
OpenShift Online 3

Using Images

OpenShift Online Guide to Using Images

Last Updated: 2020-03-31

OpenShift Online 3 Using Images

OpenShift Online Guide to Using Images

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use these topics to find out what different S2I (Source-to-Image), database and Docker images
are available for OpenShift Online users.

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. SOURCE-TO-IMAGE (S2I)
2.1. OVERVIEW
2.2. JAVA

2.2.1. Overview
2.2.2. Versions
2.2.3. Images
2.2.4. Build Process
2.2.5. Configuration
2.2.6. Building and Deploying Java Applications
2.2.7. Building and Deploying from Source
2.2.8. Building and Deploying from Binary Artifacts
2.2.9. Additional Information and Examples

2.3. .NET CORE
2.3.1. Benefits of Using .NET Core
2.3.2. Supported Versions
2.3.3. Images
2.3.4. Build Process
2.3.5. Environment Variables
2.3.6. Quickly Deploying Applications from .NET Core Source

2.4. NODE.JS
2.4.1. Overview
2.4.2. Versions
2.4.3. Images
2.4.4. Build Process
2.4.5. Configuration
2.4.6. Hot Deploying
2.4.7. Node.js Templates

2.5. PERL
2.5.1. Overview
2.5.2. Versions
2.5.3. Images
2.5.4. Build Process
2.5.5. Configuration
2.5.6. Accessing Logs
2.5.7. Hot Deploying
2.5.8. Perl Templates

2.6. PHP
2.6.1. Overview
2.6.2. Versions
2.6.3. Images
2.6.4. Build Process
2.6.5. Configuration

2.6.5.1. Apache Configuration
2.6.6. Accessing Logs
2.6.7. Hot Deploying
2.6.8. PHP Templates

2.7. PYTHON
2.7.1. Overview
2.7.2. Versions

6

7
7
7
7
7
7
7
7
8
8
9
9
9
9
9

10
10
10
12
13
13
13
13
13
14
14
15
15
15
15
15
15
16
16
16
17
17
17
17
17
18
18
19

20
20
20
20
21
21

Table of Contents

1

. .

2.7.3. Images
2.7.4. Build Process
2.7.5. Configuration
2.7.6. Hot Deploying
2.7.7. Python Templates

2.8. RUBY
2.8.1. Overview
2.8.2. Versions
2.8.3. Images
2.8.4. Build Process
2.8.5. Configuration
2.8.6. Hot Deploying
2.8.7. Ruby Templates

2.9. CUSTOMIZING S2I IMAGES
2.9.1. Overview
2.9.2. Invoking Scripts Embedded in an Image

CHAPTER 3. DATABASE IMAGES
3.1. OVERVIEW
3.2. MYSQL

3.2.1. Overview
3.2.2. Versions
3.2.3. Images
3.2.4. Configuration and Usage

3.2.4.1. Initializing the Database
3.2.4.2. Running MySQL Commands in Containers
3.2.4.3. Environment Variables
3.2.4.4. Volume Mount Points
3.2.4.5. Changing Passwords

3.2.5. Creating a Database Service from a Template
3.2.5.1. Creating the Deployment Configuration for the MySQL Master
3.2.5.2. Creating a Headless Service
3.2.5.3. Scaling the MySQL Slaves

3.2.6. Troubleshooting
3.2.6.1. Linux Native AIO Failure

3.3. POSTGRESQL
3.3.1. Overview
3.3.2. Versions
3.3.3. Images
3.3.4. Configuration and Usage

3.3.4.1. Initializing the Database
3.3.4.2. Running PostgreSQL Commands in Containers
3.3.4.3. Environment Variables
3.3.4.4. Volume Mount Points
3.3.4.5. Changing Passwords

3.3.5. Creating a Database Service from a Template
3.4. MONGODB

3.4.1. Overview
3.4.2. Versions
3.4.3. Images
3.4.4. Configuration and usage

3.4.4.1. Initializing the database
3.4.4.2. Running MongoDB commands in containers

21
21
21
22
23
23
23
23
23
23
24
25
26
26
26
26

28
28
28
28
28
28
28
28
28
29
31
31

33
33
36
36
36
37
37
37
37
37
38
38
38
38
39
40
41
41
41
41

42
42
42
42

OpenShift Online 3 Using Images

2

. .

3.4.4.3. Environment Variables
3.4.4.4. Volume mount points
3.4.4.5. Changing passwords

3.4.5. Creating a database service from a template
3.4.6. MongoDB replication

3.4.6.1. Limitations
3.4.6.2. Using the example template
3.4.6.3. Scale up
3.4.6.4. Scale down

3.5. MARIADB
3.5.1. Overview
3.5.2. Versions
3.5.3. Images
3.5.4. Configuration and Usage

3.5.4.1. Initializing the Database
3.5.4.2. Running MariaDB Commands in Containers
3.5.4.3. Environment Variables
3.5.4.4. Volume Mount Points
3.5.4.5. Changing Passwords

3.5.5. Creating a Database Service from a Template
3.5.6. Troubleshooting

3.5.6.1. Linux Native AIO Failure

CHAPTER 4. OTHER IMAGES
4.1. OVERVIEW
4.2. JENKINS

4.2.1. Overview
4.2.2. Images
4.2.3. Configuration and Customization

4.2.3.1. Authentication
4.2.3.1.1. OpenShift Online OAuth authentication
4.2.3.1.2. Jenkins Standard Authentication

4.2.3.2. Environment Variables
4.2.3.3. Cross Project Access
4.2.3.4. Volume Mount Points
4.2.3.5. Customizing the Jenkins Image through Source-To-Image
4.2.3.6. Configuring the Jenkins Kubernetes Plug-in

4.2.3.6.1. Permission Considerations
4.2.4. Usage

4.2.4.1. Creating a Jenkins Service from a Template
4.2.4.2. Using the Jenkins Kubernetes Plug-in
4.2.4.3. Memory Requirements

4.2.5. Jenkins Plug-ins
4.2.5.1. OpenShift Online Client Plug-in
4.2.5.2. OpenShift Online Pipeline Plug-in
4.2.5.3. OpenShift Online Sync Plug-in
4.2.5.4. Kubernetes Plug-in

4.3. JENKINS SLAVES
4.3.1. Overview
4.3.2. Images
4.3.3. Configuration and Customization

4.3.3.1. Environment Variables
4.3.4. Usage

43
44
44
45
45
46
47
47
48
48
49
49
49
49
49
49
50
52
52
53
54
54

55
55
55
55
55
55
55
55
56
56
58
58
58
60
62
62
62
63
65
66
66
66
66
67
67
67
68
68
68
69

Table of Contents

3

4.3.4.1. Memory Requirements
4.3.4.1.1. Gradle builds

4.4. OTHER CONTAINER IMAGES
4.4.1. Overview

69
69
70
70

OpenShift Online 3 Using Images

4

Table of Contents

5

CHAPTER 1. OVERVIEW
Use these topics to discover the different Source-to-Image (S2I), database, and other container images
that are available for OpenShift Online users.

OpenShift Online 3 Using Images

6

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#source-build

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

2.1. OVERVIEW

This topic group includes information on the different S2I (Source-to-Image) supported images
available for OpenShift Online users.

2.2. JAVA

2.2.1. Overview

OpenShift Online provides an S2I builder image for building Java applications. This builder image takes
your application source or binary artifacts, builds the source using Maven (if source was provided), and
assembles the artifacts with any required dependencies to create a new, ready-to-run image containing
your Java application. This resulting image can be run on OpenShift Online or run directly with Docker.

The builder image is intended for use with Maven-based Java standalone projects that are run via main
class.

2.2.2. Versions

The current version of the Java S2I builder image supports OpenJDK 1.8, Jolokia 1.3.5, and Maven 3.3.9-
2.8.

2.2.3. Images

The RHEL 7 image is available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/redhat-openjdk-18/openjdk18-openshift

You can use the image through the redhat-openjdk18-openshift image stream.

2.2.4. Build Process

S2I produces ready-to-run images by injecting source code into a container and letting the container
prepare that source code for execution. It performs the following steps:

1. Starts a container from the builder image.

2. Downloads the application source.

3. Streams the scripts and application sources into the builder image container.

4. Runs the assemble script (from the builder image).

5. Saves the final image.

See S2I Build Process for a detailed overview of the build process.

2.2.5. Configuration

By default, the Java S2I builder image uses Maven to build the project with the following goals and

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

7

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#source-build
https://maven.apache.org
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/creating_images/#build-process

By default, the Java S2I builder image uses Maven to build the project with the following goals and
options:

mvn -Dmaven.repo.local=/tmp/artifacts/m2 -s /tmp/artifacts/configuration/settings.xml -e -Popenshift -
DskipTests -Dcom.redhat.xpaas.repo.redhatga -Dfabric8.skip=true package -
Djava.net.preferIPv4Stack=true

Based on these defaults, the builder image compiles the project and copies all the transitive
dependencies into the output directory without running tests. Additionally, if the project has a profile
named openshift, then it is activated for the build.

You can override these default goals and options by specifying the following environment variables:

Table 2.1. Java Environment Variables

Variable name Description

ARTIFACT_DIR The relative path to the target where JAR files are
created for multi-module builds.

JAVA_MAIN_CLASS The main class to use as the argument to Java. This
can also be specified in the .s2i/environment file as a
Maven property inside the project
(docker.env.Main).

MAVEN_ARGS The arguments that are passed to the mvn
command.

2.2.6. Building and Deploying Java Applications

The same S2I builder image can be used to build a Java application from source or from binary artifacts.

2.2.7. Building and Deploying from Source

The Java S2I builder image can be used to build an application from source by running oc new-app
against a source repository:

$ oc new-app redhat-openjdk18-openshift~https://github.com/jboss-openshift/openshift-quickstarts --
context-dir=undertow-servlet

By default, tests are not run. To build an application and run tests as part of the build, override the
default MAVEN_ARGS, as in the following command:

$ oc new-app redhat-openjdk18-openshift~<git_repo_URL> --context-dir=<context-dir> --build-
env='MAVEN_ARGS=-e -Popenshift -Dcom.redhat.xpaas.repo.redhatga package'

If a Java project consists of multiple Maven modules, it can be useful to explicitly specify the artifact
output directory. Specifying the directory where the Maven project outputs the artifacts enables the S2I
build to pick them up.

To specify the modules to build and the artifact output directory, use the following command:

OpenShift Online 3 Using Images

8

$ oc new-app redhat-openjdk18-openshift~<git_repo_URL> --context-dir=<context-dir> --build-
env='ARTIFACT_DIR=relative/path/to/artifacts/dir' --build-env='MAVEN_ARGS=install -pl <groupId>:
<artifactId> -am'

2.2.8. Building and Deploying from Binary Artifacts

The Java S2I builder image can be used to build an application using binary artifacts that you provide. To
do so, first create a new binary build using the oc new-build command:

$ oc new-build --name=<application-name> redhat-openjdk18-openshift --binary=true

Next, start a build using the oc start-build command, specifying the path to the binary artifacts on your
local machine:

$ oc start-build <application-name> --from-dir=/path/to/artifacts --follow

Finally, use the oc new-app command to create an application:

$ oc new-app <application-name>

2.2.9. Additional Information and Examples

Find additional information and examples in the Red Hat JBoss Middleware documentation.

2.3. .NET CORE

2.3.1. Benefits of Using .NET Core

.NET Core is a general purpose development platform featuring automatic memory management and
modern programming languages. It allows users to build high-quality applications efficiently. .NET Core
is available on Red Hat Enterprise Linux (RHEL 7) and OpenShift Online via certified containers. .NET
Core offers:

The ability to follow a microservices-based approach, where some components are built with
.NET and others with Java, but all can run on a common, supported platform in Red Hat
Enterprise Linux and OpenShift Online.

The capacity to more easily develop new .NET Core workloads on Windows; customers are able
to deploy and run on either Red Hat Enterprise Linux or Windows Server.

A heterogeneous data center, where the underlying infrastructure is capable of running .NET
applications without having to rely solely on Windows Server.

Access to many of the popular development frameworks such as .NET, Java, Ruby, and Python
from within OpenShift Online.

2.3.2. Supported Versions

.NET Core version 2.2

.NET Core version 2.1

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

9

https://access.redhat.com/documentation/en-us/red_hat_jboss_middleware_for_openshift/3/html-single/red_hat_java_s2i_for_openshift/
http://developers.redhat.com/dotnet/

.NET Core version 1.1

.NET Core version 1.0

Supported on Red Hat Enterprise Linux (RHEL) 7

For release details related to .NET Core version 2.2, see Release Notes for Containers .

For release details related to .NET Core version 2.1, see Release Notes for Containers .

Versions 1.1 and 1.0 (rh-dotnetcore11 and rh-dotnetcore10) ship with the project.json build system
(1.0.0-preview2 SDK). See the Known Issues chapter in the version 1.1 Release Notes for details on
installing this SDK on a non-RHEL system.

2.3.3. Images

The RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/dotnet/dotnet-22-rhel7
$ docker pull registry.access.redhat.com/dotnet/dotnet-21-rhel7
$ docker pull registry.access.redhat.com/dotnet/dotnetcore-11-rhel7
$ docker pull registry.access.redhat.com/dotnet/dotnetcore-10-rhel7

You can use these images through the dotnet image stream.

2.3.4. Build Process

S2I produces ready-to-run images by injecting source code into a container and letting the container
prepare that source code for execution. It performs the following steps:

1. Starts a container from the builder image.

2. Downloads the application source.

3. Streams the scripts and application sources into the builder image container.

4. Runs the assemble script (from the builder image).

5. Saves the final image.

See S2I Build Process for a detailed overview of the build process.

2.3.5. Environment Variables

The .NET Core images support several environment variables, which you can set to control the build
behavior of your .NET Core application.

NOTE

You must set environment variables that control build behavior in the S2I build
configuration or in the .s2i/environment file to make them available to the build steps.

Table 2.2. NET Core Environment Variables

OpenShift Online 3 Using Images

10

https://access.redhat.com/documentation/en-us/net_core/2.2/html/release_notes_for_containers/
https://access.redhat.com/documentation/en-us/net_core/2.1/html/release_notes_for_containers/
https://access.redhat.com/documentation/en/net-core/1.1/paged/release-notes/
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/creating_images/#build-process

Variable Name Description Default

DOTNET_STARTUP_
PROJECT

Selects projects to run. This must be a
project file (for example, csproj or
fsproj) or a folder containing a single
project file.

.

DOTNET_ASSEMBL
Y_NAME

Selects the assembly to run. This must
not include the .dll extension. Set this
to the output assembly name specified
in csproj
(PropertyGroup/AssemblyName)
.

The name of the csproj file.

DOTNET_RESTORE
_SOURCES

Specifies the space-separated list of
NuGet package sources used during
the restore operation. This overrides
all of the sources specified in the
NuGet.config file.

DOTNET_TOOLS Specifies a list of .NET tools to install
before building the application. To
install a specific version, add
@<version> to the end of the
package name.

DOTNET_NPM_TOO
LS

Specifies a list of NPM packages to
install before building the application.

DOTNET_TEST_PRO
JECTS

Specifies the list of test projects to
test. This must be project files or
folders containing a single project file.
dotnet test is invoked for each item.

DOTNET_CONFIGU
RATION

Runs the application in Debug or
Release mode. This value should be
either Release or Debug.

Release

DOTNET_VERBOSIT
Y

Specifies the verbosity of the dotnet
build commands. When set, the
environment variables are printed at
the start of the build. This variable can
be set to one of the msbuild verbosity
values (q[uiet], m[inimal], n[ormal],
d[etailed], and diag[nostic]).

HTTP_PROXY,
HTTPS_PROXY

Configures the HTTP/HTTPS proxy
used when building and running the
application.

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

11

NPM_MIRROR Uses a custom NPM registry mirror to
download packages during the build
process.

ASPNETCORE_URL
S

This variable is set to http://*:8080 to
configure ASP.NET Core to use the
port exposed by the image. Changing
this is not recommended.

http://*:8080

DOTNET_RM_SRC When set to true, the source code is
not included in the image.

DOTNET_SSL_DIRS Used to specify a list of folders and
files with additional SSL certificates to
trust. The certificates are trusted by
each process that runs during the build
and all processes that run in the image
after the build, including the
application that was built. The items
can be absolute paths starting with / or
paths in the source repository (for
example, certificates).

DOTNET_RESTORE
_DISABLE_PARALL
EL

When set to true, disables restoring
multiple projects in parallel. This
reduces restore timeout errors when
the build container is running with low
CPU limits.

false

DOTNET_INCREME
NTAL

When set to true, the NuGet packages
are kept so they can be re-used for an
incremental build.

false

DOTNET_PACK When set to true, creates a tar.gz file
at /opt/app-root/app.tar.gz that
contains the published application.

