
Red Hat AMQ 2020.Q4

Configuring AMQ Broker

For Use with AMQ Broker 7.8

Last Updated: 2022-03-15

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

For Use with AMQ Broker 7.8

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to configure AMQ Broker.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW
1.1. AMQ BROKER CONFIGURATION FILES AND LOCATIONS
1.2. UNDERSTANDING THE DEFAULT BROKER CONFIGURATION

Default message persistence settings
Default acceptor settings
Default security settings
Default message address settings

1.3. RELOADING CONFIGURATION UPDATES
1.4. MODULARIZING THE BROKER CONFIGURATION FILE

1.4.1. Reloading modular configuration files
1.5. DOCUMENT CONVENTIONS

The sudo command
About the use of file paths in this document

CHAPTER 2. NETWORK CONNECTIONS: ACCEPTORS AND CONNECTORS
2.1. ABOUT ACCEPTORS

Configuring an Acceptor
2.2. ABOUT CONNECTORS

Configuring a Connector
2.3. CONFIGURING A TCP CONNECTION
2.4. CONFIGURING AN HTTP CONNECTION
2.5. CONFIGURING AN SSL/TLS CONNECTION
2.6. CONFIGURING AN IN-VM CONNECTION
2.7. CONFIGURING A CONNECTION FROM THE CLIENT SIDE

CHAPTER 3. NETWORK CONNECTIONS: PROTOCOLS
3.1. CONFIGURING A NETWORK CONNECTION TO USE A PROTOCOL

Overview of default acceptors
Additional parameters in default acceptors

3.2. USING AMQP WITH A NETWORK CONNECTION
3.2.1. Using an AMQP Link as a Topic
3.2.2. Configuring AMQP Security

3.3. USING MQTT WITH A NETWORK CONNECTION
3.4. USING OPENWIRE WITH A NETWORK CONNECTION
3.5. USING STOMP WITH A NETWORK CONNECTION

3.5.1. Knowing the Limitations When Using STOMP
3.5.2. Providing IDs for STOMP Messages
3.5.3. Setting a Connection’s Time to Live (TTL)

Overriding the Broker’s Default Time to Live (TTL)
3.5.4. Sending and Consuming STOMP Messages from JMS
3.5.5. Mapping STOMP Destinations to AMQ Broker Addresses and Queues

Mapping STOMP Destinations to JMS Destinations

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES
4.1. ADDRESSES, QUEUES, AND ROUTING TYPES

4.1.1. Address and queue naming requirements
4.2. APPLYING ADDRESS SETTINGS TO SETS OF ADDRESSES

4.2.1. AMQ Broker wildcard syntax
4.2.2. Configuring the broker wildcard syntax

4.3. CONFIGURING ADDRESSES FOR POINT-TO-POINT MESSAGING
4.3.1. Configuring basic point-to-point messaging
4.3.2. Configuring point-to-point messaging for multiple queues

8
8
8
8

10
11
11

12
13
14
14
14
15

16
16
16
17
17
17
18
19
19
19

21
21
21
22
24
24
25
25
26
26
27
27
27
28
28
29
29

31
31
31
32
32
33
34
34
35

Table of Contents

1

. .

4.4. CONFIGURING ADDRESSES FOR PUBLISH-SUBSCRIBE MESSAGING
4.5. CONFIGURING AN ADDRESS FOR BOTH POINT-TO-POINT AND PUBLISH-SUBSCRIBE MESSAGING

4.6. ADDING A ROUTING TYPE TO AN ACCEPTOR CONFIGURATION
4.7. CONFIGURING SUBSCRIPTION QUEUES

4.7.1. Configuring a durable subscription queue
4.7.2. Configuring a non-shared durable subscription queue
4.7.3. Configuring a non-durable subscription queue

4.8. CREATING AND DELETING ADDRESSES AND QUEUES AUTOMATICALLY
4.8.1. Configuration options for automatic queue creation and deletion
4.8.2. Configuring automatic creation and deletion of addresses and queues
4.8.3. Protocol managers and addresses

4.9. SPECIFYING A FULLY QUALIFIED QUEUE NAME
4.10. CONFIGURING SHARDED QUEUES
4.11. CONFIGURING LAST VALUE QUEUES

4.11.1. Configuring last value queues individually
4.11.2. Configuring last value queues for addresses
4.11.3. Example of last value queue behavior
4.11.4. Enforcing non-destructive consumption for last value queues

4.12. MOVING EXPIRED MESSAGES TO AN EXPIRY ADDRESS
4.12.1. Configuring message expiry
4.12.2. Creating expiry resources automatically

4.13. MOVING UNDELIVERED MESSAGES TO A DEAD LETTER ADDRESS
4.13.1. Configuring a dead letter address
4.13.2. Creating dead letter queues automatically

4.14. ANNOTATIONS AND PROPERTIES ON EXPIRED OR UNDELIVERED AMQP MESSAGES
4.15. DISABLING QUEUES
4.16. LIMITING THE NUMBER OF CONSUMERS CONNECTED TO A QUEUE
4.17. CONFIGURING EXCLUSIVE QUEUES

4.17.1. Configuring exclusive queues individually
4.17.2. Configuring exclusive queues for addresses

4.18. CONFIGURING RING QUEUES
4.18.1. Configuring ring queues
4.18.2. Troubleshooting ring queues

4.19. CONFIGURING RETROACTIVE ADDRESSES
4.20. DISABLING ADVISORY MESSAGES FOR INTERNALLY-MANAGED ADDRESSES AND QUEUES
4.21. FEDERATING ADDRESSES AND QUEUES

4.21.1. About address federation
4.21.2. Common topologies for address federation
4.21.3. Support for divert bindings in address federation configuration
4.21.4. Configuring federation for a broker cluster
4.21.5. Configuring upstream address federation
4.21.6. Configuring downstream address federation
4.21.7. About queue federation

4.21.7.1. Advantages of queue federation
4.21.8. Configuring upstream queue federation
4.21.9. Configuring downstream queue federation

CHAPTER 5. SECURING BROKERS
5.1. SECURING CONNECTIONS

5.1.1. Configuring one-way TLS
5.1.2. Configuring two-way TLS
5.1.3. TLS configuration options

36

37
38
39
39
40
41
41
41

42
43
44
45
46
46
46
47
48
49
49
51

53
53
55
56
57
58
59
59
59
60
60
61

62
63
64
64
65
67
67
68
73
76
77
77
83

87
87
87
87
88

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

2

. .

5.2. AUTHENTICATING CLIENTS
5.2.1. Client authentication methods
5.2.2. Configuring user and password authentication based on properties files

5.2.2.1. Configuring basic user and password authentication
5.2.2.2. Configuring guest access

5.2.2.2.1. Guest access example
5.2.3. Configuring certificate-based authentication

5.2.3.1. Configuring the broker to use certificate-based authentication
5.2.3.2. Configuring certificate-based authentication for AMQP clients

5.3. AUTHORIZING CLIENTS
5.3.1. Client authorization methods
5.3.2. Configuring user- and role-based authorization

5.3.2.1. Setting permissions
5.3.2.1.1. Configuring message production for a single address
5.3.2.1.2. Configuring message consumption for a single address
5.3.2.1.3. Configuring complete access on all addresses
5.3.2.1.4. Configuring multiple security settings
5.3.2.1.5. Configuring a queue with a user

5.3.2.2. Configuring role-based access control
5.3.2.2.1. Configuring role-based access
5.3.2.2.2. Role-based access examples
5.3.2.2.3. Configuring the whitelist element

5.3.2.3. Setting resource limits
5.3.2.3.1. Configuring connection and queue limits

5.4. USING LDAP FOR AUTHENTICATION AND AUTHORIZATION
5.4.1. Configuring LDAP to authenticate clients

5.4.1.1. Search matching parameters
5.4.2. Configuring LDAP authorization
5.4.3. Encrypting the password in the login.config file

5.5. USING KERBEROS FOR AUTHENTICATION AND AUTHORIZATION
5.5.1. Configuring network connections to use Kerberos
5.5.2. Authenticating clients with Kerberos credentials

5.5.2.1. Using an alternative configuration scope
5.5.3. Authorizing clients with Kerberos credentials

5.6. USING A CUSTOM SECURITY MANAGER
5.6.1. Specifying a custom security manager
5.6.2. Running the custom security manager example program

5.7. DISABLING SECURITY
5.8. TRACKING MESSAGES FROM VALIDATED USERS
5.9. ENCRYPTING PASSWORDS IN CONFIGURATION FILES

5.9.1. About encrypted passwords
5.9.2. Encrypting a password in a configuration file

CHAPTER 6. PERSISTING MESSAGES
6.1. ABOUT JOURNAL-BASED PERSISTENCE

6.1.1. Using AIO
6.2. CONFIGURING JOURNAL-BASED PERSISTENCE

6.2.1. The Message Journal
6.2.2. The Bindings Journal
6.2.3. The JMS Journal
6.2.4. Compacting Journal Files

Compacting Journals Using the CLI
6.2.5. Disabling Disk Write Cache

90
90
91
91

93
94
94
95
96
97
98
98
98
99
99

100
100
101
102
102
103
105
105
105
106
106
109
110
113
114
114
116
117
117
119
119
119

120
120
121
121
122

124
124
125
125
126
126
127
127
127
128

Table of Contents

3

. .

. .

. .

. .

. .

. .

6.3. CONFIGURING JDBC PERSISTENCE
6.4. CONFIGURING ZERO PERSISTENCE

CHAPTER 7. PAGING MESSAGES
7.1. ABOUT PAGE FILES
7.2. CONFIGURING THE PAGING DIRECTORY LOCATION
7.3. CONFIGURING AN ADDRESS FOR PAGING
7.4. CONFIGURING A GLOBAL PAGING SIZE

Configuring the global-max-size parameter
7.5. LIMITING DISK USAGE WHEN PAGING

Configuring the max-disk-usage
7.6. HOW TO DROP MESSAGES

7.6.1. Dropping Messages and Throwing an Exception to Producers
7.7. HOW TO BLOCK PRODUCERS
7.8. CAUTION WITH ADDRESSES WITH MULTICAST QUEUES

CHAPTER 8. HANDLING LARGE MESSAGES
8.1. CONFIGURING THE BROKER FOR LARGE MESSAGE HANDLING
8.2. CONFIGURING AMQP ACCEPTORS FOR LARGE MESSAGE HANDLING
8.3. CONFIGURING STOMP ACCEPTORS FOR LARGE MESSAGE HANDLING
8.4. LARGE MESSAGES AND JAVA CLIENTS

CHAPTER 9. DETECTING DEAD CONNECTIONS
Detecting Dead Connections from the Client Side
9.1. CONNECTION TIME-TO-LIVE

Configuring Time-To-Live on the Broker
Configuring Time-To-Live on the Client

9.2. DISABLING ASYNCHRONOUS CONNECTION EXECUTION
9.3. CLOSING CONNECTIONS FROM THE CLIENT SIDE

CHAPTER 10. FLOW CONTROL
10.1. CONSUMER FLOW CONTROL

10.1.1. Setting the Consumer Window Size
Setting the Window Size

10.1.2. Handling Fast Consumers
Setting the Window Size for Fast Consumers

10.1.3. Handling Slow Consumers
Setting the Window Size for Slow Consumers

10.1.4. Setting the Rate of Consuming Messages
Setting the Rate of Consuming Messages

10.2. PRODUCER FLOW CONTROL
10.2.1. Setting the Producer Window Size

Setting the Window Size
10.2.2. Blocking Messages

Configuring the Maximum Size for an Address
10.2.3. Blocking AMQP Messages

Configuring the Broker to Block AMQP Messages
10.2.4. Setting the Rate of Sending Messages

Setting the Rate of Sending Messages

CHAPTER 11. MESSAGE GROUPING
11.1. CLIENT-SIDE MESSAGE GROUPING
11.2. AUTOMATIC MESSAGE GROUPING

CHAPTER 12. DUPLICATE MESSAGE DETECTION

128
130

131
131
131
132
133
133
134
134
135
135
135
136

137
137
138
139
140

142
142
142
143
143
144
144

145
145
145
145
145
146
146
146
147
147
147
148
148
148
149
149
149
150
150

152
152
153

154

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

4

. .

. .

. .

. .

12.1. USING THE DUPLICATE ID MESSAGE PROPERTY
12.2. CONFIGURING THE DUPLICATE ID CACHE
12.3. DUPLICATE DETECTION AND TRANSACTIONS
12.4. DUPLICATE DETECTION AND CLUSTER CONNECTIONS

CHAPTER 13. INTERCEPTING MESSAGES
13.1. CREATING INTERCEPTORS
13.2. CONFIGURING THE BROKER TO USE INTERCEPTORS
13.3. INTERCEPTORS ON THE CLIENT SIDE

CHAPTER 14. DIVERTING MESSAGES AND SPLITTING MESSAGE FLOWS
14.1. HOW MESSAGE DIVERTS WORK
14.2. CONFIGURING MESSAGE DIVERTS

14.2.1. Exclusive divert example
14.2.2. Non-exclusive divert example

CHAPTER 15. FILTERING MESSAGES
15.1. CONFIGURING A QUEUE TO USE A FILTER
15.2. FILTERING JMS MESSAGE PROPERTIES

Configuring a Filter to Convert a String to a Number
15.3. FILTERING AMQP MESSAGES BASED ON PROPERTIES ON ANNOTATIONS

CHAPTER 16. SETTING UP A BROKER CLUSTER
16.1. UNDERSTANDING BROKER CLUSTERS

16.1.1. How broker clusters balance message load
16.1.2. How broker clusters improve reliability
16.1.3. Understanding node IDs
16.1.4. Common broker cluster topologies

Symmetric clusters
Chain clusters

16.1.5. Broker discovery methods
Dynamic discovery
Static discovery

16.1.6. Cluster sizing considerations
Messaging throughput
Topology
High availability

16.2. CREATING A BROKER CLUSTER
16.2.1. Creating a broker cluster with static discovery
16.2.2. Creating a broker cluster with UDP-based dynamic discovery
16.2.3. Creating a broker cluster with JGroups-based dynamic discovery

16.3. IMPLEMENTING HIGH AVAILABILITY
16.3.1. Understanding high availability

16.3.1.1. How live-backup groups provide high availability
16.3.1.2. High availability policies
16.3.1.3. Replication policy limitations

16.3.2. Configuring shared store high availability
16.3.2.1. Configuring an NFS shared store
16.3.2.2. Configuring shared store high availability

16.3.3. Configuring replication high availability
16.3.3.1. About quorum voting
16.3.3.2. Configuring a broker cluster for replication high availability

16.3.4. Configuring limited high availability with live-only
16.3.5. Configuring high availability with colocated backups

154
154
155
155

157
157
159
160

161
161
161

162
163

164
164
165
165
165

167
167
167
168
169
169
169
170
171
171
171
171
171
171
171
171
172
174
177
180
181
181
181

183
183
184
185
187
188
190
194
195

Table of Contents

5

. .

. .

. .

. .

. .

. .

. .

. .

16.3.6. Configuring clients to fail over
16.4. ENABLING MESSAGE REDISTRIBUTION

16.4.1. Understanding message redistribution
16.4.1.1. Limitations of message redistribution with message filters

16.4.2. Configuring message redistribution
16.5. CONFIGURING CLUSTERED MESSAGE GROUPING
16.6. CONNECTING CLIENTS TO A BROKER CLUSTER

CHAPTER 17. CONFIGURING A MULTI-SITE, FAULT-TOLERANT MESSAGING SYSTEM
17.1. HOW RED HAT CEPH STORAGE CLUSTERS WORK
17.2. INSTALLING RED HAT CEPH STORAGE
17.3. CONFIGURING A RED HAT CEPH STORAGE CLUSTER
17.4. MOUNTING THE CEPH FILE SYSTEM ON YOUR BROKER SERVERS
17.5. CONFIGURING BROKERS IN A MULTI-SITE, FAULT-TOLERANT MESSAGING SYSTEM

17.5.1. Adding backup brokers
17.5.2. Configuring brokers as Ceph clients
17.5.3. Configuring shared store high availability

17.6. CONFIGURING CLIENTS IN A MULTI-SITE, FAULT-TOLERANT MESSAGING SYSTEM
17.6.1. Configuring internal clients
17.6.2. Configuring external clients

17.7. VERIFYING STORAGE CLUSTER HEALTH DURING A DATA CENTER OUTAGE
17.8. MAINTAINING MESSAGING CONTINUITY DURING A DATA CENTER OUTAGE
17.9. RESTARTING A PREVIOUSLY FAILED DATA CENTER

17.9.1. Restarting storage cluster servers
17.9.2. Restarting broker servers
17.9.3. Reestablishing client connections

17.9.3.1. Reconnecting internal clients
17.9.3.2. Reconnecting external clients

CHAPTER 18. LOGGING
18.1. CHANGING THE LOGGING LEVEL
18.2. ENABLING AUDIT LOGGING
18.3. CONFIGURING CONSOLE LOGGING
18.4. CONFIGURING FILE LOGGING
18.5. CONFIGURING THE LOGGING FORMAT
18.6. CLIENT OR EMBEDDED SERVER LOGGING
18.7. AMQ BROKER PLUGIN SUPPORT

18.7.1. Adding plugins to the class path
18.7.2. Registering a plugin
18.7.3. Registering a plugin programmatically
18.7.4. Logging specific events

APPENDIX A. ACCEPTOR AND CONNECTOR CONFIGURATION PARAMETERS

APPENDIX B. ADDRESS SETTING CONFIGURATION ELEMENTS

APPENDIX C. CLUSTER CONNECTION CONFIGURATION ELEMENTS

APPENDIX D. COMMAND-LINE TOOLS

APPENDIX E. MESSAGING JOURNAL CONFIGURATION ELEMENTS

APPENDIX F. REPLICATION HIGH AVAILABILITY CONFIGURATION ELEMENTS

197
198
198
198
199

200
202

203
203
204
205
210
211
211
212
212
213
214
215
215
216
218
218
218
219
219
219

220
221
222
223
224
225
225
226
226
226
227
227

229

236

240

243

245

247

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

6

Table of Contents

7

CHAPTER 1. OVERVIEW
AMQ Broker configuration files define important settings for a broker instance. By editing a broker’s
configuration files, you can control how the broker operates in your environment.

1.1. AMQ BROKER CONFIGURATION FILES AND LOCATIONS

All of a broker’s configuration files are stored in <broker-instance-dir>/etc. You can configure a broker
by editing the settings in these configuration files.

Each broker instance uses the following configuration files:

broker.xml

The main configuration file. You use this file to configure most aspects of the broker, such as network
connections, security settings, message addresses, and so on.

bootstrap.xml

The file that AMQ Broker uses to start a broker instance. You use it to change the location of
broker.xml, configure the web server, and set some security settings.

logging.properties

You use this file to set logging properties for the broker instance.

artemis.profile

You use this file to set environment variables used while the broker instance is running.

login.config, artemis-users.properties, artemis-roles.properties

Security-related files. You use these files to set up authentication for user access to the broker
instance.

1.2. UNDERSTANDING THE DEFAULT BROKER CONFIGURATION

You configure most of a broker’s functionality by editing the broker.xml configuration file. This file
contains default settings, which are sufficient to start and operate a broker. However, you will likely need
to change some of the default settings and add new settings to configure the broker for your
environment.

By default, broker.xml contains default settings for the following functionality:

Message persistence

Acceptors

Security

Message addresses

Default message persistence settings
By default, AMQ Broker persistence uses an append-only file journal that consists of a set of files on
disk. The journal saves messages, transactions, and other information.

<configuration ...>

 <core ...>

 ...

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

8

 <persistence-enabled>true</persistence-enabled>

 <!-- this could be ASYNCIO, MAPPED, NIO
 ASYNCIO: Linux Libaio
 MAPPED: mmap files
 NIO: Plain Java Files
 -->
 <journal-type>ASYNCIO</journal-type>

 <paging-directory>data/paging</paging-directory>

 <bindings-directory>data/bindings</bindings-directory>

 <journal-directory>data/journal</journal-directory>

 <large-messages-directory>data/large-messages</large-messages-directory>

 <journal-datasync>true</journal-datasync>

 <journal-min-files>2</journal-min-files>

 <journal-pool-files>10</journal-pool-files>

 <journal-file-size>10M</journal-file-size>

 <!--
 This value was determined through a calculation.
 Your system could perform 8.62 writes per millisecond
 on the current journal configuration.
 That translates as a sync write every 115999 nanoseconds.

 Note: If you specify 0 the system will perform writes directly to the disk.
 We recommend this to be 0 if you are using journalType=MAPPED and journal-
datasync=false.
 -->
 <journal-buffer-timeout>115999</journal-buffer-timeout>

 <!--
 When using ASYNCIO, this will determine the writing queue depth for libaio.
 -->
 <journal-max-io>4096</journal-max-io>

 <!-- how often we are looking for how many bytes are being used on the disk in ms -->
 <disk-scan-period>5000</disk-scan-period>

 <!-- once the disk hits this limit the system will block, or close the connection in certain protocols
 that won't support flow control. -->
 <max-disk-usage>90</max-disk-usage>

 <!-- should the broker detect dead locks and other issues -->
 <critical-analyzer>true</critical-analyzer>

 <critical-analyzer-timeout>120000</critical-analyzer-timeout>

 <critical-analyzer-check-period>60000</critical-analyzer-check-period>

CHAPTER 1. OVERVIEW

9

Default acceptor settings
Brokers listen for incoming client connections by using an acceptor configuration element to define the
port and protocols a client can use to make connections. By default, AMQ Broker includes configuration
for an acceptor for each supported messaging protocol.

 <critical-analyzer-policy>HALT</critical-analyzer-policy>

 ...

 </core>

</configuration>

<configuration ...>

 <core ...>

 ...

 <acceptors>

 <!-- Acceptor for every supported protocol -->
 <acceptor name="artemis">tcp://0.0.0.0:61616?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=CORE,AMQP,STOMP,HORNE
TQ,MQTT,OPENWIRE;useEpoll=true;amqpCredits=1000;amqpLowCredits=300</acceptor>

 <!-- AMQP Acceptor. Listens on default AMQP port for AMQP traffic -->
 <acceptor name="amqp">tcp://0.0.0.0:5672?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=AMQP;useEpoll=true;amqpCre
dits=1000;amqpLowCredits=300</acceptor>

 <!-- STOMP Acceptor -->
 <acceptor name="stomp">tcp://0.0.0.0:61613?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=STOMP;useEpoll=true</acce
ptor>

 <!-- HornetQ Compatibility Acceptor. Enables HornetQ Core and STOMP for legacy HornetQ
clients. -->
 <acceptor name="hornetq">tcp://0.0.0.0:5445?
anycastPrefix=jms.queue.;multicastPrefix=jms.topic.;protocols=HORNETQ,STOMP;useEpoll=true</a
cceptor>

 <!-- MQTT Acceptor -->
 <acceptor name="mqtt">tcp://0.0.0.0:1883?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=MQTT;useEpoll=true</accept
or>

 </acceptors>

 ...

 </core>

</configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

10

Default security settings
AMQ Broker contains a flexible role-based security model for applying security to queues, based on
their addresses. The default configuration uses wildcards to apply the amq role to all addresses
(represented by the number sign, #).

Default message address settings
AMQ Broker includes a default address that establishes a default set of configuration settings to be
applied to any created queue or topic.

Additionally, the default configuration defines two queues: DLQ (Dead Letter Queue) handles
messages that arrive with no known destination, and Expiry Queue holds messages that have lived past
their expiration and therefore should not be routed to their original destination.

<configuration ...>

 <core ...>

 ...

 <security-settings>
 <security-setting match="#">
 <permission type="createNonDurableQueue" roles="amq"/>
 <permission type="deleteNonDurableQueue" roles="amq"/>
 <permission type="createDurableQueue" roles="amq"/>
 <permission type="deleteDurableQueue" roles="amq"/>
 <permission type="createAddress" roles="amq"/>
 <permission type="deleteAddress" roles="amq"/>
 <permission type="consume" roles="amq"/>
 <permission type="browse" roles="amq"/>
 <permission type="send" roles="amq"/>
 <!-- we need this otherwise ./artemis data imp wouldn't work -->
 <permission type="manage" roles="amq"/>
 </security-setting>
 </security-settings>

 ...

 </core>

</configuration>

<configuration ...>

 <core ...>

 ...

 <address-settings>
 ...
 <!--default for catch all-->
 <address-setting match="#">
 <dead-letter-address>DLQ</dead-letter-address>
 <expiry-address>ExpiryQueue</expiry-address>
 <redelivery-delay>0</redelivery-delay>
 <!-- with -1 only the global-max-size is in use for limiting -->

CHAPTER 1. OVERVIEW

11

1.3. RELOADING CONFIGURATION UPDATES

By default, a broker checks for changes in the configuration files every 5000 milliseconds. If the broker
detects a change in the "last modified" time stamp of the configuration file, the broker determines that
a configuration change took place. In this case, the broker reloads the configuration file to activate the
changes.

When the broker reloads the broker.xml configuration file, it reloads the following modules:

Address settings and queues
When the configuration file is reloaded, the address settings determine how to handle addresses
and queues that have been deleted from the configuration file. You can set this with the config-
delete-addresses and config-delete-queues properties. For more information, see
Appendix B, Address Setting Configuration Elements .

Security settings
SSL/TLS keystores and truststores on an existing acceptor can be reloaded to establish new
certificates without any impact to existing clients. Connected clients, even those with older or
differing certificates, can continue to send and receive messages.

Diverts
A configuration reload deploys any new divert that you have added. However, removal of a
divert from the configuration or a change to a sub-element within a <divert> element do not
take effect until you restart the broker.

The following procedure shows how to change the interval at which the broker checks for changes to
the broker.xml configuration file.

 <max-size-bytes>-1</max-size-bytes>
 <message-counter-history-day-limit>10</message-counter-history-day-limit>
 <address-full-policy>PAGE</address-full-policy>
 <auto-create-queues>true</auto-create-queues>
 <auto-create-addresses>true</auto-create-addresses>
 <auto-create-jms-queues>true</auto-create-jms-queues>
 <auto-create-jms-topics>true</auto-create-jms-topics>
 </address-setting>
 </address-settings>

 <addresses>
 <address name="DLQ">
 <anycast>
 <queue name="DLQ" />
 </anycast>
 </address>
 <address name="ExpiryQueue">
 <anycast>
 <queue name="ExpiryQueue" />
 </anycast>
 </address>
 </addresses>

 </core>

</configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

12

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Within the <core> element, add the <configuration-file-refresh-period> element and set the
refresh period (in milliseconds).
This example sets the configuration refresh period to be 60000 milliseconds:

1.4. MODULARIZING THE BROKER CONFIGURATION FILE

If you have multiple brokers that share common configuration settings, you can define the common
configuration in separate files, and then include these files in each broker’s broker.xml configuration
file.

The most common configuration settings that you might share between brokers include:

Addresses

Address settings

Security settings

Procedure

1. Create a separate XML file for each broker.xml section that you want to share.
Each XML file can only include a single section from broker.xml (for example, either addresses
or address settings, but not both). The top-level element must also define the element
namespace (xmlns="urn:activemq:core").

This example shows a security settings configuration defined in my-security-settings.xml:

my-security-settings.xml

2. Open the <broker-instance-dir>/etc/broker.xml configuration file for each broker that should
use the common configuration settings.

3. For each broker.xml file that you opened, do the following:

a. In the <configuration> element at the beginning of broker.xml, verify that the following

<configuration>
 <core>
 ...
 <configuration-file-refresh-period>60000</configuration-file-refresh-period>
 ...
 </core>
</configuration>

<security-settings xmlns="urn:activemq:core">
 <security-setting match="a1">
 <permission type="createNonDurableQueue" roles="a1.1"/>
 </security-setting>
 <security-setting match="a2">
 <permission type="deleteNonDurableQueue" roles="a2.1"/>
 </security-setting>
</security-settings>

CHAPTER 1. OVERVIEW

13

a. In the <configuration> element at the beginning of broker.xml, verify that the following
line appears:

b. Add an XML inclusion for each XML file that contains shared configuration settings.
This example includes the my-security-settings.xml file.

broker.xml

c. If desired, validate broker.xml to verify that the XML is valid against the schema.
You can use any XML validator program. This example uses xmllint to validate broker.xml
against the artemis-server.xsl schema.

$ xmllint --noout --xinclude --schema /opt/redhat/amq-broker/amq-broker-
7.2.0/schema/artemis-server.xsd /var/opt/amq-broker/mybroker/etc/broker.xml
/var/opt/amq-broker/mybroker/etc/broker.xml validates

Additional resources

For more information about XML Inclusions (XIncludes), see https://www.w3.org/TR/xinclude/.

1.4.1. Reloading modular configuration files

When the broker periodically checks for configuration changes (according to the frequency specified by
configuration-file-refresh-period), it does not automatically detect changes made to configuration
files that are included in the broker.xml configuration file via xi:include. For example, if broker.xml
includes my-address-settings.xml and you make configuration changes to my-address-settings.xml,
the broker does not automatically detect the changes in my-address-settings.xml and reload the
configuration.

To force a reload of the broker.xml configuration file and any modified configuration files included
within it, you must ensure that the "last modified" time stamp of the broker.xml configuration file has
changed. You can use a standard Linux touch command to update the last-modified time stamp of
broker.xml without making any other changes. For example:

$ touch -m <broker-instance-dir>/etc/broker.xml

1.5. DOCUMENT CONVENTIONS

This document uses the following conventions for the sudo command and file paths.

The sudo command
In this document, sudo is used for any command that requires root privileges. You should always
exercise caution when using sudo, as any changes can affect the entire system.

xmlns:xi="http://www.w3.org/2001/XInclude"

<configuration ...>
 <core ...>
 ...
 <xi:include href="/opt/my-broker-config/my-security-settings.xml"/>
 ...
 </core>
</configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

14

https://www.w3.org/TR/xinclude/

For more information about using sudo, see The sudo Command.

About the use of file paths in this document
In this document, all file paths are valid for Linux, UNIX, and similar operating systems (for example,
/home/...). If you are using Microsoft Windows, you should use the equivalent Microsoft Windows paths
(for example, C:\Users\...).

CHAPTER 1. OVERVIEW

15

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Gaining_Privileges-The_sudo_Command.html

CHAPTER 2. NETWORK CONNECTIONS: ACCEPTORS AND
CONNECTORS

There are two types of connections used in AMQ Broker: network and In-VM. Network connections are
used when the two parties are located in different virtual machines, whether on the same server or
physically remote. An In-VM connection is used when the client, whether an application or a server,
resides within the same virtual machine as the broker.

Network connections rely on Netty. Netty is a high-performance, low-level network library that allows
network connections to be configured in several different ways: using Java IO or NIO, TCP sockets,
SSL/TLS, even tunneling over HTTP or HTTPS. Netty also allows for a single port to be used for all
messaging protocols. A broker will automatically detect which protocol is being used and direct the
incoming message to the appropriate handler for further processing.

The URI within a network connection’s configuration determines its type. For example, using vm in the
URI will create an In-VM connection. In the example below, note that the URI of the acceptor starts with
vm.

Using tcp in the URI, alternatively, will create a network connection.

This chapter will first discuss the two configuration elements specific to network connections, Acceptors
and Connectors. Next, configuration steps for TCP, HTTP, and SSL/TLS network connections, as well as
In-VM connections, are explained.

2.1. ABOUT ACCEPTORS

One of the most important concepts when discussing network connections in AMQ Broker is the
acceptor. Acceptors define the way connections are made to the broker. Below is a typical configuration
for an acceptor that might be in found inside the configuration file
BROKER_INSTANCE_DIR/etc/broker.xml.

Note that each acceptor is grouped inside an acceptors element. There is no upper limit to the number
of acceptors you can list per server.

Configuring an Acceptor
You configure an acceptor by appending key-value pairs to the query string of the URI defined for the
acceptor. Use a semicolon (';') to separate multiple key-value pairs, as shown in the following example. It
configures an acceptor for SSL/TLS by adding multiple key-value pairs at the end of the URI, starting
with sslEnabled=true.

For details on connector configuration parameters, see Acceptor and Connector Configuration
Parameters.

<acceptor name="in-vm-example">vm://0</acceptor>

<acceptor name="network-example">tcp://localhost:61617</acceptor>

<acceptors>
 <acceptor name="example-acceptor">tcp://localhost:61617</acceptor>
</acceptors>

<acceptor name="example-acceptor">tcp://localhost:61617?sslEnabled=true;key-store-
path=/path</acceptor>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

16

http://netty.io/

2.2. ABOUT CONNECTORS

Whereas acceptors define how a server accepts connections, a connector is used by clients to define
how they can connect to a server.

Below is a typical connector as defined in the BROKER_INSTANCE_DIR/etc/broker.xml configuration
file:

Note that connectors are defined inside a connectors element. There is no upper limit to the number of
connectors per server.

Although connectors are used by clients, they are configured on the server just like acceptors. There are
a couple of important reasons why:

A server itself can act as a client and therefore needs to know how to connect to other servers.
For example, when one server is bridged to another or when a server takes part in a cluster.

A server is often used by JMS clients to look up connection factory instances. In these cases,
JNDI needs to know details of the connection factories used to create client connections. The
information is provided to the client when a JNDI lookup is performed. See Configuring a
Connection on the Client Side for more information.

Configuring a Connector
Like acceptors, connectors have their configuration attached to the query string of their URI. Below is an
example of a connector that has the tcpNoDelay parameter set to false, which turns off Nagle’s
algorithm for this connection.

For details on connector configuration parameters, see Acceptor and Connector Configuration
Parameters.

2.3. CONFIGURING A TCP CONNECTION

AMQ Broker uses Netty to provide basic, unencrypted, TCP-based connectivity that can be configured
to use blocking Java IO or the newer, non-blocking Java NIO. Java NIO is preferred for better scalability
with many concurrent connections. However, using the old IO can sometimes give you better latency
than NIO when you are less worried about supporting many thousands of concurrent connections.

If you are running connections across an untrusted network, remember that a TCP network connection is
unencrypted. You may want to consider using an SSL or HTTPS configuration to encrypt messages sent
over this connection if encryption is a priority. Refer to Section 5.1, “Securing connections” for details.
When using a TCP connection, all connections are initiated from the client side. In other words, the
server does not initiate any connections to the client, which works well with firewall policies that force
connections to be initiated from one direction.

For TCP connections, the host and the port of the connector’s URI defines the address used for the
connection.

Procedure

<connectors>
 <connector name="example-connector">tcp://localhost:61617</connector>
</connectors>

<connector name="example-connector">tcp://localhost:61616?tcpNoDelay=false</connector>

CHAPTER 2. NETWORK CONNECTIONS: ACCEPTORS AND CONNECTORS

17

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add or modify the connection and include a URI that uses tcp as the protocol. Be sure to
include both an IP or hostname as well as a port.

In the example below, an acceptor is configured as a TCP connection. A broker configured with this
acceptor will accept clients making TCP connections to the IP 10.10.10.1 and port 61617.

You configure a connector to use TCP in much the same way.

The connector above would be referenced by a client, or even the broker itself, when making a TCP
connection to the specified IP and port, 10.10.10.2:61617.

For details on available configuration parameters for TCP connections, see Acceptor and Connector
Configuration Parameters. Most parameters can be used either with acceptors or connectors, but some
only work with acceptors.

2.4. CONFIGURING AN HTTP CONNECTION

HTTP connections tunnel packets over the HTTP protocol and are useful in scenarios where firewalls
allow only HTTP traffic. With single port support, AMQ Broker will automatically detect if HTTP is being
used, so configuring a network connection for HTTP is the same as configuring a connection for TCP.
For a full working example showing how to use HTTP, see the http-transport example, located under
INSTALL_DIR/examples/features/standard/.

Procedure

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add or modify the connection and include a URI that uses tcp as the protocol. Be sure to
include both an IP or hostname as well as a port

In the example below, the broker will accept HTTP communications from clients connecting to port 80 at
the IP address 10.10.10.1. Furthermore, the broker will automatically detect that the HTTP protocol is in
use and will communicate with the client accordingly.

Configuring a connector for HTTP is again the same as for TCP.

<acceptors>
 <acceptor name="tcp-acceptor">tcp://10.10.10.1:61617</acceptor>
 ...
</acceptors>

<connectors>
 <connector name="tcp-connector">tcp://10.10.10.2:61617</connector>
 ...
</connectors>

<acceptors>
 <acceptor name="http-acceptor">tcp://10.10.10.1:80</acceptor>
 ...
</acceptors>

<connectors>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

18

Using the configuration in the example above, a broker will create an outbound HTTP connection to port
80 at the IP address 10.10.10.2.

An HTTP connection uses the same configuration parameters as TCP, but it also has some of its own.
For details on HTTP-related and other configuration parameters, see Acceptor and Connector
Configuration Parameters.

2.5. CONFIGURING AN SSL/TLS CONNECTION

You can also configure connections to use SSL/TLS. Refer to Section 5.1, “Securing connections” for
details.

2.6. CONFIGURING AN IN-VM CONNECTION

An In-VM connection can be used when multiple brokers are co-located in the same virtual machine, as
part of a high availability solution for example. In-VM connections can also be used by local clients
running in the same JVM as the server. For an in-VM connection, the authority part of the URI defines a
unique server ID. In fact, no other part of the URI is needed.

Procedure

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add or modify the connection and include a URI that uses vm as the protocol.

The example acceptor above tells the broker to accept connections from the server with an ID of 0. The
other server must be running in the same virtual machine as the broker.

Configuring a connector as an in-vm connection follows the same syntax.

The connector in the example above defines how clients establish an in-VM connection to the server
with an ID of 0 that resides in the same virtual machine. The client can be be an application or broker.

2.7. CONFIGURING A CONNECTION FROM THE CLIENT SIDE

Connectors are also used indirectly in client applications. You can configure the JMS connection factory
directly on the client side without having to define a connector on the server side:

 <connector name="http-connector">tcp://10.10.10.2:80</connector>
 ...
</connectors>

<acceptors>
 <acceptor name="in-vm-acceptor">vm://0</acceptor>
 ...
</acceptors>

<connectors>
 <connector name="in-vm-connector">vm://0</connector>
 ...
</connectors>

Map<String, Object> connectionParams = new HashMap<String, Object>();

CHAPTER 2. NETWORK CONNECTIONS: ACCEPTORS AND CONNECTORS

19

connectionParams.put(org.apache.activemq.artemis.core.remoting.impl.netty.TransportConstants.POR
T_PROP_NAME, 61617);

TransportConfiguration transportConfiguration =
 new TransportConfiguration(
 "org.apache.activemq.artemis.core.remoting.impl.netty.NettyConnectorFactory",
connectionParams);

ConnectionFactory connectionFactory =
ActiveMQJMSClient.createConnectionFactoryWithoutHA(JMSFactoryType.CF,
transportConfiguration);

Connection jmsConnection = connectionFactory.createConnection();

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

20

CHAPTER 3. NETWORK CONNECTIONS: PROTOCOLS
AMQ Broker has a pluggable protocol architecture, so that you can easily enable one or more protocols
for a network connection.

The broker supports the following protocols:

AMQP

MQTT

OpenWire

STOMP

NOTE

In addition to the protocols above, the broker also supports its own native protocol
known as "Core Protocol". Past versions of this protocol were known as "HornetQ" and
used by Red Hat JBoss Enterprise Application Platform.

3.1. CONFIGURING A NETWORK CONNECTION TO USE A PROTOCOL

You must associate a protocol with a network connection before you can use it. (See Network
Connections: Acceptors and Connectors for more information about how to create and configure
network connections.) The default configuration, located in the file
BROKER_INSTANCE_DIR/etc/broker.xml, includes several connections already defined. For
convenience, AMQ Broker includes an acceptor for each supported protocol, plus a default acceptor
that supports all protocols.

Overview of default acceptors
Shown below are the acceptors included by default in the broker.xml configuration file.

<configuration>
 <core>
 ...
 <acceptors>

 <!-- All-protocols acceptor -->
 <acceptor name="artemis">tcp://0.0.0.0:61616?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=CORE,AMQP,STOMP,HORNE
TQ,MQTT,OPENWIRE;useEpoll=true;amqpCredits=1000;amqpLowCredits=300</acceptor>

 <!-- AMQP Acceptor. Listens on default AMQP port for AMQP traffic -->
 <acceptor name="amqp">tcp://0.0.0.0:5672?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=AMQP;useEpoll=true;amqpCre
dits=1000;amqpLowCredits=300</acceptor>

 <!-- STOMP Acceptor -->
 <acceptor name="stomp">tcp://0.0.0.0:61613?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=STOMP;useEpoll=true</acce
ptor>

 <!-- HornetQ Compatibility Acceptor. Enables HornetQ Core and STOMP for legacy HornetQ
clients. -->

CHAPTER 3. NETWORK CONNECTIONS: PROTOCOLS

21

https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/configuring_amq_broker/#transports

The only requirement to enable a protocol on a given network connnection is to add the protocols
parameter to the URI for the acceptor. The value of the parameter must be a comma separated list of
protocol names. If the protocol parameter is omitted from the URI, all protocols are enabled.

For example, to create an acceptor for receiving messages on port 3232 using the AMQP protocol,
follow these steps:

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add the following line to the <acceptors> stanza:

Additional parameters in default acceptors
In a minimal acceptor configuration, you specify a protocol as part of the connection URI. However, the
default acceptors in the broker.xml configuration file have some additional parameters configured. The
following table details the additional parameters configured for the default acceptors.

Acceptor(s) Parameter Description

All-protocols
acceptor

AMQP

STOMP

tcpSendBufferSize Size of the TCP send buffer in bytes. The default value is 32768.

tcpReceiveBufferS
ize

Size of the TCP receive buffer in bytes. The default value is
32768.

TCP buffer sizes should be tuned according to the bandwidth
and latency of your network.

In summary TCP send/receive buffer sizes should be calculated
as:

buffer_size = bandwidth * RTT.

Where bandwidth is in bytes per second and network round trip
time (RTT) is in seconds. RTT can be easily measured using the
ping utility.

For fast networks you may want to increase the buffer sizes
from the defaults.

 <acceptor name="hornetq">tcp://0.0.0.0:5445?
anycastPrefix=jms.queue.;multicastPrefix=jms.topic.;protocols=HORNETQ,STOMP;useEpoll=true</a
cceptor>

 <!-- MQTT Acceptor -->
 <acceptor name="mqtt">tcp://0.0.0.0:1883?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=MQTT;useEpoll=true</accept
or>

 </acceptors>
 ...
 </core>
</configuration>

<acceptor name="ampq">tcp://0.0.0.0:3232?protocols=AMQP</acceptor>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

22

All-protocols
acceptor

AMQP

STOMP

HornetQ

MQTT

useEpoll Use Netty epoll if using a system (Linux) that supports it. The
Netty native transport offers better performance than the NIO
transport. The default value of this option is true. If you set the
option to false, NIO is used.

All-protocols
acceptor

AMQP

amqpCredits Maximum number of messages that an AMQP producer can
send, regardless of the total message size. The default value is
1000.

To learn more about how credits are used to control the flow of
AMQP messages, see Section 10.2.3, “Blocking AMQP
Messages”.

All-protocols
acceptor

AMQP

amqpLowCredits Lower threshold at which the broker replenishes producer
credits. The default value is 300. When the producer reaches this
threshold, the broker sends the producer sufficient credits to
restore the amqpCredits value.

To learn more about how credits are used to control the flow of
AMQP messages, see Section 10.2.3, “Blocking AMQP
Messages”.

HornetQ
compatibility
acceptor

anycastPrefix Prefix that clients use to specify the anycast routing type when
connecting to an address that uses both anycast and
multicast. The default value is jms.queue.

For more information about configuring a prefix to enable clients
to specify a routing type when connecting to an address, see
Section 4.6, “Adding a routing type to an acceptor
configuration”.

multicastPrefix Prefix that clients use to specify the multicast routing type
when connecting to an address that uses both anycast and
multicast. The default value is jms.topic.

For more information about configuring a prefix to enable clients
to specify a routing type when connecting to an address, see
Section 4.6, “Adding a routing type to an acceptor
configuration”.

Acceptor(s) Parameter Description

Additional resources

For information about other parameters that you can configure for Netty network connections,
see Appendix A, Acceptor and Connector Configuration Parameters .

CHAPTER 3. NETWORK CONNECTIONS: PROTOCOLS

23

3.2. USING AMQP WITH A NETWORK CONNECTION

The broker supports the AMQP 1.0 specification. An AMQP link is a uni-directional protocol for
messages between a source and a target, that is, a client and the broker.

Procedure

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add or configure an acceptor to receive AMQP clients by including the protocols parameter
with a value of AMQP as part of the URI, as shown in the following example:

In the preceding example, the broker accepts AMQP 1.0 clients on port 5672, which is the default AMQP
port.

An AMQP link has two endpoints, a sender and a receiver. When senders transmit a message, the broker
converts it into an internal format, so it can be forwarded to its destination on the broker. Receivers
connect to the destination at the broker and convert the messages back into AMQP before they are
delivered.

If an AMQP link is dynamic, a temporary queue is created and either the remote source or the remote
target address is set to the name of the temporary queue. If the link is not dynamic, the address of the
remote target or source is used for the queue. If the remote target or source does not exist, an
exception is sent.

A link target can also be a Coordinator, which is used to handle the underlying session as a transaction,
either rolling it back or committing it.

NOTE

AMQP allows the use of multiple transactions per session, amqp:multi-txns-per-ssn,
however the current version of AMQ Broker will support only single transactions per
session.

NOTE

The details of distributed transactions (XA) within AMQP are not provided in the 1.0
version of the specification. If your environment requires support for distributed
transactions, it is recommended that you use the AMQ Core Protocol JMS.

See the AMQP 1.0 specification for more information about the protocol and its features.

3.2.1. Using an AMQP Link as a Topic

Unlike JMS, the AMQP protocol does not include topics. However, it is still possible to treat AMQP
consumers or receivers as subscriptions rather than just consumers on a queue. By default, any receiving
link that attaches to an address with the prefix jms.topic. is treated as a subscription, and a subscription
queue is created. The subscription queue is made durable or volatile, depending on how the Terminus
Durability is configured, as captured in the following table:

<acceptors>
 <acceptor name="amqp-acceptor">tcp://localhost:5672?protocols=AMQP</acceptor>
 ...
</acceptors>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

24

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp

To create this kind of subscription for a multicast-
only queue…​

Set Terminus Durability to this…​

Durable UNSETTLED_STATE or CONFIGURATION

Non-durable NONE

NOTE

The name of a durable queue is composed of the container ID and the link name, for
example my-container-id:my-link-name.

AMQ Broker also supports the qpid-jms client and will respect its use of topics regardless of the prefix
used for the address.

3.2.2. Configuring AMQP Security

The broker supports AMQP SASL Authentication. See Security for more information about how to
configure SASL-based authentication on the broker.

3.3. USING MQTT WITH A NETWORK CONNECTION

The broker supports MQTT v3.1.1 (and also the older v3.1 code message format). MQTT is a lightweight,
client to server, publish/subscribe messaging protocol. MQTT reduces messaging overhead and network
traffic, as well as a client’s code footprint. For these reasons, MQTT is ideally suited to constrained
devices such as sensors and actuators and is quickly becoming the de facto standard communication
protocol for Internet of Things(IoT).

Procedure

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add an acceptor with the MQTT protocol enabled. For example:

MQTT comes with a number of useful features including:

Quality of Service

Each message can define a quality of service that is associated with it. The broker will attempt to
deliver messages to subscribers at the highest quality of service level defined.

Retained Messages

Messages can be retained for a particular address. New subscribers to that address receive the last-
sent retained message before any other messages, even if the retained message was sent before
the client connected.

Wild card subscriptions

MQTT addresses are hierarchical, similar to the hierarchy of a file system. Clients are able to

<acceptors>
 <acceptor name="mqtt">tcp://localhost:1883?protocols=MQTT</acceptor>
 ...
</acceptors>

CHAPTER 3. NETWORK CONNECTIONS: PROTOCOLS

25

MQTT addresses are hierarchical, similar to the hierarchy of a file system. Clients are able to
subscribe to specific topics or to whole branches of a hierarchy.

Will Messages

Clients are able to set a "will message" as part of their connect packet. If the client abnormally
disconnects, the broker will publish the will message to the specified address. Other subscribers
receive the will message and can react accordingly.

The best source of information about the MQTT protocol is in the specification. The MQTT v3.1.1
specification can be downloaded from the OASIS website.

3.4. USING OPENWIRE WITH A NETWORK CONNECTION

The broker supports the OpenWire protocol , which allows a JMS client to talk directly to a broker. Use
this protocol to communicate with older versions of AMQ Broker.

Currently AMQ Broker supports OpenWire clients that use standard JMS APIs only.

Procedure

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add or modify an acceptor so that it includes OPENWIRE as part of the protocol parameter, as
shown in the following example:

In the preceding example, the broker will listen on port 61616 for incoming OpenWire commands.

For more details, see the examples located under INSTALL_DIR/examples/protocols/openwire.

3.5. USING STOMP WITH A NETWORK CONNECTION

STOMP is a text-orientated wire protocol that allows STOMP clients to communicate with STOMP
Brokers. The broker supports STOMP 1.0, 1.1 and 1.2. STOMP clients are available for several languages
and platforms making it a good choice for interoperability.

Procedure

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Configure an existing acceptor or create a new one and include a protocols parameter with a
value of STOMP, as below.

In the preceding example, the broker accepts STOMP connections on the port 61613, which is the

<acceptors>
 <acceptor name="openwire-acceptor">tcp://localhost:61616?
protocols=OPENWIRE</acceptor>
 ...
</acceptors>

<acceptors>
 <acceptor name="stomp-acceptor">tcp://localhost:61613?protocols=STOMP</acceptor>
 ...
</acceptors>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

26

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://activemq.apache.org/openwire.html
http://stomp.github.com/

In the preceding example, the broker accepts STOMP connections on the port 61613, which is the
default.

See the stomp example located under INSTALL_DIR/examples/protocols for an example of how to
configure a broker with STOMP.

3.5.1. Knowing the Limitations When Using STOMP

When using STOMP, the following limitations apply:

1. The broker currently does not support virtual hosting, which means the host header in
CONNECT frames are ignored.

2. Message acknowledgements are not transactional. The ACK frame cannot be part of a
transaction, and it is ignored if its transaction header is set).

3.5.2. Providing IDs for STOMP Messages

When receiving STOMP messages through a JMS consumer or a QueueBrowser, the messages do not
contain any JMS properties, for example JMSMessageID, by default. However, you can set a message
ID on each incoming STOMP message by using a broker paramater.

Procedure

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Set the stompEnableMessageId parameter to true for the acceptor used for STOMP
connections, as shown in the following example:

By using the stompEnableMessageId parameter, each STOMP message sent using this acceptor has an
extra property added. The property key is amq-message-id and the value is a String representation of
an internal message id prefixed with “STOMP”, as shown in the following example:

amq-message-id : STOMP12345

If stompEnableMessageId is not specified in the configuration, the default value is false.

3.5.3. Setting a Connection’s Time to Live (TTL)

STOMP clients must send a DISCONNECT frame before closing their connections. This allows the
broker to close any server-side resources, such as sessions and consumers. However, if STOMP clients
exit without sending a DISCONNECT frame, or if they fail, the broker will have no way of knowing
immediately whether the client is still alive. STOMP connections therefore are configured to have a
"Time to Live" (TTL) of 1 minute. The means that the broker stops the connection to the STOMP client
if it has been idle for more than one minute.

Procedure

<acceptors>
 <acceptor name="stomp-acceptor">tcp://localhost:61613?
protocols=STOMP;stompEnableMessageId=true</acceptor>
 ...
</acceptors>

CHAPTER 3. NETWORK CONNECTIONS: PROTOCOLS

27

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add the connectionTTL parameter to URI of the acceptor used for STOMP connections, as
shown in the following example:

In the preceding example, any STOMP connection that using the stomp-acceptor will have its TTL set
to 20 seconds.

NOTE

Version 1.0 of the STOMP protocol does not contain any heartbeat frame. It is therefore
the user’s responsibility to make sure data is sent within connection-ttl or the broker will
assume the client is dead and clean up server-side resources. With version 1.1, you can use
heart-beats to maintain the life cycle of STOMP connections.

Overriding the Broker’s Default Time to Live (TTL)
As noted, the default TTL for a STOMP connection is one minute. You can override this value by adding
the connection-ttl-override attribute to the broker configuration.

Procedure

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add the connection-ttl-override attribute and provide a value in milliseconds for the new
default. It belongs inside the <core> stanza, as below.

In the preceding example, the default Time to Live (TTL) for a STOMP connection is set to 30000
milliseconds.

3.5.4. Sending and Consuming STOMP Messages from JMS

STOMP is mainly a text-orientated protocol. To make it simpler to interoperate with JMS, the STOMP
implementation checks for presence of the content-length header to decide how to map a STOMP
message to JMS.

If you want a STOMP message to map to a …​ The message should…​.

<acceptors>
 <acceptor name="stomp-acceptor">tcp://localhost:61613?
protocols=STOMP;connectionTTL=20000</acceptor>
 ...
</acceptors>

<configuration ...>
 ...
 <core ...>
 ...
 <connection-ttl-override>30000</connection-ttl-override>
 ...
 </core>
<configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

28

JMS TextMessage Not include a content-length
header.

JMS BytesMessage Include a content-length header.

If you want a STOMP message to map to a …​ The message should…​.

The same logic applies when mapping a JMS message to STOMP. A STOMP client can confirm the
presence of the content-length header to determine the type of the message body (string or bytes).

