
Red Hat Advanced Cluster Management
for Kubernetes 2.1

Security

Security

Last Updated: 2022-01-27

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

Security

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Security and governance in Red Hat Advanced Cluster Management for Kubernetes

. .

. .

Table of Contents

CHAPTER 1. SECURITY
1.1. ROLE-BASED ACCESS CONTROL

1.1.1. Overview of roles
1.1.2. RBAC implementation

1.1.2.1. Cluster lifecycle RBAC
1.1.2.2. Application lifecycle RBAC
1.1.2.3. Governance lifecycle RBAC
1.1.2.4. Observability RBAC

1.2. CERTIFICATES
1.2.1. List certificates
1.2.2. Refresh a certificate
1.2.3. Refresh certificates for Red Hat Advanced Cluster Management for Kubernetes
1.2.4. Replacing the root CA certificate

1.2.4.1. Prerequisites for root CA certificate
1.2.4.2. Creating the root CA certificate with OpenSSL
1.2.4.3. Replacing root CA certificates
1.2.4.4. Refreshing cert-manager certificates
1.2.4.5. Restoring root CA certificates

1.2.5. Replacing the management ingress certificates
1.2.5.1. Prerequisites to replace management ingress certificate

1.2.5.1.1. Example configuration file for generating a certificate
1.2.5.1.2. OpenSSL commands for generating a certificate

1.2.5.2. Replace the Bring Your Own (BYO) ingress certificate
1.2.5.3. Restore the default self-signed certificate for management ingress

CHAPTER 2. GOVERNANCE AND RISK
2.1. GOVERNANCE ARCHITECTURE
2.2. POLICY OVERVIEW

2.2.1. Policy YAML structure
2.2.2. Policy YAML table
2.2.3. Policy sample file

2.3. POLICY CONTROLLERS
2.3.1. Kubernetes configuration policy controller

2.3.1.1. Configuration policy controller YAML structure
2.3.1.2. Configuration policy sample
2.3.1.3. Configuration policy YAML table

2.3.2. Certificate policy controller
2.3.2.1. Certificate policy controller YAML structure

2.3.2.1.1. Certificate policy controller YAML table
2.3.2.2. Certificate policy sample

2.3.3. IAM policy controller
2.3.3.1. IAM policy YAML structure
2.3.3.2. IAM policy YAMl table
2.3.3.3. IAM policy sample

2.3.4. Integrate third-party policy controllers
2.3.5. Creating a custom policy controller

2.3.5.1. Writing a policy controller
2.3.5.2. Deploying your controller to the cluster

2.3.5.2.1. Scaling your controller deployment
2.4. POLICY SAMPLES

2.4.1. Memory usage policy

7
7
7
8
8

10
12
12
13
13
14
14
14
14
14
15
15
16
16
16
17
17
18
19

20
20
21
21
22
23
25
25
26
26
27
28
29
29
31
31
32
32
33
33
33
33
36
37
37
38

Table of Contents

1

2.4.1.1. Memory usage policy YAML structure
2.4.1.2. Memory usage policy table
2.4.1.3. Memory usage policy sample

2.4.2. Namespace policy
2.4.2.1. Namespace policy YAML structure
2.4.2.2. Namespace policy YAML table
2.4.2.3. Namespace policy sample

2.4.3. Image vulnerability policy
2.4.3.1. Image vulnerability policy YAML structure
2.4.3.2. Image vulnerability policy YAML table
2.4.3.3. Image vulnerability policy sample

2.4.4. Pod nginx policy
2.4.4.1. Pod nginx policy YAML structure
2.4.4.2. Pod nginx policy table
2.4.4.3. Pod nginx policy sample

2.4.5. Pod security policy
2.4.5.1. Pod security policy YAML structure
2.4.5.2. Pod security policy table
2.4.5.3. Pod security policy sample

2.4.6. Role policy
2.4.6.1. Role policy YAML structure
2.4.6.2. Role policy table
2.4.6.3. Role policy sample

2.4.7. Rolebinding policy
2.4.7.1. Rolebinding policy YAML structure
2.4.7.2. Rolebinding policy table
2.4.7.3. Rolebinding policy sample

2.4.8. Security Context Constraints policy
2.4.8.1. SCC policy YAML structure
2.4.8.2. SCC policy table
2.4.8.3. SCC policy sample

2.4.9. ETCD encryption policy
2.4.9.1. ETCD encryption policy YAML structure
2.4.9.2. ETCD encryption policy table
2.4.9.3. Etcd encryption policy sample

2.4.10. Integrating gatekeeper constraints and constraint templates
2.5. MANAGE SECURITY POLICIES

2.5.1. Managing security policies
2.5.1.1. Creating a security policy

2.5.1.1.1. Creating a security policy from the command line interface
2.5.1.1.1.1. Viewing your security policy from the CLI

2.5.1.1.2. Creating a cluster security policy from the console
2.5.1.1.2.1. Viewing your security policy from the console

2.5.1.2. Updating security policies
2.5.1.2.1. Disabling security policies
2.5.1.2.2. Deleting a security policy

2.5.2. Managing configuration policies
2.5.2.1. Creating a configuration policy

2.5.2.1.1. Creating a configuration policy from the CLI
2.5.2.1.1.1. Viewing your configuration policy from the CLI

2.5.2.1.2. Creating a configuration policy from the console
2.5.2.1.2.1. Viewing your configuration policy from the console

2.5.2.2. Updating configuration policies

38
38
39
40
40
40
41

42
42
43
44
46
46
46
47
48
48
49
50
50
51
52
53
53
53
54
55
56
56
57
57
59
60
60
61

62
64
65
65
65
67
67
69
69
69
69
70
70
70
71
71
71
72

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

2

2.5.2.2.1. Disabling configuration policies
2.5.2.3. Deleting a configuration policy

2.5.3. Managing image vulnerability policies
2.5.3.1. Creating an image vulnerability policy

2.5.3.1.1. Creating an image vulnerability policy from the CLI
2.5.3.1.1.1. Viewing your image vulnerability policy from the CLI

2.5.3.2. Creating an image vulnerability policy from the console
2.5.3.3. Viewing image vulnerability violations from the console
2.5.3.4. Updating image vulnerability policies

2.5.3.4.1. Disabling image vulnerability policies
2.5.3.4.2. Deleting an image vulnerability policy

2.5.4. Managing memory usage policies
2.5.4.1. Creating a memory usage policy

2.5.4.1.1. Creating a memory usage policy from the CLI
2.5.4.1.1.1. Viewing your policy from the CLI

2.5.4.1.2. Creating an memory usage policy from the console
2.5.4.1.2.1. Viewing your memory usage policy from the console

2.5.4.2. Updating memory usage policies
2.5.4.2.1. Disabling memory usage policies
2.5.4.2.2. Deleting a memory usage policy

2.5.5. Managing namespace policies
2.5.5.1. Creating a namespace policy

2.5.5.1.1. Creating a namespace policy from the CLI
2.5.5.1.1.1. Viewing your namespace policy from the CLI

2.5.5.1.2. Creating a namespace policy from the console
2.5.5.1.2.1. Viewing your namespace policy from the console

2.5.5.2. Updating namespace policies
2.5.5.2.1. Disabling namespace policies
2.5.5.2.2. Deleting a namespace policy

2.5.6. Managing pod nginx policies
2.5.6.1. Creating a pod nginx policy

2.5.6.1.1. Creating a pod nginx policy from the CLI
2.5.6.1.1.1. Viewing your nginx policy from the CLI

2.5.6.2. Creating an pod nginx policy from the console
Viewing your pod nginx policy from the console

2.5.6.3. Updating pod nginx policies
2.5.6.3.1. Disabling pod nginx policies
2.5.6.3.2. Deleting a pod nginx policy

2.5.7. Managing pod security policies
2.5.7.1. Creating a pod security policy

2.5.7.1.1. Creating a pod security policy from the CLI
2.5.7.1.1.1. Viewing your pod security policy from the CLI

2.5.7.1.2. Creating a pod security policy from the console
2.5.7.1.2.1. Viewing your pod security policy from the console

2.5.7.2. Updating pod security policies
2.5.7.2.1. Disabling pod security policies
2.5.7.2.2. Deleting a pod security policy

2.5.8. Managing role policies
2.5.8.1. Creating a role policy

2.5.8.1.1. Creating a role policy from the CLI
2.5.8.1.1.1. Viewing your role policy from the CLI

2.5.8.1.2. Creating a role policy from the console
2.5.8.1.2.1. Viewing your role policy from the console

72
72
72
73
73
73
73
74
74
74
74
75
75
75
75
76
76
76
76
77
77
77
77
78
78
78
78
78
79
79
79
80
80
80
80
81
81
81
81

82
82
82
82
83
83
83
83
84
84
84
84
84
85

Table of Contents

3

2.5.8.2. Updating role policies
2.5.8.2.1. Disabling role policies
2.5.8.2.2. Deleting a role policy

2.5.9. Managing rolebinding policies
2.5.9.1. Creating a rolebinding policy

2.5.9.1.1. Creating a rolebinding policy from the CLI
2.5.9.1.1.1. Viewing your rolebinding policy from the CLI

2.5.9.1.2. Creating a rolebinding policy from the console
2.5.9.1.2.1. Viewing your rolebinding policy from the console

2.5.9.2. Updating rolebinding policies
2.5.9.2.1. Disabling rolebinding policies
2.5.9.2.2. Deleting a rolebinding policy

2.5.10. Managing Security Context Constraints policies
2.5.10.1. Creating an SCC policy

2.5.10.1.1. Creating an SCC policy from the CLI
2.5.10.1.1.1. Viewing your SCC policy from the CLI

2.5.10.1.2. Creating an SCC policy from the console
2.5.10.1.2.1. Viewing your SCC policy from the console

2.5.10.2. Updating SCC policies
2.5.10.2.1. Disabling SCC policies
2.5.10.2.2. Deleting an SCC policy

2.5.11. Managing certificate policies
2.5.11.1. Creating a certificate policy

2.5.11.1.1. Creating a certificate policy from the CLI
2.5.11.1.1.1. Viewing your certificate policy from the CLI

2.5.11.1.2. Creating a certificate policy from the console
2.5.11.1.2.1. Viewing your certificate policy from the console

2.5.11.2. Updating certificate policies
2.5.11.2.1. Bringing your own certificates
2.5.11.2.2. Adding a label into your Kubernetes secret
2.5.11.2.3. Disabling certificate policies
2.5.11.2.4. Deleting a certificate policy

2.5.12. Managing IAM policies
2.5.12.1. Creating an IAM policy

2.5.12.1.1. Creating an IAM policy from the CLI
2.5.12.1.1.1. Viewing your IAM policy from the CLI

2.5.12.1.2. Creating an IAM policy from the console
2.5.12.1.2.1. Viewing your IAM policy from the console

2.5.12.2. Updating IAM policies
2.5.12.2.1. Disabling IAM policies
2.5.12.2.2. Deleting an IAM policy

2.5.13. Managing ETCD encryption policies
2.5.13.1. Creating an encryption policy

2.5.13.1.1. Creating an encryption policy from the CLI
2.5.13.1.1.1. Viewing your encryption policy from the CLI

2.5.13.1.2. Creating an encryption policy from the console
2.5.13.1.2.1. Viewing your encryption policy from the console

2.5.13.2. Updating encryption policies
2.5.13.2.1. Disabling encryption policies
2.5.13.2.2. Deleting an encryption policy

2.5.14. Gatekeeper policy integration
2.5.14.1. Creating a gatekeeper policy

2.5.14.1.1. Creating a gatekeeper policy for admission

85
85
85
86
86
86
86
87
87
87
87
88
88
88
88
89
89
89
89
90
90
90
90
90
91
91
91

92
92
92
92
93
93
93
93
94
94
94
95
95
95
96
96
96
96
96
97
97
97
97
98
98
98

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

4

2.5.14.1.2. Creating a gatekeeper policy for audit 100

Table of Contents

5

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

6

CHAPTER 1. SECURITY
Manage your security and role-based access control (RBAC) of Red Hat Advanced Cluster
Management for Kubernetes components. Govern your cluster with defined policies and processes to
identify and minimize risks. Use policies to define rules and set controls.

Prerequisite: You must configure authentication service requirements for Red Hat Advanced Cluster
Management for Kubernetes to onboard workloads to Identity and Access Management (IAM). For
more information see, Understanding authentication in OpenShift Container Platform documentation .

Review the following topics to learn more about securing your cluster:

Role-based access control

Certificates

Governance and risk

1.1. ROLE-BASED ACCESS CONTROL

Red Hat Advanced Cluster Management for Kubernetes supports role-based access control (RBAC).
Your role determines the actions that you can perform. RBAC is based on the authorization mechanisms
in Kubernetes, similar to Red Hat OpenShift Container Platform. For more information about RBAC, see
the OpenShift RBAC overview in the OpenShift Container Platform documentation .

Note: Action buttons are disabled from the console if the user-role access is impermissible.

View the following sections for details of supported RBAC by component:

Overview of roles

RBAC implementation

Cluster lifecycle RBAC

Application lifecycle RBAC

Governance lifecycle RBAC

Observability API RBAC

1.1.1. Overview of roles

Some product resources are cluster-wide and some are namespace-scoped. You must apply cluster
rolebindings and namespace rolebindings to your users for consistent access controls. View the table list
of the following role definitions that are supported in Red Hat Advanced Cluster Management for
Kubernetes:

Table 1.1. Role definition table

Role Definition

cluster-admin A user with cluster-wide binding to the cluster-
admin role is an OpenShift Container Platform
super user, who has all access.

CHAPTER 1. SECURITY

7

https://docs.openshift.com/container-platform/4.3/authentication/understanding-authentication.html
https://docs.openshift.com/container-platform/4.3/authentication/using-rbac.html

open-cluster-management:cluster-manager-
admin

A user with cluster-wide binding to the cluster-
manager-admin role is a Red Hat Advanced
Cluster Management for Kubernetes super user, who
has all access.

open-cluster-management:managed-cluster-x
(admin)

A user with cluster binding to the managed-
cluster-x role has administrator access to
managedcluster “X” resource.

open-cluster-management:managed-cluster-x
(viewer)

A user with cluster-wide binding to the managed-
cluster-x role has view access to managedcluster
“X” resource.

open-cluster-management:subscription-admin A user with the subscription-admin role can
create Git subscriptions that deploy resources to
multiple namespaces. The resources are specified in
Kubernetes resource YAML files in the subscribed Git
repository. Note: When an non-subscription-admin
user creates a subscription, all resources are
deployed into the subscription namespace
regardless of specified namespaces in the resources.
For more information, see the Application lifecycle
RBAC section.

admin, edit, view Admin, edit, and view are OpenShift Container
Platform default roles. A user with a namespace-
scoped binding to these roles has access to open-
cluster-management resources in a specific
namespace, while cluster-wide binding to the same
roles gives access to all of the open-cluster-
management resources cluster-wide.

Role Definition

Important:

Any user can create projects from OpenShift Container Platform, which gives administrator role
permissions for the namespace.

If a user does not have role access to a cluster, the cluster name is not visible. The cluster name
is displayed with the following symbol: -.

1.1.2. RBAC implementation

RBAC is validated at the console level and the API level. Actions in the console can be enabled or
disabled based on user access role permissions. View the following sections for more information on
RBAC for specific lifecyles in the product.

1.1.2.1. Cluster lifecycle RBAC

View the following cluster lifecycle RBAC operations.

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

8

To create and administer all managed clusters:

Create a cluster role binding to the cluster role open-cluster-management:cluster-manager-
admin by entering the following command:

oc create clusterrolebinding <role-binding-name> --clusterrole=open-cluster-
management:cluster-manager-admin

This role is a super user, which has access to all resources and actions. This role allows you to
create cluster-scoped managedcluster resources, the namespace for the resources that
manage the managed cluster, and the resources in the namespace. This role also allows access
to provider connections and to bare metal assets that are used to create managed clusters.

To administer a managed cluster named cluster-name:

Create a cluster role binding to the cluster role open-cluster-management:admin:<cluster-
name> by entering the following command:

oc create clusterrolebinding (role-binding-name) --clusterrole=open-cluster-
management:admin:<cluster-name>

This role allows read and write access to the cluster-scoped managedcluster resource. This is
needed because the managedcluster is a cluster-scoped resource and not a namespace-
scoped resource.

Create a namespace role binding to the cluster role admin by entering the following command:

oc create rolebinding <role-binding-name> -n <cluster-name> --clusterrole=admin

This role allows read and write access to the resources in the namespace of the managed
cluster.

To view a managed cluster named cluster-name:

Create a cluster role binding to the cluster role open-cluster-management:view:<cluster-
name> by entering the following command:

oc create clusterrolebinding <role-binding-name> --clusterrole=open-cluster-
management:view:<cluster-name>

This role allows read access to the cluster-scoped managedcluster resource. This is needed
because the managedcluster is a cluster-scoped resource and not a namespace-scoped
resource.

Create a namespace role binding to the cluster role view by entering the following command:

oc create rolebinding <role-binding-name> -n <cluster-name> --clusterrole=view

This role allows read-only access to the resources in the namespace of the managed cluster.

See ManagedClusterSets to learn about managing ManagedClusterSet resources.

View the following console and API RBAC tables for cluster lifecycle:

Table 1.2. Console RBAC table for Cluster lifecycle

CHAPTER 1. SECURITY

9

../manage_cluster#managedclustersets

Action Admin Edit View

Clusters read, update, delete read, update read

Provider connections create, read, update,
and delete

create, read, update,
and delete

read

Bare metal asset create, read, update,
delete

read, update read

Table 1.3. API RBAC table for Cluster lifecycle

API Admin Edit View

manageclusters.cluster.
open-cluster-
management.io

create, read, update,
delete

read, update read

baremetalassets.invento
ry.open-cluster-
management.io

create, read, update,
delete

read, update read

klusterletaddonconfigs.a
gent.open-cluster-
management.io

create, read, update,
delete

read, update read

managedclusteractions.
action.open-cluster-
management.io

create, read, update,
delete

read, update read

managedclusterviews.vi
ew.open-cluster-
management.io

create, read, update,
delete

read, update read

managedclusterinfos.int
ernal.open-cluster-
management.io

create, read, update,
delete

read, update read

manifestworks.work.ope
n-cluster-
management.io

create, read, update,
delete

read, update read

1.1.2.2. Application lifecycle RBAC

When you create an application, the subscription namespace is created and the configuration map is
created in the subscription namespace. When you want to apply a subscription, you must be a
subscription administrator. For more information on managing applications, see Creating and managing
subscriptions.

