
Red Hat 3scale 2-saas

Providing APIs in the Developer Portal

A properly configured Developer Portal provides plenty of functionalities for API
management.

Last Updated: 2023-12-22

Red Hat 3scale 2-saas Providing APIs in the Developer Portal

A properly configured Developer Portal provides plenty of functionalities for API management.

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide documents the uses of the Developer Portal on Red Hat 3scale 2-saas.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE

PART I. OPENAPI SPECIFICATION

CHAPTER 1. AN INTRODUCTION TO OPENAPI SPECIFICATION
1.1. COMMAND LINE OPTIONS FOR IMPORTING OPENAPI DOCUMENTS IN 3SCALE
1.2. DIFFERENT SOURCES TO IMPORT API SPECIFICATIONS

CHAPTER 2. HOW TO CONFIGURE OPENAPI SPECIFICATION
2.1. OPENAPI SPECIFICATION 3.0 USAGE WITH 3SCALE

2.1.1. Configure the Developer Portal with OAS 3.0
2.2. OPENAPI SPECIFICATION 2.0 USAGE WITH 3SCALE
2.3. UPGRADING THE SWAGGER USER INTERFACE 2.1.3 TO 2.2.10

PART II. API DOCUMENTATION IN THE DEVELOPER PORTAL

CHAPTER 3. UPDATE TO ACTIVEDOCS 2.0
3.1. STEP 1: APPLY THE APPROPRIATE NAMING CONVENTION TO YOUR SPECIFICATION
3.2. STEP 2: MODIFY SERVICE SPEC
3.3. STEP 3: ADD THE JAVASCRIPT AND HTML CONTENT TO YOUR CMS PAGE
3.4. STEP 4: TEST YOUR API USING ACTIVEDOCS 1.2

CHAPTER 4. ADDING ACTIVEDOCS TO 3SCALE
4.1. SETTING UP ACTIVEDOCS IN 3SCALE

CHAPTER 5. HOW TO WRITE AN OPENAPI DOCUMENT FOR USE AS A 3SCALE OPENAPI SPEC
5.1. SETTING UP 3SCALE ACTIVEDOCS AND OAS
5.2. OPENAPI DOCUMENT EXAMPLE: PETSTORE API
5.3. ADDITIONAL OAS SPECIFICATION INFORMATION
5.4. OAS DESIGN AND EDITING TOOLS
5.5. ACTIVEDOCS AUTO-FILL OF API CREDENTIALS

CHAPTER 6. ACTIVEDOCS AND OAUTH
6.1. EXAMPLE OF CLIENT CREDENTIALS AND RESOURCE OWNER FLOWS IN A 3SCALE SPECIFICATION

6.2. PUBLISHING ACTIVEDOCS IN THE DEVELOPER PORTAL

CHAPTER 7. APICAST SELF-MANAGED (OLD VERSION) AND OAUTH 2.0
7.1. PREREQUISITES
7.2. OAUTH CONFIGURATION

7.2.1. Step 1: Edit Integration Settings
7.2.2. Step 2: Declare your OAuth Authorization Endpoint
7.2.3. Step 3: Download the APIcast config files

7.3. RUNNING YOUR SELF-MANAGED APICAST INSTANCE (PRODUCTION)
7.3.1. Step 1: Install the dependencies (for Ubuntu)
7.3.2. Step 2: Compile and install OpenResty
7.3.3. Step 3: Install Redis
7.3.4. Step 4: Download the APIcast configuration from 3scale
7.3.5. Step 5: Start and stop APIcast
7.3.6. Step 6: Test your OAuth Flow

3

4

5

6
6
7

9
9
9

10
11

12

13
13
13
14
15

16
16

18
18
19
19
21
21

23

23
26

28
28
28
29
29
29
29
30
30
30
30
31
31

Table of Contents

1

Red Hat 3scale 2-saas Providing APIs in the Developer Portal

2

PREFACE
An OpenAPI document that defines your API is the foundation for your Developer Portal.

PREFACE

3

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat 3scale 2-saas Providing APIs in the Developer Portal

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PART I. OPENAPI SPECIFICATION

PART I. OPENAPI SPECIFICATION

5

CHAPTER 1. AN INTRODUCTION TO OPENAPI SPECIFICATION
In Red Hat 3scale API Management, the OpenAPI Specification (OAS) helps you to optimally manage
OpenAPI documents. The OpenAPI Specification (OAS) provides you with the tools to update an
existing service or create a new one.

The following are special considerations about OAS in 3scale:

You can also import an OpenAPI specification (OpenAPI document) with the 3scale toolbox.
See Importing OpenAPI definitions .

Regarding OAS 3.0, 3scale 2.8 introduces changes. For more details, refer to Section 2.1,
“OpenAPI Specification 3.0 usage with 3scale”.

Prerequisites

An OpenAPI document that defines your API.

A 3scale 2-saas instance tenant’s credentials (token or provider_key).

With OAS, the following features are available in 3scale:

NOTE

When you import an OpenAPI document, you create or update ActiveDocs. See How to
write an OpenAPI document for use as a 3scale specification.

Ability to pass the 3scale service system_name as an optional parameter that defaults to
info.title field from OAS.

Methods are created for each operation defined in the OpenAPI specification.

Method names are taken from the operation.operationId field.

All existing mapping rules get deleted before importing a new API definition.

Methods will be not deleted if they exist before running the command.

Mapping rules get created for each operation defined in the OpenAPI specification.

One of the following channels provides the OpenAPI definition resource:

Filename in the available path

URL format - toolbox will try to download from given address.

Read from stdin standard input stream.

1.1. COMMAND LINE OPTIONS FOR IMPORTING OPENAPI
DOCUMENTS IN 3SCALE

The 3scale command line interface (CLI) provides several options for importing OpenAPI documents
that define APIs that you want to manage in 3scale. The following is the help information for the
openapi option:

Red Hat 3scale 2-saas Providing APIs in the Developer Portal

6

https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/operating_3scale/index#importing-openapi-definitions

NAME
 openapi - Import API definition in OpenAPI specification

USAGE
 3scale import openapi [opts] -d <dst> <spec>

DESCRIPTION
 Using an API definition format like OpenAPI, import to your 3scale API

OPTIONS
 -d --destination=<value> 3scale target instance.
 Format: "http[s]://<authentication>@3scale_domain"

 -t --target_system_name=<value> Target system name

OPTIONS FOR IMPORT
 -c --config-file=<value> 3scale toolbox
 configuration file
 (default:
 $HOME/.3scalerc.yaml)
 -h --help show help for this command
 -k --insecure Proceed and operate even
 for server connections
 otherwise considered
 insecure
 -v --version Prints the version of this
 command

1.2. DIFFERENT SOURCES TO IMPORT API SPECIFICATIONS

There are different sources available to you as a 3scale administrator for importing API specifications.
These are outlined in the following table, which shows the usage options for detecting OpenAPI
definitions from the filename path, the URL, and stdin.