Variable Name Description Default

2.3.6. Quickly Deploying Applications from .NET Core Source

IMPORTANT

The .NET image stream must first be installed. If you ran a standard installation, the image
stream will be present.

An image can be used to build an application by running oc new-app against a sample repository:

OpenShift Online 3 Using Images

12

https://github.com/redhat-developer/s2i-dotnetcore/blob/master/dotnet_imagestreams.json
https://access.redhat.com/documentation/en-us/net_core/2.1/html-single/getting_started_guide/#install_imagestreams

$ oc new-app dotnet:2.2~https://github.com/redhat-developer/s2i-dotnetcore-ex#dotnetcore-2.2 --
context-dir=app
$ oc new-app dotnet:2.1~https://github.com/redhat-developer/s2i-dotnetcore-ex#dotnetcore-2.1 --
context-dir=app
$ oc new-app dotnet:1.1~https://github.com/redhat-developer/s2i-dotnetcore-ex#dotnetcore-1.1 --
context-dir=app
$ oc new-app dotnet:1.0~https://github.com/redhat-developer/s2i-dotnetcore-ex#dotnetcore-1.0 --
context-dir=app

2.4. NODE.JS

2.4.1. Overview

OpenShift Online provides S2I enabled Node.js images for building and running Node.js applications.
The Node.js S2I builder image assembles your application source with any required dependencies to
create a new image containing your Node.js application. This resulting image can be run either by
OpenShift Online or by Docker.

2.4.2. Versions

Currently, OpenShift Online provides versions 4, and 6 of Node.js.

IMPORTANT

In OpenShift Online v3, version 0.10 is deprecated and no longer available to use.

2.4.3. Images

RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/openshift3/nodejs-010-rhel7
$ docker pull registry.access.redhat.com/rhscl/nodejs-4-rhel7

You can use these images through the nodejs image stream.

2.4.4. Build Process

S2I produces ready-to-run images by injecting source code into a container and letting the container
prepare that source code for execution. It performs the following steps:

1. Starts a container from the builder image.

2. Downloads the application source.

3. Streams the scripts and application sources into the builder image container.

4. Runs the assemble script (from the builder image).

5. Saves the final image.

See S2I Build Process for a detailed overview of the build process.

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

13

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#source-build
https://github.com/sclorg/s2i-nodejs-container
https://github.com/sclorg/s2i-nodejs-container/tree/master/4
https://github.com/sclorg/s2i-nodejs-container/tree/master/6
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/creating_images/#build-process

2.4.5. Configuration

The Node.js image supports a number of environment variables, which can be set to control the
configuration and behavior of the Node.js runtime.

To set these environment variables as part of your image, you can place them into a .s2i/environment
file inside your source code repository, or define them in the environment section of the build
configuration’s sourceStrategy definition.

You can also set environment variables to be used with an existing image when creating new
applications, or by updating environment variables for existing objects such as deployment
configurations.

NOTE

Environment variables that control build behavior must be set as part of the s2i build
configuration or in the .s2i/environment file to make them available to the build steps.

Table 2.3. Development Mode Environment Variables

Variable name Description

DEV_MODE When set to true, enables hot deploy and opens the debug port.
Additionally, indicates to tooling that the image is in development mode.
Default is false.

DEBUG_PORT The debug port. Only valid if DEV_MODE is set to true. Default is 5858.

NPM_MIRROR The custom NPM registry mirror URL. All NPM packages will be
downloaded from the mirror link during the build process.

2.4.6. Hot Deploying

Hot deployment allows you to quickly make and deploy changes to your application without having to
generate a new S2I build. In order to immediately pick up changes made in your application source code,
you must run your built image with the DEV_MODE=true environment variable.

You can set new environment variables when creating new applications, or updating environment
variables for existing objects.

WARNING

Only use the DEV_MODE=true environment variable while developing or
debugging. Using this in your production environment is not recommended.

To change the source code of a running pod, open a remote shell into the container :

$ oc rsh <pod_id>



OpenShift Online 3 Using Images

14

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#environment-files
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#buildconfig-environment
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#set-environment-variables
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#set-environment-variables
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations

Entering into a running container changes your current directory to /opt/app-root/src, where the
source code is located.

2.4.7. Node.js Templates

OpenShift Online includes an example template to deploy a sample Node.js application . This template
builds and deploys the sample application on Node.js with a MongoDB database using a persistent
volume for storage.

The sample application can be built and deployed using the rhscl/nodejs-4-rhel7 image with the
following command:

$ oc new-app --template=nodejs-mongo-persistent

2.5. PERL

2.5.1. Overview

OpenShift Online provides S2I enabled Perl images for building and running Perl applications. The Perl
S2I builder image assembles your application source with any required dependencies to create a new
image containing your Perl application. This resulting image can be run either by OpenShift Online or by
Docker.

2.5.2. Versions

Currently, OpenShift Online supports versions 5.16, 5.20, and 5.24 of Perl.

2.5.3. Images

RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/openshift3/perl-516-rhel7
$ docker pull registry.access.redhat.com/rhscl/perl-520-rhel7
$ docker pull registry.access.redhat.com/rhscl/perl-524-rhel7

You can use these images through the perl image stream.

2.5.4. Build Process

S2I produces ready-to-run images by injecting source code into a container and letting the container
prepare that source code for execution. It performs the following steps:

1. Starts a container from the builder image.

2. Downloads the application source.

3. Streams the scripts and application sources into the builder image container.

4. Runs the assemble script (from the builder image).

5. Saves the final image.

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

15

https://github.com/sclorg/nodejs-ex
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#source-build
https://github.com/sclorg/s2i-perl-container
https://github.com/sclorg/s2i-perl-container/tree/master/5.16
https://github.com/sclorg/s2i-perl-container/tree/master/5.20
https://github.com/sclorg/s2i-perl-container/tree/master/5.24

See S2I Build Process for a detailed overview of the build process.

2.5.5. Configuration

The Perl image supports a number of environment variables which can be set to control the
configuration and behavior of the Perl runtime.

To set these environment variables as part of your image, you can place them into a .s2i/environment
file inside your source code repository, or define them in the environment section of the build
configuration’s sourceStrategy definition.

You can also set environment variables to be used with an existing image when creating new
applications, or by updating environment variables for existing objects such as deployment
configurations.

NOTE

Environment variables that control build behavior must be set as part of the s2i build
configuration or in the .s2i/environment file to make them available to the build steps.

Table 2.4. Perl Environment Variables

Variable name Description

ENABLE_CPAN_TEST When set to true, this variable installs all the cpan modules and
runs their tests. By default, the testing of the modules is turned
off.

CPAN_MIRROR This variable specifies a mirror URL which cpanminus uses to
install dependencies. By default, this URL is not specified.

PERL_APACHE2_RELOAD Set this to true to enable automatic reloading of modified Perl
modules. By default, automatic reloading is turned off.

HTTPD_START_SERVERS The StartServers directive sets the number of child server
processes created on startup. Default is 8.

HTTPD_MAX_REQUEST_WORKER
S

Number of simultaneous requests that will be handled by
Apache. The default is 256, but it will be automatically lowered if
memory is limited.

2.5.6. Accessing Logs

Access logs are streamed to standard output and as such they can be viewed using the oc logs
command. Error logs are stored in the /tmp/error_log file, which can be viewed using the oc rsh
command to access the container.

2.5.7. Hot Deploying

Hot deployment allows you to quickly make and deploy changes to your application without having to
generate a new S2I build. To enable hot deployment in this image, you must set the
PERL_APACHE2_RELOAD environment variable to true. For example, see the oc new-app command.

OpenShift Online 3 Using Images

16

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/creating_images/#build-process
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#environment-files
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#buildconfig-environment
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#set-environment-variables
https://httpd.apache.org/docs/2.4/mod/mpm_common.html#startservers
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#specifying-environment-variables

You can use the oc set env command to update environment variables of existing objects.

WARNING

You should only use this option while developing or debugging; it is not
recommended to turn this on in your production environment.

To change your source code in a running pod, use the oc rsh command to enter the container:

$ oc rsh <pod_id>

After you enter into the running container, your current directory is set to /opt/app-root/src, where the
source code is located.

2.5.8. Perl Templates

OpenShift Online includes an example template to deploy a sample Dancer application. This template
builds and deploys the sample application on Perl 5.24 with a MySQL database using a persistent
volume for storage.

The sample application can be built and deployed using the rhscl/perl-524-rhel7 image with the
following command:

$ oc new-app --template=dancer-mysql-persistent

2.6. PHP

2.6.1. Overview

OpenShift Online provides S2I enabled PHP images for building and running PHP applications. The
PHP S2I builder image assembles your application source with any required dependencies to create a
new image containing your PHP application. This resulting image can be run either by OpenShift Online
or by Docker.

2.6.2. Versions

Currently, OpenShift Online provides versions 5.5, 5.6, and 7.0 of PHP.

2.6.3. Images

RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/openshift3/php-55-rhel7
$ docker pull registry.access.redhat.com/rhscl/php-56-rhel7
$ docker pull registry.access.redhat.com/rhscl/php-70-rhel7

You can use these images through the php image stream.



CHAPTER 2. SOURCE-TO-IMAGE (S2I)

17

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#set-environment-variables
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://github.com/sclorg/dancer-ex
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#source-build
https://github.com/sclorg/s2i-php-container
https://github.com/sclorg/s2i-php-container/tree/master/5.5
https://github.com/sclorg/s2i-php-container/tree/master/5.6
https://github.com/sclorg/s2i-php-container/tree/master/7.0

2.6.4. Build Process

S2I produces ready-to-run images by injecting source code into a container and letting the container
prepare that source code for execution. It performs the following steps:

1. Starts a container from the builder image.

2. Downloads the application source.

3. Streams the scripts and application sources into the builder image container.

4. Runs the assemble script (from the builder image).

5. Saves the final image.

See S2I Build Process for a detailed overview of the build process.

2.6.5. Configuration

The PHP image supports a number of environment variables which can be set to control the
configuration and behavior of the PHP runtime.

To set these environment variables as part of your image, you can place them into a .s2i/environment
file inside your source code repository, or define them in the environment section of the build
configuration’s sourceStrategy definition.

You can also set environment variables to be used with an existing image when creating new
applications, or by updating environment variables for existing objects such as deployment
configurations.

NOTE

Environment variables that control build behavior must be set as part of the s2i build
configuration or in the .s2i/environment file to make them available to the build steps.

The following environment variables set their equivalent property value in the php.ini file:

Table 2.5. PHP Environment Variables

Variable Name Description Default

ERROR_REPORTIN
G

Informs PHP of the errors, warnings,
and notices for which you would like it
to take action.

E_ALL & ~E_NOTICE

DISPLAY_ERRORS Controls if and where PHP outputs
errors, notices, and warnings.

ON

DISPLAY_STARTUP
_ERRORS

Causes any display errors that occur
during PHP’s startup sequence to be
handled separately from display errors.

OFF

OpenShift Online 3 Using Images

18

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/creating_images/#build-process
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#environment-files
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#buildconfig-environment
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#set-environment-variables

TRACK_ERRORS Stores the last error/warning message
in $php_errormsg (boolean).

OFF

HTML_ERRORS Links errors to documentation that is
related to the error.

ON

INCLUDE_PATH Path for PHP source files. .:/opt/openshift/src:/opt/rh/php55/r
oot/usr/share/pear

SESSION_PATH Location for session data files. /tmp/sessions

DOCUMENTROOT Path that defines the document root
for your application (for example,
/public).

/

Variable Name Description Default

The following environment variable sets its equivalent property value in the opcache.ini file:

Table 2.6. Additional PHP settings

Variable Name Description Defaul
t

OPCACHE_MEMORY_CO
NSUMPTION

The OPcache shared memory storage size. 16M

OPCACHE_REVALIDATE
_FREQ

How often to check script time stamps for updates, in seconds. 0
results in OPcache checking for updates on every request.

2

You can also override the entire directory used to load the PHP configuration by setting:

Table 2.7. Additional PHP settings

Variable Name Description

PHPRC Sets the path to the php.ini file.

PHP_INI_SCAN_DIR Path to scan for additional .ini configuration files

You can use a custom composer repository mirror URL to download packages instead of the default
'packagist.org':

Table 2.8. Composer Environment Variables

Variable Name Description COMPOSER_MIRROR

2.6.5.1. Apache Configuration
If the DocumentRoot of the application is nested in the source directory /opt/openshift/src, you can

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

19

http://php.net/manual/en/book.opcache.php
http://php.net/manual/en/book.opcache.php

If the DocumentRoot of the application is nested in the source directory /opt/openshift/src, you can
provide your own .htaccess file to override the default Apache behavior and specify how application
requests should be handled. The .htaccess file must be located at the root of the application source.

2.6.6. Accessing Logs

Access logs are streamed to standard out and as such they can be viewed using the oc logs command.
Error logs are stored in the /tmp/error_log file, which can be viewed using the oc rsh command to
access the container.

2.6.7. Hot Deploying

Hot deployment allows you to quickly make and deploy changes to your application without having to
generate a new S2I build. In order to immediately pick up changes made in your application source code,
you must run your built image with the OPCACHE_REVALIDATE_FREQ=0 environment variable.

For example, see the oc new-app command. You can use the oc env command to update environment
variables of existing objects.

WARNING

You should only use this option while developing or debugging; it is not
recommended to turn this on in your production environment.

To change your source code in a running pod, use the oc rsh command to enter the container:

$ oc rsh <pod_id>

After you enter into the running container, your current directory is set to /opt/app-root/src, where the
source code is located.

2.6.8. PHP Templates

OpenShift Online includes example templates to deploy a sample CakePHP application or a sample
Laravel application. Each template builds and deploys a sample application on PHP 7.0 with a MySQL
database using a persistent volume for storage.

The sample CakePHP application can be built and deployed using the rhscl/php-70-rhel7 image with
the following command:

$ oc new-app --template=cakephp-mysql-persistent

The sample Laravel application can be built and deployed using the rhscl/php-70-rhel7 image with the
following command:

$ oc new-app --template=laravel-mysql-persistent

2.7. PYTHON



OpenShift Online 3 Using Images

20

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#set-environment-variables
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://github.com/sclorg/cakephp-ex
https://github.com/luciddreamz/laravel-ex

2.7.1. Overview

OpenShift Online provides S2I enabled Python images for building and running Python applications.
The Python S2I builder image assembles your application source with any required dependencies to
create a new image containing your Python application. This resulting image can be run either by
OpenShift Online or by Docker.

2.7.2. Versions

Currently, OpenShift Online provides versions 2.7, 3.3, 3.4, and 3.5 of Python.

2.7.3. Images

RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/rhscl/python-27-rhel7
$ docker pull registry.access.redhat.com/openshift3/python-33-rhel7
$ docker pull registry.access.redhat.com/rhscl/python-34-rhel7
$ docker pull registry.access.redhat.com/rhscl/python-35-rhel7

You can use these images through the python image stream.

2.7.4. Build Process

S2I produces ready-to-run images by injecting source code into a container and letting the container
prepare that source code for execution. It performs the following steps:

1. Starts a container from the builder image.

2. Downloads the application source.

3. Streams the scripts and application sources into the builder image container.

4. Runs the assemble script (from the builder image).

5. Saves the final image.

See S2I Build Process for a detailed overview of the build process.

2.7.5. Configuration

The Python image supports a number of environment variables which can be set to control the
configuration and behavior of the Python runtime.

To set these environment variables as part of your image, you can place them into a .s2i/environment
file inside your source code repository, or define them in the environment section of the build
configuration’s sourceStrategy definition.

You can also set environment variables to be used with an existing image when creating new
applications, or by updating environment variables for existing objects such as deployment
configurations.

NOTE

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

21

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#source-build
https://github.com/sclorg/s2i-python-container
https://github.com/sclorg/s2i-python-container/tree/master/2.7
https://github.com/sclorg/s2i-python-container/tree/master/3.3
https://github.com/sclorg/s2i-python-container/tree/master/3.4
https://github.com/sclorg/s2i-python-container/tree/master/3.5
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/creating_images/#build-process
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#environment-files
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#buildconfig-environment
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#set-environment-variables

NOTE

Environment variables that control build behavior must be set as part of the s2i build
configuration or in the .s2i/environment file to make them available to the build steps.

Table 2.9. Python Environment Variables

Variable name Description

APP_FILE This variable specifies the file name passed to the Python
interpreter which is responsible for launching the application.
This variable is set to app.py by default.

