
Red Hat 3scale 2-saas

Installing Red Hat 3scale API Management

Install and configure 3scale API Management.

Last Updated: 2023-12-22

Red Hat 3scale 2-saas Installing Red Hat 3scale API Management

Install and configure 3scale API Management.

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides the information to install and configure 3scale API Management.

. .

. .

. .

. .

. .

Table of Contents

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. REGISTRY SERVICE ACCOUNTS FOR 3SCALE
1.1. CREATING A REGISTRY SERVICE ACCOUNT
1.2. CONFIGURING CONTAINER REGISTRY AUTHENTICATION
1.3. MODIFYING A REGISTRY SERVICE ACCOUNT
1.4. ADDITIONAL RESOURCES

CHAPTER 2. INSTALLING APICAST
2.1. APICAST DEPLOYMENT OPTIONS
2.2. APICAST ENVIRONMENTS
2.3. CONFIGURING THE INTEGRATION SETTINGS
2.4. CONFIGURING YOUR PRODUCT

2.4.1. Declaring the API backend
2.4.2. Configuring the authentication settings
2.4.3. Configuring the API test call

2.5. DEPLOYING APICAST ON THE DOCKER CONTAINERIZED ENVIRONMENT
2.5.1. Installing the Docker containerized environment
2.5.2. Running the Docker containerized environment gateway

2.5.2.1. The docker command options
2.5.2.2. Testing APIcast

2.5.3. Additional resources
2.5.4. Deploying APIcast on Podman

2.5.4.1. Installing the Podman container environment
2.5.4.2. Running the Podman environment

2.5.4.2.1. Testing APIcast with Podman
2.5.4.3. The podman command options
2.5.4.4. Additional resources

2.6. DEPLOYING AN APICAST GATEWAY SELF-MANAGED SOLUTION USING THE OPERATOR
2.6.1. APICast deployment and configuration options

2.6.1.1. Providing a 3scale system endpoint
2.6.1.1.1. Verifying the APIcast gateway is running and available
2.6.1.1.2. Exposing APIcast externally via a Kubernetes Ingress

2.6.1.2. Providing a configuration secret
2.6.1.2.1. Verifying APIcast gateway is running and available

2.6.1.3. Injecting custom environments with the APIcast operator
2.6.1.4. Injecting custom policies with the APIcast operator
2.6.1.5. Configuring OpenTracing with the APIcast operator

2.7. ADDITIONAL RESOURCES

CHAPTER 3. APICAST HOSTED
3.1. DEPLOYING YOUR API WITH APICAST HOSTED IN A STAGING ENVIRONMENT
3.2. DEPLOYING YOUR API WITH THE APICAST HOSTED INTO PRODUCTION
3.3. ADDITIONAL INFORMATION

3

4

5
5
5
6
7

8
8
8
9
9
9

10
11

12
12
13
14
14
14
14
15
15
16
16
16
16
17
17
18
19
19
21
21
22
24
25

26
26
26
27

Table of Contents

1

Red Hat 3scale 2-saas Installing Red Hat 3scale API Management

2

PREFACE
This guide will help you to install and configure 3scale

PREFACE

3

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat 3scale 2-saas Installing Red Hat 3scale API Management

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. REGISTRY SERVICE ACCOUNTS FOR 3SCALE
To use container images from registry.redhat.io in a shared environment with Red Hat 3scale 2-saas,
you must use a Registry Service Account instead of an individual user’s Customer Portal credentials.

To create and modify a registry service account, perform the steps outlined in the following sections:

Creating a registry service account

Configuring container registry authentication

Modifying a registry service account

1.1. CREATING A REGISTRY SERVICE ACCOUNT

To create a registry service account, follow the procedure below.

Procedure

1. Navigate to the Registry Service Accounts page and log in.

2. Click New Service Account.

3. Fill in the form on the Create a New Registry Service Account page.

a. Add a name for the service account .
Note: You will see a fixed-length, randomly generated numerical string before the form
field.

b. Enter a Description.

c. Click Create.

4. Navigate back to your Service Accounts.

5. Click the Service Account you created.

6. Make a note of the username, including the prefix string, for example 12345678|username, and
your password. This username and password will be used to log in to registry.redhat.io.

NOTE

There are tabs available on the Token Information page that show you how to use the
authentication token. For example, the Token Information tab shows the username in the
format 12345678|username and the password string below it.

1.2. CONFIGURING CONTAINER REGISTRY AUTHENTICATION

As a 3scale administrator, configure authentication with registry.redhat.io before you deploy 3scale on
OpenShift.

Prerequisites

A Red Hat OpenShift Container Platform (OCP) account with administrator credentials.

CHAPTER 1. REGISTRY SERVICE ACCOUNTS FOR 3SCALE

5

https://access.redhat.com/terms-based-registry

OpenShift oc client tool is installed. For more details, see the OpenShift CLI documentation.

Procedure

1. Log into your OpenShift cluster as administrator:

2. Open the project in which you want to deploy 3scale:

3. Create a docker-registry secret using your Red Hat Customer Portal account, replacing
threescale-registry-auth with the secret to create:

You will see the following output:

4. Link the secret to your service account to use the secret for pulling images. The service account
name must match the name that the OpenShift pod uses. This example uses the default service
account:

5. Link the secret to the builder service account to use the secret for pushing and pulling build
images:

Additional resources

For more details on authenticating with Red Hat for container images:

Red Hat container image authentication

Red Hat registry service accounts

1.3. MODIFYING A REGISTRY SERVICE ACCOUNT

You can edit or delete service accounts from the Registry Service Account page, by using the pop-up
menu to the right of each authentication token in the table.

