
OpenShift Container Platform 4.9

Scalability and performance

Scaling your OpenShift Container Platform cluster and tuning performance in
production environments

Last Updated: 2023-04-17

OpenShift Container Platform 4.9 Scalability and performance

Scaling your OpenShift Container Platform cluster and tuning performance in production
environments

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for scaling your cluster and optimizing the performance of
your OpenShift Container Platform environment.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. RECOMMENDED HOST PRACTICES
1.1. RECOMMENDED NODE HOST PRACTICES
1.2. CREATING A KUBELETCONFIG CRD TO EDIT KUBELET PARAMETERS
1.3. MODIFYING THE NUMBER OF UNAVAILABLE WORKER NODES
1.4. CONTROL PLANE NODE SIZING

1.4.1. Selecting a larger Amazon Web Services instance type for control plane machines
1.4.1.1. Changing the Amazon Web Services instance type by using the AWS console

1.5. RECOMMENDED ETCD PRACTICES
1.6. MOVING ETCD TO A DIFFERENT DISK
1.7. DEFRAGMENTING ETCD DATA

1.7.1. Automatic defragmentation
1.7.2. Manual defragmentation

1.8. OPENSHIFT CONTAINER PLATFORM INFRASTRUCTURE COMPONENTS
1.9. MOVING THE MONITORING SOLUTION
1.10. MOVING THE DEFAULT REGISTRY
1.11. MOVING THE ROUTER
1.12. INFRASTRUCTURE NODE SIZING
1.13. ADDITIONAL RESOURCES

CHAPTER 2. RECOMMENDED HOST PRACTICES FOR IBM Z & LINUXONE ENVIRONMENTS
2.1. MANAGING CPU OVERCOMMITMENT
2.2. DISABLE TRANSPARENT HUGE PAGES
2.3. BOOST NETWORKING PERFORMANCE WITH RECEIVE FLOW STEERING

2.3.1. Use the Machine Config Operator (MCO) to activate RFS
2.4. CHOOSE YOUR NETWORKING SETUP
2.5. ENSURE HIGH DISK PERFORMANCE WITH HYPERPAV ON Z/VM

2.5.1. Use the Machine Config Operator (MCO) to activate HyperPAV aliases in nodes using z/VM full-pack
minidisks

2.6. RHEL KVM ON IBM Z HOST RECOMMENDATIONS
2.6.1. Use multiple queues for your VirtIO network interfaces
2.6.2. Use I/O threads for your virtual block devices
2.6.3. Avoid virtual SCSI devices
2.6.4. Configure guest caching for disk
2.6.5. Exclude the memory balloon device
2.6.6. Tune the CPU migration algorithm of the host scheduler
2.6.7. Disable the cpuset cgroup controller
2.6.8. Tune the polling period for idle virtual CPUs

CHAPTER 3. RECOMMENDED CLUSTER SCALING PRACTICES
3.1. RECOMMENDED PRACTICES FOR SCALING THE CLUSTER
3.2. MODIFYING A MACHINE SET
3.3. ABOUT MACHINE HEALTH CHECKS

3.3.1. Limitations when deploying machine health checks
3.4. SAMPLE MACHINEHEALTHCHECK RESOURCE

3.4.1. Short-circuiting machine health check remediation
3.4.1.1. Setting maxUnhealthy by using an absolute value
3.4.1.2. Setting maxUnhealthy by using percentages

3.5. CREATING A MACHINEHEALTHCHECK RESOURCE

CHAPTER 4. USING THE NODE TUNING OPERATOR
4.1. ABOUT THE NODE TUNING OPERATOR
4.2. ACCESSING AN EXAMPLE NODE TUNING OPERATOR SPECIFICATION

8
8
9

13
13
15
15
16
18
21
22
22
25
26
28
30
31
32

33
33
33
34
34
35
35

36
37
37
37
38
38
39
39
39
40

41
41
41

43
43
44
45
45
45
46

47
47
47

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

4.3. DEFAULT PROFILES SET ON A CLUSTER
4.4. VERIFYING THAT THE TUNED PROFILES ARE APPLIED
4.5. CUSTOM TUNING SPECIFICATION
4.6. CUSTOM TUNING EXAMPLES
4.7. SUPPORTED TUNED DAEMON PLUGINS

CHAPTER 5. USING CLUSTER LOADER
5.1. INSTALLING CLUSTER LOADER
5.2. RUNNING CLUSTER LOADER
5.3. CONFIGURING CLUSTER LOADER

5.3.1. Example Cluster Loader configuration file
5.3.2. Configuration fields

5.4. KNOWN ISSUES

CHAPTER 6. USING CPU MANAGER AND TOPOLOGY MANAGER
6.1. SETTING UP CPU MANAGER
6.2. TOPOLOGY MANAGER POLICIES
6.3. SETTING UP TOPOLOGY MANAGER
6.4. POD INTERACTIONS WITH TOPOLOGY MANAGER POLICIES

CHAPTER 7. SCALING THE CLUSTER MONITORING OPERATOR
7.1. PROMETHEUS DATABASE STORAGE REQUIREMENTS
7.2. CONFIGURING CLUSTER MONITORING

CHAPTER 8. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS
8.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER MAXIMUMS FOR MAJOR RELEASES
8.2. OPENSHIFT CONTAINER PLATFORM ENVIRONMENT AND CONFIGURATION ON WHICH THE CLUSTER
MAXIMUMS ARE TESTED

8.2.1. IBM Z platform
8.3. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED CLUSTER MAXIMUMS
8.4. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO APPLICATION REQUIREMENTS

CHAPTER 9. OPTIMIZING STORAGE
9.1. AVAILABLE PERSISTENT STORAGE OPTIONS
9.2. RECOMMENDED CONFIGURABLE STORAGE TECHNOLOGY

9.2.1. Specific application storage recommendations
9.2.1.1. Registry
9.2.1.2. Scaled registry
9.2.1.3. Metrics
9.2.1.4. Logging
9.2.1.5. Applications

9.2.2. Other specific application storage recommendations
9.3. DATA STORAGE MANAGEMENT

CHAPTER 10. OPTIMIZING ROUTING
10.1. BASELINE INGRESS CONTROLLER (ROUTER) PERFORMANCE

CHAPTER 11. OPTIMIZING NETWORKING
11.1. OPTIMIZING THE MTU FOR YOUR NETWORK
11.2. RECOMMENDED PRACTICES FOR INSTALLING LARGE SCALE CLUSTERS
11.3. IMPACT OF IPSEC

CHAPTER 12. MANAGING BARE METAL HOSTS
12.1. ABOUT BARE METAL HOSTS AND NODES
12.2. MAINTAINING BARE METAL HOSTS

48
48
48
52
54

56
56
56
57
57
58
61

62
62
66
67
67

69
69
70

72
72

74
75
76
77

80
80
81
81

82
82
82
83
83
83
83

85
85

87
87
88
88

89
89
89

OpenShift Container Platform 4.9 Scalability and performance

2

. .

. .

12.2.1. Adding a bare metal host to the cluster using the web console
12.2.2. Adding a bare metal host to the cluster using YAML in the web console
12.2.3. Automatically scaling machines to the number of available bare metal hosts
12.2.4. Removing bare metal hosts from the provisioner node

CHAPTER 13. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS
13.1. WHAT HUGE PAGES DO
13.2. HOW HUGE PAGES ARE CONSUMED BY APPS
13.3. CONSUMING HUGE PAGES RESOURCES USING THE DOWNWARD API
13.4. CONFIGURING HUGE PAGES

13.4.1. At boot time
13.5. DISABLING TRANSPARENT HUGE PAGES

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES
14.1. UNDERSTANDING LOW LATENCY

14.1.1. About hyperthreading for low latency and real-time applications
14.2. INSTALLING THE PERFORMANCE ADDON OPERATOR

14.2.1. Installing the Operator using the CLI
14.2.2. Installing the Performance Addon Operator using the web console

14.3. UPGRADING PERFORMANCE ADDON OPERATOR
14.3.1. About upgrading Performance Addon Operator

14.3.1.1. How Performance Addon Operator upgrades affect your cluster
14.3.1.2. Upgrading Performance Addon Operator to the next minor version
14.3.1.3. Upgrading Performance Addon Operator when previously installed to a specific namespace

14.3.2. Monitoring upgrade status
14.4. PROVISIONING REAL-TIME AND LOW LATENCY WORKLOADS

14.4.1. Known limitations for real-time
14.4.2. Provisioning a worker with real-time capabilities
14.4.3. Verifying the real-time kernel installation
14.4.4. Creating a workload that works in real-time
14.4.5. Creating a pod with a QoS class of Guaranteed
14.4.6. Optional: Disabling CPU load balancing for DPDK
14.4.7. Assigning a proper node selector
14.4.8. Scheduling a workload onto a worker with real-time capabilities
14.4.9. Managing device interrupt processing for guaranteed pod isolated CPUs

14.4.9.1. Disabling CPU CFS quota
14.4.9.2. Disabling global device interrupts handling in Performance Addon Operator
14.4.9.3. Disabling interrupt processing for individual pods

14.4.10. Upgrading the performance profile to use device interrupt processing
14.4.10.1. Supported API Versions

14.4.10.1.1. Upgrading Performance Addon Operator API from v1alpha1 to v1
14.4.10.1.2. Upgrading Performance Addon Operator API from v1alpha1 or v1 to v2

14.4.11. Configuring a node for IRQ dynamic load balancing
14.4.12. Configuring hyperthreading for a cluster

14.4.12.1. Disabling hyperthreading for low latency applications
14.5. TUNING NODES FOR LOW LATENCY WITH THE PERFORMANCE PROFILE

14.5.1. Configuring huge pages
14.5.2. Allocating multiple huge page sizes
14.5.3. Restricting CPUs for infra and application containers

14.6. REDUCING NIC QUEUES USING THE PERFORMANCE ADDON OPERATOR
14.6.1. Adjusting the NIC queues with the performance profile
14.6.2. Verifying the queue status
14.6.3. Logging associated with adjusting NIC queues

89
90
91

92

94
94
94
95
97
97
99

101
101
101
102
102
103
104
104
105
105
105
106
107
107
108
109
109
110
111
111

112
112
112
113
113
113
114
114
114
114
117
118
119

120
121
122
124
124
127
131

Table of Contents

3

. .

. .

. .

14.7. DEBUGGING LOW LATENCY CNF TUNING STATUS
14.7.1. Machine config pools

14.8. COLLECTING LOW LATENCY TUNING DEBUGGING DATA FOR RED HAT SUPPORT
14.8.1. About the must-gather tool
14.8.2. About collecting low latency tuning data
14.8.3. Gathering data about specific features

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION
15.1. PREREQUISITES FOR RUNNING LATENCY TESTS
15.2. ABOUT DISCOVERY MODE FOR LATENCY TESTS

Limiting the nodes used during tests
15.3. MEASURING LATENCY
15.4. RUNNING THE LATENCY TESTS

15.4.1. Running hwlatdetect
Example hwlatdetect test results

15.4.2. Running cyclictest
Example cyclictest results

15.4.3. Running oslat
15.5. GENERATING A LATENCY TEST FAILURE REPORT
15.6. GENERATING A JUNIT LATENCY TEST REPORT
15.7. RUNNING LATENCY TESTS ON A SINGLE-NODE OPENSHIFT CLUSTER
15.8. RUNNING LATENCY TESTS IN A DISCONNECTED CLUSTER

Mirroring the images to a custom registry accessible from the cluster
Configuring the tests to consume images from a custom registry
Mirroring images to the cluster internal registry
Mirroring a different set of test images

15.9. TROUBLESHOOTING ERRORS WITH THE CNF-TESTS CONTAINER

CHAPTER 16. CREATING A PERFORMANCE PROFILE
16.1. ABOUT THE PERFORMANCE PROFILE CREATOR

16.1.1. Gathering data about your cluster using the must-gather command
16.1.2. Running the Performance Profile Creator using podman

16.1.2.1. How to run podman to create a performance profile
16.1.3. Running the Performance Profile Creator wrapper script
16.1.4. Performance Profile Creator arguments

16.2. ADDITIONAL RESOURCES

CHAPTER 17. DEPLOYING DISTRIBUTED UNITS MANUALLY ON SINGLE-NODE OPENSHIFT
17.1. CONFIGURING THE DISTRIBUTED UNITS (DUS)

17.1.1. Enabling workload partitioning
17.1.2. Configuring the container mount namespace
17.1.3. Enabling Stream Control Transmission Protocol (SCTP)
17.1.4. Creating OperatorGroups for Operators
17.1.5. Subscribing to the Operators
17.1.6. Configuring logging locally and forwarding
17.1.7. Configuring the Performance Addon Operator
17.1.8. Configuring Precision Time Protocol (PTP)
17.1.9. Disabling Network Time Protocol (NTP)
17.1.10. Configuring single root I/O virtualization (SR-IOV)
17.1.11. Disabling the console Operator

17.2. APPLYING THE DISTRIBUTED UNIT (DU) CONFIGURATION TO A SINGLE-NODE OPENSHIFT CLUSTER

17.2.1. Applying the extra installation manifests
17.2.2. Applying the post-install configuration custom resources (CRs)

131
132
133
134
134
134

136
136
136
136
137
138
139
142
144
146
148
151
151
152
153
153
153
154
155
155

157
157
157
158
161
161

166
168

169
169
169
171
172
173
175
176
177
179
181

182
183

184
184
184

OpenShift Container Platform 4.9 Scalability and performance

4

. .

. .

CHAPTER 18. WORKLOAD PARTITIONING ON SINGLE-NODE OPENSHIFT
18.1. ENABLING WORKLOAD PARTITIONING

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT
19.1. PROVISIONING EDGE SITES AT SCALE
19.2. THE GITOPS APPROACH
19.3. ABOUT ZTP AND DISTRIBUTED UNITS ON SINGLE NODES
19.4. ZERO TOUCH PROVISIONING BUILDING BLOCKS
19.5. SINGLE-NODE CLUSTERS
19.6. SITE PLANNING CONSIDERATIONS FOR DISTRIBUTED UNIT DEPLOYMENTS
19.7. LOW LATENCY FOR DISTRIBUTED UNITS (DUS)
19.8. CONFIGURING BIOS FOR DISTRIBUTED UNIT BARE-METAL HOSTS
19.9. PREPARING THE DISCONNECTED ENVIRONMENT

19.9.1. Disconnected environment prerequisites
19.9.2. About the mirror registry
19.9.3. Preparing your mirror host

19.9.3.1. Installing the OpenShift CLI by downloading the binary
Installing the OpenShift CLI on Linux
Installing the OpenShift CLI on Windows
Installing the OpenShift CLI on macOS

19.9.3.2. Configuring credentials that allow images to be mirrored
19.9.3.3. Mirroring the OpenShift Container Platform image repository
19.9.3.4. Adding RHCOS ISO and RootFS images to a disconnected mirror host

19.10. INSTALLING RED HAT ADVANCED CLUSTER MANAGEMENT IN A DISCONNECTED ENVIRONMENT

19.11. ENABLING ASSISTED INSTALLER SERVICE ON BARE METAL
19.12. ZTP CUSTOM RESOURCES
19.13. CREATING CUSTOM RESOURCES TO INSTALL A SINGLE MANAGED CLUSTER

19.13.1. Configuring static IP addresses for managed clusters
19.13.2. Automated Discovery image ISO process for provisioning clusters
19.13.3. Checking the managed cluster status
19.13.4. Configuring a managed cluster for a disconnected environment
19.13.5. Configuring IPv6 addresses for a disconnected environment
19.13.6. Troubleshooting the managed cluster

19.14. APPLYING THE RAN POLICIES FOR MONITORING CLUSTER ACTIVITY
19.14.1. Applying source custom resource policies
19.14.2. The PolicyGenTemplate
19.14.3. Considerations when creating custom resource policies
19.14.4. Generating RAN policies

19.15. CLUSTER PROVISIONING
19.15.1. Machine Config Operator
19.15.2. Performance Addon Operator
19.15.3. SR-IOV Operator
19.15.4. Precision Time Protocol Operator

19.16. CREATING ZTP CUSTOM RESOURCES FOR MULTIPLE MANAGED CLUSTERS
19.16.1. Prerequisites for deploying the ZTP pipeline
19.16.2. Installing the GitOps ZTP pipeline

19.16.2.1. Preparing the ZTP Git repository
19.16.2.2. Preparing the hub cluster for ZTP

19.16.3. Creating the site secrets
19.16.4. Creating the SiteConfig custom resources
19.16.5. Creating the PolicyGenTemplates
19.16.6. Checking the installation status

185
185

188
188
189
189
190
191
191

192
193
194
194
195
196
196
196
196
197
197
199

202

204
204
206
208
213
214
215
216
217
218
219

220
223
225
225
226
227
227
228
228
228
229
230
230
230
232
233
235
236

Table of Contents

5

19.16.7. Site cleanup
19.16.7.1. Removing the ArgoCD pipeline

19.17. TROUBLESHOOTING GITOPS ZTP
19.17.1. Validating the generation of installation CRs
19.17.2. Validating the generation of policy CRs

236
236
237
237
238

OpenShift Container Platform 4.9 Scalability and performance

6

Table of Contents

7

CHAPTER 1. RECOMMENDED HOST PRACTICES
This topic provides recommended host practices for OpenShift Container Platform.

IMPORTANT

These guidelines apply to OpenShift Container Platform with software-defined
networking (SDN), not Open Virtual Network (OVN).

1.1. RECOMMENDED NODE HOST PRACTICES

The OpenShift Container Platform node configuration file contains important options. For example, two
parameters control the maximum number of pods that can be scheduled to a node: podsPerCore and
maxPods.

When both options are in use, the lower of the two values limits the number of pods on a node.
Exceeding these values can result in:

Increased CPU utilization.

Slow pod scheduling.

Potential out-of-memory scenarios, depending on the amount of memory in the node.

Exhausting the pool of IP addresses.

Resource overcommitting, leading to poor user application performance.

IMPORTANT

In Kubernetes, a pod that is holding a single container actually uses two containers. The
second container is used to set up networking prior to the actual container starting.
Therefore, a system running 10 pods will actually have 20 containers running.

NOTE

Disk IOPS throttling from the cloud provider might have an impact on CRI-O and kubelet.
They might get overloaded when there are large number of I/O intensive pods running on
the nodes. It is recommended that you monitor the disk I/O on the nodes and use
volumes with sufficient throughput for the workload.

podsPerCore sets the number of pods the node can run based on the number of processor cores on
the node. For example, if podsPerCore is set to 10 on a node with 4 processor cores, the maximum
number of pods allowed on the node will be 40.

Setting podsPerCore to 0 disables this limit. The default is 0. podsPerCore cannot exceed maxPods.

maxPods sets the number of pods the node can run to a fixed value, regardless of the properties of the
node.

kubeletConfig:
 podsPerCore: 10

OpenShift Container Platform 4.9 Scalability and performance

8

1.2. CREATING A KUBELETCONFIG CRD TO EDIT KUBELET
PARAMETERS

The kubelet configuration is currently serialized as an Ignition configuration, so it can be directly edited.
However, there is also a new kubelet-config-controller added to the Machine Config Controller (MCC).
This lets you use a KubeletConfig custom resource (CR) to edit the kubelet parameters.

NOTE

As the fields in the kubeletConfig object are passed directly to the kubelet from
upstream Kubernetes, the kubelet validates those values directly. Invalid values in the
kubeletConfig object might cause cluster nodes to become unavailable. For valid values,
see the Kubernetes documentation.

Consider the following guidance:

Create one KubeletConfig CR for each machine config pool with all the config changes you
want for that pool. If you are applying the same content to all of the pools, you need only one
KubeletConfig CR for all of the pools.

Edit an existing KubeletConfig CR to modify existing settings or add new settings, instead of
creating a CR for each change. It is recommended that you create a CR only to modify a
different machine config pool, or for changes that are intended to be temporary, so that you
can revert the changes.

As needed, create multiple KubeletConfig CRs with a limit of 10 per cluster. For the first
KubeletConfig CR, the Machine Config Operator (MCO) creates a machine config appended
with kubelet. With each subsequent CR, the controller creates another kubelet machine config
with a numeric suffix. For example, if you have a kubelet machine config with a -2 suffix, the next
kubelet machine config is appended with -3.

If you want to delete the machine configs, delete them in reverse order to avoid exceeding the limit. For
example, you delete the kubelet-3 machine config before deleting the kubelet-2 machine config.

NOTE

If you have a machine config with a kubelet-9 suffix, and you create another
KubeletConfig CR, a new machine config is not created, even if there are fewer than 10
kubelet machine configs.

Example KubeletConfig CR

Example showing a KubeletConfig machine config

 kubeletConfig:
 maxPods: 250

$ oc get kubeletconfig

NAME AGE
set-max-pods 15m

CHAPTER 1. RECOMMENDED HOST PRACTICES

9

https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/

1

The following procedure is an example to show how to configure the maximum number of pods per
node on the worker nodes.

Prerequisites

1. Obtain the label associated with the static MachineConfigPool CR for the type of node you
want to configure. Perform one of the following steps:

a. View the machine config pool:

For example:

Example output

If a label has been added it appears under labels.

b. If the label is not present, add a key/value pair:

Procedure

1. View the available machine configuration objects that you can select:

By default, the two kubelet-related configs are 01-master-kubelet and 01-worker-kubelet.

2. Check the current value for the maximum pods per node:

For example:

$ oc get mc | grep kubelet

...
99-worker-generated-kubelet-1 b5c5119de007945b6fe6fb215db3b8e2ceb12511 3.2.0
26m
...

$ oc describe machineconfigpool <name>

$ oc describe machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: 2019-02-08T14:52:39Z
 generation: 1
 labels:
 custom-kubelet: set-max-pods 1

$ oc label machineconfigpool worker custom-kubelet=set-max-pods

$ oc get machineconfig

$ oc describe node <node_name>

OpenShift Container Platform 4.9 Scalability and performance

10

1

2

Look for value: pods: <value> in the Allocatable stanza:

Example output

3. Set the maximum pods per node on the worker nodes by creating a custom resource file that
contains the kubelet configuration:

Enter the label from the machine config pool.

Add the kubelet configuration. In this example, use maxPods to set the maximum pods per
node.

NOTE

The rate at which the kubelet talks to the API server depends on queries per
second (QPS) and burst values. The default values, 50 for kubeAPIQPS and 100
for kubeAPIBurst, are sufficient if there are limited pods running on each node.
It is recommended to update the kubelet QPS and burst rates if there are enough
CPU and memory resources on the node.

$ oc describe node ci-ln-5grqprb-f76d1-ncnqq-worker-a-mdv94

Allocatable:
 attachable-volumes-aws-ebs: 25
 cpu: 3500m
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 15341844Ki
 pods: 250

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-max-pods
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: set-max-pods 1
 kubeletConfig:
 maxPods: 500 2

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-max-pods
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: set-max-pods
 kubeletConfig:
 maxPods: <pod_count>
 kubeAPIBurst: <burst_rate>
 kubeAPIQPS: <QPS>

CHAPTER 1. RECOMMENDED HOST PRACTICES

11

1

a. Update the machine config pool for workers with the label:

b. Create the KubeletConfig object:

c. Verify that the KubeletConfig object is created:

Example output

Depending on the number of worker nodes in the cluster, wait for the worker nodes to be
rebooted one by one. For a cluster with 3 worker nodes, this could take about 10 to 15
minutes.

4. Verify that the changes are applied to the node:

a. Check on a worker node that the maxPods value changed:

b. Locate the Allocatable stanza:

In this example, the pods parameter should report the value you set in the
KubeletConfig object.

5. Verify the change in the KubeletConfig object:

This should show a status of True and type:Success, as shown in the following example:

$ oc label machineconfigpool worker custom-kubelet=large-pods

$ oc create -f change-maxPods-cr.yaml

$ oc get kubeletconfig

NAME AGE
set-max-pods 15m

$ oc describe node <node_name>

 ...
Allocatable:
 attachable-volumes-gce-pd: 127
 cpu: 3500m
 ephemeral-storage: 123201474766
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 14225400Ki
 pods: 500 1
 ...

$ oc get kubeletconfigs set-max-pods -o yaml

spec:
 kubeletConfig:
 maxPods: 500

OpenShift Container Platform 4.9 Scalability and performance

12

1.3. MODIFYING THE NUMBER OF UNAVAILABLE WORKER NODES

By default, only one machine is allowed to be unavailable when applying the kubelet-related
configuration to the available worker nodes. For a large cluster, it can take a long time for the
configuration change to be reflected. At any time, you can adjust the number of machines that are
updating to speed up the process.

Procedure

1. Edit the worker machine config pool:

2. Set maxUnavailable to the value that you want:

IMPORTANT

When setting the value, consider the number of worker nodes that can be
unavailable without affecting the applications running on the cluster.

1.4. CONTROL PLANE NODE SIZING

The control plane node resource requirements depend on the number of nodes in the cluster. The
following control plane node size recommendations are based on the results of control plane density
focused testing. The control plane tests create the following objects across the cluster in each of the
namespaces depending on the node counts:

12 image streams

3 build configurations

6 builds

1 deployment with 2 pod replicas mounting two secrets each

2 deployments with 1 pod replica mounting two secrets

3 services pointing to the previous deployments

3 routes pointing to the previous deployments

 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: set-max-pods
status:
 conditions:
 - lastTransitionTime: "2021-06-30T17:04:07Z"
 message: Success
 status: "True"
 type: Success

$ oc edit machineconfigpool worker

spec:
 maxUnavailable: <node_count>

CHAPTER 1. RECOMMENDED HOST PRACTICES

13

10 secrets, 2 of which are mounted by the previous deployments

10 config maps, 2 of which are mounted by the previous deployments

Number of worker
nodes

Cluster load
(namespaces)

CPU cores Memory (GB)

25 500 4 16

100 1000 8 32

250 4000 16 96

On a large and dense cluster with three masters or control plane nodes, the CPU and memory usage will
spike up when one of the nodes is stopped, rebooted or fails. The failures can be due to unexpected
issues with power, network or underlying infrastructure in addition to intentional cases where the cluster
is restarted after shutting it down to save costs. The remaining two control plane nodes must handle the
load in order to be highly available which leads to increase in the resource usage. This is also expected
during upgrades because the masters are cordoned, drained, and rebooted serially to apply the
operating system updates, as well as the control plane Operators update. To avoid cascading failures,
keep the overall CPU and memory resource usage on the control plane nodes to at most 60% of all
available capacity to handle the resource usage spikes. Increase the CPU and memory on the control
plane nodes accordingly to avoid potential downtime due to lack of resources.

IMPORTANT

The node sizing varies depending on the number of nodes and object counts in the
cluster. It also depends on whether the objects are actively being created on the cluster.
During object creation, the control plane is more active in terms of resource usage
compared to when the objects are in the running phase.

Operator Lifecycle Manager (OLM) runs on the control plane nodes and it’s memory footprint depends
on the number of namespaces and user installed operators that OLM needs to manage on the cluster.
Control plane nodes need to be sized accordingly to avoid OOM kills. Following data points are based on
the results from cluster maximums testing.

Number of namespaces OLM memory at idle state (GB) OLM memory with 5 user
operators installed (GB)

500 0.823 1.7

1000 1.2 2.5

1500 1.7 3.2

2000 2 4.4

3000 2.7 5.6

OpenShift Container Platform 4.9 Scalability and performance

14

4000 3.8 7.6

5000 4.2 9.02

6000 5.8 11.3

7000 6.6 12.9

8000 6.9 14.8

9000 8 17.7

10,000 9.9 21.6

Number of namespaces OLM memory at idle state (GB) OLM memory with 5 user
operators installed (GB)

IMPORTANT

You can modify the control plane node size in a running OpenShift Container Platform
4.9 cluster for the following configurations only:

Clusters installed with a user-provisioned installation method.

AWS clusters installed with an installer-provisioned infrastructure installation
method.

For all other configurations, you must estimate your total node count and use the
suggested control plane node size during installation.

IMPORTANT

The recommendations are based on the data points captured on OpenShift Container
Platform clusters with OpenShift SDN as the network plugin.

NOTE

In OpenShift Container Platform 4.9, half of a CPU core (500 millicore) is now reserved
by the system by default compared to OpenShift Container Platform 3.11 and previous
versions. The sizes are determined taking that into consideration.

1.4.1. Selecting a larger Amazon Web Services instance type for control plane
machines

If the control plane machines in an Amazon Web Services (AWS) cluster require more resources, you can
select a larger AWS instance type for the control plane machines to use.

1.4.1.1. Changing the Amazon Web Services instance type by using the AWS console

You can change the Amazon Web Services (AWS) instance type that your control plane machines use by
updating the instance type in the AWS console.

CHAPTER 1. RECOMMENDED HOST PRACTICES

15

Prerequisites

You have access to the AWS console with the permissions required to modify the EC2 Instance
for your cluster.

You have access to the OpenShift Container Platform cluster as a user with the cluster-admin
role.

Procedure

1. Open the AWS console and fetch the instances for the control plane machines.

2. Choose one control plane machine instance.

a. For the selected control plane machine, back up the etcd data by creating an etcd snapshot.
For more information, see "Backing up etcd".

b. In the AWS console, stop the control plane machine instance.

c. Select the stopped instance, and click Actions → Instance Settings → Change instance
type.

d. Change the instance to a larger type, ensuring that the type is the same base as the
previous selection, and apply changes. For example, you can change m6i.xlarge to
m6i.2xlarge or m6i.4xlarge.

e. Start the instance.

f. If your OpenShift Container Platform cluster has a corresponding Machine object for the
instance, update the instance type of the object to match the instance type set in the AWS
console.

3. Repeat this process for each control plane machine.

Additional resources

Backing up etcd

1.5. RECOMMENDED ETCD PRACTICES

Because etcd writes data to disk and persists proposals on disk, its performance depends on disk
performance. Although etcd is not particularly I/O intensive, it requires a low latency block device for
optimal performance and stability. Because etcd’s consensus protocol depends on persistently storing
metadata to a log (WAL), etcd is sensitive to disk-write latency. Slow disks and disk activity from other
processes can cause long fsync latencies.

Those latencies can cause etcd to miss heartbeats, not commit new proposals to the disk on time, and
ultimately experience request timeouts and temporary leader loss. High write latencies also lead to an
OpenShift API slowness, which affects cluster performance. Because of these reasons, avoid colocating
other workloads on the control-plane nodes.

In terms of latency, run etcd on top of a block device that can write at least 50 IOPS of 8000 bytes long
sequentially. That is, with a latency of 20ms, keep in mind that uses fdatasync to synchronize each write
in the WAL. For heavy loaded clusters, sequential 500 IOPS of 8000 bytes (2 ms) are recommended.
To measure those numbers, you can use a benchmarking tool, such as fio.

To achieve such performance, run etcd on machines that are backed by SSD or NVMe disks with low

OpenShift Container Platform 4.9 Scalability and performance

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/backup_and_restore/#backing-up-etcd

To achieve such performance, run etcd on machines that are backed by SSD or NVMe disks with low
latency and high throughput. Consider single-level cell (SLC) solid-state drives (SSDs), which provide 1
bit per memory cell, are durable and reliable, and are ideal for write-intensive workloads.

The following hard disk features provide optimal etcd performance:

Low latency to support fast read operation.

High-bandwidth writes for faster compactions and defragmentation.

High-bandwidth reads for faster recovery from failures.

Solid state drives as a minimum selection, however NVMe drives are preferred.

Server-grade hardware from various manufacturers for increased reliability.

RAID 0 technology for increased performance.

Dedicated etcd drives. Do not place log files or other heavy workloads on etcd drives.

Avoid NAS or SAN setups and spinning drives. Always benchmark by using utilities such as fio.
Continuously monitor the cluster performance as it increases.

NOTE

Avoid using the Network File System (NFS) protocol or other network based file systems.

Some key metrics to monitor on a deployed OpenShift Container Platform cluster are p99 of etcd disk
write ahead log duration and the number of etcd leader changes. Use Prometheus to track these
metrics.

To validate the hardware for etcd before or after you create the OpenShift Container Platform cluster,
you can use fio.

Prerequisites

Container runtimes such as Podman or Docker are installed on the machine that you’re testing.

Data is written to the /var/lib/etcd path.

Procedure

Run fio and analyze the results:

If you use Podman, run this command:

If you use Docker, run this command:

The output reports whether the disk is fast enough to host etcd by comparing the 99th percentile of the
fsync metric captured from the run to see if it is less than 20 ms. A few of the most important etcd
metrics that might affected by I/O performance are as follow:

$ sudo podman run --volume /var/lib/etcd:/var/lib/etcd:Z quay.io/openshift-scale/etcd-perf

$ sudo docker run --volume /var/lib/etcd:/var/lib/etcd:Z quay.io/openshift-scale/etcd-perf

CHAPTER 1. RECOMMENDED HOST PRACTICES

17

etcd_disk_wal_fsync_duration_seconds_bucket metric reports the etcd’s WAL fsync
duration

etcd_disk_backend_commit_duration_seconds_bucket metric reports the etcd backend
commit latency duration

etcd_server_leader_changes_seen_total metric reports the leader changes

Because etcd replicates the requests among all the members, its performance strongly depends on
network input/output (I/O) latency. High network latencies result in etcd heartbeats taking longer than
the election timeout, which results in leader elections that are disruptive to the cluster. A key metric to
monitor on a deployed OpenShift Container Platform cluster is the 99th percentile of etcd network peer
latency on each etcd cluster member. Use Prometheus to track the metric.

The histogram_quantile(0.99, rate(etcd_network_peer_round_trip_time_seconds_bucket[2m]))
metric reports the round trip time for etcd to finish replicating the client requests between the members.
Ensure that it is less than 50 ms.

1.6. MOVING ETCD TO A DIFFERENT DISK

You can move etcd from a shared disk to a separate disk to prevent or resolve performance issues.

Prerequisites

The MachineConfigPool must match
metadata.labels[machineconfiguration.openshift.io/role]. This applies to a controller, worker,
or a custom pool.

The node’s auxiliary storage device, such as /dev/sdb, must match the sdb. Change this
reference in all places in the file.

NOTE

This procedure does not move parts of the root file system, such as /var/, to another disk
or partition on an installed node.

The Machine Config Operator (MCO) is responsible for mounting a secondary disk for an OpenShift
Container Platform 4.9 container storage.

Use the following steps to move etcd to a different device:

Procedure

1. Create a machineconfig YAML file named etcd-mc.yml and add the following information:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: 98-var-lib-etcd
spec:
 config:
 ignition:
 version: 3.2.0

OpenShift Container Platform 4.9 Scalability and performance

18

 systemd:
 units:
 - contents: |
 [Unit]
 Description=Make File System on /dev/sdb
 DefaultDependencies=no
 BindsTo=dev-sdb.device
 After=dev-sdb.device var.mount
 Before=systemd-fsck@dev-sdb.service

 [Service]
 Type=oneshot
 RemainAfterExit=yes
 ExecStart=/usr/lib/systemd/systemd-makefs xfs /dev/sdb
 TimeoutSec=0

 [Install]
 WantedBy=var-lib-containers.mount
 enabled: true
 name: systemd-mkfs@dev-sdb.service
 - contents: |
 [Unit]
 Description=Mount /dev/sdb to /var/lib/etcd
 Before=local-fs.target
 Requires=systemd-mkfs@dev-sdb.service
 After=systemd-mkfs@dev-sdb.service var.mount

 [Mount]
 What=/dev/sdb
 Where=/var/lib/etcd
 Type=xfs
 Options=defaults,prjquota

 [Install]
 WantedBy=local-fs.target
 enabled: true
 name: var-lib-etcd.mount
 - contents: |
 [Unit]
 Description=Sync etcd data if new mount is empty
 DefaultDependencies=no
 After=var-lib-etcd.mount var.mount
 Before=crio.service

 [Service]
 Type=oneshot
 RemainAfterExit=yes
 ExecCondition=/usr/bin/test ! -d /var/lib/etcd/member
 ExecStart=/usr/sbin/setenforce 0
 ExecStart=/bin/rsync -ar /sysroot/ostree/deploy/rhcos/var/lib/etcd/ /var/lib/etcd/
 ExecStart=/usr/sbin/setenforce 1
 TimeoutSec=0

 [Install]
 WantedBy=multi-user.target graphical.target
 enabled: true

CHAPTER 1. RECOMMENDED HOST PRACTICES

19

2. Create the machine configuration by entering the following commands:

The nodes are updated and rebooted. After the reboot completes, the following events occur:

An XFS file system is created on the specified disk.

The disk mounts to /var/lib/etc.

The content from /sysroot/ostree/deploy/rhcos/var/lib/etcd syncs to /var/lib/etcd.

A restore of SELinux labels is forced for /var/lib/etcd.

The old content is not removed.

3. After the nodes are on a separate disk, update the machine configuration file, etcd-mc.yml with
the following information:

 name: sync-var-lib-etcd-to-etcd.service
 - contents: |
 [Unit]
 Description=Restore recursive SELinux security contexts
 DefaultDependencies=no
 After=var-lib-etcd.mount
 Before=crio.service

 [Service]
 Type=oneshot
 RemainAfterExit=yes
 ExecStart=/sbin/restorecon -R /var/lib/etcd/
 TimeoutSec=0

 [Install]
 WantedBy=multi-user.target graphical.target
 enabled: true
 name: restorecon-var-lib-etcd.service

$ oc login -u ${ADMIN} -p ${ADMINPASSWORD} ${API}
... output omitted ...

$ oc create -f etcd-mc.yml
machineconfig.machineconfiguration.openshift.io/98-var-lib-etcd created

$ oc login -u ${ADMIN} -p ${ADMINPASSWORD} ${API}
 [... output omitted ...]

$ oc create -f etcd-mc.yml machineconfig.machineconfiguration.openshift.io/98-var-lib-etcd
created

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: 98-var-lib-etcd

OpenShift Container Platform 4.9 Scalability and performance

20

4. Apply the modified version that removes the logic for creating and syncing the device by
entering the following command:

The previous step prevents the nodes from rebooting.

Additional resources

Red Hat Enterprise Linux CoreOS (RHCOS)

1.7. DEFRAGMENTING ETCD DATA

For large and dense clusters, etcd can suffer from poor performance if the keyspace grows too large
and exceeds the space quota. Periodically maintain and defragment etcd to free up space in the data
store. Monitor Prometheus for etcd metrics and defragment it when required; otherwise, etcd can raise
a cluster-wide alarm that puts the cluster into a maintenance mode that accepts only key reads and
deletes.

Monitor these key metrics:

etcd_server_quota_backend_bytes, which is the current quota limit

etcd_mvcc_db_total_size_in_use_in_bytes, which indicates the actual database usage after a
history compaction

etcd_mvcc_db_total_size_in_bytes, which shows the database size, including free space
waiting for defragmentation

Defragment etcd data to reclaim disk space after events that cause disk fragmentation, such as etcd
history compaction.

spec:
 config:
 ignition:
 version: 3.2.0
 systemd:
 units:
 - contents: |
 [Unit]
 Description=Mount /dev/sdb to /var/lib/etcd
 Before=local-fs.target
 Requires=systemd-mkfs@dev-sdb.service
 After=systemd-mkfs@dev-sdb.service var.mount

 [Mount]
 What=/dev/sdb
 Where=/var/lib/etcd
 Type=xfs
 Options=defaults,prjquota

 [Install]
 WantedBy=local-fs.target
 enabled: true
 name: var-lib-etcd.mount

$ oc replace -f etcd-mc.yml

CHAPTER 1. RECOMMENDED HOST PRACTICES

21

https://docs.openshift.com/container-platform/4.11/architecture/architecture-rhcos.html

History compaction is performed automatically every five minutes and leaves gaps in the back-end
database. This fragmented space is available for use by etcd, but is not available to the host file system.
You must defragment etcd to make this space available to the host file system.

Defragmentation occurs automatically, but you can also trigger it manually.

NOTE

Automatic defragmentation is good for most cases, because the etcd operator uses
cluster information to determine the most efficient operation for the user.

1.7.1. Automatic defragmentation

The etcd Operator automatically defragments disks. No manual intervention is needed.

Verify that the defragmentation process is successful by viewing one of these logs:

etcd logs

cluster-etcd-operator pod

operator status error log

WARNING

Automatic defragmentation can cause leader election failure in various OpenShift
core components, such as the Kubernetes controller manager, which triggers a
restart of the failing component. The restart is harmless and either triggers failover
to the next running instance or the component resumes work again after the
restart.

Example log output

1.7.2. Manual defragmentation

You can monitor the etcd_db_total_size_in_bytes metric to determine whether manual
defragmentation is necessary.

You can also determine whether defragmentation is needed by checking the etcd database size in MB
that will be freed by defragmentation with the PromQL expression:
(etcd_mvcc_db_total_size_in_bytes - etcd_mvcc_db_total_size_in_use_in_bytes)/1024/1024



I0907 08:43:12.171919 1
defragcontroller.go:198] etcd member "ip-
10-0-191-150.example.redhat.com"
backend store fragmented: 39.33 %, dbSize:
349138944

OpenShift Container Platform 4.9 Scalability and performance

22

WARNING

Defragmenting etcd is a blocking action. The etcd member will not response until
defragmentation is complete. For this reason, wait at least one minute between
defragmentation actions on each of the pods to allow the cluster to recover.

Follow this procedure to defragment etcd data on each etcd member.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Determine which etcd member is the leader, because the leader should be defragmented last.

a. Get the list of etcd pods:

Example output

b. Choose a pod and run the following command to determine which etcd member is the
leader:

Example output



$ oc -n openshift-etcd get pods -l k8s-app=etcd -o wide

etcd-ip-10-0-159-225.example.redhat.com 3/3 Running 0 175m
10.0.159.225 ip-10-0-159-225.example.redhat.com <none> <none>
etcd-ip-10-0-191-37.example.redhat.com 3/3 Running 0 173m
10.0.191.37 ip-10-0-191-37.example.redhat.com <none> <none>
etcd-ip-10-0-199-170.example.redhat.com 3/3 Running 0 176m
10.0.199.170 ip-10-0-199-170.example.redhat.com <none> <none>

$ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com etcdctl endpoint
status --cluster -w table

Defaulting container name to etcdctl.
Use 'oc describe pod/etcd-ip-10-0-159-225.example.redhat.com -n openshift-etcd' to see
all of the containers in this pod.
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS LEARNER |
RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| https://10.0.191.37:2379 | 251cd44483d811c3 | 3.4.9 | 104 MB | false | false |
7 | 91624 | 91624 | |
| https://10.0.159.225:2379 | 264c7c58ecbdabee | 3.4.9 | 104 MB | false | false |

CHAPTER 1. RECOMMENDED HOST PRACTICES

23

Based on the IS LEADER column of this output, the https://10.0.199.170:2379 endpoint is
the leader. Matching this endpoint with the output of the previous step, the pod name of
the leader is etcd-ip-10-0-199-170.example.redhat.com.

2. Defragment an etcd member.

a. Connect to the running etcd container, passing in the name of a pod that is not the leader:

b. Unset the ETCDCTL_ENDPOINTS environment variable:

c. Defragment the etcd member:

Example output

If a timeout error occurs, increase the value for --command-timeout until the command
succeeds.

d. Verify that the database size was reduced:

Example output

This example shows that the database size for this etcd member is now 41 MB as opposed

7 | 91624 | 91624 | |
| https://10.0.199.170:2379 | 9ac311f93915cc79 | 3.4.9 | 104 MB | true | false |
7 | 91624 | 91624 | |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+

$ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com

sh-4.4# unset ETCDCTL_ENDPOINTS

sh-4.4# etcdctl --command-timeout=30s --endpoints=https://localhost:2379 defrag

Finished defragmenting etcd member[https://localhost:2379]

sh-4.4# etcdctl endpoint status -w table --cluster

+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS LEARNER |
RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| https://10.0.191.37:2379 | 251cd44483d811c3 | 3.4.9 | 104 MB | false | false |
7 | 91624 | 91624 | |
| https://10.0.159.225:2379 | 264c7c58ecbdabee | 3.4.9 | 41 MB | false | false |
7 | 91624 | 91624 | | 1
| https://10.0.199.170:2379 | 9ac311f93915cc79 | 3.4.9 | 104 MB | true | false |
7 | 91624 | 91624 | |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+

OpenShift Container Platform 4.9 Scalability and performance

24

This example shows that the database size for this etcd member is now 41 MB as opposed
to the starting size of 104 MB.

e. Repeat these steps to connect to each of the other etcd members and defragment them.
Always defragment the leader last.
Wait at least one minute between defragmentation actions to allow the etcd pod to recover.
Until the etcd pod recovers, the etcd member will not respond.

3. If any NOSPACE alarms were triggered due to the space quota being exceeded, clear them.

a. Check if there are any NOSPACE alarms:

Example output

b. Clear the alarms:

1.8. OPENSHIFT CONTAINER PLATFORM INFRASTRUCTURE
COMPONENTS

The following infrastructure workloads do not incur OpenShift Container Platform worker subscriptions:

Kubernetes and OpenShift Container Platform control plane services that run on masters

The default router

The integrated container image registry

The HAProxy-based Ingress Controller

The cluster metrics collection, or monitoring service, including components for monitoring user-
defined projects

Cluster aggregated logging

Service brokers

Red Hat Quay

Red Hat OpenShift Container Storage

Red Hat Advanced Cluster Manager

Red Hat Advanced Cluster Security for Kubernetes

Red Hat OpenShift GitOps

Red Hat OpenShift Pipelines

Any node that runs any other container, pod, or component is a worker node that your subscription must

sh-4.4# etcdctl alarm list

memberID:12345678912345678912 alarm:NOSPACE

sh-4.4# etcdctl alarm disarm

CHAPTER 1. RECOMMENDED HOST PRACTICES

25

Any node that runs any other container, pod, or component is a worker node that your subscription must
cover.

For information on infrastructure nodes and which components can run on infrastructure nodes, see the
"Red Hat OpenShift control plane and infrastructure nodes" section in the OpenShift sizing and
subscription guide for enterprise Kubernetes document.

1.9. MOVING THE MONITORING SOLUTION

The monitoring stack includes multiple components, including Prometheus, Grafana, and Alertmanager.
The Cluster Monitoring Operator manages this stack. To redeploy the monitoring stack to infrastructure
nodes, you can create and apply a custom config map.

Procedure

1. Edit the cluster-monitoring-config config map and change the nodeSelector to use the infra
label:

$ oc edit configmap cluster-monitoring-config -n openshift-monitoring

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |+
 alertmanagerMain:
 nodeSelector: 1
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoExecute
 prometheusK8s:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoExecute
 prometheusOperator:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 - key: node-role.kubernetes.io/infra

OpenShift Container Platform 4.9 Scalability and performance

26

https://www.redhat.com/en/resources/openshift-subscription-sizing-guide

 value: reserved
 effect: NoExecute
 grafana:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoExecute
 k8sPrometheusAdapter:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoExecute
 kubeStateMetrics:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoExecute
 telemeterClient:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoExecute
 openshiftStateMetrics:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoExecute
 thanosQuerier:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:

CHAPTER 1. RECOMMENDED HOST PRACTICES

27

1 1 Add a nodeSelector parameter with the appropriate value to the component you want to
move. You can use a nodeSelector in the format shown or use <key>: <value> pairs,
based on the value specified for the node. If you added a taint to the infrasructure node,
also add a matching toleration.

2. Watch the monitoring pods move to the new machines:

3. If a component has not moved to the infra node, delete the pod with this component:

The component from the deleted pod is re-created on the infra node.

1.10. MOVING THE DEFAULT REGISTRY

You configure the registry Operator to deploy its pods to different nodes.

Prerequisites

Configure additional machine sets in your OpenShift Container Platform cluster.

Procedure

1. View the config/instance object:

Example output

 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoExecute

$ watch 'oc get pod -n openshift-monitoring -o wide'

$ oc delete pod -n openshift-monitoring <pod>

$ oc get configs.imageregistry.operator.openshift.io/cluster -o yaml

apiVersion: imageregistry.operator.openshift.io/v1
kind: Config
metadata:
 creationTimestamp: 2019-02-05T13:52:05Z
 finalizers:
 - imageregistry.operator.openshift.io/finalizer
 generation: 1
 name: cluster
 resourceVersion: "56174"
 selfLink: /apis/imageregistry.operator.openshift.io/v1/configs/cluster
 uid: 36fd3724-294d-11e9-a524-12ffeee2931b
spec:
 httpSecret: d9a012ccd117b1e6616ceccb2c3bb66a5fed1b5e481623
 logging: 2
 managementState: Managed

OpenShift Container Platform 4.9 Scalability and performance

28

1

2. Edit the config/instance object:

Add a nodeSelector parameter with the appropriate value to the component you want to
move. You can use a nodeSelector in the format shown or use <key>: <value> pairs,
based on the value specified for the node. If you added a taint to the infrasructure node,
also add a matching toleration.

3. Verify the registry pod has been moved to the infrastructure node.

a. Run the following command to identify the node where the registry pod is located:

b. Confirm the node has the label you specified:

Review the command output and confirm that node-role.kubernetes.io/infra is in the
LABELS list.

 proxy: {}
 replicas: 1
 requests:
 read: {}
 write: {}
 storage:
 s3:
 bucket: image-registry-us-east-1-c92e88cad85b48ec8b312344dff03c82-392c
 region: us-east-1
status:
...

$ oc edit configs.imageregistry.operator.openshift.io/cluster

spec:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - podAffinityTerm:
 namespaces:
 - openshift-image-registry
 topologyKey: kubernetes.io/hostname
 weight: 100
 logLevel: Normal
 managementState: Managed
 nodeSelector: 1
 node-role.kubernetes.io/infra: ""
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/infra
 value: reserved
 - effect: NoExecute
 key: node-role.kubernetes.io/infra
 value: reserved

$ oc get pods -o wide -n openshift-image-registry

$ oc describe node <node_name>

CHAPTER 1. RECOMMENDED HOST PRACTICES

29

1.11. MOVING THE ROUTER

You can deploy the router pod to a different machine set. By default, the pod is deployed to a worker
node.

Prerequisites

Configure additional machine sets in your OpenShift Container Platform cluster.

