.4. BROKER ID

Broker ID is a unique identifier for each broker in the cluster. You can assign an integer greater than or
equal to 0 as broker ID. The broker ID is used to identify the brokers after restarts or crashes and it is
therefore important that the id is stable and does not change over time. The broker ID is configured in
the broker properties file:

broker.id=1

4.5. RUNNING A MULTI-NODE KAFKA CLUSTER

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

28

This procedure describes how to configure and run Kafka as a multi-node cluster.

Prerequisites

AMQ Streams is installed on all hosts which will be used as Kafka brokers.

A ZooKeeper cluster is configured and running.

Running the cluster

For each Kafka broker in your AMQ Streams cluster:

1. Edit the /opt/kafka/config/server.properties Kafka configuration file as follows:

Set the broker.id field to 0 for the first broker, 1 for the second broker, and so on.

Configure the details for connecting to ZooKeeper in the zookeeper.connect option.

Configure the Kafka listeners.

Set the directories where the commit logs should be stored in the logs.dir directory.
Here we see an example configuration for a Kafka broker:

In a typical installation where each Kafka broker is running on identical hardware, only the
broker.id configuration property will differ between each broker config.

2. Start the Kafka broker with the default configuration file.

3. Verify that the Kafka broker is running.

Verifying the brokers

Once all nodes of the clusters are up and running, verify that all nodes are members of the Kafka cluster
by sending a dump command to one of the ZooKeeper nodes using the ncat utility. The command prints
all Kafka brokers registered in ZooKeeper.

1. Use ncat stat to check the node status.

The output should contain all Kafka brokers you just configured and started.

Example output from the ncat command for Kafka cluster with 3 nodes:

broker.id=0
zookeeper.connect=zoo1.my-domain.com:2181,zoo2.my-domain.com:2181,zoo3.my-
domain.com:2181
listeners=REPLICATION://:9091,PLAINTEXT://:9092
inter.broker.listener.name=REPLICATION
log.dirs=/var/lib/kafka

su - kafka
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

jcmd | grep Kafka

echo dump | ncat zoo1.my-domain.com 2181

CHAPTER 4. CONFIGURING KAFKA

29

Additional resources

For more information about installing AMQ Streams, see Section 2.3, “Installing AMQ Streams” .

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For more information about running a ZooKeeper cluster, see Section 3.3, “Running multi-node
ZooKeeper cluster”.

For a complete list of supported Kafka broker configuration options, see Appendix A, Broker
configuration parameters.

4.6. ZOOKEEPER AUTHENTICATION

By default, connections between ZooKeeper and Kafka are not authenticated. However, Kafka and
ZooKeeper support Java Authentication and Authorization Service (JAAS) which can be used to set up
authentication using Simple Authentication and Security Layer (SASL). ZooKeeper supports
authentication using the DIGEST-MD5 SASL mechanism with locally stored credentials.

4.6.1. JAAS Configuration

SASL authentication for ZooKeeper connections has to be configured in the JAAS configuration file. By
default, Kafka will use the JAAS context named Client for connecting to ZooKeeper. The Client context
should be configured in the /opt/kafka/config/jass.conf file. The context has to enable the PLAIN SASL
authentication, as in the following example:

Client {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 username="kafka"
 password="123456";
};

4.6.2. Enabling ZooKeeper authentication

This procedure describes how to enable authentication using the SASL DIGEST-MD5 mechanism when
connecting to ZooKeeper.

Prerequisites

Client-to-server authentication is enabled in ZooKeeper

Enabling SASL DIGEST-MD5 authentication

SessionTracker dump:
org.apache.zookeeper.server.quorum.LearnerSessionTracker@28848ab9
ephemeral nodes dump:
Sessions with Ephemerals (3):
0x20000015dd00000:
 /brokers/ids/1
0x10000015dc70000:
 /controller
 /brokers/ids/0
0x10000015dc70001:
 /brokers/ids/2

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

30

Enabling SASL DIGEST-MD5 authentication

1. On all Kafka broker nodes, create or edit the /opt/kafka/config/jaas.conf JAAS configuration
file and add the following context:

Client {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 username="<Username>"
 password="<Password>";
};

The username and password should be the same as configured in ZooKeeper.

Following example shows the Client context:

Client {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 username="kafka"
 password="123456";
};

2. Restart all Kafka broker nodes one by one. To pass the JAAS configuration to Kafka brokers,
use the KAFKA_OPTS environment variable.

su - kafka
export KAFKA_OPTS="-Djava.security.auth.login.config=/opt/kafka/config/jaas.conf";
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

Additional resources

For more information about configuring client-to-server authentication in ZooKeeper, see
Section 3.4, “Authentication”.

4.7. AUTHORIZATION

Authorization in Kafka brokers is implemented using authorizer plugins.

In this section we describe how to use SimpleAclAuthorizer, the authorizer plugin provided with Kafka.

Alternatively, you can use your own authorization plugins. For example, if you are using OAuth 2.0 token-
based authentication, you can use OAuth 2.0 authorization .

4.7.1. Simple ACL authorizer

Authorizer plugins, including SimpleAclAuthorizer, are enabled through the authorizer.class.name
property:

A fully-qualified name is required for the chosen authorizer. For SimpleAclAuthorizer, the fully-
qualified name is kafka.security.auth.SimpleAclAuthorizer.

4.7.1.1. ACL rules

authorizer.class.name=kafka.security.auth.SimpleAclAuthorizer

CHAPTER 4. CONFIGURING KAFKA

31

SimpleAclAuthorizer uses ACL rules to manage access to Kafka brokers.

ACL rules are defined in the format:

Principal P is allowed / denied operation O on Kafka resource R from host H

For example, a rule might be set so that user:

John can view the topic comments from host 127.0.0.1

Host is the IP address of the machine that John is connecting from.

In most cases, the user is a producer or consumer application:

Consumer01 can write to the consumer group accounts from host 127.0.0.1

If ACL rules are not present

If ACL rules are not present for a given resource, all actions are denied. This behavior can be changed by
setting the property allow.everyone.if.no.acl.found to true in the Kafka configuration file
/opt/kafka/config/server.properties.

4.7.1.2. Principals

A principal represents the identity of a user. The format of the ID depends on the authentication
mechanism used by clients to connect to Kafka:

User:ANONYMOUS when connected without authentication.

User:<username> when connected using simple authentication mechanisms, such as PLAIN or
SCRAM.
For example User:admin or User:user1.

User:<DistinguishedName> when connected using TLS client authentication.
For example User:CN=user1,O=MyCompany,L=Prague,C=CZ.

User:<Kerberos username> when connected using Kerberos.

The DistinguishedName is the distinguished name from the client certificate.

The Kerberos username is the primary part of the Kerberos principal, which is used by default when
connecting using Kerberos. You can use the sasl.kerberos.principal.to.local.rules property to
configure how the Kafka principal is built from the Kerberos principal.

4.7.1.3. Authentication of users

To use authorization, you need to have authentication enabled and used by your clients. Otherwise, all
connections will have the principal User:ANONYMOUS.

For more information on methods of authentication, see Encryption and authentication.

4.7.1.4. Super users

Super users are allowed to take all actions regardless of the ACL rules.

Super users are defined in the Kafka configuration file using the property super.users.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

32

For example:

super.users=User:admin,User:operator

4.7.1.5. Replica broker authentication

When authorization is enabled, it is applied to all listeners and all connections. This includes the inter-
broker connections used for replication of data between brokers. If enabling authorization, therefore,
ensure that you use authentication for inter-broker connections and give the users used by the brokers
sufficient rights. For example, if authentication between brokers uses the kafka-broker user, then super
user configuration must include the username super.users=User:kafka-broker.

4.7.1.6. Supported resources

You can apply Kafka ACLs to these types of resource:

Topics

Consumer groups

The cluster

TransactionId

DelegationToken

4.7.1.7. Supported operations

SimpleAclAuthorizer authorizes operations on resources.

Fields with X in the following table mark the supported operations for each resource.

 Topics Consumer Groups Cluster

Read X X

Write X

Create X

Delete X

Alter X

Describe X X X

ClusterAction X

All X X X

CHAPTER 4. CONFIGURING KAFKA

33

4.7.1.8. ACL management options

ACL rules are managed using the bin/kafka-acls.sh utility, which is provided as part of the Kafka
distribution package.

Use kafka-acls.sh parameter options to add, list and remove ACL rules, and perform other functions.

The parameters require a double-hyphen convention, such as --add.

Option Type Description Default

add Action Add ACL rule.

remove Action Remove ACL rule.

list Action List ACL rules.

authorizer Action Fully-qualified class
name of the authorizer.

kafka.security.auth.S
impleAclAuthorizer

authorizer-
properties

Configuration Key/value pairs passed
to the authorizer for
initialization.

For
SimpleAclAuthorizer,
the example values are:
zookeeper.connect=
zoo1.my-
domain.com:2181.

bootstrap-server Resource Host/port pairs to
connect to the Kafka
cluster.

Use this option or the
authorizer option, not
both.

command-config Resource Configuration property
file to pass to the Admin
Client, which is used in
conjunction with the
bootstrap-server
parameter.

cluster Resource Specifies a cluster as an
ACL resource.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

34

topic Resource Specifies a topic name
as an ACL resource.

An asterisk (*) used as a
wildcard translates to all
topics.

A single command can
specify multiple --topic
options.

group Resource Specifies a consumer
group name as an ACL
resource.

A single command can
specify multiple --
group options.

transactional-id Resource Specifies a transactional
ID as an ACL resource.

Transactional delivery
means that all messages
sent by a producer to
multiple partitions must
be successfully
delivered or none of
them.

An asterisk (*) used as a
wildcard translates to all
IDs.

delegation-token Resource Specifies a delegation
token as an ACL
resource.

An asterisk (*) used as a
wildcard translates to all
tokens.

Option Type Description Default

CHAPTER 4. CONFIGURING KAFKA

35

resource-pattern-
type

Configuration Specifies a type of
resource pattern for the
add parameter or a
resource pattern filter
value for the list or
remove parameters.

Use literal or prefixed
as the resource pattern
type for a resource
name.

Use any or match as
resource pattern filter
values, or a specific
pattern type filter.

literal

allow-principal Principal Principal added to an
allow ACL rule.

A single command can
specify multiple --
allow-principal
options.

deny-principal Principal Principal added to a
deny ACL rule.

A single command can
specify multiple --deny-
principal options.

principal Principal Principal name used with
the list parameter to
return a list of ACLs for
the principal.

A single command can
specify multiple --
principal options.

allow-host Host IP address that allows
access to the principals
listed in --allow-
principal.

Hostnames or CIDR
ranges are not
supported.

If --allow-principal is
specified, defaults to *
meaning "all hosts".

Option Type Description Default

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

36

deny-host Host IP address that denies
access to the principals
listed in --deny-
principal.

Hostnames or CIDR
ranges are not
supported.

if --deny-principal is
specified, defaults to *
meaning "all hosts".

operation Operation Allows or denies an
operation.

A single command can
specify multipleMultiple
--operation options
can be specified in
single command.

All

producer Shortcut A shortcut to allow or
deny all operations
needed by a message
producer (WRITE and
DESCRIBE on topic,
CREATE on cluster).

consumer Shortcut A shortcut to allow or
deny all operations
needed by a message
consumer (READ and
DESCRIBE on topic,
READ on consumer
group).

idempotent Shortcut A shortcut to enable
idempotence when used
with the --producer
parameter, so that
messages are delivered
exactly once to a
partition.

Idepmotence is enabled
automatically if the
producer is authorized
to send messages based
on a specific
transactional ID.

force Shortcut A shortcut to accept all
queries and do not
prompt.

Option Type Description Default

CHAPTER 4. CONFIGURING KAFKA

37

4.7.2. Enabling authorization

This procedure describes how to enable the SimpleAclAuthorizer plugin for authorization in Kafka
brokers.

Prerequisites

AMQ Streams is installed on all hosts used as Kafka brokers.

Procedure

1. Edit the /opt/kafka/config/server.properties Kafka configuration file to use the
SimpleAclAuthorizer.

authorizer.class.name=kafka.security.auth.SimpleAclAuthorizer

2. (Re)start the Kafka brokers.

Additional resources

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For more information about running a Kafka cluster, see Section 4.5, “Running a multi-node
Kafka cluster”.

4.7.3. Adding ACL rules

SimpleAclAuthorizer uses Access Control Lists (ACLs), which define a set of rules describing what
users can and cannot do.

This procedure describes how to add ACL rules when using the SimpleAclAuthorizer plugin in Kafka
brokers.

Rules are added using the kafka-acls.sh utility and stored in ZooKeeper.

Prerequisites

AMQ Streams is installed on all hosts used as Kafka brokers.

Authorization is enabled in Kafka brokers.

Procedure

1. Run kafka-acls.sh with the --add option.
Examples:

Allow user1 and user2 access to read from myTopic using the MyConsumerGroup
consumer group.

bin/kafka-acls.sh --authorizer-properties zookeeper.connect=zoo1.my-domain.com:2181
--add --operation Read --topic myTopic --allow-principal User:user1 --allow-principal
User:user2

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

38

Deny user1 access to read myTopic from IP address host 127.0.0.1.

Add user1 as the consumer of myTopic with MyConsumerGroup.

Additional resources

For a list of all kafka-acls.sh options, see Section 4.7.1, “Simple ACL authorizer” .

4.7.4. Listing ACL rules

This procedure describes how to list existing ACL rules when using the SimpleAclAuthorizer plugin in
Kafka brokers.

Rules are listed using the kafka-acls.sh utility.

Prerequisites

AMQ Streams is installed on all hosts used as Kafka brokers.

Authorization is enabled in Kafka brokers

ACLs have been added.

Procedure

Run kafka-acls.sh with the --list option.
For example:

bin/kafka-acls.sh --authorizer-properties zookeeper.connect=zoo1.my-domain.com:2181
--add --operation Describe --topic myTopic --allow-principal User:user1 --allow-principal
User:user2

bin/kafka-acls.sh --authorizer-properties zookeeper.connect=zoo1.my-domain.com:2181
--add --operation Read --operation Describe --group MyConsumerGroup --allow-
principal User:user1 --allow-principal User:user2

bin/kafka-acls.sh --authorizer-properties zookeeper.connect=zoo1.my-domain.com:2181
--add --operation Describe --operation Read --topic myTopic --group MyConsumerGroup
--deny-principal User:user1 --deny-host 127.0.0.1

bin/kafka-acls.sh --authorizer-properties zookeeper.connect=zoo1.my-domain.com:2181
--add --consumer --topic myTopic --group MyConsumerGroup --allow-principal
User:user1

$ bin/kafka-acls.sh --authorizer-properties zookeeper.connect=zoo1.my-domain.com:2181 --
list --topic myTopic

Current ACLs for resource `Topic:myTopic`:

User:user1 has Allow permission for operations: Read from hosts: *
User:user2 has Allow permission for operations: Read from hosts: *
User:user2 has Deny permission for operations: Read from hosts: 127.0.0.1

CHAPTER 4. CONFIGURING KAFKA

39

Additional resources

For a list of all kafka-acls.sh options, see Section 4.7.1, “Simple ACL authorizer” .

4.7.5. Removing ACL rules

This procedure describes how to remove ACL rules when using the SimpleAclAuthorizer plugin in Kafka
brokers.

Rules are removed using the kafka-acls.sh utility.

Prerequisites

AMQ Streams is installed on all hosts used as Kafka brokers.

Authorization is enabled in Kafka brokers.

ACLs have been added.

Procedure

Run kafka-acls.sh with the --remove option.
Examples:

Remove the ACL allowing Allow user1 and user2 access to read from myTopic using the
MyConsumerGroup consumer group.

Remove the ACL adding user1 as the consumer of myTopic with MyConsumerGroup.

Remove the ACL denying user1 access to read myTopic from IP address host 127.0.0.1.

User:user1 has Allow permission for operations: Describe from hosts: *
User:user2 has Allow permission for operations: Describe from hosts: *
User:user2 has Deny permission for operations: Describe from hosts: 127.0.0.1

bin/kafka-acls.sh --authorizer-properties zookeeper.connect=zoo1.my-domain.com:2181 --
remove --operation Read --topic myTopic --allow-principal User:user1 --allow-principal
User:user2

bin/kafka-acls.sh --authorizer-properties zookeeper.connect=zoo1.my-domain.com:2181 --
remove --operation Describe --topic myTopic --allow-principal User:user1 --allow-principal
User:user2

bin/kafka-acls.sh --authorizer-properties zookeeper.connect=zoo1.my-domain.com:2181 --
remove --operation Read --operation Describe --group MyConsumerGroup --allow-principal
User:user1 --allow-principal User:user2

bin/kafka-acls.sh --authorizer-properties zookeeper.connect=zoo1.my-domain.com:2181 --
remove --consumer --topic myTopic --group MyConsumerGroup --allow-principal User:user1

bin/kafka-acls.sh --authorizer-properties zookeeper.connect=zoo1.my-domain.com:2181 --
remove --operation Describe --operation Read --topic myTopic --group MyConsumerGroup -
-deny-principal User:user1 --deny-host 127.0.0.1

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

40

Additional resources

For a list of all kafka-acls.sh options, see Section 4.7.1, “Simple ACL authorizer” .

For more information about enabling authorization, see Section 4.7.2, “Enabling authorization” .

4.8. ZOOKEEPER AUTHORIZATION

When authentication is enabled between Kafka and ZooKeeper, you can use ZooKeeper Access Control
List (ACL) rules to automatically control access to Kafka’s metadata stored in ZooKeeper.

4.8.1. ACL Configuration

Enforcement of ZooKeeper ACL rules is controlled by the zookeeper.set.acl property in the
config/server.properties Kafka configuration file.

The property is disabled by default and enabled by setting to true:

zookeeper.set.acl=true

If ACL rules are enabled, when a znode is created in ZooKeeper only the Kafka user who created it can
modify or delete it. All other users have read-only access.

Kafka sets ACL rules only for newly created ZooKeeper znodes. If the ACLs are only enabled after the
first start of the cluster, the zookeeper-security-migration.sh tool can set ACLs on all existing znodes.

Confidentiality of data in ZooKeeper

Data stored in ZooKeeper includes:

Topic names and their configuration

Salted and hashed user credentials when SASL SCRAM authentication is used.

But ZooKeeper does not store any records sent and received using Kafka. The data stored in ZooKeeper
is assumed to be non-confidential.

If the data is to be regarded as confidential (for example because topic names contain customer IDs),
the only option available for protection is isolating ZooKeeper on the network level and allowing access
only to Kafka brokers.

4.8.2. Enabling ZooKeeper ACLs for a new Kafka cluster

This procedure describes how to enable ZooKeeper ACLs in Kafka configuration for a new Kafka cluster.
Use this procedure only before the first start of the Kafka cluster. For enabling ZooKeeper ACLs in a
cluster that is already running, see Section 4.8.3, “Enabling ZooKeeper ACLs in an existing Kafka cluster” .

Prerequisites

AMQ Streams is installed on all hosts which will be used as Kafka brokers.

ZooKeeper cluster is configured and running.

Client-to-server authentication is enabled in ZooKeeper.

ZooKeeper authentication is enabled in the Kafka brokers.

CHAPTER 4. CONFIGURING KAFKA

41

Kafka brokers have not yet been started.

Procedure

1. Edit the /opt/kafka/config/server.properties Kafka configuration file to set the
zookeeper.set.acl field to true on all cluster nodes.

zookeeper.set.acl=true

2. Start the Kafka brokers.

4.8.3. Enabling ZooKeeper ACLs in an existing Kafka cluster

This procedure describes how to enable ZooKeeper ACLs in Kafka configuration for a Kafka cluster that
is running. Use the zookeeper-security-migration.sh tool to set ZooKeeper ACLs on all existing
znodes. The zookeeper-security-migration.sh is available as part of AMQ Streams, and can be found
in the bin directory.

Prerequisites

Kafka cluster is configured and running.

Enabling the ZooKeeper ACLs

1. Edit the /opt/kafka/config/server.properties Kafka configuration file to set the
zookeeper.set.acl field to true on all cluster nodes.

zookeeper.set.acl=true

2. Restart all Kafka brokers one by one.

3. Set the ACLs on all existing ZooKeeper znodes using the zookeeper-security-migration.sh
tool.

su - kafka
cd /opt/kafka
KAFKA_OPTS="-Djava.security.auth.login.config=./config/jaas.conf"; ./bin/zookeeper-
security-migration.sh --zookeeper.acl=secure --zookeeper.connect=<ZooKeeperURL>
exit

For example:

su - kafka
cd /opt/kafka
KAFKA_OPTS="-Djava.security.auth.login.config=./config/jaas.conf"; ./bin/zookeeper-
security-migration.sh --zookeeper.acl=secure --zookeeper.connect=zoo1.my-
domain.com:2181
exit

4.9. ENCRYPTION AND AUTHENTICATION

AMQ Streams supports encryption and authentication, which is configured as part of the listener
configuration.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

42

4.9.1. Listener configuration

Encryption and authentication in Kafka brokers is configured per listener. For more information about
Kafka listener configuration, see Section 4.2, “Listeners”.

Each listener in the Kafka broker is configured with its own security protocol. The configuration property
listener.security.protocol.map defines which listener uses which security protocol. It maps each
listener name to its security protocol. Supported security protocols are:

PLAINTEXT

Listener without any encryption or authentication.

SSL

Listener using TLS encryption and, optionally, authentication using TLS client certificates.

SASL_PLAINTEXT

Listener without encryption but with SASL-based authentication.

SASL_SSL

Listener with TLS-based encryption and SASL-based authentication.

Given the following listeners configuration:

listeners=INT1://:9092,INT2://:9093,REPLICATION://:9094

the listener.security.protocol.map might look like this:

listener.security.protocol.map=INT1:SASL_PLAINTEXT,INT2:SASL_SSL,REPLICATION:SSL

This would configure the listener INT1 to use unencrypted connections with SASL authentication, the
listener INT2 to use encrypted connections with SASL authentication and the REPLICATION interface
to use TLS encryption (possibly with TLS client authentication). The same security protocol can be used
multiple times. The following example is also a valid configuration:

listener.security.protocol.map=INT1:SSL,INT2:SSL,REPLICATION:SSL

Such a configuration would use TLS encryption and TLS authentication for all interfaces. The following
chapters will explain in more detail how to configure TLS and SASL.

4.9.2. TLS Encryption

Kafka supports TLS for encrypting communication with Kafka clients.

In order to use TLS encryption and server authentication, a keystore containing private and public keys
has to be provided. This is usually done using a file in the Java Keystore (JKS) format. A path to this file
is set in the ssl.keystore.location property. The ssl.keystore.password property should be used to
set the password protecting the keystore. For example:

ssl.keystore.location=/path/to/keystore/server-1.jks
ssl.keystore.password=123456

In some cases, an additional password is used to protect the private key. Any such password can be set
using the ssl.key.password property.

Kafka is able to use keys signed by certification authorities as well as self-signed keys. Using keys signed

CHAPTER 4. CONFIGURING KAFKA

43

by certification authorities should always be the preferred method. In order to allow clients to verify the
identity of the Kafka broker they are connecting to, the certificate should always contain the advertised
hostname(s) as its Common Name (CN) or in the Subject Alternative Names (SAN).

It is possible to use different SSL configurations for different listeners. All options starting with ssl. can
be prefixed with listener.name.<NameOfTheListener>., where the name of the listener has to be
always in lower case. This will override the default SSL configuration for that specific listener. The
following example shows how to use different SSL configurations for different listeners:

listeners=INT1://:9092,INT2://:9093,REPLICATION://:9094
listener.security.protocol.map=INT1:SSL,INT2:SSL,REPLICATION:SSL

Default configuration - will be used for listeners INT1 and INT2
ssl.keystore.location=/path/to/keystore/server-1.jks
ssl.keystore.password=123456

Different configuration for listener REPLICATION
listener.name.replication.ssl.keystore.location=/path/to/keystore/server-1.jks
listener.name.replication.ssl.keystore.password=123456

Additional TLS configuration options

In addition to the main TLS configuration options described above, Kafka supports many options for
fine-tuning the TLS configuration. For example, to enable or disable TLS / SSL protocols or cipher
suites:

ssl.cipher.suites

List of enabled cipher suites. Each cipher suite is a combination of authentication, encryption, MAC
and key exchange algorithms used for the TLS connection. By default, all available cipher suites are
enabled.

ssl.enabled.protocols

List of enabled TLS / SSL protocols. Defaults to TLSv1.2,TLSv1.1,TLSv1.

For a complete list of supported Kafka broker configuration options, see Appendix A, Broker
configuration parameters.

4.9.3. Enabling TLS encryption

This procedure describes how to enable encryption in Kafka brokers.

Prerequisites

AMQ Streams is installed on all hosts which will be used as Kafka brokers.

Procedure

1. Generate TLS certificates for all Kafka brokers in your cluster. The certificates should have their
advertised and bootstrap addresses in their Common Name or Subject Alternative Name.

2. Edit the /opt/kafka/config/server.properties Kafka configuration file on all cluster nodes for
the following:

Change the listener.security.protocol.map field to specify the SSL protocol for the
listener where you want to use TLS encryption.

Set the ssl.keystore.location option to the path to the JKS keystore with the broker

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

44

Set the ssl.keystore.location option to the path to the JKS keystore with the broker
certificate.

Set the ssl.keystore.password option to the password you used to protect the keystore.
For example:

listeners=UNENCRYPTED://:9092,ENCRYPTED://:9093,REPLICATION://:9094
listener.security.protocol.map=UNENCRYPTED:PLAINTEXT,ENCRYPTED:SSL,REPLICA
TION:PLAINTEXT
ssl.keystore.location=/path/to/keystore/server-1.jks
ssl.keystore.password=123456

3. (Re)start the Kafka brokers

Additional resources

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For more information about running a Kafka cluster, see Section 4.5, “Running a multi-node
Kafka cluster”.

For more information about configuring TLS encryption in clients, see:

Appendix D, Producer configuration parameters

Appendix C, Consumer configuration parameters

4.9.4. Authentication

For authentication, you can use:

TLS client authentication based on X.509 certificates on encrypted connections

A supported Kafka SASL (Simple Authentication and Security Layer) mechanism

OAuth 2.0 token based authentication

4.9.4.1. TLS client authentication

TLS client authentication can be used only on connections which are already using TLS encryption. To
use TLS client authentication, a truststore with public keys can be provided to the broker. These keys
can be used to authenticate clients connecting to the broker. The truststore should be provided in Java
Keystore (JKS) format and should contain public keys of the certification authorities. All clients with
public and private keys signed by one of the certification authorities included in the truststore will be
authenticated. The location of the truststore is set using field ssl.truststore.location. In case the
truststore is password protected, the password should be set in the ssl.truststore.password property.
For example:

ssl.truststore.location=/path/to/keystore/server-1.jks
ssl.truststore.password=123456

Once the truststore is configured, TLS client authentication has to be enabled using the ssl.client.auth
property. This property can be set to one of three different values:

CHAPTER 4. CONFIGURING KAFKA

45

none

TLS client authentication is switched off. (Default value)

requested

TLS client authentication is optional. Clients will be asked to authenticate using TLS client certificate
but they can choose not to.

required

Clients are required to authenticate using TLS client certificate.

When a client authenticates using TLS client authentication, the authenticated principal name is the
distinguished name from the authenticated client certificate. For example, a user with a certificate which
has a distinguished name CN=someuser will be authenticated with the following principal
CN=someuser,OU=Unknown,O=Unknown,L=Unknown,ST=Unknown,C=Unknown. When TLS client
authentication is not used and SASL is disabled, the principal name will be ANONYMOUS.

4.9.4.2. SASL authentication

SASL authentication is configured using Java Authentication and Authorization Service (JAAS). JAAS is
also used for authentication of connections between Kafka and ZooKeeper. JAAS uses its own
configuration file. The recommended location for this file is /opt/kafka/config/jaas.conf. The file has to
be readable by the kafka user. When running Kafka, the location of this file is specified using Java
system property java.security.auth.login.config. This property has to be passed to Kafka when starting
the broker nodes:

KAFKA_OPTS="-Djava.security.auth.login.config=/path/to/my/jaas.config"; bin/kafka-server-start.sh

SASL authentication is supported both through plain unencrypted connections as well as through TLS
connections. SASL can be enabled individually for each listener. To enable it, the security protocol in
listener.security.protocol.map has to be either SASL_PLAINTEXT or SASL_SSL.

SASL authentication in Kafka supports several different mechanisms:

PLAIN

Implements authentication based on username and passwords. Usernames and passwords are stored
locally in Kafka configuration.

SCRAM-SHA-256 and SCRAM-SHA-512

Implements authentication using Salted Challenge Response Authentication Mechanism (SCRAM).
SCRAM credentials are stored centrally in ZooKeeper. SCRAM can be used in situations where
ZooKeeper cluster nodes are running isolated in a private network.

GSSAPI

Implements authentication against a Kerberos server.

WARNING

The PLAIN mechanism sends the username and password over the network in an
unencrypted format. It should be therefore only be used in combination with TLS
encryption.



Red Hat AMQ 7.7 Using AMQ Streams on RHEL

46

The SASL mechanisms are configured via the JAAS configuration file. Kafka uses the JAAS context
named KafkaServer. After they are configured in JAAS, the SASL mechanisms have to be enabled in
the Kafka configuration. This is done using the sasl.enabled.mechanisms property. This property
contains a comma-separated list of enabled mechanisms:

sasl.enabled.mechanisms=PLAIN,SCRAM-SHA-256,SCRAM-SHA-512

In case the listener used for inter-broker communication is using SASL, the property
sasl.mechanism.inter.broker.protocol has to be used to specify the SASL mechanism which it should
use. For example:

sasl.mechanism.inter.broker.protocol=PLAIN

The username and password which will be used for the inter-broker communication has to be specified
in the KafkaServer JAAS context using the field username and password.

SASL PLAIN

To use the PLAIN mechanism, the usernames and password which are allowed to connect are specified
directly in the JAAS context. The following example shows the context configured for SASL PLAIN
authentication. The example configures three different users:

admin

user1

user2

KafkaServer {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 user_admin="123456"
 user_user1="123456"
 user_user2="123456";
};

The JAAS configuration file with the user database should be kept in sync on all Kafka brokers.

When SASL PLAIN is also used for inter-broker authentication, the username and password properties
should be included in the JAAS context:

KafkaServer {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 username="admin"
 password="123456"
 user_admin="123456"
 user_user1="123456"
 user_user2="123456";
};

SASL SCRAM

SCRAM authentication in Kafka consists of two mechanisms: SCRAM-SHA-256 and SCRAM-SHA-512.
These mechanisms differ only in the hashing algorithm used - SHA-256 versus stronger SHA-512. To
enable SCRAM authentication, the JAAS configuration file has to include the following configuration:

CHAPTER 4. CONFIGURING KAFKA

47

KafkaServer {
 org.apache.kafka.common.security.scram.ScramLoginModule required;
};

When enabling SASL authentication in the Kafka configuration file, both SCRAM mechanisms can be
listed. However, only one of them can be chosen for the inter-broker communication. For example:

sasl.enabled.mechanisms=SCRAM-SHA-256,SCRAM-SHA-512
sasl.mechanism.inter.broker.protocol=SCRAM-SHA-512

User credentials for the SCRAM mechanism are stored in ZooKeeper. The kafka-configs.sh tool can be
used to manage them. For example, run the following command to add user user1 with password
123456:

bin/kafka-configs.sh --zookeeper zoo1.my-domain.com:2181 --alter --add-config 'SCRAM-SHA-256=
[password=123456],SCRAM-SHA-512=[password=123456]' --entity-type users --entity-name user1

To delete a user credential use:

bin/kafka-configs.sh --zookeeper zoo1.my-domain.com:2181 --alter --delete-config 'SCRAM-SHA-
512' --entity-type users --entity-name user1

SASL GSSAPI

The SASL mechanism used for authentication using Kerberos is called GSSAPI. To configure Kerberos
SASL authentication, the following configuration should be added to the JAAS configuration file:

KafkaServer {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 storeKey=true
 keyTab="/etc/security/keytabs/kafka_server.keytab"
 principal="kafka/kafka1.hostname.com@EXAMPLE.COM";
};

The domain name in the Kerberos principal has to be always in upper case.

In addition to the JAAS configuration, the Kerberos service name needs to be specified in the
sasl.kerberos.service.name property in the Kafka configuration:

sasl.enabled.mechanisms=GSSAPI
sasl.mechanism.inter.broker.protocol=GSSAPI
sasl.kerberos.service.name=kafka

Multiple SASL mechanisms

Kafka can use multiple SASL mechanisms at the same time. The different JAAS configurations can be
all added to the same context:

KafkaServer {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 user_admin="123456"
 user_user1="123456"
 user_user2="123456";

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

48

 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 storeKey=true
 keyTab="/etc/security/keytabs/kafka_server.keytab"
 principal="kafka/kafka1.hostname.com@EXAMPLE.COM";

 org.apache.kafka.common.security.scram.ScramLoginModule required;
};

When multiple mechanisms are enabled, clients will be able to choose the mechanism which they want to
use.

4.9.5. Enabling TLS client authentication

This procedure describes how to enable TLS client authentication in Kafka brokers.

Prerequisites

AMQ Streams is installed on all hosts which will be used as Kafka brokers.

TLS encryption is enabled.

Procedure

1. Prepare a JKS truststore containing the public key of the certification authority used to sign the
user certificates.

2. Edit the /opt/kafka/config/server.properties Kafka configuration file on all cluster nodes for
the following:

Set the ssl.truststore.location option to the path to the JKS truststore with the
certification authority of the user certificates.

Set the ssl.truststore.password option to the password you used to protect the truststore.

Set the ssl.client.auth option to required.
For example:

ssl.truststore.location=/path/to/truststore.jks
ssl.truststore.password=123456
ssl.client.auth=required

3. (Re)start the Kafka brokers

Additional resources

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For more information about running a Kafka cluster, see Section 4.5, “Running a multi-node
Kafka cluster”.

For more information about configuring TLS encryption in clients, see:

CHAPTER 4. CONFIGURING KAFKA

49

Appendix D, Producer configuration parameters

Appendix C, Consumer configuration parameters

4.9.6. Enabling SASL PLAIN authentication

This procedure describes how to enable SASL PLAIN authentication in Kafka brokers.

Prerequisites

AMQ Streams is installed on all hosts which will be used as Kafka brokers.

Procedure

1. Edit or create the /opt/kafka/config/jaas.conf JAAS configuration file. This file should contain
all your users and their passwords. Make sure this file is the same on all Kafka brokers.
For example:

KafkaServer {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 user_admin="123456"
 user_user1="123456"
 user_user2="123456";
};

2. Edit the /opt/kafka/config/server.properties Kafka configuration file on all cluster nodes for
the following:

Change the listener.security.protocol.map field to specify the SASL_PLAINTEXT or
SASL_SSL protocol for the listener where you want to use SASL PLAIN authentication.

Set the sasl.enabled.mechanisms option to PLAIN.
For example:

listeners=INSECURE://:9092,AUTHENTICATED://:9093,REPLICATION://:9094
listener.security.protocol.map=INSECURE:PLAINTEXT,AUTHENTICATED:SASL_PLAINT
EXT,REPLICATION:PLAINTEXT
sasl.enabled.mechanisms=PLAIN

3. (Re)start the Kafka brokers using the KAFKA_OPTS environment variable to pass the JAAS
configuration to Kafka brokers.

su - kafka
export KAFKA_OPTS="-Djava.security.auth.login.config=/opt/kafka/config/jaas.conf";
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

Additional resources

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For more information about running a Kafka cluster, see Section 4.5, “Running a multi-node
Kafka cluster”.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

50

For more information about configuring SASL PLAIN authentication in clients, see:

Appendix D, Producer configuration parameters

Appendix C, Consumer configuration parameters

4.9.7. Enabling SASL SCRAM authentication

This procedure describes how to enable SASL SCRAM authentication in Kafka brokers.

Prerequisites

AMQ Streams is installed on all hosts which will be used as Kafka brokers.

Procedure

1. Edit or create the /opt/kafka/config/jaas.conf JAAS configuration file. Enable the
ScramLoginModule for the KafkaServer context. Make sure this file is the same on all Kafka
brokers.
For example:

KafkaServer {
 org.apache.kafka.common.security.scram.ScramLoginModule required;
};

2. Edit the /opt/kafka/config/server.properties Kafka configuration file on all cluster nodes for
the following:

Change the listener.security.protocol.map field to specify the SASL_PLAINTEXT or
SASL_SSL protocol for the listener where you want to use SASL SCRAM authentication.

Set the sasl.enabled.mechanisms option to SCRAM-SHA-256 or SCRAM-SHA-512.
For example:

listeners=INSECURE://:9092,AUTHENTICATED://:9093,REPLICATION://:9094
listener.security.protocol.map=INSECURE:PLAINTEXT,AUTHENTICATED:SASL_PLAINT
EXT,REPLICATION:PLAINTEXT
sasl.enabled.mechanisms=SCRAM-SHA-512

3. (Re)start the Kafka brokers using the KAFKA_OPTS environment variable to pass the JAAS
configuration to Kafka brokers.

su - kafka
export KAFKA_OPTS="-Djava.security.auth.login.config=/opt/kafka/config/jaas.conf";
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

Additional resources

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For more information about running a Kafka cluster, see Section 4.5, “Running a multi-node
Kafka cluster”.

For more information about adding SASL SCRAM users, see Section 4.9.8, “Adding SASL

CHAPTER 4. CONFIGURING KAFKA

51

For more information about adding SASL SCRAM users, see Section 4.9.8, “Adding SASL
SCRAM users”.

For more information about deleting SASL SCRAM users, see Section 4.9.9, “Deleting SASL
SCRAM users”.

For more information about configuring SASL SCRAM authentication in clients, see:

Appendix D, Producer configuration parameters

Appendix C, Consumer configuration parameters

4.9.8. Adding SASL SCRAM users

This procedure describes how to add new users for authentication using SASL SCRAM.

Prerequisites

AMQ Streams is installed on all hosts which will be used as Kafka brokers.

SASL SCRAM authentication is enabled.

Procedure

Use the kafka-configs.sh tool to add new SASL SCRAM users.

For example:

bin/kafka-configs.sh --zookeeper zoo1.my-domain.com:2181 --alter --add-config 'SCRAM-
SHA-512=[password=123456]' --entity-type users --entity-name user1

Additional resources

For more information about configuring SASL SCRAM authentication in clients, see:

Appendix D, Producer configuration parameters

Appendix C, Consumer configuration parameters

4.9.9. Deleting SASL SCRAM users

This procedure describes how to remove users when using SASL SCRAM authentication.

Prerequisites

AMQ Streams is installed on all hosts which will be used as Kafka brokers.

SASL SCRAM authentication is enabled.

Procedure

bin/kafka-configs.sh --zookeeper <ZooKeeperAddress> --alter --add-config 'SCRAM-SHA-
512=[password=<Password>]' --entity-type users --entity-name <Username>

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

52

Use the kafka-configs.sh tool to delete SASL SCRAM users.

For example:

bin/kafka-configs.sh --zookeeper zoo1.my-domain.com:2181 --alter --delete-config 'SCRAM-
SHA-512' --entity-type users --entity-name user1

Additional resources

For more information about configuring SASL SCRAM authentication in clients, see:

Appendix D, Producer configuration parameters

Appendix C, Consumer configuration parameters

4.10. USING OAUTH 2.0 TOKEN-BASED AUTHENTICATION

AMQ Streams supports the use of OAuth 2.0 authentication using the SASL OAUTHBEARER
mechanism.

OAuth 2.0 enables standardized token based authentication and authorization between applications,
using a central authorization server to issue tokens that grant limited access to resources.

You can configure OAuth 2.0 authentication, then OAuth 2.0 authorization . OAuth 2.0 authentication
can also be used in conjunction with ACL-based Kafka authorization regardless of the authorization
server used.

Using OAuth 2.0 token-based authentication, application clients can access resources on application
servers (called resource servers) without exposing account credentials.

The application client passes an access token as a means of authenticating, which application servers
can also use to determine the level of access to grant. The authorization server handles the granting of
access and inquiries about access.

In the context of AMQ Streams:

Kafka brokers act as OAuth 2.0 resource servers

Kafka clients act as OAuth 2.0 application clients

Kafka clients authenticate to Kafka brokers. The brokers and clients communicate with the OAuth 2.0
authorization server, as necessary, to obtain or validate access tokens.

For a deployment of AMQ Streams, OAuth 2.0 integration provides:

Server-side OAuth 2.0 support for Kafka brokers

Client-side OAuth 2.0 support for Kafka Mirror Maker, Kafka Connect and the Kafka Bridge

Additional resources

OAuth 2.0 site

bin/kafka-configs.sh --zookeeper <ZooKeeperAddress> --alter --delete-config 'SCRAM-SHA-
512' --entity-type users --entity-name <Username>

CHAPTER 4. CONFIGURING KAFKA

53

https://oauth.net/2/

4.10.1. OAuth 2.0 authentication mechanism

The Kafka SASL OAUTHBEARER mechanism is used to establish authenticated sessions with a Kafka
broker.

A Kafka client initiates a session with the Kafka broker using the SASL OAUTHBEARER mechanism for
credentials exchange, where credentials take the form of an access token.

Kafka brokers and clients need to be configured to use OAuth 2.0.

4.10.1.1. Configuring OAuth 2.0 with properties or variables

You can configure OAuth 2.0 settings using Java Authentication and Authorization Service (JAAS)
properties or environment variables.

JAAS properties are configured in the server.properties configuration file, and passed as key-
values pairs of the listener.name.LISTENER-NAME.oauthbearer.sasl.jaas.config property.

Using environment variables, you still need the listener.name.LISTENER-
NAME.oauthbearer.sasl.jaas.config in the server.properties file, but you can omit the
properties.
You can use capitalized or upper-case environment variable naming conventions.

The Kafka OAuth 2.0 library uses properties that start with oauth. to configure authentication, and
properties that start with strimzi. to configure OAuth 2.0 authorization .

4.10.2. OAuth 2.0 Kafka broker configuration

Kafka broker configuration for OAuth 2.0 involves:

Creating the OAuth 2.0 client in the authorization server

Configuring OAuth 2.0 authentication in the Kafka cluster

NOTE

In relation to the authorization server, Kafka brokers and Kafka clients are both regarded
as OAuth 2.0 clients.

4.10.2.1. OAuth 2.0 client configuration on an authorization server

To configure a Kafka broker to validate the token received during session initiation, the recommended
approach is to create a OAuth 2.0 client definition in an authorization server, configured as confidential,
with the following client credentials enabled:

Client ID of kafka-broker (for example)

Client ID and secret as the authentication mechanism

NOTE

You only need to use a client ID and secret when using a non-public introspection
endpoint of the authorization server. The credentials are not typically required when using
public authorization server endpoints, as with fast local JWT token validation.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

54

1

2

3

4

4.10.2.2. OAuth 2.0 authentication configuration in the Kafka cluster

To use OAuth 2.0 authentication in the Kafka cluster, you enable a listener configuration for your Kafka
cluster in the Kafka server.properties file. A minimum configuration is required. You can also configure a
TLS listener, where TLS is used for inter-broker communication.

You can configure the broker for token validation by the authorization server using the:

JWKS endpoint in combination with signed JWT-formatted access tokens

Introspection endpoint

The minimum configuration shown here applies a global listener configuration. This means that inter-
broker communication, goes through the same listener as application clients.

To enable OAuth 2.0 configuration for a specific listener, you specify
listener.name.client.sasl.enabled.mechanisms instead of sasl.enabled.mechanisms, which is shown
in the example TLS listener configuration.

Minimum listener configuration for OAuth 2.0 authentication using a JWKS endpoint

Enables the OAUTHBEARER as SASL mechanism for credentials exchange over SASL.

Configures a listener for client applications to connect. The system hostname is used as an
advertised hostname, which clients must resolve in order to reconnect. CLIENT is the name of the
listener.

Specifies the channel protocol for the listener. SASL_SSL is for TLS. SASL_PLAINTEXT is used
for an unencrypted connection (no TLS), but there is risk of eavesdropping and interception at the
TCP connection layer.

Specifies OAUTHBEARER as SASL for the CLIENT listener. The client name (CLIENT) is usually
specified in uppercase in the listeners property, and in lowercase for listener.name properties
(listener.name.client). and in lowercase when part of a listener.name.client.* property.

sasl.enabled.mechanisms=OAUTHBEARER 1
listeners=CLIENT://0.0.0.0:9092 2
listener.security.protocol.map=CLIENT:SASL_PLAINTEXT 3
listener.name.client.sasl.enabled.mechanisms=OAUTHBEARER 4
sasl.mechanism.inter.broker.protocol=OAUTHBEARER 5
inter.broker.listener.name=CLIENT 6
listener.name.client.oauthbearer.sasl.server.callback.handler.class=io.strimzi.kafka.oauth.server.JaasSer
verOauthValidatorCallbackHandler 7
listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAut
hBearerLoginModule required \ 8
 oauth.valid.issuer.uri="https://AUTH-SERVER-ADDRESS" \ 9
 oauth.jwks.endpoint.uri="https://AUTH-SERVER-ADDRESS/jwks" \ 10
 oauth.username.claim="preferred_username" \ 11
 oauth.client.id="kafka-broker" \ 12
 oauth.client.secret="kafka-secret" \ 13
 oauth.token.endpoint.uri="https://AUTH-SERVER-ADDRESS/token" ; 14
listener.name.client.oauthbearer.sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClient
OauthLoginCallbackHandler 15

CHAPTER 4. CONFIGURING KAFKA

55

5

6

7

8

9

10

11

12

13

14

15

Specifies OAUTHBEARER as SASL for inter-broker communication.

Specifies the listener for inter-broker communication. The specification is required for the
configuration to be valid.

Configures OAuth 2.0 authentication on the client listener.

Configures authentication settings for client and inter-broker communication. The oauth.client.id,
oauth.client.secret, and auth.token.endpoint.uri properties relate to inter-broker configuration.

A valid issuer URI. Only access tokens issued by this issuer will be accepted. For example,
https://AUTH-SERVER-ADDRESS/auth/realms/REALM-NAME.

The JWKS endpoint URL. For example, https://AUTH-SERVER-ADDRESS/auth/realms/REALM-
NAME/protocol/openid-connect/certs.

The token claim (or key) that contains the actual user name in the token. The user name is the
principal used to identify the user. The value will depend on the authentication flow and the
authorization server used.

Client ID of the Kafka broker, which is the same for all brokers. This is the client registered with the
authorization server as kafka-broker.

Secret for the Kafka broker, which is the same for all brokers.

The OAuth 2.0 token endpoint URL to your authorization server. For production, always use
HTTPs. For example, https://AUTH-SERVER-ADDRESS/auth/realms/REALM-
NAME/protocol/openid-connect/token.

Enables (and is only required for) OAuth 2.0 authentication for inter-broker communication.

TLS listener configuration for OAuth 2.0 authentication

sasl.enabled.mechanisms=
listeners=REPLICATION://kafka:9091,CLIENT://kafka:9092 1
listener.security.protocol.map=REPLICATION:SSL,CLIENT:SASL_PLAINTEXT 2
listener.name.client.sasl.enabled.mechanisms=OAUTHBEARER
inter.broker.listener.name=REPLICATION
listener.name.replication.ssl.keystore.password=KEYTSTORE-PASSWORD 3
listener.name.replication.ssl.truststore.password=TRUSTSTORE-PASSWORD
listener.name.replication.ssl.keystore.type=JKS
listener.name.replication.ssl.truststore.type=JKS
listener.name.replication.ssl.endpoint.identification.algorithm=HTTPS 4
listener.name.replication.ssl.secure.random.implementation=SHA1PRNG 5
listener.name.replication.ssl.keystore.location=PATH-TO-KEYSTORE 6
listener.name.replication.ssl.truststore.location=PATH-TO-TRUSTSTORE 7
listener.name.replication.ssl.client.auth=required 8
listener.name.client.oauthbearer.sasl.server.callback.handler.class=io.strimzi.kafka.oauth.server.JaasSer
verOauthValidatorCallbackHandler
listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAut
hBearerLoginModule required \
 oauth.valid.issuer.uri="https://AUTH-SERVER-ADDRESS" \
 oauth.jwks.endpoint.uri="https://AUTH-SERVER-ADDRESS/jwks" \
 oauth.username.claim="preferred_username" ; 9

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

56

1

2

3

4

5

6

7

8

9

Separate configurations are required for inter-broker communication and client applications.

Configures the REPLICATION listener to use TLS, and the CLIENT listener to use SASL over an
unencrypted channel. The client could use an encrypted channel (SASL_SSL) in a production
environment.

The ssl. properties define the TLS configuration.

Random number generator implementation. If not set, the Java platform SDK default is used.

Hostname verification. If set to an empty string, the hostname verification is turned off. If not set,
the default value is HTTPS, which enforces hostname verification for server certificates.

Path to the keystore for the listener.

Path to the truststore for the listener.

Specifies that clients of the REPLICATION listener have to authenticate with a client certificate
when establishing a TLS connection (used for inter-broker connectivity).

Configures the CLIENT listener for OAuth 2.0. Connectivity with the authorization server should
use secure HTTPS connections.

4.10.2.3. Fast local JWT token validation configuration

Fast local JWT token validation checks a JWT token signature locally.

The local check ensures that a token:

Conforms to type by containing a (typ) claim value of Bearer for an access token

Is valid (not expired)

Has an issuer that matches a validIssuerURI

You specify a valid issuer URI when you configure the listener, so that any tokens not issued by the
authorization server are rejected.

The authorization server does not need to be contacted during fast local JWT token validation. You
activate fast local JWT token validation by specifying a JWKs endpoint URI exposed by the OAuth 2.0
authorization server. The endpoint contains the public keys used to validate signed JWT tokens, which
are sent as credentials by Kafka clients.

NOTE

All communication with the authorization server should be performed using HTTPS.

For a TLS listener, you can configure a certificate truststore and point to the truststore file.

Example properties for fast local JWT token validation

listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAut
hBearerLoginModule required \
 oauth.valid.issuer.uri="https://AUTH-SERVER-ADDRESS" \ 1
 oauth.jwks.endpoint.uri="https://AUTH-SERVER-ADDRESS/jwks" \ 2

CHAPTER 4. CONFIGURING KAFKA

57

1

2

3

4

5

6

7

8

1

A valid issuer URI. Only access tokens issued by this issuer will be accepted. For example,
https://AUTH-SERVER-ADDRESS/auth/realms/REALM-NAME.

The JWKS endpoint URL. For example, https://AUTH-SERVER-ADDRESS/auth/realms/REALM-
NAME/protocol/openid-connect/certs.

The period between endpoint refreshes (default 300).

The duration the JWKs certificates are considered valid before they expire. Default is 360 seconds.
If you specify a longer time, consider the risk of allowing access to revoked certificates.

The token claim (or key) that contains the actual user name in the token. The user name is the
principal used to identify the user. The value will depend on the authentication flow and the
authorization server used.

The location of the truststore used in the TLS configuration.

Password to access the truststore.

The truststore type in PKCS #12 format.

4.10.2.4. OAuth 2.0 introspection endpoint configuration

Token validation using an OAuth 2.0 introspection endpoint treats a received access token as opaque.
The Kafka broker sends an access token to the introspection endpoint, which responds with the token
information necessary for validation. Importantly, it returns up-to-date information if the specific access
token is valid, and also information about when the token expires.

To configure OAuth 2.0 introspection-based validation, you specify an introspection endpoint URI rather
than the JWKs endpoint URI specified for fast local JWT token validation. Depending on the
authorization server, you typically have to specify a client ID and client secret, because the introspection
endpoint is usually protected.

Example properties for an introspection endpoint

The OAuth 2.0 introspection endpoint URL. For example, https://AUTH-SERVER-
ADDRESS/auth/realms/REALM-NAME/protocol/openid-connect/token/introspect.

 oauth.jwks.refresh.seconds="300" \ 3
 oauth.jwks.expiry.seconds="360" \ 4
 oauth.username.claim="preferred_username" \ 5
 oauth.ssl.truststore.location="PATH-TO-TRUSTSTORE-P12-FILE" \ 6
 oauth.ssl.truststore.password="TRUSTSTORE-PASSWORD" \ 7
 oauth.ssl.truststore.type="PKCS12" ; 8

listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAut
hBearerLoginModule required \
 oauth.introspection.endpoint.uri="https://AUTH-SERVER-ADDRESS/introspection" \ 1
 oauth.client.id="kafka-broker" \ 2
 oauth.client.secret="kafka-broker-secret" \ 3
 oauth.ssl.truststore.location="PATH-TO-TRUSTSTORE-P12-FILE" \ 4
 oauth.ssl.truststore.password="TRUSTSTORE-PASSWORD" \ 5
 oauth.ssl.truststore.type="PKCS12" ; 6

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

58

2

3

4

5

6

Client ID of the Kafka broker.

Secret for the Kafka broker.

The location of the truststore used in the TLS configuration.

Password to access the truststore.

The truststore type in PKCS #12 format.

4.10.3. OAuth 2.0 Kafka client configuration

A Kafka client is configured with either:

The Credentials required to obtain a valid access token from an authorization server (client ID
and Secret)

A valid long-lived access token or refresh token, obtained using tools provided by an
authorization server

Credentials are never sent to the Kafka broker. The only information ever sent to the Kafka broker is an
access token. When a client obtains an access token, no further communication with the authorization
server is needed.

The simplest mechanism is authentication with a client ID and Secret. Using a long-lived access token, or
a long-lived refresh token, adds more complexity because there is additional dependency on
authorization server tools.