To perform Application lifecycle tasks, users with the admin role must have access to the namespace

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

10

../manage_applications#creating-and-managing-subscriptions

where the application is created and to the managedcluster namespace. For example, the required
access to create applications in namespace "N" is a namespace-scoped binding to the admin role for
namespace "N".

View the following console and API RBAC tables for Application lifecycle:

Table 1.4. Console RBAC table for Application lifecycle

Action Admin Edit View

Application create, read, update,
delete

create, read, update,
delete

read

Channel create, read, update,
delete

create, read, update,
delete

read

Subscription create, read, update,
delete

create, read, update,
delete

read

Placement rule create, read, update,
delete

create, read, update,
delete

read

Table 1.5. API RBAC table for Application lifecycle

API Admin Edit View

applications.app.k8s.io create, read, update,
delete

create, read, update,
delete

read

channels.apps.open-
cluster-management.io

create, read, update,
delete

create, read, update,
delete

read

deployables.apps.open-
cluster-management.io

create, read, update,
delete

create, read, update,
delete

read

helmreleases.apps.open
-cluster-management.io

create, read, update,
delete

create, read, update,
delete

read

placementrules.apps.op
en-cluster-
management.io

create, read, update,
delete

create, read, update,
delete

read

subscriptions.apps.open
-cluster-management.io

create, read, update,
delete

create, read, update,
delete

read

configmaps create, read, update,
delete

create, read, update,
delete

read

secrets create, read, update,
delete

create, read, update,
delete

read

CHAPTER 1. SECURITY

11

namespaces create, read, update,
delete

create, read, update,
delete

read

API Admin Edit View

1.1.2.3. Governance lifecycle RBAC

To perform Governance lifecycle operations, users must have access to the namespace where the
policy is created, along with access to the managedcluster namespace where the policy is applied.

View the following examples:

To view policies in namespace "N" the following role is required:

A namespace-scoped binding to the view role for namespace "N".

To create a policy in namespace "N" and apply it on managedcluster "X", the following roles are
required:

A namespace-scoped binding to the admin role for namespace "N".

A namespace-scoped binding to the admin role for namespace "X".

View the following console and API RBAC tables for Governance lifecycle:

Table 1.6. Console RBAC table for Governance lifecycle

Action Admin Edit View

Policies create, read, update,
delete

read, update read

PlacementBindings create, read, update,
delete

read, update read

PlacementRules create, read, update,
delete

read, update read

Table 1.7. API RBAC table for Governance lifecycle

API Admin Edit View

policies.policy.open-
cluster-management.io

create, read, update,
delete

read, update read

placementbindings.polic
y.open-cluster-
management.io

create, read, update,
delete

read, update read

1.1.2.4. Observability RBAC

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

12

To use the observability features, you must be assigned the cluster-admin or the open-cluster-
management:cluster-manager-admin role. View the following list of observability features:

Access managed cluster metrics.

Search for resources.

Use the Visual Web Terminal if you have access to the managed cluster.

To create, update, and delete the MultiClusterObservability custom resource. View the following RBAC
table:

Table 1.8. API RBAC table for observability

API Admin Edit View

multiclusterobservabiliti
es.observability.open-
cluster-management.io

create, read, update,
and delete

- -

To continue to learn more about securing your cluster, see Security.

1.2. CERTIFICATES

Various certificates are created and used throughout Red Hat Advanced Cluster Management for
Kubernetes.

You can bring your own certificates. You must create a Kubernetes TLS Secret for your certificate. After
you create your certificates, you can replace certain certificates that are created by the Red Hat
Advanced Cluster Management installer.

Required access: Cluster administrator or team administrator.

Note: Replacing certificates is supported only on native Red Hat Advanced Cluster Management
installations.

All certificates required by services that run on Red Hat Advanced Cluster Management are created
during the installation of Red Hat Advanced Cluster Management. Certificates are created and
managed by the Red Hat Advanced Cluster Management Certificate manager (cert-manager) service.
The Red Hat Advanced Cluster Management Root Certificate Authority (CA) certificate is stored within
the Kubernetes Secret multicloud-ca-cert in the hub cluster namespace. The certificate can be
imported into your client truststores to access Red Hat Advanced Cluster Management Platform APIs.

See the following topics to replace certificates:

Replacing the root CA certificate

Replacing the management ingress certificates

1.2.1. List certificates

You can view a list of certificates that use cert-manager internally by running the following command:

oc get certificates.certmanager.k8s.io -n open-cluster-management

CHAPTER 1. SECURITY

13

Note: If observability is enabled, there are additional namespaces where certificates are created.

1.2.2. Refresh a certificate

You can refresh a certificate by running the command in the Section 1.2.1, “List certificates” section.
When you identify the certificate that you need to refresh, delete the secret that is associated with the
certificate. For example, you can delete a secret by running the following command:

oc delete secret grc-0c925-grc-secrets -n open-cluster-management

1.2.3. Refresh certificates for Red Hat Advanced Cluster Management for
Kubernetes

You can refresh all certificates that are issued by the Red Hat Advanced Cluster Management CA.
During the refresh, the Kubernetes secret that is associated with each cert-manager certificate is
deleted. The service restarts automatically to use the certifcate. Run the following command:

oc delete secret -n open-cluster-management $(oc get certificates.certmanager.k8s.io -n open-
cluster-management -o wide | grep multicloud-ca-issuer | awk '{print $3}')

The Red Hat OpenShift Container Platform certificate is not included in the Red Hat Advanced Cluster
Management for Kubernetes management ingress. For more information, see the Security known
issues. Use the certificate policy controller to create and manage certificate policies on managed
clusters. See Policy controllers to learn more about controllers. Return to the Security page for more
information.

1.2.4. Replacing the root CA certificate

You can replace the root CA certificate.

1.2.4.1. Prerequisites for root CA certificate

Verify that your Red Hat Advanced Cluster Management for Kubernetes cluster is running.

Back up the existing Red Hat Advanced Cluster Management for Kubernetes certificate resource by
running the following command:

oc get cert multicloud-ca-cert -n open-cluster-management -o yaml > multicloud-ca-cert-backup.yaml

1.2.4.2. Creating the root CA certificate with OpenSSL

Complete the following steps to create a root CA certificate with OpenSSL:

1. Generate your certificate authority (CA) RSA private key by running the following command:

openssl genrsa -out ca.key 4096

2. Generate a self-signed CA certificate by using your CA key. Run the following command:

openssl req -x509 -new -nodes -key ca.key -days 400 -out ca.crt -config req.cnf

Your req.cnf file might resemble the following file:

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

14

../release_notes#security-known-issues

[req] # Main settings
default_bits = 4096 # Default key size in bits.
prompt = no # Disables prompting for certificate values so the configuration file
values are used.
default_md = sha256 # Specifies the digest algorithm.
distinguished_name = dn # Specifies the section that includes the distinguished name
information.
x509_extensions = v3_ca # The extentions to add to the self signed cert

[dn] # Distinguished name settings
C = US # Country
ST = North Carolina # State or province
L = Raleigh # Locality
O = Red Hat Open Shift # Organization
OU = Red Hat Advanced Container Management # Organizational unit
CN = www.redhat.com # Common name.

[v3_ca] # x509v3 extensions
basicConstraints=critical,CA:TRUE # Indicates whether the certificate is a CA certificate
during the certificate chain verification process.

1.2.4.3. Replacing root CA certificates

1. Create a new secret with the CA certificate by running the following command:

kubectl -n open-cluster-management create secret tls byo-ca-cert --cert ./ca.crt --key ./ca.key

2. Edit the CA issuer to point to the BYO certificate. Run the following commnad:

oc edit issuer -n open-cluster-management multicloud-ca-issuer

3. Replace the string mulicloud-ca-cert with byo-ca-cert. Save your deployment and quit the
editor.

4. Edit the management ingress deployment to reference the Bring Your Own (BYO) CA
certificate. Run the following command:

oc edit deployment management-ingress-435ab

5. Replace the multicloud-ca-cert string with the byo-ca-cert. Save your deployment and quit the
editor.

6. Validate the custom CA is in use by logging in to the console and view the details of the
certificate being used.

1.2.4.4. Refreshing cert-manager certificates

After the root CA is replaced, all certificates that are signed by the root CA must be refreshed and the
services that use those certificates must be restarted. Cert-manager creates the default Issuer from the
root CA so all of the certificates issued by cert-manager, and signed by the default ClusterIssuer must
also be refreshed.

Delete the Kubernetes secrets associated with each cert-manager certificate to refresh the certificate
and restart the services that use the certificate. Run the following command:

CHAPTER 1. SECURITY

15

oc delete secret -n open-cluster-management $(oc get cert -n open-cluster-management -o wide |
grep multicloud-ca-issuer | awk '{print $3}')

1.2.4.5. Restoring root CA certificates

To restore the root CA certificate, update the CA issuer by completing the following steps:

1. Edit the CA issuer. Run the following command:

oc edit issuer -n open-cluster-management multicloud-ca-issuer

2. Replace the byo-ca-cert string with multicloud-ca-cert in the editor. Save the issuer and quit
the editor.

3. Edit the management ingress depolyment to reference the original CA certificate. Run the
following command:

oc edit deployment management-ingress-435ab

4. Replace the byo-ca-cert string with the multicloud-ca-cert string. Save your deployment and
quit the editor.

5. Delete the BYO CA certificate. Run the following commnad:

oc delete secret -n open-cluster-management byo-ca-cert

Refresh all cert-manager certificates that use the CA. For more information, see the forementioned
section, Refreshing cert-manager certificates.

See Certificates for more information about certificates that are created and managed by Red Hat
Advanced Cluster Management for Kubernates.

1.2.5. Replacing the management ingress certificates

You can replace management ingress certificates. If you replace the default ingress certificate for
OpenShift Container Platform, you need to make modifications to the management ingress. For more
information see, 500 Internal error during login to the console in the Security known issues .

1.2.5.1. Prerequisites to replace management ingress certificate

Prepare and have your management-ingress certificates and private keys ready. If needed, you can
generate a TLS certificate by using OpenSSL. Set the common name parameter,CN, on the certificate
to manangement-ingress. If you are generating the certificate, include the following settings:

Include the following IP addresses and domain names in your certificate Subject Alternative
Name (SAN) list:

The service name for the management ingress: management-ingress.

Include the route name for Red Hat Advanced Cluster Management for Kubernetes.
Recieve the route name by running the following command:

oc get route -n open-cluster-management

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

16

../release_notes#security-known-issues

You might receieve the following response:

multicloud-console.apps.grchub2.dev08.red-chesterfield.com

Add the localhost IP address: 127.0.0.1.

Add the localhost entry: localhost.

1.2.5.1.1. Example configuration file for generating a certificate

The following example configuration file and OpenSSL commands provide an example for how to
generate a TLS certificate by using OpenSSL. View the following csr.cnf configuration file, which
defines the configuration settings for generating certificates with OpenSSL.

[req] # Main settings
default_bits = 2048 # Default key size in bits.
prompt = no # Disables prompting for certificate values so the configuration file values are
used.
default_md = sha256 # Specifies the digest algorithm.
req_extensions = req_ext # Specifies the configuration file section that includes any extensions.
distinguished_name = dn # Specifies the section that includes the distinguished name information.

[dn] # Distinguished name settings
C = US # Country
ST = North Carolina # State or province
L = Raleigh # Locality
O = Red Hat Open Shift # Organization
OU = Red Hat Advanced Container Management # Organizational unit
CN = management-ingress # Common name.

[req_ext] # Extensions
subjectAltName = @alt_names # Subject alternative names

[alt_names] # Subject alternative names
DNS.1 = management-ingress
DNS.2 = multicloud-console.apps.grchub2.dev08.red-chesterfield.com
DNS.3 = localhost
DNS.4 = 127.0.0.1

[v3_ext] # x509v3 extensions
authorityKeyIdentifier=keyid,issuer:always # Specifies the public key that corresponds to the private
key that is used to sign a certificate.
basicConstraints=CA:FALSE # Indicates whether the certificate is a CA certificate during
the certificate chain verification process.
#keyUsage=keyEncipherment,dataEncipherment # Defines the purpose of the key that is contained
in the certificate.
extendedKeyUsage=serverAuth # Defines the purposes for which the public key can be
used.
subjectAltName=@alt_names # Identifies the subject alternative names for the identify
that is bound to the public key by the CA.

Note: Be sure to update the SAN labeled, DNS.2 with the correct hostname for your management
ingress.

1.2.5.1.2. OpenSSL commands for generating a certificate
The following OpenSSL commands are used with the preceding configuration file to generate the

CHAPTER 1. SECURITY

17

The following OpenSSL commands are used with the preceding configuration file to generate the
required TLS certificate.

1. Generate your certificate authority (CA) RSA private key:

openssl genrsa -out ca.key 4096

2. Generate a self-signed CA certificate by using your CA key:

openssl req -x509 -new -nodes -key ca.key -subj "/C=US/ST=North
Carolina/L=Raleigh/O=Red Hat OpenShift" -days 400 -out ca.crt

3. Generate the RSA private key for your certificate:

openssl genrsa -out ingress.key 4096

4. Generate the Certificate Signing request (CSR) by using the private key:

openssl req -new -key ingress.key -out ingress.csr -config csr.cnf

5. Generate a signed certificate by using your CA certificate and key and CSR:

openssl x509 -req -in ingress.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out ingress.crt -
sha256 -days 300 -extensions v3_ext -extfile csr.cnf

6. Examine the certificate contents:

openssl x509 -noout -text -in ./ingress.crt

1.2.5.2. Replace the Bring Your Own (BYO) ingress certificate

Complete the following steps to replace your BYO ingress certificate:

1. Create the byo-ingress-tls secret by using your certificate and private key. Run the following
command:

kubectl -n open-cluster-management create secret tls byo-ingress-tls-secret --cert
./ingress.crt --key ./ingress.key

2. Verify that the secret is created in the correct namespace.

kubectl get secret -n open-cluster-management | grep byo-ingress | grep tls

3. Create a secret containing the CA certificate by running the following command:

kubectl -n open-cluster-management create secret tls byo-ca-cert --cert ./ca.crt --key ./ca.key

4. Edit the management ingress deployment. Get the name of the deployment. Run the following
commands:

export MANAGEMENT_INGRESS=`oc get deployment -o custom-columns=:.metadata.name
| grep management-ingress`

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

18

oc edit deployment $MANAGEMENT_INGRESS -n open-cluster-management

Replace the multicloud-ca-cert string with byo-ca-cert.

Replace the $MANAGEMENT_INGRESS-tls-secret string with byo-ingress-tls-secret.

Save your deployment and close the editor. The management ingress automatically restarts.

5. After the management ingress pod has restarted, navigate to the Red Hat Advanced Cluster
Management for Kubernetes console from your browser. Verify that the current certificate is
your certificate, and that all console access and login functionality remain the same.

1.2.5.3. Restore the default self-signed certificate for management ingress

1. Edit the management ingress deployment. Replace the string multicloud-ca-cert with byo-ca-
cert. Get the name of the deployment. Run the following commands:

export MANAGEMENT_INGRESS=`oc get deployment -o custom-columns=:.metadata.name
| grep management-ingress`

oc edit deployment $MANAGEMENT_INGRESS -n open-cluster-management

a. Replace the byo-ca-cert string with multicloud-ca-cert.

b. Replace the byo-ingress-tls-secret string with the $MANAGEMENT_INGRESS-tls-secret.

c. Save your deployment and close the editor. The management ingress automatically restarts.

2. After all pods are restarted, navigate to the Red Hat Advanced Cluster Management for
Kubernetes console from your browser. Verify that the current certificate is your certificate, and
that all console access and login functionality remain the same.

3. Delete the Bring Your Own (BYO) ingress secret and ingress CA certificate by running the
following commands:

oc delete secret -n open-cluster-management byo-ingress-tls-secret
oc delete secret -n open-cluster-management byo-ca-cert

See Certificates for more information about certificates that are created and managed by Red Hat
Advanced Cluster Management for Kubernates. Return to the Security page for more information on
securing your cluster.

CHAPTER 1. SECURITY

19

CHAPTER 2. GOVERNANCE AND RISK
Enterprises must meet internal standards for software engineering, secure engineering, resiliency,
security, and regulatory compliance for workloads hosted on private, multi and hybrid clouds. Red Hat
Advanced Cluster Management for Kubernetes governance provides an extensible policy framework for
enterprises to introduce their own security policies.

2.1. GOVERNANCE ARCHITECTURE

Enhance the security for your cluster with the Red Hat Advanced Cluster Management for Kubernetes
governance lifecycle. The product governance lifecycle is based on defined policies, processes, and
procedures to manage security and compliance from a central interface page. View the following
diagram of the governance architecture:

The governance architecture is composed of the following components:

Governance and risk dashboard: Provides a summary of your cloud governance and risk details,
which include policy and cluster violations.
Notes:

When a policy is propagated to a managed cluster, the replicated policy is named
namespaceName.policyName. When you create a policy, make sure that the length of the
namespaceName.policyName is less than 63 characters due to the Kubernetes limit for
object names.

When you search for a policy in the hub cluster, you might also receive the name of the
replicated policy on your managed cluster. For example, if you search for policy-dhaz-cert,
the following policy name from the hub cluster might appear: default.policy-dhaz-cert.

Policy-based governance framework: Supports policy creation and deployment to various
managed clusters based on attributes associated with clusters, such as a geographical region.
See the policy-collection repository to view examples of the predefined policies, and
instructions on deploying policies to your cluster. You can also contribute custom policy
controllers and policies.

Policy controller: Evaluates one or more policies on the managed cluster against your specified
control and generates Kubernetes events for violations. Violations are propagated to the hub
cluster. Policy controllers that are included in your installation are the following: Kubernetes
configuration, Certificate, and IAM. You can also create a custom policy controller.

Open source community: Supports community contributions with a foundation of the Red Hat
Advanced Cluster Management policy framework. Policy controllers and third-party policies are
also a part of the open-cluster-management/policy-collection repository. Learn how to

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

20

https://github.com/open-cluster-management/policy-collection

integrate third-party policies with Red Hat Advanced Cluster Management for Kubernetes. For
more information, see Integrate third-party policy controllers .

Learn about the structure of an Red Hat Advanced Cluster Management for Kubernetes policy
framework, and how to use the Red Hat Advanced Cluster Management for Kubernetes Governance
and risk dashboard.