Procedure

1. View the IngressController custom resource for the router Operator:

The command output resembles the following text:

2. Edit the ingresscontroller resource and change the nodeSelector to use the infra label:

$ oc get ingresscontroller default -n openshift-ingress-operator -o yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: 2019-04-18T12:35:39Z
 finalizers:
 - ingresscontroller.operator.openshift.io/finalizer-ingresscontroller
 generation: 1
 name: default
 namespace: openshift-ingress-operator
 resourceVersion: "11341"
 selfLink: /apis/operator.openshift.io/v1/namespaces/openshift-ingress-
operator/ingresscontrollers/default
 uid: 79509e05-61d6-11e9-bc55-02ce4781844a
spec: {}
status:
 availableReplicas: 2
 conditions:
 - lastTransitionTime: 2019-04-18T12:36:15Z
 status: "True"
 type: Available
 domain: apps.<cluster>.example.com
 endpointPublishingStrategy:
 type: LoadBalancerService
 selector: ingresscontroller.operator.openshift.io/deployment-ingresscontroller=default

$ oc edit ingresscontroller default -n openshift-ingress-operator

 spec:
 nodePlacement:
 nodeSelector: 1
 matchLabels:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/infra

OpenShift Container Platform 4.9 Scalability and performance

30

1

1

Add a nodeSelector parameter with the appropriate value to the component you want to
move. You can use a nodeSelector in the format shown or use <key>: <value> pairs,
based on the value specified for the node. If you added a taint to the infrastructure node,
also add a matching toleration.

3. Confirm that the router pod is running on the infra node.

a. View the list of router pods and note the node name of the running pod:

Example output

In this example, the running pod is on the ip-10-0-217-226.ec2.internal node.

b. View the node status of the running pod:

Specify the <node_name> that you obtained from the pod list.

Example output

Because the role list includes infra, the pod is running on the correct node.

1.12. INFRASTRUCTURE NODE SIZING

Infrastructure nodes are nodes that are labeled to run pieces of the OpenShift Container Platform
environment. The infrastructure node resource requirements depend on the cluster age, nodes, and
objects in the cluster, as these factors can lead to an increase in the number of metrics or time series in
Prometheus. The following infrastructure node size recommendations are based on the results of
cluster maximums and control plane density focused testing.

 value: reserved
 - effect: NoExecute
 key: node-role.kubernetes.io/infra
 value: reserved

$ oc get pod -n openshift-ingress -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
router-default-86798b4b5d-bdlvd 1/1 Running 0 28s 10.130.2.4 ip-10-
0-217-226.ec2.internal <none> <none>
router-default-955d875f4-255g8 0/1 Terminating 0 19h 10.129.2.4 ip-10-
0-148-172.ec2.internal <none> <none>

$ oc get node <node_name> 1

NAME STATUS ROLES AGE VERSION
ip-10-0-217-226.ec2.internal Ready infra,worker 17h v1.22.1

CHAPTER 1. RECOMMENDED HOST PRACTICES

31

Number of worker nodes CPU cores Memory (GB)

25 4 16

100 8 32

250 16 128

500 32 128

In general, three infrastructure nodes are recommended per cluster.

IMPORTANT

These sizing recommendations are based on scale tests, which create a large number of
objects across the cluster. These tests include reaching some of the cluster maximums. In
the case of 250 and 500 node counts on an OpenShift Container Platform 4.9 cluster,
these maximums are 10000 namespaces with 61000 pods, 10000 deployments, 181000
secrets, 400 config maps, and so on. Prometheus is a highly memory intensive
application; the resource usage depends on various factors including the number of
nodes, objects, the Prometheus metrics scraping interval, metrics or time series, and the
age of the cluster. The disk size also depends on the retention period. You must take
these factors into consideration and size them accordingly.

These sizing recommendations are only applicable for the Prometheus, Router, and
Registry infrastructure components, which are installed during cluster installation.
Logging is a day-two operation and is not included in these recommendations.

NOTE

In OpenShift Container Platform 4.9, half of a CPU core (500 millicore) is now reserved
by the system by default compared to OpenShift Container Platform 3.11 and previous
versions. This influences the stated sizing recommendations.

1.13. ADDITIONAL RESOURCES

OpenShift Container Platform cluster maximums

Creating infrastructure machine sets

OpenShift Container Platform 4.9 Scalability and performance

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/scalability_and_performance/#planning-your-environment-according-to-object-maximums
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/machine_management/#creating-infrastructure-machinesets

CHAPTER 2. RECOMMENDED HOST PRACTICES FOR IBM Z &
LINUXONE ENVIRONMENTS

This topic provides recommended host practices for OpenShift Container Platform on IBM Z and
LinuxONE.

NOTE

The s390x architecture is unique in many aspects. Therefore, some recommendations
made here might not apply to other platforms.

NOTE

Unless stated otherwise, these practices apply to both z/VM and Red Hat Enterprise
Linux (RHEL) KVM installations on IBM Z and LinuxONE.

2.1. MANAGING CPU OVERCOMMITMENT

In a highly virtualized IBM Z environment, you must carefully plan the infrastructure setup and sizing. One
of the most important features of virtualization is the capability to do resource overcommitment,
allocating more resources to the virtual machines than actually available at the hypervisor level. This is
very workload dependent and there is no golden rule that can be applied to all setups.

Depending on your setup, consider these best practices regarding CPU overcommitment:

At LPAR level (PR/SM hypervisor), avoid assigning all available physical cores (IFLs) to each
LPAR. For example, with four physical IFLs available, you should not define three LPARs with
four logical IFLs each.

Check and understand LPAR shares and weights.

An excessive number of virtual CPUs can adversely affect performance. Do not define more
virtual processors to a guest than logical processors are defined to the LPAR.

Configure the number of virtual processors per guest for peak workload, not more.

Start small and monitor the workload. Increase the vCPU number incrementally if necessary.

Not all workloads are suitable for high overcommitment ratios. If the workload is CPU intensive,
you will probably not be able to achieve high ratios without performance problems. Workloads
that are more I/O intensive can keep consistent performance even with high overcommitment
ratios.

Additional resources

z/VM Common Performance Problems and Solutions

z/VM overcommitment considerations

LPAR CPU management

2.2. DISABLE TRANSPARENT HUGE PAGES

Transparent Huge Pages (THP) attempt to automate most aspects of creating, managing, and using

CHAPTER 2. RECOMMENDED HOST PRACTICES FOR IBM Z & LINUXONE ENVIRONMENTS

33

https://www.vm.ibm.com/perf/tips/prgcom.html
https://www.ibm.com/docs/en/linux-on-systems?topic=overcommitment-considerations
https://www.ibm.com/docs/en/zos/2.2.0?topic=director-lpar-cpu-management

huge pages. Since THP automatically manages the huge pages, this is not always handled optimally for
all types of workloads. THP can lead to performance regressions, since many applications handle huge
pages on their own. Therefore, consider disabling THP.

2.3. BOOST NETWORKING PERFORMANCE WITH RECEIVE FLOW
STEERING

Receive Flow Steering (RFS) extends Receive Packet Steering (RPS) by further reducing network
latency. RFS is technically based on RPS, and improves the efficiency of packet processing by increasing
the CPU cache hit rate. RFS achieves this, and in addition considers queue length, by determining the
most convenient CPU for computation so that cache hits are more likely to occur within the CPU. Thus,
the CPU cache is invalidated less and requires fewer cycles to rebuild the cache. This can help reduce
packet processing run time.

2.3.1. Use the Machine Config Operator (MCO) to activate RFS

Procedure

1. Copy the following MCO sample profile into a YAML file. For example, enable-rfs.yaml:

2. Create the MCO profile:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 50-enable-rfs
spec:
 config:
 ignition:
 version: 2.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;charset=US-
ASCII,%23%20turn%20on%20Receive%20Flow%20Steering%20%28RFS%29%20for%20all
%20network%20interfaces%0ASUBSYSTEM%3D%3D%22net%22%2C%20ACTION%3D%
3D%22add%22%2C%20RUN%7Bprogram%7D%2B%3D%22/bin/bash%20-
c%20%27for%20x%20in%20/sys/%24DEVPATH/queues/rx-
%2A%3B%20do%20echo%208192%20%3E%20%24x/rps_flow_cnt%3B%20%20done%27
%22%0A
 filesystem: root
 mode: 0644
 path: /etc/udev/rules.d/70-persistent-net.rules
 - contents:
 source: data:text/plain;charset=US-
ASCII,%23%20define%20sock%20flow%20enbtried%20for%20%20Receive%20Flow%20Ste
ering%20%28RFS%29%0Anet.core.rps_sock_flow_entries%3D8192%0A
 filesystem: root
 mode: 0644
 path: /etc/sysctl.d/95-enable-rps.conf

$ oc create -f enable-rfs.yaml

OpenShift Container Platform 4.9 Scalability and performance

34

3. Verify that an entry named 50-enable-rfs is listed:

4. To deactivate, enter:

Additional resources

OpenShift Container Platform on IBM Z: Tune your network performance with RFS

Configuring Receive Flow Steering (RFS)

Scaling in the Linux Networking Stack

2.4. CHOOSE YOUR NETWORKING SETUP

The networking stack is one of the most important components for a Kubernetes-based product like
OpenShift Container Platform. For IBM Z setups, the networking setup depends on the hypervisor of
your choice. Depending on the workload and the application, the best fit usually changes with the use
case and the traffic pattern.

Depending on your setup, consider these best practices:

Consider all options regarding networking devices to optimize your traffic pattern. Explore the
advantages of OSA-Express, RoCE Express, HiperSockets, z/VM VSwitch, Linux Bridge (KVM),
and others to decide which option leads to the greatest benefit for your setup.

Always use the latest available NIC version. For example, OSA Express 7S 10 GbE shows great
improvement compared to OSA Express 6S 10 GbE with transactional workload types, although
both are 10 GbE adapters.

Each virtual switch adds an additional layer of latency.

The load balancer plays an important role for network communication outside the cluster.
Consider using a production-grade hardware load balancer if this is critical for your application.

OpenShift Container Platform SDN introduces flows and rules, which impact the networking
performance. Make sure to consider pod affinities and placements, to benefit from the locality
of services where communication is critical.

Balance the trade-off between performance and functionality.

Additional resources

OpenShift Container Platform on IBM Z - Performance Experiences, Hints and Tips

OpenShift Container Platform on IBM Z Networking Performance

Controlling pod placement on nodes using node affinity rules

2.5. ENSURE HIGH DISK PERFORMANCE WITH HYPERPAV ON Z/VM

DASD and ECKD devices are commonly used disk types in IBM Z environments. In a typical OpenShift

$ oc get mc

$ oc delete mc 50-enable-rfs

CHAPTER 2. RECOMMENDED HOST PRACTICES FOR IBM Z & LINUXONE ENVIRONMENTS

35

https://developer.ibm.com/tutorials/red-hat-openshift-on-ibm-z-tune-your-network-performance-with-rfs/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-networking-configuration_tools#sect-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Configuration_tools-Configuring_Receive_Flow_Steering_RFS
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.ibm.com/docs/en/linux-on-systems?topic=openshift-performance#openshift_perf__ocp_eval
https://www.ibm.com/docs/en/linux-on-systems?topic=openshift-performance#openshift_perf__ocp_net
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/nodes/#controlling-pod-placement-on-nodes-using-node-affinity-rules

DASD and ECKD devices are commonly used disk types in IBM Z environments. In a typical OpenShift
Container Platform setup in z/VM environments, DASD disks are commonly used to support the local
storage for the nodes. You can set up HyperPAV alias devices to provide more throughput and overall
better I/O performance for the DASD disks that support the z/VM guests.

Using HyperPAV for the local storage devices leads to a significant performance benefit. However, you
must be aware that there is a trade-off between throughput and CPU costs.

2.5.1. Use the Machine Config Operator (MCO) to activate HyperPAV aliases in
nodes using z/VM full-pack minidisks

For z/VM-based OpenShift Container Platform setups that use full-pack minidisks, you can leverage the
advantage of MCO profiles by activating HyperPAV aliases in all of the nodes. You must add YAML
configurations for both control plane and compute nodes.

Procedure

1. Copy the following MCO sample profile into a YAML file for the control plane node. For
example, 05-master-kernelarg-hpav.yaml:

2. Copy the following MCO sample profile into a YAML file for the compute node. For example,
05-worker-kernelarg-hpav.yaml:

NOTE

You must modify the rd.dasd arguments to fit the device IDs.

$ cat 05-master-kernelarg-hpav.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: 05-master-kernelarg-hpav
spec:
 config:
 ignition:
 version: 3.1.0
 kernelArguments:
 - rd.dasd=800-805

$ cat 05-worker-kernelarg-hpav.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 05-worker-kernelarg-hpav
spec:
 config:
 ignition:
 version: 3.1.0
 kernelArguments:
 - rd.dasd=800-805

OpenShift Container Platform 4.9 Scalability and performance

36

3. Create the MCO profiles:

4. To deactivate, enter:

Additional resources

Using HyperPAV for ECKD DASD

Scaling HyperPAV alias devices on Linux guests on z/VM

2.6. RHEL KVM ON IBM Z HOST RECOMMENDATIONS

Optimizing a KVM virtual server environment strongly depends on the workloads of the virtual servers
and on the available resources. The same action that enhances performance in one environment can
have adverse effects in another. Finding the best balance for a particular setting can be a challenge and
often involves experimentation.

The following section introduces some best practices when using OpenShift Container Platform with
RHEL KVM on IBM Z and LinuxONE environments.

2.6.1. Use multiple queues for your VirtIO network interfaces

With multiple virtual CPUs, you can transfer packages in parallel if you provide multiple queues for
incoming and outgoing packets. Use the queues attribute of the driver element to configure multiple
queues. Specify an integer of at least 2 that does not exceed the number of virtual CPUs of the virtual
server.

The following example specification configures two input and output queues for a network interface:

Multiple queues are designed to provide enhanced performance for a network interface, but they also
use memory and CPU resources. Start with defining two queues for busy interfaces. Next, try two
queues for interfaces with less traffic or more than two queues for busy interfaces.

2.6.2. Use I/O threads for your virtual block devices

To make virtual block devices use I/O threads, you must configure one or more I/O threads for the
virtual server and each virtual block device to use one of these I/O threads.

The following example specifies <iothreads>3</iothreads> to configure three I/O threads, with

$ oc create -f 05-master-kernelarg-hpav.yaml

$ oc create -f 05-worker-kernelarg-hpav.yaml

$ oc delete -f 05-master-kernelarg-hpav.yaml

$ oc delete -f 05-worker-kernelarg-hpav.yaml

<interface type="direct">
 <source network="net01"/>
 <model type="virtio"/>
 <driver ... queues="2"/>
</interface>

CHAPTER 2. RECOMMENDED HOST PRACTICES FOR IBM Z & LINUXONE ENVIRONMENTS

37

https://www.ibm.com/docs/en/linux-on-systems?topic=io-using-hyperpav-eckd-dasd
http://public.dhe.ibm.com/software/dw/linux390/perf/zvm_hpav00.pdf

1

2

The following example specifies <iothreads>3</iothreads> to configure three I/O threads, with
consecutive decimal thread IDs 1, 2, and 3. The iothread="2" parameter specifies the driver element of
the disk device to use the I/O thread with ID 2.

Sample I/O thread specification

The number of I/O threads.

The driver element of the disk device.

Threads can increase the performance of I/O operations for disk devices, but they also use memory and
CPU resources. You can configure multiple devices to use the same thread. The best mapping of
threads to devices depends on the available resources and the workload.

Start with a small number of I/O threads. Often, a single I/O thread for all disk devices is sufficient. Do
not configure more threads than the number of virtual CPUs, and do not configure idle threads.

You can use the virsh iothreadadd command to add I/O threads with specific thread IDs to a running
virtual server.

2.6.3. Avoid virtual SCSI devices

Configure virtual SCSI devices only if you need to address the device through SCSI-specific interfaces.
Configure disk space as virtual block devices rather than virtual SCSI devices, regardless of the backing
on the host.

However, you might need SCSI-specific interfaces for:

A LUN for a SCSI-attached tape drive on the host.

A DVD ISO file on the host file system that is mounted on a virtual DVD drive.

2.6.4. Configure guest caching for disk

Configure your disk devices to do caching by the guest and not by the host.

Ensure that the driver element of the disk device includes the cache="none" and io="native"
parameters.

...
<domain>
 <iothreads>3</iothreads> 1
 ...
 <devices>
 ...
 <disk type="block" device="disk"> 2
<driver ... iothread="2"/>
 </disk>
 ...
 </devices>
 ...
</domain>

<disk type="block" device="disk">

OpenShift Container Platform 4.9 Scalability and performance

38

2.6.5. Exclude the memory balloon device

Unless you need a dynamic memory size, do not define a memory balloon device and ensure that libvirt
does not create one for you. Include the memballoon parameter as a child of the devices element in
your domain configuration XML file.

Check the list of active profiles:

2.6.6. Tune the CPU migration algorithm of the host scheduler

IMPORTANT

Do not change the scheduler settings unless you are an expert who understands the
implications. Do not apply changes to production systems without testing them and
confirming that they have the intended effect.

The kernel.sched_migration_cost_ns parameter specifies a time interval in nanoseconds. After the
last execution of a task, the CPU cache is considered to have useful content until this interval expires.
Increasing this interval results in fewer task migrations. The default value is 500000 ns.

If the CPU idle time is higher than expected when there are runnable processes, try reducing this
interval. If tasks bounce between CPUs or nodes too often, try increasing it.

To dynamically set the interval to 60000 ns, enter the following command:

To persistently change the value to 60000 ns, add the following entry to /etc/sysctl.conf:

2.6.7. Disable the cpuset cgroup controller

NOTE

This setting applies only to KVM hosts with cgroups version 1. To enable CPU hotplug on
the host, disable the cgroup controller.

Procedure

1. Open /etc/libvirt/qemu.conf with an editor of your choice.

2. Go to the cgroup_controllers line.

3. Duplicate the entire line and remove the leading number sign (#) from the copy.

 <driver name="qemu" type="raw" cache="none" io="native" iothread="1"/>
...
</disk>

<memballoon model="none"/>

sysctl kernel.sched_migration_cost_ns=60000

kernel.sched_migration_cost_ns=60000

CHAPTER 2. RECOMMENDED HOST PRACTICES FOR IBM Z & LINUXONE ENVIRONMENTS

39

4. Remove the cpuset entry, as follows:

5. For the new setting to take effect, you must restart the libvirtd daemon:

a. Stop all virtual machines.

b. Run the following command:

c. Restart the virtual machines.

This setting persists across host reboots.

2.6.8. Tune the polling period for idle virtual CPUs

When a virtual CPU becomes idle, KVM polls for wakeup conditions for the virtual CPU before allocating
the host resource. You can specify the time interval, during which polling takes place in sysfs at
/sys/module/kvm/parameters/halt_poll_ns. During the specified time, polling reduces the wakeup
latency for the virtual CPU at the expense of resource usage. Depending on the workload, a longer or
shorter time for polling can be beneficial. The time interval is specified in nanoseconds. The default is
50000 ns.

To optimize for low CPU consumption, enter a small value or write 0 to disable polling:

To optimize for low latency, for example for transactional workloads, enter a large value:

Additional resources

Linux on IBM Z Performance Tuning for KVM

Getting started with virtualization on IBM Z

cgroup_controllers = ["cpu", "devices", "memory", "blkio", "cpuacct"]

systemctl restart libvirtd

echo 0 > /sys/module/kvm/parameters/halt_poll_ns

echo 80000 > /sys/module/kvm/parameters/halt_poll_ns

OpenShift Container Platform 4.9 Scalability and performance

40

https://www.ibm.com/docs/en/linux-on-systems?topic=v-kvm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/getting-started-with-virtualization-in-rhel-8-on-ibm-z_configuring-and-managing-virtualization

CHAPTER 3. RECOMMENDED CLUSTER SCALING PRACTICES

IMPORTANT

The guidance in this section is only relevant for installations with cloud provider
integration.

These guidelines apply to OpenShift Container Platform with software-defined
networking (SDN), not Open Virtual Network (OVN).

Apply the following best practices to scale the number of worker machines in your OpenShift Container
Platform cluster. You scale the worker machines by increasing or decreasing the number of replicas that
are defined in the worker machine set.

3.1. RECOMMENDED PRACTICES FOR SCALING THE CLUSTER

When scaling up the cluster to higher node counts:

Spread nodes across all of the available zones for higher availability.

Scale up by no more than 25 to 50 machines at once.

Consider creating new machine sets in each available zone with alternative instance types of
similar size to help mitigate any periodic provider capacity constraints. For example, on AWS,
use m5.large and m5d.large.

NOTE

Cloud providers might implement a quota for API services. Therefore, gradually scale the
cluster.

The controller might not be able to create the machines if the replicas in the machine sets are set to
higher numbers all at one time. The number of requests the cloud platform, which OpenShift Container
Platform is deployed on top of, is able to handle impacts the process. The controller will start to query
more while trying to create, check, and update the machines with the status. The cloud platform on
which OpenShift Container Platform is deployed has API request limits and excessive queries might lead
to machine creation failures due to cloud platform limitations.

Enable machine health checks when scaling to large node counts. In case of failures, the health checks
monitor the condition and automatically repair unhealthy machines.

NOTE

When scaling large and dense clusters to lower node counts, it might take large amounts
of time as the process involves draining or evicting the objects running on the nodes
being terminated in parallel. Also, the client might start to throttle the requests if there
are too many objects to evict. The default client QPS and burst rates are currently set to
5 and 10 respectively and they cannot be modified in OpenShift Container Platform.

3.2. MODIFYING A MACHINE SET

To make changes to a machine set, edit the MachineSet YAML. Then, remove all machines associated
with the machine set by deleting each machine or scaling down the machine set to 0 replicas. Then, scale

CHAPTER 3. RECOMMENDED CLUSTER SCALING PRACTICES

41

the replicas back to the desired number. Changes you make to a machine set do not affect existing
machines.

If you need to scale a machine set without making other changes, you do not need to delete the
machines.

NOTE

By default, the OpenShift Container Platform router pods are deployed on workers.
Because the router is required to access some cluster resources, including the web
console, do not scale the worker machine set to 0 unless you first relocate the router
pods.

Prerequisites

Install an OpenShift Container Platform cluster and the oc command line.

Log in to oc as a user with cluster-admin permission.

Procedure

1. Edit the machine set:

2. Scale down the machine set to 0:

Or:

TIP

You can alternatively apply the following YAML to scale the machine set:

Wait for the machines to be removed.

3. Scale up the machine set as needed:

Or:

$ oc edit machineset <machineset> -n openshift-machine-api

$ oc scale --replicas=0 machineset <machineset> -n openshift-machine-api

$ oc edit machineset <machineset> -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: <machineset>
 namespace: openshift-machine-api
spec:
 replicas: 0

$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

OpenShift Container Platform 4.9 Scalability and performance

42

TIP

You can alternatively apply the following YAML to scale the machine set:

Wait for the machines to start. The new machines contain changes you made to the machine
set.

3.3. ABOUT MACHINE HEALTH CHECKS

Machine health checks automatically repair unhealthy machines in a particular machine pool.

To monitor machine health, create a resource to define the configuration for a controller. Set a condition
to check, such as staying in the NotReady status for five minutes or displaying a permanent condition in
the node-problem-detector, and a label for the set of machines to monitor.

NOTE

You cannot apply a machine health check to a machine with the master role.

The controller that observes a MachineHealthCheck resource checks for the defined condition. If a
machine fails the health check, the machine is automatically deleted and one is created to take its place.
When a machine is deleted, you see a machine deleted event.

To limit disruptive impact of the machine deletion, the controller drains and deletes only one node at a
time. If there are more unhealthy machines than the maxUnhealthy threshold allows for in the targeted
pool of machines, remediation stops and therefore enables manual intervention.

NOTE

Consider the timeouts carefully, accounting for workloads and requirements.

Long timeouts can result in long periods of downtime for the workload on the
unhealthy machine.

Too short timeouts can result in a remediation loop. For example, the timeout for
checking the NotReady status must be long enough to allow the machine to
complete the startup process.

To stop the check, remove the resource.

3.3.1. Limitations when deploying machine health checks

$ oc edit machineset <machineset> -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: <machineset>
 namespace: openshift-machine-api
spec:
 replicas: 2

CHAPTER 3. RECOMMENDED CLUSTER SCALING PRACTICES

43

1

2 3

4

5 6

7

There are limitations to consider before deploying a machine health check:

Only machines owned by a machine set are remediated by a machine health check.

Control plane machines are not currently supported and are not remediated if they are
unhealthy.

If the node for a machine is removed from the cluster, a machine health check considers the
machine to be unhealthy and remediates it immediately.

If the corresponding node for a machine does not join the cluster after the
nodeStartupTimeout, the machine is remediated.

A machine is remediated immediately if the Machine resource phase is Failed.

3.4. SAMPLE MACHINEHEALTHCHECK RESOURCE

The MachineHealthCheck resource for all cloud-based installation types, and other than bare metal,
resembles the following YAML file:

Specify the name of the machine health check to deploy.

Specify a label for the machine pool that you want to check.

Specify the machine set to track in <cluster_name>-<label>-<zone> format. For example, prod-
node-us-east-1a.

Specify the timeout duration for a node condition. If a condition is met for the duration of the
timeout, the machine will be remediated. Long timeouts can result in long periods of downtime for
a workload on an unhealthy machine.

Specify the amount of machines allowed to be concurrently remediated in the targeted pool. This
can be set as a percentage or an integer. If the number of unhealthy machines exceeds the limit set

apiVersion: machine.openshift.io/v1beta1
kind: MachineHealthCheck
metadata:
 name: example 1
 namespace: openshift-machine-api
spec:
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-machine-role: <role> 2
 machine.openshift.io/cluster-api-machine-type: <role> 3
 machine.openshift.io/cluster-api-machineset: <cluster_name>-<label>-<zone> 4
 unhealthyConditions:
 - type: "Ready"
 timeout: "300s" 5
 status: "False"
 - type: "Ready"
 timeout: "300s" 6
 status: "Unknown"
 maxUnhealthy: "40%" 7
 nodeStartupTimeout: "10m" 8

OpenShift Container Platform 4.9 Scalability and performance

44

8 Specify the timeout duration that a machine health check must wait for a node to join the cluster
before a machine is determined to be unhealthy.

NOTE

The matchLabels are examples only; you must map your machine groups based on your
specific needs.

3.4.1. Short-circuiting machine health check remediation

Short circuiting ensures that machine health checks remediate machines only when the cluster is
healthy. Short-circuiting is configured through the maxUnhealthy field in the MachineHealthCheck
resource.

If the user defines a value for the maxUnhealthy field, before remediating any machines, the
MachineHealthCheck compares the value of maxUnhealthy with the number of machines within its
target pool that it has determined to be unhealthy. Remediation is not performed if the number of
unhealthy machines exceeds the maxUnhealthy limit.

IMPORTANT

If maxUnhealthy is not set, the value defaults to 100% and the machines are remediated
regardless of the state of the cluster.

The appropriate maxUnhealthy value depends on the scale of the cluster you deploy and how many
machines the MachineHealthCheck covers. For example, you can use the maxUnhealthy value to
cover multiple machine sets across multiple availability zones so that if you lose an entire zone, your
maxUnhealthy setting prevents further remediation within the cluster.

The maxUnhealthy field can be set as either an integer or percentage. There are different remediation
implementations depending on the maxUnhealthy value.

3.4.1.1. Setting maxUnhealthy by using an absolute value

If maxUnhealthy is set to 2:

Remediation will be performed if 2 or fewer nodes are unhealthy

Remediation will not be performed if 3 or more nodes are unhealthy

These values are independent of how many machines are being checked by the machine health check.

3.4.1.2. Setting maxUnhealthy by using percentages

If maxUnhealthy is set to 40% and there are 25 machines being checked:

Remediation will be performed if 10 or fewer nodes are unhealthy

Remediation will not be performed if 11 or more nodes are unhealthy

If maxUnhealthy is set to 40% and there are 6 machines being checked:

Remediation will be performed if 2 or fewer nodes are unhealthy

CHAPTER 3. RECOMMENDED CLUSTER SCALING PRACTICES

45

Remediation will not be performed if 3 or more nodes are unhealthy

NOTE

The allowed number of machines is rounded down when the percentage of
maxUnhealthy machines that are checked is not a whole number.

3.5. CREATING A MACHINEHEALTHCHECK RESOURCE

You can create a MachineHealthCheck resource for all MachineSets in your cluster. You should not
create a MachineHealthCheck resource that targets control plane machines.

Prerequisites

Install the oc command line interface.

Procedure

1. Create a healthcheck.yml file that contains the definition of your machine health check.

2. Apply the healthcheck.yml file to your cluster:

$ oc apply -f healthcheck.yml

OpenShift Container Platform 4.9 Scalability and performance

46

CHAPTER 4. USING THE NODE TUNING OPERATOR
Learn about the Node Tuning Operator and how you can use it to manage node-level tuning by
orchestrating the tuned daemon.

4.1. ABOUT THE NODE TUNING OPERATOR

The Node Tuning Operator helps you manage node-level tuning by orchestrating the TuneD daemon.
The majority of high-performance applications require some level of kernel tuning. The Node Tuning
Operator provides a unified management interface to users of node-level sysctls and more flexibility to
add custom tuning specified by user needs.

The Operator manages the containerized TuneD daemon for OpenShift Container Platform as a
Kubernetes daemon set. It ensures the custom tuning specification is passed to all containerized TuneD
daemons running in the cluster in the format that the daemons understand. The daemons run on all
nodes in the cluster, one per node.

Node-level settings applied by the containerized TuneD daemon are rolled back on an event that
triggers a profile change or when the containerized TuneD daemon is terminated gracefully by receiving
and handling a termination signal.

The Node Tuning Operator is part of a standard OpenShift Container Platform installation in version 4.1
and later.

4.2. ACCESSING AN EXAMPLE NODE TUNING OPERATOR
SPECIFICATION

Use this process to access an example Node Tuning Operator specification.

Procedure

1. Run:

The default CR is meant for delivering standard node-level tuning for the OpenShift Container Platform
platform and it can only be modified to set the Operator Management state. Any other custom changes
to the default CR will be overwritten by the Operator. For custom tuning, create your own Tuned CRs.
Newly created CRs will be combined with the default CR and custom tuning applied to OpenShift
Container Platform nodes based on node or pod labels and profile priorities.

WARNING

While in certain situations the support for pod labels can be a convenient way of
automatically delivering required tuning, this practice is discouraged and strongly
advised against, especially in large-scale clusters. The default Tuned CR ships
without pod label matching. If a custom profile is created with pod label matching,
then the functionality will be enabled at that time. The pod label functionality might
be deprecated in future versions of the Node Tuning Operator.

$ oc get Tuned/default -o yaml -n openshift-cluster-node-tuning-operator



CHAPTER 4. USING THE NODE TUNING OPERATOR

47

4.3. DEFAULT PROFILES SET ON A CLUSTER

The following are the default profiles set on a cluster.

Starting with OpenShift Container Platform 4.9, all OpenShift TuneD profiles are shipped with the
TuneD package. You can use the oc exec command to view the contents of these profiles:

4.4. VERIFYING THAT THE TUNED PROFILES ARE APPLIED

Verify the TuneD profiles that are applied to your cluster node.

Example output

NAME: Name of the Profile object. There is one Profile object per node and their names match.

TUNED: Name of the desired TuneD profile to apply.

APPLIED: True if the TuneD daemon applied the desired profile. (True/False/Unknown).

DEGRADED: True if any errors were reported during application of the TuneD profile
(True/False/Unknown).

AGE: Time elapsed since the creation of Profile object.

4.5. CUSTOM TUNING SPECIFICATION

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: default
 namespace: openshift-cluster-node-tuning-operator
spec:
 recommend:
 - profile: "openshift-control-plane"
 priority: 30
 match:
 - label: "node-role.kubernetes.io/master"
 - label: "node-role.kubernetes.io/infra"

 - profile: "openshift-node"
 priority: 40

$ oc exec $tuned_pod -n openshift-cluster-node-tuning-operator -- find /usr/lib/tuned/openshift{,-
control-plane,-node} -name tuned.conf -exec grep -H ^ {} \;

$ oc get profile -n openshift-cluster-node-tuning-operator

NAME TUNED APPLIED DEGRADED AGE
master-0 openshift-control-plane True False 6h33m
master-1 openshift-control-plane True False 6h33m
master-2 openshift-control-plane True False 6h33m
worker-a openshift-node True False 6h28m
worker-b openshift-node True False 6h28m

OpenShift Container Platform 4.9 Scalability and performance

48

The custom resource (CR) for the Operator has two major sections. The first section, profile:, is a list of
TuneD profiles and their names. The second, recommend:, defines the profile selection logic.

Multiple custom tuning specifications can co-exist as multiple CRs in the Operator’s namespace. The
existence of new CRs or the deletion of old CRs is detected by the Operator. All existing custom tuning
specifications are merged and appropriate objects for the containerized TuneD daemons are updated.

Management state

The Operator Management state is set by adjusting the default Tuned CR. By default, the Operator is in
the Managed state and the spec.managementState field is not present in the default Tuned CR. Valid
values for the Operator Management state are as follows:

Managed: the Operator will update its operands as configuration resources are updated

Unmanaged: the Operator will ignore changes to the configuration resources

Removed: the Operator will remove its operands and resources the Operator provisioned

Profile data

The profile: section lists TuneD profiles and their names.

Recommended profiles

The profile: selection logic is defined by the recommend: section of the CR. The recommend: section
is a list of items to recommend the profiles based on a selection criteria.

The individual items of the list:

profile:
- name: tuned_profile_1
 data: |
 # TuneD profile specification
 [main]
 summary=Description of tuned_profile_1 profile

 [sysctl]
 net.ipv4.ip_forward=1
 # ... other sysctl's or other TuneD daemon plugins supported by the containerized TuneD

...

- name: tuned_profile_n
 data: |
 # TuneD profile specification
 [main]
 summary=Description of tuned_profile_n profile

 # tuned_profile_n profile settings

recommend:
<recommend-item-1>
...
<recommend-item-n>

CHAPTER 4. USING THE NODE TUNING OPERATOR

49

1

2

3

4

5

6

7

8

1

2

3

4

Optional.

A dictionary of key/value MachineConfig labels. The keys must be unique.

If omitted, profile match is assumed unless a profile with a higher priority matches first or
machineConfigLabels is set.

An optional list.

Profile ordering priority. Lower numbers mean higher priority (0 is the highest priority).

A TuneD profile to apply on a match. For example tuned_profile_1.

Optional operand configuration.

Turn debugging on or off for the TuneD daemon. Options are true for on or false for off. The
default is false.

<match> is an optional list recursively defined as follows:

Node or pod label name.

Optional node or pod label value. If omitted, the presence of <label_name> is enough to match.

Optional object type (node or pod). If omitted, node is assumed.

An optional <match> list.

If <match> is not omitted, all nested <match> sections must also evaluate to true. Otherwise, false is
assumed and the profile with the respective <match> section will not be applied or recommended.
Therefore, the nesting (child <match> sections) works as logical AND operator. Conversely, if any item
of the <match> list matches, the entire <match> list evaluates to true. Therefore, the list acts as logical
OR operator.

If machineConfigLabels is defined, machine config pool based matching is turned on for the given
recommend: list item. <mcLabels> specifies the labels for a machine config. The machine config is
created automatically to apply host settings, such as kernel boot parameters, for the profile
<tuned_profile_name>. This involves finding all machine config pools with machine config selector

- machineConfigLabels: 1
 <mcLabels> 2
 match: 3
 <match> 4
 priority: <priority> 5
 profile: <tuned_profile_name> 6
 operand: 7
 debug: <bool> 8

- label: <label_name> 1
 value: <label_value> 2
 type: <label_type> 3
 <match> 4

OpenShift Container Platform 4.9 Scalability and performance

50

matching <mcLabels> and setting the profile <tuned_profile_name> on all nodes that are assigned
the found machine config pools. To target nodes that have both master and worker roles, you must use
the master role.

The list items match and machineConfigLabels are connected by the logical OR operator. The match
item is evaluated first in a short-circuit manner. Therefore, if it evaluates to true, the
machineConfigLabels item is not considered.

IMPORTANT

When using machine config pool based matching, it is advised to group nodes with the
same hardware configuration into the same machine config pool. Not following this
practice might result in TuneD operands calculating conflicting kernel parameters for two
or more nodes sharing the same machine config pool.

Example: node or pod label based matching

The CR above is translated for the containerized TuneD daemon into its recommend.conf file based on
the profile priorities. The profile with the highest priority (10) is openshift-control-plane-es and,
therefore, it is considered first. The containerized TuneD daemon running on a given node looks to see if
there is a pod running on the same node with the tuned.openshift.io/elasticsearch label set. If not, the
entire <match> section evaluates as false. If there is such a pod with the label, in order for the <match>
section to evaluate to true, the node label also needs to be node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

If the labels for the profile with priority 10 matched, openshift-control-plane-es profile is applied and
no other profile is considered. If the node/pod label combination did not match, the second highest
priority profile (openshift-control-plane) is considered. This profile is applied if the containerized
TuneD pod runs on a node with labels node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

Finally, the profile openshift-node has the lowest priority of 30. It lacks the <match> section and,
therefore, will always match. It acts as a profile catch-all to set openshift-node profile, if no other profile
with higher priority matches on a given node.

- match:
 - label: tuned.openshift.io/elasticsearch
 match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 type: pod
 priority: 10
 profile: openshift-control-plane-es
- match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 priority: 20
 profile: openshift-control-plane
- priority: 30
 profile: openshift-node

CHAPTER 4. USING THE NODE TUNING OPERATOR

51

Example: machine config pool based matching

To minimize node reboots, label the target nodes with a label the machine config pool’s node selector
will match, then create the Tuned CR above and finally create the custom machine config pool itself.

4.6. CUSTOM TUNING EXAMPLES

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: openshift-node-custom
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Custom OpenShift node profile with an additional kernel parameter
 include=openshift-node
 [bootloader]
 cmdline_openshift_node_custom=+skew_tick=1
 name: openshift-node-custom

 recommend:
 - machineConfigLabels:
 machineconfiguration.openshift.io/role: "worker-custom"
 priority: 20
 profile: openshift-node-custom

OpenShift Container Platform 4.9 Scalability and performance

52

Using TuneD profiles from the default CR

The following CR applies custom node-level tuning for OpenShift Container Platform nodes with label
tuned.openshift.io/ingress-node-label set to any value.

Example: custom tuning using the openshift-control-plane TuneD profile

IMPORTANT

Custom profile writers are strongly encouraged to include the default TuneD daemon
profiles shipped within the default Tuned CR. The example above uses the default
openshift-control-plane profile to accomplish this.

Using built-in TuneD profiles

Given the successful rollout of the NTO-managed daemon set, the TuneD operands all manage the
same version of the TuneD daemon. To list the built-in TuneD profiles supported by the daemon, query
any TuneD pod in the following way:

You can use the profile names retrieved by this in your custom tuning specification.

Example: using built-in hpc-compute TuneD profile

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: ingress
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=A custom OpenShift ingress profile
 include=openshift-control-plane
 [sysctl]
 net.ipv4.ip_local_port_range="1024 65535"
 net.ipv4.tcp_tw_reuse=1
 name: openshift-ingress
 recommend:
 - match:
 - label: tuned.openshift.io/ingress-node-label
 priority: 10
 profile: openshift-ingress

$ oc exec $tuned_pod -n openshift-cluster-node-tuning-operator -- find /usr/lib/tuned/ -name
tuned.conf -printf '%h\n' | sed 's|^.*/||'

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: openshift-node-hpc-compute
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:

CHAPTER 4. USING THE NODE TUNING OPERATOR

53

In addition to the built-in hpc-compute profile, the example above includes the openshift-node TuneD
daemon profile shipped within the default Tuned CR to use OpenShift-specific tuning for compute
nodes.

4.7. SUPPORTED TUNED DAEMON PLUGINS

Excluding the [main] section, the following TuneD plugins are supported when using custom profiles
defined in the profile: section of the Tuned CR:

audio

cpu

disk

eeepc_she

modules

mounts

net

scheduler

scsi_host

selinux

sysctl

sysfs

usb

video

vm

There is some dynamic tuning functionality provided by some of these plugins that is not supported. The
following TuneD plugins are currently not supported:

bootloader

script

 - data: |
 [main]
 summary=Custom OpenShift node profile for HPC compute workloads
 include=openshift-node,hpc-compute
 name: openshift-node-hpc-compute

 recommend:
 - match:
 - label: tuned.openshift.io/openshift-node-hpc-compute
 priority: 20
 profile: openshift-node-hpc-compute

OpenShift Container Platform 4.9 Scalability and performance

54

systemd

See Available TuneD Plugins and Getting Started with TuneD for more information.

CHAPTER 4. USING THE NODE TUNING OPERATOR

55

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/customizing-tuned-profiles_monitoring-and-managing-system-status-and-performance#available-tuned-plug-ins_customizing-tuned-profiles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance

CHAPTER 5. USING CLUSTER LOADER
Cluster Loader is a tool that deploys large numbers of various objects to a cluster, which creates user-
defined cluster objects. Build, configure, and run Cluster Loader to measure performance metrics of
your OpenShift Container Platform deployment at various cluster states.

IMPORTANT

Cluster Loader is now deprecated and will be removed in a future release.

5.1. INSTALLING CLUSTER LOADER

Procedure

1. To pull the container image, run:

5.2. RUNNING CLUSTER LOADER

Prerequisites

The repository will prompt you to authenticate. The registry credentials allow you to access the
image, which is not publicly available. Use your existing authentication credentials from
installation.

Procedure

1. Execute Cluster Loader using the built-in test configuration, which deploys five template builds
and waits for them to complete:

Alternatively, execute Cluster Loader with a user-defined configuration by setting the
environment variable for VIPERCONFIG:

In this example, ${LOCAL_KUBECONFIG} refers to the path to the kubeconfig on your local
file system. Also, there is a directory called ${LOCAL_CONFIG_FILE_PATH}, which is mounted
into the container that contains a configuration file called test.yaml. Additionally, if the
test.yaml references any external template files or podspec files, they should also be mounted
into the container.

$ podman pull quay.io/openshift/origin-tests:4.9

$ podman run -v ${LOCAL_KUBECONFIG}:/root/.kube/config:z -i \
quay.io/openshift/origin-tests:4.9 /bin/bash -c 'export KUBECONFIG=/root/.kube/config && \
openshift-tests run-test "[sig-scalability][Feature:Performance] Load cluster \
should populate the cluster [Slow][Serial] [Suite:openshift]"'

$ podman run -v ${LOCAL_KUBECONFIG}:/root/.kube/config:z \
-v ${LOCAL_CONFIG_FILE_PATH}:/root/configs/:z \
-i quay.io/openshift/origin-tests:4.9 \
/bin/bash -c 'KUBECONFIG=/root/.kube/config VIPERCONFIG=/root/configs/test.yaml \
openshift-tests run-test "[sig-scalability][Feature:Performance] Load cluster \
should populate the cluster [Slow][Serial] [Suite:openshift]"'

OpenShift Container Platform 4.9 Scalability and performance

56

5.3. CONFIGURING CLUSTER LOADER

The tool creates multiple namespaces (projects), which contain multiple templates or pods.

5.3.1. Example Cluster Loader configuration file

Cluster Loader’s configuration file is a basic YAML file:

provider: local 1
ClusterLoader:
 cleanup: true
 projects:
 - num: 1
 basename: clusterloader-cakephp-mysql
 tuning: default
 ifexists: reuse
 templates:
 - num: 1
 file: cakephp-mysql.json

 - num: 1
 basename: clusterloader-dancer-mysql
 tuning: default
 ifexists: reuse
 templates:
 - num: 1
 file: dancer-mysql.json

 - num: 1
 basename: clusterloader-django-postgresql
 tuning: default
 ifexists: reuse
 templates:
 - num: 1
 file: django-postgresql.json

 - num: 1
 basename: clusterloader-nodejs-mongodb
 tuning: default
 ifexists: reuse
 templates:
 - num: 1
 file: quickstarts/nodejs-mongodb.json

 - num: 1
 basename: clusterloader-rails-postgresql
 tuning: default
 templates:
 - num: 1
 file: rails-postgresql.json

 tuningsets: 2
 - name: default
 pods:
 stepping: 3

CHAPTER 5. USING CLUSTER LOADER

57

1

2

3

4

Optional setting for end-to-end tests. Set to local to avoid extra log messages.

The tuning sets allow rate limiting and stepping, the ability to create several batches of pods while
pausing in between sets. Cluster Loader monitors completion of the previous step before
continuing.

Stepping will pause for M seconds after each N objects are created.

Rate limiting will wait M milliseconds between the creation of objects.

This example assumes that references to any external template files or pod spec files are also mounted
into the container.

IMPORTANT

If you are running Cluster Loader on Microsoft Azure, then you must set the
AZURE_AUTH_LOCATION variable to a file that contains the output of
terraform.azure.auto.tfvars.json, which is present in the installer directory.

5.3.2. Configuration fields

Table 5.1. Top-level Cluster Loader Fields

Field Description

cleanup Set to true or false. One definition per
configuration. If set to true, cleanup deletes all
namespaces (projects) created by Cluster Loader at
the end of the test.

projects A sub-object with one or many definition(s). Under
projects, each namespace to create is defined and
projects has several mandatory subheadings.

tuningsets A sub-object with one definition per configuration.
tuningsets allows the user to define a tuning set to
add configurable timing to project or object creation
(pods, templates, and so on).

sync An optional sub-object with one definition per
configuration. Adds synchronization possibilities
during object creation.

Table 5.2. Fields under projects

 stepsize: 5
 pause: 0 s
 rate_limit: 4
 delay: 0 ms

OpenShift Container Platform 4.9 Scalability and performance

58

Field Description

num An integer. One definition of the count of how many
projects to create.

basename A string. One definition of the base name for the
project. The count of identical namespaces will be
appended to Basename to prevent collisions.

tuning A string. One definition of what tuning set you want
to apply to the objects, which you deploy inside this
namespace.

ifexists A string containing either reuse or delete. Defines
what the tool does if it finds a project or namespace
that has the same name of the project or namespace
it creates during execution.

configmaps A list of key-value pairs. The key is the config map
name and the value is a path to a file from which you
create the config map.

secrets A list of key-value pairs. The key is the secret name
and the value is a path to a file from which you
create the secret.

pods A sub-object with one or many definition(s) of pods
to deploy.

templates A sub-object with one or many definition(s) of
templates to deploy.

Table 5.3. Fields under pods and templates

Field Description

num An integer. The number of pods or templates to
deploy.

image A string. The docker image URL to a repository
where it can be pulled.

basename A string. One definition of the base name for the
template (or pod) that you want to create.

file A string. The path to a local file, which is either a pod
spec or template to be created.

CHAPTER 5. USING CLUSTER LOADER

59

parameters Key-value pairs. Under parameters, you can specify
a list of values to override in the pod or template.

Field Description

Table 5.4. Fields under tuningsets

Field Description

name A string. The name of the tuning set which will match
the name specified when defining a tuning in a
project.

pods A sub-object identifying the tuningsets that will
apply to pods.

templates A sub-object identifying the tuningsets that will
apply to templates.

Table 5.5. Fields under tuningsets pods or tuningsets templates

Field Description

stepping A sub-object. A stepping configuration used if you
want to create an object in a step creation pattern.

rate_limit A sub-object. A rate-limiting tuning set configuration
to limit the object creation rate.

Table 5.6. Fields under tuningsets pods or tuningsets templates, stepping

Field Description

stepsize An integer. How many objects to create before
pausing object creation.

pause An integer. How many seconds to pause after
creating the number of objects defined in stepsize.

timeout An integer. How many seconds to wait before failure
if the object creation is not successful.

delay An integer. How many milliseconds (ms) to wait
between creation requests.

Table 5.7. Fields under sync

OpenShift Container Platform 4.9 Scalability and performance

60

Field Description

server A sub-object with enabled and port fields. The
boolean enabled defines whether to start an HTTP
server for pod synchronization. The integer port
defines the HTTP server port to listen on (9090 by
default).

running A boolean. Wait for pods with labels matching
selectors to go into Running state.

succeeded A boolean. Wait for pods with labels matching
selectors to go into Completed state.

selectors A list of selectors to match pods in Running or
Completed states.

timeout A string. The synchronization timeout period to wait
for pods in Running or Completed states. For
values that are not 0, use units: [ns|us|ms|s|m|h].

5.4. KNOWN ISSUES

Cluster Loader fails when called without configuration. (BZ#1761925)

If the IDENTIFIER parameter is not defined in user templates, template creation fails with error:
unknown parameter name "IDENTIFIER". If you deploy templates, add this parameter to your
template to avoid this error:

If you deploy pods, adding the parameter is unnecessary.

{
 "name": "IDENTIFIER",
 "description": "Number to append to the name of resources",
 "value": "1"
}

CHAPTER 5. USING CLUSTER LOADER

61

https://bugzilla.redhat.com/show_bug.cgi?id=1761925

CHAPTER 6. USING CPU MANAGER AND TOPOLOGY
MANAGER

CPU Manager manages groups of CPUs and constrains workloads to specific CPUs.

CPU Manager is useful for workloads that have some of these attributes:

Require as much CPU time as possible.

Are sensitive to processor cache misses.

Are low-latency network applications.

Coordinate with other processes and benefit from sharing a single processor cache.

Topology Manager collects hints from the CPU Manager, Device Manager, and other Hint Providers to
align pod resources, such as CPU, SR-IOV VFs, and other device resources, for all Quality of Service
(QoS) classes on the same non-uniform memory access (NUMA) node.

Topology Manager uses topology information from the collected hints to decide if a pod can be
accepted or rejected on a node, based on the configured Topology Manager policy and pod resources
requested.

Topology Manager is useful for workloads that use hardware accelerators to support latency-critical
execution and high throughput parallel computation.

To use Topology Manager you must configure CPU Manager with the static policy.

6.1. SETTING UP CPU MANAGER

Procedure

1. Optional: Label a node:

2. Edit the MachineConfigPool of the nodes where CPU Manager should be enabled. In this
example, all workers have CPU Manager enabled:

3. Add a label to the worker machine config pool:

4. Create a KubeletConfig, cpumanager-kubeletconfig.yaml, custom resource (CR). Refer to
the label created in the previous step to have the correct nodes updated with the new kubelet
config. See the machineConfigPoolSelector section:

oc label node perf-node.example.com cpumanager=true

oc edit machineconfigpool worker

metadata:
 creationTimestamp: 2020-xx-xxx
 generation: 3
 labels:
 custom-kubelet: cpumanager-enabled

OpenShift Container Platform 4.9 Scalability and performance

62

1

2

Specify a policy:

none. This policy explicitly enables the existing default CPU affinity scheme, providing
no affinity beyond what the scheduler does automatically. This is the default policy.

static. This policy allows containers in guaranteed pods with integer CPU requests. It
also limits access to exclusive CPUs on the node. If static, you must use a lowercase s.

