
OpenShift Container Platform 4.7

Networking

Configuring and managing cluster networking

Last Updated: 2022-10-26

OpenShift Container Platform 4.7 Networking

Configuring and managing cluster networking

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and managing your OpenShift Container
Platform cluster network, including DNS, ingress, and the Pod network.

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. UNDERSTANDING NETWORKING
1.1. OPENSHIFT CONTAINER PLATFORM DNS
1.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

1.2.1. Comparing routes and Ingress

CHAPTER 2. ACCESSING HOSTS
2.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN INSTALLER-PROVISIONED INFRASTRUCTURE
CLUSTER

CHAPTER 3. NETWORKING OPERATORS OVERVIEW
3.1. CLUSTER NETWORK OPERATOR
3.2. DNS OPERATOR
3.3. INGRESS OPERATOR

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM
4.1. CLUSTER NETWORK OPERATOR
4.2. VIEWING THE CLUSTER NETWORK CONFIGURATION
4.3. VIEWING CLUSTER NETWORK OPERATOR STATUS
4.4. VIEWING CLUSTER NETWORK OPERATOR LOGS
4.5. CLUSTER NETWORK OPERATOR CONFIGURATION

4.5.1. Cluster Network Operator configuration object
defaultNetwork object configuration

Configuration for the OpenShift SDN CNI cluster network provider
Configuration for the OVN-Kubernetes CNI cluster network provider

kubeProxyConfig object configuration
4.5.2. Cluster Network Operator example configuration

4.6. ADDITIONAL RESOURCES

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
5.1. DNS OPERATOR
5.2. VIEW THE DEFAULT DNS
5.3. USING DNS FORWARDING
5.4. DNS OPERATOR STATUS
5.5. DNS OPERATOR LOGS

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
6.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
6.2. THE INGRESS CONFIGURATION ASSET
6.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS

6.3.1. Ingress Controller TLS security profiles
6.3.1.1. Understanding TLS security profiles
6.3.1.2. Configuring the TLS security profile for the Ingress Controller

6.3.2. Ingress controller endpoint publishing strategy
6.4. VIEW THE DEFAULT INGRESS CONTROLLER
6.5. VIEW INGRESS OPERATOR STATUS
6.6. VIEW INGRESS CONTROLLER LOGS
6.7. VIEW INGRESS CONTROLLER STATUS
6.8. CONFIGURING THE INGRESS CONTROLLER

6.8.1. Setting a custom default certificate
6.8.2. Removing a custom default certificate
6.8.3. Scaling an Ingress Controller
6.8.4. Configuring Ingress access logging
6.8.5. Ingress Controller sharding

11
11
11

12

13

13

14
14
14
14

15
15
15
16
16
16
17
18
18
19

20
20
21

22
22
22
23
25
25

26
26
26
26
32
32
34
36
38
38
38
38
39
39
40
41

42
44

Table of Contents

1

. .

. .

. .

. .

. .

6.8.5.1. Configuring Ingress Controller sharding by using route labels
6.8.5.2. Configuring Ingress Controller sharding by using namespace labels

6.8.6. Configuring an Ingress Controller to use an internal load balancer
6.8.7. Configuring the default Ingress Controller for your cluster to be internal
6.8.8. Configuring the route admission policy
6.8.9. Using wildcard routes
6.8.10. Using X-Forwarded headers

Example use cases
6.8.11. Enabling HTTP/2 Ingress connectivity
6.8.12. Specifying an alternative cluster domain using the appsDomain option

6.9. ADDITIONAL RESOURCES

CHAPTER 7. VERIFYING CONNECTIVITY TO AN ENDPOINT
7.1. CONNECTION HEALTH CHECKS PERFORMED
7.2. IMPLEMENTATION OF CONNECTION HEALTH CHECKS
7.3. PODNETWORKCONNECTIVITYCHECK OBJECT FIELDS

Connection log fields
7.4. VERIFYING NETWORK CONNECTIVITY FOR AN ENDPOINT

CHAPTER 8. CONFIGURING THE NODE PORT SERVICE RANGE
8.1. PREREQUISITES
8.2. EXPANDING THE NODE PORT RANGE
8.3. ADDITIONAL RESOURCES

CHAPTER 9. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL
CLUSTER

9.1. SUPPORT FOR STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON OPENSHIFT CONTAINER
PLATFORM

9.1.1. Example configurations using SCTP protocol
9.2. ENABLING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP)
9.3. VERIFYING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) IS ENABLED

CHAPTER 10. CONFIGURING PTP HARDWARE
10.1. ABOUT PTP HARDWARE
10.2. AUTOMATED DISCOVERY OF PTP NETWORK DEVICES
10.3. INSTALLING THE PTP OPERATOR

10.3.1. CLI: Installing the PTP Operator
10.3.2. Web console: Installing the PTP Operator

10.4. CONFIGURING LINUXPTP SERVICES

CHAPTER 11. NETWORK POLICY
11.1. ABOUT NETWORK POLICY

11.1.1. About network policy
11.1.2. Optimizations for network policy
11.1.3. Next steps
11.1.4. Additional resources

11.2. CREATING A NETWORK POLICY
11.2.1. Creating a network policy
11.2.2. Example NetworkPolicy object

11.3. VIEWING A NETWORK POLICY
11.3.1. Viewing network policies
11.3.2. Example NetworkPolicy object

11.4. EDITING A NETWORK POLICY
11.4.1. Editing a network policy

44
45
46
48
49
50
50
51
51
52
54

55
55
55
55
57
58

63
63
63
64

65

65
65
66
67

70
70
70
71
71
72
73

76
76
76
78
79
79
79
79
80
81
81

82
83
83

OpenShift Container Platform 4.7 Networking

2

. .