APP_MODULE This variable specifies the WSGI callable. It follows the pattern
$(MODULE_NAME):$(VARIABLE_NAME), where the
module name is a full dotted path and the variable name refers
to a function inside the specified module. If you use setup.py
for installing the application, then the module name can be read
from that file and the variable defaults to application. There is
an example setup-test-app available.

APP_CONFIG This variable indicates the path to a valid Python file with a
gunicorn configuration.

DISABLE_COLLECTSTATIC Set it to a nonempty value to inhibit the execution of
manage.py collectstatic during the build. Only affects
Django projects.

DISABLE_MIGRATE Set it to a nonempty value to inhibit the execution of
manage.py migrate when the produced image is run. Only
affects Django projects.

PIP_INDEX_URL Set this variable to use a custom index URL or mirror to
download required packages during build process. This only
affects packages listed in the requirements.txt file.

WEB_CONCURRENCY Set this to change the default setting for the number of workers.
By default, this is set to the number of available cores times 4.

2.7.6. Hot Deploying

Hot deployment allows you to quickly make and deploy changes to your application without having to
generate a new S2I build. If you are using Django, hot deployment works out of the box.

To enable hot deployment while using Gunicorn, ensure you have a Gunicorn configuration file inside
your repository with the reload option set to true. Specify your configuration file using the
APP_CONFIG environment variable. For example, see the oc new-app command. You can use the oc
set env command to update environment variables of existing objects.

OpenShift Online 3 Using Images

22

https://github.com/sclorg/s2i-python-container/tree/master/3.3/test/setup-test-app
http://docs.gunicorn.org/en/latest/configure.html
http://docs.gunicorn.org/en/stable/settings.html#workers
https://gunicorn-docs.readthedocs.org/en/latest/settings.html#reload
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#set-environment-variables

WARNING

You should only use this option while developing or debugging; it is not
recommended to turn this on in your production environment.

To change your source code in a running pod, use the oc rsh command to enter the container:

$ oc rsh <pod_id>

After you enter into the running container, your current directory is set to /opt/app-root/src, where the
source code is located.

2.7.7. Python Templates

OpenShift Online includes an example template to deploy a sample Django application. This template
builds and deploys the sample application on Python 3.5 with a PostgreSQL database using a persistent
volume for storage.

The sample application can be built and deployed using the rhscl/python-35-rhel7 image with the
following command:

$ oc new-app --template=django-psql-persistent

2.8. RUBY

2.8.1. Overview

OpenShift Online provides S2I enabled Ruby images for building and running Ruby applications. The
Ruby S2I builder image assembles your application source with any required dependencies to create a
new image containing your Ruby application. This resulting image can be run either by OpenShift Online
or by Docker.

2.8.2. Versions

Currently, OpenShift Online provides versions 2.0, 2.2, and 2.3 of Ruby.

2.8.3. Images

RHEL 7 images are available through the Red Hat registry:

$ docker pull registry.access.redhat.com/openshift3/ruby-20-rhel7
$ docker pull registry.access.redhat.com/rhscl/ruby-22-rhel7
$ docker pull registry.access.redhat.com/rhscl/ruby-23-rhel7

You can use these images through the ruby image stream.

2.8.4. Build Process

S2I produces ready-to-run images by injecting source code into a container and letting the container



CHAPTER 2. SOURCE-TO-IMAGE (S2I)

23

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://github.com/sclorg/nodejs-ex
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#source-build
https://github.com/sclorg/s2i-ruby-container
https://github.com/sclorg/s2i-ruby-container/tree/master/2.0
https://github.com/sclorg/s2i-ruby-container/tree/master/2.2
https://github.com/sclorg/s2i-ruby-container/tree/master/2.3

S2I produces ready-to-run images by injecting source code into a container and letting the container
prepare that source code for execution. It performs the following steps:

1. Starts a container from the builder image.

2. Downloads the application source.

3. Streams the scripts and application sources into the builder image container.

4. Runs the assemble script (from the builder image).

5. Saves the final image.

See S2I Build Process for a detailed overview of the build process.

2.8.5. Configuration

The Ruby image supports a number of environment variables which can be set to control the
configuration and behavior of the Ruby runtime.

To set these environment variables as part of your image, you can place them into a .s2i/environment
file inside your source code repository, or define them in the environment section of the build
configuration’s sourceStrategy definition.

You can also set environment variables to be used with an existing image when creating new
applications, or by updating environment variables for existing objects such as deployment
configurations.

NOTE

Environment variables that control build behavior must be set as part of the s2i build
configuration or in the .s2i/environment file to make them available to the build steps.

Table 2.10. Ruby Environment Variables

Variable name Description

RACK_ENV This variable specifies the environment within which the Ruby
application is deployed; for example, production,
development, or test. Each level has different behavior in
terms of logging verbosity, error pages, and ruby gem
installation. The application assets are only compiled if
RACK_ENV is set to production; the default value is
production.

RAILS_ENV This variable specifies the environment within which the Ruby on
Rails application is deployed; for example, production,
development, or test. Each level has different behavior in
terms of logging verbosity, error pages, and ruby gem
installation. The application assets are only compiled if
RAILS_ENV is set to production. This variable is set to
${RACK_ENV} by default.

OpenShift Online 3 Using Images

24

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/creating_images/#build-process
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#environment-files
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#buildconfig-environment
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#set-environment-variables

DISABLE_ASSET_COMPILATION When set to true, this variable disables the process of asset
compilation. Asset compilation only happens when the
application runs in a production environment. Therefore, you can
use this variable when assets have already been compiled.

PUMA_MIN_THREADS,
PUMA_MAX_THREADS

This variable indicates the minimum and maximum number of
threads that will be available in Puma's thread pool.

PUMA_WORKERS This variable indicates the number of worker processes to be
launched in Puma’s clustered mode (when Puma runs more than
two processes). If not explicitly set, the default behavior sets
PUMA_WORKERS to a value that is appropriate for the
memory available to the container and the number of cores on
the host.

RUBYGEM_MIRROR Set this variable to use a custom RubyGems mirror URL to
download required gem packages during the build process.
Note: This environment variable is only available for Ruby 2.2+
images.

Variable name Description

2.8.6. Hot Deploying

Hot deployment allows you to quickly make and deploy changes to your application without having to
generate a new S2I build. The method for enabling hot deployment in this image differs based on the
application type.

Ruby on Rails Applications

For Ruby on Rails application, run the built Rails application with the RAILS_ENV=development
environment variable passed to the running pod. For an existing deployment configuration, you can use
the oc set env command:

$ oc set env dc/rails-app RAILS_ENV=development

Other Types of Ruby Applications (Sinatra, Padrino, etc.)

For other types of Ruby applications, your application must be built with a gem that can reload the
server every time a change to the source code is made inside the running container. Those gems are:

Shotgun

Rerun

Rack-livereload

In order to be able to run your application in development mode, you must modify the S2I run script so
that the web server is launched by the chosen gem, which checks for changes in the source code.

After you build your application image with your version of the S2I run script, run the image with the

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

25

https://github.com/puma/puma
https://github.com/puma/puma#clustered-mode
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#set-environment-variables
https://github.com/rtomayko/shotgun
https://github.com/alexch/rerun
https://github.com/johnbintz/rack-livereload
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/creating_images/#s2i-scripts

After you build your application image with your version of the S2I run script, run the image with the
RACK_ENV=development environment variable. For example, see the oc new-app command. You can
use the oc set env command to update environment variables of existing objects.

WARNING

You should only use this option while developing or debugging; it is not
recommended to turn this on in your production environment.

To change your source code in a running pod, use the oc rsh command to enter the container:

$ oc rsh <pod_id>

After you enter into the running container, your current directory is set to /opt/app-root/src, where the
source code is located.

2.8.7. Ruby Templates

OpenShift Online includes an example template to deploy a sample Rails application . This template
builds and deploys the sample application on Ruby 2.3 with a PostgreSQL database using a persistent
volume for storage.

The sample application can be built and deployed using the rhscl/ruby-23-rhel7 image with the
following command:

$ oc new-app --template=rails-pgsql-persistent

2.9. CUSTOMIZING S2I IMAGES

2.9.1. Overview

S2I builder images normally include assemble and run scripts, but the default behavior of those scripts
may not be suitable for all users. This topic covers a few approaches for customizing the behavior of an
S2I builder that includes default scripts.

2.9.2. Invoking Scripts Embedded in an Image

Typically, builder images provide their own version of the S2I scripts that cover the most common use-
cases. If these scripts do not fulfill your needs, S2I provides a way of overriding them by adding custom
ones in the .s2i/bin directory. However, by doing this you are completely replacing the standard scripts.
In some cases this is acceptable, but in other scenarios you may prefer to execute a few commands
before (or after) the scripts while retaining the logic of the script provided in the image. In this case, it is
possible to create a wrapper script that executes custom logic and delegates further work to the default
script in the image.

To determine the location of the scripts inside of the builder image, look at the value of
io.openshift.s2i.scripts-url label. Use docker inspect:



OpenShift Online 3 Using Images

26

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/creating_images/#s2i-scripts
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#set-environment-variables
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://github.com/sclorg/rails-ex
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/creating_images/#s2i-scripts
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/creating_images/#s2i-scripts

$ docker inspect --format='{{ index .Config.Labels "io.openshift.s2i.scripts-url" }}' openshift/wildfly-100-
centos7
image:///usr/libexec/s2i

You inspected the openshift/wildfly-100-centos7 builder image and found out that the scripts are in
the /usr/libexec/s2i directory.

With this knowledge, invoke any of these scripts from your own by wrapping its invocation.

Example 2.1. .s2i/bin/assemble script

#!/bin/bash
echo "Before assembling"

/usr/libexec/s2i/assemble
rc=$?

if [$rc -eq 0]; then
 echo "After successful assembling"
else
 echo "After failed assembling"
fi

exit $rc

The example shows a custom assemble script that prints the message, executes standard assemble
script from the image and prints another message depending on the exit code of the assemble script.

When wrapping the run script, you must use exec for invoking it to ensure signals are handled properly.
Unfortunately, the use of exec also precludes the ability to run additional commands after invoking the
default image run script.

Example 2.2. .s2i/bin/run script

#!/bin/bash
echo "Before running application"
exec /usr/libexec/s2i/run

CHAPTER 2. SOURCE-TO-IMAGE (S2I)

27

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/creating_images/#general-container-image-guidelines

CHAPTER 3. DATABASE IMAGES

3.1. OVERVIEW

This topic group includes information on the different database images available for OpenShift Online
users.

3.2. MYSQL

3.2.1. Overview

OpenShift Online provides a container image for running MySQL. This image can provide database
services based on username, password, and database name settings provided via configuration.

3.2.2. Versions

Currently, OpenShift Online provides versions 5.6 and 5.7 of MySQL.

3.2.3. Images

RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/rhscl/mysql-56-rhel7
$ docker pull registry.access.redhat.com/rhscl/mysql-57-rhel7

You can use these images through the mysql image stream.

3.2.4. Configuration and Usage

3.2.4.1. Initializing the Database

The first time you use the shared volume, the database is created along with the database administrator
user and the MySQL root user (if you specify the MYSQL_ROOT_PASSWORD environment variable).
Afterwards, the MySQL daemon starts up. If you are re-attaching the volume to another container, then
the database, database user, and the administrator user are not created, and the MySQL daemon starts.

The following command creates a new database pod with MySQL running in a container:

$ oc new-app \
 -e MYSQL_USER=<username> \
 -e MYSQL_PASSWORD=<password> \
 -e MYSQL_DATABASE=<database_name> \
 mysql:5.6

3.2.4.2. Running MySQL Commands in Containers

OpenShift Online uses Software Collections (SCLs) to install and launch MySQL. If you want to execute
a MySQL command inside of a running container (for debugging), you must invoke it using bash.

To do so, first identify the name of the pod. For example, you can view the list of pods in your current
project:

OpenShift Online 3 Using Images

28

https://github.com/sclorg/mysql-container/tree/master/5.6
https://github.com/sclorg/mysql-container/tree/master/5.7
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#pods
https://www.softwarecollections.org/

$ oc get pods

Then, open a remote shell session to the pod:

$ oc rsh <pod>

When you enter the container, the required SCL is automatically enabled.

You can now run the mysql command from the bash shell to start a MySQL interactive session and
perform normal MySQL operations. For example, to authenticate as the database user:

bash-4.2$ mysql -u $MYSQL_USER -p$MYSQL_PASSWORD -h $HOSTNAME
$MYSQL_DATABASE
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4
Server version: 5.6.37 MySQL Community Server (GPL)
...
mysql>

When you are finished, enter quit or exit to leave the MySQL session.

3.2.4.3. Environment Variables

The MySQL user name, password, and database name must be configured with the following
environment variables:

Table 3.1. MySQL Environment Variables

Variable Name Description

MYSQL_USER Specifies the user name for the database user that is created for
use by your application.

MYSQL_PASSWORD Password for the MYSQL_USER.

MYSQL_DATABASE Name of the database to which MYSQL_USER has full rights.

MYSQL_ROOT_PASSWORD Optional password for the root user. If this is not set, then
remote login to the root account is not possible. Local
connections from within the container are always permitted
without a password.

MYSQL_SERVICE_HOST Service host variable automatically created by Kubernetes.

MYSQL_SERVICE_PORT Service port variable automatically created by Kubernetes.

CHAPTER 3. DATABASE IMAGES

29

WARNING

You must specify the user name, password, and database name. If you do not
specify all three, the pod will fail to start and OpenShift Online will continuously try
to restart it.

MySQL settings can be configured with the following environment variables:

Table 3.2. Additional MySQL Settings

Variable Name Description Defaul
t

MYSQL_LOWER_CASE_T
ABLE_NAMES

Sets how the table names are stored and compared. 0

MYSQL_MAX_CONNECTI
ONS

The maximum permitted number of simultaneous client
connections.

151

MYSQL_MAX_ALLOWED
_PACKET

The maximum size of one packet or any generated/intermediate
string.

200M

MYSQL_FT_MIN_WORD_
LEN

The minimum length of the word to be included in a FULLTEXT
index.

4

MYSQL_FT_MAX_WORD_
LEN

The maximum length of the word to be included in a FULLTEXT
index.

20

MYSQL_AIO Controls the innodb_use_native_aio setting value if the native
AIO is broken.

1

MYSQL_TABLE_OPEN_C
ACHE

The number of open tables for all threads. 400

MYSQL_KEY_BUFFER_SI
ZE

The size of the buffer used for index blocks. 10% of
availabl
e
memor
y

MYSQL_SORT_BUFFER_
SIZE

The size of the buffer used for sorting. 256K



OpenShift Online 3 Using Images

30

MYSQL_READ_BUFFER_
SIZE

The size of the buffer used for a sequential scan. 5% of
availabl
e
memor
y

MYSQL_INNODB_BUFFE
R_POOL_SIZE

The size of the buffer pool where InnoDB caches table and index
data.

50% of
availabl
e
memor
y

MYSQL_INNODB_LOG_FI
LE_SIZE

The size of each log file in a log group. 15% of
availabl
e
memor
y

MYSQL_INNODB_LOG_B
UFFER_SIZE

The size of the buffer that InnoDB uses to write to the log files
on disk.

15% of
availabl
e
memor
y

Variable Name Description Defaul
t

Some of the memory-related parameters have percentages as default values. These values are
calculated dynamically during a container’s startup based on memory limits.

3.2.4.4. Volume Mount Points

The MySQL image can be run with mounted volumes to enable persistent storage for the database:

/var/lib/mysql/data - This is the data directory where MySQL stores database files.

3.2.4.5. Changing Passwords

Passwords are part of the image configuration, therefore the only supported method to change
passwords for the database user (MYSQL_USER) and root user is by changing the environment
variables MYSQL_PASSWORD and MYSQL_ROOT_PASSWORD, respectively.

You can view the current passwords by viewing the pod or deployment configuration in the web console
or by listing the environment variables with the CLI:

$ oc set env pod <pod_name> --list

Whenever MYSQL_ROOT_PASSWORD is set, it enables remote access for the root user with the
given password, and whenever it is unset, remote access for the root user is disabled. This does not
affect the regular user MYSQL_USER, who always has remote access. This also does not affect local
access by the root user, who can always log in without a password in localhost.

Changing database passwords through SQL statements or any way other than through the environment

CHAPTER 3. DATABASE IMAGES

31

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-memory-limits

Changing database passwords through SQL statements or any way other than through the environment
variables aforementioned causes a mismatch between the values stored in the variables and the actual
passwords. Whenever a database container starts, it resets the passwords to the values stored in the
environment variables.