Table 1.1. Detecting OpenAPI definitions

Description Formats Command line usage

Detecting OpenAPI definition
from the filename path. The
format is automatically detected
from filename extension.

json and yaml
$ 3scale import openapi -d
<destination>
/path/to/your/spec/file.
[json|yaml|yml]

Detecting OpenAPI definition
from a URL. The format is
automatically detected from
URL’s path extension.

json and yaml
$ 3scale import openapi -d
<destination>
http[s]://domain/resource/pat
h.[json|yaml|yml]

CHAPTER 1. AN INTRODUCTION TO OPENAPI SPECIFICATION

7

Detecting OpenAPI definition
from stdin. The command line
parameter for the OpenAPI
resource is -. The format is
automatically detected internally
with parsers.

json and yaml

$
tool_to_read_openapi_from
_source | 3scale import
openapi -d <destination> -

Description Formats Command line usage

Red Hat 3scale 2-saas Providing APIs in the Developer Portal

8

CHAPTER 2. HOW TO CONFIGURE OPENAPI SPECIFICATION
For the OpenAPI Specification to work with 3scale, it needs to configured correctly for the version you
intend to use.

Prerequisites

An OpenAPI document that defines your API.

A 3scale 2-saas instance tenant’s credentials (token or provider_key).

2.1. OPENAPI SPECIFICATION 3.0 USAGE WITH 3SCALE

3scale provides the following support for using OAS 3.0:

swagger-ui has been updated in the Developer Portal to support OAS 3.0

swagger-ui is now included as a webpack asset (node_modules). Formerly, it was added from
Content Delivery Networks (CDNs).

In the Admin Portal, any new OAS 3.0 document is identified automatically and processed
accordingly, by using the features provided by swagger-ui. Note that this functionality requires
configuration in the Developer Portal.

You can add OAS 3.0 specifications to ActiveDocs and display them in the Developer Portal,
considering the following points:

You must upgrade the templates manually.

The ActiveDoc does not have additional features such as credential injection when attempting
requests, and autocompletion using real data like service name.

2.1.1. Configure the Developer Portal with OAS 3.0

This snippet includes the new version of swagger-ui, and renders the first ActiveDoc available. Note
that it will also render OAS 2.0 but without any of the usual ActiveDocs features.

Support for OAS 3.0 specifications requires the following content in the default documentation page:

{% content_for javascripts %}
 {{ 'active_docs.js' | javascript_include_tag }}
{% endcontent_for %}

{% assign spec = provider.api_specs.first %}

<h1>Documentation</h1>

<div class="swagger-section">
 <div id="message-bar" class="swagger-ui-wrap"></div>
 <div id="swagger-ui-container" class="swagger-ui-wrap"></div>
</div>

<script type="text/javascript">
 (function () {
 var url = "{{spec.url}}";

CHAPTER 2. HOW TO CONFIGURE OPENAPI SPECIFICATION

9

 var serviceEndpoint = "{{spec.api_product_production_public_base_url}}"
 SwaggerUI({ url: url, dom_id: "#swagger-ui-container" }, serviceEndpoint);
 }());
</script>

Update the Developer Portal with OAS 3.0

If you have configured OAS 3.0 in 3scale 2.8 and want to continue using OAS 3.0, you need to update
the template.

This is the template to configure:

{% content_for javascripts %}
 {{ 'active_docs.js' | javascript_include_tag }}
{% endcontent_for %}

<h1>Documentation</h1>

<div class="swagger-section">
 <div id="message-bar" class="swagger-ui-wrap"> </div>
 <div id="swagger-ui-container" class="swagger-ui-wrap"></div>
</div>

<script type="text/javascript">
 (function () {
 var url = "{{provider.api_specs.first.url}}";

 SwaggerUI({ url: url, dom_id: "#swagger-ui-container" });
 }());
</script>

To update the template, replace the default Documentation page with the snippet included in
Section 2.1.1, “Configure the Developer Portal with OAS 3.0” .

2.2. OPENAPI SPECIFICATION 2.0 USAGE WITH 3SCALE

You can add OAS 2.0 specifications to ActiveDocs and display them in the Developer Portal,
considering the following points:

You must upgrade the templates manually.

The ActiveDoc does not have additional features such as credential injection when attempting
requests, and auto-completion using real data like service name.

Support for OAS 2.0 specifications requires the following content in the default documentation page:

<h1>Documentation</h1>
{% cdn_asset /swagger-ui/2.2.10/swagger-ui.js %}
{% cdn_asset /swagger-ui/2.2.10/swagger-ui.css %}

{% include 'shared/swagger_ui' %}

<script type="text/javascript">
 $(function () {
 window.swaggerUi.options['url'] = "{{provider.api_specs.first.url}}";

Red Hat 3scale 2-saas Providing APIs in the Developer Portal

10

 window.swaggerUi.load();
 });
</script>

2.3. UPGRADING THE SWAGGER USER INTERFACE 2.1.3 TO 2.2.10

If you are using a version of 3scale that contains Swagger UI 2.1.3, you can upgrade to Swagger UI
version 2.2.10.

Previous implementations of Swagger UI 2.1.3 in the 3scale Developer Portal rely on the presence of a
single {% active_docs version: "2.0" %} liquid tag in the Documentation page. With the introduction
of support for Swagger 2.2.10 in 3scale, the implementation method changes to multiple cdn_asset and
include liquid tags.

NOTE

For versions of Swagger UI 2.1.3 and earlier, 3scale continues to use the legacy
active_docs liquid tag method to call the UI.

Prerequisites

A 3scale instance with administrator access.

A 3scale instance that contains Swagger UI 2.1.3.