Policy overview

Policy controllers

Policy samples

Manage security policies

2.2. POLICY OVERVIEW

Use the Red Hat Advanced Cluster Management for Kubernetes security policy framework to create
custom policy controllers and other policies. Kubernetes CustomResourceDefinition (CRD) instance are
used to create policies. For more information about CRDs, see Extend the Kubernetes API with
CustomResourceDefinitions.

Each Red Hat Advanced Cluster Management for Kubernetes policy can have at least one or more
templates. For more details about the policy elements, view the following Policy YAML table section on
this page.

The policy requires a PlacementRule that defines the clusters that the policy document is applied to,
and a PlacementBinding that binds the Red Hat Advanced Cluster Management for Kubernetes policy to
the placement rule.

Important:

You must create a placementRule to apply your policies to the managed cluster, and bind the
placementRule with a PlacementBinding.

You can create a policy in any namespace on the hub cluster except the cluster namespace. If
you create a policy in the cluster namespace, it is deleted by Red Hat Advanced Cluster
Management for Kubernetes.

Each client and provider is responsible for ensuring that their managed cloud environment
meets internal enterprise security standards for software engineering, secure engineering,
resiliency, security, and regulatory compliance for workloads hosted on Kubernetes clusters. Use
the governance and security capability to gain visibility and remediate configurations to meet
standards.

2.2.1. Policy YAML structure

When you create a policy, you must include required parameter fields and values. Depending on your
policy controller, you might need to include other optional fields and values. View the following YAML
structure for explained parameter fields:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 annotations:

CHAPTER 2. GOVERNANCE AND RISK

21

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

2.2.2. Policy YAML table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name for identifying the policy
resource.

 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
spec:
 policy-templates:
 - objectDefinition:
 apiVersion:
 kind:
 metadata:
 name:
 spec:
 remediationAction:
 disabled:

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name:
placementRef:
 name:
 kind:
 apiGroup:
subjects:
- name:
 kind:
 apiGroup:

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name:
spec:
 clusterConditions:
 - type:
 clusterLabels:
 matchLabels:
 cloud:

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

22

metadata.annotations Optional. Used to specify a set of security details
that describes the set of standards the policy is trying
to validate. Note: You can view policy violations
based on the standards and categories that you
define for your policy on the Policies page, from the
console.

annotations.policy.open-cluster-
management.io/standards

The name or names of security standards the policy is
related to. For example, National Institute of
Standards and Technology (NIST) and Payment
Card Industry (PCI).

annotations.policy.open-cluster-
management.io/categories

A security control category represent specific
requirements for one or more standards. For
example, a System and Information Integrity
category might indicate that your policy contains a
data transfer protocol to protect personal
information, as required by the HIPAA and PCI
standards.

annotations.policy.open-cluster-
management.io/controls

The name of the security control that is being
checked. For example, Center of Internet Security
(CIS) and certificate policy controller.

spec.policy-templates Required. Used to create one or more policies to
apply to a managed cluster.

spec.disabled Required. Set the value to true or false. The
disabled parameter provides the ability to enable
and disable your policies.

spec.remediationAction Optional. Specifies the remediation of your policy.
The parameter values are enforce and inform. If
specified, the spec.remediationAction value that
is defined overrides the remediationAction
parameter defined in the child policy, from the
policy-templates section. For example, if
spec.remediationAction value section is set to
enforce, then the remediationAction in the
policy-templates section is set to enforce during
runtime. Important: Some policies might not support
the enforce feature.

Field Description

2.2.3. Policy sample file

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:

CHAPTER 2. GOVERNANCE AND RISK

23

 name: policy-role
 annotations:
 policy.open-cluster-management.io/standards: NIST SP 800-53
 policy.open-cluster-management.io/categories: AC Access Control
 policy.open-cluster-management.io/controls: AC-3 Access Enforcement
spec:
 remediationAction: inform
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: policy-role-example
 spec:
 remediationAction: inform # the policy-template spec.remediationAction is overridden by the
preceding parameter value for spec.remediationAction.
 severity: high
 namespaceSelector:
 exclude: ["kube-*"]
 include: ["default"]
 object-templates:
 - complianceType: mustonlyhave # role definition should exact match
 objectDefinition:
 apiVersion: rbac.authorization.k8s.io/v1
 kind: Role
 metadata:
 name: sample-role
 rules:
 - apiGroups: ["extensions", "apps"]
 resources: ["deployments"]
 verbs: ["get", "list", "watch", "delete","patch"]

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-policy-role
placementRef:
 name: placement-policy-role
 kind: PlacementRule
 apiGroup: apps.open-cluster-management.io
subjects:
- name: policy-role
 kind: Policy
 apiGroup: policy.open-cluster-management.io

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: placement-policy-role
spec:
 clusterConditions:
 - status: "True"
 type: ManagedClusterConditionAvailable

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

24

See Managing security policies to create and update a policy. You can also enable and update Red Hat
Advanced Cluster Management policy controllers to validate the compliance of your policies. See Policy
controllers. See Governance and risk for more policy topics.

2.3. POLICY CONTROLLERS

Policy controllers monitor and report whether your cluster is compliant with a policy. Use the Red Hat
Advanced Cluster Management for Kubernetes policy framework by using the out of the box policy
templates to apply predefined policy controllers, and policies. The policy controllers are Kubernetes
CustomResourceDefinition (CRD) instance. For more information about CRDs, see Extend the
Kubernetes API with CustomResourceDefinitions. Policy controllers remediate policy violations to make
the cluster status be compliant.

You can create custom policies and policy controllers with the product policy framework. See Creating a
custom policy controller for more information.

Important: Only the configuration policy controller supports the enforce feature. You must manually
remediate policies, where the policy controller does not support the enforce feature.

View the following topics to learn more about the following Red Hat Advanced Cluster Management for
Kubernetes policy controllers:

Kubernetes configuration policy controller

Certificate policy controller

IAM policy controller

Refer to Governance and risk for more topics about managing your policies.

2.3.1. Kubernetes configuration policy controller

Configuration policy controller can be used to configure any Kubernetes resource and apply security
policies across your clusters.

The configuration policy controller communicates with the local Kubernetes API server to get the list of
your configurations that are in your cluster. For more information about CRDs, see Extend the
Kubernetes API with CustomResourceDefinitions.

The configuration policy controller is created on the hub cluster during installation. Configuration policy
controller supports the enforce feature and monitors the compliance of the following policies:

Memory usage policy

Namespace policy

Image vulnerability policy

Pod nginx policy

Pod security policy

 clusterSelector:
 matchExpressions:
 - {key: environment, operator: In, values: ["dev"]}

CHAPTER 2. GOVERNANCE AND RISK

25

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

Role policy

Rolebinding policy

Security content constraints (SCC) policy

ETCD encryption policy

When the remediationAction for the configuration policy is set to enforce, the controller creates a
replicate policy on the target managed clusters.

2.3.1.1. Configuration policy controller YAML structure

2.3.1.2. Configuration policy sample

Name: configuration-policy-example
Namespace:
Labels:
APIVersion: policy.open-cluster-management.io/v1
Kind: ConfigPolicy
Metadata:
 Finalizers:
 finalizer.policy.open-cluster-management.io
Spec:
 Conditions:
 Ownership:
 NamespaceSelector:
 Exclude:
 Include:
 RemediationAction:
 Status:
 CompliancyDetails:
 Configuration-Policy-Example:
 Default:
 Kube - Public:
 Compliant: Compliant
 Events:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigPolicy
metadata:
 name: policy-config
spec:
 namespaceSelector:
 include: ["default"]
 exclude: []
 remediationAction: inform
 severity: low
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: Pod
 metadata:
 name: nginx-pod

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

26

2.3.1.3. Configuration policy YAML table

Table 2.1. Parameter table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to ConfigPolicy to indicate
the type of policy.

metadata.name Required. The name of the policy.

spec Required. Specifications of which configuration
policy to monitor and how to remediate them.

spec.namespaceSelector Required. The namespaces within the hub cluster
that the policy is applied to. Enter at least one
namespace for the include parameter, which are the
namespaces you want to apply to the policy to. The
exclude parameter specifies the namespaces you
explicitly do not want to apply the policy to.

spec.remediationAction Required. Specifies the remediation of your policy.
Enter inform

remediationAction.severity Required. Specifies the severity when the policy is
non-compliant. Use the following parameter values:
low, medium, or high.

 spec:
 containers:
 - image: nginx:1.7.9
 name: nginx
 ports:
 - containerPort: 80

CHAPTER 2. GOVERNANCE AND RISK

27

remediationAction.complianceType Required. Used to list expected behavior for roles
and other Kubernetes object that must be evaluated
or applied to the managed clusters. You must use the
following verbs as parameter values:

mustonlyhave: Indicates that an object must exist
with the exact name and relevant fields.

musthave: Indicates an object must exist with the
same name as specified object-template. The other
fields in the template are a subset of what exists in
the object.

mustnothave: Indicated that an object with the
same name or labels cannot exist and need to be
deleted, regardless of the specification or rules.

Field Description

Learn about how policies are applied on your hub cluster. See Policy samples for more details. Learn
how to create and customize policies, see Manage security policies .

See Policy controllers for more information about controllers.

2.3.2. Certificate policy controller

Certificate policy controller can be used to detect certificates that are close to expiring, and detect time
durations (hours) that are too long or contain DNS names that fail to match specified patterns.

Configure and customize the certificate policy controller by updating the following parameters in your
controller policy:

minimumDuration

minimumCADuration

maximumDuration

maximumCADuration

allowedSANPattern

disallowedSANPattern

Your policy might become non-compliant due to either of the following scenarios:

When a certificate expires in less than the minimum duration of time or exceeds the maximum
time.

When DNS names fail to match the specified pattern.

The certificate policy controller is created on your managed cluster. The controller communicates with
the local Kubernetes API server to get the list of secrets that contain certificates and determine all non-
compliant certificates. For more information about CRDs, see Extend the Kubernetes API with
CustomResourceDefinitions.

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

28

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

Certificate policy controller does not support the enforce feature.

2.3.2.1. Certificate policy controller YAML structure

View the following example of a certificate policy and review the element in the YAML table:

2.3.2.1.1. Certificate policy controller YAML table

Table 2.2. Parameter table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to CertificatePolicy to
indicate the type of policy.

metadata.name Required. The name to identify the policy.

netadata.namespace Required. The namespaces within the managed
cluster where the policy is created.

metadata.labels Optional. In a certificate policy, the
category=system-and-information-integrity
label categorizes the policy and facilitates querying
the certificate policies. If there is a different value for
the category key in your certificate policy, the value
is overridden by the certificate controller.

spec Required. Specifications of which certificates to
monitor and refresh.

apiVersion: policy.open-cluster-management.io/v1
kind: CertificatePolicy
metadata:
 name: certificate-policy-example
 namespace:
 labels: category=system-and-information-integrity
spec:
 namespaceSelector:
 include: ["default"]
 exclude: ["kube-*"]
 remediationAction:
 severity:
 minimumDuration:
 minimumCADuration:
 maximumDuration:
 maximumCADuration:
 allowedSANPattern:
 disallowedSANPattern:

CHAPTER 2. GOVERNANCE AND RISK

29

spec.namespaceSelector Required. Managed cluster namespace to which you
want to apply the policy. Enter parameter values for
Include and Exclude. Notes:

• When you create multiple certificate policies and
apply them to the same managed cluster, each policy
namespaceSelector must be assigned a different
value.

• If the namespaceSelector for the certificate
policy controller does not match any namespace, the
policy is considered compliant.

spec.remediationAction Required. Specifies the remediation of your policy.
Set the parameter value to inform. Certificate policy
controller only supports inform feature.

spec.severity Optional. Informs the user of the severity when the
policy is non-compliant. Use the following parameter
values: low, medium, or high.

spec.minimumDuration Required. When a value is not specified, the default
value is 100h. This parameter specifies the smallest
duration (in hours) before a certificate is considered
non-compliant. The parameter value uses the time
duration format from Golang. See Golang Parse
Duration for more information.

spec.minimumCADuration Optional. Set a value to identify signing certificates
that might expire soon with a different value from
other certificates. If the parameter value is not
specified, the CA certificate expiration is the value
used for the minimumDuration. See Golang Parse
Duration for more information.

spec.maximumDuration Optional. Set a value to identify certificates that
have been created with a duration that exceeds your
desired limit. The parameter uses the time duration
format from Golang. See Golang Parse Duration for
more information.

spec.maximumCADuration Optional. Set a value to identify signing certificates
that have been created with a duration that exceeds
your defined limit. The parameter uses the time
duration format from Golang. See Golang Parse
Duration for more information.

Field Description

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

30

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

spec.allowedSANPattern Optional. A regular expression that must match every
SAN entry that you have defined in your certificates.
This parameter checks DNS names against patterns.
See the Golang Regular Expression syntax for more
information.

spec.disallowedSANPattern Optional. A regular expression that must not match
any SAN entries you have defined in your
certificates. This parameter checks DNS names
against patterns. See the Golang Regular Expression
syntax for more information.

Field Description

2.3.2.2. Certificate policy sample

When your certificate policy controller is created on your hub cluster, a replicated policy is created on
your managed cluster. Your certificate policy on your managed cluster might resemble the following file:

Learn how to manage a certificate policy, see Managing certificate policies for more details. Refer to
Policy controllers for more topics.

2.3.3. IAM policy controller

Identity and Access Management (IAM) policy controller can be used to receive notifications about IAM
policies that are non-compliant. The compliance check is based on the parameters that you configure in
the IAM policy.

The IAM policy controller checks for compliance of the number of cluster administrators that you allow in
your cluster. IAM policy controller communicates with the local Kubernetes API server. For more
information, see Extend the Kubernetes API with CustomResourceDefinitions .

The IAM policy controller runs on your managed cluster.

apiVersion: policy.open-cluster-management.io/v1
kind: CertificatePolicy
metadata:
 name: certificate-policy-1
 namespace: kube-system
 label:
 category: "System-Integrity"
spec:
 namespaceSelector:
 include: ["default", "kube-*"]
 exclude: ["kube-system"]
 remediationAction: inform
 minimumDuration: 100h
 minimumCADuration: 200h
 maximumDuration: 2161h
 maximumCADuration: 43920h
 allowedSANPattern: "[[:alpha:]]"
 disallowedSANPattern: "[*]"

CHAPTER 2. GOVERNANCE AND RISK

31

https://golang.org/pkg/regexp/syntax/
https://golang.org/pkg/regexp/syntax/
https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

2.3.3.1. IAM policy YAML structure

View the following example of an IAM policy and review the parameters in the YAML table:

2.3.3.2. IAM policy YAMl table

View the following parameter table for descriptions:

Table 2.3. Parameter table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name for identifying the policy
resource.

spec Required. Add configuration details for your policy.

spec.namespaceSelector Required. The namespaces within the hub cluster
that the policy is applied to. Enter at least one
namespace for the include parameter, which are the
namespaces you want to apply to the policy to. The
exclude parameter specifies the namespaces you
explicitly do not want to apply the policy to. Note: A
namespace that is specified in the object template of
a policy controller overrides the namespace in the
preceding parameter values.

spec.remediationAction Required. Specifies the remediation of your policy.
Enter inform.

spec.maxClusterRoleBindingUsers Required. Maximum number of IAM role bindings
that are available before a policy is considered non-
compliant.

apiVersion: policy.open-cluster-management.io/v1
kind: IamPolicy
metadata:
 name:
spec:
 severity:
 namespaceSelector:
 include:
 exclude:
 remediationAction:
 maxClusterRoleBindingUsers:

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

32

2.3.3.3. IAM policy sample

Learn how to manage an IAM policy, see Managing IAM policies for more details. Refer to Policy
controllers for more topics.

2.3.4. Integrate third-party policy controllers

Integrate third-party policies to create custom annotations within the policy templates to specify one or
more compliance standards, control categories, and controls.

You can also use the third-party party policies from the policy-collection/community.