To change these passwords, update one or both of the desired environment variables for the related
deployment configuration(s) using the oc set env command. If multiple deployment configurations
utilize these environment variables, for example in the case of an application created from a template,
you must update the variables on each deployment configuration so that the passwords are in sync
everywhere. This can be done all in the same command:

$ oc set env dc <dc_name> [<dc_name_2> ...] \
 MYSQL_PASSWORD=<new_password> \
 MYSQL_ROOT_PASSWORD=<new_root_password>

IMPORTANT

Depending on your application, there may be other environment variables for passwords
in other parts of the application that should also be updated to match. For example, there
could be a more generic DATABASE_USER variable in a front-end pod that should
match the database user’s password. Ensure that passwords are in sync for all required
environment variables per your application, otherwise your pods may fail to redeploy
when triggered.

Updating the environment variables triggers the redeployment of the database server if you have a
configuration change trigger. Otherwise, you must manually start a new deployment in order to apply the
password changes.

To verify that new passwords are in effect, first open a remote shell session to the running MySQL pod:

$ oc rsh <pod>

From the bash shell, verify the database user’s new password:

bash-4.2$ mysql -u $MYSQL_USER -p<new_password> -h $HOSTNAME $MYSQL_DATABASE -te
"SELECT * FROM (SELECT database()) db CROSS JOIN (SELECT user()) u"

If the password was changed correctly, you should see a table like this:

+------------+---------------------+
| database() | user() |
+------------+---------------------+
| sampledb | user0PG@172.17.42.1 |
+------------+---------------------+

To verify the root user’s new password:

bash-4.2$ mysql -u root -p<new_root_password> -h $HOSTNAME $MYSQL_DATABASE -te
"SELECT * FROM (SELECT database()) db CROSS JOIN (SELECT user()) u"

If the password was changed correctly, you should see a table like this:

+------------+------------------+

OpenShift Online 3 Using Images

32

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#config-change-trigger

| database() | user() |
+------------+------------------+
| sampledb | root@172.17.42.1 |
+------------+------------------+

3.2.5. Creating a Database Service from a Template

OpenShift Online provides a template to make creating a new database service easy. The template
provides parameter fields to define all the mandatory environment variables (user, password, database
name, etc) with predefined defaults including auto-generation of password values. It will also define
both a deployment configuration and a service.

The MySQL template should have been registered in the default openshift project by your cluster
administrator during the initial cluster setup.

The following template is available:

mysql-persistent uses a persistent volume store for the database data which means the data
will survive a pod restart.

You can instantiate templates by following these instructions.

Once you have instantiated the service, you can copy the user name, password, and database name
environment variables into a deployment configuration for another component that intends to access
the database. That component can then access the database via the service that was defined.

3.2.5.1. Creating the Deployment Configuration for the MySQL Master

To set up MySQL replication, a deployment configuration is defined in the example template that
defines a replication controller. For MySQL master-slave replication, two deployment configurations are
needed. One deployment configuration defines the MySQL master server and second the MySQL slave
servers.

To tell a MySQL server to act as the master, the command field in the container’s definition in the
deployment configuration must be set to run-mysqld-master. This script acts as an alternative
entrypoint for the MySQL image and configures the MySQL server to run as the master in replication.

MySQL replication requires a special user that relays data between the master and slaves. The following
environment variables are defined in the template for this purpose:

Variable Name Description Defaul
t

MYSQL_MASTER_USER The user name of the replication user master

MYSQL_MASTER_PASSW
ORD

The password for the replication user genera
ted

Example 3.1. MySQL Master Deployment Configuration Object Definition in the Example
Template

kind: "DeploymentConfig"
apiVersion: "v1"

CHAPTER 3. DATABASE IMAGES

33

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#replication-controllers

After the deployment configuration is created and the pod with MySQL master server is started, it will
create the database defined by MYSQL_DATABASE and configure the server to replicate this
database to slaves.

metadata:
 name: "mysql-master"
spec:
 strategy:
 type: "Recreate"
 triggers:
 - type: "ConfigChange"
 replicas: 1
 selector:
 name: "mysql-master"
 template:
 metadata:
 labels:
 name: "mysql-master"
 spec:
 volumes:
 - name: "mysql-master-data"
 persistentVolumeClaim:
 claimName: "mysql-master"
 containers:
 - name: "server"
 image: "openshift/mysql-56-centos7"
 command:
 - "run-mysqld-master"
 ports:
 - containerPort: 3306
 protocol: "TCP"
 env:
 - name: "MYSQL_MASTER_USER"
 value: "${MYSQL_MASTER_USER}"
 - name: "MYSQL_MASTER_PASSWORD"
 value: "${MYSQL_MASTER_PASSWORD}"
 - name: "MYSQL_USER"
 value: "${MYSQL_USER}"
 - name: "MYSQL_PASSWORD"
 value: "${MYSQL_PASSWORD}"
 - name: "MYSQL_DATABASE"
 value: "${MYSQL_DATABASE}"
 - name: "MYSQL_ROOT_PASSWORD"
 value: "${MYSQL_ROOT_PASSWORD}"
 volumeMounts:
 - name: "mysql-master-data"
 mountPath: "/var/lib/mysql/data"
 resources: {}
 terminationMessagePath: "/dev/termination-log"
 imagePullPolicy: "IfNotPresent"
 securityContext:
 capabilities: {}
 privileged: false
 restartPolicy: "Always"
 dnsPolicy: "ClusterFirst"

OpenShift Online 3 Using Images

34

The example provided defines only one replica of the MySQL master server. This causes OpenShift
Online to start only one instance of the server. Multiple instances (multi-master) is not supported and
therefore you can not scale this replication controller.

To replicate the database created by the MySQL master, a deployment configuration is defined in the
template. This deployment configuration creates a replication controller that launches the MySQL
image with the command field set to run-mysqld-slave. This alternative entrypoints skips the
initialization of the database and configures the MySQL server to connect to the mysql-master service,
which is also defined in example template.

Example 3.2. MySQL Slave Deployment Configuration Object Definition in the Example
Template

kind: "DeploymentConfig"
apiVersion: "v1"
metadata:
 name: "mysql-slave"
spec:
 strategy:
 type: "Recreate"
 triggers:
 - type: "ConfigChange"
 replicas: 1
 selector:
 name: "mysql-slave"
 template:
 metadata:
 labels:
 name: "mysql-slave"
 spec:
 containers:
 - name: "server"
 image: "openshift/mysql-56-centos7"
 command:
 - "run-mysqld-slave"
 ports:
 - containerPort: 3306
 protocol: "TCP"
 env:
 - name: "MYSQL_MASTER_USER"
 value: "${MYSQL_MASTER_USER}"
 - name: "MYSQL_MASTER_PASSWORD"
 value: "${MYSQL_MASTER_PASSWORD}"
 - name: "MYSQL_DATABASE"
 value: "${MYSQL_DATABASE}"
 resources: {}
 terminationMessagePath: "/dev/termination-log"
 imagePullPolicy: "IfNotPresent"
 securityContext:
 capabilities: {}
 privileged: false
 restartPolicy: "Always"
 dnsPolicy: "ClusterFirst"

CHAPTER 3. DATABASE IMAGES

35

This example deployment configuration starts the replication controller with the initial number of replicas
set to 1. You can scale this replication controller in both directions, up to the resources capacity of your
account.

3.2.5.2. Creating a Headless Service

The pods created by the MySQL slave replication controller must reach the MySQL master server in
order to register for replication. The example template defines a headless service named mysql-master
for this purpose. This service is not used only for replication, but the clients can also send the queries to
mysql-master:3306 as the MySQL host.

To have a headless service, the clusterIP parameter in the service definition is set to None. Then you
can use a DNS query to get a list of the pod IP addresses that represents the current endpoints for this
service.

Example 3.3. Headless Service Object Definition in the Example Template

3.2.5.3. Scaling the MySQL Slaves

To increase the number of members in the cluster:

$ oc scale rc mysql-slave-1 --replicas=<number>

This tells the replication controller to create a new MySQL slave pod. When a new slave is created, the
slave entrypoint first attempts to contact the mysql-master service and register itself to the replication
set. Once that is done, the MySQL master server sends the slave the replicated database.

When scaling down, the MySQL slave is shut down and, because the slave does not have any persistent
storage defined, all data on the slave is lost. The MySQL master server then discovers that the slave is
not reachable anymore, and it automatically removes it from the replication.

3.2.6. Troubleshooting

kind: "Service"
apiVersion: "v1"
metadata:
 name: "mysql-master"
 labels:
 name: "mysql-master"
spec:
 ports:
 - protocol: "TCP"
 port: 3306
 targetPort: 3306
 nodePort: 0
 selector:
 name: "mysql-master"
 clusterIP: "None"
 type: "ClusterIP"
 sessionAffinity: "None"
status:
 loadBalancer: {}

OpenShift Online 3 Using Images

36

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#scaling

This section describes some troubles you might encounter and presents possible resolutions.

3.2.6.1. Linux Native AIO Failure

Symptom

The MySQL container fails to start and the logs show something like:

151113 5:06:56 InnoDB: Using Linux native AIO
151113 5:06:56 InnoDB: Warning: io_setup() failed with EAGAIN. Will make 5 attempts before
giving up.
InnoDB: Warning: io_setup() attempt 1 failed.
InnoDB: Warning: io_setup() attempt 2 failed.
Waiting for MySQL to start ...
InnoDB: Warning: io_setup() attempt 3 failed.
InnoDB: Warning: io_setup() attempt 4 failed.
Waiting for MySQL to start ...
InnoDB: Warning: io_setup() attempt 5 failed.
151113 5:06:59 InnoDB: Error: io_setup() failed with EAGAIN after 5 attempts.
InnoDB: You can disable Linux Native AIO by setting innodb_use_native_aio = 0 in my.cnf
151113 5:06:59 InnoDB: Fatal error: cannot initialize AIO sub-system
151113 5:06:59 [ERROR] Plugin 'InnoDB' init function returned error.
151113 5:06:59 [ERROR] Plugin 'InnoDB' registration as a STORAGE ENGINE failed.
151113 5:06:59 [ERROR] Unknown/unsupported storage engine: InnoDB
151113 5:06:59 [ERROR] Aborting

Explanation

MySQL’s storage engine was unable to use the kernel’s AIO (Asynchronous I/O) facilities due to
resource limits.

Resolution

Turn off AIO usage entirely by setting environment variable MYSQL_AIO to have value 0. On
subsequent deployments, this arranges for the MySQL configuration variable innodb_use_native_aio
to have value 0.

3.3. POSTGRESQL

3.3.1. Overview

OpenShift Online provides a container image for running PostgreSQL. This image can provide database
services based on username, password, and database name settings provided via configuration.

3.3.2. Versions

Currently, OpenShift Online supports versions 9.4 and 9.5 of PostgreSQL.

3.3.3. Images

RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/rhscl/postgresql-94-rhel7
$ docker pull registry.access.redhat.com/rhscl/postgresql-95-rhel7

CHAPTER 3. DATABASE IMAGES

37

https://github.com/sclorg/rhscl-dockerfiles/tree/master/rhel7.rh-postgresql94
https://github.com/sclorg/postgresql-container/tree/generated/9.5

You can use these images through the postgresql image stream.

3.3.4. Configuration and Usage

3.3.4.1. Initializing the Database

The first time you use the shared volume, the database is created along with the database administrator
user and the PostgreSQL postgres user (if you specify the POSTGRESQL_ADMIN_PASSWORD
environment variable). Afterwards, the PostgreSQL daemon starts up. If you are re-attaching the
volume to another container, then the database, the database user, and the administrator user are not
created, and the PostgreSQL daemon starts.

The following command creates a new database pod with PostgreSQL running in a container:

$ oc new-app \
 -e POSTGRESQL_USER=<username> \
 -e POSTGRESQL_PASSWORD=<password> \
 -e POSTGRESQL_DATABASE=<database_name> \
 postgresql:9.5

3.3.4.2. Running PostgreSQL Commands in Containers

OpenShift Online uses Software Collections (SCLs) to install and launch PostgreSQL. If you want to
execute a PostgreSQL command inside of a running container (for debugging), you must invoke it using
bash.

To do so, first identify the name of the running PostgreSQL pod. For example, you can view the list of
pods in your current project:

$ oc get pods

Then, open a remote shell session to the desired pod:

$ oc rsh <pod>

When you enter the container, the required SCL is automatically enabled.

You can now run the psql command from the bash shell to start a PostgreSQL interactive session and
perform normal PostgreSQL operations. For example, to authenticate as the database user:

bash-4.2$ PGPASSWORD=$POSTGRESQL_PASSWORD psql -h postgresql
$POSTGRESQL_DATABASE $POSTGRESQL_USER
psql (9.5.16)
Type "help" for help.

default=>

When you are finished, enter \q to leave the PostgreSQL session.

3.3.4.3. Environment Variables

The PostgreSQL user name, password, and database name must be configured with the following
environment variables:

OpenShift Online 3 Using Images

38

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#pods
https://www.softwarecollections.org/

Table 3.3. PostgreSQL Environment Variables

Variable Name Description

POSTGRESQL_USER User name for the PostgreSQL account to be created. This user
has full rights to the database.

POSTGRESQL_PASSWORD Password for the user account.

POSTGRESQL_DATABASE Database name.

POSTGRESQL_ADMIN_PASSWOR
D

Optional password for the postgres administrator user. If this is
not set, then remote login to the postgres account is not
possible. Local connections from within the container are always
permitted without a password.

WARNING

You must specify the user name, password, and database name. If you do not
specify all three, the pod will fail to start and OpenShift Online will continuously try
to restart it.

PostgreSQL settings can be configured with the following environment variables:

Table 3.4. Additional PostgreSQL settings

Variable Name Description Defaul
t

POSTGRESQL_MAX_CO
NNECTIONS

Maximum number of client connections allowed. 100

POSTGRESQL_MAX_PRE
PARED_TRANSACTIONS

Maximum number of transactions that can be in the "prepared"
state. If using prepared transactions, the value should be at least
as large as POSTGRESQL_MAX_CONNECTIONS.

0

POSTGRESQL_SHARED_
BUFFERS

Amount of memory dedicated to PostgreSQL for caching data. 32M

POSTGRESQL_EFFECTIV
E_CACHE_SIZE

Estimated amount of memory available for disk caching by the
operating system and within PostgreSQL itself.

128M

3.3.4.4. Volume Mount Points

The PostgreSQL image can be run with mounted volumes to enable persistent storage for the
database:



CHAPTER 3. DATABASE IMAGES

39

/var/lib/pgsql/data - This is the database cluster directory where PostgreSQL stores database
files.

3.3.4.5. Changing Passwords

Passwords are part of the image configuration, therefore the only supported method to change
passwords for the database user (POSTGRESQL_USER) and postgres administrator user is by
changing the environment variables POSTGRESQL_PASSWORD and
POSTGRESQL_ADMIN_PASSWORD, respectively.

You can view the current passwords by viewing the pod or deployment configuration in the web console
or by listing the environment variables with the CLI:

$ oc set env pod <pod_name> --list

Changing database passwords through SQL statements or any way other than through the environment
variables aforementioned will cause a mismatch between the values stored in the variables and the
actual passwords. Whenever a database container starts, it resets the passwords to the values stored in
the environment variables.

To change these passwords, update one or both of the desired environment variables for the related
deployment configuration(s) using the oc set env command. If multiple deployment configurations
utilize these environment variables, for example in the case of an application created from a template,
you must update the variables on each deployment configuration so that the passwords are in sync
everywhere. This can be done all in the same command:

$ oc set env dc <dc_name> [<dc_name_2> ...] \
 POSTGRESQL_PASSWORD=<new_password> \
 POSTGRESQL_ADMIN_PASSWORD=<new_admin_password>

IMPORTANT

Depending on your application, there may be other environment variables for passwords
in other parts of the application that should also be updated to match. For example, there
could be a more generic DATABASE_USER variable in a front-end pod that should
match the database user’s password. Ensure that passwords are in sync for all required
environment variables per your application, otherwise your pods may fail to redeploy
when triggered.

Updating the environment variables triggers the redeployment of the database server if you have a
configuration change trigger. Otherwise, you must manually start a new deployment in order to apply the
password changes.