. .

11.4.2. Example NetworkPolicy object
11.4.3. Additional resources

11.5. DELETING A NETWORK POLICY
11.5.1. Deleting a network policy

11.6. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS
11.6.1. Modifying the template for new projects
11.6.2. Adding network policies to the new project template

11.7. CONFIGURING MULTITENANT ISOLATION WITH NETWORK POLICY
11.7.1. Configuring multitenant isolation by using network policy
11.7.2. Next steps
11.7.3. Additional resources

CHAPTER 12. MULTIPLE NETWORKS
12.1. UNDERSTANDING MULTIPLE NETWORKS

12.1.1. Usage scenarios for an additional network
12.1.2. Additional networks in OpenShift Container Platform

12.2. CONFIGURING AN ADDITIONAL NETWORK
12.2.1. Approaches to managing an additional network
12.2.2. Configuration for an additional network attachment

12.2.2.1. Configuration of an additional network through the Cluster Network Operator
12.2.2.2. Configuration of an additional network from a YAML manifest

12.2.3. Configurations for additional network types
12.2.3.1. Configuration for a bridge additional network

12.2.3.1.1. bridge configuration example
12.2.3.2. Configuration for a host device additional network

12.2.3.2.1. host-device configuration example
12.2.3.3. Configuration for an IPVLAN additional network

12.2.3.3.1. ipvlan configuration example
12.2.3.4. Configuration for a MACVLAN additional network

12.2.3.4.1. macvlan configuration example
12.2.4. Configuration of IP address assignment for an additional network

12.2.4.1. Static IP address assignment configuration
12.2.4.2. Dynamic IP address (DHCP) assignment configuration
12.2.4.3. Dynamic IP address assignment configuration with Whereabouts

12.2.5. Creating an additional network attachment with the Cluster Network Operator
12.2.6. Creating an additional network attachment by applying a YAML manifest

12.3. ABOUT VIRTUAL ROUTING AND FORWARDING
12.3.1. About virtual routing and forwarding

12.3.1.1. Benefits of secondary networks for pods for telecommunications operators
12.4. ATTACHING A POD TO AN ADDITIONAL NETWORK

12.4.1. Adding a pod to an additional network
12.4.1.1. Specifying pod-specific addressing and routing options

12.5. REMOVING A POD FROM AN ADDITIONAL NETWORK
12.5.1. Removing a pod from an additional network

12.6. EDITING AN ADDITIONAL NETWORK
12.6.1. Modifying an additional network attachment definition

12.7. REMOVING AN ADDITIONAL NETWORK
12.7.1. Removing an additional network attachment definition

12.8. ASSIGNING A SECONDARY NETWORK TO A VRF
12.8.1. Assigning a secondary network to a VRF

12.8.1.1. Creating an additional network attachment with the CNI VRF plug-in

CHAPTER 13. HARDWARE NETWORKS

84
85
85
85
86
86
87
88
89
91
91

92
92
92
92
93
93
93
94
94
95
95
96
96
97
97
98
98
99
99
99
101
102
102
104
104
104
105
105
105
107
110
110
111
111

112
112
112
113
113

116

Table of Contents

3

13.1. ABOUT SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) HARDWARE NETWORKS
13.1.1. Components that manage SR-IOV network devices

13.1.1.1. Supported platforms
13.1.1.2. Supported devices
13.1.1.3. Automated discovery of SR-IOV network devices

13.1.1.3.1. Example SriovNetworkNodeState object
13.1.1.4. Example use of a virtual function in a pod
13.1.1.5. DPDK library for use with container applications

13.1.2. Next steps
13.2. INSTALLING THE SR-IOV NETWORK OPERATOR

13.2.1. Installing SR-IOV Network Operator
13.2.1.1. CLI: Installing the SR-IOV Network Operator
13.2.1.2. Web console: Installing the SR-IOV Network Operator

13.2.2. Next steps
13.3. CONFIGURING THE SR-IOV NETWORK OPERATOR

13.3.1. Configuring the SR-IOV Network Operator
13.3.1.1. About the Network Resources Injector
13.3.1.2. About the SR-IOV Operator admission controller webhook
13.3.1.3. About custom node selectors
13.3.1.4. Disabling or enabling the Network Resources Injector
13.3.1.5. Disabling or enabling the SR-IOV Operator admission controller webhook
13.3.1.6. Configuring a custom NodeSelector for the SR-IOV Network Config daemon