Learn to integrate the following third-party policies:

Integrating gatekeeper constraints and constraint templates

2.3.5. Creating a custom policy controller

Learn to write, apply, view, and update your custom policy controllers. You can create a YAML file for
your policy controller to deploy onto your cluster. View the following sections to create a policy
controller:

2.3.5.1. Writing a policy controller

Use the policy controller framework that is in the multicloud-operators-policy-controller repository.
Complete the following steps to create a policy controller:

1. Clone the multicloud-operators-policy-controller repository by running the following
command:

git clone git@github.com:open-cluster-management/multicloud-operators-policy-controller.git

2. Customize the controller policy by updating the policy schema definition. Your policy might
resemble the following content:

apiVersion: policy.open-cluster-management.io/v1
kind: IamPolicy # limit clusteradminrole and report violation
metadata:
 name: {{name}}-example
spec:
 severity: medium
 namespaceSelector:
 include: ["*"]
 exclude: ["kube-*", "openshift-*"]
 remediationAction: inform # will be overridden by remediationAction in parent policy
 maxClusterRoleBindingUsers: 5

metadata:
 name: samplepolicies.policies.open-cluster-management.io
spec:
 group: policy.open-cluster-management.io
 names:
 kind: SamplePolicy

CHAPTER 2. GOVERNANCE AND RISK

33

https://github.com/open-cluster-management/policy-collection/tree/master/community
https://github.com/open-cluster-management/multicloud-operators-policy-controller

3. Update the policy controller to watch for the SamplePolicy kind. Run the following command:

for file in $(find . -name "*.go" -type f); do sed -i "" "s/SamplePolicy/g" $file; done
for file in $(find . -name "*.go" -type f); do sed -i "" "s/samplepolicy-controller/samplepolicy-
controller/g" $file; done

4. Recompile and run the policy controller by completing the following steps:

a. Log in to your cluster.

b. Select the user icon, then click Configure client.

c. Copy and paste the configuration information into your command line, and press Enter.

d. Run the following commands to apply your policy CRD and start the controller:

export GO111MODULE=on

kubectl apply -f deploy/crds/policy.open-cluster-management.io_samplepolicies_crd.yaml

operator-sdk run --local --verbose

You might receive the following output that indicates that your controller runs:

{“level”:”info”,”ts”:1578503280.511274,”logger”:”controller-
runtime.manager”,”msg”:”starting metrics server”,”path”:”/metrics”}
{“level”:”info”,”ts”:1578503281.215883,”logger”:”controller-
runtime.controller”,”msg”:”Starting Controller”,”controller”:”samplepolicy-controller”}
{“level”:”info”,”ts”:1578503281.3203468,”logger”:”controller-
runtime.controller”,”msg”:”Starting workers”,”controller”:”samplepolicy-controller”,”worker
count”:1}
Waiting for policies to be available for processing…

e. Create a policy and verify that the controller retrieves it and applies the policy onto your
cluster. Run the following command:

kubectl apply -f deploy/crds/policy.open-cluster-management.io_samplepolicies_crd.yaml

When the policy is applied, a message appears to indicate that policy is monitored and
detected by your custom controller. The mesasge might resemble the following contents:

 listKind: SamplePolicyList
 plural: samplepolicies
 singular: samplepolicy

{"level":"info","ts":1578503685.643426,"logger":"controller_samplepolicy","msg":"Reconciling
SamplePolicy","Request.Namespace":"default","Request.Name":"example-samplepolicy"}
{"level":"info","ts":1578503685.855259,"logger":"controller_samplepolicy","msg":"Reconciling
SamplePolicy","Request.Namespace":"default","Request.Name":"example-samplepolicy"}
Available policies in namespaces:
namespace = kube-public; policy = example-samplepolicy
namespace = default; policy = example-samplepolicy
namespace = kube-node-lease; policy = example-samplepolicy

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

34

5. Check the status field for compliance details by running the following command:

kubectl describe SamplePolicy example-samplepolicy -n default

Your output might resemble the following contents:

6. Change the policy rules and policy logic to introduce new rules for your policy controller.
Complete the following steps:

a. Add new fields in your YAML file by updating the SamplePolicySpec. Your specification
might resemble the following content:

b. Update the SamplePolicySpec structure in the samplepolicy_controller.go with new fields.

c. Update the PeriodicallyExecSamplePolicies function in the samplepolicy_controller.go
file with new logic to run the policy controller. View an example of the
PeriodicallyExecSamplePolicies field, see open-cluster-management/multicloud-
operators-policy-controller.

d. Recompile and run the policy controller. See Writing a policy controller

Your policy controller is functional.

status:
 compliancyDetails:
 example-samplepolicy:
 cluster-wide:
 - 5 violations detected in namespace `cluster-wide`, there are 0 users violations
 and 5 groups violations
 default:
 - 0 violations detected in namespace `default`, there are 0 users violations
 and 0 groups violations
 kube-node-lease:
 - 0 violations detected in namespace `kube-node-lease`, there are 0 users violations
 and 0 groups violations
 kube-public:
 - 1 violations detected in namespace `kube-public`, there are 0 users violations
 and 1 groups violations
 compliant: NonCompliant

spec:
 description: SamplePolicySpec defines the desired state of SamplePolicy
 properties:
 labelSelector:
 additionalProperties:
 type: string
 type: object
 maxClusterRoleBindingGroups:
 type: integer
 maxClusterRoleBindingUsers:
 type: integer
 maxRoleBindingGroupsPerNamespace:
 type: integer
 maxRoleBindingUsersPerNamespace:
 type: integer

CHAPTER 2. GOVERNANCE AND RISK

35

https://github.com/open-cluster-management/multicloud-operators-policy-controller/blob/master/pkg/controller/samplepolicy/samplepolicy_controller.go
https://github.com/open-cluster-management/multicloud-operators-policy-controller/blob/master/pkg/controller/samplepolicy/samplepolicy_controller.go#L208

2.3.5.2. Deploying your controller to the cluster

Deploy your custom policy controller to your cluster and integrate the policy controller with the
Governance and risk dashboard. Complete the following steps:

1. Build the policy controller image by running the following command:

operator-sdk build <username>/multicloud-operators-policy-controller:latest

2. Run the following command to push the image to a repository of your choice. For example, run
the following commands to push the image to Docker Hub:

docker login

docker push <username>/multicloud-operators-policy-controller

3. Configure kubectl to point to a cluster managed by Red Hat Advanced Cluster Management for
Kubernetes.

4. Replace the operator manifest to use the built-in image name and update the namespace to
watch for policies. The namespace must be the cluster namespace. Your manifest might
resemble the following contents:

sed -i "" 's|open-cluster-management/multicloud-operators-policy-controller|ycao/multicloud-
operators-policy-controller|g' deploy/operator.yaml
sed -i "" 's|value: default|value: <namespace>|g' deploy/operator.yaml

5. Update the RBAC role by running the following commands:

sed -i "" 's|samplepolicies|testpolicies|g' deploy/cluster_role.yaml
sed -i "" 's|namespace: default|namespace: <namespace>|g'
deploy/cluster_role_binding.yaml

6. Deploy your policy controller to your cluster:

a. Set up a service account for cluster by runnng the following command:

kubectl apply -f deploy/service_account.yaml -n <namespace>

b. Set up RBAC for the operator by running the following commands:

kubectl apply -f deploy/role.yaml -n <namespace>

kubectl apply -f deploy/role_binding.yaml -n <namespace>

c. Set up RBAC for your PolicyController. Run the following commands:

kubectl apply -f deploy/cluster_role.yaml
kubectl apply -f deploy/cluster_role_binding.yaml

d. Set up a CustomResourceDefinition (CRD) by running the following command:

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

36

kubectl apply -f deploy/crds/policies.open-cluster-
management.io_samplepolicies_crd.yaml

e. Deploy the multicloud-operator-policy-controller by running the following command:

kubectl apply -f deploy/operator.yaml -n <namespace>

f. Verify that the controller is functional by running the following command:

kubectl get pod -n <namespace>

7. You must integrate your policy controller by creating a policy-template for the controller to
monitor. For more information, see Creating a cluster security policy from the console .

2.3.5.2.1. Scaling your controller deployment

Policy controller deployments do not support deletetion or removal. You can scale your deployment to
update which pods the deployment is applied to. Complete the following steps:

1. Log in to your managed cluster.

2. Navigate to the deployment for your custom policy controller.

3. Scale the deployment. When you scale your deployment to zero pods, the policy controler
deployment is disabled.

For more information on deployments, see OpenShift Container Platform Deployments.

Your policy controller is deployed and integrated on your cluster. View the product policy controllers, see
Policy controllers for more information.

2.4. POLICY SAMPLES

View policy samples to learn how to define rules, processes, and controls on the hub cluster when you
create and manage policies in Red Hat Advanced Cluster Management for Kubernetes.

Note: You can copy and paste an existing policy in to the Policy YAML. The values for the parameter
fields are automatically entered when you paste your existing policy. You can also search the contents in
your policy YAML file with the search feature.

View the following policy samples to view how specfic policies are applied:

Kubernetes configuration policy controller sample

Image vulnerability policy sample

Memory usage policy sample

Namespace policy sample

Pod nginx policy sample

Pod security policy sample

Role policy sample

CHAPTER 2. GOVERNANCE AND RISK

37

https://docs.openshift.com/container-platform/4.5/applications/deployments/what-deployments-are.html#deployments-kube-deployments_what-deployments-are

Rolebinding policy sample

Security context constraints policy sample

Certificate policy sample

IAM policy sample

Gatekeeper policy sample

ETCD encryption policy sample

Refer to Governance and risk for more topics.

2.4.1. Memory usage policy

Kubernetes configuration policy controller monitors the status of the memory usage policy. Use the
memory usage policy to limit or restrict your memory and compute usage. For more information, see
Limit Ranges in the Kubernetes documentation. Learn more details about the memory usage policy
structure in the following sections.

2.4.1.1. Memory usage policy YAML structure

Your memory usage policy might resemble the following YAML file:

2.4.1.2. Memory usage policy table

 apiVersion: policy.open-cluster-management.io/v1
 kind: Policy
 metadata:
 name: policy-limitrange
 namespace:
 spec:
 complianceType:
 remediationAction:
 namespaces:
 exclude:
 include:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion:
 kind:
 metadata:
 name:
 spec:
 limits:
 - default:
 memory:
 defaultRequest:
 memory:
 type:
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

38

https://kubernetes.io/docs/concepts/policy/limit-range/

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name for identifying the policy
resource.

metadata.namespaces Optional.

spec.namespace Required. The namespaces within the hub cluster
that the policy is applied to. Enter parameter values
for include, which are the namespaces you want to
apply to the policy to. The exclude parameter
specifies the namespaces you explicitly do not want
to apply the policy to. Note: A namespace that is
specified in the object template of a policy controller
overrides the namespace in the corresponding
parent policy.

remediationAction Optional. Specifies the remediation of your policy.
The parameter values are enforce and inform.
Important: Some policies might not support the
enforce feature.

disabled Required. Set the value to true or false. The
disabled parameter provides the ability to enable
and disable your policies.

spec.complianceType Required. Set the value to "musthave"

spec.object-template Optional. Used to list any other Kubernetes object
that must be evaluated or applied to the managed
clusters.

2.4.1.3. Memory usage policy sample

 apiVersion: policy.open-cluster-management.io/v1
 kind: Policy
 metadata:
 name: policy-limitrange
 namespace: mcm
 spec:
 complianceType: musthave
 remediationAction: inform
 namespaces:
 exclude: ["kube-*"]
 include: ["default"]

CHAPTER 2. GOVERNANCE AND RISK

39

See Managing memory usage policies for more information. View other configuration policies that are
monitored by controller, see the Kubernetes configuration policy controller page.

2.4.2. Namespace policy

Kubernetes configuration policy controller monitors the status of your namespace policy. Apply the
namespace policy to define specific rules for your namespace. Learn more details about the namespace
policy structure in the following sections.

2.4.2.1. Namespace policy YAML structure

2.4.2.2. Namespace policy YAML table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: LimitRange # limit memory usage
 metadata:
 name: mem-limit-range
 spec:
 limits:
 - default:
 memory: 512Mi
 defaultRequest:
 memory: 256Mi
 type: Container
 ...

 apiVersion: policy.open-cluster-management.io/v1
 kind: Policy
 metadata:
 name: policy-namespace-1
 namespace:
 spec:
 complianceType:
 remediationAction:
 namespaces:
 exclude:
 include:
 object-templates:
 - complianceType:
 objectDefinition:
 kind:
 apiVersion:
 metadata:
 name:
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

40

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name for identifying the policy
resource.

metadata.namespaces Optional.

spec.namespace Required. The namespaces within the hub cluster
that the policy is applied to. Enter parameter values
for include, which are the namespaces you want to
apply to the policy to. The exclude parameter
specifies the namespaces you explicitly do not want
to apply the policy to. Note: A namespace that is
specified in the object template of a policy controller
overrides the namespace in the corresponding
parent policy.

remediationAction Optional. Specifies the remediation of your policy.
The parameter values are enforce and inform.
Important: Some policies might not support the
enforce feature.

disabled Required. Set the value to true or false. The
disabled parameter provides the ability to enable
and disable your policies.

spec.complianceType Required. Set the value to "musthave"

spec.object-template Optional. Used to list any other Kubernetes object
that must be evaluated or applied to the managed
clusters.

Field Description

2.4.2.3. Namespace policy sample

Your namespace policy might resemble the following YAML file:

 apiVersion: policy.open-cluster-management.io/v1
 kind: Policy
 metadata:
 name: policy-namespace-1
 namespace: open-cluster-management
 spec:
 complianceType: musthave
 remediationAction: inform
 namespaces:
 exclude: ["kube-*"]
 include: ["default"]
 object-templates:

CHAPTER 2. GOVERNANCE AND RISK

41

Manage your namespace policy. See Managing namespace policies for more information. See
Kubernetes configuration policy controller to learn about other configuration policies.

2.4.3. Image vulnerability policy

Apply the image vulnerability policy to detect if container images have vulnerabilities by leveraging the
Container Security Operator. The policy installs the Container Security Operator on your managed
cluster if it is not installed.

The image vulnerability policy is checked by the Kubernetes configuration policy controller. For more
information about the Security Operator, see the Container Security Operator from the Quay repository.

Note: Image vulnerability policy is not functional during a disconnected installation.

2.4.3.1. Image vulnerability policy YAML structure

 - complianceType: musthave
 objectDefinition:
 kind: Namespace # must have namespace 'prod'
 apiVersion: v1
 metadata:
 name: prod
 ...

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-imagemanifestvulnpolicy
 namespace: default
 annotations:
 policy.open-cluster-management.io/standards: NIST-CSF
 policy.open-cluster-management.io/categories: DE.CM Security Continuous Monitoring
 policy.open-cluster-management.io/controls: DE.CM-8 Vulnerability Scans
spec:
 remediationAction:
 disabled:
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:
 spec:
 remediationAction:
 severity: high
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion: operators.coreos.com/v1alpha1
 kind: Subscription
 metadata:
 name: container-security-operator
 namespace:
 spec:
 channel:

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

42

https://github.com/quay/container-security-operator

2.4.3.2. Image vulnerability policy YAML table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

 installPlanApproval:
 name:
 source:
 sourceNamespace:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:
 spec:
 remediationAction:
 severity:
 namespaceSelector:
 exclude:
 include:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion: secscan.quay.redhat.com/v1alpha1
 kind: ImageManifestVuln # checking for a kind

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-policy-imagemanifestvulnpolicy
 namespace: default
placementRef:
 name:
 kind:
 apiGroup:
subjects:
- name:
 kind:
 apiGroup:

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: placement-policy-imagemanifestvulnpolicy
 namespace: default
spec:
 clusterConditions:
 - status:
 type:
 clusterSelector:
 matchExpressions:
 [] # selects all clusters if not specified

CHAPTER 2. GOVERNANCE AND RISK

43

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name for identifying the policy
resource.

metadata.namespaces Optional.

spec.namespace Required. The namespaces within the hub cluster
that the policy is applied to. Enter parameter values
for include, which are the namespaces you want to
apply to the policy to. The exclude parameter
specifies the namespaces you explicitly do not want
to apply the policy to. Note: A namespace that is
specified in the object template of a policy controller
overrides the namespace in the corresponding
parent policy.

remediationAction Optional. Specifies the remediation of your policy.
The parameter values are enforce and inform.
Important: Some policies might not support the
enforce feature.

disabled Required. Set the value to true or false. The
disabled parameter provides the ability to enable
and disable your policies.

spec.complianceType Required. Set the value to "musthave"

spec.object-template Optional. Used to list any other Kubernetes object
that must be evaluated or applied to the managed
clusters.

Field Description

2.4.3.3. Image vulnerability policy sample

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-imagemanifestvulnpolicy
 namespace: default
 annotations:
 policy.open-cluster-management.io/standards: NIST-CSF
 policy.open-cluster-management.io/categories: DE.CM Security Continuous Monitoring
 policy.open-cluster-management.io/controls: DE.CM-8 Vulnerability Scans
spec:
 remediationAction: inform
 disabled: false
 policy-templates:

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

44

 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: policy-imagemanifestvulnpolicy-example-sub
 spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: high
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1alpha1
 kind: Subscription
 metadata:
 name: container-security-operator
 namespace: openshift-operators
 spec:
 channel: quay-v3.3
 installPlanApproval: Automatic
 name: container-security-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: policy-imagemanifestvulnpolicy-example-imv
 spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: high
 namespaceSelector:
 exclude: ["kube-*"]
 include: ["*"]
 object-templates:
 - complianceType: mustnothave # mustnothave any ImageManifestVuln object
 objectDefinition:
 apiVersion: secscan.quay.redhat.com/v1alpha1
 kind: ImageManifestVuln # checking for a kind

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-policy-imagemanifestvulnpolicy
 namespace: default
placementRef:
 name: placement-policy-imagemanifestvulnpolicy
 kind: PlacementRule
 apiGroup: apps.open-cluster-management.io
subjects:
- name: policy-imagemanifestvulnpolicy
 kind: Policy
 apiGroup: policy.open-cluster-management.io

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:

CHAPTER 2. GOVERNANCE AND RISK

45

See Managing image vulnerability policies for more information. View other configuration policies that
are monitored by the configuration controller, see Kubernetes configuration policy controller .

2.4.4. Pod nginx policy

Kubernetes configuration policy controller monitors the status of you pod nginx policies. Apply the pod
policy to define the container rules for your pods. A nginx pod must exist in your cluster.

2.4.4.1. Pod nginx policy YAML structure

2.4.4.2. Pod nginx policy table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

 name: placement-policy-imagemanifestvulnpolicy
 namespace: default
spec:
 clusterConditions:
 - status: "True"
 type: ManagedClusterConditionAvailable
 clusterSelector:
 matchExpressions:
 [] # selects all clusters if not specified

 apiVersion: policy.open-cluster-management.io/v1
 kind: Policy
 metadata:
 name: policy-pod
 namespace:
 spec:
 complianceType:
 remediationAction:
 namespaces:
 exclude:
 include:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion:
 kind: Pod # nginx pod must exist
 metadata:
 name:
 spec:
 containers:
 - image:
 name:
 ports:
 - containerPort:
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

46

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name for identifying the policy
resource.

metadata.namespaces Optional.

spec.namespace Required. The namespaces within the hub cluster
that the policy is applied to. Enter parameter values
for include, which are the namespaces you want to
apply to the policy to. The exclude parameter
specifies the namespaces you explicitly do not want
to apply the policy to. Note: A namespace that is
specified in the object template of a policy controller
overrides the namespace in the corresponding
parent policy.

remediationAction Optional. Specifies the remediation of your policy.
The parameter values are enforce and inform.
Important: Some policies might not support the
enforce feature.

disabled Required. Set the value to true or false. The
disabled parameter provides the ability to enable
and disable your policies.

spec.complianceType Required. Set the value to "musthave"

spec.object-template Optional. Used to list any other Kubernetes object
that must be evaluated or applied to the managed
clusters.

Field Description

2.4.4.3. Pod nginx policy sample

Your pod policy nginx policy might resemble the following YAML file:

 apiVersion: policy.open-cluster-management.io/v1
 kind: Policy
 metadata:
 name: policy-pod
 namespace: open-cluster-management
 spec:
 complianceType: musthave
 remediationAction: inform
 namespaces:
 exclude: ["kube-*"]
 include: ["default"]

CHAPTER 2. GOVERNANCE AND RISK

47

Learn how to manage a pod nginx policy, see Managing pod nginx policies for more details. View other
configuration policies that are monitored by the configuration controller, see Kubernetes configuration
policy controller. See Manage security policies to manage other policies.

2.4.5. Pod security policy

Kubernetes configuration policy controller monitors the status of the pod security policy. Apply a pod
security policy to secure pods and containers. For more information, see Pod Security Policies in the
Kubernetes documentation. Learn more details about the pod security policy structure in the following
sections.