NOTE

If you are using long-lived access tokens, you may need to configure the client in the
authorization server to increase the maximum lifetime of the token.

If the Kafka client is not configured with an access token directly, the client exchanges credentials for an
access token during Kafka session initiation by contacting the authorization server. The Kafka client
exchanges either:

Client ID and Secret

Client ID, refresh token, and (optionally) a Secret

4.10.4. OAuth 2.0 client authentication flow

In this section, we explain and visualize the communication flow between Kafka client, Kafka broker, and
authorization server during Kafka session initiation. The flow depends on the client and server
configuration.

When a Kafka client sends an access token as credentials to a Kafka broker, the token needs to be
validated.

Depending on the authorization server used, and the configuration options available, you may prefer to
use:

Fast local token validation based on JWT signature checking and local token introspection,
without contacting the authorization server

CHAPTER 4. CONFIGURING KAFKA

59

An OAuth 2.0 introspection endpoint provided by the authorization server

Using fast local token validation requires the authorization server to provide a JWKS endpoint with
public certificates that are used to validate signatures on the tokens.

Another option is to use an OAuth 2.0 introspection endpoint on the authorization server. Each time a
new Kafka broker connection is established, the broker passes the access token received from the client
to the authorization server, and checks the response to confirm whether or not the token is valid.

Kafka client credentials can also be configured for:

Direct local access using a previously generated long-lived access token

Contact with the authorization server for a new access token to be issued

NOTE

An authorization server might only allow the use of opaque access tokens, which means
that local token validation is not possible.

4.10.4.1. Example client authentication flows

Here you can see the communication flows, for different configurations of Kafka clients and brokers,
during Kafka session authentication.

Client using client ID and secret, with broker delegating validation to authorization server

Client using client ID and secret, with broker performing fast local token validation

Client using long-lived access token, with broker delegating validation to authorization server

Client using long-lived access token, with broker performing fast local validation

Client using client ID and secret, with broker delegating validation to authorization server

1. Kafka client requests access token from authorization server, using client ID and secret, and
optionally a refresh token.

2. Authorization server generates a new access token.

3. Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER mechanism to
pass the access token.

4. Kafka broker validates the access token by calling a token introspection endpoint on
authorization server, using its own client ID and secret.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

60

5. Kafka client session is established if the token is valid.

Client using client ID and secret, with broker performing fast local token validation

1. Kafka client authenticates with authorization server from the token endpoint, using a client ID
and secret, and optionally a refresh token.

2. Authorization server generates a new access token.

3. Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER mechanism to
pass the access token.

4. Kafka broker validates the access token locally using a JWT token signature check, and local
token introspection.

Client using long-lived access token, with broker delegating validation to authorization
server

1. Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER mechanism to
pass the long-lived access token.

2. Kafka broker validates the access token by calling a token introspection endpoint on
authorization server, using its own client ID and secret.

3. Kafka client session is established if the token is valid.

Client using long-lived access token, with broker performing fast local validation

CHAPTER 4. CONFIGURING KAFKA

61

1. Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER mechanism to
pass the long-lived access token.

2. Kafka broker validates the access token locally using JWT token signature check, and local
token introspection.

WARNING

Fast local JWT token signature validation is suitable only for short-lived tokens as
there is no check with the authorization server if a token has been revoked. Token
expiration is written into the token, but revocation can happen at any time, so
cannot be accounted for without contacting the authorization server. Any issued
token would be considered valid until it expires.

4.10.5. Configuring OAuth 2.0 authentication

OAuth 2.0 is used for interaction between Kafka clients and AMQ Streams components.

In order to use OAuth 2.0 for AMQ Streams, you must:

1. Configure an OAuth 2.0 authorization server for the AMQ Streams cluster and Kafka clients

2. Deploy or update the Kafka cluster with Kafka broker listeners configured to use OAuth 2.0

3. Update your Java-based Kafka clients to use OAuth 2.0

4.10.5.1. Configuring Red Hat Single Sign-On as an OAuth 2.0 authorization server

This procedure describes how to deploy Red Hat Single Sign-On as an authorization server and
configure it for integration with AMQ Streams.

The authorization server provides a central point for authentication and authorization, and management
of users, clients, and permissions. Red Hat Single Sign-On has a concept of realms where a realm
represents a separate set of users, clients, permissions, and other configuration. You can use a default
master realm, or create a new one. Each realm exposes its own OAuth 2.0 endpoints, which means that
application clients and application servers all need to use the same realm.

To use OAuth 2.0 with AMQ Streams, you need a deployment of an authorization server to be able to
create and manage authentication realms.

NOTE



Red Hat AMQ 7.7 Using AMQ Streams on RHEL

62

NOTE

If you already have Red Hat Single Sign-On deployed, you can skip the deployment step
and use your current deployment.

Before you begin

You will need to be familiar with using Red Hat Single Sign-On.

For installation and administration instructions, see:

Server Installation and Configuration Guide

Server Administration Guide

Prerequisites

AMQ Streams and Kafka are running

For the Red Hat Single Sign-On deployment:

Check the Red Hat Single Sign-On Supported Configurations

Procedure

1. Install Red Hat Single Sign-On.
You can install from a ZIP file or by using an RPM.

2. Log in to the Red Hat Single Sign-On Admin Console to create the OAuth 2.0 policies for AMQ
Streams.
Login details are provided when you deploy Red Hat Single Sign-On.

3. Create and enable a realm.
You can use an existing master realm.

4. Adjust the session and token timeouts for the realm, if required.

5. Create a client called kafka-broker.

6. From the Settings tab, set:

Access Type to Confidential

Standard Flow Enabled to OFF to disable web login for this client

Service Accounts Enabled to ON to allow this client to authenticate in its own name

7. Click Save before continuing.

8. From the Credentials tab, take a note of the secret for using in your AMQ Streams Kafka cluster
configuration.

9. Repeat the client creation steps for any application client that will connect to your Kafka
brokers.
Create a definition for each new client.

You will use the names as client IDs in your configuration.

CHAPTER 4. CONFIGURING KAFKA

63

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html/server_installation_and_configuration_guide/index
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html/server_administration_guide/index
https://access.redhat.com/articles/2342861

What to do next

After deploying and configuring the authorization server, configure the Kafka brokers to use OAuth 2.0 .

4.10.5.2. Configuring OAuth 2.0 support for Kafka brokers

This procedure describes how to configure Kafka brokers so that the broker listeners are enabled to use
OAuth 2.0 authentication using an authorization server.

We advise use of OAuth 2.0 over an encrypted interface through configuration of TLS listeners. Plain
listeners are not recommended.

Configure the Kafka brokers using properties that support your chosen authorization server, and the
type of authorization you are implementing.

Before you start

For more information on the configuration and authentication of Kafka broker listeners, see:

Listeners

Encryption and authentication

For a description of the properties used in the listener configuration, see:

OAuth 2.0 Kafka broker configuration

Prerequisites

AMQ Streams and Kafka are running

An OAuth 2.0 authorization server is deployed

Procedure

1. Configure the Kafka broker listener configuration in the server.properties file.
For example:

2. Configure broker connection settings as part of the
listener.name.client.oauthbearer.sasl.jaas.config.
The examples here show connection configuration options.

Example 1: Local token validation using a JWKS endpoint configuration

sasl.enabled.mechanisms=OAUTHBEARER
listeners=CLIENT://0.0.0.0:9092
listener.security.protocol.map=CLIENT:SASL_PLAINTEXT
listener.name.client.sasl.enabled.mechanisms=OAUTHBEARER
sasl.mechanism.inter.broker.protocol=OAUTHBEARER
inter.broker.listener.name=CLIENT
listener.name.client.oauthbearer.sasl.server.callback.handler.class=io.strimzi.kafka.oauth.server.
JaasServerOauthValidatorCallbackHandler
listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbear
er.OAuthBearerLoginModule required ;
listener.name.client.oauthbearer.sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.Ja
asClientOauthLoginCallbackHandler

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

64

Example 2: Delegating token validation to the authorization server through the
OAuth 2.0 introspection endpoint

3. If required, configure access to the authorization server.
This step is normally required for a production environment, unless a technology like service
mesh is used to configure secure channels outside containers.

a. Provide a custom truststore for connecting to a secured authorization server. SSL is always
required for access to the authorization server.
Set properties to configure the truststore.

For example:

b. If the certificate hostname does not match the access URL hostname, you can turn off
certificate hostname validation:

The check ensures that client connection to the authorization server is authentic. You may
wish to turn off the validation in a non-production environment.

4. Configure additional properties according to your chosen authentication flow.

listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbear
er.OAuthBearerLoginModule required \
 oauth.valid.issuer.uri="https://AUTH-SERVER-ADDRESS/auth/realms/REALM-NAME" \
 oauth.jwks.endpoint.uri="https://AUTH-SERVER-ADDRESS/auth/realms/REALM-
NAME/protocol/openid-connect/certs" \
 oauth.jwks.refresh.seconds="300" \
 oauth.jwks.expiry.seconds="360" \
 oauth.username.claim="preferred_username" \
 oauth.ssl.truststore.location="PATH-TO-TRUSTSTORE-P12-FILE" \
 oauth.ssl.truststore.password="TRUSTSTORE-PASSWORD" \
 oauth.ssl.truststore.type="PKCS12" ;

listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbear
er.OAuthBearerLoginModule required \
 oauth.introspection.endpoint.uri="https://AUTH-SERVER-ADDRESS/auth/realms/REALM-
NAME/protocol/openid-connect/introspection" \
 # ...

listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauth
bearer.OAuthBearerLoginModule required \
 # ...
 oauth.client.id="kafka-broker" \
 oauth.client.secret="kafka-broker-secret" \
 oauth.ssl.truststore.location="PATH-TO-TRUSTSTORE-P12-FILE" \
 oauth.ssl.truststore.password="TRUSTSTORE-PASSWORD" \
 oauth.ssl.truststore.type="PKCS12" ;

oauth.ssl.endpoint.identification.algorithm=""

listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbear
er.OAuthBearerLoginModule required \
 # ...
 oauth.token.endpoint.uri="https://AUTH-SERVER-ADDRESS/auth/realms/REALM-

CHAPTER 4. CONFIGURING KAFKA

65

1

2

3

4

5

6

1

2

3

The OAuth 2.0 token endpoint URL to your authorization server. For production, always
use HTTPs. Required when KeycloakRBACAuthorizer is used, or an OAuth 2.0 enabled
listener is used for inter-broker communication.

A valid issuer URI. Only access tokens issued by this issuer will be accepted. (Always
required.)

The configured client ID of the Kafka broker, which is the same for all brokers. This is the
client registered with the authorization server as kafka-broker. Required when an
introspection endpoint is used for token validation, or when KeycloakRBACAuthorizer is
used.

The configured secret for the Kafka broker, which is the same for all brokers. When the
broker must authenticate to the authorization server, either a client secret, access token or
a refresh token has to be specified.

(Optional) A long-lived refresh token for Kafka brokers.

(Optional) A long-lived access token for Kafka brokers.

5. Depending on how you apply OAuth 2.0 authentication, and the type of authorization server
being used, add additional configuration settings:

If your authorization server does not provide an iss claim, it is not possible to perform an
issuer check. In this situation, set oauth.check.issuer to false and do not specify a
oauth.valid.issuer.uri. Default is true.

An authorization server may not provide a single attribute to identify both regular users
and clients. When a client authenticates in its own name, the server might provide a client
ID. When a user authenticates using a username and password, to obtain a refresh token or
an access token, the server might provide a username attribute in addition to a client ID.
Use this fallback option to specify the username claim (attribute) to use if a primary user ID
attribute is not available.

In situations where oauth.fallback.username.claim is applicable, it may also be necessary

NAME/protocol/openid-connect/token" \ 1
 oauth.valid.issuer.uri="https://https://AUTH-SERVER-ADDRESS/auth/REALM-NAME" \ 2
 oauth.client.id="kafka-broker" \ 3
 oauth.client.secret="kafka-broker-secret" \ 4

 oauth.refresh.token="REFRESH-TOKEN-FOR-KAFKA-BROKERS" \ 5
 oauth.access.token="ACCESS-TOKEN-FOR-KAFKA-BROKERS" ; 6

listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbear
er.OAuthBearerLoginModule required \
 # ...
 oauth.check.issuer=false \ 1
 oauth.fallback.username.claim="CLIENT-ID" \ 2
 oauth.fallback.username.prefix="CLIENT-ACCOUNT" \ 3
 oauth.valid.token.type="bearer" \ 4
 oauth.userinfo.endpoint.uri="https://AUTH-SERVER-ADDRESS/auth/realms/REALM-
NAME/protocol/openid-connect/userinfo" ; 5

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

66

4

5

1

2

(Only applicable when using oauth.introspection.endpoint.uri) Depending on the
authorization server you are using, the introspection endpoint may or may not return the

(Only applicable when using oauth.introspection.endpoint.uri) The authorization server
may be configured or implemented in such a way to not provide any identifiable
information in an introspection endpoint response. In order to obtain the user ID, you can
configure the URI of the userinfo endpoint as a fallback. The
oauth.fallback.username.claim, oauth.fallback.username.claim, and
oauth.fallback.username.prefix settings are applied to the response of the userinfo
endpoint.

What to do next

Configure your Kafka clients to use OAuth 2.0

4.10.5.3. Configuring Kafka Java clients to use OAuth 2.0

This procedure describes how to configure Kafka producer and consumer APIs to use OAuth 2.0 for
interaction with Kafka brokers.

Add a client callback plugin to your pom.xml file, and configure the system properties.

Prerequisites

AMQ Streams and Kafka are running

An OAuth 2.0 authorization server is deployed and configured for OAuth access to Kafka
brokers

Kafka brokers are configured for OAuth 2.0

Procedure

1. Add the client library with OAuth 2.0 support to the pom.xml file for the Kafka client:

2. Configure the system properties for the callback:
For example:

URI of the authorization server token endpoint.

Client ID, which is the name used when creating the client in the authorization server.

<dependency>
 <groupId>io.strimzi</groupId>
 <artifactId>kafka-oauth-client</artifactId>
 <version>0.5.0.redhat-00001</version>
</dependency>

System.setProperty(ClientConfig.OAUTH_TOKEN_ENDPOINT_URI, “https://AUTH-
SERVER-ADDRESS/auth/realms/REALM-NAME/protocol/openid-connect/token”); 1
System.setProperty(ClientConfig.OAUTH_CLIENT_ID, "CLIENT-NAME"); 2
System.setProperty(ClientConfig.OAUTH_CLIENT_SECRET, "CLIENT_SECRET"); 3
System.setProperty(ClientConfig.OAUTH_SCOPE, "SCOPE-VALUE") 4

CHAPTER 4. CONFIGURING KAFKA

67

3

4

1

Client secret created when creating the client in the authorization server.

(Optional) The scope for requesting the token from the token endpoint. An authorization
server may require a client to specify the scope.

3. Enable the SASL OAUTHBEARER mechanism on a TLS encrypted connection in the Kafka client
configuration:
For example:

Here we use SASL_SSL for use over TLS connections. Use SASL_PLAINTEXT over
unencrypted connections.

4. Verify that the Kafka client can access the Kafka brokers.

4.11. USING OAUTH 2.0 TOKEN-BASED AUTHORIZATION

IMPORTANT

OAuth 2.0 authorization is a Technology Preview only. Technology Preview features are
not supported with Red Hat production service-level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend implementing any Technology
Preview features in production environments. This Technology Preview feature provides
early access to upcoming product innovations, enabling you to test functionality and
provide feedback during the development process. For more information about the
support scope of Red Hat Technology Preview features, see Technology Preview
Features Support Scope.

Authorizing access to Kafka brokers
If you are using OAuth 2.0 with Red Hat Single Sign-On for token-based authentication, you can also
use Red Hat Single Sign-On to configure authorization rules to constrain client access to Kafka brokers.
Authentication establishes the identity of a user. Authorization decides the level of access for that user.

AMQ Streams supports the use of OAuth 2.0 token-based authorization through Red Hat Single Sign-
On Authorization Services, which allows you to manage security policies and permissions centrally.

Security policies and permissions defined in Red Hat Single Sign-On are used to grant access to
resources on Kafka brokers. Users and clients are matched against policies that permit access to
perform specific actions on Kafka brokers.

Kafka allows all users full access to brokers by default, and also provides the SimpleACLAuthorizer
plugin to configure authorization based on Access Control Lists (ACLs). ZooKeeper stores ACL rules
that grant or deny access to resources based on username. However, OAuth 2.0 token-based
authorization with Red Hat Single Sign-On offers far greater flexibility on how you wish to implement
access control to Kafka brokers. In addition, you can configure your Kafka brokers to use OAuth 2.0
authorization and ACLs.

props.put("sasl.jaas.config",
"org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule required;");
props.put("security.protocol", "SASL_SSL"); 1
props.put("sasl.mechanism", "OAUTHBEARER");
props.put("sasl.login.callback.handler.class",
"io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallbackHandler");

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

68

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html/authorization_services_guide/index

Additional resources

Using OAuth 2.0 token based authentication

ACL authorization

Red Hat Single Sign-On documentation

4.11.1. OAuth 2.0 authorization mechanism

OAuth 2.0 authorization in AMQ Streams uses Red Hat Single Sign-On server Authorization Services
REST endpoints to extend token-based authentication with Red Hat Single Sign-On by applying
defined security policies on a particular user, and providing a list of permissions granted on different
resources for that user. Policies use roles and groups to match permissions to users. OAuth 2.0
authorization enforces permissions locally based on the received list of grants for the user from Red Hat
Single Sign-On Authorization Services.

4.11.1.1. Kafka broker custom authorizer

A Red Hat Single Sign-On authorizer (KeycloakRBACAuthorizer) is provided with AMQ Streams. To be
able to use the Red Hat Single Sign-On REST endpoints for Authorization Services provided by Red Hat
Single Sign-On, you configure a custom authorizer on the Kafka broker.

The authorizer fetches a list of granted permissions from the authorization server as needed, and
enforces authorization locally on the Kafka Broker, making rapid authorization decisions for each client
request.

4.11.2. Configuring OAuth 2.0 authorization support

This procedure describes how to configure Kafka brokers to use OAuth 2.0 authorization using Red Hat
Single Sign-On Authorization Services.

Before you begin

Consider the access you require or want to limit for certain users. You can use a combination of Red Hat
Single Sign-On groups, roles, clients, and users to configure access in Red Hat Single Sign-On.

Typically, groups are used to match users based on organizational departments or geographical
locations. And roles are used to match users based on their function.

With Red Hat Single Sign-On, you can store users and groups in LDAP, whereas clients and roles cannot
be stored this way. Storage and access to user data may be a factor in how you choose to configure
authorization policies.

NOTE

Super users always have unconstrained access to a Kafka broker regardless of the
authorization implemented on the Kafka broker.

Prerequisites

AMQ Streams must be configured to use OAuth 2.0 with Red Hat Single Sign-On for token-
based authentication. You use the same Red Hat Single Sign-On server endpoint when you set
up authorization.

You need to understand how to manage policies and permissions for Red Hat Single Sign-On

CHAPTER 4. CONFIGURING KAFKA

69

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/

1

2

1

You need to understand how to manage policies and permissions for Red Hat Single Sign-On
Authorization Services, as described in the Red Hat Single Sign-On documentation .

Procedure

1. Access the Red Hat Single Sign-On Admin Console or use the Red Hat Single Sign-On Admin
CLI to enable Authorization Services for the Kafka broker client you created when setting up
OAuth 2.0 authentication.

2. Use Authorization Services to define resources, authorization scopes, policies, and permissions
for the client.

3. Bind the permissions to users and clients by assigning them roles and groups.

4. Configure the Kafka brokers to use Red Hat Single Sign-On authorization.
Add the following to the Kafka server.properties configuration file to install the authorizer in
Kafka:

5. Add configuration for the Kafka brokers to access the authorization server and Authorization
Services.
Here we show example configuration added as additional properties to server.properties, but
you can also define them as environment variables using capitalized or upper-case naming
conventions.

The OAuth 2.0 token endpoint URL to Red Hat Single Sign-On. For production, always use
HTTPs.

The client ID of the OAuth 2.0 client definition in Red Hat Single Sign-On that has
Authorization Services enabled. Typically, kafka is used as the ID.

6. (Optional) Add configuration for specific Kafka clusters.
For example:

The name of a specific Kafka cluster. Names are used to target permissions, making it
possible to manage multiple clusters within the same Red Hat Single Sign-On realm. The
default value is kafka-cluster.

7. (Optional) Delegate to simple authorization.
For example:

Delegate authorization to Kafka SimpleACLAuthorizer if access is denied by Red Hat

authorizer.class.name=io.strimzi.kafka.oauth.server.authorizer.KeycloakRBACAuthorizer
principal.builder.class=io.strimzi.kafka.oauth.server.authorizer.JwtKafkaPrincipalBuilder

strimzi.authz.token.endpoint.uri="https://AUTH-SERVER-ADDRESS/auth/realms/REALM-
NAME/protocol/openid-connect/token" 1
strimzi.authz.client.id="kafka" 2

strimzi.authz.kafka.cluster.name="kafka-cluster" 1

strimzi.authz.delegate.to.kafka.acl="false" 1

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

70

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/

1

1

2

3

4

5

Delegate authorization to Kafka SimpleACLAuthorizer if access is denied by Red Hat
Single Sign-On Authorization Services policies. The default is false.

8. (Optional) Add configuration for TLS connection to the authorization server.
For example:

The path to the truststore that contain the certificates.

The password for the truststore.

The truststore type. If not set, the default Java keystore type is used.

Random number generator implementation. If not set, the Java platform SDK default is
used.

Hostname verification. If set to an empty string, the hostname verification is turned off. If
not set, the default value is HTTPS, which enforces hostname verification for server
certificates.

9. Verify the configured permissions by accessing Kafka brokers as clients or users with specific
roles, making sure they have the necessary access, or do not have the access they are not
supposed to have.

4.12. LOGGING

Kafka brokers use Log4j as their logging infrastructure. Logging configuration is by default read from
the log4j.propeties configuration file which should be placed either in the /opt/kafka/config/ directory
or on the classpath. The location and name of the configuration file can be changed using the Java
property log4j.configuration which can be passed to Kafka using the KAFKA_LOG4J_OPTS
environment variable:

su - kafka
export KAFKA_LOG4J_OPTS="-Dlog4j.configuration=file:/my/path/to/log4j.config";
/opt/kafka/bin/kafka-server-start.sh /opt/kafka/config/server.properties

For more information about Log4j configurations, see Log4j manual.

strimzi.authz.ssl.truststore.location=<path-to-truststore> 1
strimzi.authz.ssl.truststore.password=<my-truststore-password> 2
strimzi.authz.ssl.truststore.type=JKS 3
strimzi.authz.ssl.secure.random.implementation=SHA1PRNG 4
strimzi.authz.ssl.endpoint.identification.algorithm=HTTPS 5

CHAPTER 4. CONFIGURING KAFKA

71

http://logging.apache.org/log4j/1.2/manual.html

CHAPTER 5. TOPICS
Messages in Kafka are always sent to or received from a topic. This chapter describes how to configure
and manage Kafka topics.

5.1. PARTITIONS AND REPLICAS

Messages in Kafka are always sent to or received from a topic. A topic is always split into one or more
partitions. Partitions act as shards. That means that every message sent by a producer is always written
only into a single partition. Thanks to the sharding of messages into different partitions, topics are easy
to scale horizontally.

Each partition can have one or more replicas, which will be stored on different brokers in the cluster.
When creating a topic you can configure the number of replicas using the replication factor. Replication
factor defines the number of copies which will be held within the cluster. One of the replicas for given
partition will be elected as a leader. The leader replica will be used by the producers to send new
messages and by the consumers to consume messages. The other replicas will be follower replicas. The
followers replicate the leader.

If the leader fails, one of the followers will automatically become the new leader. Each server acts as a
leader for some of its partitions and a follower for others so the load is well balanced within the cluster.

NOTE

The replication factor determines the number of replicas including the leader and the
followers. For example, if you set the replication factor to 3, then there will one leader and
two follower replicas.

5.2. MESSAGE RETENTION

The message retention policy defines how long the messages will be stored on the Kafka brokers. It can
be defined based on time, partition size or both.

For example, you can define that the messages should be kept:

For 7 days

Until the parition has 1GB of messages. Once the limit is reached, the oldest messages will be
removed.

For 7 days or until the 1GB limit has been reached. Whatever limit comes first will be used.

WARNING

Kafka brokers store messages in log segments. The messages which are past their
retention policy will be deleted only when a new log segment is created. New log
segments are created when the previous log segment exceeds the configured log
segment size. Additionally, users can request new segments to be created
periodically.



Red Hat AMQ 7.7 Using AMQ Streams on RHEL

72

Additionally, Kafka brokers support a compacting policy.

For a topic with the compacted policy, the broker will always keep only the last message for each key.
The older messages with the same key will be removed from the partition. Because compacting is a
periodically executed action, it does not happen immediately when the new message with the same key
are sent to the partition. Instead it might take some time until the older messages are removed.

For more information about the message retention configuration options, see Section 5.5, “Topic
configuration”.

5.3. TOPIC AUTO-CREATION

When a producer or consumer tries to send messages to or receive messages from a topic that does not
exist, Kafka will, by default, automatically create that topic. This behavior is controlled by the
auto.create.topics.enable configuration property which is set to true by default.

To disable it, set auto.create.topics.enable to false in the Kafka broker configuration file:

auto.create.topics.enable=false

5.4. TOPIC DELETION

Kafka offers the possibility to disable deletion of topics. This is configured through the
delete.topic.enable property, which is set to true by default (that is, deleting topics is possible). When
this property is set to false it will be not possible to delete topics and all attempts to delete topic will
return success but the topic will not be deleted.

delete.topic.enable=false

5.5. TOPIC CONFIGURATION

Auto-created topics will use the default topic configuration which can be specified in the broker
properties file. However, when creating topics manually, their configuration can be specified at creation
time. It is also possible to change a topic’s configuration after it has been created. The main topic
configuration options for manually created topics are:

cleanup.policy

Configures the retention policy to delete or compact. The delete policy will delete old records. The
compact policy will enable log compaction. The default value is delete. For more information about
log compaction, see Kafka website.

compression.type

Specifies the compression which is used for stored messages. Valid values are gzip, snappy, lz4,
uncompressed (no compression) and producer (retain the compression codec used by the
producer). The default value is producer.

max.message.bytes

The maximum size of a batch of messages allowed by the Kafka broker, in bytes. The default value is
1000012.

min.insync.replicas

The minimum number of replicas which must be in sync for a write to be considered successful. The
default value is 1.

retention.ms

CHAPTER 5. TOPICS

73

http://kafka.apache.org/documentation/#compaction

Maximum number of milliseconds for which log segments will be retained. Log segments older than
this value will be deleted. The default value is 604800000 (7 days).

retention.bytes

The maximum number of bytes a partition will retain. Once the partition size grows over this limit, the
oldest log segments will be deleted. Value of -1 indicates no limit. The default value is -1.

segment.bytes

The maximum file size of a single commit log segment file in bytes. When the segment reaches its
size, a new segment will be started. The default value is 1073741824 bytes (1 gibibyte).

For list of all supported topic configuration options, see Appendix B, Topic configuration parameters.

The defaults for auto-created topics can be specified in the Kafka broker configuration using similar
options:

log.cleanup.policy

See cleanup.policy above.

compression.type

See compression.type above.

message.max.bytes

See max.message.bytes above.

min.insync.replicas

See min.insync.replicas above.

log.retention.ms

See retention.ms above.

log.retention.bytes

See retention.bytes above.

log.segment.bytes

See segment.bytes above.

default.replication.factor

Default replication factor for automatically created topics. Default value is 1.

num.partitions

Default number of partitions for automatically created topics. Default value is 1.

For list of all supported Kafka broker configuration options, see Appendix A, Broker configuration
parameters.

5.6. INTERNAL TOPICS

Internal topics are created and used internally by the Kafka brokers and clients. Kafka has several internal
topics. These are used to store consumer offsets (__consumer_offsets) or transaction state
(__transaction_state). These topics can be configured using dedicated Kafka broker configuration
options starting with prefix offsets.topic. and transaction.state.log.. The most important configuration
options are:

offsets.topic.replication.factor

Number of replicas for __consumer_offsets topic. The default value is 3.

offsets.topic.num.partitions

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

74

Number of partitions for __consumer_offsets topic. The default value is 50.

transaction.state.log.replication.factor

Number of replicas for __transaction_state topic. The default value is 3.

transaction.state.log.num.partitions

Number of partitions for __transaction_state topic. The default value is 50.

transaction.state.log.min.isr

Minimum number of replicas that must acknowledge a write to __transaction_state topic to be
considered successful. If this minimum cannot be met, then the producer will fail with an exception.
The default value is 2.

5.7. CREATING A TOPIC

The kafka-topics.sh tool can be used to manage topics. kafka-topics.sh is part of the AMQ Streams
distribution and can be found in the bin directory.

Prerequisites

AMQ Streams cluster is installed and running

Creating a topic

1. Create a topic using the kafka-topics.sh utility and specify the following: ZooKeeper URL in the
--zookeeper option. The new topic to be created in the --create option. Topic name in the --
topic option. The number of partitions in the --partitions option. Replication factor in the --
replication-factor option.
You can also override some of the default topic configuration options using the option --config.
This option can be used multiple times to override different options.

Example of the command to create a topic named mytopic

2. Verify that the topic exists using kafka-topics.sh.

Example of the command to describe a topic named mytopic

Additional resources

For more information about topic configuration, see Section 5.5, “Topic configuration” .

For list of all supported topic configuration options, see Appendix B, Topic configuration

bin/kafka-topics.sh --zookeeper <ZooKeeperAddress> --create --topic <TopicName> --
partitions <NumberOfPartitions> --replication-factor <ReplicationFactor> --config
<Option1>=<Value1> --config <Option2>=<Value2>

bin/kafka-topics.sh --zookeeper zoo1.my-domain.com:2181 --create --topic mytopic --
partitions 50 --replication-factor 3 --config cleanup.policy=compact --config
min.insync.replicas=2

bin/kafka-topics.sh --zookeeper <ZooKeeperAddress> --describe --topic <TopicName>

bin/kafka-topics.sh --zookeeper zoo1.my-domain.com:2181 --describe --topic mytopic

CHAPTER 5. TOPICS

75

For list of all supported topic configuration options, see Appendix B, Topic configuration
parameters.

5.8. LISTING AND DESCRIBING TOPICS

The kafka-topics.sh tool can be used to list and describe topics. kafka-topics.sh is part of the AMQ
Streams distribution and can be found in the bin directory.

Prerequisites

AMQ Streams cluster is installed and running

Topic mytopic exists

Describing a topic

1. Describe a topic using the kafka-topics.sh utility.

Specify the ZooKeeper URL in the --zookeeper option.

Use --describe option to specify that you want to describe a topic.

Topic name has to be specified in the --topic option.

When the --topic option is omitted, it will describe all available topics.

Example of the command to describe a topic named mytopic

The describe command will list all partitions and replicas which belong to this topic. It will
also list all topic configuration options.

Additional resources

For more information about topic configuration, see Section 5.5, “Topic configuration” .

For more information about creating topics, see Section 5.7, “Creating a topic” .

5.9. MODIFYING A TOPIC CONFIGURATION

The kafka-configs.sh tool can be used to modify topic configurations. kafka-configs.sh is part of the
AMQ Streams distribution and can be found in the bin directory.

Prerequisites

AMQ Streams cluster is installed and running

Topic mytopic exists

Modify topic configuration

bin/kafka-topics.sh --zookeeper <ZooKeeperAddress> --describe --topic <TopicName>

bin/kafka-topics.sh --zookeeper zoo1.my-domain.com:2181 --describe --topic mytopic

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

76

1. Use the kafka-configs.sh tool to get the current configuration.

Specify the ZooKeeper URL in the --zookeeper option.

Set the --entity-type as topic and --entity-name to the name of your topic.

Use --describe option to get the current configuration.

Example of the command to get configuration of a topic named mytopic

2. Use the kafka-configs.sh tool to change the configuration.

Specify the ZooKeeper URL in the --zookeeper options.

Set the --entity-type as topic and --entity-name to the name of your topic.

Use --alter option to modify the current configuration.

Specify the options you want to add or change in the option --add-config.

Example of the command to change configuration of a topic named mytopic

3. Use the kafka-configs.sh tool to delete an existing configuration option.

Specify the ZooKeeper URL in the --zookeeper options.

Set the --entity-type as topic and --entity-name to the name of your topic.

Use --delete-config option to remove existing configuration option.

Specify the options you want to remove in the option --remove-config.

Example of the command to change configuration of a topic named mytopic

Additional resources

bin/kafka-configs.sh --zookeeper <ZooKeeperAddress> --entity-type topics --entity-name
<TopicName> --describe

bin/kafka-configs.sh --zookeeper zoo1.my-domain.com:2181 --entity-type topics --entity-
name mytopic --describe

bin/kafka-configs.sh --zookeeper <ZooKeeperAddress> --entity-type topics --entity-name
<TopicName> --alter --add-config <Option>=<Value>

bin/kafka-configs.sh --zookeeper zoo1.my-domain.com:2181 --entity-type topics --entity-
name mytopic --alter --add-config min.insync.replicas=1

bin/kafka-configs.sh --zookeeper <ZooKeeperAddress> --entity-type topics --entity-name
<TopicName> --alter --delete-config <Option>

bin/kafka-configs.sh --zookeeper zoo1.my-domain.com:2181 --entity-type topics --entity-
name mytopic --alter --delete-config min.insync.replicas

CHAPTER 5. TOPICS

77

For more information about topic configuration, see Section 5.5, “Topic configuration” .

For more information about creating topics, see Section 5.7, “Creating a topic” .

For list of all supported topic configuration options, see Appendix B, Topic configuration
parameters.

5.10. DELETING A TOPIC

The kafka-topics.sh tool can be used to manage topics. kafka-topics.sh is part of the AMQ Streams
distribution and can be found in the bin directory.

Prerequisites

AMQ Streams cluster is installed and running

Topic mytopic exists

Deleting a topic

1. Delete a topic using the kafka-topics.sh utility.

Specify the ZooKeeper URL in the --zookeeper option.

Use --delete option to specify that an existing topic should be deleted.

Topic name has to be specified in the --topic option.

Example of the command to create a topic named mytopic

2. Verify that the topic was deleted using kafka-topics.sh.

Example of the command to list all topics

Additional resources

For more information about creating topics, see Section 5.7, “Creating a topic” .

bin/kafka-topics.sh --zookeeper <ZooKeeperAddress> --delete --topic <TopicName>

bin/kafka-topics.sh --zookeeper zoo1.my-domain.com:2181 --delete --topic mytopic

bin/kafka-topics.sh --zookeeper <ZooKeeperAddress> --list

bin/kafka-topics.sh --zookeeper zoo1.my-domain.com:2181 --list

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

78

CHAPTER 6. SCALING CLUSTERS

6.1. SCALING KAFKA CLUSTERS

6.1.1. Adding brokers to a cluster

The primary way of increasing throughput for a topic is to increase the number of partitions for that
topic. That works because the partitions allow the load for that topic to be shared between the brokers
in the cluster. When the brokers are all constrained by some resource (typically I/O), then using more
partitions will not yield an increase in throughput. Instead, you must add brokers to the cluster.

When you add an extra broker to the cluster, AMQ Streams does not assign any partitions to it
automatically. You have to decide which partitions to move from the existing brokers to the new broker.

Once the partitions have been redistributed between all brokers, each broker should have a lower
resource utilization.

6.1.2. Removing brokers from the cluster

Before you remove a broker from a cluster, you must ensure that it is not assigned to any partitions. You
should decide which remaining brokers will be responsible for each of the partitions on the broker being
decommissioned. Once the broker has no assigned partitions, you can stop it.

6.2. REASSIGNMENT OF PARTITIONS

The kafka-reassign-partitions.sh utility is used to reassign partitions to different brokers.

It has three different modes:

--generate

Takes a set of topics and brokers and generates a reassignment JSON file which will result in the
partitions of those topics being assigned to those brokers. It is an easy way to generate a
reassignment JSON file , but it operates on whole topics, so its use is not always appropriate.

--execute

Takes a reassignment JSON file and applies it to the partitions and brokers in the cluster. Brokers
which are gaining partitions will become followers of the partition leader. For a given partition, once
the new broker has caught up and joined the ISR the old broker will stop being a follower and will
delete its replica.

--verify

Using the same reassignment JSON file as the --execute step, --verify checks whether all of the
partitions in the file have been moved to their intended brokers. If the reassignment is complete it will
also remove any throttles which are in effect. Unless removed, throttles will continue to affect the
cluster even after the reassignment has finished.

It is only possible to have one reassignment running in the cluster at any given time, and it is not possible
to cancel a running reassignment. If you need to cancel a reassignment you have to wait for it to
complete and then perform another reassignment to revert the effects of the first one. The kafka-
reassign-partitions.sh will print the reassignment JSON for this reversion as part of its output. Very
large reassignments should be broken down into a number of smaller reassignments in case there is a
need to stop in-progress reassignment.

CHAPTER 6. SCALING CLUSTERS

79

6.2.1. Reassignment JSON file

The reassignment JSON file has a specific structure:

{
 "version": 1,
 "partitions": [
 <PartitionObjects>
]
}

Where <PartitionObjects> is a comma-separated list of objects like:

{
 "topic": <TopicName>,
 "partition": <Partition>,
 "replicas": [<AssignedBrokerIds>],
 "log_dirs": [<LogDirs>]
}

The "log_dirs" property is optional and is used to move the partition to a specific log directory.

The following is an example reassignment JSON file that assigns topic topic-a, partition 4 to brokers 2,
4 and 7, and topic topic-b partition 2 to brokers 1, 5 and 7:

Partitions not included in the JSON are not changed.

6.2.2. Generating reassignment JSON files

The easiest way to assign all the partitions for a given set of topics to a given set of brokers is to
generate a reassignment JSON file using the kafka-reassign-partitions.sh --generate, command.

The <TopicsFile> is a JSON file which lists the topics to move. It has the following structure:

{

{
 "version": 1,
 "partitions": [
 {
 "topic": "topic-a",
 "partition": 4,
 "replicas": [2,4,7]
 },
 {
 "topic": "topic-b",
 "partition": 2,
 "replicas": [1,5,7]
 }
]
}

bin/kafka-reassign-partitions.sh --zookeeper <ZooKeeper> --topics-to-move-json-file <TopicsFile> --
broker-list <BrokerList> --generate

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

80

 "version": 1,
 "topics": [
 <TopicObjects>
]
}

where <TopicObjects> is a comma-separated list of objects like:

{
 "topic": <TopicName>
}

For example to move all the partitions of topic-a and topic-b to brokers 4 and 7

where topics-to-be-moved.json has contents:

6.2.3. Creating reassignment JSON files manually

You can manually create the reassignment JSON file if you want to move specific partitions.

6.3. REASSIGNMENT THROTTLES

Reassigning partitions can be a slow process because it can require moving lots of data between
brokers. To avoid this having a detrimental impact on clients it is possible to throttle the reassignment.
Using a throttle can mean the reassignment takes longer. If the throttle is too low then the newly
assigned brokers will not be able to keep up with records being published and the reassignment will
never complete. If the throttle is too high then clients will be impacted. For example, for producers, this
could manifest as higher than normal latency waiting for acknowledgement. For consumers, this could
manifest as a drop in throughput caused by higher latency between polls.

6.4. SCALING UP A KAFKA CLUSTER

This procedure describes how to increase the number of brokers in a Kafka cluster.

Prerequisites

An existing Kafka cluster.

A new machine with the AMQ broker installed.

A reassignment JSON file of how partitions should be reassigned to brokers in the enlarged
cluster.

bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 --topics-to-move-json-file topics-to-be-
moved.json --broker-list 4,7 --generate

{
 "version": 1,
 "topics": [
 { "topic": "topic-a"},
 { "topic": "topic-b"}
]
}

CHAPTER 6. SCALING CLUSTERS

81

Procedure

1. Create a configuration file for the new broker using the same settings as for the other brokers in
your cluster, except for broker.id which should be a number that is not already used by any of
the other brokers.

2. Start the new Kafka broker passing the configuration file you created in the previous step as the
argument to the kafka-server-start.sh script:

3. Verify that the Kafka broker is running.

4. Repeat the above steps for each new broker.

5. Execute the partition reassignment using the kafka-reassign-partitions.sh command line tool.

If you are going to throttle replication you can also pass the --throttle option with an inter-
broker throttled rate in bytes per second. For example:

This command will print out two reassignment JSON objects. The first records the current
assignment for the partitions being moved. You should save this to a file in case you need to
revert the reassignment later on. The second JSON object is the target reassignment you have
passed in your reassignment JSON file.

6. If you need to change the throttle during reassignment you can use the same command line
with a different throttled rate. For example:

7. Periodically verify whether the reassignment has completed using the kafka-reassign-
partitions.sh command line tool. This is the same command as the previous step but with the --
verify option instead of the --execute option.

For example:

8. The reassignment has finished when the --verify command reports each of the partitions being
moved as completed successfully. This final --verify will also have the effect of removing any

su - kafka
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

jcmd | grep Kafka

kafka-reassign-partitions.sh --zookeeper <ZooKeeperHostAndPort> --reassignment-json-file
<ReassignmentJsonFile> --execute

kafka-reassign-partitions.sh --zookeeper zookeeper1:2181 --reassignment-json-file
reassignment.json --throttle 5000000 --execute

kafka-reassign-partitions.sh --zookeeper zookeeper1:2181 --reassignment-json-file
reassignment.json --throttle 10000000 --execute

kafka-reassign-partitions.sh --zookeeper <ZooKeeperHostAndPort> --reassignment-json-file
<ReassignmentJsonFile> --verify

kafka-reassign-partitions.sh --zookeeper zookeeper1:2181 --reassignment-json-file
reassignment.json --verify

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

82

reassignment throttles. You can now delete the revert file if you saved the JSON for reverting
the assignment to their original brokers.

6.5. SCALING DOWN A KAFKA CLUSTER

Additional resources

This procedure describes how to decrease the number of brokers in a Kafka cluster.

Prerequisites

An existing Kafka cluster.

A reassignment JSON file of how partitions should be reassigned to brokers in the cluster once
the broker(s) have been removed.

Procedure

1. Execute the partition reassignment using the kafka-reassign-partitions.sh command line tool.

If you are going to throttle replication you can also pass the --throttle option with an inter-
broker throttled rate in bytes per second. For example:

This command will print out two reassignment JSON objects. The first records the current
assignment for the partitions being moved. You should save this to a file in case you need to
revert the reassignment later on. The second JSON object is the target reassignment you have
passed in your reassignment JSON file.

2. If you need to change the throttle during reassignment you can use the same command line
with a different throttled rate. For example:

3. Periodically verify whether the reassignment has completed using the kafka-reassign-
partitions.sh command line tool. This is the same command as the previous step but with the --
verify option instead of the --execute option.

For example:

4. The reassignment has finished when the --verify command reports each of the partitions being

kafka-reassign-partitions.sh --zookeeper <ZooKeeperHostAndPort> --reassignment-json-file
<ReassignmentJsonFile> --execute

kafka-reassign-partitions.sh --zookeeper zookeeper1:2181 --reassignment-json-file
reassignment.json --throttle 5000000 --execute

kafka-reassign-partitions.sh --zookeeper zookeeper1:2181 --reassignment-json-file
reassignment.json --throttle 10000000 --execute

kafka-reassign-partitions.sh --zookeeper <ZooKeeperHostAndPort> --reassignment-json-file
<ReassignmentJsonFile> --verify

kafka-reassign-partitions.sh --zookeeper zookeeper1:2181 --reassignment-json-file
reassignment.json --verify

CHAPTER 6. SCALING CLUSTERS

83

moved as completed successfully. This final --verify will also have the effect of removing any
reassignment throttles. You can now delete the revert file if you saved the JSON for reverting
the assignment to their original brokers.

5. Once all the partition reassignments have finished, the broker being removed should not have
responsibility for any of the partitions in the cluster. You can verify this by checking each of the
directories given in the broker’s log.dirs configuration parameters. If any of the log directories
on the broker contains a directory that does not match the extended regular expression \.[a-z0-
9]-delete$ then the broker still has live partitions and it should not be stopped.
You can check this by executing the command:

If the above command prints any output then the broker still has live partitions. In this case,
either the reassignment has not finished, or the reassignment JSON file was incorrect.

6. Once you have confirmed that the broker has no live partitions you can stop it.

7. Confirm that the Kafka broker is stopped.

6.6. SCALING UP A ZOOKEEPER CLUSTER

This procedure describes how to add servers (nodes) to a ZooKeeper cluster. The dynamic
reconfiguration feature of ZooKeeper maintains a stable ZooKeeper cluster during the scale up process.

Prerequisites

Dynamic reconfiguration is enabled in the ZooKeeper configuration file
(reconfigEnabled=true).

ZooKeeper authentication is enabled and you can access the new server using the
authentication mechanism.

Procedure

Perform the following steps for each ZooKeeper server, one at a time:

1. Add a server to the ZooKeeper cluster as described in Section 3.3, “Running multi-node
ZooKeeper cluster” and then start ZooKeeper.

2. Note the IP address and configured access ports of the new server.

3. Start a zookeeper-shell session for the server. Run the following command from a machine that
has access to the cluster (this might be one of the ZooKeeper nodes or your local machine, if it
has access).

4. In the shell session, with the ZooKeeper node running, enter the following line to add the new

ls -l <LogDir> | grep -E '^d' | grep -vE '[a-zA-Z0-9.-]+\.[a-z0-9]+-delete$'

su - kafka
/opt/kafka/bin/kafka-server-stop.sh

jcmd | grep kafka

su - kafka
/opt/kafka/bin/zookeeper-shell.sh <ip-address>:<zk-port>

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

84

https://zookeeper.apache.org/doc/r3.5.7/zookeeperReconfig.html#ch_reconfig_dyn

4. In the shell session, with the ZooKeeper node running, enter the following line to add the new
server to the quorum as a voting member:

For example:

Where <positive-id> is the new server ID 4.

For the two ports, <port1> 2888 is for communication between ZooKeeper servers, and
<port2> 3888 is for leader election.

The new configuration propagates to the other servers in the ZooKeeper cluster; the new server
is now a full member of the quorum.

5. Repeat steps 1-4 for the other servers that you want to add.

Additional resources

Section 6.7, “Scaling down a ZooKeeper cluster”

6.7. SCALING DOWN A ZOOKEEPER CLUSTER

This procedure describes how to remove servers (nodes) from a ZooKeeper cluster. The dynamic
reconfiguration feature of ZooKeeper maintains a stable ZooKeeper cluster during the scale down
process.

Prerequisites

Dynamic reconfiguration is enabled in the ZooKeeper configuration file
(reconfigEnabled=true).

ZooKeeper authentication is enabled and you can access the new server using the
authentication mechanism.

Procedure

Perform the following steps for each ZooKeeper server, one at a time:

1. Log in to the zookeeper-shell on one of the servers that will be retained after the scale down
(for example, server 1).

NOTE

Access the server using the authentication mechanism configured for the
ZooKeeper cluster.

2. Remove a server, for example server 5.

reconfig -remove 5

reconfig -add server.<positive-id> = <address1>:<port1>:<port2>[:role];[<client-port-
address>:]<client-port>

reconfig -add server.4=172.17.0.4:2888:3888:participant;172.17.0.4:2181

CHAPTER 6. SCALING CLUSTERS

85

https://zookeeper.apache.org/doc/r3.5.7/zookeeperReconfig.html#ch_reconfig_dyn

3. Deactivate the server that you removed.

4. Repeat steps 1-3 to reduce the cluster size.

Additional resources

Section 6.6, “Scaling up a ZooKeeper cluster”

Removing servers in the ZooKeeper documentation

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

86

https://zookeeper.apache.org/doc/r3.5.7/zookeeperReconfig.html#sc_reconfig_general

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX
ZooKeeper, the Kafka broker, Kafka Connect, and the Kafka clients all expose management information
using Java Management Extensions (JMX). Most management information is in the form of metrics
that are useful for monitoring the condition and performance of your Kafka cluster. Like other Java
applications, Kafka provides this management information through managed beans or MBeans.

JMX works at the level of the JVM (Java Virtual Machine). To obtain management information, external
tools can connect to the JVM that is running ZooKeeper, the Kafka broker, and so on. By default, only
tools on the same machine and running as the same user as the JVM are able to connect.

NOTE

Management information for ZooKeeper is not documented here. You can view
ZooKeeper metrics in JConsole. For more information, see Monitoring using JConsole .

7.1. JMX CONFIGURATION OPTIONS

You configure JMX using JVM system properties. The scripts provided with AMQ Streams (bin/kafka-
server-start.sh and bin/connect-distributed.sh, and so on) use the KAFKA_JMX_OPTS environment
variable to set these system properties. The system properties for configuring JMX are the same, even
though Kafka producer, consumer, and streams applications typically start the JVM in different ways.

7.2. DISABLING THE JMX AGENT

You can prevent local JMX tools from connecting to the JVM (for example, for compliance reasons) by
disabling the JMX agent for an AMQ Streams component. The following procedure explains how to
disable the JMX agent for a Kafka broker.

Procedure

1. Use the KAFKA_JMX_OPTS environment variable to set com.sun.management.jmxremote
to false.

2. Start the JVM.

7.3. CONNECTING TO THE JVM FROM A DIFFERENT MACHINE

You can connect to the JVM from a different machine by configuring the port that the JMX agent
listens on. This is insecure because it allows JMX tools to connect from anywhere, with no
authentication.

Procedure

1. Use the KAFKA_JMX_OPTS environment variable to set -
Dcom.sun.management.jmxremote.port=<port>. For <port>, enter the name of the port on
which you want the Kafka broker to listen for JMX connections.

export KAFKA_JMX_OPTS=-Dcom.sun.management.jmxremote=false
bin/kafka-server-start.sh

export KAFKA_JMX_OPTS="-Dcom.sun.management.jmxremote=true
 -Dcom.sun.management.jmxremote.port=<port>

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

87

https://www.oracle.com/technetwork/articles/java/javamanagement-140525.html

2. Start the JVM.

IMPORTANT

It is recommended that you configure authentication and SSL to ensure that the remote
JMX connection is secure. For more information about the system properties needed to
do this, see the JMX documentation.

7.4. MONITORING USING JCONSOLE

The JConsole tool is distributed with the Java Development Kit (JDK). You can use JConsole to
connect to a local or remote JVM and discover and display management information from Java
applications. If using JConsole to connect to a local JVM, the names of the JVM processes
corresponding to the different components of AMQ Streams are as follows:

AMQ Streams component JVM process

ZooKeeper org.apache.zookeeper.server.quorum.Quoru
mPeerMain

Kafka broker kafka.Kafka

Kafka Connect standalone org.apache.kafka.connect.cli.ConnectStandal
one

Kafka Connect distributed org.apache.kafka.connect.cli.ConnectDistrib
uted

A Kafka producer, consumer, or Streams application The name of the class containing the main method
for the application.

When using JConsole to connect to a remote JVM, use the appropriate host name and JMX port.

Many other tools and monitoring products can be used to fetch the metrics using JMX and provide
monitoring and alerting based on those metrics. Refer to the product documentation for those tools.

7.5. IMPORTANT KAFKA BROKER METRICS

Kafka provides many MBeans for monitoring the performance of the brokers in your Kafka cluster.
These apply to an individual broker rather than the entire cluster.

The following tables present a selection of these broker-level MBeans organized into server, network,
logging, and controller metrics.

7.5.1. Kafka server metrics

The following table shows a selection of metrics that report information about the Kafka server.

 -Dcom.sun.management.jmxremote.authenticate=false
 -Dcom.sun.management.jmxremote.ssl=false"
bin/kafka-server-start.sh

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

88

https://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html

Metric MBean Description Expected value

Messages in per second kafka.server:type=Br
okerTopicMetrics,na
me=MessagesInPerS
ec

The rate at which
individual messages are
consumed by the broker.

Approximately the same
as the other brokers in
the cluster.

Bytes in per second kafka.server:type=Br
okerTopicMetrics,na
me=BytesInPerSec

The rate at which data
sent from producers is
consumed by the broker.

Approximately the same
as the other brokers in
the cluster.

Replication bytes in per
second

kafka.server:type=Br
okerTopicMetrics,na
me=ReplicationByte
sInPerSec

The rate at which data
sent from other brokers
is consumed by the
follower broker.

N/A

Bytes out per second kafka.server:type=Br
okerTopicMetrics,na
me=BytesOutPerSec

The rate at which data is
fetched and read from
the broker by
consumers.

N/A

Replication bytes out
per second

kafka.server:type=Br
okerTopicMetrics,na
me=ReplicationByte
sOutPerSec

The rate at which data is
sent from the broker to
other brokers. This
metric is useful to
monitor if the broker is a
leader for a group of
partitions.

N/A

Under-replicated
partitions

kafka.server:type=Re
plicaManager,name=
UnderReplicatedPart
itions

The number of
partitions that have not
been fully replicated in
the follower replicas.

Zero

Under minimum ISR
partition count

kafka.server:type=Re
plicaManager,name=
UnderMinIsrPartition
Count

The number of
partitions under the
minimum In-Sync
Replica (ISR) count. The
ISR count indicates the
set of replicas that are
up-to-date with the
leader.

Zero

Partition count kafka.server:type=Re
plicaManager,name=
PartitionCount

The number of
partitions in the broker.

Approximately even
when compared with the
other brokers.

Leader count kafka.server:type=Re
plicaManager,name=
LeaderCount

The number of replicas
for which this broker is
the leader.