13.3.2. Next steps
13.4. CONFIGURING AN SR-IOV NETWORK DEVICE

13.4.1. SR-IOV network node configuration object
13.4.1.1. SR-IOV network node configuration examples
13.4.1.2. Virtual function (VF) partitioning for SR-IOV devices

13.4.2. Configuring SR-IOV network devices
13.4.3. Troubleshooting SR-IOV configuration
13.4.4. Assigning an SR-IOV network to a VRF

13.4.4.1. Creating an additional SR-IOV network attachment with the CNI VRF plug-in
13.4.5. Next steps

13.5. CONFIGURING AN SR-IOV ETHERNET NETWORK ATTACHMENT
13.5.1. Ethernet device configuration object

13.5.1.1. Configuration of IP address assignment for an additional network
13.5.1.1.1. Static IP address assignment configuration
13.5.1.1.2. Dynamic IP address (DHCP) assignment configuration
13.5.1.1.3. Dynamic IP address assignment configuration with Whereabouts

13.5.2. Configuring SR-IOV additional network
13.5.3. Next steps
13.5.4. Additional resources

13.6. CONFIGURING AN SR-IOV INFINIBAND NETWORK ATTACHMENT
13.6.1. InfiniBand device configuration object

13.6.1.1. Configuration of IP address assignment for an additional network
13.6.1.1.1. Static IP address assignment configuration
13.6.1.1.2. Dynamic IP address (DHCP) assignment configuration
13.6.1.1.3. Dynamic IP address assignment configuration with Whereabouts

13.6.2. Configuring SR-IOV additional network
13.6.3. Next steps
13.6.4. Additional resources

13.7. ADDING A POD TO AN SR-IOV ADDITIONAL NETWORK
13.7.1. Runtime configuration for a network attachment

13.7.1.1. Runtime configuration for an Ethernet-based SR-IOV attachment

116
116
117
117
117
118
119

120
121
121
121
121
122
123
124
124
124
125
125
125
126
126
127
127
127
128
129
131
132
132
132
135
135
135
136
136
138
139
139
140
140
141
141
141

142
143
144
145
146
146
146
146
146

OpenShift Container Platform 4.7 Networking

4

. .

13.7.1.2. Runtime configuration for an InfiniBand-based SR-IOV attachment
13.7.2. Adding a pod to an additional network
13.7.3. Creating a non-uniform memory access (NUMA) aligned SR-IOV pod
13.7.4. Additional resources

13.8. USING HIGH PERFORMANCE MULTICAST
13.8.1. High performance multicast
13.8.2. Configuring an SR-IOV interface for multicast

13.9. USING VIRTUAL FUNCTIONS (VFS) WITH DPDK AND RDMA MODES
13.9.1. Using a virtual function in DPDK mode with an Intel NIC
13.9.2. Using a virtual function in DPDK mode with a Mellanox NIC
13.9.3. Using a virtual function in RDMA mode with a Mellanox NIC

13.10. UNINSTALLING THE SR-IOV NETWORK OPERATOR
13.10.1. Uninstalling the SR-IOV Network Operator

CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER
14.1. ABOUT THE OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

14.1.1. OpenShift SDN network isolation modes
14.1.2. Supported default CNI network provider feature matrix

14.2. CONFIGURING EGRESS IPS FOR A PROJECT
14.2.1. Egress IP address assignment for project egress traffic

14.2.1.1. Considerations when using automatically assigned egress IP addresses
14.2.1.2. Considerations when using manually assigned egress IP addresses

14.2.2. Configuring automatically assigned egress IP addresses for a namespace
14.2.3. Configuring manually assigned egress IP addresses for a namespace

14.3. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
14.3.1. How an egress firewall works in a project

14.3.1.1. Limitations of an egress firewall
14.3.1.2. Matching order for egress firewall policy rules
14.3.1.3. How Domain Name Server (DNS) resolution works

14.3.2. EgressNetworkPolicy custom resource (CR) object
14.3.2.1. EgressNetworkPolicy rules
14.3.2.2. Example EgressNetworkPolicy CR objects

14.3.3. Creating an egress firewall policy object
14.4. EDITING AN EGRESS FIREWALL FOR A PROJECT

14.4.1. Viewing an EgressNetworkPolicy object
14.5. EDITING AN EGRESS FIREWALL FOR A PROJECT

14.5.1. Editing an EgressNetworkPolicy object
14.6. REMOVING AN EGRESS FIREWALL FROM A PROJECT

14.6.1. Removing an EgressNetworkPolicy object
14.7. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD

14.7.1. About an egress router pod
14.7.1.1. Egress router modes
14.7.1.2. Egress router pod implementation
14.7.1.3. Deployment considerations
14.7.1.4. Failover configuration

14.7.2. Additional resources
14.8. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

14.8.1. Egress router pod specification for redirect mode
14.8.2. Egress destination configuration format
14.8.3. Deploying an egress router pod in redirect mode
14.8.4. Additional resources

14.9. DEPLOYING AN EGRESS ROUTER POD IN HTTP PROXY MODE
14.9.1. Egress router pod specification for HTTP mode

147
148
150
152
152
152
152
154
154
157
160
162
163

165
165
165
165
166
166
167
167
168
169
170
170
172
172
172
173
173
174
174
175
175
175
176
176
176
177
177
177
178
178
178
179
179
179
181
181

182
182
182

Table of Contents

5

. .