Procedure

1. Log in to your 3scale Admin Portal.

2. Navigate to the Developer Portal → Documentation page, or the page in which you want to
update your Swagger UI implementation

3. In the Draft tab of the code pane, replace the {% active_docs version: "2.0" %} liquid tag with
the cdn_asset liquid tag and the new partial shared/swagger_ui:

{% cdn_asset /swagger-ui/2.2.10/swagger-ui.js %}
{% cdn_asset /swagger-ui/2.2.10/swagger-ui.css %}

{% include 'shared/swagger_ui' %}

4. Optional: By default, Swagger UI loads the ActiveDocs specification published in APIs >
ActiveDocs. Load a different specification by adding the following window.swaggerUi.options
line before the window.swaggerUi.load(); line, where <SPEC_SYSTEM_NAME> is the system
name of the specification you want to load:

window.swaggerUi.options['url'] = "{{provider.api_specs.<SPEC_SYSTEM_NAME>.url}}";

CHAPTER 2. HOW TO CONFIGURE OPENAPI SPECIFICATION

11

PART II. API DOCUMENTATION IN THE DEVELOPER PORTAL

Red Hat 3scale 2-saas Providing APIs in the Developer Portal

12

CHAPTER 3. UPDATE TO ACTIVEDOCS 2.0

NOTE

The details of this section are for reference only. This option is no longer supported and
you should consider migrating away from this configuration at the earliest opportunity.

By the end of this tutorial, you will know what changes you need to make to your ActiveDocs
configuration to successfully upgrade to version 2.0.

For instructions applicable to the configuration of ActiveDocs 2.0, you can refer to Adding
Specifications to 3scale. Detailed spec-related differences can be found on the official Swagger 1.2 to
2.0 Migration Guide. This article simply documents the extra steps to upgrade to ActiveDocs 2.0.

NOTE

If your ActiveDocs spec is still in version 1.0, then please first convert it to version 1.2.

3.1. STEP 1: APPLY THE APPROPRIATE NAMING CONVENTION TO
YOUR SPECIFICATION

Navigate to the API → ActiveDocs tab in your Admin Portal. This will lead you to the list of your service
specs. You should have already added a service spec (see Create a service specification).

You should apply appropriate names to achieve the desired effect in your Developer Portal – the
heading of your ActiveDocs API listing will appear as "System name: Description". You may need to
recreate the spec again simply by copying the JSON spec and other fields, as the system name is read-
only.

3.2. STEP 2: MODIFY SERVICE SPEC

CHAPTER 3. UPDATE TO ACTIVEDOCS 2.0

13

https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html/using_the_developer_portal/add-activedocs
https://github.com/swagger-api/swagger-spec/wiki/Swagger-1.2-to-2.0-Migration-Guide
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html/using_the_developer_portal/add-activedocs#create_a_service_specification

The specification for ActiveDocs 2.0 has some important changes to those for version as compared to
version 1.2. See the Swagger 1.2 to 2.0 Migration Guide for detailed information. The most important
changes are:

the "swaggerVersion": "1.2" root element is now "swagger": "2.0" and it is a required field.

The "info" object becomes required.

The "apiVersion": "1.0" becomes required and is now part of the "info" object: "info": {
"version": "1.0", … ​ }

The description in the "info" object becomes non-mandatory.

The license name field becomes required if "license" object is present.

The "basePath": "https://example.com/api" field is split into three fields: "host":
"example.com", "basePath": "/api" and "schemes": ["http"]. None of these fields is
mandatory.

3.3. STEP 3: ADD THE JAVASCRIPT AND HTML CONTENT TO YOUR
CMS PAGE

Add the following code snippet to your CMS page, where SERVICE_NAME should be the system name
of the service spec.

If you want to include multiple Swagger specs on one page, you may use this customized snippet:

<h1>Documentation</h1>
<p>Use our live documentation to learn about Echo API </p>
{% active_docs version: "2.0" services: "SERVICE_NAME" %}
<script type="text/javascript">
 $(function () {
 {% comment %}
 // you have access to swaggerUi.options object to customize its behaviour
 // such as setting a different docExpansion mode
 window.swaggerUi.options['docExpansion'] = 'none';
 // or even getting the swagger specification loaded from a different url
 window.swaggerUi.options['url'] = "http://petstore.swagger.io/v2/swagger.json";
 {% endcomment %}
 window.swaggerUi.load();
});

</script>

{% active_docs version: "2.0" services: "oauth" %}

<script type="text/javascript">
 $(function () {
 window.swaggerUi.load(); // <-- loads first swagger-ui
 // do second swagger-ui
 var url = "/swagger/spec/sentiment.json";
 window.anotherSwaggerUi = new SwaggerUi({
 url: url,

Red Hat 3scale 2-saas Providing APIs in the Developer Portal

14

https://github.com/swagger-api/swagger-spec/wiki/Swagger-1.2-to-2.0-Migration-Guide

3.4. STEP 4: TEST YOUR API USING ACTIVEDOCS 1.2

Remember to enable Liquid tags on your CMS configuration page.

Finally, while in the preview mode, close the right-hand vertical sidebar to see ActiveDocs 2.0.

NOTE

The new styles are compliant with the newer Swagger spec (2.0). If you would like to
change the look and feel, you would have to override the styles. Since the CSS for
Swagger is included together with the HTML, you would have to define the styles with a
higher specificity or with the !important tag.

 dom_id: "another-swagger-ui-container",
 supportedSubmitMethods: ['get', 'post', 'put', 'delete', 'patch'],
 onComplete: function(swaggerApi, swaggerUi) {
 $('#another-swagger-ui-container pre code').each(function(i, e) {hljs.highlightBlock(e)});
 },
 onFailure: function(data) {
 log("Unable to Load Sentiment-SwaggerUI");
 },
 docExpansion: "list",
 transport: function(httpClient, obj) {
 log("[swagger-ui]>>> custom transport.");
 return ApiDocsProxy.execute(httpClient, obj);
 }
 });
 window.anotherSwaggerUi.load();
 });
</script>

CHAPTER 3. UPDATE TO ACTIVEDOCS 2.0

15

CHAPTER 4. ADDING ACTIVEDOCS TO 3SCALE
3scale offers a framework to create interactive documentation for your API.

With OpenAPI Specification (OAS), you have functional documentation for your API, which will help your
developers explore, test, and integrate with your API.

4.1. SETTING UP ACTIVEDOCS IN 3SCALE

You can add ActiveDocs to your API in the 3scale user interface to obtain a framework for creating
interactive documentation for your API.

Prerequisites

An OpenAPI document that defines your API.

A 3scale 2-saas instance tenant’s credentials (token or provider_key).

Procedure

1. Navigate to [your_API_name] → ActiveDocs in your Admin Portal. 3scale displays the list of
your service specifications for your API. This is initially empty.
You can add as many service specifications as you want. Typically, each service specification
corresponds to one of your APIs. For example, 3scale has specifications for each 3scale API ,
such as Service Management, Account Management, Analytics, and Billing.