Optional. Specify the CPU Manager reconcile frequency. The default is 5s.

5. Create the dynamic kubelet config:

This adds the CPU Manager feature to the kubelet config and, if needed, the Machine Config
Operator (MCO) reboots the node. To enable CPU Manager, a reboot is not needed.

6. Check for the merged kubelet config:

Example output

7. Check the worker for the updated kubelet.conf:

Example output

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: cpumanager-enabled
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: cpumanager-enabled
 kubeletConfig:
 cpuManagerPolicy: static 1
 cpuManagerReconcilePeriod: 5s 2

oc create -f cpumanager-kubeletconfig.yaml

oc get machineconfig 99-worker-XXXXXX-XXXXX-XXXX-XXXXX-kubelet -o json | grep
ownerReference -A7

 "ownerReferences": [
 {
 "apiVersion": "machineconfiguration.openshift.io/v1",
 "kind": "KubeletConfig",
 "name": "cpumanager-enabled",
 "uid": "7ed5616d-6b72-11e9-aae1-021e1ce18878"
 }
]

oc debug node/perf-node.example.com
sh-4.2# cat /host/etc/kubernetes/kubelet.conf | grep cpuManager

CHAPTER 6. USING CPU MANAGER AND TOPOLOGY MANAGER

63

1

2

cpuManagerPolicy is defined when you create the KubeletConfig CR.

cpuManagerReconcilePeriod is defined when you create the KubeletConfig CR.

8. Create a pod that requests a core or multiple cores. Both limits and requests must have their
CPU value set to a whole integer. That is the number of cores that will be dedicated to this pod:

Example output

9. Create the pod:

10. Verify that the pod is scheduled to the node that you labeled:

Example output

cpuManagerPolicy: static 1
cpuManagerReconcilePeriod: 5s 2

cat cpumanager-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 generateName: cpumanager-
spec:
 containers:
 - name: cpumanager
 image: gcr.io/google_containers/pause-amd64:3.0
 resources:
 requests:
 cpu: 1
 memory: "1G"
 limits:
 cpu: 1
 memory: "1G"
 nodeSelector:
 cpumanager: "true"

oc create -f cpumanager-pod.yaml

oc describe pod cpumanager

Name: cpumanager-6cqz7
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: perf-node.example.com/xxx.xx.xx.xxx
...
 Limits:
 cpu: 1
 memory: 1G
 Requests:

OpenShift Container Platform 4.9 Scalability and performance

64

11. Verify that the cgroups are set up correctly. Get the process ID (PID) of the pause process:

Pods of quality of service (QoS) tier Guaranteed are placed within the kubepods.slice. Pods of
other QoS tiers end up in child cgroups of kubepods:

Example output

12. Check the allowed CPU list for the task:

Example output

13. Verify that another pod (in this case, the pod in the burstable QoS tier) on the system cannot
run on the core allocated for the Guaranteed pod:

Example output

 cpu: 1
 memory: 1G
...
QoS Class: Guaranteed
Node-Selectors: cpumanager=true

├─init.scope
│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 17
└─kubepods.slice
 ├─kubepods-pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice
 │ ├─crio-b5437308f1a574c542bdf08563b865c0345c8f8c0b0a655612c.scope
 │ └─32706 /pause

cd /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-
pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice/crio-
b5437308f1ad1a7db0574c542bdf08563b865c0345c86e9585f8c0b0a655612c.scope
for i in `ls cpuset.cpus tasks` ; do echo -n "$i "; cat $i ; done

cpuset.cpus 1
tasks 32706

grep ^Cpus_allowed_list /proc/32706/status

 Cpus_allowed_list: 1

cat /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-besteffort.slice/kubepods-besteffort-
podc494a073_6b77_11e9_98c0_06bba5c387ea.slice/crio-
c56982f57b75a2420947f0afc6cafe7534c5734efc34157525fa9abbf99e3849.scope/cpuset.cpus

0
oc describe node perf-node.example.com

...
Capacity:
 attachable-volumes-aws-ebs: 39
 cpu: 2
 ephemeral-storage: 124768236Ki

CHAPTER 6. USING CPU MANAGER AND TOPOLOGY MANAGER

65

This VM has two CPU cores. The system-reserved setting reserves 500 millicores, meaning
that half of one core is subtracted from the total capacity of the node to arrive at the Node
Allocatable amount. You can see that Allocatable CPU is 1500 millicores. This means you can
run one of the CPU Manager pods since each will take one whole core. A whole core is
equivalent to 1000 millicores. If you try to schedule a second pod, the system will accept the
pod, but it will never be scheduled:

6.2. TOPOLOGY MANAGER POLICIES

Topology Manager aligns Pod resources of all Quality of Service (QoS) classes by collecting topology
hints from Hint Providers, such as CPU Manager and Device Manager, and using the collected hints to
align the Pod resources.

Topology Manager supports four allocation policies, which you assign in the cpumanager-enabled
custom resource (CR):

none policy

This is the default policy and does not perform any topology alignment.

best-effort policy

For each container in a pod with the best-effort topology management policy, kubelet calls each Hint
Provider to discover their resource availability. Using this information, the Topology Manager stores
the preferred NUMA Node affinity for that container. If the affinity is not preferred, Topology
Manager stores this and admits the pod to the node.

restricted policy

For each container in a pod with the restricted topology management policy, kubelet calls each Hint
Provider to discover their resource availability. Using this information, the Topology Manager stores

 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 8162900Ki
 pods: 250
Allocatable:
 attachable-volumes-aws-ebs: 39
 cpu: 1500m
 ephemeral-storage: 124768236Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 7548500Ki
 pods: 250
------- ---- ------------ ---------- --------------- ------------- --
-
 default cpumanager-6cqz7 1 (66%) 1 (66%) 1G (12%)
1G (12%) 29m

Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 Resource Requests Limits
 -------- -------- ------
 cpu 1440m (96%) 1 (66%)

NAME READY STATUS RESTARTS AGE
cpumanager-6cqz7 1/1 Running 0 33m
cpumanager-7qc2t 0/1 Pending 0 11s

OpenShift Container Platform 4.9 Scalability and performance

66

1

2

the preferred NUMA Node affinity for that container. If the affinity is not preferred, Topology
Manager rejects this pod from the node, resulting in a pod in a Terminated state with a pod
admission failure.

single-numa-node policy

For each container in a pod with the single-numa-node topology management policy, kubelet calls
each Hint Provider to discover their resource availability. Using this information, the Topology
Manager determines if a single NUMA Node affinity is possible. If it is, the pod is admitted to the
node. If a single NUMA Node affinity is not possible, the Topology Manager rejects the pod from the
node. This results in a pod in a Terminated state with a pod admission failure.

6.3. SETTING UP TOPOLOGY MANAGER

To use Topology Manager, you must configure an allocation policy in the cpumanager-enabled custom
resource (CR). This file might exist if you have set up CPU Manager. If the file does not exist, you can
create the file.

Prequisites

Configure the CPU Manager policy to be static.

Procedure

To activate Topololgy Manager:

1. Configure the Topology Manager allocation policy in the cpumanager-enabled custom
resource (CR).

This parameter must be static with a lowercase s.

Specify your selected Topology Manager allocation policy. Here, the policy is single-numa-
node. Acceptable values are: default, best-effort, restricted, single-numa-node.

6.4. POD INTERACTIONS WITH TOPOLOGY MANAGER POLICIES

The example Pod specs below help illustrate pod interactions with Topology Manager.

The following pod runs in the BestEffort QoS class because no resource requests or limits are specified.

$ oc edit KubeletConfig cpumanager-enabled

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: cpumanager-enabled
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: cpumanager-enabled
 kubeletConfig:
 cpuManagerPolicy: static 1
 cpuManagerReconcilePeriod: 5s
 topologyManagerPolicy: single-numa-node 2

CHAPTER 6. USING CPU MANAGER AND TOPOLOGY MANAGER

67

The next pod runs in the Burstable QoS class because requests are less than limits.

If the selected policy is anything other than none, Topology Manager would not consider either of these
Pod specifications.

The last example pod below runs in the Guaranteed QoS class because requests are equal to limits.

Topology Manager would consider this pod. The Topology Manager would consult the hint providers,
which are CPU Manager and Device Manager, to get topology hints for the pod.

Topology Manager will use this information to store the best topology for this container. In the case of
this pod, CPU Manager and Device Manager will use this stored information at the resource allocation
stage.

spec:
 containers:
 - name: nginx
 image: nginx

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 requests:
 memory: "100Mi"

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 cpu: "2"
 example.com/device: "1"
 requests:
 memory: "200Mi"
 cpu: "2"
 example.com/device: "1"

OpenShift Container Platform 4.9 Scalability and performance

68

CHAPTER 7. SCALING THE CLUSTER MONITORING
OPERATOR

OpenShift Container Platform exposes metrics that the Cluster Monitoring Operator collects and stores
in the Prometheus-based monitoring stack. As an administrator, you can view system resources,
containers, and components metrics in one dashboard interface, Grafana.

7.1. PROMETHEUS DATABASE STORAGE REQUIREMENTS

Red Hat performed various tests for different scale sizes.

NOTE

The Prometheus storage requirements below are not prescriptive. Higher resource
consumption might be observed in your cluster depending on workload activity and
resource use.

Table 7.1. Prometheus Database storage requirements based on number of nodes/pods in the
cluster

Number of
Nodes

Number of
pods

Prometheus
storage
growth per
day

Prometheus
storage
growth per 15
days

RAM Space
(per scale
size)

Network (per
tsdb chunk)

50 1800 6.3 GB 94 GB 6 GB 16 MB

100 3600 13 GB 195 GB 10 GB 26 MB

150 5400 19 GB 283 GB 12 GB 36 MB

200 7200 25 GB 375 GB 14 GB 46 MB

Approximately 20 percent of the expected size was added as overhead to ensure that the storage
requirements do not exceed the calculated value.

The above calculation is for the default OpenShift Container Platform Cluster Monitoring Operator.

NOTE

CPU utilization has minor impact. The ratio is approximately 1 core out of 40 per 50
nodes and 1800 pods.

Recommendations for OpenShift Container Platform

Use at least three infrastructure (infra) nodes.

Use at least three openshift-container-storage nodes with non-volatile memory express
(NVMe) drives.

CHAPTER 7. SCALING THE CLUSTER MONITORING OPERATOR

69

1

2 4

3

5

7.2. CONFIGURING CLUSTER MONITORING

You can increase the storage capacity for the Prometheus component in the cluster monitoring stack.

Procedure

To increase the storage capacity for Prometheus:

1. Create a YAML configuration file, cluster-monitoring-config.yaml. For example:

A typical value is PROMETHEUS_RETENTION_PERIOD=15d. Units are measured in time
using one of these suffixes: s, m, h, d.

The storage class for your cluster.

A typical value is PROMETHEUS_STORAGE_SIZE=2000Gi. Storage values can be a plain
integer or as a fixed-point integer using one of these suffixes: E, P, T, G, M, K. You can also
use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki.

A typical value is ALERTMANAGER_STORAGE_SIZE=20Gi. Storage values can be a plain
integer or as a fixed-point integer using one of these suffixes: E, P, T, G, M, K. You can also
use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki.

2. Add values for the retention period, storage class, and storage sizes.

3. Save the file.

4. Apply the changes by running:

apiVersion: v1
kind: ConfigMap
data:
 config.yaml: |
 prometheusK8s:
 retention: {{PROMETHEUS_RETENTION_PERIOD}} 1
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 volumeClaimTemplate:
 spec:
 storageClassName: {{STORAGE_CLASS}} 2
 resources:
 requests:
 storage: {{PROMETHEUS_STORAGE_SIZE}} 3
 alertmanagerMain:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 volumeClaimTemplate:
 spec:
 storageClassName: {{STORAGE_CLASS}} 4
 resources:
 requests:
 storage: {{ALERTMANAGER_STORAGE_SIZE}} 5
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring

OpenShift Container Platform 4.9 Scalability and performance

70

$ oc create -f cluster-monitoring-config.yaml

CHAPTER 7. SCALING THE CLUSTER MONITORING OPERATOR

71

CHAPTER 8. PLANNING YOUR ENVIRONMENT ACCORDING
TO OBJECT MAXIMUMS

Consider the following tested object maximums when you plan your OpenShift Container Platform
cluster.

These guidelines are based on the largest possible cluster. For smaller clusters, the maximums are lower.
There are many factors that influence the stated thresholds, including the etcd version or storage data
format.

IMPORTANT

These guidelines apply to OpenShift Container Platform with software-defined
networking (SDN), not Open Virtual Network (OVN).

In most cases, exceeding these numbers results in lower overall performance. It does not necessarily
mean that the cluster will fail.

WARNING

Clusters that experience rapid change, such as those with many starting and
stopping pods, can have a lower practical maximum size than documented.

8.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER
MAXIMUMS FOR MAJOR RELEASES

Tested Cloud Platforms for OpenShift Container Platform 3.x: Red Hat OpenStack Platform (RHOSP),
Amazon Web Services and Microsoft Azure. Tested Cloud Platforms for OpenShift Container Platform
4.x: Amazon Web Services, Microsoft Azure and Google Cloud Platform.

Maximum type 3.x tested maximum 4.x tested maximum

Number of nodes 2,000 2,000 [1]

Number of pods [2] 150,000 150,000

Number of pods per node 250 500 [3]

Number of pods per core There is no default value. There is no default value.

Number of namespaces [4] 10,000 10,000



OpenShift Container Platform 4.9 Scalability and performance

72

Number of builds 10,000 (Default pod RAM 512 Mi)
- Pipeline Strategy

10,000 (Default pod RAM 512 Mi)
- Source-to-Image (S2I) build
strategy

Number of pods per namespace
[5]

25,000 25,000

Number of routes and back ends
per Ingress Controller

2,000 per router 2,000 per router

Number of secrets 80,000 80,000

Number of config maps 90,000 90,000

Number of services [6] 10,000 10,000

Number of services per
namespace

5,000 5,000

Number of back-ends per service 5,000 5,000

Number of deployments per

namespace [5]

2,000 2,000

Number of build configs 12,000 12,000

Number of custom resource
definitions (CRD)

There is no default value. 512 [7]

Maximum type 3.x tested maximum 4.x tested maximum

1. Pause pods were deployed to stress the control plane components of OpenShift Container
Platform at 2000 node scale.

2. The pod count displayed here is the number of test pods. The actual number of pods depends
on the application’s memory, CPU, and storage requirements.

3. This was tested on a cluster with 100 worker nodes with 500 pods per worker node. The default
maxPods is still 250. To get to 500 maxPods, the cluster must be created with a maxPods set
to 500 using a custom kubelet config. If you need 500 user pods, you need a hostPrefix of 22
because there are 10-15 system pods already running on the node. The maximum number of
pods with attached persistent volume claims (PVC) depends on storage backend from where
PVC are allocated. In our tests, only OpenShift Container Storage v4 (OCS v4) was able to
satisfy the number of pods per node discussed in this document.

4. When there are a large number of active projects, etcd might suffer from poor performance if
the keyspace grows excessively large and exceeds the space quota. Periodic maintenance of
etcd, including defragmentation, is highly recommended to free etcd storage.

5. There are a number of control loops in the system that must iterate over all objects in a given

CHAPTER 8. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS

73

namespace as a reaction to some changes in state. Having a large number of objects of a given
type in a single namespace can make those loops expensive and slow down processing given
state changes. The limit assumes that the system has enough CPU, memory, and disk to satisfy
the application requirements.

6. Each service port and each service back-end has a corresponding entry in iptables. The number
of back-ends of a given service impact the size of the endpoints objects, which impacts the size
of data that is being sent all over the system.

7. OpenShift Container Platform has a limit of 512 total custom resource definitions (CRD),
including those installed by OpenShift Container Platform, products integrating with OpenShift
Container Platform and user created CRDs. If there are more than 512 CRDs created, then there
is a possibility that oc commands requests may be throttled.

NOTE

Red Hat does not provide direct guidance on sizing your OpenShift Container Platform
cluster. This is because determining whether your cluster is within the supported bounds
of OpenShift Container Platform requires careful consideration of all the
multidimensional factors that limit the cluster scale.

8.2. OPENSHIFT CONTAINER PLATFORM ENVIRONMENT AND
CONFIGURATION ON WHICH THE CLUSTER MAXIMUMS ARE TESTED

AWS cloud platform:

Node Flavor vCPU RAM(GiB) Disk type Disk
size(GiB)
/IOS

Count Region

Master/et

cd [1]

r5.4xlarge 16 128 gp3 220 3 us-west-2

Infra [2] m5.12xlarg
e

48 192 gp3 100 3 us-west-2

Workload
[3]

m5.4xlarg
e

16 64 gp3 500 [4] 1 us-west-2

Worker m5.2xlarg
e

8 32 gp3 100 3/25/250

/500 [5]

us-west-2

1. gp3 disks with a baseline performance of 3000 IOPS and 125 MiB per second are used for
control plane/etcd nodes because etcd is latency sensitive. gp3 volumes do not use burst
performance.

2. Infra nodes are used to host Monitoring, Ingress, and Registry components to ensure they have
enough resources to run at large scale.

3. Workload node is dedicated to run performance and scalability workload generators.

4. Larger disk size is used so that there is enough space to store the large amounts of data that is

OpenShift Container Platform 4.9 Scalability and performance

74

4. Larger disk size is used so that there is enough space to store the large amounts of data that is
collected during the performance and scalability test run.

5. Cluster is scaled in iterations and performance and scalability tests are executed at the
specified node counts.

IBM Power platform:

Node vCPU RAM(GiB) Disk type Disk
size(GiB)/IOS

Count

Master/etcd [1] 16 32 io1 120 / 10 IOPS
per GiB

3

Infra [2] 16 64 gp2 120 2

Workload [3] 16 256 gp2 120 [4] 1

Worker 16 64 gp2 120 3/25/250/50

0 [5]

1. io1 disks with 120 / 3 IOPS per GB are used for master/etcd nodes as etcd is I/O intensive and
latency sensitive.

2. Infra nodes are used to host Monitoring, Ingress, and Registry components to ensure they have
enough resources to run at large scale.

3. Workload node is dedicated to run performance and scalability workload generators.

4. Larger disk size is used so that there is enough space to store the large amounts of data that is
collected during the performance and scalability test run.

5. Cluster is scaled in iterations and performance and scalability tests are executed at the
specified node counts.

8.2.1. IBM Z platform

Node vCPU [4] RAM(GiB)[5] Disk type Disk
size(GiB)/IOS

Count

Control

plane/etcd [1,2]

8 32 ds8k 300 / LCU 1 3

Compute [1,3] 8 32 ds8k 150 / LCU 2 4 nodes
(scaled to
100/250/500
pods per
node)

1. Nodes are distributed between two logical control units (LCUs) to optimize disk I/O load of the

CHAPTER 8. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS

75

1. Nodes are distributed between two logical control units (LCUs) to optimize disk I/O load of the
control plane/etcd nodes as etcd is I/O intensive and latency sensitive. Etcd I/O demand should
not interfere with other workloads.

2. Four compute nodes are used for the tests running several iterations with 100/250/500 pods
at the same time. First, idling pods were used to evaluate if pods can be instanced. Next, a
network and CPU demanding client/server workload were used to evaluate the stability of the
system under stress. Client and server pods were pairwise deployed and each pair was spread
over two compute nodes.

3. No separate workload node was used. The workload simulates a microservice workload between
two compute nodes.

4. Physical number of processors used is six Integrated Facilities for Linux (IFLs).

5. Total physical memory used is 512 GiB.

8.3. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED
CLUSTER MAXIMUMS

IMPORTANT

Oversubscribing the physical resources on a node affects resource guarantees the
Kubernetes scheduler makes during pod placement. Learn what measures you can take
to avoid memory swapping.

Some of the tested maximums are stretched only in a single dimension. They will vary
when many objects are running on the cluster.

The numbers noted in this documentation are based on Red Hat’s test methodology,
setup, configuration, and tunings. These numbers can vary based on your own individual
setup and environments.

While planning your environment, determine how many pods are expected to fit per node:

required pods per cluster / pods per node = total number of nodes needed

The current maximum number of pods per node is 250. However, the number of pods that fit on a node
is dependent on the application itself. Consider the application’s memory, CPU, and storage
requirements, as described in How to plan your environment according to application requirements .

Example scenario

If you want to scope your cluster for 2200 pods per cluster, you would need at least five nodes,
assuming that there are 500 maximum pods per node:

2200 / 500 = 4.4

If you increase the number of nodes to 20, then the pod distribution changes to 110 pods per node:

2200 / 20 = 110

Where:

OpenShift Container Platform 4.9 Scalability and performance

76

required pods per cluster / total number of nodes = expected pods per node

8.4. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO
APPLICATION REQUIREMENTS

Consider an example application environment:

Pod type Pod quantity Max memory CPU cores Persistent
storage

apache 100 500 MB 0.5 1 GB

node.js 200 1 GB 1 1 GB

postgresql 100 1 GB 2 10 GB

JBoss EAP 100 1 GB 1 1 GB

Extrapolated requirements: 550 CPU cores, 450GB RAM, and 1.4TB storage.

Instance size for nodes can be modulated up or down, depending on your preference. Nodes are often
resource overcommitted. In this deployment scenario, you can choose to run additional smaller nodes or
fewer larger nodes to provide the same amount of resources. Factors such as operational agility and
cost-per-instance should be considered.

Node type Quantity CPUs RAM (GB)

Nodes (option 1) 100 4 16

Nodes (option 2) 50 8 32

Nodes (option 3) 25 16 64

Some applications lend themselves well to overcommitted environments, and some do not. Most Java
applications and applications that use huge pages are examples of applications that would not allow for
overcommitment. That memory can not be used for other applications. In the example above, the
environment would be roughly 30 percent overcommitted, a common ratio.

The application pods can access a service either by using environment variables or DNS. If using
environment variables, for each active service the variables are injected by the kubelet when a pod is run
on a node. A cluster-aware DNS server watches the Kubernetes API for new services and creates a set
of DNS records for each one. If DNS is enabled throughout your cluster, then all pods should
automatically be able to resolve services by their DNS name. Service discovery using DNS can be used in
case you must go beyond 5000 services. When using environment variables for service discovery, the
argument list exceeds the allowed length after 5000 services in a namespace, then the pods and
deployments will start failing. Disable the service links in the deployment’s service specification file to
overcome this:

CHAPTER 8. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS

77

apiVersion: template.openshift.io/v1
kind: Template
metadata:
 name: deployment-config-template
 creationTimestamp:
 annotations:
 description: This template will create a deploymentConfig with 1 replica, 4 env vars and a service.
 tags: ''
objects:
- apiVersion: apps.openshift.io/v1
 kind: DeploymentConfig
 metadata:
 name: deploymentconfig${IDENTIFIER}
 spec:
 template:
 metadata:
 labels:
 name: replicationcontroller${IDENTIFIER}
 spec:
 enableServiceLinks: false
 containers:
 - name: pause${IDENTIFIER}
 image: "${IMAGE}"
 ports:
 - containerPort: 8080
 protocol: TCP
 env:
 - name: ENVVAR1_${IDENTIFIER}
 value: "${ENV_VALUE}"
 - name: ENVVAR2_${IDENTIFIER}
 value: "${ENV_VALUE}"
 - name: ENVVAR3_${IDENTIFIER}
 value: "${ENV_VALUE}"
 - name: ENVVAR4_${IDENTIFIER}
 value: "${ENV_VALUE}"
 resources: {}
 imagePullPolicy: IfNotPresent
 capabilities: {}
 securityContext:
 capabilities: {}
 privileged: false
 restartPolicy: Always
 serviceAccount: ''
 replicas: 1
 selector:
 name: replicationcontroller${IDENTIFIER}
 triggers:
 - type: ConfigChange
 strategy:
 type: Rolling
- apiVersion: v1
 kind: Service
 metadata:
 name: service${IDENTIFIER}
 spec:
 selector:

OpenShift Container Platform 4.9 Scalability and performance

78

The number of application pods that can run in a namespace is dependent on the number of services
and the length of the service name when the environment variables are used for service discovery.
ARG_MAX on the system defines the maximum argument length for a new process and it is set to
2097152 KiB by default. The Kubelet injects environment variables in to each pod scheduled to run in
the namespace including:

<SERVICE_NAME>_SERVICE_HOST=<IP>

<SERVICE_NAME>_SERVICE_PORT=<PORT>

<SERVICE_NAME>_PORT=tcp://<IP>:<PORT>

<SERVICE_NAME>_PORT_<PORT>_TCP=tcp://<IP>:<PORT>

<SERVICE_NAME>_PORT_<PORT>_TCP_PROTO=tcp

<SERVICE_NAME>_PORT_<PORT>_TCP_PORT=<PORT>

<SERVICE_NAME>_PORT_<PORT>_TCP_ADDR=<ADDR>

The pods in the namespace will start to fail if the argument length exceeds the allowed value and the
number of characters in a service name impacts it. For example, in a namespace with 5000 services, the
limit on the service name is 33 characters, which enables you to run 5000 pods in the namespace.

 name: replicationcontroller${IDENTIFIER}
 ports:
 - name: serviceport${IDENTIFIER}
 protocol: TCP
 port: 80
 targetPort: 8080
 clusterIP: ''
 type: ClusterIP
 sessionAffinity: None
 status:
 loadBalancer: {}
parameters:
- name: IDENTIFIER
 description: Number to append to the name of resources
 value: '1'
 required: true
- name: IMAGE
 description: Image to use for deploymentConfig
 value: gcr.io/google-containers/pause-amd64:3.0
 required: false
- name: ENV_VALUE
 description: Value to use for environment variables
 generate: expression
 from: "[A-Za-z0-9]{255}"
 required: false
labels:
 template: deployment-config-template

CHAPTER 8. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS

79

CHAPTER 9. OPTIMIZING STORAGE
Optimizing storage helps to minimize storage use across all resources. By optimizing storage,
administrators help ensure that existing storage resources are working in an efficient manner.

9.1. AVAILABLE PERSISTENT STORAGE OPTIONS

Understand your persistent storage options so that you can optimize your OpenShift Container
Platform environment.

Table 9.1. Available storage options

Storage
type

Description Examples

Block
Presented to the operating system (OS) as
a block device

Suitable for applications that need full
control of storage and operate at a low
level on files bypassing the file system

Also referred to as a Storage Area Network
(SAN)

Non-shareable, which means that only one
client at a time can mount an endpoint of
this type

AWS EBS and VMware vSphere
support dynamic persistent volume
(PV) provisioning natively in OpenShift
Container Platform.

File
Presented to the OS as a file system export
to be mounted

Also referred to as Network Attached
Storage (NAS)

Concurrency, latency, file locking
mechanisms, and other capabilities vary
widely between protocols,
implementations, vendors, and scales.

RHEL NFS, NetApp NFS [1], and
Vendor NFS

Object
Accessible through a REST API endpoint

Configurable for use in the OpenShift
Container Platform Registry

Applications must build their drivers into
the application and/or container.

AWS S3

1. NetApp NFS supports dynamic PV provisioning when using the Trident plugin.

IMPORTANT

OpenShift Container Platform 4.9 Scalability and performance

80

IMPORTANT

Currently, CNS is not supported in OpenShift Container Platform 4.9.

9.2. RECOMMENDED CONFIGURABLE STORAGE TECHNOLOGY

The following table summarizes the recommended and configurable storage technologies for the given
OpenShift Container Platform cluster application.

Table 9.2. Recommended and configurable storage technology

Storage
type

ROX1 RWX2 Registry Scaled
registry

Metrics3 Logging Apps

1 ReadOnlyMany

2 ReadWriteMany

3 Prometheus is the underlying technology used for metrics.

4 This does not apply to physical disk, VM physical disk, VMDK, loopback over NFS, AWS EBS, and Azure
Disk.

5 For metrics, using file storage with the ReadWriteMany (RWX) access mode is unreliable. If you use file
storage, do not configure the RWX access mode on any persistent volume claims (PVCs) that are
configured for use with metrics.

6 For logging, using any shared storage would be an anti-pattern. One volume per elasticsearch is
required.

7 Object storage is not consumed through OpenShift Container Platform’s PVs or PVCs. Apps must
integrate with the object storage REST API.

Block Yes4 No Configura
ble

Not
configura
ble

Recomme
nded

Recomme
nded

Recomme
nded

File Yes4 Yes Configura
ble

Configura
ble

Configura

ble5

Configura

ble6

Recomme
nded

Object Yes Yes Recomme
nded

Recomme
nded

Not
configura
ble

Not
configura
ble

Not
configura

ble7

NOTE

A scaled registry is an OpenShift Container Platform registry where two or more pod
replicas are running.

9.2.1. Specific application storage recommendations

CHAPTER 9. OPTIMIZING STORAGE

81

IMPORTANT

Testing shows issues with using the NFS server on Red Hat Enterprise Linux (RHEL) as
storage backend for core services. This includes the OpenShift Container Registry and
Quay, Prometheus for monitoring storage, and Elasticsearch for logging storage.
Therefore, using RHEL NFS to back PVs used by core services is not recommended.

Other NFS implementations on the marketplace might not have these issues. Contact
the individual NFS implementation vendor for more information on any testing that was
possibly completed against these OpenShift Container Platform core components.

9.2.1.1. Registry

In a non-scaled/high-availability (HA) OpenShift Container Platform registry cluster deployment:

The storage technology does not have to support RWX access mode.

The storage technology must ensure read-after-write consistency.

The preferred storage technology is object storage followed by block storage.

File storage is not recommended for OpenShift Container Platform registry cluster deployment
with production workloads.

9.2.1.2. Scaled registry

In a scaled/HA OpenShift Container Platform registry cluster deployment:

The storage technology must support RWX access mode.

The storage technology must ensure read-after-write consistency.

The preferred storage technology is object storage.

Red Hat OpenShift Data Foundation (ODF), Amazon Simple Storage Service (Amazon S3),
Google Cloud Storage (GCS), Microsoft Azure Blob Storage, and OpenStack Swift are
supported.

Object storage should be S3 or Swift compliant.

For non-cloud platforms, such as vSphere and bare metal installations, the only configurable
technology is file storage.

Block storage is not configurable.

9.2.1.3. Metrics

In an OpenShift Container Platform hosted metrics cluster deployment:

The preferred storage technology is block storage.

Object storage is not configurable.

IMPORTANT

OpenShift Container Platform 4.9 Scalability and performance

82

IMPORTANT

It is not recommended to use file storage for a hosted metrics cluster deployment with
production workloads.

9.2.1.4. Logging

In an OpenShift Container Platform hosted logging cluster deployment:

The preferred storage technology is block storage.

Object storage is not configurable.

9.2.1.5. Applications

Application use cases vary from application to application, as described in the following examples:

Storage technologies that support dynamic PV provisioning have low mount time latencies, and
are not tied to nodes to support a healthy cluster.

Application developers are responsible for knowing and understanding the storage
requirements for their application, and how it works with the provided storage to ensure that
issues do not occur when an application scales or interacts with the storage layer.

9.2.2. Other specific application storage recommendations

IMPORTANT

It is not recommended to use RAID configurations on Write intensive workloads, such as
etcd. If you are running etcd with a RAID configuration, you might be at risk of
encountering performance issues with your workloads.

Red Hat OpenStack Platform (RHOSP) Cinder: RHOSP Cinder tends to be adept in ROX
access mode use cases.

Databases: Databases (RDBMSs, NoSQL DBs, etc.) tend to perform best with dedicated block
storage.

The etcd database must have enough storage and adequate performance capacity to enable a
large cluster. Information about monitoring and benchmarking tools to establish ample storage
and a high-performance environment is described in Recommended etcd practices .

9.3. DATA STORAGE MANAGEMENT

The following table summarizes the main directories that OpenShift Container Platform components
write data to.

Table 9.3. Main directories for storing OpenShift Container Platform data

CHAPTER 9. OPTIMIZING STORAGE

83

Directory Notes Sizing Expected growth

/var/log Log files for all
components.

10 to 30 GB. Log files can grow
quickly; size can be
managed by growing
disks or by using log
rotate.

/var/lib/etcd Used for etcd storage
when storing the
database.

Less than 20 GB.

Database can grow up
to 8 GB.

Will grow slowly with the
environment. Only
storing metadata.

Additional 20-25 GB for
every additional 8 GB of
memory.

/var/lib/containers This is the mount point
for the CRI-O runtime.
Storage used for active
container runtimes,
including pods, and
storage of local images.
Not used for registry
storage.

50 GB for a node with 16
GB memory. Note that
this sizing should not be
used to determine
minimum cluster
requirements.

Additional 20-25 GB for
every additional 8 GB of
memory.

Growth is limited by
capacity for running
containers.

/var/lib/kubelet Ephemeral volume
storage for pods. This
includes anything
external that is mounted
into a container at
runtime. Includes
environment variables,
kube secrets, and data
volumes not backed by
persistent volumes.

Varies Minimal if pods requiring
storage are using
persistent volumes. If
using ephemeral
storage, this can grow
quickly.

Directory Notes Sizing Expected growth

OpenShift Container Platform 4.9 Scalability and performance

84

CHAPTER 10. OPTIMIZING ROUTING
The OpenShift Container Platform HAProxy router can be scaled or configured to optimize
performance.

10.1. BASELINE INGRESS CONTROLLER (ROUTER) PERFORMANCE

The OpenShift Container Platform Ingress Controller, or router, is the ingress point for ingress traffic for
applications and services that are configured using routes and ingresses.

When evaluating a single HAProxy router performance in terms of HTTP requests handled per second,
the performance varies depending on many factors. In particular:

HTTP keep-alive/close mode

Route type

TLS session resumption client support

Number of concurrent connections per target route

Number of target routes

Back end server page size

Underlying infrastructure (network/SDN solution, CPU, and so on)

While performance in your specific environment will vary, Red Hat lab tests on a public cloud instance of
size 4 vCPU/16GB RAM. A single HAProxy router handling 100 routes terminated by backends serving
1kB static pages is able to handle the following number of transactions per second.

In HTTP keep-alive mode scenarios:

Encryption LoadBalancerService HostNetwork

none 21515 29622

edge 16743 22913

passthrough 36786 53295

re-encrypt 21583 25198

In HTTP close (no keep-alive) scenarios:

Encryption LoadBalancerService HostNetwork

none 5719 8273

edge 2729 4069

CHAPTER 10. OPTIMIZING ROUTING

85

passthrough 4121 5344

re-encrypt 2320 2941

Encryption LoadBalancerService HostNetwork

The default Ingress Controller configuration was used with the spec.tuningOptions.threadCount field
set to 4. Two different endpoint publishing strategies were tested: Load Balancer Service and Host
Network. TLS session resumption was used for encrypted routes. With HTTP keep-alive, a single
HAProxy router is capable of saturating a 1 Gbit NIC at page sizes as small as 8 kB.

When running on bare metal with modern processors, you can expect roughly twice the performance of
the public cloud instance above. This overhead is introduced by the virtualization layer in place on public
clouds and holds mostly true for private cloud-based virtualization as well. The following table is a guide
to how many applications to use behind the router:

Number of applications Application type

5-10 static file/web server or caching proxy

100-1000 applications generating dynamic content

In general, HAProxy can support routes for up to 1000 applications, depending on the technology in use.
Ingress Controller performance might be limited by the capabilities and performance of the applications
behind it, such as language or static versus dynamic content.

Ingress, or router, sharding should be used to serve more routes towards applications and help
horizontally scale the routing tier.

For more information on Ingress sharding, see Configuring Ingress Controller sharding by using route
labels and Configuring Ingress Controller sharding by using namespace labels .

You can modify the Ingress Controller deployment using the information provided in Setting Ingress
Controller thread count for threads and Ingress Controller configuration parameters for timeouts, and
other tuning configurations in the Ingress Controller specification.

OpenShift Container Platform 4.9 Scalability and performance

86

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-ingress-sharding-route-labels_configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-ingress-sharding-namespace-labels_configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-ingress-setting-thread-count
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-ingress-controller-configuration-parameters_configuring-ingress

CHAPTER 11. OPTIMIZING NETWORKING
The OpenShift SDN uses OpenvSwitch, virtual extensible LAN (VXLAN) tunnels, OpenFlow rules, and
iptables. This network can be tuned by using jumbo frames, network interface controllers (NIC) offloads,
multi-queue, and ethtool settings.

OVN-Kubernetes uses Geneve (Generic Network Virtualization Encapsulation) instead of VXLAN as the
tunnel protocol.

VXLAN provides benefits over VLANs, such as an increase in networks from 4096 to over 16 million, and
layer 2 connectivity across physical networks. This allows for all pods behind a service to communicate
with each other, even if they are running on different systems.

VXLAN encapsulates all tunneled traffic in user datagram protocol (UDP) packets. However, this leads
to increased CPU utilization. Both these outer- and inner-packets are subject to normal checksumming
rules to guarantee data is not corrupted during transit. Depending on CPU performance, this additional
processing overhead can cause a reduction in throughput and increased latency when compared to
traditional, non-overlay networks.

Cloud, VM, and bare metal CPU performance can be capable of handling much more than one Gbps
network throughput. When using higher bandwidth links such as 10 or 40 Gbps, reduced performance
can occur. This is a known issue in VXLAN-based environments and is not specific to containers or
OpenShift Container Platform. Any network that relies on VXLAN tunnels will perform similarly because
of the VXLAN implementation.

If you are looking to push beyond one Gbps, you can:

Evaluate network plugins that implement different routing techniques, such as border gateway
protocol (BGP).

Use VXLAN-offload capable network adapters. VXLAN-offload moves the packet checksum
calculation and associated CPU overhead off of the system CPU and onto dedicated hardware
on the network adapter. This frees up CPU cycles for use by pods and applications, and allows
users to utilize the full bandwidth of their network infrastructure.

VXLAN-offload does not reduce latency. However, CPU utilization is reduced even in latency tests.

11.1. OPTIMIZING THE MTU FOR YOUR NETWORK

There are two important maximum transmission units (MTUs): the network interface controller (NIC)
MTU and the cluster network MTU.

The NIC MTU is only configured at the time of OpenShift Container Platform installation. The MTU
must be less than or equal to the maximum supported value of the NIC of your network. If you are
optimizing for throughput, choose the largest possible value. If you are optimizing for lowest latency,
choose a lower value.

The SDN overlay’s MTU must be less than the NIC MTU by 50 bytes at a minimum. This accounts for
the SDN overlay header. So, on a normal ethernet network, set this to 1450. On a jumbo frame ethernet
network, set this to 8950.

For OVN and Geneve, the MTU must be less than the NIC MTU by 100 bytes at a minimum.

NOTE

CHAPTER 11. OPTIMIZING NETWORKING

87

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#about-openshift-sdn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#about-ovn-kubernetes

NOTE

This 50 byte overlay header is relevant to the OpenShift SDN. Other SDN solutions
might require the value to be more or less.

11.2. RECOMMENDED PRACTICES FOR INSTALLING LARGE SCALE
CLUSTERS

When installing large clusters or scaling the cluster to larger node counts, set the cluster network cidr
accordingly in your install-config.yaml file before you install the cluster:

The default cluster network cidr 10.128.0.0/14 cannot be used if the cluster size is more than 500
nodes. It must be set to 10.128.0.0/12 or 10.128.0.0/10 to get to larger node counts beyond 500 nodes.

11.3. IMPACT OF IPSEC

Because encrypting and decrypting node hosts uses CPU power, performance is affected both in
throughput and CPU usage on the nodes when encryption is enabled, regardless of the IP security
system being used.

IPSec encrypts traffic at the IP payload level, before it hits the NIC, protecting fields that would
otherwise be used for NIC offloading. This means that some NIC acceleration features might not be
usable when IPSec is enabled and will lead to decreased throughput and increased CPU usage.

Additional resources

Modifying advanced network configuration parameters

Configuration parameters for the OVN-Kubernetes default CNI network provider

Configuration parameters for the OpenShift SDN default CNI network provider

networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16

OpenShift Container Platform 4.9 Scalability and performance

88

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#modifying-nwoperator-config-startup_installing-aws-network-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-operator-configuration-parameters-for-ovn-sdn_cluster-network-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-operator-configuration-parameters-for-openshift-sdn_cluster-network-operator

CHAPTER 12. MANAGING BARE METAL HOSTS
When you install OpenShift Container Platform on a bare metal cluster, you can provision and manage
bare metal nodes using machine and machineset custom resources (CRs) for bare metal hosts that
exist in the cluster.

12.1. ABOUT BARE METAL HOSTS AND NODES

To provision a Red Hat Enterprise Linux CoreOS (RHCOS) bare metal host as a node in your cluster, first
create a MachineSet custom resource (CR) object that corresponds to the bare metal host hardware.
Bare metal host machine sets describe infrastructure components specific to your configuration. You
apply specific Kubernetes labels to these machine sets and then update the infrastructure components
to run on only those machines.

Machine CR’s are created automatically when you scale up the relevant MachineSet containing a
metal3.io/autoscale-to-hosts annotation. OpenShift Container Platform uses Machine CR’s to
provision the bare metal node that corresponds to the host as specified in the MachineSet CR.

12.2. MAINTAINING BARE METAL HOSTS

You can maintain the details of the bare metal hosts in your cluster from the OpenShift Container
Platform web console. Navigate to Compute → Bare Metal Hosts, and select a task from the Actions
drop down menu. Here you can manage items such as BMC details, boot MAC address for the host,
enable power management, and so on. You can also review the details of the network interfaces and
drives for the host.

You can move a bare metal host into maintenance mode. When you move a host into maintenance
mode, the scheduler moves all managed workloads off the corresponding bare metal node. No new
workloads are scheduled while in maintenance mode.

You can deprovision a bare metal host in the web console. Deprovisioning a host does the following
actions:

1. Annotates the bare metal host CR with cluster.k8s.io/delete-machine: true

2. Scales down the related machine set

NOTE

Powering off the host without first moving the daemon set and unmanaged static pods
to another node can cause service disruption and loss of data.

Additional resources

Adding compute machines to bare metal

12.2.1. Adding a bare metal host to the cluster using the web console

You can add bare metal hosts to the cluster in the web console.

Prerequisites

Install an RHCOS cluster on bare metal.

CHAPTER 12. MANAGING BARE METAL HOSTS

89

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/machine_management/#adding-bare-metal-compute-user-infra

Log in as a user with cluster-admin privileges.

Procedure

1. In the web console, navigate to Compute → Bare Metal Hosts.

2. Select Add Host → New with Dialog.

3. Specify a unique name for the new bare metal host.

4. Set the Boot MAC address.

5. Set the Baseboard Management Console (BMC) Address.

6. Enter the user credentials for the host’s baseboard management controller (BMC).

7. Select to power on the host after creation, and select Create.

8. Scale up the number of replicas to match the number of available bare metal hosts. Navigate to
Compute → MachineSets, and increase the number of machine replicas in the cluster by
selecting Edit Machine count from the Actions drop-down menu.

NOTE

You can also manage the number of bare metal nodes using the oc scale command and
the appropriate bare metal machine set.

12.2.2. Adding a bare metal host to the cluster using YAML in the web console

You can add bare metal hosts to the cluster in the web console using a YAML file that describes the
bare metal host.

Prerequisites

Install a RHCOS compute machine on bare metal infrastructure for use in the cluster.

Log in as a user with cluster-admin privileges.

Create a Secret CR for the bare metal host.

Procedure

1. In the web console, navigate to Compute → Bare Metal Hosts.

2. Select Add Host → New from YAML.

3. Copy and paste the below YAML, modifying the relevant fields with the details of your host:

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
 name: <bare_metal_host_name>
spec:
 online: true
 bmc:

OpenShift Container Platform 4.9 Scalability and performance

90

1

2

credentialsName must reference a valid Secret CR. The baremetal-operator cannot
manage the bare metal host without a valid Secret referenced in the credentialsName.
For more information about secrets and how to create them, see Understanding secrets .

Setting disableCertificateVerification to true disables TLS host validation between the
cluster and the baseboard management controller (BMC).

4. Select Create to save the YAML and create the new bare metal host.

5. Scale up the number of replicas to match the number of available bare metal hosts. Navigate to
Compute → MachineSets, and increase the number of machines in the cluster by selecting Edit
Machine count from the Actions drop-down menu.

NOTE

You can also manage the number of bare metal nodes using the oc scale
command and the appropriate bare metal machine set.

12.2.3. Automatically scaling machines to the number of available bare metal hosts

To automatically create the number of Machine objects that matches the number of available
BareMetalHost objects, add a metal3.io/autoscale-to-hosts annotation to the MachineSet object.

Prerequisites

Install RHCOS bare metal compute machines for use in the cluster, and create corresponding
BareMetalHost objects.

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Annotate the machine set that you want to configure for automatic scaling by adding the
metal3.io/autoscale-to-hosts annotation. Replace <machineset> with the name of the
machine set.

Wait for the new scaled machines to start.

NOTE

 address: <bmc_address>
 credentialsName: <secret_credentials_name> 1
 disableCertificateVerification: True 2
 bootMACAddress: <host_boot_mac_address>

$ oc annotate machineset <machineset> -n openshift-machine-api 'metal3.io/autoscale-to-
hosts=<any_value>'

CHAPTER 12. MANAGING BARE METAL HOSTS

91

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/nodes/#nodes-pods-secrets-about_nodes-pods-secrets

NOTE

When you use a BareMetalHost object to create a machine in the cluster and labels or
selectors are subsequently changed on the BareMetalHost, the BareMetalHost object
continues be counted against the MachineSet that the Machine object was created
from.

12.2.4. Removing bare metal hosts from the provisioner node

In certain circumstances, you might want to temporarily remove bare metal hosts from the provisioner
node. For example, during provisioning when a bare metal host reboot is triggered by using the
OpenShift Container Platform administration console or as a result of a Machine Config Pool update,
OpenShift Container Platform logs into the integrated Dell Remote Access Controller (iDrac) and issues
a delete of the job queue.

To prevent the management of the number of Machine objects that matches the number of available
BareMetalHost objects, add a baremetalhost.metal3.io/detached annotation to the MachineSet
object.

NOTE

This annotation has an effect for only BareMetalHost objects that are in either
Provisioned, ExternallyProvisioned or Ready/Available state.

Prerequisites

Install RHCOS bare metal compute machines for use in the cluster and create corresponding
BareMetalHost objects.

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Annotate the compute machine set that you want to remove from the provisioner node by
adding the baremetalhost.metal3.io/detached annotation.

Wait for the new machines to start.

NOTE

When you use a BareMetalHost object to create a machine in the cluster and
labels or selectors are subsequently changed on the BareMetalHost, the
BareMetalHost object continues be counted against the MachineSet that the
Machine object was created from.

2. In the provisioning use case, remove the annotation after the reboot is complete by using the
following command:

$ oc annotate machineset <machineset> -n openshift-machine-api
'baremetalhost.metal3.io/detached'

OpenShift Container Platform 4.9 Scalability and performance

92

Additional resources

Expanding the cluster

MachineHealthChecks on bare metal

$ oc annotate machineset <machineset> -n openshift-machine-api
'baremetalhost.metal3.io/detached-'

CHAPTER 12. MANAGING BARE METAL HOSTS

93

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#ipi-install-expanding-the-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/machine_management/#machine-health-checks-bare-metal_deploying-machine-health-checks

CHAPTER 13. WHAT HUGE PAGES DO AND HOW THEY ARE
CONSUMED BY APPLICATIONS

13.1. WHAT HUGE PAGES DO

Memory is managed in blocks known as pages. On most systems, a page is 4Ki. 1Mi of memory is equal to
256 pages; 1Gi of memory is 256,000 pages, and so on. CPUs have a built-in memory management unit
that manages a list of these pages in hardware. The Translation Lookaside Buffer (TLB) is a small
hardware cache of virtual-to-physical page mappings. If the virtual address passed in a hardware
instruction can be found in the TLB, the mapping can be determined quickly. If not, a TLB miss occurs,
and the system falls back to slower, software-based address translation, resulting in performance issues.
Since the size of the TLB is fixed, the only way to reduce the chance of a TLB miss is to increase the
page size.

A huge page is a memory page that is larger than 4Ki. On x86_64 architectures, there are two common
huge page sizes: 2Mi and 1Gi. Sizes vary on other architectures. To use huge pages, code must be
written so that applications are aware of them. Transparent Huge Pages (THP) attempt to automate the
management of huge pages without application knowledge, but they have limitations. In particular, they
are limited to 2Mi page sizes. THP can lead to performance degradation on nodes with high memory
utilization or fragmentation due to defragmenting efforts of THP, which can lock memory pages. For this
reason, some applications may be designed to (or recommend) usage of pre-allocated huge pages
instead of THP.

In OpenShift Container Platform, applications in a pod can allocate and consume pre-allocated huge
pages.

13.2. HOW HUGE PAGES ARE CONSUMED BY APPS

Nodes must pre-allocate huge pages in order for the node to report its huge page capacity. A node can
only pre-allocate huge pages for a single size.

Huge pages can be consumed through container-level resource requirements using the resource name
hugepages-<size>, where size is the most compact binary notation using integer values supported on a
particular node. For example, if a node supports 2048KiB page sizes, it exposes a schedulable resource
hugepages-2Mi. Unlike CPU or memory, huge pages do not support over-commitment.

apiVersion: v1
kind: Pod
metadata:
 generateName: hugepages-volume-
spec:
 containers:
 - securityContext:
 privileged: true
 image: rhel7:latest
 command:
 - sleep
 - inf
 name: example
 volumeMounts:
 - mountPath: /dev/hugepages
 name: hugepage
 resources:
 limits:

OpenShift Container Platform 4.9 Scalability and performance

94

1 Specify the amount of memory for hugepages as the exact amount to be allocated. Do not specify
this value as the amount of memory for hugepages multiplied by the size of the page. For
example, given a huge page size of 2MB, if you want to use 100MB of huge-page-backed RAM for
your application, then you would allocate 50 huge pages. OpenShift Container Platform handles
the math for you. As in the above example, you can specify 100MB directly.

Allocating huge pages of a specific size

Some platforms support multiple huge page sizes. To allocate huge pages of a specific size, precede the
huge pages boot command parameters with a huge page size selection parameter hugepagesz=<size>.
The <size> value must be specified in bytes with an optional scale suffix [kKmMgG]. The default huge
page size can be defined with the default_hugepagesz=<size> boot parameter.

Huge page requirements

Huge page requests must equal the limits. This is the default if limits are specified, but requests
are not.

Huge pages are isolated at a pod scope. Container isolation is planned in a future iteration.

EmptyDir volumes backed by huge pages must not consume more huge page memory than the
pod request.