14.9.2. Egress destination configuration format
14.9.3. Deploying an egress router pod in HTTP proxy mode
14.9.4. Additional resources

14.10. DEPLOYING AN EGRESS ROUTER POD IN DNS PROXY MODE
14.10.1. Egress router pod specification for DNS mode
14.10.2. Egress destination configuration format
14.10.3. Deploying an egress router pod in DNS proxy mode
14.10.4. Additional resources

14.11. CONFIGURING AN EGRESS ROUTER POD DESTINATION LIST FROM A CONFIG MAP
14.11.1. Configuring an egress router destination mappings with a config map
14.11.2. Additional resources

14.12. ENABLING MULTICAST FOR A PROJECT
14.12.1. About multicast
14.12.2. Enabling multicast between pods

14.13. DISABLING MULTICAST FOR A PROJECT
14.13.1. Disabling multicast between pods

14.14. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN
14.14.1. Prerequisites
14.14.2. Joining projects
14.14.3. Isolating a project
14.14.4. Disabling network isolation for a project

14.15. CONFIGURING KUBE-PROXY
14.15.1. About iptables rules synchronization
14.15.2. kube-proxy configuration parameters
14.15.3. Modifying the kube-proxy configuration

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER
15.1. ABOUT THE OVN-KUBERNETES DEFAULT CONTAINER NETWORK INTERFACE (CNI) NETWORK
PROVIDER

15.1.1. OVN-Kubernetes features
15.1.2. Supported default CNI network provider feature matrix
15.1.3. OVN-Kubernetes limitations

15.2. MIGRATING FROM THE OPENSHIFT SDN CLUSTER NETWORK PROVIDER
15.2.1. Migration to the OVN-Kubernetes network provider

15.2.1.1. Considerations for migrating to the OVN-Kubernetes network provider
Namespace isolation
Egress IP addresses
Egress network policies
Egress router pods
Multicast
Network policies

15.2.1.2. How the migration process works
15.2.2. Migrating to the OVN-Kubernetes default CNI network provider
15.2.3. Additional resources

15.3. ROLLING BACK TO THE OPENSHIFT SDN NETWORK PROVIDER
15.3.1. Rolling back the default CNI network provider to OpenShift SDN

15.4. IPSEC ENCRYPTION CONFIGURATION
15.4.1. Types of network traffic flows encrypted by IPsec
15.4.2. Encryption protocol and tunnel mode for IPsec
15.4.3. Security certificate generation and rotation

15.5. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
15.5.1. How an egress firewall works in a project

15.5.1.1. Limitations of an egress firewall

183
184
185
185
185
186
187
188
188
188
189
189
189
190
192
192
192
192
192
193
193
194
194
194
194

197

197
197
197
198
198
198
199
199
199

200
200
200
200
200
201

206
206
206
210
210
211
211
212
212
213

OpenShift Container Platform 4.7 Networking

6

. .

15.5.1.2. Matching order for egress firewall policy rules
15.5.1.3. How Domain Name Server (DNS) resolution works

15.5.2. EgressFirewall custom resource (CR) object
15.5.2.1. EgressFirewall rules
15.5.2.2. Example EgressFirewall CR objects

15.5.3. Creating an egress firewall policy object
15.6. VIEWING AN EGRESS FIREWALL FOR A PROJECT

15.6.1. Viewing an EgressFirewall object
15.7. EDITING AN EGRESS FIREWALL FOR A PROJECT

15.7.1. Editing an EgressFirewall object
15.8. REMOVING AN EGRESS FIREWALL FROM A PROJECT

15.8.1. Removing an EgressFirewall object
15.9. CONFIGURING AN EGRESS IP ADDRESS

15.9.1. Egress IP address architectural design and implementation
15.9.1.1. Platform support
15.9.1.2. Assignment of egress IPs to pods
15.9.1.3. Assignment of egress IPs to nodes
15.9.1.4. Architectural diagram of an egress IP address configuration

15.9.2. EgressIP object
15.9.3. Labeling a node to host egress IP addresses
15.9.4. Next steps
15.9.5. Additional resources

15.10. ASSIGNING AN EGRESS IP ADDRESS
15.10.1. Assigning an egress IP address to a namespace
15.10.2. Additional resources

15.11. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD
15.11.1. About an egress router pod

15.11.1.1. Egress router modes
15.11.1.2. Egress router pod implementation
15.11.1.3. Deployment considerations
15.11.1.4. Failover configuration

15.11.2. Additional resources
15.12. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

15.12.1. Network attachment definition for an egress router in redirect mode
15.12.2. Egress router pod specification for redirect mode
15.12.3. Deploying an egress router pod in redirect mode