See the STOMP specification for more information about message headers.

3.5.5. Mapping STOMP Destinations to AMQ Broker Addresses and Queues

When sending messages and subscribing, STOMP clients typically include a destination header.
Destination names are string values, which are mapped to a destination on the broker. In AMQ Broker,
these destinations are mapped to addresses and queues. See the STOMP specification for more
information about the destination frame.

Take for example a STOMP client that sends the following message (headers and body included):

SEND
destination:/my/stomp/queue

hello queue a
^@

In this case, the broker will forward the message to any queues associated with the address
/my/stomp/queue.

For example, when a STOMP client sends a message (by using a SEND frame), the specified destination
is mapped to an address.

It works the same way when the client sends a SUBSCRIBE or UNSUBSCRIBE frame, but in this case
AMQ Broker maps the destination to a queue.

SUBSCRIBE
destination: /other/stomp/queue
ack: client

^@

In the preceding example, the broker will map the destination to the queue /other/stomp/queue.

Mapping STOMP Destinations to JMS Destinations
JMS destinations are also mapped to broker addresses and queues. If you want to use STOMP to send
messages to JMS destinations, the STOMP destinations must follow the same convention:

Send or subscribe to a JMS Queue by prepending the queue name by jms.queue.. For example,
to send a message to the orders JMS Queue, the STOMP client must send the frame:

SEND

CHAPTER 3. NETWORK CONNECTIONS: PROTOCOLS

29

https://stomp.github.io/
https://stomp.github.io/

destination:jms.queue.orders
hello queue orders
^@

Send or subscribe to a JMS Topic by prepending the topic name by jms.topic.. For example, to
subscribe to the stocks JMS Topic, the STOMP client must send a frame similar to the
following:

SUBSCRIBE
destination:jms.topic.stocks
^@

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

30

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

4.1. ADDRESSES, QUEUES, AND ROUTING TYPES

In AMQ Broker, the addressing model comprises three main concepts; addresses, queues, and routing
types.

An address represents a messaging endpoint. Within the configuration, a typical address is given a
unique name, one or more queues, and a routing type.

A queue is associated with an address. There can be multiple queues per address. Once an incoming
message is matched to an address, the message is sent on to one or more of its queues, depending on
the routing type configured. Queues can be configured to be automatically created and deleted. You
can also configure an address (and hence its associated queues) as durable. Messages in a durable
queue can survive a crash or restart of the broker, as long as the messages in the queue are also
persistent. By contrast, messages in a non-durable queue do not survive a crash or restart of the broker,
even if the messages themselves are persistent.

A routing type determines how messages are sent to the queues associated with an address. In AMQ
Broker, you can configure an address with two different routing types, as shown in the table.

If you want your messages routed to…​ Use this routing type…​

A single queue within the matching address, in a point-to-point
manner

anycast

Every queue within the matching address, in a publish-subscribe
manner

multicast

NOTE

An address must have at least one defined routing type.

It is possible to define more than one routing type per address, but this is not
recommended.

If an address does have both routing types defined, and the client does not show a
preference for either one, the broker defaults to the multicast routing type.

Additional resources

For more information about configuring:

Point-to-point messaging using the anycast routing type, see Section 4.3, “Configuring
addresses for point-to-point messaging”

Publish-subscribe messaging using the multicast routing type, see Section 4.4,
“Configuring addresses for publish-subscribe messaging”

4.1.1. Address and queue naming requirements

Be aware of the following requirements when you configure addresses and queues:

To ensure that a client can connect to a queue, regardless of which wire protocol the client uses,

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

31

To ensure that a client can connect to a queue, regardless of which wire protocol the client uses,
your address and queue names should not include any of the following characters:
& :: , ? >

The number sign (#) and asterisk (*) characters are reserved for wildcard expressions and should
not be used in address and queue names. For more information, see Section 4.2.1, “AMQ Broker
wildcard syntax”.

Address and queue names should not include spaces.

To separate words in an address or queue name, use the configured delimiter character. The
default delimiter character is a period (.). For more information, see Section 4.2.1, “AMQ Broker
wildcard syntax”.

4.2. APPLYING ADDRESS SETTINGS TO SETS OF ADDRESSES

In AMQ Broker, you can apply the configuration specified in an address-setting element to a set of
addresses by using a wildcard expression to represent the matching address name.

The following sections describe how to use wildcard expressions.

4.2.1. AMQ Broker wildcard syntax

AMQ Broker uses a specific syntax for representing wildcards in address settings. Wildcards can also be
used in security settings, and when creating consumers.

A wildcard expression contains words delimited by a period (.).

The number sign (#) and asterisk (*) characters also have special meaning and can take the
place of a word, as follows:

The number sign character means "match any sequence of zero or more words". Use this at
the end of your expression.

The asterisk character means "match a single word". Use this anywhere within your
expression.

Matching is not done character by character, but at each delimiter boundary. For example, an address-
setting element that is configured to match queues with my in their name would not match with a
queue named myqueue.

When more than one address-setting element matches an address, the broker overlays configurations,
using the configuration of the least specific match as the baseline. Literal expressions are more specific
than wildcards, and an asterisk (*) is more specific than a number sign (#). For example, both
my.destination and my.* match the address my.destination. In this case, the broker first applies the
configuration found under my.*, since a wildcard expression is less specific than a literal. Next, the
broker overlays the configuration of the my.destination address setting element, which overwrites any
configuration shared with my.*. For example, given the following configuration, a queue associated with
my.destination has max-delivery-attempts set to 3 and last-value-queue set to false.

<address-setting match="my.*">
 <max-delivery-attempts>3</max-delivery-attempts>
 <last-value-queue>true</last-value-queue>
</address-setting>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

32

The examples in the following table illustrate how wildcards are used to match a set of addresses.

Example Description

The default address-setting used in broker.xml. Matches every address.
You can continue to apply this catch-all, or you can add a new address-
setting for each address or group of addresses as the need arises.

news.europe.# Matches news.europe, news.europe.sport, news.europe.politics.fr,
but not news.usa or europe.

news.* Matches news.europe and news.usa, but not news.europe.sport.

news.*.sport Matches news.europe.sport and news.usa.sport, but not
news.europe.fr.sport.

4.2.2. Configuring the broker wildcard syntax

The following procedure show how to customize the syntax used for wildcard addresses.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Add a <wildcard-addresses> section to the configuration, as in the example below.

enabled

When set to true, instruct the broker to use your custom settings.

delimiter

Provide a custom character to use as the delimiter instead of the default, which is ..

any-words

The character provided as the value for any-words is used to mean 'match any sequence of
zero or more words' and will replace the default #. Use this character at the end of your
expression.

<address-setting match="my.destination">
 <last-value-queue>false</last-value-queue>
</address-setting>

<configuration>
 <core>
 ...
 <wildcard-addresses> //
 <enabled>true</enabled> //
 <delimiter>,</delimiter> //
 <any-words>@</any-words> //
 <single-word>$</single-word>
 </wildcard-addresses>
 ...
 </core>
</configuration>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

33

single-word

The character provided as the value for single-word is used to mean 'match a single word'
and will replaced the default *. Use this character anywhere within your expression.

4.3. CONFIGURING ADDRESSES FOR POINT-TO-POINT MESSAGING

Point-to-point messaging is a common scenario in which a message sent by a producer has only one
consumer. AMQP and JMS message producers and consumers can make use of point-to-point
messaging queues, for example. To ensure that the queues associated with an address receive
messages in a point-to-point manner, you define an anycast routing type for the given address
element in your broker configuration.

When a message is received on an address using anycast, the broker locates the queue associated with
the address and routes the message to it. A consumer might then request to consume messages from
that queue. If multiple consumers connect to the same queue, messages are distributed between the
consumers equally, provided that the consumers are equally able to handle them.

The following figure shows an example of point-to-point messaging.

Message 1-N

4.3.1. Configuring basic point-to-point messaging

The following procedure shows how to configure an address with a single queue for point-to-point
messaging.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Wrap an anycast configuration element around the chosen queue element of an address.
Ensure that the values of the name attribute for both the address and queue elements are the
same. For example:

<configuration ...>
 <core ...>
 ...
 <address name="my.anycast.destination">
 <anycast>
 <queue name="my.anycast.destination"/>
 </anycast>
 </address>
 </core>
</configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

34

4.3.2. Configuring point-to-point messaging for multiple queues

You can define more than one queue on an address that uses an anycast routing type. The broker
distributes messages sent to an anycast address evenly across all associated queues. By specifying a
Fully Qualified Queue Name (FQQN), you can connect a client to a specific queue. If more than one
consumer connects to the same queue, the broker distributes messages evenly between the consumers.

The following figure shows an example of point-to-point messaging using two queues.

Message 1-N

The following procedure shows how to configure point-to-point messaging for an address that has
multiple queues.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Wrap an anycast configuration element around the queue elements in the address element.
For example:

If you have a configuration such as that shown above mirrored across multiple brokers in a cluster, the
cluster can load-balance point-to-point messaging in a way that is opaque to producers and consumers.
The exact behavior depends on how the message load balancing policy is configured for the cluster.

Additional resources

For more information about:

Specifying Fully Qualified Queue Names, see Section 4.9, “Specifying a fully qualified
queue name”.

How to configure message load balancing for a broker cluster, see Section 16.1.1, “How
broker clusters balance message load”.

<configuration ...>
 <core ...>
 ...
 <address name="my.anycast.destination">
 <anycast>
 <queue name="q1"/>
 <queue name="q2"/>
 </anycast>
 </address>
 </core>
</configuration>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

35

4.4. CONFIGURING ADDRESSES FOR PUBLISH-SUBSCRIBE
MESSAGING

In a publish-subscribe scenario, messages are sent to every consumer subscribed to an address. JMS
topics and MQTT subscriptions are two examples of publish-subscribe messaging. To ensure that the
queues associated with an address receive messages in a publish-subscribe manner, you define a
multicast routing type for the given address element in your broker configuration.

When a message is received on an address with a multicast routing type, the broker routes a copy of the
message to each queue associated with the address. To reduce the overhead of copying, each queue is
sent only a reference to the message, and not a full copy.

The following figure shows an example of publish-subscribe messaging.

Message 1-N

The following procedure shows how to configure an address for publish-subscribe messaging.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Add an empty multicast configuration element to the address.

3. (Optional) Add one or more queue elements to the address and wrap the multicast element
around them. This step is typically not needed since the broker automatically creates a queue
for each subscription requested by a client.

<configuration ...>
 <core ...>
 ...
 <address name="my.multicast.destination">
 <multicast/>
 </address>
 </core>
</configuration>

<configuration ...>
 <core ...>
 ...
 <address name="my.multicast.destination">
 <multicast>
 <queue name="client123.my.multicast.destination"/>
 <queue name="client456.my.multicast.destination"/>
 </multicast>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

36

4.5. CONFIGURING AN ADDRESS FOR BOTH POINT-TO-POINT AND
PUBLISH-SUBSCRIBE MESSAGING

You can also configure an address with both point-to-point and publish-subscribe semantics.

Configuring an address that uses both point-to-point and publish-subscribe semantics is not typically
recommended. However, it can be useful when you want, for example, a JMS queue named orders and a
JMS topic also named orders. The different routing types make the addresses appear to be distinct for
client connections. In this situation, messages sent by a JMS queue producer use the anycast routing
type. Messages sent by a JMS topic producer use the multicast routing type. When a JMS topic
consumer connects to the broker, it is attached to its own subscription queue. A JMS queue consumer,
however, is attached to the anycast queue.

The following figure shows an example of point-to-point and publish-subscribe messaging used
together.

Broker

The following procedure shows how to configure an address for both point-to-point and publish-
subscribe messaging.

NOTE

The behavior in this scenario is dependent on the protocol being used. For JMS, there is a
clear distinction between topic and queue producers and consumers, which makes the
logic straightforward. Other protocols like AMQP do not make this distinction. A message
being sent via AMQP is routed by both anycast and multicast and consumers default to
anycast. For more information, see Chapter 3, Network Connections: Protocols.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Wrap an anycast configuration element around the queue elements in the address element.
For example:

 </address>
 </core>
</configuration>

<configuration ...>
 <core ...>
 ...
 <address name="orders">
 <anycast>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

37

3. Add an empty multicast configuration element to the address.

NOTE

Typically, the broker creates subscription queues on demand, so there is no need
to list specific queue elements inside the multicast element.

4.6. ADDING A ROUTING TYPE TO AN ACCEPTOR CONFIGURATION

Normally, if a message is received by an address that uses both anycast and multicast, one of the
anycast queues receives the message and all of the multicast queues. However, clients can specify a
special prefix when connecting to an address to specify whether to connect using anycast or multicast.
The prefixes are custom values that are designated using the anycastPrefix and multicastPrefix
parameters within the URL of an acceptor in the broker configuration.

The following procedure shows how to configure prefixes for a given acceptor.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. For a given acceptor, to configure an anycast prefix, add anycastPrefix to the configured URL.
Set a custom value. For example:

Based on the preceding configuration, the acceptor is configured to use anycast:// for the

 <queue name="orders"/>
 </anycast>
 </address>
 </core>
</configuration>

<configuration ...>
 <core ...>
 ...
 <address name="orders">
 <anycast>
 <queue name="orders"/>
 </anycast>
 <multicast/>
 </address>
 </core>
</configuration>

<configuration ...>
 <core ...>
 ...
 <acceptors>
 <!-- Acceptor for every supported protocol -->
 <acceptor name="artemis">tcp://0.0.0.0:61616?
protocols=AMQP;anycastPrefix=anycast://</acceptor>
 </acceptors>
 ...
 </core>
</configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

38

Based on the preceding configuration, the acceptor is configured to use anycast:// for the
anycast prefix. Client code can specify anycast://<my.destination>/ if the client needs to send
a message to only one of the anycast queues.

3. For a given acceptor, to configure a multicast prefix, add multicastPrefix to the configured
URL. Set a custom value. For example:

Based on the preceding configuration, the acceptor is configured to use multicast:// for the
multicast prefix. Client code can specify multicast://<my.destination>/ if the client needs the
message sent to only the multicast queues.

4.7. CONFIGURING SUBSCRIPTION QUEUES

In most cases, it is not necessary to manually create subscription queues because protocol managers
create subscription queues automatically when clients first request to subscribe to an address. See
Section 4.8.3, “Protocol managers and addresses” for more information. For durable subscriptions, the
generated queue name is usually a concatenation of the client ID and the address.

The following sections show how to manually create subscription queues, when required.

4.7.1. Configuring a durable subscription queue

When a queue is configured as a durable subscription, the broker saves messages for any inactive
subscribers and delivers them to the subscribers when they reconnect. Therefore, a client is guaranteed
to receive each message delivered to the queue after subscribing to it.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Add the durable configuration element to a chosen queue. Set a value of true.

<configuration ...>
 <core ...>
 ...
 <acceptors>
 <!-- Acceptor for every supported protocol -->
 <acceptor name="artemis">tcp://0.0.0.0:61616?
protocols=AMQP;multicastPrefix=multicast://</acceptor>
 </acceptors>
 ...
 </core>
</configuration>

<configuration ...>
 <core ...>
 ...
 <address name="my.durable.address">
 <multicast>
 <queue name="q1">
 <durable>true</durable>
 </queue>
 </multicast>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

39

NOTE

Because queues are durable by default, including the durable element and
setting the value to true is not strictly necessary to create a durable queue.
However, explicitly including the element enables you to later change the
behavior of the queue to non-durable, if necessary.

4.7.2. Configuring a non-shared durable subscription queue

The broker can be configured to prevent more than one consumer from connecting to a queue at any
one time. Therefore, subscriptions to queues configured this way are regarded as "non-shared".

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Add the durable configuration element to each chosen queue. Set a value of true.

NOTE

Because queues are durable by default, including the durable element and
setting the value to true is not strictly necessary to create a durable queue.
However, explicitly including the element enables you to later change the
behavior of the queue to non-durable, if necessary.

3. Add the max-consumers attribute to each chosen queue. Set a value of 1.

 </address>
 </core>
</configuration>

<configuration ...>
 <core ...>
 ...
 <address name="my.non.shared.durable.address">
 <multicast>
 <queue name="orders1">
 <durable>true</durable>
 </queue>
 <queue name="orders2">
 <durable>true</durable>
 </queue>
 </multicast>
 </address>
 </core>
</configuration>

<configuration ...>
 <core ...>
 ...
 <address name="my.non.shared.durable.address">
 <multicast>
 <queue name="orders1" max-consumers="1">
 <durable>true</durable>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

40

4.7.3. Configuring a non-durable subscription queue

Non-durable subscriptions are usually managed by the relevant protocol manager, which creates and
deletes temporary queues.

However, if you want to manually create a queue that behaves like a non-durable subscription queue,
you can use the purge-on-no-consumers attribute on the queue. When purge-on-no-consumers is
set to true, the queue does not start receiving messages until a consumer is connected. In addition, when
the last consumer is disconnected from the queue, the queue is purged (that is, its messages are
removed). The queue does not receive any further messages until a new consumer is connected to the
queue.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Add the purge-on-no-consumers attribute to each chosen queue. Set a value of true.

4.8. CREATING AND DELETING ADDRESSES AND QUEUES
AUTOMATICALLY

You can configure the broker to automatically create addresses and queues, and to delete them after
they are no longer in use. This saves you from having to pre-configure each address before a client can
connect to it.

4.8.1. Configuration options for automatic queue creation and deletion

The following table lists the configuration elements available when configuring an address-setting
element to automatically create and delete queues and addresses.

 </queue>
 <queue name="orders2" max-consumers="1">
 <durable>true</durable>
 </queue>
 </multicast>
 </address>
 </core>
</configuration>

<configuration ...>
 <core ...>
 ...
 <address name="my.non.durable.address">
 <multicast>
 <queue name="orders1" purge-on-no-consumers="true"/>
 </multicast>
 </address>
 </core>
</configuration>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

41

If you want the address-setting to…​ Add this configuration…​

Create addresses when a client sends a message to or attempts to consume
a message from a queue mapped to an address that does not exist.

auto-create-addresses

Create a queue when a client sends a message to or attempts to consume a
message from a queue.

auto-create-queues

Delete an automatically created address when it no longer has any queues. auto-delete-addresses

Delete an automatically created queue when the queue has 0 consumers
and 0 messages.

auto-delete-queues

Use a specific routing type if the client does not specify one. default-address-routing-
type

4.8.2. Configuring automatic creation and deletion of addresses and queues

The following procedure shows how to configure automatic creation and deletion of addresses and
queues.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Configure an address-setting for automatic creation and deletion. The following example uses
all of the configuration elements mentioned in the previous table.

address-setting

The configuration of the address-setting element is applied to any address or queue that
matches the wildcard address activemq.#.

auto-create-addresses

When a client requests to connect to an address that does not yet exist, the broker creates
the address.

auto-delete-addresses

<configuration ...>
 <core ...>
 ...
 <address-settings>
 <address-setting match="activemq.#">
 <auto-create-addresses>true</auto-create-addresses>
 <auto-delete-addresses>true</auto-delete-addresses>
 <auto-create-queues>true</auto-create-queues>
 <auto-delete-queues>true</auto-delete-queues>
 <default-address-routing-type>ANYCAST</default-address-routing-type>
 </address-setting>
 </address-settings>
 ...
 </core>
</configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

42

An automatically created address is deleted when it no longer has any queues associated
with it.

auto-create-queues

When a client requests to connect to a queue that does not yet exist, the broker creates the
queue.

auto-delete-queues

An automatically created queue is deleted when it no longer has any consumers or messages.

default-address-routing-type

If the client does not specify a routing type when connecting, the broker uses ANYCAST
when delivering messages to an address. The default value is MULTICAST.

Additional resources

For more information about:

The wildcard syntax that you can use when configuring addresses, see Section 4.2,
“Applying address settings to sets of addresses”.

Routing types, see Section 4.1, “Addresses, queues, and routing types” .

4.8.3. Protocol managers and addresses

A component called a protocol manager maps protocol-specific concepts to concepts used in the AMQ
Broker address model; queues and routing types. In certain situations, a protocol manager might
automatically create queues on the broker.

For example, when a client sends an MQTT subscription packet with the addresses /house/room1/lights
and /house/room2/lights, the MQTT protocol manager understands that the two addresses require
multicast semantics. Therefore, the protocol manager first looks to ensure that multicast is enabled for
both addresses. If not, it attempts to dynamically create them. If successful, the protocol manager then
creates special subscription queues for each subscription requested by the client.

Each protocol behaves slightly differently. The table below describes what typically happens when
subscribe frames to various types of queue are requested.

If the queue is of this
type…​

The typical action for a protocol manager is to…​

Durable subscription
queue

Look for the appropriate address and ensures that multicast semantics is
enabled. It then creates a special subscription queue with the client ID and the
address as its name and multicast as its routing type.

The special name allows the protocol manager to quickly identify the required
client subscription queues should the client disconnect and reconnect at a later
date.

When the client unsubscribes the queue is deleted.

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

43

Temporary subscription
queue

Look for the appropriate address and ensures that multicast semantics is
enabled. It then creates a queue with a random (read UUID) name under this
address with multicast routing type.

When the client disconnects the queue is deleted.

Point-to-point queue Look for the appropriate address and ensures that anycast routing type is
enabled. If it is, it aims to locate a queue with the same name as the address. If it
does not exist, it looks for the first queue available. It this does not exist then it
automatically creates the queue (providing auto create is enabled). The queue
consumer is bound to this queue.

If the queue is auto created, it is automatically deleted once there are no
consumers and no messages in it.

If the queue is of this
type…​

The typical action for a protocol manager is to…​

4.9. SPECIFYING A FULLY QUALIFIED QUEUE NAME

Internally, the broker maps a client’s request for an address to specific queues. The broker decides on
behalf of the client to which queues to send messages, or from which queue to receive messages.
However, more advanced use cases might require that the client specifies a queue name directly. In
these situations the client can use a fully qualified queue name (FQQN). An FQQN includes both the
address name and the queue name, separated by a ::.

The following procedure shows how to specify an FQQN when connecting to an address with multiple
queues.

Prerequisites

You have an address configured with two or more queues, as shown in the example below.

Procedure

In the client code, use both the address name and the queue name when requesting a
connection from the broker. Use two colons, ::, to separate the names. For example:

<configuration ...>
 <core ...>
 ...
 <addresses>
 <address name="my.address">
 <anycast>
 <queue name="q1" />
 <queue name="q2" />
 </anycast>
 </address>
 </addresses>
 </core>
</configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

44

4.10. CONFIGURING SHARDED QUEUES

A common pattern for processing of messages across a queue where only partial ordering is required is
to use queue sharding. This means that you define an anycast address that acts as a single logical
queue, but which is backed by many underlying physical queues.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Add an address element and set the name attribute. For example:

3. Add the anycast routing type and include the desired number of sharded queues. In the
example below, the queues q1, q2, and q3 are added as anycast destinations.

Based on the preceding configuration, messages sent to my.sharded.address are distributed equally
across q1, q2 and q3. Clients are able to connect directly to a specific physical queue when using a Fully
Qualified Queue Name (FQQN). and receive messages sent to that specific queue only.

To tie particular messages to a particular queue, clients can specify a message group for each message.
The broker routes grouped messages to the same queue, and one consumer processes them all.

Additional resources

For more information about:

String FQQN = "my.address::q1";
Queue q1 session.createQueue(FQQN);
MessageConsumer consumer = session.createConsumer(q1);

<configuration ...>
 <core ...>
 ...
 <addresses>
 <address name="my.sharded.address"></address>
 </addresses>
 </core>
</configuration>

<configuration ...>
 <core ...>
 ...
 <addresses>
 <address name="my.sharded.address">
 <anycast>
 <queue name="q1" />
 <queue name="q2" />
 <queue name="q3" />
 </anycast>
 </address>
 </addresses>
</core>
</configuration>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

45

Fully Qualified Queue Names, see Section 4.9, “Specifying a fully qualified queue name”

Message grouping, see Chapter 11, Message Grouping

4.11. CONFIGURING LAST VALUE QUEUES

A last value queue is a type of queue that discards messages in the queue when a newer message with
the same last value key value is placed in the queue. Through this behavior, last value queues retain only
the last values for messages of the same key.

A simple use case for a last value queue is for monitoring stock prices, where only the latest value for a
particular stock is of interest.

NOTE

If a message without a configured last value key is sent to a last value queue, the broker
handles this message as a "normal" message. Such messages are not purged from the
queue when a new message with a configured last value key arrives.

You can configure last value queues individually, or for all of the queues associated with a set of
addresses.

The following procedures show how to configure last value queues in these ways.

4.11.1. Configuring last value queues individually

The following procedure shows to configure last value queues individually.

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. For a given queue, add the last-value-key key and specify a custom value. For example:

3. Alternatively, you can configure a last value queue that uses the default last value key name of
_AMQ_LVQ_NAME. To do this, add the last-value key to a given queue. Set the value to true.
For example:

4.11.2. Configuring last value queues for addresses

The following procedure shows to configure last value queues for an address or set of addresses.

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. In the address-setting element, for a matching address, add default-last-value-key. Specify a

<address name="my.address">
 <multicast>
 <queue name="prices1" last-value-key="stock_ticker"/>
 </multicast>
</address>

<address name="my.address">
 <multicast>
 <queue name="prices1" last-value="true"/>
 </multicast>
</address>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

46

2. In the address-setting element, for a matching address, add default-last-value-key. Specify a
custom value. For example:

Based on the preceding configuration, all queues associated with the lastValue address use a
last value key of stock_ticker. By default, the value of default-last-value-key is not set.

3. To configure last value queues for a set of addresses, you can specify an address wildcard. For
example:

4. Alternatively, you can configure all queues associated with an address or set of addresses to use
the default last value key name of _AMQ_LVQ_NAME. To do this, add default-last-value-
queue instead of default-last-value-key. Set the value to true. For example:

Additional resources

For more information about the wildcard syntax that you can use when configuring addresses,
see Section 4.2, “Applying address settings to sets of addresses” .

4.11.3. Example of last value queue behavior

This example shows the behavior of a last value queue.

In your broker.xml configuration file, suppose that you have added configuration that looks like the
following:

The preceding configuration creates a queue called prices1, with a last value key of stock_ticker.

Now, suppose that a client sends two messages. Each message has the same value of ATN for the
property stock_ticker. Each message has a different value for a property called stock_price. Each
message is sent to the same queue, prices1.

<address-setting match="lastValue">
 <default-last-value-key>stock_ticker</default-last-value-key>
</address-setting>

<address-setting match="lastValue.*">
 <default-last-value-key>stock_ticker</default-last-value-key>
</address-setting>

<address-setting match="lastValue">
 <default-last-value-queue>true</default-last-value-queue>
</address-setting>

<address name="my.address">
 <multicast>
 <queue name="prices1" last-value-key="stock_ticker"/>
 </multicast>
</address>

TextMessage message = session.createTextMessage("First message with last value property set");
message.setStringProperty("stock_ticker", "ATN");
message.setStringProperty("stock_price", "36.83");
producer.send(message);

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

47

When two messages with the same value for the stock_ticker last value key (in this case, ATN) arrive to
the prices1 queue, only the latest message remains in the queue, with the first message being purged.
At the command line, you can enter the following lines to validate this behavior:

In this example, the output you see is the second message, since both messages use the same value for
the last value key and the second message was received in the queue after the first.

4.11.4. Enforcing non-destructive consumption for last value queues

When a consumer connects to a queue, the normal behavior is that messages sent to that consumer are
acquired exclusively by the consumer. When the consumer acknowledges receipt of the messages, the
broker removes the messages from the queue.

As an alternative to the normal consumption behaviour, you can configure a queue to enforce non-
destructive consumption. In this case, when a queue sends a message to a consumer, the message can
still be received by other consumers. In addition, the message remains in the queue even when a
consumer has consumed it. When you enforce this non-destructive consumption behavior, the
consumers are known as queue browsers.

Enforcing non-destructive consumption is a useful configuration for last value queues, because it
ensures that the queue always holds the latest value for a particular last value key.

The following procedure shows how to enforce non-destructive consumption for a last value queue.

Prerequisites

You have already configured last-value queues individually, or for all queues associated with an
address or set of addresses. For more information, see:

Section 4.11.1, “Configuring last value queues individually”

Section 4.11.2, “Configuring last value queues for addresses”

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. If you previously configured a queue individually as a last value queue, add the non-destructive
key. Set the value to true. For example:

3. If you previously configured an address or set of addresses for last value queues, add the

TextMessage message = session.createTextMessage("Second message with last value property
set");
message.setStringProperty("stock_ticker", "ATN");
message.setStringProperty("stock_price", "37.02");
producer.send(message);

TextMessage messageReceived = (TextMessage)messageConsumer.receive(5000);
System.out.format("Received message: %s\n", messageReceived.getText());

<address name="my.address">
 <multicast>
 <queue name="orders1" last-value-key="stock_ticker" non-destructive="true" />
 </multicast>
</address>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

48

3. If you previously configured an address or set of addresses for last value queues, add the
default-non-destructive key. Set the value to true. For example:

NOTE

By default, the value of default-non-destructive is false.

4.12. MOVING EXPIRED MESSAGES TO AN EXPIRY ADDRESS

For a queue other than a last value queue, if you have only non-destructive consumers, the broker never
deletes messages from the queue, causing the queue size to increase over time. To prevent this
unconstrained growth in queue size, you can configure when messages expire and specify an address to
which the broker moves expired messages.

4.12.1. Configuring message expiry

The following procedure shows how to configure message expiry.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. In the core element, set the message-expiry-scan-period to specify how frequently the
broker scans for expired messages.

Based on the preceding configuration, the broker scans queues for expired messages every
1000 milliseconds.

3. In the address-setting element for a matching address or set of addresses, specify an expiry
address. Also, set a message expiration time. For example:

<address-setting match="lastValue">
 <default-last-value-key>stock_ticker </default-last-value-key>
 <default-non-destructive>true</default-non-destructive>
</address-setting>

<configuration ...>
 <core ...>
 ...
 <message-expiry-scan-period>1000</message-expiry-scan-period>
 ...

<configuration ...>
 <core ...>
 ...
 <address-settings>
 ...
 <address-setting match="stocks">
 ...
 <expiry-address>ExpiryAddress</expiry-address>
 <expiry-delay>10</expiry-delay>
 ...
 </address-setting>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

49

expiry-address

Expiry address for the matching address or addresses. In the preceding example, the broker
sends expired messages for the stocks address to an expiry address called ExpiryAddress.

expiry-delay

Expiration time, in milliseconds, that the broker applies to messages that are using the
default expiration time. By default, messages have an expiration time of 0, meaning that
they don’t expire. For messages with an expiration time greater than the default, expiry-
delay has no effect.
For example, suppose you set expiry-delay on an address to 10, as shown in the preceding
example. If a message with the default expiration time of 0 arrives to a queue at this address,
then the broker changes the expiration time of the message from 0 to 10. However, if
another message that is using an expiration time of 20 arrives, then its expiration time is
unchanged. If you set expiry-delay to -1, this feature is disabled. By default, expiry-delay is
set to -1.

4. Alternatively, instead of specifying a value for expiry-delay, you can specify minimum and
maximum expiry delay values. For example:

min-expiry-delay

Minimum expiration time, in milliseconds, that the broker applies to messages.

max-expiry-delay

Maximum expiration time, in milliseconds, that the broker applies to messages.
The broker applies the values of min-expiry-delay and max-expiry-delay as follows:

For a message with the default expiration time of 0, the broker sets the expiration time
to the specified value of max-expiry-delay. If you have not specified a value for max-
expiry-delay, the broker sets the expiration time to the specified value of min-expiry-
delay. If you have not specified a value for min-expiry-delay, the broker does not
change the expiration time of the message.

For a message with an expiration time above the value of max-expiry-delay, the broker
sets the expiration time to the specified value of max-expiry-delay.

 ...
 <address-settings>
<configuration ...>

<configuration ...>
 <core ...>
 ...
 <address-settings>
 ...
 <address-setting match="stocks">
 ...
 <expiry-address>ExpiryAddress</expiry-address>
 <min-expiry-delay>10</min-expiry-delay>
 <max-expiry-delay>100</max-expiry-delay>
 ...
 </address-setting>
 ...
 <address-settings>
<configuration ...>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

50

For a message with an expiration time below the value of min-expiry-delay, the broker
sets the expiration time to the specified value of min-expiry-delay.

For a message with an expiration between the values of min-expiry-delay and max-
expiry-delay, the broker does not change the expiration time of the message.

If you specify a value for expiry-delay (that is, other than the default value of -1), this
overrides any values that you specify for min-expiry-delay and max-expiry-delay.

The default value for both min-expiry-delay and max-expiry-delay is -1 (that is,
disabled).

5. In the addresses element of your configuration file, configure the address previously specified
for expiry-address. Define a queue at this address. For example:

The preceding example configuration associates an expiry queue, ExpiryQueue, with the expiry
address, ExpiryAddress.

4.12.2. Creating expiry resources automatically

A common use case is to segregate expired messages according to their original addresses. For
example, you might choose to route expired messages from an address called stocks to an expiry queue
called EXP.stocks. Likewise, you might route expired messages from an address called orders to an
expiry queue called EXP.orders.

This type of routing pattern makes it easy to track, inspect, and administer expired messages. However,
a pattern such as this is difficult to implement in an environment that uses mainly automatically-created
addresses and queues. In this type of environment, an administrator does not want the extra effort
required to manually create addresses and queues to hold expired messages.

As a solution, you can configure the broker to automatically create resources (that is, addressees and
queues) to handle expired messages for a given address or set of addresses. The following procedure
shows an example.

Prerequisites

You have already configured an expiry address for a given address or set of addresses. For more
information, see Section 4.12.1, “Configuring message expiry” .

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Locate the <address-setting> element that you previously added to the configuration file to
define an expiry address for a matching address or set of addresses. For example:

<addresses>
 ...
 <address name="ExpiryAddress">
 <anycast>
 <queue name="ExpiryQueue"/>
 </anycast>
 </address>
 ...
</addresses>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

51

3. In the <address-setting> element, add configuration items that instruct the broker to
automatically create expiry resources (that is, addresses and queues) and how to name these
resources. For example:

auto-create-expiry-resources

Specifies whether the broker automatically creates an expiry address and queue to receive
expired messages. The default value is false.
If the parameter value is set to true, the broker automatically creates an <address> element
that defines an expiry address and an associated expiry queue. The name value of the
automatically-created <address> element matches the name value specified for <expiry-
address>.

The automatically-created expiry queue has the multicast routing type. By default, the
broker names the expiry queue to match the address to which expired messages were
originally sent, for example, stocks.

The broker also defines a filter for the expiry queue that uses the _AMQ_ORIG_ADDRESS
property. This filter ensures that the expiry queue receives only messages sent to the
corresponding original address.

expiry-queue-prefix

Prefix that the broker applies to the name of the automatically-created expiry queue. The

<configuration ...>

 <core ...>
 ...
 <address-settings>
 ...
 <address-setting match="stocks">
 ...
 <expiry-address>ExpiryAddress</expiry-address>
 ...
 </address-setting>
 ...
 <address-settings>
<configuration ...>

<configuration ...>
 <core ...>
 ...
 <address-settings>
 ...
 <address-setting match="stocks">
 ...
 <expiry-address>ExpiryAddress</expiry-address>
 <auto-create-expiry-resources>true</auto-create-expiry-resources>
 <expiry-queue-prefix>EXP.</expiry-queue-prefix>
 <expiry-queue-suffix></expiry-queue-suffix>
 ...
 </address-setting>
 ...
 <address-settings>
<configuration ...>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

52

Prefix that the broker applies to the name of the automatically-created expiry queue. The
default value is EXP.
When you define a prefix value or keep the default value, the name of the expiry queue is a
concatenation of the prefix and the original address, for example, EXP.stocks.

expiry-queue-suffix

Suffix that the broker applies to the name of an automatically-created expiry queue. The
default value is not defined (that is, the broker applies no suffix).

You can directly access the expiry queue using either the queue name by itself (for example, when using
the AMQ Broker Core Protocol JMS client) or using the fully qualified queue name (for example, when
using another JMS client).

NOTE

Because the expiry address and queue are automatically created, any address settings
related to deletion of automatically-created addresses and queues also apply to these
expiry resources.

Additional resources

For more information about address settings used to configure automatic deletion of
automatically-created addresses and queues, see Section 4.8.2, “Configuring automatic
creation and deletion of addresses and queues”.

4.13. MOVING UNDELIVERED MESSAGES TO A DEAD LETTER
ADDRESS

If delivery of a message to a client is unsuccessful, you might not want the broker to make ongoing
attempts to deliver the message. To prevent infinite delivery attempts, you can define a dead letter
address and one or more asscociated dead letter queues. After a specified number of delivery attempts,
the broker removes an undelivered message from its original queue and sends the message to the
configured dead letter address. A system administrator can later consume undelivered messages from a
dead letter queue to inspect the messages.

If you do not configure a dead letter address for a given queue, the broker permanently removes
undelivered messages from the queue after the specified number of delivery attempts.

Undelivered messages that are consumed from a dead letter queue have the following properties:

_AMQ_ORIG_ADDRESS

String property that specifies the original address of the message

_AMQ_ORIG_QUEUE

String property that specifies the original queue of the message

4.13.1. Configuring a dead letter address

The following procedure shows how to configure a dead letter address and an associated dead letter
queue.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

53

2. In an <address-setting> element that matches your queue name(s), set values for the dead
letter address name and the maximum number of delivery attempts. For example:

match

Address to which the broker applies the configuration in this address-setting section. You
can specify a wildcard expression for the match attribute of the <address-setting> element.
Using a wildcard expression is useful if you want to associate the dead letter settings
configured in the <address-setting> element with a matching set of addresses.

dead-letter-address

Name of the dead letter address. In this example, the broker moves undelivered messages
from the queue exampleQueue to the dead letter address, DLA.

max-delivery-attempts

Maximum number of delivery attempts made by the broker before it moves an undelivered
message to the configured dead letter address. In this example, the broker moves
undelivered messages to the dead letter address after three unsuccessful delivery attempts.
The default value is 10. If you want the broker to make an infinite number of redelivery
attempts, specify a value of -1.

3. In the addresses section, add an address element for the dead letter address, DLA. To
associate a dead letter queue with the dead letter address, specify a name value for queue. For
example:

In the preceding configuration, you associate a dead letter queue named DLQ with the dead letter
address, DLA.

Additional resources

<configuration ...>
 <core ...>
 ...
 <address-settings>
 ...
 <address-setting match="exampleQueue">
 <dead-letter-address>DLA</dead-letter-address>
 <max-delivery-attempts>3</max-delivery-attempts>
 </address-setting>
 ...
 <address-settings>
<configuration ...>

<configuration ...>
 <core ...>
 ...
 <addresses>
 <address name="DLA">
 <anycast>
 <queue name="DLQ" />
 </anycast>
 </address>
 ...
 </addresses>
 </core>
</configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

54

For more information about using wildcards in address settings, see Section 4.2, “Applying
address settings to sets of addresses”.

4.13.2. Creating dead letter queues automatically

A common use case is to segregate undelivered messages according to their original addresses. For
example, you might choose to route undelivered messages from an address called stocks to a dead
letter queue called DLA.stocks that has an associated dead letter queue called DLQ.stocks. Likewise,
you might route undelivered messages from an address called orders to a dead letter address called
DLA.orders.

This type of routing pattern makes it easy to track, inspect, and administrate undelivered messages.
However, a pattern such as this is difficult to implement in an environment that uses mainly
automatically-created addresses and queues. It is likely that a system administrator for this type of
environment does not want the additional effort required to manually create addresses and queues to
hold undelivered messages.

As a solution, you can configure the broker to automatically create addressees and queues to handle
undelivered messages, as shown in the procedure that follows.

Prerequisites

You have already configured a dead letter address for a queue or set of queues. For more
information, see Section 4.13.1, “Configuring a dead letter address” .

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Locate the <address-setting> element that you previously added to define a dead letter
address for a matching queue or set of queues. For example:

3. In the <address-setting> element, add configuration items that instruct the broker to
automatically create dead letter resources (that is, addresses and queues) and how to name
these resources. For example:

<configuration ...>
 <core ...>
 ...
 <address-settings>
 ...
 <address-setting match="exampleQueue">
 <dead-letter-address>DLA</dead-letter-address>
 <max-delivery-attempts>3</max-delivery-attempts>
 </address-setting>
 ...
 <address-settings>
<configuration ...>

<configuration ...>
 <core ...>
 ...
 <address-settings>
 ...
 <address-setting match="exampleQueue">

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

55

auto-create-dead-letter-resources

Specifies whether the broker automatically creates a dead letter address and queue to
receive undelivered messages. The default value is false.
If auto-create-dead-letter-resources is set to true, the broker automatically creates an
<address> element that defines a dead letter address and an associated dead letter queue.
The name of the automatically-created <address> element matches the name value that
you specify for <dead-letter-address>.

The dead letter queue that the broker defines in the automatically-created <address>
element has the multicast routing type . By default, the broker names the dead letter queue
to match the original address of the undelivered message, for example, stocks.

The broker also defines a filter for the dead letter queue that uses the
_AMQ_ORIG_ADDRESS property. This filter ensures that the dead letter queue receives
only messages sent to the corresponding original address.

dead-letter-queue-prefix

Prefix that the broker applies to the name of an automatically-created dead letter queue.
The default value is DLQ.
When you define a prefix value or keep the default value, the name of the dead letter queue
is a concatenation of the prefix and the original address, for example, DLQ.stocks.

dead-letter-queue-suffix

Suffix that the broker applies to an automatically-created dead letter queue. The default
value is not defined (that is, the broker applies no suffix).

4.14. ANNOTATIONS AND PROPERTIES ON EXPIRED OR
UNDELIVERED AMQP MESSAGES

Before the broker moves an expired or undelivered AMQP message to an expiry or dead letter queue
that you have configured, the broker applies annotations and properties to the message. A client can
create a filter based on these properties or annotations, to select particular messages to consume from
the expiry or dead letter queue.

NOTE

The properties that the broker applies are internal properties These properties are are not
exposed to clients for regular use, but can be specified by a client in a filter.

The following table shows the annotations and internal properties that the broker applies to expired or
undelivered AMQP messages.

 <dead-letter-address>DLA</dead-letter-address>
 <max-delivery-attempts>3</max-delivery-attempts>
 <auto-create-dead-letter-resources>true</auto-create-dead-letter-resources>
 <dead-letter-queue-prefix>DLQ.</dead-letter-queue-prefix>
 <dead-letter-queue-suffix></dead-letter-queue-suffix>
 </address-setting>
 ...
 <address-settings>
<configuration ...>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

56

Annotation name Internal property name Description

x-opt-ORIG-MESSAGE-ID _AMQ_ORIG_MESSAGE_ID Original message ID, before the message
was moved to an expiry or dead letter
queue.

x-opt-ACTUAL-EXPIRY _AMQ_ACTUAL_EXPIRY Message expiry time, specified as the
number of milliseconds since the last
epoch started.

x-opt-ORIG-QUEUE _AMQ_ORIG_QUEUE Original queue name of the expired or
undelivered message.

x-opt-ORIG-ADDRESS _AMQ_ORIG_ADDRESS Original address name of the expired or
undelivered message.

Additional resources

For an example of configuring an AMQP client to filter AMQP messages based on annotations,
see Section 15.3, “Filtering AMQP Messages Based on Properties on Annotations” .

4.15. DISABLING QUEUES

If you manually define a queue in your broker configuration, the queue is enabled by default.

However, there might be a case where you want to define a queue so that clients can subscribe to it, but
are not ready to use the queue for message routing. Alternatively, there might be a situation where you
want to stop message flow to a queue, but still keep clients bound to the queue. In these cases, you can
disable the queue.

The following example shows how to disable a queue that you have defined in your broker configuration.

Prerequisites

You should be familiar with how to define an address and associated queue in your broker
configuration. For more information, see Chapter 4, Configuring addresses and queues .

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. For a queue that you previously defined, add the enabled attribute. To disable the queue, set
the value of this attribute to false. For example:

The default value of the enabled property is true. When you set the value to false, message

<addresses>
 <address name="orders">
 <multicast>
 <queue name="orders" enabled="false"/>
 </multicast>
 </address>
</addresses>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

57

The default value of the enabled property is true. When you set the value to false, message
routing to the queue is disabled.

NOTE

If you disable all queues on an address, any messages sent to that address are silently
dropped.

4.16. LIMITING THE NUMBER OF CONSUMERS CONNECTED TO A
QUEUE

Limit the number of consumers connected to a particular queue by using the max-consumers attribute.
Create an exclusive consumer by setting max-consumers flag to 1. The default value is -1, which sets
an unlimited number of consumers.

The following procedure shows how to set a limit on the number of consumers that can connect to a
queue.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. For a given queue, add the max-consumers key and set a value.

Based on the preceding configuration, only 20 consumers can connect to queue q3 at the same
time.

3. To create an exclusive consumer, set max-consumers to 1.

4. To allow an unlimited number of consumers, set max-consumers to -1.

<configuration ...>
 <core ...>
 ...
 <addresses>
 <address name="foo">
 <anycast>
 <queue name="q3" max-consumers="20"/>
 </anycast>
 </address>
 </addresses>
 </core>
</configuration>

<configuration ...>
 <core ...>
 ...
 <address name="foo">
 <anycast>
 <queue name="q3" max-consumers="1"/>
 </anycast>
 </address>
 </core>
</configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

58

4.17. CONFIGURING EXCLUSIVE QUEUES

Exclusive queues are special queues that route all messages to only one consumer at a time. This
configuration is useful when you want all messages to be processed serially by the same consumer. If
there are multiple consumers for a queue, only one consumer will receive messages. If that consumer
disconnects from the queue, another consumer is chosen.

4.17.1. Configuring exclusive queues individually

The following procedure shows to how to individually configure a given queue as exclusive.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. For a given queue, add the exclusive key. Set the value to true.

4.17.2. Configuring exclusive queues for addresses

The following procedure shows how to configure an address or set of addresses so that all associated
queues are exclusive.

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. In the address-setting element, for a matching address, add the default-exclusive-queue key.
Set the value to true.

Based on the preceding configuration, all queues associated with the myAddress address are

<configuration ...>
 <core ...>
 ...
 <address name="foo">
 <anycast>
 <queue name="q3" max-consumers="-1"/>
 </anycast>
 </address>
 </core>
</configuration>

<configuration ...>
 <core ...>
 ...
 <address name="my.address">
 <multicast>
 <queue name="orders1" exclusive="true"/>
 </multicast>
 </address>
 </core>
</configuration>

<address-setting match="myAddress">
 <default-exclusive-queue>true</default-exclusive-queue>
</address-setting>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

59

Based on the preceding configuration, all queues associated with the myAddress address are
exclusive. By default, the value of default-exclusive-queue is false.

3. To configure exclusive queues for a set of addresses, you can specify an address wildcard. For
example:

Additional resources

For more information about the wildcard syntax that you can use when configuring addresses,
see Section 4.2, “Applying address settings to sets of addresses” .

4.18. CONFIGURING RING QUEUES

Generally, queues in AMQ Broker use first-in, first-out (FIFO) semantics. This means that the broker
adds messages to the tail of the queue and removes them from the head. A ring queue is a special type
of queue that holds a specified, fixed number of messages. The broker maintains the fixed queue size by
removing the message at the head of the queue when a new message arrives but the queue already
holds the specified number of messages.

For example, consider a ring queue configured with a size of 3 and a producer that sequentially sends
messages A, B, C, and D. Once message C arrives to the queue, the number of messages in the queue
has reached the configured ring size. At this point, message A is at the head of the queue, while
message C is at the tail. When message D arrives to the queue, the broker adds the message to the tail
of the queue. To maintain the fixed queue size, the broker removes the message at the head of the
queue (that is, message A). Message B is now at the head of the queue.

4.18.1. Configuring ring queues

The following procedure shows how to configure a ring queue.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. To define a default ring size for all queues on matching addresses that don’t have an explicit ring
size set, specify a value for default-ring-size in the address-setting element. For example:

The default-ring-size parameter is especially useful for defining the default size of auto-
created queues. The default value of default-ring-size is -1 (that is, no size limit).

3. To define a ring size on a specific queue, add the ring-size key to the queue element. Specify a
value. For example:

<address-setting match="myAddress.*">
 <default-exclusive-queue>true</default-exclusive-queue>
</address-setting>

<address-settings>
 <address-setting match="ring.#">
 <default-ring-size>3</default-ring-size>
 </address-setting>
</address-settings>

<addresses>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

60

NOTE

You can update the value of ring-size while the broker is running. The broker dynamically
applies the update. If the new ring-size value is lower than the previous value, the broker
does not immediately delete messages from the head of the queue to enforce the new
size. New messages sent to the queue still force the deletion of older messages, but the
queue does not reach its new, reduced size until it does so naturally, through the normal
consumption of messages by clients.

4.18.2. Troubleshooting ring queues

This section describes situations in which the behavior of a ring queue appears to differ from its
configuration.

In-delivery messages and rollbacks

When a message is in delivery to a consumer, the message is in an "in-between" state, where the
message is technically no longer on the queue, but is also not yet acknowledged. A message remains in
an in-delivery state until acknowledged by the consumer. Messages that remain in an in-delivery state
cannot be removed from the ring queue.

Because the broker cannot remove in-delivery messages, a client can send more messages to a ring
queue than the ring size configuration seems to allow. For example, consider this scenario:

1. A producer sends three messages to a ring queue configured with ring-size="3".

2. All messages are immediately dispatched to a consumer.
At this point, messageCount= 3 and deliveringCount= 3.

3. The producer sends another message to the queue. The message is then dispatched to the
consumer.
Now, messageCount = 4 and deliveringCount = 4. The message count of 4 is greater than the
configured ring size of 3. However, the broker is obliged to allow this situation because it cannot
remove the in-delivery messages from the queue.

4. Now, suppose that the consumer is closed without acknowledging any of the messages.
In this case, the four in-delivery, unacknowledged messages are canceled back to the broker
and added to the head of the queue in the reverse order from which they were consumed. This
action puts the queue over its configured ring size. Because a ring queue prefers messages at
the tail of the queue over messages at the head, the queue discards the first message sent by
the producer, because this was the last message added back to the head of the queue.
Transaction or core session rollbacks are treated in the same way.

If you are using the core client directly, or using an AMQ Core Protocol JMS client, you can minimize the
number of messages in delivery by reducing the value of the consumerWindowSize parameter (1024 *
1024 bytes by default).

Scheduled messages

When a scheduled message is sent to a queue, the message is not immediately added to the tail of the

 <address name="myRing">
 <anycast>
 <queue name="myRing" ring-size="5" />
 </anycast>
 </address>
</addresses>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

61

When a scheduled message is sent to a queue, the message is not immediately added to the tail of the
queue like a normal message. Instead, the broker holds the scheduled message in an intermediate buffer
and schedules the message for delivery onto the head of the queue, according to the details of the
message. However, scheduled messages are still reflected in the message count of the queue. As with
in-delivery messages, this behavior can make it appear that the broker is not enforcing the ring queue
size. For example, consider this scenario:

1. At 12:00, a producer sends a message, A, to a ring queue configured with ring-size="3". The
message is scheduled for 12:05.
At this point, messageCount= 1 and scheduledCount= 1.

2. At 12:01, producer sends message B to the same ring queue.
Now, messageCount= 2 and scheduledCount= 1.

3. At 12:02, producer sends message C to the same ring queue.
Now, messageCount= 3 and scheduledCount= 1.

4. At 12:03, producer sends message D to the same ring queue.
Now, messageCount= 4 and scheduledCount= 1.

The message count for the queue is now 4, one greater than the configured ring size of 3.
However, the scheduled message is not technically on the queue yet (that is, it is on the broker
and scheduled to be put on the queue). At the scheduled delivery time of 12:05, the broker puts
the message on the head of the queue. However, since the ring queue has already reached its
configured size, the scheduled message A is immediately removed.

Paged messages

Similar to scheduled messages and messages in delivery, paged messages do not count towards the ring
queue size enforced by the broker, because messages are actually paged at the address level, not the
queue level. A paged message is not technically on a queue, although it is reflected in a queue’s
messageCount value.

It is recommended that you do not use paging for addresses with ring queues. Instead, ensure that the
entire address can fit into memory. Or, configure the address-full-policy parameter to a value of
DROP, BLOCK or FAIL.

Additional resources

The broker creates internal instances of ring queues when you configure retroactive addresses.
To learn more, see Section 4.19, “Configuring retroactive addresses” .

4.19. CONFIGURING RETROACTIVE ADDRESSES

Configuring an address as retroactive enables you to preserve messages sent to that address, including
when there are no queues yet bound to the address. When queues are later created and bound to the
address, the broker retroactively distributes messages to those queues. If an address is not configured
as retroactive and does not yet have a queue bound to it, the broker discards messages sent to that
address.

When you configure a retroactive address, the broker creates an internal instance of a type of queue
known as a ring queue. A ring queue is a special type of queue that holds a specified, fixed number of
messages. Once the queue has reached the specified size, the next message that arrives to the queue
forces the oldest message out of the queue. When you configure a retroactive address, you indirectly
specify the size of the internal ring queue. By default, the internal queue uses the multicast routing type.

The internal ring queue used by a retroactive address is exposed via the management API. You can

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

62

The internal ring queue used by a retroactive address is exposed via the management API. You can
inspect metrics and perform other common management operations, such as emptying the queue. The
ring queue also contributes to the overall memory usage of the address, which affects behavior such as
message paging.