Approximately the same
as the other brokers in
the cluster.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

89

ISR shrinks per second kafka.server:type=Re
plicaManager,name=
IsrShrinksPerSec

The rate at which the
number of ISRs in the
broker decreases

Zero

ISR expands per second kafka.server:type=Re
plicaManager,name=
IsrExpandsPerSec

The rate at which the
number of ISRs in the
broker increases.

Zero

Maximum lag kafka.server:type=Re
plicaFetcherManager
,name=MaxLag,clien
tId=Replica

The maximum lag
between the time that
messages are received
by the leader replica and
by the follower replicas.

Proportional to the
maximum batch size of a
produce request.

Requests in producer
purgatory

kafka.server:type=De
layedOperationPurg
atory,name=Purgato
rySize,delayedOpera
tion=Produce

The number of send
requests in the producer
purgatory.

N/A

Requests in fetch
purgatory

kafka.server:type=De
layedOperationPurg
atory,name=Purgato
rySize,delayedOpera
tion=Fetch

The number of fetch
requests in the fetch
purgatory.

N/A

Request handler
average idle percent

kafka.server:type=Ka
fkaRequestHandlerP
ool,name=RequestH
andlerAvgIdlePercen
t

Indicates the
percentage of time that
the request handler (IO)
threads are not in use.

A lower value indicates
that the workload of the
broker is high.

Request (Requests
exempt from throttling)

kafka.server:type=Re
quest

The number of requests
that are exempt from
throttling.

N/A

ZooKeeper request
latency in milliseconds

kafka.server:type=Zo
oKeeperClientMetric
s,name=ZooKeeperR
equestLatencyMs

The latency for
ZooKeeper requests
from the broker, in
milliseconds.

N/A

ZooKeeper session state kafka.server:type=Se
ssionExpireListener,
name=SessionState

The status of the
broker’s connection to
ZooKeeper.

CONNECTED

Metric MBean Description Expected value

7.5.2. Kafka network metrics

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

90

The following table shows a selection of metrics that report information about requests.

Metric MBean Description Expected value

Requests per second kafka.network:type=
RequestMetrics,nam
e=RequestsPerSec,r
equest=
{Produce|FetchCons
umer|FetchFollower}

The total number of
requests made for the
request type per second.
The Produce,
FetchConsumer, and
FetchFollower
request types each have
their own MBeans.

N/A

Request bytes (request
size in bytes)

kafka.network:type=
RequestMetrics,nam
e=RequestBytes,req
uest=([-.\w]+)

The size of requests, in
bytes, made for the
request type identified
by the request
property of the MBean
name. Separate MBeans
for all available request
types are listed under
the RequestBytes
node.

N/A

Temporary memory size
in bytes

kafka.network:type=
RequestMetrics,nam
e=TemporaryMemor
yBytes,request=
{Produce|Fetch}

The amount of
temporary memory used
for converting message
formats and
decompressing
messages.

N/A

Message conversions
time

kafka.network:type=
RequestMetrics,nam
e=MessageConversi
onsTimeMs,request=
{Produce|Fetch}

Time, in milliseconds,
spent on converting
message formats.

N/A

Total request time in
milliseconds

kafka.network:type=
RequestMetrics,nam
e=TotalTimeMs,requ
est=
{Produce|FetchCons
umer|FetchFollower}

Total time, in
milliseconds, spent
processing requests.

N/A

Request queue time in
milliseconds

kafka.network:type=
RequestMetrics,nam
e=RequestQueueTim
eMs,request=
{Produce|FetchCons
umer|FetchFollower}

The time, in
milliseconds, that a
request currently spends
in the queue for the
request type given in the
request property.

N/A

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

91

Local time (leader local
processing time) in
milliseconds

kafka.network:type=
RequestMetrics,nam
e=LocalTimeMs,requ
est=
{Produce|FetchCons
umer|FetchFollower}

The time taken, in
milliseconds, for the
leader to process the
request.

N/A

Remote time (leader
remote processing time)
in milliseconds

kafka.network:type=
RequestMetrics,nam
e=RemoteTimeMs,re
quest=
{Produce|FetchCons
umer|FetchFollower}

The length of time, in
milliseconds, that the
request waits for the
follower. Separate
MBeans for all available
request types are listed
under the
RemoteTimeMs node.

N/A

Response queue time in
milliseconds

kafka.network:type=
RequestMetrics,nam
e=ResponseQueueTi
meMs,request=
{Produce|FetchCons
umer|FetchFollower}

The length of time, in
milliseconds, that the
request waits in the
response queue.

N/A

Response send time in
milliseconds

kafka.network:type=
RequestMetrics,nam
e=ResponseSendTi
meMs,request=
{Produce|FetchCons
umer|FetchFollower}

The time taken, in
milliseconds, to send the
response.

N/A

Network processor
average idle percent

kafka.network:type=
SocketServer,name=
NetworkProcessorA
vgIdlePercent

The average percentage
of time that the network
processors are idle.

Between zero and one.

Metric MBean Description Expected value

7.5.3. Kafka log metrics

The following table shows a selection of metrics that report information about logging.

Metric MBean Description Expected Value

Log flush rate and time
in milliseconds

kafka.log:type=LogFl
ushStats,name=Log
FlushRateAndTimeM
s

The rate at which log
data is written to disk, in
milliseconds.

N/A

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

92

Offline log directory
count

kafka.log:type=LogM
anager,name=Offline
LogDirectoryCount

The number of offline
log directories (for
example, after a
hardware failure).

Zero

Metric MBean Description Expected Value

7.5.4. Kafka controller metrics

The following table shows a selection of metrics that report information about the controller of the
cluster.

Metric MBean Description Expected Value

Active controller count kafka.controller:type
=KafkaController,na
me=ActiveController
Count

The number of brokers
designated as
controllers.

One indicates that the
broker is the controller
for the cluster.

Leader election rate and
time in milliseconds

kafka.controller:type
=ControllerStats,na
me=LeaderElectionR
ateAndTimeMs

The rate at which new
leader replicas are
elected.

Zero

7.5.5. Yammer metrics

Metrics that express a rate or unit of time are provided as Yammer metrics. The class name of an MBean
that uses Yammer metrics is prefixed with com.yammer.metrics.

Yammer rate metrics have the following attributes for monitoring requests:

Count

EventType (Bytes)

FifteenMinuteRate

RateUnit (Seconds)

MeanRate

OneMinuteRate

FiveMinuteRate

Yammer time metrics have the following attributes for monitoring requests:

Max

Min

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

93

Mean

StdDev

75/95/98/99/99.9th Percentile

7.6. PRODUCER MBEANS

The following MBeans will exist in Kafka producer applications, including Kafka Streams applications and
Kafka Connect with source connectors.

7.6.1. MBeans matching kafka.producer:type=producer-metrics,client-id=*

These are metrics at the producer level.

Attribute Description

batch-size-avg The average number of bytes sent per partition per-
request.

batch-size-max The max number of bytes sent per partition per-
request.

batch-split-rate The average number of batch splits per second.

batch-split-total The total number of batch splits.

buffer-available-bytes The total amount of buffer memory that is not being
used (either unallocated or in the free list).

buffer-total-bytes The maximum amount of buffer memory the client
can use (whether or not it is currently used).

bufferpool-wait-time The fraction of time an appender waits for space
allocation.

compression-rate-avg The average compression rate of record batches.

connection-close-rate Connections closed per second in the window.

connection-count The current number of active connections.

connection-creation-rate New connections established per second in the
window.

failed-authentication-rate Connections that failed authentication.

incoming-byte-rate Bytes/second read off all sockets.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

94

io-ratio The fraction of time the I/O thread spent doing I/O.

io-time-ns-avg The average length of time for I/O per select call in
nanoseconds.

io-wait-ratio The fraction of time the I/O thread spent waiting.

io-wait-time-ns-avg The average length of time the I/O thread spent
waiting for a socket ready for reads or writes in
nanoseconds.

metadata-age The age in seconds of the current producer metadata
being used.

network-io-rate The average number of network operations (reads or
writes) on all connections per second.

outgoing-byte-rate The average number of outgoing bytes sent per
second to all servers.

produce-throttle-time-avg The average time in ms a request was throttled by a
broker.

produce-throttle-time-max The maximum time in ms a request was throttled by a
broker.

record-error-rate The average per-second number of record sends
that resulted in errors.

record-error-total The total number of record sends that resulted in
errors.

record-queue-time-avg The average time in ms record batches spent in the
send buffer.

record-queue-time-max The maximum time in ms record batches spent in the
send buffer.

record-retry-rate The average per-second number of retried record
sends.

record-retry-total The total number of retried record sends.

record-send-rate The average number of records sent per second.

record-send-total The total number of records sent.

Attribute Description

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

95

record-size-avg The average record size.

record-size-max The maximum record size.

records-per-request-avg The average number of records per request.

request-latency-avg The average request latency in ms.

request-latency-max The maximum request latency in ms.

request-rate The average number of requests sent per second.

request-size-avg The average size of all requests in the window.

request-size-max The maximum size of any request sent in the window.

requests-in-flight The current number of in-flight requests awaiting a
response.

response-rate Responses received sent per second.

select-rate Number of times the I/O layer checked for new I/O
to perform per second.

successful-authentication-rate Connections that were successfully authenticated
using SASL or SSL.

waiting-threads The number of user threads blocked waiting for
buffer memory to enqueue their records.

Attribute Description

7.6.2. MBeans matching kafka.producer:type=producer-metrics,client-id=*,node-id=*

These are metrics at the producer level about connection to each broker.

Attribute Description

incoming-byte-rate The average number of responses received per
second for a node.

outgoing-byte-rate The average number of outgoing bytes sent per
second for a node.

request-latency-avg The average request latency in ms for a node.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

96

request-latency-max The maximum request latency in ms for a node.

request-rate The average number of requests sent per second for
a node.

request-size-avg The average size of all requests in the window for a
node.

request-size-max The maximum size of any request sent in the window
for a node.

response-rate Responses received sent per second for a node.

Attribute Description

7.6.3. MBeans matching kafka.producer:type=producer-topic-metrics,client-id=*,topic=*

These are metrics at the topic level about topics the producer is sending messages to.

Attribute Description

byte-rate The average number of bytes sent per second for a
topic.

byte-total The total number of bytes sent for a topic.

compression-rate The average compression rate of record batches for
a topic.

record-error-rate The average per-second number of record sends
that resulted in errors for a topic.

record-error-total The total number of record sends that resulted in
errors for a topic.

record-retry-rate The average per-second number of retried record
sends for a topic.

record-retry-total The total number of retried record sends for a topic.

record-send-rate The average number of records sent per second for a
topic.

record-send-total The total number of records sent for a topic.

7.7. CONSUMER MBEANS

The following MBeans will exist in Kafka consumer applications, including Kafka Streams applications

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

97

The following MBeans will exist in Kafka consumer applications, including Kafka Streams applications
and Kafka Connect with sink connectors.

7.7.1. MBeans matching kafka.consumer:type=consumer-metrics,client-id=*

These are metrics at the consumer level.

Attribute Description

connection-close-rate Connections closed per second in the window.

connection-count The current number of active connections.

connection-creation-rate New connections established per second in the
window.

failed-authentication-rate Connections that failed authentication.

incoming-byte-rate Bytes/second read off all sockets.

io-ratio The fraction of time the I/O thread spent doing I/O.

io-time-ns-avg The average length of time for I/O per select call in
nanoseconds.

io-wait-ratio The fraction of time the I/O thread spent waiting.

io-wait-time-ns-avg The average length of time the I/O thread spent
waiting for a socket ready for reads or writes in
nanoseconds.

network-io-rate The average number of network operations (reads or
writes) on all connections per second.

outgoing-byte-rate The average number of outgoing bytes sent per
second to all servers.

request-rate The average number of requests sent per second.

request-size-avg The average size of all requests in the window.

request-size-max The maximum size of any request sent in the window.

response-rate Responses received sent per second.

select-rate Number of times the I/O layer checked for new I/O
to perform per second.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

98

successful-authentication-rate Connections that were successfully authenticated
using SASL or SSL.

Attribute Description

7.7.2. MBeans matching kafka.consumer:type=consumer-metrics,client-id=*,node-id=*

These are metrics at the consumer level about connection to each broker.

Attribute Description

incoming-byte-rate The average number of responses received per
second for a node.

outgoing-byte-rate The average number of outgoing bytes sent per
second for a node.

request-latency-avg The average request latency in ms for a node.

request-latency-max The maximum request latency in ms for a node.

request-rate The average number of requests sent per second for
a node.

request-size-avg The average size of all requests in the window for a
node.

request-size-max The maximum size of any request sent in the window
for a node.

response-rate Responses received sent per second for a node.

7.7.3. MBeans matching kafka.consumer:type=consumer-coordinator-metrics,client-id=*

These are metrics at the consumer level about the consumer group.

Attribute Description

assigned-partitions The number of partitions currently assigned to this
consumer.

commit-latency-avg The average time taken for a commit request.

commit-latency-max The max time taken for a commit request.

commit-rate The number of commit calls per second.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

99

heartbeat-rate The average number of heartbeats per second.

heartbeat-response-time-max The max time taken to receive a response to a
heartbeat request.

join-rate The number of group joins per second.

join-time-avg The average time taken for a group rejoin.

join-time-max The max time taken for a group rejoin.

last-heartbeat-seconds-ago The number of seconds since the last controller
heartbeat.

sync-rate The number of group syncs per second.

sync-time-avg The average time taken for a group sync.

sync-time-max The max time taken for a group sync.

Attribute Description

7.7.4. MBeans matching kafka.consumer:type=consumer-fetch-manager-metrics,client-id=*

These are metrics at the consumer level about the consumer's fetcher.

Attribute Description

bytes-consumed-rate The average number of bytes consumed per second.

bytes-consumed-total The total number of bytes consumed.

fetch-latency-avg The average time taken for a fetch request.

fetch-latency-max The max time taken for any fetch request.

fetch-rate The number of fetch requests per second.

fetch-size-avg The average number of bytes fetched per request.

fetch-size-max The maximum number of bytes fetched per request.

fetch-throttle-time-avg The average throttle time in ms.

fetch-throttle-time-max The maximum throttle time in ms.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

100

fetch-total The total number of fetch requests.

records-consumed-rate The average number of records consumed per
second.

records-consumed-total The total number of records consumed.

records-lag-max The maximum lag in terms of number of records for
any partition in this window.

records-lead-min The minimum lead in terms of number of records for
any partition in this window.

records-per-request-avg The average number of records in each request.

Attribute Description

7.7.5. MBeans matching kafka.consumer:type=consumer-fetch-manager-metrics,client-

id=*,topic=*

These are metrics at the topic level about the consumer's fetcher.

Attribute Description

bytes-consumed-rate The average number of bytes consumed per second
for a topic.

bytes-consumed-total The total number of bytes consumed for a topic.

fetch-size-avg The average number of bytes fetched per request for
a topic.

fetch-size-max The maximum number of bytes fetched per request
for a topic.

records-consumed-rate The average number of records consumed per
second for a topic.

records-consumed-total The total number of records consumed for a topic.

records-per-request-avg The average number of records in each request for a
topic.

7.7.6. MBeans matching kafka.consumer:type=consumer-fetch-manager-metrics,client-

id=*,topic=*,partition=*

These are metrics at the partition level about the consumer's fetcher.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

101

Attribute Description

preferred-read-replica The current read replica for the partition, or -1 if
reading from leader.

records-lag The latest lag of the partition.

records-lag-avg The average lag of the partition.

records-lag-max The max lag of the partition.

records-lead The latest lead of the partition.

records-lead-avg The average lead of the partition.

records-lead-min The min lead of the partition.

7.8. KAFKA CONNECT MBEANS

NOTE

Kafka Connect will contain the producer MBeans for source connectors and consumer
MBeans for sink connectors in addition to those documented here.

7.8.1. MBeans matching kafka.connect:type=connect-metrics,client-id=*

These are metrics at the connect level.

Attribute Description

connection-close-rate Connections closed per second in the window.

connection-count The current number of active connections.

connection-creation-rate New connections established per second in the
window.

failed-authentication-rate Connections that failed authentication.

incoming-byte-rate Bytes/second read off all sockets.

io-ratio The fraction of time the I/O thread spent doing I/O.

io-time-ns-avg The average length of time for I/O per select call in
nanoseconds.

io-wait-ratio The fraction of time the I/O thread spent waiting.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

102

io-wait-time-ns-avg The average length of time the I/O thread spent
waiting for a socket ready for reads or writes in
nanoseconds.

network-io-rate The average number of network operations (reads or
writes) on all connections per second.

outgoing-byte-rate The average number of outgoing bytes sent per
second to all servers.

request-rate The average number of requests sent per second.

request-size-avg The average size of all requests in the window.

request-size-max The maximum size of any request sent in the window.

response-rate Responses received sent per second.

select-rate Number of times the I/O layer checked for new I/O
to perform per second.

successful-authentication-rate Connections that were successfully authenticated
using SASL or SSL.

Attribute Description

7.8.2. MBeans matching kafka.connect:type=connect-metrics,client-id=*,node-id=*

These are metrics at the connect level about connection to each broker.

Attribute Description

incoming-byte-rate The average number of responses received per
second for a node.

outgoing-byte-rate The average number of outgoing bytes sent per
second for a node.

request-latency-avg The average request latency in ms for a node.

request-latency-max The maximum request latency in ms for a node.

request-rate The average number of requests sent per second for
a node.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

103

request-size-avg The average size of all requests in the window for a
node.

request-size-max The maximum size of any request sent in the window
for a node.

response-rate Responses received sent per second for a node.

Attribute Description

7.8.3. MBeans matching kafka.connect:type=connect-worker-metrics

These are metrics at the connect level.

Attribute Description

connector-count The number of connectors run in this worker.

connector-startup-attempts-total The total number of connector startups that this
worker has attempted.

connector-startup-failure-percentage The average percentage of this worker’s connectors
starts that failed.

connector-startup-failure-total The total number of connector starts that failed.

connector-startup-success-percentage The average percentage of this worker’s connectors
starts that succeeded.

connector-startup-success-total The total number of connector starts that
succeeded.

task-count The number of tasks run in this worker.

task-startup-attempts-total The total number of task startups that this worker
has attempted.

task-startup-failure-percentage The average percentage of this worker’s tasks starts
that failed.

task-startup-failure-total The total number of task starts that failed.

task-startup-success-percentage The average percentage of this worker’s tasks starts
that succeeded.

task-startup-success-total The total number of task starts that succeeded.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

104

7.8.4. MBeans matching kafka.connect:type=connect-worker-rebalance-metrics

Attribute Description

completed-rebalances-total The total number of rebalances completed by this
worker.

connect-protocol The Connect protocol used by this cluster.

epoch The epoch or generation number of this worker.

leader-name The name of the group leader.

rebalance-avg-time-ms The average time in milliseconds spent by this worker
to rebalance.

rebalance-max-time-ms The maximum time in milliseconds spent by this
worker to rebalance.

rebalancing Whether this worker is currently rebalancing.

time-since-last-rebalance-ms The time in milliseconds since this worker completed
the most recent rebalance.

7.8.5. MBeans matching kafka.connect:type=connector-metrics,connector=*

Attribute Description

connector-class The name of the connector class.

connector-type The type of the connector. One of 'source' or 'sink'.

connector-version The version of the connector class, as reported by
the connector.

status The status of the connector. One of 'unassigned',
'running', 'paused', 'failed', or 'destroyed'.

7.8.6. MBeans matching kafka.connect:type=connector-task-metrics,connector=*,task=*

Attribute Description

batch-size-avg The average size of the batches processed by the
connector.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

105

batch-size-max The maximum size of the batches processed by the
connector.

offset-commit-avg-time-ms The average time in milliseconds taken by this task to
commit offsets.

offset-commit-failure-percentage The average percentage of this task’s offset commit
attempts that failed.

offset-commit-max-time-ms The maximum time in milliseconds taken by this task
to commit offsets.

offset-commit-success-percentage The average percentage of this task’s offset commit
attempts that succeeded.

pause-ratio The fraction of time this task has spent in the pause
state.

running-ratio The fraction of time this task has spent in the running
state.

status The status of the connector task. One of
'unassigned', 'running', 'paused', 'failed', or
'destroyed'.

Attribute Description

7.8.7. MBeans matching kafka.connect:type=sink-task-metrics,connector=*,task=*

Attribute Description

offset-commit-completion-rate The average per-second number of offset commit
completions that were completed successfully.

offset-commit-completion-total The total number of offset commit completions that
were completed successfully.

offset-commit-seq-no The current sequence number for offset commits.

offset-commit-skip-rate The average per-second number of offset commit
completions that were received too late and
skipped/ignored.

offset-commit-skip-total The total number of offset commit completions that
were received too late and skipped/ignored.

partition-count The number of topic partitions assigned to this task
belonging to the named sink connector in this worker.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

106

put-batch-avg-time-ms The average time taken by this task to put a batch of
sinks records.

put-batch-max-time-ms The maximum time taken by this task to put a batch
of sinks records.

sink-record-active-count The number of records that have been read from
Kafka but not yet completely
committed/flushed/acknowledged by the sink task.

sink-record-active-count-avg The average number of records that have been read
from Kafka but not yet completely
committed/flushed/acknowledged by the sink task.

sink-record-active-count-max The maximum number of records that have been
read from Kafka but not yet completely
committed/flushed/acknowledged by the sink task.

sink-record-lag-max The maximum lag in terms of number of records that
the sink task is behind the consumer’s position for
any topic partitions.

sink-record-read-rate The average per-second number of records read
from Kafka for this task belonging to the named sink
connector in this worker. This is before
transformations are applied.

sink-record-read-total The total number of records read from Kafka by this
task belonging to the named sink connector in this
worker, since the task was last restarted.

sink-record-send-rate The average per-second number of records output
from the transformations and sent/put to this task
belonging to the named sink connector in this worker.
This is after transformations are applied and excludes
any records filtered out by the transformations.

sink-record-send-total The total number of records output from the
transformations and sent/put to this task belonging
to the named sink connector in this worker, since the
task was last restarted.

Attribute Description

7.8.8. MBeans matching kafka.connect:type=source-task-metrics,connector=*,task=*

Attribute Description

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

107

poll-batch-avg-time-ms The average time in milliseconds taken by this task to
poll for a batch of source records.

poll-batch-max-time-ms The maximum time in milliseconds taken by this task
to poll for a batch of source records.

source-record-active-count The number of records that have been produced by
this task but not yet completely written to Kafka.

source-record-active-count-avg The average number of records that have been
produced by this task but not yet completely written
to Kafka.

source-record-active-count-max The maximum number of records that have been
produced by this task but not yet completely written
to Kafka.

source-record-poll-rate The average per-second number of records
produced/polled (before transformation) by this task
belonging to the named source connector in this
worker.

source-record-poll-total The total number of records produced/polled
(before transformation) by this task belonging to the
named source connector in this worker.

source-record-write-rate The average per-second number of records output
from the transformations and written to Kafka for this
task belonging to the named source connector in this
worker. This is after transformations are applied and
excludes any records filtered out by the
transformations.

source-record-write-total The number of records output from the
transformations and written to Kafka for this task
belonging to the named source connector in this
worker, since the task was last restarted.

Attribute Description

7.8.9. MBeans matching kafka.connect:type=task-error-metrics,connector=*,task=*

Attribute Description

deadletterqueue-produce-failures The number of failed writes to the dead letter queue.

deadletterqueue-produce-requests The number of attempted writes to the dead letter
queue.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

108

last-error-timestamp The epoch timestamp when this task last
encountered an error.

total-errors-logged The number of errors that were logged.

total-record-errors The number of record processing errors in this task.

total-record-failures The number of record processing failures in this task.

total-records-skipped The number of records skipped due to errors.

total-retries The number of operations retried.

Attribute Description

7.9. KAFKA STREAMS MBEANS

NOTE

A Streams application will contain the producer and consumer MBeans in addition to
those documented here.

7.9.1. MBeans matching kafka.streams:type=stream-metrics,client-id=*

These metrics are collected when the metrics.recording.level configuration parameter is info or
debug.

Attribute Description

commit-latency-avg The average execution time in ms for committing,
across all running tasks of this thread.

commit-latency-max The maximum execution time in ms for committing
across all running tasks of this thread.

commit-rate The average number of commits per second.

commit-total The total number of commit calls across all tasks.

poll-latency-avg The average execution time in ms for polling, across
all running tasks of this thread.

poll-latency-max The maximum execution time in ms for polling across
all running tasks of this thread.

poll-rate The average number of polls per second.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

109

poll-total The total number of poll calls across all tasks.

process-latency-avg The average execution time in ms for processing,
across all running tasks of this thread.

process-latency-max The maximum execution time in ms for processing
across all running tasks of this thread.

process-rate The average number of process calls per second.

process-total The total number of process calls across all tasks.

punctuate-latency-avg The average execution time in ms for punctuating,
across all running tasks of this thread.

punctuate-latency-max The maximum execution time in ms for punctuating
across all running tasks of this thread.

punctuate-rate The average number of punctuates per second.

punctuate-total The total number of punctuate calls across all tasks.

skipped-records-rate The average number of skipped records per second.

skipped-records-total The total number of skipped records.

task-closed-rate The average number of tasks closed per second.

task-closed-total The total number of tasks closed.

task-created-rate The average number of newly created tasks per
second.

task-created-total The total number of tasks created.

Attribute Description

7.9.2. MBeans matching kafka.streams:type=stream-task-metrics,client-id=*,task-id=*

Task metrics.

These metrics are collected when the metrics.recording.level configuration parameter is debug.

Attribute Description

commit-latency-avg The average commit time in ns for this task.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

110

commit-latency-max The maximum commit time in ns for this task.

commit-rate The average number of commit calls per second.

commit-total The total number of commit calls.

Attribute Description

7.9.3. MBeans matching kafka.streams:type=stream-processor-node-metrics,client-id=*,task-

id=*,processor-node-id=*

Processor node metrics.

These metrics are collected when the metrics.recording.level configuration parameter is debug.

Attribute Description

create-latency-avg The average create execution time in ns.

create-latency-max The maximum create execution time in ns.

create-rate The average number of create operations per
second.

create-total The total number of create operations called.

destroy-latency-avg The average destroy execution time in ns.

destroy-latency-max The maximum destroy execution time in ns.

destroy-rate The average number of destroy operations per
second.

destroy-total The total number of destroy operations called.

forward-rate The average rate of records being forwarded
downstream, from source nodes only, per second.

forward-total The total number of of records being forwarded
downstream, from source nodes only.

process-latency-avg The average process execution time in ns.

process-latency-max The maximum process execution time in ns.

process-rate The average number of process operations per
second.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

111

process-total The total number of process operations called.

punctuate-latency-avg The average punctuate execution time in ns.

punctuate-latency-max The maximum punctuate execution time in ns.

punctuate-rate The average number of punctuate operations per
second.

punctuate-total The total number of punctuate operations called.

Attribute Description

7.9.4. MBeans matching kafka.streams:type=stream-[store-scope]-metrics,client-id=*,task-

id=*,[store-scope]-id=*

State store metrics.

These metrics are collected when the metrics.recording.level configuration parameter is debug.

Attribute Description

all-latency-avg The average all operation execution time in ns.

all-latency-max The maximum all operation execution time in ns.

all-rate The average all operation rate for this store.

all-total The total number of all operation calls for this store.

delete-latency-avg The average delete execution time in ns.

delete-latency-max The maximum delete execution time in ns.

delete-rate The average delete rate for this store.

delete-total The total number of delete calls for this store.

flush-latency-avg The average flush execution time in ns.

flush-latency-max The maximum flush execution time in ns.

flush-rate The average flush rate for this store.

flush-total The total number of flush calls for this store.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

112

get-latency-avg The average get execution time in ns.

get-latency-max The maximum get execution time in ns.

get-rate The average get rate for this store.

get-total The total number of get calls for this store.

put-all-latency-avg The average put-all execution time in ns.

put-all-latency-max The maximum put-all execution time in ns.

put-all-rate The average put-all rate for this store.

put-all-total The total number of put-all calls for this store.

put-if-absent-latency-avg The average put-if-absent execution time in ns.

put-if-absent-latency-max The maximum put-if-absent execution time in ns.

put-if-absent-rate The average put-if-absent rate for this store.

put-if-absent-total The total number of put-if-absent calls for this store.

put-latency-avg The average put execution time in ns.

put-latency-max The maximum put execution time in ns.

put-rate The average put rate for this store.

put-total The total number of put calls for this store.

range-latency-avg The average range execution time in ns.

range-latency-max The maximum range execution time in ns.

range-rate The average range rate for this store.

range-total The total number of range calls for this store.

restore-latency-avg The average restore execution time in ns.

restore-latency-max The maximum restore execution time in ns.

restore-rate The average restore rate for this store.

Attribute Description

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

113

restore-total The total number of restore calls for this store.

Attribute Description

7.9.5. MBeans matching kafka.streams:type=stream-record-cache-metrics,client-id=*,task-

id=*,record-cache-id=*

Record cache metrics.

These metrics are collected when the metrics.recording.level configuration parameter is debug.

Attribute Description

hitRatio-avg The average cache hit ratio defined as the ratio of
cache read hits over the total cache read requests.

hitRatio-max The maximum cache hit ratio.

hitRatio-min The mininum cache hit ratio.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

114

CHAPTER 8. KAFKA CONNECT
Kafka Connect is a tool for streaming data between Apache Kafka and external systems. It provides a
framework for moving large amounts of data while maintaining scalability and reliability. Kafka Connect is
typically used to integrate Kafka with database, storage, and messaging systems that are external to
your Kafka cluster.

Kafka Connect uses connector plug-ins that implement connectivity for different types of external
systems. There are two types of connector plug-ins: sink and source. Sink connectors stream data from
Kafka to external systems. Source connectors stream data from external systems into Kafka.

Kafka Connect can run in standalone or distributed modes.

Standalone mode

In standalone mode, Kafka Connect runs on a single node with user-defined configuration read from
a properties file.

Distributed mode

In distributed mode, Kafka Connect runs across one or more worker nodes and the workloads are
distributed among them. You manage connectors and their configuration using an HTTP REST
interface.

8.1. KAFKA CONNECT IN STANDALONE MODE

In standalone mode, Kafka Connect runs as a single process, on a single node. You manage the
configuration of standalone mode using properties files.

8.1.1. Configuring Kafka Connect in standalone mode

To configure Kafka Connect in standalone mode, edit the config/connect-standalone.properties
configuration file. The following options are the most important.

bootstrap.servers

A list of Kafka broker addresses used as bootstrap connections to Kafka. For example, kafka0.my-
domain.com:9092,kafka1.my-domain.com:9092,kafka2.my-domain.com:9092.

key.converter

The class used to convert message keys to and from Kafka format. For example,
org.apache.kafka.connect.json.JsonConverter.

value.converter

The class used to convert message payloads to and from Kafka format. For example,
org.apache.kafka.connect.json.JsonConverter.

offset.storage.file.filename

Specifies the file in which the offset data is stored.

An example configuration file is provided in the installation directory at config/connect-
standalone.properties. For a complete list of all supported Kafka Connect configuration options, see
[kafka-connect-configuration-parameters-str].

Connector plug-ins open client connections to the Kafka brokers using the bootstrap address. To
configure these connections, use the standard Kafka producer and consumer configuration options
prefixed by producer. or consumer..

For more information on configuring Kafka producers and consumers, see:

CHAPTER 8. KAFKA CONNECT

115

Appendix D, Producer configuration parameters

Appendix C, Consumer configuration parameters

8.1.2. Configuring connectors in Kafka Connect in standalone mode

You can configure connector plug-ins for Kafka Connect in standalone mode using properties files.
Most configuration options are specific to each connector. The following options apply to all connectors:

name

The name of the connector, which must be unique within the current Kafka Connect instance.

connector.class

The class of the connector plug-in. For example,
org.apache.kafka.connect.file.FileStreamSinkConnector.

tasks.max

The maximum number of tasks that the specified connector can use. Tasks enable the connector to
perform work in parallel. The connector might create fewer tasks than specified.

key.converter

The class used to convert message keys to and from Kafka format. This overrides the default value
set by the Kafka Connect configuration. For example,
org.apache.kafka.connect.json.JsonConverter.

value.converter

The class used to convert message payloads to and from Kafka format. This overrides the default
value set by the Kafka Connect configuration. For example,
org.apache.kafka.connect.json.JsonConverter.

Additionally, you must set at least one of the following options for sink connectors:

topics

A comma-separated list of topics used as input.

topics.regex

A Java regular expression of topics used as input.

For all other options, see the documentation for the available connectors.

AMQ Streams includes example connector configuration files – see config/connect-file-
sink.properties and config/connect-file-source.properties in the AMQ Streams installation directory.

8.1.3. Running Kafka Connect in standalone mode

This procedure describes how to configure and run Kafka Connect in standalone mode.

Prerequisites

An installed and running AMQ Streams} cluster.

Procedure

1. Edit the /opt/kafka/config/connect-standalone.properties Kafka Connect configuration file
and set bootstrap.server to point to your Kafka brokers. For example:

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

116

2. Start Kafka Connect with the configuration file and specify one or more connector
configurations.

3. Verify that Kafka Connect is running.

Additional resources

For more information on installing AMQ Streams, see Section 2.3, “Installing AMQ Streams” .

For more information on configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For a complete list of supported Kafka Connect configuration options, see Appendix F, Kafka
Connect configuration parameters.

8.2. KAFKA CONNECT IN DISTRIBUTED MODE

In distributed mode, Kafka Connect runs across one or more worker nodes and the workloads are
distributed among them. You manage connector plug-ins and their configuration using the HTTP REST
interface.

8.2.1. Configuring Kafka Connect in distributed mode

To configure Kafka Connect in distributed mode, edit the config/connect-distributed.properties
configuration file. The following options are the most important.

bootstrap.servers

A list of Kafka broker addresses used as bootstrap connections to Kafka. For example, kafka0.my-
domain.com:9092,kafka1.my-domain.com:9092,kafka2.my-domain.com:9092.

key.converter

The class used to convert message keys to and from Kafka format. For example,
org.apache.kafka.connect.json.JsonConverter.

value.converter

The class used to convert message payloads to and from Kafka format. For example,
org.apache.kafka.connect.json.JsonConverter.

group.id

The name of the distributed Kafka Connect cluster. This must be unique and must not conflict with
another consumer group ID. The default value is connect-cluster.

config.storage.topic

The Kafka topic used to store connector configurations. The default value is connect-configs.

bootstrap.servers=kafka0.my-domain.com:9092,kafka1.my-domain.com:9092,kafka2.my-
domain.com:9092

su - kafka
/opt/kafka/bin/connect-standalone.sh /opt/kafka/config/connect-standalone.properties
connector1.properties
[connector2.properties ...]

 jcmd | grep ConnectStandalone

CHAPTER 8. KAFKA CONNECT

117

offset.storage.topic

The Kafka topic used to store offsets. The default value is connect-offset.

status.storage.topic

The Kafka topic used for worker node statuses. The default value is connect-status.

AMQ Streams includes an example configuration file for Kafka Connect in distributed mode – see
config/connect-distributed.properties in the AMQ Streams installation directory.

For a complete list of all supported Kafka Connect configuration options, see Appendix F, Kafka
Connect configuration parameters.

Connector plug-ins open client connections to the Kafka brokers using the bootstrap address. To
configure these connections, use the standard Kafka producer and consumer configuration options
prefixed by producer. or consumer..

For more information on configuring Kafka producers and consumers, see:

Appendix D, Producer configuration parameters

Appendix C, Consumer configuration parameters

8.2.2. Configuring connectors in distributed Kafka Connect

HTTP REST Interface

Connectors for distributed Kafka Connect are configured using HTTP REST interface. The REST
interface listens on port 8083 by default. It supports following endpoints:

GET /connectors

Return a list of existing connectors.

POST /connectors

Create a connector. The request body has to be a JSON object with the connector configuration.

GET /connectors/<name>

Get information about a specific connector.

GET /connectors/<name>/config

Get configuration of a specific connector.

PUT /connectors/<name>/config

Update the configuration of a specific connector.

GET /connectors/<name>/status

Get the status of a specific connector.

PUT /connectors/<name>/pause

Pause the connector and all its tasks. The connector will stop processing any messages.

PUT /connectors/<name>/resume

Resume a paused connector.

POST /connectors/<name>/restart

Restart a connector in case it has failed.

DELETE /connectors/<name>

Delete a connector.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

118

GET /connector-plugins

Get a list of all supported connector plugins.

Connector configuration

Most configuration options are connector specific and included in the documentation for the
connectors. The following fields are common for all connectors.

name

Name of the connector. Must be unique within a given Kafka Connect instance.

connector.class

Class of the connector plugin. For example
org.apache.kafka.connect.file.FileStreamSinkConnector.

tasks.max

The maximum number of tasks used by this connector. Tasks are used by the connector to parallelise
its work. Connetors may create fewer tasks than specified.

key.converter

Class used to convert message keys to and from Kafka format. This overrides the default value set by
the Kafka Connect configuration. For example, org.apache.kafka.connect.json.JsonConverter.

value.converter

Class used to convert message payloads to and from Kafka format. This overrides the default value
set by the Kafka Connect configuration. For example,
org.apache.kafka.connect.json.JsonConverter.

Additionally, one of the following options must be set for sink connectors:

topics

A comma-separated list of topics used as input.

topics.regex

A Java regular expression of topics used as input.

For all other options, see the documentation for the specific connector.

AMQ Streams includes example connector configuration files. They can be found in config/connect-
file-sink.properties and config/connect-file-source.properties in the AMQ Streams installation
directory.

8.2.3. Running distributed Kafka Connect

This procedure describes how to configure and run Kafka Connect in distributed mode.

Prerequisites

An installed and running AMQ Streams cluster.

Running the cluster

1. Edit the /opt/kafka/config/connect-distributed.properties Kafka Connect configuration file on
all Kafka Connect worker nodes.

Set the bootstrap.server option to point to your Kafka brokers.

CHAPTER 8. KAFKA CONNECT

119

Set the group.id option.

Set the config.storage.topic option.

Set the offset.storage.topic option.

Set the status.storage.topic option.
For example:

2. Start the Kafka Connect workers with the /opt/kafka/config/connect-distributed.properties
configuration file on all Kafka Connect nodes.

3. Verify that Kafka Connect is running.

Additional resources

For more information about installing AMQ Streams, see Section 2.3, “Installing AMQ Streams” .

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For a complete list of supported Kafka Connect configuration options, see Appendix F, Kafka
Connect configuration parameters.

8.2.4. Creating connectors

This procedure describes how to use the Kafka Connect REST API to create a connector plug-in for use
with Kafka Connect in distributed mode.

Prerequisites

A Kafka Connect installation running in distributed mode.

Procedure

1. Prepare a JSON payload with the connector configuration. For example:

bootstrap.servers=kafka0.my-domain.com:9092,kafka1.my-domain.com:9092,kafka2.my-
domain.com:9092
group.id=my-group-id
config.storage.topic=my-group-id-configs
offset.storage.topic=my-group-id-offsets
status.storage.topic=my-group-id-status

su - kafka
/opt/kafka/bin/connect-distributed.sh /opt/kafka/config/connect-distributed.properties

jcmd | grep ConnectDistributed

{
 "name": "my-connector",
 "config": {
 "connector.class": "org.apache.kafka.connect.file.FileStreamSinkConnector",
 "tasks.max": "1",

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

120

2. Send a POST request to <KafkaConnectAddress>:8083/connectors to create the connector.
The following example uses curl:

3. Verify that the connector was deployed by sending a GET request to
<KafkaConnectAddress>:8083/connectors. The following example uses curl:

8.2.5. Deleting connectors

This procedure describes how to use the Kafka Connect REST API to delete a connector plug-in from
Kafka Connect in distributed mode.

Prerequisites

A Kafka Connect installation running in distributed mode.

Deleting connectors

1. Verify that the connector exists by sending a GET request to
<KafkaConnectAddress>:8083/connectors/<ConnectorName>. The following example uses
curl:

2. To delete the connector, send a DELETE request to
<KafkaConnectAddress>:8083/connectors. The following example uses curl:

3. Verify that the connector was deleted by sending a GET request to
<KafkaConnectAddress>:8083/connectors. The following example uses curl:

8.3. CONNECTOR PLUG-INS

The following connector plug-ins are included with AMQ Streams.

FileStreamSink Reads data from Kafka topics and writes the data to a file.

FileStreamSource Reads data from a file and sends the data to Kafka topics.

You can add more connector plug-ins if needed. Kafka Connect searches for and runs additional

 "topics": "my-topic-1,my-topic-2",
 "file": "/tmp/output-file.txt"
 }
}

curl -X POST -H "Content-Type: application/json" --data @sink-connector.json
http://connect0.my-domain.com:8083/connectors

curl http://connect0.my-domain.com:8083/connectors

curl http://connect0.my-domain.com:8083/connectors

curl -X DELETE http://connect0.my-domain.com:8083/connectors/my-connector

curl http://connect0.my-domain.com:8083/connectors

CHAPTER 8. KAFKA CONNECT

121

You can add more connector plug-ins if needed. Kafka Connect searches for and runs additional
connector plug-ins at startup. To define the path that kafka Connect searches for plug-ins, set the
plugin.path configuration option:

The plugin.path configuration option can contain a comma-separated list of paths.

When running Kafka Connect in distributed mode, plug-ins must be made available on all worker nodes.

8.4. ADDING CONNECTOR PLUGINS

This procedure shows you how to add additional connector plug-ins.

Prerequisites

An installed and running AMQ Streams cluster.

Procedure

1. Create the /opt/kafka/connector-plugins directory.

2. Edit the /opt/kafka/config/connect-standalone.properties or /opt/kafka/config/connect-
distributed.properties Kafka Connect configuration file, and set the plugin.path option to
/opt/kafka/connector-plugins. For example:

3. Copy your connector plug-ins to /opt/kafka/connector-plugins.

4. Start or restart the Kafka Connect workers.

Additional resources

For more information on installing AMQ Streams, see Section 2.3, “Installing AMQ Streams” .

For more information on configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For more information on running Kafka Connect in standalone mode, see Section 8.1.3, “Running
Kafka Connect in standalone mode”.

For more information on running Kafka Connect in distributed mode, see Section 8.2.3,
“Running distributed Kafka Connect”.

For a complete list of supported Kafka Connect configuration options, see Appendix F, Kafka
Connect configuration parameters.

plugin.path=/opt/kafka/connector-plugins,/opt/connectors

su - kafka
mkdir /opt/kafka/connector-plugins

plugin.path=/opt/kafka/connector-plugins

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

122

CHAPTER 9. USING AMQ STREAMS WITH MIRRORMAKER 2.0
MirrorMaker 2.0 is used to replicate data between two or more active Kafka clusters, within or across
data centers.

Data replication across clusters supports scenarios that require:

Recovery of data in the event of a system failure

Aggregation of data for analysis

Restriction of data access to a specific cluster

Provision of data at a specific location to improve latency

NOTE

MirrorMaker 2.0 has features not supported by the previous version of MirrorMaker.
However, you can configure MirrorMaker 2.0 to be used in legacy mode .

Additional resources

Apache Kafka documentation

9.1. MIRRORMAKER 2.0 DATA REPLICATION

MirrorMaker 2.0 consumes messages from a source Kafka cluster and writes them to a target Kafka
cluster.

MirrorMaker 2.0 uses:

Source cluster configuration to consume data from the source cluster

Target cluster configuration to output data to the target cluster

MirrorMaker 2.0 is based on the Kafka Connect framework, connectors managing the transfer of data
between clusters. A MirrorMaker 2.0 MirrorSourceConnector replicates topics from a source cluster to
a target cluster.

The process of mirroring data from one cluster to another cluster is asynchronous. The recommended
pattern is for messages to be produced locally alongside the source Kafka cluster, then consumed
remotely close to the target Kafka cluster.

MirrorMaker 2.0 can be used with more than one source cluster.

Figure 9.1. Replication across two clusters

CHAPTER 9. USING AMQ STREAMS WITH MIRRORMAKER 2.0

123

https://kafka.apache.org/documentation/

Figure 9.1. Replication across two clusters

9.2. CLUSTER CONFIGURATION

You can use MirrorMaker 2.0 in active/passive or active/active cluster configurations.

In an active/passive configuration, the data from an active cluster is replicated in a passive
cluster, which remains on standby, for example, for data recovery in the event of system failure.

In an active/active configuration, both clusters are active and provide the same data
simultaneously, which is useful if you want to make the same data available locally in different
geographical locations.

The expectation is that producers and consumers connect to active clusters only.

9.2.1. Bidirectional replication

The MirrorMaker 2.0 architecture supports bidirectional replication in an active/active cluster
configuration. A MirrorMaker 2.0 cluster is required at each target destination.

Each cluster replicates the data of the other cluster using the concept of source and remote topics. As
the same topics are stored in each cluster, remote topics are automatically renamed by MirrorMaker 2.0
to represent the source cluster.

Figure 9.2. Topic renaming

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

124

Figure 9.2. Topic renaming

By flagging the originating cluster, topics are not replicated back to that cluster.

The concept of replication through remote topics is useful when configuring an architecture that
requires data aggregation. Consumers can subscribe to source and remote topics within the same
cluster, without the need for a separate aggregation cluster.

9.2.2. Topic configuration synchronization

Topic configuration is automatically synchronized between source and target clusters. By synchronizing
configuration properties, the need for rebalancing is reduced.

9.2.3. Data integrity

MirrorMaker 2.0 monitors source topics and propagates any configuration changes to remote topics,
checking for and creating missing partitions. Only MirrorMaker 2.0 can write to remote topics.

9.2.4. Offset tracking

MirrorMaker 2.0 tracks offsets for consumer groups using internal topics.

The offset sync topic maps the source and target offsets for replicated topic partitions from
record metadata

The checkpoint topic maps the last committed offset in the source and target cluster for
replicated topic partitions in each consumer group

Offsets for the checkpoint topic are tracked at predetermined intervals through configuration. Both
topics enable replication to be fully restored from the correct offset position on failover.

MirrorMaker 2.0 uses its MirrorCheckpointConnector to emit checkpoints for offset tracking.

CHAPTER 9. USING AMQ STREAMS WITH MIRRORMAKER 2.0

125

9.2.5. Connectivity checks

A heartbeat internal topic checks connectivity between clusters.

The heartbeat topic is replicated from the source cluster.

Target clusters use the topic to check:

The connector managing connectivity between clusters is running

The source cluster is available

MirrorMaker 2.0 uses its MirrorHeartbeatConnector to emit heartbeats that perform these checks.

9.3. ACL RULES SYNCHRONIZATION

If SimpleAclAuthorizer is being used, ACL rules that manage access to brokers also apply to remote
topics. Users that can read a source topic can read its remote equivalent.

NOTE

OAuth 2.0 authorization does not support access to remote topics in this way.

9.4. SYNCHRONIZING DATA BETWEEN KAFKA CLUSTERS USING
MIRRORMAKER 2.0

Use MirrorMaker 2.0 to synchronize data between Kafka clusters through configuration.

The previous version of MirrorMaker continues to be supported, by running MirrorMaker 2.0 in legacy
mode.

The configuration must specify:

Each Kafka cluster

Connection information for each cluster, including TLS authentication

The replication flow and direction

Cluster to cluster

Topic to topic

Replication rules

Committed offset tracking intervals

This procedure describes how to implement MirrorMaker 2.0 by creating the configuration in a
properties file, then passing the properties when using the MirrorMaker script file to set up the
connections.

NOTE

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

126

1

2

NOTE

MirrorMaker 2.0 uses Kafka Connect to make the connections to transfer data between
clusters. Kafka provides MirrorMaker sink and source connectors for data replication. If
you wish to use the connectors instead of the MirrorMaker script, the connectors must be
configured in the Kafka Connect cluster. For more information, refer to the Apache Kafka
documentation.

Before you begin

A sample configuration properties file is provided in ./config/connect-mirror-maker.properties.

Prerequisites

You need AMQ Streams installed on the hosts of each Kafka cluster node you are replicating.

Procedure

1. Open the sample properties file in a text editor, or create a new one, and edit the file to include
connection information and the replication flows for each Kafka cluster.
The following example shows a configuration to connect two clusters, cluster-1 and cluster-2,
bidirectionally. Cluster names are configurable through the clusters property.

Each Kafka cluster is identified with its alias

Connection information for cluster-1, using the bootstrap address and port 443. Both
clusters use port 443 to connect to Kafka using OpenShift Routes

clusters=cluster-1,cluster-2 1

cluster-1.bootstrap.servers=<my-cluster>-kafka-bootstrap-<my-project>:443 2
cluster-1.security.protocol=SSL 3
cluster-1.ssl.truststore.password=<my-truststore-password>
cluster-1.ssl.truststore.location=<path-to-truststore>/truststore.cluster-1.jks
cluster-1.ssl.keystore.password=<my-keystore-password>
cluster-1.ssl.keystore.location=<path-to-keystore>/user.cluster-1.p12

cluster-2.bootstrap.servers=<my-cluster>-kafka-bootstrap-<my-project>:443 4
cluster-2.security.protocol=SSL 5
cluster-2.ssl.truststore.password=<my-truststore-password>
cluster-2.ssl.truststore.location=<path-to-truststore>/truststore.cluster-2.jks
cluster-2.ssl.keystore.password=<my-keystore-password>
cluster-2.ssl.keystore.location=<path-to-keystore>/user.cluster-2.p12

cluster-1->cluster-2.enabled=true 6
cluster-1->cluster-2.topics=.* 7
cluster-2->cluster-1.enabled=true 8
cluster-2->cluster-1B->C.topics=.* 9

replication.policy.separator=- 10
sync.topic.acls.enabled=false 11
refresh.topics.interval.seconds=60 12
refresh.groups.interval.seconds=60 13

CHAPTER 9. USING AMQ STREAMS WITH MIRRORMAKER 2.0

127

https://kafka.apache.org/documentation/

3

4

5

6

7

8

9

10

11

12

13

The ssl. properties define TLS configuration for cluster-1.

Connection information for cluster-2.

The ssl. properties define the TLS configuration for cluster-2.

Replication flow enabled from the cluster-1 cluster to the cluster-2 cluster

Replicates all topics from the cluster-1 cluster to the cluster-2 cluster

Replication flow enabled from the cluster-2 cluster to the cluster-1 cluster

Replicates specific topics from the cluster-2 cluster to the cluster-1 cluster

Policy to declare the reserved character used as the topic name separator.

When enabled, ACLs are applied to synchronized topics. The default is false.

The period between checks for new topics to synchronize.

The period between checks for new consumer groups to synchronize.

2. Start MirrorMaker with the cluster connection configuration and replication policies you defined
in your properties file:

MirrorMaker sets up connections between the clusters.

3. Start ZooKeeper and Kafka in the target clusters:

4. For each target cluster, verify that the topics are being replicated:

9.5. USING MIRRORMAKER 2.0 IN LEGACY MODE

This procedure describes how to configure MirrorMaker 2.0 to use it in legacy mode. Legacy mode
supports the previous version of MirrorMaker.

The MirrorMaker script /opt/kafka/bin/kafka-mirror-maker.sh can run MirrorMaker 2.0 in legacy mode.

Prerequisites

You need the properties files you currently use with the legacy version of MirrorMaker.

/opt/kafka/config/consumer.properties

su - kafka
/opt/kafka/bin/kafka-mirror-maker.sh /config/connect-mirror-maker.properties

su - kafka
/opt/kafka/bin/zookeeper-server-start.sh -daemon /opt/kafka/config/zookeeper.properties

su - kafka
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

/bin/kafka-topics.sh --zookeeper <ZooKeeperAddress> --list

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

128

1

2

/opt/kafka/config/producer.properties

Procedure

1. Edit the MirrorMaker consumer.properties and producer.properties files to turn off
MirrorMaker 2.0 features.
For example:

Emulate the previous version of MirrorMaker.

MirrorMaker 2.0 features disabled, including the internal checkpoint and heartbeat topics

2. Save the changes and restart MirrorMaker with the properties files you used with the previous
version of MirrorMaker:

The consumer properties provide the configuration for the source cluster and the producer
properties provide the target cluster configuration.

MirrorMaker sets up connections between the clusters.

3. Start ZooKeeper and Kafka in the target cluster:

4. For the target cluster, verify that the topics are being replicated:

replication.policy.class=org.apache.kafka.mirror.LegacyReplicationPolicy 1

refresh.topics.enabled=false 2
refresh.groups.enabled=false
emit.checkpoints.enabled=false
emit.heartbeats.enabled=false
sync.topic.configs.enabled=false
sync.topic.acls.enabled=false

su - kafka /opt/kafka/bin/kafka-mirror-maker.sh \
--consumer.config /opt/kafka/config/consumer.properties \
--producer.config /opt/kafka/config/producer.properties \
--num.streams=2

su - kafka
/opt/kafka/bin/zookeeper-server-start.sh -daemon /opt/kafka/config/zookeeper.properties

su - kafka
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

/bin/kafka-topics.sh --zookeeper <ZooKeeperAddress> --list

CHAPTER 9. USING AMQ STREAMS WITH MIRRORMAKER 2.0

129

CHAPTER 10. KAFKA CLIENTS
The kafka-clients JAR file contains the Kafka Producer and Consumer APIs together with the Kafka
AdminClient API.

The Producer API allows applications to send data to a Kafka broker.

The Consumer API allows applications to consume data from a Kafka broker.

The AdminClient API provides functionality for managing Kafka clusters, including topics,
brokers, and other components.

10.1. ADDING KAFKA CLIENTS AS A DEPENDENCY TO YOUR MAVEN
PROJECT

This procedure shows you how to add the AMQ Streams Java clients as a dependency to your Maven
project.