15.13. ENABLING MULTICAST FOR A PROJECT
15.13.1. About multicast
15.13.2. Enabling multicast between pods

15.14. DISABLING MULTICAST FOR A PROJECT
15.14.1. Disabling multicast between pods

15.15. CONFIGURING HYBRID NETWORKING
15.15.1. Configuring hybrid networking with OVN-Kubernetes
15.15.2. Additional resources

CHAPTER 16. CONFIGURING ROUTES
16.1. ROUTE CONFIGURATION

16.1.1. Creating an HTTP-based route
16.1.2. Configuring route timeouts
16.1.3. Enabling HTTP strict transport security
16.1.4. Troubleshooting throughput issues
16.1.5. Using cookies to keep route statefulness

16.1.5.1. Annotating a route with a cookie

214
214
214
215
215
216
217
217
218
218
218
218
219
219
219

220
220
221
222
224
224
224
224
224
225
225
225
226
226
226
227
228
228
228
229
229
231
231

232
233
233
234
234
236

237
237
237
238
238
239
240
240

Table of Contents

7

. .

. .

16.1.6. Path-based routes
16.1.7. Route-specific annotations
16.1.8. Configuring the route admission policy
16.1.9. Creating a route through an Ingress object

16.2. SECURED ROUTES
16.2.1. Creating a re-encrypt route with a custom certificate
16.2.2. Creating an edge route with a custom certificate
16.2.3. Creating a passthrough route

CHAPTER 17. CONFIGURING INGRESS CLUSTER TRAFFIC
17.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW
17.2. CONFIGURING EXTERNALIPS FOR SERVICES

17.2.1. Prerequisites
17.2.2. About ExternalIP

17.2.2.1. Configuration for ExternalIP
17.2.2.2. Restrictions on the assignment of an external IP address
17.2.2.3. Example policy objects

17.2.3. ExternalIP address block configuration
Example external IP configurations

17.2.4. Configure external IP address blocks for your cluster
17.2.5. Next steps

17.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS CONTROLLER
17.3.1. Using Ingress Controllers and routes
17.3.2. Prerequisites
17.3.3. Creating a project and service
17.3.4. Exposing the service by creating a route
17.3.5. Configuring Ingress Controller sharding by using route labels
17.3.6. Configuring Ingress Controller sharding by using namespace labels
17.3.7. Additional resources

17.4. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD BALANCER
17.4.1. Using a load balancer to get traffic into the cluster
17.4.2. Prerequisites
17.4.3. Creating a project and service
17.4.4. Exposing the service by creating a route
17.4.5. Creating a load balancer service

17.5. CONFIGURING INGRESS CLUSTER TRAFFIC ON AWS USING A NETWORK LOAD BALANCER
17.5.1. Replacing Ingress Controller Classic Load Balancer with Network Load Balancer
17.5.2. Configuring an Ingress Controller Network Load Balancer on an existing AWS cluster
17.5.3. Configuring an Ingress Controller Network Load Balancer on a new AWS cluster
17.5.4. Additional resources

17.6. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE EXTERNAL IP
17.6.1. Prerequisites
17.6.2. Attaching an ExternalIP to a service
17.6.3. Additional resources

17.7. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT
17.7.1. Using a NodePort to get traffic into the cluster
17.7.2. Prerequisites
17.7.3. Creating a project and service
17.7.4. Exposing the service by creating a route
17.7.5. Additional resources

CHAPTER 18. KUBERNETES NMSTATE
18.1. ABOUT THE KUBERNETES NMSTATE OPERATOR

241
242
248
249
251
251

253
254

256
256
256
256
256
257
258
259
260
261
261
262
262
263
263
263
264
265
266
267
267
267
267
268
268
269
271
271

272
273
274
274
275
275
276
276
276
276
277
277
278

279
279

OpenShift Container Platform 4.7 Networking

8

. .

. .

. .

. .

18.1.1. Installing the Kubernetes NMState Operator
18.2. OBSERVING NODE NETWORK STATE

18.2.1. About nmstate
18.2.2. Viewing the network state of a node

18.3. UPDATING NODE NETWORK CONFIGURATION
18.3.1. About nmstate
18.3.2. Creating an interface on nodes

Additional resources
18.3.3. Confirming node network policy updates on nodes
18.3.4. Removing an interface from nodes
18.3.5. Example policy configurations for different interfaces

18.3.5.1. Example: Linux bridge interface node network configuration policy
18.3.5.2. Example: VLAN interface node network configuration policy
18.3.5.3. Example: Bond interface node network configuration policy
18.3.5.4. Example: Ethernet interface node network configuration policy
18.3.5.5. Example: Multiple interfaces in the same node network configuration policy

18.3.6. Examples: IP management
18.3.6.1. Static
18.3.6.2. No IP address
18.3.6.3. Dynamic host configuration
18.3.6.4. DNS
18.3.6.5. Static routing

18.4. TROUBLESHOOTING NODE NETWORK CONFIGURATION
18.4.1. Troubleshooting an incorrect node network configuration policy configuration