2. Click Create a new spec .
When you add a new service specification, provide the following:

Name

System name. This is required to reference the service specification from the Developer
Portal.

Choose whether you want the specification to be published or not. If you do not publish, the
new specification will not be available in the Developer Portal.

NOTE

If you create, but do not publish your new specification, it will remain available
to you for publication at a later time of your choosing.

Add a description that is meant for only your consumption.

Add the API JSON specification.
Generate the specification of your API according to the specification proposed by OpenAPI
Specification (OAS). In this tutorial we assume that you already have a valid OAS-compliant
specification of your API.

Working with your first ActiveDoc

After you add your first ActiveDoc, you can see it listed in [your_API_name] → ActiveDocs. You can edit
it as necessary, delete it, or switch it from public to private. You can detach it from your API or attach it
to any other API. You can see all your ActiveDocs, whether or not they are attached to an API in
Audience → Developer Portal → ActiveDocs.

Red Hat 3scale 2-saas Providing APIs in the Developer Portal

16

https://github.com/swagger-api/swagger-spec
https://github.com/3scale/porta/tree/master/doc/active_docs
https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md

You can preview what your ActiveDocs looks like by clicking the name you gave the service specification,
for example, Pet Store. You can do this even if the specification is not published yet.

This is what an ActiveDoc looks like:

CHAPTER 4. ADDING ACTIVEDOCS TO 3SCALE

17

CHAPTER 5. HOW TO WRITE AN OPENAPI DOCUMENT FOR
USE AS A 3SCALE OPENAPI SPEC

If you only want to read the code, all the examples are on OAS Petstore example source code .

3scale ActiveDocs are based on the specification of RESTful web services called Swagger (from
Wordnik). This example is based on the Extended OpenAPI Specification Petstore example and draws all
the specification data from the OpenAPI Specification 2.0 specification document .

Prerequisites

An OpenAPI Specification (OAS) compliant specification for your REST API is required to power
ActiveDocs on your Developer Portal.

OAS is not only a specification. It also provides a full feature framework:

Servers for the specification of the resources in multiple languages (NodeJS, Scala, and
others).

A set of HTML/CSS/Javascripts assets that take the specification file and generate the
attractive UI.

A OAS codegen project, which allows generation of client libraries automatically from a
Swagger-compliant server. Support to create client-side libraries in a number of modern
languages.

5.1. SETTING UP 3SCALE ACTIVEDOCS AND OAS

ActiveDocs is an instance of OAS. With ActiveDocs, you do not have to run your own OAS server or deal
with the user interface components of the interactive documentation. The interactive documentation is
served and rendered from your 3scale Developer Portal.

3scale 2.8 introduced OAS 3.0 with limited support in ActiveDocs. This means that some features
working with ActiveDocs, such as autocompletion, are not yet fully integrated, and consequently 3scale
defaults to OAS 2.0 when creating new accounts. For more details about OAS 3.0 and ActiveDocs, refer
to Section 2.1, “OpenAPI Specification 3.0 usage with 3scale” .

Prerequisites

Ensure that the template used in the Developer Portal implements the same OAS version
specified in the Admin Portal.

Procedure

1. Build a specification of your API compliant with OAS.

2. Add the specification to your Admin Portal.

Results

Interactive documentation for your API is now available. API consumers can send requests to your API
through your Developer Portal.

If you already have a OAS-compliant specification of your API, you can add it in your Developer Portal.
See the tutorial on the ActiveDocs configuration.

Red Hat 3scale 2-saas Providing APIs in the Developer Portal

18

https://github.com/swagger-api/swagger-spec/blob/master/examples/v2.0/json/petstore-expanded.json
https://github.com/swagger-api/swagger-core
http://www.wordnik.com/
https://github.com/swagger-api/swagger-spec/blob/master/examples/v2.0/json/petstore-expanded.json
https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md
https://github.com/swagger-api/swagger-ui
https://github.com/swagger-api/swagger-codegen

3scale extends OAS in several ways to accommodate certain features that are needed for Developer
Portal interactive API documentation:

Auto-fill of API keys

OAS proxy to allow calls to non-CORS enabled APIs

5.2. OPENAPI DOCUMENT EXAMPLE: PETSTORE API

To read the specification from the original source, see the OpenAPI Specification.

On the OAS site, there are multiple examples of OpenAPI documents that define APIs. If you like to
learn by example, you can follow the example of the Petstore API by the OAS API Team.

The Petstore API is an extremely simple API. It is meant as a learning tool, not for production.

Petstore API methods

The Petstore API is composed of 4 methods:

GET /api/pets - returns all pets from the system

POST /api/pets - creates a new pet in the store

GET /api/pets/{id} - returns a pet based on a single ID

DELETE /api/pets/{id} - deletes a single pet based on the ID

The Petstore API is integrated with 3scale, and for this reason you must add an additional parameter for
authentication. For example, with the user key authentication method, an API consumer must put the
user key parameter in the header of each request. For information about other authentication methods,
see Authentication patterns .

User key parameters

user_key: {user_key}

The user_key will be sent by the API consumers in their requests to your API. The API consumers will
obtain those keys the 3scale administrator’s Developer Portal. On receiving the key, the 3scale
administrator must perform the authorization check against 3scale, using the Service Management API.

More on the OpenAPI Specification

For your API consumers, the documentation of your API represented in cURL calls would look like this:

curl -X GET "http://example.com/api/pets?tags=TAGS&limit=LIMIT" -H "user_key: {user_key}"
curl -X POST "http://example.com/api/pets" -H "user_key: {user_key}" -d "{ "name": "NAME", "tag":
"TAG", "id": ID }"
curl -X GET "http://example.com/api/pets/{id}" -H "user_key: {user_key}"
curl -X DELETE "http://example.com/api/pets/{id}" -H "user_key: {user_key}"

5.3. ADDITIONAL OAS SPECIFICATION INFORMATION

If you want your documentation to look like the OAS Petstore Documentation , you must create a
Swagger-compliant specification like the associated Petstore swagger.json file. You can use this
specification out-of-the-box to test your ActiveDocs. But remember that this is not your API.

CHAPTER 5. HOW TO WRITE AN OPENAPI DOCUMENT FOR USE AS A 3SCALE OPENAPI SPEC

19

https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/administering_the_api_gateway/index#authentication-patterns
http://petstore.swagger.io/

OAS relies on a resource declaration that maps to a hash encoded in JSON. Use the Petstore
swagger.json file as an example and learn about each object.