To verify that new passwords are in effect, first open a remote shell session to the running PostgreSQL
pod:

$ oc rsh <pod>

From the bash shell, verify the database user’s new password:

bash-4.2$ PGPASSWORD=<new_password> psql -h postgresql $POSTGRESQL_DATABASE
$POSTGRESQL_USER -c "SELECT * FROM (SELECT current_database()) cdb CROSS JOIN
(SELECT current_user) cu"

OpenShift Online 3 Using Images

40

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#config-change-trigger

If the password was changed correctly, you should see a table like this:

 current_database | current_user
------------------+--------------
 default | django
(1 row)

From the bash shell, verify the postgres administrator user’s new password:

bash-4.2$ PGPASSWORD=<new_admin_password> psql -h postgresql
$POSTGRESQL_DATABASE postgres -c "SELECT * FROM (SELECT current_database()) cdb
CROSS JOIN (SELECT current_user) cu"

If the password was changed correctly, you should see a table like this:

 current_database | current_user
------------------+--------------
 default | postgres
(1 row)

3.3.5. Creating a Database Service from a Template

OpenShift Online provides a template to make creating a new database service easy. The template
provides parameter fields to define all the mandatory environment variables (user, password, database
name, etc) with predefined defaults including auto-generation of password values. It will also define
both a deployment configuration and a service.

The PostgreSQL template should have been registered in the default openshift project by your cluster
administrator during the initial cluster setup.

The following template is available:

PostgreSQL-persistent uses a persistent volume store for the database data which means the
data will survive a pod restart.

You can instantiate templates by following these instructions.

Once you have instantiated the service, you can copy the user name, password, and database name
environment variables into a deployment configuration for another component that intends to access
the database. That component can then access the database via the service that was defined.

3.4. MONGODB

3.4.1. Overview

OpenShift Online provides a container image for running MongoDB. This image can provide database
services based on username, password, and database name settings provided via configuration.

3.4.2. Versions

Currently, OpenShift Online provides versions 2.6, 3.2, and 3.4 of MongoDB.

CHAPTER 3. DATABASE IMAGES

41

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-templates
https://github.com/sclorg/mongodb-container/tree/master/2.6
https://github.com/sclorg/mongodb-container/tree/master/3.2
https://github.com/sclorg/mongodb-container/tree/master/3.4

3.4.3. Images

RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/rhscl/mongodb-26-rhel7
$ docker pull registry.access.redhat.com/rhscl/mongodb-32-rhel7
$ docker pull registry.access.redhat.com/rhscl/mongodb-34-rhel7

You can use these images through the mongodb image stream.

3.4.4. Configuration and usage

3.4.4.1. Initializing the database

You can configure MongoDB with an ephemeral volume or a persistent volume. The first time you use
the volume, the database is created along with the database administrator user. Afterwards, the
MongoDB daemon starts up. If you are re-attaching the volume to another container, then the database,
database user, and the administrator user are not created, and the MongoDB daemon starts.

The following command creates a new database pod with MongoDB running in a container with an
ephemeral volume:

$ oc new-app \
 -e MONGODB_USER=<username> \
 -e MONGODB_PASSWORD=<password> \
 -e MONGODB_DATABASE=<database_name> \
 -e MONGODB_ADMIN_PASSWORD=<admin_password> \
 mongodb:2.6

3.4.4.2. Running MongoDB commands in containers

OpenShift Online uses Software Collections (SCLs) to install and launch MongoDB. If you want to
execute a MongoDB command inside of a running container (for debugging), you must invoke it using
bash.

To do so, first identify the name of the running MongoDB pod. For example, you can view the list of
pods in your current project:

$ oc get pods

Then, open a remote shell session to the desired pod:

$ oc rsh <pod>

When you enter the container, the required SCL is automatically enabled.

You can now run mongo commands from the bash shell to start a MongoDB interactive session and
perform normal MongoDB operations. For example, to switch to the sampledb database and
authenticate as the database user:

bash-4.2$ mongo -u $MONGODB_USER -p $MONGODB_PASSWORD $MONGODB_DATABASE
MongoDB shell version: 2.6.9
connecting to: sampledb

OpenShift Online 3 Using Images

42

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#pods
https://www.softwarecollections.org/

>

When you are finished, press CTRL+D to leave the MongoDB session.

3.4.4.3. Environment Variables

The MongoDB user name, password, database name, and admin password must be configured with the
following environment variables:

Table 3.5. MongoDB Environment Variables

Variable Name Description

MONGODB_USER User name for MongoDB account to be created.

MONGODB_PASSWORD Password for the user account.

MONGODB_DATABASE Database name.

MONGODB_ADMIN_PASSWORD Password for the admin user.

WARNING

You must specify the user name, password, database name, and admin password. If
you do not specify all four, the pod will fail to start and OpenShift Online will
continuously try to restart it.

NOTE

The administrator user name is set to admin and you must specify its password by setting
the MONGODB_ADMIN_PASSWORD environment variable. This process is done upon
database initialization.

MongoDB settings can be configured with the following environment variables:

Table 3.6. Additional MongoDB Settings

Variable Name Description Defaul
t

MONGODB_NOPREALLO
C

Disable data file preallocation. true

MONGODB_SMALLFILES Set MongoDB to use a smaller default data file size. true



CHAPTER 3. DATABASE IMAGES

43

MONGODB_QUIET Runs MongoDB in a quiet mode that attempts to limit the
amount of output.

true

Variable Name Description Defaul
t

NOTE

Text search is enabled by default in MongoDB versions 2.6 and higher, and therefore has
no configurable parameter.

3.4.4.4. Volume mount points

The MongoDB image can be run with mounted volumes to enable persistent storage for the database:

/var/lib/mongodb/data - This is the database directory where MongoDB stores database files.

3.4.4.5. Changing passwords

Passwords are part of the image configuration, therefore the only supported method to change
passwords for the database user (MONGODB_USER) and admin user is by changing the environment
variables MONGODB_PASSWORD and MONGODB_ADMIN_PASSWORD, respectively.

You can view the current passwords by viewing the pod or deployment configuration in the web console
or by listing the environment variables with the CLI:

$ oc set env pod <pod_name> --list

Changing database passwords directly in MongoDB causes a mismatch between the values stored in the
variables and the actual passwords. Whenever a database container starts, it resets the passwords to the
values stored in the environment variables.

To change these passwords, update one or both of the desired environment variables for the related
deployment configuration(s) using the oc set env command. If multiple deployment configurations
utilize these environment variables, for example in the case of an application created from a template,
you must update the variables on each deployment configuration so that the passwords are in sync
everywhere. This can be done all in the same command:

$ oc set env dc <dc_name> [<dc_name_2> ...] \
 MONGODB_PASSWORD=<new_password> \
 MONGODB_ADMIN_PASSWORD=<new_admin_password>

IMPORTANT

Depending on your application, there may be other environment variables for passwords
in other parts of the application that should also be updated to match. For example, there
could be a more generic DATABASE_USER variable in a front-end pod that should
match the database user’s password. Ensure that passwords are in sync for all required
environment variables per your application, otherwise your pods may fail to redeploy
when triggered.

Updating the environment variables triggers the redeployment of the database server if you have a

OpenShift Online 3 Using Images

44

Updating the environment variables triggers the redeployment of the database server if you have a
configuration change trigger. Otherwise, you must manually start a new deployment in order to apply the
password changes.

To verify that new passwords are in effect, first open a remote shell session to the running MongoDB
pod:

$ oc rsh <pod>

From the bash shell, verify the database user’s new password:

bash-4.2$ mongo -u $MONGODB_USER -p <new_password> $MONGODB_DATABASE --eval
"db.version()"

If the password was changed correctly, you should see output like this:

MongoDB shell version: 2.6.9
connecting to: sampledb
2.6.9

To verify the admin user’s new password:

bash-4.2$ mongo -u admin -p <new_admin_password> admin --eval "db.version()"

If the password was changed correctly, you should see output like this:

MongoDB shell version: 2.6.9
connecting to: admin
2.6.9

3.4.5. Creating a database service from a template

OpenShift Online provides a template to make creating a new database service easy. The template
provides parameter fields to define all the mandatory environment variables (user, password, database
name, etc) with predefined defaults including auto-generation of password values. It will also define
both a deployment configuration and a service.

The MongoDB templates should have been registered in the default openshift project by your cluster
administrator during the initial cluster setup.

The following template is available:

mongodb-persistent uses a persistent volume store for the database data which means the
data will survive a pod restart.

You can instantiate templates by following these instructions.

Once you have instantiated the service, you can copy the user name, password, and database name
environment variables into a deployment configuration for another component that intends to access
the database. That component can then access the database via the service that was defined.

3.4.6. MongoDB replication

Red Hat provides a proof-of-concept template for MongoDB replication (clustering) using StatefulSet.

CHAPTER 3. DATABASE IMAGES

45

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#config-change-trigger
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-templates

Red Hat provides a proof-of-concept template for MongoDB replication (clustering) using StatefulSet.
You can obtain the example template from GitHub .

For example, to upload the example template into the current project’s template library:

$ oc create -f \
 https://raw.githubusercontent.com/sclorg/mongodb-container/master/examples/petset/mongodb-
petset-persistent.yaml

IMPORTANT

The example template uses persistent storage. You must have persistent volumes
available in your cluster to use this template.

As OpenShift Online automatically restarts unhealthy pods (containers), it will restart replica set
members if one or more of these members crashes or fails.

While a replica set member is down or being restarted, it may be one of these scenarios:

1. PRIMARY member is down:
In this case, the other two members elect a new PRIMARY. Until then, reads are not affected, but
the writes fail. After a successful election, writes and reads process normally.

2. One of the SECONDARY member is down:
Reads and writes are unaffected. Depending on the oplogSize configuration and the write rate,
the third member might fail to join back the replica set, requiring manual intervention to re-sync
its copy of the database.

3. Any two members are down:
When a three-member replica set member cannot reach any other member, it will step down
from the PRIMARY role if it had it. In this case, reads might be served by a SECONDARY
member, and writes fail. As soon as one more member is back up, an election picks a new
PRIMARY member and reads and writes process normally.

4. All members are down:
In this extreme case, both reads and writes fail. After two or more members are back up, an
election reestablishes the replica set to have a PRIMARY and a SECONDARY member, after
which reads and writes process normally.

This is the recommended replication strategy for MongoDB.

NOTE

For production environments, you must maintain as much separation between members
as possible. It is recommended to use one or more of the node selection features to
schedule StatefulSet pods onto different nodes, and to provide them storage backed by
independent volumes.

3.4.6.1. Limitations

Only MongoDB 3.2 is supported.

You have to manually update replica set configuration in case of scaling down.

Changing a user and administrator password is a manual process. It requires:

OpenShift Online 3 Using Images

46

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-templates
https://github.com/sclorg/mongodb-container/tree/master/examples/petset

updating values of environment variables in the StatefulSet configuration,

changing password in the database, and

restarting all pods one after another.

3.4.6.2. Using the example template

Assuming you already have three pre-created persistent volumes or configured persistent volume
provisioning.

1. Create a new poject where you want to create a MongoDB cluster:

2. Create a new application using the example template:

This command created a a MongoDB cluster with three replica set members.

3. Check the status of the new MongoDB pods:

After creating a cluster from the example template, you have a replica set with three members. Once the
pods are running you can perform various actions on these pods such as:

Checking logs for one of the pods:

Log in to the pod:

Log into a MongoDB instance:

3.4.6.3. Scale up

MongoDB recommends an odd number of members in a replica set. If there are sufficient available

$ oc new-project mongodb-cluster-example

$ oc new-app https://raw.githubusercontent.com/sclorg/mongodb-
container/master/examples/petset/mongodb-petset-persistent.yaml

$ oc get pods
NAME READY STATUS RESTARTS AGE
mongodb-0 1/1 Running 0 50s
mongodb-1 1/1 Running 0 50s
mongodb-2 1/1 Running 0 49s

$ oc logs mongodb-0

$ oc rsh mongodb-0
sh-4.2$

sh-4.2$ mongo $MONGODB_DATABASE -u $MONGODB_USER -
p$MONGODB_PASSWORD
MongoDB shell version: 3.2.6
connecting to: sampledb
rs0:PRIMARY>

CHAPTER 3. DATABASE IMAGES

47

MongoDB recommends an odd number of members in a replica set. If there are sufficient available
persistent volumes, or a dynamic storage provisioner is present, scaling up is done by using the oc scale
command:

This creates new pods which connect to the replica set and updates its configuration.

NOTE

Scaling up an existing database requires manual intervention if the database size is
greater than the oplogSize configuration. For such cases, a manual initial sync of the new
members is required. For more information, see Check the Size of the Oplog and the
MongoDB Replication documentation.

3.4.6.4. Scale down

To scale down a replica set it is possible to go from five to three members, or from three to only one
member.

Although scaling up may be done without manual intervention when the preconditions are met (storage
availability, size of existing database and oplogSize), scaling down always require manual intervention.

To scale down:

1. Set the new number of replicas by using the oc scale command:

If the new number of replicas still constitutes a majority of the previous number, the replica set
may elect a new PRIMARY in case one of the pods that was deleted had the PRIMARY member
role. For example, when scaling down from five members to three members.

Alternatively, scaling down to a lower number temporarily renders the replica set to have only
SECONDARY members and be in read-only mode. For example, when scaling down from five
members to only one member.

2. Update the replica set configuration to remove members that no longer exist.
This may be improved in the future, a possible implementation being setting a PreStop pod
hook that inspects the number of replicas (exposed via the downward API) and determines that
the pod is being removed from the StatefulSet, and not being restarted for some other reason.

3. Purge the volume used by the decommissioned pods.

3.5. MARIADB

$ oc scale --replicas=5 statefulsets/mongodb

$ oc get pods
NAME READY STATUS RESTARTS AGE
mongodb-0 1/1 Running 0 9m
mongodb-1 1/1 Running 0 8m
mongodb-2 1/1 Running 0 8m
mongodb-3 1/1 Running 0 1m
mongodb-4 1/1 Running 0 57s

$ oc scale --replicas=3 statefulsets/mongodb

OpenShift Online 3 Using Images

48

https://docs.mongodb.com/manual/tutorial/troubleshoot-replica-sets/#replica-set-troubleshooting-check-oplog-size
https://docs.mongodb.com/manual/replication/

3.5.1. Overview

OpenShift Online provides a container image for running MariaDB. This image can provide database
services based on username, password, and database name settings provided in a configuration file.

3.5.2. Versions

Currently, OpenShift Online provides versions 10.0 and 10.1 of MariaDB.

3.5.3. Images

RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/rhscl/mariadb-100-rhel7
$ docker pull registry.access.redhat.com/rhscl/mariadb-101-rhel7

You can use the MariaDB 10.1 image through the mariadb image stream.

3.5.4. Configuration and Usage

3.5.4.1. Initializing the Database

The first time you use the shared volume, the database is created along with the database administrator
user and the MariaDB root user (if you specify the MYSQL_ROOT_PASSWORD environment variable).
Afterwards, the MariaDB daemon starts up. If you are re-attaching the volume to another container, then
the database, database user, and the administrator user are not created, and the MariaDB daemon
starts.

The following command creates a new database pod with MariaDB running in a container:

$ oc new-app \
 -e MYSQL_USER=<username> \
 -e MYSQL_PASSWORD=<password> \
 -e MYSQL_DATABASE=<database_name> \
 mariadb:10.1

3.5.4.2. Running MariaDB Commands in Containers

OpenShift Online uses Software Collections (SCLs) to install and launch MariaDB. If you want to
execute a MariaDB command inside of a running container (for debugging), you must invoke it using
bash.

To do so, first identify the name of the running MariaDB pod. For example, you can view the list of pods
in your current project:

$ oc get pods

Then, open a remote shell session to the pod:

$ oc rsh <pod>

When you enter the container, the required SCL is automatically enabled.

You can now run mysql commands from the bash shell to start a MariaDB interactive session and

CHAPTER 3. DATABASE IMAGES

49

https://github.com/sclorg/mariadb-container/tree/master/10.0
https://github.com/sclorg/mariadb-container/tree/master/10.1
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#pods
https://www.softwarecollections.org/

You can now run mysql commands from the bash shell to start a MariaDB interactive session and
perform normal MariaDB operations. For example, to authenticate as the database user:

bash-4.2$ mysql -u $MYSQL_USER -p$MYSQL_PASSWORD -h $HOSTNAME
$MYSQL_DATABASE
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4
Server version: 5.5.37 MySQL Community Server (GPL)
...
mysql>

When you are finished, enter quit or exit to leave the MySQL session.

3.5.4.3. Environment Variables

The MariaDB user name, password, and database name must be configured with the following
environment variables:

Table 3.7. MariaDB Environment Variables

Variable Name Description

MYSQL_USER User name for MySQL account to be created.

MYSQL_PASSWORD Password for the user account.

MYSQL_DATABASE Database name.

MYSQL_ROOT_PASSWORD Password for the root user (optional).