2.4.5.1. Pod security policy YAML structure

 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: Pod # nginx pod must exist
 metadata:
 name: nginx-pod
 spec:
 containers:
 - image: nginx:1.7.9
 name: nginx
 ports:
 - containerPort: 80
 ...

 apiVersion: policy.open-cluster-management.io/v1
 kind: Policy
 metadata:
 name: policy-podsecuritypolicy
 namespace:
 spec:
 complianceType:
 remediationAction:
 namespaces:
 exclude:
 include:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion:
 kind: PodSecurityPolicy # no privileged pods
 metadata:
 name:
 annotations:
 spec:
 privileged:
 allowPrivilegeEscalation:
 allowedCapabilities:
 volumes:
 hostNetwork:
 hostPorts:
 hostIPC:

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

48

https://kubernetes.io/docs/concepts/policy/pod-security-policy/

2.4.5.2. Pod security policy table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name for identifying the policy
resource.

metadata.namespaces Optional.

spec.namespace Required. The namespaces within the hub cluster
that the policy is applied to. Enter parameter values
for include, which are the namespaces you want to
apply to the policy to. The exclude parameter
specifies the namespaces you explicitly do not want
to apply the policy to. Note: A namespace that is
specified in the object template of a policy controller
overrides the namespace in the corresponding
parent policy.

remediationAction Optional. Specifies the remediation of your policy.
The parameter values are enforce and inform.
Important: Some policies might not support the
enforce feature.

disabled Required. Set the value to true or false. The
disabled parameter provides the ability to enable
and disable your policies.

spec.complianceType Required. Set the value to "musthave"

spec.object-template Optional. Used to list any other Kubernetes object
that must be evaluated or applied to the managed
clusters.

 hostPID:
 runAsUser:
 rule:
 seLinux:
 rule:
 supplementalGroups:
 rule:
 fsGroup:
 rule:
 ...

CHAPTER 2. GOVERNANCE AND RISK

49

2.4.5.3. Pod security policy sample

Your pod security policy might resemble the following YAML file:

See Managing pod security policies for more information. View other configuration policies that are
monitored by controller, see the Kubernetes configuration policy controller page.

2.4.6. Role policy

Kubernetes configuration policy controller monitors the status of role policies. Define roles in the
object-template to set rules and permissions for specific roles in your cluster. Learn more details about
the role policy structure in the following sections.

 apiVersion: policy.open-cluster-management.io/v1
 kind: Policy
 metadata:
 name: policy-podsecuritypolicy
 namespace: open-cluster-management
 spec:
 complianceType: musthave
 remediationAction: inform
 namespaces:
 exclude: ["kube-*"]
 include: ["default"]
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: policy/v1beta1
 kind: PodSecurityPolicy # no privileged pods
 metadata:
 name: restricted-open-cluster-management
 annotations:
 seccomp.security.alpha.kubernetes.io/allowedProfileNames: '*'
 spec:
 privileged: false # no priviliedged pods
 allowPrivilegeEscalation: false
 allowedCapabilities:
 - '*'
 volumes:
 - '*'
 hostNetwork: true
 hostPorts:
 - min: 1000 # ports < 1000 are reserved
 max: 65535
 hostIPC: false
 hostPID: false
 runAsUser:
 rule: 'RunAsAny'
 seLinux:
 rule: 'RunAsAny'
 supplementalGroups:
 rule: 'RunAsAny'
 fsGroup:
 rule: 'RunAsAny'
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

50

2.4.6.1. Role policy YAML structure

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-role
 namespace:
 annotations:
 policy.open-cluster-management.io/standards: NIST-CSF
 policy.open-cluster-management.io/categories: PR.AC Identity Management Authentication and
Access Control
 policy.open-cluster-management.io/controls: PR.AC-4 Access Control
spec:
 remediationAction: inform
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: policy-role-example
 spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: high
 namespaceSelector:
 exclude: ["kube-*"]
 include: ["default"]
 object-templates:
 - complianceType: mustonlyhave # role definition should exact match
 objectDefinition:
 apiVersion: rbac.authorization.k8s.io/v1
 kind: Role
 metadata:
 name: sample-role
 rules:
 - apiGroups: ["extensions", "apps"]
 resources: ["deployments"]
 verbs: ["get", "list", "watch", "delete","patch"]

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-policy-role
 namespace:
placementRef:
 name: placement-policy-role
 kind: PlacementRule
 apiGroup: apps.open-cluster-management.io
subjects:
- name: policy-role
 kind: Policy
 apiGroup: policy.open-cluster-management.io

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:

CHAPTER 2. GOVERNANCE AND RISK

51

2.4.6.2. Role policy table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name for identifying the policy
resource.

metadata.namespaces Optional.

spec.namespace Required. The namespaces within the hub cluster
that the policy is applied to. Enter parameter values
for include, which are the namespaces you want to
apply to the policy to. The exclude parameter
specifies the namespaces you explicitly do not want
to apply the policy to. Note: A namespace that is
specified in the object template of a policy controller
overrides the namespace in the corresponding
parent policy.

remediationAction Optional. Specifies the remediation of your policy.
The parameter values are enforce and inform.
Important: Some policies might not support the
enforce feature.

disabled Required. Set the value to true or false. The
disabled parameter provides the ability to enable
and disable your policies.

spec.complianceType Required. Set the value to "musthave"

spec.object-template Optional. Used to list any other Kubernetes object
that must be evaluated or applied to the managed
clusters.

 name: placement-policy-role
 namespace:
spec:
 clusterConditions:
 - type: ManagedClusterConditionAvailable
 status: "True"
 clusterSelector:
 matchExpressions:
 []

 ...

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

52

2.4.6.3. Role policy sample

Apply a role policy to set rules and permissions for specific roles in your cluster. For more information on
roles, see Role-based access control . Your role policy might resemble the following YAML file:

See Managing role policies for more information. View other configuration policies that are monitored by
controller, see the Kubernetes configuration policy controller page. Learn more about Red Hat
Advanced Cluster Management for Kubernates RBAC, see Role-based access control .

2.4.7. Rolebinding policy

Kubernetes configuration policy controller monitors the status of your rolebinding policy. Apply a
rolebinding policy to bind a policy to a namespace in your managed cluster. Learn more details about the
namespace policy structure in the following sections.

2.4.7.1. Rolebinding policy YAML structure

 apiVersion: policy.open-cluster-management.io/v1
 kind: Policy
 metadata:
 name: policy-role
 namespace: open-cluster-management
 spec:
 complianceType: musthave
 remediationAction: inform
 namespaces:
 exclude: ["kube-*"]
 include: ["default"]
 role-templates:
 - apiVersion: open-cluster-management.io/v1/v1alpha1 # role must follow defined permissions
 metadata:
 namespace: "" # will be inferred
 name: operator-role-policy
 selector:
 matchLabels:
 dev: "true"
 complianceType: musthave # at this level, it means the role must exist with the rules that it must
have the following
 rules:
 - complianceType: musthave # at this level, it means if the role exists the rule is a musthave
 policyRule:
 apiGroups: ["extensions", "apps"]
 resources: ["deployments"]
 verbs: ["get", "list", "watch", "create", "delete","patch"]
 - complianceType: "mustnothave" # at this level, it means if the role exists the rule is a
mustnothave
 policyRule:
 apiGroups: ["core"]
 resources: ["secrets"]
 verbs: ["get", "list", "watch","delete", "create", "update", "patch"]
 ...

 apiVersion: policy.open-cluster-management.io/v1
 kind: Policy
 metadata:

CHAPTER 2. GOVERNANCE AND RISK

53

2.4.7.2. Rolebinding policy table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name to identify the policy resource.

metadata.namespaces Required. The namespace within the managed
cluster where the policy is created.

spec Required. Specifications of how compliance
violations are identified and fixed.

metadata.name Required. The name for identifying the policy
resource.

metadata.namespaces Optional.

spec.complianceType Required. Set the value to "musthave"

 name:
 namespace:
 spec:
 complianceType:
 remediationAction:
 namespaces:
 exclude:
 include:
 object-templates:
 - complianceType:
 objectDefinition:
 kind: RoleBinding # role binding must exist
 apiVersion: rbac.authorization.k8s.io/v1
 metadata:
 name: operate-pods-rolebinding
 subjects:
 - kind: User
 name: admin # Name is case sensitive
 apiGroup:
 roleRef:
 kind: Role #this must be Role or ClusterRole
 name: operator # this must match the name of the Role or ClusterRole you wish to bind to
 apiGroup: rbac.authorization.k8s.io
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

54

spec.namespace Required. Managed cluster namespace to which you
want to apply the policy. Enter parameter values for
include, which are the namespaces you want to
apply to the policy to. The exclude parameter
specifies the namespaces you explicitly do not want
to apply the policy to. Note: A namespace that is
specified in the object template of a policy controller
overrides the namespace in the corresponding
parent policy.

spec.remediationAction Required. Specifies the remediation of your policy.
The parameter values are enforce and inform.
Important: Some policies might not support the
enforce feature.

spec.object-template Required. Used to list any other Kubernetes object
that must be evaluated or applied to the managed
clusters.

Field Description

2.4.7.3. Rolebinding policy sample

Your rolebinding policy might resemble the following YAML file:

 apiVersion: policy.open-cluster-management.io/v1
 kind: Policy
 metadata:
 name: policy-rolebinding
 namespace: open-cluster-management
 spec:
 complianceType: musthave
 remediationAction: inform
 namespaces:
 exclude: ["kube-*"]
 include: ["default"]
 object-templates:
 - complianceType: musthave
 objectDefinition:
 kind: RoleBinding # role binding must exist
 apiVersion: rbac.authorization.k8s.io/v1
 metadata:
 name: operate-pods-rolebinding
 subjects:
 - kind: User
 name: admin # Name is case sensitive
 apiGroup: rbac.authorization.k8s.io
 roleRef:
 kind: Role #this must be Role or ClusterRole

CHAPTER 2. GOVERNANCE AND RISK

55

Learn how to manage a rolebinding policy, see Managing rolebinding policies for more details. See
Kubernetes configuration policy controller to learn about other configuration policies. See Manage
security policies to manage other policies.

2.4.8. Security Context Constraints policy

Kubernetes configuration policy controller monitors the status of your Security Context Constraints
(SCC) policy. Apply an Security Context Constraints (SCC) policy to control permissions for pods by
defining conditions in the policy. Learn more details about SCC policies in the following sections.

2.4.8.1. SCC policy YAML structure

 name: operator # this must match the name of the Role or ClusterRole you wish to bind to
 apiGroup: rbac.authorization.k8s.io
 ...

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-scc
 namespace: open-cluster-management-policies
spec:
 complianceType:
 remediationAction:
 namespaces:
 exclude:
 include:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion:
 kind: SecurityContextConstraints # restricted scc
 metadata:
 annotations:
 kubernetes.io/description:
 name: sample-restricted-scc
 allowHostDirVolumePlugin:
 allowHostIPC:
 allowHostNetwork:
 allowHostPID:
 allowHostPorts:
 allowPrivilegeEscalation:
 allowPrivilegedContainer:
 allowedCapabilities:
 defaultAddCapabilities:
 fsGroup:
 type:
 groups:
 - system:
 priority:
 readOnlyRootFilesystem:
 requiredDropCapabilities:
 runAsUser:
 type:
 seLinuxContext:

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

56

2.4.8.2. SCC policy table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name to identify the policy resource.

metadata.namespace Required. The namespace within the managed
cluster where the policy is created.

spec.complianceType Required. Set the value to "musthave"

spec.remediationAction Required. Specifies the remediation of your policy.
The parameter values are enforce and inform.
Important: Some policies might not support the
enforce feature.

spec.namespace Required. Managed cluster namespace to which you
want to apply the policy. Enter parameter values for
include, which are the namespaces you want to
apply to the policy to. The exclude parameter
specifies the namespaces you explicitly do not want
to apply the policy to. Note: A namespace that is
specified in the object template of a policy controller
overrides the namespace in the corresponding
parent policy.

spec.object-template Required. Used to list any other Kubernetes object
that must be evaluated or applied to the managed
clusters.

For explanations on the contents of a SCC policy, see About Security Context Constraints from the
OpenShift Container Platform documentation.

2.4.8.3. SCC policy sample

Apply an Security context constraints (SCC) policy to control permissions for pods by defining
conditions in the policy. For more information see, Managing Security Context Constraints (SCC) . Your
SCC policy might resemble the following YAML file:

 type:
 supplementalGroups:
 type:
 users:
 volumes:

CHAPTER 2. GOVERNANCE AND RISK

57

https://docs.openshift.com/container-platform/4.3/authentication/managing-security-context-constraints.html#security-context-constraints-about_configuring-internal-oauth
https://docs.openshift.com/container-platform/4.3/authentication/managing-security-context-constraints.html#security-context-constraints-about_configuring-internal-oauth

 apiVersion: policy.open-cluster-management.io/v1
 kind: Policy
 metadata:
 name: policy-scc
 namespace: open-cluster-management
 annotations:
 policy.open-cluster-management.io/standards: NIST-CSF
 policy.open-cluster-management.io/categories: PR.PT Protective Technology
 policy.open-cluster-management.io/controls: PR.PT-3 Least Functionality
 spec:
 complianceType: musthave
 remediationAction: inform
 disabled: false
 namespaces:
 exclude: ["kube-*"]
 include: ["default"]
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: security.openshift.io/v1
 kind: SecurityContextConstraints # restricted scc
 metadata:
 annotations:
 kubernetes.io/description: restricted denies access to all host features and requires pods to
be run with a UID, and SELinux context that are allocated to the namespace. This is the most
restrictive SCC and it is used by default for authenticated users.
 name: sample-restricted-scc
 allowHostDirVolumePlugin: false
 allowHostIPC: false
 allowHostNetwork: false
 allowHostPID: false
 allowHostPorts: false
 allowPrivilegeEscalation: true
 allowPrivilegedContainer: false
 allowedCapabilities: []
 defaultAddCapabilities: []
 fsGroup:
 type: MustRunAs
 groups:
 - system:authenticated
 priority: null
 readOnlyRootFilesystem: false
 requiredDropCapabilities:
 - KILL
 - MKNOD
 - SETUID
 - SETGID
 runAsUser:
 type: MustRunAsRange
 seLinuxContext:
 type: MustRunAs
 supplementalGroups:
 type: RunAsAny
 users: []
 volumes:
 - configMap

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

58

To learn how to manage an SCC policy, see Managing Security Context Constraints policies for more
details. See Kubernetes configuration policy controller to learn about other configuration policies. See
Manage security policies to manage other policies.

2.4.9. ETCD encryption policy

Apply the etcd-encryption policy to detect, or enable encryption of sensitive data in the ETCD data-
store. Kubernetes configuration policy controller monitors the status of the etcd-encryption policy. For
more information, see ETCD Encyrption in the OpenShift Container Platform documentation .

 - downwardAPI
 - emptyDir
 - persistentVolumeClaim
 - projected
 - secret

 apiVersion: apps.open-cluster-management.io/v1
 kind: PlacementBinding
 metadata:
 name: binding-policy-scc
 namespace: open-cluster-management-policies
 placementRef:
 name: placement-policy-scc
 kind: PlacementRule
 apiGroup: apps.open-cluster-management.io
 subjects:
 - name: policy-scc
 kind: Policy
 apiGroup: policy.mcm.ibm.com

 apiVersion: apps.open-cluster-management.io/v1
 kind: PlacementBinding
 metadata:
 name: policy-scc-production-clusters
 namespace: open-cluster-management-policies
 placementRef:
 name: production-clusters
 kind: PlacementRule
 apiGroup: apps.open-cluster-management.io
 subjects:
 - name: policy-scc
 kind: Policy
 apiGroup: policy.mcm.ibm.com

 apiVersion: apps.open-cluster-management.io/v1
 kind: PlacementRule
 metadata:
 name: placement-policy-scc
 namespace: open-cluster-management-policies
 spec:
 clusterConditions:
 - type: ManagedClusterConditionAvailable
 status: "True"
 clusterSelector:
 matchExpressions: []

CHAPTER 2. GOVERNANCE AND RISK

59

https://docs.openshift.com/container-platform/4.5/security/encrypting-etcd.html

Learn more details about the etcd-encryption policy structure in the following sections:

2.4.9.1. ETCD encryption policy YAML structure

Your etcd-encryption policy might resemble the following YAML file:

2.4.9.2. ETCD encryption policy table

Table 2.4. Parameter table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy, for example, ConfigurationPolicy.

metadata.name Required. The name for identifying the policy
resource.

metadata.namespaces Optional.

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-etcdencryption
 namespace:
spec:
 complianceType:
 remediationAction:
 namespaces:
 exclude:
 include:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion: config.openshift.io/v1
 kind: APIServer
 metadata:
 name: cluster
 spec:
 encryption:
 type:
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

60

spec.namespace Required. The namespaces within the hub cluster
that the policy is applied to. Enter parameter values
for include, which are the namespaces you want to
apply to the policy to. The exclude parameter
specifies the namespaces you explicitly do not want
to apply the policy to. Note: A namespace that is
specified in the object template of a policy controller
overrides the namespace in the corresponding
parent policy.

remediationAction Optional. Specifies the remediation of your policy.
The parameter values are enforce and inform.
Important: Some policies might not support the
enforce feature.

disabled Required. Set the value to true or false. The
disabled parameter provides the ability to enable
and disable your policies.

spec.complianceType Required. Set the value to "musthave"

spec.object-template Optional. Used to list any other Kubernetes object
that must be evaluated or applied to the managed
clusters. See OpenShift Container Platform
documentation for more information.

Field Description

2.4.9.3. Etcd encryption policy sample

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-etcdencryption
 namespace: default
spec:
 complianceType: musthave
 remediationAction: inform
 namespaces:
 exclude: ["kube-*"]
 include: ["default"]
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: config.openshift.io/v1
 kind: APIServer
 metadata:
 name: cluster
 spec:

CHAPTER 2. GOVERNANCE AND RISK

61

https://docs.openshift.com/container-platform/4.5/security/encrypting-etcd.html

See Managing ETCD encryption policies for more information. View other configuration policies that are
monitored by controller, see the Kubernetes configuration policy controller page.

2.4.10. Integrating gatekeeper constraints and constraint templates

Gatekeeper is a validating webhook that enforces CustomResourceDefinition (CRD) based policies that
are run with the Open Policy Agent (OPA). You can install Gatekeeper to integrate a gatekeeper policy
with Red Hat Advanced Cluster Management for Kubernetes. Gatekeeper policy can be used to
evaluate Kubernetes resource compliance. You can leverage an OPA as the policy engine, and use Rego
as the policy language.