Prerequisites

A Maven project with an existing pom.xml.

Procedure

1. Add the Red Hat Maven repository to the <repositories> section of your pom.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <!-- ... -->

 <repositories>
 <repository>
 <id>redhat-maven</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 </repository>
 </repositories>

 <!-- ... -->

</project>

2. Add the clients to the <dependencies> section of your pom.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <!-- ... -->

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

130

 <dependencies>
 <dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-clients</artifactId>
 <version>2.5.0.redhat-00003</version>
 </dependency>
 </dependencies>

 <!-- ... -->
</project>

3. Build your Maven project.

CHAPTER 10. KAFKA CLIENTS

131

CHAPTER 11. KAFKA STREAMS API OVERVIEW
The Kafka Streams API allows applications to receive data from one or more input streams, execute
complex operations like mapping, filtering or joining, and write the results into one or more output
streams. It is part of the kafka-streams JAR package that is available in the Red Hat Maven repository.

11.1. ADDING THE KAFKA STREAMS API AS A DEPENDENCY TO YOUR
MAVEN PROJECT

This procedure shows you how to add the AMQ Streams Java clients as a dependency to your Maven
project.

Prerequisites

A Maven project with an existing pom.xml.

Procedure

1. Add the Red Hat Maven repository to the <repositories> section of your pom.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <!-- ... -->

 <repositories>
 <repository>
 <id>redhat-maven</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 </repository>
 </repositories>

 <!-- ... -->

</project>

2. Add kafka-streams to the <dependencies> section of your pom.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <!-- ... -->

 <dependencies>
 <dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-streams</artifactId>
 <version>2.5.0.redhat-00003</version>

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

132

 </dependency>
 </dependencies>

 <!-- ... -->
</project>

3. Build your Maven project.

CHAPTER 11. KAFKA STREAMS API OVERVIEW

133

CHAPTER 12. KAFKA BRIDGE
This chapter provides an overview of the AMQ Streams Kafka Bridge on Red Hat Enterprise Linux and
helps you get started using its REST API to interact with AMQ Streams. To try out the Kafka Bridge in
your local environment, see the Section 12.2, “Kafka Bridge quickstart” later in this chapter.

Additional resources

To view the API documentation, including example requests and responses, see the Kafka
Bridge API reference.

To configure the Kafka Bridge for distributed tracing, see Section 14.4, “Enabling tracing for the
Kafka Bridge”.

12.1. KAFKA BRIDGE OVERVIEW

The AMQ Streams Kafka Bridge provides an API for integrating HTTP-based clients with a Kafka cluster
running on Red Hat Enterprise Linux. The API enables such clients to produce and consume messages
without the requirement to use the native Kafka protocol.

The API has two main resources — consumers and topics — that are exposed and made accessible
through endpoints to interact with consumers and producers in your Kafka cluster. The resources relate
only to the Kafka Bridge, not the consumers and producers connected directly to Kafka.

You can:

Send messages to a topic.

Create and delete consumers.

Subscribe consumers to topics, so that they start receiving messages from those topics.

Retrieve a list of the topics to which a consumer is subscribed.

Unsubscribe consumers from topics.

Assign partitions to consumers.

Retrieve messages from topics.

Commit a list of consumer offsets.

Seek on a partition, so that a consumer starts receiving messages from the first or last offset
position, or a given offset position.

Similar to an AMQ Streams installation, you can download the Kafka Bridge files for installation on Red
Hat Enterprise Linux. See Section 12.1.5, “Downloading a Kafka Bridge archive” .

For more information on configuring the host and port for the KafkaBridge resource, see Section 12.1.6,
“Configuring Kafka Bridge properties”.

12.1.1. Authentication and encryption

Authentication and encryption between HTTP clients and the Kafka Bridge is not yet supported. This
means that requests sent from clients to the Kafka Bridge are:

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

134

https://strimzi.io/docs/bridge/latest/

Not encrypted, and must use HTTP rather than HTTPS

Sent without authentication

You can configure TLS or SASL-based authentication between the Kafka Bridge and your Kafka cluster.

You configure the Kafka Bridge for authentication through its properties file.

12.1.2. Requests to the Kafka Bridge

Specify data formats and HTTP headers to ensure valid requests are submitted to the Kafka Bridge.

API request and response bodies are always encoded as JSON.

12.1.2.1. Content Type headers

A Content-Type header must be submitted for all requests. The only exception is when the POST
request body is empty, where adding a Content-Type header will cause the request to fail.

Consumer operations (/consumers endpoints) and producer operations (/topics endpoints) require
different Content-Type headers.

Content-Type headers for consumer operations

Regardless of the embedded data format, POST requests for consumer operations must provide the
following Content-Type header if the request body contains data:

Content-Type headers for producer operations

When performing producer operations, POST requests must provide the following Content-Type
header specifying the desired embedded data format , either json or binary, as shown in the following
table.

Embedded data format Content-Type header

JSON Content-Type:
application/vnd.kafka.json.v2+json

Binary Content-Type:
application/vnd.kafka.binary.v2+json

You set the embedded data format when creating a consumer using the consumers/groupid endpoint
—​for more information, see the next section.

The Content-Type must not be set if the POST request has an empty body. An empty body can be used
to create a consumer with the default values.

12.1.2.2. Embedded data format

The embedded data format is the format of the Kafka messages that are transmitted, over HTTP, from a
producer to a consumer using the Kafka Bridge. Two embedded data formats are supported: JSON or
binary.

Content-Type: application/vnd.kafka.v2+json

CHAPTER 12. KAFKA BRIDGE

135

1

When creating a consumer using the /consumers/groupid endpoint, the POST request body must
specify an embedded data format of either JSON or binary. This is specified in the format field in the
request body, for example:

A binary embedded data format.

If an embedded data format for the consumer is not specified, then a binary format is set.

The embedded data format specified when creating a consumer must match the data format of the
Kafka messages it will consume.

If you choose to specify a binary embedded data format, subsequent producer requests must provide
the binary data in the request body as Base64-encoded strings. For example, when sending messages
by making POST requests to the /topics/topicname endpoint, the value must be encoded in Base64:

Producer requests must also provide a Content-Type header that corresponds to the embedded data
format, for example, Content-Type: application/vnd.kafka.binary.v2+json.

12.1.2.3. Accept headers

After creating a consumer, all subsequent GET requests must provide an Accept header in the following
format:

The embedded-data-format is either json or binary.

For example, when retrieving records for a subscribed consumer using an embedded data format of
JSON, include this Accept header:

12.1.3. Configuring loggers for the Kafka Bridge

The AMQ Streams Kafka bridge allows you to set a different log level for each operation that is defined
by the related OpenAPI specification.

Each operation has a corresponding API endpoint through which the bridge receives requests from

{
 "name": "my-consumer",
 "format": "binary", 1
...
}

{
 "records": [
 {
 "key": "my-key",
 "value": "ZWR3YXJkdGhldGhyZWVsZWdnZWRjYXQ="
 },
]
}

Accept: application/vnd.kafka.embedded-data-format.v2+json

Accept: application/vnd.kafka.json.v2+json

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

136

Each operation has a corresponding API endpoint through which the bridge receives requests from
HTTP clients. You can change the log level on each endpoint to produce more or less fine-grained
logging information about the incoming and outgoing HTTP requests.

Loggers are defined in the log4j.properties file, which has the following default configuration for
healthy and ready endpoints:

log4j.logger.http.openapi.operation.healthy=WARN, out
log4j.additivity.http.openapi.operation.healthy=false
log4j.logger.http.openapi.operation.ready=WARN, out
log4j.additivity.http.openapi.operation.ready=false

The log level of all other operations is set to INFO by default. Loggers are formatted as follows:

log4j.logger.http.openapi.operation.<operation-id>

Where <operation-id> is the identifier of the specific operation. Following is the list of operations
defined by the OpenAPI specification:

createConsumer

deleteConsumer

subscribe

unsubscribe

poll

assign

commit

send

sendToPartition

seekToBeginning

seekToEnd

seek

healthy

ready

openapi

12.1.4. Kafka Bridge API resources

For the full list of REST API endpoints and descriptions, including example requests and responses, see
the Kafka Bridge API reference .

12.1.5. Downloading a Kafka Bridge archive

CHAPTER 12. KAFKA BRIDGE

137

https://strimzi.io/docs/bridge/latest/

A zipped distribution of the AMQ Streams Kafka Bridge is available for download from the Red Hat
website.

Procedure

Download the latest version of the Red Hat AMQ Streams Kafka Bridge archive from the
Customer Portal.

12.1.6. Configuring Kafka Bridge properties

This procedure describes how to configure the Kafka and HTTP connection properties used by the AMQ
Streams Kafka Bridge.

You configure the Kafka Bridge, as any other Kafka client, using appropriate prefixes for Kafka-related
properties.

kafka. for general configuration that applies to producers and consumers, such as server
connection and security.

kafka.consumer. for consumer-specific configuration passed only to the consumer.

kafka.producer. for producer-specific configuration passed only to the producer.

As well as enabling HTTP access to a Kafka cluster, HTTP properties provide the capability to enable and
define access control for the Kafka Bridge through Cross-Origin Resource Sharing (CORS). CORS is a
HTTP mechanism that allows browser access to selected resources from more than one origin. To
configure CORS, you define a list of allowed resource origins and HTTP methods to access them.
Additional HTTP headers in requests describe the origins that are permitted access to the Kafka cluster .

Prerequisites

AMQ Streams is installed on the host

The Kafka Bridge installation archive is downloaded

Procedure

1. Edit the application.properties file provided with the AMQ Streams Kafka Bridge installation
archive.
Use the properties file to specify Kafka and HTTP-related properties, and to enable distributed
tracing.

a. Configure standard Kafka-related properties, including properties specific to the Kafka
consumers and producers.
Use:

kafka.bootstrap.servers to define the host/port connections to the Kafka cluster

kafka.producer.acks to provide acknowledgments to the HTTP client

kafka.consumer.auto.offset.reset to determine how to manage reset of the offset in
Kafka
For more information on configuration of Kafka properties, see the Apache Kafka
website

b. Configure HTTP-related properties to enable HTTP access to the Kafka cluster.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

138

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams&productChanged=yes
https://www.w3.org/TR/cors/
http://kafka.apache.org

1

2

3

4

For example:

The default HTTP configuration for the Kafka Bridge to listen on port 8080.

Set to true to enable CORS.

Comma-separated list of allowed CORS origins. You can use a URL or a Java regular
expression.

Comma-separated list of allowed HTTP methods for CORS.

c. Enable or disable distributed tracing.

Remove code comments from the property to enable distributed tracing

Additional resources

Chapter 14, Distributed tracing

Section 14.4, “Enabling tracing for the Kafka Bridge”

12.1.7. Installing the Kafka Bridge

Follow this procedure to install the AMQ Streams Kafka Bridge on Red Hat Enterprise Linux.

Prerequisites

AMQ Streams is installed on the host

The Kafka Bridge installation archive is downloaded

The Kafka Bridge configuration properties are set

Procedure

1. If you have not already done so, unzip the AMQ Streams Kafka Bridge installation archive to any
directory.

2. Run the Kafka Bridge script using the configuration properties as a parameter:
For example:

3. Check to see that the installation was successful in the log.

http.enabled=true
http.host=0.0.0.0
http.port=8080 1
http.cors.enabled=true 2
http.cors.allowedOrigins=https://strimzi.io 3
http.cors.allowedMethods=GET,POST,PUT,DELETE,OPTIONS,PATCH 4

bridge.tracing=jaeger

./bin/kafka_bridge_run.sh --config-file=_path_/configfile.properties

CHAPTER 12. KAFKA BRIDGE

139

12.2. KAFKA BRIDGE QUICKSTART

Use this quickstart to try out the AMQ Streams Kafka Bridge on Red Hat Enterprise Linux. You will learn
how to:

Install the Kafka Bridge

Produce messages to topics and partitions in your Kafka cluster

Create a Kafka Bridge consumer

Perform basic consumer operations, such as subscribing the consumer to topics and retrieving
the messages that you produced

In this quickstart, HTTP requests are formatted as curl commands that you can copy and paste to your
terminal.

Ensure you have the prerequisites and then follow the tasks in the order provided in this chapter.

About data formats

In this quickstart, you will produce and consume messages in JSON format, not binary. For more
information on the data formats and HTTP headers used in the example requests, see Section 12.1.1,
“Authentication and encryption”.

Prerequisites for the quickstart

AMQ Streams is installed on the host

A single node AMQ Streams cluster is running

The Kafka Bridge installation archive is downloaded

12.2.1. Deploying the Kafka Bridge locally

Deploy an instance of the AMQ Streams Kafka Bridge to the host. Use the application.properties file
provided with the installation archive to apply the default configuration settings.

Procedure

1. Open the application.properties file and check that the default HTTP related settings are
defined:

This configures the Kafka Bridge to listen for requests on port 8080.

2. Run the Kafka Bridge script using the configuration properties as a parameter:

HTTP-Kafka Bridge started and listening on port 8080
HTTP-Kafka Bridge bootstrap servers localhost:9092

http.enabled=true
http.host=0.0.0.0
http.port=8080

./bin/kafka_bridge_run.sh --config-file=<path>/application.properties

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

140

What to do next

Produce messages to topics and partitions .

12.2.2. Producing messages to topics and partitions

Produce messages to a topic in JSON format by using the topics endpoint.

You can specify destination partitions for messages in the request body, as shown below. The partitions
endpoint provides an alternative method for specifying a single destination partition for all messages as
a path parameter.

Procedure

1. Create a Kafka topic using the kafka-topics.sh utility:

Specify three partitions.

2. Verify that the topic was created:

3. Using the Kafka Bridge, produce three messages to the topic you created:

sales-lead-0001 is sent to a partition based on the hash of the key.

sales-lead-0002 is sent directly to partition 2.

sales-lead-0003 is sent to a partition in the bridge-quickstart-topic topic using a round-
robin method.

4. If the request is successful, the Kafka Bridge returns an offsets array, along with a 200 (OK)

bin/kafka-topics.sh --zookeeper localhost:2181 --create --topic bridge-quickstart-topic --
partitions 3 --replication-factor 1 --config retention.ms=7200000 --config
segment.bytes=1073741824

bin/kafka-topics.sh --zookeeper localhost:2181 --describe --topic bridge-quickstart-topic

curl -X POST \
 http://localhost:8080/topics/bridge-quickstart-topic \
 -H 'content-type: application/vnd.kafka.json.v2+json' \
 -d '{
 "records": [
 {
 "key": "my-key",
 "value": "sales-lead-0001"
 },
 {
 "value": "sales-lead-0002",
 "partition": 2
 },
 {
 "value": "sales-lead-0003"
 }
]
}'

CHAPTER 12. KAFKA BRIDGE

141

https://strimzi.io/docs/bridge/latest/#_send
https://strimzi.io/docs/bridge/latest/#_sendtopartition

4. If the request is successful, the Kafka Bridge returns an offsets array, along with a 200 (OK)
code and a content-type header of application/vnd.kafka.v2+json. For each message, the
offsets array describes:

The partition that the message was sent to

The current message offset of the partition

Example response

What to do next

After producing messages to topics and partitions, create a Kafka Bridge consumer .

Additional resources

POST /topics/{topicname} in the API reference documentation.

POST /topics/{topicname}/partitions/{partitionid} in the API reference documentation.

12.2.3. Creating a Kafka Bridge consumer

Before you can perform any consumer operations on the Kafka cluster, you must first create a consumer
by using the consumers endpoint. The consumer is referred to as a Kafka Bridge consumer.

Procedure

1. Create a Kafka Bridge consumer in a new consumer group named bridge-quickstart-
consumer-group:

#...
{
 "offsets":[
 {
 "partition":0,
 "offset":0
 },
 {
 "partition":2,
 "offset":0
 },
 {
 "partition":0,
 "offset":1
 }
]
}

curl -X POST http://localhost:8080/consumers/bridge-quickstart-consumer-group \
 -H 'content-type: application/vnd.kafka.v2+json' \
 -d '{
 "name": "bridge-quickstart-consumer",
 "auto.offset.reset": "earliest",
 "format": "json",
 "enable.auto.commit": false,

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

142

https://strimzi.io/docs/bridge/latest/#_send
https://strimzi.io/docs/bridge/latest/#_sendtopartition
https://strimzi.io/docs/bridge/latest/#_createconsumer

The consumer is named bridge-quickstart-consumer and the embedded data format is
set as json.

The consumer will not commit offsets to the log automatically because the
enable.auto.commit setting is false. You will commit the offsets manually later in this
quickstart.

NOTE

The Kafka Bridge generates a random consumer name if you do not specify a
consumer name in the request body.

If the request is successful, the Kafka Bridge returns the consumer ID (instance_id) and
base URL (base_uri) in the response body, along with a 200 (OK) code.

Example response

2. Copy the base URL (base_uri) to use in the other consumer operations in this quickstart.

What to do next

Now that you have created a Kafka Bridge consumer, you can subscribe it to topics .

Additional resources

POST /consumers/{groupid} in the API reference documentation.

12.2.4. Subscribing a Kafka Bridge consumer to topics

Subscribe the Kafka Bridge consumer to one or more topics by using the subscription endpoint. Once
subscribed, the consumer starts receiving all messages that are produced to the topic.

Procedure

Subscribe the consumer to the bridge-quickstart-topic topic that you created earlier, in
Producing messages to topics and partitions :

 "fetch.min.bytes": 512,
 "consumer.request.timeout.ms": 30000
 }'

#...
{
 "instance_id": "bridge-quickstart-consumer",
 "base_uri":"http://<bridge-name>-bridge-service:8080/consumers/bridge-quickstart-
consumer-group/instances/bridge-quickstart-consumer"
}

curl -X POST http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer/subscription \
 -H 'content-type: application/vnd.kafka.v2+json' \
 -d '{
 "topics": [

CHAPTER 12. KAFKA BRIDGE

143

https://strimzi.io/docs/bridge/latest/#_createconsumer
https://strimzi.io/docs/bridge/latest/#_subscribe

The topics array can contain a single topic (as shown above) or multiple topics. If you want to
subscribe the consumer to multiple topics that match a regular expression, you can use the
topic_pattern string instead of the topics array.

If the request is successful, the Kafka Bridge returns a 204 No Content code only.

What to do next

After subscribing a Kafka Bridge consumer to topics, you can retrieve messages from the consumer .

Additional resources

POST /consumers/{groupid}/instances/{name}/subscription in the API reference
documentation.

12.2.5. Retrieving the latest messages from a Kafka Bridge consumer

Retrieve the latest messages from the Kafka Bridge consumer by requesting data from the records
endpoint. In production, HTTP clients can call this endpoint repeatedly (in a loop).

Procedure

1. Produce additional messages to the Kafka Bridge consumer, as described in Producing
messages to topics and partitions.

2. Submit a GET request to the records endpoint:

After creating and subscribing to a Kafka Bridge consumer, a first GET request will return an
empty response because the poll operation triggers a rebalancing process to assign partitions.

3. Repeat step two to retrieve messages from the Kafka Bridge consumer.
The Kafka Bridge returns an array of messages — describing the topic name, key, value, partition,
and offset — in the response body, along with a 200 (OK) code. Messages are retrieved from the
latest offset by default.

 "bridge-quickstart-topic"
]
}'

curl -X GET http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer/records \
 -H 'accept: application/vnd.kafka.json.v2+json'

HTTP/1.1 200 OK
content-type: application/vnd.kafka.json.v2+json
#...
[
 {
 "topic":"bridge-quickstart-topic",
 "key":"my-key",
 "value":"sales-lead-0001",
 "partition":0,
 "offset":0
 },
 {

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

144

https://strimzi.io/docs/bridge/latest/#_subscribe
https://strimzi.io/docs/bridge/latest/#_poll

NOTE

If an empty response is returned, produce more records to the consumer as
described in Producing messages to topics and partitions , and then try retrieving
messages again.

What to do next

After retrieving messages from a Kafka Bridge consumer, try committing offsets to the log .

Additional resources

GET /consumers/{groupid}/instances/{name}/records in the API reference documentation.

12.2.6. Commiting offsets to the log

Use the offsets endpoint to manually commit offsets to the log for all messages received by the Kafka
Bridge consumer. This is required because the Kafka Bridge consumer that you created earlier, in
Creating a Kafka Bridge consumer , was configured with the enable.auto.commit setting as false.

Procedure

Commit offsets to the log for the bridge-quickstart-consumer:

Because no request body is submitted, offsets are committed for all the records that have been
received by the consumer. Alternatively, the request body can contain an array
(OffsetCommitSeekList) that specifies the topics and partitions that you want to commit
offsets for.

If the request is successful, the Kafka Bridge returns a 204 No Content code only.

What to do next

After committing offsets to the log, try out the endpoints for seeking to offsets .

Additional resources

POST /consumers/{groupid}/instances/{name}/offsets in the API reference documentation.

12.2.7. Seeking to offsets for a partition

Use the positions endpoints to configure the Kafka Bridge consumer to retrieve messages for a partition

 "topic":"bridge-quickstart-topic",
 "key":null,
 "value":"sales-lead-0003",
 "partition":0,
 "offset":1
 },
#...

curl -X POST http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer/offsets

CHAPTER 12. KAFKA BRIDGE

145

https://strimzi.io/docs/bridge/latest/#_poll
https://strimzi.io/docs/bridge/latest/#_commit
https://strimzi.io/docs/bridge/latest/#_offsetcommitseeklist
https://strimzi.io/docs/bridge/latest/#_commit

Use the positions endpoints to configure the Kafka Bridge consumer to retrieve messages for a partition
from a specific offset, and then from the latest offset. This is referred to in Apache Kafka as a seek
operation.

Procedure

1. Seek to a specific offset for partition 0 of the quickstart-bridge-topic topic:

If the request is successful, the Kafka Bridge returns a 204 No Content code only.

2. Submit a GET request to the records endpoint:

The Kafka Bridge returns messages from the offset that you seeked to.

3. Restore the default message retrieval behavior by seeking to the last offset for the same
partition. This time, use the positions/end endpoint.

If the request is successful, the Kafka Bridge returns another 204 No Content code.

NOTE

You can also use the positions/beginning endpoint to seek to the first offset for one or
more partitions.

What to do next

curl -X POST http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer/positions \
 -H 'content-type: application/vnd.kafka.v2+json' \
 -d '{
 "offsets": [
 {
 "topic": "bridge-quickstart-topic",
 "partition": 0,
 "offset": 2
 }
]
}'

curl -X GET http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer/records \
 -H 'accept: application/vnd.kafka.json.v2+json'

curl -X POST http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer/positions/end \
 -H 'content-type: application/vnd.kafka.v2+json' \
 -d '{
 "partitions": [
 {
 "topic": "bridge-quickstart-topic",
 "partition": 0
 }
]
}'

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

146

https://strimzi.io/docs/bridge/latest/#_seek
https://strimzi.io/docs/bridge/latest/#_seektoend
https://strimzi.io/docs/bridge/latest/#_seektobeginning

In this quickstart, you have used the AMQ Streams Kafka Bridge to perform several common operations
on a Kafka cluster. You can now delete the Kafka Bridge consumer that you created earlier.

Additional resources

POST /consumers/{groupid}/instances/{name}/positions in the API reference documentation.

POST /consumers/{groupid}/instances/{name}/positions/beginning in the API reference
documentation.

POST /consumers/{groupid}/instances/{name}/positions/end in the API reference
documentation.

12.2.8. Deleting a Kafka Bridge consumer

Finally, delete the Kafa Bridge consumer that you used throughout this quickstart.

Procedure

Delete the Kafka Bridge consumer by sending a DELETE request to the instances endpoint.

If the request is successful, the Kafka Bridge returns a 204 No Content code only.

Additional resources

DELETE /consumers/{groupid}/instances/{name} in the API reference documentation.

curl -X DELETE http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer

CHAPTER 12. KAFKA BRIDGE

147

https://strimzi.io/docs/bridge/latest/#_seek
https://strimzi.io/docs/bridge/latest/#_seektobeginning
https://strimzi.io/docs/bridge/latest/#_seektoend
https://strimzi.io/docs/bridge/latest/#_deleteconsumer
https://strimzi.io/docs/bridge/latest/#_deleteconsumer

CHAPTER 13. CRUISE CONTROL FOR CLUSTER
REBALANCING

IMPORTANT

Cruise Control for cluster rebalancing is a Technology Preview only. Technology Preview
features are not supported with Red Hat production service-level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend implementing any
Technology Preview features in production environments. This Technology Preview
feature provides early access to upcoming product innovations, enabling you to test
functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
Technology Preview Features Support Scope .

You can deploy Cruise Control to your AMQ Streams cluster and use it to rebalance the load across the
Kafka brokers.

Cruise Control is an open source system for automating Kafka operations, such as monitoring cluster
workload, rebalancing a cluster based on predefined constraints, and detecting and fixing anomalies. It
consists of four components (Load Monitor, Analyzer, Anomaly Detector, and Executor) and a REST
API.

When AMQ Streams and Cruise Control are both deployed to Red Hat Enterprise Linux, you can access
Cruise Control features through the Cruise Control REST API. The following features are supported:

Configuring optimization goals and capacity limits

Using the /rebalance endpoint to:

Generate optimization proposals , as dry runs, based on the configured optimization goals or
user-provided goals supplied as request parameters

Initiate an optimization proposal to rebalance the Kafka cluster

Checking the progress of an active rebalance operation using the /user_tasks endpoint

Stopping an active rebalance operation using the /stop_proposal_execution endpoint

All other Cruise Control features are not currently supported, including anomaly detection, notifications,
write-your-own goals, and changing the topic replication factor. The web UI component (Cruise Control
Frontend) is not supported.

Cruise Control for AMQ Streams on Red Hat Enterprise Linux is provided as a separate zipped
distribution. For more information, see Section 13.2, “Downloading a Cruise Control archive” .

13.1. WHY USE CRUISE CONTROL?

Cruise Control reduces the time and effort involved in running an efficient Kafka cluster, with a more
evenly balanced workload across the brokers.

A typical cluster can become unevenly loaded over time. Partitions that handle large amounts of
message traffic might be unevenly distributed across the available brokers. To rebalance the cluster,
administrators must monitor the load on brokers and manually reassign busy partitions to brokers with
spare capacity.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

148

https://access.redhat.com/support/offerings/techpreview/
https://github.com/linkedin/cruise-control

Cruise Control automates this cluster rebalancing process. It constructs a workload model of resource
utilization, based on CPU, disk, and network load. Using a set of configurable optimization goals, you can
instruct Cruise Control to generate dry run optimization proposals for more balanced partition
assignments.

After you have reviewed a dry run optimization proposal, you can instruct Cruise Control to initiate a
cluster rebalance based on that proposal, or generate a new proposal.

When a cluster rebalancing operation is complete, the brokers are used more effectively and the load on
the Kafka cluster is more evenly balanced.

Additional resources

Cruise Control Wiki

Section 13.5, “Optimization goals overview”

Section 13.6, “Optimization proposals overview”

Capacity configuration

13.2. DOWNLOADING A CRUISE CONTROL ARCHIVE

A zipped distribution of Cruise Control for AMQ Streams on Red Hat Enterprise Linux is available for
download from the Red Hat Customer Portal .

Procedure

1. Download the latest version of the Red Hat AMQ Streams Cruise Control archive from the
Red Hat Customer Portal .

2. Create the /opt/cruise-control directory:

3. Extract the contents of the Cruise Control ZIP file to the new directory:

4. Change the ownership of the /opt/cruise-control directory to the kafka user:

13.3. DEPLOYING THE CRUISE CONTROL METRICS REPORTER

Before starting Cruise Control, you must configure the Kafka brokers to use the provided Cruise Control
Metrics Reporter.

When loaded at runtime, the Metrics Reporter sends metrics to the __CruiseControlMetrics topic, one
of three auto-created topics. Cruise Control uses these metrics to create and update the workload
model and to calculate optimization proposals.

Prerequisites

sudo mkdir /opt/cruise-control

unzip amq-streams-y.y.y-cruise-control-bin.zip -d /opt/cruise-control

sudo chown -R kafka:kafka /opt/cruise-control

CHAPTER 13. CRUISE CONTROL FOR CLUSTER REBALANCING

149

https://github.com/linkedin/cruise-control/wiki
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams&productChanged=yes
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams&productChanged=yes

You are logged in to Red Hat Enterprise Linux as the kafka user.

Kafka and ZooKeeper are running.

Section 13.2, “Downloading a Cruise Control archive” .

Procedure

For each broker in the Kafka cluster and one at a time:

1. Stop the Kafka broker:

2. Copy the Cruise Control Metrics Reporter .jar file to the Kafka libraries directory:

3. In the Kafka configuration file (/opt/kafka/config/server.properties) configure the Cruise
Control Metrics Reporter:

a. Add the CruiseControlMetricsReporter class to the metric.reporters configuration option.
Do not remove any existing Metrics Reporters.

metric.reporters=com.linkedin.kafka.cruisecontrol.metricsreporter.CruiseControlMetricsRep
orter

b. Add the following configuration options and values to the Kafka configuration file:

cruise.control.metrics.topic.auto.create=true
cruise.control.metrics.topic.num.partitions=1
cruise.control.metrics.topic.replication.factor=1

These options enable the Cruise Control Metrics Reporter to create the
__CruiseControlMetrics topic with a log cleanup policy of DELETE. For more information,
see Auto-created topics and Log cleanup policy for Cruise Control Metrics topic .

4. Configure SSL, if required.

a. In the Kafka configuration file (/opt/kafka/config/server.properties) configure SSL
between the Cruise Control Metrics Reporter and the Kafka broker by setting the relevant
client configuration properties.
The Metrics Reporter accepts all standard producer-specific configuration properties with
the cruise.control.metrics.reporter prefix. For example:
cruise.control.metrics.reporter.ssl.truststore.password.

b. In the Cruise Control properties file (/opt/cruise-control/config/cruisecontrol.properties)
configure SSL between the Kafka broker and the Cruise Control server by setting the
relevant client configuration properties.
Cruise Control inherits SSL client property options from Kafka and uses those properties for
all Cruise Control server clients.

5. Restart the Kafka broker:

/opt/kafka/bin/kafka-server-stop.sh

cp /opt/cruise-control/libs/cruise-control-metrics-reporter-y.y.yyy.redhat-0000x.jar
/opt/kafka/libs

/opt/kafka/bin/kafka-server-start.sh

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

150

1

6. Repeat steps 1-5 for the remaining brokers.

13.4. CONFIGURING AND STARTING CRUISE CONTROL

Configure the properties used by Cruise Control and then start the Cruise Control server using the
cruise-control-start.sh script. The server is hosted on a single machine for the whole Kafka cluster.

Three topics are auto-created when Cruise Control starts. For more information, see Auto-created
topics.

Prerequisites

You are logged in to Red Hat Enterprise Linux as the kafka user.

Section 13.2, “Downloading a Cruise Control archive”

Section 13.3, “Deploying the Cruise Control Metrics Reporter”

Procedure

1. Edit the Cruise Control properties file (/opt/cruise-control/config/cruisecontrol.properties).

2. Configure the properties shown in the following example configuration:

Host and port numbers of the Kafka broker (always port 9092).

Replication factor of the Kafka metric sample store topic. If you are evaluating Cruise

The Kafka cluster to control.
bootstrap.servers=localhost:9092 1

The replication factor of Kafka metric sample store topic
sample.store.topic.replication.factor=2 2

The configuration for the BrokerCapacityConfigFileResolver (supports JBOD, non-JBOD,
and heterogeneous CPU core capacities)
#capacity.config.file=config/capacity.json
#capacity.config.file=config/capacityCores.json
capacity.config.file=config/capacityJBOD.json 3

The list of goals to optimize the Kafka cluster for with pre-computed proposals
default.goals={List of default optimization goals} 4

The list of supported goals
goals={list of master optimization goals} 5

The list of supported hard goals
hard.goals={List of hard goals} 6

How often should the cached proposal be expired and recalculated if necessary
proposal.expiration.ms=60000 7

The zookeeper connect of the Kafka cluster
zookeeper.connect=localhost:2181 8

CHAPTER 13. CRUISE CONTROL FOR CLUSTER REBALANCING

151

2

3

4

5

6

7

8

Replication factor of the Kafka metric sample store topic. If you are evaluating Cruise
Control in a single-node Kafka and ZooKeeper cluster, set this property to 1. For production

The configuration file that sets the maximum capacity limits for broker resources. Use the
file that applies to your Kafka deployment configuration. For more information, see
Capacity configuration .

Comma-separated list of default optimization goals, using fully-qualified domain names
(FQDNs). Fifteen of the master optimization goals (see 5) are already set as default
optimization goals; you can add or remove goals if desired. For more information, see
Section 13.5, “Optimization goals overview” .

Comma-separated list of master optimization goals, using FQDNs. To completely exclude
goals from being used to generate optimization proposals, remove them from the list. For
more information, see Section 13.5, “Optimization goals overview” .

Comma-separated list of hard goals, using FQDNs. Six of the master optimization goals
are already set as hard goals; you can add or remove goals if desired. For more information,
see Section 13.5, “Optimization goals overview” .

The interval, in milliseconds, for refreshing the cached optimization proposal that is
generated from the default optimization goals. For more information, see Section 13.6,
“Optimization proposals overview”.

Host and port numbers of the ZooKeeper connection (always port 2181).

3. Start the Cruise Control server. The server starts on port 9092 by default; optionally, specify a
different port.

4. To verify that Cruise Control is running, send a GET request to the /state endpoint of the Cruise
Control server:

Auto-created topics
The following table shows the three topics that are automatically created when Cruise Control starts.
These topics are required for Cruise Control to work properly and must not be deleted or changed.

Auto-created topic Created by Function

__CruiseControlMetrics Cruise
Control
Metrics
Reporter

Stores the raw metrics from the
Metrics Reporter in each Kafka
broker.

__KafkaCruiseControlPartitionMetricSamples Cruise
Control

Stores the derived metrics for each
partition. These are created by the
Metric Sample Aggregator.

cd /opt/cruise-control/
./bin/cruise-control-start.sh config/cruisecontrol.properties PORT

curl 'http://HOST:PORT/kafkacruisecontrol/state'

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

152

https://github.com/linkedin/cruise-control/wiki/Overview#metric-sample-aggregator

__KafkaCruiseControlModelTrainingSamples Cruise
Control

Stores the metrics samples used to
create the Cluster Workload Model.

Auto-created topic Created by Function

To ensure that log compaction is disabled in the auto-created topics, make sure that you configure the
Cruise Control Metrics Reporter as described in Section 13.3, “Deploying the Cruise Control Metrics
Reporter”. Log compaction can remove records that are needed by Cruise Control and prevent it from
working properly.

Additional resources

Log cleanup policy for Cruise Control Metrics topic

13.5. OPTIMIZATION GOALS OVERVIEW

To rebalance a Kafka cluster, Cruise Control uses optimization goals to generate optimization proposals.
Optimization goals are constraints on workload redistribution and resource utilization across a Kafka
cluster.

AMQ Streams on Red Hat Enterprise Linux supports all the optimization goals developed in the Cruise
Control project. The supported goals, in the default descending order of priority, are as follows:

1. Rack-awareness

2. Replica capacity

3. Capacity: Disk capacity, Network inbound capacity, Network outbound capacity

4. CPU capacity

5. Replica distribution

6. Potential network output

7. Resource distribution: Disk utilization distribution, Network inbound utilization distribution,
Network outbound utilization distribution

8. Leader bytes-in rate distribution

9. Topic replica distribution

10. CPU usage distribution

11. Leader replica distribution

12. Preferred leader election

13. Kafka Assigner disk usage distribution

14. Intra-broker disk capacity

15. Intra-broker disk usage

CHAPTER 13. CRUISE CONTROL FOR CLUSTER REBALANCING

153

https://github.com/linkedin/cruise-control/wiki/Overview#cluster-workload-model

For more information on each optimization goal, see Goals in the Cruise Control Wiki.

Goals configuration in the Cruise Control properties file
You configure optimization goals in the cruisecontrol.properties file in the cruise-control/config/
directory. There are configurations for hard optimization goals that must be satisfied, as well as master
and default optimization goals.

Optional, user-provided optimization goals are set at runtime as parameters in requests to the
/rebalance endpoint.

Optimization goals are subject to any capacity limits on broker resources.

The following sections describe each goal configuration in more detail.

Master optimization goals
The master optimization goals are available to all users. Goals that are not listed in the master
optimization goals are not available for use in Cruise Control operations.

The following master optimization goals are preset in the cruisecontrol.properties file, in the goals
property, in descending priority order:

RackAwareGoal; ReplicaCapacityGoal; DiskCapacityGoal; NetworkInboundCapacityGoal;
NetworkOutboundCapacityGoal; ReplicaDistributionGoal; PotentialNwOutGoal;
DiskUsageDistributionGoal; NetworkInboundUsageDistributionGoal;
NetworkOutboundUsageDistributionGoal; CpuUsageDistributionGoal; TopicReplicaDistributionGoal;
LeaderReplicaDistributionGoal; LeaderBytesInDistributionGoal; PreferredLeaderElectionGoal

For simplicity, we recommend that you do not change the preset master optimization goals, unless you
need to completely exclude one or more goals from being used to generate optimization proposals. The
priority order of the master optimization goals can be modified, if desired, in the configuration for
default optimization goals.

If you need to modify the preset master optimization goals, specify a list of goals, in descending priority
order, in the goals property. Use fully-qualified domain names as shown in the
cruisecontrol.properties file.

You must specify at least one master goal, or Cruise Control will crash.

NOTE

If you change the preset master optimization goals, you must ensure that the configured
hard.goals are a subset of the master optimization goals that you configured. Otherwise,
errors will occur when generating optimization proposals.

Hard goals and soft goals
Hard goals are goals that must be satisfied in optimization proposals. Goals that are not configured as
hard goals are known as soft goals. You can think of soft goals as best effort goals: they do not need to
be satisfied in optimization proposals, but are included in optimization calculations.

Cruise Control will calculate optimization proposals that satisfy all the hard goals and as many soft goals
as possible (in their priority order). An optimization proposal that does not satisfy all the hard goals is
rejected by the Analyzer and is not sent to the user.

NOTE

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

154

https://github.com/linkedin/cruise-control/wiki/Pluggable-Components#goals
https://github.com/linkedin/cruise-control/wiki

NOTE

For example, you might have a soft goal to distribute a topic’s replicas evenly across the
cluster (the topic replica distribution goal). Cruise Control will ignore this goal if doing so
enables all the configured hard goals to be met.

The following master optimization goals are preset as hard goals in the cruisecontrol.properties file, in
the hard.goals property:

RackAwareGoal; ReplicaCapacityGoal; DiskCapacityGoal; NetworkInboundCapacityGoal;
NetworkOutboundCapacityGoal; CpuCapacityGoal

To change the hard goals, edit the hard.goals property and specify the desired goals, using their fully-
qualified domain names.

Increasing the number of hard goals reduces the likelihood that Cruise Control will calculate and
generate valid optimization proposals.

Default optimization goals
Cruise Control uses the default optimization goals list to generate the cached optimization proposal . For
more information, see Section 13.6, “Optimization proposals overview” .

You can override the default optimization goals at runtime by setting user-provided optimization goals .

The following default optimization goals are preset in the cruisecontrol.properties file, in the
default.goals property, in descending priority order:

RackAwareGoal; ReplicaCapacityGoal; DiskCapacityGoal; NetworkInboundCapacityGoal;
NetworkOutboundCapacityGoal; CpuCapacityGoal; ReplicaDistributionGoal; PotentialNwOutGoal;
DiskUsageDistributionGoal; NetworkInboundUsageDistributionGoal;
NetworkOutboundUsageDistributionGoal; CpuUsageDistributionGoal; TopicReplicaDistributionGoal;
LeaderReplicaDistributionGoal; LeaderBytesInDistributionGoal

You must specify at least one default goal, or Cruise Control will crash.

To modify the default optimization goals, specify a list of goals, in descending priority order, in the
default.goals property. Default goals must be a subset of the master optimization goals; use fully-
qualified domain names.

User-provided optimization goals
User-provided optimization goals narrow down the configured default goals for a particular optimization
proposal. You can set them, as required, as parameters in HTTP requests to the /rebalance endpoint.
For more information, see Section 13.8, “Generating optimization proposals” .

User-provided optimization goals can generate optimization proposals for different scenarios. For
example, you might want to optimize leader replica distribution across the Kafka cluster without
considering disk capacity or disk utilization. So, you send a request to the /rebalance endpoint
containing a single goal for leader replica distribution.

User-provided optimization goals must:

Include all configured hard goals, or an error occurs

Be a subset of the master optimization goals

To ignore the configured hard goals in an optimization proposal, add the skip_hard_goals_check=true

CHAPTER 13. CRUISE CONTROL FOR CLUSTER REBALANCING

155

To ignore the configured hard goals in an optimization proposal, add the skip_hard_goals_check=true
parameter to the request.

Additional resources

Section 13.7, “Cruise Control configuration”

Configurations in the Cruise Control Wiki.

13.6. OPTIMIZATION PROPOSALS OVERVIEW

An optimization proposal is a summary of proposed changes that, if applied, will produce a more
balanced Kafka cluster, with partition workloads distributed more evenly among the brokers. Each
optimization proposal is based on the set of optimization goals that was used to generate it, subject to
any configured capacity limits on broker resources.

When you make a POST request to the /rebalance endpoint, an optimization proposal is returned in
response. Use the information in the proposal to decide whether to initiate a cluster rebalance based on
the proposal. Alternatively, you can change the optimization goals and then generate another proposal.

By default, optimization proposals are generated as dry runs that must be initiated separately. There is
no limit to the number of optimization proposals that can be generated.

Cached optimization proposal
Cruise Control maintains a cached optimization proposal based on the configured default optimization
goals. Generated from the workload model, the cached optimization proposal is updated every 15
minutes to reflect the current state of the Kafka cluster.

The most recent cached optimization proposal is returned when the following goal configurations are
used:

The default optimization goals

User-provided optimization goals that can be met by the current cached proposal

To change the cached optimization proposal refresh interval, edit the proposal.expiration.ms setting
in the cruisecontrol.properties file. Consider a shorter interval for fast changing clusters, although this
increases the load on the Cruise Control server.

Contents of optimization proposals
The following table explains the properties contained in an optimization proposal:

Property Description

n inter-broker replica (y MB)
moves

n: The number of partition replicas that will be moved between
separate brokers.

Performance impact during rebalance operation: Relatively high.

y MB: The sum of the size of each partition replica that will be moved
to a separate broker.

Performance impact during rebalance operation: Variable. The
larger the number of MBs, the longer the cluster rebalance will take to
complete.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

156

https://github.com/linkedin/cruise-control/wiki/Configurations

n intra-broker replica (y MB)
moves

n: The total number of partition replicas that will be transferred
between the disks of the cluster’s brokers.

Performance impact during rebalance operation: Relatively high, but
less than inter-broker replica moves.

y MB: The sum of the size of each partition replica that will be moved
between disks on the same broker.

Performance impact during rebalance operation: Variable. The
larger the number, the longer the cluster rebalance will take to
complete. Moving a large amount of data between disks on the same
broker has less impact than between separate brokers (see inter-
broker replica moves).

n leadership moves n: The number of partitions whose leaders will be switched to
different replicas. This involves a change to ZooKeeper configuration.

Performance impact during rebalance operation: Relatively low.

n recent windows n: The number of metrics windows upon which the optimization
proposal is based.

n% of the partitions covered n%: The percentage of partitions in the Kafka cluster covered by the
optimization proposal.

On-demand Balancedness
Score Before (nn.yyy) After
(nn.yyy)

Measurements of the overall balance of a Kafka Cluster.

Cruise Control assigns a Balancedness Score to every
optimization goal based on several factors, including priority (the
goal’s position in the list of default.goals or user-provided goals).
The On-demand Balancedness Score is calculated by
subtracting the sum of the Balancedness Score of each violated
soft goal from 100.

The Before score is based on the current configuration of the Kafka
cluster. The After score is based on the generated optimization
proposal.

Property Description

Additional resources

Section 13.5, “Optimization goals overview” .

Section 13.8, “Generating optimization proposals”

Section 13.9, “Initiating a cluster rebalance”

13.7. CRUISE CONTROL CONFIGURATION

The config/cruisecontrol.properties file contains the configuration for Cruise Control. Each property is
populated with its default value from the Cruise Control project in one of the following types:

CHAPTER 13. CRUISE CONTROL FOR CLUSTER REBALANCING

157

String

Number

Boolean

You can specify and configure all the properties listed in the Configurations section of the Cruise
Control Wiki.

Capacity configuration
Cruise Control uses capacity limits to determine if certain resource-based optimization goals are being
broken. An attempted optimization fails if one or more of these resource-based goals is set as a hard
goal and then broken. This prevents the optimization from being used to generate an optimization
proposal.

You specify capacity limits for Kafka broker resources in one of the following three .json files in cruise-
control/config:

capacityJBOD.json: For use in JBOD Kafka deployments (the default file).

capacity.json: For use in non-JBOD Kafka deployments where each broker has the same
number of CPU cores.

capacityCores.json: For use in non-JBOD Kafka deployments where each broker has varying
numbers of CPU cores.

Set the file in the capacity.config.file property in cruisecontrol.properties. The selected file will be
used for broker capacity resolution. For example:

capacity.config.file=config/capacityJBOD.json

Capacity limits can be set for the following broker resources in the described units:

DISK: Disk storage in MB

CPU: CPU utilization as a percentage (0-100) or as a number of cores

NW_IN: Inbound network throughput in KB per second

NW_OUT: Outbound network throughput in KB per second

To apply the same capacity limits to every broker monitored by Cruise Control, set capacity limits for
broker ID -1. To set different capacity limits for individual brokers, specify each broker ID and its
capacity configuration.

Example capacity limits configuration

{
 "brokerCapacities":[
 {
 "brokerId": "-1",
 "capacity": {
 "DISK": "100000",
 "CPU": "100",
 "NW_IN": "10000",
 "NW_OUT": "10000"

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

158

https://github.com/linkedin/cruise-control/wiki/Configurations

For more information, see Populating the Capacity Configuration File in the Cruise Control Wiki.

Log cleanup policy for Cruise Control Metrics topic
It is important that the auto-created __CruiseControlMetrics topic (see auto-created topics) has a log
cleanup policy of DELETE rather than COMPACT. Otherwise, records that are needed by Cruise
Control might be removed.

As described in Section 13.3, “Deploying the Cruise Control Metrics Reporter” , setting the following
options in the Kafka configuration file ensures that the COMPACT log cleanup policy is correctly set:

cruise.control.metrics.topic.auto.create=true

cruise.control.metrics.topic.num.partitions=1

cruise.control.metrics.topic.replication.factor=1

If topic auto-creation is disabled in the Cruise Control Metrics Reporter
(cruise.control.metrics.topic.auto.create=false), but enabled in the Kafka cluster, then the
__CruiseControlMetrics topic is still automatically created by the broker. In this case, you must change
the log cleanup policy of the __CruiseControlMetrics topic to DELETE using the kafka-configs.sh
tool.

1. Get the current configuration of the __CruiseControlMetrics topic:

2. Change the log cleanup policy in the topic configuration:

If topic auto-creation is disabled in both the Cruise Control Metrics Reporter and the Kafka cluster, you
must create the __CruiseControlMetrics topic manually and then configure it to use the DELETE log
cleanup policy using the kafka-configs.sh tool.

For more information, see Section 5.9, “Modifying a topic configuration” .

Logging configuration

 },
 "doc": "This is the default capacity. Capacity unit used for disk is in MB, cpu is in percentage,
network throughput is in KB."
 },
 {
 "brokerId": "0",
 "capacity": {
 "DISK": "500000",
 "CPU": "100",
 "NW_IN": "50000",
 "NW_OUT": "50000"
 },
 "doc": "This overrides the capacity for broker 0."
 }
]
}

bin/kafka-configs.sh --zookeeper <ZooKeeperAddress> --entity-type topics --entity-name
__CruiseControlMetrics --describe

bin/kafka-configs.sh --zookeeper <ZooKeeperAddress> --entity-type topics --entity-name
__CruiseControlMetrics --alter --add-config cleanup.policy=delete

CHAPTER 13. CRUISE CONTROL FOR CLUSTER REBALANCING

159

https://github.com/linkedin/cruise-control/wiki/Configurations#populating-the-capacity-config-file

Cruise Control uses log4j1 for all server logging. To change the default configuration, edit the
log4j.properties file in /opt/cruise-control/config/log4j.properties.

You must restart the Cruise Control server before the changes take effect.

13.8. GENERATING OPTIMIZATION PROPOSALS

When you make a POST request to the /rebalance endpoint, Cruise Control generates an optimization
proposal to rebalance the Kafka cluster, based on the provided optimization goals.

The optimization proposal is generated as a dry run, unless the dryrun parameter is supplied and set to
false.

You can then analyze the information in the dry run optimization proposal and decide whether to initiate
it.

Here are the key parameters that you can include in requests to the /rebalance endpoint:

dryrun (type: boolean, default: true)

Informs Cruise Control whether you want to generate an optimization proposal only (true), or generate
an optimization proposal and perform a cluster rebalance (false).

goals (type: list of strings, default: the configured default.goals list)

List of user-provided optimization goals to use to prepare the optimization proposal. If not supplied, the
configured default.goals list in the cruisecontrol.properties file is used.

skip_hard_goals_check (type:boolean, default: false)

By default, Cruise Control checks that the user-provided optimization goals (in the goals parameter)
contain all the configured hard goals (in hard.goals). A request fails if you supply goals that are not a
subset of the configured hard.goals.

Set skip_hard_goals_check to true if you want to generate an optimization proposal with user-
provided optimization goals that do not include all the configured hard.goals.

json (type: boolean, default: false)

Controls the type of response returned by the Cruise Control server. If not supplied, or set to false, then
Cruise Control returns text formatted for display on the command line. If you want to extract elements
of the returned information programmatically, set json=true. This will return JSON formatted text that
can be piped to tools such as jq, or parsed in scripts and programs.

verbose (type: boolean, default: false)

Controls the level of detail in responses that are returned by the Cruise Control server.

For information about all the available parameters for the /rebalance endpoint, see the Cruise Control
REST API documentation.

Prerequisites

Kafka and ZooKeeper are running

Cruise Control is running

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

160

https://github.com/linkedin/cruise-control/wiki/REST-APIs#trigger-a-workload-balance

Procedure

1. To generate an optimization proposal formatted for the console, send a POST request to the
/rebalance endpoint.

To use the configured default.goals:

The cached optimization proposal is immediately returned.

NOTE

If NotEnoughValidWindows is returned, Cruise Control has not yet
recorded enough metrics data to generate an optimization proposal. Wait a
few minutes and then resend the request.

To specify user-provided optimization goals instead of the configured default.goals,
supply one or more goals in the goals parameter:

If it satisfies the supplied goals, the cached optimization proposal is immediately returned.
Otherwise, a new optimization proposal is generated using the supplied goals; this takes
longer to calculate. You can enforce this behavior by adding the
ignore_proposal_cache=true parameter to the request.

To specify user-provided optimization goals that do not include all the configured hard
goals, add the skip_hard_goal_check=true parameter to the request:

2. Review the optimization proposal contained in the response. The properties describe the
pending cluster rebalance operation.
The proposal contains a high level summary of the proposed optimization, followed by
summaries for each default optimization goal, and the expected cluster state after the proposal
has executed.

Pay particular attention to the following information:

The Cluster load after rebalance summary. If it meets your requirements, you should
assess the impact of the proposed changes using the high level summary.

n inter-broker replica (y MB) moves indicates how much data will be moved across the
network between brokers. The higher the value, the greater the potential performance
impact on the Kafka cluster during the rebalance.

n intra-broker replica (y MB) moves indicates how much data will be moved within the
brokers themselves (between disks). The higher the value, the greater the potential
performance impact on individual brokers (although less than that of n inter-broker replica
(y MB) moves).

The number of leadership moves. This has a negligible impact on the performance of the

curl -v -X POST 'cruise-control-server:9090/kafkacruisecontrol/rebalance'

curl -v -X POST 'cruise-control-server:9090/kafkacruisecontrol/rebalance?
goals=RackAwareGoal,ReplicaCapacityGoal'

curl -v -X POST 'cruise-control-server:9090/kafkacruisecontrol/rebalance?
goals=RackAwareGoal,ReplicaCapacityGoal,ReplicaDistributionGoal&skip_hard_goal_chec
k=true'

CHAPTER 13. CRUISE CONTROL FOR CLUSTER REBALANCING

161

The number of leadership moves. This has a negligible impact on the performance of the
cluster during the rebalance.

Asynchronous responses
The Cruise Control REST API endpoints timeout after 10 seconds by default, although proposal
generation continues on the server. A timeout might occur if the most recent cached optimization
proposal is not ready, or if user-provided optimization goals were specified with
ignore_proposal_cache=true.

To allow you to retrieve the optimization proposal at a later time, take note of the request’s unique
identifier, which is given in the header of responses from the /rebalance endpoint.

To obtain the response using curl, specify the verbose (-v) option:

curl -v -X POST 'cruise-control-server:9090/kafkacruisecontrol/rebalance'

Here is an example header:

If an optimization proposal is not ready within the timeout, you can re-submit the POST request, this
time including the User-Task-ID of the original request in the header:

What to do next

Section 13.9, “Initiating a cluster rebalance”

13.9. INITIATING A CLUSTER REBALANCE

If you are satisfied with an optimization proposal, you can instruct Cruise Control to initiate the cluster
rebalance and begin reassigning partitions, as summarized in the proposal.