Applications that consume huge pages via shmget() with SHM_HUGETLB must run with a
supplemental group that matches proc/sys/vm/hugetlb_shm_group.

13.3. CONSUMING HUGE PAGES RESOURCES USING THE
DOWNWARD API

You can use the Downward API to inject information about the huge pages resources that are consumed
by a container.

You can inject the resource allocation as environment variables, a volume plugin, or both. Applications
that you develop and run in the container can determine the resources that are available by reading the
environment variables or files in the specified volumes.

Procedure

1. Create a hugepages-volume-pod.yaml file that is similar to the following example:

 hugepages-2Mi: 100Mi 1
 memory: "1Gi"
 cpu: "1"
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

apiVersion: v1
kind: Pod
metadata:
 generateName: hugepages-volume-
 labels:
 app: hugepages-example

CHAPTER 13. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS

95

<.> Specifies to read the resource use from requests.hugepages-1Gi and expose the value as
the REQUESTS_HUGEPAGES_1GI environment variable. <.> Specifies to read the resource
use from requests.hugepages-1Gi and expose the value as the file
/etc/podinfo/hugepages_1G_request.

2. Create the pod from the hugepages-volume-pod.yaml file:

Verification

1. Check the value of the REQUESTS_HUGEPAGES_1GI environment variable:

spec:
 containers:
 - securityContext:
 capabilities:
 add: ["IPC_LOCK"]
 image: rhel7:latest
 command:
 - sleep
 - inf
 name: example
 volumeMounts:
 - mountPath: /dev/hugepages
 name: hugepage
 - mountPath: /etc/podinfo
 name: podinfo
 resources:
 limits:
 hugepages-1Gi: 2Gi
 memory: "1Gi"
 cpu: "1"
 requests:
 hugepages-1Gi: 2Gi
 env:
 - name: REQUESTS_HUGEPAGES_1GI <.>
 valueFrom:
 resourceFieldRef:
 containerName: example
 resource: requests.hugepages-1Gi
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages
 - name: podinfo
 downwardAPI:
 items:
 - path: "hugepages_1G_request" <.>
 resourceFieldRef:
 containerName: example
 resource: requests.hugepages-1Gi
 divisor: 1Gi

$ oc create -f hugepages-volume-pod.yaml

OpenShift Container Platform 4.9 Scalability and performance

96

Example output

2. Check the value of the /etc/podinfo/hugepages_1G_request file:

Example output

Additional resources

Allowing containers to consume Downward API objects

13.4. CONFIGURING HUGE PAGES

Nodes must pre-allocate huge pages used in an OpenShift Container Platform cluster. There are two
ways of reserving huge pages: at boot time and at run time. Reserving at boot time increases the
possibility of success because the memory has not yet been significantly fragmented. The Node Tuning
Operator currently supports boot time allocation of huge pages on specific nodes.

13.4.1. At boot time

Procedure

To minimize node reboots, the order of the steps below needs to be followed:

1. Label all nodes that need the same huge pages setting by a label.

2. Create a file with the following content and name it hugepages-tuned-boottime.yaml:

$ oc exec -it $(oc get pods -l app=hugepages-example -o
jsonpath='{.items[0].metadata.name}') \
 -- env | grep REQUESTS_HUGEPAGES_1GI

REQUESTS_HUGEPAGES_1GI=2147483648

$ oc exec -it $(oc get pods -l app=hugepages-example -o
jsonpath='{.items[0].metadata.name}') \
 -- cat /etc/podinfo/hugepages_1G_request

2

$ oc label node <node_using_hugepages> node-role.kubernetes.io/worker-hp=

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: hugepages 1
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile: 2
 - data: |
 [main]
 summary=Boot time configuration for hugepages
 include=openshift-node

CHAPTER 13. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS

97

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/nodes/#nodes-containers-downward-api

1

2

3

4

Set the name of the Tuned resource to hugepages.

Set the profile section to allocate huge pages.

Note the order of parameters is important as some platforms support huge pages of
various sizes.

Enable machine config pool based matching.

3. Create the Tuned hugepages object

4. Create a file with the following content and name it hugepages-mcp.yaml:

5. Create the machine config pool:

Given enough non-fragmented memory, all the nodes in the worker-hp machine config pool should now
have 50 2Mi huge pages allocated.

 [bootloader]
 cmdline_openshift_node_hugepages=hugepagesz=2M hugepages=50 3
 name: openshift-node-hugepages

 recommend:
 - machineConfigLabels: 4
 machineconfiguration.openshift.io/role: "worker-hp"
 priority: 30
 profile: openshift-node-hugepages

$ oc create -f hugepages-tuned-boottime.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: worker-hp
 labels:
 worker-hp: ""
spec:
 machineConfigSelector:
 matchExpressions:
 - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,worker-hp]}
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker-hp: ""

$ oc create -f hugepages-mcp.yaml

$ oc get node <node_using_hugepages> -o jsonpath="{.status.allocatable.hugepages-2Mi}"
100Mi

OpenShift Container Platform 4.9 Scalability and performance

98

WARNING

This functionality is currently only supported on Red Hat Enterprise Linux CoreOS
(RHCOS) 8.x worker nodes. On Red Hat Enterprise Linux (RHEL) 7.x worker nodes
the TuneD [bootloader] plugin is currently not supported.

13.5. DISABLING TRANSPARENT HUGE PAGES

Transparent Huge Pages (THP) attempt to automate most aspects of creating, managing, and using
huge pages. Since THP automatically manages the huge pages, this is not always handled optimally for
all types of workloads. THP can lead to performance regressions, since many applications handle huge
pages on their own. Therefore, consider disabling THP. The following steps describe how to disable THP
using the Node Tuning Operator (NTO).

Procedure

1. Create a file with the following content and name it thp-disable-tuned.yaml:

2. Create the Tuned object:

3. Check the list of active profiles:

Verification



apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: thp-workers-profile
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Custom tuned profile for OpenShift to turn off THP on worker nodes
 include=openshift-node

 [vm]
 transparent_hugepages=never
 name: openshift-thp-never-worker

 recommend:
 - match:
 - label: node-role.kubernetes.io/worker
 priority: 25
 profile: openshift-thp-never-worker

$ oc create -f thp-disable-tuned.yaml

$ oc get profile -n openshift-cluster-node-tuning-operator

CHAPTER 13. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS

99

Log in to one of the nodes and do a regular THP check to verify if the nodes applied the profile
successfully:

Example output

$ cat /sys/kernel/mm/transparent_hugepage/enabled

always madvise [never]

OpenShift Container Platform 4.9 Scalability and performance

100

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW
LATENCY NODES

14.1. UNDERSTANDING LOW LATENCY

The emergence of Edge computing in the area of Telco / 5G plays a key role in reducing latency and
congestion problems and improving application performance.

Simply put, latency determines how fast data (packets) moves from the sender to receiver and returns
to the sender after processing by the receiver. Obviously, maintaining a network architecture with the
lowest possible delay of latency speeds is key for meeting the network performance requirements of
5G. Compared to 4G technology, with an average latency of 50ms, 5G is targeted to reach latency
numbers of 1ms or less. This reduction in latency boosts wireless throughput by a factor of 10.

Many of the deployed applications in the Telco space require low latency that can only tolerate zero
packet loss. Tuning for zero packet loss helps mitigate the inherent issues that degrade network
performance. For more information, see Tuning for Zero Packet Loss in Red Hat OpenStack Platform
(RHOSP).

The Edge computing initiative also comes in to play for reducing latency rates. Think of it as literally
being on the edge of the cloud and closer to the user. This greatly reduces the distance between the
user and distant data centers, resulting in reduced application response times and performance latency.

Administrators must be able to manage their many Edge sites and local services in a centralized way so
that all of the deployments can run at the lowest possible management cost. They also need an easy way
to deploy and configure certain nodes of their cluster for real-time low latency and high-performance
purposes. Low latency nodes are useful for applications such as Cloud-native Network Functions (CNF)
and Data Plane Development Kit (DPDK).

OpenShift Container Platform currently provides mechanisms to tune software on an OpenShift
Container Platform cluster for real-time running and low latency (around <20 microseconds reaction
time). This includes tuning the kernel and OpenShift Container Platform set values, installing a kernel,
and reconfiguring the machine. But this method requires setting up four different Operators and
performing many configurations that, when done manually, is complex and could be prone to mistakes.

OpenShift Container Platform provides a Performance Addon Operator to implement automatic tuning
to achieve low latency performance for OpenShift applications. The cluster administrator uses this
performance profile configuration that makes it easier to make these changes in a more reliable way.
The administrator can specify whether to update the kernel to kernel-rt, reserve CPUs for cluster and
operating system housekeeping duties, including pod infra containers, and isolate CPUs for application
containers to run the workloads.

14.1.1. About hyperthreading for low latency and real-time applications

Hyperthreading is an Intel processor technology that allows a physical CPU processor core to function
as two logical cores, executing two independent threads simultaneously. Hyperthreading allows for
better system throughput for certain workload types where parallel processing is beneficial. The default
OpenShift Container Platform configuration expects hyperthreading to be enabled by default.

For telecommunications applications, it is important to design your application infrastructure to
minimize latency as much as possible. Hyperthreading can slow performance times and negatively affect
throughput for compute intensive workloads that require low latency. Disabling hyperthreading ensures
predictable performance and can decrease processing times for these workloads.

NOTE

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

101

https://www.redhat.com/en/blog/tuning-zero-packet-loss-red-hat-openstack-platform-part-1

NOTE

Hyperthreading implementation and configuration differs depending on the hardware you
are running OpenShift Container Platform on. Consult the relevant host hardware tuning
information for more details of the hyperthreading implementation specific to that
hardware. Disabling hyperthreading can increase the cost per core of the cluster.

Additional resources

Configuring hyperthreading for a cluster

14.2. INSTALLING THE PERFORMANCE ADDON OPERATOR

Performance Addon Operator provides the ability to enable advanced node performance tunings on a
set of nodes. As a cluster administrator, you can install Performance Addon Operator using the
OpenShift Container Platform CLI or the web console.

14.2.1. Installing the Operator using the CLI

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

A cluster installed on bare-metal hardware.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a namespace for the Performance Addon Operator by completing the following actions:

a. Create the following Namespace Custom Resource (CR) that defines the openshift-
performance-addon-operator namespace, and then save the YAML in the pao-
namespace.yaml file:

b. Create the namespace by running the following command:

2. Install the Performance Addon Operator in the namespace you created in the previous step by
creating the following objects:

a. Create the following OperatorGroup CR and save the YAML in the pao-
operatorgroup.yaml file:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-performance-addon-operator
 annotations:
 workload.openshift.io/allowed: management

$ oc create -f pao-namespace.yaml

OpenShift Container Platform 4.9 Scalability and performance

102

1

2

b. Create the OperatorGroup CR by running the following command:

c. Run the following command to get the channel value required for the next step.

Example output

d. Create the following Subscription CR and save the YAML in the pao-sub.yaml file:

Example Subscription

Specify the value from you obtained in the previous step for the
.status.defaultChannel parameter.

You must specify the redhat-operators value.

e. Create the Subscription object by running the following command:

f. Change to the openshift-performance-addon-operator project:

14.2.2. Installing the Performance Addon Operator using the web console

As a cluster administrator, you can install the Performance Addon Operator using the web console.

NOTE

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: openshift-performance-addon-operator
 namespace: openshift-performance-addon-operator

$ oc create -f pao-operatorgroup.yaml

$ oc get packagemanifest performance-addon-operator -n openshift-marketplace -o
jsonpath='{.status.defaultChannel}'

4.9

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-performance-addon-operator-subscription
 namespace: openshift-performance-addon-operator
spec:
 channel: "<channel>" 1
 name: performance-addon-operator
 source: redhat-operators 2
 sourceNamespace: openshift-marketplace

$ oc create -f pao-sub.yaml

$ oc project openshift-performance-addon-operator

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

103

NOTE

You must create the Namespace CR and OperatorGroup CR as mentioned in the
previous section.

Procedure

1. Install the Performance Addon Operator using the OpenShift Container Platform web console:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Choose Performance Addon Operator from the list of available Operators, and then click
Install.

c. On the Install Operator page, select All namespaces on the cluster. Then, click Install.

2. Optional: Verify that the performance-addon-operator installed successfully:

a. Switch to the Operators → Installed Operators page.

b. Ensure that Performance Addon Operator is listed in the openshift-operators project
with a Status of Succeeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with a Succeeded message, you can ignore the
Failed message.

If the Operator does not appear as installed, you can troubleshoot further:

Go to the Operators → Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

Go to the Workloads → Pods page and check the logs for pods in the openshift-
operators project.

14.3. UPGRADING PERFORMANCE ADDON OPERATOR

You can manually upgrade to the next minor version of Performance Addon Operator and monitor the
status of an update by using the web console.

14.3.1. About upgrading Performance Addon Operator

You can upgrade to the next minor version of Performance Addon Operator by using the
OpenShift Container Platform web console to change the channel of your Operator
subscription.

You can enable automatic z-stream updates during Performance Addon Operator installation.

Updates are delivered via the Marketplace Operator, which is deployed during OpenShift
Container Platform installation.The Marketplace Operator makes external Operators available
to your cluster.

The amount of time an update takes to complete depends on your network connection. Most

OpenShift Container Platform 4.9 Scalability and performance

104

The amount of time an update takes to complete depends on your network connection. Most
automatic updates complete within fifteen minutes.

14.3.1.1. How Performance Addon Operator upgrades affect your cluster

Neither the low latency tuning nor huge pages are affected.

Updating the Operator should not cause any unexpected reboots.

14.3.1.2. Upgrading Performance Addon Operator to the next minor version

You can manually upgrade Performance Addon Operator to the next minor version by using the
OpenShift Container Platform web console to change the channel of your Operator subscription.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Access the web console and navigate to Operators → Installed Operators.

2. Click Performance Addon Operator to open the Operator details page.

3. Click the Subscription tab to open the Subscription details page.

4. In the Update channel pane, click the pencil icon on the right side of the version number to
open the Change Subscription update channel window.

5. Select the next minor version. For example, if you want to upgrade to Performance Addon
Operator 4.9, select 4.9.

6. Click Save.

7. Check the status of the upgrade by navigating to Operators → Installed Operators. You can
also check the status by running the following oc command:

14.3.1.3. Upgrading Performance Addon Operator when previously installed to a specific
namespace

If you previously installed the Performance Addon Operator to a specific namespace on the cluster, for
example openshift-performance-addon-operator, modify the OperatorGroup object to remove the
targetNamespaces entry before upgrading.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in to the OpenShift cluster as a user with cluster-admin privileges.

Procedure

1. Edit the Performance Addon Operator OperatorGroup CR and remove the spec element that

$ oc get csv -n openshift-performance-addon-operator

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

105

1. Edit the Performance Addon Operator OperatorGroup CR and remove the spec element that
contains the targetNamespaces entry by running the following command:

2. Wait until the Operator Lifecycle Manager (OLM) processes the change.

3. Verify that the OperatorGroup CR change has been successfully applied. Check that the
OperatorGroup CR spec element has been removed:

4. Proceed with the Performance Addon Operator upgrade.

14.3.2. Monitoring upgrade status

The best way to monitor Performance Addon Operator upgrade status is to watch the
ClusterServiceVersion (CSV) PHASE. You can also monitor the CSV conditions in the web console or
by running the oc get csv command.

NOTE

The PHASE and conditions values are approximations that are based on available
information.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Install the OpenShift CLI (oc).

Procedure

1. Run the following command:

2. Review the output, checking the PHASE field. For example:

3. Run get csv again to verify the output:

Example output

$ oc patch operatorgroup -n openshift-performance-addon-operator openshift-performance-
addon-operator --type json -p '[{ "op": "remove", "path": "/spec" }]'

$ oc describe -n openshift-performance-addon-operator og openshift-performance-addon-
operator

$ oc get csv

VERSION REPLACES PHASE
4.9.0 performance-addon-operator.v4.9.0 Installing
4.8.0 Replacing

oc get csv

NAME DISPLAY VERSION REPLACES
PHASE

OpenShift Container Platform 4.9 Scalability and performance

106

14.4. PROVISIONING REAL-TIME AND LOW LATENCY WORKLOADS

Many industries and organizations need extremely high performance computing and might require low
and predictable latency, especially in the financial and telecommunications industries. For these
industries, with their unique requirements, OpenShift Container Platform provides a Performance
Addon Operator to implement automatic tuning to achieve low latency performance and consistent
response time for OpenShift Container Platform applications.

The cluster administrator can use this performance profile configuration to make these changes in a
more reliable way. The administrator can specify whether to update the kernel to kernel-rt (real-time),
reserve CPUs for cluster and operating system housekeeping duties, including pod infra containers, and
isolate CPUs for application containers to run the workloads.

WARNING

The usage of execution probes in conjunction with applications that require
guaranteed CPUs can cause latency spikes. It is recommended to use other probes,
such as a properly configured set of network probes, as an alternative.

14.4.1. Known limitations for real-time

NOTE

In most deployments, kernel-rt is supported only on worker nodes when you use a
standard cluster with three control plane nodes and three worker nodes. There are
exceptions for compact and single nodes on OpenShift Container Platform deployments.
For installations on a single node, kernel-rt is supported on the single control plane node.

To fully utilize the real-time mode, the containers must run with elevated privileges. See Set capabilities
for a Container for information on granting privileges.

OpenShift Container Platform restricts the allowed capabilities, so you might need to create a
SecurityContext as well.

NOTE

This procedure is fully supported with bare metal installations using Red Hat Enterprise
Linux CoreOS (RHCOS) systems.

Establishing the right performance expectations refers to the fact that the real-time kernel is not a
panacea. Its objective is consistent, low-latency determinism offering predictable response times. There
is some additional kernel overhead associated with the real-time kernel. This is due primarily to handling
hardware interruptions in separately scheduled threads. The increased overhead in some workloads
results in some degradation in overall throughput. The exact amount of degradation is very workload
dependent, ranging from 0% to 30%. However, it is the cost of determinism.

performance-addon-operator.v4.9.0 Performance Addon Operator 4.9.0 performance-
addon-operator.v4.8.0 Succeeded



CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

107

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-capabilities-for-a-container

14.4.2. Provisioning a worker with real-time capabilities

1. Install Performance Addon Operator to the cluster.

2. Optional: Add a node to the OpenShift Container Platform cluster. See Setting BIOS
parameters.

3. Add the label worker-rt to the worker nodes that require the real-time capability by using the
oc command.

4. Create a new machine config pool for real-time nodes:

Note that a machine config pool worker-rt is created for group of nodes that have the label
worker-rt.

5. Add the node to the proper machine config pool by using node role labels.

NOTE

You must decide which nodes are configured with real-time workloads. You could
configure all of the nodes in the cluster, or a subset of the nodes. The
Performance Addon Operator that expects all of the nodes are part of a
dedicated machine config pool. If you use all of the nodes, you must point the
Performance Addon Operator to the worker node role label. If you use a subset,
you must group the nodes into a new machine config pool.

6. Create the PerformanceProfile with the proper set of housekeeping cores and
realTimeKernel: enabled: true.

7. You must set machineConfigPoolSelector in PerformanceProfile:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: worker-rt
 labels:
 machineconfiguration.openshift.io/role: worker-rt
spec:
 machineConfigSelector:
 matchExpressions:
 - {
 key: machineconfiguration.openshift.io/role,
 operator: In,
 values: [worker, worker-rt],
 }
 paused: false
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker-rt: ""

 apiVersion: performance.openshift.io/v2
 kind: PerformanceProfile
 metadata:
 name: example-performanceprofile
 spec:

OpenShift Container Platform 4.9 Scalability and performance

108

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html-single/tuning_guide/index#Setting_BIOS_parameters

8. Verify that a matching machine config pool exists with a label:

Example output

9. OpenShift Container Platform will start configuring the nodes, which might involve multiple
reboots. Wait for the nodes to settle. This can take a long time depending on the specific
hardware you use, but 20 minutes per node is expected.

10. Verify everything is working as expected.

14.4.3. Verifying the real-time kernel installation

Use this command to verify that the real-time kernel is installed:

Note the worker with the role worker-rt that contains the string 4.18.0-211.rt5.23.el8.x86_64:

14.4.4. Creating a workload that works in real-time

Use the following procedures for preparing a workload that will use real-time capabilities.

Procedure

1. Create a pod with a QoS class of Guaranteed.

2. Optional: Disable CPU load balancing for DPDK.

3. Assign a proper node selector.

When writing your applications, follow the general recommendations described in Application tuning and

 ...
 realTimeKernel:
 enabled: true
 nodeSelector:
 node-role.kubernetes.io/worker-rt: ""
 machineConfigPoolSelector:
 machineconfiguration.openshift.io/role: worker-rt

$ oc describe mcp/worker-rt

Name: worker-rt
Namespace:
Labels: machineconfiguration.openshift.io/role=worker-rt

$ oc get node -o wide

NAME STATUS ROLES AGE VERSION INTERNAL-IP
EXTERNAL-IP OS-IMAGE KERNEL-VERSION
CONTAINER-RUNTIME
rt-worker-0.example.com Ready worker,worker-rt 5d17h v1.22.1
128.66.135.107 <none> Red Hat Enterprise Linux CoreOS 46.82.202008252340-0 (Ootpa)
4.18.0-211.rt5.23.el8.x86_64 cri-o://1.22.1-90.rhaos4.9.git4a0ac05.el8-rc.1
[...]

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

109

When writing your applications, follow the general recommendations described in Application tuning and
deployment.

14.4.5. Creating a pod with a QoS class of Guaranteed

Keep the following in mind when you create a pod that is given a QoS class of Guaranteed:

Every container in the pod must have a memory limit and a memory request, and they must be
the same.

Every container in the pod must have a CPU limit and a CPU request, and they must be the
same.

The following example shows the configuration file for a pod that has one container. The container has a
memory limit and a memory request, both equal to 200 MiB. The container has a CPU limit and a CPU
request, both equal to 1 CPU.

1. Create the pod:

2. View detailed information about the pod:

Example output

NOTE

apiVersion: v1
kind: Pod
metadata:
 name: qos-demo
 namespace: qos-example
spec:
 containers:
 - name: qos-demo-ctr
 image: <image-pull-spec>
 resources:
 limits:
 memory: "200Mi"
 cpu: "1"
 requests:
 memory: "200Mi"
 cpu: "1"

$ oc apply -f qos-pod.yaml --namespace=qos-example

$ oc get pod qos-demo --namespace=qos-example --output=yaml

spec:
 containers:
 ...
status:
 qosClass: Guaranteed

OpenShift Container Platform 4.9 Scalability and performance

110

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html-single/tuning_guide/index#chap-Application_Tuning_and_Deployment

NOTE

If a container specifies its own memory limit, but does not specify a memory
request, OpenShift Container Platform automatically assigns a memory request
that matches the limit. Similarly, if a container specifies its own CPU limit, but
does not specify a CPU request, OpenShift Container Platform automatically
assigns a CPU request that matches the limit.

14.4.6. Optional: Disabling CPU load balancing for DPDK

Functionality to disable or enable CPU load balancing is implemented on the CRI-O level. The code
under the CRI-O disables or enables CPU load balancing only when the following requirements are met.

The pod must use the performance-<profile-name> runtime class. You can get the proper
name by looking at the status of the performance profile, as shown here:

The pod must have the cpu-load-balancing.crio.io: true annotation.

The Performance Addon Operator is responsible for the creation of the high-performance runtime
handler config snippet under relevant nodes and for creation of the high-performance runtime class
under the cluster. It will have the same content as default runtime handler except it enables the CPU
load balancing configuration functionality.

To disable the CPU load balancing for the pod, the Pod specification must include the following fields:

NOTE

Only disable CPU load balancing when the CPU manager static policy is enabled and for
pods with guaranteed QoS that use whole CPUs. Otherwise, disabling CPU load
balancing can affect the performance of other containers in the cluster.

14.4.7. Assigning a proper node selector

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
...
status:
 ...
 runtimeClass: performance-manual

apiVersion: v1
kind: Pod
metadata:
 ...
 annotations:
 ...
 cpu-load-balancing.crio.io: "disable"
 ...
 ...
spec:
 ...
 runtimeClassName: performance-<profile_name>
 ...

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

111

The preferred way to assign a pod to nodes is to use the same node selector the performance profile
used, as shown here:

For more information, see Placing pods on specific nodes using node selectors .

14.4.8. Scheduling a workload onto a worker with real-time capabilities

Use label selectors that match the nodes attached to the machine config pool that was configured for
low latency by the Performance Addon Operator. For more information, see Assigning pods to nodes .

14.4.9. Managing device interrupt processing for guaranteed pod isolated CPUs

The Performance Addon Operator can manage host CPUs by dividing them into reserved CPUs for
cluster and operating system housekeeping duties, including pod infra containers, and isolated CPUs for
application containers to run the workloads. This allows you to set CPUs for low latency workloads as
isolated.

Device interrupts are load balanced between all isolated and reserved CPUs to avoid CPUs being
overloaded, with the exception of CPUs where there is a guaranteed pod running. Guaranteed pod
CPUs are prevented from processing device interrupts when the relevant annotations are set for the
pod.

In the performance profile, globallyDisableIrqLoadBalancing is used to manage whether device
interrupts are processed or not. For certain workloads the reserved CPUs are not always sufficient for
dealing with device interrupts, and for this reason, device interrupts are not globally disabled on the
isolated CPUs. By default, Performance Addon Operator does not disable device interrupts on isolated
CPUs.

To achieve low latency for workloads, some (but not all) pods require the CPUs they are running on to
not process device interrupts. A pod annotation, irq-load-balancing.crio.io, is used to define whether
device interrupts are processed or not. When configured, CRI-O disables device interrupts only as long
as the pod is running.

14.4.9.1. Disabling CPU CFS quota

To reduce CPU throttling for individual guaranteed pods, create a pod specification with the annotation
cpu-quota.crio.io: "disable". This annotation disables the CPU completely fair scheduler (CFS) quota
at the pod run time. The following pod specification contains this annotation:

apiVersion: v1
kind: Pod
metadata:
 name: example
spec:
 # ...
 nodeSelector:
 node-role.kubernetes.io/worker-rt: ""

apiVersion: performance.openshift.io/v2
kind: Pod
metadata:
 annotations:
 cpu-quota.crio.io: "disable"

OpenShift Container Platform 4.9 Scalability and performance

112

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/index#nodes-scheduler-node-selectors
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

NOTE

Only disable CPU CFS quota when the CPU manager static policy is enabled and for
pods with guaranteed QoS that use whole CPUs. Otherwise, disabling CPU CFS quota
can affect the performance of other containers in the cluster.

14.4.9.2. Disabling global device interrupts handling in Performance Addon Operator

To configure Performance Addon Operator to disable global device interrupts for the isolated CPU set,
set the globallyDisableIrqLoadBalancing field in the performance profile to true. When true,
conflicting pod annotations are ignored. When false, IRQ loads are balanced across all CPUs.

A performance profile snippet illustrates this setting:

14.4.9.3. Disabling interrupt processing for individual pods

To disable interrupt processing for individual pods, ensure that globallyDisableIrqLoadBalancing is
set to false in the performance profile. Then, in the pod specification, set the irq-load-balancing.crio.io
pod annotation to disable. The following pod specification contains this annotation:

14.4.10. Upgrading the performance profile to use device interrupt processing

When you upgrade the Performance Addon Operator performance profile custom resource definition
(CRD) from v1 or v1alpha1 to v2, globallyDisableIrqLoadBalancing is set to true on existing profiles.

NOTE

globallyDisableIrqLoadBalancing toggles whether IRQ load balancing will be disabled
for the Isolated CPU set. When the option is set to true it disables IRQ load balancing for
the Isolated CPU set. Setting the option to false allows the IRQs to be balanced across all
CPUs.

spec:
 runtimeClassName: performance-<profile_name>
...

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: manual
spec:
 globallyDisableIrqLoadBalancing: true
...

apiVersion: performance.openshift.io/v2
kind: Pod
metadata:
 annotations:
 irq-load-balancing.crio.io: "disable"
spec:
 runtimeClassName: performance-<profile_name>
...

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

113

14.4.10.1. Supported API Versions

The Performance Addon Operator supports v2, v1, and v1alpha1 for the performance profile
apiVersion field. The v1 and v1alpha1 APIs are identical. The v2 API includes an optional boolean field
globallyDisableIrqLoadBalancing with a default value of false.

14.4.10.1.1. Upgrading Performance Addon Operator API from v1alpha1 to v1

When upgrading Performance Addon Operator API version from v1alpha1 to v1, the v1alpha1 performance
profiles are converted on-the-fly using a "None" Conversion strategy and served to the Performance
Addon Operator with API version v1.

14.4.10.1.2. Upgrading Performance Addon Operator API from v1alpha1 or v1 to v2

When upgrading from an older Performance Addon Operator API version, the existing v1 and v1alpha1
performance profiles are converted using a conversion webhook that injects the
globallyDisableIrqLoadBalancing field with a value of true.

14.4.11. Configuring a node for IRQ dynamic load balancing

To configure a cluster node to handle IRQ dynamic load balancing, do the following:

1. Log in to the OpenShift Container Platform cluster as a user with cluster-admin privileges.

2. Set the performance profile apiVersion to use performance.openshift.io/v2.

3. Remove the globallyDisableIrqLoadBalancing field or set it to false.

4. Set the appropriate isolated and reserved CPUs. The following snippet illustrates a profile that
reserves 2 CPUs. IRQ load-balancing is enabled for pods running on the isolated CPU set:

NOTE

When you configure reserved and isolated CPUs, the infra containers in pods use
the reserved CPUs and the application containers use the isolated CPUs.

5. Create the pod that uses exclusive CPUs, and set irq-load-balancing.crio.io and cpu-
quota.crio.io annotations to disable. For example:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: dynamic-irq-profile
spec:
 cpu:
 isolated: 2-5
 reserved: 0-1
...

apiVersion: v1
kind: Pod
metadata:
 name: dynamic-irq-pod
 annotations:

OpenShift Container Platform 4.9 Scalability and performance

114

6. Enter the pod runtimeClassName in the form performance-<profile_name>, where
<profile_name> is the name from the PerformanceProfile YAML, in this example, performance-
dynamic-irq-profile.

7. Set the node selector to target a cnf-worker.

8. Ensure the pod is running correctly. Status should be running, and the correct cnf-worker node
should be set:

Expected output

9. Get the CPUs that the pod configured for IRQ dynamic load balancing runs on:

Expected output

10. Ensure the node configuration is applied correctly. SSH into the node to verify the
configuration.

Expected output

 irq-load-balancing.crio.io: "disable"
 cpu-quota.crio.io: "disable"
spec:
 containers:
 - name: dynamic-irq-pod
 image: "quay.io/openshift-kni/cnf-tests:4.9"
 command: ["sleep", "10h"]
 resources:
 requests:
 cpu: 2
 memory: "200M"
 limits:
 cpu: 2
 memory: "200M"
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""
 runtimeClassName: performance-dynamic-irq-profile
...

$ oc get pod -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
dynamic-irq-pod 1/1 Running 0 5h33m <ip-address> <node-name> <none>
<none>

$ oc exec -it dynamic-irq-pod -- /bin/bash -c "grep Cpus_allowed_list /proc/self/status | awk
'{print $2}'"

Cpus_allowed_list: 2-3

$ oc debug node/<node-name>

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

115

11. Verify that you can use the node file system:

Expected output

12. Ensure the default system CPU affinity mask does not include the dynamic-irq-pod CPUs, for
example, CPUs 2 and 3.

Example output

13. Ensure the system IRQs are not configured to run on the dynamic-irq-pod CPUs:

Example output

Starting pod/<node-name>-debug ...
To use host binaries, run `chroot /host`

Pod IP: <ip-address>
If you don't see a command prompt, try pressing enter.

sh-4.4#

sh-4.4# chroot /host

sh-4.4#

$ cat /proc/irq/default_smp_affinity

33

find /proc/irq/ -name smp_affinity_list -exec sh -c 'i="$1"; mask=$(cat $i); file=$(echo $i); echo
$file: $mask' _ {} \;

/proc/irq/0/smp_affinity_list: 0-5
/proc/irq/1/smp_affinity_list: 5
/proc/irq/2/smp_affinity_list: 0-5
/proc/irq/3/smp_affinity_list: 0-5
/proc/irq/4/smp_affinity_list: 0
/proc/irq/5/smp_affinity_list: 0-5
/proc/irq/6/smp_affinity_list: 0-5
/proc/irq/7/smp_affinity_list: 0-5
/proc/irq/8/smp_affinity_list: 4
/proc/irq/9/smp_affinity_list: 4
/proc/irq/10/smp_affinity_list: 0-5
/proc/irq/11/smp_affinity_list: 0
/proc/irq/12/smp_affinity_list: 1
/proc/irq/13/smp_affinity_list: 0-5
/proc/irq/14/smp_affinity_list: 1
/proc/irq/15/smp_affinity_list: 0
/proc/irq/24/smp_affinity_list: 1
/proc/irq/25/smp_affinity_list: 1
/proc/irq/26/smp_affinity_list: 1
/proc/irq/27/smp_affinity_list: 5

OpenShift Container Platform 4.9 Scalability and performance

116

Some IRQ controllers do not support IRQ re-balancing and will always expose all online CPUs as the IRQ
mask. These IRQ controllers effectively run on CPU 0. For more information on the host configuration,
SSH into the host and run the following, replacing <irq-num> with the CPU number that you want to
query:

14.4.12. Configuring hyperthreading for a cluster

To configure hyperthreading for an OpenShift Container Platform cluster, set the CPU threads in the
performance profile to the same cores that are configured for the reserved or isolated CPU pools.

NOTE

If you configure a performance profile, and subsequently change the hyperthreading
configuration for the host, ensure that you update the CPU isolated and reserved fields
in the PerformanceProfile YAML to match the new configuration.

WARNING

Disabling a previously enabled host hyperthreading configuration can cause the
CPU core IDs listed in the PerformanceProfile YAML to be incorrect. This incorrect
configuration can cause the node to become unavailable because the listed CPUs
can no longer be found.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Install the OpenShift CLI (oc).

Procedure

1. Ascertain which threads are running on what CPUs for the host you want to configure.
You can view which threads are running on the host CPUs by logging in to the cluster and
running the following command:

Example output

/proc/irq/28/smp_affinity_list: 1
/proc/irq/29/smp_affinity_list: 0
/proc/irq/30/smp_affinity_list: 0-5

$ cat /proc/irq/<irq-num>/effective_affinity



$ lscpu --all --extended

CPU NODE SOCKET CORE L1d:L1i:L2:L3 ONLINE MAXMHZ MINMHZ
0 0 0 0 0:0:0:0 yes 4800.0000 400.0000
1 0 0 1 1:1:1:0 yes 4800.0000 400.0000

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

117

In this example, there are eight logical CPU cores running on four physical CPU cores. CPU0
and CPU4 are running on physical Core0, CPU1 and CPU5 are running on physical Core 1, and so
on.

Alternatively, to view the threads that are set for a particular physical CPU core (cpu0 in the
example below), open a command prompt and run the following:

Example output

2. Apply the isolated and reserved CPUs in the PerformanceProfile YAML. For example, you can
set logical cores CPU0 and CPU4 as isolated, and logical cores CPU1 to CPU3 and CPU5 to
CPU7 as reserved. When you configure reserved and isolated CPUs, the infra containers in
pods use the reserved CPUs and the application containers use the isolated CPUs.

NOTE

The reserved and isolated CPU pools must not overlap and together must span
all available cores in the worker node.

IMPORTANT

Hyperthreading is enabled by default on most Intel processors. If you enable
hyperthreading, all threads processed by a particular core must be isolated or processed
on the same core.

14.4.12.1. Disabling hyperthreading for low latency applications

When configuring clusters for low latency processing, consider whether you want to disable
hyperthreading before you deploy the cluster. To disable hyperthreading, do the following:

1. Create a performance profile that is appropriate for your hardware and topology.

2. Set nosmt as an additional kernel argument. The following example performance profile
illustrates this setting:

2 0 0 2 2:2:2:0 yes 4800.0000 400.0000
3 0 0 3 3:3:3:0 yes 4800.0000 400.0000
4 0 0 0 0:0:0:0 yes 4800.0000 400.0000
5 0 0 1 1:1:1:0 yes 4800.0000 400.0000
6 0 0 2 2:2:2:0 yes 4800.0000 400.0000
7 0 0 3 3:3:3:0 yes 4800.0000 400.0000

$ cat /sys/devices/system/cpu/cpu0/topology/thread_siblings_list

0-4

...
 cpu:
 isolated: 0,4
 reserved: 1-3,5-7
...

​apiVersion: performance.openshift.io/v2

OpenShift Container Platform 4.9 Scalability and performance

118

NOTE

When you configure reserved and isolated CPUs, the infra containers in pods use
the reserved CPUs and the application containers use the isolated CPUs.

14.5. TUNING NODES FOR LOW LATENCY WITH THE PERFORMANCE
PROFILE

The performance profile lets you control latency tuning aspects of nodes that belong to a certain
machine config pool. After you specify your settings, the PerformanceProfile object is compiled into
multiple objects that perform the actual node level tuning:

A MachineConfig file that manipulates the nodes.

A KubeletConfig file that configures the Topology Manager, the CPU Manager, and the
OpenShift Container Platform nodes.

The Tuned profile that configures the Node Tuning Operator.

You can use a performance profile to specify whether to update the kernel to kernel-rt, to allocate huge
pages, and to partition the CPUs for performing housekeeping duties or running workloads.

NOTE

You can manually create the PerformanceProfile object or use the Performance Profile
Creator (PPC) to generate a performance profile. See the additional resources below for
more information on the PPC.

kind: PerformanceProfile
metadata:
 name: example-performanceprofile
spec:
 additionalKernelArgs:
 - nmi_watchdog=0
 - audit=0
 - mce=off
 - processor.max_cstate=1
 - idle=poll
 - intel_idle.max_cstate=0
 - nosmt
 cpu:
 isolated: 2-3
 reserved: 0-1
 hugepages:
 defaultHugepagesSize: 1G
 pages:
 - count: 2
 node: 0
 size: 1G
 nodeSelector:
 node-role.kubernetes.io/performance: ''
 realTimeKernel:
 enabled: true

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

119

1

2

3

4

5

Sample performance profile

Use this field to isolate specific CPUs to use with application containers for workloads.

Use this field to reserve specific CPUs to use with infra containers for housekeeping.

Use this field to install the real-time kernel on the node. Valid values are true or false. Setting the
true value installs the real-time kernel.

Use this field to configure the topology manager policy. Valid values are none (default), best-
effort, restricted, and single-numa-node. For more information, see Topology Manager Policies .

Use this field to specify a node selector to apply the performance profile to specific nodes.

Additional resources

For information on using the Performance Profile Creator (PPC) to generate a performance
profile, see Creating a performance profile .

14.5.1. Configuring huge pages

Nodes must pre-allocate huge pages used in an OpenShift Container Platform cluster. Use the
Performance Addon Operator to allocate huge pages on a specific node.

OpenShift Container Platform provides a method for creating and allocating huge pages. Performance
Addon Operator provides an easier method for doing this using the performance profile.

For example, in the hugepages pages section of the performance profile, you can specify multiple
blocks of size, count, and, optionally, node:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: performance
spec:
 cpu:
 isolated: "5-15" 1
 reserved: "0-4" 2
 hugepages:
 defaultHugepagesSize: "1G"
 pages:
 - size: "1G"
 count: 16
 node: 0
 realTimeKernel:
 enabled: true 3
 numa: 4
 topologyPolicy: "best-effort"
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: "" 5

hugepages:
 defaultHugepagesSize: "1G"

OpenShift Container Platform 4.9 Scalability and performance

120

https://kubernetes.io/docs/tasks/administer-cluster/topology-manager/#topology-manager-policies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/scalability_and_performance/#cnf-create-performance-profiles

1 node is the NUMA node in which the huge pages are allocated. If you omit node, the pages are
evenly spread across all NUMA nodes.

NOTE

Wait for the relevant machine config pool status that indicates the update is finished.

These are the only configuration steps you need to do to allocate huge pages.

Verification

To verify the configuration, see the /proc/meminfo file on the node:

Example output

Use oc describe to report the new size:

Example output

14.5.2. Allocating multiple huge page sizes

You can request huge pages with different sizes under the same container. This allows you to define
more complicated pods consisting of containers with different huge page size needs.

For example, you can define sizes 1G and 2M and the Performance Addon Operator will configure both
sizes on the node, as shown here:

 pages:
 - size: "1G"
 count: 4
 node: 0 1

$ oc debug node/ip-10-0-141-105.ec2.internal

grep -i huge /proc/meminfo

AnonHugePages: ###### ##
ShmemHugePages: 0 kB
HugePages_Total: 2
HugePages_Free: 2
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: #### ##
Hugetlb: #### ##

$ oc describe node worker-0.ocp4poc.example.com | grep -i huge

 hugepages-1g=true
 hugepages-###: ###
 hugepages-###: ###

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

121

14.5.3. Restricting CPUs for infra and application containers

Generic housekeeping and workload tasks use CPUs in a way that may impact latency-sensitive
processes. By default, the container runtime uses all online CPUs to run all containers together, which
can result in context switches and spikes in latency. Partitioning the CPUs prevents noisy processes
from interfering with latency-sensitive processes by separating them from each other. The following
table describes how processes run on a CPU after you have tuned the node using the Performance
Add-On Operator:

Table 14.1. Process' CPU assignments

Process type Details

Burstable and BestEffort pods Runs on any CPU except where low latency workload
is running

Infrastructure pods Runs on any CPU except where low latency workload
is running

Interrupts Redirects to reserved CPUs (optional in OpenShift
Container Platform 4.7 and later)

Kernel processes Pins to reserved CPUs

Latency-sensitive workload pods Pins to a specific set of exclusive CPUs from the
isolated pool

OS processes/systemd services Pins to reserved CPUs

The allocatable capacity of cores on a node for pods of all QoS process types, Burstable, BestEffort, or
Guaranteed, is equal to the capacity of the isolated pool. The capacity of the reserved pool is removed
from the node’s total core capacity for use by the cluster and operating system housekeeping duties.

Example 1

A node features a capacity of 100 cores. Using a performance profile, the cluster administrator allocates
50 cores to the isolated pool and 50 cores to the reserved pool. The cluster administrator assigns 25
cores to QoS Guaranteed pods and 25 cores for BestEffort or Burstable pods. This matches the
capacity of the isolated pool.

Example 2

spec:
 hugepages:
 defaultHugepagesSize: 1G
 pages:
 - count: 1024
 node: 0
 size: 2M
 - count: 4
 node: 1
 size: 1G

OpenShift Container Platform 4.9 Scalability and performance

122

A node features a capacity of 100 cores. Using a performance profile, the cluster administrator allocates
50 cores to the isolated pool and 50 cores to the reserved pool. The cluster administrator assigns 50
cores to QoS Guaranteed pods and one core for BestEffort or Burstable pods. This exceeds the
capacity of the isolated pool by one core. Pod scheduling fails because of insufficient CPU capacity.

The exact partitioning pattern to use depends on many factors like hardware, workload characteristics
and the expected system load. Some sample use cases are as follows:

If the latency-sensitive workload uses specific hardware, such as a network interface controller
(NIC), ensure that the CPUs in the isolated pool are as close as possible to this hardware. At a
minimum, you should place the workload in the same Non-Uniform Memory Access (NUMA)
node.

The reserved pool is used for handling all interrupts. When depending on system networking,
allocate a sufficiently-sized reserve pool to handle all the incoming packet interrupts. In 4.9 and
later versions, workloads can optionally be labeled as sensitive.

The decision regarding which specific CPUs should be used for reserved and isolated partitions requires
detailed analysis and measurements. Factors like NUMA affinity of devices and memory play a role. The
selection also depends on the workload architecture and the specific use case.

IMPORTANT

The reserved and isolated CPU pools must not overlap and together must span all
available cores in the worker node.

To ensure that housekeeping tasks and workloads do not interfere with each other, specify two groups
of CPUs in the spec section of the performance profile.

isolated - Specifies the CPUs for the application container workloads. These CPUs have the
lowest latency. Processes in this group have no interruptions and can, for example, reach much
higher DPDK zero packet loss bandwidth.

reserved - Specifies the CPUs for the cluster and operating system housekeeping duties.
Threads in the reserved group are often busy. Do not run latency-sensitive applications in the
reserved group. Latency-sensitive applications run in the isolated group.

Procedure

1. Create a performance profile appropriate for the environment’s hardware and topology.

2. Add the reserved and isolated parameters with the CPUs you want reserved and isolated for
the infra and application containers:

​apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: infra-cpus
spec:
 cpu:
 reserved: "0-4,9" 1
 isolated: "5-8" 2
 nodeSelector: 3
 node-role.kubernetes.io/worker: ""

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

123

1

2

3

Specify which CPUs are for infra containers to perform cluster and operating system
housekeeping duties.

Specify which CPUs are for application containers to run workloads.

Optional: Specify a node selector to apply the performance profile to specific nodes.

Additional resources

Managing device interrupt processing for guaranteed pod isolated CPUs

Create a pod that gets assigned a QoS class of Guaranteed

14.6. REDUCING NIC QUEUES USING THE PERFORMANCE ADDON
OPERATOR

The Performance Addon Operator allows you to adjust the network interface controller (NIC) queue
count for each network device by configuring the performance profile. Device network queues allows the
distribution of packets among different physical queues and each queue gets a separate thread for
packet processing.

In real-time or low latency systems, all the unnecessary interrupt request lines (IRQs) pinned to the
isolated CPUs must be moved to reserved or housekeeping CPUs.

In deployments with applications that require system, OpenShift Container Platform networking or in
mixed deployments with Data Plane Development Kit (DPDK) workloads, multiple queues are needed to
achieve good throughput and the number of NIC queues should be adjusted or remain unchanged. For
example, to achieve low latency the number of NIC queues for DPDK based workloads should be
reduced to just the number of reserved or housekeeping CPUs.

Too many queues are created by default for each CPU and these do not fit into the interrupt tables for
housekeeping CPUs when tuning for low latency. Reducing the number of queues makes proper tuning
possible. Smaller number of queues means a smaller number of interrupts that then fit in the IRQ table.

14.6.1. Adjusting the NIC queues with the performance profile

The performance profile lets you adjust the queue count for each network device.

Supported network devices:

Non-virtual network devices

Network devices that support multiple queues (channels)

Unsupported network devices:

Pure software network interfaces

Block devices

Intel DPDK virtual functions

Prerequisites

OpenShift Container Platform 4.9 Scalability and performance

124

https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/#create-a-pod-that-gets-assigned-a-qos-class-of-guaranteed

Access to the cluster as a user with the cluster-admin role.

Install the OpenShift CLI (oc).

Procedure

1. Log in to the OpenShift Container Platform cluster running the Performance Addon Operator
as a user with cluster-admin privileges.

2. Create and apply a performance profile appropriate for your hardware and topology. For
guidance on creating a profile, see the "Creating a performance profile" section.

3. Edit this created performance profile:

4. Populate the spec field with the net object. The object list can contain two fields:

userLevelNetworking is a required field specified as a boolean flag. If
userLevelNetworking is true, the queue count is set to the reserved CPU count for all
supported devices. The default is false.

devices is an optional field specifying a list of devices that will have the queues set to the
reserved CPU count. If the device list is empty, the configuration applies to all network
devices. The configuration is as follows:

interfaceName: This field specifies the interface name, and it supports shell-style
wildcards, which can be positive or negative.

Example wildcard syntax is as follows: <string> .*

Negative rules are prefixed with an exclamation mark. To apply the net queue
changes to all devices other than the excluded list, use !<device>, for example,
!eno1.

vendorID: The network device vendor ID represented as a 16-bit hexadecimal number
with a 0x prefix.

deviceID: The network device ID (model) represented as a 16-bit hexadecimal number
with a 0x prefix.

NOTE

When a deviceID is specified, the vendorID must also be defined. A
device that matches all of the device identifiers specified in a device
entry interfaceName, vendorID, or a pair of vendorID plus deviceID
qualifies as a network device. This network device then has its net queues
count set to the reserved CPU count.

When two or more devices are specified, the net queues count is set to
any net device that matches one of them.

5. Set the queue count to the reserved CPU count for all devices by using this example
performance profile:

$ oc edit -f <your_profile_name>.yaml

apiVersion: performance.openshift.io/v2

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

125

6. Set the queue count to the reserved CPU count for all devices matching any of the defined
device identifiers by using this example performance profile:

7. Set the queue count to the reserved CPU count for all devices starting with the interface name
eth by using this example performance profile:

8. Set the queue count to the reserved CPU count for all devices with an interface named
anything other than eno1 by using this example performance profile:

kind: PerformanceProfile
metadata:
 name: manual
spec:
 cpu:
 isolated: 3-51,54-103
 reserved: 0-2,52-54
 net:
 userLevelNetworking: true
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: manual
spec:
 cpu:
 isolated: 3-51,54-103
 reserved: 0-2,52-54
 net:
 userLevelNetworking: true
 devices:
 - interfaceName: “eth0”
 - interfaceName: “eth1”
 - vendorID: “0x1af4”
 - deviceID: “0x1000”
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: manual
spec:
 cpu:
 isolated: 3-51,54-103
 reserved: 0-2,52-54
 net:
 userLevelNetworking: true
 devices:
 - interfaceName: “eth*”
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

apiVersion: performance.openshift.io/v2

OpenShift Container Platform 4.9 Scalability and performance

126

9. Set the queue count to the reserved CPU count for all devices that have an interface name
eth0, vendorID of 0x1af4, and deviceID of 0x1000 by using this example performance profile:

10. Apply the updated performance profile:

Additional resources

Creating a performance profile .

14.6.2. Verifying the queue status

In this section, a number of examples illustrate different performance profiles and how to verify the
changes are applied.

Example 1

In this example, the net queue count is set to the reserved CPU count (2) for all supported devices.

The relevant section from the performance profile is:

kind: PerformanceProfile
metadata:
 name: manual
spec:
 cpu:
 isolated: 3-51,54-103
 reserved: 0-2,52-54
 net:
 userLevelNetworking: true
 devices:
 - interfaceName: “!eno1”
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: manual
spec:
 cpu:
 isolated: 3-51,54-103
 reserved: 0-2,52-54
 net:
 userLevelNetworking: true
 devices:
 - interfaceName: “eth0”
 - vendorID: “0x1af4”
 - deviceID: “0x1000”
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

$ oc apply -f <your_profile_name>.yaml

apiVersion: performance.openshift.io/v2
metadata:

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

127

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/scalability_and_performance/#cnf-create-performance-profiles

Display the status of the queues associated with a device using the following command:

NOTE

Run this command on the node where the performance profile was applied.