$ oc login -u <admin_username>

$ oc project your-openshift-project

$ oc create secret docker-registry threescale-registry-auth \
 --docker-server=registry.redhat.io \
 --docker-username="customer_portal_username" \
 --docker-password="customer_portal_password" \
 --docker-email="email_address"

secret/threescale-registry-auth created

$ oc secrets link default threescale-registry-auth --for=pull

$ oc secrets link builder threescale-registry-auth

Red Hat 3scale 2-saas Installing Red Hat 3scale API Management

6

https://docs.openshift.com/container-platform/4.12/cli_reference/openshift_cli/getting-started-cli.html
https://access.redhat.com/RegistryAuthentication
https://access.redhat.com/terms-based-registry/

WARNING

The regeneration or removal of service accounts will impact systems that are using
the token to authenticate and retrieve content from registry.redhat.io.

A description for each function is as follows:

Regenerate token: Allows an authorized user to reset the password associated with the Service
Account.
Note: You cannot modify the username for the Service Account.

Update Description: Allows an authorized user to update the description for the Service
Account.

Delete Account: Allows an authorized user to remove the Service Account.

1.4. ADDITIONAL RESOURCES

Red Hat Container Registry Authentication

Authentication enabled Red Hat registry



CHAPTER 1. REGISTRY SERVICE ACCOUNTS FOR 3SCALE

7

https://access.redhat.com/RegistryAuthentication
https://docs.openshift.com/container-platform/4.1/registry/registry-options.html#registry-authentication-enabled-registry-overview_registry-options

CHAPTER 2. INSTALLING APICAST
APIcast is an NGINX based API gateway used to integrate your internal and external API services with
the Red Hat 3scale Platform. APIcast does load balancing by using round-robin.

In this guide you will learn about deployment options, environments provided, and how to get started.

Prerequisites

APIcast is not a standalone API gateway. It needs connection to 3scale API Manager.

A 3scale Hosted account.

To install APIcast, perform the steps outlined in the following sections:

APIcast deployment options

APIcast environments

Configuring the integration settings

Configuring your product

Deploying APIcast on the Docker containerized environment

Deploying an APIcast gateway self-managed solution using the operator

2.1. APICAST DEPLOYMENT OPTIONS

You can use hosted or self-managed APIcast. In both cases, APIcast must be connected to the rest of
the 3scale API Management platform:

Hosted APIcast: 3scale hosts APIcast in the cloud. In this case, APIcast is already deployed for
you and it is limited to 50,000 calls per day.

Self-managed APIcast: You can deploy APIcast wherever you want. Here are a few
recommended options to deploy APIcast:

Deploying APIcast on the Docker containerized environment : Download a ready to use
Docker-formatted container image, which includes all of the dependencies to run APIcast in
a Docker-formatted container.

Running APIcast on Red Hat OpenShift: Run APIcast on a supported version of OpenShift.
You can connect self-managed APIcasts to a 3scale On-premises installation or to a 3scale
Hosted (SaaS) account. For this, deploy an APIcast gateway self-managed solution using
the operator.

2.2. APICAST ENVIRONMENTS

By default, when you create a 3scale account or create a new API service, you get an APIcast hosted in
two different environments:

Staging: Intended to be used only while configuring and testing your API integration. When you
have confirmed that your setup is working as expected, then you can choose to deploy it to the
production environment.

Production: Limited to 50,000 calls per day and supports the following out-of-the-box

Red Hat 3scale 2-saas Installing Red Hat 3scale API Management

8

https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/installing_3scale/index#apicast-hosted
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/installing_3scale/index#deploying-apicast-on-the-docker-containerized-environment
https://access.redhat.com/articles/2798521
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/installing_3scale/index#proc-deploying-apicast-gateway-self-managed-operator

Production: Limited to 50,000 calls per day and supports the following out-of-the-box
authentication options: API key, and App ID and App key pair, OpenID Connect.

When you use a Self-managed deployment, you still have the same two environments, and you need to
deploy an APIcast instance for each. You can specify which configuration (Staging or Production) the
APIcast instance will use by setting the environment variable THREESCALE_DEPLOYMENT_ENV,
which can take values staging or production.

2.3. CONFIGURING THE INTEGRATION SETTINGS

As a 3scale administrator, configure the integration settings for the environment you require 3scale to
run in.

Prerequisites

A 3scale account with administrator privileges.

Procedure

1. Navigate to [Your_product_name] > Integration > Settings.

2. Under Deployment, the default options are as follows:

Deployment Option: hosted APIcast

Authentication mode: API key.

3. Change to your preferred option.

4. To save your changes, click Update Product.

2.4. CONFIGURING YOUR PRODUCT

You must declare your API back-end in the Private Base URL field, which is the endpoint host of your
API back-end. APIcast will redirect all traffic to your API back-end after all authentication, authorization,
rate limits and statistics have been processed.

This section will guide you through configuring your product:

Declaring the API backend

Configuring the authentication settings

Configuring the API test call

2.4.1. Declaring the API backend

Typically, the Private Base URL of your API will be something like https://api-
backend.yourdomain.com:443, on the domain that you manage (yourdomain.com). For instance, if
you were integrating with the Twitter API the Private Base URL would be https://api.twitter.com/.

In this example, you will use the Echo API hosted by 3scale, a simple API that accepts any path and
returns information about the request (path, request parameters, headers, etc.). Its Private Base URL is
https://echo-api.3scale.net:443.

CHAPTER 2. INSTALLING APICAST

9

https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/installing_3scale/index#declaring-api-backend
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/installing_3scale/index#configuring-the-authentication-settings
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/installing_3scale/index#configuring-api-test-call
https://api-backend.yourdomain.com:443
https://api.twitter.com/
https://echo-api.3scale.net:443

Procedure

Test your private (unmanaged) API is working. For example, for the Echo API you can make the
following call with curl command:

$ curl "https://echo-api.3scale.net:443"

You will get the following response:

{
 "method": "GET",
 "path": "/",
 "args": "",
 "body": "",
 "headers": {
 "HTTP_VERSION": "HTTP/1.1",
 "HTTP_HOST": "echo-api.3scale.net",
 "HTTP_ACCEPT": "*/*",
 "HTTP_USER_AGENT": "curl/7.51.0",
 "HTTP_X_FORWARDED_FOR": "2.139.235.79, 10.0.103.58",
 "HTTP_X_FORWARDED_HOST": "echo-api.3scale.net",
 "HTTP_X_FORWARDED_PORT": "443",
 "HTTP_X_FORWARDED_PROTO": "https",
 "HTTP_FORWARDED": "for=10.0.103.58;host=echo-api.3scale.net;proto=https"
 },
 "uuid": "ee626b70-e928-4cb1-a1a4-348b8e361733"
 }

2.4.2. Configuring the authentication settings

You can configure authentication settings for your API in the AUTHENTICATION section under
[Your_product_name] > Integration > Settings.