OAS object

This is the root document object for the API specification. It lists all the highest level fields.

WARNING

The host must be a domain and not an IP address. 3scale proxies the requests made
against your Developer Portal to your host and renders the results. This requires
your host and basePath endpoint to be approved by 3scale for security reasons.
You can declare only a host that is your own. 3scale reserves the right to terminate
your account if it is detected that you are proxying a domain that does not belong to
you. This means that local host or any other wildcard domain does not work.

info object

The info object provides the metadata about the API. This content is presented in the ActiveDocs page.

paths object

The paths object holds the relative paths to the individual endpoints. The path is appended to the
basePath to construct the full URL. The paths might be empty because of access control list (ACL)
constraints.

Parameters that are not objects use primitive data types. In Swagger, primitive data types are based on
the types supported by the JSON-Schema Draft 4. There is an additional primitive data type file but
3scale uses it only if the API endpoint has CORS enabled. With CORS enabled, the upload does not go
through the api-docs gateway, where it would be rejected.

Currently OAS supports the following dataTypes:

integer with possible formats: int32 and int64. Both formats are signed.

number with possible formats: float and double

plain string

string with possible formats: byte, date, date-time, password and binary

boolean

Additional resources

OpenAPI Object .

Info Object.

Paths Object.

API Server and Base URL.



Red Hat 3scale 2-saas Providing APIs in the Developer Portal

20

http://json-schema.org/latest/json-schema-core.html#anchor8
https://swagger.io/specification/#openapi-object
https://swagger.io/specification/#info-object
https://swagger.io/specification/#paths-object
https://swagger.io/docs/specification/api-host-and-base-path

5.4. OAS DESIGN AND EDITING TOOLS

The following tools are useful for designing and editing the OpenAPI specification that defines your API:

The open source Apicurio Studio enables you to design and edit your OpenAPI-based APIs in a
web-based application. Apicurio Studio provides a design view so you do not need detailed
knowledge of the OpenAPI specification. The source view enables expert users to edit directly
in YAML or JSON. For more details, see Getting Started with Apicurio Studio.
Red Hat also provides a lightweight version of Apicurio Studio named API Designer, which is
included with Fuse Online on OpenShift. For more details, see Developing and Deploying API
Provider Integrations.

The JSON Editor Online is useful if you are very familiar with the JSON notation. It gives a
pretty format to compact JSON and provides a JSON object browser.

The Swagger Editor enables you to create and edit your OAS API specification written in YAML
in your browser and preview it in real time. You can also generate a valid JSON specification,
which you can upload later in your 3scale Admin Portal. You can use the live demo version with
limited functionality or deploy your own OAS Editor.

5.5. ACTIVEDOCS AUTO-FILL OF API CREDENTIALS

Auto-fill of API credentials is a useful extension to OAS in 3scale ActiveDocs. You can define the x-data-
threescale-name field with the following values depending on your API authentication mode:

user_keys: Returns the user keys for applications of the services that use API key
authentication only.

app_ids: Returns the IDs for applications of the services that use App ID/App Key. OAuth and
OpenID Connect are also supported for backwards compatibility.

app_keys: Returns the keys for applications of services that use App ID/App Key. OAuth and
OpenID Connect are also supported for backwards compatibility.

NOTE

The x-data-threescale-name field is an OAS extension that is ignored outside the
domain of ActiveDocs.

API key authentication example

The following example shows using "x-data-threescale-name": "user_keys" for API key authentication
only:

"parameters": [
 {
 "name": "user_key",
 "in": "query",
 "description": "Your API access key",
 "required": true,
 "schema": {
 "type": "string"
 },

CHAPTER 5. HOW TO WRITE AN OPENAPI DOCUMENT FOR USE AS A 3SCALE OPENAPI SPEC

21

https://www.apicur.io/
https://apicurio-studio.readme.io/docs
https://access.redhat.com/documentation/en-us/red_hat_integration/2021-Q4/html-single/developing_and_deploying_api_provider_integrations
http://www.jsoneditoronline.org/
https://github.com/swagger-api/swagger-editor
http://editor.swagger.io

For the parameters declared with x-data-threescale-name, when you log in to the Developer Portal you
will see a drop-down list with the 5 latest keys, user key, App Id or App key, according to the value
configured in the specification. So you can auto-fill the input without having to copy and paste the value:

 "x-data-threescale-name": "user_keys"
 }
]

Red Hat 3scale 2-saas Providing APIs in the Developer Portal

22

CHAPTER 6. ACTIVEDOCS AND OAUTH
ActiveDocs allows your users to test and call your OAuth-enabled API from one place.

Prerequisites

You need to have a Red Hat Single Sign-On instance set up, and OpenID Connect integration
configured. See OpenID Connect integration documentation for information on how to set it up.

Additionally, you need to be familiar with how to set up ActiveDocs – see Adding ActiveDocs to
3scale and Creating an OpenAPI specification .

6.1. EXAMPLE OF CLIENT CREDENTIALS AND RESOURCE OWNER
FLOWS IN A 3SCALE SPECIFICATION

This first example is for an API using the OAuth 2.0 client credentials flow in a 3scale specification. This
API accepts any path and returns information about the request (path, request parameters, headers, and
more). The Echo API is accessible only by using a valid access token. Users of the API are able to call it
only after they have exchanged their credentials (client_id and client_secret) for an access token.

For users to be able to call the API from ActiveDocs, they must request an access token. Since this is just
a call to an OAuth authorization server, you can create an ActiveDocs specification for the OAuth token
endpoint. This allows calls to this endpoint from within ActiveDocs. In this case, for a client credentials
flow, the Swagger JSON specification looks like this:

{
 "swagger": "2.0",
 "info": {
 "version": "v1",
 "title": "OAuth for Echo API",
 "description": "OAuth2.0 Client Credentails Flow for authentication of our Echo API.",
 "contact": {
 "name": "API Support",
 "url": "http://www.swagger.io/support",
 "email": "support@swagger.io"
 }
 },
 "host": "red-hat-sso-instance.example.com",
 "basePath": "/auth/realms/realm-example/protocol/openid-connect",
 "schemes": [
 "http"
],
 "paths": {
 "/token": {
 "post": {
 "description": "This operation returns the access token for the API. You must call this before
calling any other endpoints.",
 "operationId": "oauth",
 "parameters": [
 {
 "name": "client_id",
 "description": "Your client id",
 "type": "string",
 "in": "query",

CHAPTER 6. ACTIVEDOCS AND OAUTH

23

https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/administering_the_api_gateway/index#openid-connect

 "required": true
 },
 {
 "name": "client_secret",
 "description": "Your client secret",
 "type": "string",
 "in": "query",
 "required": true
 },
 {
 "name": "grant_type",
 "description": "OAuth2 Grant Type",
 "type": "string",
 "default": "client_credentials",
 "required": true,
 "in": "query",
 "enum": [
 "client_credentials",
 "authorization_code",
 "refresh_token",
 "password"
]
 }
]
 }
 }
 }
}

For a resource owner OAuth flow, add parameters for a username and password and other parameters
that you require in order to issue an access token. For this client credentials flow example, you are
sending the client_id and client_secret, which can be populated from the 3scale values for signed-in
users, as well as the grant_type.