The gatekeeper policy is created as a Kubernetes configuration policy. Gatekeeper policies include
constraint templates (ConstraintTemplates) and constraints, audit templates, and admission templates.
For more information, see the Gatekeeper.

Prerequisites:

You must install Gatekeeper on your managed cluster to use the gatekeeper policy controller.
For more information, see the open-policy-agent/gatekeeper repository.

Kubernetes version 1.14 or later

Red Hat Advanced Cluster Management applies the following constraint templates in your Red Hat
Advanced Cluster Management gatekeeper policy:

ConstraintTemplates and constraints: Use the policy-gatekeeper-k8srequiredlabels policy to
create a gatekeeper constraint template on the managed cluster.

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-gatekeeper-k8srequiredlabels
spec:
 remediationAction: enforce # will be overridden by remediationAction in parent policy
 severity: low
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: templates.gatekeeper.sh/v1beta1
 kind: ConstraintTemplate
 metadata:
 name: k8srequiredlabels
 spec:
 crd:
 spec:
 names:
 kind: K8sRequiredLabels
 validation:
 # Schema for the `parameters` field
 openAPIV3Schema:
 properties:
 labels:

 encryption:
 type: aescbc
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

62

https://github.com/open-policy-agent/gatekeeper#gatekeeper
https://github.com/open-policy-agent/gatekeeper

 type: array
 items: string
 targets:
 - target: admission.k8s.gatekeeper.sh
 rego: |
 package k8srequiredlabels
 violation[{"msg": msg, "details": {"missing_labels": missing}}] {
 provided := {label | input.review.object.metadata.labels[label]}
 required := {label | label := input.parameters.labels[_]}
 missing := required - provided
 count(missing) > 0
 msg := sprintf("you must provide labels: %v", [missing])
 }
 - complianceType: musthave
 objectDefinition:
 apiVersion: constraints.gatekeeper.sh/v1beta1
 kind: K8sRequiredLabels
 metadata:
 name: ns-must-have-gk
 spec:
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Namespace"]
 namespaces:
 - e2etestsuccess
 - e2etestfail
 parameters:
 labels: ["gatekeeper"]

audit template: Use the policy-gatekeeper-audit to periodically check and evaluate existing
resources against the gatekeeper policies that are enforced to detect existing
miscongfigurations.

admission template: Use the policy-gatekeeper-admission to check for misconfigurations
that are created by the gatekeeper admission webhook:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-gatekeeper-audit
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: low
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: constraints.gatekeeper.sh/v1beta1
 kind: K8sRequiredLabels
 metadata:
 name: ns-must-have-gk
 status:
 totalViolations: 0

apiVersion: policy.open-cluster-management.io/v1

CHAPTER 2. GOVERNANCE AND RISK

63

See policy-gatekeeper-sample.yaml for more details.

Learn how to use Red Hat Advanced Cluster Management gatekeeper operator policy to install
gatekeeper and create a Red Hat Advanced Cluster Management gatekeeper operator policy, see
Gatekeeper policy integration for more details. Refer to Governance and risk for more topics on the
security framework.

2.5. MANAGE SECURITY POLICIES

Use the Governance and risk dashboard to create, view, and manage your security policies and policy
violations. You can create YAML files for your policies from the CLI and console.

From the Governance and risk page, you can customize your Summary view by filtering the violations by
categories or standards, collapse the summary to see less information, and you can search for policies.
You can also filter the violation table view by policies or cluster violations.

The table of policies list the following details of a policy: Policy name , Namespace, Remediation, Cluster
violation, Standards, Categories, and Controls. You can edit, disable, inform or remove a policy by
selecting the Actions icon.

When you select a policy in the table list, the following tabs of information are displayed from the
console:

Details: Select the Details tab to view Policy details, Placement details, and a table list of _Policy
templates.

Status: Select the Status tab to view a table list of violations. You can filter your view by Clusters
or Templates. To view the compliance status of your policy, select the Status tab. Click the View
history link to view a list of violation messages.

YAML: Select the YAML tab to view, and or edit your policy with the editor. Select the YAML
toggle to view or hide the editor.

Review the following topics to learn more about creating and updating your security policies:

Managing security policies

kind: ConfigurationPolicy
metadata:
 name: policy-gatekeeper-admission
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: low
 object-templates:
 - complianceType: mustnothave
 objectDefinition:
 apiVersion: v1
 kind: Event
 metadata:
 namespace: openshift-gatekeeper-system # set it to the actual namespace where
gatekeeper is running if different
 annotations:
 constraint_action: deny
 constraint_kind: K8sRequiredLabels
 constraint_name: ns-must-have-gk
 event_type: violation

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

64

https://github.com/open-cluster-management/policy-collection/blob/master/community/CM-Configuration-Management/policy-gatekeeper-sample.yaml

Managing configuration policies

Managing image vulnerability policies

Managing memory usage policies

Managing namespace policies

Managing pod nginx policies

Managing pod security policies

Managing role policies

Managing rolebinding policies

Managing Security Context Constraints policies

Managing certificate policies

Managing IAM policies

Managing ETCD encryption policies

Refer to Governance and risk for more topics.

2.5.1. Managing security policies

Create a security policy to report and validate your cluster compliance based on your specified security
standards, categories, and controls. To create a policy for Red Hat Advanced Cluster Management for
Kubernetes, you must create a YAML file on your managed clusters.

Note: You can copy and paste an existing policy in to the Policy YAML. The values for the parameter
fields are automatically entered when you paste your existing policy. You can also search the contents in
your policy YAML file with the search feature.

2.5.1.1. Creating a security policy

You can create a security policy from the command line interface (CLI) or from the console. Cluster
administrator access is required.

Important: You must define a PlacementPolicy and PlacementBinding to apply your policy to a specific
cluster. Enter a value for the Cluster binding field to define a PlacementPolicy and PlacementBinding.
View the definitions of the objects that are required for your Red Hat Advanced Cluster Management
policy:

PlacementRule: Defines a cluster selector where the policy must be deployed.

PlacementBinding: Binds the placement to a PlacementPolicy.

View more descriptions of the policy YAML files in the Policy overview .

2.5.1.1.1. Creating a security policy from the command line interface

Complete the following steps to create a policy from the command line interface (CLI):

1. Create a policy by running the following command:

CHAPTER 2. GOVERNANCE AND RISK

65

kubectl create -f policy.yaml -n <namespace>

2. Define the template that the policy uses. Edit your .yaml file by adding a templates field to
define a template. Your policy might resemble the following YAML file:

3. Define a PlacementRule. Be sure to change the PlacementRule to specify the clusters where
the policies need to be applied, either by clusterNames, or clusterLabels. View Creating and
managing placement rules. Your PlacementRule might resemble the following content:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy1
spec:
 remediationAction: "enforce" # or inform
 disabled: false # or true
 namespaces:
 include: ["default"]
 exclude: ["kube*"]
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 namespace: kube-system # will be inferred
 name: operator
 spec:
 remediationAction: "inform"
 object-templates:
 complianceType: "musthave" # at this level, it means the role must exist and must
have the following rules
 apiVersion: rbac.authorization.k8s.io/v1
 kind: Role
 metadata:
 name: example
 objectDefinition:
 rules:
 - complianceType: "musthave" # at this level, it means if the role exists the rule is a
musthave
 apiGroups: ["extensions", "apps"]
 resources: ["deployments"]
 verbs: ["get", "list", "watch", "create", "delete","patch"]

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: placement1
spec:
 clusterConditions:
 - type: ManagedClusterConditionAvailable
 status: "True"
 clusterNames:
 - "cluster1"
 - "cluster2"

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

66

../manage_applications

4. Define a PlacementBinding to bind your policy and your PlacementRule. Your
PlacementBinding might resemble the following YAML sample:

2.5.1.1.1.1. Viewing your security policy from the CLI

Complete the following steps to view your security policy from the CLI:

1. View details for a specific security policy by running the following command:

kubectl get securitypolicy <policy-name> -n <namespace> -o yaml

2. View a description of your security policy by running the following command:

kubectl describe securitypolicy <name> -n <namespace>

2.5.1.1.2. Creating a cluster security policy from the console

As you create your new policy from the console, a YAML file is also created in the YAML editor.

1. From the navigation menu, click Govern risk.

2. To create a policy, click Create policy.

3. Enter or select values for the following parameters:

Name

Specifications

Cluster selector

Remediation action

Standards

Categories

Controls

 clusterLabels:
 matchLabels:
 cloud: IBM

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding1
placementRef:
 name: placement1
 apiGroup: apps.open-cluster-management.io
 kind: PlacementRule
subjects:
- name: policy1
 apiGroup: policy.mcm.ibm.com
 kind: Policy

CHAPTER 2. GOVERNANCE AND RISK

67

4. View the following example Red Hat Advanced Cluster Management for Kubernetes security
policy definition. Copy and paste the YAML file for your policy.
Your YAML file might resemble the following policy:

 apiVersion: policy.open-cluster-management.io/v1
 kind: Policy
 metadata:
 name: policy-pod
 annotations:
 policy.open-cluster-management.io/categories:
'SystemAndCommunicationsProtections,SystemAndInformationIntegrity'
 policy.open-cluster-management.io/controls: 'control example'
 policy.open-cluster-management.io/standards: 'NIST,HIPAA'
 spec:
 complianceType: musthave
 namespaces:
 exclude: ["kube*"]
 include: ["default"]
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: Pod
 metadata:
 name: nginx1
 spec:
 containers:
 - name: nginx
 image: 'nginx:1.7.9'
 ports:
 - containerPort: 80
 remediationAction: enforce
 disabled: false

 apiVersion: apps.open-cluster-management.io/v1
 kind: PlacementBinding
 metadata:
 name: binding-pod
 placementRef:
 name: placement-pod
 kind: PlacementRule
 apiGroup: apps.open-cluster-management.io
 subjects:
 - name: policy-pod
 kind: Policy
 apiGroup: policy.mcm.ibm.com

 apiVersion: apps.open-cluster-management.io/v1
 kind: PlacementRule
 metadata:
 name: placement-pod
 spec:
 clusterConditions:
 - type: ManagedClusterConditionAvailable

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

68

5. Click Create Policy.

A security policy is created from the console.

2.5.1.1.2.1. Viewing your security policy from the console

You can view any security policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Governance and risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details. The Overview tab, Status tab, and YAML tab are
displayed.

2.5.1.2. Updating security policies

Learn to update security policies by viewing the following section.

2.5.1.2.1. Disabling security policies

Your policy is enabled by default. You can disable your policy by completing the following steps:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable policy. The Disable Policy dialog box
appears.

4. Click Disable policy.

Your policy is disabled.

2.5.1.2.2. Deleting a security policy

Delete a security policy from the CLI or the console.

Delete a security policy from the CLI:

a. Delete a security policy by running the following command:

kubectl delete policy <securitypolicy-name> -n <open-cluster-management-namespace>

+ After your policy is deleted, it is removed from your target cluster or clusters. Verify that your
policy is removed by running the following command: kubectl get policy <securitypolicy-
name> -n <open-cluster-management-namespace>

 status: "True"
 clusterLabels:
 matchLabels:
 cloud: "IBM"

CHAPTER 2. GOVERNANCE AND RISK

69

Delete a security policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy

To manage other policies, see Managing security policies for more information. Refer to Governance
and risk for more topics about policies.

2.5.2. Managing configuration policies

Learn to create, apply, view, and update your configuration policies.

2.5.2.1. Creating a configuration policy

You can create a YAML file for your configuration policy from the command line interface (CLI) or from
the console. View the following sections to create a configuration policy:

2.5.2.1.1. Creating a configuration policy from the CLI

Complete the following steps to create a configuration policy from the (CLI):

1. Create a YAML file for your configuration policy. Run the following command:

kubectl create -f configpolicy-1.yaml

Your configuration policy might resemble the following policy:

2. Apply the policy by running the following command:

kubectl apply -f <policy-file-name> --namespace=<namespace>

3. Verify and list the policies by running the following command:

kubectl get policy --namespace=<namespace>

 apiVersion: policy.open-cluster-management.io/v1
 kind: Policy
 metadata:
 name: policy-1
 namespace: kube-system
 spec:
 namespaces:
 include: ["default", "kube-*"]
 exclude: ["kube-system"]
 remediationAction: inform
 disabled: false
 complianceType: musthave
 object-templates:
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

70

Your configuration policy is created.

2.5.2.1.1.1. Viewing your configuration policy from the CLI

Complete the following steps to view your configuration policy from the CLI:

1. View details for a specific configuration policy by running the following command:

kubectl get policy <policy-name> -n <namespace> -o yaml

2. View a description of your configuration policy by running the following command:

kubectl describe policy <name> -n <namespace>

2.5.2.1.2. Creating a configuration policy from the console

As you create a configuration policy from the console, a YAML file is also created in the YAML editor.
Complete the following steps to create a configuration policy from the console:

1. Log in to your cluster from the console.

2. From the navigation menu, click Governance and risk.

3. Click Create policy.

4. Specify the policy you want to create by selecting one of the configuration policies for the
specification parameter. Continue to enter or select the appropriate values for the following
fields:

Name

Specifications

Cluster selector

Remediation action

Standards

Categories

Controls

5. Click Create.

2.5.2.1.2.1. Viewing your configuration policy from the console

You can view any configuration policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the All policies tab or Cluster
violations tab.

3. Select one of your policies to view more details. The Overview tab, Status tab, and YAML tab are

CHAPTER 2. GOVERNANCE AND RISK

71

3. Select one of your policies to view more details. The Overview tab, Status tab, and YAML tab are
displayed.

2.5.2.2. Updating configuration policies

Learn to update configuration policies by viewing the following section.

2.5.2.2.1. Disabling configuration policies

Complete the following steps to disable your configuration policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.2.3. Deleting a configuration policy

Delete a configuration policy from the CLI or the console.

Delete a configuration policy from the CLI:

a. Delete a configuration policy by running the following command:

 kubectl delete policy <policy-name> -n <mcm namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

b. Verify that your policy is removed by running the following command:

 kubectl get policy <policy-name> -n <mcm namespace>

Delete a configuration policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your policy is deleted.

View configuration policy samples, see Policy samples. See Managing security policies to manage other
policies.

2.5.3. Managing image vulnerability policies

Configuration policy controller monitors the status of image vulnerability policies. Image vulnerability

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

72

Configuration policy controller monitors the status of image vulnerability policies. Image vulnerability
policies are applied to check if your containers have vulnerabilities. Learn to create, apply, view, and
update your image vulnerability policy.

2.5.3.1. Creating an image vulnerability policy

You can create a YAML for your image vulnerability policy from the command line interface (CLI) or
from the console. View the following sections to create an image vulnerability policy:

2.5.3.1.1. Creating an image vulnerability policy from the CLI

Complete the following steps to create an image vulnerability policy from the CLI:

1. Create a YAML file for your image vulnerability policy by running the following command:

kubectl create -f imagevulnpolicy-1.yaml

2. Apply the policy by running the following command:

kubectl apply -f <imagevuln-policy-file-name> --namespace=<namespace>

3. List and verify the policies by running the following command:

kubectl get imagevulnpolicy --namespace=<namespace>

Your image vulnerability policy is created.

2.5.3.1.1.1. Viewing your image vulnerability policy from the CLI

Complete the following steps to view your image vulnerability policy from the CLI:

1. View details for a specific image vulnerability policy by running the following command:

kubectl get imagevulnpolicy <policy-name> -n <namespace> -o yaml

2. View a description of your image vulnerability policy by running the following command:

kubectl describe imagevulnpolicy <name> -n <namespace>

2.5.3.2. Creating an image vulnerability policy from the console

As you create an image vulnerability policy from the console, a YAML file is also created in the YAML
editor. Complete the following steps to create the image vulnerability policy from the console:

1. Log in to your cluster from the console.

2. From the navigation menu, click Governance and risk.

3. Click Create policy.

4. Select ImageManifestVulnPolicy from the Specifications field. Parameter values are
automatically set. You can edit your values.

5. Click Create.

CHAPTER 2. GOVERNANCE AND RISK

73

An image vulnerability policy is created.

2.5.3.3. Viewing image vulnerability violations from the console

1. From the navigation menu, click Govern risk to view a table list of your policies.

2. Select policy-imagemanifestvulnpolicy > Status to view the cluster location of the violation.
Your image vulnerability violation might resemble the following:

imagemanifestvulns exist and should be deleted:
[sha256.7ac7819e1523911399b798309025935a9968b277d86d50e5255465d6592c0266] in
namespace default;
[sha256.4109631e69d1d562f014dd49d5166f1c18b4093f4f311275236b94b21c0041c0] in
namespace calamari;
[sha256.573e9e0a1198da4e29eb9a8d7757f7afb7ad085b0771bc6aa03ef96dedc5b743,
sha256.a56d40244a544693ae18178a0be8af76602b89abe146a43613eaeac84a27494e,
sha256.b25126b194016e84c04a64a0ad5094a90555d70b4761d38525e4aed21d372820] in
namespace open-cluster-management-agent-addon;
[sha256.64320fbf95d968fc6b9863581a92d373bc75f563a13ae1c727af37450579f61a] in
namespace openshift-cluster-version

3. Navigate to your OpenShift Container Platform console by selecting the Cluster link.

4. From the navigation menu on the OpenShift Container Platform console, click Administration >
Custom Resource Definitions.

5. Select imagemanifestvulns > Instances tab to view all of the imagemanifestvulns instances.

6. Select an entry to view more details.

2.5.3.4. Updating image vulnerability policies

Learn to update image vulnerability policies by viewing the following section.

2.5.3.4.1. Disabling image vulnerability policies

Complete the following steps to disable your image vulnerability policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.3.4.2. Deleting an image vulnerability policy

Delete the image vulnerability policy from the CLI or the console.

Delete an image vulnerability policy from the CLI:

a. Delete a certificate policy by running the following command:

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

74

 kubectl delete policy <imagevulnpolicy-name> -n <mcm namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

b. Verify that your policy is removed by running the following command:

 kubectl get policy <imagevulnpolicy-name> -n <mcm namespace>

Delete an image vulnerability policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your image vulnerability policy is deleted.

View a sample of an image vulnerability policy, see Image vulnerability policy sample from the Image
vulnerability policy page. See Kubernetes configuration policy controller to learn about other policies
that are monitored by the Kubernetes configuration policy controller. See Managing security policies to
manage other policies.

2.5.4. Managing memory usage policies

Apply a memory usage policy to limit or restrict your memory and compute usage. Learn to create,
apply, view, and update your memory usage policy in the following sections.