Table 2.1. Optional authentication fields

Field Description

Auth user key Set the user key associated with the credentials
location.

Credentials location Define whether credentials are passed as HTTP
headers, query parameters or as HTTP basic
authentication.

Host Header Define a custom Host request header. This is
required if your API backend only accepts traffic
from a specific host.

Secret Token Used to block direct developer requests to your API
backend. Set the value of the header here, and
ensure your backend only allows calls with this secret
header.

Furthermore, you can configure the GATEWAY RESPONSE error codes under [Your_product_name]

Red Hat 3scale 2-saas Installing Red Hat 3scale API Management

10

Furthermore, you can configure the GATEWAY RESPONSE error codes under [Your_product_name]
> Integration > Settings. Define the Response Code, Content-type, and Response Body for the errors:
Authentication failed, Authentication missing, and No match.

Table 2.2. Response codes and default response body

Response code Response body

403 Authentication failed

403 Authentication parameters missing

404 No Mapping Rule matched

429 Usage limit exceeded

2.4.3. Configuring the API test call

Configuring the API involves testing the backends with a product and promoting the APIcast
configuration to staging and production environments to make tests based on request calls.

For each product, requests get redirected to their corresponding backend according to the path. This
path is configured when you add the backend to the product. For example, if you have two backends
added to a product, each backend has its own path.

Prerequisites

One or more backends added to a product .

A mapping rule for each backend added to a product.

An application plan to define the access policies.

An application that subscribes to the application plan.

Procedure

1. Promote an APIcast configuration to Staging, by navigating to [Your_product_name] >
Integration > Configuration.

2. Under APIcast Configuration , you will see the mapping rules for each backend added to the
product. Click Promote v.[n] to Staging APIcast.

v.[n] indicates the version number to be promoted.

3. Once promoted to staging, you can promote to Production. Under Staging APIcast, click
Promote v.[n] to Production APIcast.

v.[n] indicates the version number to be promoted.

4. To test requests to your API in the command line, use the command provided in Example curl for
testing.

The curl command example is based on the first mapping rule in the product.

CHAPTER 2. INSTALLING APICAST

11

https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/getting_started/index#creating-backends-for-your-products_configuring-your-api
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/getting_started/index#defining-mapping-rules_configuring-your-api
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/getting_started/index#creating-threescale-application-plans-for-products_configuring-your-api
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/getting_started/index#creating-applications-for-default-account-test-api-calls_configuring-your-api

When testing requests to your API, you can modify the mapping rules by adding methods and metrics.

Every time you modify the configuration and before making calls to your API, make sure you promote to
the Staging and Production environments. When there are pending changes to be promoted to the
Staging environment, you will see an exclamation mark in the Admin Portal, next to the Integration
menu item.

3scale Hosted APIcast gateway does the validation of the credentials and applies the rate limits that you
defined for the application plan of your API. If you make a call without credentials, or with invalid
credentials, you will see the error message, Authentication failed.

2.5. DEPLOYING APICAST ON THE DOCKER CONTAINERIZED
ENVIRONMENT

This is a step-by-step guide to deploy APIcast inside a Docker container engine that is ready to be used
as a Red Hat 3scale API gateway.

NOTE

When deploying APIcast on the Docker containerized environment, the supported
versions of Red Hat Enterprise Linux (RHEL) and Docker are as follows:

RHEL 7.7

Docker 1.13.1

Prerequisites

You must configure APIcast in your 3scale Admin Portal as per Chapter 2, Installing APIcast .

Access to the Red Hat Ecosystem Catalog .

To create a registry service account, see Creating and modifying registry service accounts .

To deploy APIcast on the docker containerized environment, perform the steps outlined in the following
sections:

Section 2.5.1, “Installing the Docker containerized environment”

Section 2.5.2, “Running the Docker containerized environment gateway”

2.5.1. Installing the Docker containerized environment

This guide covers the steps to set up the Docker containerized environment on RHEL 7.x.

The Docker container engine provided by Red Hat is released as part of the Extras channel in RHEL. To
enable additional repositories, you can use either the Subscription Manager or the yum-config-manager
option. For details, see the RHEL product documentation .

To deploy RHEL 7.x on an Amazon Web Services (AWS), Amazon Elastic Compute Cloud (Amazon EC2)
instance, take the following steps:

Procedure

1. List all repositories: sudo yum repolist all.

Red Hat 3scale 2-saas Installing Red Hat 3scale API Management

12

https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/admin_portal_guide/index#designating-methods-and-adding-metrics-for-capturing-usage-details_methods-and-metrics-for-products-and-backends
https://registry.redhat.io
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/installing_3scale/index#creating-a-registry-service-account
https://access.redhat.com/solutions/392003
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sec-Configuring_Yum_and_Yum_Repositories.html#sec-Managing_Yum_Repositories

2. Find the *-extras repository.

3. Enable the extras repository: sudo yum-config-manager --enable rhui-REGION-rhel-server-
extras.

4. Install the Docker containerized environment package: sudo yum install docker.

Additional resources

For other operating systems, refer to the following Docker documentation:

Installing the Docker containerized environment on Linux distributions

Installing the Docker containerized environment on Mac

Installing the Docker containerized environment on Windows

2.5.2. Running the Docker containerized environment gateway

IMPORTANT

In 3scale 2.11, support for an APIcast deployment running as a container in RHEL 7 and
Docker is deprecated. In future releases, 3scale will support only RHEL 8 and Podman. If
you are running APIcast self-managed as a container, upgrade your installation to the
supported configuration.