Then in the ActiveDocs specification for the Echo API, add the access_token parameter instead of the
client_id and the client_secret.

{
 "swagger": "2.0",
 "info": {
 "version": "v1",
 "title": "Echo API",
 "description": "A simple API that accepts any path and returns information about the request",
 "contact": {
 "name": "API Support",
 "url": "http://www.swagger.io/support",
 "email": "support@swagger.io"
 }
 },
 "host": "echo-api.3scale.net",
 "basePath": "/v1/words",
 "schemes": [
 "http"
],
 "produces": [
 "application/json"

Red Hat 3scale 2-saas Providing APIs in the Developer Portal

24

],
 "paths": {
 "/{word}.json": {
 "get": {
 "description": "This operation returns information about the request (path, request parameters,
headers, etc.),
 "operationId": "wordsGet",
 "summary": "Returns the path of a given word",
 "parameters": [
 {
 "name": "word",
 "description": "The word related to the path",
 "type": "string",
 "in": "path",
 "required": true
 },
 {
 "name": "access_token",
 "description": "Your access token",
 "type": "string",
 "in": "query",
 "required": true
 }
]
 }
 }
 }
}

You can then include your ActiveDocs in the Developer Portal as usual. In this case, since you want to
specify the order in which they display to have the OAuth endpoint first, it looks like this:

{% active_docs version: "2.0" services: "oauth" %}

<script type="text/javascript">
 $(function () {
 window.swaggerUi.load(); // <-- loads first swagger-ui

 // do second swagger-ui

 var url = "/swagger/spec/echo-api.json";
 window.anotherSwaggerUi = new SwaggerUi({
 url: url,
 dom_id: "another-swagger-ui-container",
 supportedSubmitMethods: ['get', 'post', 'put', 'delete', 'patch'],
 onComplete: function(swaggerApi, swaggerUi) {
 $('#another-swagger-ui-container pre code').each(function(i, e) {hljs.highlightBlock(e)});
 },
 onFailure: function(data) {
 log("Unable to Load Echo-API-SwaggerUI");
 },
 docExpansion: "list",

CHAPTER 6. ACTIVEDOCS AND OAUTH

25

 transport: function(httpClient, obj) {
 log("[swagger-ui]>>> custom transport.");
 return ApiDocsProxy.execute(httpClient, obj);
 }
 });

 window.anotherSwaggerUi.load();

 });
</script>

6.2. PUBLISHING ACTIVEDOCS IN THE DEVELOPER PORTAL

By the end of this tutorial, you will have published your ActiveDocs in your Developer Portal and your API
documentation will be automated.

Prerequisites

An OpenAPI Specification (OAS) compliant specification for your REST API is required to power
ActiveDocs on your Developer Portal.

Procedure

Add the following snippet to the content of any page of your Developer Portal. You must do this
through the 3scale Admin Portal.

NOTE

SERVICE_NAME should be the system name of the service specification, which
is pet_store in the example.

Developer Portal configuration using OAS 3.0

{% content_for javascripts %}
 {{ 'active_docs.js' | javascript_include_tag }}
{% endcontent_for %}

{% assign spec = provider.api_specs.first %}

<h1>Documentation</h1>

<div class="swagger-section">
 <div id="message-bar" class="swagger-ui-wrap"></div>
 <div id="swagger-ui-container" class="swagger-ui-wrap"></div>
</div>

<script type="text/javascript">
 (function () {
 var url = "{{spec.url}}";
 var serviceEndpoint = "{{spec.api_product_production_public_base_url}}"
 SwaggerUI({ url: url, dom_id: "#swagger-ui-container" }, serviceEndpoint);
 }());
</script>

Red Hat 3scale 2-saas Providing APIs in the Developer Portal

26

Developer Portal configuration using OAS 2.0

These are some additional considerations when publishing ActiveDocs in the Developer Portal:

You can specify only one service on one page. If you want to display multiple specifications, the
best way is to do it on different pages.

This snippet requires jQuery, which is included by default in the main layout of your Developer
Portal. If you remove the jQuery dependency from the main layout, you must add this
dependency on the page containing ActiveDocs.

Make sure you have Liquid tags enabled on the Admin Portal.

The version used in the Liquid tag for OAS 2.0 {{ '{% active_docs version: "2.0" ' }}%} should
correspond to that of the Swagger spec.

If you want to fetch your specification from an external source, change the JavaScript code as follows:

Note that the line containing the source of the specification, window.swaggerUi.options['url'] =
"SWAGGER_JSON_URL";, is outside of the comments block.

Verification steps

After you have created an OpenAPI specification and you have added it to 3scale , it is time to publish
the specification and link it on your Developer Portal to be used by your API developers.

<h1>Documentation</h1>
<p>Use our live documentation to learn about Echo API</p>
{% active_docs version: "2.0" services: "SERVICE_NAME" %}
{% cdn_asset /swagger-ui/2.2.10/swagger-ui.js %} {% cdn_asset /swagger-ui/2.2.10/swagger-
ui.css %} {% include 'shared/swagger_ui' %}
<script type="text/javascript">
 $(function () {
 {% comment %}
 // you have access to swaggerUi.options object to customize its behavior
 // such as setting a different docExpansion mode
 window.swaggerUi.options['docExpansion'] = 'none';
 // or even getting the swagger specification loaded from a different url
 window.swaggerUi.options['url'] = "http://petstore.swagger.io/v2/swagger.json";
 {% endcomment %}
 window.swaggerUi.load();
 });
</script>

$(function () {
 window.swaggerUi.options['url'] = "SWAGGER_JSON_URL";
 window.swaggerUi.load();
});

CHAPTER 6. ACTIVEDOCS AND OAUTH

27

CHAPTER 7. APICAST SELF-MANAGED (OLD VERSION) AND
OAUTH 2.0

NOTE

The details of this section are for reference only. This option is no longer supported and
you should consider migrating away from this configuration at the earliest opportunity.