Leave as little time as possible between generating an optimization proposal and initiating the cluster
rebalance. If some time has passed since you generated the original optimization proposal, the cluster
state might have changed. Therefore, the cluster rebalance that is initiated might be different to the
one you reviewed. If in doubt, first generate a new optimization proposal.

* Connected to cruise-control-server (::1) port 9090 (#0)
> POST /kafkacruisecontrol/rebalance HTTP/1.1
> Host: cc-host:9090
> User-Agent: curl/7.70.0
> Accept: /
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< Date: Mon, 01 Jun 2020 15:19:26 GMT
< Set-Cookie: JSESSIONID=node01wk6vjzjj12go13m81o7no5p7h9.node0; Path=/
< Expires: Thu, 01 Jan 1970 00:00:00 GMT
< User-Task-ID: 274b8095-d739-4840-85b9-f4cfaaf5c201
< Content-Type: text/plain;charset=utf-8
< Cruise-Control-Version: 2.0.103.redhat-00002
< Cruise-Control-Commit_Id: 58975c9d5d0a78dd33cd67d4bcb497c9fd42ae7c
< Content-Length: 12368
< Server: Jetty(9.4.26.v20200117-redhat-00001)

curl -v -X POST -H 'User-Task-ID: 274b8095-d739-4840-85b9-f4cfaaf5c201' 'cruise-control-
server:9090/kafkacruisecontrol/rebalance'

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

162

Only one cluster rebalance, with a status of "Active", can be in progress at a time.

Prerequisites

You have generated an optimization proposal from Cruise Control.

Procedure

1. To execute the most recently generated optimization proposal, send a POST request to the
/rebalance endpoint, with the dryrun=false parameter:

Cruise Control initiates the cluster rebalance and returns the optimization proposal.

2. Check the changes that are summarized in the optimization proposal. If the changes are not
what you expect, you can stop the rebalance.

3. Check the progress of the cluster rebalance using the /user_tasks endpoint. The cluster
rebalance in progress has a status of "Active".
To view all cluster rebalance tasks executed on the Cruise Control server:

4. To view the status of a particular cluster rebalance task, supply the user-task-ids parameter
and the task ID:

curl 'cruise-control-server:9090/kafkacruisecontrol/user_tasks?user_task_ids=c459316f-
9eb5-482f-9d2d-97b5a4cd294d'

13.10. STOPPING AN ACTIVE CLUSTER REBALANCE

You can stop the cluster rebalance that is currently in progress.

This instructs Cruise Control to finish the current batch of partition reassignments and then stop the
rebalance. When the rebalance has stopped, completed partition reassignments have already been
applied; therefore, the state of the Kafka cluster is different when compared to before the start of the
rebalance operation. If further rebalancing is required, you should generate a new optimization proposal.

NOTE

The performance of the Kafka cluster in the intermediate (stopped) state might be worse
than in the initial state.

curl -X POST 'cruise-control-server:9090/kafkacruisecontrol/rebalance?dryrun=false'

curl 'cruise-control-server:9090/kafkacruisecontrol/user_tasks'

USER TASK ID CLIENT ADDRESS START TIME STATUS REQUEST URL
c459316f-9eb5-482f-9d2d-97b5a4cd294d 0:0:0:0:0:0:0:1 2020-06-01_16:10:29 UTC
Active POST /kafkacruisecontrol/rebalance?dryrun=false
445e2fc3-6531-4243-b0a6-36ef7c5059b4 0:0:0:0:0:0:0:1 2020-06-01_14:21:26 UTC
Completed GET /kafkacruisecontrol/state?json=true
05c37737-16d1-4e33-8e2b-800dee9f1b01 0:0:0:0:0:0:0:1 2020-06-01_14:36:11 UTC
Completed GET /kafkacruisecontrol/state?json=true
aebae987-985d-4871-8cfb-6134ecd504ab 0:0:0:0:0:0:0:1 2020-06-01_16:10:04 UTC

CHAPTER 13. CRUISE CONTROL FOR CLUSTER REBALANCING

163

Prerequisites

A cluster rebalance is in progress (indicated by a status of "Active").

Procedure

Send a POST request to the /stop_proposal_execution endpoint:

curl -X POST 'cruise-control-server:9090/kafkacruisecontrol/stop_proposal_execution'

Additional resources

Section 13.8, “Generating optimization proposals”

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

164

CHAPTER 14. DISTRIBUTED TRACING
AMQ Streams on Red Hat Enterprise Linux supports distributed tracing with Jaeger for:

Kafka Producers, Kafka Consumers, and Kafka Streams applications (referred to as Kafka
clients)

MirrorMaker and Kafka Connect

Kafka Bridge

The steps to configure distributed tracing vary by client and component. However, three high-level
tasks are involved:

1. Enable a Jaeger tracer for the client or component.

2. Enable the Interceptors for the client or component.

For Kafka clients, enabling the Interceptors involves instrumenting your application code for
OpenTracing.

For MirrorMaker, Kafka Connect, and the Kafka Bridge, enabling the Interceptors involves
setting configuration properties for each component.

3. Set tracing environment variables before deploying the client or component.

This chapter provides an overview of distributed tracing, as well as instructions for configuring supported
clients and components. Setting up distributed tracing for applications and systems beyond AMQ
Streams is outside the scope of this chapter. To learn more about this subject, see the OpenTracing
documentation and search for "inject and extract".

NOTE

Distributed tracing is not supported for Kafka brokers.

Prerequisites

The Jaeger backend components are deployed to the host operating system. For deployment
instructions, see the Jaeger deployment documentation .

14.1. OVERVIEW OF DISTRIBUTED TRACING

Distributed tracing allows developers and system administrators to track the progress of transactions
between applications (and services in a microservice architecture) in a distributed system. This
information is useful for monitoring application performance and investigating issues with target
systems and end-user applications.

In AMQ Streams, distributed tracing facilitates the end-to-end tracking of messages: from source
systems to the Kafka cluster and then to target systems and applications.

As an aspect of system observability, distributed tracing complements the metrics that are available to
view in Grafana dashboards and the available loggers for each component.

14.1.1. OpenTracing and Jaeger

CHAPTER 14. DISTRIBUTED TRACING

165

https://opentracing.io/docs/overview/
https://www.jaegertracing.io/docs/1.14/deployment/

The OpenTracing and Jaeger projects are used to implement distributed tracing in AMQ Streams.

OpenTracing

The OpenTracing specification defines APIs that developers can use to instrument applications for
distributed tracing. When you instrument an application, you add instrumentation code in order to
monitor the execution of individual transactions. When instrumented, applications generate traces when
individual transactions occur. Traces are composed of spans, which define specific units of work.

To simplify the instrumentation of Kafka clients, AMQ Streams includes the OpenTracing Apache Kafka
Client Instrumentation library.

NOTE

The OpenTracing project is merging with the OpenCensus project to form the
OpenTelemetry project. OpenTelemetry will provide compatibility for applications that
are instrumented using the OpenTracing APIs.

Jaeger

Jaeger, a tracing system, is an implementation of the OpenTracing APIs. Jaeger is used for monitoring
and troubleshooting microservices-based distributed systems and provides client libraries for
instrumenting applications.

Jaeger samples the total traces generated by an application, based on a set sampling strategy, and then
visualizes them in a user interface. This allows you to visualize, query, filter, and analyze trace data.

An example of a query in the Jaeger user interface

14.2. CONFIGURING KAFKA CLIENTS FOR TRACING

This section describes how to configure Kafka clients (Kafka Producers, Kafka Consumers, and Kafka
Streams applications) for distributed tracing.

14.2.1. Enabling a Jaeger tracer for Kafka clients

Configure and enable a Jaeger tracer using the tracing environment variables.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

166

https://opentracing.io/
https://www.jaegertracing.io/
https://github.com/opentracing-contrib/java-kafka-client/blob/master/README.md
https://opentelemetry.io/

Procedure

Perform the following steps for each Kafka client (Kafka Producer, Kafka Consumer, and Kafka Streams
application):

1. Add Maven dependencies for Jaeger to the pom.xml file for the client:

2. Define the configuration of the Jaeger tracer using the tracing environment variables.

3. Create the Jaeger tracer from the environment variables that you defined in step two:

NOTE

For alternative ways to initialize a Jaeger tracer, see the Java OpenTracing
library documentation.

4. Register the Jaeger tracer as a global tracer:

A Jaeger tracer is now enabled for the Kafka client to use.

14.2.2. Instrumenting Kafka Producers and Consumers for tracing

Use a Decorator pattern or Interceptors to instrument your Kafka Producer and Consumer application
code for distributed tracing. When instrumented, the Interceptors in the Kafka Producer or Consumer
are enabled.

Procedure

Perform the following steps in the application code of each Kafka Producer and Consumer:

1. Add a Maven dependency for OpenTracing to the Producer or Consumer’s pom.xml file.

2. Instrument your client application code using either a Decorator pattern or Interceptors.

If you prefer to use a Decorator pattern, use following example:

<dependency>
 <groupId>io.jaegertracing</groupId>
 <artifactId>jaeger-client</artifactId>
 <version>1.1.0.redhat-00002</version>
</dependency>

Tracer tracer = Configuration.fromEnv().getTracer();

GlobalTracer.register(tracer);

<dependency>
 <groupId>io.opentracing.contrib</groupId>
 <artifactId>opentracing-kafka-client</artifactId>
 <version>0.1.12.redhat-00001</version>
</dependency>

// Create an instance of the KafkaProducer:
KafkaProducer<Integer, String> producer = new KafkaProducer<>(senderProps);

CHAPTER 14. DISTRIBUTED TRACING

167

https://github.com/jaegertracing/jaeger-client-java/tree/master/jaeger-core

If you prefer to use Interceptors, use the following example:

// Create an instance of the TracingKafkaProducer:
TracingKafkaProducer<Integer, String> tracingProducer = new TracingKafkaProducer<>
(producer,
 tracer);

// Send:
tracingProducer.send(...);

// Create an instance of the KafkaConsumer:
KafkaConsumer<Integer, String> consumer = new KafkaConsumer<>(consumerProps);

// Create an instance of the TracingKafkaConsumer:
TracingKafkaConsumer<Integer, String> tracingConsumer = new
TracingKafkaConsumer<>(consumer,
 tracer);

// Subscribe:
tracingConsumer.subscribe(Collections.singletonList("messages"));

// Get messages:
ConsumerRecords<Integer, String> records = tracingConsumer.poll(1000);

// Retrieve SpanContext from polled record (consumer side):
ConsumerRecord<Integer, String> record = ...
SpanContext spanContext = TracingKafkaUtils.extractSpanContext(record.headers(),
tracer);

// Register the tracer with GlobalTracer:
GlobalTracer.register(tracer);

// Add the TracingProducerInterceptor to the sender properties:
senderProps.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG,
 TracingProducerInterceptor.class.getName());

// Create an instance of the KafkaProducer:
KafkaProducer<Integer, String> producer = new KafkaProducer<>(senderProps);

// Send:
producer.send(...);

// Add the TracingConsumerInterceptor to the consumer properties:
consumerProps.put(ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG,
 TracingConsumerInterceptor.class.getName());

// Create an instance of the KafkaConsumer:
KafkaConsumer<Integer, String> consumer = new KafkaConsumer<>(consumerProps);

// Subscribe:
consumer.subscribe(Collections.singletonList("messages"));

// Get messages:
ConsumerRecords<Integer, String> records = consumer.poll(1000);

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

168

14.2.2.1. Custom span names in a Decorator pattern

A span is a logical unit of work in Jaeger, with an operation name, start time, and duration.

If you use a Decorator pattern to instrument your Kafka Producer and Consumer applications, you can
define custom span names by passing a BiFunction object as an additional argument when creating the
TracingKafkaProducer and TracingKafkaConsumer objects. The OpenTracing Apache Kafka Client
Instrumentation library includes several built-in span names, which are described below.

Example: Using custom span names to instrument client application code in a Decorator
pattern

// Retrieve the SpanContext from a polled message (consumer side):
ConsumerRecord<Integer, String> record = ...
SpanContext spanContext = TracingKafkaUtils.extractSpanContext(record.headers(),
tracer);

// Create a BiFunction for the KafkaProducer that operates on (String operationName,
ProducerRecord consumerRecord) and returns a String to be used as the name:

BiFunction<String, ProducerRecord, String> producerSpanNameProvider =
 (operationName, producerRecord) -> "CUSTOM_PRODUCER_NAME";

// Create an instance of the KafkaProducer:
KafkaProducer<Integer, String> producer = new KafkaProducer<>(senderProps);

// Create an instance of the TracingKafkaProducer
TracingKafkaProducer<Integer, String> tracingProducer = new TracingKafkaProducer<>(producer,
 tracer,
 producerSpanNameProvider);

// Spans created by the tracingProducer will now have "CUSTOM_PRODUCER_NAME" as the span
name.

// Create a BiFunction for the KafkaConsumer that operates on (String operationName,
ConsumerRecord consumerRecord) and returns a String to be used as the name:

BiFunction<String, ConsumerRecord, String> consumerSpanNameProvider =
 (operationName, consumerRecord) -> operationName.toUpperCase();

// Create an instance of the KafkaConsumer:
KafkaConsumer<Integer, String> consumer = new KafkaConsumer<>(consumerProps);

// Create an instance of the TracingKafkaConsumer, passing in the consumerSpanNameProvider
BiFunction:

TracingKafkaConsumer<Integer, String> tracingConsumer = new TracingKafkaConsumer<>
(consumer,
 tracer,
 consumerSpanNameProvider);

// Spans created by the tracingConsumer will have the operation name as the span name, in upper-
case.
// "receive" -> "RECEIVE"

CHAPTER 14. DISTRIBUTED TRACING

169

14.2.2.2. Built-in span names

When defining custom span names, you can use the following BiFunctions in the
ClientSpanNameProvider class. If no spanNameProvider is specified,
CONSUMER_OPERATION_NAME and PRODUCER_OPERATION_NAME are used.

BiFunction Description

CONSUMER_OPERATION_NAME,
PRODUCER_OPERATION_NAME

Returns the operationName as the span name:
"receive" for Consumers and "send" for Producers.

CONSUMER_PREFIXED_OPERATION_NAME
(String prefix),
PRODUCER_PREFIXED_OPERATION_NAME(
String prefix)

Returns a String concatenation of prefix and
operationName.

CONSUMER_TOPIC, PRODUCER_TOPIC Returns the name of the topic that the message was
sent to or retrieved from in the format
(record.topic()).

PREFIXED_CONSUMER_TOPIC(String
prefix),
PREFIXED_PRODUCER_TOPIC(String prefix)

Returns a String concatenation of prefix and the
topic name in the format (record.topic()).

CONSUMER_OPERATION_NAME_TOPIC,
PRODUCER_OPERATION_NAME_TOPIC

Returns the operation name and the topic name:
"operationName - record.topic()".

CONSUMER_PREFIXED_OPERATION_NAME
_TOPIC(String prefix),
PRODUCER_PREFIXED_OPERATION_NAME
_TOPIC(String prefix)

Returns a String concatenation of prefix and
"operationName - record.topic()".

14.2.3. Instrumenting Kafka Streams applications for tracing

Instrument Kafka Streams applications for distributed tracing using a supplier interface. This enables the
Interceptors in the application.

Procedure

Perform the following steps for each Kafka Streams application:

1. Add the opentracing-kafka-streams dependency to the Kafka Streams application’s pom.xml
file.

2. Create an instance of the TracingKafkaClientSupplier supplier interface:

<dependency>
 <groupId>io.opentracing.contrib</groupId>
 <artifactId>opentracing-kafka-streams</artifactId>
 <version>0.1.12.redhat-00001</version>
</dependency>

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

170

3. Provide the supplier interface to KafkaStreams:

14.3. CONFIGURING MIRRORMAKER AND KAFKA CONNECT FOR
TRACING

This section describes how to configure MirrorMaker and Kafka Connect for distributed tracing.

You must enable a Jaeger tracer for each component.

14.3.1. Enabling tracing for MirrorMaker

Enable distributed tracing for MirrorMaker by passing the Interceptor properties as consumer and
producer configuration parameters.

Messages are traced from the source cluster to the target cluster; the trace data records messages
entering and leaving the MirrorMaker component.

Procedure

1. Configure and enable a Jaeger tracer.

2. Edit the /opt/kafka/config/consumer.properties file.
Add the following Interceptor property:

3. Edit the /opt/kafka/config/producer.properties file.
Add the following Interceptor property:

4. Start MirrorMaker with the consumer and producer configuration files as parameters:

14.3.2. Enabling tracing for Kafka Connect

Enable distributed tracing for Kafka Connect using configuration properties.

Only messages produced and consumed by Kafka Connect itself are traced. To trace messages sent
between Kafka Connect and external systems, you must configure tracing in the connectors for those
systems.

KafkaClientSupplier supplier = new TracingKafkaClientSupplier(tracer);

KafkaStreams streams = new KafkaStreams(builder.build(), new StreamsConfig(config),
supplier);
streams.start();

consumer.interceptor.classes=io.opentracing.contrib.kafka.TracingConsumerInterceptor

producer.interceptor.classes=io.opentracing.contrib.kafka.TracingProducerInterceptor

su - kafka
/opt/kafka/bin/kafka-mirror-maker.sh --consumer.config /opt/kafka/config/consumer.properties
--producer.config /opt/kafka/config/producer.properties --num.streams=2

CHAPTER 14. DISTRIBUTED TRACING

171

Procedure

1. Configure and enable a Jaeger tracer.

2. Edit the relevant Kafka Connect configuration file.

If you are running Kafka Connect in standalone mode, edit the /opt/kafka/config/connect-
standalone.properties file.

If you are running Kafka Connect in distributed mode, edit the /opt/kafka/config/connect-
distributed.properties file.

3. Add the following properties to the configuration file:

4. Save the configuration file.

5. Set tracing environment variables and then run Kafka Connect in standalone or distributed
mode.

The Interceptors in Kafka Connect’s internal consumers and producers are now enabled.

Additional resources

Section 14.5, “Tracing environment variables”

Section 8.1.3, “Running Kafka Connect in standalone mode”

Section 8.2.3, “Running distributed Kafka Connect”

14.4. ENABLING TRACING FOR THE KAFKA BRIDGE

Enable distributed tracing for the Kafka Bridge by editing the Kafka Bridge configuration file. You can
then deploy a Kafka Bridge instance that is configured for distributed tracing to the host operating
system.

Traces are generated for the following transactions:

The Kafka Bridge sends messages to HTTP clients and consumes messages from HTTP clients.

HTTP clients send HTTP requests to send and receive messages through the Kafka Bridge.

In order to have end-to-end tracing, you must also configure tracing in your HTTP clients.

Procedure

1. Edit the config/application.properties file in the Kafka Bridge installation directory.
Remove the code comments from the following line:

2. Save the configuration file.

producer.interceptor.classes=io.opentracing.contrib.kafka.TracingProducerInterceptor
consumer.interceptor.classes=io.opentracing.contrib.kafka.TracingConsumerInterceptor

bridge.tracing=jaeger

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

172

3. Run the bin/kafka_bridge_run.sh script using the configuration properties as a parameter:

The Interceptors in the Kafka Bridge’s internal consumers and producers are now enabled.

Additional resources

Section 12.1.6, “Configuring Kafka Bridge properties”

14.5. TRACING ENVIRONMENT VARIABLES

Use these environment variables when configuring a Jaeger tracer for Kafka clients and components.

NOTE

The tracing environment variables are part of the Jaeger project and are subject to
change. For the latest environment variables, see the Jaeger documentation.

Property Required Description

JAEGER_SERVICE_NAME Yes The name of the Jaeger tracer
service.

JAEGER_AGENT_HOST No The hostname for communicating
with the jaeger-agent through
the User Datagram Protocol
(UDP).

JAEGER_AGENT_PORT No The port used for communicating
with the jaeger-agent through
UDP.

JAEGER_ENDPOINT No The traces endpoint. Only define
this variable if the client
application will bypass the
jaeger-agent and connect
directly to the jaeger-collector.

JAEGER_AUTH_TOKEN No The authentication token to send
to the endpoint as a bearer token.

JAEGER_USER No The username to send to the
endpoint if using basic
authentication.

JAEGER_PASSWORD No The password to send to the
endpoint if using basic
authentication.

cd kafka-bridge-0.xy.x.redhat-0000x
./bin/kafka_bridge_run.sh --config-file=config/application.properties

CHAPTER 14. DISTRIBUTED TRACING

173

https://github.com/jaegertracing/jaeger-client-java/tree/master/jaeger-core#configuration-via-environment

JAEGER_PROPAGATION No A comma-separated list of
formats to use for propagating
the trace context. Defaults to the
standard Jaeger format. Valid
values are jaeger and b3.

JAEGER_REPORTER_LOG_
SPANS

No Indicates whether the reporter
should also log the spans.

JAEGER_REPORTER_MAX_
QUEUE_SIZE

No The reporter’s maximum queue
size.

JAEGER_REPORTER_FLUS
H_INTERVAL

No The reporter’s flush interval, in ms.
Defines how frequently the
Jaeger reporter flushes span
batches.

JAEGER_SAMPLER_TYPE No The sampling strategy to use for
client traces: Constant,
Probabilistic, Rate Limiting, or
Remote (the default type).

To sample all traces, use the
Constant sampling strategy with a
parameter of 1.

For more information, see the
Jaeger documentation.

JAEGER_SAMPLER_PARAM No The sampler parameter (number).

JAEGER_SAMPLER_MANAG
ER_HOST_PORT

No The hostname and port to use if a
Remote sampling strategy is
selected.

JAEGER_TAGS No A comma-separated list of
tracer-level tags that are added
to all reported spans.

The value can also refer to an
environment variable using the
format
${envVarName:default}.
:default is optional and identifies
a value to use if the environment
variable cannot be found.

Property Required Description

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

174

https://www.jaegertracing.io/docs/1.14/sampling/#client-sampling-configuration

CHAPTER 15. KAFKA EXPORTER
Kafka Exporter is an open source project to enhance monitoring of Apache Kafka brokers and clients.

Kafka Exporter is provided with AMQ Streams for deployment with a Kafka cluster to extract additional
metrics data from Kafka brokers related to offsets, consumer groups, consumer lag, and topics.

The metrics data is used, for example, to help identify slow consumers.

Lag data is exposed as Prometheus metrics, which can then be presented in Grafana for analysis.

If you are already using Prometheus and Grafana for monitoring of built-in Kafka metrics, you can
configure Prometheus to also scrape the Kafka Exporter Prometheus endpoint.

Additional resources

Kafka exposes metrics through JMX, which can then be exported as Prometheus metrics.

Chapter 7, Monitoring your cluster using JMX

15.1. CONSUMER LAG

Consumer lag indicates the difference in the rate of production and consumption of messages.
Specifically, consumer lag for a given consumer group indicates the delay between the last message in
the partition and the message being currently picked up by that consumer. The lag reflects the position
of the consumer offset in relation to the end of the partition log.

This difference is sometimes referred to as the delta between the producer offset and consumer offset,
the read and write positions in the Kafka broker topic partitions.

Suppose a topic streams 100 messages a second. A lag of 1000 messages between the producer offset
(the topic partition head) and the last offset the consumer has read means a 10-second delay.

The importance of monitoring consumer lag

For applications that rely on the processing of (near) real-time data, it is critical to monitor consumer lag
to check that it does not become too big. The greater the lag becomes, the further the process moves
from the real-time processing objective.

Consumer lag, for example, might be a result of consuming too much old data that has not been purged,
or through unplanned shutdowns.

Reducing consumer lag

Typical actions to reduce lag include:

Scaling-up consumer groups by adding new consumers

Increasing the retention time for a message to remain in a topic

Adding more disk capacity to increase the message buffer

Actions to reduce consumer lag depend on the underlying infrastructure and the use cases AMQ
Streams is supporting. For instance, a lagging consumer is less likely to benefit from the broker being
able to service a fetch request from its disk cache. And in certain cases, it might be acceptable to
automatically drop messages until a consumer has caught up.

CHAPTER 15. KAFKA EXPORTER

175

https://github.com/danielqsj/kafka_exporter

15.2. KAFKA EXPORTER ALERTING RULE EXAMPLES

The sample alert notification rules specific to Kafka Exporter are as follows:

UnderReplicatedPartition

An alert to warn that a topic is under-replicated and the broker is not replicating enough partitions.
The default configuration is for an alert if there are one or more under-replicated partitions for a
topic. The alert might signify that a Kafka instance is down or the Kafka cluster is overloaded. A
planned restart of the Kafka broker may be required to restart the replication process.

TooLargeConsumerGroupLag

An alert to warn that the lag on a consumer group is too large for a specific topic partition. The
default configuration is 1000 records. A large lag might indicate that consumers are too slow and are
falling behind the producers.

NoMessageForTooLong

An alert to warn that a topic has not received messages for a period of time. The default
configuration for the time period is 10 minutes. The delay might be a result of a configuration issue
preventing a producer from publishing messages to the topic.

You can adapt alerting rules according to your specific needs.

Additional resources

For more information about setting up alerting rules, see Configuration in the Prometheus
documentation.

15.3. KAFKA EXPORTER METRICS

Lag information is exposed by Kafka Exporter as Prometheus metrics for presentation in Grafana.

Kafka Exporter exposes metrics data for brokers, topics, and consumer groups.

The data extracted is described here.

Table 15.1. Broker metrics output

Name Information

kafka_brokers Number of brokers in the Kafka cluster

Table 15.2. Topic metrics output

Name Information

kafka_topic_partitions Number of partitions for a topic

kafka_topic_partition_current_offset Current topic partition offset for a broker

kafka_topic_partition_oldest_offset Oldest topic partition offset for a broker

kafka_topic_partition_in_sync_replica Number of in-sync replicas for a topic partition

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

176

https://prometheus.io/docs/prometheus/latest/configuration/configuration

kafka_topic_partition_leader Leader broker ID of a topic partition

kafka_topic_partition_leader_is_preferred Shows 1 if a topic partition is using the preferred
broker

kafka_topic_partition_replicas Number of replicas for this topic partition

kafka_topic_partition_under_replicated_parti
tion

Shows 1 if a topic partition is under-replicated

Name Information

Table 15.3. Consumer group metrics output

Name Information

kafka_consumergroup_current_offset Current topic partition offset for a consumer group

kafka_consumergroup_lag Current approximate lag for a consumer group at a
topic partition

15.4. RUNNING KAFKA EXPORTER

Kafka Exporter is provided with the download archive used for Installing AMQ Streams .

You can run it to expose Prometheus metrics for presentation in a Grafana dashboard.

Prerequisites

AMQ Streams is installed on the host

This procedure assumes you already have access to a Grafana user interface and Prometheus is
deployed and added as a data source.

Procedure

1. Run the Kafka Exporter script using appropriate configuration parameter values.

The parameters require a double-hyphen convention, such as --kafka.server.

Option Description Default

kafka.server Host/post address of the Kafka
server.

kafka:9092

./bin/kafka_exporter --kafka.server=<kafka-bootstrap-address>:9092 --kafka.version=2.5.0 --
<my-other-parameters>

CHAPTER 15. KAFKA EXPORTER

177

kafka.version Kafka broker version. 1.0.0

group.filter A regular expression to specify
the consumer groups to
include in the metrics.

.* (all)

topic.filter A regular expression to specify
the topics to include in the
metrics.

.* (all)

sasl.<parameter> Parameters to enable and
connect to the Kafka cluster
using SASL/PLAIN
authentication, with user name
and password.

false

tls.<parameter> Parameters to enable connect
to the Kafka cluster using TLS
authentication, with optional
certificate and key.

false

web.listen-address Port address to expose the
metrics.

:9308

web.telemetry-path Path for the exposed metrics. /metrics

log.level Logging configuration, to log
messages with a given severity
(debug, info, warn, error, fatal)
or above.

info

log.enable-sarama Boolean to enable Sarama
logging, a Go client library
used by the Kafka Exporter.

false

Option Description Default

You can use kafka_exporter --help for information on the properties.

2. Configure Prometheus to monitor the Kafka Exporter metrics.
For more information on configuring Prometheus, see the Prometheus documentation.

3. Enable Grafana to present the Kafka Exporter metrics data exposed by Prometheus.
For more information, see Presenting Kafka Exporter metrics in Grafana .

15.5. PRESENTING KAFKA EXPORTER METRICS IN GRAFANA

Using Kafka Exporter Prometheus metrics as a data source, you can create a dashboard of Grafana
charts.

For example, from the metrics you can create the following Grafana charts:

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

178

https://prometheus.io/docs/

Message in per second (from topics)

Message in per minute (from topics)

Lag by consumer group

Messages consumed per minute (by consumer groups)

When metrics data has been collected for some time, the Kafka Exporter charts are populated.

Use the Grafana charts to analyze lag and to check if actions to reduce lag are having an impact on an
affected consumer group. If, for example, Kafka brokers are adjusted to reduce lag, the dashboard will
show the Lag by consumer group chart going down and the Messages consumed per minute chart going
up.

Additional resources

Example dashboard for Kafka Exporter

Grafana documentation

CHAPTER 15. KAFKA EXPORTER

179

https://grafana.com/grafana/dashboards/7589
https://grafana.com/docs/

CHAPTER 16. AMQ STREAMS AND KAFKA UPGRADES
AMQ Streams can be upgraded with no cluster downtime. Each version of AMQ Streams supports one
or more versions of Apache Kafka: you can upgrade to a higher Kafka version as long as it is supported
by your version of AMQ Streams. In some cases, you can also downgrade to a lower supported Kafka
version.

Newer versions of AMQ Streams may support newer versions of Kafka, but you need to upgrade AMQ
Streams before you can upgrade to a higher supported Kafka version.

16.1. UPGRADE PREREQUISITES

Before you begin the upgrade process, make sure that:

AMQ Streams is installed. For instructions, see Chapter 2, Getting started.

You are familiar with any upgrade changes described in the AMQ Streams 1.5 on Red Hat
Enterprise Linux Release Notes.

16.2. UPGRADE PROCESS

Upgrading AMQ Streams is a two-stage process. To upgrade brokers and clients without downtime, you
must complete the upgrade procedures in the following order:

1. Upgrade to the latest AMQ Streams version.

Upgrading to AMQ Streams 1.5

2. Upgrade all Kafka brokers and client applications to the latest Kafka version

Upgrading Kafka

16.3. KAFKA VERSIONS

Kafka’s log message format version and inter-broker protocol version specify the log format version
appended to messages and the version of protocol used in a cluster. As a result, the upgrade process
involves making configuration changes to existing Kafka brokers and code changes to client applications
(consumers and producers) to ensure the correct versions are used.

The following table shows the differences between Kafka versions:

Kafka version Interbroker protocol
version

Log message format
version

ZooKeeper version

2.4.0 2.4 2.4 3.5.7

2.5.0 2.5 2.5 3.5.8

Message format version

When a producer sends a message to a Kafka broker, the message is encoded using a specific format.
The format can change between Kafka releases, so messages include a version identifying which version
of the format they were encoded with. You can configure a Kafka broker to convert messages from

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

180

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/release_notes_for_amq_streams_1.5_on_rhel/index

newer format versions to a given older format version before the broker appends the message to the
log.

In Kafka, there are two different methods for setting the message format version:

The message.format.version property is set on topics.

The log.message.format.version property is set on Kafka brokers.

The default value of message.format.version for a topic is defined by the
log.message.format.version that is set on the Kafka broker. You can manually set the
message.format.version of a topic by modifying its topic configuration.

The upgrade tasks in this section assume that the message format version is defined by the
log.message.format.version.

16.4. UPGRADING TO AMQ STREAMS 1.5

The steps to upgrade your deployment to use AMQ Streams 1.5 are outlined in this section.

The availability of Kafka clusters managed by AMQ Streams is not affected by the upgrade operation.

NOTE

Refer to the documentation supporting a specific version of AMQ Streams for
information on how to upgrade to that version.

16.4.1. Upgrading ZooKeeper

This procedure describes how to upgrade ZooKeeper on a host machine.

NOTE

If you are upgrading from a ZooKeeper version earlier than version 3.5.7, because of
configuration changes introduced in that release, you will need to perform some
additional upgrade steps. For more information, refer to the Release Notes for AMQ
Streams 1.4 on RHEL and the steps for upgrading AMQ Streams 1.4 on RHEL .

Prerequisites

You are logged in to Red Hat Enterprise Linux as the kafka user.

Procedure

For each Kafka broker in your AMQ Streams cluster and one at a time:

1. Download the AMQ Streams archive for AMQ Streams 1.5 from the Customer Portal.

NOTE

If prompted, log in to your Red Hat account.

2. On the command line, create a temporary directory and extract the contents of the amq-
streams-x.y.z-bin.zip file:

CHAPTER 16. AMQ STREAMS AND KAFKA UPGRADES

181

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/release_notes_for_amq_streams_1.4_on_rhel/index?lb_target=production#zookeeper_3_5_7
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/using_amq_streams_on_rhel/index?lb_target=production#proc-upgrading-zookeeper-binaries-str
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams&productChanged=yes

3. Delete the libs, bin, and docs directories from your existing installation:

4. Copy the libs, bin, and docs directories from the temporary directory:

5. Delete the temporary directory:

6. Restart ZooKeeper:

16.4.2. Upgrading Kafka brokers

This procedure describes how to upgrade Kafka brokers on a host machine.

Prerequisites

You are logged in to Red Hat Enterprise Linux as the kafka user.

Procedure

For each Kafka broker in your AMQ Streams cluster and one at a time:

1. Download the AMQ Streams archive from the Customer Portal.

NOTE

If prompted, log in to your Red Hat account.

2. On the command line, create a temporary directory and extract the contents of the amq-
streams-x.y.z-bin.zip file.

3. Delete the libs, bin, and docs directories from your existing installation:

4. Copy the libs, bin, and docs directories from the temporary directory:

mkdir /tmp/kafka
unzip amq-streams-x.y.z-bin.zip -d /tmp/kafka

rm -rf /opt/kafka/libs /opt/kafka/bin /opt/kafka/docs

cp -r /tmp/kafka/kafka_y.y-x.x.x/libs /opt/kafka/
cp -r /tmp/kafka/kafka_y.y-x.x.x/bin /opt/kafka/
cp -r /tmp/kafka/kafka_y.y-x.x.x/docs /opt/kafka/

rm -rf /tmp/kafka

/opt/kafka/bin/zookeeper-server-start.sh -daemon /opt/kafka/config/zookeeper.properties

mkdir /tmp/kafka
unzip amq-streams-x.y.z-bin.zip -d /tmp/kafka

rm -rf /opt/kafka/libs /opt/kafka/bin /opt/kafka/docs

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

182

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams&productChanged=yes

5. Delete the temporary directory.

6. In a text editor, open the broker properties file, commonly stored in the /opt/kafka/config/
directory.

7. Temporarily override the default inter-broker protocol and message format versions for Kafka
2.5.0 by adding or updating the following properties in the file:

This configures the Kafka broker to process data using the previous inter-broker protocol (2.4)
and message format versions.

8. On the command line, stop the Kafka broker that you modified:

9. Restart the Kafka broker that you modified:

NOTE

The Kafka broker will start using the binaries for the latest Kafka version.

10. Verify that the restarted Kafka broker has caught up with the partition replicas it is following.
Use the kafka-topics.sh tool to ensure that all replicas contained in the broker are back in sync.
For instructions, see Listing and describing topics .

16.4.3. Upgrading Kafka Connect

This procedure describes how to upgrade a Kafka Connect cluster on a host machine.

Kafka Connect is a client application and should be included in your chosen strategy for upgrading
clients. For more information, see Strategies for upgrading clients .

Prerequisites

You are logged in to Red Hat Enterprise Linux as the kafka user.

Procedure

For each Kafka broker in your AMQ Streams cluster and one at a time:

1. Download the AMQ Streams archive from the Customer Portal.

cp -r /tmp/kafka/kafka_y.y-x.x.x/libs /opt/kafka/
cp -r /tmp/kafka/kafka_y.y-x.x.x/bin /opt/kafka/
cp -r /tmp/kafka/kafka_y.y-x.x.x/docs /opt/kafka/

rm -r /tmp/kafka

inter.broker.protocol.version=2.4
log.message.format.version=2.4

/opt/kafka/bin/kafka-server-stop.sh
jcmd | grep kafka

/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

CHAPTER 16. AMQ STREAMS AND KAFKA UPGRADES

183

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams&productChanged=yes

NOTE

If prompted, log in to your Red Hat account.

2. On the command line, create a temporary directory and extract the contents of the amq-
streams-x.y.z-bin.zip file.

3. Delete the libs, bin, and docs directories from your existing installation:

4. Copy the libs, bin, and docs directories from the temporary directory:

5. Delete the temporary directory.

6. Start Kafka Connect in either standalone or distributed mode.

To start in standalone mode, run the connect-standalone.sh script. Specify the Kafka
Connect standalone configuration file and the configuration files of your Kafka Connect
connectors.

To start in distributed mode, start the Kafka Connect workers with the
/opt/kafka/config/connect-distributed.properties configuration file on all Kafka Connect
nodes:

7. Verify that Kafka Connect is running:

In standalone mode:

In distributed mode:

8. Verify that Kafka Connect is producing and consuming data as expected.

mkdir /tmp/kafka
unzip amq-streams-x.y.z-bin.zip -d /tmp/kafka

rm -rf /opt/kafka/libs /opt/kafka/bin /opt/kafka/docs

cp -r /tmp/kafka/kafka_y.y-x.x.x/libs /opt/kafka/
cp -r /tmp/kafka/kafka_y.y-x.x.x/bin /opt/kafka/
cp -r /tmp/kafka/kafka_y.y-x.x.x/docs /opt/kafka/

rm -r /tmp/kafka

su - kafka
/opt/kafka/bin/connect-standalone.sh /opt/kafka/config/connect-standalone.properties
connector1.properties
[connector2.properties ...]

su - kafka
/opt/kafka/bin/connect-distributed.sh /opt/kafka/config/connect-distributed.properties

jcmd | grep ConnectStandalone

jcmd | grep ConnectDistributed

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

184

Additional resources

Running Kafka Connect in standalone mode

Running distributed Kafka Connect

Strategies for upgrading clients

16.5. UPGRADING KAFKA

After you have upgraded your binaries to use the latest version of AMQ Streams, you can upgrade your
brokers and clients to use a higher supported version of Kafka.

Take care to follow the steps in the correct order:

1. Section 16.5.1, “Upgrading Kafka brokers to use the new inter-broker protocol version”

2. Section 16.5.3, “Upgrading client applications to the new Kafka version”

3. Section 16.5.5, “Upgrading Kafka brokers to use the new message format version”

Additional resources

Section 16.4, “Upgrading to AMQ Streams 1.5”

16.5.1. Upgrading Kafka brokers to use the new inter-broker protocol version

Manually configure and restart all Kafka brokers to use the new inter-broker protocol version. After
performing these steps, data is transmitted between the Kafka brokers using the new inter-broker
protocol version.

Messages received are still appended to the message logs in the earlier message format version.

WARNING

Downgrading AMQ Streams is not possible after completing this procedure.

Prerequisites

You have updated the ZooKeeper binaries.

You have upgraded all Kafka brokers to AMQ Streams 1.5

You are logged in to Red Hat Enterprise Linux as the kafka user.

Procedure

For each Kafka broker in your AMQ Streams cluster and one at a time:

1. In a text editor, open the broker properties file for the Kafka broker you want to update. Broker
properties files are commonly stored in the /opt/kafka/config/ directory.



CHAPTER 16. AMQ STREAMS AND KAFKA UPGRADES

185

2. Set the inter.broker.protocol.version to 2.5.

3. On the command line, stop the Kafka broker that you modified:

4. Restart the Kafka broker that you modified:

5. Verify that the restarted Kafka broker has caught up with the partition replicas it is following.
Use the kafka-topics.sh tool to ensure that all replicas contained in the broker are back in sync.
For instructions, see Listing and describing topics .

16.5.2. Strategies for upgrading clients

The best approach to upgrading your client applications (including Kafka Connect connectors) depends
on your particular circumstances.

Consuming applications need to receive messages in a message format that they understand. You can
ensure that this is the case in one of two ways:

By upgrading all the consumers for a topic before upgrading any of the producers.

By having the brokers down-convert messages to an older format.

Using broker down-conversion puts extra load on the brokers, so it is not ideal to rely on down-
conversion for all topics for a prolonged period of time. For brokers to perform optimally they should not
be down converting messages at all.

Broker down-conversion is configured in two ways:

The topic-level message.format.version configures it for a single topic.

The broker-level log.message.format.version is the default for topics that do not have the
topic-level message.format.version configured.

Messages published to a topic in a new-version format will be visible to consumers, because brokers
perform down-conversion when they receive messages from producers, not when they are sent to
consumers.

There are a number of strategies you can use to upgrade your clients:

Consumers first

1. Upgrade all the consuming applications.

2. Change the broker-level log.message.format.version to the new version.

3. Upgrade all the producing applications.
This strategy is straightforward, and avoids any broker down-conversion. However, it
assumes that all consumers in your organization can be upgraded in a coordinated way, and it

inter.broker.protocol.version=2.5

/opt/kafka/bin/kafka-server-stop.sh
jcmd | grep kafka

/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

186

does not work for applications that are both consumers and producers. There is also a risk
that, if there is a problem with the upgraded clients, new-format messages might get added
to the message log so that you cannot revert to the previous consumer version.

Per-topic consumers first

For each topic:

1. Upgrade all the consuming applications.

2. Change the topic-level message.format.version to the new version.

3. Upgrade all the producing applications.
This strategy avoids any broker down-conversion, and means you can proceed on a topic-
by-topic basis. It does not work for applications that are both consumers and producers of
the same topic. Again, it has the risk that, if there is a problem with the upgraded clients,
new-format messages might get added to the message log.

Per-topic consumers first, with down conversion

For each topic:

1. Change the topic-level message.format.version to the old version (or rely on the topic
defaulting to the broker-level log.message.format.version).

2. Upgrade all the consuming and producing applications.

3. Verify that the upgraded applications function correctly.

4. Change the topic-level message.format.version to the new version.
This strategy requires broker down-conversion, but the load on the brokers is minimized
because it is only required for a single topic (or small group of topics) at a time. It also works
for applications that are both consumers and producers of the same topic. This approach
ensures that the upgraded producers and consumers are working correctly before you
commit to using the new message format version.

The main drawback of this approach is that it can be complicated to manage in a cluster with
many topics and applications.

Other strategies for upgrading client applications are also possible.

NOTE

It is also possible to apply multiple strategies. For example, for the first few applications
and topics the "per-topic consumers first, with down conversion" strategy can be used.
When this has proved successful another, more efficient strategy can be considered
acceptable to use instead.

16.5.3. Upgrading client applications to the new Kafka version

This procedure describes one possible approach to upgrading your client applications to the Kafka
version used for AMQ Streams 1.5.

The procedure is based on the "per-topic consumers first, with down conversion" approach outlined in
Strategies for upgrading clients .

CHAPTER 16. AMQ STREAMS AND KAFKA UPGRADES

187

Client applications include producers, consumers, Kafka Connect, Kafka Streams applications, and
MirrorMaker.

Prerequisites

You have updated the ZooKeeper binaries.

You have upgraded all Kafka brokers to AMQ Streams 1.5.

You have configured Kafka brokers to use the new inter-broker protocol version.

You are logged in to Red Hat Enterprise Linux as the kafka user.

Procedure

For each topic:

1. On the command line, set the message.format.version configuration option to 2.4.

2. Upgrade all the consumers and producers for the topic.

3. Optionally, to upgrade consumers and Kafka Streams applications to use the incremental
cooperative rebalance protocol, which was added in Kafka 2.4.0, see Section 16.5.4, “Upgrading
consumers and Kafka Streams applications to cooperative rebalancing”.

4. Verify that the upgraded applications function correctly.

5. Change the topic’s message.format.version configuration option to 2.5.

Additional resources

Strategies for upgrading clients

16.5.4. Upgrading consumers and Kafka Streams applications to cooperative
rebalancing

You can upgrade Kafka consumers and Kafka Streams applications to use the incremental cooperative
rebalance protocol for partition rebalances instead of the default eager rebalance protocol. The new
protocol was added in Kafka 2.4.0.

Consumers keep their partition assignments in a cooperative rebalance and only revoke them at the end
of the process, if needed to achieve a balanced cluster. This reduces the unavailability of the consumer
group or Kafka Streams application.

NOTE

Upgrading to the incremental cooperative rebalance protocol is optional. The eager
rebalance protocol is still supported.

bin/kafka-configs.sh --zookeeper <ZooKeeperAddress> --entity-type topics --entity-name
<TopicName> --alter --add-config message.format.version=2.4

bin/kafka-configs.sh --zookeeper <ZooKeeperAddress> --entity-type topics --entity-name
<TopicName> --alter --add-config message.format.version=2.5

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

188

Prerequisites

Section 16.4, “Upgrading to AMQ Streams 1.5”

Section 16.5.1, “Upgrading Kafka brokers to use the new inter-broker protocol version”

Section 16.5.3, “Upgrading client applications to the new Kafka version”

Procedure

To upgrade a Kafka consumer to use the incremental cooperative rebalance protocol:

1. Replace the Kafka clients .jar file with the new version.

2. In the consumer configuration, append cooperative-sticky to the
partition.assignment.strategy. For example, if the range strategy is set, change the
configuration to range, cooperative-sticky.

3. Restart each consumer in the group in turn, waiting for the consumer to rejoin the group after
each restart.

4. Reconfigure each consumer in the group by removing the earlier
partition.assignment.strategy from the consumer configuration, leaving only the cooperative-
sticky strategy.

5. Restart each consumer in the group in turn, waiting for the consumer to rejoin the group after
each restart.

To upgrade a Kafka Streams application to use the incremental cooperative rebalance protocol:

1. Replace the Kafka Streams .jar file with the new version.

2. In the Kafka Streams configuration, set the upgrade.from configuration parameter to the Kafka
version you are upgrading from (for example, 2.3).

3. Restart each of the stream processors (nodes) in turn.

4. Remove the upgrade.from configuration parameter from the Kafka Streams configuration.

5. Restart each consumer in the group in turn.

Additional resources

Notable changes in 2.4.0 in the Apache Kafka documentation.

16.5.5. Upgrading Kafka brokers to use the new message format version

When client applications have been upgraded, you can update the Kafka brokers to use the new message
format version.

If you did not modify topic configurations when you upgraded your client applications to use the Kafka
version required for AMQ Streams 1.5, the Kafka brokers are now converting messages down to the
previous message format version, which can cause a reduction in performance. Therefore, it is important
that you update all Kafka brokers to use the new message format version as soon as possible.

NOTE

CHAPTER 16. AMQ STREAMS AND KAFKA UPGRADES

189

https://kafka.apache.org/documentation/#upgrade_240_notable

NOTE

Update and restart the Kafka brokers one-by-one. Before you restart a modified broker,
stop the broker you configured and restarted previously.

Prerequisites

You have updated the ZooKeeper binaries.

You have upgraded all Kafka brokers to AMQ Streams 1.5.

You have configured Kafka brokers to use the new inter-broker protocol version.

You have upgraded supported client applications that consume messages from topics for which
the message.format.version property is not explicitly configured at the topic level.

You are logged in to Red Hat Enterprise Linux as the kafka user.

Procedure

For each Kafka broker in your AMQ Streams cluster and one at a time:

1. In a text editor, open the broker properties file for the Kafka broker you want to update. Broker
properties files are commonly stored in the /opt/kafka/config/ directory.

2. Set the log.message.format.version to 2.5.

3. On the command line, stop the Kafka broker that you most recently modified and restarted as
part of this procedure. If you are modifying the first Kafka broker in this procedure, go to step
four.

4. Restart the Kafka broker whose configuration you modified in step two:

5. Verify that the restarted Kafka broker has caught up with the partition replicas it is following.
Use the kafka-topics.sh tool to ensure that all replicas contained in the broker are back in sync.
For instructions, see Listing and describing topics .

log.message.format.version=2.5

/opt/kafka/bin/kafka-server-stop.sh
jcmd | grep kafka

/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

190

APPENDIX A. BROKER CONFIGURATION PARAMETERS
zookeeper.connect

Type: string
Importance: high
Dynamic update: read-only
Specifies the ZooKeeper connection string in the form hostname:port where host and port are the
host and port of a ZooKeeper server. To allow connecting through other ZooKeeper nodes when that
ZooKeeper machine is down you can also specify multiple hosts in the form
hostname1:port1,hostname2:port2,hostname3:port3. The server can also have a ZooKeeper
chroot path as part of its ZooKeeper connection string which puts its data under some path in the
global ZooKeeper namespace. For example to give a chroot path of /chroot/path you would give the
connection string as hostname1:port1,hostname2:port2,hostname3:port3/chroot/path.

advertised.host.name

Type: string
Default: null
Importance: high
Dynamic update: read-only
DEPRECATED: only used when advertised.listeners or listeners are not set. Use
advertised.listeners instead. Hostname to publish to ZooKeeper for clients to use. In IaaS
environments, this may need to be different from the interface to which the broker binds. If this is not
set, it will use the value for host.name if configured. Otherwise it will use the value returned from
java.net.InetAddress.getCanonicalHostName().

advertised.listeners

Type: string
Default: null
Importance: high
Dynamic update: per-broker
Listeners to publish to ZooKeeper for clients to use, if different than the listeners config property. In
IaaS environments, this may need to be different from the interface to which the broker binds. If this
is not set, the value for listeners will be used. Unlike listeners it is not valid to advertise the 0.0.0.0
meta-address.

advertised.port

Type: int
Default: null
Importance: high
Dynamic update: read-only
DEPRECATED: only used when advertised.listeners or listeners are not set. Use
advertised.listeners instead. The port to publish to ZooKeeper for clients to use. In IaaS
environments, this may need to be different from the port to which the broker binds. If this is not set,
it will publish the same port that the broker binds to.

auto.create.topics.enable

Type: boolean
Default: true
Importance: high
Dynamic update: read-only
Enable auto creation of topic on the server.