To run the docker containerized environment gateway, do the following:

Procedure

1. Start the Docker daemon:

$ sudo systemctl start docker.service

2. Check if the Docker daemon is running:

$ sudo systemctl status docker.service

3. Download a ready to use Docker container engine image from the Red Hat registry:

$ sudo docker pull registry.redhat.io/3scale-amp2/apicast-gateway-rhel8:3scale2.13

4. Run APIcast in a Docker container engine:

$ sudo docker run --name apicast --rm -p 8080:8080 -e
THREESCALE_PORTAL_ENDPOINT=https://<access_token>@<domain>-admin.3scale.net
registry.redhat.io/3scale-amp2/apicast-gateway-rhel8:3scale2.13

Here, <access_token> is the Access Token for the 3scale Account Management API. You can
use the Provider Key instead of the access token. <domain>-admin.3scale.net is the URL of
your 3scale Admin Portal.

This command runs a Docker container engine called "apicast" on port 8080 and fetches the JSON
configuration file from your 3scale Admin Portal. For other configuration options, see Installing APIcast .

CHAPTER 2. INSTALLING APICAST

13

https://docs.docker.com/engine/installation/linux/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-windows/
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/installing_3scale/index#installing-apicast

2.5.2.1. The docker command options

You can use the following options with the docker run command:

--rm: Automatically removes the container when it exits.

-d or --detach: Runs the container in the background and prints the container ID. When it is not
specified, the container runs in the foreground mode and you can stop it using CTRL + c. When
started in the detached mode, you can reattach to the container with the docker attach
command, for example, docker attach apicast.

-p or --publish: Publishes a container’s port to the host. The value should have the format
<host port="">:<container port="">, so -p 80:8080 will bind port 8080 of the container to port
80 of the host machine. For example, the Management API uses port 8090, so you may want to
publish this port by adding -p 8090:8090 to the docker run command.

-e or --env: Sets environment variables.

-v or --volume: Mounts a volume. The value is typically represented as <host path="">:
<container path="">[:<options>]. <options> is an optional attribute; you can set it to :ro to
specify that the volume will be read only (by default, it is mounted in read-write mode).
Example: -v /host/path:/container/path:ro.

2.5.2.2. Testing APIcast

The preceding steps ensure that your Docker container engine is running with your own configuration
file and the Docker container image from the 3scale registry. You can test calls through APIcast on port
8080 and provide the correct authentication credentials, which you can get from your 3scale account.

Test calls will not only verify that APIcast is running correctly but also that authentication and reporting
is being handled successfully.

NOTE

Ensure that the host you use for the calls is the same as the one configured in the Public
Base URL field on the Integration page.

Additional resources

For more information on available options, see Docker run reference.

2.5.3. Additional resources

For more information about tested and supported configuration, see Red Hat 3scale Supported
Configurations

2.5.4. Deploying APIcast on Podman

This is a step-by-step guide for deploying APIcast on a Pod Manager (Podman) container environment
to be used as a Red Hat 3scale API gateway.

NOTE

Red Hat 3scale 2-saas Installing Red Hat 3scale API Management

14

https://docs.docker.com/engine/reference/run/
https://access.redhat.com/articles/2798521

NOTE

When deploying APIcast on a Podman container environment, the supported versions of
Red Hat Enterprise Linux (RHEL) and Podman are as follows:

RHEL 8.x/9.x

Podman 4.2.0/4.1.1

Prerequisites

You must configure APIcast in your 3scale Admin Portal as per Chapter 2, Installing APIcast .

Access to the Red Hat Ecosystem Catalog .

To create a registry service account, see Creating and modifying registry service accounts .

To deploy APIcast on the Podman container environment, perform the steps outlined in the following
sections:

Section 2.5.4.1, “Installing the Podman container environment”

Section 2.5.4.2, “Running the Podman environment”

2.5.4.1. Installing the Podman container environment

This guide covers the steps to set up the Podman container environment on RHEL 8.x. Docker is not
included in RHEL 8.x, therefore, use Podman for working with containers.

For more details about Podman with RHEL 8.x, see the Container command-line reference .

Procedure

Install the Podman container environment package:

$ sudo dnf install podman

Additional resources

For other operating systems, refer to the following Podman documentation:

Podman Installation Instructions

2.5.4.2. Running the Podman environment

To run the Podman container environment, follow the procedure below.

Procedure

1. Download a ready to use Podman container image from the Red Hat registry:

$ podman pull registry.redhat.io/3scale-amp2/apicast-gateway-rhel8:3scale2.13

2. Run APIcast in a Podman:

CHAPTER 2. INSTALLING APICAST

15

https://registry.redhat.io
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/installing_3scale/index#creating-a-registry-service-account
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index#container-command-line-reference_building-running-and-managing-containers
https://podman.io/getting-started/installation

$ podman run --name apicast --rm -p 8080:8080 -e
THREESCALE_PORTAL_ENDPOINT=https://<access_token>@<domain>-admin.3scale.net
registry.redhat.io/3scale-amp2/apicast-gateway-rhel8:3scale2.13

Here, <access_token> is the Access Token for the 3scale Account Management API. You can
use the Provider Key instead of the access token. <domain>-admin.3scale.net is the URL of
your 3scale Admin Portal.

This command runs a Podman container engine called "apicast" on port 8080 and fetches the JSON
configuration file from your 3scale Admin Portal. For other configuration options, see Installing APIcast .

2.5.4.2.1. Testing APIcast with Podman

The preceding steps ensure that your Podman container engine is running with your own configuration
file and the Podman container image from the 3scale registry. You can test calls through APIcast on
port 8080 and provide the correct authentication credentials, which you can get from your 3scale
account.

Test calls will not only verify that APIcast is running correctly but also that authentication and reporting
is being handled successfully.