SSL use is mandatory for all OAuth calls.

This document refers to OAuth for an old version of APIcast which consists of Nginx downloadable
configuration files. Note that since May 2017, that version is no longer available in the GUI for new
customers. For details on OAuth support in the latest version of APIcast, please see here.

This tutorial shows the necessary steps to set up APIcast self-managed with 3scale’s OAuth extensions
to make APIcast act as an OAuth 2.0 provider.

Currently, only the authorization code (server-side) grant flow is available in APIcast. However, you can
find config templates for all other flows on this GitHub repository.

7.1. PREREQUISITES

As 3scale doesn’t hold any details about the users that you authenticate, in order to integrate with
3scale using OAuth 2.0, we require that you handle user authentication on your side. To do this, you’ll
have to provide the URL for a page where APIcast can send users to authorize an application. This page
should be behind a login so that the user can be correctly identified and authenticated. Once the user
has been authenticated and the application authorized, you should redirect back to APIcast with the
outcome of the authorization grant from the user.

When APIcast redirects a user to the authorization URL, it will send the following parameters along with
the request:

scope: the plan ID that the application belongs to. The application plan defines the scope in
3scale.

state: a hash value shared between APIcast and the API to identify request and ensure its
authenticity.

tok: the value of the access token that will be given to the user if the application is authorized.
The token will only be issued when it’s exchanged for an authorization code. If the authorization
code is not exchanged, the access token will expire after 10 minutes.

If the user successfully identifies himself and authorizes the application, the authorization page should
redirect to an endpoint on APIcast. By default this is located at /callback, but it can easily be changed
within the APIcast config files to suit your needs.

Take a look and see how to set this up.

7.2. OAUTH CONFIGURATION

To proceed with the installation, you’ll need to follow most of the same steps as with the basic APIcast
Integration to configure your API and define your methods and enpdoints. You can find these steps in
the link: Installing APIcast document. Additionally, you will need to make sure the following steps are
followed:

Red Hat 3scale 2-saas Providing APIs in the Developer Portal

28

https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/deployment_options#apicast-oauth
https://github.com/3scale/nginx-oauth-templates
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html/installing_3scale/installing-apicast

7.2.1. Step 1: Edit Integration Settings

As per the screenshot below, you will need to set the "Production Deployment Option" to Self-Managed
Gateway, as OAuth is not currently available on APIcast hosted.

On the same page, you will also need to set the "Authentication" to OAuth 2.0.

7.2.2. Step 2: Declare your OAuth Authorization Endpoint

This will be the url that your users are presented with when they need to log in to your service to
authenticate themselves and provide consent.

The APIcast OAuth extension allows APIcast to act as an OAuth provider. However, you still need to
provide an authorization endpoint for users to authenticate themselves and approve/reject third-party
application access. This authorization endpoint should be behind a login so a user can be identified and
authenticated. Once the approval is done, you will need to redirect your logged in user to the callback
endpoint on APIcast, so it can take care of the rest of the workflow.

7.2.3. Step 3: Download the APIcast config files

3scale automatically generates all the files needed to use APIcast as your API gateway and OAuth
provider based on the data you input into the integration page. Once you have entered all the required
information, you can download these files and install them on your own APIcast instance. The zip file
downloaded will contain a separate *.lua file for each service defined as well as lua files to support the
OAuth handshake and a nginx_*.conf file which is shared across services.

If you have multiple services defined, the user downloading the configuration files will receive a zip file
where the Lua files will only contain Service tokens corresponding to the services that they have access
to. This way the Provider Key is kept secret to full admins only.

7.3. RUNNING YOUR SELF-MANAGED APICAST INSTANCE
(PRODUCTION)

If you’re familiar with NGINX, it shouldn’t take you long to get APIcast up and running locally. Note that

CHAPTER 7. APICAST SELF-MANAGED (OLD VERSION) AND OAUTH 2.0

29

https://support.3scale.net/docs/terminology#tokens
https://support.3scale.net/docs/terminology#apikey

If you’re familiar with NGINX, it shouldn’t take you long to get APIcast up and running locally. Note that
your NGINX installation must have the Lua plugin, and for some of the OAuth 2.0 grant types, you must
also have Redis installed on your server.

If you’re not familiar with NGINX, we recommend you install OpenResty, a fantastic web application,
which is basically a bundle of the standard NGINX core with almost all of the third-party NGINX modules
that you’ll need built in.

7.3.1. Step 1: Install the dependencies (for Ubuntu)

For Debian/Ubuntu linux distribution you should install the following packages using apt-get:

For different systems, check out the OpenResty documentation.

7.3.2. Step 2: Compile and install OpenResty

Download the code and compile it, change VERSION with your desired version (we usually recommend
running the latest stable version.)

At this point, you have NGINX and Lua installed using the OpenResty bundle.

7.3.3. Step 3: Install Redis

Download and install Redis on APIcast server (we recommend to always use the latest stable version.)

In order to to install and run the Redis server, run the following, accepting all the default values:

sudo ./utils/install_server.sh

7.3.4. Step 4: Download the APIcast configuration from 3scale

Please note that only the authorization code (server-side) grant flow configs are currently available for
download from the Integration page. However, you can find configuration templates for all other flows
on our GitHub repository here.

Download the APIcast configuration files from 3scale by clicking the Download button. This will give you

sudo apt-get install libreadline-dev libncurses5-dev libpcre3 libpcre3-dev libssl-dev perl
sudo apt-get build-dep nginx

wget http://agentzh.org/misc/nginx/ngx_openresty-VERSION.tar.gz
tar -zxvf ngx_openresty-VERSION.tar.gz
cd ngx_openresty-VERSION/

./configure --prefix=/opt/openresty --with-luajit --with-http_iconv_module -j2

make
make install

tar zxvf redis-VERSION.tar.gz
cd redis-VERSION
make
sudo make install

Red Hat 3scale 2-saas Providing APIs in the Developer Portal

30

https://github.com/3scale/nginx-oauth-templates

Download the APIcast configuration files from 3scale by clicking the Download button. This will give you
a zip file with six files inside:

authorize.lua - This file contains the logic for authorizing the client, redirecting the end_user to
the OAuth login page, generating the access token, and checking that the return URL matches
the one specified by the API buyer. It runs when the /authorize endpoint is hit.

authorized_callback.lua - This file contains the logic for redirecting an API end user back to
the API buyer’s redirect URL. As an API provider, you’ll need to call this endpoint once your user
successfully logs in and authorizes the API buyer’s requested access. This file gets executed
when the /callback endpoint is called by your web application.