APPENDIX A. BROKER CONFIGURATION PARAMETERS

191

auto.leader.rebalance.enable

Type: boolean
Default: true
Importance: high
Dynamic update: read-only
Enables auto leader balancing. A background thread checks the distribution of partition leaders at
regular intervals, configurable by leader.imbalance.check.interval.seconds. If the leader imbalance
exceeds leader.imbalance.per.broker.percentage, leader rebalance to the preferred leader for
partitions is triggered.

background.threads

Type: int
Default: 10
Valid Values: [1,…​]
Importance: high
Dynamic update: cluster-wide
The number of threads to use for various background processing tasks.

broker.id

Type: int
Default: -1
Importance: high
Dynamic update: read-only
The broker id for this server. If unset, a unique broker id will be generated.To avoid conflicts between
zookeeper generated broker id’s and user configured broker id’s, generated broker ids start from
reserved.broker.max.id + 1.

compression.type

Type: string
Default: producer
Importance: high
Dynamic update: cluster-wide
Specify the final compression type for a given topic. This configuration accepts the standard
compression codecs ('gzip', 'snappy', 'lz4', 'zstd'). It additionally accepts 'uncompressed' which is
equivalent to no compression; and 'producer' which means retain the original compression codec set
by the producer.

control.plane.listener.name

Type: string
Default: null
Importance: high
Dynamic update: read-only
Name of listener used for communication between controller and brokers. Broker will use the
control.plane.listener.name to locate the endpoint in listeners list, to listen for connections from the
controller. For example, if a broker’s config is : listeners = INTERNAL://192.1.1.8:9092,
EXTERNAL://10.1.1.5:9093, CONTROLLER://192.1.1.8:9094 listener.security.protocol.map =
INTERNAL:PLAINTEXT, EXTERNAL:SSL, CONTROLLER:SSL control.plane.listener.name =
CONTROLLER On startup, the broker will start listening on "192.1.1.8:9094" with security protocol
"SSL". On controller side, when it discovers a broker’s published endpoints through zookeeper, it will
use the control.plane.listener.name to find the endpoint, which it will use to establish connection to
the broker. For example, if the broker’s published endpoints on zookeeper are : "endpoints" :
["INTERNAL://broker1.example.com:9092","EXTERNAL://broker1.example.com:9093","CONTROLLER://broker1.example.com:9094"]
and the controller’s config is : listener.security.protocol.map = INTERNAL:PLAINTEXT,

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

192

EXTERNAL:SSL, CONTROLLER:SSL control.plane.listener.name = CONTROLLER then controller
will use "broker1.example.com:9094" with security protocol "SSL" to connect to the broker. If not
explicitly configured, the default value will be null and there will be no dedicated endpoints for
controller connections.

delete.topic.enable

Type: boolean
Default: true
Importance: high
Dynamic update: read-only
Enables delete topic. Delete topic through the admin tool will have no effect if this config is turned
off.

host.name

Type: string
Default: ""
Importance: high
Dynamic update: read-only
DEPRECATED: only used when listeners is not set. Use listeners instead. hostname of broker. If this
is set, it will only bind to this address. If this is not set, it will bind to all interfaces.

leader.imbalance.check.interval.seconds

Type: long
Default: 300
Importance: high
Dynamic update: read-only
The frequency with which the partition rebalance check is triggered by the controller.

leader.imbalance.per.broker.percentage

Type: int
Default: 10
Importance: high
Dynamic update: read-only
The ratio of leader imbalance allowed per broker. The controller would trigger a leader balance if it
goes above this value per broker. The value is specified in percentage.

listeners

Type: string
Default: null
Importance: high
Dynamic update: per-broker
Listener List - Comma-separated list of URIs we will listen on and the listener names. If the listener
name is not a security protocol, listener.security.protocol.map must also be set. Specify hostname as
0.0.0.0 to bind to all interfaces. Leave hostname empty to bind to default interface. Examples of
legal listener lists: PLAINTEXT://myhost:9092,SSL://:9091
CLIENT://0.0.0.0:9092,REPLICATION://localhost:9093.

log.dir

Type: string
Default: /tmp/kafka-logs
Importance: high
Dynamic update: read-only

APPENDIX A. BROKER CONFIGURATION PARAMETERS

193

The directory in which the log data is kept (supplemental for log.dirs property).

log.dirs

Type: string
Default: null
Importance: high
Dynamic update: read-only
The directories in which the log data is kept. If not set, the value in log.dir is used.

log.flush.interval.messages

Type: long
Default: 9223372036854775807
Valid Values: [1,…​]
Importance: high
Dynamic update: cluster-wide
The number of messages accumulated on a log partition before messages are flushed to disk.

log.flush.interval.ms

Type: long
Default: null
Importance: high
Dynamic update: cluster-wide
The maximum time in ms that a message in any topic is kept in memory before flushed to disk. If not
set, the value in log.flush.scheduler.interval.ms is used.

log.flush.offset.checkpoint.interval.ms

Type: int
Default: 60000
Valid Values: [0,…​]
Importance: high
Dynamic update: read-only
The frequency with which we update the persistent record of the last flush which acts as the log
recovery point.

log.flush.scheduler.interval.ms

Type: long
Default: 9223372036854775807
Importance: high
Dynamic update: read-only
The frequency in ms that the log flusher checks whether any log needs to be flushed to disk.

log.flush.start.offset.checkpoint.interval.ms

Type: int
Default: 60000
Valid Values: [0,…​]
Importance: high
Dynamic update: read-only
The frequency with which we update the persistent record of log start offset.

log.retention.bytes

Type: long

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

194

Default: -1
Importance: high
Dynamic update: cluster-wide
The maximum size of the log before deleting it.

log.retention.hours

Type: int
Default: 168
Importance: high
Dynamic update: read-only
The number of hours to keep a log file before deleting it (in hours), tertiary to log.retention.ms
property.

log.retention.minutes

Type: int
Default: null
Importance: high
Dynamic update: read-only
The number of minutes to keep a log file before deleting it (in minutes), secondary to
log.retention.ms property. If not set, the value in log.retention.hours is used.

log.retention.ms

Type: long
Default: null
Importance: high
Dynamic update: cluster-wide
The number of milliseconds to keep a log file before deleting it (in milliseconds), If not set, the value
in log.retention.minutes is used. If set to -1, no time limit is applied.

log.roll.hours

Type: int
Default: 168
Valid Values: [1,…​]
Importance: high
Dynamic update: read-only
The maximum time before a new log segment is rolled out (in hours), secondary to log.roll.ms
property.

log.roll.jitter.hours

Type: int
Default: 0
Valid Values: [0,…​]
Importance: high
Dynamic update: read-only
The maximum jitter to subtract from logRollTimeMillis (in hours), secondary to log.roll.jitter.ms
property.

log.roll.jitter.ms

Type: long
Default: null
Importance: high
Dynamic update: cluster-wide

APPENDIX A. BROKER CONFIGURATION PARAMETERS

195

The maximum jitter to subtract from logRollTimeMillis (in milliseconds). If not set, the value in
log.roll.jitter.hours is used.

log.roll.ms

Type: long
Default: null
Importance: high
Dynamic update: cluster-wide
The maximum time before a new log segment is rolled out (in milliseconds). If not set, the value in
log.roll.hours is used.

log.segment.bytes

Type: int
Default: 1073741824
Valid Values: [14,…​]
Importance: high
Dynamic update: cluster-wide
The maximum size of a single log file.

log.segment.delete.delay.ms

Type: long
Default: 60000
Valid Values: [0,…​]
Importance: high
Dynamic update: cluster-wide
The amount of time to wait before deleting a file from the filesystem.

message.max.bytes

Type: int
Default: 1048588
Valid Values: [0,…​]
Importance: high
Dynamic update: cluster-wide
The largest record batch size allowed by Kafka (after compression if compression is enabled). If this
is increased and there are consumers older than 0.10.2, the consumers' fetch size must also be
increased so that the they can fetch record batches this large. In the latest message format version,
records are always grouped into batches for efficiency. In previous message format versions,
uncompressed records are not grouped into batches and this limit only applies to a single record in
that case.This can be set per topic with the topic level max.message.bytes config.

min.insync.replicas

Type: int
Default: 1
Valid Values: [1,…​]
Importance: high
Dynamic update: cluster-wide
When a producer sets acks to "all" (or "-1"), min.insync.replicas specifies the minimum number of
replicas that must acknowledge a write for the write to be considered successful. If this minimum
cannot be met, then the producer will raise an exception (either NotEnoughReplicas or
NotEnoughReplicasAfterAppend). When used together, min.insync.replicas and acks allow you to
enforce greater durability guarantees. A typical scenario would be to create a topic with a replication
factor of 3, set min.insync.replicas to 2, and produce with acks of "all". This will ensure that the
producer raises an exception if a majority of replicas do not receive a write.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

196

num.io.threads

Type: int
Default: 8
Valid Values: [1,…​]
Importance: high
Dynamic update: cluster-wide
The number of threads that the server uses for processing requests, which may include disk I/O.

num.network.threads

Type: int
Default: 3
Valid Values: [1,…​]
Importance: high
Dynamic update: cluster-wide
The number of threads that the server uses for receiving requests from the network and sending
responses to the network.

num.recovery.threads.per.data.dir

Type: int
Default: 1
Valid Values: [1,…​]
Importance: high
Dynamic update: cluster-wide
The number of threads per data directory to be used for log recovery at startup and flushing at
shutdown.

num.replica.alter.log.dirs.threads

Type: int
Default: null
Importance: high
Dynamic update: read-only
The number of threads that can move replicas between log directories, which may include disk I/O.

num.replica.fetchers

Type: int
Default: 1
Importance: high
Dynamic update: cluster-wide
Number of fetcher threads used to replicate messages from a source broker. Increasing this value
can increase the degree of I/O parallelism in the follower broker.

offset.metadata.max.bytes

Type: int
Default: 4096
Importance: high
Dynamic update: read-only
The maximum size for a metadata entry associated with an offset commit.

offsets.commit.required.acks

Type: short
Default: -1

APPENDIX A. BROKER CONFIGURATION PARAMETERS

197

Importance: high
Dynamic update: read-only
The required acks before the commit can be accepted. In general, the default (-1) should not be
overridden.

offsets.commit.timeout.ms

Type: int
Default: 5000
Valid Values: [1,…​]
Importance: high
Dynamic update: read-only
Offset commit will be delayed until all replicas for the offsets topic receive the commit or this
timeout is reached. This is similar to the producer request timeout.

offsets.load.buffer.size

Type: int
Default: 5242880
Valid Values: [1,…​]
Importance: high
Dynamic update: read-only
Batch size for reading from the offsets segments when loading offsets into the cache (soft-limit,
overridden if records are too large).

offsets.retention.check.interval.ms

Type: long
Default: 600000
Valid Values: [1,…​]
Importance: high
Dynamic update: read-only
Frequency at which to check for stale offsets.

offsets.retention.minutes

Type: int
Default: 10080
Valid Values: [1,…​]
Importance: high
Dynamic update: read-only
After a consumer group loses all its consumers (i.e. becomes empty) its offsets will be kept for this
retention period before getting discarded. For standalone consumers (using manual assignment),
offsets will be expired after the time of last commit plus this retention period.

offsets.topic.compression.codec

Type: int
Default: 0
Importance: high
Dynamic update: read-only
Compression codec for the offsets topic - compression may be used to achieve "atomic" commits.

offsets.topic.num.partitions

Type: int
Default: 50
Valid Values: [1,…​]

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

198

Importance: high
Dynamic update: read-only
The number of partitions for the offset commit topic (should not change after deployment).

offsets.topic.replication.factor

Type: short
Default: 3
Valid Values: [1,…​]
Importance: high
Dynamic update: read-only
The replication factor for the offsets topic (set higher to ensure availability). Internal topic creation
will fail until the cluster size meets this replication factor requirement.

offsets.topic.segment.bytes

Type: int
Default: 104857600
Valid Values: [1,…​]
Importance: high
Dynamic update: read-only
The offsets topic segment bytes should be kept relatively small in order to facilitate faster log
compaction and cache loads.

port

Type: int
Default: 9092
Importance: high
Dynamic update: read-only
DEPRECATED: only used when listeners is not set. Use listeners instead. the port to listen and
accept connections on.

queued.max.requests

Type: int
Default: 500
Valid Values: [1,…​]
Importance: high
Dynamic update: read-only
The number of queued requests allowed for data-plane, before blocking the network threads.

quota.consumer.default

Type: long
Default: 9223372036854775807
Valid Values: [1,…​]
Importance: high
Dynamic update: read-only
DEPRECATED: Used only when dynamic default quotas are not configured for <user, <client-id> or
<user, client-id> in Zookeeper. Any consumer distinguished by clientId/consumer group will get
throttled if it fetches more bytes than this value per-second.

quota.producer.default

Type: long
Default: 9223372036854775807
Valid Values: [1,…​]

APPENDIX A. BROKER CONFIGURATION PARAMETERS

199

Importance: high
Dynamic update: read-only
DEPRECATED: Used only when dynamic default quotas are not configured for <user>, <client-id> or
<user, client-id> in Zookeeper. Any producer distinguished by clientId will get throttled if it produces
more bytes than this value per-second.

replica.fetch.min.bytes

Type: int
Default: 1
Importance: high
Dynamic update: read-only
Minimum bytes expected for each fetch response. If not enough bytes, wait up to
replicaMaxWaitTimeMs.

replica.fetch.wait.max.ms

Type: int
Default: 500
Importance: high
Dynamic update: read-only
max wait time for each fetcher request issued by follower replicas. This value should always be less
than the replica.lag.time.max.ms at all times to prevent frequent shrinking of ISR for low throughput
topics.

replica.high.watermark.checkpoint.interval.ms

Type: long
Default: 5000
Importance: high
Dynamic update: read-only
The frequency with which the high watermark is saved out to disk.

replica.lag.time.max.ms

Type: long
Default: 30000
Importance: high
Dynamic update: read-only
If a follower hasn’t sent any fetch requests or hasn’t consumed up to the leaders log end offset for at
least this time, the leader will remove the follower from isr.

replica.socket.receive.buffer.bytes

Type: int
Default: 65536
Importance: high
Dynamic update: read-only
The socket receive buffer for network requests.

replica.socket.timeout.ms

Type: int
Default: 30000
Importance: high
Dynamic update: read-only
The socket timeout for network requests. Its value should be at least replica.fetch.wait.max.ms.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

200

request.timeout.ms

Type: int
Default: 30000
Importance: high
Dynamic update: read-only
The configuration controls the maximum amount of time the client will wait for the response of a
request. If the response is not received before the timeout elapses the client will resend the request
if necessary or fail the request if retries are exhausted.

socket.receive.buffer.bytes

Type: int
Default: 102400
Importance: high
Dynamic update: read-only
The SO_RCVBUF buffer of the socket server sockets. If the value is -1, the OS default will be used.

socket.request.max.bytes

Type: int
Default: 104857600
Valid Values: [1,…​]
Importance: high
Dynamic update: read-only
The maximum number of bytes in a socket request.

socket.send.buffer.bytes

Type: int
Default: 102400
Importance: high
Dynamic update: read-only
The SO_SNDBUF buffer of the socket server sockets. If the value is -1, the OS default will be used.

transaction.max.timeout.ms

Type: int
Default: 900000
Valid Values: [1,…​]
Importance: high
Dynamic update: read-only
The maximum allowed timeout for transactions. If a client’s requested transaction time exceed this,
then the broker will return an error in InitProducerIdRequest. This prevents a client from too large of
a timeout, which can stall consumers reading from topics included in the transaction.

transaction.state.log.load.buffer.size

Type: int
Default: 5242880
Valid Values: [1,…​]
Importance: high
Dynamic update: read-only
Batch size for reading from the transaction log segments when loading producer ids and transactions
into the cache (soft-limit, overridden if records are too large).

transaction.state.log.min.isr

APPENDIX A. BROKER CONFIGURATION PARAMETERS

201

Type: int
Default: 2
Valid Values: [1,…​]
Importance: high
Dynamic update: read-only
Overridden min.insync.replicas config for the transaction topic.

transaction.state.log.num.partitions

Type: int
Default: 50
Valid Values: [1,…​]
Importance: high
Dynamic update: read-only
The number of partitions for the transaction topic (should not change after deployment).

transaction.state.log.replication.factor

Type: short
Default: 3
Valid Values: [1,…​]
Importance: high
Dynamic update: read-only
The replication factor for the transaction topic (set higher to ensure availability). Internal topic
creation will fail until the cluster size meets this replication factor requirement.

transaction.state.log.segment.bytes

Type: int
Default: 104857600
Valid Values: [1,…​]
Importance: high
Dynamic update: read-only
The transaction topic segment bytes should be kept relatively small in order to facilitate faster log
compaction and cache loads.

transactional.id.expiration.ms

Type: int
Default: 604800000
Valid Values: [1,…​]
Importance: high
Dynamic update: read-only
The time in ms that the transaction coordinator will wait without receiving any transaction status
updates for the current transaction before expiring its transactional id. This setting also influences
producer id expiration - producer ids are expired once this time has elapsed after the last write with
the given producer id. Note that producer ids may expire sooner if the last write from the producer id
is deleted due to the topic’s retention settings.

unclean.leader.election.enable

Type: boolean
Default: false
Importance: high
Dynamic update: cluster-wide
Indicates whether to enable replicas not in the ISR set to be elected as leader as a last resort, even
though doing so may result in data loss.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

202

zookeeper.connection.timeout.ms

Type: int
Default: null
Importance: high
Dynamic update: read-only
The max time that the client waits to establish a connection to zookeeper. If not set, the value in
zookeeper.session.timeout.ms is used.

zookeeper.max.in.flight.requests

Type: int
Default: 10
Valid Values: [1,…​]
Importance: high
Dynamic update: read-only
The maximum number of unacknowledged requests the client will send to Zookeeper before
blocking.

zookeeper.session.timeout.ms

Type: int
Default: 18000
Importance: high
Dynamic update: read-only
Zookeeper session timeout.

zookeeper.set.acl

Type: boolean
Default: false
Importance: high
Dynamic update: read-only
Set client to use secure ACLs.

broker.id.generation.enable

Type: boolean
Default: true
Importance: medium
Dynamic update: read-only
Enable automatic broker id generation on the server. When enabled the value configured for
reserved.broker.max.id should be reviewed.

broker.rack

Type: string
Default: null
Importance: medium
Dynamic update: read-only
Rack of the broker. This will be used in rack aware replication assignment for fault tolerance.
Examples: RACK1, us-east-1d.

connections.max.idle.ms

Type: long
Default: 600000
Importance: medium

APPENDIX A. BROKER CONFIGURATION PARAMETERS

203

Dynamic update: read-only
Idle connections timeout: the server socket processor threads close the connections that idle more
than this.

connections.max.reauth.ms

Type: long
Default: 0
Importance: medium
Dynamic update: read-only
When explicitly set to a positive number (the default is 0, not a positive number), a session lifetime
that will not exceed the configured value will be communicated to v2.2.0 or later clients when they
authenticate. The broker will disconnect any such connection that is not re-authenticated within the
session lifetime and that is then subsequently used for any purpose other than re-authentication.
Configuration names can optionally be prefixed with listener prefix and SASL mechanism name in
lower-case. For example, listener.name.sasl_ssl.oauthbearer.connections.max.reauth.ms=3600000.

controlled.shutdown.enable

Type: boolean
Default: true
Importance: medium
Dynamic update: read-only
Enable controlled shutdown of the server.

controlled.shutdown.max.retries

Type: int
Default: 3
Importance: medium
Dynamic update: read-only
Controlled shutdown can fail for multiple reasons. This determines the number of retries when such
failure happens.

controlled.shutdown.retry.backoff.ms

Type: long
Default: 5000
Importance: medium
Dynamic update: read-only
Before each retry, the system needs time to recover from the state that caused the previous failure
(Controller fail over, replica lag etc). This config determines the amount of time to wait before
retrying.

controller.socket.timeout.ms

Type: int
Default: 30000
Importance: medium
Dynamic update: read-only
The socket timeout for controller-to-broker channels.

default.replication.factor

Type: int
Default: 1
Importance: medium
Dynamic update: read-only

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

204

default replication factors for automatically created topics.

delegation.token.expiry.time.ms

Type: long
Default: 86400000
Valid Values: [1,…​]
Importance: medium
Dynamic update: read-only
The token validity time in miliseconds before the token needs to be renewed. Default value 1 day.

delegation.token.master.key

Type: password
Default: null
Importance: medium
Dynamic update: read-only
Master/secret key to generate and verify delegation tokens. Same key must be configured across all
the brokers. If the key is not set or set to empty string, brokers will disable the delegation token
support.

delegation.token.max.lifetime.ms

Type: long
Default: 604800000
Valid Values: [1,…​]
Importance: medium
Dynamic update: read-only
The token has a maximum lifetime beyond which it cannot be renewed anymore. Default value 7
days.

delete.records.purgatory.purge.interval.requests

Type: int
Default: 1
Importance: medium
Dynamic update: read-only
The purge interval (in number of requests) of the delete records request purgatory.

fetch.max.bytes

Type: int
Default: 57671680
Valid Values: [1024,…​]
Importance: medium
Dynamic update: read-only
The maximum number of bytes we will return for a fetch request. Must be at least 1024.

fetch.purgatory.purge.interval.requests

Type: int
Default: 1000
Importance: medium
Dynamic update: read-only
The purge interval (in number of requests) of the fetch request purgatory.

group.initial.rebalance.delay.ms

APPENDIX A. BROKER CONFIGURATION PARAMETERS

205

Type: int
Default: 3000
Importance: medium
Dynamic update: read-only
The amount of time the group coordinator will wait for more consumers to join a new group before
performing the first rebalance. A longer delay means potentially fewer rebalances, but increases the
time until processing begins.

group.max.session.timeout.ms

Type: int
Default: 1800000
Importance: medium
Dynamic update: read-only
The maximum allowed session timeout for registered consumers. Longer timeouts give consumers
more time to process messages in between heartbeats at the cost of a longer time to detect failures.

group.max.size

Type: int
Default: 2147483647
Valid Values: [1,…​]
Importance: medium
Dynamic update: read-only
The maximum number of consumers that a single consumer group can accommodate.

group.min.session.timeout.ms

Type: int
Default: 6000
Importance: medium
Dynamic update: read-only
The minimum allowed session timeout for registered consumers. Shorter timeouts result in quicker
failure detection at the cost of more frequent consumer heartbeating, which can overwhelm broker
resources.

inter.broker.listener.name

Type: string
Default: null
Importance: medium
Dynamic update: read-only
Name of listener used for communication between brokers. If this is unset, the listener name is
defined by security.inter.broker.protocol. It is an error to set this and security.inter.broker.protocol
properties at the same time.

inter.broker.protocol.version

Type: string
Default: 2.5-IV0
Valid Values: [0.8.0, 0.8.1, 0.8.2, 0.9.0, 0.10.0-IV0, 0.10.0-IV1, 0.10.1-IV0, 0.10.1-IV1, 0.10.1-IV2, 0.10.2-
IV0, 0.11.0-IV0, 0.11.0-IV1, 0.11.0-IV2, 1.0-IV0, 1.1-IV0, 2.0-IV0, 2.0-IV1, 2.1-IV0, 2.1-IV1, 2.1-IV2, 2.2-IV0,
2.2-IV1, 2.3-IV0, 2.3-IV1, 2.4-IV0, 2.4-IV1, 2.5-IV0]
Importance: medium
Dynamic update: read-only

Specify which version of the inter-broker protocol will be used. This is typically bumped after all

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

206

Specify which version of the inter-broker protocol will be used. This is typically bumped after all
brokers were upgraded to a new version. Example of some valid values are: 0.8.0, 0.8.1, 0.8.1.1, 0.8.2,
0.8.2.0, 0.8.2.1, 0.9.0.0, 0.9.0.1 Check ApiVersion for the full list.

log.cleaner.backoff.ms

Type: long
Default: 15000
Valid Values: [0,…​]
Importance: medium
Dynamic update: cluster-wide
The amount of time to sleep when there are no logs to clean.

log.cleaner.dedupe.buffer.size

Type: long
Default: 134217728
Importance: medium
Dynamic update: cluster-wide
The total memory used for log deduplication across all cleaner threads.

log.cleaner.delete.retention.ms

Type: long
Default: 86400000
Importance: medium
Dynamic update: cluster-wide
How long are delete records retained?

log.cleaner.enable

Type: boolean
Default: true
Importance: medium
Dynamic update: read-only
Enable the log cleaner process to run on the server. Should be enabled if using any topics with a
cleanup.policy=compact including the internal offsets topic. If disabled those topics will not be
compacted and continually grow in size.

log.cleaner.io.buffer.load.factor

Type: double
Default: 0.9
Importance: medium
Dynamic update: cluster-wide
Log cleaner dedupe buffer load factor. The percentage full the dedupe buffer can become. A higher
value will allow more log to be cleaned at once but will lead to more hash collisions.

log.cleaner.io.buffer.size

Type: int
Default: 524288
Valid Values: [0,…​]
Importance: medium
Dynamic update: cluster-wide
The total memory used for log cleaner I/O buffers across all cleaner threads.

log.cleaner.io.max.bytes.per.second

APPENDIX A. BROKER CONFIGURATION PARAMETERS

207

Type: double
Default: 1.7976931348623157E308
Importance: medium
Dynamic update: cluster-wide
The log cleaner will be throttled so that the sum of its read and write i/o will be less than this value on
average.

log.cleaner.max.compaction.lag.ms

Type: long
Default: 9223372036854775807
Importance: medium
Dynamic update: cluster-wide
The maximum time a message will remain ineligible for compaction in the log. Only applicable for logs
that are being compacted.

log.cleaner.min.cleanable.ratio

Type: double
Default: 0.5
Importance: medium
Dynamic update: cluster-wide
The minimum ratio of dirty log to total log for a log to eligible for cleaning. If the
log.cleaner.max.compaction.lag.ms or the log.cleaner.min.compaction.lag.ms configurations are also
specified, then the log compactor considers the log eligible for compaction as soon as either: (i) the
dirty ratio threshold has been met and the log has had dirty (uncompacted) records for at least the
log.cleaner.min.compaction.lag.ms duration, or (ii) if the log has had dirty (uncompacted) records for
at most the log.cleaner.max.compaction.lag.ms period.

log.cleaner.min.compaction.lag.ms

Type: long
Default: 0
Importance: medium
Dynamic update: cluster-wide
The minimum time a message will remain uncompacted in the log. Only applicable for logs that are
being compacted.

log.cleaner.threads

Type: int
Default: 1
Valid Values: [0,…​]
Importance: medium
Dynamic update: cluster-wide
The number of background threads to use for log cleaning.

log.cleanup.policy

Type: list
Default: delete
Valid Values: [compact, delete]
Importance: medium
Dynamic update: cluster-wide
The default cleanup policy for segments beyond the retention window. A comma separated list of
valid policies. Valid policies are: "delete" and "compact".

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

208

log.index.interval.bytes

Type: int
Default: 4096
Valid Values: [0,…​]
Importance: medium
Dynamic update: cluster-wide
The interval with which we add an entry to the offset index.

log.index.size.max.bytes

Type: int
Default: 10485760
Valid Values: [4,…​]
Importance: medium
Dynamic update: cluster-wide
The maximum size in bytes of the offset index.

log.message.format.version

Type: string
Default: 2.5-IV0
Valid Values: [0.8.0, 0.8.1, 0.8.2, 0.9.0, 0.10.0-IV0, 0.10.0-IV1, 0.10.1-IV0, 0.10.1-IV1, 0.10.1-IV2, 0.10.2-
IV0, 0.11.0-IV0, 0.11.0-IV1, 0.11.0-IV2, 1.0-IV0, 1.1-IV0, 2.0-IV0, 2.0-IV1, 2.1-IV0, 2.1-IV1, 2.1-IV2, 2.2-IV0,
2.2-IV1, 2.3-IV0, 2.3-IV1, 2.4-IV0, 2.4-IV1, 2.5-IV0]
Importance: medium
Dynamic update: read-only
Specify the message format version the broker will use to append messages to the logs. The value
should be a valid ApiVersion. Some examples are: 0.8.2, 0.9.0.0, 0.10.0, check ApiVersion for more
details. By setting a particular message format version, the user is certifying that all the existing
messages on disk are smaller or equal than the specified version. Setting this value incorrectly will
cause consumers with older versions to break as they will receive messages with a format that they
don’t understand.

log.message.timestamp.difference.max.ms

Type: long
Default: 9223372036854775807
Importance: medium
Dynamic update: cluster-wide
The maximum difference allowed between the timestamp when a broker receives a message and the
timestamp specified in the message. If log.message.timestamp.type=CreateTime, a message will be
rejected if the difference in timestamp exceeds this threshold. This configuration is ignored if
log.message.timestamp.type=LogAppendTime.The maximum timestamp difference allowed should
be no greater than log.retention.ms to avoid unnecessarily frequent log rolling.

log.message.timestamp.type

Type: string
Default: CreateTime
Valid Values: [CreateTime, LogAppendTime]
Importance: medium
Dynamic update: cluster-wide
Define whether the timestamp in the message is message create time or log append time. The value
should be either CreateTime or LogAppendTime.

log.preallocate

APPENDIX A. BROKER CONFIGURATION PARAMETERS

209

Type: boolean
Default: false
Importance: medium
Dynamic update: cluster-wide
Should pre allocate file when create new segment? If you are using Kafka on Windows, you probably
need to set it to true.

log.retention.check.interval.ms

Type: long
Default: 300000
Valid Values: [1,…​]
Importance: medium
Dynamic update: read-only
The frequency in milliseconds that the log cleaner checks whether any log is eligible for deletion.

max.connections

Type: int
Default: 2147483647
Valid Values: [0,…​]
Importance: medium
Dynamic update: cluster-wide
The maximum number of connections we allow in the broker at any time. This limit is applied in
addition to any per-ip limits configured using max.connections.per.ip. Listener-level limits may also
be configured by prefixing the config name with the listener prefix, for example,
listener.name.internal.max.connections. Broker-wide limit should be configured based on broker
capacity while listener limits should be configured based on application requirements. New
connections are blocked if either the listener or broker limit is reached. Connections on the inter-
broker listener are permitted even if broker-wide limit is reached. The least recently used connection
on another listener will be closed in this case.

max.connections.per.ip

Type: int
Default: 2147483647
Valid Values: [0,…​]
Importance: medium
Dynamic update: cluster-wide
The maximum number of connections we allow from each ip address. This can be set to 0 if there are
overrides configured using max.connections.per.ip.overrides property. New connections from the ip
address are dropped if the limit is reached.

max.connections.per.ip.overrides

Type: string
Default: ""
Importance: medium
Dynamic update: cluster-wide
A comma-separated list of per-ip or hostname overrides to the default maximum number of
connections. An example value is "hostName:100,127.0.0.1:200".

max.incremental.fetch.session.cache.slots

Type: int
Default: 1000
Valid Values: [0,…​]

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

210

Importance: medium
Dynamic update: read-only
The maximum number of incremental fetch sessions that we will maintain.

num.partitions

Type: int
Default: 1
Valid Values: [1,…​]
Importance: medium
Dynamic update: read-only
The default number of log partitions per topic.

password.encoder.old.secret

Type: password
Default: null
Importance: medium
Dynamic update: read-only
The old secret that was used for encoding dynamically configured passwords. This is required only
when the secret is updated. If specified, all dynamically encoded passwords are decoded using this
old secret and re-encoded using password.encoder.secret when broker starts up.

password.encoder.secret

Type: password
Default: null
Importance: medium
Dynamic update: read-only
The secret used for encoding dynamically configured passwords for this broker.

principal.builder.class

Type: class
Default: null
Importance: medium
Dynamic update: per-broker
The fully qualified name of a class that implements the KafkaPrincipalBuilder interface, which is used
to build the KafkaPrincipal object used during authorization. This config also supports the
deprecated PrincipalBuilder interface which was previously used for client authentication over SSL. If
no principal builder is defined, the default behavior depends on the security protocol in use. For SSL
authentication, the principal will be derived using the rules defined by ssl.principal.mapping.rules
applied on the distinguished name from the client certificate if one is provided; otherwise, if client
authentication is not required, the principal name will be ANONYMOUS. For SASL authentication,
the principal will be derived using the rules defined by sasl.kerberos.principal.to.local.rules if
GSSAPI is in use, and the SASL authentication ID for other mechanisms. For PLAINTEXT, the
principal will be ANONYMOUS.

producer.purgatory.purge.interval.requests

Type: int
Default: 1000
Importance: medium
Dynamic update: read-only
The purge interval (in number of requests) of the producer request purgatory.

queued.max.request.bytes

APPENDIX A. BROKER CONFIGURATION PARAMETERS

211

Type: long
Default: -1
Importance: medium
Dynamic update: read-only
The number of queued bytes allowed before no more requests are read.

replica.fetch.backoff.ms

Type: int
Default: 1000
Valid Values: [0,…​]
Importance: medium
Dynamic update: read-only
The amount of time to sleep when fetch partition error occurs.

replica.fetch.max.bytes

Type: int
Default: 1048576
Valid Values: [0,…​]
Importance: medium
Dynamic update: read-only
The number of bytes of messages to attempt to fetch for each partition. This is not an absolute
maximum, if the first record batch in the first non-empty partition of the fetch is larger than this
value, the record batch will still be returned to ensure that progress can be made. The maximum
record batch size accepted by the broker is defined via message.max.bytes (broker config) or
max.message.bytes (topic config).

replica.fetch.response.max.bytes

Type: int
Default: 10485760
Valid Values: [0,…​]
Importance: medium
Dynamic update: read-only
Maximum bytes expected for the entire fetch response. Records are fetched in batches, and if the
first record batch in the first non-empty partition of the fetch is larger than this value, the record
batch will still be returned to ensure that progress can be made. As such, this is not an absolute
maximum. The maximum record batch size accepted by the broker is defined via
message.max.bytes (broker config) or max.message.bytes (topic config).

replica.selector.class

Type: string
Default: null
Importance: medium
Dynamic update: read-only
The fully qualified class name that implements ReplicaSelector. This is used by the broker to find the
preferred read replica. By default, we use an implementation that returns the leader.

reserved.broker.max.id

Type: int
Default: 1000
Valid Values: [0,…​]
Importance: medium
Dynamic update: read-only

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

212

Max number that can be used for a broker.id.

sasl.client.callback.handler.class

Type: class
Default: null
Importance: medium
Dynamic update: read-only
The fully qualified name of a SASL client callback handler class that implements the
AuthenticateCallbackHandler interface.

sasl.enabled.mechanisms

Type: list
Default: GSSAPI
Importance: medium
Dynamic update: per-broker
The list of SASL mechanisms enabled in the Kafka server. The list may contain any mechanism for
which a security provider is available. Only GSSAPI is enabled by default.

sasl.jaas.config

Type: password
Default: null
Importance: medium
Dynamic update: per-broker
JAAS login context parameters for SASL connections in the format used by JAAS configuration files.
JAAS configuration file format is described here. The format for the value is: ‘loginModuleClass
controlFlag (optionName=optionValue)*;’. For brokers, the config must be prefixed with listener
prefix and SASL mechanism name in lower-case. For example, listener.name.sasl_ssl.scram-sha-
256.sasl.jaas.config=com.example.ScramLoginModule required;.

sasl.kerberos.kinit.cmd

Type: string
Default: /usr/bin/kinit
Importance: medium
Dynamic update: per-broker
Kerberos kinit command path.

sasl.kerberos.min.time.before.relogin

Type: long
Default: 60000
Importance: medium
Dynamic update: per-broker
Login thread sleep time between refresh attempts.

sasl.kerberos.principal.to.local.rules

Type: list
Default: DEFAULT
Importance: medium
Dynamic update: per-broker
A list of rules for mapping from principal names to short names (typically operating system
usernames). The rules are evaluated in order and the first rule that matches a principal name is used
to map it to a short name. Any later rules in the list are ignored. By default, principal names of the

APPENDIX A. BROKER CONFIGURATION PARAMETERS

213

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html

form {username}/{hostname}@{REALM} are mapped to {username}. For more details on the format
please see security authorization and acls. Note that this configuration is ignored if an extension of
KafkaPrincipalBuilder is provided by the principal.builder.class configuration.

sasl.kerberos.service.name

Type: string
Default: null
Importance: medium
Dynamic update: per-broker
The Kerberos principal name that Kafka runs as. This can be defined either in Kafka’s JAAS config or
in Kafka’s config.

sasl.kerberos.ticket.renew.jitter

Type: double
Default: 0.05
Importance: medium
Dynamic update: per-broker
Percentage of random jitter added to the renewal time.

sasl.kerberos.ticket.renew.window.factor

Type: double
Default: 0.8
Importance: medium
Dynamic update: per-broker
Login thread will sleep until the specified window factor of time from last refresh to ticket’s expiry
has been reached, at which time it will try to renew the ticket.

sasl.login.callback.handler.class

Type: class
Default: null
Importance: medium
Dynamic update: read-only
The fully qualified name of a SASL login callback handler class that implements the
AuthenticateCallbackHandler interface. For brokers, login callback handler config must be prefixed
with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-
256.sasl.login.callback.handler.class=com.example.CustomScramLoginCallbackHandler.

sasl.login.class

Type: class
Default: null
Importance: medium
Dynamic update: read-only
The fully qualified name of a class that implements the Login interface. For brokers, login config
must be prefixed with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-256.sasl.login.class=com.example.CustomScramLogin.

sasl.login.refresh.buffer.seconds

Type: short
Default: 300
Importance: medium
Dynamic update: per-broker

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

214

https://kafka.apache.org/23/documentation.html#security_authz

The amount of buffer time before credential expiration to maintain when refreshing a credential, in
seconds. If a refresh would otherwise occur closer to expiration than the number of buffer seconds
then the refresh will be moved up to maintain as much of the buffer time as possible. Legal values are
between 0 and 3600 (1 hour); a default value of 300 (5 minutes) is used if no value is specified. This
value and sasl.login.refresh.min.period.seconds are both ignored if their sum exceeds the remaining
lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.min.period.seconds

Type: short
Default: 60
Importance: medium
Dynamic update: per-broker
The desired minimum time for the login refresh thread to wait before refreshing a credential, in
seconds. Legal values are between 0 and 900 (15 minutes); a default value of 60 (1 minute) is used if
no value is specified. This value and sasl.login.refresh.buffer.seconds are both ignored if their sum
exceeds the remaining lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.window.factor

Type: double
Default: 0.8
Importance: medium
Dynamic update: per-broker
Login refresh thread will sleep until the specified window factor relative to the credential’s lifetime
has been reached, at which time it will try to refresh the credential. Legal values are between 0.5
(50%) and 1.0 (100%) inclusive; a default value of 0.8 (80%) is used if no value is specified. Currently
applies only to OAUTHBEARER.

sasl.login.refresh.window.jitter

Type: double
Default: 0.05
Importance: medium
Dynamic update: per-broker
The maximum amount of random jitter relative to the credential’s lifetime that is added to the login
refresh thread’s sleep time. Legal values are between 0 and 0.25 (25%) inclusive; a default value of
0.05 (5%) is used if no value is specified. Currently applies only to OAUTHBEARER.

sasl.mechanism.inter.broker.protocol

Type: string
Default: GSSAPI
Importance: medium
Dynamic update: per-broker
SASL mechanism used for inter-broker communication. Default is GSSAPI.

sasl.server.callback.handler.class

Type: class
Default: null
Importance: medium
Dynamic update: read-only
The fully qualified name of a SASL server callback handler class that implements the
AuthenticateCallbackHandler interface. Server callback handlers must be prefixed with listener prefix
and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.plain.sasl.server.callback.handler.class=com.example.CustomPlainCallbackHandler.

APPENDIX A. BROKER CONFIGURATION PARAMETERS

215

security.inter.broker.protocol

Type: string
Default: PLAINTEXT
Importance: medium
Dynamic update: read-only
Security protocol used to communicate between brokers. Valid values are: PLAINTEXT, SSL,
SASL_PLAINTEXT, SASL_SSL. It is an error to set this and inter.broker.listener.name properties at
the same time.

ssl.cipher.suites

Type: list
Default: ""
Importance: medium
Dynamic update: per-broker
A list of cipher suites. This is a named combination of authentication, encryption, MAC and key
exchange algorithm used to negotiate the security settings for a network connection using TLS or
SSL network protocol. By default all the available cipher suites are supported.

ssl.client.auth

Type: string
Default: none
Valid Values: [required, requested, none]
Importance: medium
Dynamic update: per-broker
Configures kafka broker to request client authentication. The following settings are common:

ssl.client.auth=required If set to required client authentication is required.

ssl.client.auth=requested This means client authentication is optional. unlike requested , if
this option is set client can choose not to provide authentication information about itself

ssl.client.auth=none This means client authentication is not needed.

ssl.enabled.protocols

Type: list
Default: TLSv1.2
Importance: medium
Dynamic update: per-broker
The list of protocols enabled for SSL connections.

ssl.key.password

Type: password
Default: null
Importance: medium
Dynamic update: per-broker
The password of the private key in the key store file. This is optional for client.

ssl.keymanager.algorithm

Type: string
Default: SunX509
Importance: medium
Dynamic update: per-broker

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

216

The algorithm used by key manager factory for SSL connections. Default value is the key manager
factory algorithm configured for the Java Virtual Machine.

ssl.keystore.location

Type: string
Default: null
Importance: medium
Dynamic update: per-broker
The location of the key store file. This is optional for client and can be used for two-way
authentication for client.

ssl.keystore.password

Type: password
Default: null
Importance: medium
Dynamic update: per-broker
The store password for the key store file. This is optional for client and only needed if
ssl.keystore.location is configured.

ssl.keystore.type

Type: string
Default: JKS
Importance: medium
Dynamic update: per-broker
The file format of the key store file. This is optional for client.

ssl.protocol

Type: string
Default: TLSv1.2
Importance: medium
Dynamic update: per-broker
The SSL protocol used to generate the SSLContext. Default setting is TLSv1.2, which is fine for most
cases. Allowed values in recent JVMs are TLSv1.2 and TLSv1.3. TLS, TLSv1.1, SSL, SSLv2 and SSLv3
may be supported in older JVMs, but their usage is discouraged due to known security vulnerabilities.

ssl.provider

Type: string
Default: null
Importance: medium
Dynamic update: per-broker
The name of the security provider used for SSL connections. Default value is the default security
provider of the JVM.

ssl.trustmanager.algorithm

Type: string
Default: PKIX
Importance: medium
Dynamic update: per-broker
The algorithm used by trust manager factory for SSL connections. Default value is the trust manager
factory algorithm configured for the Java Virtual Machine.

ssl.truststore.location

APPENDIX A. BROKER CONFIGURATION PARAMETERS

217

Type: string
Default: null
Importance: medium
Dynamic update: per-broker
The location of the trust store file.

ssl.truststore.password

Type: password
Default: null
Importance: medium
Dynamic update: per-broker
The password for the trust store file. If a password is not set access to the truststore is still available,
but integrity checking is disabled.

ssl.truststore.type

Type: string
Default: JKS
Importance: medium
Dynamic update: per-broker
The file format of the trust store file.

zookeeper.clientCnxnSocket

Type: string
Default: null
Importance: medium
Dynamic update: read-only
Typically set to org.apache.zookeeper.ClientCnxnSocketNetty when using TLS connectivity to
ZooKeeper. Overrides any explicit value set via the same-named zookeeper.clientCnxnSocket
system property.

zookeeper.ssl.client.enable

Type: boolean
Default: false
Importance: medium
Dynamic update: read-only
Set client to use TLS when connecting to ZooKeeper. An explicit value overrides any value set via the
zookeeper.client.secure system property (note the different name). Defaults to false if neither is
set; when true, zookeeper.clientCnxnSocket must be set (typically to
org.apache.zookeeper.ClientCnxnSocketNetty); other values to set may include
zookeeper.ssl.cipher.suites, zookeeper.ssl.crl.enable, zookeeper.ssl.enabled.protocols,
zookeeper.ssl.endpoint.identification.algorithm, zookeeper.ssl.keystore.location,
zookeeper.ssl.keystore.password, zookeeper.ssl.keystore.type, zookeeper.ssl.ocsp.enable,
zookeeper.ssl.protocol, zookeeper.ssl.truststore.location, zookeeper.ssl.truststore.password,
zookeeper.ssl.truststore.type.

zookeeper.ssl.keystore.location

Type: string
Default: null
Importance: medium
Dynamic update: read-only

Keystore location when using a client-side certificate with TLS connectivity to ZooKeeper. Overrides

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

218

Keystore location when using a client-side certificate with TLS connectivity to ZooKeeper. Overrides
any explicit value set via the zookeeper.ssl.keyStore.location system property (note the
camelCase).

zookeeper.ssl.keystore.password

Type: password
Default: null
Importance: medium
Dynamic update: read-only
Keystore password when using a client-side certificate with TLS connectivity to ZooKeeper.
Overrides any explicit value set via the zookeeper.ssl.keyStore.password system property (note
the camelCase). Note that ZooKeeper does not support a key password different from the keystore
password, so be sure to set the key password in the keystore to be identical to the keystore
password; otherwise the connection attempt to Zookeeper will fail.

zookeeper.ssl.keystore.type

Type: string
Default: null
Importance: medium
Dynamic update: read-only
Keystore type when using a client-side certificate with TLS connectivity to ZooKeeper. Overrides any
explicit value set via the zookeeper.ssl.keyStore.type system property (note the camelCase). The
default value of null means the type will be auto-detected based on the filename extension of the
keystore.

zookeeper.ssl.truststore.location

Type: string
Default: null
Importance: medium
Dynamic update: read-only
Truststore location when using TLS connectivity to ZooKeeper. Overrides any explicit value set via
the zookeeper.ssl.trustStore.location system property (note the camelCase).

zookeeper.ssl.truststore.password

Type: password
Default: null
Importance: medium
Dynamic update: read-only
Truststore password when using TLS connectivity to ZooKeeper. Overrides any explicit value set via
the zookeeper.ssl.trustStore.password system property (note the camelCase).

zookeeper.ssl.truststore.type

Type: string
Default: null
Importance: medium
Dynamic update: read-only
Truststore type when using TLS connectivity to ZooKeeper. Overrides any explicit value set via the
zookeeper.ssl.trustStore.type system property (note the camelCase). The default value of null
means the type will be auto-detected based on the filename extension of the truststore.

alter.config.policy.class.name

Type: class

APPENDIX A. BROKER CONFIGURATION PARAMETERS

219

Default: null
Importance: low
Dynamic update: read-only
The alter configs policy class that should be used for validation. The class should implement the
org.apache.kafka.server.policy.AlterConfigPolicy interface.

alter.log.dirs.replication.quota.window.num

Type: int
Default: 11
Valid Values: [1,…​]
Importance: low
Dynamic update: read-only
The number of samples to retain in memory for alter log dirs replication quotas.

alter.log.dirs.replication.quota.window.size.seconds

Type: int
Default: 1
Valid Values: [1,…​]
Importance: low
Dynamic update: read-only
The time span of each sample for alter log dirs replication quotas.

authorizer.class.name

Type: string
Default: ""
Importance: low
Dynamic update: read-only
The fully qualified name of a class that implements sorg.apache.kafka.server.authorizer.Authorizer
interface, which is used by the broker for authorization. This config also supports authorizers that
implement the deprecated kafka.security.auth.Authorizer trait which was previously used for
authorization.

client.quota.callback.class

Type: class
Default: null
Importance: low
Dynamic update: read-only
The fully qualified name of a class that implements the ClientQuotaCallback interface, which is used
to determine quota limits applied to client requests. By default, <user, client-id>, <user> or <client-id>
quotas stored in ZooKeeper are applied. For any given request, the most specific quota that matches
the user principal of the session and the client-id of the request is applied.

connection.failed.authentication.delay.ms

Type: int
Default: 100
Valid Values: [0,…​]
Importance: low
Dynamic update: read-only
Connection close delay on failed authentication: this is the time (in milliseconds) by which connection
close will be delayed on authentication failure. This must be configured to be less than
connections.max.idle.ms to prevent connection timeout.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

220

create.topic.policy.class.name

Type: class
Default: null
Importance: low
Dynamic update: read-only
The create topic policy class that should be used for validation. The class should implement the
org.apache.kafka.server.policy.CreateTopicPolicy interface.

delegation.token.expiry.check.interval.ms

Type: long
Default: 3600000
Valid Values: [1,…​]
Importance: low
Dynamic update: read-only
Scan interval to remove expired delegation tokens.

kafka.metrics.polling.interval.secs

Type: int
Default: 10
Valid Values: [1,…​]
Importance: low
Dynamic update: read-only
The metrics polling interval (in seconds) which can be used in kafka.metrics.reporters
implementations.

kafka.metrics.reporters

Type: list
Default: ""
Importance: low
Dynamic update: read-only
A list of classes to use as Yammer metrics custom reporters. The reporters should implement
kafka.metrics.KafkaMetricsReporter trait. If a client wants to expose JMX operations on a custom
reporter, the custom reporter needs to additionally implement an MBean trait that extends
kafka.metrics.KafkaMetricsReporterMBean trait so that the registered MBean is compliant with
the standard MBean convention.

listener.security.protocol.map

Type: string
Default:
PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL
Importance: low
Dynamic update: per-broker
Map between listener names and security protocols. This must be defined for the same security
protocol to be usable in more than one port or IP. For example, internal and external traffic can be
separated even if SSL is required for both. Concretely, the user could define listeners with names
INTERNAL and EXTERNAL and this property as: INTERNAL:SSL,EXTERNAL:SSL. As shown, key
and value are separated by a colon and map entries are separated by commas. Each listener name
should only appear once in the map. Different security (SSL and SASL) settings can be configured
for each listener by adding a normalised prefix (the listener name is lowercased) to the config name.
For example, to set a different keystore for the INTERNAL listener, a config with name
listener.name.internal.ssl.keystore.location would be set. If the config for the listener name is not
set, the config will fallback to the generic config (i.e. ssl.keystore.location).

APPENDIX A. BROKER CONFIGURATION PARAMETERS

221

log.message.downconversion.enable

Type: boolean
Default: true
Importance: low
Dynamic update: cluster-wide
This configuration controls whether down-conversion of message formats is enabled to satisfy
consume requests. When set to false, broker will not perform down-conversion for consumers
expecting an older message format. The broker responds with UNSUPPORTED_VERSION error for
consume requests from such older clients. This configurationdoes not apply to any message format
conversion that might be required for replication to followers.

metric.reporters

Type: list
Default: ""
Importance: low
Dynamic update: cluster-wide
A list of classes to use as metrics reporters. Implementing the
org.apache.kafka.common.metrics.MetricsReporter interface allows plugging in classes that will
be notified of new metric creation. The JmxReporter is always included to register JMX statistics.

metrics.num.samples

Type: int
Default: 2
Valid Values: [1,…​]
Importance: low
Dynamic update: read-only
The number of samples maintained to compute metrics.

metrics.recording.level

Type: string
Default: INFO
Importance: low
Dynamic update: read-only
The highest recording level for metrics.

metrics.sample.window.ms

Type: long
Default: 30000
Valid Values: [1,…​]
Importance: low
Dynamic update: read-only
The window of time a metrics sample is computed over.

password.encoder.cipher.algorithm

Type: string
Default: AES/CBC/PKCS5Padding
Importance: low
Dynamic update: read-only
The Cipher algorithm used for encoding dynamically configured passwords.

password.encoder.iterations

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

222

Type: int
Default: 4096
Valid Values: [1024,…​]
Importance: low
Dynamic update: read-only
The iteration count used for encoding dynamically configured passwords.

password.encoder.key.length

Type: int
Default: 128
Valid Values: [8,…​]
Importance: low
Dynamic update: read-only
The key length used for encoding dynamically configured passwords.

password.encoder.keyfactory.algorithm

Type: string
Default: null
Importance: low
Dynamic update: read-only
The SecretKeyFactory algorithm used for encoding dynamically configured passwords. Default is
PBKDF2WithHmacSHA512 if available and PBKDF2WithHmacSHA1 otherwise.

quota.window.num

Type: int
Default: 11
Valid Values: [1,…​]
Importance: low
Dynamic update: read-only
The number of samples to retain in memory for client quotas.

quota.window.size.seconds

Type: int
Default: 1
Valid Values: [1,…​]
Importance: low
Dynamic update: read-only
The time span of each sample for client quotas.

replication.quota.window.num

Type: int
Default: 11
Valid Values: [1,…​]
Importance: low
Dynamic update: read-only
The number of samples to retain in memory for replication quotas.

replication.quota.window.size.seconds

Type: int
Default: 1
Valid Values: [1,…​]

APPENDIX A. BROKER CONFIGURATION PARAMETERS

223

Importance: low
Dynamic update: read-only
The time span of each sample for replication quotas.

security.providers

Type: string
Default: null
Importance: low
Dynamic update: read-only
A list of configurable creator classes each returning a provider implementing security algorithms.
These classes should implement the
org.apache.kafka.common.security.auth.SecurityProviderCreator interface.

ssl.endpoint.identification.algorithm

Type: string
Default: https
Importance: low
Dynamic update: per-broker
The endpoint identification algorithm to validate server hostname using server certificate.

ssl.principal.mapping.rules

Type: string
Default: DEFAULT
Importance: low
Dynamic update: read-only
A list of rules for mapping from distinguished name from the client certificate to short name. The
rules are evaluated in order and the first rule that matches a principal name is used to map it to a
short name. Any later rules in the list are ignored. By default, distinguished name of the X.500
certificate will be the principal. For more details on the format please see security authorization and
acls. Note that this configuration is ignored if an extension of KafkaPrincipalBuilder is provided by the
principal.builder.class configuration.

ssl.secure.random.implementation

Type: string
Default: null
Importance: low
Dynamic update: per-broker
The SecureRandom PRNG implementation to use for SSL cryptography operations.

transaction.abort.timed.out.transaction.cleanup.interval.ms

Type: int
Default: 10000
Valid Values: [1,…​]
Importance: low
Dynamic update: read-only
The interval at which to rollback transactions that have timed out.

transaction.remove.expired.transaction.cleanup.interval.ms

Type: int
Default: 3600000
Valid Values: [1,…​]

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

224

https://kafka.apache.org/23/documentation.html#security_authz

Importance: low
Dynamic update: read-only
The interval at which to remove transactions that have expired due to
transactional.id.expiration.ms passing.

zookeeper.ssl.cipher.suites

Type: list
Default: null
Importance: low
Dynamic update: read-only
Specifies the enabled cipher suites to be used in ZooKeeper TLS negotiation (csv). Overrides any
explicit value set via the zookeeper.ssl.ciphersuites system property (note the single word
"ciphersuites"). The default value of null means the list of enabled cipher suites is determined by the
Java runtime being used.

zookeeper.ssl.crl.enable

Type: boolean
Default: false
Importance: low
Dynamic update: read-only
Specifies whether to enable Certificate Revocation List in the ZooKeeper TLS protocols. Overrides
any explicit value set via the zookeeper.ssl.crl system property (note the shorter name).

zookeeper.ssl.enabled.protocols

Type: list
Default: null
Importance: low
Dynamic update: read-only
Specifies the enabled protocol(s) in ZooKeeper TLS negotiation (csv). Overrides any explicit value
set via the zookeeper.ssl.enabledProtocols system property (note the camelCase). The default
value of null means the enabled protocol will be the value of the zookeeper.ssl.protocol
configuration property.

zookeeper.ssl.endpoint.identification.algorithm

Type: string
Default: HTTPS
Importance: low
Dynamic update: read-only
Specifies whether to enable hostname verification in the ZooKeeper TLS negotiation process, with
(case-insensitively) "https" meaning ZooKeeper hostname verification is enabled and an explicit
blank value meaning it is disabled (disabling it is only recommended for testing purposes). An explicit
value overrides any "true" or "false" value set via the zookeeper.ssl.hostnameVerification system
property (note the different name and values; true implies https and false implies blank).

zookeeper.ssl.ocsp.enable

Type: boolean
Default: false
Importance: low
Dynamic update: read-only
Specifies whether to enable Online Certificate Status Protocol in the ZooKeeper TLS protocols.
Overrides any explicit value set via the zookeeper.ssl.ocsp system property (note the shorter
name).