NOTE

Ensure that the host you use for the calls is the same as the one configured in the Public
Base URL field on the Integration page.

2.5.4.3. The podman command options

You can use the following option examples with the podman command:

-d: Runs the container in detached mode and prints the container ID. When it is not specified,
the container runs in the foreground mode and you can stop it using CTRL + c. When started in
the detached mode, you can reattach to the container with the podman attach command, for
example, podman attach apicast.

ps and -a: Podman ps is used to list creating and running containers. Adding -a to the ps
command will show all containers, both running and stopped, for example, podman ps -a.

inspect and -l: Inspect a running container. For example, use inspect to see the ID that was
assigned to the container. Use -l to get the details for the latest container, for example, podman
inspect -l | grep Id\":.

2.5.4.4. Additional resources

Red Hat 3scale Supported Configurations

Basic Setup and Use of Podman

2.6. DEPLOYING AN APICAST GATEWAY SELF-MANAGED SOLUTION
USING THE OPERATOR

This guide provides steps for deploying an APIcast gateway self-managed solution using the APIcast
operator via the Openshift Container Platform console.

The default settings are for production environment when you deploy APIcast. You can always adjust

Red Hat 3scale 2-saas Installing Red Hat 3scale API Management

16

https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/installing_3scale/index#installing-apicast
https://access.redhat.com/articles/2798521
https://podman.io/getting-started/

The default settings are for production environment when you deploy APIcast. You can always adjust
these settings for deploying a staging environment. For example, use the following oc command:

$ oc patch apicast/{apicast_name} --type=merge -p '{"spec":
{"deploymentEnvironment":"staging","configurationLoadMode":"lazy"}}'

For more information, see the: APIcast Custom Resource reference

Prerequisites

OpenShift Container Platform (OCP) 4.x or later with administrator privileges.

You followed the steps in Installing the APIcast operator on OpenShift .

Procedure

1. Log in to the OCP console using an account with administrator privileges.

2. Click Operators > Installed Operators.

3. Click the APIcast Operator from the list of Installed Operators.

4. Click APIcast > Create APIcast.

2.6.1. APICast deployment and configuration options

You can deploy and configure an APIcast gateway self-managed solution using two approaches:

Providing a 3scale system endpoint

Providing a configuration secret

See also:

Injecting custom environments with the APIcast operator

Injecting custom policies with the APIcast operator

Configuring OpenTracing with the APIcast operator

2.6.1.1. Providing a 3scale system endpoint

Procedure

1. Create an OpenShift secret that contains 3scale System Admin Portal endpoint information:

${SOME_SECRET_NAME} is the name of the secret and can be any name you want as long
as it does not conflict with an existing secret.

${MY_3SCALE_URL} is the URI that includes your 3scale access token and 3scale System
portal endpoint. For more details, see THREESCALE_PORTAL_ENDPOINT

$ oc create secret generic ${SOME_SECRET_NAME} --from-
literal=AdminPortalURL=${MY_3SCALE_URL}

CHAPTER 2. INSTALLING APICAST

17

https://github.com/3scale/apicast-operator/blob/master/doc/apicast-crd-reference.md
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/installing_3scale/index#installing-the-apicast-operator-on-openshift
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/installing_3scale/index#providing-3cale-porta-endpoint
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/installing_3scale/index#providing-configuration-secret
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/installing_3scale/index#injecting-custom-environments-with-the-apicast-operator
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/installing_3scale/index#injecting-custom-policies-with-the-apicast-operator
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/installing_3scale/index#configuring-opentracing-with-the-apicast-operator
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/administering_the_api_gateway/index#threescale-portal-endpoint

Example

For more information about the contents of the secret see the Admin portal configuration
secret reference.

2. Create the OpenShift object for APIcast

The spec.adminPortalCredentialsRef.name must be the name of the existing OpenShift
secret that contains the 3scale system Admin Portal endpoint information.

3. Verify the APIcast pod is running and ready, by confirming that the readyReplicas field of the
OpenShift Deployment associated with the APIcast object is 1. Alternatively, wait until the field
is set with:

2.6.1.1.1. Verifying the APIcast gateway is running and available

Procedure

1. Ensure the OpenShift Service APIcast is exposed to your local machine, and perform a test
request. Do this by port-forwarding the APIcast OpenShift Service to localhost:8080:

2. Make a request to a configured 3scale service to verify a successful HTTP response. Use the
domain name configured in Staging Public Base URL or Production Public Base URL
settings of your service. For example:

$ oc create secret generic 3scaleportal --from-literal=AdminPortalURL=https://access-
token@account-admin.3scale.net

apiVersion: apps.3scale.net/v1alpha1
kind: APIcast
metadata:
 name: example-apicast
spec:
 adminPortalCredentialsRef:
 name: SOME_SECRET_NAME

$ echo $(oc get deployment apicast-example-apicast -o jsonpath='{.status.readyReplicas}')
1

$ oc port-forward svc/apicast-example-apicast 8080

$ curl 127.0.0.1:8080/test -H "Host: localhost"
{
 "method": "GET",
 "path": "/test",
 "args": "",
 "body": "",
 "headers": {
 "HTTP_VERSION": "HTTP/1.1",
 "HTTP_HOST": "echo-api.3scale.net",
 "HTTP_ACCEPT": "*/*",
 "HTTP_USER_AGENT": "curl/7.65.3",
 "HTTP_X_REAL_IP": "127.0.0.1",
 "HTTP_X_FORWARDED_FOR": ...

Red Hat 3scale 2-saas Installing Red Hat 3scale API Management

18

https://github.com/3scale/apicast-operator/blob/3scale-2.13-stable/doc/apicast-crd-reference.md#AdminPortalSecret

2.6.1.1.2. Exposing APIcast externally via a Kubernetes Ingress

To expose APIcast externally via a Kubernetes Ingress, set and configure the exposedHost section.
When the host field in the exposedHost section is set, this creates a Kubernetes Ingress object. The
Kubernetes Ingress object can then be used by a previously installed and existing Kubernetes Ingress
Controller to make APIcast accessible externally.