WARNING

You must specify the user name, password, and database name. If you do not
specify all three, the pod will fail to start and OpenShift Online will continuously try
to restart it.

MariaDB settings can be configured with the following environment variables:

Table 3.8. Additional MariaDB Settings

Variable Name Description Defaul
t

MYSQL_LOWER_CASE_T
ABLE_NAMES

Sets how the table names are stored and compared. 0



OpenShift Online 3 Using Images

50

MYSQL_MAX_CONNECTI
ONS

The maximum permitted number of simultaneous client
connections.

151

MYSQL_MAX_ALLOWED
_PACKET

The maximum size of one packet or any generated/intermediate
string.

200M

MYSQL_FT_MIN_WORD_
LEN

The minimum length of the word to be included in a FULLTEXT
index.

4

MYSQL_FT_MAX_WORD_
LEN

The maximum length of the word to be included in a FULLTEXT
index.

20

MYSQL_AIO Controls the innodb_use_native_aio setting value if the native
AIO is broken.

1

MYSQL_TABLE_OPEN_C
ACHE

The number of open tables for all threads. 400

MYSQL_KEY_BUFFER_SI
ZE

The size of the buffer used for index blocks. 32M
(or 10%
of
availabl
e
memor
y)

MYSQL_SORT_BUFFER_
SIZE

The size of the buffer used for sorting. 256K

MYSQL_READ_BUFFER_
SIZE

The size of the buffer used for a sequential scan. 8M (or
5% of
availabl
e
memor
y)

MYSQL_INNODB_BUFFE
R_POOL_SIZE

The size of the buffer pool where InnoDB caches table and index
data.

32M
(or
50% of
availabl
e
memor
y)

Variable Name Description Defaul
t

CHAPTER 3. DATABASE IMAGES

51

MYSQL_INNODB_LOG_FI
LE_SIZE

The size of each log file in a log group. 8M (or
15% of
availabl
e
memor
y)

MYSQL_INNODB_LOG_B
UFFER_SIZE

The size of the buffer that InnoDB uses to write to the log files
on disk.

8M (or
15% of
availabl
e
memor
y)

MYSQL_DEFAULTS_FILE Point to an alternative configuration file. /etc/m
y.cnf

MYSQL_BINLOG_FORMA
T

Set sets the binlog format, supported values are row and
statement.

statem
ent

Variable Name Description Defaul
t

3.5.4.4. Volume Mount Points

The MariaDB image can be run with mounted volumes to enable persistent storage for the database:

/var/lib/mysql/data - The MySQL data directory is where MariaDB stores database files.

3.5.4.5. Changing Passwords

Passwords are part of the image configuration, therefore the only supported method to change
passwords for the database user (MYSQL_USER) and admin user is by changing the environment
variables MYSQL_PASSWORD and MYSQL_ROOT_PASSWORD, respectively.

You can view the current passwords by viewing the pod or deployment configuration in the web console
or by listing the environment variables with the CLI:

$ oc set env pod <pod_name> --list

Changing database passwords through SQL statements or any way other than through the environment
variables aforementioned causes a mismatch between the values stored in the variables and the actual
passwords. Whenever a database container starts, it resets the passwords to the values stored in the
environment variables.

To change these passwords, update one or both of the desired environment variables for the related
deployment configuration(s) using the oc set env command. If multiple deployment configurations
utilize these environment variables, for example in the case of an application created from a template,
you must update the variables on each deployment configuration so that the passwords are in sync
everywhere. This can be done all in the same command:

OpenShift Online 3 Using Images

52

$ oc set env dc <dc_name> [<dc_name_2> ...] \
 MYSQL_PASSWORD=<new_password> \
 MYSQL_ROOT_PASSWORD=<new_root_password>

IMPORTANT

Depending on your application, there may be other environment variables for passwords
in other parts of the application that should also be updated to match. For example, there
could be a more generic DATABASE_USER variable in a front-end pod that should
match the database user’s password. Ensure that passwords are in sync for all required
environment variables per your application, otherwise your pods may fail to redeploy
when triggered.

Updating the environment variables triggers the redeployment of the database server if you have a
configuration change trigger. Otherwise, you must manually start a new deployment in order to apply the
password changes.

To verify that new passwords are in effect, first open a remote shell session to the running MariaDB pod:

$ oc rsh <pod>

From the bash shell, verify the database user’s new password:

bash-4.2$ mysql -u $MYSQL_USER -p<new_password> -h $HOSTNAME $MYSQL_DATABASE -te
"SELECT * FROM (SELECT database()) db CROSS JOIN (SELECT user()) u"

If the password was changed correctly, you should see a table like this:

+------------+---------------------+
| database() | user() |
+------------+---------------------+
| sampledb | user0PG@172.17.42.1 |
+------------+---------------------+

To verify the root user’s new password:

bash-4.2$ mysql -u root -p<new_root_password> -h $HOSTNAME $MYSQL_DATABASE -te
"SELECT * FROM (SELECT database()) db CROSS JOIN (SELECT user()) u"

If the password was changed correctly, you should see a table like this:

+------------+------------------+
| database() | user() |
+------------+------------------+
| sampledb | root@172.17.42.1 |
+------------+------------------+

3.5.5. Creating a Database Service from a Template

OpenShift Online provides a template to make creating a new database service easy. The template
provides parameter fields to define all the mandatory environment variables (user, password, database
name, etc) with predefined defaults including auto-generation of password values. It will also define

CHAPTER 3. DATABASE IMAGES

53

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#config-change-trigger
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-templates

both a deployment configuration and a service.

The MariaDB template should have been registered in the default openshift project by your cluster
administrator during the initial cluster setup.

The following template is available:

mariadb-persistent uses a persistent volume store for the database data which means the data
will survive a pod restart.

You can instantiate templates by following these instructions.

Once you have instantiated the service, you can copy the user name, password, and database name
environment variables into a deployment configuration for another component that intends to access
the database. That component can then access the database through the service that was defined.

3.5.6. Troubleshooting

This section describes some troubles you might encounter and presents possible resolutions.

3.5.6.1. Linux Native AIO Failure

Symptom

The MySQL container fails to start and the logs show something like:

151113 5:06:56 InnoDB: Using Linux native AIO
151113 5:06:56 InnoDB: Warning: io_setup() failed with EAGAIN. Will make 5 attempts before
giving up.
InnoDB: Warning: io_setup() attempt 1 failed.
InnoDB: Warning: io_setup() attempt 2 failed.
Waiting for MySQL to start ...
InnoDB: Warning: io_setup() attempt 3 failed.
InnoDB: Warning: io_setup() attempt 4 failed.
Waiting for MySQL to start ...
InnoDB: Warning: io_setup() attempt 5 failed.
151113 5:06:59 InnoDB: Error: io_setup() failed with EAGAIN after 5 attempts.
InnoDB: You can disable Linux Native AIO by setting innodb_use_native_aio = 0 in my.cnf
151113 5:06:59 InnoDB: Fatal error: cannot initialize AIO sub-system
151113 5:06:59 [ERROR] Plugin 'InnoDB' init function returned error.
151113 5:06:59 [ERROR] Plugin 'InnoDB' registration as a STORAGE ENGINE failed.
151113 5:06:59 [ERROR] Unknown/unsupported storage engine: InnoDB
151113 5:06:59 [ERROR] Aborting

Explanation

MariaDB’s storage engine was unable to use the kernel’s AIO (Asynchronous I/O) facilities due to
resource limits.

Resolution

Turn off AIO usage entirely, by setting environment variable MYSQL_AIO to have value 0. On
subsequent deployments, this arranges for the MySQL configuration variable innodb_use_native_aio
to have value 0.

OpenShift Online 3 Using Images

54

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-templates

CHAPTER 4. OTHER IMAGES

4.1. OVERVIEW

This topic group includes information on other container images available for OpenShift Online users.

4.2. JENKINS

4.2.1. Overview

OpenShift Online provides a container image for running Jenkins. This image provides a Jenkins server
instance, which can be used to set up a basic flow for continuous testing, integration, and delivery.

This image also includes a sample Jenkins job, which triggers a new build of a BuildConfig defined in
OpenShift Online, tests the output of that build, and then on successful build, retags the output to
indicate the build is ready for production. For more details, see the README.

OpenShift Online follows the LTS release of Jenkins. OpenShift Online provides an image containing
Jenkins 2.x. A separate image with Jenkins 1.x was previously made available but is now no longer
maintained.

4.2.2. Images

The RHEL 7 image is available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/openshift3/jenkins-2-rhel7

You can use this image through the jenkins image stream.

4.2.3. Configuration and Customization

4.2.3.1. Authentication

You can manage Jenkins authentication in two ways:

OpenShift Online OAuth authentication provided by the OpenShift Login plug-in.

Standard authentication provided by Jenkins

4.2.3.1.1. OpenShift Online OAuth authentication

OAuth authentication is activated by configuring the Configure Global Security panel in the Jenkins UI,
or by setting the OPENSHIFT_ENABLE_OAUTH environment variable on the Jenkins Deployment
Config to anything other than false. This activates the OpenShift Login plug-in, which retrieves the
configuration information from pod data or by interacting with the OpenShift Online API server.

Valid credentials are controlled by the OpenShift Online identity provider.

Jenkins supports both browser and non-browser access.

Valid users are automatically added to the Jenkins authorization matrix at log in, where OpenShift
Online Roles dictate the specific Jenkins permissions the user will have.

Users with the admin role will have the traditional Jenkins administrative user permissions. Users with

CHAPTER 4. OTHER IMAGES

55

https://github.com/openshift/origin/blob/master/examples/jenkins/README.md
https://jenkins.io/changelog-stable/
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#oauth
https://github.com/openshift/jenkins-openshift-login-plugin/blob/master/README.md#browser-access
https://github.com/openshift/jenkins-openshift-login-plugin/blob/master/README.md#non-browser-access

Users with the admin role will have the traditional Jenkins administrative user permissions. Users with
the edit or view role will have progressively less permissions. See the Jenkins image source repository
README for the specifics on the OpenShift roles to Jenkins permissions mappings.

NOTE

The admin user that is pre-populated in the OpenShift Online Jenkins image with
administrative privileges will not be given those privileges when OpenShift Online OAuth
is used.

Jenkins' users permissions can be changed after the users are initially established. The OpenShift Login
plug-in polls the OpenShift Online API server for permissions and updates the permissions stored in
Jenkins for each user with the permissions retrieved from OpenShift Online. If the Jenkins UI is used to
update permissions for a Jenkins user, the permission changes are overwritten the next time the plug-in
polls OpenShift Online.

You can control how often the polling occurs with the OPENSHIFT_PERMISSIONS_POLL_INTERVAL
environment variable. The default polling interval is five minutes.

The easiest way to create a new Jenkins service using OAuth authentication is to use a template as
described below.

4.2.3.1.2. Jenkins Standard Authentication

Jenkins authentication is used by default if the image is run directly, without using a template.

The first time Jenkins starts, the configuration is created along with the administrator user and
password. The default user credentials are admin and password. Configure the default password by
setting the JENKINS_PASSWORD environment variable when using (and only when using) standard
Jenkins authentication.

To create a new Jenkins application using standard Jenkins authentication:

$ oc new-app -e \
 JENKINS_PASSWORD=<password> \
 openshift/jenkins-2-centos7

4.2.3.2. Environment Variables

The Jenkins server can be configured with the following environment variables:

OPENSHIFT_ENABLE_OAUTH (default: false)
Determines whether the OpenShift Login plug-in manages authentication when logging into
Jenkins. To enable, set to true.

JENKINS_PASSWORD (default: password)
The password for the admin user when using standard Jenkins authentication. Not applicable
when OPENSHIFT_ENABLE_OAUTH is set to true.

OPENSHIFT_JENKINS_JVM_ARCH
Set to x86_64 or i386 to override the JVM used to host Jenkins. For memory efficiency, by
default the Jenkins image dynamically uses a 32-bit JVM if running in a container with a
memory limit under 2GiB.

JAVA_MAX_HEAP_PARAM

OpenShift Online 3 Using Images

56

https://github.com/openshift/jenkins#jenkins-admin-user

JAVA_MAX_HEAP_PARAM
CONTAINER_HEAP_PERCENT (default: 0.5, or 50%)
JENKINS_MAX_HEAP_UPPER_BOUND_MB
These values control the maximum heap size of the Jenkins JVM. If
JAVA_MAX_HEAP_PARAM is set (example setting: -Xmx512m), its value takes precedence.
Otherwise, the maximum heap size is dynamically calculated as
CONTAINER_HEAP_PERCENT% (example setting: 0.5, or 50%) of the container memory limit,
optionally capped at JENKINS_MAX_HEAP_UPPER_BOUND_MB MiB (example setting: 512).

By default, the maximum heap size of the Jenkins JVM is set to 50% of the container memory
limit with no cap.

JAVA_INITIAL_HEAP_PARAM
CONTAINER_INITIAL_PERCENT
These values control the initial heap size of the Jenkins JVM. If JAVA_INITIAL_HEAP_PARAM
is set (example setting: -Xms32m), its value takes precedence. Otherwise, the initial heap size
may be dynamically calculated as CONTAINER_INITIAL_PERCENT% (example setting: 0.1, or
10%) of the dynamically calculated maximum heap size.

By default, the initial heap sizing is left to the JVM.

CONTAINER_CORE_LIMIT
If set, specifies an integer number of cores used for sizing numbers of internal JVM threads.
Example setting: 2.

JAVA_TOOL_OPTIONS (default: -XX:+UnlockExperimentalVMOptions -
XX:+UseCGroupMemoryLimitForHeap -Dsun.zip.disableMemoryMapping=true)
Specifies options to be heeded by all JVMs running in this container. It is not recommended to
override this.

JAVA_GC_OPTS (default: -XX:+UseParallelGC -XX:MinHeapFreeRatio=5 -
XX:MaxHeapFreeRatio=10 -XX:GCTimeRatio=4 -XX:AdaptiveSizePolicyWeight=90)
Specifies Jenkins JVM garbage collection parameters. It is not recommended to override this.

JENKINS_JAVA_OVERRIDES
Specifies additional options for the Jenkins JVM. These options are appended to all other
options, including the Java options above, and may be used to override any of them if necessary.
Separate each additional option with a space; if any option contains space characters, escape
them with a backslash. Example settings: -Dfoo -Dbar; -Dfoo=first\ value -Dbar=second\
value.

JENKINS_OPTS
Specifies arguments to Jenkins.

INSTALL_PLUGINS
Specifies additional Jenkins plug-ins to install when the container is first run or when
OVERRIDE_PV_PLUGINS_WITH_IMAGE_PLUGINS is set to true (see below). Plug-ins are
specified as a comma-delimited list of name:version pairs. Example setting:
git:3.7.0,subversion:2.10.2.

OPENSHIFT_PERMISSIONS_POLL_INTERVAL (default: 300000 - 5 minutes)
Specifies in milliseconds how often the OpenShift Login plug-in polls OpenShift Online for the
permissions associated with each user defined in Jenkins.

OVERRIDE_PV_CONFIG_WITH_IMAGE_CONFIG (default: false)
When running this image with an OpenShift Online persistent volume for the Jenkins config

CHAPTER 4. OTHER IMAGES

57

directory, the transfer of configuration from the image to the persistent volume is only done the
first startup of the image as the persistent volume is assigned by the persistent volume claim
creation. If you create a custom image that extends this image and updates configuration in the
custom image after the initial startup, by default it will not be copied over, unless you set this
environment variable to true.

OVERRIDE_PV_PLUGINS_WITH_IMAGE_PLUGINS (default: false)
When running this image with an OpenShift Online persistent volume for the Jenkins config
directory, the transfer of plugins from the image to the persistent volume is only done the first
startup of the image as the persistent volume is assigned by the persistent volume claim
creation. If you create a custom image that extends this image and updates plugins in the
custom image after the initial startup, by default they will not be copied over, unless you set this
environment variable to true.

4.2.3.3. Cross Project Access

If you are going to run Jenkins somewhere other than as a deployment within your same project, you will
need to provide an access token to Jenkins to access your project.

1. Identify the secret for the service account that has appropriate permissions to access the
project Jenkins needs to access:

$ oc describe serviceaccount jenkins
Name: default
Labels: <none>
Secrets: { jenkins-token-uyswp }
 { jenkins-dockercfg-xcr3d }
Tokens: jenkins-token-izv1u
 jenkins-token-uyswp

In this case the secret is named jenkins-token-uyswp

2. Retrieve the token from the secret:

$ oc describe secret <secret name from above> # for example, jenkins-token-uyswp
Name: jenkins-token-uyswp
Labels: <none>
Annotations: kubernetes.io/service-account.name=jenkins,kubernetes.io/service-
account.uid=32f5b661-2a8f-11e5-9528-3c970e3bf0b7
Type: kubernetes.io/service-account-token
Data
====
ca.crt: 1066 bytes
token: eyJhbGc..<content cut>....wRA

The token field contains the token value Jenkins needs to access the project.