APPENDIX A. BROKER CONFIGURATION PARAMETERS

225

zookeeper.ssl.protocol

Type: string
Default: TLSv1.2
Importance: low
Dynamic update: read-only
Specifies the protocol to be used in ZooKeeper TLS negotiation. An explicit value overrides any value
set via the same-named zookeeper.ssl.protocol system property.

zookeeper.sync.time.ms

Type: int
Default: 2000
Importance: low
Dynamic update: read-only
How far a ZK follower can be behind a ZK leader.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

226

APPENDIX B. TOPIC CONFIGURATION PARAMETERS
cleanup.policy

Type: list
Default: delete
Valid Values: [compact, delete]
Server Default Property: log.cleanup.policy
Importance: medium
A string that is either "delete" or "compact" or both. This string designates the retention policy to use
on old log segments. The default policy ("delete") will discard old segments when their retention
time or size limit has been reached. The "compact" setting will enable log compaction on the topic.

compression.type

Type: string
Default: producer
Valid Values: [uncompressed, zstd, lz4, snappy, gzip, producer]
Server Default Property: compression.type
Importance: medium
Specify the final compression type for a given topic. This configuration accepts the standard
compression codecs ('gzip', 'snappy', 'lz4', 'zstd'). It additionally accepts 'uncompressed' which is
equivalent to no compression; and 'producer' which means retain the original compression codec set
by the producer.

delete.retention.ms

Type: long
Default: 86400000
Valid Values: [0,…​]
Server Default Property: log.cleaner.delete.retention.ms
Importance: medium
The amount of time to retain delete tombstone markers for log compacted topics. This setting also
gives a bound on the time in which a consumer must complete a read if they begin from offset 0 to
ensure that they get a valid snapshot of the final stage (otherwise delete tombstones may be
collected before they complete their scan).

file.delete.delay.ms

Type: long
Default: 60000
Valid Values: [0,…​]
Server Default Property: log.segment.delete.delay.ms
Importance: medium
The time to wait before deleting a file from the filesystem.

flush.messages

Type: long
Default: 9223372036854775807
Valid Values: [0,…​]
Server Default Property: log.flush.interval.messages
Importance: medium
This setting allows specifying an interval at which we will force an fsync of data written to the log. For
example if this was set to 1 we would fsync after every message; if it were 5 we would fsync after
every five messages. In general we recommend you not set this and use replication for durability and

APPENDIX B. TOPIC CONFIGURATION PARAMETERS

227

https://kafka.apache.org/23/documentation.html#compaction
https://kafka.apache.org/23/documentation.html#compaction

allow the operating system’s background flush capabilities as it is more efficient. This setting can be
overridden on a per-topic basis (see the per-topic configuration section).

flush.ms

Type: long
Default: 9223372036854775807
Valid Values: [0,…​]
Server Default Property: log.flush.interval.ms
Importance: medium
This setting allows specifying a time interval at which we will force an fsync of data written to the log.
For example if this was set to 1000 we would fsync after 1000 ms had passed. In general we
recommend you not set this and use replication for durability and allow the operating system’s
background flush capabilities as it is more efficient.

follower.replication.throttled.replicas

Type: list
Default: ""
Valid Values: [partitionId]:[brokerId],[partitionId]:[brokerId],…​
Server Default Property: follower.replication.throttled.replicas
Importance: medium
A list of replicas for which log replication should be throttled on the follower side. The list should
describe a set of replicas in the form [PartitionId]:[BrokerId],[PartitionId]:[BrokerId]:…​ or alternatively
the wildcard '*' can be used to throttle all replicas for this topic.

index.interval.bytes

Type: int
Default: 4096
Valid Values: [0,…​]
Server Default Property: log.index.interval.bytes
Importance: medium
This setting controls how frequently Kafka adds an index entry to its offset index. The default setting
ensures that we index a message roughly every 4096 bytes. More indexing allows reads to jump
closer to the exact position in the log but makes the index larger. You probably don’t need to change
this.

leader.replication.throttled.replicas

Type: list
Default: ""
Valid Values: [partitionId]:[brokerId],[partitionId]:[brokerId],…​
Server Default Property: leader.replication.throttled.replicas
Importance: medium
A list of replicas for which log replication should be throttled on the leader side. The list should
describe a set of replicas in the form [PartitionId]:[BrokerId],[PartitionId]:[BrokerId]:…​ or alternatively
the wildcard '*' can be used to throttle all replicas for this topic.

max.compaction.lag.ms

Type: long
Default: 9223372036854775807
Valid Values: [1,…​]
Server Default Property: log.cleaner.max.compaction.lag.ms
Importance: medium
The maximum time a message will remain ineligible for compaction in the log. Only applicable for logs
that are being compacted.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

228

https://kafka.apache.org/23/documentation.html#topicconfigs

max.message.bytes

Type: int
Default: 1048588
Valid Values: [0,…​]
Server Default Property: message.max.bytes
Importance: medium
The largest record batch size allowed by Kafka (after compression if compression is enabled). If this
is increased and there are consumers older than 0.10.2, the consumers' fetch size must also be
increased so that the they can fetch record batches this large. In the latest message format version,
records are always grouped into batches for efficiency. In previous message format versions,
uncompressed records are not grouped into batches and this limit only applies to a single record in
that case.

message.format.version

Type: string
Default: 2.5-IV0
Valid Values: [0.8.0, 0.8.1, 0.8.2, 0.9.0, 0.10.0-IV0, 0.10.0-IV1, 0.10.1-IV0, 0.10.1-IV1, 0.10.1-IV2, 0.10.2-
IV0, 0.11.0-IV0, 0.11.0-IV1, 0.11.0-IV2, 1.0-IV0, 1.1-IV0, 2.0-IV0, 2.0-IV1, 2.1-IV0, 2.1-IV1, 2.1-IV2, 2.2-IV0,
2.2-IV1, 2.3-IV0, 2.3-IV1, 2.4-IV0, 2.4-IV1, 2.5-IV0]
Server Default Property: log.message.format.version
Importance: medium
Specify the message format version the broker will use to append messages to the logs. The value
should be a valid ApiVersion. Some examples are: 0.8.2, 0.9.0.0, 0.10.0, check ApiVersion for more
details. By setting a particular message format version, the user is certifying that all the existing
messages on disk are smaller or equal than the specified version. Setting this value incorrectly will
cause consumers with older versions to break as they will receive messages with a format that they
don’t understand.

message.timestamp.difference.max.ms

Type: long
Default: 9223372036854775807
Valid Values: [0,…​]
Server Default Property: log.message.timestamp.difference.max.ms
Importance: medium
The maximum difference allowed between the timestamp when a broker receives a message and the
timestamp specified in the message. If message.timestamp.type=CreateTime, a message will be
rejected if the difference in timestamp exceeds this threshold. This configuration is ignored if
message.timestamp.type=LogAppendTime.

message.timestamp.type

Type: string
Default: CreateTime
Valid Values: [CreateTime, LogAppendTime]
Server Default Property: log.message.timestamp.type
Importance: medium
Define whether the timestamp in the message is message create time or log append time. The value
should be either CreateTime or LogAppendTime.

min.cleanable.dirty.ratio

Type: double
Default: 0.5
Valid Values: [0,…​,1]

APPENDIX B. TOPIC CONFIGURATION PARAMETERS

229

Server Default Property: log.cleaner.min.cleanable.ratio
Importance: medium
This configuration controls how frequently the log compactor will attempt to clean the log (assuming
log compaction is enabled). By default we will avoid cleaning a log where more than 50% of the log
has been compacted. This ratio bounds the maximum space wasted in the log by duplicates (at 50%
at most 50% of the log could be duplicates). A higher ratio will mean fewer, more efficient cleanings
but will mean more wasted space in the log. If the max.compaction.lag.ms or the
min.compaction.lag.ms configurations are also specified, then the log compactor considers the log to
be eligible for compaction as soon as either: (i) the dirty ratio threshold has been met and the log has
had dirty (uncompacted) records for at least the min.compaction.lag.ms duration, or (ii) if the log has
had dirty (uncompacted) records for at most the max.compaction.lag.ms period.

min.compaction.lag.ms

Type: long
Default: 0
Valid Values: [0,…​]
Server Default Property: log.cleaner.min.compaction.lag.ms
Importance: medium
The minimum time a message will remain uncompacted in the log. Only applicable for logs that are
being compacted.

min.insync.replicas

Type: int
Default: 1
Valid Values: [1,…​]
Server Default Property: min.insync.replicas
Importance: medium
When a producer sets acks to "all" (or "-1"), this configuration specifies the minimum number of
replicas that must acknowledge a write for the write to be considered successful. If this minimum
cannot be met, then the producer will raise an exception (either NotEnoughReplicas or
NotEnoughReplicasAfterAppend). When used together, min.insync.replicas and acks allow you to
enforce greater durability guarantees. A typical scenario would be to create a topic with a replication
factor of 3, set min.insync.replicas to 2, and produce with acks of "all". This will ensure that the
producer raises an exception if a majority of replicas do not receive a write.

preallocate

Type: boolean
Default: false
Server Default Property: log.preallocate
Importance: medium
True if we should preallocate the file on disk when creating a new log segment.

retention.bytes

Type: long
Default: -1
Server Default Property: log.retention.bytes
Importance: medium
This configuration controls the maximum size a partition (which consists of log segments) can grow
to before we will discard old log segments to free up space if we are using the "delete" retention
policy. By default there is no size limit only a time limit. Since this limit is enforced at the partition
level, multiply it by the number of partitions to compute the topic retention in bytes.

retention.ms

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

230

https://kafka.apache.org/23/documentation.html#compaction

Type: long
Default: 604800000
Valid Values: [-1,…​]
Server Default Property: log.retention.ms
Importance: medium
This configuration controls the maximum time we will retain a log before we will discard old log
segments to free up space if we are using the "delete" retention policy. This represents an SLA on
how soon consumers must read their data. If set to -1, no time limit is applied.

segment.bytes

Type: int
Default: 1073741824
Valid Values: [14,…​]
Server Default Property: log.segment.bytes
Importance: medium
This configuration controls the segment file size for the log. Retention and cleaning is always done a
file at a time so a larger segment size means fewer files but less granular control over retention.

segment.index.bytes

Type: int
Default: 10485760
Valid Values: [0,…​]
Server Default Property: log.index.size.max.bytes
Importance: medium
This configuration controls the size of the index that maps offsets to file positions. We preallocate
this index file and shrink it only after log rolls. You generally should not need to change this setting.

segment.jitter.ms

Type: long
Default: 0
Valid Values: [0,…​]
Server Default Property: log.roll.jitter.ms
Importance: medium
The maximum random jitter subtracted from the scheduled segment roll time to avoid thundering
herds of segment rolling.

segment.ms

Type: long
Default: 604800000
Valid Values: [1,…​]
Server Default Property: log.roll.ms
Importance: medium
This configuration controls the period of time after which Kafka will force the log to roll even if the
segment file isn’t full to ensure that retention can delete or compact old data.

unclean.leader.election.enable

Type: boolean
Default: false
Server Default Property: unclean.leader.election.enable
Importance: medium
Indicates whether to enable replicas not in the ISR set to be elected as leader as a last resort, even
though doing so may result in data loss.

APPENDIX B. TOPIC CONFIGURATION PARAMETERS

231

message.downconversion.enable

Type: boolean
Default: true
Server Default Property: log.message.downconversion.enable
Importance: low
This configuration controls whether down-conversion of message formats is enabled to satisfy
consume requests. When set to false, broker will not perform down-conversion for consumers
expecting an older message format. The broker responds with UNSUPPORTED_VERSION error for
consume requests from such older clients. This configurationdoes not apply to any message format
conversion that might be required for replication to followers.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

232

APPENDIX C. CONSUMER CONFIGURATION PARAMETERS
key.deserializer

Type: class
Importance: high
Deserializer class for key that implements the
org.apache.kafka.common.serialization.Deserializer interface.

value.deserializer

Type: class
Importance: high
Deserializer class for value that implements the
org.apache.kafka.common.serialization.Deserializer interface.

bootstrap.servers

Type: list
Default: ""
Valid Values: non-null string
Importance: high
A list of host/port pairs to use for establishing the initial connection to the Kafka cluster. The client
will make use of all servers irrespective of which servers are specified here for bootstrapping—this list
only impacts the initial hosts used to discover the full set of servers. This list should be in the form
host1:port1,host2:port2,… ​. Since these servers are just used for the initial connection to discover
the full cluster membership (which may change dynamically), this list need not contain the full set of
servers (you may want more than one, though, in case a server is down).

fetch.min.bytes

Type: int
Default: 1
Valid Values: [0,…​]
Importance: high
The minimum amount of data the server should return for a fetch request. If insufficient data is
available the request will wait for that much data to accumulate before answering the request. The
default setting of 1 byte means that fetch requests are answered as soon as a single byte of data is
available or the fetch request times out waiting for data to arrive. Setting this to something greater
than 1 will cause the server to wait for larger amounts of data to accumulate which can improve
server throughput a bit at the cost of some additional latency.

group.id

Type: string
Default: null
Importance: high
A unique string that identifies the consumer group this consumer belongs to. This property is
required if the consumer uses either the group management functionality by using subscribe(topic)
or the Kafka-based offset management strategy.

heartbeat.interval.ms

Type: int
Default: 3000
Importance: high
The expected time between heartbeats to the consumer coordinator when using Kafka’s group
management facilities. Heartbeats are used to ensure that the consumer’s session stays active and to

APPENDIX C. CONSUMER CONFIGURATION PARAMETERS

233

facilitate rebalancing when new consumers join or leave the group. The value must be set lower than
session.timeout.ms, but typically should be set no higher than 1/3 of that value. It can be adjusted
even lower to control the expected time for normal rebalances.

max.partition.fetch.bytes

Type: int
Default: 1048576
Valid Values: [0,…​]
Importance: high
The maximum amount of data per-partition the server will return. Records are fetched in batches by
the consumer. If the first record batch in the first non-empty partition of the fetch is larger than this
limit, the batch will still be returned to ensure that the consumer can make progress. The maximum
record batch size accepted by the broker is defined via message.max.bytes (broker config) or
max.message.bytes (topic config). See fetch.max.bytes for limiting the consumer request size.

session.timeout.ms

Type: int
Default: 10000
Importance: high
The timeout used to detect client failures when using Kafka’s group management facility. The client
sends periodic heartbeats to indicate its liveness to the broker. If no heartbeats are received by the
broker before the expiration of this session timeout, then the broker will remove this client from the
group and initiate a rebalance. Note that the value must be in the allowable range as configured in
the broker configuration by group.min.session.timeout.ms and group.max.session.timeout.ms.

ssl.key.password

Type: password
Default: null
Importance: high
The password of the private key in the key store file. This is optional for client.

ssl.keystore.location

Type: string
Default: null
Importance: high
The location of the key store file. This is optional for client and can be used for two-way
authentication for client.

ssl.keystore.password

Type: password
Default: null
Importance: high
The store password for the key store file. This is optional for client and only needed if
ssl.keystore.location is configured.

ssl.truststore.location

Type: string
Default: null
Importance: high
The location of the trust store file.

ssl.truststore.password

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

234

Type: password
Default: null
Importance: high
The password for the trust store file. If a password is not set access to the truststore is still available,
but integrity checking is disabled.

allow.auto.create.topics

Type: boolean
Default: true
Importance: medium
Allow automatic topic creation on the broker when subscribing to or assigning a topic. A topic being
subscribed to will be automatically created only if the broker allows for it using
auto.create.topics.enable broker configuration. This configuration must be set to false when using
brokers older than 0.11.0.

auto.offset.reset

Type: string
Default: latest
Valid Values: [latest, earliest, none]
Importance: medium
What to do when there is no initial offset in Kafka or if the current offset does not exist any more on
the server (e.g. because that data has been deleted):

earliest: automatically reset the offset to the earliest offset

latest: automatically reset the offset to the latest offset

none: throw exception to the consumer if no previous offset is found for the consumer’s
group

anything else: throw exception to the consumer.

client.dns.lookup

Type: string
Default: default
Valid Values: [default, use_all_dns_ips, resolve_canonical_bootstrap_servers_only]
Importance: medium
Controls how the client uses DNS lookups. If set to use_all_dns_ips then, when the lookup returns
multiple IP addresses for a hostname, they will all be attempted to connect to before failing the
connection. Applies to both bootstrap and advertised servers. If the value is
resolve_canonical_bootstrap_servers_only each entry will be resolved and expanded into a list of
canonical names.

connections.max.idle.ms

Type: long
Default: 540000
Importance: medium
Close idle connections after the number of milliseconds specified by this config.

default.api.timeout.ms

Type: int
Default: 60000
Valid Values: [0,…​]

APPENDIX C. CONSUMER CONFIGURATION PARAMETERS

235

Importance: medium
Specifies the timeout (in milliseconds) for client APIs. This configuration is used as the default
timeout for all client operations that do not specify a timeout parameter.

enable.auto.commit

Type: boolean
Default: true
Importance: medium
If true the consumer’s offset will be periodically committed in the background.

exclude.internal.topics

Type: boolean
Default: true
Importance: medium
Whether internal topics matching a subscribed pattern should be excluded from the subscription. It is
always possible to explicitly subscribe to an internal topic.

fetch.max.bytes

Type: int
Default: 52428800
Valid Values: [0,…​]
Importance: medium
The maximum amount of data the server should return for a fetch request. Records are fetched in
batches by the consumer, and if the first record batch in the first non-empty partition of the fetch is
larger than this value, the record batch will still be returned to ensure that the consumer can make
progress. As such, this is not a absolute maximum. The maximum record batch size accepted by the
broker is defined via message.max.bytes (broker config) or max.message.bytes (topic config).
Note that the consumer performs multiple fetches in parallel.

group.instance.id

Type: string
Default: null
Importance: medium
A unique identifier of the consumer instance provided by the end user. Only non-empty strings are
permitted. If set, the consumer is treated as a static member, which means that only one instance
with this ID is allowed in the consumer group at any time. This can be used in combination with a
larger session timeout to avoid group rebalances caused by transient unavailability (e.g. process
restarts). If not set, the consumer will join the group as a dynamic member, which is the traditional
behavior.

isolation.level

Type: string
Default: read_uncommitted
Valid Values: [read_committed, read_uncommitted]
Importance: medium
Controls how to read messages written transactionally. If set to read_committed, consumer.poll()
will only return transactional messages which have been committed. If set to `read_uncommitted’
(the default), consumer.poll() will return all messages, even transactional messages which have been
aborted. Non-transactional messages will be returned unconditionally in either mode.

Messages will always be returned in offset order. Hence, in read_committed mode, consumer.poll()
will only return messages up to the last stable offset (LSO), which is the one less than the offset of
the first open transaction. In particular any messages appearing after messages belonging to

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

236

ongoing transactions will be withheld until the relevant transaction has been completed. As a result,
read_committed consumers will not be able to read up to the high watermark when there are in flight
transactions.

Further, when in `read_committed` the seekToEnd method will return the LSO.

max.poll.interval.ms

Type: int
Default: 300000
Valid Values: [1,…​]
Importance: medium
The maximum delay between invocations of poll() when using consumer group management. This
places an upper bound on the amount of time that the consumer can be idle before fetching more
records. If poll() is not called before expiration of this timeout, then the consumer is considered
failed and the group will rebalance in order to reassign the partitions to another member. For
consumers using a non-null group.instance.id which reach this timeout, partitions will not be
immediately reassigned. Instead, the consumer will stop sending heartbeats and partitions will be
reassigned after expiration of session.timeout.ms. This mirrors the behavior of a static consumer
which has shutdown.

max.poll.records

Type: int
Default: 500
Valid Values: [1,…​]
Importance: medium
The maximum number of records returned in a single call to poll().

partition.assignment.strategy

Type: list
Default: class org.apache.kafka.clients.consumer.RangeAssignor
Valid Values: non-null string
Importance: medium
A list of class names or class types, ordered by preference, of supported assignors responsible for the
partition assignment strategy that the client will use to distribute partition ownership amongst
consumer instances when group management is used. Implementing the
org.apache.kafka.clients.consumer.ConsumerPartitionAssignor interface allows you to plug in a
custom assignment strategy.

receive.buffer.bytes

Type: int
Default: 65536
Valid Values: [-1,…​]
Importance: medium
The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. If the value is -1, the OS
default will be used.

request.timeout.ms

Type: int
Default: 30000
Valid Values: [0,…​]
Importance: medium

The configuration controls the maximum amount of time the client will wait for the response of a

APPENDIX C. CONSUMER CONFIGURATION PARAMETERS

237

The configuration controls the maximum amount of time the client will wait for the response of a
request. If the response is not received before the timeout elapses the client will resend the request
if necessary or fail the request if retries are exhausted.

sasl.client.callback.handler.class

Type: class
Default: null
Importance: medium
The fully qualified name of a SASL client callback handler class that implements the
AuthenticateCallbackHandler interface.

sasl.jaas.config

Type: password
Default: null
Importance: medium
JAAS login context parameters for SASL connections in the format used by JAAS configuration files.
JAAS configuration file format is described here. The format for the value is: ‘loginModuleClass
controlFlag (optionName=optionValue)*;’. For brokers, the config must be prefixed with listener
prefix and SASL mechanism name in lower-case. For example, listener.name.sasl_ssl.scram-sha-
256.sasl.jaas.config=com.example.ScramLoginModule required;.

sasl.kerberos.service.name

Type: string
Default: null
Importance: medium
The Kerberos principal name that Kafka runs as. This can be defined either in Kafka’s JAAS config or
in Kafka’s config.

sasl.login.callback.handler.class

Type: class
Default: null
Importance: medium
The fully qualified name of a SASL login callback handler class that implements the
AuthenticateCallbackHandler interface. For brokers, login callback handler config must be prefixed
with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-
256.sasl.login.callback.handler.class=com.example.CustomScramLoginCallbackHandler.

sasl.login.class

Type: class
Default: null
Importance: medium
The fully qualified name of a class that implements the Login interface. For brokers, login config
must be prefixed with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-256.sasl.login.class=com.example.CustomScramLogin.

sasl.mechanism

Type: string
Default: GSSAPI
Importance: medium
SASL mechanism used for client connections. This may be any mechanism for which a security
provider is available. GSSAPI is the default mechanism.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

238

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html

security.protocol

Type: string
Default: PLAINTEXT
Importance: medium
Protocol used to communicate with brokers. Valid values are: PLAINTEXT, SSL, SASL_PLAINTEXT,
SASL_SSL.

send.buffer.bytes

Type: int
Default: 131072
Valid Values: [-1,…​]
Importance: medium
The size of the TCP send buffer (SO_SNDBUF) to use when sending data. If the value is -1, the OS
default will be used.

ssl.enabled.protocols

Type: list
Default: TLSv1.2
Importance: medium
The list of protocols enabled for SSL connections.

ssl.keystore.type

Type: string
Default: JKS
Importance: medium
The file format of the key store file. This is optional for client.

ssl.protocol

Type: string
Default: TLSv1.2
Importance: medium
The SSL protocol used to generate the SSLContext. Default setting is TLSv1.2, which is fine for most
cases. Allowed values in recent JVMs are TLSv1.2 and TLSv1.3. TLS, TLSv1.1, SSL, SSLv2 and SSLv3
may be supported in older JVMs, but their usage is discouraged due to known security vulnerabilities.

ssl.provider

Type: string
Default: null
Importance: medium
The name of the security provider used for SSL connections. Default value is the default security
provider of the JVM.

ssl.truststore.type

Type: string
Default: JKS
Importance: medium
The file format of the trust store file.

auto.commit.interval.ms

Type: int
Default: 5000

APPENDIX C. CONSUMER CONFIGURATION PARAMETERS

239

Valid Values: [0,…​]
Importance: low
The frequency in milliseconds that the consumer offsets are auto-committed to Kafka if
enable.auto.commit is set to true.

check.crcs

Type: boolean
Default: true
Importance: low
Automatically check the CRC32 of the records consumed. This ensures no on-the-wire or on-disk
corruption to the messages occurred. This check adds some overhead, so it may be disabled in cases
seeking extreme performance.

client.id

Type: string
Default: ""
Importance: low
An id string to pass to the server when making requests. The purpose of this is to be able to track the
source of requests beyond just ip/port by allowing a logical application name to be included in server-
side request logging.

client.rack

Type: string
Default: ""
Importance: low
A rack identifier for this client. This can be any string value which indicates where this client is
physically located. It corresponds with the broker config 'broker.rack'.

fetch.max.wait.ms

Type: int
Default: 500
Valid Values: [0,…​]
Importance: low
The maximum amount of time the server will block before answering the fetch request if there isn’t
sufficient data to immediately satisfy the requirement given by fetch.min.bytes.

interceptor.classes

Type: list
Default: ""
Valid Values: non-null string
Importance: low
A list of classes to use as interceptors. Implementing the
org.apache.kafka.clients.consumer.ConsumerInterceptor interface allows you to intercept (and
possibly mutate) records received by the consumer. By default, there are no interceptors.

metadata.max.age.ms

Type: long
Default: 300000
Valid Values: [0,…​]
Importance: low
The period of time in milliseconds after which we force a refresh of metadata even if we haven’t seen
any partition leadership changes to proactively discover any new brokers or partitions.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

240

metric.reporters

Type: list
Default: ""
Valid Values: non-null string
Importance: low
A list of classes to use as metrics reporters. Implementing the
org.apache.kafka.common.metrics.MetricsReporter interface allows plugging in classes that will
be notified of new metric creation. The JmxReporter is always included to register JMX statistics.

metrics.num.samples

Type: int
Default: 2
Valid Values: [1,…​]
Importance: low
The number of samples maintained to compute metrics.

metrics.recording.level

Type: string
Default: INFO
Valid Values: [INFO, DEBUG]
Importance: low
The highest recording level for metrics.

metrics.sample.window.ms

Type: long
Default: 30000
Valid Values: [0,…​]
Importance: low
The window of time a metrics sample is computed over.

reconnect.backoff.max.ms

Type: long
Default: 1000
Valid Values: [0,…​]
Importance: low
The maximum amount of time in milliseconds to wait when reconnecting to a broker that has
repeatedly failed to connect. If provided, the backoff per host will increase exponentially for each
consecutive connection failure, up to this maximum. After calculating the backoff increase, 20%
random jitter is added to avoid connection storms.

reconnect.backoff.ms

Type: long
Default: 50
Valid Values: [0,…​]
Importance: low
The base amount of time to wait before attempting to reconnect to a given host. This avoids
repeatedly connecting to a host in a tight loop. This backoff applies to all connection attempts by the
client to a broker.

retry.backoff.ms

Type: long

APPENDIX C. CONSUMER CONFIGURATION PARAMETERS

241

Default: 100
Valid Values: [0,…​]
Importance: low
The amount of time to wait before attempting to retry a failed request to a given topic partition. This
avoids repeatedly sending requests in a tight loop under some failure scenarios.

sasl.kerberos.kinit.cmd

Type: string
Default: /usr/bin/kinit
Importance: low
Kerberos kinit command path.

sasl.kerberos.min.time.before.relogin

Type: long
Default: 60000
Importance: low
Login thread sleep time between refresh attempts.

sasl.kerberos.ticket.renew.jitter

Type: double
Default: 0.05
Importance: low
Percentage of random jitter added to the renewal time.

sasl.kerberos.ticket.renew.window.factor

Type: double
Default: 0.8
Importance: low
Login thread will sleep until the specified window factor of time from last refresh to ticket’s expiry
has been reached, at which time it will try to renew the ticket.

sasl.login.refresh.buffer.seconds

Type: short
Default: 300
Valid Values: [0,…​,3600]
Importance: low
The amount of buffer time before credential expiration to maintain when refreshing a credential, in
seconds. If a refresh would otherwise occur closer to expiration than the number of buffer seconds
then the refresh will be moved up to maintain as much of the buffer time as possible. Legal values are
between 0 and 3600 (1 hour); a default value of 300 (5 minutes) is used if no value is specified. This
value and sasl.login.refresh.min.period.seconds are both ignored if their sum exceeds the remaining
lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.min.period.seconds

Type: short
Default: 60
Valid Values: [0,…​,900]
Importance: low
The desired minimum time for the login refresh thread to wait before refreshing a credential, in
seconds. Legal values are between 0 and 900 (15 minutes); a default value of 60 (1 minute) is used if
no value is specified. This value and sasl.login.refresh.buffer.seconds are both ignored if their sum
exceeds the remaining lifetime of a credential. Currently applies only to OAUTHBEARER.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

242

sasl.login.refresh.window.factor

Type: double
Default: 0.8
Valid Values: [0.5,…​,1.0]
Importance: low
Login refresh thread will sleep until the specified window factor relative to the credential’s lifetime
has been reached, at which time it will try to refresh the credential. Legal values are between 0.5
(50%) and 1.0 (100%) inclusive; a default value of 0.8 (80%) is used if no value is specified. Currently
applies only to OAUTHBEARER.

sasl.login.refresh.window.jitter

Type: double
Default: 0.05
Valid Values: [0.0,…​,0.25]
Importance: low
The maximum amount of random jitter relative to the credential’s lifetime that is added to the login
refresh thread’s sleep time. Legal values are between 0 and 0.25 (25%) inclusive; a default value of
0.05 (5%) is used if no value is specified. Currently applies only to OAUTHBEARER.

security.providers

Type: string
Default: null
Importance: low
A list of configurable creator classes each returning a provider implementing security algorithms.
These classes should implement the
org.apache.kafka.common.security.auth.SecurityProviderCreator interface.

ssl.cipher.suites

Type: list
Default: null
Importance: low
A list of cipher suites. This is a named combination of authentication, encryption, MAC and key
exchange algorithm used to negotiate the security settings for a network connection using TLS or
SSL network protocol. By default all the available cipher suites are supported.

ssl.endpoint.identification.algorithm

Type: string
Default: https
Importance: low
The endpoint identification algorithm to validate server hostname using server certificate.

ssl.keymanager.algorithm

Type: string
Default: SunX509
Importance: low
The algorithm used by key manager factory for SSL connections. Default value is the key manager
factory algorithm configured for the Java Virtual Machine.

ssl.secure.random.implementation

Type: string

APPENDIX C. CONSUMER CONFIGURATION PARAMETERS

243

Type: string
Default: null
Importance: low
The SecureRandom PRNG implementation to use for SSL cryptography operations.

ssl.trustmanager.algorithm

Type: string
Default: PKIX
Importance: low
The algorithm used by trust manager factory for SSL connections. Default value is the trust manager
factory algorithm configured for the Java Virtual Machine.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

244

APPENDIX D. PRODUCER CONFIGURATION PARAMETERS
key.serializer

Type: class
Importance: high
Serializer class for key that implements the org.apache.kafka.common.serialization.Serializer
interface.

value.serializer

Type: class
Importance: high
Serializer class for value that implements the org.apache.kafka.common.serialization.Serializer
interface.

acks

Type: string
Default: 1
Valid Values: [all, -1, 0, 1]
Importance: high
The number of acknowledgments the producer requires the leader to have received before
considering a request complete. This controls the durability of records that are sent. The following
settings are allowed:

acks=0 If set to zero then the producer will not wait for any acknowledgment from the server
at all. The record will be immediately added to the socket buffer and considered sent. No
guarantee can be made that the server has received the record in this case, and the retries
configuration will not take effect (as the client won’t generally know of any failures). The
offset given back for each record will always be set to -1.

acks=1 This will mean the leader will write the record to its local log but will respond without
awaiting full acknowledgement from all followers. In this case should the leader fail
immediately after acknowledging the record but before the followers have replicated it then
the record will be lost.

acks=all This means the leader will wait for the full set of in-sync replicas to acknowledge
the record. This guarantees that the record will not be lost as long as at least one in-sync
replica remains alive. This is the strongest available guarantee. This is equivalent to the
acks=-1 setting.

bootstrap.servers

Type: list
Default: ""
Valid Values: non-null string
Importance: high
A list of host/port pairs to use for establishing the initial connection to the Kafka cluster. The client
will make use of all servers irrespective of which servers are specified here for bootstrapping—this list
only impacts the initial hosts used to discover the full set of servers. This list should be in the form
host1:port1,host2:port2,… ​. Since these servers are just used for the initial connection to discover
the full cluster membership (which may change dynamically), this list need not contain the full set of
servers (you may want more than one, though, in case a server is down).

buffer.memory

Type: long

APPENDIX D. PRODUCER CONFIGURATION PARAMETERS

245

Default: 33554432
Valid Values: [0,…​]
Importance: high
The total bytes of memory the producer can use to buffer records waiting to be sent to the server. If
records are sent faster than they can be delivered to the server the producer will block for
max.block.ms after which it will throw an exception.

This setting should correspond roughly to the total memory the producer will use, but is not a hard
bound since not all memory the producer uses is used for buffering. Some additional memory will be
used for compression (if compression is enabled) as well as for maintaining in-flight requests.

compression.type

Type: string
Default: none
Importance: high
The compression type for all data generated by the producer. The default is none (i.e. no
compression). Valid values are none, gzip, snappy, lz4, or zstd. Compression is of full batches of
data, so the efficacy of batching will also impact the compression ratio (more batching means better
compression).

retries

Type: int
Default: 2147483647
Valid Values: [0,…​,2147483647]
Importance: high
Setting a value greater than zero will cause the client to resend any record whose send fails with a
potentially transient error. Note that this retry is no different than if the client resent the record upon
receiving the error. Allowing retries without setting max.in.flight.requests.per.connection to 1 will
potentially change the ordering of records because if two batches are sent to a single partition, and
the first fails and is retried but the second succeeds, then the records in the second batch may
appear first. Note additionally that produce requests will be failed before the number of retries has
been exhausted if the timeout configured by delivery.timeout.ms expires first before successful
acknowledgement. Users should generally prefer to leave this config unset and instead use
delivery.timeout.ms to control retry behavior.

ssl.key.password

Type: password
Default: null
Importance: high
The password of the private key in the key store file. This is optional for client.

ssl.keystore.location

Type: string
Default: null
Importance: high
The location of the key store file. This is optional for client and can be used for two-way
authentication for client.

ssl.keystore.password

Type: password
Default: null
Importance: high

The store password for the key store file. This is optional for client and only needed if

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

246

The store password for the key store file. This is optional for client and only needed if
ssl.keystore.location is configured.

ssl.truststore.location

Type: string
Default: null
Importance: high
The location of the trust store file.

ssl.truststore.password

Type: password
Default: null
Importance: high
The password for the trust store file. If a password is not set access to the truststore is still available,
but integrity checking is disabled.

batch.size

Type: int
Default: 16384
Valid Values: [0,…​]
Importance: medium
The producer will attempt to batch records together into fewer requests whenever multiple records
are being sent to the same partition. This helps performance on both the client and the server. This
configuration controls the default batch size in bytes.

No attempt will be made to batch records larger than this size.

Requests sent to brokers will contain multiple batches, one for each partition with data available to
be sent.

A small batch size will make batching less common and may reduce throughput (a batch size of zero
will disable batching entirely). A very large batch size may use memory a bit more wastefully as we will
always allocate a buffer of the specified batch size in anticipation of additional records.

client.dns.lookup

Type: string
Default: default
Valid Values: [default, use_all_dns_ips, resolve_canonical_bootstrap_servers_only]
Importance: medium
Controls how the client uses DNS lookups. If set to use_all_dns_ips then, when the lookup returns
multiple IP addresses for a hostname, they will all be attempted to connect to before failing the
connection. Applies to both bootstrap and advertised servers. If the value is
resolve_canonical_bootstrap_servers_only each entry will be resolved and expanded into a list of
canonical names.

client.id

Type: string
Default: ""
Importance: medium
An id string to pass to the server when making requests. The purpose of this is to be able to track the
source of requests beyond just ip/port by allowing a logical application name to be included in server-
side request logging.

APPENDIX D. PRODUCER CONFIGURATION PARAMETERS

247

connections.max.idle.ms

Type: long
Default: 540000
Importance: medium
Close idle connections after the number of milliseconds specified by this config.

delivery.timeout.ms

Type: int
Default: 120000
Valid Values: [0,…​]
Importance: medium
An upper bound on the time to report success or failure after a call to send() returns. This limits the
total time that a record will be delayed prior to sending, the time to await acknowledgement from the
broker (if expected), and the time allowed for retriable send failures. The producer may report failure
to send a record earlier than this config if either an unrecoverable error is encountered, the retries
have been exhausted, or the record is added to a batch which reached an earlier delivery expiration
deadline. The value of this config should be greater than or equal to the sum of request.timeout.ms
and linger.ms.

linger.ms

Type: long
Default: 0
Valid Values: [0,…​]
Importance: medium
The producer groups together any records that arrive in between request transmissions into a single
batched request. Normally this occurs only under load when records arrive faster than they can be
sent out. However in some circumstances the client may want to reduce the number of requests even
under moderate load. This setting accomplishes this by adding a small amount of artificial delay—that
is, rather than immediately sending out a record the producer will wait for up to the given delay to
allow other records to be sent so that the sends can be batched together. This can be thought of as
analogous to Nagle’s algorithm in TCP. This setting gives the upper bound on the delay for batching:
once we get batch.size worth of records for a partition it will be sent immediately regardless of this
setting, however if we have fewer than this many bytes accumulated for this partition we will 'linger'
for the specified time waiting for more records to show up. This setting defaults to 0 (i.e. no delay).
Setting linger.ms=5, for example, would have the effect of reducing the number of requests sent but
would add up to 5ms of latency to records sent in the absence of load.

max.block.ms

Type: long
Default: 60000
Valid Values: [0,…​]
Importance: medium
The configuration controls how long KafkaProducer.send() and KafkaProducer.partitionsFor() will
block.These methods can be blocked either because the buffer is full or metadata
unavailable.Blocking in the user-supplied serializers or partitioner will not be counted against this
timeout.

max.request.size

Type: int
Default: 1048576
Valid Values: [0,…​]
Importance: medium
The maximum size of a request in bytes. This setting will limit the number of record batches the

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

248

producer will send in a single request to avoid sending huge requests. This is also effectively a cap on
the maximum uncompressed record batch size. Note that the server has its own cap on the record
batch size (after compression if compression is enabled) which may be different from this.

partitioner.class

Type: class
Default: org.apache.kafka.clients.producer.internals.DefaultPartitioner
Importance: medium
Partitioner class that implements the org.apache.kafka.clients.producer.Partitioner interface.

receive.buffer.bytes

Type: int
Default: 32768
Valid Values: [-1,…​]
Importance: medium
The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. If the value is -1, the OS
default will be used.

request.timeout.ms

Type: int
Default: 30000
Valid Values: [0,…​]
Importance: medium
The configuration controls the maximum amount of time the client will wait for the response of a
request. If the response is not received before the timeout elapses the client will resend the request
if necessary or fail the request if retries are exhausted. This should be larger than
replica.lag.time.max.ms (a broker configuration) to reduce the possibility of message duplication
due to unnecessary producer retries.

sasl.client.callback.handler.class

Type: class
Default: null
Importance: medium
The fully qualified name of a SASL client callback handler class that implements the
AuthenticateCallbackHandler interface.

sasl.jaas.config

Type: password
Default: null
Importance: medium
JAAS login context parameters for SASL connections in the format used by JAAS configuration files.
JAAS configuration file format is described here. The format for the value is: ‘loginModuleClass
controlFlag (optionName=optionValue)*;’. For brokers, the config must be prefixed with listener
prefix and SASL mechanism name in lower-case. For example, listener.name.sasl_ssl.scram-sha-
256.sasl.jaas.config=com.example.ScramLoginModule required;.

sasl.kerberos.service.name

Type: string
Default: null
Importance: medium
The Kerberos principal name that Kafka runs as. This can be defined either in Kafka’s JAAS config or
in Kafka’s config.

APPENDIX D. PRODUCER CONFIGURATION PARAMETERS

249

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html

sasl.login.callback.handler.class

Type: class
Default: null
Importance: medium
The fully qualified name of a SASL login callback handler class that implements the
AuthenticateCallbackHandler interface. For brokers, login callback handler config must be prefixed
with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-
256.sasl.login.callback.handler.class=com.example.CustomScramLoginCallbackHandler.

sasl.login.class

Type: class
Default: null
Importance: medium
The fully qualified name of a class that implements the Login interface. For brokers, login config
must be prefixed with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-256.sasl.login.class=com.example.CustomScramLogin.

sasl.mechanism

Type: string
Default: GSSAPI
Importance: medium
SASL mechanism used for client connections. This may be any mechanism for which a security
provider is available. GSSAPI is the default mechanism.

security.protocol

Type: string
Default: PLAINTEXT
Importance: medium
Protocol used to communicate with brokers. Valid values are: PLAINTEXT, SSL, SASL_PLAINTEXT,
SASL_SSL.

send.buffer.bytes

Type: int
Default: 131072
Valid Values: [-1,…​]
Importance: medium
The size of the TCP send buffer (SO_SNDBUF) to use when sending data. If the value is -1, the OS
default will be used.

ssl.enabled.protocols

Type: list
Default: TLSv1.2
Importance: medium
The list of protocols enabled for SSL connections.

ssl.keystore.type

Type: string
Default: JKS
Importance: medium
The file format of the key store file. This is optional for client.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

250

ssl.protocol

Type: string
Default: TLSv1.2
Importance: medium
The SSL protocol used to generate the SSLContext. Default setting is TLSv1.2, which is fine for most
cases. Allowed values in recent JVMs are TLSv1.2 and TLSv1.3. TLS, TLSv1.1, SSL, SSLv2 and SSLv3
may be supported in older JVMs, but their usage is discouraged due to known security vulnerabilities.

ssl.provider

Type: string
Default: null
Importance: medium
The name of the security provider used for SSL connections. Default value is the default security
provider of the JVM.

ssl.truststore.type

Type: string
Default: JKS
Importance: medium
The file format of the trust store file.

enable.idempotence

Type: boolean
Default: false
Importance: low
When set to 'true', the producer will ensure that exactly one copy of each message is written in the
stream. If 'false', producer retries due to broker failures, etc., may write duplicates of the retried
message in the stream. Note that enabling idempotence requires
max.in.flight.requests.per.connection to be less than or equal to 5, retries to be greater than 0
and acks must be 'all'. If these values are not explicitly set by the user, suitable values will be chosen.
If incompatible values are set, a ConfigException will be thrown.

interceptor.classes

Type: list
Default: ""
Valid Values: non-null string
Importance: low
A list of classes to use as interceptors. Implementing the
org.apache.kafka.clients.producer.ProducerInterceptor interface allows you to intercept (and
possibly mutate) the records received by the producer before they are published to the Kafka
cluster. By default, there are no interceptors.

max.in.flight.requests.per.connection

Type: int
Default: 5
Valid Values: [1,…​]
Importance: low
The maximum number of unacknowledged requests the client will send on a single connection before
blocking. Note that if this setting is set to be greater than 1 and there are failed sends, there is a risk
of message re-ordering due to retries (i.e., if retries are enabled).

metadata.max.age.ms

APPENDIX D. PRODUCER CONFIGURATION PARAMETERS

251

Type: long
Default: 300000
Valid Values: [0,…​]
Importance: low
The period of time in milliseconds after which we force a refresh of metadata even if we haven’t seen
any partition leadership changes to proactively discover any new brokers or partitions.

metadata.max.idle.ms

Type: long
Default: 300000
Valid Values: [5000,…​]
Importance: low
Controls how long the producer will cache metadata for a topic that’s idle. If the elapsed time since a
topic was last produced to exceeds the metadata idle duration, then the topic’s metadata is
forgotten and the next access to it will force a metadata fetch request.

metric.reporters

Type: list
Default: ""
Valid Values: non-null string
Importance: low
A list of classes to use as metrics reporters. Implementing the
org.apache.kafka.common.metrics.MetricsReporter interface allows plugging in classes that will
be notified of new metric creation. The JmxReporter is always included to register JMX statistics.

metrics.num.samples

Type: int
Default: 2
Valid Values: [1,…​]
Importance: low
The number of samples maintained to compute metrics.

metrics.recording.level

Type: string
Default: INFO
Valid Values: [INFO, DEBUG]
Importance: low
The highest recording level for metrics.

metrics.sample.window.ms

Type: long
Default: 30000
Valid Values: [0,…​]
Importance: low
The window of time a metrics sample is computed over.

reconnect.backoff.max.ms

Type: long
Default: 1000
Valid Values: [0,…​]
Importance: low
The maximum amount of time in milliseconds to wait when reconnecting to a broker that has

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

252

repeatedly failed to connect. If provided, the backoff per host will increase exponentially for each
consecutive connection failure, up to this maximum. After calculating the backoff increase, 20%
random jitter is added to avoid connection storms.

reconnect.backoff.ms

Type: long
Default: 50
Valid Values: [0,…​]
Importance: low
The base amount of time to wait before attempting to reconnect to a given host. This avoids
repeatedly connecting to a host in a tight loop. This backoff applies to all connection attempts by the
client to a broker.

retry.backoff.ms

Type: long
Default: 100
Valid Values: [0,…​]
Importance: low
The amount of time to wait before attempting to retry a failed request to a given topic partition. This
avoids repeatedly sending requests in a tight loop under some failure scenarios.

sasl.kerberos.kinit.cmd

Type: string
Default: /usr/bin/kinit
Importance: low
Kerberos kinit command path.

sasl.kerberos.min.time.before.relogin

Type: long
Default: 60000
Importance: low
Login thread sleep time between refresh attempts.

sasl.kerberos.ticket.renew.jitter

Type: double
Default: 0.05
Importance: low
Percentage of random jitter added to the renewal time.

sasl.kerberos.ticket.renew.window.factor

Type: double
Default: 0.8
Importance: low
Login thread will sleep until the specified window factor of time from last refresh to ticket’s expiry
has been reached, at which time it will try to renew the ticket.

sasl.login.refresh.buffer.seconds

Type: short
Default: 300
Valid Values: [0,…​,3600]
Importance: low

APPENDIX D. PRODUCER CONFIGURATION PARAMETERS

253

The amount of buffer time before credential expiration to maintain when refreshing a credential, in
seconds. If a refresh would otherwise occur closer to expiration than the number of buffer seconds
then the refresh will be moved up to maintain as much of the buffer time as possible. Legal values are
between 0 and 3600 (1 hour); a default value of 300 (5 minutes) is used if no value is specified. This
value and sasl.login.refresh.min.period.seconds are both ignored if their sum exceeds the remaining
lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.min.period.seconds

Type: short
Default: 60
Valid Values: [0,…​,900]
Importance: low
The desired minimum time for the login refresh thread to wait before refreshing a credential, in
seconds. Legal values are between 0 and 900 (15 minutes); a default value of 60 (1 minute) is used if
no value is specified. This value and sasl.login.refresh.buffer.seconds are both ignored if their sum
exceeds the remaining lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.window.factor

Type: double
Default: 0.8
Valid Values: [0.5,…​,1.0]
Importance: low
Login refresh thread will sleep until the specified window factor relative to the credential’s lifetime
has been reached, at which time it will try to refresh the credential. Legal values are between 0.5
(50%) and 1.0 (100%) inclusive; a default value of 0.8 (80%) is used if no value is specified. Currently
applies only to OAUTHBEARER.

sasl.login.refresh.window.jitter

Type: double
Default: 0.05
Valid Values: [0.0,…​,0.25]
Importance: low
The maximum amount of random jitter relative to the credential’s lifetime that is added to the login
refresh thread’s sleep time. Legal values are between 0 and 0.25 (25%) inclusive; a default value of
0.05 (5%) is used if no value is specified. Currently applies only to OAUTHBEARER.

security.providers

Type: string
Default: null
Importance: low
A list of configurable creator classes each returning a provider implementing security algorithms.
These classes should implement the
org.apache.kafka.common.security.auth.SecurityProviderCreator interface.

ssl.cipher.suites

Type: list
Default: null
Importance: low
A list of cipher suites. This is a named combination of authentication, encryption, MAC and key
exchange algorithm used to negotiate the security settings for a network connection using TLS or
SSL network protocol. By default all the available cipher suites are supported.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

254

ssl.endpoint.identification.algorithm

Type: string
Default: https
Importance: low
The endpoint identification algorithm to validate server hostname using server certificate.

ssl.keymanager.algorithm

Type: string
Default: SunX509
Importance: low
The algorithm used by key manager factory for SSL connections. Default value is the key manager
factory algorithm configured for the Java Virtual Machine.

ssl.secure.random.implementation

Type: string
Default: null
Importance: low
The SecureRandom PRNG implementation to use for SSL cryptography operations.

ssl.trustmanager.algorithm

Type: string
Default: PKIX
Importance: low
The algorithm used by trust manager factory for SSL connections. Default value is the trust manager
factory algorithm configured for the Java Virtual Machine.

transaction.timeout.ms

Type: int
Default: 60000
Importance: low
The maximum amount of time in ms that the transaction coordinator will wait for a transaction status
update from the producer before proactively aborting the ongoing transaction.If this value is larger
than the transaction.max.timeout.ms setting in the broker, the request will fail with a
InvalidTransactionTimeout error.

transactional.id

Type: string
Default: null
Valid Values: non-empty string
Importance: low
The TransactionalId to use for transactional delivery. This enables reliability semantics which span
multiple producer sessions since it allows the client to guarantee that transactions using the same
TransactionalId have been completed prior to starting any new transactions. If no TransactionalId is
provided, then the producer is limited to idempotent delivery. Note that enable.idempotence must
be enabled if a TransactionalId is configured. The default is null, which means transactions cannot be
used. Note that, by default, transactions require a cluster of at least three brokers which is the
recommended setting for production; for development you can change this, by adjusting broker
setting transaction.state.log.replication.factor.