To learn what Ingress Controllers are available to make APIcast externally accessible and how they are
configured see the Kubernetes Ingress Controllers documentation .

The following example to expose APIcast with the hostname myhostname.com:

The example creates a Kubernetes Ingress object on the port 80 using HTTP. When the APIcast
deployment is in an OpenShift environment, the OpenShift default Ingress Controller will create a Route
object using the Ingress object APIcast creates which allows external access to the APIcast installation.

You may also configure TLS for the exposedHost section. Details about the available fields in the
following table:

Table 2.3. APIcastExposedHost reference table

json/yaml field Type Required Default value Description

host string Yes N/A Domain name
being routed to
the gateway

tls []networkv1.Ingress
TLS

No N/A Array of ingress
TLS objects. See
more on TLS.

2.6.1.2. Providing a configuration secret

Procedure

1. Create a secret with the configuration file:

 "HTTP_X_FORWARDED_HOST": "echo-api.3scale.net",
 "HTTP_X_FORWARDED_PORT": "80",
 "HTTP_X_FORWARDED_PROTO": "http",
 "HTTP_FORWARDED": "for=10.0.101.216;host=echo-api.3scale.net;proto=http"
 },
 "uuid": "603ba118-8f2e-4991-98c0-a9edd061f0f0"

apiVersion: apps.3scale.net/v1alpha1
kind: APIcast
metadata:
 name: example-apicast
spec:
 ...
 exposedHost:
 host: "myhostname.com"
 ...

CHAPTER 2. INSTALLING APICAST

19

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.io/docs/concepts/services-networking/ingress/#tls

The configuration file must be called config.json. This is an APIcast CRD reference
requirement.

For more information about the contents of the secret see the Admin portal configuration
secret reference.

2. Create an APIcast custom resource:

a. The following is an example of an embedded configuration secret:

$ curl
https://raw.githubusercontent.com/3scale/APIcast/master/examples/configuration/echo.json -
o $PWD/config.json

$ oc create secret generic apicast-echo-api-conf-secret --from-file=$PWD/config.json

$ cat my-echo-apicast.yaml
apiVersion: apps.3scale.net/v1alpha1
kind: APIcast
metadata:
 name: my-echo-apicast
spec:
 exposedHost:
 host: YOUR DOMAIN
 embeddedConfigurationSecretRef:
 name: apicast-echo-api-conf-secret

$ oc apply -f my-echo-apicast.yaml

apiVersion: v1
kind: Secret
metadata:
 name: SOME_SECRET_NAME
type: Opaque
stringData:
 config.json: |
 {
 "services": [
 {
 "proxy": {
 "policy_chain": [
 { "name": "apicast.policy.upstream",
 "configuration": {
 "rules": [{
 "regex": "/",
 "url": "http://echo-api.3scale.net"
 }]
 }
 }
]
 }
 }
]
 }

Red Hat 3scale 2-saas Installing Red Hat 3scale API Management

20

https://github.com/3scale/apicast-operator/blob/3scale-2.13-stable/doc/apicast-crd-reference.md#embeddedconfsecret
https://github.com/3scale/apicast-operator/blob/3scale-2.13-stable/doc/apicast-crd-reference.md#embeddedconfsecret
https://github.com/3scale/apicast-operator/blob/3scale-2.13-stable/doc/apicast-crd-reference.md

3. Set the following content when creating the APIcast object:

The spec.embeddedConfigurationSecretRef.name must be the name of the existing
OpenShift secret that contains the configuration of the gateway.

4. Verify the APIcast pod is running and ready, by confirming that the readyReplicas field of the
OpenShift Deployment associated with the APIcast object is 1. Alternatively, wait until the field
is set with:

2.6.1.2.1. Verifying APIcast gateway is running and available

Procedure

1. Ensure the OpenShift Service APIcast is exposed to your local machine, and perform a test
request. Do this by port-forwarding the APIcast OpenShift Service to localhost:8080:

a. Next: Make a request to a configured 3scale service and verify a successful HTTP response .

2.6.1.3. Injecting custom environments with the APIcast operator

In a 3scale installation that uses self-managed APIcast, you can use the APIcast operator to inject
custom environments. A custom environment defines behavior that APIcast applies to all upstream APIs
that the gateway serves. To create a custom environment, define a global configuration in Lua code.

You can inject a custom environment as part of or after APIcast installation. After injecting a custom
environment, you can remove it and the APIcast operator reconciles the changes.

Prerequisites

The APIcast operator is installed.

Procedure

1. Write Lua code that defines the custom environment that you want to inject. For example, the
following env1.lua file shows a custom logging policy that the APIcast operator loads for all
services.

apiVersion: apps.3scale.net/v1alpha1
kind: APIcast
metadata:
 name: example-apicast
spec:
 embeddedConfigurationSecretRef:
 name: SOME_SECRET_NAME

$ echo $(oc get deployment apicast-example-apicast -o jsonpath='{.status.readyReplicas}')
1

$ oc port-forward svc/apicast-example-apicast 8080

local cjson = require('cjson')
local PolicyChain = require('apicast.policy_chain')
local policy_chain = context.policy_chain

CHAPTER 2. INSTALLING APICAST

21

2. Create a secret from the Lua file that defines the custom environment. For example:

A secret can contain multiple custom environments. Specify the –from-file option for each file
that defines a custom environment. The operator loads each custom environment.

3. Define an APIcast custom resource that references the secret you just created. The following
example shows only content relative to referencing the secret that defines the custom
environment.

An APIcast custom resource can reference multiple secrets that define custom environments.
The operator loads each custom environment.

4. Create the APIcast custom resource that adds the custom environment. For example, if you
saved the APIcast custom resource in the apicast.yaml file, run the following command:

Next steps

If you update your custom environment be sure to re-create its secret so the secret contains the
update. The APIcast operator watches for updates and automatically redeploys when it finds an update.