The following procedure shows how to configure an address as retroactive.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Specify a value for the retroactive-message-count parameter in the address-setting element.
The value you specify defines the number of messages you want the broker to preserve. For
example:

NOTE

You can update the value of retroactive-message-count while the broker is
running, in either the broker.xml configuration file or the management API.
However, if you reduce the value of this parameter, an additional step is required,
because retroactive addresses are implemented via ring queues. A ring queue
whose ring-size parameter is reduced does not automatically delete messages
from the queue to achieve the new ring-size value. This behavior is a safeguard
against unintended message loss. In this case, you need to use the management
API to manually reduce the number of messages in the ring queue.

Additional resources

For more information about ring queues, see Section 4.18, “Configuring ring queues” .

4.20. DISABLING ADVISORY MESSAGES FOR INTERNALLY-
MANAGED ADDRESSES AND QUEUES

By default, AMQ Broker creates advisory messages about addresses and queues when an OpenWire
client is connected to the broker. Advisory messages are sent to internally-managed addresses created
by the broker. These addresses appear on the AMQ Management Console within the same display as
user-deployed addresses and queues. Although they provide useful information, advisory messages can
cause unwanted consequences when the broker manages a large number of destinations. For example,
the messages might increase memory usage or strain connection resources. Also, the AMQ
Management Console might become cluttered when attempting to display all of the addresses created
to send advisory messages. To avoid these situations, you can use the following parameters to configure
the behavior of advisory messages on the broker.

<configuration>
 <core>
 ...
 <address-settings>
 <address-setting match="orders">
 <retroactive-message-count>100</retroactive-message-count>
 </address-setting>
 </address-settings>
...
 </core>
</configuration>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

63

supportAdvisory

Set this option to true to enable creation of advisory messages or false to disable them. The default
value is true.

suppressInternalManagementObjects

Set this option to true to expose the advisory messages to management services such as JMX
registry and AMQ Management Console, or false to not expose them. The default value is true.

The following procedure shows how to disable advisory messages on the broker.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. For an OpenWire connector, add the supportAdvisory and
suppressInternalManagementObjects parameters to the configured URL. Set the values as
described earlier in this section. For example:

4.21. FEDERATING ADDRESSES AND QUEUES

Federation enables transmission of messages between brokers, without requiring the brokers to be in a
common cluster. Brokers can be standalone, or in separate clusters. In addition, the source and target
brokers can be in different administrative domains, meaning that the brokers might have different
configurations, users, and security setups. The brokers might even be using different versions of AMQ
Broker.

For example, federation is suitable for reliably sending messages from one cluster to another. This
transmission might be across a Wide Area Network (WAN), Regions of a cloud infrastructure, or over the
Internet. If connection from a source broker to a target broker is lost (for example, due to network
failure), the source broker tries to reestablish the connection until the target broker comes back online.
When the target broker comes back online, message transmission resumes.

Administrators can use address and queue policies to manage federation. Policy configurations can be
matched to specific addresses or queues, or the policies can include wildcard expressions that match
configurations to sets of addresses or queues. Therefore, federation can be dynamically applied as
queues or addresses are added to- or removed from matching sets. Policies can include multiple
expressions that include and/or exclude particular addresses and queues. In addition, multiple policies
can be applied to brokers or broker clusters.

In AMQ Broker, the two primary federation options are address federation and queue federation. These
options are described in the sections that follow.

NOTE

A broker can include configuration for federated and local-only components. That is, if
you configure federation on a broker, you don’t need to federate everything on that
broker.

4.21.1. About address federation

Address federation is like a full multicast distribution pattern between connected brokers. For example,

<acceptor name="artemis">tcp://127.0.0.1:61616?
protocols=CORE,AMQP,OPENWIRE;supportAdvisory=false;suppressInternalManagementObje
cts=false</acceptor>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

64

Address federation is like a full multicast distribution pattern between connected brokers. For example,
every message sent to an address on BrokerA is delivered to every queue on that broker. In addition,
each of the messages is delivered to BrokerB and all attached queues there.

Address federation dynamically links a broker to addresses in remote brokers. For example, if a local
broker wants to fetch messages from an address on a remote broker, a queue is automatically created
on the remote address. Messages on the remote broker are then consumed to this queue. Finally,
messages are copied to the corresponding address on the local broker, as though they were originally
published directly to the local address.

The remote broker does not need to be reconfigured to allow federation to create an address on it.
However, the local broker does need to be granted permissions to the remote address.

4.21.2. Common topologies for address federation

Some common topologies for the use of address federation are described below.

Symmetric topology

In a symmetric topology, a producer and consumer are connected to each broker. Queues and their
consumers can receive messages published by either producer. An example of a symmetric topology
is shown below.

Figure 4.1. Address federation in a symmetric topology

Broker A

Producer 1

Message 1

When configuring address federation for a symmetric topology, it is important to set the value of the
max-hops property of the address policy to 1. This ensures that messages are copied only once,
avoiding cyclic replication. If this property is set to a larger value, consumers will receive multiple
copies of the same message.

Full mesh topology

A full mesh topology is similar to a symmetric setup. Three or more brokers symmetrically federate
to each other, creating a full mesh. In this setup, a producer and consumer are connected to each
broker. Queues and their consumers can receive messages published by any producer. An example of
this topology is shown below.

Figure 4.2. Address federation in a full mesh topology

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

65

Figure 4.2. Address federation in a full mesh topology

Producer 1

Message 1

Symmetric Address Federation

As with a symmetric setup, when configuring address federation for a full mesh topology, it is
important to set the value of the max-hops property of the address policy to 1. This ensures that
messages are copied only once, avoiding cyclic replication.

Ring topology

In a ring of brokers, each federated address is upstream to just one other in the ring. An example of
this topology is shown below.

Figure 4.3. Address federation in a ring topology

Broker B

multicast

Addresses

Address Federation

When you configure federation for a ring topology, to avoid cyclic replication, it is important to set
the max-hops property of the address policy to a value of n-1, where n is the number of nodes in the
ring. For example, in the ring topology shown above, the value of max-hops is set to 5. This ensures
that every address in the ring sees the message exactly once.

An advantage of a ring topology is that it is cheap to set up, in terms of the number of physical
connections that you need to make. However, a drawback of this type of topology is that if a single
broker fails, the whole ring fails.

Fan-out topology

In a fan-out topology, a single master address is linked-to by a tree of federated addresses. Any
message published to the master address can be received by any consumer connected to any broker
in the tree. The tree can be configured to any depth. The tree can also be extended without the need
to re-configure existing brokers in the tree. An example of this topology is shown below.

Figure 4.4. Address federation in a fan-out topology

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

66

Figure 4.4. Address federation in a fan-out topology

Address Federation

When you configure federation for a fan-out topology, ensure that you set the max-hops property
of the address policy to a value of n-1, where n is the number of levels in the tree. For example, in the
fan-out topology shown above, the value of max-hops is set to 2. This ensures that every address in
the tree sees the message exactly once.

4.21.3. Support for divert bindings in address federation configuration

When configuring address federation, you can add support for divert bindings in the address policy
configuration. Adding this support enables the federation to respond to divert bindings to create a
federated consumer for a given address on a remote broker.

For example, suppose that an address called test.federation.source is included in the address policy,
and another address called test.federation.target is not included. Normally, when a queue is created on
test.federation.target, this would not cause a federated consumer to be created, because the address
is not part of the address policy. However, if you create a divert binding such that
test.federation.source is the source address and test.federation.target is the forwarding address, then
a durable consumer is created at the forwarding address. The source address still must use the
multicast routing type , but the target address can use multicast or anycast.

An example use case is a divert that redirects a JMS topic (multicast address) to a JMS queue (anycast
address). This enables load balancing of messages on the topic for legacy consumers not supporting
JMS 2.0 and shared subscriptions.

4.21.4. Configuring federation for a broker cluster

The examples in the sections that follow show how to configure address and queue federation between
standalone local and remote brokers. For federation between standalone brokers, the name of the
federation configuration, as well as the names of any address and queue policies, must be unique
between the local and remote brokers.

However, if you are configuring federation for brokers in a cluster, there is an additional requirement.
For clustered brokers, the names of the federation configuration, as well as the names of any address
and queues policies within that configuration, must be the same for every broker in that cluster.

Ensuring that brokers in the same cluster use the same federation configuration and address and queue
policy names avoids message duplication. For example, if brokers within the same cluster have different
federation configuration names, this might lead to a situation where multiple, differently-named
forwarding queues are created for the same address, resulting in message duplication for downstream
consumers. By contrast, if brokers in the same cluster use the same federation configuration name, this
essentially creates replicated, clustered forwarding queues that are load-balanced to the downstream
consumers. This avoids message duplication.

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

67

4.21.5. Configuring upstream address federation

The following example shows how to configure upstream address federation between standalone
brokers. In this example, you configure federation from a local (that is, downstream) broker, to some
remote (that is, upstream) brokers.

Prerequisites

The following example shows how to configure address federation between standalone brokers.
However, you should also be familiar with the requirements for configuring federation for a
broker cluster. For more information, see Section 4.21.4, “Configuring federation for a broker
cluster”.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Add a new <federations> element that includes a <federation> element. For example:

name

Name of the federation configuration. In this example, the name corresponds to the name of
the local broker.

user

Shared user name for connection to the upstream brokers.

password

Shared password for connection to the upstream brokers.

NOTE

If user and password credentials differ for remote brokers, you can separately
specify credentials for those brokers when you add them to the configuration.
This is described later in this procedure.

3. Within the federation element, add an <address-policy> element. For example:

<federations>
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">
 </federation>
</federations>

<federations>
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">

 <address-policy name="news-address-federation" auto-delete="true" auto-delete-
delay="300000" auto-delete-message-count="-1" enable-divert-bindings="false" max-
hops="1" transformer-ref="news-transformer">
 </address-policy>

 </federation>
</federations>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

68

name

Name of the address policy. All address policies that are configured on the broker must have
unique names.

auto-delete

During address federation, the local broker dynamically creates a durable queue at the
remote address. The value of the auto-delete property specifies whether the remote queue
should be deleted once the local broker disconnects and the values of the auto-delete-delay
and auto-delete-message-count properties have also been reached. This is a useful option if
you want to automate the cleanup of dynamically-created queues. It is also a useful option if
you want to prevent a buildup of messages on a remote broker if the local broker is
disconnected for a long time. However, you might set this option to false if you want
messages to always remain queued for the local broker while it is disconnected, avoiding
message loss on the local broker.

auto-delete-delay

After the local broker has disconnected, the value of this property specifies the amount of
time, in milliseconds, before dynamically-created remote queues are eligible to be
automatically deleted.

auto-delete-message-count

After the local broker has been disconnected, the value of this property specifies the
maximum number of messages that can still be in a dynamically-created remote queue
before that queue is eligible to be automatically deleted.

enable-divert-bindings

Setting this property to true enables divert bindings to be listened-to for demand. If there is
a divert binding with an address that matches the included addresses for the address policy,
then any queue bindings that match the forwarding address of the divert will create demand.
The default value is false.

max-hops

Maximum number of hops that a message can make during federation. Particular topologies
require specific values for this property. To learn more about these requirements, see
Section 4.21.2, “Common topologies for address federation” .

transformer-ref

Name of a transformer configuration. You might add a transformer configuration if you want
to transform messages during federated message transmission. Transformer configuration is
described later in this procedure.

4. Within the <address-policy> element, add address-matching patterns to include and exclude
addresses from the address policy. For example:

<federations>
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">

 <address-policy name="news-address-federation" auto-delete="true" auto-delete-
delay="300000" auto-delete-message-count="-1" enable-divert-bindings="false" max-
hops="1" transformer-ref="news-transformer">

 <include address-match="queue.bbc.new" />
 <include address-match="queue.usatoday" />
 <include address-match="queue.news.#" />

 <exclude address-match="queue.news.sport.#" />

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

69

include

The value of the address-match property of this element specifies addresses to include in
the address policy. You can specify an exact address, for example, queue.bbc.new or
queue.usatoday. Or, you can use a wildcard expression to specify a matching set of
addresses. In the preceding example, the address policy also includes all address names that
start with the string queue.news.

exclude

The value of the address-match property of this element specifies addresses to exclude
from the address policy. You can specify an exact address name or use a wildcard expression
to specify a matching set of addresses. In the preceding example, the address policy
excludes all address names that start with the string queue.news.sport.

5. (Optional) Within the federation element, add a transformer element to reference a custom
transformer implementation. For example:

name

Name of the transformer configuration. This name must be unique on the local broker. This is
the name that you specify as a value for the transformer-ref property of the address policy.

class-name

Name of a user-defined class that implements the
org.apache.activemq.artemis.core.server.transformer.Transformer interface.
The transformer’s transform() method is invoked with the message before the message is
transmitted. This enables you to transform the message header or body before it is
federated.

 </address-policy>

 </federation>
</federations>

<federations>
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">

 <address-policy name="news-address-federation" auto-delete="true" auto-delete-
delay="300000" auto-delete-message-count="-1" enable-divert-bindings="false" max-
hops="1" transformer-ref="news-transformer">

 <include address-match="queue.bbc.new" />
 <include address-match="queue.usatoday" />
 <include address-match="queue.news.#" />

 <exclude address-match="queue.news.sport.#" />
 </address-policy>

 <transformer name="news-transformer">
 <class-name>org.foo.NewsTransformer</class-name>
 <property key="key1" value="value1"/>
 <property key="key2" value="value2"/>
 </transformer>

 </federation>
</federations>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

70

property

Used to hold key-value pairs for specific transformer configuration.

6. Within the federation element, add one or more upstream elements. Each upstream element
defines a connection to a remote broker and the policies to apply to that connection. For
example:

static-connectors

Contains a list of connector-ref elements that reference connector elements that are
defined elsewhere in the broker.xml configuration file of the local broker. A connector
defines what transport (TCP, SSL, HTTP, and so on) and server connection parameters
(host, port, and so on) to use for outgoing connections. The next step of this procedure
shows how to add the connectors that are referenced in the static-connectors element.

policy-ref

Name of the address policy configured on the downstream broker that is applied to the
upstream broker.

<federations>
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">

 <upstream name="eu-east-1">
 <static-connectors>
 <connector-ref>eu-east-connector1</connector-ref>
 </static-connectors>
 <policy ref="news-address-federation"/>
 </upstream>

 <upstream name="eu-west-1" >
 <static-connectors>
 <connector-ref>eu-west-connector1</connector-ref>
 </static-connectors>
 <policy ref="news-address-federation"/>
 </upstream>

 <address-policy name="news-address-federation" auto-delete="true" auto-delete-
delay="300000" auto-delete-message-count="-1" enable-divert-bindings="false" max-
hops="1" transformer-ref="news-transformer">

 <include address-match="queue.bbc.new" />
 <include address-match="queue.usatoday" />
 <include address-match="queue.news.#" />

 <exclude address-match="queue.news.sport.#" />
 </address-policy>

 <transformer name="news-transformer">
 <class-name>org.foo.NewsTransformer</class-name>
 <property key="key1" value="value1"/>
 <property key="key2" value="value2"/>
 </transformer>

 </federation>
</federations>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

71

The additional options that you can specify for an upstream element are described below:

name

Name of the upstream broker configuration. In this example, the names correspond to
upstream brokers called eu-east-1 and eu-west-1.

user

User name to use when creating the connection to the upstream broker. If not specified, the
shared user name that is specified in the configuration of the federation element is used.

password

Password to use when creating the connection to the upstream broker. If not specified, the
shared password that is specified in the configuration of the federation element is used.

call-failover-timeout

Similar to call-timeout, but used when a call is made during a failover attempt. The default
value is -1, which means that the timeout is disabled.

call-timeout

Time, in milliseconds, that a federation connection waits for a reply from a remote broker
when it transmits a packet that is a blocking call. If this time elapses, the connection throws
an exception. The default value is 30000.

check-period

Period, in milliseconds, between consecutive “keep-alive” messages that the local broker
sends to a remote broker to check the health of the federation connection. If the federation
connection is healthy, the remote broker responds to each keep-alive message. If the
connection is unhealthy, when the downstream broker fails to receive a response from the
upstream broker, a mechanism called a circuit breaker is used to block federated consumers.
See the description of the circuit-breaker-timeout parameter for more information. The
default value of the check-period parameter is 30000.

circuit-breaker-timeout

A single connection between a downstream and upstream broker might be shared by many
federated queue and address consumers. In the event that the connection between the
brokers is lost, each federated consumer might try to reconnect at the same time. To avoid
this, a mechanism called a circuit breaker blocks the consumers. When the specified timeout
value elapses, the circuit breaker re-tries the connection. If successful, consumers are
unblocked. Otherwise, the circuit breaker is applied again.

connection-ttl

Time, in milliseconds, that a federation connection stays alive if it stops receiving messages
from the remote broker. The default value is 60000.

discovery-group-ref

As an alternative to defining static connectors for connections to upstream brokers, this
element can be used to specify a discovery group that is already configured elsewhere in the
broker.xml configuration file. Specifically, you specify an existing discovery group as a value
for the discovery-group-name property of this element. For more information about
discovery groups, see Section 16.1.5, “Broker discovery methods” .

ha

Specifies whether high availability is enabled for the connection to the upstream broker. If
the value of this parameter is set to true, the local broker can connect to any available broker
in an upstream cluster and automatically fails over to a backup broker if the live upstream
broker shuts down. The default value is false.

initial-connect-attempts

Number of initial attempts that the downstream broker will make to connect to the upstream

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

72

broker. If this value is reached without a connection being established, the upstream broker is
considered permanently offline. The downstream broker no longer routes messages to the
upstream broker. The default value is -1, which means that there is no limit.

max-retry-interval

Maximum time, in milliseconds, between subsequent reconnection attempts when
connection to the remote broker fails. The default value is 2000.

reconnect-attempts

Number of times that the downstream broker will try to reconnect to the upstream broker if
the connection fails. If this value is reached without a connection being re-established, the
upstream broker is considered permanently offline. The downstream broker no longer routes
messages to the upstream broker. The default value is -1, which means that there is no limit.

retry-interval

Period, in milliseconds, between subsequent reconnection attempts, if connection to the
remote broker has failed. The default value is 500.

retry-interval-multiplier

Multiplying factor that is applied to the value of the retry-interval parameter. The default
value is 1.

share-connection

If there is both a downstream and upstream connection configured for the same broker, then
the same connection will be shared, as long as both of the downstream and upstream
configurations set the value of this parameter to true. The default value is false.

7. On the local broker, add connectors to the remote brokers. These are the connectors
referenced in the static-connectors elements of your federated address configuration. For
example:

4.21.6. Configuring downstream address federation

The following example shows how to configure downstream address federation for standalone brokers.

Downstream address federation enables you to add configuration on the local broker that one or more
remote brokers use to connect back to the local broker. The advantage of this approach is that you can
keep all federation configuration on a single broker. This might be a useful approach for a hub-and-
spoke topology, for example.

NOTE

Downstream address federation reverses the direction of the federation connection
versus upstream address configuration. Therefore, when you add remote brokers to your
configuration, these become considered as the downstream brokers. The downstream
brokers use the connection information in the configuration to connect back to the local
broker, which is now considered to be upstream. This is illustrated later in this example,
when you add configuration for the remote brokers.

Prerequisites

You should be familiar with the configuration for upstream address federation. See

<connectors>
 <connector name="eu-west-1-connector">tcp://localhost:61616</connector>
 <connector name="eu-east-1-connector">tcp://localhost:61617</connector>
</connectors>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

73

You should be familiar with the configuration for upstream address federation. See
Section 4.21.5, “Configuring upstream address federation” .

The following example shows how to configure address federation between standalone brokers.
However, you should also be familiar with the requirements for configuring federation for a
broker cluster. For more information, see Section 4.21.4, “Configuring federation for a broker
cluster”.

Procedure

1. On the local broker, open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Add a <federations> element that includes a <federation> element. For example:

3. Add an address policy configuration. For example:

4. If you want to transform messages before transmission, add a transformer configuration. For
example:

<federations>
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">
 </federation>
</federations>

<federations>
 ...
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">

 <address-policy name="news-address-federation" max-hops="1" auto-delete="true"
auto-delete-delay="300000" auto-delete-message-count="-1" transformer-ref="news-
transformer">

 <include address-match="queue.bbc.new" />
 <include address-match="queue.usatoday" />
 <include address-match="queue.news.#" />

 <exclude address-match="queue.news.sport.#" />
 </address-policy>

 </federation>
 ...
</federations>

<federations>
 ...
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">

 <address-policy name="news-address-federation" max-hops="1" auto-delete="true"
auto-delete-delay="300000" auto-delete-message-count="-1" transformer-ref="news-
transformer">

 <include address-match="queue.bbc.new" />

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

74

5. Add a downstream element for each remote broker. For example:

 <include address-match="queue.usatoday" />
 <include address-match="queue.news.#" />

 <exclude address-match="queue.news.sport.#" />
 </address-policy>

 <transformer name="news-transformer">
 <class-name>org.foo.NewsTransformer</class-name>
 <property key="key1" value="value1"/>
 <property key="key2" value="value2"/>
 </transformer>

 </federation>
 ...
</federations>

<federations>
 ...
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">

 <downstream name="eu-east-1">
 <static-connectors>
 <connector-ref>eu-east-connector1</connector-ref>
 </static-connectors>
 <transport-connector-ref>netty-connector</transport-connector-ref>
 <policy ref="news-address-federation"/>
 </downstream>

 <downstream name="eu-west-1" >
 <static-connectors>
 <connector-ref>eu-west-connector1</connector-ref>
 </static-connectors>
 <transport-connector-ref>netty-connector</transport-connector-ref>
 <policy ref="news-address-federation"/>
 </downstream>

 <address-policy name="news-address-federation" max-hops="1" auto-delete="true"
auto-delete-delay="300000" auto-delete-message-count="-1" transformer-ref="news-
transformer">
 <include address-match="queue.bbc.new" />
 <include address-match="queue.usatoday" />
 <include address-match="queue.news.#" />

 <exclude address-match="queue.news.sport.#" />
 </address-policy>

 <transformer name="news-transformer">
 <class-name>org.foo.NewsTransformer</class-name>
 <property key="key1" value="value1"/>
 <property key="key2" value="value2"/>
 </transformer>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

75

As shown in the preceding configuration, the remote brokers are now considered to be
downstream of the local broker. The downstream brokers use the connection information in the
configuration to connect back to the local (that is, upstream) broker.

6. On the local broker, add connectors and acceptors used by the local and remote brokers to
establish the federation connection. For example:

connector name="netty-connector"

Connector configuration that the local broker sends to the remote broker. The remote
broker use this configuration to connect back to the local broker.

connector name="eu-west-1-connector", connector name="eu-east-1-connector"

Connectors to remote brokers. The local broker uses these connectors to connect to the
remote brokers and share the configuration that the remote brokers need to connect back
to the local broker.

acceptor name="netty-acceptor"

Acceptor on the local broker that corresponds to the connector used by the remote broker
to connect back to the local broker.

4.21.7. About queue federation

Queue federation provides a way to balance the load of a single queue on a local broker across other,
remote brokers.

To achieve load balancing, a local broker retrieves messages from remote queues in order to satisfy
demand for messages from local consumers. An example is shown below.

Figure 4.5. Symmetric queue federation

Broker A

Producer 1

Message 1

The remote queues do not need to be reconfigured and they do not have to be on the same broker or in

 </federation>
 ...
</federations>

<connectors>
 <connector name="netty-connector">tcp://localhost:61616</connector>
 <connector name="eu-west-1-connector">tcp://localhost:61616</connector>
 <connector name="eu-east-1-connector">tcp://localhost:61617</connector>
</connectors>

<acceptors>
 <acceptor name="netty-acceptor">tcp://localhost:61616</acceptor>
</acceptors>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

76

The remote queues do not need to be reconfigured and they do not have to be on the same broker or in
the same cluster. All of the configuration needed to establish the remote links and the federated queue
is on the local broker.

4.21.7.1. Advantages of queue federation

Described below are some reasons you might choose to configure queue federation.

Increasing capacity

Queue federation can create a "logical" queue that is distributed over many brokers. This logical
distributed queue has a much higher capacity than a single queue on a single broker. In this setup, as
many messages as possible are consumed from the broker they were originally published to. The
system moves messages around in the federation only when load balancing is needed.

Deploying multi-region setups

In a multi-region setup, you might have a message producer in one region or venue and a consumer in
another. However, you should ideally keep producer and consumer connections local to a given
region. In this case, you can deploy brokers in each region where producers and consumers are, and
use queue federation to move messages over a Wide Area Network (WAN), between regions. An
example is shown below.

Figure 4.6. Multi-region queue federation

Broker A

Producer

Message 1

Communicating between a secure enterprise LAN and a DMZ

In networking security, a demilitarized zone (DMZ) is a physical or logical subnetwork that contains
and exposes an enterprise’s external-facing services to an untrusted, usually larger, network such as
the Internet. The remainder of the enterprise’s Local Area Network (LAN) remains isolated from this
external network, behind a firewall.
In a situation where a number of message producers are in the DMZ and a number of consumers in
the secure enterprise LAN, it might not be appropriate to allow the producers to connect to a broker
in the secure enterprise LAN. In this case, you could deploy a broker in the DMZ that the producers
can publish messages to. Then, the broker in the enterprise LAN can connect to the broker in the
DMZ and use federated queues to receive messages from the broker in the DMZ.

4.21.8. Configuring upstream queue federation

The following example shows how to configure upstream queue federation for standalone brokers. In
this example, you configure federation from a local (that is, downstream) broker, to some remote (that is,
upstream) brokers.

Prerequisites

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

77

The following example shows how to configure queue federation between standalone brokers.
However, you should also be familiar with the requirements for configuring federation for a
broker cluster. For more information, see Section 4.21.4, “Configuring federation for a broker
cluster”.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Within a new <federations> element, add a <federation> element. For example:

name

Name of the federation configuration. In this example, the name corresponds to the name of
the downstream broker.

user

Shared user name for connection to the upstream brokers.

password

Shared password for connection to the upstream brokers.

NOTE

If user and password credentials differ for upstream brokers, you can
separately specify credentials for those brokers when you add them to the
configuration. This is described later in this procedure.

3. Within the federation element, add a <queue-policy> element. Specify values for properties of
the <queue-policy> element. For example:

name

Name of the queue policy. All queue policies that are configured on the broker must have
unique names.

include-federated

When the value of this property is set to false, the configuration does not re-federate an
already-federated consumer (that is, a consumer on a federated queue). This avoids a
situation where in a symmetric or closed-loop topology, there are no non-federated

<federations>
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">
 </federation>
</federations>

<federations>
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">

 <queue-policy name="news-queue-federation" include-federated="true" priority-
adjustment="-5" transformer-ref="news-transformer">
 </queue-policy>

 </federation>
</federations>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

78

consumers, and messages flow endlessly around the system.
You might set the value of this property to true if you do not have a closed-loop topology.
For example, suppose that you have a chain of three brokers, BrokerA, BrokerB, and
BrokerC, with a producer at BrokerA and a consumer at BrokerC. In this case, you would
want BrokerB to re-federate the consumer to BrokerA.

priority-adjustment

When a consumer connects to a queue, its priority is used when the upstream (that is
federated) consumer is created. The priority of the federated consumer is adjusted by the
value of the priority-adjustment property. The default value of this property is -1, which
ensures that the local consumer get prioritized over the federated consumer during load
balancing. However, you can change the value of the priority adjustment as needed.

transformer-ref

Name of a transformer configuration. You might add a transformer configuration if you want
to transform messages during federated message transmission. Transformer configuration is
described later in this procedure.

4. Within the <queue-policy> element, add address-matching patterns to include and exclude
addresses from the queue policy. For example:

include

The value of the address-match property of this element specifies addresses to include in
the queue policy. You can specify an exact address, for example, queue.bbc.new or
queue.usatoday. Or, you can use a wildcard expression to specify a matching set of
addresses. In the preceding example, the queue policy also includes all address names that
start with the string queue.news.
In combination with the address-match property, you can use the queue-match property to
include specific queues on those addresses in the queue policy. Like the address-match
property, you can specify an exact queue name, or you can use a wildcard expression to
specify a set of queues. In the preceding example, the number sign (#) wildcard character
means that all queues on each address or set of addresses are included in the queue policy.

exclude

The value of the address-match property of this element specifies addresses to exclude
from the queue policy. You can specify an exact address or use a wildcard expression to

<federations>
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">

 <queue-policy name="news-queue-federation" include-federated="true" priority-
adjustment="-5" transformer-ref="news-transformer">

 <include queue-match="#" address-match="queue.bbc.new" />
 <include queue-match="#" address-match="queue.usatoday" />
 <include queue-match="#" address-match="queue.news.#" />

 <exclude queue-match="#.local" address-match="#" />

 </queue-policy>

 </federation>
</federations>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

79

specify a matching set of addresses. In the preceding example, the number sign (#) wildcard
character means that any queues that match the queue-match property across all
addresses are excluded. In this case, any queue that ends with the string .local is excluded.
This indicates that certain queues are kept as local queues, and not federated.

5. Within the federation element, add a transformer element to reference a custom transformer
implementation. For example:

name

Name of the transformer configuration. This name must be unique on the broker in question.
You specify this name as a value for the transformer-ref property of the address policy.

class-name

Name of a user-defined class that implements the
org.apache.activemq.artemis.core.server.transformer.Transformer interface.
The transformer’s transform() method is invoked with the message before the message is
transmitted. This enables you to transform the message header or body before it is
federated.

property

Used to hold key-value pairs for specific transformer configuration.

6. Within the federation element, add one or more upstream elements. Each upstream element
defines an upstream broker connection and the policies to apply to that connection. For
example:

<federations>
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">

 <queue-policy name="news-queue-federation" include-federated="true" priority-
adjustment="-5" transformer-ref="news-transformer">

 <include queue-match="#" address-match="queue.bbc.new" />
 <include queue-match="#" address-match="queue.usatoday" />
 <include queue-match="#" address-match="queue.news.#" />

 <exclude queue-match="#.local" address-match="#" />

 </queue-policy>

 <transformer name="news-transformer">
 <class-name>org.foo.NewsTransformer</class-name>
 <property key="key1" value="value1"/>
 <property key="key2" value="value2"/>
 </transformer>

 </federation>
</federations>

<federations>
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">

 <upstream name="eu-east-1">

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

80

static-connectors

Contains a list of connector-ref elements that reference connector elements that are
defined elsewhere in the broker.xml configuration file of the local broker. A connector
defines what transport (TCP, SSL, HTTP, and so on) and server connection parameters
(host, port, and so on) to use for outgoing connections. The following step of this procedure
shows how to add the connectors referenced by the static-connectors elements of your
federated queue configuration.

policy-ref

Name of the queue policy configured on the downstream broker that is applied to the
upstream broker.

The additional options that you can specify for an upstream element are described below:

name

Name of the upstream broker configuration. In this example, the names correspond to
upstream brokers called eu-east-1 and eu-west-1.

user

User name to use when creating the connection to the upstream broker. If not specified, the
shared user name that is specified in the configuration of the federation element is used.

password

Password to use when creating the connection to the upstream broker. If not specified, the

 <static-connectors>
 <connector-ref>eu-east-connector1</connector-ref>
 </static-connectors>
 <policy ref="news-queue-federation"/>
 </upstream>

 <upstream name="eu-west-1" >
 <static-connectors>
 <connector-ref>eu-west-connector1</connector-ref>
 </static-connectors>
 <policy ref="news-queue-federation"/>
 </upstream>

 <queue-policy name="news-queue-federation" include-federated="true" priority-
adjustment="-5" transformer-ref="news-transformer">

 <include queue-match="#" address-match="queue.bbc.new" />
 <include queue-match="#" address-match="queue.usatoday" />
 <include queue-match="#" address-match="queue.news.#" />

 <exclude queue-match="#.local" address-match="#" />

 </queue-policy>

 <transformer name="news-transformer">
 <class-name>org.foo.NewsTransformer</class-name>
 <property key="key1" value="value1"/>
 <property key="key2" value="value2"/>
 </transformer>

 </federation>
</federations>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

81

Password to use when creating the connection to the upstream broker. If not specified, the
shared password that is specified in the configuration of the federation element is used.

call-failover-timeout

Similar to call-timeout, but used when a call is made during a failover attempt. The default
value is -1, which means that the timeout is disabled.

call-timeout

Time, in milliseconds, that a federation connection waits for a reply from a remote broker
when it transmits a packet that is a blocking call. If this time elapses, the connection throws
an exception. The default value is 30000.

check-period

Period, in milliseconds, between consecutive “keep-alive” messages that the local broker
sends to a remote broker to check the health of the federation connection. If the federation
connection is healthy, the remote broker responds to each keep-alive message. If the
connection is unhealthy, when the downstream broker fails to receive a response from the
upstream broker, a mechanism called a circuit breaker is used to block federated consumers.
See the description of the circuit-breaker-timeout parameter for more information. The
default value of the check-period parameter is 30000.

circuit-breaker-timeout

A single connection between a downstream and upstream broker might be shared by many
federated queue and address consumers. In the event that the connection between the
brokers is lost, each federated consumer might try to reconnect at the same time. To avoid
this, a mechanism called a circuit breaker blocks the consumers. When the specified timeout
value elapses, the circuit breaker re-tries the connection. If successful, consumers are
unblocked. Otherwise, the circuit breaker is applied again.

connection-ttl

Time, in milliseconds, that a federation connection stays alive if it stops receiving messages
from the remote broker. The default value is 60000.

discovery-group-ref

As an alternative to defining static connectors for connections to upstream brokers, this
element can be used to specify a discovery group that is already configured elsewhere in the
broker.xml configuration file. Specifically, you specify an existing discovery group as a value
for the discovery-group-name property of this element. For more information about
discovery groups, see Section 16.1.5, “Broker discovery methods” .

ha

Specifies whether high availability is enabled for the connection to the upstream broker. If
the value of this parameter is set to true, the local broker can connect to any available broker
in an upstream cluster and automatically fails over to a backup broker if the live upstream
broker shuts down. The default value is false.

initial-connect-attempts

Number of initial attempts that the downstream broker will make to connect to the upstream
broker. If this value is reached without a connection being established, the upstream broker is
considered permanently offline. The downstream broker no longer routes messages to the
upstream broker. The default value is -1, which means that there is no limit.

max-retry-interval

Maximum time, in milliseconds, between subsequent reconnection attempts when
connection to the remote broker fails. The default value is 2000.

reconnect-attempts

Number of times that the downstream broker will try to reconnect to the upstream broker if
the connection fails. If this value is reached without a connection being re-established, the

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

82

upstream broker is considered permanently offline. The downstream broker no longer routes
messages to the upstream broker. The default value is -1, which means that there is no limit.

retry-interval

Period, in milliseconds, between subsequent reconnection attempts, if connection to the
remote broker has failed. The default value is 500.

retry-interval-multiplier

Multiplying factor that is applied to the value of the retry-interval parameter. The default
value is 1.

share-connection

If there is both a downstream and upstream connection configured for the same broker, then
the same connection will be shared, as long as both of the downstream and upstream
configurations set the value of this parameter to true. The default value is false.

7. On the local broker, add connectors to the remote brokers. These are the connectors
referenced in the static-connectors elements of your federated address configuration. For
example:

4.21.9. Configuring downstream queue federation

The following example shows how to configure downstream queue federation.

Downstream queue federation enables you to add configuration on the local broker that one or more
remote brokers use to connect back to the local broker. The advantage of this approach is that you can
keep all federation configuration on a single broker. This might be a useful approach for a hub-and-
spoke topology, for example.

NOTE

Downstream queue federation reverses the direction of the federation connection versus
upstream queue configuration. Therefore, when you add remote brokers to your
configuration, these become considered as the downstream brokers. The downstream
brokers use the connection information in the configuration to connect back to the local
broker, which is now considered to be upstream. This is illustrated later in this example,
when you add configuration for the remote brokers.

Prerequisites

You should be familiar with the configuration for upstream queue federation. See Section 4.21.8,
“Configuring upstream queue federation”.

The following example shows how to configure queue federation between standalone brokers.
However, you should also be familiar with the requirements for configuring federation for a
broker cluster. For more information, see Section 4.21.4, “Configuring federation for a broker
cluster”.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

<connectors>
 <connector name="eu-west-1-connector">tcp://localhost:61616</connector>
 <connector name="eu-east-1-connector">tcp://localhost:61617</connector>
</connectors>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

83

2. Add a <federations> element that includes a <federation> element. For example:

3. Add a queue policy configuration. For example:

4. If you want to transform messages before transmission, add a transformer configuration. For
example:

<federations>
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">
 </federation>
</federations>

<federations>
 ...
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">

 <queue-policy name="news-queue-federation" priority-adjustment="-5" include-
federated="true" transformer-ref="new-transformer">

 <include queue-match="#" address-match="queue.bbc.new" />
 <include queue-match="#" address-match="queue.usatoday" />
 <include queue-match="#" address-match="queue.news.#" />

 <exclude queue-match="#.local" address-match="#" />

 </queue-policy>

 </federation>
 ...
</federations>

<federations>
 ...
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">

 <queue-policy name="news-queue-federation" priority-adjustment="-5" include-
federated="true" transformer-ref="news-transformer">

 <include queue-match="#" address-match="queue.bbc.new" />
 <include queue-match="#" address-match="queue.usatoday" />
 <include queue-match="#" address-match="queue.news.#" />

 <exclude queue-match="#.local" address-match="#" />

 </queue-policy>

 <transformer name="news-transformer">
 <class-name>org.foo.NewsTransformer</class-name>
 <property key="key1" value="value1"/>
 <property key="key2" value="value2"/>
 </transformer>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

84

5. Add a downstream element for each remote broker. For example:

As shown in the preceding configuration, the remote brokers are now considered to be
downstream of the local broker. The downstream brokers use the connection information in the
configuration to connect back to the local (that is, upstream) broker.

6. On the local broker, add connectors and acceptors used by the local and remote brokers to
establish the federation connection. For example:

 </federation>
 ...
</federations>

<federations>
 ...
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">

 <downstream name="eu-east-1">
 <static-connectors>
 <connector-ref>eu-east-connector1</connector-ref>
 </static-connectors>
 <transport-connector-ref>netty-connector</transport-connector-ref>
 <policy ref="news-address-federation"/>
 </downstream>

 <downstream name="eu-west-1" >
 <static-connectors>
 <connector-ref>eu-west-connector1</connector-ref>
 </static-connectors>
 <transport-connector-ref>netty-connector</transport-connector-ref>
 <policy ref="news-address-federation"/>
 </downstream>

 <queue-policy name="news-queue-federation" priority-adjustment="-5" include-
federated="true" transformer-ref="new-transformer">

 <include queue-match="#" address-match="queue.bbc.new" />
 <include queue-match="#" address-match="queue.usatoday" />
 <include queue-match="#" address-match="queue.news.#" />

 <exclude queue-match="#.local" address-match="#" />

 </queue-policy>

 <transformer name="news-transformer">
 <class-name>org.foo.NewsTransformer</class-name>
 <property key="key1" value="value1"/>
 <property key="key2" value="value2"/>
 </transformer>

 </federation>
 ...
</federations>

<connectors>

CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES

85

connector name="netty-connector"

Connector configuration that the local broker sends to the remote broker. The remote
broker use this configuration to connect back to the local broker.

connector name="eu-west-1-connector" , connector name="eu-east-1-connector"

Connectors to remote brokers. The local broker uses these connectors to connect to the
remote brokers and share the configuration that the remote brokers need to connect back
to the local broker.

acceptor name="netty-acceptor"

Acceptor on the local broker that corresponds to the connector used by the remote broker
to connect back to the local broker.

 <connector name="netty-connector">tcp://localhost:61616</connector>
 <connector name="eu-west-1-connector">tcp://localhost:61616</connector>
 <connector name="eu-east-1-connector">tcp://localhost:61617</connector>
</connectors>

<acceptors>
 <acceptor name="netty-acceptor">tcp://localhost:61616</acceptor>
</acceptors>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

86

CHAPTER 5. SECURING BROKERS

5.1. SECURING CONNECTIONS

When brokers are connected to messaging clients, or brokers are connected to other brokers, you can
secure these connections using Transport Layer Security (TLS).

There are two TLS configurations that you can use:

One-way TLS, where only the broker presents a certificate. This is the most common
configuration.

Two-way (or mutual) TLS, where both the broker and the client (or other broker) present
certificates.

The procedures in this section show how to configure both one-way and two-way TLS.

5.1.1. Configuring one-way TLS

The following procedure shows how to configure a given acceptor for one-way TLS.

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. For a given acceptor, add the sslEnabled key and set the value to true. In addition, add the
keyStorePath and keyStorePassword keys. Set values that correspond to your broker key
store. For example:

5.1.2. Configuring two-way TLS

The following procedure shows how to configure two-way TLS.

Prerequisites

You must have already configured your given acceptor for one-way TLS. For more information,
see Section 5.1.1, “Configuring one-way TLS”.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. For the acceptor that you previously configured for one-way TLS, add the needClientAuth key.
Set the value to true. For example:

3. The configuration in the preceding step assumes that the client’s certificate is signed by a
trusted provider. If the client’s certificate is not signed by a trusted provider (it is self-signed,
for example) then the broker needs to import the client’s certificate into a trust store. In this

<acceptor name="artemis">tcp://0.0.0.0:61616?
sslEnabled=true;keyStorePath=../etc/broker.keystore;keyStorePassword=1234!</acceptor>

<acceptor name="artemis">tcp://0.0.0.0:61616?
sslEnabled=true;keyStorePath=../etc/broker.keystore;keyStorePassword=1234!;needClientAuth
=true</acceptor>

CHAPTER 5. SECURING BROKERS

87

case, add the trustStorePath and trustStorePassword keys. Set values that correspond to
your broker trust store. For example:

NOTE

AMQ Broker supports multiple protocols, and each protocol and platform has different
ways to specify TLS parameters. However, in the case of a client using Core Protocol (a
bridge), the TLS parameters are configured on the connector URL, much like on the
broker’s acceptor.

5.1.3. TLS configuration options

The following table shows all of the available TLS configuration options.

Option Note

sslEnabled Specifies whether SSL is enabled for the connection.
Must be set to true to enable TLS. The default value
is false.

keyStorePath When used on an acceptor: Path to the TLS
keystore on the broker that holds the broker
certificates (whether self-signed or signed by an
authority).

When used on a connector: Path to the TLS
keystore on the client that holds the client
certificates. This is relevant for a connector only if
you are using two-way TLS. Although you can
configure this value on the broker, it is downloaded
and used by the client. If the client needs to use a
different path from that set on the broker, it can
override the broker setting by using either the
standard javax.net.ssl.keyStore system property
or the AMQ-specific
org.apache.activemq.ssl.keyStore system
property. The AMQ-specific system property is
useful if another component on the client is already
making use of the standard Java system property.

<acceptor name="artemis">tcp://0.0.0.0:61616?
sslEnabled=true;keyStorePath=../etc/broker.keystore;keyStorePassword=1234!;needClientAuth
=true;trustStorePath=../etc/client.truststore;trustStorePassword=5678!</acceptor>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

88

keyStorePassword When used on an acceptor: Password for the
keystore on the broker.

When used on a connector: Password for the
keystore on the client. This is relevant for a
connector only if you are using two-way TLS.
Although you can configure this value on the broker,
it is downloaded and used by the client. If the client
needs to use a different password from that set on
the broker, then it can override the broker setting by
using either the standard
javax.net.ssl.keyStorePassword system
property or the AMQ-specific
org.apache.activemq.ssl.keyStorePassword
system property. The AMQ-specific system property
is useful if another component on the client is already
making use of the standard Java system property.

trustStorePath When used on an acceptor: Path to the TLS
truststore on the broker that holds the keys of all
clients that the broker trusts. This is relevant for an
acceptor only if you are using two-way TLS.

When used on a connector: Path to TLS truststore
on the client that holds the public keys of all brokers
that the client trusts. Although you can configure this
value on the broker, it is downloaded and used by the
client. If the client needs to use a different path from
that set on the server then it can override the server-
side setting by using either using the standard
javax.net.ssl.trustStore system property or the
AMQ-specific
org.apache.activemq.ssl.trustStore system
property. The AMQ-specific system property is
useful if another component on the client is already
making use of the standard Java system property.

Option Note

CHAPTER 5. SECURING BROKERS

89

trustStorePassword When used on an acceptor: Password for the
truststore on the broker. This is relevant for an
acceptor only if you are using two-way TLS.

When used on a connector: Password for the
truststore on the client. Although you can configure
this value on the broker, it is downloaded and used by
the client. If the client needs to use a different
password from that set on the broker, then it can
override the broker setting by using either the
standard javax.net.ssl.trustStorePassword
system property or the AMQ-specific
org.apache.activemq.ssl.trustStorePassword
system property. The AMQ-specific system property
is useful if another component on the client is already
making use of the standard Java system property.

enabledCipherSuites Whether used on an acceptor or connector, this is a
comma-separated list of cipher suites used for TLS
communication. The default value is null, which
means the JVM’s default is used.

enabledProtocols Whether used on an acceptor or connector, this is a
comma-separated list of protocols used for TLS
communication. The default value is null, which
means the JVM’s default is used.

needClientAuth This property is only for an acceptor. It instructs a
client connecting to the acceptor that two-way TLS
is required. Valid values are true or false. The
default value is false.

Option Note

5.2. AUTHENTICATING CLIENTS

5.2.1. Client authentication methods

To configure client authentication on the broker, you can use the following methods:

User name- and password-based authentication

Directly validate user credentials using one of these options:

Check the credentials against a set of properties files stored locally on the broker. You can
also configure a guest account that allows limited access to the broker and combine login
modules to support more complex use cases.

Configure a Lightweight Directory Access Protocol (LDAP) login module to check client
credentials against user data stored in a central X.500 directory server.

Certificate-based authentication

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

90

Configure two-way Transport Layer Security (TLS) to require both the broker and client to present
certificates for mutual authentication. An administrator must also configure properties files that
define approved client users and roles. These properties files are stored on the broker.

Kerberos-based authentication

Configure the broker to authenticate Kerberos security credentials for the client using the GSSAPI
mechanism from the Simple Authentication and Security Layer (SASL) framework.

The sections that follow describe how to configure both user-and-password- and certificate-based
authentication.

Additional resources

To learn about complete authentication and authorization workflows for LDAP and Kerberos,
see:

Section 5.4, “Using LDAP for authentication and authorization”

Section 5.5, “Using Kerberos for authentication and authorization”

5.2.2. Configuring user and password authentication based on properties files

AMQ Broker supports a flexible role-based security model for applying security to queues based on their
addresses. Queues are bound to addresses either one-to-one (for point-to-point messaging) or many-
to-one (for publish-subscribe messaging). When a message is sent to an address, the broker looks up
the set of queues that are bound to that address and routes the message to that set of queues.

When you require basic user and password authentication, use PropertiesLoginModule to define it.
This login module checks user credentials against the following configuration files that are stored locally
on the broker:

artemis-users.properties

Used to define users and corresponding passwords

artemis-roles.properties

Used to define roles and assign users to those roles

login.config

Used to configure login modules for user and password authentication and guest access

The artemis-users.properties file can contain hashed passwords, for security.

The following sections show how to configure:

Basic user and password authentication

User and password authentication that includes guest access

5.2.2.1. Configuring basic user and password authentication

The following procedure shows how to configure basic user and password authentication.

Procedure

1. Open the <broker-instance-dir>/etc/login.config configuration file. By default, this file in a new
AMQ Broker 7.8 instance include the following lines:

CHAPTER 5. SECURING BROKERS

91

activemq

Alias for the configuration.

org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule

The implementation class.

sufficient

Flag that specifies what level of success is required for the PropertiesLoginModule. The
values that you can set are:

required: The login module is required to succeed. Authentication continues to proceed
down the list of login modules configured under the given alias, regardless of success or
failure.

requisite: The login module is required to succeed. A failure immediately returns control
to the application. Authentication does not proceed down the list of login modules
configured under the given alias.

sufficient: The login module is not required to succeed. If it is successful, control returns
to the application and authentication does not proceed further. If it fails, the
authentication attempt proceeds down the list of login modules configured under the
given alias.

optional: The login module is not required to succeed. Authentication continues down
the list of login modules configured under the given alias, regardless of success or failure.

org.apache.activemq.jaas.properties.user

Specifies the properties file that defines a set of users and passwords for the login module
implementation.

org.apache.activemq.jaas.properties.role

Specifies the properties file that maps users to defined roles for the login module
implementation.

2. Open the <broker-instance-dir>/etc/artemis-users.properties configuration file.

3. Add users and assign passwords to the users. For example:

4. Open the <broker-instance-dir>/etc/artemis-roles.properties configuration file.

5. Assign role names to the users you previously added to the artemis-users.properties file. For
example:

activemq {
 org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule sufficient
 debug=false
 reload=true
 org.apache.activemq.jaas.properties.user="artemis-users.properties"
 org.apache.activemq.jaas.properties.role="artemis-roles.properties";
 };

user1=secret
user2=access
user3=myPassword

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

92

6. Open the <broker-instance-dir>/etc/bootstrap.xml configuration file.

7. If necessary, add your security domain alias (in this instance, activemq) to the file, as shown
below:

5.2.2.2. Configuring guest access

For a user who does not have login credentials, or whose credentials fail authentication, you can grant
limited access to the broker using a guest account.

You can create a broker instance with guest access enabled using the command-line switch; --allow-
anonymous (the converse of which is --require-login).

The following procedure shows how to configure guest access.

Prerequisites

This procedure assumes that you have already configured basic user and password
authentication. To learn more, see Section 5.2.2.1, “Configuring basic user and password
authentication”.

Procedure

1. Open the <broker-instance-dir>/etc/login.config configuration file that you previously
configured for basic user and password authentication.

2. After the properties login module configuration that you previously added, add a guest login
module configuration. For example:

org.apache.activemq.artemis.spi.core.security.jaas.GuestLoginModule

The implementation class.

org.apache.activemq.jaas.guest.user

The user name assigned to anonymous users.

org.apache.activemq.jaas.guest.role

The role assigned to anonymous users.

admin=user1,user2
developer=user3

<jaas-security domain="activemq"/>

activemq {
 org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule sufficient
 debug=true
 org.apache.activemq.jaas.properties.user="artemis-users.properties"
 org.apache.activemq.jaas.properties.role="artemis-roles.properties";

 org.apache.activemq.artemis.spi.core.security.jaas.GuestLoginModule sufficient
 debug=true
 org.apache.activemq.jaas.guest.user="guest"
 org.apache.activemq.jaas.guest.role="restricted";
};

CHAPTER 5. SECURING BROKERS

93

Based on the preceding configuration, user and password authentication module is activated if the user
supplies credentials. Guest authentication is activated if the user supplies no credentials, or if the
credentials supplied are incorrect.

5.2.2.2.1. Guest access example

The following example shows configuration of guest access for the use case where only those users with
no credentials are logged in as guests. In this example, observe that the order of the login modules is
reversed compared with the previous configuration procedure. Also, the flag attached to the properties
login module is changed to requisite.

Based on the preceding configuration, the guest authentication module is activated if no login
credentials are supplied.

For this use case, the credentialsInvalidate option must be set to true in the configuration of the guest
login module.

The properties login module is activated if credentials are supplied. The credentials must be valid.

Additional resources

For more information on the Java Authentication and Authorization Service (JAAS), see the
documentation from your Java vendor. For example, for an Oracle tutorial on configuring
login.config, see JAAS Login Configuration File in the Oracle Java documentation.

To learn how to configure an LDAP login module to validate client credentials, see Section 5.4.1,
“Configuring LDAP to authenticate clients”.

For more information about encrypting passwords in configuration files, see Section 5.9.2,
“Encrypting a password in a configuration file”.

5.2.3. Configuring certificate-based authentication

The Java Authentication and Authorization Service (JAAS) certificate login module handles
authentication and authorization for clients that are using Transport Layer Security (TLS). The module
requires two-way Transport Layer Security (TLS) to be in use and clients to be configured with their own
certificates. Authentication is performed during the TLS handshake, not directly by the JAAS certificate
login module.

The role of the certificate login module is to:

Constrain the set of acceptable users. Only the user Distinguished Names (DNs) explicitly listed

activemq {
 org.apache.activemq.artemis.spi.core.security.jaas.GuestLoginModule sufficient
 debug=true
 credentialsInvalidate=true
 org.apache.activemq.jaas.guest.user="guest"
 org.apache.activemq.jaas.guest.role="guests";

 org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule requisite
 debug=true
 org.apache.activemq.jaas.properties.user="artemis-users.properties"
 org.apache.activemq.jaas.properties.role="artemis-roles.properties";
};

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

94

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html

Constrain the set of acceptable users. Only the user Distinguished Names (DNs) explicitly listed
in the relevant properties file are eligible to be authenticated.

Associate a list of groups with the received user identity. This facilitates authorization.

Require the presence of an incoming client certificate (by default, the TLS layer is configured to
treat the presence of a client certificate as optional).

The certificate login module stores a collection of certificate DNs in a pair of flat text files. The files
associate a user name and a list of group IDs with each DN.

The certificate login module is implemented by the
org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule class.

5.2.3.1. Configuring the broker to use certificate-based authentication

The following procedure shows how to configure the broker to use certificate-based authentication.

Prerequisites

You must have configured the broker to use two-way Transport Layer Security (TLS). For more
information, see Section 5.1.2, “Configuring two-way TLS”.