4.2.3.4. Volume Mount Points

The Jenkins image can be run with mounted volumes to enable persistent storage for the configuration:

/var/lib/jenkins - This is the data directory where Jenkins stores configuration files including
job definitions.

4.2.3.5. Customizing the Jenkins Image through Source-To-Image

OpenShift Online 3 Using Images

58

1

2

To customize the official OpenShift Online Jenkins image, you have two options:

Use Docker layering.

Use the image as a Source-To-Image builder, described here.

You can use S2I to copy your custom Jenkins Jobs definitions, additional plug-ins or replace the
provided config.xml file with your own, custom, configuration.

In order to include your modifications in the Jenkins image, you need to have a Git repository with the
following directory structure:

plugins

This directory contains those binary Jenkins plug-ins you want to copy into Jenkins.

plugins.txt

This file lists the plug-ins you want to install:

pluginId:pluginVersion

configuration/jobs

This directory contains the Jenkins job definitions.

configuration/config.xml

This file contains your custom Jenkins configuration.

The contents of the configuration/ directory will be copied into the /var/lib/jenkins/ directory, so you
can also include additional files, such as credentials.xml, there.

The following is an example build configuration that customizes the Jenkins image in OpenShift Online:

The source field defines the source Git repository with the layout described above.

The strategy field defines the original Jenkins image to use as a source image for the build.

apiVersion: v1
kind: BuildConfig
metadata:
 name: custom-jenkins-build
spec:
 source: 1
 git:
 uri: https://github.com/custom/repository
 type: Git
 strategy: 2
 sourceStrategy:
 from:
 kind: ImageStreamTag
 name: jenkins:latest
 namespace: openshift
 type: Source
 output: 3
 to:
 kind: ImageStreamTag
 name: custom-jenkins:latest

CHAPTER 4. OTHER IMAGES

59

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#source-build

3 The output field defines the resulting, customized Jenkins image you can use in deployment
configuration instead of the official Jenkins image.

4.2.3.6. Configuring the Jenkins Kubernetes Plug-in

The OpenShift Online Jenkins image includes the pre-installed Kubernetes plug-in that allows Jenkins
slaves to be dynamically provisioned on multiple container hosts using Kubernetes and OpenShift
Online.

To use the Kubernetes plug-in, OpenShift Online provides three images suitable for use as Jenkins
slaves: the Base, Maven, and Node.js images. See Jenkins Slaves for more information.

Both the Maven and Node.js slave images are automatically configured as Kubernetes Pod Template
images within the OpenShift Online Jenkins image’s configuration for the Kubernetes plug-in. That
configuration includes labels for each of the images that can be applied to any of your Jenkins jobs
under their "Restrict where this project can be run" setting. If the label is applied, execution of the given
job will be done under an OpenShift Online pod running the respective slave image.

The Jenkins image also provides auto-discovery and auto-configuration of additional slave images for
the Kubernetes plug-in. With the OpenShift Sync plug-in, the Jenkins image on Jenkins start-up
searches within the project that it is running, or the projects specifically listed in the plug-in’s
configuration for the following:

Image streams that have the label role set to jenkins-slave.

Image stream tags that have the annotation role set to jenkins-slave.

ConfigMaps that have the label role set to jenkins-slave.

When it finds an image stream with the appropriate label, or image stream tag with the appropriate
annotation, it generates the corresponding Kubernetes plug-in configuration so you can assign your
Jenkins jobs to run in a pod running the container image provided by the image stream.

The name and image references of the image stream or image stream tag are mapped to the name and
image fields in the Kubernetes plug-in pod template. You can control the label field of the Kubernetes
plug-in pod template by setting an annotation on the image stream or image stream tag object with the
key slave-label. Otherwise, the name is used as the label.

When it finds a ConfigMap with the appropriate label, it assumes that any values in the key-value data
payload of the ConfigMap contains XML consistent with the config format for Jenkins and the
Kubernetes plug-in pod templates. A key differentiator to note when using ConfigMaps, instead of
image streams or image stream tags, is that you can control all the various fields of the Kubernetes
plug-in pod template.

The following is an example ConfigMap:

kind: ConfigMap
apiVersion: v1
metadata:
 name: jenkins-slave
 labels:
 role: jenkins-slave
data:
 template1: |-
 <org.csanchez.jenkins.plugins.kubernetes.PodTemplate>

OpenShift Online 3 Using Images

60

https://wiki.jenkins-ci.org/display/JENKINS/Kubernetes+Plugin
https://github.com/openshift/jenkins-sync-plugin

After startup, the OpenShift Sync plug-in monitors the API server of OpenShift Online for updates to
ImageStreams, ImageStreamTags, and ConfigMaps and adjusts the configuration of the Kubernetes
plug-in.

In particular, the following rules will apply:

Removal of the label or annotation from the ConfigMap, ImageStream, or ImageStreamTag
will result in the deletion of any existing PodTemplate from the configuration of the Kubernetes
plug-in.

Similarly, if those objects are removed, the corresponding configuration is removed from the
Kubernetes plug-in.

Conversely, either the creation of appropriately labeled or annotated ConfigMap,
ImageStream, or ImageStreamTag objects, or the adding of labels after their initial creation,
leads to the creation of a PodTemplate in the Kubernetes-plugin configuration.

In the case of the PodTemplate via ConfigMap form, changes to the ConfigMap data for the
PodTemplate will be applied to the PodTemplate settings in the Kubernetes plug-in
configuration, and will override any changes made to the PodTemplate through the Jenkins UI
in the interim between changes to the ConfigMap.

To use a container image as a Jenkins slave, the image must run the slave agent as an entrypoint. For
more details about this, refer to the official Jenkins documentation.

 <inheritFrom></inheritFrom>
 <name>template1</name>
 <instanceCap>2147483647</instanceCap>
 <idleMinutes>0</idleMinutes>
 <label>template1</label>
 <serviceAccount>jenkins</serviceAccount>
 <nodeSelector></nodeSelector>
 <volumes/>
 <containers>
 <org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 <name>jnlp</name>
 
 <privileged>false</privileged>
 <alwaysPullImage>true</alwaysPullImage>
 <workingDir>/tmp</workingDir>
 <command></command>
 <args>${computer.jnlpmac} ${computer.name}</args>
 <ttyEnabled>false</ttyEnabled>
 <resourceRequestCpu></resourceRequestCpu>
 <resourceRequestMemory></resourceRequestMemory>
 <resourceLimitCpu></resourceLimitCpu>
 <resourceLimitMemory></resourceLimitMemory>
 <envVars/>
 </org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 </containers>
 <envVars/>
 <annotations/>
 <imagePullSecrets/>
 <nodeProperties/>
 </org.csanchez.jenkins.plugins.kubernetes.PodTemplate>

CHAPTER 4. OTHER IMAGES

61

https://github.com/openshift/jenkins-sync-plugin
https://wiki.jenkins-ci.org/display/JENKINS/Distributed+builds#Distributedbuilds-Launchslaveagentheadlessly

4.2.3.6.1. Permission Considerations

In the previous ConfigMap example, the <serviceAccount> element of the Pod Template XML is the
OpenShift Online Service Account used for the resulting Pod. The service account credentials mounted
into the Pod, with permissions associated with the service account, control which operations against the
OpenShift Online master are allowed from the Pod.

Consider the following with service accounts used for the Pod, launched by the Kubernetes Plug-in
running in the OpenShift Online Jenkins image:

If you use the example template for Jenkins provided by OpenShift Online, the jenkins service
account is defined with the edit role for the project Jenkins is running in, and the master
Jenkins Pod has that service account mounted.

The two default Maven and NodeJS Pod Templates injected into the Jenkins configuration are
also set to use the same service account as the master.

Any Pod Templates auto-discovered by the OpenShift Sync plug-in as a result of Image
streams or Image stream tags having the required label or annotations have their service
account set to the master’s service account.

For the other ways you can provide a Pod Template definition into Jenkins and the Kubernetes
plug-in, you have to explicitly specify the service account to use.

Those other ways include the Jenkins console, the podTemplate pipeline DSL provided by the
Kubernetes plug-in, or labeling a ConfigMap whose data is the XML configuration for a Pod
Template.

If you do not specify a value for the service account, the default service account is used.

You need to ensure that whatever service account is used has the necessary permissions, roles,
and so on defined within OpenShift Online to manipulate whatever projects you choose to
manipulate from the within the Pod

4.2.4. Usage

4.2.4.1. Creating a Jenkins Service from a Template

Templates provide parameter fields to define all the environment variables (password) with predefined
defaults. OpenShift Online provides templates to make creating a new Jenkins service easy. The Jenkins
templates should have been registered in the default openshift project by your cluster administrator
during the initial cluster setup.

A template is provided that defines The two available templates both define a deployment
configuration and a service. The templates differ in their storage strategy, which affects whether or not
the Jenkins content persists across a pod restart.

NOTE

A pod may be restarted when it is moved to another node, or when an update of the
deployment configuration triggers a redeployment.

jenkins-ephemeral uses ephemeral storage. On pod restart, all data is lost. This template is
useful for development or testing only.

jenkins-persistent uses a persistent volume store. Data survives a pod restart. To use a

OpenShift Online 3 Using Images

62

https://github.com/openshift/jenkins-sync-plugin
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#services

jenkins-persistent uses a persistent volume store. Data survives a pod restart. To use a
persistent volume store, the cluster administrator must define a persistent volume pool in the
OpenShift Online deployment.

You Once you have selected which template you want, you must instantiate the template to be able to
use Jenkins:

Creating a New Jenkins Service

1. Create a new Jenkins application using a persistent volume:

$ oc new-app jenkins-persistent

1. Ensure the are already installed.

2. Create a new Jenkins application using:

a. A persistent volume:

$ oc new-app jenkins-persistent

a. Or an emptyDir type volume (where configuration does not persist across pod restarts):

$ oc new-app jenkins-ephemeral

NOTE

If you instantiate the template against releases prior to v3.4 of OpenShift Online,
standard Jenkins authentication is used, and the default admin account will exist with
password password. See Jenkins Standard Authentication for details about changing
this password.

4.2.4.2. Using the Jenkins Kubernetes Plug-in

In the below sample, the openshift-jee-sample BuildConfig causes a Jenkins maven slave Pod to be
dynamically provisioned. The Pod clones some Java source, builds a WAR file, then causes a second
BuildConfig (openshift-jee-sample-docker) to run to layer the newly created WAR file into a Docker
image.

A fuller sample which achieves a similar goal is available here.

Example 4.1. Example BuildConfig using the Jenkins Kubernetes Plug-in

kind: List
apiVersion: v1
items:
- kind: ImageStream
 apiVersion: v1
 metadata:
 name: openshift-jee-sample
- kind: BuildConfig
 apiVersion: v1
 metadata:
 name: openshift-jee-sample-docker

CHAPTER 4. OTHER IMAGES

63

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-templates
https://github.com/openshift/origin/blob/master/examples/jenkins/pipeline/maven-pipeline.yaml

It is also possible to override the specification of the dynamically created Jenkins slave Pod. The
following is a modification to the above example which overrides the container memory and specifies an
environment variable:

Example 4.2. Example BuildConfig using the Jenkins Kubernetes Plug-in, specifying memory
limit and environment variable

 spec:
 strategy:
 type: Docker
 source:
 type: Docker
 dockerfile: |-
 FROM openshift/wildfly-101-centos7:latest
 COPY ROOT.war /wildfly/standalone/deployments/ROOT.war
 CMD $STI_SCRIPTS_PATH/run
 binary:
 asFile: ROOT.war
 output:
 to:
 kind: ImageStreamTag
 name: openshift-jee-sample:latest
- kind: BuildConfig
 apiVersion: v1
 metadata:
 name: openshift-jee-sample
 spec:
 strategy:
 type: JenkinsPipeline
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 node("maven") {
 sh "git clone https://github.com/openshift/openshift-jee-sample.git ."
 sh "mvn -B -Popenshift package"
 sh "oc start-build -F openshift-jee-sample-docker --from-file=target/ROOT.war"
 }
 triggers:
 - type: ConfigChange

kind: BuildConfig
apiVersion: v1
metadata:
 name: openshift-jee-sample
spec:
 strategy:
 type: JenkinsPipeline
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 podTemplate(label: "mypod", 1
 cloud: "openshift", 2
 inheritFrom: "maven", 3
 containers: [
 containerTemplate(name: "jnlp", 4
 image: "openshift/jenkins-slave-maven-centos7:v3.9", 5

OpenShift Online 3 Using Images

64

1

2

3

4

5

6

7

8

9

A new Pod template called "mypod" is defined on-the-fly. The new Pod template name is
referenced in the node stanza below.

The "cloud" value must be set to "openshift".

The new Pod template can inherit its configuration from an existing Pod template. In this case,
we inherit from the "maven" Pod template which is pre-defined by OpenShift Online.

We are overriding values in the pre-existing Container, therefore we must specify it by name. All
Jenkins slave images shipped with OpenShift Online use the Container name "jnlp".

The Container image must be re-specified. This is a known issue.

A memory request of 512Mi is specified.

A memory limit of 512Mi is specified.

An environment variable CONTAINER_HEAP_PERCENT, with value "0.25", is specified.

The node stanza references the name of the Pod template newly defined above.

For more information on Kubernetes plug-in configuration, see the Kubernetes plug-in documentation .

4.2.4.3. Memory Requirements

When deployed by the provided Jenkins Ephemeral or Jenkins Persistent templates, the default
memory limit is 512MiB.

See Sizing OpenJDK on OpenShift Online for background information on tuning the JVM used by
Jenkins.

For memory efficiency, by default the Jenkins image dynamically uses a 32-bit JVM if running in a
container with a memory limit under 2GiB. This behavior can be overridden by the
OPENSHIFT_JENKINS_JVM_ARCH environment variable.

By default the Jenkins JVM uses 50% of the container memory limit for its heap. This value can be
modified by the CONTAINER_HEAP_PERCENT environment variable. It can also be capped at an
upper limit or overridden entirely. See Environment Variables for more details.

 resourceRequestMemory: "512Mi", 6
 resourceLimitMemory: "512Mi", 7
 envVars: [
 envVar(key: "CONTAINER_HEAP_PERCENT", value: "0.25") 8
])
]) {
 node("mypod") { 9
 sh "git clone https://github.com/openshift/openshift-jee-sample.git ."
 sh "mvn -B -Popenshift package"
 sh "oc start-build -F openshift-jee-sample-docker --from-file=target/ROOT.war"
 }
 }
 triggers:
 - type: ConfigChange

CHAPTER 4. OTHER IMAGES

65

https://github.com/jenkinsci/kubernetes-plugin
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#sizing-openjdk

Consider that by default all other processes executed in the Jenkins container, such as shell scripts or oc
commands run locally from pipelines, are not likely to be able to use more than the remaining 256MiB
memory combined without provoking an OOM kill. It is therefore highly recommended that pipelines run
external commands in a slave container wherever possible.

It is recommended to specify memory request and limit values on slave containers created by the
Jenkins Kubernetes Plug-in. As admin, defaults can be set on a per-slave image basis through the
Jenkins configuration. The memory request and limit can also be overridden on a per-container basis as
documented above.

You can increase the amount of memory available to Jenkins by overriding the MEMORY_LIMIT
paramenter when instantiating the Jenkins Ephemeral or Jenkins Persistent template.

4.2.5. Jenkins Plug-ins

The following plug-ins are provided to integrate Jenkins with OpenShift Online. They are available by
default in the Jenkins image.

4.2.5.1. OpenShift Online Client Plug-in

The OpenShift Online Client Plug-in aims to provide a readable, concise, comprehensive, and fluent
Jenkins Pipeline syntax for rich interactions with OpenShift Online. The plug-in leverages the oc binary,
which must be available on the nodes executing the script.

This plug-in is fully supported and is included in the Jenkins image. It provides:

A Fluent-style syntax for use in Jenkins Pipelines.

Use of and exposure to any option available with oc.

Integration with Jenkins credentials and clusters.

Continued support for classic Jenkins Freestyle jobs.

See the OpenShift Pipeline Builds tutorial and the plug-in’s README for more information.

4.2.5.2. OpenShift Online Pipeline Plug-in

The OpenShift Online Pipeline Plug-in is a prior integration between Jenkins and OpenShift Online
which provides less functionality than the OpenShift Online Client Plug-in. It remains available and
supported.