2.6.1.4. Injecting custom policies with the APIcast operator

In a 3scale installation that uses self-managed APIcast, you can use the APIcast operator to inject
custom policies. Injecting a custom policy adds the policy code to APIcast. You can then use either of
the following to add the custom policy to an API product’s policy chain:

3scale API

local logging_policy_config = cjson.decode([[
{
 "enable_access_logs": false,
 "custom_logging": "\"{{request}}\" to service {{service.id}} and {{service.name}}"
}
]])

policy_chain:insert(PolicyChain.load_policy('logging', 'builtin', logging_policy_config), 1)

return {
 policy_chain = policy_chain,
 port = { metrics = 9421 },
}

$ oc create secret generic custom-env-1 --from-file=./env1.lua

apiVersion: apps.3scale.net/v1alpha1
kind: APIcast
metadata:
 name: apicast1
spec:
 customEnvironments:
 - secretRef:
 name: custom-env-1

$ oc apply -f apicast.yaml

Red Hat 3scale 2-saas Installing Red Hat 3scale API Management

22

Product custom resource

To use the 3scale Admin Portal to add the custom policy to a product’s policy chain, you must also
register the custom policy’s schema with a CustomPolicyDefinition custom resource. Custom policy
registration is a requirement only when you want to use the Admin Portal to configure a product’s policy
chain.

You can inject a custom policy as part of or after APIcast installation. After injecting a custom policy, you
can remove it and the APIcast operator reconciles the changes.

Prerequisites

The APIcast operator is installed or you are in the process of installing it.

You have defined a custom policy as described in Write your own policy . That is, you have already
created, for example, the my-first-custom-policy.lua, apicast-policy.json, and init.lua files
that define a custom policy,

Procedure

1. Create a secret from the files that define one custom policy. For example:

If you have more than one custom policy, create a secret for each custom policy. A secret can
contain only one custom policy.

2. Define an APIcast custom resource that references the secret you just created. The following
example shows only content relative to referencing the secret that defines the custom policy.

An APIcast custom resource can reference multiple secrets that define custom policies. The
operator loads each custom policy.

3. Create the APIcast custom resource that adds the custom policy. For example, if you saved the
APIcast custom resource in the apicast.yaml file, run the following command:

Next steps

If you update your custom policy be sure to re-create its secret so the secret contains the update. The

$ oc create secret generic my-first-custom-policy-secret \
 --from-file=./apicast-policy.json \
 --from-file=./init.lua \
 --from-file=./my-first-custom-policy.lua

apiVersion: apps.3scale.net/v1alpha1
kind: APIcast
metadata:
 name: apicast1
spec:
 customPolicies:
 - name: my-first-custom-policy
 version: "0.1"
 secretRef:
 name: my-first-custom-policy-secret

$ oc apply -f apicast.yaml

CHAPTER 2. INSTALLING APICAST

23

https://github.com/3scale/APIcast/blob/master/doc/policies.md#write-your-own-policy

If you update your custom policy be sure to re-create its secret so the secret contains the update. The
APIcast operator watches for updates and automatically redeploys when it finds an update.

Additional resources

APIcast custom resource definition

2.6.1.5. Configuring OpenTracing with the APIcast operator

In a 3scale installation that uses self-managed APIcast, you can use the APIcast operator to configure
OpenTracing. By enabling OpenTracing, you get more insight and better observability on the APIcast
instance.

Prerequisites

The APIcast operator is installed or you are in the process of installing it.

Prerequisites listed in Configuring APIcast to use OpenTracing .

Jaeger is installed.

Procedure

1. Define a secret that contains your OpenTracing configuration details in stringData.config. This
is the only valid value for the attribute that contains your OpenTracing configuration details. Any
other specification prevents APIcast from receiving your OpenTracing configuration details. The
folowing example shows a valid secret definition:

apiVersion: v1
kind: Secret
metadata:
 name: myjaeger
stringData:
 config: |-
 {
 "service_name": "apicast",
 "disabled": false,
 "sampler": {
 "type": "const",
 "param": 1
 },
 "reporter": {
 "queueSize": 100,
 "bufferFlushInterval": 10,
 "logSpans": false,
 "localAgentHostPort": "jaeger-all-in-one-inmemory-agent:6831"
 },
 "headers": {
 "jaegerDebugHeader": "debug-id",
 "jaegerBaggageHeader": "baggage",
 "TraceContextHeaderName": "uber-trace-id",
 "traceBaggageHeaderPrefix": "testctx-"
 },
 "baggage_restrictions": {
 "denyBaggageOnInitializationFailure": false,

Red Hat 3scale 2-saas Installing Red Hat 3scale API Management

24

https://github.com/3scale/apicast-operator/blob/master/doc/apicast-crd-reference.md
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/administering_the_api_gateway/index#configuring-apicast-to-use-opentracing
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/administering_the_api_gateway/index#installing-jaeger-on-your-openshift-instance

2. Create the secret. For example, if you saved the previous secret definition in the myjaeger.yaml
file, you would run the following command:

3. Define an APIcast custom resource that specifies the OpenTracing attributes. In the CR
definition, set the spec.tracingConfigSecretRef.name attribute to the name of the secret that
contains your OpenTracing configuration details. The following example shows only content
relative to configuring OpenTracing.

4. Create the APIcast custom resource that configures OpenTracing. For example, if you saved
the APIcast custom resource in the apicast1.yaml file, you would run the following command:

Next steps

Depending on how OpenTracing is installed, you should see the traces in the Jaeger service user
interface.

Additional resource

APIcast custom resource definition

2.7. ADDITIONAL RESOURCES

To get information about the latest released and supported version of APIcast, see the articles:

Red Hat 3scale API Management Supported Configurations

Red Hat 3scale API Management - Component Details .

For the updates on the hosted APIcast version please refer to Red Hat 3scale API Management
Platform SaaS Release Notes.