Procedure

1. Obtain the Subject Distinguished Names (DNs) from user certificates previously imported to the
broker key store.

a. Export the certificate from the key store file into a temporary file. For example:

keytool -export -file <file-name> -alias broker-localhost -keystore broker.ks -storepass
<password>

b. Print the contents of the exported certificate:

keytool -printcert -file <file-name>

The output is similar to that shown below:

Owner: CN=localhost, OU=broker, O=Unknown, L=Unknown, ST=Unknown, C=Unknown
Issuer: CN=localhost, OU=broker, O=Unknown, L=Unknown, ST=Unknown, C=Unknown
Serial number: 4537c82e
Valid from: Thu Oct 19 19:47:10 BST 2006 until: Wed Jan 17 18:47:10 GMT 2007
Certificate fingerprints:
 MD5: 3F:6C:0C:89:A8:80:29:CC:F5:2D:DA:5C:D7:3F:AB:37
 SHA1: F0:79:0D:04:38:5A:46:CE:86:E1:8A:20:1F:7B:AB:3A:46:E4:34:5C

The Owner entry is the Subject DN. The format used to enter the Subject DN depends on
your platform. The string above could also be represented as;

Owner: `CN=localhost,\ OU=broker,\ O=Unknown,\ L=Unknown,\ ST=Unknown,\
C=Unknown`

2. Configure certificate-based authentication.

CHAPTER 5. SECURING BROKERS

95

a. Open the <broker-instance-dir>/etc/login.config configuration file. Add the certificate
login module and reference the user and roles properties files. For example:

org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule

The implementation class.

org.apache.activemq.jaas.textfiledn.user

Specifies the properties file that defines a set of users and passwords for the login
module implementation.

org.apache.activemq.jaas.textfiledn.role

Specifies the properties file that maps users to defined roles for the login module
implementation.

b. Open the <broker-instance-dir>/etc/artemis-users.properties configuration file. Users
and their corresponding DNs are defined in this file. For example:

Based on the preceding configuration, for example, the user named system is mapped to
the CN=system,O=Progress,C=US Subject DN.

c. Open the <broker-instance-dir>/etc/artemis-roles.properties configuration file. The
available roles and the users who hold those roles are defined in this file. For example:

In the preceding configuration, for the users role, you list multiple users as a comma-
separated list.

d. Ensure that your security domain alias (in this instance, activemq) is referenced in
bootstrap.xml, as shown below:

5.2.3.2. Configuring certificate-based authentication for AMQP clients

Use the Simple Authentication and Security Layer (SASL) EXTERNAL mechanism configuration
parameter to configure your AQMP client for certificate-based authentication when connecting to a
broker.

The broker authenticates the Transport Layer Security (TLS)/Secure Sockets Layer (SSL) certificate of
your AMQP client in the same way that it authenticates any certificate:

activemq {
 org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule
 debug=true
 org.apache.activemq.jaas.textfiledn.user="artemis-users.properties"
 org.apache.activemq.jaas.textfiledn.role="artemis-roles.properties";
};

system=CN=system,O=Progress,C=US
user=CN=humble user,O=Progress,C=US
guest=CN=anon,O=Progress,C=DE

admins=system
users=system,user
guests=guest

<jaas-security domain="activemq"/>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

96

1. The broker reads the TLS/SSL certificate of the client to obtain an identity from the
certificate’s subject.

2. The certificate subject is mapped to a broker identity by the certificate login module. The
broker then authorizes users based on their roles.

The following procedure shows how to configure certificate-based authentication for AMQP clients. To
enable your AMQP client to use certificate-based authentication, you must add configuration
parameters to the URI that the client uses to connect to the broker.

Prerequisites

You must have configured:

Two-way TLS. For more information, see Section 5.1.2, “Configuring two-way TLS”.

The broker to use certificate-based authentication. For more information, see
Section 5.2.3.1, “Configuring the broker to use certificate-based authentication” .

Procedure

1. Open the resource containing the URI for editing:

2. Add the parameter sslEnabled=true to enable TSL/SSL for the connection:

3. Add parameters related to the client trust store and key store to enable the exchange of
TSL/SSL certificates with the broker:

4. Add the parameter saslMechanisms=EXTERNAL to request that the broker authenticate the
client by using the identity found in its TSL/SSL certificate:

Additional resources

For more information about certificate-based authentication in AMQ Broker, see Section 5.2.3.1,
“Configuring the broker to use certificate-based authentication”.

For more information about configuring your AMQP client, go to the Red Hat Customer Portal
for product documentation specific to your client.

5.3. AUTHORIZING CLIENTS

amqps://localhost:5500

amqps://localhost:5500?sslEnabled=true

amqps://localhost:5500?sslEnabled=true&trustStorePath=<trust store
path>&trustStorePassword=<trust store password>&keyStorePath=<key store
path>&keyStorePassword=<key store password>

amqps://localhost:5500?sslEnabled=true&trustStorePath=<trust store
path>&trustStorePassword=<trust store password>&keyStorePath=<key store
path>&keyStorePassword=<key store password>&saslMechanisms=EXTERNAL

CHAPTER 5. SECURING BROKERS

97

https://access.redhat.com/products/red-hat-amq

5.3.1. Client authorization methods

To authorize clients to perform operations on the broker such as creating and deleting addresses and
queues, and sending and consuming messages, you can use the following methods:

User- and role-based authorization

Configure broker security settings for authenticated users and roles.

Configure LDAP to authorize clients

Configure the Lightweight Directory Access Protocol (LDAP) login module to handle both
authentication and authorization. The LDAP login module checks incoming credentials against user
data stored in a central X.500 directory server and sets permissions based on user roles.

Configure Kerberos to authorize clients

Configure the Java Authentication and Authorization Service (JAAS) Krb5LoginModule login module
to pass credentials to PropertiesLoginModule or LDAPLoginModule login modules, which map the
Kerberos-authenticated users to AMQ Broker roles.

5.3.2. Configuring user- and role-based authorization

5.3.2.1. Setting permissions

Permissions are defined against queues (based on their addresses) via the <security-setting> element
in the broker.xml configuration file. You can define multiple instances of <security-setting> in the
<security-settings> element of the configuration file. You can specify an exact address match or you
can define a wildcard match using the number sign (#) and asterisk (*) wildcard characters.

Different permissions can be given to the set of queues that match an address. Those permissions are
shown in the following table.

To allow users to…​ Use this parameter…​

Create addresses createAddress

Delete addresses deleteAddress

Create a durable queue under matching addresses createDurableQueue

Delete a durable queue under matching addresses deleteDurableQueue

Create a non-durable queue under matching
addresses

createNonDurableQueue

Delete a non-durable queue under matching
addresses

deleteNonDurableQueue

Send a message to matching addresses send

Consume a message from a queue bound to
matching addresses

consume

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

98

Invoke management operations by sending
management messages to the management address

manage

Browse a queue bound to the matching address browse

To allow users to…​ Use this parameter…​

For each permission, you specify a list of roles that are granted the permission. If a given user has any of
the roles, they are granted the permission for that set of addresses.

The sections that follow show some configuration examples for permissions.

5.3.2.1.1. Configuring message production for a single address

The following procedure shows how to configure message production permissions for a single address.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Add a single <security-setting> element within the <security-settings> element. For the
match key, specify an address. For example:

Based on the preceding configuration, members of the producer role have send permissions
for address my.destination.

5.3.2.1.2. Configuring message consumption for a single address

The following procedure shows how to configure message consumption permissions for a single address.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Add a single <security-setting> element within the <security-settings> element. For the
match key, specify an address. For example:

Based on the preceding configuration, members of the consumer role have consume
permissions for address my.destination.

<security-settings>
 <security-setting match="my.destination">
 <permission type="send" roles="producer"/>
 </security-setting>
</security-settings>

<security-settings>
 <security-setting match="my.destination">
 <permission type="consume" roles="consumer"/>
 </security-setting>
</security-settings>

CHAPTER 5. SECURING BROKERS

99

5.3.2.1.3. Configuring complete access on all addresses

The following procedure shows how to configure complete access to all addresses and associated
queues.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Add a single <security-setting> element within the <security-settings> element. For the
match key, to configure access to all addresses, specify the number sign (#) wildcard character.
For example:

Based on the preceding configuration, all permissions are granted to members of the guest role
on all queues. This can be useful in a development scenario where anonymous authentication
was configured to assign the guest role to every user.

Additional resources

To learn about configuring more complex use cases, see Section 5.3.2.1.4, “Configuring multiple
security settings”.

5.3.2.1.4. Configuring multiple security settings

The following example procedure shows how to individually configure multiple security settings for a
matching set of addresses. This contrasts with the preceding example in this section, which shows how
to grant complete access to all addresses.

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Add a single <security-setting> element within the <security-settings> element. For the
match key, include the number sign (#) wildcard character to apply the settings to a matching
set of addresses. For example:

<security-settings>
 <security-setting match="#">
 <permission type="createDurableQueue" roles="guest"/>
 <permission type="deleteDurableQueue" roles="guest"/>
 <permission type="createNonDurableQueue" roles="guest"/>
 <permission type="deleteNonDurableQueue" roles="guest"/>
 <permission type="createAddress" roles="guest"/>
 <permission type="deleteAddress" roles="guest"/>
 <permission type="send" roles="guest"/>
 <permission type="browse" roles="guest"/>
 <permission type="consume" roles="guest"/>
 <permission type="manage" roles="guest"/>
 </security-setting>
</security-settings>

<security-setting match="globalqueues.europe.#">
 <permission type="createDurableQueue" roles="admin"/>
 <permission type="deleteDurableQueue" roles="admin"/>
 <permission type="createNonDurableQueue" roles="admin, guest, europe-users"/>
 <permission type="deleteNonDurableQueue" roles="admin, guest, europe-users"/>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

100

match=globalqueues.europe.#

The number sign (#) wildcard character is interpreted by the broker as "any sequence of
words". Words are delimited by a period (.). In this example, the security settings apply to any
address that starts with the string globalqueues.europe.

permission type="createDurableQueue"

Only users that have the admin role can create or delete durable queues bound to an
address that starts with the string globalqueues.europe.

permission type="createNonDurableQueue"

Any users with the roles admin, guest, or europe-users can create or delete temporary
queues bound to an address that starts with the string globalqueues.europe.

permission type="send"

Any users with the roles admin or europe-users can send messages to queues bound to an
address that starts with the string globalqueues.europe.

permission type="consume"

Any users with the roles admin or europe-users can consume messages from queues bound
to an address that starts with the string globalqueues.europe.

3. (Optional) To apply different security settings to a more narrow set of addresses, add another
<security-setting> element. For the match key, specify a more specific text string. For
example:

In the second security-setting element, the globalqueues.europe.orders.# match is more
specific than the globalqueues.europe.# match specified in the first security-setting element.
For any addresses that match globalqueues.europe.orders.#, the permissions
createDurableQueue, deleteDurableQueue, createNonDurableQueue,
deleteNonDurableQueue are not inherited from the first security-setting element in the file.
For example, for the address globalqueues.europe.orders.plastics, the only permissions that
exist are send and consume for the role europe-users.

Therefore, because permissions specified in one security-setting block are not inherited by
another, you can effectively deny permissions in more specific security-setting blocks simply by
not specifying those permissions.

5.3.2.1.5. Configuring a queue with a user

When a queue is automatically created, the queue is assigned the user name of the connecting client.
This user name is included as metadata on the queue. The name is exposed by JMX and in the AMQ
Broker management console.

The following procedure shows how to add a user name to a queue that you have manually defined in
the broker configuration.

Procedure

 <permission type="send" roles="admin, europe-users"/>
 <permission type="consume" roles="admin, europe-users"/>
</security-setting>

<security-setting match="globalqueues.europe.orders.#">
 <permission type="send" roles="europe-users"/>
 <permission type="consume" roles="europe-users"/>
</security-setting>

CHAPTER 5. SECURING BROKERS

101

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. For a given queue, add the user key. Assign a value. For example:

Based on the preceding configuration, the admin user is assigned to queue ExampleQueue.

NOTE

Configuring a user on a queue does not change any of the security semantics for
that queue - it is only used for metadata on that queue.

The mapping between users and what roles they have is handled by a component
called the security manager. The security manager reads user credentials from a
properties file stored on the broker. By default, AMQ Broker uses the
org.apache.activemq.artemis.spi.core.security.ActiveMQJAASSecurityMana
ger security manager. This default security manager provides integration with
JAAS and Red Hat JBoss Enterprise Application Platform (JBoss EAP) security.
To learn how to use a custom security manager, see Section 5.6, “Using a custom
security manager”.

5.3.2.2. Configuring role-based access control

Role-based access control (RBAC) is used to restrict access to the attributes and methods of MBeans.
RBAC enables administrators to grant the correct level of access to all users like web console,
management interface, core messages, and so on, based on role.

5.3.2.2.1. Configuring role-based access

The following example procedure shows how to map roles to particular MBeans and their attributes and
methods.

Prerequisites

You must first define users and roles. For more information, see Section 5.2.2.1, “Configuring
basic user and password authentication”.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Search for the role-access element and edit the configuration. For example:

<address name="ExampleQueue">
 <anycast>
 <queue name="ExampleQueue" user="admin"/>
 </anycast>
</address>

<role-access>
 <match domain="org.apache.activemq.artemis">
 <access method="list*" roles="view,update,amq"/>
 <access method="get*" roles="view,update,amq"/>
 <access method="is*" roles="view,update,amq"/>
 <access method="set*" roles="update,amq"/>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

102

In this case, a match is applied to any MBean attribute that has the domain name
org.apache.activemq.apache.

Access of the view, update, or amq role to a matching MBean attribute is controlled by
which of the list*, get*, set*, is*, and * access methods that you add the role to. The
method="*" (wildcard) syntax is used as a catch-all way to specify every other method that
is not listed in the configuration. Each of the access methods in the configuration is
converted to an MBean method call.

An invoked MBean method is matched against the methods listed in the configuration. For
example, if you invoke a method called listMessages on an MBean with the
org.apache.activemq.artemis domain, then the broker matches access back to the roles
defined in the configuration for the list method.

You can also configure access by using the full MBean method name. For example:

3. Start or restart the broker.

On Linux: <broker-instance-dir>/bin/artemis run

On Windows: <broker-instance-dir>\bin\artemis-service.exe start

You can also match specific MBeans within a domain by adding a key attribute that matches an MBean
property.

5.3.2.2.2. Role-based access examples

This section shows the following examples of applying role-based access control:

Mapping roles to all queues in a domain .

Mapping roles to a specific queue in a domain .

Mapping roles to all queue names that include a specified prefix .

Mapping different roles to different sets of queues .

The following example shows how to use the key attribute to map roles to all queues in a specified
domain.

The following example shows how to use the key attribute to map roles to a specific, named queue. In
this example, the named queue is exampleQueue.

 <access method="*" roles="amq"/>
 </match>
</role-access>

<access method="listMessages" roles="view,update,amq"/>

<match domain="org.apache.activemq.artemis" key="subcomponent=queues">
 <access method="list*" roles="view,update,amq"/>
 <access method="get*" roles="view,update,amq"/>
 <access method="is*" roles="view,update,amq"/>
 <access method="set*" roles="update,amq"/>
 <access method="*" roles="amq"/>
</match>

CHAPTER 5. SECURING BROKERS

103

The following example shows how to map roles to every queue whose name includes a specified prefix.
In this example, an asterisk (*) wildcard operator is used to match all queue names that start with the
prefix example.

You might want to map roles differently for different sets of the same attribute (for example, different
sets of queues). In this case, you can include multiple match elements in your configuration file.
However, it is then possible to have multiple matches in the same domain.

For example, consider two <match> elements configured as follows:

and

Based on this configuration, a queue named example.sub.queue in the org.apache.activemq.artemis
domain matches both wildcard key expressions. Therefore, the broker needs a prioritization scheme to
decide which set of roles to map to the queue; the roles specified in the first match element, or those
specified in the second match element.

When there are multiple matches in the same domain, the broker uses the following prioritization
scheme when mapping roles:

Exact matches are prioritized over wildcard matches

Longer wildcard matches are prioritized over shorter wildcard matches

In this example, because the longer wildcard expression matches the queue name of
example.sub.queue most closely, the broker applies the role-mapping configured in the second
<match> element.

NOTE

The default-access element is a catch-all element for every method call that is not
handled using the role-access or whitelist configurations. The default-access and role-
access elements have the same match element semantics.

<match domain="org.apache.activemq.artemis" key="queue=exampleQueue">
 <access method="list*" roles="view,update,amq"/>
 <access method="get*" roles="view,update,amq"/>
 <access method="is*" roles="view,update,amq"/>
 <access method="set*" roles="update,amq"/>
 <access method="*" roles="amq"/>
</match>

<match domain="org.apache.activemq.artemis" key="queue=example*">
 <access method="list*" roles="view,update,amq"/>
 <access method="get*" roles="view,update,amq"/>
 <access method="is*" roles="view,update,amq"/>
 <access method="set*" roles="update,amq"/>
 <access method="*" roles="amq"/>
</match>

<match domain="org.apache.activemq.artemis" key="queue=example*">

<match domain="org.apache.activemq.artemis" key="queue=example.sub*">

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

104

5.3.2.2.3. Configuring the whitelist element

A whitelist is a set of pre-approved domains or MBeans that do not require user authentication. You can
provide a list of domains, or list of MBeans, or both, that must bypass the authentication. For example,
you might use the whitelist to specify any MBeans that are needed by the AMQ Broker management
console to run.

The following example procedure shows how to configure the whitelist element.

Procedure

1. Open the <broker_instance_dir>/etc/management.xml configuration file.

2. Search for the whitelist element and edit the configuration:

In this example, any MBean with the domain hawtio is allowed access without authentication.
You can also use wildcard entries of the form <entry domain="hawtio" key="type=*"/> for the
MBean properties to match.

3. Start or restart the broker.

On Linux: <broker_instance_dir>/bin/artemis run

On Windows: <broker_instance_dir>\bin\artemis-service.exe start

5.3.2.3. Setting resource limits

Sometimes it is helpful to set particular limits on what certain users can do beyond the normal security
settings related to authorization and authentication.

5.3.2.3.1. Configuring connection and queue limits

The following example procedure shows how to limit the number of connections and queues that a user
can create.

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Add a resource-limit-settings element. Specify values for max-connections and max-queues.
For example:

max-connections

Defines how many connections the matched user can make to the broker. The default is -1,
which means that there is no limit.

max-queues

Defines how many queues the matched user can create. The default is -1, which means that

<whitelist>
 <entry domain="hawtio"/>
</whitelist>

<resource-limit-settings>
 <resource-limit-setting match="myUser">
 <max-connections>5</max-connections>
 <max-queues>3</max-queues>
 </resource-limit-setting>
</resource-limit-settings>

CHAPTER 5. SECURING BROKERS

105

Defines how many queues the matched user can create. The default is -1, which means that
there is no limit.

NOTE

Unlike the match string that you can specify in the address-setting element of a broker
configuration, the match string that you specify in resource-limit-settings cannot use
wildcard syntax. Instead, the match string defines a specific user to which the resource
limit settings are applied.

5.4. USING LDAP FOR AUTHENTICATION AND AUTHORIZATION

The LDAP login module enables authentication and authorization by checking the incoming credentials
against user data stored in a central X.500 directory server. It is implemented by
org.apache.activemq.artemis.spi.core.security.jaas.LDAPLoginModule.

5.4.1. Configuring LDAP to authenticate clients

The following example procedure shows how to use LDAP to authenticate clients.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Within the security-settings element, add a security-setting element to configure permissions.
For example:

The preceding configuration assigns specific permissions for all queues to members of the user
role.

3. Open the <broker-instance-dir>/etc/login.config file.

4. Configure the LDAP login module, based on the directory service you are using.

a. If you are using the Microsoft Active Directory directory service, add a configuration that
resembles this example:

<security-settings>
 <security-setting match="#">
 <permission type="createDurableQueue" roles="user"/>
 <permission type="deleteDurableQueue" roles="user"/>
 <permission type="createNonDurableQueue" roles="user"/>
 <permission type="deleteNonDurableQueue" roles="user"/>
 <permission type="send" roles="user"/>
 <permission type="consume" roles="user"/>
 </security-setting>
</security-settings>

activemq {
 org.apache.activemq.artemis.spi.core.security.jaas.LDAPLoginModule required
 debug=true
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 connectionURL="LDAP://localhost:389"

connectionUsername="CN=Administrator,CN=Users,OU=System,DC=example,DC=com"

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

106

NOTE

If you are using Microsoft Active Directory, and a value that you need to
specify for an attribute of connectionUsername contains a space (for
example, OU=System Accounts), then you must enclose the value in a pair
of double quotes ("") and use a backslash (\) to escape each double quote in
the pair. For example,
connectionUsername="CN=Administrator,CN=Users,OU=\"System
Accounts\",DC=example,DC=com".

b. If you are using the ApacheDS directory service, add a configuration that resembles this
example:

debug

Turn debugging on (true) or off (false). The default value is false.

initialContextFactory

 connectionPassword=redhat.123
 connectionProtocol=s
 connectionTimeout=5000
 authentication=simple
 userBase="dc=example,dc=com"
 userSearchMatching="(CN={0})"
 userSearchSubtree=true
 readTimeout=5000
 roleBase="dc=example,dc=com"
 roleName=cn
 roleSearchMatching="(member={0})"
 roleSearchSubtree=true
 ;
};

activemq {
 org.apache.activemq.artemis.spi.core.security.jaas.LDAPLoginModule required
 debug=true
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 connectionURL="ldap://localhost:10389"
 connectionUsername="uid=admin,ou=system"
 connectionPassword=secret
 connectionProtocol=s
 connectionTimeout=5000
 authentication=simple
 userBase="dc=example,dc=com"
 userSearchMatching="(uid={0})"
 userSearchSubtree=true
 userRoleName=
 readTimeout=5000
 roleBase="dc=example,dc=com"
 roleName=cn
 roleSearchMatching="(member={0})"
 roleSearchSubtree=true
 ;
};

CHAPTER 5. SECURING BROKERS

107

Must always be set to com.sun.jndi.ldap.LdapCtxFactory

connectionURL

Location of the directory server using an LDAP URL, __<ldap://Host:Port>. One can
optionally qualify this URL, by adding a forward slash, /, followed by the DN of a particular
node in the directory tree. The default port of Apache DS is 10389 while for Microsoft
AD the default is 389.

connectionUsername

Distinguished Name (DN) of the user that opens the connection to the directory server.
For example, uid=admin,ou=system. Directory servers generally require clients to
present username/password credentials in order to open a connection.

connectionPassword

Password that matches the DN from connectionUsername. In the directory server, in
the Directory Information Tree (DIT), the password is normally stored as a
userPassword attribute in the corresponding directory entry.

connectionProtocol

Any value is supported but is effectively unused. This option must be set explicitly
because it has no default value.

connectionTimeout

Specify the maximum time, in milliseconds, that the broker can take to connect to the
directory server. If the broker cannot connect to the directory sever within this time, it
aborts the connection attempt. If you specify a value of zero or less for this property, the
timeout value of the underlying TCP protocol is used instead. If you do not specify a
value, the broker waits indefinitely to establish a connection, or the underlying network
times out.
When connection pooling has been requested for a connection, then this property
specifies the maximum time that the broker waits for a connection when the maximum
pool size has already been reached and all connections in the pool are in use. If you
specify a value of zero or less, the broker waits indefinitely for a connection to become
available. Otherwise, the broker aborts the connection attempt when the maximum wait
time has been reached.

authentication

Specifies the authentication method used when binding to the LDAP server. This
parameter can be set to either simple (which requires a username and password) or
none (which allows anonymous access).

userBase

Select a particular subtree of the DIT to search for user entries. The subtree is specified
by a DN, which specifies the base node of the subtree. For example, by setting this
option to ou=User,ou=ActiveMQ,ou=system, the search for user entries is restricted to
the subtree beneath the ou=User,ou=ActiveMQ,ou=system node.

userSearchMatching

Specify an LDAP search filter, which is applied to the subtree selected by userBase. See
the Section 5.4.1.1, “Search matching parameters” section below for more information.

userSearchSubtree

Specify the search depth for user entries, relative to the node specified by userBase.
This option is a Boolean. Specifying a value of false means that the search tries to match
one of the child entries of the userBase node (maps to
javax.naming.directory.SearchControls.ONELEVEL_SCOPE). Specifying a value of

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

108

true means that the search tries to match any entry belonging to the subtree of the
userBase node (maps to
javax.naming.directory.SearchControls.SUBTREE_SCOPE).

userRoleName

Name of the attribute of the user entry that contains a list of role names for the user.
Role names are interpreted as group names by the broker’s authorization plug-in. If this
option is omitted, no role names are extracted from the user entry.

readTimeout

Specify the maximum time, in milliseconds, that the broker can wait to receive a
response from the directory server to an LDAP request. If the broker does not receive a
response from the directory server in this time, the broker aborts the request. If you
specify a value of zero or less, or you do not specify a value, the broker waits indefinitely
for a response from the directory server to an LDAP request.

roleBase

If role data is stored directly in the directory server, one can use a combination of role
options (roleBase, roleSearchMatching, roleSearchSubtree, and roleName) as an
alternative to (or in addition to) specifying the userRoleName option. This option
selects a particular subtree of the DIT to search for role/group entries. The subtree is
specified by a DN, which specifies the base node of the subtree. For example, by setting
this option to ou=Group,ou=ActiveMQ,ou=system, the search for role/group entries is
restricted to the subtree beneath the ou=Group,ou=ActiveMQ,ou=system node.

roleName

Attribute type of the role entry that contains the name of the role/group (such as C, O,
OU, etc.). If this option is omitted the role search feature is effectively disabled.

roleSearchMatching

Specify an LDAP search filter, which is applied to the subtree selected by roleBase. See
the Section 5.4.1.1, “Search matching parameters” section below for more information.

roleSearchSubtree

Specify the search depth for role entries, relative to the node specified by roleBase. If
set to false (which is the default) the search tries to match one of the child entries of the
roleBase node (maps to
javax.naming.directory.SearchControls.ONELEVEL_SCOPE). If true it tries to match
any entry belonging to the subtree of the roleBase node (maps to
javax.naming.directory.SearchControls.SUBTREE_SCOPE).

NOTE

Apache DS uses the OID portion of DN path. Microsoft Active Directory
uses the CN portion. For example, you might use a DN path such as
oid=testuser,dc=example,dc=com in Apache DS, while you might use a
DN path such as cn=testuser,dc=example,dc=com in Microsoft Active
Directory.

5. Start or restart the broker (service or process).

5.4.1.1. Search matching parameters

userSearchMatching

Before passing to the LDAP search operation, the string value provided in this configuration

CHAPTER 5. SECURING BROKERS

109

Before passing to the LDAP search operation, the string value provided in this configuration
parameter is subjected to string substitution, as implemented by the java.text.MessageFormat
class.
This means that the special string, {0}, is substituted by the username, as extracted from the
incoming client credentials. After substitution, the string is interpreted as an LDAP search filter (the
syntax is defined by the IETF standard RFC 2254).

For example, if this option is set to (uid={0}) and the received username is jdoe, the search filter
becomes (uid=jdoe) after string substitution.

If the resulting search filter is applied to the subtree selected by the user base,
ou=User,ou=ActiveMQ,ou=system, it would match the entry,
uid=jdoe,ou=User,ou=ActiveMQ,ou=system.

roleSearchMatching

This works in a similar manner to the userSearchMatching option, except that it supports two
substitution strings.
The substitution string {0} substitutes the full DN of the matched user entry (that is, the result of the
user search). For example, for the user, jdoe, the substituted string could be
uid=jdoe,ou=User,ou=ActiveMQ,ou=system.

The substitution string {1} substitutes the received user name. For example, jdoe.

If this option is set to (member=uid={1}) and the received user name is jdoe, the search filter
becomes (member=uid=jdoe) after string substitution (assuming ApacheDS search filter syntax).

If the resulting search filter is applied to the subtree selected by the role base,
ou=Group,ou=ActiveMQ,ou=system, it matches all role entries that have a member attribute equal
to uid=jdoe (the value of a member attribute is a DN).

This option must always be set, even if role searching is disabled, because it has no default value. If
OpenLDAP is used, the syntax of the search filter is (member:=uid=jdoe).

Additional resources

For a short introduction to the search filter syntax, see Oracle JNDI tutorial.

5.4.2. Configuring LDAP authorization

The LegacyLDAPSecuritySettingPlugin security settings plugin reads the security information
previously handled in AMQ 6 by LDAPAuthorizationMap and cachedLDAPAuthorizationMap and
converts this information to corresponding AMQ 7 security settings, where possible.

The security implementations for brokers in AMQ 6 and AMQ 7 do not match exactly. Therefore, the
plugin performs some translation between the two versions to achieve near-equivalent functionality.

The following example shows how to configure the plugin.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Within the security-settings element, add the security-setting-plugin element. For example:

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

110

http://download.oracle.com/javase/jndi/tutorial/basics/directory/filter.html
http://activemq.apache.org/security.html
http://activemq.apache.org/cached-ldap-authorization-module.html

class-name

The implementation is
org.apache.activemq.artemis.core.server.impl.LegacyLDAPSecuritySettingPlugin.

initialContextFactory

The initial context factory used to connect to LDAP. It must always be set to
com.sun.jndi.ldap.LdapCtxFactory (that is, the default value).

connectionURL

Specifies the location of the directory server using an LDAP URL, <ldap://Host:Port>. You
can optionally qualify this URL by adding a forward slash, /, followed by the distinguished
name (DN) of a particular node in the directory tree. For example,
ldap://ldapserver:10389/ou=system. The default value is ldap://localhost:1024.

connectionUsername

The DN of the user that opens the connection to the directory server. For example,
uid=admin,ou=system. Directory servers generally require clients to present
username/password credentials in order to open a connection.

connectionPassword

The password that matches the DN from connectionUsername. In the directory server, in
the Directory Information Tree (DIT), the password is normally stored as a userPassword
attribute in the corresponding directory entry.

connectionProtocol

Currently unused. In the future, this option might allow you to select the Secure Socket Layer
(SSL) for the connection to the directory server. This option must be set explicitly because it
has no default value.

authentication

Specifies the authentication method used when binding to the LDAP server. Valid values for
this parameter are simple (username and password) or none (anonymous). The default
value is simple.

NOTE

Simple Authentication and Security Layer (SASL) authentication is not
supported.

Other settings not shown in the preceding configuration example are:

destinationBase

Specifies the DN of the node whose children provide the permissions for all destinations. In this case,

<security-settings>
 <security-setting-plugin class-
name="org.apache.activemq.artemis.core.server.impl.LegacyLDAPSecuritySettingPlugin">
 <setting name="initialContextFactory" value="com.sun.jndi.ldap.LdapCtxFactory"/>
 <setting name="connectionURL"
value="ldap://localhost:1024"/>`ou=destinations,o=ActiveMQ,ou=system`
 <setting name="connectionUsername" value="uid=admin,ou=system"/>
 <setting name="connectionPassword" value="secret"/>
 <setting name="connectionProtocol" value="s"/>
 <setting name="authentication" value="simple"/>
 </security-setting-plugin>
</security-settings>

CHAPTER 5. SECURING BROKERS

111

Specifies the DN of the node whose children provide the permissions for all destinations. In this case,
the DN is a literal value (that is, no string substitution is performed on the property value). For
example, a typical value of this property is ou=destinations,o=ActiveMQ,ou=system The default
value is ou=destinations,o=ActiveMQ,ou=system.

filter

Specifies an LDAP search filter, which is used when looking up the permissions for any kind of
destination. The search filter attempts to match one of the children or descendants of the queue or
topic node. The default value is (cn=*).

roleAttribute

Specifies an attribute of the node matched by filter whose value is the DN of a role. The default
value is uniqueMember.

adminPermissionValue

Specifies a value that matches the admin permission. The default value is admin.

readPermissionValue

Specifies a value that matches the read permission. The default value is read.

writePermissionValue

Specifies a value that matches the write permission. The default value is write.

enableListener

Specifies whether to enable a listener that automatically receives updates made in the LDAP server
and update the broker’s authorization configuration in real time. The default value is true.

mapAdminToManage

Specifies whether to map the legacy (that is, AMQ 6) admin permission to the AMQ 7 manage
permission. See details of the mapping semantics in the table below. The default value is false.
The name of the queue or topic defined in LDAP serves as the "match" for the security setting, the
permission value is mapped from the AMQ 6 type to the AMQ 7 type, and the role is mapped as-is.
Because the name of the queue or topic defined in LDAP serves as the match for the security
setting, the security setting may not be applied as expected to JMS destinations. This is because
AMQ 7 always prefixes JMS destinations with "jms.queue." or "jms.topic.", as necessary.

AMQ 6 has three permission types - read, write, and admin. These permission types are described
on the ActiveMQ website; Security.

AMQ 7 has the following permission types:

createAddress

deleteAddress

createDurableQueue

deleteDurableQueue

createNonDurableQueue

deleteNonDurableQueue

send

consume

manage

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

112

http://activemq.apache.org/security.html

browse
This table shows how the security settings plugin maps AMQ 6 permission types to AMQ 7
permission types:

AMQ 6 permission type AMQ 7 permission type

read consume, browse

write send

admin createAddress, deleteAddress,
createDurableQueue, deleteDurableQueue,
createNonDurableQueue,
deleteNonDurableQueue, manage (if
mapAdminToManage is set to true)

As described below, there are some cases in which the plugin performs some translation
between the AMQ 6 and AMQ 7 permission types to achieve equivalence:

The mapping does not include the AMQ 7 manage permission type by default because
there is no analogous permission type in AMQ 6. However, if mapAdminToManage is
set to true, the plugin maps the AMQ 6 admin permission to the AMQ 7 manage
permission.

The admin permission type in AMQ 6 determines whether the broker automatically
creates a destination if the destination does not exist and the user sends a message to
it. AMQ 7 automatically allows automatic creation of a destination if the user has
permission to send messages to the destination. Therefore, the plugin maps the legacy
admin permission to the AMQ 7 permissions shown above, by default. The plugin also
maps the AMQ 6 admin permission to the AMQ 7 manage permission if
mapAdminToManage is set to true.

5.4.3. Encrypting the password in the login.config file

Because organizations frequently securely store data with LDAP, the login.config file can contain the
configuration required for the broker to communicate with the organization’s LDAP server. This
configuration file usually includes a password to log in to the LDAP server, so this password needs to be
encrypted.

Prerequisites

Ensure that you have modified the login.config file to add the required properties, as described
in Section 5.4.2, “Configuring LDAP authorization”.

Procedure

The following procedure shows how to mask the value of the connectionPassword parameter found in
the <broker_instance_dir>/etc/login.config file.

1. From a command prompt, use the mask utility to encrypt the password:

$ <broker_instance_dir>/bin/artemis mask <password>

CHAPTER 5. SECURING BROKERS

113

result: 3a34fd21b82bf2a822fa49a8d8fa115d

2. Open the <broker_instance_dir>/etc/login.config file. Locate the connectionPassword
parameter:

connectionPassword = <password>

3. Replace the plain-text password with the encrypted value:

connectionPassword = 3a34fd21b82bf2a822fa49a8d8fa115d

4. Wrap the encrypted value with the identifier "ENC()":

connectionPassword = "ENC(3a34fd21b82bf2a822fa49a8d8fa115d)"

The login.config file now contains a masked password. Because the password is wrapped with the
"ENC()" identifier, AMQ Broker decrypts it before it is used.

Additional resources

For more information about the configuration files included with AMQ Broker, see AMQ Broker
configuration files and locations.

5.5. USING KERBEROS FOR AUTHENTICATION AND AUTHORIZATION

When sending and receiving messages with the AMQP protocol, clients can send Kerberos security
credentials that AMQ Broker authenticates by using the GSSAPI mechanism from the Simple
Authentication and Security Layer (SASL) framework. Kerberos credentials can also be used for
authorization by mapping an authenticated user to an assigned role configured in an LDAP directory or
text-based properties file.

You can use SASL in tandem with Transport Layer Security (TLS) to secure your messaging applications.
SASL provides user authentication, and TLS provides data integrity.

IMPORTANT

You must deploy and configure a Kerberos infrastructure before AMQ Broker
can authenticate and authorize Kerberos credentials. See your operating system
documentation for more information about deploying Kerberos.

For RHEL 7, see Using Kerberos.

For Windows, see Kerberos Authentication Overview.

Users of an Oracle or IBM JDK should install the Java Cryptography Extension
(JCE). See the documentation from the Oracle version of the JCE or the IBM
version of the JCE for more information.

The following procedures show how to configure Kerberos for authentication and authorization.

5.5.1. Configuring network connections to use Kerberos

AMQ Broker integrates with Kerberos security credentials by using the GSSAPI mechanism from the

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

114

https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/configuring_amq_broker/#broker-configuration-files-location-configuring
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/using_kerberos
https://technet.microsoft.com/en-us/library/hh831553(v=ws.11).aspx
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
https://www.ibm.com/support/knowledgecenter/en/SSPT3X_3.0.0/com.ibm.swg.im.infosphere.biginsights.install.doc/doc/bi_install_download_jce.html

Simple Authentication and Security Layer (SASL) framework. To use Kerberos in AMQ Broker, each
acceptor authenticating or authorizing clients that use a Kerberos credential must be configured to used
the GSSAPI mechanism.

The following procedure shows how to configure an acceptor to use Kerberos.

Prerequisites

You must deploy and configure a Kerberos infrastructure before AMQ Broker can authenticate
and authorize Kerberos credentials.

Procedure

1. Stop the broker.

a. On Linux:

<broker_instance_dir>/bin/artemis stop

b. On Windows:

<broker_instance_dir>\bin\artemis-service.exe stop

2. Open the <broker_instance_dir>/etc/broker.xml configuration file.

3. Add the name-value pair saslMechanisms=GSSAPI to the query string of the URL for the
acceptor.

<acceptor name="amqp">
 tcp://0.0.0.0:5672?protocols=AMQP;saslMechanisms=GSSAPI
</acceptor>

The preceding configuration means that the acceptor uses the GSSAPI mechanism when
authenticating Kerberos credentials.

4. (Optional) The PLAIN and ANONYMOUS SASL mechanisms are also supported. To specify
multiple mechanisms, use a comma-separated list. For example:

<acceptor name="amqp">
 tcp://0.0.0.0:5672?protocols=AMQP;saslMechanisms=GSSAPI,PLAIN
</acceptor>

The result is an acceptor that uses both the GSSAPI and PLAIN SASL mechanisms.

5. Start the broker.

a. On Linux:

<broker_instance_dir>/bin/artemis run

b. On Windows:

<broker_instance_dir>\bin\artemis-service.exe start

CHAPTER 5. SECURING BROKERS

115

Additional resources

For more information about acceptors, see Section 2.1, “About Acceptors”.

5.5.2. Authenticating clients with Kerberos credentials

AMQ Broker supports Kerberos authentication of AMQP connections that use the GSSAPI mechanism
from the Simple Authentication and Security Layer (SASL) framework.

A broker acquires its Kerberos acceptor credentials by using the Java Authentication and Authorization
Service (JAAS). The JAAS library included with your Java installation is packaged with a login module,
Krb5LoginModule, that authenticates Kerberos credentials. See the documentation from your Java
vendor for more information about their Krb5LoginModule. For example, Oracle provides information
about their Krb5LoginModule login module as part of their Java 8 documentation .

Prerequisites

You must enable the GSSAPI mechanism of an acceptor before it can authenticate AMQP
connections using Kerberos security credentials. For more information, see Section 5.5.1,
“Configuring network connections to use Kerberos”.

Procedure

1. Stop the broker.

a. On Linux:

<broker_instance_dir>/bin/artemis stop

b. On Windows:

<broker_instance_dir>\bin\artemis-service.exe stop

2. Open the <broker_instance_dir>/etc/login.config configuration file.

3. Add a configuration scope named amqp-sasl-gssapi. The following example shows
configuration for the Krb5LoginModule found in Oracle and OpenJDK versions of the JDK.

amqp-sasl-gssapi {
 com.sun.security.auth.module.Krb5LoginModule required
 isInitiator=false
 storeKey=true
 useKeyTab=true
 principal="amqp/my_broker_host@example.com"
 debug=true;
};

amqp-sasl-gssapi

By default, the GSSAPI mechanism implementation on the broker uses a JAAS configuration
scope named amqp-sasl-gssapi to obtain its Kerberos acceptor credentials.

Krb5LoginModule

This version of the Krb5LoginModule is provided by the Oracle and OpenJDK versions of
the JDK. Verify the fully qualified class name of the Krb5LoginModule and its available
options by referring to the documentation from your Java vendor.

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

116

https://docs.oracle.com/javase/8/docs/jre/api/security/jaas/spec/com/sun/security/auth/module/Krb5LoginModule.html

useKeyTab

The Krb5LoginModule is configured to use a Kerberos keytab when authenticating a
principal. Keytabs are generated using tooling from your Kerberos environment. See the
documentation from your vendor for details about generating Kerberos keytabs.

principal

The Principal is set to amqp/my_broker_host@example.com. This value must correspond
to the service principal created in your Kerberos environment. See the documentation from
your vendor for details about creating service principals.

4. Start the broker.

a. On Linux:

<broker_instance_dir>/bin/artemis run

b. On Windows:

<broker_instance_dir>\bin\artemis-service.exe start

5.5.2.1. Using an alternative configuration scope

You can specify an alternative configuration scope by adding the parameter saslLoginConfigScope to
the URL of an AMQP acceptor. In the following configuration example, the parameter
saslLoginConfigScope is given the value alternative-sasl-gssapi. The result is an acceptor that uses
the alternative scope named alternative-sasl-gssapi, declared in the
<broker_instance_dir>/etc/login.config configuration file.

<acceptor name="amqp">
tcp://0.0.0.0:5672?
protocols=AMQP;saslMechanisms=GSSAPI,PLAIN;saslLoginConfigScope=alternative-sasl-gssapi`
</acceptor>

5.5.3. Authorizing clients with Kerberos credentials

AMQ Broker includes an implementation of the JAAS Krb5LoginModule login module for use by other
security modules when mapping roles. The module adds a Kerberos-authenticated Peer Principal to the
Subject’s principal set as an AMQ Broker UserPrincipal. The credentials can then be passed to a
PropertiesLoginModule or LDAPLoginModule module, which maps the Kerberos-authenticated Peer
Principal to an AMQ Broker role.

NOTE

The Kerberos Peer Principal does not exist as a broker user, only as a role member.

Prerequisites

You must enable the GSSAPI mechanism of an acceptor before it can authorize AMQP
connections using Kerberos security credentials.

Procedure

1. Stop the broker.

CHAPTER 5. SECURING BROKERS

117

a. On Linux:

<broker_instance_dir>/bin/artemis stop

b. On Windows:

<broker_instance_dir>\bin\artemis-service.exe stop

2. Open the <broker_instance_dir>/etc/login.config configuration file.

3. Add configuration for the AMQ Broker Krb5LoginModule and the LDAPLoginModule. Verify
the configuration options by referring to the documentation from your LDAP provider.
An example configuration is shown below.

org.apache.activemq.artemis.spi.core.security.jaas.Krb5LoginModule required
 ;
org.apache.activemq.artemis.spi.core.security.jaas.LDAPLoginModule optional
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 connectionURL="ldap://localhost:1024"
 authentication=GSSAPI
 saslLoginConfigScope=broker-sasl-gssapi
 connectionProtocol=s
 userBase="ou=users,dc=example,dc=com"
 userSearchMatching="(krb5PrincipalName={0})"
 userSearchSubtree=true
 authenticateUser=false
 roleBase="ou=system"
 roleName=cn
 roleSearchMatching="(member={0})"
 roleSearchSubtree=false
 ;

NOTE

The version of the Krb5LoginModule shown in the preceding example is
distributed with AMQ Broker and transforms the Kerberos identity into a broker
identity that can be used by other AMQ modules for role mapping.

4. Start the broker.

a. On Linux:

<broker_instance_dir>/bin/artemis run

b. On Windows:

<broker_instance_dir>\bin\artemis-service.exe start

Additional resources

See Section 5.5.1, “Configuring network connections to use Kerberos” for more information
about enabling the GSSAPI mechanism in AMQ Broker.

See Section 5.2.2.1, “Configuring basic user and password authentication” for more information

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

118

See Section 5.2.2.1, “Configuring basic user and password authentication” for more information
about PropertiesLoginModule.

See Section 5.4.1, “Configuring LDAP to authenticate clients” for more information about
LDAPLoginModule.

5.6. USING A CUSTOM SECURITY MANAGER

The broker uses a component called the security manager to handle authentication and authorization.
By default, AMQ Broker uses the
org.apache.activemq.artemis.spi.core.security.ActiveMQJAASSecurityManager security manager.
This default security manager provides integration with JAAS and Red Hat JBoss Enterprise Application
Platform (JBoss EAP) security.

However, a system administrator might want more control over the implementation of broker security. In
this case, it is possible to specify a custom security manager in the broker configuration. A custom
security manager is a user-defined class that implements the
org.apache.activemq.artemis.spi.core.security.ActiveMQSecurityManager5 interface.

5.6.1. Specifying a custom security manager

The following procedure shows how to specify a custom security manager in your broker configuration.

Procedure

1. Open the <broker-instance-dir>/etc/boostrap.xml configuration file.

2. In the security-manager element, for the class-name attribute, specify the class that is a user-
defined implementation of the
org.apache.activemq.artemis.spi.core.security.ActiveMQSecurityManager5 interface. For
example:

Additional resources

For more information about the
org.apache.activemq.artemis.spi.core.security.ActiveMQSecurityManager5 interface, see
Interface ActiveMQSecurityManager5 in the ActiveMQ Artemis Core API documentation.

5.6.2. Running the custom security manager example program

AMQ Broker includes an example program that demonstrates how to implement a custom security
manager. In the example, the custom security manager logs details for authentication and authorization
and then passes the details to an instance of
org.apache.activemq.artemis.spi.core.security.ActiveMQJAASSecurityManager (that is, the default
security manager).

<broker xmlns="http://activemq.org/schema">
 ...
 <security-manager class-name="com.foo.MySecurityManager">
 <property key="myKey1" value="myValue1"/>
 <property key="myKey2" value="myValue2"/>
 </security-manager>
 ...
</broker>

CHAPTER 5. SECURING BROKERS

119

https://activemq.apache.org/components/artemis/documentation/javadocs/javadoc-latest/org/apache/activemq/artemis/spi/core/security/ActiveMQSecurityManager5.html

The following procedure shows how to run the custom security manager example program.

Prerequisites

Your machine must be set up to run AMQ Broker example programs. For more information, see
Running the AMQ Broker examples .

Procedure

1. Navigate to the directory to the directory that contains the custom security manager example.

$ cd <install-dir>/examples/features/standard/security-manager

2. Run the example.

$ mvn verify

NOTE

If you would prefer to manually create and start a broker instance when running the
example program, replace the command in the preceding step with mvn -PnoServer
verify.

5.7. DISABLING SECURITY

Security is enabled by default. The following procedure shows how to disable broker security.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. In the core element, set the value of security-enabled to false.

3. If necessary, specify a new value, in milliseconds, for security-invalidation-interval. The value
of this property specifies when the broker periodically invalidates secure logins. The default
value is 10000.

5.8. TRACKING MESSAGES FROM VALIDATED USERS

To enable tracking and logging the origins of messages (for example, for security-auditing purposes),
you can use the _AMQ_VALIDATED_USER message key.

In the broker.xml configuration file, if the populate-validated-user option is set to true, then the broker
adds the name of the validated user to the message using the _AMQ_VALIDATED_USER key. For JMS
and STOMP clients, this message key maps to the JMSXUserID key.

NOTE

<security-enabled>false</security-enabled>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

120

https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/getting_started_with_amq_broker//running-broker-examples-getting-started

NOTE

The broker cannot add the validated user name to a message produced by an AMQP
JMS client. Modifying the properties of an AMQP message after it has been sent by a
client is a violation of the AMQP protocol.

For a user authenticated based on his/her SSL certificate, the validated user name populated by the
broker is the name to which the certificate’s Distinguished Name (DN) maps.

In the broker.xml configuration file, if security-enabled is false and populate-validated-user is true,
then the broker populates whatever user name, if any, that the client provides. The populate-validated-
user option is false by default.

You can configure the broker to reject a message that doesn’t have a user name (that is, the
JMSXUserID key) already populated by the client when it sends the message. You might find this option
useful for AMQP clients, because the broker cannot populate the validated user name itself for
messages sent by these clients.

To configure the broker to reject messages without JMSXUserID set by the client, add the following
configuration to the broker.xml configuration file:

By default, reject-empty-validated-user is set to false.

5.9. ENCRYPTING PASSWORDS IN CONFIGURATION FILES

By default, AMQ Broker stores all passwords in configuration files as plain text. Be sure to secure all
configuration files with the correct permissions to prevent unauthorized access. You can also encrypt, or
mask, the plain text passwords to prevent unwanted viewers from reading them.

5.9.1. About encrypted passwords

An encrypted, or masked, password is the encrypted version of a plain text password. The encrypted
version is generated by the mask command-line utility provided by AMQ Broker. For more information
about the mask utility, see the command-line help documentation:

$ <broker_instance_dir>/bin/artemis help mask

To mask a password, replace its plain-text value with the encrypted one. The masked password must be
wrapped by the identifier ENC() so that it is decrypted when the actual value is needed.

In the following example, the configuration file <broker_instance_dir>/etc/bootstrap.xml contains
masked passwords for the keyStorePassword and trustStorePassword parameters.

You can use masked passwords with the following configuration files.

broker.xml

<reject-empty-validated-user>true</reject-empty-validated-user>

<web bind="https://localhost:8443" path="web"
 keyStorePassword="ENC(-342e71445830a32f95220e791dd51e82)"
 trustStorePassword="ENC(32f94e9a68c45d89d962ee7dc68cb9d1)">
 <app url="activemq-branding" war="activemq-branding.war"/>
</web>

CHAPTER 5. SECURING BROKERS

121

bootstrap.xml

management.xml

artemis-users.properties

login.config (for use with the LDAPLoginModule)

Configuration files are found at <broker_instance_dir>/etc.

NOTE

artemis-users.properties supports only masked passwords that have been hashed.
When a user is created upon broker creation, artemis-users.properties contains hashed
passwords by default. The default PropertiesLoginModule will not decode the
passwords in artemis-users.properties file but will instead hash the input and compare
the two hashed values for password verification. Changing the hashed password to a
masked password does not allow access to the AMQ Broker management console.

broker.xml, bootstrap.xml, management.xml, and login.config support passwords that
are masked but not hashed.

5.9.2. Encrypting a password in a configuration file

The following example shows how to mask the value of cluster-password in the broker.xml
configuration file.

Procedure

1. From a command prompt, use the mask utility to encrypt a password:

$ <broker_instance_dir>/bin/artemis mask <password>

result: 3a34fd21b82bf2a822fa49a8d8fa115d

2. Open the <broker_instance_dir>/etc/broker.xml configuration file containing the plain-text
password that you want to mask:

3. Replace the plain-text password with the encrypted value:

4. Wrap the encrypted value with the identifier ENC():

<cluster-password>
 <password>
</cluster-password>

<cluster-password>
 3a34fd21b82bf2a822fa49a8d8fa115d
</cluster-password>

<cluster-password>
 ENC(3a34fd21b82bf2a822fa49a8d8fa115d)
</cluster-password>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

122

The configuration file now contains an encrypted password. Because the password is wrapped with the
ENC() identifier, AMQ Broker decrypts it before it is used.

Additional resources

For more information about the configuration files included with AMQ Broker, see Section 1.1,
“AMQ Broker configuration files and locations”.

CHAPTER 5. SECURING BROKERS

123

CHAPTER 6. PERSISTING MESSAGES
This chapter describes how persistence works with AMQ Broker and how to configure it.

The broker ships with two persistence options:

1. Journal-based
The default. A highly performant option that writes messages to journals on the file system.

2. JDBC-based
Uses the broker’s JDBC Store to persist messages to a database of your choice.

Alternatively, you can also configure the broker for zero persistence.

The broker uses a different solution for persisting large messages outside the message journal. See
Working with Large Messages for more information. The broker can also be configured to page
messages to disk in low memory situations. See Paging Messages for more information.

NOTE

For current information regarding which databases and network file systems are
supported see Red Hat AMQ 7 Supported Configurations on the Red Hat Customer
Portal.

6.1. ABOUT JOURNAL-BASED PERSISTENCE

A broker’s journal is a set of append only files on disk. Each file is pre-created to a fixed size and initially
filled with padding. As messaging operations are performed on the broker, records are appended to end
of the journal. Appending records allows the broker to minimize disk head movement and random access
operations, which are typically the slowest operation on a disk. When one journal file is full, the broker
uses a new one.

The journal file size is configurable, minimizing the number of disk cylinders used by each file. Modern
disk topologies are complex, however, and the broker cannot control which cylinder(s) the file is
mapped to. Journal file sizing therefore is not an exact science.

Other persistence-related features include:

A sophisticated file garbage collection algorithm that determines whether a particular journal
file is still in use. If not, the file can be reclaimed and re-used.

A compaction algorithm that removes dead space from the journal and that compresses the
data. This results in the journal using fewer files on disk.

Support for local transactions.

Support for XA transactions when using AMQ JMS clients.

The majority of the journal is written in Java. However, the interaction with the actual file system is
abstracted, so you can use different, pluggable implementations. AMQ Broker ships with two
implementations:

Java NIO.
Uses the standard Java NIO to interface with the file system. This provides extremely good
performance and runs on any platform with a Java 6 or later runtime.

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

124

https://access.redhat.com/articles/2791941
https://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html

Linux Asynchronous IO
Uses a thin native wrapper to talk to the Linux asynchronous IO library (AIO). With AIO, the
broker is called back after the data has made it to disk, avoiding explicit syncs altogether. By
default the broker tries to use an AIO journal, and falls back to using NIO if AIO is not available.