2.5.4.1. Creating a memory usage policy

You can create a YAML file for your memory usage policy from the command line interface (CLI) or
from the console. View the following sections to create a memory usage policy:

2.5.4.1.1. Creating a memory usage policy from the CLI

Complete the following steps to create a memory usage policy from the CLI:

1. Create a YAML file for your memory usage policy by running the following command:

kubectl create -f memorypolicy-1.yaml

2. Apply the policy by running the following command:

kubectl apply -f <memory-policy-file-name> --namespace=<namespace>

3. List and verify the policies by running the following command:

kubectl get memorypolicy --namespace=<namespace>

Your memory usage policy is created from the CLI.

2.5.4.1.1.1. Viewing your policy from the CLI

CHAPTER 2. GOVERNANCE AND RISK

75

Complete the following steps to view your memory usage policy from the CLI:

1. View details for a specific memory usage policy by running the following command:

kubectl get memorypolicy <policy-name> -n <namespace> -o yaml

2. View a description of your memory usage policy by running the following command:

kubectl describe memorypolicy <name> -n <namespace>

2.5.4.1.2. Creating an memory usage policy from the console

As you create a memory usage policy from the console, a YAML file is also created in the YAML editor.
Complete the following steps to create the memory usage policy from the console:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Governance and risk.

3. Click Create policy.

4. Select Limitrange from the Specifications field. Parameter values are automatically set. You can
edit your values.

5. Click Create.

2.5.4.1.2.1. Viewing your memory usage policy from the console

You can view any memory usage policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details.

4. View the policy violations by selecting the Status tab.

2.5.4.2. Updating memory usage policies

Learn to update memory usage policies by viewing the following section.

2.5.4.2.1. Disabling memory usage policies

Complete the following steps to disable your memory usage policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

76

Your policy is disabled.

2.5.4.2.2. Deleting a memory usage policy

Delete the memory usage policy from the CLI or the console.

Delete a memory usage policy from the CLI:

a. Delete a memory usage policy by running the following command:

 kubectl delete policy <memorypolicy-name> -n <mcm namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

b. Verify that your policy is removed by running the following command:

 kubectl get policy <memorypolicy-name> -n <mcm namespace>

Delete a memory usage policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your memory usage policy is deleted.

View a sample of a memory usage policy, see Memory usage policy sample from the Memory usage
policy page. See Kubernetes configuration policy controller to learn about other configuration policies.
See Managing security policies to manage other policies.

2.5.5. Managing namespace policies

Namespace policies are applied to define specific rules for your namespace. Learn to create, apply, view,
and update your memory usage policy in the following sections.

2.5.5.1. Creating a namespace policy

You can create a YAML file for your namespace policy from the command line interface (CLI) or from
the console. View the following sections to create a namespace policy:

2.5.5.1.1. Creating a namespace policy from the CLI

Complete the following steps to create a namespace policy from the CLI:

1. Create a YAML file for your namespace policy by running the following command:

kubectl create -f namespacepolicy-1.yaml

2. Apply the policy by running the following command:

kubectl apply -f <namespace-policy-file-name> --namespace=<namespace>

CHAPTER 2. GOVERNANCE AND RISK

77

3. List and verify the policies by running the following command:

kubectl get namespacepolicy --namespace=<namespace>

Your namespace policy is created from the CLI.

2.5.5.1.1.1. Viewing your namespace policy from the CLI

Complete the following steps to view your namespace policy from the CLI:

1. View details for a specific namespace policy by running the following command:

kubectl get namespacepolicy <policy-name> -n <namespace> -o yaml

2. View a description of your namespace policy by running the following command:

kubectl describe namespacepolicy <name> -n <namespace>

2.5.5.1.2. Creating a namespace policy from the console

As you create a namespace policy from the console, a YAML file is also created in the YAML editor.
Complete the following steps to create a namespace policy from the console:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Governance and risk.

3. Click Create policy.

4. Select Namespace from the Specifications field. Parameter values are automatically set. You
can edit your values.

5. Click Create.

2.5.5.1.2.1. Viewing your namespace policy from the console

You can view any namespace policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Governance and risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details.

4. View the policy violations by selecting the Status tab.

2.5.5.2. Updating namespace policies

Learn to update namespace policies by viewing the following section.

2.5.5.2.1. Disabling namespace policies

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

78

Complete the following steps to disable your namespace policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.5.2.2. Deleting a namespace policy

Delete a namespace policy from the CLI or the console.

Delete a namespace policy from the CLI:

a. Delete a namespace policy by running the following command:

 kubectl delete policy <memorypolicy-name> -n <mcm namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

b. Verify that your policy is removed by running the following command:

 kubectl get policy <memorypolicy-name> -n <mcm namespace>

Delete a namespace policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your namespace policy is deleted.

View a sample of a namespace policy, see Namespace policy sample on the Namespace policy page. See
Kubernetes configuration policy controller to learn about other configuration policies. See Managing
security policies to manage other policies.

2.5.6. Managing pod nginx policies

Kubernetes configuration policy controller monitors the status of you pod nginx policies. Pod nginx
policies are applied to to define the container rules for your pods. Learn to create, apply, view, and
update your pod nginx policy.

2.5.6.1. Creating a pod nginx policy

You can create a YAML for your pod nginx policy from the command line interface (CLI) or from the
console. View the following sections to create a pod nginx policy:

CHAPTER 2. GOVERNANCE AND RISK

79

2.5.6.1.1. Creating a pod nginx policy from the CLI

Complete the following steps to create a pod nginx policy from the CLI:

1. Create a YAML file for your pod nginx policy by running the following command:

kubectl create -f podnginxpolicy-1.yaml

2. Apply the policy by running the following command:

kubectl apply -f <podnginx-policy-file-name> --namespace=<namespace>

3. List and verify the policies by running the following command:

kubectl get podnginxpolicy --namespace=<namespace>

Your image pod nginx policy is created from the CLI.

2.5.6.1.1.1. Viewing your nginx policy from the CLI

Complete the following steps to view your pod nginx policy from the CLI:

1. View details for a specific pod nginx policy by running the following command:

kubectl get podnginxpolicy <policy-name> -n <namespace> -o yaml

2. View a description of your pod nginx policy by running the following command:

kubectl describe podnginxpolicy <name> -n <namespace>

2.5.6.2. Creating an pod nginx policy from the console

As you create a pod nginx policy from the console, a YAML file is also created in the YAML editor.
Complete the following steps to create the pod nginx policy from the console:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk.

3. Click Create policy.

4. Select Pod from the Specifications field. Parameter values are automatically set. You can edit
your values.

5. Click Create.

Viewing your pod nginx policy from the console
You can view any pod nginx policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

80

3. Select one of your policies to view more details.

4. View the policy violations by selecting the Status tab.

2.5.6.3. Updating pod nginx policies

Learn to update pod nginx policies by viewing the following section.

2.5.6.3.1. Disabling pod nginx policies

Complete the following steps to disable your pod nginx policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.6.3.2. Deleting a pod nginx policy

Delete the pod nginx policy from the CLI or the console.

Delete a pod nginx policy from the CLI:

a. Delete a pod nginx policy by running the following command:

kubectl delete policy <podnginxpolicy-name> -n <namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

b. Verify that your policy is removed by running the following command:

kubectl get policy <podnginxpolicy-name> -n <namespace>

Delete a pod nginx policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your pod nginx policy is deleted.

View a sample of a pod nginx policy, see Pod nginx policy sample from the Pod nginx policy page. See
Kubernetes configuration policy controller to learn about other configuration policies. See Managing
security policies to manage other policies.

2.5.7. Managing pod security policies

CHAPTER 2. GOVERNANCE AND RISK

81

Apply a pod security policy to secure pods and containers. Learn to create, apply, view, and update your
pod security policy in the following sections.

2.5.7.1. Creating a pod security policy

You can create a YAML file for your pod security policy from the command line interface (CLI) or from
the console. View the following sections to create a pod security policy:

2.5.7.1.1. Creating a pod security policy from the CLI

Complete the following steps to create a pod security from the CLI:

1. Create a YAML file for your pod security policy by running the following command:

kubectl create -f podsecuritypolicy-1.yaml

2. Apply the policy by running the following command:

kubectl apply -f <podsecurity-policy-file-name> --namespace=<namespace>

3. List and verify the policies by running the following command:

kubectl get podsecuritypolicy --namespace=<namespace>

Your pod security policy is created from the CLI.

2.5.7.1.1.1. Viewing your pod security policy from the CLI

Complete the following steps to view your pod security policy from the CLI:

1. View details for a specific pod security policy by running the following command:

kubectl get podsecuritypolicy <policy-name> -n <namespace> -o yaml

2. View a description of your pod security policy by running the following command:

kubectl describe podsecuritypolicy <name> -n <namespace>

2.5.7.1.2. Creating a pod security policy from the console

As you create a pod security policy from the console, a YAML file is also created in the YAML editor.
Complete the following steps to create the pod security policy from the console:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk.

3. Click Create policy.

4. Select Podsecuritypolicy from the Specifications field. Parameter values are automatically set.
You can edit your values.

5. Click Create.

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

82

2.5.7.1.2.1. Viewing your pod security policy from the console

You can view any pod security policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details.

4. View the policy violations by selecting the Status tab.

2.5.7.2. Updating pod security policies

Learn to update pod security policies by viewing the following section.

2.5.7.2.1. Disabling pod security policies

Complete the following steps to disable your pod security policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.7.2.2. Deleting a pod security policy

Delete the pod security policy from the CLI or the console.

Delete a pod security policy from the CLI:

a. Delete a pod security policy by running the following command:

 kubectl delete policy <podsecurity-policy-name> -n <mcm namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

b. Verify that your policy is removed by running the following command:

 kubectl get policy <podsecurity-policy-name> -n <mcm namespace>

Delete a pod security policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

CHAPTER 2. GOVERNANCE AND RISK

83

d. From the Remove policy dialog box, click Remove policy.

Your pod security policy is deleted.

View a sample of a pod security policy, see Pod security policy sample on the Pod security policy page.
See Kubernetes configuration policy controller to learn about other configuration policies. See
Managing security policies to manage other policies.

2.5.8. Managing role policies

Kubernetes configuration policy controller monitors the status of role policies. Apply a role policy to set
rules and permissions for specific roles in your cluster. Learn to create, apply, view, and update your role
policy in the following sections.

2.5.8.1. Creating a role policy

You can create a YAML file for your role policy from the command line interface (CLI) or from the
console. View the following sections to create a role policy:

2.5.8.1.1. Creating a role policy from the CLI

Complete the following steps to create a role from the CLI:

1. Create a YAML file for your role policy by running the following command:

kubectl create -f rolepolicy-1.yaml

2. Apply the policy by running the following command:

kubectl apply -f <role-policy-file-name> --namespace=<namespace>

3. List and verify the policies by running the following command:

kubectl get rolepolicy --namespace=<namespace>

Your role policy is created from the CLI.

2.5.8.1.1.1. Viewing your role policy from the CLI

Complete the following steps to view your role policy from the CLI:

1. View details for a specific role policy by running the following command:

kubectl get rolepolicy <policy-name> -n <namespace> -o yaml

2. View a description of your role policy by running the following command:

kubectl describe rolepolicy <name> -n <namespace>

2.5.8.1.2. Creating a role policy from the console

As you create a role policy from the console, a YAML file is also created in the YAML editor. Complete
the following steps to create the role policy from the console:

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

84

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk.

3. Click Create policy.

4. Select Role from the Specifications field. Parameter values are automatically set. You can edit
your values.

5. Click Create.

2.5.8.1.2.1. Viewing your role policy from the console

You can view any role policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details.

4. View the policy violations by selecting the Status tab.

2.5.8.2. Updating role policies

Learn to update role policies by viewing the following section.

2.5.8.2.1. Disabling role policies

Complete the following steps to disable your role policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.8.2.2. Deleting a role policy

Delete the role policy from the CLI or the console.

Delete a role policy from the CLI:

a. Delete a role policy by running the following command:

 kubectl delete policy <podsecurity-policy-name> -n <mcm namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

b. Verify that your policy is removed by running the following command:

CHAPTER 2. GOVERNANCE AND RISK

85

 kubectl get policy <podsecurity-policy-name> -n <mcm namespace>

Delete a role policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your role policy is deleted.

View a sample of a role policy, see Role policy sample on the Role policy page. See Kubernetes
configuration policy controller to learn about other configuration policies. See Managing security
policies to manage other policies.

2.5.9. Managing rolebinding policies

Learn to create, apply, view, and update your rolebinding policies.

2.5.9.1. Creating a rolebinding policy

You can create a YAML file for your rolebinding policy from the command line interface (CLI) or from
the console. View the following sections to create a rolebinding policy:

2.5.9.1.1. Creating a rolebinding policy from the CLI

Complete the following steps to create a rolebinding policy from the CLI:

1. Create a YAML file for your rolebinding policy. Run the following command:

kubectl create -f rolebindingpolicy.yaml

2. Apply the policy by running the following command:

kubectl apply -f <rolebinding-policy-file-name> --namespace=<namespace>

3. Verify and list the policies by running the following command:

kubectl get rolebindingpolicy --namespace=<namespace>

Your rolebinding policy is created.

2.5.9.1.1.1. Viewing your rolebinding policy from the CLI

Complete the following steps to view your rolebinding policy from the CLI:

1. View details for a specific rolebinding policy by running the following command:

kubectl get rolebindingpolicy <policy-name> -n <namespace> -o yaml

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

86

2. View a description of your rolebinding policy by running the following command:

kubectl describe rolebindingpolicy <name> -n <namespace>

2.5.9.1.2. Creating a rolebinding policy from the console

As you create a rolebinding policy from the console, a YAML file is also created in the YAML editor.
Complete the following steps to create a rolebinding policy from the console:

1. Log in to your cluster from the console.

2. From the navigation menu, click Governance and risk.

3. Click Create policy.

4. Enter or select the appropriate values for the following fields:

Name

Specifications

Cluster selector

Remediation action

Standards

Categories

Controls

Disabled

5. Click Create.

A rolebinding policy is created.

2.5.9.1.2.1. Viewing your rolebinding policy from the console

You can view any rolebinding policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Governance and risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details.

4. View the rolebinding policy violations by selecting the Status tab.

2.5.9.2. Updating rolebinding policies

Learn to update rolebinding policies by viewing the following section.

2.5.9.2.1. Disabling rolebinding policies

CHAPTER 2. GOVERNANCE AND RISK

87

Complete the following steps to disable your rolebinding policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.9.2.2. Deleting a rolebinding policy

Delete the rolebinding policy from the CLI or the console.

Delete a rolebinding policy from the CLI:

a. Delete a rolebinding policy by running the following command:

 kubectl delete policy <podsecurity-policy-name> -n <namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

b. Verify that your policy is removed by running the following command:

 kubectl get policy <podsecurity-policy-name> -n <namespace>

Delete a rolebinding policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your rolebinding policy is deleted.

View a sample of a rolebinding policy, see Rolebinding policy sample on the Rolebinding policy page. See
Kubernetes configuration policy controller to learn about other configuration policies. See Managing
security policies to manage other policies.

2.5.10. Managing Security Context Constraints policies

Learn to create, apply, view, and update your Security Context Constraints (SCC) policies.

2.5.10.1. Creating an SCC policy

You can create a YAML file for your SCC policy from the command line interface (CLI) or from the
console. View the following sections to create an SCC policy:

2.5.10.1.1. Creating an SCC policy from the CLI

See Creating Security Context Constraints in the OpenShift Container Platform documentation for

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

88

See Creating Security Context Constraints in the OpenShift Container Platform documentation for
more details.

2.5.10.1.1.1. Viewing your SCC policy from the CLI

See Examining an SCC in the OpenShift Container Platform documentation for more details.

2.5.10.1.2. Creating an SCC policy from the console

As you create an SCC policy from the console, a YAML file is also created in the YAML editor. Complete
the following steps to create an SCC policy from the console:

1. Log in to your cluster from the console.

2. From the navigation menu, click Governance and risk.

3. Click Create policy.

4. Enter or select the appropriate values for the following fields:

Name

Specifications

Cluster selector

Remediation action

Standards

Categories

Controls

Disabled

5. Click Create.

An SCC policy is created.

2.5.10.1.2.1. Viewing your SCC policy from the console

You can view any SCC policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Governance and risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details.

4. View the SCC policy violations by selecting the Status tab.

2.5.10.2. Updating SCC policies

Learn to update SCC policies by viewing the following sections.

CHAPTER 2. GOVERNANCE AND RISK

89

https://docs.openshift.com/container-platform/4.3/authentication/managing-security-context-constraints.html#security-context-constraints-creating_configuring-internal-oauth
https://docs.openshift.com/container-platform/4.3/authentication/managing-security-context-constraints.html#examining-a-security-context-constraints-object_configuring-internal-oauth

2.5.10.2.1. Disabling SCC policies

Complete the following steps to disable your SCC policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.10.2.2. Deleting an SCC policy

Delete the SCC policy from the CLI or the console.

See Deleting an SCC in the OpenShift Container Platform documentation to learn more about deleting
an SCC policy from the CLI.

Delete an SCC policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your SCC policy is deleted.

To view a sample of an SCC policy, see the Security context constraint policy sample section of Security
Context Constraints policy. See Kubernetes configuration policy controller to learn about other
configuration policies. See Managing security policies to manage other policies.

2.5.11. Managing certificate policies

Learn to create, apply, view, and update your certificate policies.

2.5.11.1. Creating a certificate policy

You can create a YAML file for your certificate policy from the command line interface (CLI) or from the
console. View the following sections to create a certificate policy:

2.5.11.1.1. Creating a certificate policy from the CLI

Complete the following steps to create a certificate policy from the CLI:

1. Create a YAML file for your certificate policy. Run the following command:

kubectl create -f policy-1.yaml

2. Apply the policy by running the following command:

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

90

https://docs.openshift.com/container-platform/4.3/authentication/managing-security-context-constraints.html#deleting-security-context-constraints_configuring-internal-oauth

kubectl apply -f <certificate-policy-file-name> --namespace=<namespace>

3. Verify and list the policies by running the following command:

kubectl get certificatepolicy --namespace=<namespace>

Your certificate policy is created.