 "hostPort": "127.0.0.1:5778",
 "refreshInterval": 60
 }
 }
type: Opaque

$ oc create -f myjaeger.yaml

apiVersion: apps.3scale.net/v1alpha1
kind: APIcast
metadata:
 name: apicast1
spec:
 ...
 openTracing:
 enabled: true
 tracingConfigSecretRef:
 name: myjaeger
 tracingLibrary: jaeger
...

$ oc apply -f apicast1.yaml

CHAPTER 2. INSTALLING APICAST

25

https://github.com/3scale/apicast-operator/blob/master/doc/apicast-crd-reference.md
https://access.redhat.com/articles/2798521
https://access.redhat.com/articles/2787991
https://access.redhat.com/articles/3107441

CHAPTER 3. APICAST HOSTED
Once you complete this tutorial, you will have your API fully protected by a secure gateway in the cloud.

APIcast hosted is the best deployment option if you want to launch your API as fast as possible, or if you
want to make the minimum infrastructure changes on your side.

Prerequisites

You have reviewed Chapter 3, APIcast hosted for deployment alternatives and decided to use
APIcast hosted to integrate your API with 3scale.

Your API backend service is accessible over the public Internet. Secure communication will be
established to prevent users from bypassing the access control gateway.

You do not expect demand for your API to exceed the limit of 50,000 hits/day. Beyond beyond
this, we recommend upgrading to the self-managed gateway.

Section 3.1, “Deploying your API with APIcast hosted in a staging environment”

Section 3.2, “Deploying your API with the APIcast hosted into production”

3.1. DEPLOYING YOUR API WITH APICAST HOSTED IN A STAGING
ENVIRONMENT

The first step is to configure your API and test it in your staging environment:

Procedure

1. Define the private base URL and its endpoints.

2. Choose the placement of credentials and other configuration details. For more information see
the APIcast Hosted documentation .

3. Save the configuration settings by clicking Update Product. These settings go through the
APIcast staging instance to your API.

You will see a green confirmation message when your configuration is complete.

Before moving on to the next step, make sure that you have configured a secret token to that you
backend service validates. You can define the value for the secret token under Authentication
Settings. This will ensure that nobody can bypass APIcast access control.

3.2. DEPLOYING YOUR API WITH THE APICAST HOSTED INTO
PRODUCTION

At this point, you are ready to take your API configuration to a production environment. To deploy your
3scale Hosted APIcast instance:

Procedure

1. Go back to the Integration and Configuration page and click on the 'Promote to v.x to
Production' button.

2. Repeat this step to promote further changes in your staging environment to your production

Red Hat 3scale 2-saas Installing Red Hat 3scale API Management

26

https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/installing_3scale/index#apicast-hosted

2. Repeat this step to promote further changes in your staging environment to your production
environment.

It will take between 5 and 7 minutes for your configuration to deploy and propagate to all the cloud
APIcast instances. During redeployment, your API will not experience any downtime. API calls may return
different responses depending on which instance serves the call. Deployment has been successful when
the box around your production environment has turned green.

Both the staging and production APIcast instances have base URLs on the apicast.io domain. You can
tell them apart because the staging environment URLs have a staging subdomain. For example:

staging: https://api-2445581448324.staging.apicast.io:443

production: https://api-2445581448324.apicast.io:443

3.3. ADDITIONAL INFORMATION

50,000 hits/day is the maximum allowed for your API through the APIcast production cloud
instance. You can check your API usage in the Analytics section of your Admin Portal.

There is a hard throttle limit of 20 hits/second on any spike in API traffic.

Above the throttle limit, APIcast returns a response code of 403. This is the same as the default
for an application over rate limits. If you want to differentiate the errors, please check the
response body.

CHAPTER 3. APICAST HOSTED

27

https://api-2445581448324.staging.apicast.io:443
https://api-2445581448324.apicast.io:443

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. REGISTRY SERVICE ACCOUNTS FOR 3SCALE
	1.1. CREATING A REGISTRY SERVICE ACCOUNT
	1.2. CONFIGURING CONTAINER REGISTRY AUTHENTICATION
	1.3. MODIFYING A REGISTRY SERVICE ACCOUNT
	1.4. ADDITIONAL RESOURCES

	CHAPTER 2. INSTALLING APICAST
	2.1. APICAST DEPLOYMENT OPTIONS
	2.2. APICAST ENVIRONMENTS
	2.3. CONFIGURING THE INTEGRATION SETTINGS
	2.4. CONFIGURING YOUR PRODUCT
	2.4.1. Declaring the API backend
	2.4.2. Configuring the authentication settings
	2.4.3. Configuring the API test call

	2.5. DEPLOYING APICAST ON THE DOCKER CONTAINERIZED ENVIRONMENT
	2.5.1. Installing the Docker containerized environment
	2.5.2. Running the Docker containerized environment gateway
	2.5.2.1. The docker command options
	2.5.2.2. Testing APIcast

	2.5.3. Additional resources
	2.5.4. Deploying APIcast on Podman
	2.5.4.1. Installing the Podman container environment
	2.5.4.2. Running the Podman environment
	2.5.4.3. The podman command options
	2.5.4.4. Additional resources

	2.6. DEPLOYING AN APICAST GATEWAY SELF-MANAGED SOLUTION USING THE OPERATOR
	2.6.1. APICast deployment and configuration options
	2.6.1.1. Providing a 3scale system endpoint
	2.6.1.2. Providing a configuration secret
	2.6.1.3. Injecting custom environments with the APIcast operator
	2.6.1.4. Injecting custom policies with the APIcast operator
	2.6.1.5. Configuring OpenTracing with the APIcast operator

	2.7. ADDITIONAL RESOURCES

	CHAPTER 3. APICAST HOSTED
	3.1. DEPLOYING YOUR API WITH APICAST HOSTED IN A STAGING ENVIRONMENT
	3.2. DEPLOYING YOUR API WITH THE APICAST HOSTED INTO PRODUCTION
	3.3. ADDITIONAL INFORMATION