Verify the queue status before the profile is applied:

Example output

Verify the queue status after the profile is applied:

Example output

 name: performance
spec:
 kind: PerformanceProfile
 spec:
 cpu:
 reserved: 0-1 #total = 2
 isolated: 2-8
 net:
 userLevelNetworking: true
...

$ ethtool -l <device>

$ ethtool -l ens4

Channel parameters for ens4:
Pre-set maximums:
RX: 0
TX: 0
Other: 0
Combined: 4
Current hardware settings:
RX: 0
TX: 0
Other: 0
Combined: 4

$ ethtool -l ens4

Channel parameters for ens4:
Pre-set maximums:
RX: 0
TX: 0
Other: 0
Combined: 4
Current hardware settings:
RX: 0

OpenShift Container Platform 4.9 Scalability and performance

128

1 The combined channel shows that the total count of reserved CPUs for all supported devices is 2.
This matches what is configured in the performance profile.

Example 2

In this example, the net queue count is set to the reserved CPU count (2) for all supported network
devices with a specific vendorID.

The relevant section from the performance profile is:

Display the status of the queues associated with a device using the following command:

NOTE

Run this command on the node where the performance profile was applied.

Verify the queue status after the profile is applied:

Example output

TX: 0
Other: 0
Combined: 2 1

apiVersion: performance.openshift.io/v2
metadata:
 name: performance
spec:
 kind: PerformanceProfile
 spec:
 cpu:
 reserved: 0-1 #total = 2
 isolated: 2-8
 net:
 userLevelNetworking: true
 devices:
 - vendorID = 0x1af4
...

$ ethtool -l <device>

$ ethtool -l ens4

Channel parameters for ens4:
Pre-set maximums:
RX: 0
TX: 0
Other: 0
Combined: 4
Current hardware settings:
RX: 0

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

129

1 The total count of reserved CPUs for all supported devices with vendorID=0x1af4 is 2. For
example, if there is another network device ens2 with vendorID=0x1af4 it will also have total net
queues of 2. This matches what is configured in the performance profile.

Example 3

In this example, the net queue count is set to the reserved CPU count (2) for all supported network
devices that match any of the defined device identifiers.

The command udevadm info provides a detailed report on a device. In this example the devices are:

Set the net queues to 2 for a device with interfaceName equal to eth0 and any devices that
have a vendorID=0x1af4 with the following performance profile:

Verify the queue status after the profile is applied:

Example output

TX: 0
Other: 0
Combined: 2 1

udevadm info -p /sys/class/net/ens4
...
E: ID_MODEL_ID=0x1000
E: ID_VENDOR_ID=0x1af4
E: INTERFACE=ens4
...

udevadm info -p /sys/class/net/eth0
...
E: ID_MODEL_ID=0x1002
E: ID_VENDOR_ID=0x1001
E: INTERFACE=eth0
...

apiVersion: performance.openshift.io/v2
metadata:
 name: performance
spec:
 kind: PerformanceProfile
 spec:
 cpu:
 reserved: 0-1 #total = 2
 isolated: 2-8
 net:
 userLevelNetworking: true
 devices:
 - interfaceName = eth0
 - vendorID = 0x1af4
...

$ ethtool -l ens4

OpenShift Container Platform 4.9 Scalability and performance

130

1 The total count of reserved CPUs for all supported devices with vendorID=0x1af4 is set to
2. For example, if there is another network device ens2 with vendorID=0x1af4, it will also
have the total net queues set to 2. Similarly, a device with interfaceName equal to eth0 will
have total net queues set to 2.

14.6.3. Logging associated with adjusting NIC queues

Log messages detailing the assigned devices are recorded in the respective Tuned daemon logs. The
following messages might be recorded to the /var/log/tuned/tuned.log file:

An INFO message is recorded detailing the successfully assigned devices:

A WARNING message is recorded if none of the devices can be assigned:

14.7. DEBUGGING LOW LATENCY CNF TUNING STATUS

The PerformanceProfile custom resource (CR) contains status fields for reporting tuning status and
debugging latency degradation issues. These fields report on conditions that describe the state of the
operator’s reconciliation functionality.

A typical issue can arise when the status of machine config pools that are attached to the performance
profile are in a degraded state, causing the PerformanceProfile status to degrade. In this case, the
machine config pool issues a failure message.

The Performance Addon Operator contains the performanceProfile.spec.status.Conditions status
field:

Channel parameters for ens4:
Pre-set maximums:
RX: 0
TX: 0
Other: 0
Combined: 4
Current hardware settings:
RX: 0
TX: 0
Other: 0
Combined: 2 1

INFO tuned.plugins.base: instance net_test (net): assigning devices ens1, ens2, ens3

WARNING tuned.plugins.base: instance net_test: no matching devices available

Status:
 Conditions:
 Last Heartbeat Time: 2020-06-02T10:01:24Z
 Last Transition Time: 2020-06-02T10:01:24Z
 Status: True
 Type: Available
 Last Heartbeat Time: 2020-06-02T10:01:24Z
 Last Transition Time: 2020-06-02T10:01:24Z
 Status: True
 Type: Upgradeable

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

131

The Status field contains Conditions that specify Type values that indicate the status of the
performance profile:

Available

All machine configs and Tuned profiles have been created successfully and are available for cluster
components are responsible to process them (NTO, MCO, Kubelet).

Upgradeable

Indicates whether the resources maintained by the Operator are in a state that is safe to upgrade.

Progressing

Indicates that the deployment process from the performance profile has started.

Degraded

Indicates an error if:

Validation of the performance profile has failed.

Creation of all relevant components did not complete successfully.

Each of these types contain the following fields:

Status

The state for the specific type (true or false).

Timestamp

The transaction timestamp.

Reason string

The machine readable reason.

Message string

The human readable reason describing the state and error details, if any.

14.7.1. Machine config pools

A performance profile and its created products are applied to a node according to an associated
machine config pool (MCP). The MCP holds valuable information about the progress of applying the
machine configurations created by performance addons that encompass kernel args, kube config, huge
pages allocation, and deployment of rt-kernel. The performance addons controller monitors changes in
the MCP and updates the performance profile status accordingly.

The only conditions returned by the MCP to the performance profile status is when the MCP is
Degraded, which leads to performaceProfile.status.condition.Degraded = true.

Example

The following example is for a performance profile with an associated machine config pool (worker-cnf)

 Last Heartbeat Time: 2020-06-02T10:01:24Z
 Last Transition Time: 2020-06-02T10:01:24Z
 Status: False
 Type: Progressing
 Last Heartbeat Time: 2020-06-02T10:01:24Z
 Last Transition Time: 2020-06-02T10:01:24Z
 Status: False
 Type: Degraded

OpenShift Container Platform 4.9 Scalability and performance

132

The following example is for a performance profile with an associated machine config pool (worker-cnf)
that was created for it:

1. The associated machine config pool is in a degraded state:

Example output

2. The describe section of the MCP shows the reason:

Example output

3. The degraded state should also appear under the performance profile status field marked as
degraded = true:

Example output

14.8. COLLECTING LOW LATENCY TUNING DEBUGGING DATA FOR
RED HAT SUPPORT

When opening a support case, it is helpful to provide debugging information about your cluster to Red

oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-2ee57a93fa6c9181b546ca46e1571d2d True False
False 3 3 3 0 2d21h
worker rendered-worker-d6b2bdc07d9f5a59a6b68950acf25e5f True False
False 2 2 2 0 2d21h
worker-cnf rendered-worker-cnf-6c838641b8a08fff08dbd8b02fb63f7c False True
True 2 1 1 1 2d20h

oc describe mcp worker-cnf

 Message: Node node-worker-cnf is reporting: "prepping update:
 machineconfig.machineconfiguration.openshift.io \"rendered-worker-cnf-
40b9996919c08e335f3ff230ce1d170\" not
 found"
 Reason: 1 nodes are reporting degraded status on sync

oc describe performanceprofiles performance

Message: Machine config pool worker-cnf Degraded Reason: 1 nodes are reporting
degraded status on sync.
Machine config pool worker-cnf Degraded Message: Node yquinn-q8s5v-w-b-
z5lqn.c.openshift-gce-devel.internal is
reporting: "prepping update: machineconfig.machineconfiguration.openshift.io
\"rendered-worker-cnf-40b9996919c08e335f3ff230ce1d170\" not found". Reason:
MCPDegraded
 Status: True
 Type: Degraded

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

133

When opening a support case, it is helpful to provide debugging information about your cluster to Red
Hat Support.

The must-gather tool enables you to collect diagnostic information about your OpenShift Container
Platform cluster, including node tuning, NUMA topology, and other information needed to debug issues
with low latency setup.

For prompt support, supply diagnostic information for both OpenShift Container Platform and low
latency tuning.

14.8.1. About the must-gather tool

The oc adm must-gather CLI command collects the information from your cluster that is most likely
needed for debugging issues, such as:

Resource definitions

Audit logs

Service logs

You can specify one or more images when you run the command by including the --image argument.
When you specify an image, the tool collects data related to that feature or product. When you run oc
adm must-gather, a new pod is created on the cluster. The data is collected on that pod and saved in a
new directory that starts with must-gather.local. This directory is created in your current working
directory.

14.8.2. About collecting low latency tuning data

Use the oc adm must-gather CLI command to collect information about your cluster, including features
and objects associated with low latency tuning, including:

The Performance Addon Operator namespaces and child objects.

MachineConfigPool and associated MachineConfig objects.

The Node Tuning Operator and associated Tuned objects.

Linux Kernel command line options.

CPU and NUMA topology

Basic PCI device information and NUMA locality.

To collect Performance Addon Operator debugging information with must-gather, you must specify the
Performance Addon Operator must-gather image:

14.8.3. Gathering data about specific features

You can gather debugging information about specific features by using the oc adm must-gather CLI
command with the --image or --image-stream argument. The must-gather tool supports multiple
images, so you can gather data about more than one feature by running a single command.

NOTE

--image=registry.redhat.io/openshift4/performance-addon-operator-must-gather-rhel8:v4.9.

OpenShift Container Platform 4.9 Scalability and performance

134

1

2

1

NOTE

To collect the default must-gather data in addition to specific feature data, add the --
image-stream=openshift/must-gather argument.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

The OpenShift Container Platform CLI (oc) installed.

Procedure

1. Navigate to the directory where you want to store the must-gather data.

2. Run the oc adm must-gather command with one or more --image or --image-stream
arguments. For example, the following command gathers both the default cluster data and
information specific to the Performance Addon Operator:

The default OpenShift Container Platform must-gather image.

The must-gather image for low latency tuning diagnostics.

3. Create a compressed file from the must-gather directory that was created in your working
directory. For example, on a computer that uses a Linux operating system, run the following
command:

Replace must-gather-local.5421342344627712289/ with the actual directory name.

4. Attach the compressed file to your support case on the Red Hat Customer Portal .

Additional resources

For more information about MachineConfig and KubeletConfig, see Managing nodes.

For more information about the Node Tuning Operator, see Using the Node Tuning Operator .

For more information about the PerformanceProfile, see Configuring huge pages .

For more information about consuming huge pages from your containers, see How huge pages
are consumed by apps.

$ oc adm must-gather \
 --image-stream=openshift/must-gather \ 1

 --image=registry.redhat.io/openshift4/performance-addon-operator-must-gather-rhel8:v4.9
2

 $ tar cvaf must-gather.tar.gz must-gather.local.5421342344627712289/ 1

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

135

https://access.redhat.com/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/nodes/#nodes-nodes-managing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/scalability_and_performance/#using-node-tuning-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/scalability_and_performance/#configuring-huge-pages_huge-pages
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/scalability_and_performance/#how-huge-pages-are-consumed-by-apps_huge-pages

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM
VERIFICATION

You can use the Cloud-native Network Functions (CNF) tests image to run latency tests on a CNF-
enabled OpenShift Container Platform cluster, where all the components required for running CNF
workloads are installed. Run the latency tests to validate node tuning for your workload.

The cnf-tests container image is available at registry.redhat.io/openshift4/cnf-tests-rhel8:v4.9.

IMPORTANT

The cnf-tests image also includes several tests that are not supported by Red Hat at this
time. Only the latency tests are supported by Red Hat.

15.1. PREREQUISITES FOR RUNNING LATENCY TESTS

Your cluster must meet the following requirements before you can run the latency tests:

1. You have configured a performance profile with the Performance Addon Operator.

2. You have applied all the required CNF configurations in the cluster.

3. You have a pre-existing MachineConfigPool CR applied in the cluster. The default worker pool
is worker-cnf.

Additional resources

For more information about creating the cluster performance profile, see Provisioning real-time
and low latency workloads.

15.2. ABOUT DISCOVERY MODE FOR LATENCY TESTS

Use discovery mode to validate the functionality of a cluster without altering its configuration. Existing
environment configurations are used for the tests. The tests can find the configuration items needed
and use those items to execute the tests. If resources needed to run a specific test are not found, the
test is skipped, providing an appropriate message to the user. After the tests are finished, no cleanup of
the pre-configured configuration items is done, and the test environment can be immediately used for
another test run.

IMPORTANT

When running the latency tests, always run the tests with -e DISCOVERY_MODE=true
and -ginkgo.focus set to the appropriate latency test. If you do not run the latency tests
in discovery mode, your existing live cluster performance profile configuration will be
modified by the test run.

Limiting the nodes used during tests
The nodes on which the tests are executed can be limited by specifying a NODES_SELECTOR
environment variable, for example, -e NODES_SELECTOR=node-role.kubernetes.io/worker-cnf. Any
resources created by the test are limited to nodes with matching labels.

NOTE

OpenShift Container Platform 4.9 Scalability and performance

136

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/scalability_and_performance/#cnf-provisioning-real-time-and-low-latency-workloads_cnf-master

NOTE

If you want to override the default worker pool, pass the -e ROLE_WORKER_CNF=
<custom_worker_pool> variable to the command specifying an appropriate label.

15.3. MEASURING LATENCY

The cnf-tests image uses three tools to measure the latency of the system:

hwlatdetect

cyclictest

oslat

Each tool has a specific use. Use the tools in sequence to achieve reliable test results.

hwlatdetect

Measures the baseline that the bare-metal hardware can achieve. Before proceeding with the next
latency test, ensure that the latency reported by hwlatdetect meets the required threshold because
you cannot fix hardware latency spikes by operating system tuning.

cyclictest

Verifies the real-time kernel scheduler latency after hwlatdetect passes validation. The cyclictest
tool schedules a repeated timer and measures the difference between the desired and the actual
trigger times. The difference can uncover basic issues with the tuning caused by interrupts or
process priorities. The tool must run on a real-time kernel.

oslat

Behaves similarly to a CPU-intensive DPDK application and measures all the interruptions and
disruptions to the busy loop that simulates CPU heavy data processing.

The tests introduce the following environment variables:

Table 15.1. Latency test environment variables

Environment variables Description

LATENCY_TEST_DE
LAY

Specifies the amount of time in seconds after which the test starts running. You
can use the variable to allow the CPU manager reconcile loop to update the
default CPU pool. The default value is 0.

LATENCY_TEST_CP
US

Specifies the number of CPUs that the pod running the latency tests uses. If you
do not set the variable, the default configuration includes all isolated CPUs.

LATENCY_TEST_RU
NTIME

Specifies the amount of time in seconds that the latency test must run. The
default value is 300 seconds.

HWLATDETECT_MA
XIMUM_LATENCY

Specifies the maximum acceptable hardware latency in microseconds for the
workload and operating system. If you do not set the value of
HWLATDETECT_MAXIMUM_LATENCY or MAXIMUM_LATENCY, the
tool compares the default expected threshold (20μs) and the actual maximum
latency in the tool itself. Then, the test fails or succeeds accordingly.

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

137

CYCLICTEST_MAXI
MUM_LATENCY

Specifies the maximum latency in microseconds that all threads expect before
waking up during the cyclictest run. If you do not set the value of
CYCLICTEST_MAXIMUM_LATENCY or MAXIMUM_LATENCY, the tool
skips the comparison of the expected and the actual maximum latency.

OSLAT_MAXIMUM_L
ATENCY

Specifies the maximum acceptable latency in microseconds for the oslat test
results. If you do not set the value of OSLAT_MAXIMUM_LATENCY or
MAXIMUM_LATENCY, the tool skips the comparison of the expected and the
actual maximum latency.

MAXIMUM_LATENC
Y

Unified variable that specifies the maximum acceptable latency in microseconds.
Applicable for all available latency tools.

LATENCY_TEST_RU
N

Boolean parameter that indicates whether the tests should run.
LATENCY_TEST_RUN is set to false by default. To run the latency tests, set
this value to true.

Environment variables Description

NOTE

Variables that are specific to a latency tool take precedence over unified variables. For
example, if OSLAT_MAXIMUM_LATENCY is set to 30 microseconds and
MAXIMUM_LATENCY is set to 10 microseconds, the oslat test will run with maximum
acceptable latency of 30 microseconds.

15.4. RUNNING THE LATENCY TESTS

Run the cluster latency tests to validate node tuning for your Cloud-native Network Functions (CNF)
workload.

IMPORTANT

Always run the latency tests with DISCOVERY_MODE=true set. If you don’t, the test
suite will make changes to the running cluster configuration.

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Procedure

1. Open a shell prompt in the directory containing the kubeconfig file.
You provide the test image with a kubeconfig file in current directory and its related
$KUBECONFIG environment variable, mounted through a volume. This allows the running
container to use the kubeconfig file from inside the container.

2. Run the latency tests by entering the following command:

OpenShift Container Platform 4.9 Scalability and performance

138

3. Optional: Append -ginkgo.dryRun to run the latency tests in dry-run mode. This is useful for
checking what the tests run.

4. Optional: Append -ginkgo.v to run the tests with increased verbosity.

5. Optional: To run the latency tests against a specific performance profile, run the following
command, substituting appropriate values:

where:

<performance_profile>

Is the name of the performance profile you want to run the latency tests against.

IMPORTANT

For valid latency tests results, run the tests for at least 12 hours.

15.4.1. Running hwlatdetect

The hwlatdetect tool is available in the rt-kernel package with a regular subscription of Red Hat
Enterprise Linux (RHEL) 8.x.

IMPORTANT

Always run the latency tests with DISCOVERY_MODE=true set. If you don’t, the test
suite will make changes to the running cluster configuration.

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Prerequisites

You have installed the real-time kernel in the cluster.

You have logged in to registry.redhat.io with your Customer Portal credentials.

Procedure

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e LATENCY_TEST_RUN=true -e DISCOVERY_MODE=true
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.9 \
/usr/bin/test-run.sh -ginkgo.focus="\[performance\]\ Latency\ Test"

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e LATENCY_TEST_RUN=true -e LATENCY_TEST_RUNTIME=600 -e
MAXIMUM_LATENCY=20 \
-e PERF_TEST_PROFILE=<performance_profile> registry.redhat.io/openshift4/cnf-tests-
rhel8:v4.9 \
/usr/bin/test-run.sh -ginkgo.focus="[performance]\ Latency\ Test"

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

139

To run the hwlatdetect tests, run the following command, substituting variable values as
appropriate:

The hwlatdetect test runs for 10 minutes (600 seconds). The test runs successfully when the
maximum observed latency is lower than MAXIMUM_LATENCY (20 μs).

If the results exceed the latency threshold, the test fails.

IMPORTANT

For valid results, the test should run for at least 12 hours.

Example failure output

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e LATENCY_TEST_RUN=true -e DISCOVERY_MODE=true -e
ROLE_WORKER_CNF=worker-cnf \
-e LATENCY_TEST_RUNTIME=600 -e MAXIMUM_LATENCY=20 \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.9 \
/usr/bin/test-run.sh -ginkgo.v -ginkgo.focus="hwlatdetect"

running /usr/bin/validationsuite -ginkgo.v -ginkgo.focus=hwlatdetect
I0210 17:08:38.607699 7 request.go:668] Waited for 1.047200253s due to client-side
throttling, not priority and fairness, request:
GET:https://api.ocp.demo.lab:6443/apis/apps.openshift.io/v1?timeout=32s
Running Suite: CNF Features e2e validation
==
Random Seed: 1644512917
Will run 0 of 48 specs

SS
Ran 0 of 48 Specs in 0.001 seconds
SUCCESS! -- 0 Passed | 0 Failed | 0 Pending | 48 Skipped

PASS
Discovery mode enabled, skipping setup
running /usr/bin/cnftests -ginkgo.v -ginkgo.focus=hwlatdetect
I0210 17:08:41.179269 40 request.go:668] Waited for 1.046001096s due to client-side
throttling, not priority and fairness, request:
GET:https://api.ocp.demo.lab:6443/apis/storage.k8s.io/v1beta1?timeout=32s
Running Suite: CNF Features e2e integration tests
===
Random Seed: 1644512920
Will run 1 of 151 specs

SSSSSSS

[performance] Latency Test with the hwlatdetect image
 should succeed
 /remote-source/app/vendor/github.com/openshift-kni/performance-addon-
operators/functests/4_latency/latency.go:221
STEP: Waiting two minutes to download the latencyTest image
STEP: Waiting another two minutes to give enough time for the cluster to move the pod to
Succeeded phase
Feb 10 17:10:56.045: [INFO]: found mcd machine-config-daemon-dzpw7 for node ocp-

OpenShift Container Platform 4.9 Scalability and performance

140

worker-0.demo.lab
Feb 10 17:10:56.259: [INFO]: found mcd machine-config-daemon-dzpw7 for node ocp-
worker-0.demo.lab
Feb 10 17:11:56.825: [ERROR]: timed out waiting for the condition

• Failure [193.903 seconds]
[performance] Latency Test
/remote-source/app/vendor/github.com/openshift-kni/performance-addon-
operators/functests/4_latency/latency.go:60
 with the hwlatdetect image
 /remote-source/app/vendor/github.com/openshift-kni/performance-addon-
operators/functests/4_latency/latency.go:213
 should succeed [It]
 /remote-source/app/vendor/github.com/openshift-kni/performance-addon-
operators/functests/4_latency/latency.go:221

 Log file created at: 2022/02/10 17:08:45
 Running on machine: hwlatdetect-cd8b6
 Binary: Built with gc go1.16.6 for linux/amd64
 Log line format: [IWEF]mmdd hh:mm:ss.uuuuuu threadid file:line] msg
 I0210 17:08:45.716288 1 node.go:37] Environment information: /proc/cmdline:
BOOT_IMAGE=(hd0,gpt3)/ostree/rhcos-
56fabc639a679b757ebae30e5f01b2ebd38e9fde9ecae91c41be41d3e89b37f8/vmlinuz-
4.18.0-305.34.2.rt7.107.el8_4.x86_64 random.trust_cpu=on console=tty0
console=ttyS0,115200n8 ignition.platform.id=qemu
ostree=/ostree/boot.0/rhcos/56fabc639a679b757ebae30e5f01b2ebd38e9fde9ecae91c41be41d
3e89b37f8/0 root=UUID=56731f4f-f558-46a3-85d3-d1b579683385 rw rootflags=prjquota
skew_tick=1 nohz=on rcu_nocbs=3-5 tuned.non_isolcpus=ffffffc7 intel_pstate=disable
nosoftlockup tsc=nowatchdog intel_iommu=on iommu=pt isolcpus=managed_irq,3-5
systemd.cpu_affinity=0,1,2,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,
29,30,31 + +
 I0210 17:08:45.716782 1 node.go:44] Environment information: kernel version 4.18.0-
305.34.2.rt7.107.el8_4.x86_64
 I0210 17:08:45.716861 1 main.go:50] running the hwlatdetect command with
arguments [/usr/bin/hwlatdetect --threshold 1 --hardlimit 1 --duration 10 --window
10000000us --width 950000us]
 F0210 17:08:56.815204 1 main.go:53] failed to run hwlatdetect command; out:
hwlatdetect: test duration 10 seconds
 detector: tracer
 parameters:
 Latency threshold: 1us 1
 Sample window: 10000000us
 Sample width: 950000us
 Non-sampling period: 9050000us
 Output File: None

 Starting test
 test finished
 Max Latency: 24us 2
 Samples recorded: 1
 Samples exceeding threshold: 1
 ts: 1644512927.163556381, inner:20, outer:24
 ; err: exit status 1
 goroutine 1 [running]:
 k8s.io/klog.stacks(0xc000010001, 0xc00012e000, 0x25b, 0x2710)
 /remote-source/app/vendor/k8s.io/klog/klog.go:875 +0xb9

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

141

1

2

You can configure the latency threshold by using the MAXIMUM_LATENCY or the
HWLATDETECT_MAXIMUM_LATENCY environment variables.

The maximum latency value measured during the test.

Example hwlatdetect test results

 k8s.io/klog.(*loggingT).output(0x5bed00, 0xc000000003, 0xc0000121c0, 0x53ea81, 0x7,
0x35, 0x0)
 /remote-source/app/vendor/k8s.io/klog/klog.go:829 +0x1b0
 k8s.io/klog.(*loggingT).printf(0x5bed00, 0x3, 0x5082da, 0x33, 0xc000113f58, 0x2, 0x2)
 /remote-source/app/vendor/k8s.io/klog/klog.go:707 +0x153
 k8s.io/klog.Fatalf(...)
 /remote-source/app/vendor/k8s.io/klog/klog.go:1276
 main.main()
 /remote-source/app/cnf-tests/pod-utils/hwlatdetect-runner/main.go:53 +0x897

 goroutine 6 [chan receive]:
 k8s.io/klog.(*loggingT).flushDaemon(0x5bed00)
 /remote-source/app/vendor/k8s.io/klog/klog.go:1010 +0x8b
 created by k8s.io/klog.init.0
 /remote-source/app/vendor/k8s.io/klog/klog.go:411 +0xd8

 goroutine 7 [chan receive]:
 k8s.io/klog/v2.(*loggingT).flushDaemon(0x5bede0)
 /remote-source/app/vendor/k8s.io/klog/v2/klog.go:1169 +0x8b
 created by k8s.io/klog/v2.init.0
 /remote-source/app/vendor/k8s.io/klog/v2/klog.go:420 +0xdf
 Unexpected error:
 <*errors.errorString | 0xc000418ed0>: {
 s: "timed out waiting for the condition",
 }
 timed out waiting for the condition
 occurred

 /remote-source/app/vendor/github.com/openshift-kni/performance-addon-
operators/functests/4_latency/latency.go:433

SS
SS
SSSSSSSSSSSSSSS
JUnit report was created: /junit.xml/cnftests-junit.xml

Summarizing 1 Failure:

[Fail] [performance] Latency Test with the hwlatdetect image [It] should succeed
/remote-source/app/vendor/github.com/openshift-kni/performance-addon-
operators/functests/4_latency/latency.go:433

Ran 1 of 151 Specs in 222.254 seconds
FAIL! -- 0 Passed | 1 Failed | 0 Pending | 150 Skipped

--- FAIL: TestTest (222.45s)
FAIL

OpenShift Container Platform 4.9 Scalability and performance

142

You can capture the following types of results:

Rough results that are gathered after each run to create a history of impact on any changes
made throughout the test.

The combined set of the rough tests with the best results and configuration settings.

Example of good results

The hwlatdetect tool only provides output if the sample exceeds the specified threshold.

Example of bad results

The output of hwlatdetect shows that multiple samples exceed the threshold. However, the same
output can indicate different results based on the following factors:

The duration of the test

The number of CPU cores

The host firmware settings

hwlatdetect: test duration 3600 seconds
detector: tracer
parameters:
Latency threshold: 10us
Sample window: 1000000us
Sample width: 950000us
Non-sampling period: 50000us
Output File: None

Starting test
test finished
Max Latency: Below threshold
Samples recorded: 0

hwlatdetect: test duration 3600 seconds
detector: tracer
parameters:Latency threshold: 10usSample window: 1000000us
Sample width: 950000usNon-sampling period: 50000usOutput File: None

Starting tests:1610542421.275784439, inner:78, outer:81
ts: 1610542444.330561619, inner:27, outer:28
ts: 1610542445.332549975, inner:39, outer:38
ts: 1610542541.568546097, inner:47, outer:32
ts: 1610542590.681548531, inner:13, outer:17
ts: 1610543033.818801482, inner:29, outer:30
ts: 1610543080.938801990, inner:90, outer:76
ts: 1610543129.065549639, inner:28, outer:39
ts: 1610543474.859552115, inner:28, outer:35
ts: 1610543523.973856571, inner:52, outer:49
ts: 1610543572.089799738, inner:27, outer:30
ts: 1610543573.091550771, inner:34, outer:28
ts: 1610543574.093555202, inner:116, outer:63

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

143

WARNING

Before proceeding with the next latency test, ensure that the latency reported by
hwlatdetect meets the required threshold. Fixing latencies introduced by hardware
might require you to contact the system vendor support.

Not all latency spikes are hardware related. Ensure that you tune the host firmware
to meet your workload requirements. For more information, see Setting firmware
parameters for system tuning.

15.4.2. Running cyclictest

The cyclictest tool measures the real-time kernel scheduler latency on the specified CPUs.

IMPORTANT

Always run the latency tests with DISCOVERY_MODE=true set. If you don’t, the test
suite will make changes to the running cluster configuration.

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Prerequisites

You have logged in to registry.redhat.io with your Customer Portal credentials.

You have installed the real-time kernel in the cluster.

You have applied a cluster performance profile by using Performance addon operator.

Procedure

To perform the cyclictest, run the following command, substituting variable values as
appropriate:

The command runs the cyclictest tool for 10 minutes (600 seconds). The test runs successfully
when the maximum observed latency is lower than MAXIMUM_LATENCY (in this example, 20
μs). Latency spikes of 20 μs and above are generally not acceptable for telco RAN workloads.



$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e LATENCY_TEST_RUN=true -e DISCOVERY_MODE=true -e
ROLE_WORKER_CNF=worker-cnf \
-e LATENCY_TEST_CPUS=10 -e LATENCY_TEST_RUNTIME=600 -e
MAXIMUM_LATENCY=20 \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.9 \
/usr/bin/test-run.sh -ginkgo.v -ginkgo.focus="cyclictest"

OpenShift Container Platform 4.9 Scalability and performance

144

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/9/html-single/optimizing_rhel_9_for_real_time_for_low_latency_operation/index#setting-bios-parameters-for-system-tuning_optimizing-RHEL9-for-real-time-for-low-latency-operation

If the results exceed the latency threshold, the test fails.

IMPORTANT

For valid results, the test should run for at least 12 hours.

Example failure output

Discovery mode enabled, skipping setup
running /usr/bin//cnftests -ginkgo.v -ginkgo.focus=cyclictest
I0811 15:02:36.350033 20 request.go:668] Waited for 1.049965918s due to client-side
throttling, not priority and fairness, request:
GET:https://api.cnfdc8.t5g.lab.eng.bos.redhat.com:6443/apis/machineconfiguration.openshift.io/
v1?timeout=32s
Running Suite: CNF Features e2e integration tests
===
Random Seed: 1628694153
Will run 1 of 138 specs

SS
SS

[performance] Latency Test with the cyclictest image
 should succeed
 /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-
kni/performance-addon-operators/functests/4_latency/latency.go:200
STEP: Waiting two minutes to download the latencyTest image
STEP: Waiting another two minutes to give enough time for the cluster to move the pod to
Succeeded phase
Aug 11 15:03:06.826: [INFO]: found mcd machine-config-daemon-wf4w8 for node
cnfdc8.clus2.t5g.lab.eng.bos.redhat.com

• Failure [22.527 seconds]
[performance] Latency Test
/go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-
kni/performance-addon-operators/functests/4_latency/latency.go:84
 with the cyclictest image
 /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-
kni/performance-addon-operators/functests/4_latency/latency.go:188
 should succeed [It]
 /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-
kni/performance-addon-operators/functests/4_latency/latency.go:200

 The current latency 27 is bigger than the expected one 20
 Expected
 <bool>: false
 to be true

 /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-
kni/performance-addon-operators/functests/4_latency/latency.go:219

Log file created at: 2021/08/11 15:02:51
Running on machine: cyclictest-knk7d
Binary: Built with gc go1.16.6 for linux/amd64
Log line format: [IWEF]mmdd hh:mm:ss.uuuuuu threadid file:line] msg

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

145

Example cyclictest results
The same output can indicate different results for different workloads. For example, spikes up to 18μs
are acceptable for 4G DU workloads, but not for 5G DU workloads.

I0811 15:02:51.092254 1 node.go:37] Environment information: /proc/cmdline:
BOOT_IMAGE=(hd0,gpt3)/ostree/rhcos-
612d89f4519a53ad0b1a132f4add78372661bfb3994f5fe115654971aa58a543/vmlinuz-
4.18.0-305.10.2.rt7.83.el8_4.x86_64 ip=dhcp random.trust_cpu=on console=tty0
console=ttyS0,115200n8
ostree=/ostree/boot.1/rhcos/612d89f4519a53ad0b1a132f4add78372661bfb3994f5fe11565497
1aa58a543/0 ignition.platform.id=openstack root=UUID=5a4ddf16-9372-44d9-ac4e-
3ee329e16ab3 rw rootflags=prjquota skew_tick=1 nohz=on rcu_nocbs=1-3
tuned.non_isolcpus=000000ff,ffffffff,ffffffff,fffffff1 intel_pstate=disable nosoftlockup
tsc=nowatchdog intel_iommu=on iommu=pt isolcpus=managed_irq,1-3
systemd.cpu_affinity=0,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,
29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,
59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,
89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 default_hugepagesz=1G
hugepagesz=2M hugepages=128 nmi_watchdog=0 audit=0 mce=off
processor.max_cstate=1 idle=poll intel_idle.max_cstate=0
I0811 15:02:51.092427 1 node.go:44] Environment information: kernel version 4.18.0-
305.10.2.rt7.83.el8_4.x86_64
I0811 15:02:51.092450 1 main.go:48] running the cyclictest command with arguments \
[-D 600 -95 1 -t 10 -a 2,4,6,8,10,54,56,58,60,62 -h 30 -i 1000 --quiet]
I0811 15:03:06.147253 1 main.go:54] succeeded to run the cyclictest command: #
/dev/cpu_dma_latency set to 0us
Histogram
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000
000001 000000 005561 027778 037704 011987 000000 120755 238981 081847
300186
000002 587440 581106 564207 554323 577416 590635 474442 357940 513895
296033
000003 011751 011441 006449 006761 008409 007904 002893 002066 003349
003089
000004 000527 001079 000914 000712 001451 001120 000779 000283 000350
000251

More histogram entries ...
Min Latencies: 00002 00001 00001 00001 00001 00002 00001 00001 00001 00001
Avg Latencies: 00002 00002 00002 00001 00002 00002 00001 00001 00001 00001
Max Latencies: 00018 00465 00361 00395 00208 00301 02052 00289 00327 00114
Histogram Overflows: 00000 00220 00159 00128 00202 00017 00069 00059 00045
00120
Histogram Overflow at cycle number:
Thread 0:
Thread 1: 01142 01439 05305 … # 00190 others
Thread 2: 20895 21351 30624 … # 00129 others
Thread 3: 01143 17921 18334 … # 00098 others
Thread 4: 30499 30622 31566 ... # 00172 others
Thread 5: 145221 170910 171888 ...
Thread 6: 01684 26291 30623 ...# 00039 others
Thread 7: 28983 92112 167011 … 00029 others
Thread 8: 45766 56169 56171 ...# 00015 others
Thread 9: 02974 08094 13214 ... # 00090 others

OpenShift Container Platform 4.9 Scalability and performance

146

Example of good results

Example of bad results

running cmd: cyclictest -q -D 10m -p 1 -t 16 -a 2,4,6,8,10,12,14,16,54,56,58,60,62,64,66,68 -h 30 -i
1000 -m
Histogram
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000
000001 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000
000002 579506 535967 418614 573648 532870 529897 489306 558076 582350 585188
583793 223781 532480 569130 472250 576043
More histogram entries ...
Total: 000600000 000600000 000600000 000599999 000599999 000599999 000599998
000599998 000599998 000599997 000599997 000599996 000599996 000599995 000599995
000599995
Min Latencies: 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002
00002 00002 00002 00002
Avg Latencies: 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002
00002 00002 00002 00002
Max Latencies: 00005 00005 00004 00005 00004 00004 00005 00005 00006 00005 00004 00005
00004 00004 00005 00004
Histogram Overflows: 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
00000 00000 00000 00000 00000
Histogram Overflow at cycle number:
Thread 0:
Thread 1:
Thread 2:
Thread 3:
Thread 4:
Thread 5:
Thread 6:
Thread 7:
Thread 8:
Thread 9:
Thread 10:
Thread 11:
Thread 12:
Thread 13:
Thread 14:
Thread 15:

running cmd: cyclictest -q -D 10m -p 1 -t 16 -a 2,4,6,8,10,12,14,16,54,56,58,60,62,64,66,68 -h 30 -i
1000 -m
Histogram
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000
000001 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000
000002 564632 579686 354911 563036 492543 521983 515884 378266 592621 463547
482764 591976 590409 588145 589556 353518
More histogram entries ...
Total: 000599999 000599999 000599999 000599997 000599997 000599998 000599998
000599997 000599997 000599996 000599995 000599996 000599995 000599995 000599995

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

147

15.4.3. Running oslat

The oslat test simulates a CPU-intensive DPDK application and measures all the interruptions and
disruptions to test how the cluster handles CPU heavy data processing.

IMPORTANT

Always run the latency tests with DISCOVERY_MODE=true set. If you don’t, the test
suite will make changes to the running cluster configuration.

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Prerequisites

You have logged in to registry.redhat.io with your Customer Portal credentials.

You have applied a cluster performance profile by using the Performance addon operator.

Procedure

To perform the oslat test, run the following command, substituting variable values as
appropriate:

000599993
Min Latencies: 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002
00002 00002 00002 00002
Avg Latencies: 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002
00002 00002 00002 00002
Max Latencies: 00493 00387 00271 00619 00541 00513 00009 00389 00252 00215 00539 00498
00363 00204 00068 00520
Histogram Overflows: 00001 00001 00001 00002 00002 00001 00000 00001 00001 00001 00002
00001 00001 00001 00001 00002
Histogram Overflow at cycle number:
Thread 0: 155922
Thread 1: 110064
Thread 2: 110064
Thread 3: 110063 155921
Thread 4: 110063 155921
Thread 5: 155920
Thread 6:
Thread 7: 110062
Thread 8: 110062
Thread 9: 155919
Thread 10: 110061 155919
Thread 11: 155918
Thread 12: 155918
Thread 13: 110060
Thread 14: 110060
Thread 15: 110059 155917

OpenShift Container Platform 4.9 Scalability and performance

148

LATENCY_TEST_CPUS specifices the list of CPUs to test with the oslat command.

The command runs the oslat tool for 10 minutes (600 seconds). The test runs successfully
when the maximum observed latency is lower than MAXIMUM_LATENCY (20 μs).

If the results exceed the latency threshold, the test fails.

IMPORTANT

For valid results, the test should run for at least 12 hours.

Example failure output

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e LATENCY_TEST_RUN=true -e DISCOVERY_MODE=true -e
ROLE_WORKER_CNF=worker-cnf \
-e LATENCY_TEST_CPUS=7 -e LATENCY_TEST_RUNTIME=600 -e
MAXIMUM_LATENCY=20 \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.9 \
/usr/bin/test-run.sh -ginkgo.v -ginkgo.focus="oslat"

running /usr/bin//validationsuite -ginkgo.v -ginkgo.focus=oslat
I0829 12:36:55.386776 8 request.go:668] Waited for 1.000303471s due to client-side
throttling, not priority and fairness, request:
GET:https://api.cnfdc8.t5g.lab.eng.bos.redhat.com:6443/apis/authentication.k8s.io/v1?
timeout=32s
Running Suite: CNF Features e2e validation
==

Discovery mode enabled, skipping setup
running /usr/bin//cnftests -ginkgo.v -ginkgo.focus=oslat
I0829 12:37:01.219077 20 request.go:668] Waited for 1.050010755s due to client-side
throttling, not priority and fairness, request:
GET:https://api.cnfdc8.t5g.lab.eng.bos.redhat.com:6443/apis/snapshot.storage.k8s.io/v1beta1?
timeout=32s
Running Suite: CNF Features e2e integration tests
===
Random Seed: 1630240617
Will run 1 of 142 specs

SS

[performance] Latency Test with the oslat image
 should succeed
 /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-
kni/performance-addon-operators/functests/4_latency/latency.go:134
STEP: Waiting two minutes to download the latencyTest image
STEP: Waiting another two minutes to give enough time for the cluster to move the pod to
Succeeded phase
Aug 29 12:37:59.324: [INFO]: found mcd machine-config-daemon-wf4w8 for node
cnfdc8.clus2.t5g.lab.eng.bos.redhat.com

• Failure [49.246 seconds]
[performance] Latency Test
/go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

149

kni/performance-addon-operators/functests/4_latency/latency.go:59
 with the oslat image
 /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-
kni/performance-addon-operators/functests/4_latency/latency.go:112
 should succeed [It]
 /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-
kni/performance-addon-operators/functests/4_latency/latency.go:134

 The current latency 27 is bigger than the expected one 20 1
 Expected
 <bool>: false
 to be true
 /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-
kni/performance-addon-operators/functests/4_latency/latency.go:168

Log file created at: 2021/08/29 13:25:21
Running on machine: oslat-57c2g
Binary: Built with gc go1.16.6 for linux/amd64
Log line format: [IWEF]mmdd hh:mm:ss.uuuuuu threadid file:line] msg
I0829 13:25:21.569182 1 node.go:37] Environment information: /proc/cmdline:
BOOT_IMAGE=(hd0,gpt3)/ostree/rhcos-
612d89f4519a53ad0b1a132f4add78372661bfb3994f5fe115654971aa58a543/vmlinuz-
4.18.0-305.10.2.rt7.83.el8_4.x86_64 ip=dhcp random.trust_cpu=on console=tty0
console=ttyS0,115200n8
ostree=/ostree/boot.0/rhcos/612d89f4519a53ad0b1a132f4add78372661bfb3994f5fe11565497
1aa58a543/0 ignition.platform.id=openstack root=UUID=5a4ddf16-9372-44d9-ac4e-
3ee329e16ab3 rw rootflags=prjquota skew_tick=1 nohz=on rcu_nocbs=1-3
tuned.non_isolcpus=000000ff,ffffffff,ffffffff,fffffff1 intel_pstate=disable nosoftlockup
tsc=nowatchdog intel_iommu=on iommu=pt isolcpus=managed_irq,1-3
systemd.cpu_affinity=0,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,
29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,
59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,
89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 default_hugepagesz=1G
hugepagesz=2M hugepages=128 nmi_watchdog=0 audit=0 mce=off
processor.max_cstate=1 idle=poll intel_idle.max_cstate=0
I0829 13:25:21.569345 1 node.go:44] Environment information: kernel version 4.18.0-
305.10.2.rt7.83.el8_4.x86_64
I0829 13:25:21.569367 1 main.go:53] Running the oslat command with arguments \
[--duration 600 --rtprio 1 --cpu-list 4,6,52,54,56,58 --cpu-main-thread 2]
I0829 13:35:22.632263 1 main.go:59] Succeeded to run the oslat command: oslat V 2.00
Total runtime: 600 seconds
Thread priority: SCHED_FIFO:1
CPU list: 4,6,52,54,56,58
CPU for main thread: 2
Workload: no
Workload mem: 0 (KiB)
Preheat cores: 6

Pre-heat for 1 seconds...
Test starts...
Test completed.

 Core: 4 6 52 54 56 58
 CPU Freq: 2096 2096 2096 2096 2096 2096 (Mhz)
 001 (us): 19390720316 19141129810 20265099129 20280959461 19391991159
19119877333

OpenShift Container Platform 4.9 Scalability and performance

150

1 In this example, the measured latency is outside the maximum allowed value.

15.5. GENERATING A LATENCY TEST FAILURE REPORT

Use the following procedures to generate a JUnit latency test output and test failure report.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

Procedure

Create a test failure report with information about the cluster state and resources for
troubleshooting by passing the --report parameter with the path to where the report is dumped:

where:

<report_folder_path>

Is the path to the folder where the report is generated.

15.6. GENERATING A JUNIT LATENCY TEST REPORT

Use the following procedures to generate a JUnit latency test output and test failure report.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

 002 (us): 5304 5249 5777 5947 6829 4971
 003 (us): 28 14 434 47 208 21
 004 (us): 1388 853 123568 152817 5576 0
 005 (us): 207850 223544 103827 91812 227236 231563
 006 (us): 60770 122038 277581 323120 122633 122357
 007 (us): 280023 223992 63016 25896 214194 218395
 008 (us): 40604 25152 24368 4264 24440 25115
 009 (us): 6858 3065 5815 810 3286 2116
 010 (us): 1947 936 1452 151 474 361
 ...
 Minimum: 1 1 1 1 1 1 (us)
 Average: 1.000 1.000 1.000 1.000 1.000 1.000 (us)
 Maximum: 37 38 49 28 28 19 (us)
 Max-Min: 36 37 48 27 27 18 (us)
 Duration: 599.667 599.667 599.667 599.667 599.667 599.667 (sec)

$ podman run -v $(pwd)/:/kubeconfig:Z -v $(pwd)/reportdest:<report_folder_path> \
-e KUBECONFIG=/kubeconfig/kubeconfig -e DISCOVERY_MODE=true \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.9 \
/usr/bin/test-run.sh --report <report_folder_path> \
-ginkgo.focus="\[performance\]\ Latency\ Test"

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

151

Procedure

Create a JUnit-compliant XML report by passing the --junit parameter together with the path
to where the report is dumped:

where:

<junit_folder_path>

Is the path to the folder where the junit report is generated

15.7. RUNNING LATENCY TESTS ON A SINGLE-NODE OPENSHIFT
CLUSTER

You can run latency tests on single-node OpenShift clusters.

IMPORTANT

Always run the latency tests with DISCOVERY_MODE=true set. If you don’t, the test
suite will make changes to the running cluster configuration.

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

Procedure

To run the latency tests on a single-node OpenShift cluster, run the following command:

NOTE

$ podman run -v $(pwd)/:/kubeconfig:Z -v $(pwd)/junitdest:<junit_folder_path> \
-e KUBECONFIG=/kubeconfig/kubeconfig -e DISCOVERY_MODE=true \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.9 \
/usr/bin/test-run.sh --junit <junit_folder_path> \
-ginkgo.focus="\[performance\]\ Latency\ Test"

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e DISCOVERY_MODE=true -e ROLE_WORKER_CNF=master \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.9 \
/usr/bin/test-run.sh -ginkgo.focus="\[performance\]\ Latency\ Test"

OpenShift Container Platform 4.9 Scalability and performance

152

NOTE

ROLE_WORKER_CNF=master is required because master is the only machine
pool to which the node belongs. For more information about setting the required
MachineConfigPool for the latency tests, see "Prerequisites for running latency
tests".

After running the test suite, all the dangling resources are cleaned up.

15.8. RUNNING LATENCY TESTS IN A DISCONNECTED CLUSTER

The CNF tests image can run tests in a disconnected cluster that is not able to reach external registries.
This requires two steps:

1. Mirroring the cnf-tests image to the custom disconnected registry.

2. Instructing the tests to consume the images from the custom disconnected registry.

Mirroring the images to a custom registry accessible from the cluster
A mirror executable is shipped in the image to provide the input required by oc to mirror the test image
to a local registry.

1. Run this command from an intermediate machine that has access to the cluster and
registry.redhat.io:

where:

<disconnected_registry>

Is the disconnected mirror registry you have configured, for example,
my.local.registry:5000/.

2. When you have mirrored the cnf-tests image into the disconnected registry, you must override
the original registry used to fetch the images when running the tests, for example:

Configuring the tests to consume images from a custom registry
You can run the latency tests using a custom test image and image registry using CNF_TESTS_IMAGE
and IMAGE_REGISTRY variables.

To configure the latency tests to use a custom test image and image registry, run the following
command:

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.9 \
/usr/bin/mirror -registry <disconnected_registry> | oc image mirror -f -

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e DISCOVERY_MODE=true -e IMAGE_REGISTRY="<disconnected_registry>" \
-e CNF_TESTS_IMAGE="cnf-tests-rhel8:v4.9" \
/usr/bin/test-run.sh -ginkgo.focus="\[performance\]\ Latency\ Test"

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e IMAGE_REGISTRY="<custom_image_registry>" \
-e CNF_TESTS_IMAGE="<custom_cnf-tests_image>" \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.9 /usr/bin/test-run.sh

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

153

https://catalog.redhat.com/software/containers/explore

where:

<custom_image_registry>

is the custom image registry, for example, custom.registry:5000/.

<custom_cnf-tests_image>

is the custom cnf-tests image, for example, custom-cnf-tests-image:latest.

Mirroring images to the cluster internal registry
OpenShift Container Platform provides a built-in container image registry, which runs as a standard
workload on the cluster.

Procedure

1. Gain external access to the registry by exposing it with a route:

2. Fetch the registry endpoint by running the following command:

3. Create a namespace for exposing the images:

4. Make the image stream available to all the namespaces used for tests. This is required to allow
the tests namespaces to fetch the images from the cnf-tests image stream. Run the following
commands:

5. Retrieve the docker secret name and auth token by running the following commands:

6. Create a dockerauth.json file, for example:

7. Do the image mirroring:

$ oc patch configs.imageregistry.operator.openshift.io/cluster --patch '{"spec":
{"defaultRoute":true}}' --type=merge

$ REGISTRY=$(oc get route default-route -n openshift-image-registry --template='{{
.spec.host }}')

$ oc create ns cnftests

$ oc policy add-role-to-user system:image-puller system:serviceaccount:cnf-features-
testing:default --namespace=cnftests

$ oc policy add-role-to-user system:image-puller system:serviceaccount:performance-addon-
operators-testing:default --namespace=cnftests

$ SECRET=$(oc -n cnftests get secret | grep builder-docker | awk {'print $1'}

$ TOKEN=$(oc -n cnftests get secret $SECRET -o jsonpath="{.data['\.dockercfg']}" | base64
--decode | jq '.["image-registry.openshift-image-registry.svc:5000"].auth')

$ echo "{\"auths\": { \"$REGISTRY\": { \"auth\": $TOKEN } }}" > dockerauth.json

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \

OpenShift Container Platform 4.9 Scalability and performance

154

8. Run the tests:

Mirroring a different set of test images
You can optionally change the default upstream images that are mirrored for the latency tests.