Using AIO typically provides even better performance than using Java NIO. For instructions on
how to install libaio see Using an AIO journal .

NOTE

For current information regarding which network file systems are supported see Red Hat
AMQ 7 Supported Configurations on the Red Hat Customer Portal.

6.1.1. Using AIO

The Java NIO journal is highly performant, but if you are running the broker using Linux Kernel 2.6 or
later, Red Hat recommends using the AIO journal for better persistence performance. It is not possible
to use the AIO journal with other operating systems or earlier versions of the Linux kernel.

To use the AIO journal you must install the libaio if it is not already installed.

Procedure

Use the yum command to install libaio, as in the example below:

yum install libaio

6.2. CONFIGURING JOURNAL-BASED PERSISTENCE

Persistence configuration is maintained in the file BROKER_INSTANCE_DIR/etc/broker.xml. The
broker’s default configuration uses journal based persistence and includes the elements shown below.

persistence-enabled

Specify whether to use the file-based journal for message persistence.

journal-type

Type of journal to use. If set to ASYNCIO, the broker first attempts to use AIO. The broker falls back
to NIO if ASYNCIO is not found.

bindings-directory

File system location of the bindings journal. The default setting is relative to

<configuration>
 <core>
 ...
 <persistence-enabled>true</persistence-enabled>
 <journal-type>ASYNCIO</journal-type>
 <bindings-directory>./data/bindings</bindings-directory>
 <journal-directory>./data/journal</journal-directory>
 <journal-datasync>true</journal-datasync>
 <journal-min-files>2</journal-min-files>
 <journal-pool-files>-1</journal-pool-files>
 ...
 </core>
</configuration>

CHAPTER 6. PERSISTING MESSAGES

125

https://access.redhat.com/articles/2791941

File system location of the bindings journal. The default setting is relative to
BROKER_INSTANCE_DIR.

journal-directory

File system location of the messaging journal. The default setting is relative to
BROKER_INSTANCE_DIR.

journal-datasync

Specify whether to use fdatasync to confirm writes to the disk.

journal-min-files

Number of journal files to create when the broker starts.

journal-pool-files

Number of files to keep after reclaiming unused files. The default value of -1 means that no files are
deleted during clean up.

6.2.1. The Message Journal

The message journal stores all message-related data, including the messages themselves and duplicate
ID caches. The files on this journal are prefixed as activemq-data. Each file has a amq extension and a
default size of 10485760 bytes. The location of the message journal is set using the journal-directory
configuration element. The default value is BROKER_INSTANCE_DIR/data/journal. The default
configuration includes other elements related to the messaging journal:

journal-min-files
The number of journal files to pre-create when the broker starts. The default is 2.

journal-pool-files
The number of files to keep after reclaiming un-used files. The default value, -1, means that no
files are deleted once created by the broker. However, the system cannot grow infinitely, so you
are required to use paging for destinations that are unbounded in this way. See the chapter on
Paging Messages for more information.

There are several other configuration elements available for the messaging journal. See the appendix for
a full list.

6.2.2. The Bindings Journal

The bindings journal is used to store bindings-related data, such as the set of queues deployed on the
server and their attributes. It also stores data such as ID sequence counters.

The bindings journal always uses NIO because it is typically low throughput when compared to the
message journal. Files on this journal are prefixed with activemq-bindings. Each file has a bindings
extension and a default size of 1048576 bytes.

Use the following configuration elements in BROKER_INSTANCE_DIR/etc/broker.xml to configure
the bindings journal.

bindings-directory
This is the directory in which the bindings journal lives. The default value is
BROKER_INSTANCE_DIR/data/bindings.

create-bindings-dir
If this is set to true then the bindings directory is automatically created at the location specified
in bindings-directory if it does not already exist. The default value is true

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

126

1

2

6.2.3. The JMS Journal

The JMS journal stores all JMS-related data, including JMS Queues, Topics, and Connection Factories,
as well as any JNDI bindings for these resources. Also, any JMS Resources created via the management
API is persisted to this journal, but any resources configured via configuration files are not. The JMS
Journal is only created if JMS is being used.

The files on this journal are prefixed as activemq-jms. Each file has a jms extension and and a default
size of 1048576 bytes.

The JMS journal shares its configuration with the bindings journal.

6.2.4. Compacting Journal Files

AMQ Broker includes a compaction algorithm that removes dead space from the journal and
compresses its data so that it takes up less space on disk. There are two criteria used to determine when
to start compaction. After both criteria are met, the compaction process parses the journal and
removes all dead records. Consequently, the journal comprises fewer files. The criteria are:

The number of files created for the journal.

The percentage of live data in the journal’s files.

You configure both criteria in BROKER_INSTANCE_DIR/etc/broker.xml.

Procedure

To configure the criteria for the compaction process, add the following two elements, as in the
example below.

The minimum number of files created before compaction begins. That is, the compacting
algorithm does not start until you have at least journal-compact-min-files. The default
value is 10. Setting this to 0 disables compaction, which is dangerous because the journal
could grow indefinitely.

The percentage of live data in the journal’s files. When less than this percentage is
considered live data, compacting begins. Remember that compacting does not begin until
you also have at least journal-compact-min-files data files on the journal. The default
value is 30.

Compacting Journals Using the CLI
You can also use the command-line interface (CLI) to compact journals.

Procedure

1. As the owner of the BROKER_INSTANCE_DIR, stop the broker. In the example below, the user

<configuration>
 <core>
 ...
 <journal-compact-min-files>15</journal-compact-min-files> 1
 <journal-compact-percentage>25</journal-compact-percentage> 2
 ...
 </core>
</configuration>

CHAPTER 6. PERSISTING MESSAGES

127

1. As the owner of the BROKER_INSTANCE_DIR, stop the broker. In the example below, the user
amq-broker was created during the installation of AMQ Broker.

su - amq-broker
cd __BROKER_INSTANCE_DIR__/bin
$./artemis stop

2. (Optional) Run the following CLI command to get a full list of parameters for the data tool. Note
that by default, the tool uses settings found in BROKER_INSTANCE_DIR/etc/broker.xml.

$./artemis help data compact.

3. Run the following CLI command to compact the data.

$./artemis data compact.

4. After the tool has successfully compacted the data, restart the broker.

$./artemis run

Related Information

AMQ Broker includes a number of CLI commands for managing your journal files. See command-line
Tools in the Appendix for more information.

6.2.5. Disabling Disk Write Cache

Most disks contain hardware write caches. A write cache can increase the apparent performance of the
disk because writes are lazily written to the disk later. By default many systems ship with disk write cache
enabled. This means that even after syncing from the operating system there is no guarantee the data
has actually made it to disk, so if a failure occurs, critical data can be lost.

Some more expensive disks have non-volatile or battery-backed write caches that do not necessarily
lose data in event of failure, but you should test them. If your disk does not have such features, you
should ensure that write cache is disabled. Be aware that disabling disk write cache can negatively affect
performance.

Procedure

On Linux, manage your disk’s write cache settings using the tools hdparm (for IDE disks) or
sdparm or sginfo (for SDSI/SATA disks).

On Windows, manage the cache setting by right-clicking the disk and clicking Properties.

6.3. CONFIGURING JDBC PERSISTENCE

The JDBC persistence store uses a JDBC connection to store messages and bindings data in database
tables. The data in the tables is encoded using AMQ Broker journal encoding. For information about
supported databases, see Red Hat AMQ 7 Supported Configurations on the Red Hat Customer Portal.

NOTE

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

128

https://access.redhat.com/articles/2791941

NOTE

An administrator might choose to store messaging data in a database based on the
requirements of an organization’s wider IT infrastructure. However, use of a database can
negatively effect the performance of a messaging system. Specifically, writing messaging
data to database tables via JDBC creates a significant performance overhead for a
broker.

Procedure

1. Add the appropriate JDBC client libraries to the broker runtime. You can do this by adding the
relevant jars to the BROKER_INSTANCE_DIR/lib directory.

2. Create a store element in your BROKER_INSTANCE_DIR/etc/broker.xml configuration file
under the core element, as in the example below.

jdbc-connection-url

Full JDBC connection URL for your database server. The connection url should include all
configuration parameters and the database name.

jdbc-user

Encrypted user name for your database server. For more information about encrypting user
names and passwords for use in configuration files, see Section 5.9, “Encrypting passwords
in configuration files”.

jdbc-password

Encrypted password for your database server. For more information about encrypting user
names and passwords for use in configuration files, see Section 5.9, “Encrypting passwords
in configuration files”.

bindings-table-name

<configuration>
 <core>
 <store>
 <database-store>
 <jdbc-connection-url>jdbc:oracle:data/oracle/database-store;create=true</jdbc-
connection-url>
 <jdbc-user>ENC(5493dd76567ee5ec269d11823973462f)</jdbc-user>
 <jdbc-password>ENC(56a0db3b71043054269d11823973462f)</jdbc-password>
 <bindings-table-name>BINDINGS_TABLE</bindings-table-name>
 <message-table-name>MESSAGE_TABLE</message-table-name>
 <large-message-table-name>LARGE_MESSAGES_TABLE</large-message-table-
name>
 <page-store-table-name>PAGE_STORE_TABLE</page-store-table-name>
 <node-manager-store-table-name>NODE_MANAGER_TABLE</node-manager-store-
table-name>
 <jdbc-driver-class-name>oracle.jdbc.driver.OracleDriver</jdbc-driver-class-name>
 <jdbc-network-timeout>10000</jdbc-network-timeout>
 <jdbc-lock-renew-period>2000</jdbc-lock-renew-period>
 <jdbc-lock-expiration>20000</jdbc-lock-expiration>
 <jdbc-journal-sync-period>5</jdbc-journal-sync-period>
 </database-store>
 </store>
 </core>
</configuration>

CHAPTER 6. PERSISTING MESSAGES

129

Name of the table in which bindings data is stored. Specifying this table name enables you to
share a single database between multiple servers, without interference.

message-table-name

Name of the table in which message data is stored. Specifying this table name enables you to
share a single database between multiple servers, without interference.

large-message-table-name

Name of the table in which large messages and related data are persisted. In addition, if a
client streams a large message in chunks, the chunks are stored in this table. Specifying this
table name enables you to share a single database between multiple servers, without
interference.

page-store-table-name

Name of the table in which paged store directory information is stored. Specifying this table
name enables you to share a single database between multiple servers, without interference.

node-manager-store-table-name

Name of the table in which the shared store high-availability (HA) locks for live and backup
brokers and other HA-related data is stored on the broker server. Specifying this table name
enables you to share a single database between multiple servers, without interference. Each
live-backup pair that uses shared store HA must use the same table name. You cannot share
the same table between multiple (and unrelated) live-backup pairs.

jdbc-driver-class-name

Fully-qualified class name of the JDBC database driver. For information about supported
databases, see Red Hat AMQ 7 Supported Configurations on the Red Hat Customer Portal.

jdbc-network-timeout

JDBC network connection timeout, in milliseconds. The default value is 20000 milliseconds.
When using a JDBC for shared store HA, it is recommended to set the timeout to a value less
than or equal to jdbc-lock-expiration.

jdbc-lock-renew-period

Length, in milliseconds, of the renewal period for the current JDBC lock. When this time
elapses, the broker can renew the lock. The default value is 2000 milliseconds.

jdbc-lock-expiration

Time, in milliseconds, that the current JDBC lock is considered active, even if the jdbc-lock-
renew-period time has elapsed. Setting this property to a value greater than jdbc-lock-
renew-period ensures that the lock is not immediately lost if the broker that owns the lock
experiences an unexpected delay in renewing it. After the expiration time elapses, if the
JDBC lock has not been renewed by the broker that currently owns it, another broker can
establish a JDBC lock. The default value is 20000 milliseconds.

jdbc-journal-sync-period

Duration, in milliseconds, for which the broker journal synchronizes with JDBC. The default
value is 5 milliseconds.

6.4. CONFIGURING ZERO PERSISTENCE

In some situations, zero persistence is sometimes required for a messaging system. Configuring the
broker to perform zero persistence is straightforward. Set the parameter persistence-enabled in
BROKER_INSTANCE_DIR/etc/broker.xml to false.

Note that if you set this parameter to false, then zero persistence occurs. That means no bindings data,
message data, large message data, duplicate ID caches or paging data is persisted.

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

130

https://access.redhat.com/articles/2791941

CHAPTER 7. PAGING MESSAGES
AMQ Broker transparently supports huge queues containing millions of messages while the server is
running with limited memory.

In such a situation it’s not possible to store all of the queues in memory at any one time, so AMQ Broker
transparently pages messages into and out of memory as they are needed, thus allowing massive
queues with a low memory footprint.

Paging is done individually per address. AMQ Broker will start paging messages to disk when the size of
all messages in memory for an address exceeds a configured maximum size. For more information about
addresses, see Configuring addresses and queues .

By default, AMQ Broker does not page messages. You must explicitly configure paging to enable it.

See the paging example located under INSTALL_DIR/examples/standard/ for a working example
showing how to use paging with AMQ Broker.

7.1. ABOUT PAGE FILES

Messages are stored per address on the file system. Each address has an individual folder where
messages are stored in multiple files (page files). Each file will contain messages up to a max configured
size (page-size-bytes). The system will navigate on the files as needed, and it will remove the page file
as soon as all the messages are acknowledged up to that point.

Browsers will read through the page-cursor system.

Consumers with selectors will also navigate through the page-files and ignore messages that don’t
match the criteria.

NOTE

When you have a queue, and consumers filtering the queue with a very restrictive selector
you may get into a situation where you won’t be able to read more data from paging until
you consume messages from the queue.

Example: in one consumer you make a selector as 'color="red"' but you only have one
color red one million messages after blue, you won’t be able to consume red until you
consume blue ones. This is different to browsing as we will "browse" the entire queue
looking for messages and while we "depage" messages while feeding the queue.

7.2. CONFIGURING THE PAGING DIRECTORY LOCATION

To configure the location of the paging directory, add the paging-directory configuration element to
the broker’s main configuration file BROKER_INSTANCE_DIR/etc/broker.xml, as in the example below.

<configuration ...>
 ...
 <core ...>
 <paging-directory>/somewhere/paging-directory</paging-directory>
 ...
 </core>
</configuration>

CHAPTER 7. PAGING MESSAGES

131

AMQ Broker will create one directory for each address being paged under the configured location.

7.3. CONFIGURING AN ADDRESS FOR PAGING

Configuration for paging is done at the address level by adding elements to a specific address-settings,
as in the example below.

In the example above, when messages sent to the address jms.paged.queue exceed 104857600 bytes
in memory, the broker will begin paging.

NOTE

Paging is done individually per address. If you specify max-size-bytes for an address,
each matching address does not exceed the maximum size that you specified. It DOES
NOT mean that the total overall size of all matching addresses is limited to max-size-
bytes.

This is the list of available parameters on the address settings.

Table 7.1. Paging Configuration Elements

Element Name Description Default

max-size-bytes The maximum size in memory allowed for the address
before the broker enters page mode.

-1 (disabled).

When this parameter is
disabled, the broker uses
global-max-size as a
memory-usage limit for
paging instead. For
more information, see
Section 7.4,
“Configuring a Global
Paging Size”.

page-size-bytes The size of each page file used on the paging system. 10MiB (10 * 1024 *
1024 bytes)

<address-settings>
 <address-setting match="jms.paged.queue">
 <max-size-bytes>104857600</max-size-bytes>
 <page-size-bytes>10485760</page-size-bytes>
 <address-full-policy>PAGE</address-full-policy>
 </address-setting>
</address-settings>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

132

address-full-policy Valid values are PAGE, DROP, BLOCK, and FAIL.
If the value is PAGE then further messages will be
paged to disk. If the value is DROP then further
messages will be silently dropped. If the value is FAIL
then the messages will be dropped and the client
message producers will receive an exception. If the
value is BLOCK then client message producers will
block when they try and send further messages.

PAGE

page-max-cache-size The system will keep up to this number of page files
in memory to optimize IO during paging navigation.

5

page-sync-timeout Time, in nanoseconds, between periodic page
synchronizations.

If you are using an
asynchronous IO journal
(that is, journal-type is
set to ASYNCIO in the
broker.xml
configuration file), the
default value is 3333333
nanoseconds (that is,
3.333333 milliseconds).
If you are using a
standard Java NIO
journal (that is, journal-
type is set to NIO), the
default value is the
configured value of the
journal-buffer-
timeout parameter.

Element Name Description Default

7.4. CONFIGURING A GLOBAL PAGING SIZE

Sometimes configuring a memory limit per address is not practical, such as when a broker manages many
addresses that have different usage patterns. In these situations, use the global-max-size parameter to
set a global limit to the amount of memory the broker can use before it enters into the page mode
configured for the address associated with the incoming message.

The default value for global-max-size is half of the maximum memory available to the Java virtual
machine (JVM). You can specify your own value for this parameter by configuring it in the broker.xml
configuration file. The value for global-max-size is in bytes, but you can use byte notation ("K", "Mb",
"GB", for example) for convenience.

The following procedure shows how to configure the global-max-size parameter in the broker.xml
configuration file.

Configuring the global-max-size parameter

Procedure

1. Stop the broker.

CHAPTER 7. PAGING MESSAGES

133

a. If the broker is running on Linux, run the following command:

BROKER_INSTANCE_DIR/bin/artemis stop

b. If the broker is running on Windows as a service, run the following command:

BROKER_INSTANCE_DIR\bin\artemis-service.exe stop

2. Open the broker.xml configuration file located under BROKER_INSTANCE_DIR/etc.

3. Add the global-max-size parameter to broker.xml to limit the amount of memory, in bytes, the
broker can use. Note that you can also use byte notation (K, Mb, GB) for the value of global-
max-size, as shown in the following example.

In the preceding example, the broker is configured to use a maximum of one gigabyte, 1GB, of
available memory when processing messages. If the configured limit is exceeded, the broker
enters the page mode configured for the address associated with the incoming message.

4. Start the broker.

a. If the broker is running on Linux, run the following command:

BROKER_INSTANCE_DIR/bin/artemis run

b. If the broker is running on Windows as a service, run the following command:

BROKER_INSTANCE_DIR\bin\artemis-service.exe start

Related Information

See Section 7.3, “Configuring an Address for Paging” for information about setting the paging mode for
an address.

7.5. LIMITING DISK USAGE WHEN PAGING

You can limit the amount of physical disk the broker uses before it blocks incoming messages rather
than pages them. Add the max-disk-usage to the broker.xml configuration file and provide a value for
the percentage of disk space the broker is allowed to use when paging messages. The default value for
max-disk-usage is 90, which means the limit is set at 90 percent of disk space.

Configuring the max-disk-usage

Procedure

1. Stop the broker.

<configuration>
 <core>
 ...
 <global-max-size>1GB</global-max-size>
 ...
 </core>
</configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

134

a. If the broker is running on Linux, run the following command:

BROKER_INSTANCE_DIR/bin/artemis stop

b. If the broker is running on Windows as a service, run the following command:

BROKER_INSTANCE_DIR\bin\artemis-service.exe stop

2. Open the broker.xml configuration file located under BROKER_INSTANCE_DIR/etc.

3. Add the max-disk-usage configuration element and set a limit to the amount disk space to use
when paging messages.

In the preceding example, the broker is limited to using 50 percent of disk space when paging
messages. Messages are blocked and no longer paged after 50 percent of the disk is used.

4. Start the broker.

a. If the broker is running on Linux, run the following command:

BROKER_INSTANCE_DIR/bin/artemis run

b. If the broker is running on Windows as a service, run the following command:

BROKER_INSTANCE_DIR\bin\artemis-service.exe start

7.6. HOW TO DROP MESSAGES

Instead of paging messages when the max size is reached, an address can also be configured to just drop
messages when the address is full.

To do this just set the address-full-policy to DROP in the address settings

7.6.1. Dropping Messages and Throwing an Exception to Producers

Instead of paging messages when the max size is reached, an address can also be configured to drop
messages and also throw an exception on the client-side when the address is full.

To do this just set the address-full-policy to FAIL in the address settings

7.7. HOW TO BLOCK PRODUCERS

Instead of paging messages when the max size is reached, an address can also be configured to block
producers from sending further messages when the address is full, thus preventing the memory from
being exhausted on the server.

<configuration>
 <core>
 ...
 <max-disk-usage>50</max-disk-usage>
 ...
 </core>
</configuration>

CHAPTER 7. PAGING MESSAGES

135

NOTE

Blocking works only if the protocol being used supports it. For example, an AMQP
producer will understand a Block packet when it is sent by the broker, but a STOMP
producer will not.

When memory is freed up on the server, producers will automatically unblock and be able to continue
sending.

To do this just set the address-full-policy to BLOCK in the address settings.

In the default configuration, all addresses are configured to block producers after 10 MiB of data are in
the address.

7.8. CAUTION WITH ADDRESSES WITH MULTICAST QUEUES

When a message is routed to an address that has multicast queues bound to it, for example, a JMS
subscription in a Topic, there is only one copy of the message in memory. Each queue handles only a
reference to it. Because of this the memory is only freed up after all queues referencing the message
have delivered it.

If you have a single lazy subscription, the entire address will suffer IO performance hit as all the queues
will have messages being sent through an extra storage on the paging system.

For example:

An address has 10 queues

One of the queues does not deliver its messages (maybe because of a slow consumer).

Messages continually arrive at the address and paging is started.

The other 9 queues are empty even though messages have been sent.

In this example, all the other 9 queues will be consuming messages from the page system. This may
cause performance issues if this is an undesirable state.

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

136

CHAPTER 8. HANDLING LARGE MESSAGES
Clients might send large messages that can exceed the size of the broker’s internal buffer, causing
unexpected errors. To prevent this situation, you can configure the broker to store messages as files
when the messages are larger than a specified minimum value. Handling large messages in this way
means that the broker does not hold the messages in memory. Instead, you specify a directory on disk or
in a database table in which the broker stores large message files.

When the broker stores a message as a large message, the queue retains a reference to the file in the
large messages directory or database table.

Large message handling is available for the Core Protocol, AMQP, OpenWire and STOMP protocols.

For the Core Protocol and OpenWire protocols, clients specify the minimum large message size in their
connection configurations. For the AMQP and STOMP protocols, you specify the minimum large
message size in the acceptor defined for each protocol in the broker configuration.

NOTE

It is recommended that you do not use different protocols for producing and consuming
large messages. To do this, the broker might need to perform several conversions of the
message. For example, say that you want to send a message using the AMQP protocol
and receive it using OpenWire. In this situation, the broker must first read the entire body
of the large message and convert it to use the Core protocol. Then, the broker must
perform another conversion, this time to the OpenWire protocol. Message conversions
such as these cause significant processing overhead on the broker.

The minimum large message size that you specify for any of the preceding protocols is affected by
system resources such as the amount of disk space available, as well as the sizes of the messages. It is
recommended that you run performance tests using several values to determine an appropriate size.

The procedures in this section show how to:

Configure the broker to store large messages

Configure acceptors for the AMQP and STOMP protocols for large message handling

This section also links to additional resources about configuring AMQ Core Protocol and AMQ OpenWire
JMS clients to work with large messages.

8.1. CONFIGURING THE BROKER FOR LARGE MESSAGE HANDLING

The following procedure shows how to specify a directory on disk or a database table in which the broker
stores large message files.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Specify where you want the broker to store large message files.

a. If you are storing large messages on disk, add the large-messages-directory parameter
within the core element and specify a file system location. For example:

<configuration>

CHAPTER 8. HANDLING LARGE MESSAGES

137

NOTE

If you do not explicitly specify a value for large-messages-directory, the
broker uses a default value of <broker-instance-dir>/data/largemessages

b. If you are storing large messages in a database table, add the large-message-table
parameter to the database-store element and specify a value. For example:

NOTE

If you do not explicitly specify a value for large-message-table, the broker
uses a default value of LARGE_MESSAGE_TABLE.

Additional resources

For more information about configuring a database store, see Section 6.3, “Configuring JDBC
Persistence”.

8.2. CONFIGURING AMQP ACCEPTORS FOR LARGE MESSAGE
HANDLING

The following procedure shows how to configure an AMQP acceptor to handle an AMQP message larger
than a specified size as a large message.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.
The default AMQP acceptor in the broker configuration file looks as follows:

 <core>
 ...
 <large-messages-directory>/path/to/my-large-messages-directory</large-messages-
directory>
 ...
 </core>
</configuration>

<store>
 <database-store>
 ...
 <large-message-table>MY_TABLE</large-message-table>
 ...
 </database-store>
</store>

<acceptors>
 ...
 <acceptor name="amqp">tcp://0.0.0.0:5672?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=AMQP;useEpoll=true;a
mqpCredits=1000;amqpLowCredits=300</acceptor>
 ...
</acceptors>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

138

2. In the default AMQP acceptor (or another AMQP acceptor that you have configured), add the
amqpMinLargeMessageSize property and specify a value. For example:

In the preceding example, the broker is configured to accept AMQP messages on port 5672.
Based on the value of amqpMinLargeMessageSize, if the acceptor receives an AMQP
message with a body larger than or equal to 204800 bytes (that is, 200 kilobytes), the broker
stores the message as a large message. If you do not explicitly specify a value for this property,
the broker uses a default value of 102400 (that is, 100 kilobytes).

NOTE

If you set amqpMinLargeMessageSize to -1, large message handling for AMQP
messages is disabled.

If the broker receives a persistent AMQP message that does not exceed the
value of amqpMinLargeMessageSize, but which does exceed the size of the
messaging journal buffer (specified using the journal-buffer-size configuration
parameter), the broker converts the message to a large Core Protocol message,
before storing it in the journal.

8.3. CONFIGURING STOMP ACCEPTORS FOR LARGE MESSAGE
HANDLING

The following procedure shows how to configure a STOMP acceptor to handle a STOMP message larger
than a specified size as a large message.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.
The default AMQP acceptor in the broker configuration file looks as follows:

2. In the default STOMP acceptor (or another STOMP acceptor that you have configured), add
the stompMinLargeMessageSize property and specify a value. For example:

<acceptors>
 ...
 <acceptor name="amqp">tcp://0.0.0.0:5672?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=AMQP;useEpoll=true;a
mqpCredits=1000;amqpLowCredits=300;amqpMinLargeMessageSize=204800</acceptor>
 ...
</acceptors>

<acceptors>
 ...
 <acceptor name="stomp">tcp://0.0.0.0:61613?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=STOMP;useEpoll=true
</acceptor>
 ...
</acceptors>

<acceptors>
 ...
 <acceptor name="stomp">tcp://0.0.0.0:61613?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=STOMP;useEpoll=true;

CHAPTER 8. HANDLING LARGE MESSAGES

139

In the preceding example, the broker is configured to accept STOMP messages on port 61613. Based on
the value of stompMinLargeMessageSize, if the acceptor receives a STOMP message with a body
larger than or equal to 204800 bytes (that is, 200 kilobytes), the broker stores the message as a large
message. If you do not explicitly specify a value for this property, the broker uses a default value of
102400 (that is, 100 kilobytes).

NOTE

To deliver a large message to a STOMP consumer, the broker automatically converts the
message from a large message to a normal message before sending it to the client. If a
large message is compressed, the broker decompresses it before sending it to STOMP
clients.

8.4. LARGE MESSAGES AND JAVA CLIENTS

There are two options available to Java developers who are writing clients that use large messages.

One option is to use instances of InputStream and OutputStream. For example, a FileInputStream can
be used to send a message taken from a large file on a physical disk. A FileOutputStream can then be
used by the receiver to stream the message to a location on its local file system.

Another option is to stream a JMS BytesMessage or StreamMessage directly. For example:

Additional resources

To learn about working with large messages in the AMQ Core Protocol JMS client, see:

Large message options

Writing to a streamed large message

Reading from a streamed large message

To learn about working with large messages in the AMQ OpenWire JMS client, see:

Large message options

Writing to a streamed large message

Reading from a streamed large message

For an example of working with large messages, see the large-message example in the

stompMinLargeMessageSize=204800</acceptor>
 ...
</acceptors>

BytesMessage rm = (BytesMessage)cons.receive(10000);
byte data[] = new byte[1024];
for (int i = 0; i < rm.getBodyLength(); i += 1024)
{
 int numberOfBytes = rm.readBytes(data);
 // Do whatever you want with the data
}

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

140

https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/using_the_amq_core_protocol_jms_client/#large_message_options
https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/using_the_amq_core_protocol_jms_client/#writing_to_a_streamed_large_message
https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/using_the_amq_core_protocol_jms_client/#reading_from_a_streamed_large_message
https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/using_the_amq_openwire_jms_client/#large_message_options
https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/using_the_amq_openwire_jms_client/#writing_to_a_streamed_large_message
https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/using_the_amq_openwire_jms_client/#reading_from_a_streamed_large_message

For an example of working with large messages, see the large-message example in the
<install-dir>/examples/features/standard/ directory of your AMQ Broker installation. To learn
more about running example programs, see Running an AMQ Broker example program .

CHAPTER 8. HANDLING LARGE MESSAGES

141

{BookUrlBase}/getting_started_with_amq_broker/running-broker-examples-getting-started#running-broker-example-program-getting-started

1

CHAPTER 9. DETECTING DEAD CONNECTIONS
Sometimes clients stop unexpectedly and do not have a chance to clean up their resources. If this
occurs, it can leave resources in a faulty state and result in the broker running out of memory or other
system resources. The broker detects that a client’s connection was not properly shut down at garbage
collection time. The connection is then closed and a message similar to the one below is written to the
log. The log captures the exact line of code where the client session was instantiated. This enables you
to identify the error and correct it.

[Finalizer] 20:14:43,244 WARNING [org.apache.activemq.artemis.core.client.impl.DelegatingSession]
I'm closing a JMS Conection you left open. Please make sure you close all connections explicitly
before let
ting them go out of scope!
[Finalizer] 20:14:43,244 WARNING [org.apache.activemq.artemis.core.client.impl.DelegatingSession]
The session you didn't close was created here:
java.lang.Exception
 at org.apache.activemq.artemis.core.client.impl.DelegatingSession.<init>
(DelegatingSession.java:83)
 at org.acme.yourproject.YourClass (YourClass.java:666) 1

The line in the client code where the connection was instantiated.

Detecting Dead Connections from the Client Side
As long as it is receiving data from the broker, the client considers a connection to be alive. Configure
the client to check its connection for failure by providing a value for the client-failure-check-period
property. The default check period for a network connection is 30000 milliseconds, while the default
value for an In-VM connection, is -1, which means the client never fails the connection from its side if no
data is received.

Typically, you set the check period to be much lower than the value used for the broker’s connection
time-to-live, which ensures that clients can reconnect in case of a temporary failure.

The examples below show how to set the check period to 10000 milliseconds using Core JMS clients.

Procedure

Set the check period for detecting dead connections.

If you are using JNDI with your Core JMS client, set the check period within the JNDI
context environment, jndi.properties, for example, as below.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?
clientFailureCheckPeriod=10000

If you are not using JNDI set the check period directly by passing a value to
ActiveMQConnectionFactory.setClientFailureCheckPeriod().

9.1. CONNECTION TIME-TO-LIVE

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setClientFailureCheckPeriod(10000);

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

142

1

2

Because the network connection between the client and the server can fail and then come back online,
allowing a client to reconnect, AMQ Broker waits to clean up inactive server-side resources. This wait
period is called a time-to-live (TTL). The default TTL for a network-based connection is 60000
milliseconds (1 minute). The default TTL on an In-VM connection is -1, which means the broker never
times out the connection on the broker side.

Configuring Time-To-Live on the Broker
If you do not want clients to specify their own connection TTL, you can set a global value on the broker
side. This can be done by specifying the connection-ttl-override element in the broker configuration.

The logic to check connections for TTL violations runs periodically on the broker, as determined by the
connection-ttl-check-interval element.

Procedure

Edit BROKER_INSTANCE_DIR/etc/broker.xml by adding the connection-ttl-override
configuration element and providing a value for the time-to-live, as in the example below.

The global TTL for all connections is set to 30000 milliseconds. The default value is -1,
which allows clients to set their own TTL.

The interval between checks for dead connections is set to 1000 milliseconds. By default,
the checks are done every 2000 milliseconds.

Configuring Time-To-Live on the Client
By default clients can set a TTL for their own connections. The examples below show you how to set the
Time-To-Live using Core JMS clients.

Procedure

Set the Time-To-Live for a Client Connection.

If you are using JNDI to instantiate your connection factory, you can specify it in the xml
config, using the parameter connectionTTL.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?connectionTTL=30000

If you are not using JNDI, the connection TTL is defined by the ConnectionTTL attribute on
a ActiveMQConnectionFactory instance.

<configuration>
 <core>
 ...
 <connection-ttl-override>30000</connection-ttl-override> 1
 <connection-ttl-check-interval>1000</connection-ttl-check-interval> 2
 ...
 </core>
</configuration>

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setConnectionTTL(30000);

CHAPTER 9. DETECTING DEAD CONNECTIONS

143

9.2. DISABLING ASYNCHRONOUS CONNECTION EXECUTION

Most packets received on the broker side are executed on the remoting thread. These packets
represent short-running operations and are always executed on the remoting thread for performance
reasons. However, some packet types are executed using a thread pool instead of the remoting thread,
which adds a little network latency.

The packet types that use the thread pool are implemented within the Java classes listed below. The
classes are all found in the package
org.apache.actiinvemq.artemis.core.protocol.core.impl.wireformat.

RollbackMessage

SessionCloseMessage

SessionCommitMessage

SessionXACommitMessage

SessionXAPrepareMessage

SessionXARollbackMessage

Procedure

To disable asynchronous connection execution, add the async-connection-execution-enabled
configuration element to BROKER_INSTANCE_DIR/etc/broker.xml and set it to false, as in the
example below. The default value is true.

9.3. CLOSING CONNECTIONS FROM THE CLIENT SIDE

A client application must close its resources in a controlled manner before it exits to prevent dead
connections from occurring. In Java, it is recommended to close connections inside a finally block:

<configuration>
 <core>
 ...
 <async-connection-execution-enabled>false</async-connection-execution-enabled>
 ...
 </core>
</configuration>

Connection jmsConnection = null;
try {
 ConnectionFactory jmsConnectionFactory =
ActiveMQJMSClient.createConnectionFactoryWithoutHA(...);
 jmsConnection = jmsConnectionFactory.createConnection();
 ...use the connection...
}
finally {
 if (jmsConnection != null) {
 jmsConnection.close();
 }
}

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

144

CHAPTER 10. FLOW CONTROL
Flow control prevents producers and consumers from becoming overburdened by limiting the flow of
data between them. Using AMQ Broker allows you to configure flow control for both consumers and
producers.

10.1. CONSUMER FLOW CONTROL

Consumer flow control regulates the flow of data between the broker and the client as the client
consumes messages from the broker. AMQ Broker clients buffer messages by default before delivering
them to consumers. Without a buffer, the client would first need to request each message from the
broker before consuming it. This type of "round-trip" communication is costly. Regulating the flow of
data on the client side is important because out of memory issues can result when a consumer cannot
process messages quickly enough and the buffer begins to overflow with incoming messages.

10.1.1. Setting the Consumer Window Size

The maximum size of messages held in the client-side buffer is determined by its window size. The
default size of the window for AMQ Broker clients is 1 MiB, or 1024 * 1024 bytes. The default is fine for
most use cases. For other cases, finding the optimal value for the window size might require
benchmarking your system. AMQ Broker allows you to set the buffer window size if you need to change
the default.

Setting the Window Size
The following examples demonstrate how to set the consumer window size parameter when using a
Core JMS client. Each example sets a consumers window size to 300000 bytes.

Procedure

Set the consumer window size.

If the Core JMS Client uses JNDI to instantiate its connection factory, include the
consumerWindowSize parameter as part of the connection string URL. Store the URL
within a JNDI context environment. The example below uses a jndi.properties file to store
the URL.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?
consumerWindowSize=300000

If the Core JMS client does not use JNDI to instantiate its connection factory, pass a value
to ActiveMQConnectionFactory.setConsumerWindowSize().

10.1.2. Handling Fast Consumers

Fast consumers can process messages as fast as they consume them. If you are confident that the
consumers in your messaging system are that fast, consider setting the window size to -1. This setting
allows for unbounded message buffering on the client side. Use this setting with caution, however. It can
overflow client-side memory if the consumer is not able to process messages as fast as it receives them.

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setConsumerWindowSize(300000);

CHAPTER 10. FLOW CONTROL

145

Setting the Window Size for Fast Consumers

Procedure

The examples below show how to set the window size to -1 when using a Core JMS client that is a fast
consumer of messages.

Set the consumer window size to -1.

If the Core JMS Client uses JNDI to instantiate its connection factory, include the
consumerWindowSize parameter as part of the connection string URL. Store the URL
within a JNDI context environment. The example below uses a jndi.properties file to store
the URL.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?consumerWindowSize=-
1

If the Core JMS client does not use JNDI to instantiate its connection factory, pass a value
to ActiveMQConnectionFactory.setConsumerWindowSize().

10.1.3. Handling Slow Consumers

Slow consumers take significant time to process each message. In these cases, it is recommended to not
buffer messages on the client side. Messages remain on the broker side ready to be consumed by other
consumers instead. One benefit of turning off the buffer is that it provides deterministic distribution
between multiple consumers on a queue. To handle slow consumers by disabling the client-side buffer,
set the window size to 0.

Setting the Window Size for Slow Consumers

Procedure

The examples below show you how to set the window size to 0 when using the Core JMS client that is a
slow consumer of messages.

Set the consumer window size to 0.

If the Core JMS Client uses JNDI to instantiate its connection factory, include the
consumerWindowSize parameter as part of the connection string URL. Store the URL
within a JNDI context environment. The example below uses a jndi.properties file to store
the URL.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?
consumerWindowSize=0

If the Core JMS client does not use JNDI to instantiate its connection factory, pass a value
to ActiveMQConnectionFactory.setConsumerWindowSize().

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setConsumerWindowSize(-1);

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

146

Related Information

See the example no-consumer-buffering in INSTALL_DIR/examples/standard for an example that
shows how to configure the broker to prevent consumer buffering when dealing with slow consumers.

10.1.4. Setting the Rate of Consuming Messages

You can regulate the rate at which a consumer can consume messages. Also known as "throttling",
regulating the rate of consumption ensures that a consumer never consumes messages at a rate faster
than configuration allows.

NOTE

Rate-limited flow control can be used in conjunction with window-based flow control.
Rate-limited flow control affects only how many messages a client can consume in a
second and not how many messages are in its buffer. With a slow rate limit and a high
window-based limit, the internal buffer of the client fills up with messages quickly.

The rate must be a positive integer to enable this functionality and is the maximum desired message
consumption rate specified in units of messages per second. Setting the rate to -1 disables rate-limited
flow control. The default value is -1.

Setting the Rate of Consuming Messages

Procedure

The examples below use a Core JMS client that limits the rate of consuming messages to 10 messages
per second.

Set the consumer rate.

If the Core JMS Client uses JNDI to instantiate its connection factory, include the
consumerMaxRate parameter as part of the connection string URL. Store the URL within a
JNDI context environment. The example below uses a jndi.properties file to store the URL.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

java.naming.provider.url=tcp://localhost:61616?consumerMaxRate=10

If the Core JMS client does not use JNDI to instantiate its connection factory, pass the
value to ActiveMQConnectionFactory.setConsumerMaxRate().

Related information

See the consumer-rate-limit example in INSTALL_DIR/examples/standard for a working example of
how to limit the consumer rate.

10.2. PRODUCER FLOW CONTROL

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setConsumerWindowSize(0);

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setConsumerMaxRate(10);

CHAPTER 10. FLOW CONTROL

147

In a similar way to consumer window-based flow control, AMQ Broker can limit the amount of data sent
from a producer to a broker to prevent the broker from being overburdened with too much data. In the
case of a producer, the window size determines the amount of bytes that can be in-flight at any one
time.

10.2.1. Setting the Producer Window Size

The window size is negotiated between the broker and producer on the basis of credits, one credit for
each byte in the window. As messages are sent and credits are used, the producer must request, and be
granted, credits from the broker before it can send more messages. The exchange of credits between
producer and broker regulates the flow of data between them.

Setting the Window Size
The following examples demonstrate how to set the producer window size to 1024 bytes when using
Core JMS clients.

Procedure

Set the producer window size.

If the Core JMS Client uses JNDI to instantiate its connection factory, include the
producerWindowSize parameter as part of the connection string URL. Store the URL
within a JNDI context environment. The example below uses a jndi.properties file to store
the URL.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

java.naming.provider.url=tcp://localhost:61616?producerWindowSize=1024

If the Core JMS client does not use JNDI to instantiate its connection factory, pass the
value to ActiveMQConnectionFactory.setProducerWindowSize().

10.2.2. Blocking Messages

Because more than one producer can be associated with the same address, it is possible for the broker
to allocate more credits across all producers than what is actually available. However, you can set a
maximum size on any address that prevents the broker from sending more credits than are available.

In the default configuration, a global maximum size of 100Mb is used for each address. When the
address is full, the broker writes further messages to the paging journal instead of routing them to the
queue. Instead of paging, you can block the sending of more messages on the client side until older
messages are consumed. Blocking producer flow control in this way prevents the broker from running
out of memory due to producers sending more messages than can be handled at any one time.

In the configuration, blocking producer flow control is managed on a per address-setting basis. The
configuration applies to all queues registered to an address. In other words, the total memory for all
queues bound to that address is capped by the value given for max-size-bytes.

NOTE

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setProducerWindowSize(1024);

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

148

1

2

3

NOTE

Blocking is protocol dependent. In AMQ Broker the AMQP, OpenWire, and Core Protocol
support producer flow control. AMQP handles flow control differently, however. See
Blocking Flow Control Using AMQP for more information.

Configuring the Maximum Size for an Address
To configure the broker to block messages if they are larger than the set maximum number of bytes,
add a new addres-setting configuration element to BROKER_INSTANCE_DIR/etc/broker.xml.

Procedure

In the example configuration below, an address-setting is set to BLOCK producers from
sending messages after reaching its maximum size of 300000 bytes.

The above configuration applies to any queue referenced by the my.blocking.queue address .

Sets the maximum size to 300000 bytes. The broker will block producers from sending to the
address if the message exceeds max-size-bytes. Note that this element supports byte notation
such as "K", "Mb", and "GB".

Sets the address-full-policy to BLOCK to enable blocking producer flow control.

10.2.3. Blocking AMQP Messages

As explained earlier in this chapter Core Protocol uses a producer window-size flow control system. In
this system, credits represent bytes and are allocated to producers. If a producer wants to send a
message, it must wait until it has sufficient credits to accommodate the size of a message before
sending it.

AMQP flow control credits are not representative of bytes, however, but instead represent the number
of messages a producer is permitted to send, regardless of the message size. It is therefore possible in
some scenarios for an AMQP client to significantly exceed the max-size-bytes of an address.

To manage this situation, add the element max-size-bytes-reject-threshold to the address-setting to
specify an upper bound on an address size in bytes. Once this upper bound is reached, the broker rejects
AMQP messages. By default, max-size-bytes-reject-threshold is set to -1, or no limit.

Configuring the Broker to Block AMQP Messages
To configure the broker to block AMQP messages if they are larger than the set maximum number of
bytes, add a new addres-setting configuration element to BROKER_INSTANCE_DIR/etc/broker.xml.

<configuration>
 <core>
 ...
 <address-settings>
 <address-setting match="my.blocking.queue"> 1
 <max-size-bytes>300000</max-size-bytes> 2
 <address-full-policy>BLOCK</address-full-policy> 3
 </address-setting>
 </address-settings>
 </core>
</configuration>

CHAPTER 10. FLOW CONTROL

149

1

2

Procedure

The example configuration below applies a maximum size of 300000 bytes to any AMQP
message routed to the my.amqp.blocking.queue address.

The above configuration applies to any queue referenced by the my.amqp.blocking.queue
address.

The broker is configured to reject AMQP messages sent to queues matching this address if they
are larger than the max-size-bytes-reject-threshold of 300000 bytes. Note that this element does
not support byte notation such as K, Mb, and GB.

Addtional resources

For more information about how to configure credits for AMQP producers, see Chapter 3,
Network Connections: Protocols.

10.2.4. Setting the Rate of Sending Messages

AMQ Broker can also limit the rate a producer can emit messages. The producer rate is specified in units
of messages per second. Setting it to -1, the default, disables rate-limited flow control.

Setting the Rate of Sending Messages
The examples below demonstrate how to set the rate of sending messages when the producer is using a
Core JMS client. Each example sets the maximum rate of sending messages to 10 per second.

Procedure

Set the rate that a producer can send messages.

If the Core JMS Client uses JNDI to instantiate its connection factory, include the
producerMaxRate parameter as part of the connection string URL. Store the URL within a
JNDI context environment. The example below uses a jndi.properties file to store the URL.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

java.naming.provider.url=tcp://localhost:61616?producerMaxRate=10

If the Core JMS client does not use JNDI to instantiate its connection factory, pass the
value to ActiveMQConnectionFactory.setProducerMaxRate().

<configuration>
 <core>
 ...
 <address-settings>
 ...
 <address-setting match="my.amqp.blocking.queue"> 1
 <max-size-bytes-reject-threshold>300000</max-size-bytes-reject-threshold> 2
 </address-setting>
 </address-settings>
 </core>
</configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

150

Related Information

See the producer-rate-limit example in INSTALL_DIR/examples/standard for a working example of
how to limit a the rate of sending messages.

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setProducerMaxRate(10);

CHAPTER 10. FLOW CONTROL

151

CHAPTER 11. MESSAGE GROUPING
Message groups are sets of messages that have the following characteristics:

Messages in a message group share the same group ID, that is, they have same group identifier
property. For JMS messages, the property is JMSXGroupID.

Messages in a message group are always consumed by the same consumer, even if there are
many consumers on a queue. Another consumer is chosen to receive a message group if the
original consumer closes.

Message groups are useful when you want all messages for a certain value of the property to be
processed serially by the same consumer. For example, you may want orders for any particular stock
purchase to be processed serially by the same consumer. To do this you could create a pool of
consumers, then set the stock name as the value of the message property. This ensures that all
messages for a particular stock are always processed by the same consumer.

NOTE

Grouped messages might impact the concurrent processing of non-grouped messages
due to the underlying FIFO semantics of a queue. For example, if there is a chunk of 100
grouped messages at the head of a queue followed by 1,000 non-grouped messages, all
the grouped messages are sent to the appropriate client before any of the non-grouped
messages are consumed. The functional impact in this scenario is a temporary suspension
of concurrent message processing while all the grouped messages are processed. Keep
this potential performance bottleneck in mind when determining the size of your message
groups. Consider whether to isolate your grouped messages from your non-grouped
messages.

11.1. CLIENT-SIDE MESSAGE GROUPING

The examples below show how to use message grouping using Core JMS clients.

Procedure

Set the group ID.

If you are using JNDI to establish a JMS connection factory for your JMS client, add the
groupID parameter and supply a value. All messages sent using this connection factory have
the property JMSXGroupID set to the specified value.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?groupID=MyGroup

If you are not using JNDI, set the JMSXGroupID property using the setStringProperty()
method.

Related Information

See mesagge-group and message-group2 under INSTALL_DIR/examples/features/standard for

 Message message = new TextMessage();
 message.setStringProperty("JMSXGroupID", "MyGroup");
 producer.send(message);

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

152

See mesagge-group and message-group2 under INSTALL_DIR/examples/features/standard for
working examples of how message groups are configured and used.

11.2. AUTOMATIC MESSAGE GROUPING

Instead of supplying a group ID yourself, you can have the ID automatically generated for you. Messages
grouped in this way are still processed serially by a single consumer.

Procedure

The examples below show how to enable message grouping using Core JMS clients.

Enable automatic generation of the group ID.

If you are using a JNDI context environment to instantiate your JMS connection factory, add
the autogroup=true name-value pair to the query string of the connection URL.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?autoGroup=true

If you are not using JNDI, set autogroup to true on the ActiveMQConnectonFactory.

ActiveMQConnectionFactory cf =
ActiveMQJMSClient.createConnectionFactoryWithoutHA(...);
cf.setAutoGroup(true);

CHAPTER 11. MESSAGE GROUPING

153

CHAPTER 12. DUPLICATE MESSAGE DETECTION
AMQ Broker includes automatic duplicate message detection, which filters out any duplicate messages
it receives so you do not have to code your own duplicate detection logic.

Without duplicate detection, a client cannot determine whether a message it sent was successful
whenever the target broker or the connection to it fails. For example, if the broker or connection fails
before the message was received and processed by the broker, the message never arrives at its address,
and the client does not receive a response from the broker due to the failure. On the other hand, if the
broker or connection failed after a message was received and processed by the broker, the message is
routed correctly, but the client still does not receive a response.

Moreover, using a transaction to determine success does not help in these cases. If the broker or
connection fails while the transaction commit is being processed, for example, the client is still unable to
determine whether it successfully sent the message.

If the client resends the last message in an effort to correct the assumed failure, the result could be a
duplicate message being sent to the address, which could negatively impact your system. Sending a
duplicate message could mean that a purchase order is fulfilled twice, for example. Fortunately, {AMQ
Broker} provides automatic duplicate messages detection as a way to prevent these kind of issues from
happening.

12.1. USING THE DUPLICATE ID MESSAGE PROPERTY

To enable duplicate message detection provide a unique value for the message property
_AMQ_DUPL_ID. When a broker receives a message, it checks if _AMQ_DUPL_ID has a value. If it does,
the broker then checks in its memory cache to see if it has already received a message with that value. If
a message with the same value is found, the incoming message is ignored.

Procedure

The examples below illustrate how to set the duplicate detection property using a Core JMS Client.
Note that for convenience, the clients use the value of the constant
org.apache.activemq.artemis.api.core.Message.HDR_DUPLICATE_DETECTION_ID for the name of
the duplicate ID property, _AMQ_DUPL_ID.

Set the value for _AMQ_DUPL_ID to a unique String.

12.2. CONFIGURING THE DUPLICATE ID CACHE

The broker maintains caches of received values of the _AMQ_DUPL_ID property. Each address has its
own distinct cache. The cache is circular and fixed. New entries replace the oldest ones as cache space
demands.

NOTE

Be sure to size the cache appropriately. If a previous message arrived more than id-
cache-size messages before the arrival of a new message with the same
_AMQ_DUPL_ID, the broker cannot detect the duplicate. This results in both messages
being processed by the broker.

Message jmsMessage = session.createMessage();
String myUniqueID = "This is my unique id";
message.setStringProperty(HDR_DUPLICATE_DETECTION_ID.toString(), myUniqueID);

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

154

1

2

Procedure

The example configuration below illustrates how to configure the ID cache by adding elements to
BROKER_INSTANCE_DIR/etc/broker.xml.

The maximum size of the cache is configured by the parameter id-cache-size. The default value is
20000 entries. In the example above, the cache size is set to 5000 entries.

Set persist-id-cache to true to have each ID persisted to disk as they are received. The default
value is true. In the example above, persistence is disabled by setting the value to false.

12.3. DUPLICATE DETECTION AND TRANSACTIONS

Using duplicate detection to move messages between brokers can give you the same once and only
once delivery guarantees as using an XA transaction to consume messages, but with less overhead and
much easier configuration than using XA.

If you are sending messages in a transaction, you do not have to set _AMQ_DUPL_ID for every message
in the transaction, but only in one of them. If the broker detects a duplicate message for any message in
the transaction, it ignores the entire transaction.

12.4. DUPLICATE DETECTION AND CLUSTER CONNECTIONS

You can configure cluster connections to insert a duplicate ID for each message they move across the
cluster.

Procedure

Add the element use-duplicate-detection to the configuration of the desired cluster
connection found in BROKER_INSTANCE_DIR/etc/broker.xml. Note that the default value for
this parameter is true. In the example below, the element is added to the configuration for the
cluster connection my-cluster.

<configuration>
 <core>
 ...
 <id-cache-size>5000</id-cache-size> 1
 <persist-id-cache>false</persist-id-cache> 2
 </core>
</configuration>

<configuration>
 <core>
 ...
 <cluster-connection>
 <cluster-connection name="my-cluster">
 <use-duplicate-detection>true</use-duplicate-detection>
 ...
 </cluster-connection>
 ...
 </cluster-connections>
 </core>
</configuration>

CHAPTER 12. DUPLICATE MESSAGE DETECTION

155

Additional resources

For more information about broker clusters, see Section 16.2, “Creating a broker cluster” .

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

156

CHAPTER 13. INTERCEPTING MESSAGES
With AMQ Broker you can intercept packets entering or exiting the broker, allowing you to audit packets
or filter messages. Interceptors can change the packets they intercept, which makes them powerful, but
also potentially dangerous.

You can develop interceptors to meet your business requirements. Interceptors are protocol specific
and must implement the appropriate interface.

Interceptors must implement the intercept() method, which returns a boolean value. If the value is true,
the message packet continues onward. If false, the process is aborted, no other interceptors are called,
and the message packet is not processed further.

13.1. CREATING INTERCEPTORS

You can create your own incoming and outgoing interceptors. All interceptors are protocol specific and
are called for any packet entering or exiting the server respectively. This allows you to create
interceptors to meet business requirements such as auditing packets. Interceptors can change the
packets they intercept. This makes them powerful as well as potentially dangerous, so be sure to use
them with caution.

Interceptors and their dependencies must be placed in the Java classpath of the broker. You can use the
BROKER_INSTANCE_DIR/lib directory since it is part of the classpath by default.