CHAPTER 19. CONFIGURING THE CLUSTER-WIDE PROXY
19.1. PREREQUISITES
19.2. ENABLING THE CLUSTER-WIDE PROXY
19.3. REMOVING THE CLUSTER-WIDE PROXY

Additional resources

CHAPTER 20. CONFIGURING A CUSTOM PKI
20.1. CONFIGURING THE CLUSTER-WIDE PROXY DURING INSTALLATION
20.2. ENABLING THE CLUSTER-WIDE PROXY
20.3. CERTIFICATE INJECTION USING OPERATORS

CHAPTER 21. LOAD BALANCING ON RHOSP
21.1. USING THE OCTAVIA OVN LOAD BALANCER PROVIDER DRIVER WITH KURYR SDN
21.2. SCALING CLUSTERS FOR APPLICATION TRAFFIC BY USING OCTAVIA

21.2.1. Scaling clusters by using Octavia
21.2.2. Scaling clusters that use Kuryr by using Octavia

21.3. SCALING FOR INGRESS TRAFFIC BY USING RHOSP OCTAVIA
21.4. CONFIGURING AN EXTERNAL LOAD BALANCER

CHAPTER 22. ASSOCIATING SECONDARY INTERFACES METRICS TO NETWORK ATTACHMENTS
22.1. ASSOCIATING SECONDARY INTERFACES METRICS TO NETWORK ATTACHMENTS

22.1.1. Network Metrics Daemon
22.1.2. Metrics with network name

279
280
280
280
281
281
282
283
283
284
285
285
286
287
288
289
290
290
290
291
291
291
292
292

297
297
297
299
300

301
301
303
305

307
307
308
308
310
310
312

315
315
315
316

Table of Contents

9

OpenShift Container Platform 4.7 Networking

10

CHAPTER 1. UNDERSTANDING NETWORKING
Cluster Administrators have several options for exposing applications that run inside a cluster to
external traffic and securing network connections:

Service types, such as node ports or load balancers

API resources, such as Ingress and Route

By default, Kubernetes allocates each pod an internal IP address for applications running within the pod.
Pods and their containers can network, but clients outside the cluster do not have networking access.
When you expose your application to external traffic, giving each pod its own IP address means that
pods can be treated like physical hosts or virtual machines in terms of port allocation, networking,
naming, service discovery, load balancing, application configuration, and migration.

NOTE

Some cloud platforms offer metadata APIs that listen on the 169.254.169.254 IP address,
a link-local IP address in the IPv4 169.254.0.0/16 CIDR block.

This CIDR block is not reachable from the pod network. Pods that need access to these
IP addresses must be given host network access by setting the spec.hostNetwork field
in the pod spec to true.

If you allow a pod host network access, you grant the pod privileged access to the
underlying network infrastructure.

1.1. OPENSHIFT CONTAINER PLATFORM DNS

If you are running multiple services, such as front-end and back-end services for use with multiple pods,
environment variables are created for user names, service IPs, and more so the front-end pods can
communicate with the back-end services. If the service is deleted and recreated, a new IP address can
be assigned to the service, and requires the front-end pods to be recreated to pick up the updated
values for the service IP environment variable. Additionally, the back-end service must be created
before any of the front-end pods to ensure that the service IP is generated properly, and that it can be
provided to the front-end pods as an environment variable.

For this reason, OpenShift Container Platform has a built-in DNS so that the services can be reached by
the service DNS as well as the service IP/port.

1.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated their own IP addresses. The IP addresses are accessible to other pods and services
running nearby but are not accessible to outside clients. The Ingress Operator implements the
IngressController API and is the component responsible for enabling external access to OpenShift
Container Platform cluster services.

The Ingress Operator makes it possible for external clients to access your service by deploying and
managing one or more HAProxy-based Ingress Controllers to handle routing. You can use the Ingress
Operator to route traffic by specifying OpenShift Container Platform Route and Kubernetes Ingress
resources. Configurations within the Ingress Controller, such as the ability to define
endpointPublishingStrategy type and internal load balancing, provide ways to publish Ingress
Controller endpoints.

CHAPTER 1. UNDERSTANDING NETWORKING

11

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

1.2.1. Comparing routes and Ingress

The Kubernetes Ingress resource in OpenShift Container Platform implements the Ingress Controller
with a shared router service that runs as a pod inside the cluster. The most common way to manage
Ingress traffic is with the Ingress Controller. You can scale and replicate this pod like any other regular
pod. This router service is based on HAProxy, which is an open source load balancer solution.

The OpenShift Container Platform route provides Ingress traffic to services in the cluster. Routes
provide advanced features that might not be supported by standard Kubernetes Ingress Controllers,
such as TLS re-encryption, TLS passthrough, and split traffic for blue-green deployments.

Ingress traffic accesses services in the cluster through a route. Routes and Ingress are the main
resources for handling Ingress traffic. Ingress provides features similar to a route, such as accepting
external requests and delegating them based on the route. However, with Ingress you can only allow
certain types of connections: HTTP/2, HTTPS and server name identification (SNI), and TLS with
certificate. In OpenShift Container Platform, routes are generated to meet the conditions specified by
the Ingress resource.