See the plug-in’s README for more information.

4.2.5.3. OpenShift Online Sync Plug-in

To facilitate OpenShift Online Pipeline build strategy for integration between Jenkins and OpenShift
Online, the OpenShift Sync Plug-in monitors the API server of OpenShift Online for updates to
BuildConfigs and Builds that employ the Pipeline strategy and either creates Jenkins Pipeline projects
(when a BuildConfig is created) or starts jobs in the resulting projects (when a Build is started).

As noted in Configuring the Jenkins Kubernetes Plug-in , this plug-in can create PodTemplate
configurations for the Kubernetes plug-in based on specifically cited ImageStream, ImageStreamTag,
or ConfigMap objects defined in OpenShift Online.

This plug-in can now take Secret objects with a label key of credential.sync.jenkins.openshift.io and

OpenShift Online 3 Using Images

66

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#
https://github.com/openshift/jenkins-client-plugin
https://github.com/openshift/jenkins-plugin
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#pipeline-strategy-options
https://github.com/openshift/jenkins-sync-plugin

label value of true and construct Jenkins credentials which are placed in the default global domain within
the Jenkins credentials hierarchy. The ID of the credential will be composed of the namespace the
Secret is defined in, a hyphen (-), followed by the name of the Secret.

Similar to the handling of ConfigMaps for PodTemplates, the Secret object defined in OpenShift
Online is considered the master configuration. Any subsequent updates to the object in OpenShift
Online will be applied to the Jenkins credential (overwriting any changes to the credential made in the
interim).

Removal of the credential.sync.jenkins.openshift.io property, setting of that property to something
other than true, or deletion of the Secret in OpenShift Online will result in deletion of the associated
credential in Jenkins.

The type of secret will be mapped to the jenkins credential type as follows:

With Opaque type Secret objects the plug-in looks for username and password in the data
section and constructs a Jenkins UsernamePasswordCredentials credential. Remember, in
OpenShift Online the password field can be either an actual password or the user’s unique
token. If those are not present, it will look for the ssh-privatekey field and create a Jenkins
BasicSSHUserPrivateKey credential.

With kubernetes.io/basic-auth type `Secret`objects the plug-in creates a Jenkins
UsernamePasswordCredentials credential.

With kubernetes.io/ssh-auth type Secret objects the plug-in creates a Jenkins
BasicSSHUserPrivateKey credential.

4.2.5.4. Kubernetes Plug-in

The Kubernetes plug-in is used to run Jenkins slaves as pods on your cluster. The auto-configuration of
the Kubernetes plug-in is described in Using the Jenkins Kubernetes Plug-in .

4.3. JENKINS SLAVES

4.3.1. Overview

OpenShift Online provides three images suitable for use as Jenkins slaves: the Base, Maven, and
Node.js images.

The first is a base image for Jenkins slaves:

It pulls in both the required tools (headless Java, the Jenkins JNLP client) and the useful ones
(including git, tar, zip, and nss among others).

It establishes the JNLP slave agent as the entrypoint.

It includes the oc client tooling for invoking command line operations from within Jenkins jobs.

It provides Dockerfiles for both CentOS and RHEL images.

Two additional images that extend the base image are also provided:

Maven

Node.js

The Maven and Node.js Jenkins slave images provide Dockerfiles for both CentOS and RHEL that you

CHAPTER 4. OTHER IMAGES

67

https://github.com/openshift/jenkins/tree/master/slave-base
https://github.com/openshift/jenkins/tree/master/slave-maven
https://github.com/openshift/jenkins/tree/master/slave-nodejs

The Maven and Node.js Jenkins slave images provide Dockerfiles for both CentOS and RHEL that you
can reference when building new slave images. Also note the contrib and contrib/bin subdirectories.
They allow for the insertion of configuration files and executable scripts for your image.

IMPORTANT

Use and extend an appropriate slave image version for the version of OpenShift Online
that you are using. If the oc client version embedded in the slave image is not compatible
with the OpenShift Online version, unexpected behavior may result.

4.3.2. Images

RHEL 7 images are available through the Red Hat Registry:

$ docker pull registry.access.redhat.com/openshift3/jenkins-slave-base-rhel7
$ docker pull registry.access.redhat.com/openshift3/jenkins-slave-maven-rhel7
$ docker pull registry.access.redhat.com/openshift3/jenkins-slave-nodejs-rhel7

4.3.3. Configuration and Customization

4.3.3.1. Environment Variables

Each Jenkins slave container can be configured with the following environment variables:

OPENSHIFT_JENKINS_JVM_ARCH
Set to x86_64 or i386 to override the JVM used to host the Jenkins slave agent. For memory
efficiency, by default the Jenkins slave images dynamically use a 32-bit JVM if running in a
container with a memory limit under 2GiB.

JAVA_MAX_HEAP_PARAM
CONTAINER_HEAP_PERCENT (default: 0.5, i.e. 50%)
JNLP_MAX_HEAP_UPPER_BOUND_MB
These values control the maximum heap size of the Jenkins slave agent JVM. If
JAVA_MAX_HEAP_PARAM is set (example setting: -Xmx512m), its value takes precedence.
Otherwise, the maximum heap size is dynamically calculated as
CONTAINER_HEAP_PERCENT% (example setting: 0.5, i.e. 50%) of the container memory
limit, optionally capped at JNLP_MAX_HEAP_UPPER_BOUND_MB MiB (example setting:
512).

By default, the maximum heap size of the Jenkins slave agent JVM is set to 50% of the
container memory limit with no cap.

JAVA_INITIAL_HEAP_PARAM
CONTAINER_INITIAL_PERCENT
These values control the initial heap size of the Jenkins slave agent JVM. If
JAVA_INITIAL_HEAP_PARAM is set (example setting: -Xms32m), its value takes precedence.
Otherwise, the initial heap size may be dynamically calculated as
CONTAINER_INITIAL_PERCENT% (example setting: 0.1, i.e. 10%) of the dynamically
calculated maximum heap size.

By default, the initial heap sizing is left to the JVM.

CONTAINER_CORE_LIMIT

If set, specifies an integer number of cores used for sizing numbers of internal JVM threads.

OpenShift Online 3 Using Images

68

If set, specifies an integer number of cores used for sizing numbers of internal JVM threads.
Example setting: 2.

JAVA_TOOL_OPTIONS (default: -XX:+UnlockExperimentalVMOptions -
XX:+UseCGroupMemoryLimitForHeap -Dsun.zip.disableMemoryMapping=true)
Specifies options to be heeded by all JVMs running in this container. It is not recommended to
override this.

JAVA_GC_OPTS (default: -XX:+UseParallelGC -XX:MinHeapFreeRatio=5 -
XX:MaxHeapFreeRatio=10 -XX:GCTimeRatio=4 -XX:AdaptiveSizePolicyWeight=90)
Specifies Jenkins slave agent JVM garbage collection parameters. It is not recommended to
override this.

JNLP_JAVA_OVERRIDES
Specifies additional options for the Jenkins slave agent JVM. These options are appended to all
other options, including the Java options above, and may be used to override any of them if
necessary. Separate each additional option with a space; if any option contains space
characters, escape them with a backslash. Example settings: -Dfoo -Dbar; -Dfoo=first\ value -
Dbar=second\ value.

4.3.4. Usage

4.3.4.1. Memory Requirements

A JVM is used in all Jenkins slaves to host the Jenkins JNLP agent, as well as to run any Java
applications (e.g. javac, Maven or Gradle). See Sizing OpenJDK on OpenShift Online for background
information on tuning the JVM used by Jenkins slaves.

For memory efficiency, by default the Jenkins image dynamically uses a 32-bit JVM if running in a
container with a memory limit under 2GiB. This behavior can be overridden by the
OPENSHIFT_JENKINS_JVM_ARCH environment variable. The JVM choice applies by default both for
the Jenkins JNLP agent as well as for any other Java processes within the slave container.

By default the Jenkins JNLP agent JVM uses 50% of the container memory limit for its heap. This value
can be modified by the CONTAINER_HEAP_PERCENT environment variable. It can also be capped at
an upper limit or overridden entirely. See Environment Variables for more details.

Consider that by default any/all other processes executed in the Jenkins slave container, e.g. shell
scripts or oc commands run from pipelines, may not be able to use more than the remaining 50%
memory limit without provoking an OOM kill.

By default, each further JVM process run in a Jenkins slave container will use up to 25% of the container
memory limit for their heap. It may be necessary to tune this for many build workloads. See Sizing
OpenJDK on OpenShift Online for more information.

See the Jenkins documentation for information on specifying the memory request and limit of a Jenkins
slave container.

4.3.4.1.1. Gradle builds

Hosting Gradle builds in the a Jenkins slave on OpenShift presents additional complications, not least
because in addition to the Jenkins JNLP agent and Gradle JVMs, Gradle spawns a third JVM to run
tests, if these are specified.

See Sizing OpenJDK on OpenShift Online for background information on tuning JVMs on OpenShift.

The following settings are suggested as a starting point for running Gradle builds in a memory

CHAPTER 4. OTHER IMAGES

69

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#sizing-openjdk
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#sizing-openjdk
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#sizing-openjdk

The following settings are suggested as a starting point for running Gradle builds in a memory
constrained Jenkins slave on OpenShift. Settings may be relaxed subsequently as required.

Ensure the long-lived gradle daemon is disabled by adding org.gradle.daemon=false to the
gradle.properties file.

Disable parallel build execution by ensuring org.gradle.parallel=true is not set in the
gradle.properties file and that --parallel is not set as a command line argument.

Set java { options.fork = false } in the build.gradle file to prevent Java compilations running
out-of-process.

Disable multiple additional test processes by ensuring test { maxParallelForks = 1 } is set in the
build.gradle file.

Override the gradle JVM memory parameters according to Sizing OpenJDK on OpenShift
Online by the GRADLE_OPTS, JAVA_OPTS or JAVA_TOOL_OPTIONS environment variables.

Set the maximum heap size and JVM arguments for any Gradle test JVM by the maxHeapSize
and jvmArgs settings in build.gradle, or though the -Dorg.gradle.jvmargs command line
argument.

4.4. OTHER CONTAINER IMAGES

4.4.1. Overview

If you want to use container images not found in the Red Hat Container Catalog , you can use other
arbitrary container images in your OpenShift Online instance, for example those found on the Docker
Hub.

For OpenShift Online-specific guidelines on running containers using an arbitrarily assigned user ID, see
Support Arbitrary User IDs in the Creating Images guide.

IMPORTANT

OpenShift Online runs containers using an arbitrarily assigned user ID. This behavior
provides additional security against processes escaping the container due to a container
engine vulnerability and thereby achieving escalated permissions on the host node. Due
to this restriction, images that run as root will not deploy as expected on OpenShift
Online.

OpenShift Online 3 Using Images

70

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#sizing-openjdk
https://access.redhat.com/containers/
https://registry.hub.docker.com/
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/creating_images/#use-uid

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. SOURCE-TO-IMAGE (S2I)
	2.1. OVERVIEW
	2.2. JAVA
	2.2.1. Overview
	2.2.2. Versions
	2.2.3. Images
	2.2.4. Build Process
	2.2.5. Configuration
	2.2.6. Building and Deploying Java Applications
	2.2.7. Building and Deploying from Source
	2.2.8. Building and Deploying from Binary Artifacts
	2.2.9. Additional Information and Examples

	2.3. .NET CORE
	2.3.1. Benefits of Using .NET Core
	2.3.2. Supported Versions
	2.3.3. Images
	2.3.4. Build Process
	2.3.5. Environment Variables
	2.3.6. Quickly Deploying Applications from .NET Core Source

	2.4. NODE.JS
	2.4.1. Overview
	2.4.2. Versions
	2.4.3. Images
	2.4.4. Build Process
	2.4.5. Configuration
	2.4.6. Hot Deploying
	2.4.7. Node.js Templates

	2.5. PERL
	2.5.1. Overview
	2.5.2. Versions
	2.5.3. Images
	2.5.4. Build Process
	2.5.5. Configuration
	2.5.6. Accessing Logs
	2.5.7. Hot Deploying
	2.5.8. Perl Templates

	2.6. PHP
	2.6.1. Overview
	2.6.2. Versions
	2.6.3. Images
	2.6.4. Build Process
	2.6.5. Configuration
	2.6.5.1. Apache Configuration

	2.6.6. Accessing Logs
	2.6.7. Hot Deploying
	2.6.8. PHP Templates

	2.7. PYTHON
	2.7.1. Overview
	2.7.2. Versions
	2.7.3. Images
	2.7.4. Build Process
	2.7.5. Configuration
	2.7.6. Hot Deploying
	2.7.7. Python Templates

	2.8. RUBY
	2.8.1. Overview
	2.8.2. Versions
	2.8.3. Images
	2.8.4. Build Process
	2.8.5. Configuration
	2.8.6. Hot Deploying
	2.8.7. Ruby Templates

	2.9. CUSTOMIZING S2I IMAGES
	2.9.1. Overview
	2.9.2. Invoking Scripts Embedded in an Image

	CHAPTER 3. DATABASE IMAGES
	3.1. OVERVIEW
	3.2. MYSQL
	3.2.1. Overview
	3.2.2. Versions
	3.2.3. Images
	3.2.4. Configuration and Usage
	3.2.4.1. Initializing the Database
	3.2.4.2. Running MySQL Commands in Containers
	3.2.4.3. Environment Variables
	3.2.4.4. Volume Mount Points
	3.2.4.5. Changing Passwords

	3.2.5. Creating a Database Service from a Template
	3.2.5.1. Creating the Deployment Configuration for the MySQL Master
	3.2.5.2. Creating a Headless Service
	3.2.5.3. Scaling the MySQL Slaves

	3.2.6. Troubleshooting
	3.2.6.1. Linux Native AIO Failure

	3.3. POSTGRESQL
	3.3.1. Overview
	3.3.2. Versions
	3.3.3. Images
	3.3.4. Configuration and Usage
	3.3.4.1. Initializing the Database
	3.3.4.2. Running PostgreSQL Commands in Containers
	3.3.4.3. Environment Variables
	3.3.4.4. Volume Mount Points
	3.3.4.5. Changing Passwords

	3.3.5. Creating a Database Service from a Template

	3.4. MONGODB
	3.4.1. Overview
	3.4.2. Versions
	3.4.3. Images
	3.4.4. Configuration and usage
	3.4.4.1. Initializing the database
	3.4.4.2. Running MongoDB commands in containers
	3.4.4.3. Environment Variables
	3.4.4.4. Volume mount points
	3.4.4.5. Changing passwords

	3.4.5. Creating a database service from a template
	3.4.6. MongoDB replication
	3.4.6.1. Limitations
	3.4.6.2. Using the example template
	3.4.6.3. Scale up
	3.4.6.4. Scale down

	3.5. MARIADB
	3.5.1. Overview
	3.5.2. Versions
	3.5.3. Images
	3.5.4. Configuration and Usage
	3.5.4.1. Initializing the Database
	3.5.4.2. Running MariaDB Commands in Containers
	3.5.4.3. Environment Variables
	3.5.4.4. Volume Mount Points
	3.5.4.5. Changing Passwords

	3.5.5. Creating a Database Service from a Template
	3.5.6. Troubleshooting
	3.5.6.1. Linux Native AIO Failure

	CHAPTER 4. OTHER IMAGES
	4.1. OVERVIEW
	4.2. JENKINS
	4.2.1. Overview
	4.2.2. Images
	4.2.3. Configuration and Customization
	4.2.3.1. Authentication
	4.2.3.2. Environment Variables
	4.2.3.3. Cross Project Access
	4.2.3.4. Volume Mount Points
	4.2.3.5. Customizing the Jenkins Image through Source-To-Image
	4.2.3.6. Configuring the Jenkins Kubernetes Plug-in

	4.2.4. Usage
	4.2.4.1. Creating a Jenkins Service from a Template
	4.2.4.2. Using the Jenkins Kubernetes Plug-in
	4.2.4.3. Memory Requirements

	4.2.5. Jenkins Plug-ins
	4.2.5.1. OpenShift Online Client Plug-in
	4.2.5.2. OpenShift Online Pipeline Plug-in
	4.2.5.3. OpenShift Online Sync Plug-in
	4.2.5.4. Kubernetes Plug-in

	4.3. JENKINS SLAVES
	4.3.1. Overview
	4.3.2. Images
	4.3.3. Configuration and Customization
	4.3.3.1. Environment Variables

	4.3.4. Usage
	4.3.4.1. Memory Requirements

	4.4. OTHER CONTAINER IMAGES
	4.4.1. Overview