Procedure

The following examples demonstrate how to create an interceptor that checks the size of each packet
passed to it. Note that the examples implement a specific interface for each protocol.

Implement the appropriate interface and override its intercept() method.

If you are using the AMQP protocol, implement the
org.apache.activemq.artemis.protocol.amqp.broker.AmqpInterceptor interface.

package com.example;

import org.apache.activemq.artemis.protocol.amqp.broker.AMQPMessage;
import org.apache.activemq.artemis.protocol.amqp.broker.AmqpInterceptor;
import org.apache.activemq.artemis.spi.core.protocol.RemotingConnection;

public class MyInterceptor implements AmqpInterceptor
{
 private final int ACCEPTABLE_SIZE = 1024;

 @Override
 public boolean intercept(final AMQPMessage message, RemotingConnection
connection)
 {
 int size = message.getEncodeSize();
 if (size <= ACCEPTABLE_SIZE) {
 System.out.println("This AMQPMessage has an acceptable size.");
 return true;
 }
 return false;
 }
}

CHAPTER 13. INTERCEPTING MESSAGES

157

If you are using Core Protocol, your interceptor must implement the
org.apache.artemis.activemq.api.core.Interceptor interface.

If you are using the MQTT protocol, implement the
org.apache.activemq.artemis.core.protocol.mqtt.MQTTInterceptor interface.

If you are using the STOMP protocol, implement the
org.apache.activemq.artemis.core.protocol.stomp.StompFrameInterceptor interface.

package com.example;

import org.apache.artemis.activemq.api.core.Interceptor;
import org.apache.activemq.artemis.core.protocol.core.Packet;
import org.apache.activemq.artemis.spi.core.protocol.RemotingConnection;

public class MyInterceptor implements Interceptor
{
 private final int ACCEPTABLE_SIZE = 1024;

 @Override
 boolean intercept(Packet packet, RemotingConnection connection)
 throws ActiveMQException
 {
 int size = packet.getPacketSize();
 if (size <= ACCEPTABLE_SIZE) {
 System.out.println("This Packet has an acceptable size.");
 return true;
 }
 return false;
 }
}

package com.example;

import org.apache.activemq.artemis.core.protocol.mqtt.MQTTInterceptor;
import io.netty.handler.codec.mqtt.MqttMessage;
import org.apache.activemq.artemis.spi.core.protocol.RemotingConnection;

public class MyInterceptor implements Interceptor
{
 private final int ACCEPTABLE_SIZE = 1024;

 @Override
 boolean intercept(MqttMessage mqttMessage, RemotingConnection connection)
 throws ActiveMQException
 {
 byte[] msg = (mqttMessage.toString()).getBytes();
 int size = msg.length;
 if (size <= ACCEPTABLE_SIZE) {
 System.out.println("This MqttMessage has an acceptable size.");
 return true;
 }
 return false;
 }
}

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

158

13.2. CONFIGURING THE BROKER TO USE INTERCEPTORS

Once you have created an interceptor, you must configure the broker to use it.

Prerequisites

You must create an interceptor class and add it (and its dependencies) to the Java classpath of the
broker before you can configure it for use by the broker. You can use the BROKER_INSTANCE_DIR/lib
directory since it is part of the classpath by default.

Procedure

Configure the broker to use an interceptor by adding configuration to
BROKER_INSTANCE_DIR/etc/broker.xml

If your interceptor is intended for incoming messages, add its class-name to the list of
remoting-incoming-interceptors.

If your interceptor is intended for outgoing messages, add its class-name to the list of
remoting-outgoing-interceptors.

package com.example;

import org.apache.activemq.artemis.core.protocol.stomp.StompFrameInterceptor;
import org.apache.activemq.artemis.core.protocol.stomp.StompFrame;
import org.apache.activemq.artemis.spi.core.protocol.RemotingConnection;

public class MyInterceptor implements Interceptor
{
 private final int ACCEPTABLE_SIZE = 1024;

 @Override
 boolean intercept(StompFrame stompFrame, RemotingConnection connection)
 throws ActiveMQException
 {
 int size = stompFrame.getEncodedSize();
 if (size <= ACCEPTABLE_SIZE) {
 System.out.println("This StompFrame has an acceptable size.");
 return true;
 }
 return false;
 }
}

<configuration>
 <core>
 ...
 <remoting-incoming-interceptors>
 <class-name>org.example.MyIncomingInterceptor</class-name>
 </remoting-incoming-interceptors>
 ...
 </core>
</configuration>

<configuration>

CHAPTER 13. INTERCEPTING MESSAGES

159

13.3. INTERCEPTORS ON THE CLIENT SIDE

Clients can use interceptors to intercept packets either sent by the client to the server or by the server
to the client. As in the case of a broker-side interceptor, if it returns false, no other interceptors are
called and the client does not process the packet further. This process happens transparently to the
client except when an outgoing packet is sent in a blocking fashion. In those cases, an
ActiveMQException is thrown to the caller because blocking sends provides reliability. The
ActiveMQException thrown contains the name of the interceptor that returned false.

As on the server, the client interceptor classes and their dependencies must be added to the Java
classpath of the client to be properly instantiated and invoked.

 <core>
 ...
 <remoting-outgoing-interceptors>
 <class-name>org.example.MyOutgoingInterceptor</class-name>
 </remoting-outgoing-interceptors>
 </core>
</configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

160

CHAPTER 14. DIVERTING MESSAGES AND SPLITTING
MESSAGE FLOWS

In AMQ Broker, you can configure objects called diverts that enable you to transparently divert
messages from one address to another address, without changing any client application logic. You can
also configure a divert to forward a copy of a message to a specified forwarding address, effectively
splitting the message flow.

14.1. HOW MESSAGE DIVERTS WORK

Diverts enable you to transparently divert messages routed to one address to some other address,
without changing any client application logic. Think of the set of diverts on a broker server as a type of
routing table for messages.

A divert can be exclusive, meaning that a message is diverted to a specified forwarding address without
going to its original address.

A divert can also be non-exclusive, meaning that a message continues to go to its original address, while
the broker sends a copy of the message to a specified forwarding address. Therefore, you can use non-
exclusive diverts for splitting message flows. For example, you might split a message flow if you want to
separately monitor every order sent to an order queue.

When an address has both exclusive and non-exclusive diverts configured, the broker processes the
exclusive diverts first. If a particular message has already been diverted by an exclusive divert, the broker
does not process any non-exclusive diverts for that message. In this case, the message never goes to
the original address.

When a broker diverts a message, the broker assigns a new message ID and sets the message address to
the new forwarding address. You can retrieve the original message ID and address values via the
_AMQ_ORIG_ADDRESS (string type) and _AMQ_ORIG_MESSAGE_ID (long type) message
properties. If you are using the Core API, use the Message.HDR_ORIGINAL_ADDRESS and
Message.HDR_ORIG_MESSAGE_ID properties.

NOTE

You can divert a message only to an address on the same broker server. If you want to
divert to an address on a different server, a common solution is to first divert the message
to a local store-and-forward queue. Then, set up a bridge that consumes from that queue
and forwards messages to an address on a different broker. Combining diverts with
bridges enables you to create a distributed network of routing connections between
geographically distributed broker servers. In this way, you can create a global messaging
mesh.

14.2. CONFIGURING MESSAGE DIVERTS

To configure a divert in your broker instance, add a divert element within the core element of your
broker.xml configuration file.

<core>
...
 <divert name= >
 <address> </address>
 <forwarding-address> </forwarding-address>
 <filter string= >

CHAPTER 14. DIVERTING MESSAGES AND SPLITTING MESSAGE FLOWS

161

divert

Named instance of a divert. You can add multiple divert elements to your broker.xml configuration
file, as long as each divert has a unique name.

address

Address from which to divert messages

forwarding-address

Address to which to forward messages

filter

Optional message filter. If you configure a filter, only messages that match the filter string are
diverted. If you do not specify a filter, all messages are considered a match by the divert.

routing-type

Routing type of the diverted message. You can configure the divert to:

Apply the anycast or multicast routing type to a message

Strip (that is, remove) the existing routing type

Pass through (that is, preserve) the existing routing type

Control of the routing type is useful in situations where the message has its routing type already set, but
you want to divert the message to an address that uses a different routing type. For example, the broker
cannot route a message with the anycast routing type to a queue that uses multicast unless you set the
routing-type parameter of the divert to MULTICAST. Valid values for the routing-type parameter of a
divert are ANYCAST, MULTICAST, PASS, and STRIP. The default value is STRIP.

exclusive

Specify whether the divert is exclusive (set the property to true) or non- exclusive (set the property
to false).

The following subsections show configuration examples for exclusive and non-exclusive diverts.

14.2.1. Exclusive divert example

Shown below is an example configuration for an exclusive divert. An exclusive divert diverts all matching
messages from the originally-configured address to a new address. Matching messages do not get
routed to the original address.

In the preceding example, you define a divert called prices-divert that diverts any messages sent to the

 <routing-type> </routing-type>
 <exclusive> </exclusive>
 </divert>
...
</core>

<divert name="prices-divert">
 <address>priceUpdates</address>
 <forwarding-address>priceForwarding</forwarding-address>
 <filter string="office='New York'"/>
 <exclusive>true</exclusive>
</divert>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

162

address priceUpdates to another local address, priceForwarding. You also specify a message filter
string. Only messages with the message property office and the value New York are diverted. All other
messages are routed to their original address. Finally, you specify that the divert is exclusive.

14.2.2. Non-exclusive divert example

Shown below is an example configuration for a non-exclusive divert. In a non-exclusive divert, a message
continues to go to its original address, while the broker also sends a copy of the message to a specified
forwarding address. Therefore, a non-exclusive divert is a way to split a message flow.

In the preceding example, you define a divert called order-divert that takes a copy of every message
sent to the address orders and sends it to a local address called spyTopic. You also specify that the
divert is non-exclusive.

Additional resources

For a detailed example that uses both exclusive and non-exclusive diverts, and a bridge to forward
messages to another broker, see Divert Example (external).

<divert name="order-divert">
 <address>orders</address>
 <forwarding-address>spyTopic</forwarding-address>
 <exclusive>false</exclusive>
</divert>

CHAPTER 14. DIVERTING MESSAGES AND SPLITTING MESSAGE FLOWS

163

https://github.com/apache/activemq-artemis/tree/master/examples/features/standard/divert

CHAPTER 15. FILTERING MESSAGES
AMQ Broker provides a powerful filter language based on a subset of the SQL 92 expression syntax.
The filter language uses the same syntax as used for JMS selectors, but the predefined identifiers are
different. The table below lists the identifiers that apply to a AMQ Broker message.

Identifier Attribute

AMQPriority The priority of a message. Message priorities are integers with valid values
from 0 through 9. 0 is the lowest priority and 9 is the highest.

AMQExpiration The expiration time of a message. The value is a long integer.

AMQDurable Whether a message is durable or not. The value is a string. Valid values are
DURABLE or NON_DURABLE.

AMQTimestamp The timestamp of when the message was created. The value is a long
integer.

AMQSize The value of the encodeSize property of the message. The value of
encodeSize is the space, in bytes, that the message takes up in the journal.
Because the broker uses a double-byte character set to encode messages,
the actual size of the message is half the value of encodeSize.

Any other identifiers used in core filter expressions are assumed to be properties of the message. For
documentation on selector syntax for JMS Messages, see the Java EE API .

15.1. CONFIGURING A QUEUE TO USE A FILTER

You can add a filter to the queues you configure in BROKER_INSTANCE_DIR/etc/broker.xml. Only
messages that match the filter expression enter the queue.

Procedure

Add the filter element to the desired queue and include the filter you want to apply as the value
of the element. In the example below, the filter NEWS='technology' is added to the queue
technologyQueue.

<configuration>
 <core>
 ...
 <addresses>
 <address name="myQueue">
 <anycast>
 <queue name="myQueue">
 <filter string="NEWS='technology'"/>
 </queue>
 </anycast>
 </address>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

164

http://docs.oracle.com/javaee/7/api/javax/jms/Message.html

15.2. FILTERING JMS MESSAGE PROPERTIES

The JMS specification states that a String property must not be converted to a numeric type when used
in a selector. For example, if a message has the age property set to the String value 21, the selector age
> 18 must not match it. This restriction limits STOMP clients because they can send only messages with
String properties.

Configuring a Filter to Convert a String to a Number
To convert String properties to a numeric type, add the prefix convert_string_expressions: to the
value of the filter.

Procedure

Edit BROKER_INSTANCE_DIR/etc/broker.xml by applying the prefix
convert_string_expressions: to the desired filter. The example below edits the filter value
from age > 18 to convert_string_expressions:age > 18.

15.3. FILTERING AMQP MESSAGES BASED ON PROPERTIES ON
ANNOTATIONS

Before the broker moves an expired or undelivered AMQP message to an expiry or dead letter queue
that you have configured, the broker applies annotations and properties to the message. A client can
create a filter based on the properties or annotations, to select particular messages to consume from
the expiry or dead letter queue.

NOTE

The properties that the broker applies are internal properties These properties are are not
exposed to clients for regular use, but can be specified by a client in a filter.

Shown below are examples of filters based on message properties and annotations. Filtering based on
properties is the recommended approach, when possible, because this approach requires less
processing by the broker.

 </addresses>
 </core>
</configuration>

<configuration>
 <core>
 ...
 <addresses>
 <address name="myQueue">
 <anycast>
 <queue name="myQueue">
 <filter string="convert_string_expressions='age > 18'"/>
 </queue>
 </anycast>
 </address>
 </addresses>
 </core>
</configuration>

CHAPTER 15. FILTERING MESSAGES

165

Filter based on message properties

Filter based on message annotations

NOTE

When consuming AMQP messages based on an annotation, the client must include
append a m. prefix to the message annotation, as shown in the preceding example.

Additional resources

For more information about the annotations and properties that the broker applies to expired or
undelivered AMQP messages, see Section 4.14, “Annotations and properties on expired or
undelivered AMQP messages”.

ConnectionFactory factory = new JmsConnectionFactory("amqp://localhost:5672");
Connection connection = factory.createConnection();
Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
connection.start();
javax.jms.Queue queue = session.createQueue("my_DLQ");
MessageConsumer consumer = session.createConsumer(queue,
"_AMQ_ORIG_ADDRESS='original_address_name'");
Message message = consumer.receive();

ConnectionFactory factory = new JmsConnectionFactory("amqp://localhost:5672");
Connection connection = factory.createConnection();
Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
connection.start();
javax.jms.Queue queue = session.createQueue("my_DLQ");
MessageConsumer consumer = session.createConsumer(queue, "\"m.x-opt-ORIG-
ADDRESS\"='original_address_name'");
Message message = consumer.receive();

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

166

CHAPTER 16. SETTING UP A BROKER CLUSTER
A cluster consists of multiple broker instances that have been grouped together. Broker clusters
enhance performance by distributing the message processing load across multiple brokers. In addition,
broker clusters can minimize downtime through high availability.

You can connect brokers together in many different cluster topologies. Within the cluster, each active
broker manages its own messages and handles its own connections.

You can also balance client connections across the cluster and redistribute messages to avoid broker
starvation.

16.1. UNDERSTANDING BROKER CLUSTERS

Before creating a broker cluster, you should understand some important clustering concepts.

16.1.1. How broker clusters balance message load

When brokers are connected to form a cluster, AMQ Broker automatically balances the message load
between the brokers. This ensures that the cluster can maintain high message throughput.

Consider a symmetric cluster of four brokers. Each broker is configured with a queue named
OrderQueue. The OrderProducer client connects to Broker1 and sends messages to OrderQueue.
Broker1 forwards the messages to the other brokers in round-robin fashion. The OrderConsumer
clients connected to each broker consume the messages. The exact order depends on the order in
which the brokers started.

Figure 16.1. Message load balancing

CHAPTER 16. SETTING UP A BROKER CLUSTER

167

Figure 16.1. Message load balancing

Without message load balancing, the messages sent to Broker1 would stay on Broker1 and only
OrderConsumer1 would be able to consume them.

While AMQ Broker automatically load balances messages by default, you can configure the cluster to
only load balance messages to brokers that have a matching consumer. You can also configure message
redistribution to automatically redistribute messages from queues that do not have any consumers to
queues that do have consumers.

Additional resources

The message load balancing policy is configured with the message-load-balancing property in
each broker’s cluster connection. For more information, see Appendix C, Cluster Connection
Configuration Elements.

For more information about message redistribution, see Section 16.4.2, “Configuring message
redistribution”.

16.1.2. How broker clusters improve reliability

Broker clusters make high availability and failover possible, which makes them more reliable than
standalone brokers. By configuring high availability, you can ensure that client applications can continue
to send and receive messages even if a broker encounters a failure event.

With high availability, the brokers in the cluster are grouped into live-backup groups. A live-backup
group consists of a live broker that serves client requests, and one or more backup brokers that wait

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

168

passively to replace the live broker if it fails. If a failure occurs, the backup brokers replaces the live
broker in its live-backup group, and the clients reconnect and continue their work.

16.1.3. Understanding node IDs

The broker node ID is a Globally Unique Identifier (GUID) generated programmatically when the journal
for a broker instance is first created and initialized. The node ID is stored in the server.lock file. The
node ID is used to uniquely identify a broker instance, regardless of whether the broker is a standalone
instance, or part of a cluster. Live-backup broker pairs share the same node ID, since they share the
same journal.

In a broker cluster, broker instances (nodes) connect to each other and create bridges and internal
"store-and-forward" queues. The names of these internal queues are based on the node IDs of the other
broker instances. Broker instances also monitor cluster broadcasts for node IDs that match their own. A
broker produces a warning message in the log if it identifies a duplicate ID.

When you are using the replication high availability (HA) policy, a master broker that starts and has
check-for-live-server set to true searches for a broker that is using its node ID. If the master broker
finds another broker using the same node ID, it either does not start, or initiates failback, based on the
HA configuration.

The node ID is durable, meaning that it survives restarts of the broker. However, if you delete a broker
instance (including its journal), then the node ID is also permanently deleted.

Additional resources

For more information about configuring the replication HA policy, see Configuring replication
high availability.

16.1.4. Common broker cluster topologies

You can connect brokers to form either a symmetric or chain cluster topology. The topology you
implement depends on your environment and messaging requirements.

Symmetric clusters
In a symmetric cluster, every broker is connected to every other broker. This means that every broker is
no more than one hop away from every other broker.

Figure 16.2. Symmetric cluster

CHAPTER 16. SETTING UP A BROKER CLUSTER

169

Figure 16.2. Symmetric cluster

Each broker in a symmetric cluster is aware of all of the queues that exist on every other broker in the
cluster and the consumers that are listening on those queues. Therefore, symmetric clusters are able to
load balance and redistribute messages more optimally than a chain cluster.

Symmetric clusters are easier to set up than chain clusters, but they can be difficult to use in
environments in which network restrictions prevent brokers from being directly connected.

Chain clusters
In a chain cluster, each broker in the cluster is not connected to every broker in the cluster directly.
Instead, the brokers form a chain with a broker on each end of the chain and all other brokers just
connecting to the previous and next brokers in the chain.

Figure 16.3. Chain cluster

Chain clusters are more difficult to set up than symmetric clusters, but can be useful when brokers are

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

170

on separate networks and cannot be directly connected. By using a chain cluster, an intermediary broker
can indirectly connect two brokers to enable messages to flow between them even though the two
brokers are not directly connected.

16.1.5. Broker discovery methods

Discovery is the mechanism by which brokers in a cluster propagate their connection details to each
other. AMQ Broker supports both dynamic discovery and static discovery .

Dynamic discovery
Each broker in the cluster broadcasts its connection settings to the other members through either UDP
multicast or JGroups. In this method, each broker uses:

A broadcast group to push information about its cluster connection to other potential members
of the cluster.

A discovery group to receive and store cluster connection information about the other brokers in
the cluster.

Static discovery
If you are not able to use UDP or JGroups in your network, or if you want to manually specify each
member of the cluster, you can use static discovery. In this method, a broker "joins" the cluster by
connecting to a second broker and sending its connection details. The second broker then propagates
those details to the other brokers in the cluster.

16.1.6. Cluster sizing considerations

Before creating a broker cluster, consider your messaging throughput, topology, and high availability
requirements. These factors affect the number of brokers to include in the cluster.

NOTE

After creating the cluster, you can adjust the size by adding and removing brokers. You
can add and remove brokers without losing any messages.

Messaging throughput
The cluster should contain enough brokers to provide the messaging throughput that you require. The
more brokers in the cluster, the greater the throughput. However, large clusters can be complex to
manage.

Topology
You can create either symmetric clusters or chain clusters. The type of topology you choose affects the
number of brokers you may need.

For more information, see Section 16.1.4, “Common broker cluster topologies” .

High availability
If you require high availability (HA), consider choosing an HA policy before creating the cluster. The HA
policy affects the size of the cluster, because each master broker should have at least one slave broker.

For more information, see Section 16.3, “Implementing high availability” .

16.2. CREATING A BROKER CLUSTER

You create a broker cluster by configuring a cluster connection on each broker that should participate in

CHAPTER 16. SETTING UP A BROKER CLUSTER

171

1

2

You create a broker cluster by configuring a cluster connection on each broker that should participate in
the cluster. The cluster connection defines how the broker should connect to the other brokers.

You can create a broker cluster that uses static discovery or dynamic discovery (either UDP multicast or
JGroups).

Prerequisites

You should have determined the size of the broker cluster.
For more information, see Section 16.1.6, “Cluster sizing considerations” .

16.2.1. Creating a broker cluster with static discovery

You can create a broker cluster by specifying a static list of brokers. Use this static discovery method if
you are unable to use UDP multicast or JGroups on your network.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Within the <core> element, add the following connectors:

A connector that defines how other brokers can connect to this one

One or more connectors that define how this broker can connect to other brokers in the
cluster

This connector defines connection information that other brokers can use to connect to
this one. This information will be sent to other brokers in the cluster during discovery.

The broker2 and broker3 connectors define how this broker can connect to two other
brokers in the cluster, one of which will always be available. If there are other brokers in the
cluster, they will be discovered by one of these connectors when the initial connection is
made.

For more information about connectors, see Section 2.2, “About Connectors”.

3. Add a cluster connection and configure it to use static discovery.
By default, the cluster connection will load balance messages for all addresses in a symmetric
topology.

<configuration>
 <core>
 ...
 <connectors>
 <connector name="netty-connector">tcp://localhost:61617</connector> 1
 <connector name="broker2">tcp://localhost:61618</connector> 2
 <connector name="broker3">tcp://localhost:61619</connector>
 </connectors>
 ...
 </core>
</configuration>

<configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

172

cluster-connection

Use the name attribute to specify the name of the cluster connection.

connector-ref

The connector that defines how other brokers can connect to this one.

static-connectors

One or more connectors that this broker can use to make an initial connection to another
broker in the cluster. After making this initial connection, the broker will discover the other
brokers in the cluster. You only need to configure this property if the cluster uses static
discovery.

4. Configure any additional properties for the cluster connection.
These additional cluster connection properties have default values that are suitable for most
common use cases. Therefore, you only need to configure these properties if you do not want
the default behavior. For more information, see Appendix C, Cluster Connection Configuration
Elements.

5. Create the cluster user and password.
AMQ Broker ships with default cluster credentials, but you should change them to prevent
unauthorized remote clients from using these default credentials to connect to the broker.

IMPORTANT

The cluster password must be the same on every broker in the cluster.

6. Repeat this procedure on each additional broker.
You can copy the cluster configuration to each additional broker. However, do not copy any of
the other AMQ Broker data files (such as the bindings, journal, and large messages directories).
These files must be unique among the nodes in the cluster or the cluster will not form properly.

Additional resources

 <core>
 ...
 <cluster-connections>
 <cluster-connection name="my-cluster">
 <connector-ref>netty-connector</connector-ref>
 <static-connectors>
 <connector-ref>broker2-connector</connector-ref>
 <connector-ref>broker3-connector</connector-ref>
 </static-connectors>
 </cluster-connection>
 </cluster-connections>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <cluster-user>cluster_user</cluster-user>
 <cluster-password>cluster_user_password</cluster-password>
 ...
 </core>
</configuration>

CHAPTER 16. SETTING UP A BROKER CLUSTER

173

Additional resources

For an example of a broker cluster that uses static discovery, see the clustered-static-
discovery AMQ Broker example program .

16.2.2. Creating a broker cluster with UDP-based dynamic discovery

You can create a broker cluster in which the brokers discover each other dynamically through UDP
multicast.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Within the <core> element, add a connector.
This connector defines connection information that other brokers can use to connect to this
one. This information will be sent to other brokers in the cluster during discovery.

3. Add a UDP broadcast group.
The broadcast group enables the broker to push information about its cluster connection to the
other brokers in the cluster. This broadcast group uses UDP to broadcast the connection
settings:

The following parameters are required unless otherwise noted:

broadcast-group

Use the name attribute to specify a unique name for the broadcast group.

<configuration>
 <core>
 ...
 <connectors>
 <connector name="netty-connector">tcp://localhost:61617</connector>
 </connectors>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <broadcast-groups>
 <broadcast-group name="my-broadcast-group">
 <local-bind-address>172.16.9.3</local-bind-address>
 <local-bind-port>-1</local-bind-port>
 <group-address>231.7.7.7</group-address>
 <group-port>9876</group-port>
 <broadcast-period>2000</broadcast-period>
 <connector-ref>netty-connector</connector-ref>
 </broadcast-group>
 </broadcast-groups>
 ...
 </core>
</configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

174

https://github.com/apache/activemq-artemis/tree/master/examples/features/clustered/clustered-static-discovery

local-bind-address

The address to which the UDP socket is bound. If you have multiple network interfaces on
your broker, you should specify which one you want to use for broadcasts. If this property is
not specified, the socket will be bound to an IP address chosen by the operating system. This
is a UDP-specific attribute.

local-bind-port

The port to which the datagram socket is bound. In most cases, use the default value of -1,
which specifies an anonymous port. This parameter is used in connection with local-bind-
address. This is a UDP-specific attribute.

group-address

The multicast address to which the data will be broadcast. It is a class D IP address in the
range 224.0.0.0 - 239.255.255.255 inclusive. The address 224.0.0.0 is reserved and is not
available for use. This is a UDP-specific attribute.

group-port

The UDP port number used for broadcasting. This is a UDP-specific attribute.

broadcast-period (optional)

The interval in milliseconds between consecutive broadcasts. The default value is 2000
milliseconds.

connector-ref

The previously configured cluster connector that should be broadcasted.

4. Add a UDP discovery group.
The discovery group defines how this broker receives connector information from other brokers.
The broker maintains a list of connectors (one entry for each broker). As it receives broadcasts
from a broker, it updates its entry. If it does not receive a broadcast from a broker for a length of
time, it removes the entry.

This discovery group uses UDP to discover the brokers in the cluster:

The following parameters are required unless otherwise noted:

discovery-group

Use the name attribute to specify a unique name for the discovery group.

local-bind-address (optional)

If the machine on which the broker is running uses multiple network interfaces, you can

<configuration>
 <core>
 ...
 <discovery-groups>
 <discovery-group name="my-discovery-group">
 <local-bind-address>172.16.9.7</local-bind-address>
 <group-address>231.7.7.7</group-address>
 <group-port>9876</group-port>
 <refresh-timeout>10000</refresh-timeout>
 </discovery-group>
 <discovery-groups>
 ...
 </core>
</configuration>

CHAPTER 16. SETTING UP A BROKER CLUSTER

175

If the machine on which the broker is running uses multiple network interfaces, you can
specify the network interface to which the discovery group should listen. This is a UDP-
specific attribute.

group-address

The multicast address of the group on which to listen. It should match the group-address in
the broadcast group that you want to listen from. This is a UDP-specific attribute.

group-port

The UDP port number of the multicast group. It should match the group-port in the
broadcast group that you want to listen from. This is a UDP-specific attribute.

refresh-timeout (optional)

The amount of time in milliseconds that the discovery group waits after receiving the last
broadcast from a particular broker before removing that broker’s connector pair entry from
its list. The default is 10000 milliseconds (10 seconds).
Set this to a much higher value than the broadcast-period on the broadcast group.
Otherwise, brokers might periodically disappear from the list even though they are still
broadcasting (due to slight differences in timing).

5. Create a cluster connection and configure it to use dynamic discovery.
By default, the cluster connection will load balance messages for all addresses in a symmetric
topology.

cluster-connection

Use the name attribute to specify the name of the cluster connection.

connector-ref

The connector that defines how other brokers can connect to this one.

discovery-group-ref

The discovery group that this broker should use to locate other members of the cluster. You
only need to configure this property if the cluster uses dynamic discovery.

6. Configure any additional properties for the cluster connection.
These additional cluster connection properties have default values that are suitable for most
common use cases. Therefore, you only need to configure these properties if you do not want
the default behavior. For more information, see Appendix C, Cluster Connection Configuration
Elements.

7. Create the cluster user and password.
AMQ Broker ships with default cluster credentials, but you should change them to prevent
unauthorized remote clients from using these default credentials to connect to the broker.

IMPORTANT

<configuration>
 <core>
 ...
 <cluster-connections>
 <cluster-connection name="my-cluster">
 <connector-ref>netty-connector</connector-ref>
 <discovery-group-ref discovery-group-name="my-discovery-group"/>
 </cluster-connection>
 </cluster-connections>
 ...
 </core>
</configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

176

IMPORTANT

The cluster password must be the same on every broker in the cluster.

8. Repeat this procedure on each additional broker.
You can copy the cluster configuration to each additional broker. However, do not copy any of
the other AMQ Broker data files (such as the bindings, journal, and large messages directories).
These files must be unique among the nodes in the cluster or the cluster will not form properly.

Additional resources

For an example of a broker cluster configuration that uses dynamic discovery with UDP, see the
clustered-queue AMQ Broker example program .

16.2.3. Creating a broker cluster with JGroups-based dynamic discovery

If you are already using JGroups in your environment, you can use it to create a broker cluster in which
the brokers discover each other dynamically.

Prerequisites

JGroups must be installed and configured.
For an example of a JGroups configuration file, see the clustered-jgroups AMQ Broker
example program.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Within the <core> element, add a connector.
This connector defines connection information that other brokers can use to connect to this
one. This information will be sent to other brokers in the cluster during discovery.

3. Within the <core> element, add a JGroups broadcast group.

The broadcast group enables the broker to push information about its cluster connection to the

<configuration>
 <core>
 ...
 <cluster-user>cluster_user</cluster-user>
 <cluster-password>cluster_user_password</cluster-password>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <connectors>
 <connector name="netty-connector">tcp://localhost:61617</connector>
 </connectors>
 ...
 </core>
</configuration>

CHAPTER 16. SETTING UP A BROKER CLUSTER

177

https://github.com/apache/activemq-artemis/tree/master/examples/features/clustered/clustered-queue
https://github.com/apache/activemq-artemis/tree/master/examples/features/clustered/clustered-jgroups

The broadcast group enables the broker to push information about its cluster connection to the
other brokers in the cluster. This broadcast group uses JGroups to broadcast the connection
settings:

The following parameters are required unless otherwise noted:

broadcast-group

Use the name attribute to specify a unique name for the broadcast group.

jgroups-file

The name of JGroups configuration file to initialize JGroups channels. The file must be in
the Java resource path so that the broker can load it.

jgroups-channel

The name of the JGroups channel to connect to for broadcasting.

broadcast-period (optional)

The interval, in milliseconds, between consecutive broadcasts. The default value is 2000
milliseconds.

connector-ref

The previously configured cluster connector that should be broadcasted.

4. Add a JGroups discovery group.
The discovery group defines how connector information is received. The broker maintains a list
of connectors (one entry for each broker). As it receives broadcasts from a broker, it updates its
entry. If it does not receive a broadcast from a broker for a length of time, it removes the entry.

This discovery group uses JGroups to discover the brokers in the cluster:

<configuration>
 <core>
 ...
 <broadcast-groups>
 <broadcast-group name="my-broadcast-group">
 <jgroups-file>test-jgroups-file_ping.xml</jgroups-file>
 <jgroups-channel>activemq_broadcast_channel</jgroups-channel>
 <broadcast-period>2000</broadcast-period>
 <connector-ref>netty-connector</connector-ref>
 </broadcast-group>
 </broadcast-groups>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <discovery-groups>
 <discovery-group name="my-discovery-group">
 <jgroups-file>test-jgroups-file_ping.xml</jgroups-file>
 <jgroups-channel>activemq_broadcast_channel</jgroups-channel>
 <refresh-timeout>10000</refresh-timeout>
 </discovery-group>
 <discovery-groups>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

178

The following parameters are required unless otherwise noted:

discovery-group

Use the name attribute to specify a unique name for the discovery group.

jgroups-file

The name of JGroups configuration file to initialize JGroups channels. The file must be in
the Java resource path so that the broker can load it.

jgroups-channel

The name of the JGroups channel to connect to for receiving broadcasts.

refresh-timeout (optional)

The amount of time in milliseconds that the discovery group waits after receiving the last
broadcast from a particular broker before removing that broker’s connector pair entry from
its list. The default is 10000 milliseconds (10 seconds).
Set this to a much higher value than the broadcast-period on the broadcast group.
Otherwise, brokers might periodically disappear from the list even though they are still
broadcasting (due to slight differences in timing).

5. Create a cluster connection and configure it to use dynamic discovery.
By default, the cluster connection will load balance messages for all addresses in a symmetric
topology.

cluster-connection

Use the name attribute to specify the name of the cluster connection.

connector-ref

The connector that defines how other brokers can connect to this one.

discovery-group-ref

The discovery group that this broker should use to locate other members of the cluster. You
only need to configure this property if the cluster uses dynamic discovery.

6. Configure any additional properties for the cluster connection.
These additional cluster connection properties have default values that are suitable for most
common use cases. Therefore, you only need to configure these properties if you do not want
the default behavior. For more information, see Appendix C, Cluster Connection Configuration

 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <cluster-connections>
 <cluster-connection name="my-cluster">
 <connector-ref>netty-connector</connector-ref>
 <discovery-group-ref discovery-group-name="my-discovery-group"/>
 </cluster-connection>
 </cluster-connections>
 ...
 </core>
</configuration>

CHAPTER 16. SETTING UP A BROKER CLUSTER

179

Elements.

7. Create the cluster user and password.
AMQ Broker ships with default cluster credentials, but you should change them to prevent
unauthorized remote clients from using these default credentials to connect to the broker.

IMPORTANT

The cluster password must be the same on every broker in the cluster.

8. Repeat this procedure on each additional broker.
You can copy the cluster configuration to each additional broker. However, do not copy any of
the other AMQ Broker data files (such as the bindings, journal, and large messages directories).
These files must be unique among the nodes in the cluster or the cluster will not form properly.

Additional resources

For an example of a broker cluster that uses dynamic discovery with JGroups, see the
clustered-jgroups AMQ Broker example program .

16.3. IMPLEMENTING HIGH AVAILABILITY

After creating a broker cluster, you can improve its reliability by implementing high availability (HA). With
HA, the broker cluster can continue to function even if one or more brokers go offline.

Implementing HA involves several steps:

1. You should understand what live-backup groups are, and choose an HA policy that best meets
your requirements. See Understanding how HA works in AMQ Broker .

2. When you have chosen a suitable HA policy, configure the HA policy on each broker in the
cluster. See:

Configuring shared store high availability

Configuring replication high availability

Configuring limited high availability with live-only

Configuring high availability with colocated backups

3. Configure your client applications to use failover .

NOTE

<configuration>
 <core>
 ...
 <cluster-user>cluster_user</cluster-user>
 <cluster-password>cluster_user_password</cluster-password>
 ...
 </core>
</configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

180

https://github.com/apache/activemq-artemis/tree/master/examples/features/clustered/clustered-jgroups

NOTE

In the later event that you need to troubleshoot a broker cluster configured for high
availability, it is recommended that you enable Garbage Collection (GC) logging for each
Java Virtual Machine (JVM) instance that is running a broker in the cluster. To learn how
to enable GC logs on your JVM, consult the official documentation for the Java
Development Kit (JDK) version used by your JVM. For more information on the JVM
versions that AMQ Broker supports, see Red Hat AMQ 7 Supported Configurations .

16.3.1. Understanding high availability

In AMQ Broker, you implement high availability (HA) by grouping the brokers in the cluster into live-
backup groups. In a live-backup group, a live broker is linked to a backup broker, which can take over for
the live broker if it fails. AMQ Broker also provides several different strategies for failover (called HA
policies) within a live-backup group.

16.3.1.1. How live-backup groups provide high availability

In AMQ Broker, you implement high availability (HA) by linking together the brokers in your cluster to
form live-backup groups. Live-backup groups provide failover, which means that if one broker fails,
another broker can take over its message processing.

A live-backup group consists of one live broker (sometimes called the master broker) linked to one or
more backup brokers (sometimes called slave brokers). The live broker serves client requests, while the
backup brokers wait in passive mode. If the live broker fails, a backup broker replaces the live broker,
enabling the clients to reconnect and continue their work.

16.3.1.2. High availability policies

A high availability (HA) policy defines how failover happens in a live-backup group. AMQ Broker
provides several different HA policies:

Shared store (recommended)

The live and backup brokers store their messaging data in a common directory on a shared file
system; typically a Storage Area Network (SAN) or Network File System (NFS) server. You can also
store broker data in a specified database if you have configured JDBC-based persistence. With
shared store, if a live broker fails, the backup broker loads the message data from the shared store
and takes over for the failed live broker.
In most cases, you should use shared store instead of replication. Because shared store does not
replicate data over the network, it typically provides better performance than replication. Shared
store also avoids network isolation (also called "split brain") issues in which a live broker and its
backup become live at the same time.

Replication

The live and backup brokers continuously synchronize their messaging data over the network. If the

CHAPTER 16. SETTING UP A BROKER CLUSTER

181

https://access.redhat.com/articles/2791941#broker

The live and backup brokers continuously synchronize their messaging data over the network. If the
live broker fails, the backup broker loads the synchronized data and takes over for the failed live
broker.
Data synchronization between the live and backup brokers ensures that no messaging data is lost if
the live broker fails. When the live and backup brokers initially join together, the live broker replicates
all of its existing data to the backup broker over the network. Once this initial phase is complete, the
live broker replicates persistent data to the backup broker as the live broker receives it. This means
that if the live broker drops off the network, the backup broker has all of the persistent data that the
live broker has received up to that point.

Because replication synchronizes data over the network, network failures can result in network
isolation in which a live broker and its backup become live at the same time.

Live-only (limited HA)

When a live broker is stopped gracefully, it copies its messages and transaction state to another live
broker and then shuts down. Clients can then reconnect to the other broker to continue sending and
receiving messages.

Additional resources

For more information about the persistent message data that is shared between brokers in a
live-backup group, see Section 6.1, “About Journal-based Persistence” .

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

182

16.3.1.3. Replication policy limitations

Network isolation (sometimes called "split brain") is a limitation of the replication high availability (HA)
policy. You should understand how it occurs, and how to avoid it.

Network isolation can happen if a live broker and its backup lose their connection. In this situation, both a
live broker and its backup can become active at the same time. Specifically, if the backup broker can still
connect to more than half of the live brokers in the cluster, it also becomes active. Because there is no
message replication between the brokers in this situation, they each serve clients and process messages
without the other knowing it. In this case, each broker has a completely different journal. Recovering
from this situation can be very difficult and in some cases, not possible.

To avoid network isolation, consider the following:

To eliminate any possibility of network isolation, use the shared store HA policy.

If you do use the replication HA policy, you can reduce (but not eliminate) the chance of
encountering network isolation by using at least three live-backup pairs.
Using at least three live-backup pairs ensures that a majority result can be achieved in any
quorum vote that takes place when a live-backup broker pair experiences a replication
interruption.

Some additional considerations when you use the replication HA policy are described below:

When a live broker fails and the backup transitions to live, no further replication takes place until
a new backup broker is attached to the live, or failback to the original live broker occurs.

If the backup broker in a live-backup group fails, the live broker continues to serve messages.
However, messages are not replicated until another broker is added as a backup, or the original
backup broker is restarted. During that time, messages are persisted only to the live broker.

Suppose that both brokers in a live-backup pair were previously shut down, but are now
available to be restarted. In this case, to avoid message loss, you need to restart the most
recently active broker first. If the most recently active broker was the backup broker, you need
to manually reconfigure this broker as a master broker to enable it to be restarted first.

16.3.2. Configuring shared store high availability

You can use the shared store high availability (HA) policy to implement HA in a broker cluster. With
shared store, both live and backup brokers access a common directory on a shared file system; typically
a Storage Area Network (SAN) or Network File System (NFS) server. You can also store broker data in a
specified database if you have configured JDBC-based persistence. With shared store, if a live broker
fails, the backup broker loads the message data from the shared store and takes over for the failed live
broker.

In general, a SAN offers better performance (for example, speed) versus an NFS server, and is the
recommended option, if available. If you need to use an NFS server, see Red Hat AMQ 7 Supported
Configurations for more information about network file systems that AMQ Broker supports.

In most cases, you should use shared store HA instead of replication. Because shared store does not
replicate data over the network, it typically provides better performance than replication. Shared store
also avoids network isolation (also called "split brain") issues in which a live broker and its backup
become live at the same time.

NOTE

CHAPTER 16. SETTING UP A BROKER CLUSTER

183

https://access.redhat.com/articles/2791941

NOTE

When using shared store, the startup time for the backup broker depends on the size of
the message journal. When the backup broker takes over for a failed live broker, it loads
the journal from the shared store. This process can be time consuming if the journal
contains a lot of data.

16.3.2.1. Configuring an NFS shared store

When using shared store high availability, you must configure both the live and backup brokers to use a
common directory on a shared file system. Typically, you use a Storage Area Network (SAN) or Network
File System (NFS) server.

Listed below are some recommended configuration options when mounting an exported directory from
an NFS server on each of your broker machine instances.

sync

Specifies that all changes are immediately flushed to disk.

intr

Allows NFS requests to be interrupted if the server is shut down or cannot be reached.

noac

Disables attribute caching. This behavior is needed to achieve attribute cache coherence among
multiple clients.

soft

Specifies that if the NFS server is unavailable, the error should be reported rather than waiting for
the server to come back online.

lookupcache=none

Disables lookup caching.

timeo=n

The time, in deciseconds (tenths of a second), that the NFS client (that is, the broker) waits for a
response from the NFS server before it retries a request. For NFS over TCP, the default timeo value
is 600 (60 seconds). For NFS over UDP, the client uses an adaptive algorithm to estimate an
appropriate timeout value for frequently used request types, such as read and write requests.

retrans=n

The number of times that the NFS client retries a request before it attempts further recovery action.
If the retrans option is not specified, the NFS client tries each request three times.

IMPORTANT

It is important to use reasonable values when you configure the timeo and retrans
options. A default timeo wait time of 600 deciseconds (60 seconds) combined with a
retrans value of 5 retries can result in a five-minute wait for AMQ Broker to detect an
NFS disconnection.

Additional resources

To learn how to mount an exported directory from an NFS server, see Mounting an NFS share
with mount in the Red Hat Enterprise Linux documentation.

For information about network file systems supported by AMQ Broker, see Red Hat AMQ 7
Supported Configurations.

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

184

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/mounting-nfs-shares_managing-file-systems#mounting-an-nfs-share-with-mount_mounting-nfs-shares
https://access.redhat.com/articles/2791941

16.3.2.2. Configuring shared store high availability

This procedure shows how to configure shared store high availability for a broker cluster.

Prerequisites

A shared storage system must be accessible to the live and backup brokers.

Typically, you use a Storage Area Network (SAN) or Network File System (NFS) server to
provide the shared store. For more information about supported network file systems, see
Red Hat AMQ 7 Supported Configurations .

If you have configured JDBC-based persistence, you can use your specified database to
provide the shared store. To learn how to configure JDBC persistence, see Configuring
JDBC Persistence.

Procedure

1. Group the brokers in your cluster into live-backup groups.
In most cases, a live-backup group should consist of two brokers: a live broker and a backup
broker. If you have six brokers in your cluster, you would need three live-backup groups.

2. Create the first live-backup group consisting of one live broker and one backup broker.

a. Open the live broker’s <broker-instance-dir>/etc/broker.xml configuration file.

b. If you are using:

i. A network file system to provide the shared store, verify that the live broker’s paging,
bindings, journal, and large messages directories point to a shared location that the
backup broker can also access.

ii. A database to provide the shared store, ensure that both the master and backup broker
can connect to the same database and have the same configuration specified in the
database-store element of the broker.xml configuration file. An example configuration
is shown below.

<configuration>
 <core>
 ...
 <paging-directory>../sharedstore/data/paging</paging-directory>
 <bindings-directory>../sharedstore/data/bindings</bindings-directory>
 <journal-directory>../sharedstore/data/journal</journal-directory>
 <large-messages-directory>../sharedstore/data/large-messages</large-
messages-directory>
 ...
 </core>
</configuration>

<configuration>
 <core>
 <store>
 <database-store>
 <jdbc-connection-url>jdbc:oracle:data/oracle/database-store;create=true</jdbc-
connection-url>
 <jdbc-user>ENC(5493dd76567ee5ec269d11823973462f)</jdbc-user>

CHAPTER 16. SETTING UP A BROKER CLUSTER

185

https://access.redhat.com/articles/2791941

c. Configure the live broker to use shared store for its HA policy.

failover-on-shutdown

If this broker is stopped normally, this property controls whether the backup broker
should become live and take over.

d. Open the backup broker’s <broker-instance-dir>/etc/broker.xml configuration file.

e. If you are using:

i. A network file system to provide the shared store, verify that the backup broker’s
paging, bindings, journal, and large messages directories point to the same shared
location as the live broker.

 <jdbc-password>ENC(56a0db3b71043054269d11823973462f)</jdbc-
password>
 <bindings-table-name>BINDINGS_TABLE</bindings-table-name>
 <message-table-name>MESSAGE_TABLE</message-table-name>
 <large-message-table-name>LARGE_MESSAGES_TABLE</large-message-
table-name>
 <page-store-table-name>PAGE_STORE_TABLE</page-store-table-name>
 <node-manager-store-table-name>NODE_MANAGER_TABLE<node-
manager-store-table-name>
 <jdbc-driver-class-name>oracle.jdbc.driver.OracleDriver</jdbc-driver-class-
name>
 <jdbc-network-timeout>10000</jdbc-network-timeout>
 <jdbc-lock-renew-period>2000</jdbc-lock-renew-period>
 <jdbc-lock-expiration>15000</jdbc-lock-expiration>
 <jdbc-journal-sync-period>5</jdbc-journal-sync-period>
 </database-store>
 </store>
 </core>
</configuration>

<configuration>
 <core>
 ...
 <ha-policy>
 <shared-store>
 <master>
 <failover-on-shutdown>true</failover-on-shutdown>
 </master>
 </shared-store>
 </ha-policy>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <paging-directory>../sharedstore/data/paging</paging-directory>
 <bindings-directory>../sharedstore/data/bindings</bindings-directory>
 <journal-directory>../sharedstore/data/journal</journal-directory>
 <large-messages-directory>../sharedstore/data/large-messages</large-

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

186

ii. A database to provide the shared store, ensure that both the master and backup
brokers can connect to the same database and have the same configuration specified
in the database-store element of the broker.xml configuration file.

f. Configure the backup broker to use shared store for its HA policy.

failover-on-shutdown

If this broker has become live and then is stopped normally, this property controls
whether the backup broker (the original live broker) should become live and take over.

allow-failback

If failover has occurred and the backup broker has taken over for the live broker, this
property controls whether the backup broker should fail back to the original live broker
when it restarts and reconnects to the cluster.

NOTE

Failback is intended for a live-backup pair (one live broker paired with a
single backup broker). If the live broker is configured with multiple
backups, then failback will not occur. Instead, if a failover event occurs, the
backup broker will become live, and the next backup will become its
backup. When the original live broker comes back online, it will not be able
to initiate failback, because the broker that is now live already has a
backup.

restart-backup

This property controls whether the backup broker automatically restarts after it fails
back to the live broker. The default value of this property is true.

3. Repeat Step 2 for each remaining live-backup group in the cluster.

16.3.3. Configuring replication high availability

messages-directory>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <ha-policy>
 <shared-store>
 <slave>
 <failover-on-shutdown>true</failover-on-shutdown>
 <allow-failback>true</allow-failback>
 <restart-backup>true</restart-backup>
 </slave>
 </shared-store>
 </ha-policy>
 ...
 </core>
</configuration>

CHAPTER 16. SETTING UP A BROKER CLUSTER

187

You can use the replication high availability (HA) policy to implement HA in a broker cluster. With
replication, persistent data is synchronized between the live and backup brokers. If a live broker
encounters a failure, message data is synchronized to the backup broker and it takes over for the failed
live broker.

You should use replication as an alternative to shared store, if you do not have a shared file system.
However, replication can result in network isolation in which a live broker and its backup become live at
the same time.

Replication requires at least three live-backup pairs to lessen (but not eliminate) the risk of network
isolation. Using at least three live-backup broker pairs enables your cluster to use quorum voting to
avoid having two live brokers.

The sections that follow explain how quorum voting works and how to configure replication HA for a
broker cluster with at least three live-backup pairs.

NOTE

Because the live and backup brokers must synchronize their messaging data over the
network, replication adds a performance overhead. This synchronization process blocks
journal operations, but it does not block clients. You can configure the maximum amount
of time that journal operations can be blocked for data synchronization.

16.3.3.1. About quorum voting

In the event that a live broker and its backup experience an interrupted replication connection, you can
configure a process called quorum voting to mitigate against network isolation (or "split brain") issues.
During network isolation, a live broker and its backup can become active at the same time.

The following table describes the two types of quorum voting that AMQ Broker uses.

Vote
type

Description Initiator Required
configuration

Participants Action based on
vote result

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

188

Backup
vote

If a backup broker
loses its replication
connection to the
live broker, the
backup broker
decides whether or
not to start based on
the result of this
vote.

Backup
broker

None. A backup vote
happens
automatically when a
backup broker loses
connection to its
replication partner.

However, you can
control the
properties of a
backup vote by
specifying custom
values for these
parameters:

quorum-
vote-wait

vote-
retries

vote-retry-
wait

Other live
brokers in
the cluster

The backup
broker starts if it
receives a
majority (that is,
a quorum) vote
from the other
live brokers in the
cluster, indicating
that its
replication
partner is no
longer available.

Live
vote

If a live broker loses
connection to its
replication partner,
the live broker
decides whether to
continue running
based on this vote.

Live
broker

A live vote happens
when a live broker
loses connection to
its replication partner
and vote-on-
replication-failure
is set to true. A
backup broker that
has become active is
considered a live
broker, and can
initiate a live vote.

Other live
brokers in
the cluster

The live broker
shuts down if it
doesn’t receive a
majority vote
from the other
live brokers in the
cluster, indicating
that its cluster
connection is still
active.

Vote
type

Description Initiator Required
configuration

Participants Action based on
vote result

IMPORTANT

CHAPTER 16. SETTING UP A BROKER CLUSTER

189

IMPORTANT

Listed below are some important things to note about how the configuration of your
broker cluster affects the behavior of quorum voting.

For a quorum vote to succeed, the size of your cluster must allow a majority result
to be achieved. Therefore, when you use the replication HA policy, your cluster
should have at least three live-backup broker pairs.

The more live-backup broker pairs that you add to your cluster, the more you
increase the overall fault tolerance of the cluster. For example, suppose you have
three live-backup pairs. If you lose a complete live-backup pair, the two remaining
live-backup pairs cannot achieve a majority result in any subsequent quorum
vote. This situation means that any further replication interruption in the cluster
might cause a live broker to shut down, and prevent its backup broker from
starting up. By configuring your cluster with, say, five broker pairs, the cluster can
experience at least two failures, while still ensuring a majority result from any
quorum vote.

If you intentionally reduce the number of live-backup broker pairs in your cluster,
the previously established threshold for a majority vote does not automatically
decrease. During this time, any quorum vote triggered by a lost replication
connection cannot succeed, making your cluster more vulnerable to network
isolation. To make your cluster recalculate the majority threshold for a quorum
vote, first shut down the live-backup pairs that you are removing from your
cluster. Then, restart the remaining live-backup pairs in the cluster. When all of
the remaining brokers have been restarted, the cluster recalculates the quorum
vote threshold.

16.3.3.2. Configuring a broker cluster for replication high availability

The following procedure describes how to configure replication high-availability (HA) for a six-broker
cluster. In this topology, the six brokers are grouped into three live-backup pairs: each of the three live
brokers is paired with a dedicated backup broker.

Replication requires at least three live-backup pairs to lessen (but not eliminate) the risk of network
isolation.

Prerequisites

You must have a broker cluster with at least six brokers.
The six brokers are configured into three live-backup pairs. For more information about adding
brokers to a cluster, see Chapter 16, Setting up a broker cluster .

Procedure

1. Group the brokers in your cluster into live-backup groups.
In most cases, a live-backup group should consist of two brokers: a live broker and a backup
broker. If you have six brokers in your cluster, you need three live-backup groups.

2. Create the first live-backup group consisting of one live broker and one backup broker.

a. Open the live broker’s <broker-instance-dir>/etc/broker.xml configuration file.

b. Configure the live broker to use replication for its HA policy.

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

190

check-for-live-server

If the live broker fails, this property controls whether clients should fail back to it when it
restarts.
If you set this property to true, when the live broker restarts after a previous failover, it
searches for another broker in the cluster with the same node ID. If the live broker finds
another broker with the same node ID, this indicates that a backup broker successfully
started upon failure of the live broker. In this case, the live broker synchronizes its data
with the backup broker. The live broker then requests the backup broker to shut down. If
the backup broker is configured for failback, as shown below, it shuts down. The live
broker then resumes its active role, and clients reconnect to it.