OpenShift Container Platform 4.7 Networking

12

http://www.haproxy.org/

CHAPTER 2. ACCESSING HOSTS
Learn how to create a bastion host to access OpenShift Container Platform instances and access the
control plane nodes (also known as the master nodes) with secure shell (SSH) access.

2.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN
INSTALLER-PROVISIONED INFRASTRUCTURE CLUSTER

The OpenShift Container Platform installer does not create any public IP addresses for any of the
Amazon Elastic Compute Cloud (Amazon EC2) instances that it provisions for your OpenShift
Container Platform cluster. To be able to SSH to your OpenShift Container Platform hosts, you must
follow this procedure.

Procedure

1. Create a security group that allows SSH access into the virtual private cloud (VPC) created by
the openshift-install command.

2. Create an Amazon EC2 instance on one of the public subnets the installer created.

3. Associate a public IP address with the Amazon EC2 instance that you created.
Unlike with the OpenShift Container Platform installation, you should associate the Amazon EC2
instance you created with an SSH keypair. It does not matter what operating system you choose
for this instance, as it will simply serve as an SSH bastion to bridge the internet into your
OpenShift Container Platform cluster’s VPC. The Amazon Machine Image (AMI) you use does
matter. With Red Hat Enterprise Linux CoreOS (RHCOS), for example, you can provide keys via
Ignition, like the installer does.

4. Once you provisioned your Amazon EC2 instance and can SSH into it, you must add the SSH
key that you associated with your OpenShift Container Platform installation. This key can be
different from the key for the bastion instance, but does not have to be.

NOTE

Direct SSH access is only recommended for disaster recovery. When the
Kubernetes API is responsive, run privileged pods instead.

5. Run oc get nodes, inspect the output, and choose one of the nodes that is a master. The
hostname looks similar to ip-10-0-1-163.ec2.internal.

6. From the bastion SSH host you manually deployed into Amazon EC2, SSH into that control
plane host (also known as the master host). Ensure that you use the same SSH key you
specified during the installation:

$ ssh -i <ssh-key-path> core@<master-hostname>

CHAPTER 2. ACCESSING HOSTS

13

CHAPTER 3. NETWORKING OPERATORS OVERVIEW
OpenShift Container Platform supports multiple types of networking Operators. You can manage the
cluster networking using these networking Operators.

3.1. CLUSTER NETWORK OPERATOR

The Cluster Network Operator (CNO) deploys and manages the cluster network components in an
OpenShift Container Platform cluster. This includes deployment of the Container Network Interface
(CNI) default network provider plug-in selected for the cluster during installation. For more information,
see Cluster Network Operator in OpenShift Container Platform .

3.2. DNS OPERATOR

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods. This
enables DNS-based Kubernetes Service discovery in OpenShift Container Platform. For more
information, see DNS Operator in OpenShift Container Platform .

3.3. INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated IP addresses. The IP addresses are accessible to other pods and services running
nearby but are not accessible to external clients. The Ingress Operator implements the Ingress
Controller API and is responsible for enabling external access to OpenShift Container Platform cluster
services. For more information, see Ingress Operator in OpenShift Container Platform .

OpenShift Container Platform 4.7 Networking

14

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#cluster-network-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#dns-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-ingress

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT
CONTAINER PLATFORM

The Cluster Network Operator (CNO) deploys and manages the cluster network components on an
OpenShift Container Platform cluster, including the Container Network Interface (CNI) default network
provider plug-in selected for the cluster during installation.

4.1. CLUSTER NETWORK OPERATOR

The Cluster Network Operator implements the network API from the operator.openshift.io API group.
The Operator deploys the OpenShift SDN default Container Network Interface (CNI) network provider
plug-in, or the default network provider plug-in that you selected during cluster installation, by using a
daemon set.

Procedure

The Cluster Network Operator is deployed during installation as a Kubernetes Deployment.

1. Run the following command to view the Deployment status:

Example output

2. Run the following command to view the state of the Cluster Network Operator:

Example output

The following fields provide information about the status of the operator: AVAILABLE,
PROGRESSING, and DEGRADED. The AVAILABLE field is True when the Cluster Network
Operator reports an available status condition.

4.2. VIEWING THE CLUSTER NETWORK CONFIGURATION

Every new OpenShift Container Platform installation has a network.config object named cluster.

Procedure

Use the oc describe command to view the cluster network configuration:

Example output

$ oc get -n openshift-network-operator deployment/network-operator

NAME READY UP-TO-DATE AVAILABLE AGE
network-operator 1/1 1 1 56m

$ oc get clusteroperator/network

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
network 4.5.4 True False False 50m

$ oc describe network.config/cluster

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

15

1

2

The Spec field displays the configured state of the cluster network.

The Status field displays the current state of the cluster network configuration.

4.3. VIEWING CLUSTER NETWORK OPERATOR STATUS

You can inspect the status and view the details of the Cluster Network Operator using the oc describe
command.