Procedure

1. The mirror command tries to mirror the upstream images by default. This can be overridden by
passing a file with the following format to the image:

2. Pass the file to the mirror command, for example saving it locally as images.json. With the
following command, the local path is mounted in /kubeconfig inside the container and that can
be passed to the mirror command.

15.9. TROUBLESHOOTING ERRORS WITH THE CNF-TESTS
CONTAINER

To run latency tests, the cluster must be accessible from within the cnf-tests container.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

Procedure

Verify that the cluster is accessible from inside the cnf-tests container by running the following
command:

registry.redhat.io/openshift4/cnf-tests-rhel8:4.9 \
/usr/bin/mirror -registry $REGISTRY/cnftests | oc image mirror --insecure=true \
-a=$(pwd)/dockerauth.json -f -

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e DISCOVERY_MODE=true -e IMAGE_REGISTRY=image-registry.openshift-image-
registry.svc:5000/cnftests \
cnf-tests-local:latest /usr/bin/test-run.sh -ginkgo.focus="\[performance\]\ Latency\ Test"

[
 {
 "registry": "public.registry.io:5000",
 "image": "imageforcnftests:4.9"
 }
]

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.9 /usr/bin/mirror \
--registry "my.local.registry:5000/" --images "/kubeconfig/images.json" \
| oc image mirror -f -

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

155

If this command does not work, an error related to spanning across DNS, MTU size, or firewall
access might be occurring.

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.9 \
oc get nodes

OpenShift Container Platform 4.9 Scalability and performance

156

CHAPTER 16. CREATING A PERFORMANCE PROFILE
Learn about the Performance Profile Creator (PPC) and how you can use it to create a performance
profile.

16.1. ABOUT THE PERFORMANCE PROFILE CREATOR

The Performance Profile Creator (PPC) is a command-line tool, delivered with the Performance Addon
Operator, used to create the performance profile. The tool consumes must-gather data from the
cluster and several user-supplied profile arguments. The PPC generates a performance profile that is
appropriate for your hardware and topology.

The tool is run by one of the following methods:

Invoking podman

Calling a wrapper script

16.1.1. Gathering data about your cluster using the must-gather command

The Performance Profile Creator (PPC) tool requires must-gather data. As a cluster administrator, run
the must-gather command to capture information about your cluster.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Access to the Performance Addon Operator image.

The OpenShift CLI (oc) installed.

Procedure

1. Navigate to the directory where you want to store the must-gather data.

2. Run must-gather on your cluster:

NOTE

The must-gather command must be run with the performance-addon-
operator-must-gather image. The output can optionally be compressed.
Compressed output is required if you are running the Performance Profile
Creator wrapper script.

Example

3. Create a compressed file from the must-gather directory:

$ oc adm must-gather --image=<PAO_image> --dest-dir=<dir>

$ oc adm must-gather --image=registry.redhat.io/openshift4/performance-addon-operator-
must-gather-rhel8:v4.9 --dest-dir=must-gather

CHAPTER 16. CREATING A PERFORMANCE PROFILE

157

16.1.2. Running the Performance Profile Creator using podman

As a cluster administrator, you can run podman and the Performance Profile Creator to create a
performance profile.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

A cluster installed on bare metal hardware.

A node with podman and OpenShift CLI (oc) installed.

Procedure

1. Check the machine config pool:

Example output

2. Use Podman to authenticate to registry.redhat.io:

3. Optional: Display help for the PPC tool:

Example output

$ tar cvaf must-gather.tar.gz must-gather/

$ oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-acd1358917e9f98cbdb599aea622d78b True False
False 3 3 3 0 22h
worker-cnf rendered-worker-cnf-1d871ac76e1951d32b2fe92369879826 False True
False 2 1 1 0 22h

$ podman login registry.redhat.io

Username: myrhusername
Password: ************

$ podman run --entrypoint performance-profile-creator
registry.redhat.io/openshift4/performance-addon-rhel8-operator:v4.9 -h

A tool that automates creation of Performance Profiles

Usage:
 performance-profile-creator [flags]

Flags:
 --disable-ht Disable Hyperthreading

OpenShift Container Platform 4.9 Scalability and performance

158

4. Run the Performance Profile Creator tool in discovery mode:

NOTE

Discovery mode inspects your cluster using the output from must-gather. The
output produced includes information on:

The NUMA cell partitioning with the allocated CPU ids

Whether hyperthreading is enabled

Using this information you can set appropriate values for some of the arguments
supplied to the Performance Profile Creator tool.

NOTE

This command uses the performance profile creator as a new entry point to
podman. It maps the must-gather data for the host into the container image
and invokes the required user-supplied profile arguments to produce the my-
performance-profile.yaml file.

The -v option can be the path to either:

The must-gather output directory

An existing directory containing the must-gather decompressed tarball

The info option requires a value which specifies the output format. Possible
values are log and JSON. The JSON format is reserved for debugging.

5. Run podman:

 -h, --help help for performance-profile-creator
 --info string Show cluster information; requires --must-gather-dir-path,
ignore the other arguments. [Valid values: log, json] (default "log")
 --mcp-name string MCP name corresponding to the target machines
(required)
 --must-gather-dir-path string Must gather directory path (default "must-gather")
 --power-consumption-mode string The power consumption mode. [Valid values:
default, low-latency, ultra-low-latency] (default "default")
 --profile-name string Name of the performance profile to be created (default
"performance")
 --reserved-cpu-count int Number of reserved CPUs (required)
 --rt-kernel Enable Real Time Kernel (required)
 --split-reserved-cpus-across-numa Split the Reserved CPUs across NUMA nodes
 --topology-manager-policy string Kubelet Topology Manager Policy of the performance
profile to be created. [Valid values: single-numa-node, best-effort, restricted] (default
"restricted")
 --user-level-networking Run with User level Networking(DPDK) enabled

$ podman run --entrypoint performance-profile-creator -v /must-gather:/must-gather:z
registry.redhat.io/openshift4/performance-addon-rhel8-operator:v4.9 --info log --must-gather-
dir-path /must-gather

CHAPTER 16. CREATING A PERFORMANCE PROFILE

159

NOTE

The Performance Profile Creator arguments are shown in the Performance
Profile Creator arguments table. The following arguments are required:

reserved-cpu-count

mcp-name

rt-kernel

The mcp-name argument in this example is set to worker-cnf based on the
output of the command oc get mcp. For single-node OpenShift use --mcp-
name=master.

6. Review the created YAML file:

Example output

7. Apply the generated profile:

NOTE

Install the Performance Addon Operator before applying the profile.

$ podman run --entrypoint performance-profile-creator -v /must-gather:/must-gather:z
registry.redhat.io/openshift4/performance-addon-rhel8-operator:v4.9 --mcp-name=worker-cnf
--reserved-cpu-count=20 --rt-kernel=true --split-reserved-cpus-across-numa=false --topology-
manager-policy=single-numa-node --must-gather-dir-path /must-gather --power-
consumption-mode=ultra-low-latency > my-performance-profile.yaml

$ cat my-performance-profile.yaml

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: performance
spec:
 additionalKernelArgs:
 - nmi_watchdog=0
 - audit=0
 - mce=off
 - processor.max_cstate=1
 - intel_idle.max_cstate=0
 - idle=poll
 cpu:
 isolated: 1,3,5,7,9,11,13,15,17,19-39,41,43,45,47,49,51,53,55,57,59-79
 reserved: 0,2,4,6,8,10,12,14,16,18,40,42,44,46,48,50,52,54,56,58
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""
 numa:
 topologyPolicy: single-numa-node
 realTimeKernel:
 enabled: true

OpenShift Container Platform 4.9 Scalability and performance

160

16.1.2.1. How to run podman to create a performance profile

The following example illustrates how to run podman to create a performance profile with 20 reserved
CPUs that are to be split across the NUMA nodes.

Node hardware configuration:

80 CPUs

Hyperthreading enabled

Two NUMA nodes

Even numbered CPUs run on NUMA node 0 and odd numbered CPUs run on NUMA node 1

Run podman to create the performance profile:

The created profile is described in the following YAML:

NOTE

In this case, 10 CPUs are reserved on NUMA node 0 and 10 are reserved on NUMA node 1.

16.1.3. Running the Performance Profile Creator wrapper script

The performance profile wrapper script simplifies the running of the Performance Profile Creator (PPC)
tool. It hides the complexities associated with running podman and specifying the mapping directories
and it enables the creation of the performance profile.

Prerequisites

Access to the Performance Addon Operator image.

$ oc apply -f my-performance-profile.yaml

$ podman run --entrypoint performance-profile-creator -v /must-gather:/must-gather:z
registry.redhat.io/openshift4/performance-addon-rhel8-operator:v4.9 --mcp-name=worker-cnf --
reserved-cpu-count=20 --rt-kernel=true --split-reserved-cpus-across-numa=true --must-gather-dir-
path /must-gather > my-performance-profile.yaml

 apiVersion: performance.openshift.io/v2
 kind: PerformanceProfile
 metadata:
 name: performance
 spec:
 cpu:
 isolated: 10-39,50-79
 reserved: 0-9,40-49
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""
 numa:
 topologyPolicy: restricted
 realTimeKernel:
 enabled: true

CHAPTER 16. CREATING A PERFORMANCE PROFILE

161

Access to the must-gather tarball.

Procedure

1. Create a file on your local machine named, for example, run-perf-profile-creator.sh:

2. Paste the following code into the file:

$ vi run-perf-profile-creator.sh

#!/bin/bash

readonly CONTAINER_RUNTIME=${CONTAINER_RUNTIME:-podman}
readonly CURRENT_SCRIPT=$(basename "$0")
readonly CMD="${CONTAINER_RUNTIME} run --entrypoint performance-profile-creator"
readonly IMG_EXISTS_CMD="${CONTAINER_RUNTIME} image exists"
readonly IMG_PULL_CMD="${CONTAINER_RUNTIME} image pull"
readonly MUST_GATHER_VOL="/must-gather"

PAO_IMG="registry.redhat.io/openshift4/performance-addon-rhel8-operator:v4.9"
MG_TARBALL=""
DATA_DIR=""

usage() {
 print "Wrapper usage:"
 print " ${CURRENT_SCRIPT} [-h] [-p image][-t path] -- [performance-profile-creator flags]"
 print ""
 print "Options:"
 print " -h help for ${CURRENT_SCRIPT}"
 print " -p Performance Addon Operator image"
 print " -t path to a must-gather tarball"

 ${IMG_EXISTS_CMD} "${PAO_IMG}" && ${CMD} "${PAO_IMG}" -h
}

function cleanup {
 [-d "${DATA_DIR}"] && rm -rf "${DATA_DIR}"
}
trap cleanup EXIT

exit_error() {
 print "error: $*"
 usage
 exit 1
}

print() {
 echo "$*" >&2
}

check_requirements() {
 ${IMG_EXISTS_CMD} "${PAO_IMG}" || ${IMG_PULL_CMD} "${PAO_IMG}" || \
 exit_error "Performance Addon Operator image not found"

 [-n "${MG_TARBALL}"] || exit_error "Must-gather tarball file path is mandatory"

OpenShift Container Platform 4.9 Scalability and performance

162

3. Add execute permissions for everyone on this script:

4. Optional: Display the run-perf-profile-creator.sh command usage:

Expected output

 [-f "${MG_TARBALL}"] || exit_error "Must-gather tarball file not found"

 DATA_DIR=$(mktemp -d -t "${CURRENT_SCRIPT}XXXX") || exit_error "Cannot create the
data directory"
 tar -zxf "${MG_TARBALL}" --directory "${DATA_DIR}" || exit_error "Cannot decompress the
must-gather tarball"
 chmod a+rx "${DATA_DIR}"

 return 0
}

main() {
 while getopts ':hp:t:' OPT; do
 case "${OPT}" in
 h)
 usage
 exit 0
 ;;
 p)
 PAO_IMG="${OPTARG}"
 ;;
 t)
 MG_TARBALL="${OPTARG}"
 ;;
 ?)
 exit_error "invalid argument: ${OPTARG}"
 ;;
 esac
 done
 shift $((OPTIND - 1))

 check_requirements || exit 1

 ${CMD} -v "${DATA_DIR}:${MUST_GATHER_VOL}:z" "${PAO_IMG}" "$@" --must-gather-
dir-path "${MUST_GATHER_VOL}"
 echo "" 1>&2
}

main "$@"

$ chmod a+x run-perf-profile-creator.sh

$./run-perf-profile-creator.sh -h

Wrapper usage:
 run-perf-profile-creator.sh [-h] [-p image][-t path] -- [performance-profile-creator flags]

Options:
 -h help for run-perf-profile-creator.sh

CHAPTER 16. CREATING A PERFORMANCE PROFILE

163

1

2

NOTE

There two types of arguments:

Wrapper arguments namely -h, -p and -t

PPC arguments

Optional: Specify the Performance Addon Operator image. If not set, the default upstream
image is used: registry.redhat.io/openshift4/performance-addon-rhel8-operator:v4.9.

-t is a required wrapper script argument and specifies the path to a must-gather tarball.

5. Run the performance profile creator tool in discovery mode:

NOTE

Discovery mode inspects your cluster using the output from must-gather. The
output produced includes information on:

The NUMA cell partitioning with the allocated CPU IDs

Whether hyperthreading is enabled

Using this information you can set appropriate values for some of the arguments
supplied to the Performance Profile Creator tool.

 -p Performance Addon Operator image 1
 -t path to a must-gather tarball 2

A tool that automates creation of Performance Profiles

 Usage:
 performance-profile-creator [flags]

 Flags:
 --disable-ht Disable Hyperthreading
 -h, --help help for performance-profile-creator
 --info string Show cluster information; requires --must-gather-dir-path,
ignore the other arguments. [Valid values: log, json] (default "log")
 --mcp-name string MCP name corresponding to the target machines
(required)
 --must-gather-dir-path string Must gather directory path (default "must-gather")
 --power-consumption-mode string The power consumption mode. [Valid values:
default, low-latency, ultra-low-latency] (default "default")
 --profile-name string Name of the performance profile to be created (default
"performance")
 --reserved-cpu-count int Number of reserved CPUs (required)
 --rt-kernel Enable Real Time Kernel (required)
 --split-reserved-cpus-across-numa Split the Reserved CPUs across NUMA nodes
 --topology-manager-policy string Kubelet Topology Manager Policy of the
performance profile to be created. [Valid values: single-numa-node, best-effort, restricted]
(default "restricted")
 --user-level-networking Run with User level Networking(DPDK) enabled

OpenShift Container Platform 4.9 Scalability and performance

164

NOTE

The info option requires a value which specifies the output format. Possible
values are log and JSON. The JSON format is reserved for debugging.

6. Check the machine config pool:

Example output

7. Create a performance profile:

NOTE

The Performance Profile Creator arguments are shown in the Performance
Profile Creator arguments table. The following arguments are required:

reserved-cpu-count

mcp-name

rt-kernel

The mcp-name argument in this example is set to worker-cnf based on the
output of the command oc get mcp. For single-node OpenShift use --mcp-
name=master.

8. Review the created YAML file:

Example output

$./run-perf-profile-creator.sh -t /must-gather/must-gather.tar.gz -- --info=log

$ oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-acd1358917e9f98cbdb599aea622d78b True False
False 3 3 3 0 22h
worker-cnf rendered-worker-cnf-1d871ac76e1951d32b2fe92369879826 False True
False 2 1 1 0 22h

$./run-perf-profile-creator.sh -t /must-gather/must-gather.tar.gz -- --mcp-name=worker-cnf --
reserved-cpu-count=2 --rt-kernel=true > my-performance-profile.yaml

$ cat my-performance-profile.yaml

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: performance
spec:

CHAPTER 16. CREATING A PERFORMANCE PROFILE

165

9. Apply the generated profile:

NOTE

Install the Performance Addon Operator before applying the profile.

16.1.4. Performance Profile Creator arguments

Table 16.1. Performance Profile Creator arguments

Argument Description

disable-ht Disable hyperthreading.

Possible values: true or false.

Default: false.

WARNING

If this argument is set to true you should not disable
hyperthreading in the BIOS. Disabling hyperthreading
is accomplished with a kernel command line
argument.

 cpu:
 isolated: 1-39,41-79
 reserved: 0,40
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""
 numa:
 topologyPolicy: restricted
 realTimeKernel:
 enabled: false

$ oc apply -f my-performance-profile.yaml



OpenShift Container Platform 4.9 Scalability and performance

166

info This captures cluster information and is used in discovery mode only.
Discovery mode also requires the must-gather-dir-path argument. If any
other arguments are set they are ignored.

Possible values:

log

JSON

NOTE

These options define the output format with the
JSON format being reserved for debugging.

Default: log.

mcp-name MCP name for example worker-cnf corresponding to the target machines.
This parameter is required.

must-gather-dir-path Must gather directory path. This parameter is required.

When the user runs the tool with the wrapper script must-gather is
supplied by the script itself and the user must not specify it.

power-consumption-
mode

The power consumption mode.

Possible values:

default

low-latency

ultra-low-latency

Default: default.

profile-name Name of the performance profile to create. Default: performance.

reserved-cpu-count Number of reserved CPUs. This parameter is required.

NOTE

This must be a natural number. A value of 0 is not allowed.

Argument Description

CHAPTER 16. CREATING A PERFORMANCE PROFILE

167

rt-kernel Enable real-time kernel. This parameter is required.

Possible values: true or false.

split-reserved-cpus-
across-numa

Split the reserved CPUs across NUMA nodes.

Possible values: true or false.

Default: false.

topology-manager-policy Kubelet Topology Manager policy of the performance profile to be created.

Possible values:

single-numa-node

best-effort

restricted

Default: restricted.

user-level-networking Run with user level networking (DPDK) enabled.

Possible values: true or false.

Default: false.

Argument Description

16.2. ADDITIONAL RESOURCES

For more information about the must-gather tool, see Gathering data about your cluster .

OpenShift Container Platform 4.9 Scalability and performance

168

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/support/#nodes-nodes-managing

CHAPTER 17. DEPLOYING DISTRIBUTED UNITS MANUALLY
ON SINGLE-NODE OPENSHIFT

The procedures in this topic tell you how to manually deploy clusters on a small number of single nodes
as a distributed unit (DU) during installation.

The procedures do not describe how to install single-node OpenShift. This can be accomplished through
many mechanisms. Rather, they are intended to capture the elements that should be configured as part
of the installation process:

Networking is needed to enable connectivity to the single-node OpenShift DU when the
installation is complete.

Workload partitioning, which can only be configured during installation.

Additional items that help minimize the potential reboots post installation.

17.1. CONFIGURING THE DISTRIBUTED UNITS (DUS)

This section describes a set of configurations for an OpenShift Container Platform cluster so that it
meets the feature and performance requirements necessary for running a distributed unit (DU)
application. Some of this content must be applied during installation and other configurations can be
applied post-install.

After you have installed the single-node OpenShift DU, further configuration is needed to enable the
platform to carry a DU workload.

The configurations in this section are applied to the cluster after installation in order to configure the
cluster for DU workloads.

17.1.1. Enabling workload partitioning

A key feature to enable as part of a single-node OpenShift installation is workload partitioning. This
limits the cores allowed to run platform services, maximizing the CPU core for application payloads. You
must configure workload partitioning at cluster installation time.

NOTE

You can enable workload partitioning during cluster installation only. You cannot disable
workload partitioning post-installation. However, you can reconfigure workload
partitioning by updating the cpu value that you define in the performance profile, and in
the related cpuset value in the MachineConfig custom resource (CR).

Procedure

The base64-encoded content below contains the CPU set that the management workloads are
constrained to. This content must be adjusted to match the set specified in the
performanceprofile and must be accurate for the number of cores on the cluster.

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master

CHAPTER 17. DEPLOYING DISTRIBUTED UNITS MANUALLY ON SINGLE-NODE OPENSHIFT

169

1

The contents of /etc/crio/crio.conf.d/01-workload-partitioning should look like this:

The cpuset value varies based on the installation.

If Hyper-Threading is enabled, specify both threads for each core. The cpuset value must
match the reserved CPUs that you define in the spec.cpu.reserved field in the performance
profile.

If Hyper-Threading is enabled, specify both threads of each core. The CPUs value must match the
reserved CPU set specified in the performance profile.

This content should be base64 encoded and provided in the 01-workload-partitioning-content in the
manifest above.

The contents of /etc/kubernetes/openshift-workload-pinning should look like this:

 name: 02-master-workload-partitioning
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;charset=utf-
8;base64,W2NyaW8ucnVudGltZS53b3JrbG9hZHMubWFuYWdlbWVudF0KYWN0aXZhdGlvbl
9hbm5vdGF0aW9uID0gInRhcmdldC53b3JrbG9hZC5vcGVuc2hpZnQuaW8vbWFuYWdlbWVu
dCIKYW5ub3RhdGlvbl9wcmVmaXggPSAicmVzb3VyY2VzLndvcmtsb2FkLm9wZW5zaGlmdC5
pbyIKW2NyaW8ucnVudGltZS53b3JrbG9hZHMubWFuYWdlbWVudC5yZXNvdXJjZXNdCmNw
dXNoYXJlcyA9IDAKQ1BVcyA9ICIwLTEsIDUyLTUzIgo=
 mode: 420
 overwrite: true
 path: /etc/crio/crio.conf.d/01-workload-partitioning
 user:
 name: root
 - contents:
 source: data:text/plain;charset=utf-
8;base64,ewogICJtYW5hZ2VtZW50IjogewogICAgImNwdXNldCI6ICIwLTEsNTItNTMiCiAgfQp
9Cg==
 mode: 420
 overwrite: true
 path: /etc/kubernetes/openshift-workload-pinning
 user:
 name: root

[crio.runtime.workloads.management]
activation_annotation = "target.workload.openshift.io/management"
annotation_prefix = "resources.workload.openshift.io"
[crio.runtime.workloads.management.resources]
cpushares = 0
cpuset = "0-1, 52-53" 1

{
 "management": {
 "cpuset": "0-1,52-53" 1

OpenShift Container Platform 4.9 Scalability and performance

170

1 The cpuset must match the cpuset value in /etc/crio/crio.conf.d/01-workload-
partitioning.

17.1.2. Configuring the container mount namespace

To reduce the overall management footprint of the platform, a machine configuration is provided to
contain the mount points. No configuration changes are needed. Use the provided settings:

 }
}

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: container-mount-namespace-and-kubelet-conf-master
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;charset=utf-
8;base64,IyEvYmluL2Jhc2gKCmRlYnVnKCkgewogIGVjaG8gJEAgPiYyCn0KCnVzYWdlKCkgewogIGVj
aG8gVXNhZ2U6ICQoYmFzZW5hbWUgJDApIFVOSVQgW2VudmZpbGUgW3Zhcm5hbWVdXQogIGV
jaG8KICBlY2hvIEV4dHJhY3QgdGhlIGNvbnRlbnRzIG9mIHRoZSBmaXJzdCBFeGVjU3RhcnQgc3Rhbn
phIGZyb20gdGhlIGdpdmVuIHN5c3RlbWQgdW5pdCBhbmQgcmV0dXJuIGl0IHRvIHN0ZG91dAogIGVj
aG8KICBlY2hvICJJZiAnZW52ZmlsZScgaXMgcHJvdmlkZWQsIHB1dCBpdCBpbiB0aGVyZSBpbnN0ZW
FkLCBhcyBhbiBlbnZpcm9ubWVudCB2YXJpYWJsZSBuYW1lZCAndmFybmFtZSciCiAgZWNobyAiRGV
mYXVsdCAndmFybmFtZScgaXMgRVhFQ1NUQVJUIGlmIG5vdCBzcGVjaWZpZWQiCiAgZXhpdCAxC
n0KClVOSVQ9JDEKRU5WRklMRT0kMgpWQVJOQU1FPSQzCmlmIFtbIC16ICRVTklUIHx8ICRVTklUI
D09ICItLWhlbHAiIHx8ICRVTklUID09ICItaCIgXV07IHRoZW4KICB1c2FnZQpmaQpkZWJ1ZyAiRXh0cm
FjdGluZyBFeGVjU3RhcnQgZnJvbSAkVU5JVCIKRklMRT0kKHN5c3RlbWN0bCBjYXQgJFVOSVQgfCB
oZWFkIC1uIDEpCkZJTEU9JHtGSUxFI1wjIH0KaWYgW1sgISAtZiAkRklMRSBdXTsgdGhlbgogIGRlYnV
nICJGYWlsZWQgdG8gZmluZCByb290IGZpbGUgZm9yIHVuaXQgJFVOSVQgKCRGSUxFKSIKICBle
Gl0CmZpCmRlYnVnICJTZXJ2aWNlIGRlZmluaXRpb24gaXMgaW4gJEZJTEUiCkVYRUNTVEFSVD0k
KHNlZCAtbiAtZSAnL15FeGVjU3RhcnQ9LipcXCQvLC9bXlxcXSQvIHsgcy9eRXhlY1N0YXJ0PS8vOyBw
IH0nIC1lICcvXkV4ZWNTdGFydD0uKlteXFxdJC8geyBzL15FeGVjU3RhcnQ9Ly87IHAgfScgJEZJTEUp
CgppZiBbWyAkRU5WRklMRSBdXTsgdGhlbgogIFZBUk5BTUU9JHtWQVJOQU1FOi1FWEVDU1RBUl
R9CiAgZWNobyAiJHtWQVJOQU1FfT0ke0VYRUNTVEFSVH0iID4gJEVOVkZJTEUKZWxzZQogIGVja
G8gJEVYRUNTVEFSVApmaQo=
 mode: 493
 path: /usr/local/bin/extractExecStart
 - contents:
 source: data:text/plain;charset=utf-
8;base64,IyEvYmluL2Jhc2gKbnNlbnRlciAtLW1vdW50PS9ydW4vY29udGFpbmVyLW1vdW50LW5hbWV
zcGFjZS9tbnQgIiRAIgo=
 mode: 493
 path: /usr/local/bin/nsenterCmns
 systemd:
 units:
 - contents: |

CHAPTER 17. DEPLOYING DISTRIBUTED UNITS MANUALLY ON SINGLE-NODE OPENSHIFT

171

17.1.3. Enabling Stream Control Transmission Protocol (SCTP)

SCTP is a key protocol used in RAN applications. This MachineConfig object adds the SCTP kernel
module to the node to enable this protocol.

 [Unit]
 Description=Manages a mount namespace that both kubelet and crio can use to share their
container-specific mounts

 [Service]
 Type=oneshot
 RemainAfterExit=yes
 RuntimeDirectory=container-mount-namespace
 Environment=RUNTIME_DIRECTORY=%t/container-mount-namespace
 Environment=BIND_POINT=%t/container-mount-namespace/mnt
 ExecStartPre=bash -c "findmnt ${RUNTIME_DIRECTORY} || mount --make-unbindable --bind
${RUNTIME_DIRECTORY} ${RUNTIME_DIRECTORY}"
 ExecStartPre=touch ${BIND_POINT}
 ExecStart=unshare --mount=${BIND_POINT} --propagation slave mount --make-rshared /
 ExecStop=umount -R ${RUNTIME_DIRECTORY}
 enabled: true
 name: container-mount-namespace.service
 - dropins:
 - contents: |
 [Unit]
 Wants=container-mount-namespace.service
 After=container-mount-namespace.service

 [Service]
 ExecStartPre=/usr/local/bin/extractExecStart %n /%t/%N-execstart.env ORIG_EXECSTART
 EnvironmentFile=-/%t/%N-execstart.env
 ExecStart=
 ExecStart=bash -c "nsenter --mount=%t/container-mount-namespace/mnt \
 ${ORIG_EXECSTART}"
 name: 90-container-mount-namespace.conf
 name: crio.service
 - dropins:
 - contents: |
 [Unit]
 Wants=container-mount-namespace.service
 After=container-mount-namespace.service

 [Service]
 ExecStartPre=/usr/local/bin/extractExecStart %n /%t/%N-execstart.env ORIG_EXECSTART
 EnvironmentFile=-/%t/%N-execstart.env
 ExecStart=
 ExecStart=bash -c "nsenter --mount=%t/container-mount-namespace/mnt \
 ${ORIG_EXECSTART} --housekeeping-interval=30s"
 name: 90-container-mount-namespace.conf
 - contents: |
 [Service]
 Environment="OPENSHIFT_MAX_HOUSEKEEPING_INTERVAL_DURATION=60s"
 Environment="OPENSHIFT_EVICTION_MONITORING_PERIOD_DURATION=30s"
 name: 30-kubelet-interval-tuning.conf
 name: kubelet.service

OpenShift Container Platform 4.9 Scalability and performance

172

Procedure

No configuration changes are needed. Use the provided settings:

17.1.4. Creating OperatorGroups for Operators

This configuration is provided to enable addition of the Operators needed to configure the platform
post-installation. It adds the Namespace and OperatorGroup objects for the Local Storage Operator,
Logging Operator, Performance Addon Operator, PTP Operator, and SRIOV Network Operator.

Procedure

No configuration changes are needed. Use the provided settings:

Local Storage Operator

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: load-sctp-module
spec:
 config:
 ignition:
 version: 2.2.0
 storage:
 files:
 - contents:
 source: data:,
 verification: {}
 filesystem: root
 mode: 420
 path: /etc/modprobe.d/sctp-blacklist.conf
 - contents:
 source: data:text/plain;charset=utf-8,sctp
 filesystem: root
 mode: 420
 path: /etc/modules-load.d/sctp-load.conf

apiVersion: v1
kind: Namespace
metadata:
 annotations:
 workload.openshift.io/allowed: management
 name: openshift-local-storage

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: openshift-local-storage
 namespace: openshift-local-storage
spec:
 targetNamespaces:
 - openshift-local-storage

CHAPTER 17. DEPLOYING DISTRIBUTED UNITS MANUALLY ON SINGLE-NODE OPENSHIFT

173

Logging Operator

Performance Addon Operator

PTP Operator

apiVersion: v1
kind: Namespace
metadata:
 annotations:
 workload.openshift.io/allowed: management
 name: openshift-logging

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: cluster-logging
 namespace: openshift-logging
spec:
 targetNamespaces:
 - openshift-logging

apiVersion: v1
kind: Namespace
metadata:
 annotations:
 workload.openshift.io/allowed: management
 labels:
 openshift.io/cluster-monitoring: "true"
 name: openshift-performance-addon-operator
spec: {}

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: performance-addon-operator
 namespace: openshift-performance-addon-operator

apiVersion: v1
kind: Namespace
metadata:
 annotations:
 workload.openshift.io/allowed: management
 labels:
 openshift.io/cluster-monitoring: "true"
 name: openshift-ptp

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: ptp-operators
 namespace: openshift-ptp

OpenShift Container Platform 4.9 Scalability and performance

174

SRIOV Network Operator

17.1.5. Subscribing to the Operators

The subscription provides the location to download the Operators needed for platform configuration.

Procedure

Use the following example to configure the subscription:

spec:
 targetNamespaces:
 - openshift-ptp

apiVersion: v1
kind: Namespace
metadata:
 annotations:
 workload.openshift.io/allowed: management
 name: openshift-sriov-network-operator

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: sriov-network-operators
 namespace: openshift-sriov-network-operator
spec:
 targetNamespaces:
 - openshift-sriov-network-operator

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: cluster-logging
 namespace: openshift-logging
spec:
 channel: "stable" 1
 name: cluster-logging
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 installPlanApproval: Manual 2

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: local-storage-operator
 namespace: openshift-local-storage
spec:
 channel: "stable" 3
 installPlanApproval: Automatic
 name: local-storage-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 installPlanApproval: Manual

CHAPTER 17. DEPLOYING DISTRIBUTED UNITS MANUALLY ON SINGLE-NODE OPENSHIFT

175

1

2

3

4

5

6

Specify the channel to get the cluster-logging Operator.

Specify Manual or Automatic. In Automatic mode, the Operator automatically updates to
the latest versions in the channel as they become available in the registry. In Manual mode,
new Operator versions are installed only after they are explicitly approved.

Specify the channel to get the local-storage-operator Operator.

Specify the channel to get the performance-addon-operator Operator.

Specify the channel to get the ptp-operator Operator.

Specify the channel to get the sriov-network-operator Operator.

17.1.6. Configuring logging locally and forwarding

To be able to debug a single node distributed unit (DU), logs need to be stored for further analysis.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: performance-addon-operator
 namespace: openshift-performance-addon-operator
spec:
 channel: "4.10" 4
 name: performance-addon-operator
 source: performance-addon-operator
 sourceNamespace: openshift-marketplace
 installPlanApproval: Manual

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: ptp-operator-subscription
 namespace: openshift-ptp
spec:
 channel: "stable" 5
 name: ptp-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 installPlanApproval: Manual

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: sriov-network-operator-subscription
 namespace: openshift-sriov-network-operator
spec:
 channel: "stable" 6
 name: sriov-network-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 installPlanApproval: Manual

OpenShift Container Platform 4.9 Scalability and performance

176

1

2

3

Procedure

Edit the ClusterLogging custom resource (CR) in the openshift-logging project:

Updates the existing instance or creates the instance if it does not exist.

Updates the existing instance or creates the instance if it does not exist.

Specifies the destination of the kafka server.

17.1.7. Configuring the Performance Addon Operator

This is a key configuration for the single node distributed unit (DU). Many of the real-time capabilities
and service assurance are configured here.

apiVersion: logging.openshift.io/v1
kind: ClusterLogging 1
 metadata:
 name: instance
 namespace: openshift-logging
spec:
 collection:
 logs:
 fluentd: {}
 type: fluentd
 curation:
 type: "curator"
 curator:
 schedule: "30 3 * * *"
 managementState: Managed

apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder 2
metadata:
 name: instance
 namespace: openshift-logging
spec:
 inputs:
 - infrastructure: {}
 outputs:
 - name: kafka-open
 type: kafka
 url: tcp://10.46.55.190:9092/test 3
 pipelines:
 - inputRefs:
 - audit
 name: audit-logs
 outputRefs:
 - kafka-open
 - inputRefs:
 - infrastructure
 name: infrastructure-logs
 outputRefs:
 - kafka-open

CHAPTER 17. DEPLOYING DISTRIBUTED UNITS MANUALLY ON SINGLE-NODE OPENSHIFT

177

1

2

3

4

5

6

7

8

Procedure

Configure the performance addons using the following example:

Recommended performance profile configuration

Ensure that the value for name matches that specified in the spec.profile.data field of
TunedPerformancePatch.yaml and the status.configuration.source.name field of
validatorCRs/informDuValidator.yaml.

Set the isolated CPUs. Ensure all of the Hyper-Threading pairs match.

Set the reserved CPUs. When workload partitioning is enabled, system processes, kernel
threads, and system container threads are restricted to these CPUs. All CPUs that are not
isolated should be reserved.

Set the number of huge pages.

Set the huge page size.

Set node to the NUMA node where the hugepages are allocated.

Set userLevelNetworking to true to isolate the CPUs from networking interrupts.

Set enabled to true to install the real-time Linux kernel.

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: openshift-node-performance-profile 1
spec:
 additionalKernelArgs:
 - "idle=poll"
 - "rcupdate.rcu_normal_after_boot=0"
 cpu:
 isolated: 2-51,54-103 2
 reserved: 0-1,52-53 3
 hugepages:
 defaultHugepagesSize: 1G
 pages:
 - count: 32 4
 size: 1G 5
 node: 0 6
 machineConfigPoolSelector:
 pools.operator.machineconfiguration.openshift.io/master: ""
 net:
 userLevelNetworking: true 7
 nodeSelector:
 node-role.kubernetes.io/master: ''
 numa:
 topologyPolicy: "restricted"
 realTimeKernel:
 enabled: true 8

OpenShift Container Platform 4.9 Scalability and performance

178

17.1.8. Configuring Precision Time Protocol (PTP)

In the far edge, the RAN uses PTP to synchronize the systems.

Procedure

Configure PTP using the following example:

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
 name: du-ptp-slave
 namespace: openshift-ptp
spec:
 profile:
 - interface: ens5f0 1
 name: slave
 phc2sysOpts: -a -r -n 24
 ptp4lConf: |
 [global]
 #
 # Default Data Set
 #
 twoStepFlag 1
 slaveOnly 0
 priority1 128
 priority2 128
 domainNumber 24
 #utc_offset 37
 clockClass 248
 clockAccuracy 0xFE
 offsetScaledLogVariance 0xFFFF
 free_running 0
 freq_est_interval 1
 dscp_event 0
 dscp_general 0
 dataset_comparison ieee1588
 G.8275.defaultDS.localPriority 128
 #
 # Port Data Set
 #
 logAnnounceInterval -3
 logSyncInterval -4
 logMinDelayReqInterval -4
 logMinPdelayReqInterval -4
 announceReceiptTimeout 3
 syncReceiptTimeout 0
 delayAsymmetry 0
 fault_reset_interval 4
 neighborPropDelayThresh 20000000
 masterOnly 0
 G.8275.portDS.localPriority 128
 #
 # Run time options
 #
 assume_two_step 0

CHAPTER 17. DEPLOYING DISTRIBUTED UNITS MANUALLY ON SINGLE-NODE OPENSHIFT

179

 logging_level 6
 path_trace_enabled 0
 follow_up_info 0
 hybrid_e2e 0
 inhibit_multicast_service 0
 net_sync_monitor 0
 tc_spanning_tree 0
 tx_timestamp_timeout 50
 unicast_listen 0
 unicast_master_table 0
 unicast_req_duration 3600
 use_syslog 1
 verbose 0
 summary_interval 0
 kernel_leap 1
 check_fup_sync 0
 #
 # Servo Options
 #
 pi_proportional_const 0.0
 pi_integral_const 0.0
 pi_proportional_scale 0.0
 pi_proportional_exponent -0.3
 pi_proportional_norm_max 0.7
 pi_integral_scale 0.0
 pi_integral_exponent 0.4
 pi_integral_norm_max 0.3
 step_threshold 2.0
 first_step_threshold 0.00002
 max_frequency 900000000
 clock_servo pi
 sanity_freq_limit 200000000
 ntpshm_segment 0
 #
 # Transport options
 #
 transportSpecific 0x0
 ptp_dst_mac 01:1B:19:00:00:00
 p2p_dst_mac 01:80:C2:00:00:0E
 udp_ttl 1
 udp6_scope 0x0E
 uds_address /var/run/ptp4l
 #
 # Default interface options
 #
 clock_type OC
 network_transport UDPv4
 delay_mechanism E2E
 time_stamping hardware
 tsproc_mode filter
 delay_filter moving_median
 delay_filter_length 10
 egressLatency 0
 ingressLatency 0
 boundary_clock_jbod 0
 #

OpenShift Container Platform 4.9 Scalability and performance

180

1 Sets the interface used for PTP.

17.1.9. Disabling Network Time Protocol (NTP)

After the system is configured for Precision Time Protocol (PTP), you need to remove NTP to prevent it
from impacting the system clock.

Procedure

No configuration changes are needed. Use the provided settings:

 # Clock description
 #
 productDescription ;;
 revisionData ;;
 manufacturerIdentity 00:00:00
 userDescription ;
 timeSource 0xA0
 ptp4lOpts: -2 -s --summary_interval -4
recommend:
 - match:
 - nodeLabel: node-role.kubernetes.io/master
 priority: 4
 profile: slave

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: disable-chronyd
spec:
 config:
 systemd:
 units:
 - contents: |
 [Unit]
 Description=NTP client/server
 Documentation=man:chronyd(8) man:chrony.conf(5)
 After=ntpdate.service sntp.service ntpd.service
 Conflicts=ntpd.service systemd-timesyncd.service
 ConditionCapability=CAP_SYS_TIME
 [Service]
 Type=forking
 PIDFile=/run/chrony/chronyd.pid
 EnvironmentFile=-/etc/sysconfig/chronyd
 ExecStart=/usr/sbin/chronyd $OPTIONS
 ExecStartPost=/usr/libexec/chrony-helper update-daemon
 PrivateTmp=yes
 ProtectHome=yes
 ProtectSystem=full
 [Install]
 WantedBy=multi-user.target
 enabled: false

CHAPTER 17. DEPLOYING DISTRIBUTED UNITS MANUALLY ON SINGLE-NODE OPENSHIFT

181

17.1.10. Configuring single root I/O virtualization (SR-IOV)

SR-IOV is commonly used to enable the fronthaul and the midhaul networks.

Procedure

Use the following configuration to configure SRIOV on a single node distributed unit (DU). Note
that the first custom resource (CR) is required. The following CRs are examples.

 name: chronyd.service
 ignition:
 version: 2.2.0

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 configDaemonNodeSelector:
 node-role.kubernetes.io/master: ""
 disableDrain: true
 enableInjector: true
 enableOperatorWebhook: true

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: sriov-nw-du-mh
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: openshift-sriov-network-operator
 resourceName: du_mh
 vlan: 150 1

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: sriov-nnp-du-mh
 namespace: openshift-sriov-network-operator
spec:
 deviceType: vfio-pci 2
 isRdma: false
 nicSelector:
 pfNames:
 - ens7f0 3
 nodeSelector:
 node-role.kubernetes.io/master: ""
 numVfs: 8 4
 priority: 10
 resourceName: du_mh

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:

OpenShift Container Platform 4.9 Scalability and performance

182

1

2

3

4

5

6

7

8

Specifies the VLAN for the midhaul network.

Select either vfio-pci or netdevice, as needed.

Specifies the interface connected to the midhaul network.

Specifies the number of VFs for the midhaul network.

The VLAN for the fronthaul network.

Select either vfio-pci or netdevice, as needed.

Specifies the interface connected to the fronthaul network.

Specifies the number of VFs for the fronthaul network.

17.1.11. Disabling the console Operator

The console-operator installs and maintains the web console on a cluster. When the node is centrally
managed the Operator is not needed and makes space for application workloads.

Procedure

You can disable the Operator using the following configuration file. No configuration changes
are needed. Use the provided settings:

 name: sriov-nw-du-fh
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: openshift-sriov-network-operator
 resourceName: du_fh
 vlan: 140 5

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: sriov-nnp-du-fh
 namespace: openshift-sriov-network-operator
spec:
 deviceType: netdevice 6
 isRdma: true
 nicSelector:
 pfNames:
 - ens5f0 7
 nodeSelector:
 node-role.kubernetes.io/master: ""
 numVfs: 8 8
 priority: 10
 resourceName: du_fh

apiVersion: operator.openshift.io/v1
kind: Console
metadata:
 annotations:

CHAPTER 17. DEPLOYING DISTRIBUTED UNITS MANUALLY ON SINGLE-NODE OPENSHIFT

183

17.2. APPLYING THE DISTRIBUTED UNIT (DU) CONFIGURATION TO A
SINGLE-NODE OPENSHIFT CLUSTER

Perform the following tasks to configure a single-node cluster for a DU:

Apply the required extra installation manifests at installation time.

Apply the post-install configuration custom resources (CRs).

17.2.1. Applying the extra installation manifests

To apply the distributed unit (DU) configuration to the single-node cluster, the following extra
installation manifests need to be included during installation:

Enable workload partitioning.

Other MachineConfig objects – There is a set of MachineConfig custom resources (CRs)
included by default. You can choose to include these additional MachineConfig CRs that are
unique to their environment. It is recommended, but not required, to apply these CRs during
installation in order to minimize the number of reboots that can occur during post-install
configuration.

17.2.2. Applying the post-install configuration custom resources (CRs)

After OpenShift Container Platform is installed on the cluster, use the following command to
apply the CRs you configured for the distributed units (DUs):

 include.release.openshift.io/ibm-cloud-managed: "false"
 include.release.openshift.io/self-managed-high-availability: "false"
 include.release.openshift.io/single-node-developer: "false"
 release.openshift.io/create-only: "true"
 name: cluster
spec:
 logLevel: Normal
 managementState: Removed
 operatorLogLevel: Normal

$ oc apply -f <file_name>.yaml

OpenShift Container Platform 4.9 Scalability and performance

184

CHAPTER 18. WORKLOAD PARTITIONING ON SINGLE-NODE
OPENSHIFT

In resource-constrained environments, such as single-node OpenShift deployments, it is advantageous
to reserve most of the CPU resources for your own workloads and configure OpenShift Container
Platform to run on a fixed number of CPUs within the host. In these environments, management
workloads, including the control plane, need to be configured to use fewer resources than they might by
default in normal clusters. You can isolate the OpenShift Container Platform services, cluster
management workloads, and infrastructure pods to run on a reserved set of CPUs.

When you use workload partitioning, the CPU resources used by OpenShift Container Platform for
cluster management are isolated to a partitioned set of CPU resources on a single-node cluster. This
partitioning isolates cluster management functions to the defined number of CPUs. All cluster
management functions operate solely on that cpuset configuration.

The minimum number of reserved CPUs required for the management partition for a single-node
cluster is four CPU Hyper threads (HTs). The set of pods that make up the baseline OpenShift
Container Platform installation and a set of typical add-on Operators are annotated for inclusion in the
management workload partition. These pods operate normally within the minimum size cpuset
configuration. Inclusion of Operators or workloads outside of the set of accepted management pods
requires additional CPU HTs to be added to that partition.

Workload partitioning isolates the user workloads away from the platform workloads using the normal
scheduling capabilities of Kubernetes to manage the number of pods that can be placed onto those
cores, and avoids mixing cluster management workloads and user workloads.

When using workload partitioning, you must install the Performance Addon Operator and apply the
performance profile:

Workload partitioning pins the OpenShift Container Platform infrastructure pods to a defined
cpuset configuration.

The Performance Addon Operator performance profile pins the systemd services to a defined
cpuset configuration.

This cpuset configuration must match.

Workload partitioning introduces a new extended resource of <workload-
type>.workload.openshift.io/cores for each defined CPU pool, or workload-type. Kubelet advertises
these new resources and CPU requests by pods allocated to the pool are accounted for within the
corresponding resource rather than the typical cpu resource. When workload partitioning is enabled, the
<workload-type>.workload.openshift.io/cores resource allows access to the CPU capacity of the
host, not just the default CPU pool.

18.1. ENABLING WORKLOAD PARTITIONING

A key feature to enable as part of a single-node OpenShift installation is workload partitioning. This
limits the cores allowed to run platform services, maximizing the CPU core for application payloads. You
must configure workload partitioning at cluster installation time.

NOTE

CHAPTER 18. WORKLOAD PARTITIONING ON SINGLE-NODE OPENSHIFT

185

NOTE

You can enable workload partitioning during cluster installation only. You cannot disable
workload partitioning post-installation. However, you can reconfigure workload
partitioning by updating the cpu value that you define in the performance profile, and in
the related cpuset value in the MachineConfig custom resource (CR).

Procedure

The base64-encoded content below contains the CPU set that the management workloads are
constrained to. This content must be adjusted to match the set specified in the
performanceprofile and must be accurate for the number of cores on the cluster.

The contents of /etc/crio/crio.conf.d/01-workload-partitioning should look like this:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: 02-master-workload-partitioning
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;charset=utf-
8;base64,W2NyaW8ucnVudGltZS53b3JrbG9hZHMubWFuYWdlbWVudF0KYWN0aXZhdGlvbl
9hbm5vdGF0aW9uID0gInRhcmdldC53b3JrbG9hZC5vcGVuc2hpZnQuaW8vbWFuYWdlbWVu
dCIKYW5ub3RhdGlvbl9wcmVmaXggPSAicmVzb3VyY2VzLndvcmtsb2FkLm9wZW5zaGlmdC5
pbyIKW2NyaW8ucnVudGltZS53b3JrbG9hZHMubWFuYWdlbWVudC5yZXNvdXJjZXNdCmNw
dXNoYXJlcyA9IDAKQ1BVcyA9ICIwLTEsIDUyLTUzIgo=
 mode: 420
 overwrite: true
 path: /etc/crio/crio.conf.d/01-workload-partitioning
 user:
 name: root
 - contents:
 source: data:text/plain;charset=utf-
8;base64,ewogICJtYW5hZ2VtZW50IjogewogICAgImNwdXNldCI6ICIwLTEsNTItNTMiCiAgfQp
9Cg==
 mode: 420
 overwrite: true
 path: /etc/kubernetes/openshift-workload-pinning
 user:
 name: root

[crio.runtime.workloads.management]
activation_annotation = "target.workload.openshift.io/management"
annotation_prefix = "resources.workload.openshift.io"
[crio.runtime.workloads.management.resources]
cpushares = 0
cpuset = "0-1, 52-53" 1

OpenShift Container Platform 4.9 Scalability and performance

186

1

1

The cpuset value varies based on the installation.

If Hyper-Threading is enabled, specify both threads for each core. The cpuset value must
match the reserved CPUs that you define in the spec.cpu.reserved field in the performance
profile.

If Hyper-Threading is enabled, specify both threads of each core. The CPUs value must match the
reserved CPU set specified in the performance profile.

This content should be base64 encoded and provided in the 01-workload-partitioning-content in the
manifest above.

The contents of /etc/kubernetes/openshift-workload-pinning should look like this:

The cpuset must match the cpuset value in /etc/crio/crio.conf.d/01-workload-
partitioning.

{
 "management": {
 "cpuset": "0-1,52-53" 1
 }
}

CHAPTER 18. WORKLOAD PARTITIONING ON SINGLE-NODE OPENSHIFT

187

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN
A DISCONNECTED ENVIRONMENT

Use zero touch provisioning (ZTP) to provision distributed units at new edge sites in a disconnected
environment. The workflow starts when the site is connected to the network and ends with the CNF
workload deployed and running on the site nodes.

IMPORTANT

ZTP for RAN deployments is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

19.1. PROVISIONING EDGE SITES AT SCALE

Telco edge computing presents extraordinary challenges with managing hundreds to tens of thousands
of clusters in hundreds of thousands of locations. These challenges require fully-automated
management solutions with, as closely as possible, zero human interaction.

Zero touch provisioning (ZTP) allows you to provision new edge sites with declarative configurations of
bare-metal equipment at remote sites. Template or overlay configurations install OpenShift Container
Platform features that are required for CNF workloads. End-to-end functional test suites are used to
verify CNF related features. All configurations are declarative in nature.

You start the workflow by creating declarative configurations for ISO images that are delivered to the
edge nodes to begin the installation process. The images are used to repeatedly provision large
numbers of nodes efficiently and quickly, allowing you keep up with requirements from the field for far
edge nodes.

Service providers are deploying a more distributed mobile network architecture allowed by the modular
functional framework defined for 5G. This allows service providers to move from appliance-based radio
access networks (RAN) to open cloud RAN architecture, gaining flexibility and agility in delivering
services to end users.

The following diagram shows how ZTP works within a far edge framework.