APPENDIX D. PRODUCER CONFIGURATION PARAMETERS

255

APPENDIX E. ADMIN CLIENT CONFIGURATION PARAMETERS
bootstrap.servers

Type: list
Importance: high
A list of host/port pairs to use for establishing the initial connection to the Kafka cluster. The client
will make use of all servers irrespective of which servers are specified here for bootstrapping—this list
only impacts the initial hosts used to discover the full set of servers. This list should be in the form
host1:port1,host2:port2,… ​. Since these servers are just used for the initial connection to discover
the full cluster membership (which may change dynamically), this list need not contain the full set of
servers (you may want more than one, though, in case a server is down).

ssl.key.password

Type: password
Default: null
Importance: high
The password of the private key in the key store file. This is optional for client.

ssl.keystore.location

Type: string
Default: null
Importance: high
The location of the key store file. This is optional for client and can be used for two-way
authentication for client.

ssl.keystore.password

Type: password
Default: null
Importance: high
The store password for the key store file. This is optional for client and only needed if
ssl.keystore.location is configured.

ssl.truststore.location

Type: string
Default: null
Importance: high
The location of the trust store file.

ssl.truststore.password

Type: password
Default: null
Importance: high
The password for the trust store file. If a password is not set access to the truststore is still available,
but integrity checking is disabled.

client.dns.lookup

Type: string
Default: default
Valid Values: [default, use_all_dns_ips, resolve_canonical_bootstrap_servers_only]
Importance: medium
Controls how the client uses DNS lookups. If set to use_all_dns_ips then, when the lookup returns

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

256

multiple IP addresses for a hostname, they will all be attempted to connect to before failing the
connection. Applies to both bootstrap and advertised servers. If the value is
resolve_canonical_bootstrap_servers_only each entry will be resolved and expanded into a list of
canonical names.

client.id

Type: string
Default: ""
Importance: medium
An id string to pass to the server when making requests. The purpose of this is to be able to track the
source of requests beyond just ip/port by allowing a logical application name to be included in server-
side request logging.

connections.max.idle.ms

Type: long
Default: 300000
Importance: medium
Close idle connections after the number of milliseconds specified by this config.

default.api.timeout.ms

Type: int
Default: 60000
Valid Values: [0,…​]
Importance: medium
Specifies the timeout (in milliseconds) for client APIs. This configuration is used as the default
timeout for all client operations that do not specify a timeout parameter.

receive.buffer.bytes

Type: int
Default: 65536
Valid Values: [-1,…​]
Importance: medium
The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. If the value is -1, the OS
default will be used.

request.timeout.ms

Type: int
Default: 30000
Valid Values: [0,…​]
Importance: medium
The configuration controls the maximum amount of time the client will wait for the response of a
request. If the response is not received before the timeout elapses the client will resend the request
if necessary or fail the request if retries are exhausted.

sasl.client.callback.handler.class

Type: class
Default: null
Importance: medium
The fully qualified name of a SASL client callback handler class that implements the
AuthenticateCallbackHandler interface.

sasl.jaas.config

APPENDIX E. ADMIN CLIENT CONFIGURATION PARAMETERS

257

Type: password
Default: null
Importance: medium
JAAS login context parameters for SASL connections in the format used by JAAS configuration files.
JAAS configuration file format is described here. The format for the value is: ‘loginModuleClass
controlFlag (optionName=optionValue)*;’. For brokers, the config must be prefixed with listener
prefix and SASL mechanism name in lower-case. For example, listener.name.sasl_ssl.scram-sha-
256.sasl.jaas.config=com.example.ScramLoginModule required;.

sasl.kerberos.service.name

Type: string
Default: null
Importance: medium
The Kerberos principal name that Kafka runs as. This can be defined either in Kafka’s JAAS config or
in Kafka’s config.

sasl.login.callback.handler.class

Type: class
Default: null
Importance: medium
The fully qualified name of a SASL login callback handler class that implements the
AuthenticateCallbackHandler interface. For brokers, login callback handler config must be prefixed
with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-
256.sasl.login.callback.handler.class=com.example.CustomScramLoginCallbackHandler.

sasl.login.class

Type: class
Default: null
Importance: medium
The fully qualified name of a class that implements the Login interface. For brokers, login config
must be prefixed with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-256.sasl.login.class=com.example.CustomScramLogin.

sasl.mechanism

Type: string
Default: GSSAPI
Importance: medium
SASL mechanism used for client connections. This may be any mechanism for which a security
provider is available. GSSAPI is the default mechanism.

security.protocol

Type: string
Default: PLAINTEXT
Importance: medium
Protocol used to communicate with brokers. Valid values are: PLAINTEXT, SSL, SASL_PLAINTEXT,
SASL_SSL.

send.buffer.bytes

Type: int
Default: 131072
Valid Values: [-1,…​]

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

258

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html

Importance: medium
The size of the TCP send buffer (SO_SNDBUF) to use when sending data. If the value is -1, the OS
default will be used.

ssl.enabled.protocols

Type: list
Default: TLSv1.2
Importance: medium
The list of protocols enabled for SSL connections.

ssl.keystore.type

Type: string
Default: JKS
Importance: medium
The file format of the key store file. This is optional for client.

ssl.protocol

Type: string
Default: TLSv1.2
Importance: medium
The SSL protocol used to generate the SSLContext. Default setting is TLSv1.2, which is fine for most
cases. Allowed values in recent JVMs are TLSv1.2 and TLSv1.3. TLS, TLSv1.1, SSL, SSLv2 and SSLv3
may be supported in older JVMs, but their usage is discouraged due to known security vulnerabilities.

ssl.provider

Type: string
Default: null
Importance: medium
The name of the security provider used for SSL connections. Default value is the default security
provider of the JVM.

ssl.truststore.type

Type: string
Default: JKS
Importance: medium
The file format of the trust store file.

metadata.max.age.ms

Type: long
Default: 300000
Valid Values: [0,…​]
Importance: low
The period of time in milliseconds after which we force a refresh of metadata even if we haven’t seen
any partition leadership changes to proactively discover any new brokers or partitions.

metric.reporters

Type: list
Default: ""
Importance: low

A list of classes to use as metrics reporters. Implementing the

APPENDIX E. ADMIN CLIENT CONFIGURATION PARAMETERS

259

A list of classes to use as metrics reporters. Implementing the
org.apache.kafka.common.metrics.MetricsReporter interface allows plugging in classes that will
be notified of new metric creation. The JmxReporter is always included to register JMX statistics.

metrics.num.samples

Type: int
Default: 2
Valid Values: [1,…​]
Importance: low
The number of samples maintained to compute metrics.

metrics.recording.level

Type: string
Default: INFO
Valid Values: [INFO, DEBUG]
Importance: low
The highest recording level for metrics.

metrics.sample.window.ms

Type: long
Default: 30000
Valid Values: [0,…​]
Importance: low
The window of time a metrics sample is computed over.

reconnect.backoff.max.ms

Type: long
Default: 1000
Valid Values: [0,…​]
Importance: low
The maximum amount of time in milliseconds to wait when reconnecting to a broker that has
repeatedly failed to connect. If provided, the backoff per host will increase exponentially for each
consecutive connection failure, up to this maximum. After calculating the backoff increase, 20%
random jitter is added to avoid connection storms.

reconnect.backoff.ms

Type: long
Default: 50
Valid Values: [0,…​]
Importance: low
The base amount of time to wait before attempting to reconnect to a given host. This avoids
repeatedly connecting to a host in a tight loop. This backoff applies to all connection attempts by the
client to a broker.

retries

Type: int
Default: 2147483647
Valid Values: [0,…​,2147483647]
Importance: low
Setting a value greater than zero will cause the client to resend any request that fails with a
potentially transient error.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

260

retry.backoff.ms

Type: long
Default: 100
Valid Values: [0,…​]
Importance: low
The amount of time to wait before attempting to retry a failed request. This avoids repeatedly
sending requests in a tight loop under some failure scenarios.

sasl.kerberos.kinit.cmd

Type: string
Default: /usr/bin/kinit
Importance: low
Kerberos kinit command path.

sasl.kerberos.min.time.before.relogin

Type: long
Default: 60000
Importance: low
Login thread sleep time between refresh attempts.

sasl.kerberos.ticket.renew.jitter

Type: double
Default: 0.05
Importance: low
Percentage of random jitter added to the renewal time.

sasl.kerberos.ticket.renew.window.factor

Type: double
Default: 0.8
Importance: low
Login thread will sleep until the specified window factor of time from last refresh to ticket’s expiry
has been reached, at which time it will try to renew the ticket.

sasl.login.refresh.buffer.seconds

Type: short
Default: 300
Valid Values: [0,…​,3600]
Importance: low
The amount of buffer time before credential expiration to maintain when refreshing a credential, in
seconds. If a refresh would otherwise occur closer to expiration than the number of buffer seconds
then the refresh will be moved up to maintain as much of the buffer time as possible. Legal values are
between 0 and 3600 (1 hour); a default value of 300 (5 minutes) is used if no value is specified. This
value and sasl.login.refresh.min.period.seconds are both ignored if their sum exceeds the remaining
lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.min.period.seconds

Type: short
Default: 60
Valid Values: [0,…​,900]
Importance: low
The desired minimum time for the login refresh thread to wait before refreshing a credential, in

APPENDIX E. ADMIN CLIENT CONFIGURATION PARAMETERS

261

seconds. Legal values are between 0 and 900 (15 minutes); a default value of 60 (1 minute) is used if
no value is specified. This value and sasl.login.refresh.buffer.seconds are both ignored if their sum
exceeds the remaining lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.window.factor

Type: double
Default: 0.8
Valid Values: [0.5,…​,1.0]
Importance: low
Login refresh thread will sleep until the specified window factor relative to the credential’s lifetime
has been reached, at which time it will try to refresh the credential. Legal values are between 0.5
(50%) and 1.0 (100%) inclusive; a default value of 0.8 (80%) is used if no value is specified. Currently
applies only to OAUTHBEARER.

sasl.login.refresh.window.jitter

Type: double
Default: 0.05
Valid Values: [0.0,…​,0.25]
Importance: low
The maximum amount of random jitter relative to the credential’s lifetime that is added to the login
refresh thread’s sleep time. Legal values are between 0 and 0.25 (25%) inclusive; a default value of
0.05 (5%) is used if no value is specified. Currently applies only to OAUTHBEARER.

security.providers

Type: string
Default: null
Importance: low
A list of configurable creator classes each returning a provider implementing security algorithms.
These classes should implement the
org.apache.kafka.common.security.auth.SecurityProviderCreator interface.

ssl.cipher.suites

Type: list
Default: null
Importance: low
A list of cipher suites. This is a named combination of authentication, encryption, MAC and key
exchange algorithm used to negotiate the security settings for a network connection using TLS or
SSL network protocol. By default all the available cipher suites are supported.

ssl.endpoint.identification.algorithm

Type: string
Default: https
Importance: low
The endpoint identification algorithm to validate server hostname using server certificate.

ssl.keymanager.algorithm

Type: string
Default: SunX509
Importance: low
The algorithm used by key manager factory for SSL connections. Default value is the key manager
factory algorithm configured for the Java Virtual Machine.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

262

ssl.secure.random.implementation

Type: string
Default: null
Importance: low
The SecureRandom PRNG implementation to use for SSL cryptography operations.

ssl.trustmanager.algorithm

Type: string
Default: PKIX
Importance: low
The algorithm used by trust manager factory for SSL connections. Default value is the trust manager
factory algorithm configured for the Java Virtual Machine.

APPENDIX E. ADMIN CLIENT CONFIGURATION PARAMETERS

263

APPENDIX F. KAFKA CONNECT CONFIGURATION
PARAMETERS

config.storage.topic

Type: string
Importance: high
The name of the Kafka topic where connector configurations are stored.

group.id

Type: string
Importance: high
A unique string that identifies the Connect cluster group this worker belongs to.

key.converter

Type: class
Importance: high
Converter class used to convert between Kafka Connect format and the serialized form that is
written to Kafka. This controls the format of the keys in messages written to or read from Kafka, and
since this is independent of connectors it allows any connector to work with any serialization format.
Examples of common formats include JSON and Avro.

offset.storage.topic

Type: string
Importance: high
The name of the Kafka topic where connector offsets are stored.

status.storage.topic

Type: string
Importance: high
The name of the Kafka topic where connector and task status are stored.

value.converter

Type: class
Importance: high
Converter class used to convert between Kafka Connect format and the serialized form that is
written to Kafka. This controls the format of the values in messages written to or read from Kafka,
and since this is independent of connectors it allows any connector to work with any serialization
format. Examples of common formats include JSON and Avro.

bootstrap.servers

Type: list
Default: localhost:9092
Importance: high
A list of host/port pairs to use for establishing the initial connection to the Kafka cluster. The client
will make use of all servers irrespective of which servers are specified here for bootstrapping—this list
only impacts the initial hosts used to discover the full set of servers. This list should be in the form
host1:port1,host2:port2,… ​. Since these servers are just used for the initial connection to discover
the full cluster membership (which may change dynamically), this list need not contain the full set of
servers (you may want more than one, though, in case a server is down).

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

264

heartbeat.interval.ms

Type: int
Default: 3000
Importance: high
The expected time between heartbeats to the group coordinator when using Kafka’s group
management facilities. Heartbeats are used to ensure that the worker’s session stays active and to
facilitate rebalancing when new members join or leave the group. The value must be set lower than
session.timeout.ms, but typically should be set no higher than 1/3 of that value. It can be adjusted
even lower to control the expected time for normal rebalances.

rebalance.timeout.ms

Type: int
Default: 60000
Importance: high
The maximum allowed time for each worker to join the group once a rebalance has begun. This is
basically a limit on the amount of time needed for all tasks to flush any pending data and commit
offsets. If the timeout is exceeded, then the worker will be removed from the group, which will cause
offset commit failures.

session.timeout.ms

Type: int
Default: 10000
Importance: high
The timeout used to detect worker failures. The worker sends periodic heartbeats to indicate its
liveness to the broker. If no heartbeats are received by the broker before the expiration of this
session timeout, then the broker will remove the worker from the group and initiate a rebalance.
Note that the value must be in the allowable range as configured in the broker configuration by
group.min.session.timeout.ms and group.max.session.timeout.ms.

ssl.key.password

Type: password
Default: null
Importance: high
The password of the private key in the key store file. This is optional for client.

ssl.keystore.location

Type: string
Default: null
Importance: high
The location of the key store file. This is optional for client and can be used for two-way
authentication for client.

ssl.keystore.password

Type: password
Default: null
Importance: high
The store password for the key store file. This is optional for client and only needed if
ssl.keystore.location is configured.

ssl.truststore.location

Type: string

APPENDIX F. KAFKA CONNECT CONFIGURATION PARAMETERS

265

Type: string
Default: null
Importance: high
The location of the trust store file.

ssl.truststore.password

Type: password
Default: null
Importance: high
The password for the trust store file. If a password is not set access to the truststore is still available,
but integrity checking is disabled.

client.dns.lookup

Type: string
Default: default
Valid Values: [default, use_all_dns_ips, resolve_canonical_bootstrap_servers_only]
Importance: medium
Controls how the client uses DNS lookups. If set to use_all_dns_ips then, when the lookup returns
multiple IP addresses for a hostname, they will all be attempted to connect to before failing the
connection. Applies to both bootstrap and advertised servers. If the value is
resolve_canonical_bootstrap_servers_only each entry will be resolved and expanded into a list of
canonical names.

connections.max.idle.ms

Type: long
Default: 540000
Importance: medium
Close idle connections after the number of milliseconds specified by this config.

connector.client.config.override.policy

Type: string
Default: None
Importance: medium
Class name or alias of implementation of ConnectorClientConfigOverridePolicy. Defines what
client configurations can be overriden by the connector. The default implementation is None. The
other possible policies in the framework include All and Principal.

receive.buffer.bytes

Type: int
Default: 32768
Valid Values: [0,…​]
Importance: medium
The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. If the value is -1, the OS
default will be used.

request.timeout.ms

Type: int
Default: 40000
Valid Values: [0,…​]
Importance: medium

The configuration controls the maximum amount of time the client will wait for the response of a

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

266

The configuration controls the maximum amount of time the client will wait for the response of a
request. If the response is not received before the timeout elapses the client will resend the request
if necessary or fail the request if retries are exhausted.

sasl.client.callback.handler.class

Type: class
Default: null
Importance: medium
The fully qualified name of a SASL client callback handler class that implements the
AuthenticateCallbackHandler interface.

sasl.jaas.config

Type: password
Default: null
Importance: medium
JAAS login context parameters for SASL connections in the format used by JAAS configuration files.
JAAS configuration file format is described here. The format for the value is: ‘loginModuleClass
controlFlag (optionName=optionValue)*;’. For brokers, the config must be prefixed with listener
prefix and SASL mechanism name in lower-case. For example, listener.name.sasl_ssl.scram-sha-
256.sasl.jaas.config=com.example.ScramLoginModule required;.

sasl.kerberos.service.name

Type: string
Default: null
Importance: medium
The Kerberos principal name that Kafka runs as. This can be defined either in Kafka’s JAAS config or
in Kafka’s config.

sasl.login.callback.handler.class

Type: class
Default: null
Importance: medium
The fully qualified name of a SASL login callback handler class that implements the
AuthenticateCallbackHandler interface. For brokers, login callback handler config must be prefixed
with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-
256.sasl.login.callback.handler.class=com.example.CustomScramLoginCallbackHandler.

sasl.login.class

Type: class
Default: null
Importance: medium
The fully qualified name of a class that implements the Login interface. For brokers, login config
must be prefixed with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-256.sasl.login.class=com.example.CustomScramLogin.

sasl.mechanism

Type: string
Default: GSSAPI
Importance: medium
SASL mechanism used for client connections. This may be any mechanism for which a security
provider is available. GSSAPI is the default mechanism.

APPENDIX F. KAFKA CONNECT CONFIGURATION PARAMETERS

267

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html

security.protocol

Type: string
Default: PLAINTEXT
Importance: medium
Protocol used to communicate with brokers. Valid values are: PLAINTEXT, SSL, SASL_PLAINTEXT,
SASL_SSL.

send.buffer.bytes

Type: int
Default: 131072
Valid Values: [0,…​]
Importance: medium
The size of the TCP send buffer (SO_SNDBUF) to use when sending data. If the value is -1, the OS
default will be used.

ssl.enabled.protocols

Type: list
Default: TLSv1.2
Importance: medium
The list of protocols enabled for SSL connections.

ssl.keystore.type

Type: string
Default: JKS
Importance: medium
The file format of the key store file. This is optional for client.

ssl.protocol

Type: string
Default: TLSv1.2
Importance: medium
The SSL protocol used to generate the SSLContext. Default setting is TLSv1.2, which is fine for most
cases. Allowed values in recent JVMs are TLSv1.2 and TLSv1.3. TLS, TLSv1.1, SSL, SSLv2 and SSLv3
may be supported in older JVMs, but their usage is discouraged due to known security vulnerabilities.

ssl.provider

Type: string
Default: null
Importance: medium
The name of the security provider used for SSL connections. Default value is the default security
provider of the JVM.

ssl.truststore.type

Type: string
Default: JKS
Importance: medium
The file format of the trust store file.

worker.sync.timeout.ms

Type: int

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

268

Type: int
Default: 3000
Importance: medium
When the worker is out of sync with other workers and needs to resynchronize configurations, wait
up to this amount of time before giving up, leaving the group, and waiting a backoff period before
rejoining.

worker.unsync.backoff.ms

Type: int
Default: 300000
Importance: medium
When the worker is out of sync with other workers and fails to catch up within
worker.sync.timeout.ms, leave the Connect cluster for this long before rejoining.

access.control.allow.methods

Type: string
Default: ""
Importance: low
Sets the methods supported for cross origin requests by setting the Access-Control-Allow-Methods
header. The default value of the Access-Control-Allow-Methods header allows cross origin requests
for GET, POST and HEAD.

access.control.allow.origin

Type: string
Default: ""
Importance: low
Value to set the Access-Control-Allow-Origin header to for REST API requests.To enable cross
origin access, set this to the domain of the application that should be permitted to access the API, or
'*' to allow access from any domain. The default value only allows access from the domain of the
REST API.

admin.listeners

Type: list
Default: null
Valid Values: org.apache.kafka.connect.runtime.WorkerConfig$AdminListenersValidator@6996db8
Importance: low
List of comma-separated URIs the Admin REST API will listen on. The supported protocols are HTTP
and HTTPS. An empty or blank string will disable this feature. The default behavior is to use the
regular listener (specified by the 'listeners' property).

client.id

Type: string
Default: ""
Importance: low
An id string to pass to the server when making requests. The purpose of this is to be able to track the
source of requests beyond just ip/port by allowing a logical application name to be included in server-
side request logging.

config.providers

Type: list
Default: ""
Importance: low

APPENDIX F. KAFKA CONNECT CONFIGURATION PARAMETERS

269

Comma-separated names of ConfigProvider classes, loaded and used in the order specified.
Implementing the interface ConfigProvider allows you to replace variable references in connector
configurations, such as for externalized secrets.

config.storage.replication.factor

Type: short
Default: 3
Valid Values: [1,…​]
Importance: low
Replication factor used when creating the configuration storage topic.

connect.protocol

Type: string
Default: sessioned
Valid Values: [eager, compatible, sessioned]
Importance: low
Compatibility mode for Kafka Connect Protocol.

header.converter

Type: class
Default: org.apache.kafka.connect.storage.SimpleHeaderConverter
Importance: low
HeaderConverter class used to convert between Kafka Connect format and the serialized form that
is written to Kafka. This controls the format of the header values in messages written to or read from
Kafka, and since this is independent of connectors it allows any connector to work with any
serialization format. Examples of common formats include JSON and Avro. By default, the
SimpleHeaderConverter is used to serialize header values to strings and deserialize them by inferring
the schemas.

inter.worker.key.generation.algorithm

Type: string
Default: HmacSHA256
Valid Values: Any KeyGenerator algorithm supported by the worker JVM
Importance: low
The algorithm to use for generating internal request keys.

inter.worker.key.size

Type: int
Default: null
Importance: low
The size of the key to use for signing internal requests, in bits. If null, the default key size for the key
generation algorithm will be used.

inter.worker.key.ttl.ms

Type: int
Default: 3600000
Valid Values: [0,…​,2147483647]
Importance: low
The TTL of generated session keys used for internal request validation (in milliseconds).

inter.worker.signature.algorithm

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

270

Type: string
Default: HmacSHA256
Valid Values: Any MAC algorithm supported by the worker JVM
Importance: low
The algorithm used to sign internal requests.

inter.worker.verification.algorithms

Type: list
Default: HmacSHA256
Valid Values: A list of one or more MAC algorithms, each supported by the worker JVM
Importance: low
A list of permitted algorithms for verifying internal requests.

internal.key.converter

Type: class
Default: org.apache.kafka.connect.json.JsonConverter
Importance: low
Converter class used to convert between Kafka Connect format and the serialized form that is
written to Kafka. This controls the format of the keys in messages written to or read from Kafka, and
since this is independent of connectors it allows any connector to work with any serialization format.
Examples of common formats include JSON and Avro. This setting controls the format used for
internal bookkeeping data used by the framework, such as configs and offsets, so users can typically
use any functioning Converter implementation. Deprecated; will be removed in an upcoming version.

internal.value.converter

Type: class
Default: org.apache.kafka.connect.json.JsonConverter
Importance: low
Converter class used to convert between Kafka Connect format and the serialized form that is
written to Kafka. This controls the format of the values in messages written to or read from Kafka,
and since this is independent of connectors it allows any connector to work with any serialization
format. Examples of common formats include JSON and Avro. This setting controls the format used
for internal bookkeeping data used by the framework, such as configs and offsets, so users can
typically use any functioning Converter implementation. Deprecated; will be removed in an upcoming
version.

listeners

Type: list
Default: null
Importance: low
List of comma-separated URIs the REST API will listen on. The supported protocols are HTTP and
HTTPS. Specify hostname as 0.0.0.0 to bind to all interfaces. Leave hostname empty to bind to
default interface. Examples of legal listener lists: HTTP://myhost:8083,HTTPS://myhost:8084.

metadata.max.age.ms

Type: long
Default: 300000
Valid Values: [0,…​]
Importance: low
The period of time in milliseconds after which we force a refresh of metadata even if we haven’t seen
any partition leadership changes to proactively discover any new brokers or partitions.

APPENDIX F. KAFKA CONNECT CONFIGURATION PARAMETERS

271

metric.reporters

Type: list
Default: ""
Importance: low
A list of classes to use as metrics reporters. Implementing the
org.apache.kafka.common.metrics.MetricsReporter interface allows plugging in classes that will
be notified of new metric creation. The JmxReporter is always included to register JMX statistics.

metrics.num.samples

Type: int
Default: 2
Valid Values: [1,…​]
Importance: low
The number of samples maintained to compute metrics.

metrics.recording.level

Type: string
Default: INFO
Valid Values: [INFO, DEBUG]
Importance: low
The highest recording level for metrics.

metrics.sample.window.ms

Type: long
Default: 30000
Valid Values: [0,…​]
Importance: low
The window of time a metrics sample is computed over.

offset.flush.interval.ms

Type: long
Default: 60000
Importance: low
Interval at which to try committing offsets for tasks.

offset.flush.timeout.ms

Type: long
Default: 5000
Importance: low
Maximum number of milliseconds to wait for records to flush and partition offset data to be
committed to offset storage before cancelling the process and restoring the offset data to be
committed in a future attempt.

offset.storage.partitions

Type: int
Default: 25
Valid Values: [1,…​]
Importance: low
The number of partitions used when creating the offset storage topic.

offset.storage.replication.factor

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

272

Type: short
Default: 3
Valid Values: [1,…​]
Importance: low
Replication factor used when creating the offset storage topic.

plugin.path

Type: list
Default: null
Importance: low
List of paths separated by commas (,) that contain plugins (connectors, converters,
transformations). The list should consist of top level directories that include any combination of: a)
directories immediately containing jars with plugins and their dependencies b) uber-jars with plugins
and their dependencies c) directories immediately containing the package directory structure of
classes of plugins and their dependencies Note: symlinks will be followed to discover dependencies
or plugins. Examples:
plugin.path=/usr/local/share/java,/usr/local/share/kafka/plugins,/opt/connectors.

reconnect.backoff.max.ms

Type: long
Default: 1000
Valid Values: [0,…​]
Importance: low
The maximum amount of time in milliseconds to wait when reconnecting to a broker that has
repeatedly failed to connect. If provided, the backoff per host will increase exponentially for each
consecutive connection failure, up to this maximum. After calculating the backoff increase, 20%
random jitter is added to avoid connection storms.

reconnect.backoff.ms

Type: long
Default: 50
Valid Values: [0,…​]
Importance: low
The base amount of time to wait before attempting to reconnect to a given host. This avoids
repeatedly connecting to a host in a tight loop. This backoff applies to all connection attempts by the
client to a broker.

rest.advertised.host.name

Type: string
Default: null
Importance: low
If this is set, this is the hostname that will be given out to other workers to connect to.

rest.advertised.listener

Type: string
Default: null
Importance: low
Sets the advertised listener (HTTP or HTTPS) which will be given to other workers to use.

rest.advertised.port

Type: int

APPENDIX F. KAFKA CONNECT CONFIGURATION PARAMETERS

273

Type: int
Default: null
Importance: low
If this is set, this is the port that will be given out to other workers to connect to.

rest.extension.classes

Type: list
Default: ""
Importance: low
Comma-separated names of ConnectRestExtension classes, loaded and called in the order
specified. Implementing the interface ConnectRestExtension allows you to inject into Connect’s
REST API user defined resources like filters. Typically used to add custom capability like logging,
security, etc.

rest.host.name

Type: string
Default: null
Importance: low
Hostname for the REST API. If this is set, it will only bind to this interface.

rest.port

Type: int
Default: 8083
Importance: low
Port for the REST API to listen on.

retry.backoff.ms

Type: long
Default: 100
Valid Values: [0,…​]
Importance: low
The amount of time to wait before attempting to retry a failed request to a given topic partition. This
avoids repeatedly sending requests in a tight loop under some failure scenarios.

sasl.kerberos.kinit.cmd

Type: string
Default: /usr/bin/kinit
Importance: low
Kerberos kinit command path.

sasl.kerberos.min.time.before.relogin

Type: long
Default: 60000
Importance: low
Login thread sleep time between refresh attempts.

sasl.kerberos.ticket.renew.jitter

Type: double
Default: 0.05
Importance: low
Percentage of random jitter added to the renewal time.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

274

sasl.kerberos.ticket.renew.window.factor

Type: double
Default: 0.8
Importance: low
Login thread will sleep until the specified window factor of time from last refresh to ticket’s expiry
has been reached, at which time it will try to renew the ticket.

sasl.login.refresh.buffer.seconds

Type: short
Default: 300
Valid Values: [0,…​,3600]
Importance: low
The amount of buffer time before credential expiration to maintain when refreshing a credential, in
seconds. If a refresh would otherwise occur closer to expiration than the number of buffer seconds
then the refresh will be moved up to maintain as much of the buffer time as possible. Legal values are
between 0 and 3600 (1 hour); a default value of 300 (5 minutes) is used if no value is specified. This
value and sasl.login.refresh.min.period.seconds are both ignored if their sum exceeds the remaining
lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.min.period.seconds

Type: short
Default: 60
Valid Values: [0,…​,900]
Importance: low
The desired minimum time for the login refresh thread to wait before refreshing a credential, in
seconds. Legal values are between 0 and 900 (15 minutes); a default value of 60 (1 minute) is used if
no value is specified. This value and sasl.login.refresh.buffer.seconds are both ignored if their sum
exceeds the remaining lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.window.factor

Type: double
Default: 0.8
Valid Values: [0.5,…​,1.0]
Importance: low
Login refresh thread will sleep until the specified window factor relative to the credential’s lifetime
has been reached, at which time it will try to refresh the credential. Legal values are between 0.5
(50%) and 1.0 (100%) inclusive; a default value of 0.8 (80%) is used if no value is specified. Currently
applies only to OAUTHBEARER.

sasl.login.refresh.window.jitter

Type: double
Default: 0.05
Valid Values: [0.0,…​,0.25]
Importance: low
The maximum amount of random jitter relative to the credential’s lifetime that is added to the login
refresh thread’s sleep time. Legal values are between 0 and 0.25 (25%) inclusive; a default value of
0.05 (5%) is used if no value is specified. Currently applies only to OAUTHBEARER.

scheduled.rebalance.max.delay.ms

Type: int
Default: 300000
Valid Values: [0,…​,2147483647]

APPENDIX F. KAFKA CONNECT CONFIGURATION PARAMETERS

275

Importance: low
The maximum delay that is scheduled in order to wait for the return of one or more departed workers
before rebalancing and reassigning their connectors and tasks to the group. During this period the
connectors and tasks of the departed workers remain unassigned.

ssl.cipher.suites

Type: list
Default: null
Importance: low
A list of cipher suites. This is a named combination of authentication, encryption, MAC and key
exchange algorithm used to negotiate the security settings for a network connection using TLS or
SSL network protocol. By default all the available cipher suites are supported.

ssl.client.auth

Type: string
Default: none
Importance: low
Configures kafka broker to request client authentication. The following settings are common:

ssl.client.auth=required If set to required client authentication is required.

ssl.client.auth=requested This means client authentication is optional. unlike requested , if
this option is set client can choose not to provide authentication information about itself

ssl.client.auth=none This means client authentication is not needed.

ssl.endpoint.identification.algorithm

Type: string
Default: https
Importance: low
The endpoint identification algorithm to validate server hostname using server certificate.

ssl.keymanager.algorithm

Type: string
Default: SunX509
Importance: low
The algorithm used by key manager factory for SSL connections. Default value is the key manager
factory algorithm configured for the Java Virtual Machine.

ssl.secure.random.implementation

Type: string
Default: null
Importance: low
The SecureRandom PRNG implementation to use for SSL cryptography operations.

ssl.trustmanager.algorithm

Type: string
Default: PKIX
Importance: low
The algorithm used by trust manager factory for SSL connections. Default value is the trust manager
factory algorithm configured for the Java Virtual Machine.

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

276

status.storage.partitions

Type: int
Default: 5
Valid Values: [1,…​]
Importance: low
The number of partitions used when creating the status storage topic.

status.storage.replication.factor

Type: short
Default: 3
Valid Values: [1,…​]
Importance: low
Replication factor used when creating the status storage topic.

task.shutdown.graceful.timeout.ms

Type: long
Default: 5000
Importance: low
Amount of time to wait for tasks to shutdown gracefully. This is the total amount of time, not per
task. All task have shutdown triggered, then they are waited on sequentially.

topic.tracking.allow.reset

Type: boolean
Default: true
Importance: low
If set to true, it allows user requests to reset the set of active topics per connector.

topic.tracking.enable

Type: boolean
Default: true
Importance: low
Enable tracking the set of active topics per connector during runtime.

APPENDIX F. KAFKA CONNECT CONFIGURATION PARAMETERS

277

APPENDIX G. KAFKA STREAMS CONFIGURATION
PARAMETERS

application.id

Type: string
Importance: high
An identifier for the stream processing application. Must be unique within the Kafka cluster. It is used
as 1) the default client-id prefix, 2) the group-id for membership management, 3) the changelog
topic prefix.

bootstrap.servers

Type: list
Importance: high
A list of host/port pairs to use for establishing the initial connection to the Kafka cluster. The client
will make use of all servers irrespective of which servers are specified here for bootstrapping—this list
only impacts the initial hosts used to discover the full set of servers. This list should be in the form
host1:port1,host2:port2,… ​. Since these servers are just used for the initial connection to discover
the full cluster membership (which may change dynamically), this list need not contain the full set of
servers (you may want more than one, though, in case a server is down).

replication.factor

Type: int
Default: 1
Importance: high
The replication factor for change log topics and repartition topics created by the stream processing
application.

state.dir

Type: string
Default: /tmp/kafka-streams
Importance: high
Directory location for state store. This path must be unique for each streams instance sharing the
same underlying filesystem.

cache.max.bytes.buffering

Type: long
Default: 10485760
Valid Values: [0,…​]
Importance: medium
Maximum number of memory bytes to be used for buffering across all threads.

client.id

Type: string
Default: ""
Importance: medium
An ID prefix string used for the client IDs of internal consumer, producer and restore-consumer, with
pattern '<client.id>-StreamThread-<threadSequenceNumber>-<consumer|producer|restore-
consumer>'.

default.deserialization.exception.handler

Type: class

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

278

Type: class
Default: org.apache.kafka.streams.errors.LogAndFailExceptionHandler
Importance: medium
Exception handling class that implements the
org.apache.kafka.streams.errors.DeserializationExceptionHandler interface.

default.key.serde

Type: class
Default: org.apache.kafka.common.serialization.Serdes$ByteArraySerde
Importance: medium
Default serializer / deserializer class for key that implements the
org.apache.kafka.common.serialization.Serde interface. Note when windowed serde class is used,
one needs to set the inner serde class that implements the
org.apache.kafka.common.serialization.Serde interface via 'default.windowed.key.serde.inner' or
'default.windowed.value.serde.inner' as well.

default.production.exception.handler

Type: class
Default: org.apache.kafka.streams.errors.DefaultProductionExceptionHandler
Importance: medium
Exception handling class that implements the
org.apache.kafka.streams.errors.ProductionExceptionHandler interface.

default.timestamp.extractor

Type: class
Default: org.apache.kafka.streams.processor.FailOnInvalidTimestamp
Importance: medium
Default timestamp extractor class that implements the
org.apache.kafka.streams.processor.TimestampExtractor interface.

default.value.serde

Type: class
Default: org.apache.kafka.common.serialization.Serdes$ByteArraySerde
Importance: medium
Default serializer / deserializer class for value that implements the
org.apache.kafka.common.serialization.Serde interface. Note when windowed serde class is used,
one needs to set the inner serde class that implements the
org.apache.kafka.common.serialization.Serde interface via 'default.windowed.key.serde.inner' or
'default.windowed.value.serde.inner' as well.

max.task.idle.ms

Type: long
Default: 0
Importance: medium
Maximum amount of time a stream task will stay idle when not all of its partition buffers contain
records, to avoid potential out-of-order record processing across multiple input streams.

num.standby.replicas

Type: int
Default: 0
Importance: medium
The number of standby replicas for each task.

APPENDIX G. KAFKA STREAMS CONFIGURATION PARAMETERS

279

num.stream.threads

Type: int
Default: 1
Importance: medium
The number of threads to execute stream processing.

processing.guarantee

Type: string
Default: at_least_once
Valid Values: [at_least_once, exactly_once]
Importance: medium
The processing guarantee that should be used. Possible values are at_least_once (default) and
exactly_once. Note that exactly-once processing requires a cluster of at least three brokers by
default what is the recommended setting for production; for development you can change this, by
adjusting broker setting transaction.state.log.replication.factor and transaction.state.log.min.isr.

security.protocol

Type: string
Default: PLAINTEXT
Importance: medium
Protocol used to communicate with brokers. Valid values are: PLAINTEXT, SSL, SASL_PLAINTEXT,
SASL_SSL.

topology.optimization

Type: string
Default: none
Valid Values: [none, all]
Importance: medium
A configuration telling Kafka Streams if it should optimize the topology, disabled by default.

application.server

Type: string
Default: ""
Importance: low
A host:port pair pointing to a user-defined endpoint that can be used for state store discovery and
interactive queries on this KafkaStreams instance.

buffered.records.per.partition

Type: int
Default: 1000
Importance: low
Maximum number of records to buffer per partition.

built.in.metrics.version

Type: string
Default: latest
Valid Values: [0.10.0-2.4, latest]
Importance: low
Version of the built-in metrics to use.

commit.interval.ms

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

280

Type: long
Default: 30000
Valid Values: [0,…​]
Importance: low
The frequency with which to save the position of the processor. (Note, if processing.guarantee is
set to exactly_once, the default value is 100, otherwise the default value is 30000.

connections.max.idle.ms

Type: long
Default: 540000
Importance: low
Close idle connections after the number of milliseconds specified by this config.

metadata.max.age.ms

Type: long
Default: 300000
Valid Values: [0,…​]
Importance: low
The period of time in milliseconds after which we force a refresh of metadata even if we haven’t seen
any partition leadership changes to proactively discover any new brokers or partitions.

metric.reporters

Type: list
Default: ""
Importance: low
A list of classes to use as metrics reporters. Implementing the
org.apache.kafka.common.metrics.MetricsReporter interface allows plugging in classes that will
be notified of new metric creation. The JmxReporter is always included to register JMX statistics.

metrics.num.samples

Type: int
Default: 2
Valid Values: [1,…​]
Importance: low
The number of samples maintained to compute metrics.

metrics.recording.level

Type: string
Default: INFO
Valid Values: [INFO, DEBUG]
Importance: low
The highest recording level for metrics.

metrics.sample.window.ms

Type: long
Default: 30000
Valid Values: [0,…​]
Importance: low
The window of time a metrics sample is computed over.

partition.grouper

APPENDIX G. KAFKA STREAMS CONFIGURATION PARAMETERS

281

Type: class
Default: org.apache.kafka.streams.processor.DefaultPartitionGrouper
Importance: low
Partition grouper class that implements the
org.apache.kafka.streams.processor.PartitionGrouper interface. WARNING: This config is
deprecated and will be removed in 3.0.0 release.

poll.ms

Type: long
Default: 100
Importance: low
The amount of time in milliseconds to block waiting for input.

receive.buffer.bytes

Type: int
Default: 32768
Valid Values: [-1,…​]
Importance: low
The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. If the value is -1, the OS
default will be used.

reconnect.backoff.max.ms

Type: long
Default: 1000
Valid Values: [0,…​]
Importance: low
The maximum amount of time in milliseconds to wait when reconnecting to a broker that has
repeatedly failed to connect. If provided, the backoff per host will increase exponentially for each
consecutive connection failure, up to this maximum. After calculating the backoff increase, 20%
random jitter is added to avoid connection storms.

reconnect.backoff.ms

Type: long
Default: 50
Valid Values: [0,…​]
Importance: low
The base amount of time to wait before attempting to reconnect to a given host. This avoids
repeatedly connecting to a host in a tight loop. This backoff applies to all connection attempts by the
client to a broker.

request.timeout.ms

Type: int
Default: 40000
Valid Values: [0,…​]
Importance: low
The configuration controls the maximum amount of time the client will wait for the response of a
request. If the response is not received before the timeout elapses the client will resend the request
if necessary or fail the request if retries are exhausted.

retries

Type: int
Default: 0

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

282

Valid Values: [0,…​,2147483647]
Importance: low
Setting a value greater than zero will cause the client to resend any request that fails with a
potentially transient error.

retry.backoff.ms

Type: long
Default: 100
Valid Values: [0,…​]
Importance: low
The amount of time to wait before attempting to retry a failed request to a given topic partition. This
avoids repeatedly sending requests in a tight loop under some failure scenarios.

rocksdb.config.setter

Type: class
Default: null
Importance: low
A Rocks DB config setter class or class name that implements the
org.apache.kafka.streams.state.RocksDBConfigSetter interface.

send.buffer.bytes

Type: int
Default: 131072
Valid Values: [-1,…​]
Importance: low
The size of the TCP send buffer (SO_SNDBUF) to use when sending data. If the value is -1, the OS
default will be used.

state.cleanup.delay.ms

Type: long
Default: 600000
Importance: low
The amount of time in milliseconds to wait before deleting state when a partition has migrated. Only
state directories that have not been modified for at least state.cleanup.delay.ms will be removed.

upgrade.from

Type: string
Default: null
Valid Values: [null, 0.10.0, 0.10.1, 0.10.2, 0.11.0, 1.0, 1.1, 2.0, 2.1, 2.2, 2.3]
Importance: low
Allows upgrading in a backward compatible way. This is needed when upgrading from [0.10.0, 1.1] to
2.0+, or when upgrading from [2.0, 2.3] to 2.4+. When upgrading from 2.4 to a newer version it is not
required to specify this config. Default is null. Accepted values are "0.10.0", "0.10.1", "0.10.2", "0.11.0",
"1.0", "1.1", "2.0", "2.1", "2.2", "2.3" (for upgrading from the corresponding old version).

windowstore.changelog.additional.retention.ms

Type: long
Default: 86400000
Importance: low
Added to a windows maintainMs to ensure data is not deleted from the log prematurely. Allows for
clock drift. Default is 1 day.

APPENDIX G. KAFKA STREAMS CONFIGURATION PARAMETERS

283

APPENDIX H. USING YOUR SUBSCRIPTION
AMQ Streams is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing Your Account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a Subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ Streams entries in the JBOSS INTEGRATION AND AUTOMATION
category.

3. Select the desired AMQ Streams product. The Software Downloads page opens.

4. Click the Download link for your component.

Registering Your System for Packages
To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
zip or tar files, this step is not required.

1. Go to access.redhat.com.

2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

4. Use the listed command in your system terminal to complete the registration.

To learn more see How to Register and Subscribe a System to the Red Hat Customer Portal .

Revised on 2020-08-06 14:39:13 UTC

Red Hat AMQ 7.7 Using AMQ Streams on RHEL

284

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com
https://access.redhat.com/solutions/253273

	Table of Contents
	CHAPTER 1. OVERVIEW OF AMQ STREAMS
	1.1. KAFKA CAPABILITIES
	1.2. KAFKA USE CASES
	1.3. SUPPORTED CONFIGURATIONS
	1.4. DOCUMENT CONVENTIONS

	CHAPTER 2. GETTING STARTED
	2.1. AMQ STREAMS DISTRIBUTION
	2.2. DOWNLOADING AN AMQ STREAMS ARCHIVE
	2.3. INSTALLING AMQ STREAMS
	2.4. DATA STORAGE CONSIDERATIONS
	2.4.1. Apache Kafka and ZooKeeper storage support
	2.4.2. File systems

	2.5. RUNNING A SINGLE NODE AMQ STREAMS CLUSTER
	2.6. USING THE CLUSTER
	2.7. STOPPING THE AMQ STREAMS SERVICES
	2.8. CONFIGURING AMQ STREAMS

	CHAPTER 3. CONFIGURING ZOOKEEPER
	3.1. BASIC CONFIGURATION
	3.2. ZOOKEEPER CLUSTER CONFIGURATION
	3.3. RUNNING MULTI-NODE ZOOKEEPER CLUSTER
	3.4. AUTHENTICATION
	3.4.1. Authentication with SASL
	3.4.2. Enabling Server-to-server authentication using DIGEST-MD5
	3.4.3. Enabling Client-to-server authentication using DIGEST-MD5

	3.5. AUTHORIZATION
	3.6. TLS
	3.7. ADDITIONAL CONFIGURATION OPTIONS
	3.8. LOGGING

	CHAPTER 4. CONFIGURING KAFKA
	4.1. ZOOKEEPER
	4.2. LISTENERS
	4.3. COMMIT LOGS
	4.4. BROKER ID
	4.5. RUNNING A MULTI-NODE KAFKA CLUSTER
	4.6. ZOOKEEPER AUTHENTICATION
	4.6.1. JAAS Configuration
	4.6.2. Enabling ZooKeeper authentication

	4.7. AUTHORIZATION
	4.7.1. Simple ACL authorizer
	4.7.1.1. ACL rules
	4.7.1.2. Principals
	4.7.1.3. Authentication of users
	4.7.1.4. Super users
	4.7.1.5. Replica broker authentication
	4.7.1.6. Supported resources
	4.7.1.7. Supported operations
	4.7.1.8. ACL management options

	4.7.2. Enabling authorization
	4.7.3. Adding ACL rules
	4.7.4. Listing ACL rules
	4.7.5. Removing ACL rules

	4.8. ZOOKEEPER AUTHORIZATION
	4.8.1. ACL Configuration
	4.8.2. Enabling ZooKeeper ACLs for a new Kafka cluster
	4.8.3. Enabling ZooKeeper ACLs in an existing Kafka cluster

	4.9. ENCRYPTION AND AUTHENTICATION
	4.9.1. Listener configuration
	4.9.2. TLS Encryption
	4.9.3. Enabling TLS encryption
	4.9.4. Authentication
	4.9.4.1. TLS client authentication
	4.9.4.2. SASL authentication

	4.9.5. Enabling TLS client authentication
	4.9.6. Enabling SASL PLAIN authentication
	4.9.7. Enabling SASL SCRAM authentication
	4.9.8. Adding SASL SCRAM users
	4.9.9. Deleting SASL SCRAM users

	4.10. USING OAUTH 2.0 TOKEN-BASED AUTHENTICATION
	4.10.1. OAuth 2.0 authentication mechanism
	4.10.1.1. Configuring OAuth 2.0 with properties or variables

	4.10.2. OAuth 2.0 Kafka broker configuration
	4.10.2.1. OAuth 2.0 client configuration on an authorization server
	4.10.2.2. OAuth 2.0 authentication configuration in the Kafka cluster
	4.10.2.3. Fast local JWT token validation configuration
	4.10.2.4. OAuth 2.0 introspection endpoint configuration

	4.10.3. OAuth 2.0 Kafka client configuration
	4.10.4. OAuth 2.0 client authentication flow
	4.10.4.1. Example client authentication flows

	4.10.5. Configuring OAuth 2.0 authentication
	4.10.5.1. Configuring Red Hat Single Sign-On as an OAuth 2.0 authorization server
	4.10.5.2. Configuring OAuth 2.0 support for Kafka brokers
	4.10.5.3. Configuring Kafka Java clients to use OAuth 2.0

	4.11. USING OAUTH 2.0 TOKEN-BASED AUTHORIZATION
	Authorizing access to Kafka brokers
	4.11.1. OAuth 2.0 authorization mechanism
	4.11.1.1. Kafka broker custom authorizer

	4.11.2. Configuring OAuth 2.0 authorization support

	4.12. LOGGING

	CHAPTER 5. TOPICS
	5.1. PARTITIONS AND REPLICAS
	5.2. MESSAGE RETENTION
	5.3. TOPIC AUTO-CREATION
	5.4. TOPIC DELETION
	5.5. TOPIC CONFIGURATION
	5.6. INTERNAL TOPICS
	5.7. CREATING A TOPIC
	5.8. LISTING AND DESCRIBING TOPICS
	5.9. MODIFYING A TOPIC CONFIGURATION
	5.10. DELETING A TOPIC

	CHAPTER 6. SCALING CLUSTERS
	6.1. SCALING KAFKA CLUSTERS
	6.1.1. Adding brokers to a cluster
	6.1.2. Removing brokers from the cluster

	6.2. REASSIGNMENT OF PARTITIONS
	6.2.1. Reassignment JSON file
	6.2.2. Generating reassignment JSON files
	6.2.3. Creating reassignment JSON files manually

	6.3. REASSIGNMENT THROTTLES
	6.4. SCALING UP A KAFKA CLUSTER
	6.5. SCALING DOWN A KAFKA CLUSTER
	6.6. SCALING UP A ZOOKEEPER CLUSTER
	6.7. SCALING DOWN A ZOOKEEPER CLUSTER

	CHAPTER 7. MONITORING YOUR CLUSTER USING JMX
	7.1. JMX CONFIGURATION OPTIONS
	7.2. DISABLING THE JMX AGENT
	7.3. CONNECTING TO THE JVM FROM A DIFFERENT MACHINE
	7.4. MONITORING USING JCONSOLE
	7.5. IMPORTANT KAFKA BROKER METRICS
	7.5.1. Kafka server metrics
	7.5.2. Kafka network metrics
	7.5.3. Kafka log metrics
	7.5.4. Kafka controller metrics
	7.5.5. Yammer metrics

	7.6. PRODUCER MBEANS
	7.6.1. MBeans matching kafka.producer:type=producer-metrics,client-id=*
	7.6.2. MBeans matching kafka.producer:type=producer-metrics,client-id=*,node-id=*
	7.6.3. MBeans matching kafka.producer:type=producer-topic-metrics,client-id=*,topic=*

	7.7. CONSUMER MBEANS
	7.7.1. MBeans matching kafka.consumer:type=consumer-metrics,client-id=*
	7.7.2. MBeans matching kafka.consumer:type=consumer-metrics,client-id=*,node-id=*
	7.7.3. MBeans matching kafka.consumer:type=consumer-coordinator-metrics,client-id=*
	7.7.4. MBeans matching kafka.consumer:type=consumer-fetch-manager-metrics,client-id=*
	7.7.5. MBeans matching kafka.consumer:type=consumer-fetch-manager-metrics,client-id=*,topic=*
	7.7.6. MBeans matching kafka.consumer:type=consumer-fetch-manager-metrics,client-id=*,topic=*,partition=*

	7.8. KAFKA CONNECT MBEANS
	7.8.1. MBeans matching kafka.connect:type=connect-metrics,client-id=*
	7.8.2. MBeans matching kafka.connect:type=connect-metrics,client-id=*,node-id=*
	7.8.3. MBeans matching kafka.connect:type=connect-worker-metrics
	7.8.4. MBeans matching kafka.connect:type=connect-worker-rebalance-metrics
	7.8.5. MBeans matching kafka.connect:type=connector-metrics,connector=*
	7.8.6. MBeans matching kafka.connect:type=connector-task-metrics,connector=*,task=*
	7.8.7. MBeans matching kafka.connect:type=sink-task-metrics,connector=*,task=*
	7.8.8. MBeans matching kafka.connect:type=source-task-metrics,connector=*,task=*
	7.8.9. MBeans matching kafka.connect:type=task-error-metrics,connector=*,task=*

	7.9. KAFKA STREAMS MBEANS
	7.9.1. MBeans matching kafka.streams:type=stream-metrics,client-id=*
	7.9.2. MBeans matching kafka.streams:type=stream-task-metrics,client-id=*,task-id=*
	7.9.3. MBeans matching kafka.streams:type=stream-processor-node-metrics,client-id=*,task-id=*,processor-node-id=*
	7.9.4. MBeans matching kafka.streams:type=stream-[store-scope]-metrics,client-id=*,task-id=*,[store-scope]-id=*
	7.9.5. MBeans matching kafka.streams:type=stream-record-cache-metrics,client-id=*,task-id=*,record-cache-id=*

	CHAPTER 8. KAFKA CONNECT
	8.1. KAFKA CONNECT IN STANDALONE MODE
	8.1.1. Configuring Kafka Connect in standalone mode
	8.1.2. Configuring connectors in Kafka Connect in standalone mode
	8.1.3. Running Kafka Connect in standalone mode

	8.2. KAFKA CONNECT IN DISTRIBUTED MODE
	8.2.1. Configuring Kafka Connect in distributed mode
	8.2.2. Configuring connectors in distributed Kafka Connect
	8.2.3. Running distributed Kafka Connect
	8.2.4. Creating connectors
	8.2.5. Deleting connectors

	8.3. CONNECTOR PLUG-INS
	8.4. ADDING CONNECTOR PLUGINS

	CHAPTER 9. USING AMQ STREAMS WITH MIRRORMAKER 2.0
	9.1. MIRRORMAKER 2.0 DATA REPLICATION
	9.2. CLUSTER CONFIGURATION
	9.2.1. Bidirectional replication
	9.2.2. Topic configuration synchronization
	9.2.3. Data integrity
	9.2.4. Offset tracking
	9.2.5. Connectivity checks

	9.3. ACL RULES SYNCHRONIZATION
	9.4. SYNCHRONIZING DATA BETWEEN KAFKA CLUSTERS USING MIRRORMAKER 2.0
	9.5. USING MIRRORMAKER 2.0 IN LEGACY MODE

	CHAPTER 10. KAFKA CLIENTS
	10.1. ADDING KAFKA CLIENTS AS A DEPENDENCY TO YOUR MAVEN PROJECT

	CHAPTER 11. KAFKA STREAMS API OVERVIEW
	11.1. ADDING THE KAFKA STREAMS API AS A DEPENDENCY TO YOUR MAVEN PROJECT

	CHAPTER 12. KAFKA BRIDGE
	12.1. KAFKA BRIDGE OVERVIEW
	12.1.1. Authentication and encryption
	12.1.2. Requests to the Kafka Bridge
	12.1.2.1. Content Type headers
	12.1.2.2. Embedded data format
	12.1.2.3. Accept headers

	12.1.3. Configuring loggers for the Kafka Bridge
	12.1.4. Kafka Bridge API resources
	12.1.5. Downloading a Kafka Bridge archive
	12.1.6. Configuring Kafka Bridge properties
	12.1.7. Installing the Kafka Bridge

	12.2. KAFKA BRIDGE QUICKSTART
	12.2.1. Deploying the Kafka Bridge locally
	12.2.2. Producing messages to topics and partitions
	12.2.3. Creating a Kafka Bridge consumer
	12.2.4. Subscribing a Kafka Bridge consumer to topics
	12.2.5. Retrieving the latest messages from a Kafka Bridge consumer
	12.2.6. Commiting offsets to the log
	12.2.7. Seeking to offsets for a partition
	12.2.8. Deleting a Kafka Bridge consumer

	CHAPTER 13. CRUISE CONTROL FOR CLUSTER REBALANCING
	13.1. WHY USE CRUISE CONTROL?
	13.2. DOWNLOADING A CRUISE CONTROL ARCHIVE
	13.3. DEPLOYING THE CRUISE CONTROL METRICS REPORTER
	13.4. CONFIGURING AND STARTING CRUISE CONTROL
	Auto-created topics

	13.5. OPTIMIZATION GOALS OVERVIEW
	Goals configuration in the Cruise Control properties file
	Master optimization goals
	Hard goals and soft goals
	Default optimization goals
	User-provided optimization goals

	13.6. OPTIMIZATION PROPOSALS OVERVIEW
	Cached optimization proposal
	Contents of optimization proposals

	13.7. CRUISE CONTROL CONFIGURATION
	Capacity configuration
	Log cleanup policy for Cruise Control Metrics topic
	Logging configuration

	13.8. GENERATING OPTIMIZATION PROPOSALS
	Asynchronous responses

	13.9. INITIATING A CLUSTER REBALANCE
	13.10. STOPPING AN ACTIVE CLUSTER REBALANCE

	CHAPTER 14. DISTRIBUTED TRACING
	14.1. OVERVIEW OF DISTRIBUTED TRACING
	14.1.1. OpenTracing and Jaeger

	14.2. CONFIGURING KAFKA CLIENTS FOR TRACING
	14.2.1. Enabling a Jaeger tracer for Kafka clients
	14.2.2. Instrumenting Kafka Producers and Consumers for tracing
	14.2.2.1. Custom span names in a Decorator pattern
	14.2.2.2. Built-in span names

	14.2.3. Instrumenting Kafka Streams applications for tracing

	14.3. CONFIGURING MIRRORMAKER AND KAFKA CONNECT FOR TRACING
	14.3.1. Enabling tracing for MirrorMaker
	14.3.2. Enabling tracing for Kafka Connect

	14.4. ENABLING TRACING FOR THE KAFKA BRIDGE
	14.5. TRACING ENVIRONMENT VARIABLES

	CHAPTER 15. KAFKA EXPORTER
	15.1. CONSUMER LAG
	15.2. KAFKA EXPORTER ALERTING RULE EXAMPLES
	15.3. KAFKA EXPORTER METRICS
	15.4. RUNNING KAFKA EXPORTER
	15.5. PRESENTING KAFKA EXPORTER METRICS IN GRAFANA

	CHAPTER 16. AMQ STREAMS AND KAFKA UPGRADES
	16.1. UPGRADE PREREQUISITES
	16.2. UPGRADE PROCESS
	16.3. KAFKA VERSIONS
	16.4. UPGRADING TO AMQ STREAMS 1.5
	16.4.1. Upgrading ZooKeeper
	16.4.2. Upgrading Kafka brokers
	16.4.3. Upgrading Kafka Connect

	16.5. UPGRADING KAFKA
	16.5.1. Upgrading Kafka brokers to use the new inter-broker protocol version
	16.5.2. Strategies for upgrading clients
	16.5.3. Upgrading client applications to the new Kafka version
	16.5.4. Upgrading consumers and Kafka Streams applications to cooperative rebalancing
	16.5.5. Upgrading Kafka brokers to use the new message format version

	APPENDIX A. BROKER CONFIGURATION PARAMETERS
	APPENDIX B. TOPIC CONFIGURATION PARAMETERS
	APPENDIX C. CONSUMER CONFIGURATION PARAMETERS
	APPENDIX D. PRODUCER CONFIGURATION PARAMETERS
	APPENDIX E. ADMIN CLIENT CONFIGURATION PARAMETERS
	APPENDIX F. KAFKA CONNECT CONFIGURATION PARAMETERS
	APPENDIX G. KAFKA STREAMS CONFIGURATION PARAMETERS
	APPENDIX H. USING YOUR SUBSCRIPTION
	Accessing Your Account
	Activating a Subscription
	Downloading Zip and Tar Files
	Registering Your System for Packages