WARNING

If you do not set check-for-live-server to true on the live broker,
you might experience duplicate messaging handling when you
restart the live broker after a previous failover. Specifically, if you
restart a live broker with this property set to false, the live broker
does not synchronize data with its backup broker. In this case, the
live broker might process the same messages that the backup
broker has already handled, causing duplicates.

group-name

A name for this live-backup group. To form a live-backup group, the live and backup
brokers must be configured with the same group name.

vote-on-replication-failure

This property controls whether a live broker initiates a quorum vote called a live vote in
the event of an interrupted replication connection.
A live vote is a way for a live broker to determine whether it or its partner is the cause of
the interrupted replication connection. Based on the result of the vote, the live broker
either stays running or shuts down.

IMPORTANT

<configuration>
 <core>
 ...
 <ha-policy>
 <replication>
 <master>
 <check-for-live-server>true</check-for-live-server>
 <group-name>my-group-1</group-name>
 <vote-on-replication-failure>true</vote-on-replication-failure>
 ...
 </master>
 </replication>
 </ha-policy>
 ...
 </core>
</configuration>



CHAPTER 16. SETTING UP A BROKER CLUSTER

191

IMPORTANT

For a quorum vote to succeed, the size of your cluster must allow a
majority result to be achieved. Therefore, when you use the replication HA
policy, your cluster should have at least three live-backup broker pairs.

The more broker pairs you configure in your cluster, the more you
increase the overall fault tolerance of the cluster. For example, suppose
you have three live-backup broker pairs. If you lose connection to a
complete live-backup pair, the two remaining live-backup pairs can no
longer achieve a majority result in a quorum vote. This situation means
that any subsequent replication interruption might cause a live broker to
shut down, and prevent its backup broker from starting up. By configuring
your cluster with, say, five broker pairs, the cluster can experience at least
two failures, while still ensuring a majority result from any quorum vote.

c. Configure any additional HA properties for the live broker.
These additional HA properties have default values that are suitable for most common use
cases. Therefore, you only need to configure these properties if you do not want the default
behavior. For more information, see Appendix F, Replication High Availability Configuration
Elements.

d. Open the backup broker’s <broker-instance-dir>/etc/broker.xml configuration file.

e. Configure the backup (that is, slave) broker to use replication for its HA policy.

allow-failback

If failover has occurred and the backup broker has taken over for the live broker, this
property controls whether the backup broker should fail back to the original live broker
when it restarts and reconnects to the cluster.

NOTE

<configuration>
 <core>
 ...
 <ha-policy>
 <replication>
 <slave>
 <allow-failback>true</allow-failback>
 <restart-backup>true</restart-backup>
 <group-name>my-group-1</group-name>
 <vote-on-replication-failure>true</vote-on-replication-failure>
 ...
 </slave>
 </replication>
 </ha-policy>
 ...
 </core>
</configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

192

NOTE

Failback is intended for a live-backup pair (one live broker paired with a
single backup broker). If the live broker is configured with multiple
backups, then failback will not occur. Instead, if a failover event occurs, the
backup broker will become live, and the next backup will become its
backup. When the original live broker comes back online, it will not be able
to initiate failback, because the broker that is now live already has a
backup.

restart-backup

This property controls whether the backup broker automatically restarts after it fails
back to the live broker. The default value of this property is true.

group-name

The group name of the live broker to which this backup should connect. A backup broker
connects only to a live broker that shares the same group name.

vote-on-replication-failure

This property controls whether a live broker initiates a quorum vote called a live vote in
the event of an interrupted replication connection. A backup broker that has become
active is considered a live broker and can initiate a live vote.
A live vote is a way for a live broker to determine whether it or its partner is the cause of
the interrupted replication connection. Based on the result of the vote, the live broker
either stays running or shuts down.

f. (Optional) Configure properties of the quorum votes that the backup broker initiates.

vote-retries

This property controls how many times the backup broker retries the quorum vote in
order to receive a majority result that allows the backup broker to start up.

vote-retry-wait

This property controls how long, in milliseconds, that the backup broker waits between
each retry of the quorum vote.

g. Configure any additional HA properties for the backup broker.

<configuration>
 <core>
 ...
 <ha-policy>
 <replication>
 <slave>
 ...
 <vote-retries>12</vote-retries>
 <vote-retry-wait>5000</vote-retry-wait>
 ...
 </slave>
 </replication>
 </ha-policy>
 ...
 </core>
</configuration>

CHAPTER 16. SETTING UP A BROKER CLUSTER

193

These additional HA properties have default values that are suitable for most common use
cases. Therefore, you only need to configure these properties if you do not want the default
behavior. For more information, see Appendix F, Replication High Availability Configuration
Elements.

3. Repeat step 2 for each additional live-backup group in the cluster.
If there are six brokers in the cluster, repeat this procedure two more times; once for each
remaining live-backup group.

Additional resources

For examples of broker clusters that use replication for HA, see the HA example programs.

For more information about node IDs, see Understanding node IDs .

16.3.4. Configuring limited high availability with live-only

The live-only HA policy enables you to shut down a broker in a cluster without losing any messages. With
live-only, when a live broker is stopped gracefully, it copies its messages and transaction state to
another live broker and then shuts down. Clients can then reconnect to the other broker to continue
sending and receiving messages.

The live-only HA policy only handles cases when the broker is stopped gracefully. It does not handle
unexpected broker failures.

While live-only HA prevents message loss, it may not preserve message order. If a broker configured
with live-only HA is stopped, its messages will be appended to the ends of the queues of another broker.

NOTE

When a broker is preparing to scale down, it sends a message to its clients before they are
disconnected informing them which new broker is ready to process their messages.
However, clients should reconnect to the new broker only after their initial broker has
finished scaling down. This ensures that any state, such as queues or transactions, is
available on the other broker when the client reconnects. The normal reconnect settings
apply when the client is reconnecting, so you should set these high enough to deal with
the time needed to scale down.

This procedure describes how to configure each broker in the cluster to scale down. After completing
this procedure, whenever a broker is stopped gracefully, it will copy its messages and transaction state
to another broker in the cluster.

Procedure

1. Open the first broker’s <broker-instance-dir>/etc/broker.xml configuration file.

2. Configure the broker to use the live-only HA policy.

<configuration>
 <core>
 ...
 <ha-policy>
 <live-only>
 </live-only>
 </ha-policy>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

194

https://github.com/apache/activemq-artemis/tree/master/examples/features/ha

3. Configure a method for scaling down the broker cluster.
Specify the broker or group of brokers to which this broker should scale down.

To scale down to…​ Do this…​

A specific broker in the
cluster

Specify the connector of the broker to which you want to scale down.

Any broker in the cluster Specify the broker cluster’s discovery group.

A broker in a particular
broker group

Specify a broker group.

4. Repeat this procedure for each remaining broker in the cluster.

Additional resources

For an example of a broker cluster that uses live-only to scale down the cluster, see the scale-
down example programs.

16.3.5. Configuring high availability with colocated backups

Rather than configure live-backup groups, you can colocate backup brokers in the same JVM as another
live broker. In this configuration, each live broker is configured to request another live broker to create
and start a backup broker in its JVM.

Figure 16.4. Colocated live and backup brokers

 ...
 </core>
</configuration>

<live-only>
 <scale-down>
 <connectors>
 <connector-ref>broker1-connector</connector-ref>
 </connectors>
 </scale-down>
</live-only>

<live-only>
 <scale-down>
 <discovery-group-ref discovery-group-name="my-
discovery-group"/>
 </scale-down>
</live-only>

<live-only>
 <scale-down>
 <group-name>my-group-name</group-name>
 </scale-down>
</live-only>

CHAPTER 16. SETTING UP A BROKER CLUSTER

195

https://github.com/apache/activemq-artemis/tree/master/examples/features/ha/scale-down

Figure 16.4. Colocated live and backup brokers

You can use colocation with either shared store or replication as the high availability (HA) policy. The
new backup broker inherits its configuration from the live broker that creates it. The name of the backup
is set to colocated_backup_n where n is the number of backups the live broker has created.

In addition, the backup broker inherits the configuration for its connectors and acceptors from the live
broker that creates it. By default, port offset of 100 is applied to each. For example, if the live broker has
an acceptor for port 61616, the first backup broker created will use port 61716, the second backup will
use 61816, and so on.

Directories for the journal, large messages, and paging are set according to the HA policy you choose. If
you choose shared store, the requesting broker notifies the target broker which directories to use. If
replication is chosen, directories are inherited from the creating broker and have the new backup’s name
appended to them.

This procedure configures each broker in the cluster to use shared store HA, and to request a backup to
be created and colocated with another broker in the cluster.

Procedure

1. Open the first broker’s <broker-instance-dir>/etc/broker.xml configuration file.

2. Configure the broker to use an HA policy and colocation.
In this example, the broker is configured with shared store HA and colocation.

<configuration>
 <core>
 ...
 <ha-policy>
 <shared-store>
 <colocated>
 <request-backup>true</request-backup>
 <max-backups>1</max-backups>
 <backup-request-retries>-1</backup-request-retries>
 <backup-request-retry-interval>5000</backup-request-retry-interval/>
 <backup-port-offset>150</backup-port-offset>
 <excludes>
 <connector-ref>remote-connector</connector-ref>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

196

request-backup

By setting this property to true, this broker will request a backup broker to be created by
another live broker in the cluster.

max-backups

The number of backup brokers that this broker can create. If you set this property to 0, this
broker will not accept backup requests from other brokers in the cluster.

backup-request-retries

The number of times this broker should try to request a backup broker to be created. The
default is -1, which means unlimited tries.

backup-request-retry-interval

The amount of time in milliseconds that the broker should wait before retrying a request to
create a backup broker. The default is 5000, or 5 seconds.

backup-port-offset

The port offset to use for the acceptors and connectors for a new backup broker. If this
broker receives a request to create a backup for another broker in the cluster, it will create
the backup broker with the ports offset by this amount. The default is 100.

excludes (optional)

Excludes connectors from the backup port offset. If you have configured any connectors for
external brokers that should be excluded from the backup port offset, add a <connector-
ref> for each of the connectors.

master

The shared store or replication failover configuration for this broker.

slave

The shared store or replication failover configuration for this broker’s backup.

3. Repeat this procedure for each remaining broker in the cluster.

Additional resources

For examples of broker clusters that use colocated backups, see the HA example programs.

16.3.6. Configuring clients to fail over

After configuring high availability in a broker cluster, you configure your clients to fail over. Client failover

 </excludes>
 <master>
 <failover-on-shutdown>true</failover-on-shutdown>
 </master>
 <slave>
 <failover-on-shutdown>true</failover-on-shutdown>
 <allow-failback>true</allow-failback>
 <restart-backup>true</restart-backup>
 </slave>
 </colocated>
 </shared-store>
 </ha-policy>
 ...
 </core>
</configuration>

CHAPTER 16. SETTING UP A BROKER CLUSTER

197

https://github.com/apache/activemq-artemis/tree/master/examples/features/ha

After configuring high availability in a broker cluster, you configure your clients to fail over. Client failover
ensures that if a broker fails, the clients connected to it can reconnect to another broker in the cluster
with minimal downtime.

NOTE

In the event of transient network problems, AMQ Broker automatically reattaches
connections to the same broker. This is similar to failover, except that the client
reconnects to the same broker.

You can configure two different types of client failover:

Automatic client failover

The client receives information about the broker cluster when it first connects. If the broker to which
it is connected fails, the client automatically reconnects to the broker’s backup, and the backup
broker re-creates any sessions and consumers that existed on each connection before failover.

Application-level client failover

As an alternative to automatic client failover, you can instead code your client applications with your
own custom reconnection logic in a failure handler.

Procedure

Use AMQ Core Protocol JMS to configure your client application with automatic or application-
level failover.
For more information, see Using the AMQ Core Protocol JMS Client .

16.4. ENABLING MESSAGE REDISTRIBUTION

If your broker cluster uses on-demand message load balancing, you can configure message
redistribution to prevent messages from being "stuck" in a queue that does not have a consumer to
consume the messages.

This section contains information about:

Understanding message distribution

Configuring message redistribution

16.4.1. Understanding message redistribution

Broker clusters use load balancing to distribute the message load across the cluster. When configuring
load balancing in the cluster connection, if you set message-load-balancing to ON_DEMAND, the
broker forwards messages only to other brokers that have matching consumers. This behavior ensures
that messages are not moved to queues that do not have any consumers to consume the messages.
However, if the consumers attached to a queue close after the messages are forwarded to the broker,
those messages become "stuck" in the queue and are not consumed. This issue is sometimes called
starvation.

Message redistribution prevents starvation by automatically redistributing the messages from queues
that have no consumers to brokers in the cluster that do have matching consumers.

16.4.1.1. Limitations of message redistribution with message filters

Message redistribution does not support the use of filters (also know as selectors) by consumers. A

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

198

https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/using_the_amq_core_protocol_jms_client/

Message redistribution does not support the use of filters (also know as selectors) by consumers. A
common use case for consumers with filters is a request-reply pattern using a correlation ID. For
example, consider the following scenario:

1. You have a cluster of two brokers, brokerA and brokerB. Each broker is configured with
redistribution-delay set to 0 and message-load-balancing set to ON_DEMAND.

2. brokerA and brokerB each has a queue named myQueue.

3. Based on a request, a producer sends a message that is routed to queue myQueue on brokerA.
The message has a correlation ID property named myCorrelID, with a value of 10.

4. A consumer connects to queue myQueue on brokerA with a filter of myCorrelID=5. This filter
does not match the correlation ID value of the message.

5. Another consumer connects to queue myQueue on brokerB with a filter of myCorrelID=10.
This filter matches the correlation ID value of the message.
In this case, although the filter of the consumer on brokerB matches the message, the message
is not redistributed from brokerA to brokerB because a consumer for the queue myQueue
exists on brokerA.

In the preceding scenario, you can ensure that the intended client receives the message by creating the
consumers before the request is sent to the producer. The message is immediately routed to the
consumer with a filter matching the correlation ID of the message. Redistribution is not required.

Additional resources

For more information about cluster load balancing, see Section 16.1.1, “How broker clusters
balance message load”.

16.4.2. Configuring message redistribution

This procedure shows how to configure message redistribution.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. In the <cluster-connection> element, verify that <message-load-balancing> is set to
<ON_DEMAND>.

3. Within the <address-settings> element, set the redistribution delay for a queue or set of
queues.
In this example, messages load balanced to my.queue will be redistributed 5000 milliseconds

<configuration>
 <core>
 ...
 <cluster-connections>
 <cluster-connection name="my-cluster">
 ...
 <message-load-balancing>ON_DEMAND</message-load-balancing>
 ...
 </cluster-connection>
 </cluster-connections>
 </core>
</configuration>

CHAPTER 16. SETTING UP A BROKER CLUSTER

199

In this example, messages load balanced to my.queue will be redistributed 5000 milliseconds
after the last consumer closes.

address-setting

Set the match attribute to be the name of the queue for which you want messages to be
redistributed. You can use the broker wildcard syntax to specify a range of queues. For more
information, see Section 4.2, “Applying address settings to sets of addresses” .

redistribution-delay

The amount of time (in milliseconds) that the broker should wait after this queue’s final
consumer closes before redistributing messages to other brokers in the cluster. If you set this
to 0, messages will be redistributed immediately. However, you should typically set a delay
before redistributing - it is common for a consumer to close but another one to be quickly
created on the same queue.

4. Repeat this procedure for each additional broker in the cluster.

Additional resources

For an example of a broker cluster configuration that redistributes messages, see the queue-
message-redistribution AMQ Broker example program .

16.5. CONFIGURING CLUSTERED MESSAGE GROUPING

Message grouping enables clients to send groups of messages of a particular type to be processed
serially by the same consumer. By adding a grouping handler to each broker in the cluster, you ensure
that clients can send grouped messages to any broker in the cluster and still have those messages
consumed in the correct order by the same consumer.

There are two types of grouping handlers: local handlers and remote handlers. They enable the broker
cluster to route all of the messages in a particular group to the appropriate queue so that the intended
consumer can consume them in the correct order.

Prerequisites

There should be at least one consumer on each broker in the cluster.
When a message is pinned to a consumer on a queue, all messages with the same group ID will
be routed to that queue. If the consumer is removed, the queue will continue to receive the
messages even if there are no consumers.

Procedure

1. Configure a local handler on one broker in the cluster.

<configuration>
 <core>
 ...
 <address-settings>
 <address-setting match="my.queue">
 <redistribution-delay>5000</redistribution-delay>
 </address-setting>
 </address-settings>
 ...
 </core>
</configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

200

https://github.com/apache/activemq-artemis/tree/master/examples/features/clustered/queue-message-redistribution

If you are using high availability, this should be a master broker.

a. Open the broker’s <broker-instance-dir>/etc/broker.xml configuration file.

b. Within the <core> element, add a local handler:
The local handler serves as an arbiter for the remote handlers. It stores route information
and communicates it to the other brokers.

grouping-handler

Use the name attribute to specify a unique name for the grouping handler.

type

Set this to LOCAL.

timeout

The amount of time to wait (in milliseconds) for a decision to be made about where to
route the message. The default is 5000 milliseconds. If the timeout is reached before a
routing decision is made, an exception is thrown, which ensures strict message ordering.
When the broker receives a message with a group ID, it proposes a route to a queue to
which the consumer is attached. If the route is accepted by the grouping handlers on the
other brokers in the cluster, then the route is established: all brokers in the cluster will
forward messages with this group ID to that queue. If the broker’s route proposal is
rejected, then it proposes an alternate route, repeating the process until a route is
accepted.

2. If you are using high availability, copy the local handler configuration to the master broker’s slave
broker.
Copying the local handler configuration to the slave broker prevents a single point of failure for
the local handler.

3. On each remaining broker in the cluster, configure a remote handler.

a. Open the broker’s <broker-instance-dir>/etc/broker.xml configuration file.

b. Within the <core> element, add a remote handler:

<configuration>
 <core>
 ...
 <grouping-handler name="my-grouping-handler">
 <type>LOCAL</type>
 <timeout>10000</timeout>
 </grouping-handler>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <grouping-handler name="my-grouping-handler">
 <type>REMOTE</type>
 <timeout>5000</timeout>
 </grouping-handler>

CHAPTER 16. SETTING UP A BROKER CLUSTER

201

grouping-handler

Use the name attribute to specify a unique name for the grouping handler.

type

Set this to REMOTE.

timeout

The amount of time to wait (in milliseconds) for a decision to be made about where to
route the message. The default is 5000 milliseconds. Set this value to at least half of
the value of the local handler.

Additional resources

For an example of a broker cluster configured for message grouping, see the clustered-
grouping AMQ Broker example program .

16.6. CONNECTING CLIENTS TO A BROKER CLUSTER

You can use the AMQ JMS clients to connect to the cluster. By using JMS, you can configure your
messaging clients to discover the list of brokers dynamically or statically. You can also configure client-
side load balancing to distribute the client sessions created from the connection across the cluster.

Procedure

Use AMQ Core Protocol JMS to configure your client application to connect to the broker
cluster.
For more information, see Using the AMQ Core Protocol JMS Client .

 ...
 </core>
</configuration>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

202

https://github.com/apache/activemq-artemis/tree/master/examples/features/clustered/clustered-grouping
https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/using_the_amq_core_protocol_jms_client/

CHAPTER 17. CONFIGURING A MULTI-SITE, FAULT-
TOLERANT MESSAGING SYSTEM

Large-scale enterprise messaging systems commonly have discrete broker clusters located in
geographically distributed data centers. In the event of a data center outage, system administrators
might need to preserve existing messaging data and ensure that client applications can continue to
produce and consume messages. You can use specific broker topologies and the Red Hat Ceph Storage
software-defined storage platform to ensure continuity of your messaging system during a data center
outage. This type of solution is called a multi-site, fault-tolerant architecture .

The following sections explain how to protect your messaging system from data center outages. These
sections provide information about:

How Red Hat Ceph Storage clusters work

Installing and configuring a Red Hat Ceph Storage cluster

Adding backup brokers to take over from live brokers in the event of a data center outage

Configuring your broker servers with the Ceph client role

Configuring each broker to use the shared store high-availability (HA) policy, specifying where
in the Ceph File System each broker stores its messaging data

Configuring client applications to connect to new brokers in the event of a data center outage

Restarting a data center after an outage

NOTE

Multi-site fault tolerance is not a replacement for high-availability (HA) broker
redundancy within data centers. Broker redundancy based on live-backup groups
provides automatic protection against single broker failures within single clusters. By
contrast, multi-site fault tolerance protects against large-scale data center outages.

NOTE

To use Red Hat Ceph Storage to ensure continuity of your messaging system, you must
configure your brokers to use the shared store high-availability (HA) policy. You cannot
configure your brokers to use the replication HA policy. For more information about these
policies, see Implementing High Availability .

17.1. HOW RED HAT CEPH STORAGE CLUSTERS WORK

Red Hat Ceph Storage is a clustered object storage system. Red Hat Ceph Storage uses data sharding
of objects and policy-based replication to guarantee data integrity and system availability.

Red Hat Ceph Storage uses an algorithm called CRUSH (Controlled Replication Under Scalable
Hashing) to determine how to store and retrieve data by automatically computing data storage
locations. You configure Ceph items called CRUSH maps, which detail cluster topography and specify
how data is replicated across storage clusters.

CRUSH maps contain lists of Object Storage Devices (OSDs), a list of ‘buckets’ for aggregating the
devices into a failure domain hierarchy, and rules that tell CRUSH how it should replicate data in a Ceph
cluster’s pools.

CHAPTER 17. CONFIGURING A MULTI-SITE, FAULT-TOLERANT MESSAGING SYSTEM

203

By reflecting the underlying physical organization of the installation, CRUSH maps can model — and
thereby address — potential sources of correlated device failures, such as physical proximity, shared
power sources, and shared networks. By encoding this information into the cluster map, CRUSH can
separate object replicas across different failure domains (for example, data centers) while still
maintaining a pseudo-random distribution of data across the storage cluster. This helps to prevent data
loss and enables the cluster to operate in a degraded state.

Red Hat Ceph Storage clusters require a number of nodes (physical or virtual) to operate. Clusters must
include the following types of nodes:

Monitor nodes

Each Monitor (MON) node runs the monitor daemon (ceph-mon), which maintains a master copy of the
cluster map. The cluster map includes the cluster topology. A client connecting to the Ceph cluster
retrieves the current copy of the cluster map from the Monitor, which enables the client to read from
and write data to the cluster.

IMPORTANT

A Red Hat Ceph Storage cluster can run with one Monitor node; however, to ensure high
availability in a production cluster, Red Hat supports only deployments with at least three
Monitor nodes. A minimum of three Monitor nodes means that in the event of the failure
or unavailability of one Monitor, a quorum exists for the remaining Monitor nodes in the
cluster to elect a new leader.

Manager nodes

Each Manager (MGR) node runs the Ceph Manager daemon (ceph-mgr), which is responsible for
keeping track of runtime metrics and the current state of the Ceph cluster, including storage utilization,
current performance metrics, and system load. Usually, Manager nodes are colocated (that is, on the
same host machine) with Monitor nodes.

Object Storage Device nodes

Each Object Storage Device (OSD) node runs the Ceph OSD daemon (ceph-osd), which interacts with
logical disks attached to the node. Ceph stores data on OSD nodes. Ceph can run with very few OSD
nodes (the default is three), but production clusters realize better performance at modest scales, for
example, with 50 OSDs in a storage cluster. Having multiple OSDs in a storage cluster enables system
administrators to define isolated failure domains within a CRUSH map.

Metadata Server nodes

Each Metadata Server (MDS) node runs the MDS daemon (ceph-mds), which manages metadata
related to files stored on the Ceph File System (CephFS). The MDS daemon also coordinates access to
the shared cluster.

Additional resources

For more information about Red Hat Ceph Storage, see What is Red Hat Ceph Storage?

17.2. INSTALLING RED HAT CEPH STORAGE

AMQ Broker multi-site, fault-tolerant architectures use Red Hat Ceph Storage 3. By replicating data
across data centers, a Red Hat Ceph Storage cluster effectively creates a shared store available to
brokers in separate data centers. You configure your brokers to use the shared store high-availability
(HA) policy and store messaging data in the Red Hat Ceph Storage cluster.

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

204

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/installation_guide_for_red_hat_enterprise_linux/what_is_red_hat_ceph_storage

Red Hat Ceph Storage clusters intended for production use should have a minimum of:

Three Monitor (MON) nodes

Three Manager (MGR) nodes

Three Object Storage Device (OSD) nodes containing multiple OSD daemons

Three Metadata Server (MDS) nodes

IMPORTANT

You can run the OSD, MON, MGR, and MDS nodes on either the same or separate
physical or virtual machines. However, to ensure fault tolerance within your Red Hat Ceph
Storage cluster, it is good practice to distribute each of these types of nodes across
distinct data centers. In particular, you must ensure that in the event of a single data
center outage, your storage cluster still has a minimum of two available MON nodes.
Therefore, if you have three MON nodes in you cluster, each of these nodes must run on
separate host machines in separate data centers. Do not run two MON nodes in a single
data center, because failure of this data center will leave your storage cluster with only
one remaining MON node. In this situation, the storage cluster can no longer operate.

The procedures linked-to from this section show you how to install a Red Hat Ceph Storage 3 cluster
that includes MON, MGR, OSD, and MDS nodes.

Prerequisites

For information about preparing a Red Hat Ceph Storage installation, see:

Prerequisites

Requirements Checklist for Installing Red Hat Ceph Storage

Procedure

For procedures that show how to install a Red Hat Ceph 3 storage cluster that includes MON,
MGR, OSD, and MDS nodes, see:

Installing a Red Hat Ceph Storage Cluster

Installing Metadata Servers

17.3. CONFIGURING A RED HAT CEPH STORAGE CLUSTER

This example procedure shows how to configure your Red Hat Ceph storage cluster for fault tolerance.
You create CRUSH buckets to aggregate your Object Storage Device (OSD) nodes into data centers
that reflect your real-life, physical installation. In addition, you create a rule that tells CRUSH how to
replicate data in your storage pools. These steps update the default CRUSH map that was created by
your Ceph installation.

Prerequisites

You have already installed a Red Hat Ceph Storage cluster. For more information, see Installing
Red Hat Ceph Storage.

You should understand how Red Hat Ceph Storage uses Placement Groups (PGs) to organize

CHAPTER 17. CONFIGURING A MULTI-SITE, FAULT-TOLERANT MESSAGING SYSTEM

205

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/index#prerequisites
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/index#requirements-checklist-for-installing-red-hat-ceph-storage
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/installation_guide_for_red_hat_enterprise_linux/deploying-red-hat-ceph-storage#installing-a-red-hat-ceph-storage-cluster
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/installation_guide_for_red_hat_enterprise_linux/deploying-red-hat-ceph-storage#installing-metadata-servers

You should understand how Red Hat Ceph Storage uses Placement Groups (PGs) to organize
large numbers of data objects in a pool, and how to calculate the number of PGs to use in your
pool. For more information, see Placement Groups (PGs).

You should understand how to set the number of object replicas in a pool. For more information,
Set the Number of Object Replicas .

Procedure

1. Create CRUSH buckets to organize your OSD nodes. Buckets are lists of OSDs, based on
physical locations such as data centers. In Ceph, these physical locations are known as failure
domains.

2. Move the host machines for your OSD nodes to the data center CRUSH buckets that you
created. Replace host names host1-host4 with the names of your host machines.

3. Ensure that the CRUSH buckets you created are part of the default CRUSH tree.

4. Create a rule to map storage object replicas across your data centers. This helps to prevent
data loss and enables your cluster to stay running in the event of a single data center outage.
The command to create a rule uses the following syntax: ceph osd crush rule create-
replicated <rule-name> <root> <failure-domain> <class>. An example is shown below.

NOTE

In the preceding command, if your storage cluster uses solid-state drives (SSD),
specify ssd instead of hdd (hard disk drives).

5. Configure your Ceph data and metadata pools to use the rule that you created. Initially, this
might cause data to be backfilled to the storage destinations determined by the CRUSH
algorithm.

6. Specify the numbers of Placement Groups (PGs) and Placement Groups for Placement (PGPs)
for your metadata and data pools. The PGP value should be equal to the PG value.

ceph osd crush add-bucket dc1 datacenter
ceph osd crush add-bucket dc2 datacenter

ceph osd crush move host1 datacenter=dc1
ceph osd crush move host2 datacenter=dc1
ceph osd crush move host3 datacenter=dc2
ceph osd crush move host4 datacenter=dc2

ceph osd crush move dc1 root=default
ceph osd crush move dc2 root=default

ceph osd crush rule create-replicated multi-dc default datacenter hdd

ceph osd pool set cephfs_data crush_rule multi-dc
ceph osd pool set cephfs_metadata crush_rule multi-dc

ceph osd pool set cephfs_metadata pg_num 128
ceph osd pool set cephfs_metadata pgp_num 128

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

206

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/storage_strategies_guide/placement_groups_pgs
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/storage_strategies_guide/pools-1#set-the-number-of-object-replicas

7. Specify the numbers of replicas to be used by your data and metadata pools.

The following figure shows the Red Hat Ceph Storage cluster created by the preceding example
procedure. The storage cluster has OSDs organized into CRUSH buckets corresponding to data centers.

The following figure shows a possible layout of the first data center, including your broker servers.
Specifically, the data center hosts:

The servers for two live-backup broker pairs

The OSD nodes that you assigned to the first data center in the preceding procedure

Single Metadata Server, Monitor and Manager nodes. The Monitor and Manager nodes are
usually co-located on the same machine.

ceph osd pool set cephfs_data pg_num 128
ceph osd pool set cephfs_data pgp_num 128

ceph osd pool set cephfs_data min_size 1
ceph osd pool set cephfs_metadata min_size 1

ceph osd pool set cephfs_data size 2
ceph osd pool set cephfs_metadata size 2

CHAPTER 17. CONFIGURING A MULTI-SITE, FAULT-TOLERANT MESSAGING SYSTEM

207

IMPORTANT

You can run the OSD, MON, MGR, and MDS nodes on either the same or separate
physical or virtual machines. However, to ensure fault tolerance within your Red Hat Ceph
Storage cluster, it is good practice to distribute each of these types of nodes across
distinct data centers. In particular, you must ensure that in the event of a single data
center outage, you storage cluster still has a minimum of two available MON nodes.
Therefore, if you have three MON nodes in you cluster, each of these nodes must run on
separate host machines in separate data centers.

The following figure shows a complete example topology. To ensure fault tolerance in your storage
cluster, the MON, MGR, and MDS nodes are distributed across three separate data centers.

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

208

NOTE

Locating the host machines for certain OSD nodes in the same data center as your
broker servers does not mean that you store messaging data on those specific OSD
nodes. You configure the brokers to store messaging data in a specified directory in the
Ceph File System. The Metadata Server nodes in your cluster then determine how to
distribute the stored data across all available OSDs in your data centers and handle
replication of this data across data centers. the sections that follow show how to
configure brokers to store messaging data on the Ceph File System.

The figure below illustrates replication of data between the two data centers that have broker servers.

CHAPTER 17. CONFIGURING A MULTI-SITE, FAULT-TOLERANT MESSAGING SYSTEM

209

Additional resources

For more information about:

Administrating CRUSH for your Red Hat Ceph Storage cluster, see CRUSH Administration.

The full set of attributes that you can set on a storage pool, see Pool Values.

17.4. MOUNTING THE CEPH FILE SYSTEM ON YOUR BROKER
SERVERS

Before you can configure brokers in your messaging system to store messaging data in your Red Hat
Ceph Storage cluster, you first need to mount a Ceph File System (CephFS).

The procedure linked-to from this section shows you how to mount the CephFS on your broker servers.

Prerequisites

You have:

Installed and configured a Red Hat Ceph Storage cluster. For more information, see
Installing Red Hat Ceph Storage and Configuring a Red Hat Ceph Storage cluster .

Installed and configured three or more Ceph Metadata Server daemons (ceph-mds). For
more information, see Installing Metadata Servers and Configuring Metadata Server
Daemons.

Created the Ceph File System from a Monitor node. For more information, see Creating the
Ceph File System.

Created a Ceph File System client user with a key that your broker servers can use for

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

210

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/storage_strategies_guide/crush_administration
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/storage_strategies_guide/pools-1#pool_values
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/installation_guide_for_red_hat_enterprise_linux/deploying-red-hat-ceph-storage#installing-metadata-servers
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/ceph_file_system_guide/configuring-metadata-server-daemons
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/ceph_file_system_guide/deploying-ceph-file-systems#creating-the-ceph-file-systems

Created a Ceph File System client user with a key that your broker servers can use for
authorized access. For more information, see Creating Ceph File System Client Users .

Procedure

For instructions on mounting the Ceph File System on your broker servers, see Mounting the Ceph File
System as a kernel client.

17.5. CONFIGURING BROKERS IN A MULTI-SITE, FAULT-TOLERANT
MESSAGING SYSTEM

To configure your brokers as part of a multi-site, fault-tolerant messaging system, you need to:

Add idle backup brokers to take over from live brokers in the event of a data center failure

Configure all broker servers with the Ceph client role

Configure each broker to use the shared store high-availability (HA) policy, specifying where in
the Ceph File System the broker stores its messaging data

17.5.1. Adding backup brokers

Within each of your data centers, you need to add idle backup brokers that can take over from live
master-slave broker groups that shut down in the event of a data center outage. You should replicate
the configuration of live master brokers in your idle backup brokers. You also need to configure your
backup brokers to accept client connections in the same way as your existing brokers.

In a later procedure, you see how to configure an idle backup broker to join an existing master-slave
broker group. You must locate the idle backup broker in a separate data center to that of the live
master-slave broker group. It is also recommended that you manually start the idle backup broker only in
the event of a data center failure.

The following figure shows an example topology.

Additional resources

To learn how to create additional broker instances, see Creating a standalone broker .

For information about configuring broker network connections, see Network Connections:

CHAPTER 17. CONFIGURING A MULTI-SITE, FAULT-TOLERANT MESSAGING SYSTEM

211

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/ceph_file_system_guide/deploying-ceph-file-systems#creating-ceph-file-system-client-users
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/ceph_file_system_guide/deploying-ceph-file-systems#mounting-the-ceph-file-system-as-a-kernel-client
https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/getting_started_with_amq_broker//index#creating-standalone-getting-started

For information about configuring broker network connections, see Network Connections:
Acceptors and Connectors.

17.5.2. Configuring brokers as Ceph clients

When you have added the backup brokers that you need for a fault-tolerant system, you must configure
all of the broker servers with the Ceph client role. The client role enable brokers to store data in your
Red Hat Ceph Storage cluster.

To learn how to configure Ceph clients, see Installing the Ceph Client Role .

17.5.3. Configuring shared store high availability

The Red Hat Ceph Storage cluster effectively creates a shared store that is available to brokers in
different data centers. To ensure that messages remain available to broker clients in the event of a
failure, you configure each broker in your live-backup group to use:

The shared store high availability (HA) policy

The same journal, paging, and large message directories in the Ceph File System

The following procedure shows how to configure the shared store HA policy on the master, slave, and
idle backup brokers of your live-backup group.

Procedure

1. Edit the broker.xml configuration file of each broker in the live-backup group. Configure each
broker to use the same paging, bindings, journal, and large message directories in the Ceph File
System.

2. Configure the backup broker as a master within it’s HA policy, as shown below. This
configuration setting ensures that the backup broker immediately becomes the master when
you manually start it. Because the broker is an idle backup, the failover-on-shutdown
parameter that you can specify for an active master broker does not apply in this case.

Master Broker - DC1
<paging-directory>mnt/cephfs/broker1/paging</paging-directory>
<bindings-directory>/mnt/cephfs/data/broker1/bindings</bindings-directory>
<journal-directory>/mnt/cephfs/data/broker1/journal</journal-directory>
<large-messages-directory>mnt/cephfs/data/broker1/large-messages</large-messages-
directory>

Slave Broker - DC1
<paging-directory>mnt/cephfs/broker1/paging</paging-directory>
<bindings-directory>/mnt/cephfs/data/broker1/bindings</bindings-directory>
<journal-directory>/mnt/cephfs/data/broker1/journal</journal-directory>
<large-messages-directory>mnt/cephfs/data/broker1/large-messages</large-messages-
directory>

Backup Broker (Idle) - DC2
<paging-directory>mnt/cephfs/broker1/paging</paging-directory>
<bindings-directory>/mnt/cephfs/data/broker1/bindings</bindings-directory>
<journal-directory>/mnt/cephfs/data/broker1/journal</journal-directory>
<large-messages-directory>mnt/cephfs/data/broker1/large-messages</large-messages-
directory>

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

212

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/installation_guide_for_red_hat_enterprise_linux/deploying-red-hat-ceph-storage#installing-the-ceph-client-role

Additional resources

For more information about configuring the shared store high availability policy for live-backup
broker groups, see Configuring shared store high availability .

17.6. CONFIGURING CLIENTS IN A MULTI-SITE, FAULT-TOLERANT
MESSAGING SYSTEM

An internal client application is one that is running on a machine located in the same data center as the
broker server. The following figure shows this topology.

An external client application is one running on a machine located outside the broker data center. The
following figure shows this topology.

<configuration>
 <core>
 ...
 <ha-policy>
 <shared-store>
 <master>
 </master>
 </shared-store>
 </ha-policy>
 ...
 </core>
</configuration>

CHAPTER 17. CONFIGURING A MULTI-SITE, FAULT-TOLERANT MESSAGING SYSTEM

213

The following sub-sections describe show examples of configuring your internal and external client
applications to connect to a backup broker in another data center in the event of a data center outage.

17.6.1. Configuring internal clients

If you experience a data center outage, internal client applications will shut down along with your
brokers. To mitigate this situation, you must have another instance of the client application available in a
separate data center. In the event of a data center outage, you manually start your backup client to
connect to a backup broker that you have also manually started.

To enable the backup client to connect to a backup broker, you need to configure the client connection
similarly to that of the client in your primary data center.

Example

A basic connection configuration for an AMQ Core Protocol JMS client to a master-slave broker group
is shown below. In this example, host1 and host2 are the host servers for the master and slave brokers.

<ConnectionFactory connectionFactory = new
ActiveMQConnectionFactory(“(tcp://host1:port,tcp://host2:port)?
ha=true&retryInterval=100&retryIntervalMultiplier=1.0&reconnectAttempts=-1”);

To configure a backup client to connect to a backup broker in the event of a data center outage, use a
similar connection configuration, but specify only the host name of your backup broker server. In this
example, the backup broker server is host3.

<ConnectionFactory connectionFactory = new ActiveMQConnectionFactory(“(tcp://host3:port)?
ha=true&retryInterval=100&retryIntervalMultiplier=1.0&reconnectAttempts=-1”);

Additional resources

For more information about configuring broker and client network connections, see:

Network Connections: Acceptors and Connectors .

Configuring a Connection from the Client Side .

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

214

17.6.2. Configuring external clients

To enable an external broker client to continue producing or consuming messaging data in the event of
a data center outage, you must configure the client to fail over to a broker in another data center. In the
case of a multi-site, fault-tolerant system, you configure the client to fail over to the backup broker that
you manually start in the event of an outage.

Examples

Shown below are examples of configuring the AMQ Core Protocol JMS and AMQP JMS clients to fail
over to a backup broker in the event that the primary master-slave group is unavailable. In these
examples, host1 and host2 are the host servers for the primary master and slave brokers, while host3 is
the host server for the backup broker that you manually start in the event of a data center outage.

To configure an AMQ Core Protocol JMS client, include the backup broker on the ordered list
of brokers that the client attempts to connect to.

<ConnectionFactory connectionFactory = new
ActiveMQConnectionFactory(“(tcp://host1:port,tcp://host2:port,tcp://host3:port)?
ha=true&retryInterval=100&retryIntervalMultiplier=1.0&reconnectAttempts=-1”);

To configure an AMQP JMS client, include the backup broker in the failover URI that you
configure on the client.

failover:(amqp://host1:port,amqp://host2:port,amqp://host3:port)?
jms.clientID=foo&failover.maxReconnectAttempts=20

Additional resources

For more information about configuring failover on:

The AMQ Core Protocol JMS client, see Reconnect and failover.

The AMQP JMS client, see Failover options.

Other supported clients, consult the client-specific documentation in the AMQ Clients section
of Product Documentation for Red Hat AMQ 7.8 .

17.7. VERIFYING STORAGE CLUSTER HEALTH DURING A DATA
CENTER OUTAGE

When you have configured your Red Hat Ceph Storage cluster for fault tolerance, the cluster continues
to run in a degraded state without losing data, even when one of your data centers fails.

This procedure shows how to verify the status of your cluster while it runs in a degraded state.

Procedure

1. To verify the status of your Ceph storage cluster, use the health or status commands:

ceph health
ceph status

2. To watch the ongoing events of the cluster on the command line, open a new terminal. Then,
enter:

CHAPTER 17. CONFIGURING A MULTI-SITE, FAULT-TOLERANT MESSAGING SYSTEM

215

https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/using_the_amq_core_protocol_jms_client/index#reconnect_and_failover
https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/using_the_amq_jms_client/#connection_uri_options_failover
{BookUrlBase}

ceph -w

When you run any of the preceding commands, you see output indicating that the storage cluster is still
running, but in a degraded state. Specifically, you should see a warning that resembles the following:

Additional resources

For more information about monitoring the health of your Red Hat Ceph Storage cluster, see
Monitoring.

17.8. MAINTAINING MESSAGING CONTINUITY DURING A DATA
CENTER OUTAGE

The following procedure shows you how to keep brokers and associated messaging data available to
clients during a data center outage. Specifically, when a data center fails, you need to:

Manually start any idle backup brokers that you created to take over from brokers in your failed
data center.

Connect internal or external clients to the new active brokers.

Prerequisites

You must have:

Installed and configured a Red Hat Ceph Storage cluster. For more information, see
Installing Red Hat Ceph Storage and Configuring a Red Hat Ceph Storage cluster .

Mounted the Ceph File System. For more information, see Mounting the Ceph File System
on your broker servers.

Added idle backup brokers to take over from live brokers in the event of a data center
failure. For more information, see Adding backup brokers .

Configured your broker servers with the Ceph client role. For more information, see
Configuring brokers as Ceph clients .

Configured each broker to use the shared store high availability (HA) policy, specifying
where in the Ceph File System each broker stores its messaging data . For more
information, see Configuring shared store high availability .

Configured your clients to connect to backup brokers in the event of a data center outage.
For more information, see Configuring clients in a multi-site, fault-tolerant messaging
system.

Procedure

1. For each master-slave broker pair in the failed data center, manually start the idle backup
broker that you added.

health: HEALTH_WARN
 2 osds down
 Degraded data redundancy: 42/84 objects degraded (50.0%), 16 pgs unclean, 16 pgs degraded

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

216

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/administration_guide/monitoring#checking_cluster_health

2. Reestablish client connections.

a. If you were using an internal client in the failed data center, manually start the backup client
that you created. As described in Configuring clients in a multi-site, fault-tolerant
messaging system, you must configure the client to connect to the backup broker that you
manually started.
The following figure shows the new topology.

b. If you have an external client, manually connect the external client to the new active broker
or observe that the clients automatically fails over to the new active broker, based on its
configuration. For more information, see Configuring external clients .
The following figure shows the new topology.

CHAPTER 17. CONFIGURING A MULTI-SITE, FAULT-TOLERANT MESSAGING SYSTEM

217

17.9. RESTARTING A PREVIOUSLY FAILED DATA CENTER

When a previously failed data center is back online, follow these steps to restore the original state of
your messaging system:

Restart the servers that host the nodes of your Red Hat Ceph Storage cluster

Restart the brokers in your messaging system

Re-establish connections from your client applications to your restored brokers

The following sub-sections show to perform these steps.

17.9.1. Restarting storage cluster servers

When you restart Monitor, Metadata Server, Manager, and Object Storage Device (OSD) nodes in a
previously failed data center, your Red Hat Ceph Storage cluster self-heals to restore full data
redundancy. During this process, Red Hat Ceph Storage automatically backfills data to the restored OSD
nodes, as needed.

To verify that your storage cluster is automatically self-healing and restoring full data redundancy, use
the commands previously shown in Verifying storage cluster health during a data center outage . When
you re-execute these commands, you see that the percentage degradation indicated by the previous
HEALTH_WARN message starts to improve until it returns to 100%.

17.9.2. Restarting broker servers

The following procedure shows how to restart your broker servers when your storage cluster is no longer
operating in a degraded state.

Procedure

1. Stop any client applications connected to backup brokers that you manually started when the
data center outage occurred.

2. Stop the backup brokers that you manually started.

a. On Linux:

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

218

b. On Windows:

3. In your previously failed data center, restart the original master and slave brokers.

a. On Linux:

b. On Windows:

The original master broker automatically resumes its role as master when you restart it.

17.9.3. Reestablishing client connections

When you have restarted your broker servers, reconnect your client applications to those brokers. The
following subsections describe how to reconnect both internal and external client applications.

17.9.3.1. Reconnecting internal clients

Internal clients are those running in the same, previously failed data center as the restored brokers. To
reconnect internal clients, restart them. Each client application reconnects to the restored master
broker that is specified in its connection configuration.

For more information about configuring broker and client network connections, see:

Network Connections: Acceptors and Connectors

Configuring a Connection from the Client Side

17.9.3.2. Reconnecting external clients

External clients are those running outside the data center that previously failed. Based on your client
type, and the information in Configuring external broker clients , you either configured the client to
automatically fail over to a backup broker, or you manually established this connection. When you restore
your previously failed data center, you reestablish a connection from your client to the restored master
broker in a similar way, as described below.

If you configured your external client to automatically fail over to a backup broker, the client
automatically fails back to the original master broker when you shut down the backup broker
and restart the original master broker.

If you manually connected the external client to a backup broker when a data center outage
occurred, you must manually reconnect the client to the original master broker that you restart.

BROKER_INSTANCE_DIR/bin/artemis stop

BROKER_INSTANCE_DIR\bin\artemis-service.exe stop

BROKER_INSTANCE_DIR/bin/artemis run

BROKER_INSTANCE_DIR\bin\artemis-service.exe start

CHAPTER 17. CONFIGURING A MULTI-SITE, FAULT-TOLERANT MESSAGING SYSTEM

219

CHAPTER 18. LOGGING
AMQ Broker uses the JBoss Logging framework to do its logging and is configurable via the
BROKER_INSTANCE_DIR/etc/logging.properties configuration file. This configuration file is a list of
key-value pairs.

You specify loggers in your broker configuration by including them in the loggers key of the
logging.properties configuration file, as shown below.

The loggers available in AMQ Broker are shown in the following table.

Logger Description

org.jboss.logging The root logger. Logs any calls not handled by the
other broker loggers.

org.apache.activemq.artemis.core.server Logs the broker core

org.apache.activemq.artemis.utils Logs utility calls

org.apache.activemq.artemis.journal Logs Journal calls

org.apache.activemq.artemis.jms Logs JMS calls

org.apache.activemq.artemis.integration.bootstrap Logs bootstrap calls

org.apache.activemq.audit.base Logs access to all JMX object methods

org.apache.activemq.audit.message Logs message operations such as production,
consumption, and browsing of messages

org.apache.activemq.audit.resource Logs authentication events, creation or deletion of
broker resources from JMX or the AMQ Broker
management console, and browsing of messages in
the management console

There are also two default logging handlers configured in the logger.handlers key, as shown below.

logger.handlers=FILE

The logger outputs log entries to a file.

logger.handlers=CONSOLE

The logger outputs log entries to the AMQ Broker management console.

loggers=org.eclipse.jetty,org.jboss.logging,org.apache.activemq.artemis.core.server,org.apache.activem
q.artemis.utils,org.apache.activemq.artemis.journal,org.apache.activemq.artemis.jms.server,org.apache.
activemq.artemis.integration.bootstrap,org.apache.activemq.audit.base,org.apache.activemq.audit.mess
age,org.apache.activemq.audit.resource

logger.handlers=FILE,CONSOLE

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

220

18.1. CHANGING THE LOGGING LEVEL

The default logging level for all loggers is INFO and is configured on the root logger, as shown below.

You can configure the logging level for all other loggers individually, as shown below.

The available logging levels are described in the following table. The logging levels are listed in
ascending order, from the least detailed to the most.

Level Description

FATAL Use the FATAL logging level for events that indicate
a critical service failure. If a service issues a FATAL
error, it is completely unable to execute requests of
any kind.

ERROR Use the ERROR logging level for events that indicate
a disruption in a request or the ability to service a
request. A service should have some capacity to
continue to service requests in the presence of this
level of error.

WARN Use the WARN logging level for events that might
indicate a non-critical service error. Resumable
errors, or minor breaches in request expectations
meet this description. The distinction between WARN
and ERROR is one for an application developer to
make. A simple criterion for making this distinction is
whether the error would require a user to seek
technical support. If an error would require technical
support, set the logging level to ERROR. Otherwise,
set the level to WARN.

INFO Use the INFO logging level for service lifecycle
events and other crucial related information. INFO-
level messages for a given service category should
clearly indicate what state the service is in.

logger.level=INFO

logger.org.apache.activemq.artemis.core.server.level=INFO
logger.org.apache.activemq.artemis.journal.level=INFO
logger.org.apache.activemq.artemis.utils.level=INFO
logger.org.apache.activemq.artemis.jms.level=INFO
logger.org.apache.activemq.artemis.integration.bootstrap.level=INFO
logger.org.apache.activemq.audit.base.level=INFO
logger.org.apache.activemq.audit.message.level=INFO
logger.org.apache.activemq.audit.resource.level=INFO

CHAPTER 18. LOGGING

221

DEBUG Use the DEBUG logging level for log messages that
convey extra information for lifecycle events. Use this
logging level for developer-oriented information or
in-depth information required for technical support.
When the DEBUG logging level is enabled, the JBoss
server log should not grow proportionally with the
number of server requests. DEBUG- and INFO-level
messages for a given service category should clearly
indicate what state the service is in, as well as what
broker resources it is using; ports, interfaces, log files,
and so on.

TRACE Use the TRACE logging level for log messages that
are directly associated with request activity. Such
messages should not be submitted to a logger unless
the logger category priority threshold indicates that
the message will be rendered. Use the
Logger.isTraceEnabled() method to determine
whether the category priority threshold is enabled.
TRACE-level logging enables deep probing of the
broker behavior when necessary. When TRACE
logging level is enabled, the number of messages in
the JBoss sever log grows to at least a * N, where N
is the number of requests received by the broker,
and a is some constant. The server log might grow to
some power of N, depending on the request-
handling layer being traced.

Level Description

NOTE

INFO is the only available logging level for the
logger.org.apache.activemq.audit.base,
logger.org.apache.activemq.audit.message, and
logger.org.apache.activemq.audit.resource audit loggers.

The logging level specified for the root logger determines the most detailed
logging level for all loggers, even if other loggers have more detailed logging
levels specified in their configurations. For example, suppose
org.apache.activemq.artemis.utils has a specified logging of DEBUG, while the
root logger, org.jboss.logging, has a specified logging level of WARN. In this
case, both loggers use a logging level of WARN.

18.2. ENABLING AUDIT LOGGING

Three audit loggers are available for you to enable; a base audit logger, a message audit logger, and a
resource audit logger.

Base audit logger (org.apache.activemq.audit.base)

Logs access to all JMX object methods, such as creation and deletion of addresses and queues. The
log does not indicate whether these operations succeeded or failed.

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

222

Message audit logger (org.apache.activemq.audit.message)

Logs message-related broker operations, such as production, consumption, or browsing of
messages.

Resource audit logger (org.apache.activemq.audit.resource)

Logs authentication success or failure from clients, routes, and the AMQ Broker management
console. Also logs creation, update, or deletion of queues from either JMX or the management
console, and browsing of messages in the management console.

You can enable each audit logger independently of the others. By default, each audit logger is disabled
(that is, the logging level is set to ERROR, which is a not a valid logging level for the audit loggers). To
enable one of the audit loggers, set the logging level to INFO. For example:

IMPORTANT

The message audit logger runs on a performance-intensive path on the broker. Enabling
the logger might negatively affect the performance of the broker, particularly if the
broker is running under a high messaging load. Use of the message audit logger is not
recommended on messaging systems where high throughput is required.

18.3. CONFIGURING CONSOLE LOGGING

You can configure console logging using the following keys.

NOTE

handler.CONSOLE refers to the name given in the logger.handlers key.

The console logging configuration options are described in the following table.

Property Description

name Handler name

encoding Character encoding used by the handler

level Logging level, specifying the message levels logged.
Message levels lower than this value are discarded.

formatter Defines a formatter. See Section 18.5, “Configuring
the logging format”.

logger.org.apache.activemq.audit.base.level=INFO

handler.CONSOLE=org.jboss.logmanager.handlers.ConsoleHandler
handler.CONSOLE.properties=autoFlush
handler.CONSOLE.level=DEBUG
handler.CONSOLE.autoFlush=true
handler.CONSOLE.formatter=PATTERN

CHAPTER 18. LOGGING

223

autoflush Species whether to automatically flush the log after
each write

target Target of the console handler. The value can either
be SYSTEM_OUT or SYSTEM_ERR.

Property Description

18.4. CONFIGURING FILE LOGGING

You can configure file logging using the following keys.

NOTE

handler.FILE refers to the name given in the logger.handlers key.

The file logging configuration options are described in the following table.