2.5.11.1.1.1. Viewing your certificate policy from the CLI

Complete the following steps to view your certificate policy from the CLI:

1. View details for a specific certificate policy by running the following command:

kubectl get certificatepolicy <policy-name> -n <namespace> -o yaml

2. View a description of your certificate policy by running the following command:

kubectl describe certificatepolicy <name> -n <namespace>

2.5.11.1.2. Creating a certificate policy from the console

As you create a certificate policy from the console, a YAML file is also created in the YAML editor.
Complete the following steps to create a certificate policy from the console:

1. Log in to your cluster from the console.

2. From the navigation menu, click Governance and risk.

3. Click Create policy.

4. Select CertificatePolicy for the Specifications parameter. Values for the remaining parameters
are automatically set when you select the policy. You can edit your values.

5. Click Create.

A certificate policy is created.

2.5.11.1.2.1. Viewing your certificate policy from the console

You can view any certificate policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details. The Details tab, Status tab, and YAML tab are
displayed.

4. To view the compliance status of your policy, select the Status tab. Click the View history link to
view a list of violation messages.

CHAPTER 2. GOVERNANCE AND RISK

91

2.5.11.2. Updating certificate policies

2.5.11.2.1. Bringing your own certificates

You can monitor your own certificates with the certificate policy controller. You must complete one of
the following requirements to monitor your own certificates:

Create a Kubernetes TLS Secret for your certificate.

Add the label certificate_key_name into your Kubernetes secret to monitor your certificates.

Create a Kubernetes TLS secret to monitor your own certificates by running the following command:

kubectl -n <namespace> create secret tls <secret name> --cert=<path to certificate>/<certificate
name> --key=<path to key>/<key name>

2.5.11.2.2. Adding a label into your Kubernetes secret

Update the metadata parameter in your TLS Secret by adding the certificate_key_name label. Run the
following command to add the certificate_key_name label:

 kubectl label secret my-certificate -n default certificate_key_name=cert

Your updated TLS Secret might resemble the following content:

Note: When you add the label from the console, you must manually add the label into the TLS Secret
YAML file.

2.5.11.2.3. Disabling certificate policies

When you create a certificate policy, it is enabled by default. Complete the following steps to disable a
certificate policy from the CLI or the console:

Disable a certificate policy from the console:

a. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

b. From the navigation menu, click Govern risk to view a table list of your policies.

c. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box
appears.

d. Click Disable policy.

 apiVersion: policy.open-cluster-management.io/v1
 kind: Secret
 metadata:
 name: my-certificate
 namespace: default
 labels:
 certificate_key_name: cert
 type: Opaque
 data:
 cert: <Certificate Data>
 key: <Private Key Data>

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

92

Your policy is disabled.

2.5.11.2.4. Deleting a certificate policy

Delete the certificate policy from the CLI or the console.

Delete a certificate policy from the CLI:

a. Delete a certificate policy by running the following command:

kubectl delete policy <cert-policy-name> -n <namespace>

+ After your policy is deleted, it is removed from your target cluster or clusters.

a. Verify that your policy is removed by running the following command:

kubectl get policy <policy-name> -n <mcm namespace>

Delete a certificate policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your certificate policy is deleted.

View a sample of a certificate policy, see Certificate policy sample on the Certificate policy controller
page. For more information about other policy controllers, see Policy controllers. See Managing security
policies to manage other policies.

2.5.12. Managing IAM policies

Apply an IAM policy to check the number of cluster administrators that you allow in your managed
cluster. Learn to create, apply, view, and update your IAM policies in the following sections.

2.5.12.1. Creating an IAM policy

You can create a YAML file for your IAM policy from the command line interface (CLI) or from the
console.

2.5.12.1.1. Creating an IAM policy from the CLI

Complete the following steps to create an IAM policy from the CLI:

1. Create a YAML file with the IAM policy definition. Run the following command:

kubectl create -f iam-policy-1.yaml

Your IAM policy might resemble the following YAML file:

apiVersion: policy.open-cluster-management.io/v1

CHAPTER 2. GOVERNANCE AND RISK

93

2. Apply the policy by running the following command:

kubectl apply -f <iam-policy-file-name> --namespace=<mcm_namespace>

3. Verify and list the policy by running the following command:

kubectl get <iam-policy-file-name> --namespace=<mcm_namespace>

Your IAM policy is created.

2.5.12.1.1.1. Viewing your IAM policy from the CLI

Complete the following steps to view your IAM policy:

1. View details for specific IAM policy by running the following command:

kubectl get iampolicy <policy-name> -n <namespace> -o yaml

2. View a description of your IAM policy by running the following command:

kubectl describe iampolicy <name> -n <namespace>

2.5.12.1.2. Creating an IAM policy from the console

As you create your IAM policy from the console, a YAML file is also created in the YAML editor.
Complete the following steps to create an IAM policy from the console:

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk.

3. Click Create policy.

4. Select IamPolicy from the Specifications field. Values for the remaining parameters are set
automatically when you select the policy. You can edit your values.

5. Click Create.

An IAM policy is created.

2.5.12.1.2.1. Viewing your IAM policy from the console

kind: IamPolicy
metadata:
 name: iam-grc-policy
 label:
 category: "System-Integrity"
spec:
 namespaceSelector:
 include: ["default","kube-*"]
 exclude: ["kube-system"]
 remediationAction: inform
 disabled: false
 maxClusterRoleBindingUsers: 5

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

94

You can view any IAM policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details.

4. View the IAM policy violations by selecting the Status tab.

2.5.12.2. Updating IAM policies

Learn to update IAM policies by viewing the following section.

2.5.12.2.1. Disabling IAM policies

Complete the following steps to disable your IAM policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.12.2.2. Deleting an IAM policy

Delete a configuration policy from the CLI or the console.

Delete an IAM policy from the CLI:

a. Delete an IAM policy by running the following command:

 kubectl delete policy <iam-policy-name> -n <mcm namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

b. Verify that your policy is removed by running the following command:

 kubectl get policy <iam-policy-name> -n <mcm namespace>

Delete an IAM policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

CHAPTER 2. GOVERNANCE AND RISK

95

Your policy is deleted.

View the IAM policy sample from the IAM policy controller page. See Managing security policies for more
topics.

2.5.13. Managing ETCD encryption policies

Apply an encryption policy to detect, or enable encryption of sensitive data in the ETCD data-store.
Learn to create, apply, view, and update your encrytpion policy in the following sections.

2.5.13.1. Creating an encryption policy

You can create a YAML file for your encryption policy from the command line interface (CLI) or from
the console. View the following sections to create a encryption policy:

2.5.13.1.1. Creating an encryption policy from the CLI

Complete the following steps to create an encrytpion policy from the CLI:

1. Create a YAML file for your encryption policy by running the following command:

kubectl create -f etcd-encryption-policy-1.yaml

2. Apply the policy by running the following command:

kubectl apply -f <etcd-encryption-policy-file-name> --namespace=<namespace>

3. List and verify the policies by running the following command:

kubectl get etcd-encryption-policy --namespace=<namespace>

Your encryption policy is created from the CLI.

2.5.13.1.1.1. Viewing your encryption policy from the CLI

Complete the following steps to view your encryption policy from the CLI:

1. View details for a specific encryption policy by running the following command:

kubectl get etcd-encryption-policy <policy-name> -n <namespace> -o yaml

2. View a description of your encryption policy by running the following command:

kubectl describe etcd-encryption-policy <name> -n <namespace>

2.5.13.1.2. Creating an encryption policy from the console

As you create a encryption policy from the console, a YAML file is also created in the YAML editor.
Complete the following steps to create the encryption policy from the console:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk.

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

96

3. Click Create policy.

4. Select EtcdEncryption from the Specifications field. Values for the remaining parameters are
set automatically when you select the policy. You can edit your values.

5. Click Create.

2.5.13.1.2.1. Viewing your encryption policy from the console

You can view any encryption policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the All policies tab or Cluster
violations tab.

3. Select one of your policies to view more details. The Overview tab, Status tab, and YAML tab are
displayed.

2.5.13.2. Updating encryption policies

Learn to update encryption policies by viewing the following section.

2.5.13.2.1. Disabling encryption policies

Complete the following steps to disable your encryption policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.13.2.2. Deleting an encryption policy

Delete the encryption policy from the CLI or the console.

Delete an encryption policy from the CLI:

a. Delete an encryption policy by running the following command:

 kubectl delete policy <podsecurity-policy-name> -n <mcm namespace>

+ After your policy is deleted, it is removed from your target cluster or clusters.

a. Verify that your policy is removed by running the following command:

 kubectl get policy <podsecurity-policy-name> -n <mcm namespace>

Delete a encryption policy from the console:

CHAPTER 2. GOVERNANCE AND RISK

97

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your encryption policy is deleted.

View a sample of an encryption policy, see ETCD encryption policy sample on the ETCD encryption
policy page. See Kubernetes configuration policy controller to learn about other configuration policies.
See Managing security policies to manage other policies.

2.5.14. Gatekeeper policy integration

Learn to create, apply, view, and update your gatekeeper policies.

Required access: Cluster administrator

Prerequisite: You must install Gatekeeper. For more information see open-policy-agent/gatekeeper
repository.

2.5.14.1. Creating a gatekeeper policy

You can create a YAML file for your gatekeeper policy from the command line interface (CLI). Use the
Red Hat Advanced Cluster Management for Kubernetes configuration policy to propagate the
gatekeeper policy from the hub cluster to the managed cluster. View the following sections to create a
gatekeeper policy for the admission and auditing scenarios:

2.5.14.1.1. Creating a gatekeeper policy for admission

Use the Red Hat Advanced Cluster Management configuration policy to create a gatekeeper policy that
looks for events that are generated by the gatekeeper admission webhook.

Note: Gatekeeper must be deployed with emit-admission-events set to true.

1. Create a YAML file for your gatekeeper policy. Run the following command:

kubectl create -f policy-gatekeeper-admission.yaml

Your gatekeeper policy might resemble the following policy:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-gatekeeper
 namespace: default
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
spec:
 disabled: false
 policy-templates:

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

98

https://github.com/open-policy-agent/gatekeeper

 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: policy-gatekeeper-k8srequiredlabels
 spec:
 remediationAction: enforce # will be overridden by remediationAction in parent policy
 severity: low
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: templates.gatekeeper.sh/v1beta1
 kind: ConstraintTemplate
 metadata:
 name: k8srequiredlabels
 spec:
 crd:
 spec:
 names:
 kind: K8sRequiredLabels
 validation:
 # Schema for the `parameters` field
 openAPIV3Schema:
 properties:
 labels:
 type: array
 items: string
 targets:
 - target: admission.k8s.gatekeeper.sh
 rego: |
 package k8srequiredlabels
 violation[{"msg": msg, "details": {"missing_labels": missing}}] {
 provided := {label | input.review.object.metadata.labels[label]}
 required := {label | label := input.parameters.labels[_]}
 missing := required - provided
 count(missing) > 0
 msg := sprintf("you must provide labels: %v", [missing])
 }
 - complianceType: musthave
 objectDefinition:
 apiVersion: constraints.gatekeeper.sh/v1beta1
 kind: K8sRequiredLabels
 metadata:
 name: ns-must-have-gk
 spec:
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Namespace"]
 parameters:
 labels: ["gatekeeper"]
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: policy-gatekeeper-admission

CHAPTER 2. GOVERNANCE AND RISK

99

 spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: low
 object-templates:
 - complianceType: mustnothave
 objectDefinition:
 apiVersion: v1
 kind: Event
 metadata:
 namespace: gatekeeper-system
 annotations:
 constraint_action: deny
 constraint_kind: K8sRequiredLabels
 constraint_name: ns-must-have-gk
 event_type: violation

2.5.14.1.2. Creating a gatekeeper policy for audit

Use the product configuration policy to create a gatekeeper policy that periodically checks and
evaluates existing resources against the gatekeeper policies. Red Hat Advanced Cluster Management
configuration policy checks for the violations in the status field of the gatekeeper constraint.

1. Create a YAML file for your gatekeeper policy. Run the following command:

kubectl create -f policy-gatekeeper-audit.yaml

Your gatekeeper policy might resemble the following policy:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-gatekeeper
 namespace: default
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
spec:
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: policy-gatekeeper-audit
 spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: low
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: constraints.gatekeeper.sh/v1beta1
 kind: K8sRequiredLabels
 metadata:
 name: ns-must-have-gk

Red Hat Advanced Cluster Management for Kubernetes 2.1 Security

100

 status:
 totalViolations: 0
 violations: []

For more information about integrating third-party policies with the product, see Integrate third-party
policy controllers.

CHAPTER 2. GOVERNANCE AND RISK

101

	Table of Contents
	CHAPTER 1. SECURITY
	1.1. ROLE-BASED ACCESS CONTROL
	1.1.1. Overview of roles
	1.1.2. RBAC implementation
	1.1.2.1. Cluster lifecycle RBAC
	1.1.2.2. Application lifecycle RBAC
	1.1.2.3. Governance lifecycle RBAC
	1.1.2.4. Observability RBAC

	1.2. CERTIFICATES
	1.2.1. List certificates
	1.2.2. Refresh a certificate
	1.2.3. Refresh certificates for Red Hat Advanced Cluster Management for Kubernetes
	1.2.4. Replacing the root CA certificate
	1.2.4.1. Prerequisites for root CA certificate
	1.2.4.2. Creating the root CA certificate with OpenSSL
	1.2.4.3. Replacing root CA certificates
	1.2.4.4. Refreshing cert-manager certificates
	1.2.4.5. Restoring root CA certificates

	1.2.5. Replacing the management ingress certificates
	1.2.5.1. Prerequisites to replace management ingress certificate
	1.2.5.2. Replace the Bring Your Own (BYO) ingress certificate
	1.2.5.3. Restore the default self-signed certificate for management ingress

	CHAPTER 2. GOVERNANCE AND RISK
	2.1. GOVERNANCE ARCHITECTURE
	2.2. POLICY OVERVIEW
	2.2.1. Policy YAML structure
	2.2.2. Policy YAML table
	2.2.3. Policy sample file

	2.3. POLICY CONTROLLERS
	2.3.1. Kubernetes configuration policy controller
	2.3.1.1. Configuration policy controller YAML structure
	2.3.1.2. Configuration policy sample
	2.3.1.3. Configuration policy YAML table

	2.3.2. Certificate policy controller
	2.3.2.1. Certificate policy controller YAML structure
	2.3.2.2. Certificate policy sample

	2.3.3. IAM policy controller
	2.3.3.1. IAM policy YAML structure
	2.3.3.2. IAM policy YAMl table
	2.3.3.3. IAM policy sample

	2.3.4. Integrate third-party policy controllers
	2.3.5. Creating a custom policy controller
	2.3.5.1. Writing a policy controller
	2.3.5.2. Deploying your controller to the cluster

	2.4. POLICY SAMPLES
	2.4.1. Memory usage policy
	2.4.1.1. Memory usage policy YAML structure
	2.4.1.2. Memory usage policy table
	2.4.1.3. Memory usage policy sample

	2.4.2. Namespace policy
	2.4.2.1. Namespace policy YAML structure
	2.4.2.2. Namespace policy YAML table
	2.4.2.3. Namespace policy sample

	2.4.3. Image vulnerability policy
	2.4.3.1. Image vulnerability policy YAML structure
	2.4.3.2. Image vulnerability policy YAML table
	2.4.3.3. Image vulnerability policy sample

	2.4.4. Pod nginx policy
	2.4.4.1. Pod nginx policy YAML structure
	2.4.4.2. Pod nginx policy table
	2.4.4.3. Pod nginx policy sample

	2.4.5. Pod security policy
	2.4.5.1. Pod security policy YAML structure
	2.4.5.2. Pod security policy table
	2.4.5.3. Pod security policy sample

	2.4.6. Role policy
	2.4.6.1. Role policy YAML structure
	2.4.6.2. Role policy table
	2.4.6.3. Role policy sample

	2.4.7. Rolebinding policy
	2.4.7.1. Rolebinding policy YAML structure
	2.4.7.2. Rolebinding policy table
	2.4.7.3. Rolebinding policy sample

	2.4.8. Security Context Constraints policy
	2.4.8.1. SCC policy YAML structure
	2.4.8.2. SCC policy table
	2.4.8.3. SCC policy sample

	2.4.9. ETCD encryption policy
	2.4.9.1. ETCD encryption policy YAML structure
	2.4.9.2. ETCD encryption policy table
	2.4.9.3. Etcd encryption policy sample

	2.4.10. Integrating gatekeeper constraints and constraint templates

	2.5. MANAGE SECURITY POLICIES
	2.5.1. Managing security policies
	2.5.1.1. Creating a security policy
	2.5.1.2. Updating security policies

	2.5.2. Managing configuration policies
	2.5.2.1. Creating a configuration policy
	2.5.2.2. Updating configuration policies
	2.5.2.3. Deleting a configuration policy

	2.5.3. Managing image vulnerability policies
	2.5.3.1. Creating an image vulnerability policy
	2.5.3.2. Creating an image vulnerability policy from the console
	2.5.3.3. Viewing image vulnerability violations from the console
	2.5.3.4. Updating image vulnerability policies

	2.5.4. Managing memory usage policies
	2.5.4.1. Creating a memory usage policy
	2.5.4.2. Updating memory usage policies

	2.5.5. Managing namespace policies
	2.5.5.1. Creating a namespace policy
	2.5.5.2. Updating namespace policies

	2.5.6. Managing pod nginx policies
	2.5.6.1. Creating a pod nginx policy
	2.5.6.2. Creating an pod nginx policy from the console
	2.5.6.3. Updating pod nginx policies

	2.5.7. Managing pod security policies
	2.5.7.1. Creating a pod security policy
	2.5.7.2. Updating pod security policies

	2.5.8. Managing role policies
	2.5.8.1. Creating a role policy
	2.5.8.2. Updating role policies

	2.5.9. Managing rolebinding policies
	2.5.9.1. Creating a rolebinding policy
	2.5.9.2. Updating rolebinding policies

	2.5.10. Managing Security Context Constraints policies
	2.5.10.1. Creating an SCC policy
	2.5.10.2. Updating SCC policies

	2.5.11. Managing certificate policies
	2.5.11.1. Creating a certificate policy
	2.5.11.2. Updating certificate policies

	2.5.12. Managing IAM policies
	2.5.12.1. Creating an IAM policy
	2.5.12.2. Updating IAM policies

	2.5.13. Managing ETCD encryption policies
	2.5.13.1. Creating an encryption policy
	2.5.13.2. Updating encryption policies

	2.5.14. Gatekeeper policy integration
	2.5.14.1. Creating a gatekeeper policy