OpenShift Container Platform 4.9 Scalability and performance

188

https://access.redhat.com/support/offerings/techpreview/

19.2. THE GITOPS APPROACH

ZTP uses the GitOps deployment set of practices for infrastructure deployment that allows developers
to perform tasks that would otherwise fall under the purview of IT operations. GitOps achieves these
tasks using declarative specifications stored in Git repositories, such as YAML files and other defined
patterns, that provide a framework for deploying the infrastructure. The declarative output is leveraged
by the Open Cluster Manager for multisite deployment.

One of the motivators for a GitOps approach is the requirement for reliability at scale. This is a
significant challenge that GitOps helps solve.

GitOps addresses the reliability issue by providing traceability, RBAC, and a single source of truth for
the desired state of each site. Scale issues are addressed by GitOps providing structure, tooling, and
event driven operations through webhooks.

19.3. ABOUT ZTP AND DISTRIBUTED UNITS ON SINGLE NODES

You can install a distributed unit (DU) on a single node at scale with Red Hat Advanced Cluster
Management (RHACM) (ACM) using the assisted installer (AI) and the policy generator with core-
reduction technology enabled. The DU installation is done using zero touch provisioning (ZTP) in a
disconnected environment.

ACM manages clusters in a hub and spoke architecture, where a single hub cluster manages many spoke
clusters. ACM applies radio access network (RAN) policies from predefined custom resources (CRs).
Hub clusters running ACM provision and deploy the spoke clusters using ZTP and AI. DU installation
follows the AI installation of OpenShift Container Platform on a single node.

The AI service handles provisioning of OpenShift Container Platform on single nodes running on bare
metal. ACM ships with and deploys the assisted installer when the MultiClusterHub custom resource is
installed.

With ZTP and AI, you can provision OpenShift Container Platform single nodes to run your DUs at scale.
A high level overview of ZTP for distributed units in a disconnected environment is as follows:

A hub cluster running ACM manages a disconnected internal registry that mirrors the OpenShift
Container Platform release images. The internal registry is used to provision the spoke single
nodes.

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

189

You manage the bare-metal host machines for your DUs in an inventory file that uses YAML for
formatting. You store the inventory file in a Git repository.

You install the DU bare-metal host machines on site, and make the hosts ready for provisioning.
To be ready for provisioning, the following is required for each bare-metal host:

Network connectivity - including DNS for your network. Hosts should be reachable through
the hub and managed spoke clusters. Ensure there is layer 3 connectivity between the hub
and the host where you want to install your hub cluster.

Baseboard Management Controller (BMC) details for each host - ZTP uses BMC details to
connect the URL and credentials for accessing the BMC. Create spoke cluster definition
CRs. These define the relevant elements for the managed clusters. Required CRs are as
follows:

Custom Resource Description

Namespace Namespace for the managed single-node
cluster.

BMCSecret CR Credentials for the host BMC.

Image Pull Secret CR Pull secret for the disconnected registry.

AgentClusterInstall Specifies the single-node cluster’s
configuration such as networking, number of
supervisor (control plane) nodes, and so on.

ClusterDeployment Defines the cluster name, domain, and other
details.

KlusterletAddonConfig Manages installation and termination of add-
ons on the ManagedCluster for ACM.

ManagedCluster Describes the managed cluster for ACM.

InfraEnv Describes the installation ISO to be mounted
on the destination node that the assisted
installer service creates. This is the final step
of the manifest creation phase.

BareMetalHost Describes the details of the bare-metal host,
including BMC and credentials details.

When a change is detected in the host inventory repository, a host management event is
triggered to provision the new or updated host.

The host is provisioned. When the host is provisioned and successfully rebooted, the host agent
reports Ready status to the hub cluster.

19.4. ZERO TOUCH PROVISIONING BUILDING BLOCKS

ACM deploys single-node OpenShift, which is OpenShift Container Platform installed on single nodes,

OpenShift Container Platform 4.9 Scalability and performance

190

ACM deploys single-node OpenShift, which is OpenShift Container Platform installed on single nodes,
leveraging zero touch provisioning (ZTP). The initial site plan is broken down into smaller components
and initial configuration data is stored in a Git repository. Zero touch provisioning uses a declarative
GitOps approach to deploy these nodes. The deployment of the nodes includes:

Installing the host operating system (RHCOS) on a blank server.

Deploying OpenShift Container Platform on single nodes.

Creating cluster policies and site subscriptions.

Leveraging a GitOps deployment topology for a develop once, deploy anywhere model.

Making the necessary network configurations to the server operating system.

Deploying profile Operators and performing any needed software-related configuration, such
as performance profile, PTP, and SR-IOV.

Downloading images needed to run workloads (CNFs).

19.5. SINGLE-NODE CLUSTERS

You use zero touch provisioning (ZTP) to deploy single-node OpenShift clusters to run distributed units
(DUs) on small hardware footprints at disconnected far edge sites. A single-node cluster runs
OpenShift Container Platform on top of one bare-metal host, hence the single node. Edge servers
contain a single node with supervisor functions and worker functions on the same host that are deployed
at low bandwidth or disconnected edge sites.

OpenShift Container Platform is configured on the single node to use workload partitioning. Workload
partitioning separates cluster management workloads from user workloads and can run the cluster
management workloads on a reserved set of CPUs. Workload partitioning is useful for resource-
constrained environments, such as single-node production deployments, where you want to reserve
most of the CPU resources for user workloads and configure OpenShift Container Platform to use
fewer CPU resources within the host.

A single-node cluster hosting a DU application on a node is divided into the following configuration
categories:

Common - Values are the same for all single-node cluster sites managed by a hub cluster.

Pools of sites - Common across a pool of sites where a pool size can be 1 to n.

Site specific - Likely specific to a site with no overlap with other sites, for example, a vlan.

19.6. SITE PLANNING CONSIDERATIONS FOR DISTRIBUTED UNIT
DEPLOYMENTS

Site planning for distributed units (DU) deployments is complex. The following is an overview of the
tasks that you complete before the DU hosts are brought online in the production environment.

Develop a network model. The network model depends on various factors such as the size of the
area of coverage, number of hosts, projected traffic load, DNS, and DHCP requirements.

Decide how many DU radio nodes are required to provide sufficient coverage and redundancy
for your network.

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

191

Develop mechanical and electrical specifications for the DU host hardware.

Develop a construction plan for individual DU site installations.

Tune host BIOS settings for production, and deploy the BIOS configuration to the hosts.

Install the equipment on-site, connect hosts to the network, and apply power.

Configure on-site switches and routers.

Perform basic connectivity tests for the host machines.

Establish production network connectivity, and verify host connections to the network.

Provision and deploy on-site DU hosts at scale.

Test and verify on-site operations, performing load and scale testing of the DU hosts before
finally bringing the DU infrastructure online in the live production environment.

19.7. LOW LATENCY FOR DISTRIBUTED UNITS (DUS)

Low latency is an integral part of the development of 5G networks. Telecommunications networks
require as little signal delay as possible to ensure quality of service in a variety of critical use cases.

Low latency processing is essential for any communication with timing constraints that affect
functionality and security. For example, 5G Telco applications require a guaranteed one millisecond one-
way latency to meet Internet of Things (IoT) requirements. Low latency is also critical for the future
development of autonomous vehicles, smart factories, and online gaming. Networks in these
environments require almost a real-time flow of data.

Low latency systems are about guarantees with regards to response and processing times. This includes
keeping a communication protocol running smoothly, ensuring device security with fast responses to
error conditions, or just making sure a system is not lagging behind when receiving a lot of data. Low
latency is key for optimal synchronization of radio transmissions.

OpenShift Container Platform enables low latency processing for DUs running on COTS hardware by
using a number of technologies and specialized hardware devices:

Real-time kernel for RHCOS

Ensures workloads are handled with a high degree of process determinism.

CPU isolation

Avoids CPU scheduling delays and ensures CPU capacity is available consistently.

NUMA awareness

Aligns memory and huge pages with CPU and PCI devices to pin guaranteed container memory and
huge pages to the NUMA node. This decreases latency and improves performance of the node.

Huge pages memory management

Using huge page sizes improves system performance by reducing the amount of system resources
required to access page tables.

Precision timing synchronization using PTP

Allows synchronization between nodes in the network with sub-microsecond accuracy.

19.8. CONFIGURING BIOS FOR DISTRIBUTED UNIT BARE-METAL

OpenShift Container Platform 4.9 Scalability and performance

192

19.8. CONFIGURING BIOS FOR DISTRIBUTED UNIT BARE-METAL
HOSTS

Distributed unit (DU) hosts require the BIOS to be configured before the host can be provisioned. The
BIOS configuration is dependent on the specific hardware that runs your DUs and the particular
requirements of your installation.

IMPORTANT

In this Developer Preview release, configuration and tuning of BIOS for DU bare-metal
host machines is the responsibility of the customer. Automatic setting of BIOS is not
handled by the zero touch provisioning workflow.

Procedure

1. Set the UEFI/BIOS Boot Mode to UEFI.

2. In the host boot sequence order, set Hard drive first.

3. Apply the specific BIOS configuration for your hardware. The following table describes a
representative BIOS configuration for an Intel Xeon Skylake or Intel Cascade Lake server, based
on the Intel FlexRAN 4G and 5G baseband PHY reference design.

IMPORTANT

The exact BIOS configuration depends on your specific hardware and network
requirements. The following sample configuration is for illustrative purposes only.

Table 19.1. Sample BIOS configuration for an Intel Xeon Skylake or Cascade Lake server

BIOS Setting Configuration

CPU Power and Performance Policy Performance

Uncore Frequency Scaling Disabled

Performance P-limit Disabled

Enhanced Intel SpeedStep ® Tech Enabled

Intel Configurable TDP Enabled

Configurable TDP Level Level 2

Intel® Turbo Boost Technology Enabled

Energy Efficient Turbo Disabled

Hardware P-States Disabled

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

193

Package C-State C0/C1 state

C1E Disabled

Processor C6 Disabled

BIOS Setting Configuration

NOTE

Enable global SR-IOV and VT-d settings in the BIOS for the host. These settings are
relevant to bare-metal environments.

19.9. PREPARING THE DISCONNECTED ENVIRONMENT

Before you can provision distributed units (DU) at scale, you must install Red Hat Advanced Cluster
Management (RHACM), which handles the provisioning of the DUs.

RHACM is deployed as an Operator on the OpenShift Container Platform hub cluster. It controls clusters
and applications from a single console with built-in security policies. RHACM provisions and manage
your DU hosts. To install RHACM in a disconnected environment, you create a mirror registry that
mirrors the Operator Lifecycle Manager (OLM) catalog that contains the required Operator images.
OLM manages, installs, and upgrades Operators and their dependencies in the cluster.

You also use a disconnected mirror host to serve the RHCOS ISO and RootFS disk images that provision
the DU bare-metal host operating system.

Before you install a cluster on infrastructure that you provision in a restricted network, you must mirror
the required container images into that environment. You can also use this procedure in unrestricted
networks to ensure your clusters only use container images that have satisfied your organizational
controls on external content.

IMPORTANT

You must have access to the internet to obtain the necessary container images. In this
procedure, you place the mirror registry on a mirror host that has access to both your
network and the internet. If you do not have access to a mirror host, use the disconnected
procedure to copy images to a device that you can move across network boundaries.

19.9.1. Disconnected environment prerequisites

You must have a container image registry that supports Docker v2-2 in the location that will host the
OpenShift Container Platform cluster, such as one of the following registries:

Red Hat Quay

JFrog Artifactory

Sonatype Nexus Repository

Harbor

If you have an entitlement to Red Hat Quay, see the documentation on deploying Red Hat Quay for

OpenShift Container Platform 4.9 Scalability and performance

194

https://docs.docker.com/registry/spec/manifest-v2-2/
https://www.redhat.com/en/technologies/cloud-computing/quay
https://jfrog.com/artifactory/
https://www.sonatype.com/products/repository-oss?topnav=true
https://goharbor.io/

If you have an entitlement to Red Hat Quay, see the documentation on deploying Red Hat Quay for
proof-of-concept purposes or by using the Quay Operator. If you need additional assistance selecting
and installing a registry, contact your sales representative or Red Hat support.

NOTE

Red Hat does not test third party registries with OpenShift Container Platform.

19.9.2. About the mirror registry

You can mirror the images that are required for OpenShift Container Platform installation and
subsequent product updates to a container mirror registry such as Red Hat Quay, JFrog Artifactory,
Sonatype Nexus Repository, or Harbor. If you do not have access to a large-scale container registry, you
can use the mirror registry for Red Hat OpenShift , a small-scale container registry included with
OpenShift Container Platform subscriptions.

You can use any container registry that supports Docker v2-2, such as Red Hat Quay, the mirror registry
for Red Hat OpenShift, Artifactory, Sonatype Nexus Repository, or Harbor. Regardless of your chosen
registry, the procedure to mirror content from Red Hat hosted sites on the internet to an isolated image
registry is the same. After you mirror the content, you configure each cluster to retrieve this content
from your mirror registry.

IMPORTANT

The internal registry of the OpenShift Container Platform cluster cannot be used as the
target registry because it does not support pushing without a tag, which is required during
the mirroring process.

If choosing a container registry that is not the mirror registry for Red Hat OpenShift , it must be reachable
by every machine in the clusters that you provision. If the registry is unreachable, installation, updating,
or normal operations such as workload relocation might fail. For that reason, you must run mirror
registries in a highly available way, and the mirror registries must at least match the production
availability of your OpenShift Container Platform clusters.

When you populate your mirror registry with OpenShift Container Platform images, you can follow two
scenarios. If you have a host that can access both the internet and your mirror registry, but not your
cluster nodes, you can directly mirror the content from that machine. This process is referred to as
connected mirroring. If you have no such host, you must mirror the images to a file system and then bring
that host or removable media into your restricted environment. This process is referred to as
disconnected mirroring .

For mirrored registries, to view the source of pulled images, you must review the Trying to access log
entry in the CRI-O logs. Other methods to view the image pull source, such as using the crictl images
command on a node, show the non-mirrored image name, even though the image is pulled from the
mirrored location.

NOTE

Red Hat does not test third party registries with OpenShift Container Platform.

Additional resources

For information on viewing the CRI-O logs to view the image source, see Viewing the image pull
source.

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

195

https://access.redhat.com/documentation/en-us/red_hat_quay/3.5/html/deploy_red_hat_quay_for_proof-of-concept_non-production_purposes/
https://access.redhat.com/documentation/en-us/red_hat_quay/3.5/html/deploy_red_hat_quay_on_openshift_with_the_quay_operator/
https://docs.docker.com/registry/spec/manifest-v2-2
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#viewing-the-image-pull-source_validating-an-installation

19.9.3. Preparing your mirror host

Before you perform the mirror procedure, you must prepare the host to retrieve content and push it to
the remote location.

19.9.3.1. Installing the OpenShift CLI by downloading the binary

You can install the OpenShift CLI (oc) to interact with OpenShift Container Platform from a command-
line interface. You can install oc on Linux, Windows, or macOS.

IMPORTANT

If you installed an earlier version of oc, you cannot use it to complete all of the commands
in OpenShift Container Platform 4.9. Download and install the new version of oc.

Installing the OpenShift CLI on Linux
You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure

1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer
Portal.

2. Select the appropriate version in the Version drop-down menu.

3. Click Download Now next to the OpenShift v4.9 Linux Client entry and save the file.

4. Unpack the archive:

5. Place the oc binary in a directory that is on your PATH.
To check your PATH, execute the following command:

After you install the OpenShift CLI, it is available using the oc command:

Installing the OpenShift CLI on Windows
You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure

1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer
Portal.

2. Select the appropriate version in the Version drop-down menu.

3. Click Download Now next to the OpenShift v4.9 Windows Client entry and save the file.

4. Unzip the archive with a ZIP program.

$ tar xvf <file>

$ echo $PATH

$ oc <command>

OpenShift Container Platform 4.9 Scalability and performance

196

https://access.redhat.com/downloads/content/290
https://access.redhat.com/downloads/content/290

5. Move the oc binary to a directory that is on your PATH.
To check your PATH, open the command prompt and execute the following command:

After you install the OpenShift CLI, it is available using the oc command:

Installing the OpenShift CLI on macOS
You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure

1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer
Portal.

2. Select the appropriate version in the Version drop-down menu.

3. Click Download Now next to the OpenShift v4.9 MacOSX Client entry and save the file.

4. Unpack and unzip the archive.

5. Move the oc binary to a directory on your PATH.
To check your PATH, open a terminal and execute the following command:

After you install the OpenShift CLI, it is available using the oc command:

19.9.3.2. Configuring credentials that allow images to be mirrored

Create a container image registry credentials file that allows mirroring images from Red Hat to your
mirror.

Prerequisites

You configured a mirror registry to use in your disconnected environment.

Procedure

Complete the following steps on the installation host:

1. Download your registry.redhat.io pull secret from the Red Hat OpenShift Cluster Manager and
save it to a .json file.

2. Generate the base64-encoded user name and password or token for your mirror registry:

C:\> path

C:\> oc <command>

$ echo $PATH

$ oc <command>

$ echo -n '<user_name>:<password>' | base64 -w0 1
BGVtbYk3ZHAtqXs=

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

197

https://access.redhat.com/downloads/content/290
https://console.redhat.com/openshift/install/pull-secret

1

1

1

2

For <user_name> and <password>, specify the user name and password that you
configured for your registry.

3. Make a copy of your pull secret in JSON format:

Specify the path to the folder to store the pull secret in and a name for the JSON file that
you create.

4. Save the file either as ~/.docker/config.json or $XDG_RUNTIME_DIR/containers/auth.json.
The contents of the file resemble the following example:

5. Edit the new file and add a section that describes your registry to it:

For <mirror_registry>, specify the registry domain name, and optionally the port, that
your mirror registry uses to serve content. For example, registry.example.com or
registry.example.com:8443

For <credentials>, specify the base64-encoded user name and password for the mirror
registry.

The file resembles the following example:

$ cat ./pull-secret.text | jq . > <path>/<pull_secret_file_in_json> 1

{
 "auths": {
 "cloud.openshift.com": {
 "auth": "b3BlbnNo...",
 "email": "you@example.com"
 },
 "quay.io": {
 "auth": "b3BlbnNo...",
 "email": "you@example.com"
 },
 "registry.connect.redhat.com": {
 "auth": "NTE3Njg5Nj...",
 "email": "you@example.com"
 },
 "registry.redhat.io": {
 "auth": "NTE3Njg5Nj...",
 "email": "you@example.com"
 }
 }
}

 "auths": {
 "<mirror_registry>": { 1
 "auth": "<credentials>", 2
 "email": "you@example.com"
 }
 },

OpenShift Container Platform 4.9 Scalability and performance

198

19.9.3.3. Mirroring the OpenShift Container Platform image repository

Mirror the OpenShift Container Platform image repository to your registry to use during cluster
installation or upgrade.

Prerequisites

Your mirror host has access to the internet.

You configured a mirror registry to use in your restricted network and can access the certificate
and credentials that you configured.

You downloaded the pull secret from the Red Hat OpenShift Cluster Manager and modified it
to include authentication to your mirror repository.

If you use self-signed certificates that do not set a Subject Alternative Name, you must precede
the oc commands in this procedure with GODEBUG=x509ignoreCN=0. If you do not set this
variable, the oc commands will fail with the following error:

Procedure

Complete the following steps on the mirror host:

1. Review the OpenShift Container Platform downloads page to determine the version of
OpenShift Container Platform that you want to install and determine the corresponding tag on
the Repository Tags page.

{
 "auths": {
 "registry.example.com": {
 "auth": "BGVtbYk3ZHAtqXs=",
 "email": "you@example.com"
 },
 "cloud.openshift.com": {
 "auth": "b3BlbnNo...",
 "email": "you@example.com"
 },
 "quay.io": {
 "auth": "b3BlbnNo...",
 "email": "you@example.com"
 },
 "registry.connect.redhat.com": {
 "auth": "NTE3Njg5Nj...",
 "email": "you@example.com"
 },
 "registry.redhat.io": {
 "auth": "NTE3Njg5Nj...",
 "email": "you@example.com"
 }
 }
}

x509: certificate relies on legacy Common Name field, use SANs or temporarily enable
Common Name matching with GODEBUG=x509ignoreCN=0

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

199

https://console.redhat.com/openshift/install/pull-secret
https://access.redhat.com/downloads/content/290/
https://quay.io/repository/openshift-release-dev/ocp-release?tab=tags

1

2. Set the required environment variables:

a. Export the release version:

For <release_version>, specify the tag that corresponds to the version of OpenShift
Container Platform to install, such as 4.5.4.

b. Export the local registry name and host port:

For <local_registry_host_name>, specify the registry domain name for your mirror
repository, and for <local_registry_host_port>, specify the port that it serves content on.

c. Export the local repository name:

For <local_repository_name>, specify the name of the repository to create in your
registry, such as ocp4/openshift4.

d. Export the name of the repository to mirror:

For a production release, you must specify openshift-release-dev.

e. Export the path to your registry pull secret:

For <path_to_pull_secret>, specify the absolute path to and file name of the pull secret
for your mirror registry that you created.

f. Export the release mirror:

For a production release, you must specify ocp-release.

g. Export the type of architecture for your server, such as x86_64:

h. Export the path to the directory to host the mirrored images:

Specify the full path, including the initial forward slash (/) character.

3. Mirror the version images to the mirror registry:

$ OCP_RELEASE=<release_version>

$ LOCAL_REGISTRY='<local_registry_host_name>:<local_registry_host_port>'

$ LOCAL_REPOSITORY='<local_repository_name>'

$ PRODUCT_REPO='openshift-release-dev'

$ LOCAL_SECRET_JSON='<path_to_pull_secret>'

$ RELEASE_NAME="ocp-release"

$ ARCHITECTURE=<server_architecture>

$ REMOVABLE_MEDIA_PATH=<path> 1

OpenShift Container Platform 4.9 Scalability and performance

200

1

If your mirror host does not have internet access, take the following actions:

i. Connect the removable media to a system that is connected to the internet.

ii. Review the images and configuration manifests to mirror:

iii. Record the entire imageContentSources section from the output of the previous
command. The information about your mirrors is unique to your mirrored repository, and
you must add the imageContentSources section to the install-config.yaml file during
installation.

iv. Mirror the images to a directory on the removable media:

v. Take the media to the restricted network environment and upload the images to the
local container registry.

For REMOVABLE_MEDIA_PATH, you must use the same path that you specified
when you mirrored the images.

If the local container registry is connected to the mirror host, take the following actions:

i. Directly push the release images to the local registry by using following command:

This command pulls the release information as a digest, and its output includes the
imageContentSources data that you require when you install your cluster.

ii. Record the entire imageContentSources section from the output of the previous
command. The information about your mirrors is unique to your mirrored repository, and

$ oc adm release mirror -a ${LOCAL_SECRET_JSON} \
 --from=quay.io/${PRODUCT_REPO}/${RELEASE_NAME}:${OCP_RELEASE}-
${ARCHITECTURE} \
 --to=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY} \
 --to-release-
image=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-
${ARCHITECTURE} --dry-run

$ oc adm release mirror -a ${LOCAL_SECRET_JSON} --to-
dir=${REMOVABLE_MEDIA_PATH}/mirror
quay.io/${PRODUCT_REPO}/${RELEASE_NAME}:${OCP_RELEASE}-
${ARCHITECTURE}

$ oc image mirror -a ${LOCAL_SECRET_JSON} --from-
dir=${REMOVABLE_MEDIA_PATH}/mirror
"file://openshift/release:${OCP_RELEASE}*"
${LOCAL_REGISTRY}/${LOCAL_REPOSITORY} 1

$ oc adm release mirror -a ${LOCAL_SECRET_JSON} \
 --from=quay.io/${PRODUCT_REPO}/${RELEASE_NAME}:${OCP_RELEASE}-
${ARCHITECTURE} \
 --to=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY} \
 --to-release-
image=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-
${ARCHITECTURE}

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

201

you must add the imageContentSources section to the install-config.yaml file during
installation.

NOTE

The image name gets patched to Quay.io during the mirroring process,
and the podman images will show Quay.io in the registry on the
bootstrap virtual machine.

4. To create the installation program that is based on the content that you mirrored, extract it and
pin it to the release:

If your mirror host does not have internet access, run the following command:

If the local container registry is connected to the mirror host, run the following command:

IMPORTANT

To ensure that you use the correct images for the version of OpenShift
Container Platform that you selected, you must extract the installation
program from the mirrored content.

You must perform this step on a machine with an active internet connection.

If you are in a disconnected environment, use the --image flag as part of
must-gather and point to the payload image.

5. For clusters using installer-provisioned infrastructure, run the following command:

19.9.3.4. Adding RHCOS ISO and RootFS images to a disconnected mirror host

Before you install a cluster on infrastructure that you provision, you must create Red Hat Enterprise
Linux CoreOS (RHCOS) machines for it to use. Use a disconnected mirror to host the RHCOS images
you require to provision your distributed unit (DU) bare-metal hosts.

Prerequisites

Deploy and configure an HTTP server to host the RHCOS image resources on the network. You
must be able to access the HTTP server from your computer, and from the machines that you
create.

IMPORTANT

$ oc adm release extract -a ${LOCAL_SECRET_JSON} --command=openshift-install
"${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}"

$ oc adm release extract -a ${LOCAL_SECRET_JSON} --command=openshift-install
"${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-
${ARCHITECTURE}"

$ openshift-install

OpenShift Container Platform 4.9 Scalability and performance

202

1

1

1

IMPORTANT

The RHCOS images might not change with every release of OpenShift Container
Platform. You must download images with the highest version that is less than or equal to
the OpenShift Container Platform version that you install. Use the image versions that
match your OpenShift Container Platform version if they are available. You require ISO
and RootFS images to install RHCOS on the DU hosts. RHCOS qcow2 images are not
supported for this installation type.

Procedure

1. Log in to the mirror host.

2. Obtain the RHCOS ISO and RootFS images from mirror.openshift.com, for example:

a. Export the required image names and OpenShift Container Platform version as
environment variables:

ISO image name, for example, rhcos-4.9.0-fc.1-x86_64-live.x86_64.iso

RootFS image name, for example, rhcos-4.9.0-fc.1-x86_64-live-rootfs.x86_64.img

OpenShift Container Platform version, for example, latest-4.9

b. Download the required images:

Verification steps

Verify that the images downloaded successfully and are being served on the disconnected
mirror host, for example:

Expected output

$ export ISO_IMAGE_NAME=<iso_image_name> 1

$ export ROOTFS_IMAGE_NAME=<rootfs_image_name> 1

$ export OCP_VERSION=<ocp_version> 1

$ sudo wget https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/pre-
release/${OCP_VERSION}/${ISO_IMAGE_NAME} -O
/var/www/html/${ISO_IMAGE_NAME}

$ sudo wget https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/pre-
release/${OCP_VERSION}/${ROOTFS_IMAGE_NAME} -O
/var/www/html/${ROOTFS_IMAGE_NAME}

$ wget http://$(hostname)/${ISO_IMAGE_NAME}

...
Saving to: rhcos-4.9.0-fc.1-x86_64-live.x86_64.iso
rhcos-4.9.0-fc.1-x86_64- 11%[====>] 10.01M 4.71MB/s

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

203

https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/pre-release/

19.10. INSTALLING RED HAT ADVANCED CLUSTER MANAGEMENT IN
A DISCONNECTED ENVIRONMENT

You use Red Hat Advanced Cluster Management (RHACM) on a hub cluster in the disconnected
environment to manage the deployment of distributed unit (DU) profiles on multiple managed spoke
clusters.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Configure a disconnected mirror registry for use in the cluster.

NOTE

If you want to deploy Operators to the spoke clusters, you must also add them to
this registry. See Mirroring an Operator catalog for more information.

Procedure

Install RHACM on the hub cluster in the disconnected environment. See Installing RHACM in a
disconnected environment.

19.11. ENABLING ASSISTED INSTALLER SERVICE ON BARE METAL

The Assisted Installer Service (AIS) deploys OpenShift Container Platform clusters. Red Hat Advanced
Cluster Management (RHACM) ships with AIS. AIS is deployed when you enable the MultiClusterHub
Operator on the RHACM hub cluster.

For distributed units (DUs), RHACM supports OpenShift Container Platform deployments that run on a
single bare-metal host. The single-node cluster acts as both a control plane and a worker node.

Prerequisites

Install OpenShift Container Platform 4.9 on a hub cluster.

Install RHACM and create the MultiClusterHub resource.

Create persistent volume custom resources (CR) for database and file system storage.

You have installed the OpenShift CLI (oc).

Procedure

1. Modify the HiveConfig resource to enable the feature gate for Assisted Installer:

...

 $ oc patch hiveconfig hive --type merge -p '{"spec":
{"targetNamespace":"hive","logLevel":"debug","featureGates":{"custom":{"enabled":
["AlphaAgentInstallStrategy"]},"featureSet":"Custom"}}}'

OpenShift Container Platform 4.9 Scalability and performance

204

https://docs.openshift.com/container-platform/4.9/operators/admin/olm-restricted-networks.html#olm-mirror-catalog_olm-restricted-networks
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.3/html/install/installing#install-on-disconnected-networks

1

2

3

4

5

6

7

2. Modify the Provisioning resource to allow the Bare Metal Operator to watch all namespaces:

3. Create the AgentServiceConfig CR.

a. Save the following YAML in the agent_service_config.yaml file:

Volume size for the databaseStorage field, for example 10Gi.

Volume size for the filesystemStorage field, for example 20Gi.

List of OS image details. Example describes a single OpenShift Container Platform OS
version.

OpenShift Container Platform version to install, for example, 4.8.

Specific install version, for example, 47.83.202103251640-0.

ISO url, for example, https://mirror.openshift.com/pub/openshift-
v4/dependencies/rhcos/4.7/4.7.7/rhcos-4.7.7-x86_64-live.x86_64.iso.

Root FS image URL, for example, https://mirror.openshift.com/pub/openshift-
v4/dependencies/rhcos/4.7/4.7.7/rhcos-live-rootfs.x86_64.img

b. Create the AgentServiceConfig CR by running the following command:

Example output

 $ oc patch provisioning provisioning-configuration --type merge -p '{"spec":
{"watchAllNamespaces": true }}'

apiVersion: agent-install.openshift.io/v1beta1
kind: AgentServiceConfig
metadata:
 name: agent
spec:
 databaseStorage:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: <db_volume_size> 1
 filesystemStorage:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: <fs_volume_size> 2
 osImages: 3
 - openshiftVersion: "<ocp_version>" 4
 version: "<ocp_release_version>" 5
 url: "<iso_url>" 6
 rootFSUrl: "<root_fs_url>" 7
 cpuArchitecture: "x86_64"

$ oc create -f agent_service_config.yaml

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

205

https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.7/4.7.7/rhcos-4.7.7-x86_64-live.x86_64.iso
https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.7/4.7.7/rhcos-live-rootfs.x86_64.img

Example output

19.12. ZTP CUSTOM RESOURCES

Zero touch provisioning (ZTP) uses custom resource (CR) objects to extend the Kubernetes API or
introduce your own API into a project or a cluster. These CRs contain the site-specific data required to
install and configure a cluster for RAN applications.

A custom resource definition (CRD) file defines your own object kinds. Deploying a CRD into the
managed cluster causes the Kubernetes API server to begin serving the specified CR for the entire
lifecycle.

For each CR in the <site>.yaml file on the managed cluster, ZTP uses the data to create installation
CRs in a directory named for the cluster.

ZTP provides two ways for defining and installing CRs on managed clusters: a manual approach when
you are provisioning a single cluster and an automated approach when provisioning multiple clusters.

Manual CR creation for single clusters

Use this method when you are creating CRs for a single cluster. This is a good way to test your CRs
before deploying on a larger scale.

Automated CR creation for multiple managed clusters

Use the automated SiteConfig method when you are installing multiple managed clusters, for
example, in batches of up to 100 clusters. SiteConfig uses ArgoCD as the engine for the GitOps
method of site deployment. After completing a site plan that contains all of the required parameters
for deployment, a policy generator creates the manifests and applies them to the hub cluster.

Both methods create the CRs shown in the following table. On the cluster site, an automated Discovery
image ISO file creates a directory with the site name and a file with the cluster name. Every cluster has
its own namespace, and all of the CRs are under that namespace. The namespace and the CR names
match the cluster name.

Resource Description Usage

BareMetalHost Contains the connection
information for the Baseboard
Management Controller (BMC) of
the target bare-metal host.

Provides access to the BMC in
order to load and boot the
Discovery image ISO on the
target server by using the Redfish
protocol.

InfraEnv Contains information for pulling
OpenShift Container Platform
onto the target bare-metal host.

Used with ClusterDeployment to
generate the Discovery ISO for
the managed cluster.

AgentClusterInstall Specifies the managed cluster’s
configuration such as networking
and the number of supervisor
(control plane) nodes. Shows the
kubeconfig and credentials
when the installation is complete.

Specifies the managed cluster
configuration information and
provides status during the
installation of the cluster.

agentserviceconfig.agent-install.openshift.io/agent created

OpenShift Container Platform 4.9 Scalability and performance

206

ClusterDeployment References the
AgentClusterInstall to use.

Used with InfraEnv to generate
the Discovery ISO for the
managed cluster.

NMStateConfig Provides network configuration
information such as MAC to IP
mapping, DNS server, default
route, and other network settings.
This is not needed if DHCP is
used.

Sets up a static IP address for the
managed cluster’s Kube API
server.

Agent Contains hardware information
about the target bare-metal host.

Created automatically on the hub
when the target machine’s
Discovery image ISO boots.

ManagedCluster When a cluster is managed by the
hub, it must be imported and
known. This Kubernetes object
provides that interface.

The hub uses this resource to
manage and show the status of
managed clusters.

KlusterletAddonConfig Contains the list of services
provided by the hub to be
deployed to a ManagedCluster.

Tells the hub which addon
services to deploy to a
ManagedCluster.

Namespace Logical space for
ManagedCluster resources
existing on the hub. Unique per
site.

Propagates resources to the
ManagedCluster.

Secret Two custom resources are
created: BMC Secret and
Image Pull Secret.

BMC Secret
authenticates into the
target bare-metal host
using its username and
password.

Image Pull Secret
contains authentication
information for the
OpenShift Container
Platform image installed
on the target bare-metal
host.

ClusterImageSet Contains OpenShift Container
Platform image information such
as the repository and image
name.

Passed into resources to provide
OpenShift Container Platform
images.

Resource Description Usage

19.13. CREATING CUSTOM RESOURCES TO INSTALL A SINGLE

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

207

19.13. CREATING CUSTOM RESOURCES TO INSTALL A SINGLE
MANAGED CLUSTER

This procedure tells you how to manually create and deploy a single managed cluster. If you are creating
multiple clusters, perhaps hundreds, use the SiteConfig method described in “Creating ZTP custom
resources for multiple managed clusters”.

Prerequisites

Enable Assisted Installer Service.

Ensure network connectivity:

The container within the hub must be able to reach the Baseboard Management Controller
(BMC) address of the target bare-metal host.

The managed cluster must be able to resolve and reach the hub’s API hostname and *.app
hostname. Example of the hub’s API and *.app hostname:

The hub must be able to resolve and reach the API and *.app hostname of the managed
cluster. Here is an example of the managed cluster’s API and *.app hostname:

A DNS Server that is IP reachable from the target bare-metal host.

A target bare-metal host for the managed cluster with the following hardware minimums:

4 CPU or 8 vCPU

32 GiB RAM

120 GiB Disk for root filesystem

When working in a disconnected environment, the release image needs to be mirrored. Use this
command to mirror the release image:

You mirrored the ISO and rootfs used to generate the spoke cluster ISO to an HTTP server and
configured the settings to pull images from there.
The images must match the version of the ClusterImageSet. To deploy a 4.9.0 version, the
rootfs and ISO need to be set at 4.9.0.

Procedure

1. Create a ClusterImageSet for each specific cluster version that needs to be deployed. A
ClusterImageSet has the following format:

console-openshift-console.apps.hub-cluster.internal.domain.com
api.hub-cluster.internal.domain.com

console-openshift-console.apps.sno-managed-cluster-1.internal.domain.com
api.sno-managed-cluster-1.internal.domain.com

oc adm release mirror -a <pull_secret.json>
--from=quay.io/openshift-release-dev/ocp-release:{{ mirror_version_spoke_release }}
--to={{ provisioner_cluster_registry }}/ocp4 --to-release-image={{
provisioner_cluster_registry }}/ocp4:{{ mirror_version_spoke_release }}

OpenShift Container Platform 4.9 Scalability and performance

208

1

2

1 2

1

2

1

The descriptive version that you want to deploy.

Points to the specific release image to deploy.

2. Create the Namespace definition for the managed cluster:

The name of the managed cluster to provision.

3. Create the BMC Secret custom resource:

The password to the target bare-metal host. Must be base-64 encoded.

The username to the target bare-metal host. Must be base-64 encoded.

4. Create the Image Pull Secret custom resource:

The OpenShift Container Platform pull secret. Must be base-64 encoded.

apiVersion: hive.openshift.io/v1
kind: ClusterImageSet
metadata:
 name: openshift-4.9.0-rc.0 1
spec:
 releaseImage: quay.io/openshift-release-dev/ocp-release:4.9.0-x86_64 2

apiVersion: v1
kind: Namespace
metadata:
 name: <cluster_name> 1
 labels:
 name: <cluster_name> 2

apiVersion: v1
data:
 password: <bmc_password> 1
 username: <bmc_username> 2
kind: Secret
metadata:
 name: <cluster_name>-bmc-secret
 namespace: <cluster_name>
type: Opaque

apiVersion: v1
data:
 .dockerconfigjson: <pull_secret> 1
kind: Secret
metadata:
 name: assisted-deployment-pull-secret
 namespace: <cluster_name>
type: kubernetes.io/dockerconfigjson

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

209

1

2

3

4

5

5. Create the AgentClusterInstall custom resource:

The name of the ClusterImageSet custom resource used to install OpenShift Container
Platform on the bare-metal host.

A block of IPv4 or IPv6 addresses in CIDR notation used for communication among cluster
nodes.

A block of IPv4 or IPv6 addresses in CIDR notation used for the target bare-metal host
external communication. Also used to determine the API and Ingress VIP addresses when
provisioning DU single-node clusters.

A block of IPv4 or IPv6 addresses in CIDR notation used for cluster services internal
communication.

Entered as plain text. You can use the public key to SSH into the node after it has finished
installing.

NOTE

If you want to configure a static IP for the managed cluster at this point, see the
procedure in this document for configuring static IP addresses for managed
clusters.

6. Create the ClusterDeployment custom resource:

apiVersion: extensions.hive.openshift.io/v1beta1
kind: AgentClusterInstall
metadata:
 # Only include the annotation if using OVN, otherwise omit the annotation
 annotations:
 agent-install.openshift.io/install-config-overrides: '{"networking":
{"networkType":"OVNKubernetes"}}'
 name: <cluster_name>
 namespace: <cluster_name>
spec:
 clusterDeploymentRef:
 name: <cluster_name>
 imageSetRef:
 name: <cluster_image_set> 1
 networking:
 clusterNetwork:
 - cidr: <cluster_network_cidr> 2
 hostPrefix: 23
 machineNetwork:
 - cidr: <machine_network_cidr> 3
 serviceNetwork:
 - <service_network_cidr> 4
 provisionRequirements:
 controlPlaneAgents: 1
 workerAgents: 0
 sshPublicKey: <public_key> 5

apiVersion: hive.openshift.io/v1

OpenShift Container Platform 4.9 Scalability and performance

210

1

1

The managed cluster’s base domain.

7. Create the KlusterletAddonConfig custom resource:

Set to true to enable KlusterletAddonConfig or false to disable the
KlusterletAddonConfig. Keep searchCollector disabled.

8. Create the ManagedCluster custom resource:

kind: ClusterDeployment
metadata:
 name: <cluster_name>
 namespace: <cluster_name>
spec:
 baseDomain: <base_domain> 1
 clusterInstallRef:
 group: extensions.hive.openshift.io
 kind: AgentClusterInstall
 name: <cluster_name>
 version: v1beta1
 clusterName: <cluster_name>
 platform:
 agentBareMetal:
 agentSelector:
 matchLabels:
 cluster-name: <cluster_name>
 pullSecretRef:
 name: assisted-deployment-pull-secret

apiVersion: agent.open-cluster-management.io/v1
kind: KlusterletAddonConfig
metadata:
 name: <cluster_name>
 namespace: <cluster_name>
spec:
 clusterName: <cluster_name>
 clusterNamespace: <cluster_name>
 clusterLabels:
 cloud: auto-detect
 vendor: auto-detect
 applicationManager:
 enabled: true
 certPolicyController:
 enabled: false
 iamPolicyController:
 enabled: false
 policyController:
 enabled: true
 searchCollector:
 enabled: false 1

apiVersion: cluster.open-cluster-management.io/v1
kind: ManagedCluster
metadata:

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

211

1

2

1

2

9. Create the InfraEnv custom resource:

Entered as plain text. You can use the public key to SSH into the target bare-metal host
when it boots from the ISO.

Sets a label to match. The labels apply when the agents boot.

10. Create the BareMetalHost custom resource:

The baseboard management console address of the installation ISO on the target bare-
metal host.

The MAC address of the target bare-metal host.

Optionally, you can add bmac.agent-install.openshift.io/hostname: <host-name> as an

 name: <cluster_name>
spec:
 hubAcceptsClient: true

apiVersion: agent-install.openshift.io/v1beta1
kind: InfraEnv
metadata:
 name: <cluster_name>
 namespace: <cluster_name>
spec:
 clusterRef:
 name: <cluster_name>
 namespace: <cluster_name>
 sshAuthorizedKey: <public_key> 1
 agentLabels: 2
 location: "<label-name>"
 pullSecretRef:
 name: assisted-deployment-pull-secret

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
 name: <cluster_name>
 namespace: <cluster_name>
 annotations:
 inspect.metal3.io: disabled
 labels:
 infraenvs.agent-install.openshift.io: "<cluster_name>"
spec:
 bootMode: "UEFI"
 bmc:
 address: <bmc_address> 1
 disableCertificateVerification: true
 credentialsName: <cluster_name>-bmc-secret
 bootMACAddress: <mac_address> 2
 automatedCleaningMode: disabled
 online: true

OpenShift Container Platform 4.9 Scalability and performance

212

Optionally, you can add bmac.agent-install.openshift.io/hostname: <host-name> as an
annotation to set the managed cluster’s hostname. If you don’t add the annotation, the
hostname will default to either a hostname from the DHCP server or local host.

11. After you have created the custom resources, push the entire directory of generated custom
resources to the Git repository you created for storing the custom resources.

Next step

To provision additional clusters, repeat this procedure for each cluster.

19.13.1. Configuring static IP addresses for managed clusters

Optionally, after creating the AgentClusterInstall custom resource, you can configure static IP
addresses for the managed clusters.

NOTE

You must create this custom resource before creating the ClusterDeployment custom
resource.

Prerequisites

Deploy and configure the AgentClusterInstall custom resource.

Procedure

1. Create a NMStateConfig custom resource:

apiVersion: agent-install.openshift.io/v1beta1
kind: NMStateConfig
metadata:
 name: <cluster_name>
 namespace: <cluster_name>
 labels:
 sno-cluster-<cluster-name>: <cluster_name>
spec:
 config:
 interfaces:
 - name: eth0
 type: ethernet
 state: up
 ipv4:
 enabled: true
 address:
 - ip: <ip_address> 1
 prefix-length: <public_network_prefix> 2
 dhcp: false
 dns-resolver:
 config:
 server:
 - <dns_resolver> 3
 routes:
 config:
 - destination: 0.0.0.0/0

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

213

1

2

3

4

5

6

1

The static IP address of the target bare-metal host.

The static IP address’s subnet prefix for the target bare-metal host.

The DNS server for the target bare-metal host.

The gateway for the target bare-metal host.

Must match the name specified in the interfaces section.

The mac address of the interface.

2. When creating the BareMetalHost custom resource, ensure that one of its mac addresses
matches a mac address in the NMStateConfig target bare-metal host.

3. When creating the InfraEnv custom resource, reference the label from the NMStateConfig
custom resource in the InfraEnv custom resource:

Sets a label to match. The labels apply when the agents boot.

19.13.2. Automated Discovery image ISO process for provisioning clusters

After you create the custom resources, the following actions happen automatically:

1. A Discovery image ISO file is generated and booted on the target machine.

2. When the ISO file successfully boots on the target machine it reports the hardware information
of the target machine.

 next-hop-address: <gateway> 4
 next-hop-interface: eth0
 table-id: 254
 interfaces:
 - name: "eth0" 5
 macAddress: <mac_address> 6

apiVersion: agent-install.openshift.io/v1beta1
kind: InfraEnv
metadata:
 name: <cluster_name>
 namespace: <cluster_name>
spec:
 clusterRef:
 name: <cluster_name>
 namespace: <cluster_name>
 sshAuthorizedKey: <public_key>
 agentLabels: 1
 location: "<label-name>"
 pullSecretRef:
 name: assisted-deployment-pull-secret
 nmStateConfigLabelSelector:
 matchLabels:
 sno-cluster-<cluster-name>: <cluster_name> # Match this label

OpenShift Container Platform 4.9 Scalability and performance

214

3. After all hosts are discovered, OpenShift Container Platform is installed.

4. When OpenShift Container Platform finishes installing, the hub installs the klusterlet service on
the target cluster.

5. The requested add-on services are installed on the target cluster.

The Discovery image ISO process finishes when the Agent custom resource is created on the hub for
the managed cluster.

19.13.3. Checking the managed cluster status

Ensure that cluster provisioning was successful by checking the cluster status.

Prerequisites

All of the custom resources have been configured and provisioned, and the Agent custom
resource is created on the hub for the managed cluster.

Procedure

1. Check the status of the managed cluster:

True indicates the managed cluster is ready.

2. Check the agent status:

3. Use the describe command to provide an in-depth description of the agent’s condition.
Statuses to be aware of include BackendError, InputError, ValidationsFailing,
InstallationFailed, and AgentIsConnected. These statuses are relevant to the Agent and
AgentClusterInstall custom resources.

4. Check the cluster provisioning status:

5. Use the describe command to provide an in-depth description of the cluster provisioning
status:

6. Check the status of the managed cluster’s add-on services:

7. Retrieve the authentication information of the kubeconfig file for the managed cluster:

$ oc get managedcluster

$ oc get agent -n <cluster_name>

$ oc describe agent -n <cluster_name>

$ oc get agentclusterinstall -n <cluster_name>

$ oc describe agentclusterinstall -n <cluster_name>

$ oc get managedclusteraddon -n <cluster_name>

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

215

1

2

3

19.13.4. Configuring a managed cluster for a disconnected environment

After you have completed the preceding procedure, follow these steps to configure the managed
cluster for a disconnected environment.

Prerequisites

A disconnected installation of Red Hat Advanced Cluster Management (RHACM) 2.3.

Host the rootfs and iso images on an HTTPD server.

Procedure

1. Create a ConfigMap containing the mirror registry config:

The mirror registry’s certificate used when creating the mirror registry.

The configuration for the mirror registry.

The URL of the mirror registry.

This updates mirrorRegistryRef in the AgentServiceConfig custom resource, as shown below:

Example output

$ oc get secret -n <cluster_name> <cluster_name>-admin-kubeconfig -o jsonpath=
{.data.kubeconfig} | base64 -d > <directory>/<cluster_name>-kubeconfig

apiVersion: v1
kind: ConfigMap
metadata:
 name: assisted-installer-mirror-config
 namespace: assisted-installer
 labels:
 app: assisted-service
data:
 ca-bundle.crt: <certificate> 1
 registries.conf: | 2
 unqualified-search-registries = ["registry.access.redhat.com", "docker.io"]

 [[registry]]
 location = <mirror_registry_url> 3
 insecure = false
 mirror-by-digest-only = true

apiVersion: agent-install.openshift.io/v1beta1
kind: AgentServiceConfig
metadata:
 name: agent
 namespace: assisted-installer
spec:
 databaseStorage:
 volumeName: <db_pv_name>

OpenShift Container Platform 4.9 Scalability and performance

216

1 2 Must match the URLs of the HTTPD server.

2. For disconnected installations, you must deploy an NTP clock that is reachable through the
disconnected network. You can do this by configuring chrony to act as server, editing the
/etc/chrony.conf file, and adding the following allowed IPv6 range:

19.13.5. Configuring IPv6 addresses for a disconnected environment

Optionally, when you are creating the AgentClusterInstall custom resource, you can configure IPv6
addresses for the managed clusters.

Procedure

1. In the AgentClusterInstall custom resource, modify the IP addresses in clusterNetwork and
serviceNetwork for IPv6 addresses:

 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: <db_storage_size>
 filesystemStorage:
 volumeName: <fs_pv_name>
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: <fs_storage_size>
 mirrorRegistryRef:
 name: 'assisted-installer-mirror-config'
 osImages:
 - openshiftVersion: <ocp_version>
 rootfs: <rootfs_url> 1
 url: <iso_url> 2

Allow NTP client access from local network.
#allow 192.168.0.0/16
local stratum 10
bindcmdaddress ::
allow 2620:52:0:1310::/64

apiVersion: extensions.hive.openshift.io/v1beta1
kind: AgentClusterInstall
metadata:
 # Only include the annotation if using OVN, otherwise omit the annotation
 annotations:
 agent-install.openshift.io/install-config-overrides: '{"networking":
{"networkType":"OVNKubernetes"}}'
 name: <cluster_name>
 namespace: <cluster_name>
spec:
 clusterDeploymentRef:
 name: <cluster_name>
 imageSetRef:

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

217

2. Update the NMStateConfig custom resource with the IPv6 addresses you defined.

19.13.6. Troubleshooting the managed cluster

Use this procedure to diagnose any installation issues that might occur with the managed clusters.

Procedure

1. Check the status of the managed cluster:

Example output

If the status in the AVAILABLE column is True, the managed cluster is being managed by the
hub.

If the status in the AVAILABLE column is Unknown, the managed cluster is not being managed
by the hub. Use the following steps to continue checking to get more information.

2. Check the AgentClusterInstall install status:

Example output

If the status in the INSTALLED column is false, the installation was unsuccessful.