Property Description

name Handler name

encoding Character encoding used by the handler

level Logging level, specifying the message levels logged.
Message levels lower than this value are discarded.

formatter Defines a formatter. See Section 18.5, “Configuring
the logging format”.

autoflush Species whether to automatically flush the log after
each write

append Specifies whether to append to the target file

file File description, consisting of the path and optional
relative to path.

handler.FILE=org.jboss.logmanager.handlers.PeriodicRotatingFileHandler
handler.FILE.level=DEBUG
handler.FILE.properties=suffix,append,autoFlush,fileName
handler.FILE.suffix=.yyyy-MM-dd
handler.FILE.append=true
handler.FILE.autoFlush=true
handler.FILE.fileName=${artemis.instance}/log/artemis.log
handler.FILE.formatter=PATTERN

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

224

18.5. CONFIGURING THE LOGGING FORMAT

The formatter describes how log messages should be displayed. The following is the default
configuration.

In the preceding configuration, %s is the message and %E is the exception, if one exists.

The format is the same as the Log4J format. A full description can be found here.

18.6. CLIENT OR EMBEDDED SERVER LOGGING

If you want to enable logging on a client, you need to include the JBoss logging JARs in your client’s
class path. If you are using Maven, add the following dependencies:

There are two properties that you need to set when starting your Java program. The first is to set the
Log Manager to use the JBoss Log Manager. This is done by setting the `-
Djava.util.logging.manager`property. For example:

-Djava.util.logging.manager=org.jboss.logmanager.LogManager

The second is to set the location of the logging.properties file to use. This is done by setting the -
Dlogging.configuration property with a valid URL. For example:

-Dlogging.configuration=file:///home/user/projects/myProject/logging.properties

The following is a typical logging.properties file for a client:

formatter.PATTERN=org.jboss.logmanager.formatters.PatternFormatter
formatter.PATTERN.properties=pattern
formatter.PATTERN.pattern=%d{HH:mm:ss,SSS} %-5p [%c] %s%E%n

<dependency>
 <groupId>org.jboss.logmanager</groupId>
 <artifactId>jboss-logmanager</artifactId>
 <version>1.5.3.Final</version>
</dependency>
<dependency>
 <groupId>org.apache.activemq</groupId>
 <artifactId>artemis-core-client</artifactId>
 <version>1.0.0.Final</version>
</dependency>

Root logger option
loggers=org.jboss.logging,org.apache.activemq.artemis.core.server,org.apache.activemq.artemis.utils,or
g.apache.activemq.artemis.journal,org.apache.activemq.artemis.jms,org.apache.activemq.artemis.ra

Root logger level
logger.level=INFO
ActiveMQ Artemis logger levels
logger.org.apache.activemq.artemis.core.server.level=INFO
logger.org.apache.activemq.artemis.utils.level=INFO
logger.org.apache.activemq.artemis.jms.level=DEBUG

CHAPTER 18. LOGGING

225

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

18.7. AMQ BROKER PLUGIN SUPPORT

AMQ supports custom plugins. You can use plugins to log information about many different types of
events that would otherwise only be available through debug logs. Multiple plugins can be registered,
tied, and executed together. The plugins will be executed based on the order of the registration, that is,
the first plugin registered is always executed first.

You can create custom plugins and implement them using the ActiveMQServerPlugin interface. This
interface ensures that the plugin is on the classpath, and is registered with the broker. As all the
interface methods are implemented by default, you have to add only the required behavior that needs to
be implemented.

18.7.1. Adding plugins to the class path

Add the custom created broker plugins to the broker runtime by adding the relevant .jar files to the
BROKER_INSTANCE_DIR/lib directory.

If you are using an embedded system then place the .jar file under the regular class path of your
embedded application.

18.7.2. Registering a plugin

You must register a plugin by adding the broker-plugins element in the broker.xml configuration file.
You can specify the plugin configuration value using the property child elements. These properties will
be read and passed into the plugin’s init (Map<String, String>) operation after the plugin has been
instantiated.

<broker-plugins>
 <broker-plugin class-name="some.plugin.UserPlugin">
 <property key="property1" value="val_1" />

Root logger handlers
logger.handlers=FILE,CONSOLE

Console handler configuration
handler.CONSOLE=org.jboss.logmanager.handlers.ConsoleHandler
handler.CONSOLE.properties=autoFlush
handler.CONSOLE.level=FINE
handler.CONSOLE.autoFlush=true
handler.CONSOLE.formatter=PATTERN

File handler configuration
handler.FILE=org.jboss.logmanager.handlers.FileHandler
handler.FILE.level=FINE
handler.FILE.properties=autoFlush,fileName
handler.FILE.autoFlush=true
handler.FILE.fileName=activemq.log
handler.FILE.formatter=PATTERN

Formatter pattern configuration
formatter.PATTERN=org.jboss.logmanager.formatters.PatternFormatter
formatter.PATTERN.properties=pattern
formatter.PATTERN.pattern=%d{HH:mm:ss,SSS} %-5p [%c] %s%E%n

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

226

 <property key="property2" value="val_2" />
 </broker-plugin>
 </broker-plugins>

18.7.3. Registering a plugin programmatically

To register a plugin programmatically, use the registerBrokerPlugin() method and pass in a new
instance of your plugin. The example below shows the registration of the UserPlugin plugin:

Configuration config = new ConfigurationImpl();

config.registerBrokerPlugin(new UserPlugin());

18.7.4. Logging specific events

By default, AMQ broker provides the LoggingActiveMQServerPlugin plugin to log specific broker
events. The LoggingActiveMQServerplugin plugin is commented-out by default and does not log any
information.

The following table describes each plugin property. Set a configuration property value to true to log
events.

Property Description

LOG_CONNECTION_EVENTS Logs information when a connection is created or
destroyed.

LOG_SESSION_EVENTS Logs information when a session is created or closed.

LOG_CONSUMER_EVENTS Logs information when a consumer is created or
closed.

LOG_DELIVERING_EVENTS Logs information when message is delivered to a
consumer and when a message is acknowledged by a
consumer.

LOG_SENDING_EVENTS Logs information when a message has been sent to
an address and when a message has been routed
within the broker.

LOG_INTERNAL_EVENTS Logs information when a queue created or
destroyed, when a message is expired, when a bridge
is deployed, and when a critical failure occurs.

LOG_ALL_EVENTS Logs information for all the above events.

To configure the LoggingActiveMQServerPlugin plugin to log connection events, uncomment the
<broker-plugins> section in the broker.xml configuration file. The value of all the events is set to true
in the commented default example.

CHAPTER 18. LOGGING

227

<configuration ...>
...
<!-- Uncomment the following if you want to use the Standard LoggingActiveMQServerPlugin plugin
to log in events -->
 <broker-plugins>
 <broker-plugin class-
name="org.apache.activemq.artemis.core.server.plugin.impl.LoggingActiveMQServerPlugin">
 <property key="LOG_ALL_EVENTS" value="true"/>
 <property key="LOG_CONNECTION_EVENTS" value="true"/>
 <property key="LOG_SESSION_EVENTS" value="true"/>
 <property key="LOG_CONSUMER_EVENTS" value="true"/>
 <property key="LOG_DELIVERING_EVENTS" value="true"/>
 <property key="LOG_SENDING_EVENTS" value="true"/>
 <property key="LOG_INTERNAL_EVENTS" value="true"/>
 </broker-plugin>
 </broker-plugins>
...
</configuration>

When you have changed the configuration parameters inside the <broker-plugins> section, you must
restart the broker to reload the configuration updates. These configuration changes are not reloaded
based on the configuration-file-refresh-period setting.

When the log level is set to INFO, an entry is logged after the event has occurred. If the log level is set to
DEBUG, log entries are generated for both before and after the event, for example,
beforeCreateConsumer() and afterCreateConsumer(). If the log Level is set to DEBUG, the logger
logs more information for a notification, when available.

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

228

APPENDIX A. ACCEPTOR AND CONNECTOR
CONFIGURATION PARAMETERS

The tables below detail some of the available parameters used to configure Netty network connections.
Parameters and their values are appended to the URI of the connection string. See Network
Connections: Acceptors and Connectors for more information. Each table lists the parameters by name
and notes whether they can be used with acceptors or connectors or with both. You can use some
parameters, for example, only with acceptors.

NOTE

All Netty parameters are defined in the class
org.apache.activemq.artemis.core.remoting.impl.netty.TransportConstants. Source
code is available for download on the customer portal.

Table A.1. Netty TCP Parameters

Parameter Use with…​ Description

batchDelay Both Before writing packets to the acceptor or connector, the broker
can be configured to batch up writes for a maximum of
batchDelay milliseconds. This can increase overall throughput
for very small messages. It does so at the expense of an increase
in average latency for message transfer. The default value is 0
ms.

connectionsAllowed Acceptors Limits the number of connections that the acceptor will allow.
When this limit is reached, a DEBUG-level message is issued to
the log and the connection is refused. The type of client in use
determines what happens when the connection is refused.

directDeliver Both When a message arrives on the server and is delivered to waiting
consumers, by default, the delivery is done on the same thread
as that on which the message arrived. This gives good latency in
environments with relatively small messages and a small number
of consumers, but at the cost of overall throughput and
scalability - especially on multi-core machines. If you want the
lowest latency and a possible reduction in throughput then you
can use the default value for directDeliver, which is true. If you
are willing to take some small extra hit on latency but want the
highest throughput set directDeliver to false.

APPENDIX A. ACCEPTOR AND CONNECTOR CONFIGURATION PARAMETERS

229

https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/configuring_amq_broker/#transports
http://access.redhat.com/downloads

handshake-timeout Acceptors Prevents an unauthorized client to open a large number of
connections and keep them open. Because each connection
requires a file handle, it consumes resources that are then
unavailable to other clients.

This timeout limits the amount of time a connection can
consume resources without having been authenticated. After
the connection is authenticated, you can use resource limit
settings to limit resource consumption.

The default value is set to 10 seconds. You can set it to any other
integer value. You can turn off this option by setting it to 0 or
negative integer.

After you edit the timeout value, you must restart the broker.

localAddress Connectors Specifies which local address the client will use when connecting
to the remote address. This is typically used in the Application
Server or when running Embedded to control which address is
used for outbound connections. If the local-address is not set
then the connector will use any local address available.

localPort Connectors Specifies which local port the client will use when connecting to
the remote address. This is typically used in the Application
Server or when running Embedded to control which port is used
for outbound connections. If the default is used, which is 0, then
the connector will let the system pick up an ephemeral port.
Valid ports are 0 to 65535

nioRemotingThreads Both When configured to use NIO, the broker will by default use a
number of threads equal to three times the number of cores (or
hyper-threads) as reported by
Runtime.getRuntime().availableProcessors() for
processing incoming packets. If you want to override this value,
you can set the number of threads by specifying this parameter.
The default value for this parameter is -1, which means use the
value derived from
Runtime.getRuntime().availableProcessors() * 3.

tcpNoDelay Both If this is true then Nagle’s algorithm will be disabled. This is a
Java (client) socket option. The default value is true.

tcpReceiveBufferSize Both Determines the size of the TCP receive buffer in bytes. The
default value is 32768.

Parameter Use with…​ Description

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

230

http://www.thenetworkencyclopedia.com/entry/nagles-algorithm/
http://docs.oracle.com/javase/7/docs/technotes/guides/net/socketOpt.html

tcpSendBufferSize Both Determines the size of the TCP send buffer in bytes. The default
value is 32768.

TCP buffer sizes should be tuned according to the bandwidth
and latency of your network.

In summary TCP send/receive buffer sizes should be calculated
as:

buffer_size = bandwidth * RTT.

Where bandwidth is in bytes per second and network round trip
time (RTT) is in seconds. RTT can be easily measured using the
ping utility.

For fast networks you may want to increase the buffer sizes
from the defaults.

Parameter Use with…​ Description

Table A.2. Netty HTTP Parameters

Parameter Use with…​ Description

httpClientIdleTime Acceptors How long a client can be idle before sending an empty HTTP
request to keep the connection alive.

httpClientIdleScanPerio
d

Acceptors How often, in milliseconds, to scan for idle clients.

httpEnabled Acceptors No longer required. With single port support the broker will now
automatically detect if HTTP is being used and configure itself.

httpRequiresSessionId Both If true the client will wait after the first call to receive a session
id. Used when an HTTP connector is connecting to a servlet
acceptor. This configuration is not recommended.

httpResponseTime Acceptors How long the server can wait before sending an empty HTTP
response to keep the connection alive.

httpServerScanPeriod Acceptors How often, in milliseconds, to scan for clients needing responses.

Table A.3. Netty TLS/SSL Parameters

Parameter Use with…​ Description

enabledCipherSuites Both Comma-separated list of cipher suites used for SSL
communication. The default value is empty which means the
JVM’s default will be used.

APPENDIX A. ACCEPTOR AND CONNECTOR CONFIGURATION PARAMETERS

231

enabledProtocols Both Comma-separated list of protocols used for SSL
communication. The default value is empty which means the
JVM’s default will be used.

forceSSLParameters Connectors Controls whether any SSL settings that are set as parameters
on the connector are used instead of JVM system properties
(including both javax.net.ssl and AMQ Broker system
properties) to configure the SSL context for this connector.

Valid values are true or false. The default value is false.

keyStorePassword Both When used on an acceptor this is the password for the server-
side keystore.

When used on a connector this is the password for the client-
side keystore. This is only relevant for a connector if you are
using two-way SSL (that is, mutual authentication). Although
this value can be configured on the server, it is downloaded and
used by the client. If the client needs to use a different password
from that set on the server then it can override the server-side
setting by either using the customary
javax.net.ssl.keyStorePassword system property or the
ActiveMQ-specific
org.apache.activemq.ssl.keyStorePassword system
property. The ActiveMQ-specific system property is useful if
another component on client is already making use of the
standard, Java system property.

keyStorePath Both When used on an acceptor this is the path to the SSL key store
on the server which holds the server’s certificates (whether self-
signed or signed by an authority).

When used on a connector this is the path to the client-side SSL
key store which holds the client certificates. This is only relevant
for a connector if you are using two-way SSL (that is, mutual
authentication). Although this value is configured on the server,
it is downloaded and used by the client. If the client needs to use
a different path from that set on the server then it can override
the server-side setting by either using the customary
javax.net.ssl.keyStore system property or the ActiveMQ-
specific org.apache.activemq.ssl.keyStore system
property. The ActiveMQ-specific system property is useful if
another component on client is already making use of the
standard, Java system property.

needClientAuth Acceptors Tells a client connecting to this acceptor that two-way SSL is
required. Valid values are true or false. The default value is
false.

sslEnabled Both Must be true to enable SSL. The default value is false.

Parameter Use with…​ Description

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

232

trustManagerFactoryPlu
gin

Both Defines the name of the class that implements
org.apache.activemq.artemis.api.core.TrustManagerFa
ctoryPlugin.

This is a simple interface with a single method that returns a
javax.net.ssl.TrustManagerFactory. The
TrustManagerFactory is used when the underlying
javax.net.ssl.SSLContext is initialized. This allows fine-
grained customization of who or what the broker and client
trust.

The value of trustManagerFactoryPlugin takes precedence
over all other SSL parameters that apply to the trust manager
(that is, trustAll, truststoreProvider, truststorePath,
truststorePassword, and crlPath).

You need to place any specified plugin on the Java classpath of
the broker. You can use the BROKER_INSTANCE_DIR/lib
directory, since it is part of the classpath by default.

trustStorePassword Both When used on an acceptor this is the password for the server-
side trust store. This is only relevant for an acceptor if you are
using two-way SSL (that is, mutual authentication).

When used on a connector this is the password for the client-
side truststore. Although this value can be configured on the
server, it is downloaded and used by the client. If the client
needs to use a different password from that set on the server
then it can override the server-side setting by either using the
customary javax.net.ssl.trustStorePassword system
property or the ActiveMQ-specific
org.apache.activemq.ssl.trustStorePassword system
property. The ActiveMQ-specific system property is useful if
another component on client is already making use of the
standard, Java system property.

sniHost Both When used on an acceptor, sniHost is a regular expression
used to match the server_name extension on incoming SSL
connections (for more information about this extension, see
https://tools.ietf.org/html/rfc6066). If the name doesn’t match,
then the connection to the acceptor is rejected. A WARN
message is logged if this happens.

If the incoming connection doesn’t include the server_name
extension, then the connection is accepted.

When used on a connector, the sniHost value is used for the
server_name extension on the SSL connection.

Parameter Use with…​ Description

APPENDIX A. ACCEPTOR AND CONNECTOR CONFIGURATION PARAMETERS

233

https://tools.ietf.org/html/rfc6066

sslProvider Both Used to change the SSL provider between JDK and
OPENSSL. The default is JDK.

If set to OPENSSL, you can add netty-tcnative to your
classpath to use the natively-installed OpenSSL.

This option can be useful if you want to use special ciphersuite-
elliptic curve combinations that are supported through
OpenSSL but not through the JDK provider.

trustStorePath Both When used on an acceptor this is the path to the server-side
SSL key store that holds the keys of all the clients that the
server trusts. This is only relevant for an acceptor if you are
using two-way SSL (that is, mutual authentication).

When used on a connector this is the path to the client-side SSL
key store which holds the public keys of all the servers that the
client trusts. Although this value can be configured on the server,
it is downloaded and used by the client. If the client needs to use
a different path from that set on the server then it can override
the server-side setting by either using the customary
javax.net.ssl.trustStore system property or the ActiveMQ-
specific org.apache.activemq.ssl.trustStore system
property. The ActiveMQ-specific system property is useful if
another component on client is already making use of the
standard, Java system property.

useDefaultSslContext Connector Allows the connector to use the "default" SSL context (via
SSLContext.getDefault()), which can be set
programmatically by the client (via
SSLContext.setDefault(SSLContext)).

If this parameter is set to true, all other SSL-related parameters
except for sslEnabled are ignored. Valid values are true or
false. The default value is false.

verifyHost Both When used on an acceptor, the CN of the connecting client’s
SSL certificate is compared to its hostname to verify that they
match. This is useful only for two-way SSL.

When used on a connector, the CN of the server’s SSL
certificate is compared to its hostname to verify that they
match. This is useful for both one-way and two-way SSL.

Valid values are true or false. The default value is false.

Parameter Use with…​ Description

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

234

wantClientAuth Acceptors Tells a client connecting to this acceptor that two-way SSL is
requested, but not required. Valid values are true or false. The
default value is false.

If the property needClientAuth is set to true, then that
property takes precedence and wantClientAuth is ignored.

Parameter Use with…​ Description

APPENDIX A. ACCEPTOR AND CONNECTOR CONFIGURATION PARAMETERS

235

APPENDIX B. ADDRESS SETTING CONFIGURATION
ELEMENTS

The table below lists all of the configuration elements of an address-setting. Note that some elements
are marked DEPRECATED. Use the suggested replacement to avoid potential issues.

Table B.1. Address Setting Elements

Name Description

address-full-policy Determines what happens when an address configured with a max-size-
bytes becomes full. The available policies are:

PAGE: messages sent to a full address will be paged to disk.

DROP: messages sent to a full address will be silently dropped.

FAIL: messages sent to a full address will be dropped and the message
producers will receive an exception.

BLOCK: message producers will block when they try and send any further
messages.

NOTE

The BLOCK policy works only for the AMQP, OpenWire, and
Core Protocol protocols because they feature flow control.

auto-create-addresses Whether to automatically create addresses when a client sends a message
to or attempts to consume a message from a queue mapped to an address
that does not exist a queue. The default value is true.

auto-create-dead-letter-
resources

Specifies whether the broker automatically creates a dead letter address
and queue to receive undelivered messages. The default value is false.

If the parameter is set to true, the broker automatically creates an
<address> element that defines a dead letter address and an associated
dead letter queue. The name of the automatically-created <address>
element matches the name value that you specify for <dead-letter-
address>.

auto-create-jms-queues DEPRECATED: Use auto-create-queues instead. Determines whether
this broker should automatically create a JMS queue corresponding to the
address settings match when a JMS producer or a consumer tries to use
such a queue. The default value is false.

auto-create-jms-topics DEPRECATED: Use auto-create-queues instead. Determines whether
this broker should automatically create a JMS topic corresponding to the
address settings match when a JMS producer or a consumer tries to use
such a queue. The default value is false.

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

236

auto-create-queues Whether to automatically create a queue when a client sends a message to
or attempts to consume a message from a queue. The default value is true.

auto-delete-addresses Whether to delete auto-created addresses when the broker no longer has
any queues. The default value is true.

auto-delete-jms-queues DEPRECATED: Use auto-delete-queues instead. Determines whether
AMQ Broker should automatically delete auto-created JMS queues when
they have no consumers and no messages. The default value is false.

auto-delete-jms-topics DEPRECATED: Use auto-delete-queues instead. Determines whether
AMQ Broker should automatically delete auto-created JMS topics when
they have no consumers and no messages. The default value is false.

auto-delete-queues Whether to delete auto-created queues when the queue has no consumers
and no messages. The default value is true.

config-delete-addresses When the configuration file is reloaded, this setting specifies how to handle
an address (and its queues) that has been deleted from the configuration
file. You can specify the following values:

OFF (default)
The address is not deleted when the configuration file is reloaded.

FORCE
The address and its queues are deleted when the configuration file is
reloaded. If there are any messages in the queues, they are removed
also.

config-delete-queues When the configuration file is reloaded, this setting specifies how to handle
queues that have been deleted from the configuration file. You can specify
the following values:

OFF (default)
The queue is not deleted when the configuration file is reloaded.

FORCE
The queue is deleted when the configuration file is reloaded. If there are
any messages in the queue, they are removed also.

dead-letter-address The address to which the broker sends dead messages.

dead-letter-queue-prefix Prefix that the broker applies to the name of an automatically-created dead
letter queue. The default value is DLQ.

dead-letter-queue-suffix Suffix that the broker applies to an automatically-created dead letter
queue. The default value is not defined (that is, the broker applies no suffix).

default-address-routing-type The routing-type used on auto-created addresses. The default value is
MULTICAST.

Name Description

APPENDIX B. ADDRESS SETTING CONFIGURATION ELEMENTS

237

default-max-consumers The maximum number of consumers allowed on this queue at any one time.
The default value is 200.

default-purge-on-no-
consumers

Whether to purge the contents of the queue once there are no consumers.
The default value is false.

default-queue-routing-type The routing-type used on auto-created queues. The default value is
MULTICAST.

enable-metrics Specifies whether a configured metrics plugin such as the Prometheus
plugin collects metrics for a matching address or set of addresses. The
default value is true.

expiry-address The address that will receive expired messages.

expiry-delay Defines the expiration time in milliseconds that will be used for messages
using the default expiration time. The default value is -1, which is means no
expiration time.

last-value-queue Whether a queue uses only last values or not. The default value is false.

management-browse-page-
size

How many messages a management resource can browse. The default
value is 200.

max-delivery-attempts how many times to attempt to deliver a message before sending to dead
letter address. The default is 10.

max-redelivery-delay Maximum value for the redelivery-delay, in milliseconds.

max-size-bytes The maximum memory size for this address, specified in bytes. Used when
the address-full-policy is PAGING, BLOCK, or FAIL, this value is
specified in byte notation such as "K", "Mb", and "GB". The default value is -
1, which denotes infinite bytes. This parameter is used to protect broker
memory by limiting the amount of memory consumed by a particular
address space. This setting does not represent the total amount of bytes
sent by the client that are currently stored in broker address space. It is an
estimate of broker memory utilization. This value can vary depending on
runtime conditions and certain workloads. It is recommended that you
allocate the maximum amount of memory that can be afforded per address
space. Under typical workloads, the broker requires approximately 150% to
200% of the payload size of the outstanding messages in memory.

max-size-bytes-reject-
threshold

Used when the address-full-policy is BLOCK. The maximum size, in
bytes, that an address can reach before the broker begins to reject
messages. Works in combination with max-size-bytes for the AMQP
protocol only. The default value is -1, which means no limit.

Name Description

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

238

message-counter-history-
day-limit

How many days to keep a message counter history for this address. The
default value is 0.

page-max-cache-size The number of page files to keep in memory to optimize I/O during paging
navigation. The default value is 5.

page-size-bytes The paging size in bytes. Also supports byte notation like K, Mb, and GB.
The default value is 10485760 bytes, almost 10.5 MB.

redelivery-delay The time, in milliseconds, to wait before redelivering a cancelled message.
The default value is 0.

redelivery-delay-multiplier Multiplier to apply to the redelivery-delay parameter. The default value is
1.0.

redistribution-delay Defines how long to wait in milliseconds after the last consumer is closed on
a queue before redistributing any messages. The default value is -1.

send-to-dla-on-no-route When set to true, a message will be sent to the configured dead letter
address if it cannot be routed to any queues. The default value is false.

slow-consumer-check-period How often to check, in seconds, for slow consumers. The default value is 5.

slow-consumer-policy Determines what happens when a slow consumer is identified. Valid options
are KILL or NOTIFY. KILL kills the consumer’s connection, which impacts
any client threads using that same connection. NOTIFY sends a
CONSUMER_SLOW management notification to the client. The default
value is NOTIFY.

slow-consumer-threshold The minimum rate of message consumption allowed before a consumer is
considered slow. Measured in messages-per-second. The default value is -1,
which is unbounded.

Name Description

APPENDIX B. ADDRESS SETTING CONFIGURATION ELEMENTS

239

APPENDIX C. CLUSTER CONNECTION CONFIGURATION
ELEMENTS

The table below lists all of the configuration elements of a cluster-connection.

Table C.1. Cluster Connection Configuration Elements

Name Description

address Each cluster connection applies only to addresses that match the value
specified in the address field. If no address is specified, then all addresses
will be load balanced.

The address field also supports comma separated lists of addresses. Use
exclude syntax, ! to prevent an address from being matched. Below are
some example addresses:

jms.eu
Matches all addresses starting with jms.eu.

!jms.eu
Matches all addresses except for those starting with jms.eu

jms.eu.uk,jms.eu.de
Matches all addresses starting with either jms.eu.uk or jms.eu.de

jms.eu,!jms.eu.uk
Matches all addresses starting with jms.eu, but not those starting with
jms.eu.uk

NOTE

You should not have multiple cluster connections with
overlapping addresses (for example, "europe" and
"europe.news"), because the same messages could be
distributed between more than one cluster connection,
possibly resulting in duplicate deliveries.

call-failover-timeout Use when a call is made during a failover attempt. The default is -1, or no
timeout.

call-timeout When a packet is sent over a cluster connection, and it is a blocking call,
call-timeout determines how long the broker will wait (in milliseconds) for
the reply before throwing an exception. The default is 30000.

check-period The interval, in milliseconds, between checks to see if the cluster connection
has failed to receive pings from another broker. The default is 30000.

confirmation-window-size The size, in bytes, of the window used for sending confirmations from the
broker connected to. When the broker receives confirmation-window-
size bytes, it notifies its client. The default is 1048576. A value of -1 means
no window.

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

240

connector-ref Identifies the connector that will be transmitted to other brokers in the
cluster so that they have the correct cluster topology. This parameter is
mandatory.

connection-ttl Determines how long a cluster connection should stay alive if it stops
receiving messages from a specific broker in the cluster. The default is
60000.

discovery-group-ref Points to a discovery-group to be used to communicate with other
brokers in the cluster. This element must include the attribute discovery-
group-name, which must match the name attribute of a previously
configured discovery-group.

initial-connect-attempts Sets the number of times the system will try to connect a broker in the
cluster initially. If the max-retry is achieved, this broker will be considered
permanently down, and the system will not route messages to this broker.
The default is -1, which means infinite retries.

max-hops Configures the broker to load balance messages to brokers which might be
connected to it only indirectly with other brokers as intermediates in a chain.
This allows for more complex topologies while still providing message load-
balancing. The default value is 1, which means messages are distributed
only to other brokers directly connected to this broker. This parameter is
optional.

max-retry-interval The maximum delay for retries, in milliseconds. The default is 2000.

message-load-balancing Determines whether and how messages will be distributed between other
brokers in the cluster. Include the message-load-balancing element to
enable load balancing. The default value is ON_DEMAND. You can provide
a value as well. Valid values are:

OFF
Disables load balancing.

STRICT
Forwards messages to all brokers that have a matching queue, whether
or not the queue has an active consumer or a matching selector.

ON_DEMAND
Ensures that messages are forwarded only to brokers that have active
consumers or a matching selector.

min-large-message-size If a message size, in bytes, is larger than min-large-message-size, it will
be split into multiple segments when sent over the network to other cluster
members. The default is 102400.

Name Description

APPENDIX C. CLUSTER CONNECTION CONFIGURATION ELEMENTS

241

notification-attempts Sets how many times the cluster connection should broadcast itself when
connecting to the cluster. The default is 2.

notification-interval Sets how often, in milliseconds, the cluster connection should broadcast
itself when attaching to the cluster. The default is 1000.

producer-window-size The size, in bytes, for producer flow control over cluster connection. By
default, it is disabled, but you may want to set a value if you are using really
large messages in cluster. A value of -1 means no window.

reconnect-attempts Sets the number of times the system will try to reconnect to a broker in the
cluster. If the max-retry is achieved, this broker will be considered
permanently down and the system will stop routing messages to this broker.
The default is -1, which means infinite retries.

retry-interval Determines the interval, in milliseconds, between retry attempts. If the
cluster connection is created and the target broker has not been started or
is booting, then the cluster connections from other brokers will retry
connecting to the target until it comes back up. This parameter is optional.
The default value is 500 milliseconds.

retry-interval-multiplier The multiplier used to increase the retry-interval after each reconnect
attempt. The default is 1.

use-duplicate-detection Cluster connections use bridges to link the brokers, and bridges can be
configured to add a duplicate ID property in each message that is
forwarded. If the target broker of the bridge crashes and then recovers,
messages might be resent from the source broker. By setting use-
duplicate-detection to true, any duplicate messages will be filtered out
and ignored on receipt at the target broker. The default is true.

Name Description

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

242

APPENDIX D. COMMAND-LINE TOOLS
AMQ Broker includes a set of command-line interface (CLI) tools so you can manage your messaging
journal. The table below lists the name for each tool and its description.

Tool Description

exp Exports the message data using a special and independent XML format.

imp Imports the journal to a running broker using the output provided by exp.

data Prints reports about journal records and compacts their data.

encode Shows an internal format of the journal encoded to String.

decode Imports the internal journal format from encode.

For a full list of commands available for each tool, use the help parameter followed by the tool’s name. In
the example below, the CLI output lists all the commands available to the data tool after the user
entered the command ./artemis help data.

$./artemis help data

NAME
 artemis data - data tools group
 (print|imp|exp|encode|decode|compact) (example ./artemis data print)

SYNOPSIS
 artemis data
 artemis data compact [--broker <brokerConfig>] [--verbose]
 [--paging <paging>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data decode [--broker <brokerConfig>] [--suffix <suffix>]
 [--verbose] [--paging <paging>] [--prefix <prefix>] [--file-size <size>]
 [--directory <directory>] --input <input> [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data encode [--directory <directory>] [--broker <brokerConfig>]
 [--suffix <suffix>] [--verbose] [--paging <paging>] [--prefix <prefix>]
 [--file-size <size>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data exp [--broker <brokerConfig>] [--verbose]
 [--paging <paging>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data imp [--host <host>] [--verbose] [--port <port>]
 [--password <password>] [--transaction] --input <input> [--user <user>]
 artemis data print [--broker <brokerConfig>] [--verbose]
 [--paging <paging>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]

COMMANDS
 With no arguments, Display help information

APPENDIX D. COMMAND-LINE TOOLS

243

 print
 Print data records information (WARNING: don't use while a
 production server is running)

 ...

You can use the help at the tool for more information on how to execute each of the tool’s commands.
For example, the CLI lists more information about the data print command after the user enters the
./artemis help data print.

$./artemis help data print

NAME
 artemis data print - Print data records information (WARNING: don't use
 while a production server is running)

SYNOPSIS
 artemis data print [--bindings <binding>] [--journal <journal>]
 [--paging <paging>]

OPTIONS
 --bindings <binding>
 The folder used for bindings (default ../data/bindings)

 --journal <journal>
 The folder used for messages journal (default ../data/journal)

 --paging <paging>
 The folder used for paging (default ../data/paging)

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

244

APPENDIX E. MESSAGING JOURNAL CONFIGURATION
ELEMENTS

The table below lists all of the configuration elements related to the AMQ Broker messaging journal.

Table E.1. Address Setting Elements

Name Description

journal-directory The directory where the message journal is located. The default value is
BROKER_INSTANCE_DIR/data/journal.

For the best performance, the journal should be located on its own physical
volume in order to minimize disk head movement. If the journal is on a
volume that is shared with other processes that may be writing other files
(for example, bindings journal, database, or transaction coordinator) then
the disk head may well be moving rapidly between these files as it writes
them, thus drastically reducing performance.

When using a SAN, each journal instance should be given its own LUN
(logical unit).

create-journal-dir If set to true, the journal directory will be automatically created at the
location specified in journal-directory if it does not already exist. The
default value is true.

journal-type Valid values are NIO or ASYNCIO.

If set to NIO, the broker uses Java NIO interface to itsjournal. Set to
ASYNCIO, and the broker will use the Linux asynchronous IO journal. If you
choose ASYNCIO but are not running Linux or you do not have libaio
installed then the broker will detect this and automatically fall back to using
NIO.

journal-sync-transactional If set to true, the broker flushes all transaction data to disk on transaction
boundaries (that is, commit, prepare, and rollback). The default value is
true.

journal-sync-non-
transactional

If set to true, the broker flushes non-transactional message data (sends and
acknowledgements) to disk each time. The default value is true.

journal-file-size The size of each journal file in bytes. The default value is 10485760 bytes
(10MiB).

journal-min-files The minimum number of files the broker pre-creates when starting. Files are
pre-created only if there is no existing message data.

Depending on how much data you expect your queues to contain at steady
state, you should tune this number of files to match the total amount of
data expected.

APPENDIX E. MESSAGING JOURNAL CONFIGURATION ELEMENTS

245

journal-pool-files The system will create as many files as needed; however, when reclaiming
files it will shrink back to journal-pool-files.

The default value is -1, meaning it will never delete files on the journal once
created. The system cannot grow infinitely, however, as you are still required
to use paging for destinations that can grow indefinitely.

journal-max-io Controls the maximum number of write requests that can be in the IO queue
at any one time. If the queue becomes full then writes will block until space
is freed up.

When using NIO, this value should always be 1. When using AIO, the default
value is 500. The total max AIO can’t be higher than the value set at the OS
level (/proc/sys/fs/aio-max-nr), which is usually at 65536.

journal-buffer-timeout Controls the timeout for when the buffer will be flushed. AIO can typically
withstand with a higher flush rate than NIO, so the system maintains
different default values for both NIO and AIO.

The default value for NIO is 3333333 nanoseconds, or 300 times per
second, and the default value for AIO is 50000 nanoseconds, or 2000 times
per second.

NOTE

By increasing the timeout value, you might be able to
increase system throughput at the expense of latency, since
the default values are chosen to give a reasonable balance
between throughput and latency.

journal-buffer-size The size of the timed buffer on AIO. The default value is 490KiB.

journal-compact-min-files The minimal number of files necessary before the broker compacts the
journal. The compacting algorithm will not start until you have at least
journal-compact-min-files. The default value is 10.

NOTE

Setting the value to 0 will disable compacting and could be
dangerous because the journal could grow indefinitely.

journal-compact-percentage The threshold to start compacting. Journal data will be compacted if less
than journal-compact-percentage is determined to be live data. Note
also that compacting will not start until you have at least journal-
compact-min-files data files on the journal. The default value is 30.

Name Description

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

246

APPENDIX F. REPLICATION HIGH AVAILABILITY
CONFIGURATION ELEMENTS

The following tables list the valid ha-policy configuration elements when using a replication HA policy.

Table F.1. Configuration Elements Available when Using Replication High Availability

Name Description

check-for-live-server Applies only to brokers configured as master brokers. Specifies whether the
original master broker checks the cluster for another live broker using its
own server ID when starting up. Set to true to fail back to the original
master broker and avoid a "split brain" situation in which two brokers
become live at the same time. The default value of this property is false.

cluster-name Name of the cluster configuration to use for replication. This setting is only
necessary if you configure multiple cluster connections. If configured, the
the cluster configuration with this name will be used when connecting to the
cluster. If unset, the first cluster connection defined in the configuration is
used.

group-name If set, backup brokers will only pair with live brokers that have a matching
value for group-name.

initial-replication-sync-
timeout

The amount of time the replicating broker will wait upon completion of the
initial replication process for the replica to acknowledge that it has received
all the necessary data. The default value of this property is 30,000
milliseconds.

NOTE

During this interval, any other journal-related operations are
blocked.

max-saved-replicated-
journals-size

Applies to backup brokers only. Specifies how many backup journal files the
backup broker retains. Once this value has been reached, the broker makes
space for each new backup journal file by deleting the oldest journal file. The
default value of this property is 2.

allow-failback Applies to backup brokers only. Determines whether the backup broker
resumes its original role when another broker such as the live broker makes a
request to take its place. The default value of this property is true.

restart-backup Applies to backup brokers only. Determines whether the backup broker
automatically restarts after it fails back to another broker. The default value
of this property is true.

Revised on 2022-03-15 13:56:26 UTC

APPENDIX F. REPLICATION HIGH AVAILABILITY CONFIGURATION ELEMENTS

247

Red Hat AMQ 2020.Q4 Configuring AMQ Broker

248

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. AMQ BROKER CONFIGURATION FILES AND LOCATIONS
	1.2. UNDERSTANDING THE DEFAULT BROKER CONFIGURATION
	Default message persistence settings
	Default acceptor settings
	Default security settings
	Default message address settings

	1.3. RELOADING CONFIGURATION UPDATES
	1.4. MODULARIZING THE BROKER CONFIGURATION FILE
	1.4.1. Reloading modular configuration files

	1.5. DOCUMENT CONVENTIONS
	The sudo command
	About the use of file paths in this document

	CHAPTER 2. NETWORK CONNECTIONS: ACCEPTORS AND CONNECTORS
	2.1. ABOUT ACCEPTORS
	Configuring an Acceptor

	2.2. ABOUT CONNECTORS
	Configuring a Connector

	2.3. CONFIGURING A TCP CONNECTION
	2.4. CONFIGURING AN HTTP CONNECTION
	2.5. CONFIGURING AN SSL/TLS CONNECTION
	2.6. CONFIGURING AN IN-VM CONNECTION
	2.7. CONFIGURING A CONNECTION FROM THE CLIENT SIDE

	CHAPTER 3. NETWORK CONNECTIONS: PROTOCOLS
	3.1. CONFIGURING A NETWORK CONNECTION TO USE A PROTOCOL
	Overview of default acceptors
	Additional parameters in default acceptors

	3.2. USING AMQP WITH A NETWORK CONNECTION
	3.2.1. Using an AMQP Link as a Topic
	3.2.2. Configuring AMQP Security

	3.3. USING MQTT WITH A NETWORK CONNECTION
	3.4. USING OPENWIRE WITH A NETWORK CONNECTION
	3.5. USING STOMP WITH A NETWORK CONNECTION
	3.5.1. Knowing the Limitations When Using STOMP
	3.5.2. Providing IDs for STOMP Messages
	3.5.3. Setting a Connection’s Time to Live (TTL)
	Overriding the Broker’s Default Time to Live (TTL)

	3.5.4. Sending and Consuming STOMP Messages from JMS
	3.5.5. Mapping STOMP Destinations to AMQ Broker Addresses and Queues
	Mapping STOMP Destinations to JMS Destinations

	CHAPTER 4. CONFIGURING ADDRESSES AND QUEUES
	4.1. ADDRESSES, QUEUES, AND ROUTING TYPES
	4.1.1. Address and queue naming requirements

	4.2. APPLYING ADDRESS SETTINGS TO SETS OF ADDRESSES
	4.2.1. AMQ Broker wildcard syntax
	4.2.2. Configuring the broker wildcard syntax

	4.3. CONFIGURING ADDRESSES FOR POINT-TO-POINT MESSAGING
	4.3.1. Configuring basic point-to-point messaging
	4.3.2. Configuring point-to-point messaging for multiple queues

	4.4. CONFIGURING ADDRESSES FOR PUBLISH-SUBSCRIBE MESSAGING
	4.5. CONFIGURING AN ADDRESS FOR BOTH POINT-TO-POINT AND PUBLISH-SUBSCRIBE MESSAGING
	4.6. ADDING A ROUTING TYPE TO AN ACCEPTOR CONFIGURATION
	4.7. CONFIGURING SUBSCRIPTION QUEUES
	4.7.1. Configuring a durable subscription queue
	4.7.2. Configuring a non-shared durable subscription queue
	4.7.3. Configuring a non-durable subscription queue

	4.8. CREATING AND DELETING ADDRESSES AND QUEUES AUTOMATICALLY
	4.8.1. Configuration options for automatic queue creation and deletion
	4.8.2. Configuring automatic creation and deletion of addresses and queues
	4.8.3. Protocol managers and addresses

	4.9. SPECIFYING A FULLY QUALIFIED QUEUE NAME
	4.10. CONFIGURING SHARDED QUEUES
	4.11. CONFIGURING LAST VALUE QUEUES
	4.11.1. Configuring last value queues individually
	4.11.2. Configuring last value queues for addresses
	4.11.3. Example of last value queue behavior
	4.11.4. Enforcing non-destructive consumption for last value queues

	4.12. MOVING EXPIRED MESSAGES TO AN EXPIRY ADDRESS
	4.12.1. Configuring message expiry
	4.12.2. Creating expiry resources automatically

	4.13. MOVING UNDELIVERED MESSAGES TO A DEAD LETTER ADDRESS
	4.13.1. Configuring a dead letter address
	4.13.2. Creating dead letter queues automatically

	4.14. ANNOTATIONS AND PROPERTIES ON EXPIRED OR UNDELIVERED AMQP MESSAGES
	4.15. DISABLING QUEUES
	4.16. LIMITING THE NUMBER OF CONSUMERS CONNECTED TO A QUEUE
	4.17. CONFIGURING EXCLUSIVE QUEUES
	4.17.1. Configuring exclusive queues individually
	4.17.2. Configuring exclusive queues for addresses

	4.18. CONFIGURING RING QUEUES
	4.18.1. Configuring ring queues
	4.18.2. Troubleshooting ring queues

	4.19. CONFIGURING RETROACTIVE ADDRESSES
	4.20. DISABLING ADVISORY MESSAGES FOR INTERNALLY-MANAGED ADDRESSES AND QUEUES
	4.21. FEDERATING ADDRESSES AND QUEUES
	4.21.1. About address federation
	4.21.2. Common topologies for address federation
	4.21.3. Support for divert bindings in address federation configuration
	4.21.4. Configuring federation for a broker cluster
	4.21.5. Configuring upstream address federation
	4.21.6. Configuring downstream address federation
	4.21.7. About queue federation
	4.21.7.1. Advantages of queue federation

	4.21.8. Configuring upstream queue federation
	4.21.9. Configuring downstream queue federation

	CHAPTER 5. SECURING BROKERS
	5.1. SECURING CONNECTIONS
	5.1.1. Configuring one-way TLS
	5.1.2. Configuring two-way TLS
	5.1.3. TLS configuration options

	5.2. AUTHENTICATING CLIENTS
	5.2.1. Client authentication methods
	5.2.2. Configuring user and password authentication based on properties files
	5.2.2.1. Configuring basic user and password authentication
	5.2.2.2. Configuring guest access

	5.2.3. Configuring certificate-based authentication
	5.2.3.1. Configuring the broker to use certificate-based authentication
	5.2.3.2. Configuring certificate-based authentication for AMQP clients

	5.3. AUTHORIZING CLIENTS
	5.3.1. Client authorization methods
	5.3.2. Configuring user- and role-based authorization
	5.3.2.1. Setting permissions
	5.3.2.2. Configuring role-based access control
	5.3.2.3. Setting resource limits

	5.4. USING LDAP FOR AUTHENTICATION AND AUTHORIZATION
	5.4.1. Configuring LDAP to authenticate clients
	5.4.1.1. Search matching parameters

	5.4.2. Configuring LDAP authorization
	5.4.3. Encrypting the password in the login.config file

	5.5. USING KERBEROS FOR AUTHENTICATION AND AUTHORIZATION
	5.5.1. Configuring network connections to use Kerberos
	5.5.2. Authenticating clients with Kerberos credentials
	5.5.2.1. Using an alternative configuration scope

	5.5.3. Authorizing clients with Kerberos credentials

	5.6. USING A CUSTOM SECURITY MANAGER
	5.6.1. Specifying a custom security manager
	5.6.2. Running the custom security manager example program

	5.7. DISABLING SECURITY
	5.8. TRACKING MESSAGES FROM VALIDATED USERS
	5.9. ENCRYPTING PASSWORDS IN CONFIGURATION FILES
	5.9.1. About encrypted passwords
	5.9.2. Encrypting a password in a configuration file

	CHAPTER 6. PERSISTING MESSAGES
	6.1. ABOUT JOURNAL-BASED PERSISTENCE
	6.1.1. Using AIO

	6.2. CONFIGURING JOURNAL-BASED PERSISTENCE
	6.2.1. The Message Journal
	6.2.2. The Bindings Journal
	6.2.3. The JMS Journal
	6.2.4. Compacting Journal Files
	Compacting Journals Using the CLI

	6.2.5. Disabling Disk Write Cache

	6.3. CONFIGURING JDBC PERSISTENCE
	6.4. CONFIGURING ZERO PERSISTENCE

	CHAPTER 7. PAGING MESSAGES
	7.1. ABOUT PAGE FILES
	7.2. CONFIGURING THE PAGING DIRECTORY LOCATION
	7.3. CONFIGURING AN ADDRESS FOR PAGING
	7.4. CONFIGURING A GLOBAL PAGING SIZE
	Configuring the global-max-size parameter

	7.5. LIMITING DISK USAGE WHEN PAGING
	Configuring the max-disk-usage

	7.6. HOW TO DROP MESSAGES
	7.6.1. Dropping Messages and Throwing an Exception to Producers

	7.7. HOW TO BLOCK PRODUCERS
	7.8. CAUTION WITH ADDRESSES WITH MULTICAST QUEUES

	CHAPTER 8. HANDLING LARGE MESSAGES
	8.1. CONFIGURING THE BROKER FOR LARGE MESSAGE HANDLING
	8.2. CONFIGURING AMQP ACCEPTORS FOR LARGE MESSAGE HANDLING
	8.3. CONFIGURING STOMP ACCEPTORS FOR LARGE MESSAGE HANDLING
	8.4. LARGE MESSAGES AND JAVA CLIENTS

	CHAPTER 9. DETECTING DEAD CONNECTIONS
	Detecting Dead Connections from the Client Side
	9.1. CONNECTION TIME-TO-LIVE
	Configuring Time-To-Live on the Broker
	Configuring Time-To-Live on the Client

	9.2. DISABLING ASYNCHRONOUS CONNECTION EXECUTION
	9.3. CLOSING CONNECTIONS FROM THE CLIENT SIDE

	CHAPTER 10. FLOW CONTROL
	10.1. CONSUMER FLOW CONTROL
	10.1.1. Setting the Consumer Window Size
	Setting the Window Size

	10.1.2. Handling Fast Consumers
	Setting the Window Size for Fast Consumers

	10.1.3. Handling Slow Consumers
	Setting the Window Size for Slow Consumers

	10.1.4. Setting the Rate of Consuming Messages
	Setting the Rate of Consuming Messages

	10.2. PRODUCER FLOW CONTROL
	10.2.1. Setting the Producer Window Size
	Setting the Window Size

	10.2.2. Blocking Messages
	Configuring the Maximum Size for an Address

	10.2.3. Blocking AMQP Messages
	Configuring the Broker to Block AMQP Messages

	10.2.4. Setting the Rate of Sending Messages
	Setting the Rate of Sending Messages

	CHAPTER 11. MESSAGE GROUPING
	11.1. CLIENT-SIDE MESSAGE GROUPING
	11.2. AUTOMATIC MESSAGE GROUPING

	CHAPTER 12. DUPLICATE MESSAGE DETECTION
	12.1. USING THE DUPLICATE ID MESSAGE PROPERTY
	12.2. CONFIGURING THE DUPLICATE ID CACHE
	12.3. DUPLICATE DETECTION AND TRANSACTIONS
	12.4. DUPLICATE DETECTION AND CLUSTER CONNECTIONS

	CHAPTER 13. INTERCEPTING MESSAGES
	13.1. CREATING INTERCEPTORS
	13.2. CONFIGURING THE BROKER TO USE INTERCEPTORS
	13.3. INTERCEPTORS ON THE CLIENT SIDE

	CHAPTER 14. DIVERTING MESSAGES AND SPLITTING MESSAGE FLOWS
	14.1. HOW MESSAGE DIVERTS WORK
	14.2. CONFIGURING MESSAGE DIVERTS
	14.2.1. Exclusive divert example
	14.2.2. Non-exclusive divert example

	CHAPTER 15. FILTERING MESSAGES
	15.1. CONFIGURING A QUEUE TO USE A FILTER
	15.2. FILTERING JMS MESSAGE PROPERTIES
	Configuring a Filter to Convert a String to a Number

	15.3. FILTERING AMQP MESSAGES BASED ON PROPERTIES ON ANNOTATIONS

	CHAPTER 16. SETTING UP A BROKER CLUSTER
	16.1. UNDERSTANDING BROKER CLUSTERS
	16.1.1. How broker clusters balance message load
	16.1.2. How broker clusters improve reliability
	16.1.3. Understanding node IDs
	16.1.4. Common broker cluster topologies
	Symmetric clusters
	Chain clusters

	16.1.5. Broker discovery methods
	Dynamic discovery
	Static discovery

	16.1.6. Cluster sizing considerations
	Messaging throughput
	Topology
	High availability

	16.2. CREATING A BROKER CLUSTER
	16.2.1. Creating a broker cluster with static discovery
	16.2.2. Creating a broker cluster with UDP-based dynamic discovery
	16.2.3. Creating a broker cluster with JGroups-based dynamic discovery

	16.3. IMPLEMENTING HIGH AVAILABILITY
	16.3.1. Understanding high availability
	16.3.1.1. How live-backup groups provide high availability
	16.3.1.2. High availability policies
	16.3.1.3. Replication policy limitations

	16.3.2. Configuring shared store high availability
	16.3.2.1. Configuring an NFS shared store
	16.3.2.2. Configuring shared store high availability

	16.3.3. Configuring replication high availability
	16.3.3.1. About quorum voting
	16.3.3.2. Configuring a broker cluster for replication high availability

	16.3.4. Configuring limited high availability with live-only
	16.3.5. Configuring high availability with colocated backups
	16.3.6. Configuring clients to fail over

	16.4. ENABLING MESSAGE REDISTRIBUTION
	16.4.1. Understanding message redistribution
	16.4.1.1. Limitations of message redistribution with message filters

	16.4.2. Configuring message redistribution

	16.5. CONFIGURING CLUSTERED MESSAGE GROUPING
	16.6. CONNECTING CLIENTS TO A BROKER CLUSTER

	CHAPTER 17. CONFIGURING A MULTI-SITE, FAULT-TOLERANT MESSAGING SYSTEM
	17.1. HOW RED HAT CEPH STORAGE CLUSTERS WORK
	17.2. INSTALLING RED HAT CEPH STORAGE
	17.3. CONFIGURING A RED HAT CEPH STORAGE CLUSTER
	17.4. MOUNTING THE CEPH FILE SYSTEM ON YOUR BROKER SERVERS
	17.5. CONFIGURING BROKERS IN A MULTI-SITE, FAULT-TOLERANT MESSAGING SYSTEM
	17.5.1. Adding backup brokers
	17.5.2. Configuring brokers as Ceph clients
	17.5.3. Configuring shared store high availability

	17.6. CONFIGURING CLIENTS IN A MULTI-SITE, FAULT-TOLERANT MESSAGING SYSTEM
	17.6.1. Configuring internal clients
	17.6.2. Configuring external clients

	17.7. VERIFYING STORAGE CLUSTER HEALTH DURING A DATA CENTER OUTAGE
	17.8. MAINTAINING MESSAGING CONTINUITY DURING A DATA CENTER OUTAGE
	17.9. RESTARTING A PREVIOUSLY FAILED DATA CENTER
	17.9.1. Restarting storage cluster servers
	17.9.2. Restarting broker servers
	17.9.3. Reestablishing client connections
	17.9.3.1. Reconnecting internal clients
	17.9.3.2. Reconnecting external clients

	CHAPTER 18. LOGGING
	18.1. CHANGING THE LOGGING LEVEL
	18.2. ENABLING AUDIT LOGGING
	18.3. CONFIGURING CONSOLE LOGGING
	18.4. CONFIGURING FILE LOGGING
	18.5. CONFIGURING THE LOGGING FORMAT
	18.6. CLIENT OR EMBEDDED SERVER LOGGING
	18.7. AMQ BROKER PLUGIN SUPPORT
	18.7.1. Adding plugins to the class path
	18.7.2. Registering a plugin
	18.7.3. Registering a plugin programmatically
	18.7.4. Logging specific events

	APPENDIX A. ACCEPTOR AND CONNECTOR CONFIGURATION PARAMETERS
	APPENDIX B. ADDRESS SETTING CONFIGURATION ELEMENTS
	APPENDIX C. CLUSTER CONNECTION CONFIGURATION ELEMENTS
	APPENDIX D. COMMAND-LINE TOOLS
	APPENDIX E. MESSAGING JOURNAL CONFIGURATION ELEMENTS
	APPENDIX F. REPLICATION HIGH AVAILABILITY CONFIGURATION ELEMENTS