get_token.lua - This file contains the logic to return the access token for the client identified by
a client_id. It gets executed when the /oauth/token endpoint is called.

nginx_*.conf - The .conf is a typical NGINX config file. Feel free to edit it or to copy/paste it
into your existing .conf if you are already running NGINX.

nginx_*.lua - This file contains the logic that you defined on the web interface to track usage
for various metrics and methods.

threescale_utils.lua

7.3.5. Step 5: Start and stop APIcast

The only thing left to do is start APIcast. There are many ways to do this, but the most straight-forward
is:

sudo /opt/openresty/nginx/sbin/nginx -p /opt/openresty/nginx/ -c /opt/openresty/nginx/conf/YOUR-
CONFIG-FILE.conf

The example assumes that the working directory of APIcast is /opt/openresty/nginx which is the path
you passed during the installation to configure --prefix=/opt/openresty. You can change it, but be
aware of the user privileges.

The example also assumes that the .conf generated by 3scale is placed at /opt/openresty/nginx/conf/.
Of course, you should place the files and the directories at the location that best suits your production
environment, as well as to start and stop the process as a system daemon instead of by executing the
binary directly.

To stop a running APIcast instance:

sudo /opt/openresty/nginx/sbin/nginx -p /opt/openresty/nginx/ -c /opt/openresty/nginx/conf/YOUR-
CONFIG-FILE.conf -s stop

The option -s let you pass a signal to nginx. The process that will be stopped is the one whose .pid is
stored in /opt/openresty/nginx/logs/nginx.pid.

The APIcast logs are in the same directory by default: /opt/openresty/nginx/logs/. Check the error.log
when setting up the whole process.

7.3.6. Step 6: Test your OAuth Flow

The best way to test that your API now supports OAuth is to use Google’s OAuth playground:
https://developers.google.com/oauthplayground

CHAPTER 7. APICAST SELF-MANAGED (OLD VERSION) AND OAUTH 2.0

31

https://developers.google.com/oauthplayground

You will need to set the redirect URL for the application you want to use to test this to the google
OAuth Playground URL: https://developers.google.com/oauthplayground

You can then fill in the settings as in the screenshot below:

The authorization and token endpoint URLs are the URLs from your APIcast instance. In the scope, put
the name of the application plan for the application (for example, “Default”).

Click on Authorize API, which will redirect you to your login URL. Then, log in to a user account on your
application and authorize the application. Once that’s done, you’ll be redirected back to the Google
OAuth Playground with an authorization code. Exchange this for an access token. You now have an
access token to call protected endpoints on your API.

You can now make a request to your API, but replacing your API backend host name (in the example

Red Hat 3scale 2-saas Providing APIs in the Developer Portal

32

https://developers.google.com/oauthplayground

You can now make a request to your API, but replacing your API backend host name (in the example
echo-api.3scale.net) by the hostname of your APIcast instance and adding the access_token parameter.
For example:

curl -X GET "http://YOUR_APICAST_HOST/read?access_token=YOUR_ACCESS_TOKEN"

Now you have your API integrated with 3scale.

CHAPTER 7. APICAST SELF-MANAGED (OLD VERSION) AND OAUTH 2.0

33

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PART I. OPENAPI SPECIFICATION
	CHAPTER 1. AN INTRODUCTION TO OPENAPI SPECIFICATION
	1.1. COMMAND LINE OPTIONS FOR IMPORTING OPENAPI DOCUMENTS IN 3SCALE
	1.2. DIFFERENT SOURCES TO IMPORT API SPECIFICATIONS

	CHAPTER 2. HOW TO CONFIGURE OPENAPI SPECIFICATION
	2.1. OPENAPI SPECIFICATION 3.0 USAGE WITH 3SCALE
	2.1.1. Configure the Developer Portal with OAS 3.0

	2.2. OPENAPI SPECIFICATION 2.0 USAGE WITH 3SCALE
	2.3. UPGRADING THE SWAGGER USER INTERFACE 2.1.3 TO 2.2.10

	PART II. API DOCUMENTATION IN THE DEVELOPER PORTAL
	CHAPTER 3. UPDATE TO ACTIVEDOCS 2.0
	3.1. STEP 1: APPLY THE APPROPRIATE NAMING CONVENTION TO YOUR SPECIFICATION
	3.2. STEP 2: MODIFY SERVICE SPEC
	3.3. STEP 3: ADD THE JAVASCRIPT AND HTML CONTENT TO YOUR CMS PAGE
	3.4. STEP 4: TEST YOUR API USING ACTIVEDOCS 1.2

	CHAPTER 4. ADDING ACTIVEDOCS TO 3SCALE
	4.1. SETTING UP ACTIVEDOCS IN 3SCALE

	CHAPTER 5. HOW TO WRITE AN OPENAPI DOCUMENT FOR USE AS A 3SCALE OPENAPI SPEC
	5.1. SETTING UP 3SCALE ACTIVEDOCS AND OAS
	5.2. OPENAPI DOCUMENT EXAMPLE: PETSTORE API
	5.3. ADDITIONAL OAS SPECIFICATION INFORMATION
	5.4. OAS DESIGN AND EDITING TOOLS
	5.5. ACTIVEDOCS AUTO-FILL OF API CREDENTIALS

	CHAPTER 6. ACTIVEDOCS AND OAUTH
	6.1. EXAMPLE OF CLIENT CREDENTIALS AND RESOURCE OWNER FLOWS IN A 3SCALE SPECIFICATION
	6.2. PUBLISHING ACTIVEDOCS IN THE DEVELOPER PORTAL

	CHAPTER 7. APICAST SELF-MANAGED (OLD VERSION) AND OAUTH 2.0
	7.1. PREREQUISITES
	7.2. OAUTH CONFIGURATION
	7.2.1. Step 1: Edit Integration Settings
	7.2.2. Step 2: Declare your OAuth Authorization Endpoint
	7.2.3. Step 3: Download the APIcast config files

	7.3. RUNNING YOUR SELF-MANAGED APICAST INSTANCE (PRODUCTION)
	7.3.1. Step 1: Install the dependencies (for Ubuntu)
	7.3.2. Step 2: Compile and install OpenResty
	7.3.3. Step 3: Install Redis
	7.3.4. Step 4: Download the APIcast configuration from 3scale
	7.3.5. Step 5: Start and stop APIcast
	7.3.6. Step 6: Test your OAuth Flow