3. If the installation failed, enter the following command to review the status of the
AgentClusterInstall resource:

 name: <cluster_image_set>
 networking:
 clusterNetwork:
 - cidr: "fd01::/48"
 hostPrefix: 64
 machineNetwork:
 - cidr: <machine_network_cidr>
 serviceNetwork:
 - "fd02::/112"
 provisionRequirements:
 controlPlaneAgents: 1
 workerAgents: 0
 sshPublicKey: <public_key>

$ oc get managedcluster

NAME HUB ACCEPTED MANAGED CLUSTER URLS JOINED AVAILABLE
AGE
SNO-cluster true True True 2d19h

$ oc get clusterdeployment -n <cluster_name>

NAME PLATFORM REGION CLUSTERTYPE INSTALLED INFRAID
VERSION POWERSTATE AGE
Sno0026 agent-baremetal false Initialized
2d14h

OpenShift Container Platform 4.9 Scalability and performance

218

4. Resolve the errors and reset the cluster:

a. Remove the cluster’s managed cluster resource:

b. Remove the cluster’s namespace:

This deletes all of the namespace-scoped custom resources created for this cluster. You
must wait for the ManagedCluster CR deletion to complete before proceeding.

c. Recreate the custom resources for the managed cluster.

19.14. APPLYING THE RAN POLICIES FOR MONITORING CLUSTER
ACTIVITY

Zero touch provisioning (ZTP) uses Red Hat Advanced Cluster Management (RHACM) to apply the
radio access network (RAN) policies using a policy-based governance approach to automatically monitor
cluster activity.

The policy generator (PolicyGen) is a Kustomize plugin that facilitates creating ACM policies from
predefined custom resources. There are three main items: Policy Categorization, Source CR policy, and
PolicyGenTemplate. PolicyGen relies on these to generate the policies and their placement bindings
and rules.

The following diagram shows how the RAN policy generator interacts with GitOps and ACM.

RAN policies are categorized into three main groups:

Common

A policy that exists in the Common category is applied to all clusters to be represented by the site

$ oc describe agentclusterinstall -n <cluster_name> <cluster_name>

$ oc delete managedcluster <cluster_name>

$ oc delete namespace <cluster_name>

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

219

A policy that exists in the Common category is applied to all clusters to be represented by the site
plan.

Groups

A policy that exists in the Groups category is applied to a group of clusters. Every group of clusters
could have their own policies that exist under the Groups category. For example, Groups/group1
could have its own policies that are applied to the clusters belonging to group1.

Sites

A policy that exists in the Sites category is applied to a specific cluster. Any cluster could have its
own policies that exist in the Sites category. For example, Sites/cluster1 will have its own policies
applied to cluster1.

The following diagram shows how policies are generated.

19.14.1. Applying source custom resource policies

Source custom resource policies include the following:

SR-IOV policies

PTP policies

Performance Add-on Operator policies

MachineConfigPool policies

SCTP policies

You need to define the source custom resource that generates the ACM policy with consideration of
possible overlay to its metadata or spec/data. For example, a common-namespace-policy contains a
Namespace definition that exists in all managed clusters. This namespace is placed under the Common
category and there are no changes for its spec or data across all clusters.

Namespace policy example

The following example shows the source custom resource for this namespace:

apiVersion: v1
kind: Namespace

OpenShift Container Platform 4.9 Scalability and performance

220

Example output

The generated policy that applies this namespace includes the namespace as it is defined above
without any change, as shown in this example:

SRIOV policy example

The following example shows a SriovNetworkNodePolicy definition that exists in different clusters with
a different specification for each cluster. The example also shows the source custom resource for the
SriovNetworkNodePolicy:

metadata:
 name: openshift-sriov-network-operator
 labels:
 openshift.io/run-level: "1"

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: common-sriov-sub-ns-policy
 namespace: common-sub
 annotations:
 policy.open-cluster-management.io/categories: CM Configuration Management
 policy.open-cluster-management.io/controls: CM-2 Baseline Configuration
 policy.open-cluster-management.io/standards: NIST SP 800-53
spec:
 remediationAction: enforce
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: common-sriov-sub-ns-policy-config
 spec:
 remediationAction: enforce
 severity: low
 namespaceselector:
 exclude:
 - kube-*
 include:
 - '*'
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: Namespace
 metadata:
 labels:
 openshift.io/run-level: "1"
 name: openshift-sriov-network-operator

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: sriov-nnp

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

221

Example output

The SriovNetworkNodePolicy name and namespace are the same for all clusters, so both are defined
in the source SriovNetworkNodePolicy. However, the generated policy requires the $deviceType,
$numVfs, as input parameters in order to adjust the policy for each cluster. The generated policy is
shown in this example:

 namespace: openshift-sriov-network-operator
spec:
 # The $ tells the policy generator to overlay/remove the spec.item in the generated policy.
 deviceType: $deviceType
 isRdma: false
 nicSelector:
 pfNames: [$pfNames]
 nodeSelector:
 node-role.kubernetes.io/worker: ""
 numVfs: $numVfs
 priority: $priority
 resourceName: $resourceName

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: site-du-sno-1-sriov-nnp-mh-policy
 namespace: sites-sub
 annotations:
 policy.open-cluster-management.io/categories: CM Configuration Management
 policy.open-cluster-management.io/controls: CM-2 Baseline Configuration
 policy.open-cluster-management.io/standards: NIST SP 800-53
spec:
 remediationAction: enforce
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: site-du-sno-1-sriov-nnp-mh-policy-config
 spec:
 remediationAction: enforce
 severity: low
 namespaceselector:
 exclude:
 - kube-*
 include:
 - '*'
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: sriovnetwork.openshift.io/v1
 kind: SriovNetworkNodePolicy
 metadata:
 name: sriov-nnp-du-mh
 namespace: openshift-sriov-network-operator
 spec:
 deviceType: vfio-pci

OpenShift Container Platform 4.9 Scalability and performance

222

NOTE

Defining the required input parameters as $value, for example $deviceType, is not
mandatory. The $ tells the policy generator to overlay or remove the item from the
generated policy. Otherwise, the value does not change.

19.14.2. The PolicyGenTemplate

The PolicyGenTemplate.yaml file is a Custom Resource Definition (CRD) that tells PolicyGen where to
categorize the generated policies and which items need to be overlaid.

The following example shows the PolicyGenTemplate.yaml file:

The group-du-ranGen.yaml file defines a group of policies under a group named group-du. This file
defines a MachineConfigPool worker-du that is used as the node selector for any other policy defined
in sourceFiles. An ACM policy is generated for every source file that exists in sourceFiles. And, a single
placement binding and placement rule is generated to apply the cluster selection rule for group-du
policies.

Using the source file PtpConfigSlave.yaml as an example, the PtpConfigSlave has a definition of a
PtpConfig custom resource (CR). The generated policy for the PtpConfigSlave example is named
group-du-ptp-config-policy. The PtpConfig CR defined in the generated group-du-ptp-config-policy

 isRdma: false
 nicSelector:
 pfNames:
 - ens7f0
 nodeSelector:
 node-role.kubernetes.io/worker: ""
 numVfs: 8
 resourceName: du_mh

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
 name: "group-du-sno"
 namespace: "group-du-sno"
spec:
 bindingRules:
 group-du-sno: ""
 mcp: "master"
 sourceFiles:
 - fileName: ConsoleOperatorDisable.yaml
 policyName: "console-policy"
 - fileName: ClusterLogging.yaml
 policyName: "cluster-log-policy"
 spec:
 curation:
 curator:
 schedule: "30 3 * * *"
 collection:
 logs:
 type: "fluentd"
 fluentd: {}

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

223

is named du-ptp-slave. The spec defined in PtpConfigSlave.yaml is placed under du-ptp-slave along
with the other spec items defined under the source file.

The following example shows the group-du-ptp-config-policy:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: group-du-ptp-config-policy
 namespace: groups-sub
 annotations:
 policy.open-cluster-management.io/categories: CM Configuration Management
 policy.open-cluster-management.io/controls: CM-2 Baseline Configuration
 policy.open-cluster-management.io/standards: NIST SP 800-53
spec:
 remediationAction: enforce
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: group-du-ptp-config-policy-config
 spec:
 remediationAction: enforce
 severity: low
 namespaceselector:
 exclude:
 - kube-*
 include:
 - '*'
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: ptp.openshift.io/v1
 kind: PtpConfig
 metadata:
 name: slave
 namespace: openshift-ptp
 spec:
 recommend:
 - match:
 - nodeLabel: node-role.kubernetes.io/worker-du
 priority: 4
 profile: slave
 profile:
 - interface: ens5f0
 name: slave
 phc2sysOpts: -a -r -n 24
 ptp4lConf: |
 [global]
 #
 # Default Data Set
 #
 twoStepFlag 1
 slaveOnly 0

OpenShift Container Platform 4.9 Scalability and performance

224

19.14.3. Considerations when creating custom resource policies

The custom resources used to create the ACM policies should be defined with consideration of
possible overlay to its metadata and spec/data. For example, if the custom resource
metadata.name does not change between clusters then you should set the metadata.name
value in the custom resource file. If the custom resource will have multiple instances in the same
cluster, then the custom resource metadata.name must be defined in the policy template file.

In order to apply the node selector for a specific machine config pool, you have to set the node
selector value as $mcp in order to let the policy generator overlay the $mcp value with the
defined mcp in the policy template.

Subscription source files do not change.

19.14.4. Generating RAN policies

Prerequisites

Install Kustomize

Install the Kustomize Policy Generator plug-in

Procedure

1. Configure the kustomization.yaml file to reference the policyGenerator.yaml file. The
following example shows the PolicyGenerator definition:

Where:

policyGenTempPath is the path to the policyGenTemp files.

sourcePath: is the path to the source policies.

outPath: is the path to save the generated ACM policies.

stdout: If true, prints the generated policies to the console.

customResources: If true generates the CRs from the sourcePolicies files without ACM
policies.

2. Test PolicyGen by running the following commands:

 priority1 128
 priority2 128
 domainNumber 24

apiVersion: policyGenerator/v1
kind: PolicyGenerator
metadata:
 name: acm-policy
 namespace: acm-policy-generator
The arguments should be given and defined as below with same order --
policyGenTempPath= --sourcePath= --outPath= --stdout --customResources
argsOneLiner: ./ranPolicyGenTempExamples ./sourcePolicies ./out true false

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

225

https://github.com/stolostron/policy-generator-plugin

An out directory is created with the expected policies, as shown in this example:

The common policies are flat because they will be applied to all clusters. However, the groups
and sites have subdirectories for each group and site as they will be applied to different clusters.

19.15. CLUSTER PROVISIONING

Zero touch provisioning (ZTP) provisions clusters using a layered approach. The base components

$ cd cnf-features-deploy/ztp/ztp-policy-generator/

$ XDG_CONFIG_HOME=./ kustomize build --enable-alpha-plugins

out
├── common
│ ├── common-log-sub-ns-policy.yaml
│ ├── common-log-sub-oper-policy.yaml
│ ├── common-log-sub-policy.yaml
│ ├── common-pao-sub-catalog-policy.yaml
│ ├── common-pao-sub-ns-policy.yaml
│ ├── common-pao-sub-oper-policy.yaml
│ ├── common-pao-sub-policy.yaml
│ ├── common-policies-placementbinding.yaml
│ ├── common-policies-placementrule.yaml
│ ├── common-ptp-sub-ns-policy.yaml
│ ├── common-ptp-sub-oper-policy.yaml
│ ├── common-ptp-sub-policy.yaml
│ ├── common-sriov-sub-ns-policy.yaml
│ ├── common-sriov-sub-oper-policy.yaml
│ └── common-sriov-sub-policy.yaml
├── groups
│ ├── group-du
│ │ ├── group-du-mc-chronyd-policy.yaml
│ │ ├── group-du-mc-mount-ns-policy.yaml
│ │ ├── group-du-mcp-du-policy.yaml
│ │ ├── group-du-mc-sctp-policy.yaml
│ │ ├── group-du-policies-placementbinding.yaml
│ │ ├── group-du-policies-placementrule.yaml
│ │ ├── group-du-ptp-config-policy.yaml
│ │ └── group-du-sriov-operconfig-policy.yaml
│ └── group-sno-du
│ ├── group-du-sno-policies-placementbinding.yaml
│ ├── group-du-sno-policies-placementrule.yaml
│ ├── group-sno-du-console-policy.yaml
│ ├── group-sno-du-log-forwarder-policy.yaml
│ └── group-sno-du-log-policy.yaml
└── sites
 └── site-du-sno-1
 ├── site-du-sno-1-policies-placementbinding.yaml
 ├── site-du-sno-1-policies-placementrule.yaml
 ├── site-du-sno-1-sriov-nn-fh-policy.yaml
 ├── site-du-sno-1-sriov-nnp-mh-policy.yaml
 ├── site-du-sno-1-sriov-nw-fh-policy.yaml
 ├── site-du-sno-1-sriov-nw-mh-policy.yaml
 └── site-du-sno-1-.yaml

OpenShift Container Platform 4.9 Scalability and performance

226

Zero touch provisioning (ZTP) provisions clusters using a layered approach. The base components
consist of Red Hat Enterprise Linux CoreOS (RHCOS), the basic operating system for the cluster, and
OpenShift Container Platform. After these components are installed, the worker node can join the
existing cluster. When the node has joined the existing cluster, the 5G RAN profile Operators are
applied.

The following diagram illustrates this architecture.

The following RAN Operators are deployed on every cluster:

Machine Config

Precision Time Protocol (PTP)

Performance Addon Operator

SR-IOV

Local Storage Operator

Logging Operator

19.15.1. Machine Config Operator

The Machine Config Operator enables system definitions and low-level system settings such as
workload partitioning, NTP, and SCTP. This Operator is installed with OpenShift Container Platform.

A performance profile and its created products are applied to a node according to an associated
machine config pool (MCP). The MCP holds valuable information about the progress of applying the
machine configurations created by performance addons that encompass kernel args, kube config, huge
pages allocation, and deployment of the realtime kernel (rt-kernel). The performance addons controller
monitors changes in the MCP and updates the performance profile status accordingly.

19.15.2. Performance Addon Operator

The Performance Addon Operator provides the ability to enable advanced node performance tunings

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

227

The Performance Addon Operator provides the ability to enable advanced node performance tunings
on a set of nodes.

OpenShift Container Platform provides a Performance Addon Operator to implement automatic tuning
to achieve low latency performance for OpenShift Container Platform applications. The cluster
administrator uses this performance profile configuration that makes it easier to make these changes in
a more reliable way.

The administrator can specify updating the kernel to rt-kernel, reserving CPUs for management
workloads, and using CPUs for running the workloads.

19.15.3. SR-IOV Operator

The Single Root I/O Virtualization (SR-IOV) Network Operator manages the SR-IOV network devices
and network attachments in your cluster.

The SR-IOV Operator allows network interfaces to be virtual and shared at a device level with
networking functions running within the cluster.

The SR-IOV Network Operator adds the SriovOperatorConfig.sriovnetwork.openshift.io
CustomResourceDefinition resource. The Operator automatically creates a SriovOperatorConfig
custom resource named default in the openshift-sriov-network-operator namespace. The default
custom resource contains the SR-IOV Network Operator configuration for your cluster.

19.15.4. Precision Time Protocol Operator

The Precision Time Protocol (PTP) Operator is a protocol used to synchronize clocks in a network.
When used in conjunction with hardware support, PTP is capable of sub-microsecond accuracy. PTP
support is divided between the kernel and user space.

The clocks synchronized by PTP are organized in a master-worker hierarchy. The workers are
synchronized to their masters, which may be workers to their own masters. The hierarchy is created and
updated automatically by the best master clock (BMC) algorithm, which runs on every clock. When a
clock has only one port, it can be master or worker, such a clock is called an ordinary clock (OC). A clock
with multiple ports can be master on one port and worker on another, such a clock is called a boundary
clock (BC). The top-level master is called the grandmaster clock, which can be synchronized by using a
Global Positioning System (GPS) time source. By using a GPS-based time source, disparate networks
can be synchronized with a high-degree of accuracy.

19.16. CREATING ZTP CUSTOM RESOURCES FOR MULTIPLE
MANAGED CLUSTERS

If you are installing multiple managed clusters, zero touch provisioning (ZTP) uses ArgoCD and
SiteConfig to manage the processes that create the custom resources (CR) and generate and apply
the policies for multiple clusters, in batches of no more than 100, using the GitOps approach.

Installing and deploying the clusters is a two stage process, as shown here:

OpenShift Container Platform 4.9 Scalability and performance

228

1

19.16.1. Prerequisites for deploying the ZTP pipeline

OpenShift Container Platform cluster version 4.8 or higher and Red Hat GitOps Operator is
installed.

Red Hat Advanced Cluster Management (RHACM) version 2.3 or above is installed.

For disconnected environments, make sure your source data Git repository and ztp-site-
generator container image are accessible from the hub cluster.

If you want additional custom content, such as extra install manifests or custom resources (CR)
for policies, add them to the /usr/src/hook/ztp/source-crs/extra-manifest/ directory. Similarly,
you can add additional configuration CRs, as referenced from a PolicyGenTemplate, to the
/usr/src/hook/ztp/source-crs/ directory.

Create a Containerfile that adds your additional manifests to the Red Hat provided image,
for example:

<registry fqdn> must point to a registry containing the ztp-site-generator container
image provided by Red Hat.

FROM <registry fqdn>/ztp-site-generator:latest 1
COPY myInstallManifest.yaml /usr/src/hook/ztp/source-crs/extra-manifest/
COPY mySourceCR.yaml /usr/src/hook/ztp/source-crs/

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

229

Build a new container image that includes these additional files:

19.16.2. Installing the GitOps ZTP pipeline

The procedures in this section tell you how to complete the following tasks:

Prepare the Git repository you need to host site configuration data.

Configure the hub cluster for generating the required installation and policy custom resources
(CR).

Deploy the managed clusters using zero touch provisioning (ZTP).

19.16.2.1. Preparing the ZTP Git repository

Create a Git repository for hosting site configuration data. The zero touch provisioning (ZTP) pipeline
requires read access to this repository.

Procedure

1. Create a directory structure with separate paths for the SiteConfig and PolicyGenTemplate
custom resources (CR).

2. Add pre-sync.yaml and post-sync.yaml from resource-hook-
example/<policygentemplates>/ to the path for the PolicyGenTemplate CRs.

3. Add pre-sync.yaml and post-sync.yaml from resource-hook-example/<siteconfig>/ to the
path for the SiteConfig CRs.

NOTE

If your hub cluster operates in a disconnected environment, you must update the
image for all four pre and post sync hook CRs.

4. Apply the policygentemplates.ran.openshift.io and siteconfigs.ran.openshift.io CR
definitions.

19.16.2.2. Preparing the hub cluster for ZTP

You can configure your hub cluster with a set of ArgoCD applications that generate the required
installation and policy custom resources (CR) for each site based on a zero touch provisioning (ZTP)
GitOps flow.

Procedure

1. Install the Red Hat OpenShift GitOps Operator on your hub cluster.

2. Extract the administrator password for ArgoCD:

$> podman build Containerfile.example

$ oc get secret openshift-gitops-cluster -n openshift-gitops -o
jsonpath='{.data.admin\.password}' | base64 -d

OpenShift Container Platform 4.9 Scalability and performance

230

1

2

3

3. Prepare the ArgoCD pipeline configuration:

a. Extract the ArgoCD deployment CRs from the ZTP site generator container using the latest
container image version:

The remaining steps in this section relate to the ztp/gitops-subscriptions/argocd/
directory.

b. Modify the source values of the two ArgoCD applications, deployment/clusters-app.yaml
and deployment/policies-app.yaml with appropriate URL, targetRevision branch, and
path values. The path values must match those used in your Git repository.
Modify deployment/clusters-app.yaml:

The ztp/gitops-subscriptions/argocd/ file path that contains the siteconfig CRs for
the clusters.

The URL of the Git repository that contains the siteconfig custom resources that
define site configuration for installing clusters.

The branch on the Git repository that contains the relevant site configuration data.

c. Modify deployment/policies-app.yaml:

$ mkdir ztp
$ podman run --rm -v `pwd`/ztp:/mnt/ztp:Z registry.redhat.io/openshift4/ztp-site-generate-
rhel8:v4.9.0-1 /bin/bash -c "cp -ar /usr/src/hook/ztp/* /mnt/ztp/"

apiVersion: v1
kind: Namespace
metadata:
 name: clusters-sub

apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: clusters
 namespace: openshift-gitops
spec:
 destination:
 server: https://kubernetes.default.svc
 namespace: clusters-sub
 project: default
 source:
 path: ztp/gitops-subscriptions/argocd/resource-hook-example/siteconfig 1
 repoURL: https://github.com/openshift-kni/cnf-features-deploy 2
 targetRevision: master 3
 syncPolicy:
 automated:
 prune: true
 selfHeal: true
 syncOptions:
 - CreateNamespace=true

apiVersion: v1

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

231

1

2

3

The ztp/gitops-subscriptions/argocd/ file path that contains the
policygentemplates CRs for the clusters.

The URL of the Git repository that contains the policygentemplates custom
resources that specify configuration data for the site.

The branch on the Git repository that contains the relevant configuration data.

4. To apply the pipeline configuration to your hub cluster, enter this command:

19.16.3. Creating the site secrets

Add the required secrets for the site to the hub cluster. These resources must be in a namespace with a
name that matches the cluster name.

Procedure

1. Create a secret for authenticating to the site Baseboard Management Controller (BMC). Ensure
the secret name matches the name used in the SiteConfig. In this example, the secret name is
test-sno-bmh-secret:

kind: Namespace
metadata:
 name: policies-sub

apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: policies
 namespace: openshift-gitops
spec:
 destination:
 server: https://kubernetes.default.svc
 namespace: policies-sub
 project: default
 source:
 directory:
 recurse: true
 path: ztp/gitops-subscriptions/argocd/resource-hook-example/policygentemplates
1

 repoURL: https://github.com/openshift-kni/cnf-features-deploy 2
 targetRevision: master 3
 syncPolicy:
 automated:
 prune: true
 selfHeal: true
 syncOptions:
 - CreateNamespace=true

$ oc apply -k ./deployment

apiVersion: v1
kind: Secret
metadata:

OpenShift Container Platform 4.9 Scalability and performance

232

2. Create the pull secret for the site. The pull secret must contain all credentials necessary for
installing OpenShift and all add-on Operators. In this example, the secret name is assisted-
deployment-pull-secret:

NOTE

The secrets are referenced from the SiteConfig custom resource (CR) by name. The
namespace must match the SiteConfig namespace.

19.16.4. Creating the SiteConfig custom resources

ArgoCD acts as the engine for the GitOps method of site deployment. After completing a site plan that
contains the required custom resources for the site installation, a policy generator creates the manifests
and applies them to the hub cluster.

Procedure

1. Create one or more SiteConfig custom resources, site-config.yaml files, that contains the site-
plan data for the clusters. For example:

 name: test-sno-bmh-secret
 namespace: test-sno
data:
 password: dGVtcA==
 username: cm9vdA==
type: Opaque

apiVersion: v1
kind: Secret
metadata:
 name: assisted-deployment-pull-secret
 namespace: test-sno
type: kubernetes.io/dockerconfigjson
data:
 .dockerconfigjson: <Your pull secret base64 encoded>

apiVersion: ran.openshift.io/v1
kind: SiteConfig
metadata:
 name: "test-sno"
 namespace: "test-sno"
spec:
 baseDomain: "clus2.t5g.lab.eng.bos.redhat.com"
 pullSecretRef:
 name: "assisted-deployment-pull-secret"
 clusterImageSetNameRef: "openshift-4.9"
 sshPublicKey: "ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQDB3dwhI5X0ZxGBb9VK7wclcPHLc8n7WAyKjTNIn
FjYNP9J+Zoc/ii+l3YbGUTuqilDwZN5rVIwBux2nUyVXDfaM5kPd9kACmxWtfEWTyVRootbrNW
wRfKuC2h6cOd1IlcRBM1q6IzJ4d7+JVoltAxsabqLoCbK3svxaZoKAaK7jdGG030yvJzZaNM4PiT
y39VQXXkCiMDmicxEBwZx1UsA8yWQsiOQ5brod9KQRXWAAST779gbvtgXR2L+MnVNROE
Hf1nEjZJwjwaHxoDQYHYKERxKRHlWFtmy5dNT6BbvOpJ2e5osDFPMEd41d2mUJTfxXiC1nv
yjk9Irf8YJYnqJgBIxi0IxEllUKH7mTdKykHiPrDH5D2pRlp+Donl4n+sw6qoDc/3571O93+RQ6kUS
AgAsvWiXrEfB/7kGgAa/BD5FeipkFrbSEpKPVu+gue1AQeJcz9BuLqdyPUQj2VUySkSg0FuGb

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

233

G7fxkKeF1h3Sga7nuDOzRxck4I/8Z7FxMF/e8DmaBpgHAUIfxXnRqAImY9TyAZUEMT5ZPSvB
RZNNmLbfex1n3NLcov/GEpQOqEYcjG5y57gJ60/av4oqjcVmgtaSOOAS0kZ3y9YDhjsaOcpm
RYYijJn8URAH7NrW8EZsvAoF6GUt6xHq5T258c6xSYUm5L0iKvBqrOW9EjbLw==
root@cnfdc2.clus2.t5g.lab.eng.bos.redhat.com"
 clusters:
 - clusterName: "test-sno"
 clusterType: "sno"
 clusterProfile: "du"
 clusterLabels:
 group-du-sno: ""
 common: true
 sites : "test-sno"
 clusterNetwork:
 - cidr: 1001:db9::/48
 hostPrefix: 64
 machineNetwork:
 - cidr: 2620:52:0:10e7::/64
 serviceNetwork:
 - 1001:db7::/112
 additionalNTPSources:
 - 2620:52:0:1310::1f6
 nodes:
 - hostName: "test-sno.clus2.t5g.lab.eng.bos.redhat.com"
 bmcAddress: "idrac-
virtualmedia+https://[2620:52::10e7:f602:70ff:fee4:f4e2]/redfish/v1/Systems/System.Embedded.
1"
 bmcCredentialsName:
 name: "test-sno-bmh-secret"
 bmcDisableCertificateVerification: true 1
 bootMACAddress: "0C:42:A1:8A:74:EC"
 bootMode: "UEFI"
 rootDeviceHints:
 hctl: '0:1:0'
 cpuset: "0-1,52-53"
 nodeNetwork:
 interfaces:
 - name: eno1
 macAddress: "0C:42:A1:8A:74:EC"
 config:
 interfaces:
 - name: eno1
 type: ethernet
 state: up
 macAddress: "0C:42:A1:8A:74:EC"
 ipv4:
 enabled: false
 ipv6:
 enabled: true
 address:
 - ip: 2620:52::10e7:e42:a1ff:fe8a:900
 prefix-length: 64
 dns-resolver:
 config:
 search:
 - clus2.t5g.lab.eng.bos.redhat.com
 server:

OpenShift Container Platform 4.9 Scalability and performance

234

1 If you are using UEFI SecureBoot, add this line to prevent failures due to invalid or local
certificates.

2. Save the files and push them to the zero touch provisioning (ZTP) Git repository accessible
from the hub cluster and defined as a source repository of the ArgoCD application.

ArgoCD detects that the application is out of sync. Upon sync, either automatic or manual, ArgoCD
synchronizes the PolicyGenTemplate to the hub cluster and launches the associated resource hooks.
These hooks are responsible for generating the policy wrapped configuration CRs that apply to the
spoke cluster. The resource hooks convert the site definitions to installation custom resources and
applies them to the hub cluster:

Namespace - Unique per site

AgentClusterInstall

BareMetalHost

ClusterDeployment

InfraEnv

NMStateConfig

ExtraManifestsConfigMap - Extra manifests. The additional manifests include workload
partitioning, chronyd, mountpoint hiding, sctp enablement, and more.

ManagedCluster

KlusterletAddonConfig

Red Hat Advanced Cluster Management (RHACM) (ACM) deploys the hub cluster.

19.16.5. Creating the PolicyGenTemplates

Use the following procedure to create the PolicyGenTemplates you will need for generating policies in
your Git repository for the hub cluster.

Procedure

1. Create the PolicyGenTemplates and save them to the zero touch provisioning (ZTP) Git
repository accessible from the hub cluster and defined as a source repository of the ArgoCD
application.

2. ArgoCD detects that the application is out of sync. Upon sync, either automatic or manual,
ArgoCD applies the new PolicyGenTemplate to the hub cluster and launches the associated
resource hooks. These hooks are responsible for generating the policy wrapped configuration

 - 2620:52:0:1310::1f6
 routes:
 config:
 - destination: ::/0
 next-hop-interface: eno1
 next-hop-address: 2620:52:0:10e7::fc
 table-id: 254

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

235

CRs that apply to the spoke cluster and perform the following actions:

a. Create the Red Hat Advanced Cluster Management (RHACM) (ACM) policies according to
the basic distributed unit (DU) profile and required customizations.

b. Apply the generated policies to the hub cluster.

The ZTP process creates policies that direct ACM to apply the desired configuration to the cluster
nodes.

19.16.6. Checking the installation status

The ArgoCD pipeline detects the SiteConfig and PolicyGenTemplate custom resources (CRs) in the
Git repository and syncs them to the hub cluster. In the process, it generates installation and policy CRs
and applies them to the hub cluster. You can monitor the progress of this synchronization in the ArgoCD
dashboard.

Procedure

1. Monitor the progress of cluster installation using the following commands:

2. Use the Red Hat Advanced Cluster Management (RHACM) (ACM) dashboard to monitor the
progress of policy reconciliation.

19.16.7. Site cleanup

To remove a site and the associated installation and policy custom resources (CRs), remove the
SiteConfig and site-specific PolicyGenTemplate CRs from the Git repository. The pipeline hooks
remove the generated CRs.

NOTE

Before removing a SiteConfig CR you must detach the cluster from ACM.

19.16.7.1. Removing the ArgoCD pipeline

Use the following procedure if you want to remove the ArgoCD pipeline and all generated artifacts.

Procedure

1. Detach all clusters from ACM.

2. Delete all SiteConfig and PolicyGenTemplate custom resources (CRs) from your Git
repository.

$ export CLUSTER=<cluster_name>

$ oc get agentclusterinstall -n $CLUSTER $CLUSTER -o jsonpath='{.status.conditions[?
(@.type=="Completed")]}' | jq

$ curl -sk $(oc get agentclusterinstall -n $CLUSTER $CLUSTER -o
jsonpath='{.status.debugInfo.eventsURL}') | jq '.[-2,-1]'

OpenShift Container Platform 4.9 Scalability and performance

236

3. Delete the following namespaces:

All policy namespaces:

clusters-sub

policies-sub

4. Process the directory using the Kustomize tool:

19.17. TROUBLESHOOTING GITOPS ZTP

As noted, the ArgoCD pipeline synchronizes the SiteConfig and PolicyGenTemplate custom resources
(CR) from the Git repository to the hub cluster. During this process, post-sync hooks create the
installation and policy CRs that are also applied to the hub cluster. Use the following procedures to
troubleshoot issues that might occur in this process.

19.17.1. Validating the generation of installation CRs

SiteConfig applies Installation custom resources (CR) to the hub cluster in a namespace with the name
matching the site name. To check the status, enter the following command:

If no object is returned, use the following procedure to troubleshoot the ArgoCD pipeline flow from
SiteConfig to the installation CRs.

Procedure

1. Check the synchronization of the SiteConfig to the hub cluster using either of the following
commands:

or

If the SiteConfig is missing, one of the following situations has occurred:

The clusters application failed to synchronize the CR from the Git repository to the hub.
Use the following command to verify this:

Check for Status: Synced and that the Revision: is the SHA of the commit you pushed to
the subscribed repository.

The pre-sync hook failed, possibly due to a failure to pull the container image. Check the

 $ oc get policy -A

 $ oc delete -k cnf-features-deploy/ztp/gitops-subscriptions/argocd/deployment

$ oc get AgentClusterInstall -n <cluster_name>

$ oc get siteconfig -A

$ oc get siteconfig -n clusters-sub

$ oc describe -n openshift-gitops application clusters

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

237

The pre-sync hook failed, possibly due to a failure to pull the container image. Check the
ArgoCD dashboard for the status of the pre-sync job in the clusters application.

2. Verify the post hook job ran:

If successful, the returned output indicates succeeded: 1.

If the job fails, ArgoCD retries it. In some cases, the first pass will fail and the second pass
will indicate that the job passed.

3. Check for errors in the post hook job:

Note the name of the siteconfig-post-xxxxx pod:

If the logs indicate errors, correct the conditions and push the corrected SiteConfig or
PolicyGenTemplate to the Git repository.

19.17.2. Validating the generation of policy CRs

ArgoCD generates the policy custom resources (CRs) in the same namespace as the
PolicyGenTemplate from which they were created. The same troubleshooting flow applies to all policy
CRs generated from PolicyGenTemplates regardless of whether they are common, group, or site
based.

To check the status of the policy CRs, enter the following commands:

The returned output displays the expected set of policy wrapped CRs. If no object is returned, use the
following procedure to troubleshoot the ArgoCD pipeline flow from SiteConfig to the policy CRs.

Procedure

1. Check the synchronization of the PolicyGenTemplate to the hub cluster:

or

If the PolicyGenTemplate is not synchronized, one of the following situations has occurred:

The clusters application failed to synchronize the CR from the Git repository to the hub.
Use the following command to verify this:

$ oc describe job -n clusters-sub siteconfig-post

$ oc get pod -n clusters-sub

$ oc logs -n clusters-sub siteconfig-post-xxxxx

$ export NS=<namespace>

$ oc get policy -n $NS

$ oc get policygentemplate -A

$ oc get policygentemplate -n $NS

OpenShift Container Platform 4.9 Scalability and performance

238

Check for Status: Synced and that the Revision: is the SHA of the commit you pushed to
the subscribed repository.

The pre-sync hook failed, possibly due to a failure to pull the container image. Check the
ArgoCD dashboard for the status of the pre-sync job in the clusters application.

2. Ensure the policies were copied to the cluster namespace. When ACM recognizes that policies
apply to a ManagedCluster, ACM applies the policy CR objects to the cluster namespace:

ACM copies all applicable common, group, and site policies here. The policy names are
<policyNamespace> and <policyName>.

3. Check the placement rule for any policies not copied to the cluster namespace. The
matchSelector in the PlacementRule for those policies should match the labels on the
ManagedCluster:

4. Make a note of the PlacementRule name for the missing common, group, or site policy:

The status decisions value should include your cluster name.

The key value of the matchSelector in the spec should match the labels on your managed
cluster. Check the labels on ManagedCluster:

Example

5. Ensure all policies are compliant:

$ oc describe -n openshift-gitops application clusters

$ oc get policy -n <cluster_name>

$ oc get placementrule -n $NS

 oc get placementrule -n $NS <placmentRuleName> -o yaml

 oc get ManagedCluster $CLUSTER -o jsonpath='{.metadata.labels}' | jq

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: group-test1-policies-placementrules
 namespace: group-test1-policies
spec:
 clusterSelector:
 matchExpressions:
 - key: group-test1
 operator: In
 values:
 - ""
status:
 decisions:
 - clusterName: <cluster_name>
 clusterNamespace: <cluster_name>

CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT

239

If the Namespace, OperatorGroup, and Subscription policies are compliant but the Operator
configuration policies are not it is likely that the Operators did not install.

 oc get policy -n $CLUSTER

OpenShift Container Platform 4.9 Scalability and performance

240

	Table of Contents
	CHAPTER 1. RECOMMENDED HOST PRACTICES
	1.1. RECOMMENDED NODE HOST PRACTICES
	1.2. CREATING A KUBELETCONFIG CRD TO EDIT KUBELET PARAMETERS
	1.3. MODIFYING THE NUMBER OF UNAVAILABLE WORKER NODES
	1.4. CONTROL PLANE NODE SIZING
	1.4.1. Selecting a larger Amazon Web Services instance type for control plane machines
	1.4.1.1. Changing the Amazon Web Services instance type by using the AWS console

	1.5. RECOMMENDED ETCD PRACTICES
	1.6. MOVING ETCD TO A DIFFERENT DISK
	1.7. DEFRAGMENTING ETCD DATA
	1.7.1. Automatic defragmentation
	1.7.2. Manual defragmentation

	1.8. OPENSHIFT CONTAINER PLATFORM INFRASTRUCTURE COMPONENTS
	1.9. MOVING THE MONITORING SOLUTION
	1.10. MOVING THE DEFAULT REGISTRY
	1.11. MOVING THE ROUTER
	1.12. INFRASTRUCTURE NODE SIZING
	1.13. ADDITIONAL RESOURCES

	CHAPTER 2. RECOMMENDED HOST PRACTICES FOR IBM Z & LINUXONE ENVIRONMENTS
	2.1. MANAGING CPU OVERCOMMITMENT
	2.2. DISABLE TRANSPARENT HUGE PAGES
	2.3. BOOST NETWORKING PERFORMANCE WITH RECEIVE FLOW STEERING
	2.3.1. Use the Machine Config Operator (MCO) to activate RFS

	2.4. CHOOSE YOUR NETWORKING SETUP
	2.5. ENSURE HIGH DISK PERFORMANCE WITH HYPERPAV ON Z/VM
	2.5.1. Use the Machine Config Operator (MCO) to activate HyperPAV aliases in nodes using z/VM full-pack minidisks

	2.6. RHEL KVM ON IBM Z HOST RECOMMENDATIONS
	2.6.1. Use multiple queues for your VirtIO network interfaces
	2.6.2. Use I/O threads for your virtual block devices
	2.6.3. Avoid virtual SCSI devices
	2.6.4. Configure guest caching for disk
	2.6.5. Exclude the memory balloon device
	2.6.6. Tune the CPU migration algorithm of the host scheduler
	2.6.7. Disable the cpuset cgroup controller
	2.6.8. Tune the polling period for idle virtual CPUs

	CHAPTER 3. RECOMMENDED CLUSTER SCALING PRACTICES
	3.1. RECOMMENDED PRACTICES FOR SCALING THE CLUSTER
	3.2. MODIFYING A MACHINE SET
	3.3. ABOUT MACHINE HEALTH CHECKS
	3.3.1. Limitations when deploying machine health checks

	3.4. SAMPLE MACHINEHEALTHCHECK RESOURCE
	3.4.1. Short-circuiting machine health check remediation
	3.4.1.1. Setting maxUnhealthy by using an absolute value
	3.4.1.2. Setting maxUnhealthy by using percentages

	3.5. CREATING A MACHINEHEALTHCHECK RESOURCE

	CHAPTER 4. USING THE NODE TUNING OPERATOR
	4.1. ABOUT THE NODE TUNING OPERATOR
	4.2. ACCESSING AN EXAMPLE NODE TUNING OPERATOR SPECIFICATION
	4.3. DEFAULT PROFILES SET ON A CLUSTER
	4.4. VERIFYING THAT THE TUNED PROFILES ARE APPLIED
	4.5. CUSTOM TUNING SPECIFICATION
	4.6. CUSTOM TUNING EXAMPLES
	4.7. SUPPORTED TUNED DAEMON PLUGINS

	CHAPTER 5. USING CLUSTER LOADER
	5.1. INSTALLING CLUSTER LOADER
	5.2. RUNNING CLUSTER LOADER
	5.3. CONFIGURING CLUSTER LOADER
	5.3.1. Example Cluster Loader configuration file
	5.3.2. Configuration fields

	5.4. KNOWN ISSUES

	CHAPTER 6. USING CPU MANAGER AND TOPOLOGY MANAGER
	6.1. SETTING UP CPU MANAGER
	6.2. TOPOLOGY MANAGER POLICIES
	6.3. SETTING UP TOPOLOGY MANAGER
	6.4. POD INTERACTIONS WITH TOPOLOGY MANAGER POLICIES

	CHAPTER 7. SCALING THE CLUSTER MONITORING OPERATOR
	7.1. PROMETHEUS DATABASE STORAGE REQUIREMENTS
	7.2. CONFIGURING CLUSTER MONITORING

	CHAPTER 8. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS
	8.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER MAXIMUMS FOR MAJOR RELEASES
	8.2. OPENSHIFT CONTAINER PLATFORM ENVIRONMENT AND CONFIGURATION ON WHICH THE CLUSTER MAXIMUMS ARE TESTED
	8.2.1. IBM Z platform

	8.3. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED CLUSTER MAXIMUMS
	8.4. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO APPLICATION REQUIREMENTS

	CHAPTER 9. OPTIMIZING STORAGE
	9.1. AVAILABLE PERSISTENT STORAGE OPTIONS
	9.2. RECOMMENDED CONFIGURABLE STORAGE TECHNOLOGY
	9.2.1. Specific application storage recommendations
	9.2.1.1. Registry
	9.2.1.2. Scaled registry
	9.2.1.3. Metrics
	9.2.1.4. Logging
	9.2.1.5. Applications

	9.2.2. Other specific application storage recommendations

	9.3. DATA STORAGE MANAGEMENT

	CHAPTER 10. OPTIMIZING ROUTING
	10.1. BASELINE INGRESS CONTROLLER (ROUTER) PERFORMANCE

	CHAPTER 11. OPTIMIZING NETWORKING
	11.1. OPTIMIZING THE MTU FOR YOUR NETWORK
	11.2. RECOMMENDED PRACTICES FOR INSTALLING LARGE SCALE CLUSTERS
	11.3. IMPACT OF IPSEC

	CHAPTER 12. MANAGING BARE METAL HOSTS
	12.1. ABOUT BARE METAL HOSTS AND NODES
	12.2. MAINTAINING BARE METAL HOSTS
	12.2.1. Adding a bare metal host to the cluster using the web console
	12.2.2. Adding a bare metal host to the cluster using YAML in the web console
	12.2.3. Automatically scaling machines to the number of available bare metal hosts
	12.2.4. Removing bare metal hosts from the provisioner node

	CHAPTER 13. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS
	13.1. WHAT HUGE PAGES DO
	13.2. HOW HUGE PAGES ARE CONSUMED BY APPS
	13.3. CONSUMING HUGE PAGES RESOURCES USING THE DOWNWARD API
	13.4. CONFIGURING HUGE PAGES
	13.4.1. At boot time

	13.5. DISABLING TRANSPARENT HUGE PAGES

	CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES
	14.1. UNDERSTANDING LOW LATENCY
	14.1.1. About hyperthreading for low latency and real-time applications

	14.2. INSTALLING THE PERFORMANCE ADDON OPERATOR
	14.2.1. Installing the Operator using the CLI
	14.2.2. Installing the Performance Addon Operator using the web console

	14.3. UPGRADING PERFORMANCE ADDON OPERATOR
	14.3.1. About upgrading Performance Addon Operator
	14.3.1.1. How Performance Addon Operator upgrades affect your cluster
	14.3.1.2. Upgrading Performance Addon Operator to the next minor version
	14.3.1.3. Upgrading Performance Addon Operator when previously installed to a specific namespace

	14.3.2. Monitoring upgrade status

	14.4. PROVISIONING REAL-TIME AND LOW LATENCY WORKLOADS
	14.4.1. Known limitations for real-time
	14.4.2. Provisioning a worker with real-time capabilities
	14.4.3. Verifying the real-time kernel installation
	14.4.4. Creating a workload that works in real-time
	14.4.5. Creating a pod with a QoS class of Guaranteed
	14.4.6. Optional: Disabling CPU load balancing for DPDK
	14.4.7. Assigning a proper node selector
	14.4.8. Scheduling a workload onto a worker with real-time capabilities
	14.4.9. Managing device interrupt processing for guaranteed pod isolated CPUs
	14.4.9.1. Disabling CPU CFS quota
	14.4.9.2. Disabling global device interrupts handling in Performance Addon Operator
	14.4.9.3. Disabling interrupt processing for individual pods

	14.4.10. Upgrading the performance profile to use device interrupt processing
	14.4.10.1. Supported API Versions

	14.4.11. Configuring a node for IRQ dynamic load balancing
	14.4.12. Configuring hyperthreading for a cluster
	14.4.12.1. Disabling hyperthreading for low latency applications

	14.5. TUNING NODES FOR LOW LATENCY WITH THE PERFORMANCE PROFILE
	14.5.1. Configuring huge pages
	14.5.2. Allocating multiple huge page sizes
	14.5.3. Restricting CPUs for infra and application containers

	14.6. REDUCING NIC QUEUES USING THE PERFORMANCE ADDON OPERATOR
	14.6.1. Adjusting the NIC queues with the performance profile
	14.6.2. Verifying the queue status
	14.6.3. Logging associated with adjusting NIC queues

	14.7. DEBUGGING LOW LATENCY CNF TUNING STATUS
	14.7.1. Machine config pools

	14.8. COLLECTING LOW LATENCY TUNING DEBUGGING DATA FOR RED HAT SUPPORT
	14.8.1. About the must-gather tool
	14.8.2. About collecting low latency tuning data
	14.8.3. Gathering data about specific features

	CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION
	15.1. PREREQUISITES FOR RUNNING LATENCY TESTS
	15.2. ABOUT DISCOVERY MODE FOR LATENCY TESTS
	Limiting the nodes used during tests

	15.3. MEASURING LATENCY
	15.4. RUNNING THE LATENCY TESTS
	15.4.1. Running hwlatdetect
	Example hwlatdetect test results

	15.4.2. Running cyclictest
	Example cyclictest results

	15.4.3. Running oslat

	15.5. GENERATING A LATENCY TEST FAILURE REPORT
	15.6. GENERATING A JUNIT LATENCY TEST REPORT
	15.7. RUNNING LATENCY TESTS ON A SINGLE-NODE OPENSHIFT CLUSTER
	15.8. RUNNING LATENCY TESTS IN A DISCONNECTED CLUSTER
	Mirroring the images to a custom registry accessible from the cluster
	Configuring the tests to consume images from a custom registry
	Mirroring images to the cluster internal registry
	Mirroring a different set of test images

	15.9. TROUBLESHOOTING ERRORS WITH THE CNF-TESTS CONTAINER

	CHAPTER 16. CREATING A PERFORMANCE PROFILE
	16.1. ABOUT THE PERFORMANCE PROFILE CREATOR
	16.1.1. Gathering data about your cluster using the must-gather command
	16.1.2. Running the Performance Profile Creator using podman
	16.1.2.1. How to run podman to create a performance profile

	16.1.3. Running the Performance Profile Creator wrapper script
	16.1.4. Performance Profile Creator arguments

	16.2. ADDITIONAL RESOURCES

	CHAPTER 17. DEPLOYING DISTRIBUTED UNITS MANUALLY ON SINGLE-NODE OPENSHIFT
	17.1. CONFIGURING THE DISTRIBUTED UNITS (DUS)
	17.1.1. Enabling workload partitioning
	17.1.2. Configuring the container mount namespace
	17.1.3. Enabling Stream Control Transmission Protocol (SCTP)
	17.1.4. Creating OperatorGroups for Operators
	17.1.5. Subscribing to the Operators
	17.1.6. Configuring logging locally and forwarding
	17.1.7. Configuring the Performance Addon Operator
	17.1.8. Configuring Precision Time Protocol (PTP)
	17.1.9. Disabling Network Time Protocol (NTP)
	17.1.10. Configuring single root I/O virtualization (SR-IOV)
	17.1.11. Disabling the console Operator

	17.2. APPLYING THE DISTRIBUTED UNIT (DU) CONFIGURATION TO A SINGLE-NODE OPENSHIFT CLUSTER
	17.2.1. Applying the extra installation manifests
	17.2.2. Applying the post-install configuration custom resources (CRs)

	CHAPTER 18. WORKLOAD PARTITIONING ON SINGLE-NODE OPENSHIFT
	18.1. ENABLING WORKLOAD PARTITIONING

	CHAPTER 19. DEPLOYING DISTRIBUTED UNITS AT SCALE IN A DISCONNECTED ENVIRONMENT
	19.1. PROVISIONING EDGE SITES AT SCALE
	19.2. THE GITOPS APPROACH
	19.3. ABOUT ZTP AND DISTRIBUTED UNITS ON SINGLE NODES
	19.4. ZERO TOUCH PROVISIONING BUILDING BLOCKS
	19.5. SINGLE-NODE CLUSTERS
	19.6. SITE PLANNING CONSIDERATIONS FOR DISTRIBUTED UNIT DEPLOYMENTS
	19.7. LOW LATENCY FOR DISTRIBUTED UNITS (DUS)
	19.8. CONFIGURING BIOS FOR DISTRIBUTED UNIT BARE-METAL HOSTS
	19.9. PREPARING THE DISCONNECTED ENVIRONMENT
	19.9.1. Disconnected environment prerequisites
	19.9.2. About the mirror registry
	19.9.3. Preparing your mirror host
	19.9.3.1. Installing the OpenShift CLI by downloading the binary
	19.9.3.2. Configuring credentials that allow images to be mirrored
	19.9.3.3. Mirroring the OpenShift Container Platform image repository
	19.9.3.4. Adding RHCOS ISO and RootFS images to a disconnected mirror host

	19.10. INSTALLING RED HAT ADVANCED CLUSTER MANAGEMENT IN A DISCONNECTED ENVIRONMENT
	19.11. ENABLING ASSISTED INSTALLER SERVICE ON BARE METAL
	19.12. ZTP CUSTOM RESOURCES
	19.13. CREATING CUSTOM RESOURCES TO INSTALL A SINGLE MANAGED CLUSTER
	19.13.1. Configuring static IP addresses for managed clusters
	19.13.2. Automated Discovery image ISO process for provisioning clusters
	19.13.3. Checking the managed cluster status
	19.13.4. Configuring a managed cluster for a disconnected environment
	19.13.5. Configuring IPv6 addresses for a disconnected environment
	19.13.6. Troubleshooting the managed cluster

	19.14. APPLYING THE RAN POLICIES FOR MONITORING CLUSTER ACTIVITY
	19.14.1. Applying source custom resource policies
	19.14.2. The PolicyGenTemplate
	19.14.3. Considerations when creating custom resource policies
	19.14.4. Generating RAN policies

	19.15. CLUSTER PROVISIONING
	19.15.1. Machine Config Operator
	19.15.2. Performance Addon Operator
	19.15.3. SR-IOV Operator
	19.15.4. Precision Time Protocol Operator

	19.16. CREATING ZTP CUSTOM RESOURCES FOR MULTIPLE MANAGED CLUSTERS
	19.16.1. Prerequisites for deploying the ZTP pipeline
	19.16.2. Installing the GitOps ZTP pipeline
	19.16.2.1. Preparing the ZTP Git repository
	19.16.2.2. Preparing the hub cluster for ZTP

	19.16.3. Creating the site secrets
	19.16.4. Creating the SiteConfig custom resources
	19.16.5. Creating the PolicyGenTemplates
	19.16.6. Checking the installation status
	19.16.7. Site cleanup
	19.16.7.1. Removing the ArgoCD pipeline

	19.17. TROUBLESHOOTING GITOPS ZTP
	19.17.1. Validating the generation of installation CRs
	19.17.2. Validating the generation of policy CRs