Procedure

Run the following command to view the status of the Cluster Network Operator:

4.4. VIEWING CLUSTER NETWORK OPERATOR LOGS

You can view Cluster Network Operator logs by using the oc logs command.

Procedure

Run the following command to view the logs of the Cluster Network Operator:

4.5. CLUSTER NETWORK OPERATOR CONFIGURATION

Name: cluster
Namespace:
Labels: <none>
Annotations: <none>
API Version: config.openshift.io/v1
Kind: Network
Metadata:
 Self Link: /apis/config.openshift.io/v1/networks/cluster
Spec: 1
 Cluster Network:
 Cidr: 10.128.0.0/14
 Host Prefix: 23
 Network Type: OpenShiftSDN
 Service Network:
 172.30.0.0/16
Status: 2
 Cluster Network:
 Cidr: 10.128.0.0/14
 Host Prefix: 23
 Cluster Network MTU: 8951
 Network Type: OpenShiftSDN
 Service Network:
 172.30.0.0/16
Events: <none>

$ oc describe clusteroperators/network

$ oc logs --namespace=openshift-network-operator deployment/network-operator

OpenShift Container Platform 4.7 Networking

16

The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO)
configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the
fields for the Network API in the operator.openshift.io API group.

The CNO configuration inherits the following fields during cluster installation from the Network API in
the Network.config.openshift.io API group and these fields cannot be changed:

clusterNetwork

IP address pools from which pod IP addresses are allocated.

serviceNetwork

IP address pool for services.

defaultNetwork.type

Cluster network provider, such as OpenShift SDN or OVN-Kubernetes.

NOTE

After cluster installation, you cannot modify the fields listed in the previous section.

You can specify the cluster network provider configuration for your cluster by setting the fields for the
defaultNetwork object in the CNO object named cluster.

4.5.1. Cluster Network Operator configuration object

The fields for the Cluster Network Operator (CNO) are described in the following table:

Table 4.1. Cluster Network Operator configuration object

Field Type Description

metadata.name string The name of the CNO object. This name is always cluster.

spec.clusterNet
work

array A list specifying the blocks of IP addresses from which pod IP
addresses are allocated and the subnet prefix length assigned to
each individual node in the cluster. For example:

This value is ready-only and inherited from the
Network.config.openshift.io object named cluster during
cluster installation.

spec:
 clusterNetwork:
 - cidr: 10.128.0.0/19
 hostPrefix: 23
 - cidr: 10.128.32.0/19
 hostPrefix: 23

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

17

spec.serviceNet
work

array A block of IP addresses for services. The OpenShift SDN and
OVN-Kubernetes Container Network Interface (CNI) network
providers support only a single IP address block for the service
network. For example:

This value is ready-only and inherited from the
Network.config.openshift.io object named cluster during
cluster installation.

spec.defaultNet
work

object Configures the Container Network Interface (CNI) cluster
network provider for the cluster network.

spec.kubeProxy
Config

object The fields for this object specify the kube-proxy configuration. If
you are using the OVN-Kubernetes cluster network provider, the
kube-proxy configuration has no effect.

Field Type Description

defaultNetwork object configuration
The values for the defaultNetwork object are defined in the following table:

Table 4.2. defaultNetwork object

Field Type Description

type string Either OpenShiftSDN or OVNKubernetes. The
cluster network provider is selected during
installation. This value cannot be changed after
cluster installation.

NOTE

OpenShift Container Platform uses
the OpenShift SDN Container
Network Interface (CNI) cluster
network provider by default.

openshiftSDNConfig object This object is only valid for the OpenShift SDN
cluster network provider.

ovnKubernetesConfig object This object is only valid for the OVN-Kubernetes
cluster network provider.

Configuration for the OpenShift SDN CNI cluster network provider

spec:
 serviceNetwork:
 - 172.30.0.0/14

OpenShift Container Platform 4.7 Networking

18

The following table describes the configuration fields for the OpenShift SDN Container Network
Interface (CNI) cluster network provider.

Table 4.3. openshiftSDNConfig object

Field Type Description

mode string The network isolation mode for OpenShift SDN.

mtu integer The maximum transmission unit (MTU) for the VXLAN overlay
network. This value is normally configured automatically.

vxlanPort integer The port to use for all VXLAN packets. The default value is 4789.

NOTE

You can only change the configuration for your cluster network provider during cluster
installation.

Example OpenShift SDN configuration

Configuration for the OVN-Kubernetes CNI cluster network provider
The following table describes the configuration fields for the OVN-Kubernetes CNI cluster network
provider.

Table 4.4. ovnKubernetesConfig object

Field Type Description

mtu integer The maximum transmission unit (MTU) for the Geneve (Generic
Network Virtualization Encapsulation) overlay network. This
value is normally configured automatically.

genevePort integer The UDP port for the Geneve overlay network.

ipsecConfig object If the field is present, IPsec is enabled for the cluster.

NOTE

You can only change the configuration for your cluster network provider during cluster
installation.

Example OVN-Kubernetes configuration

defaultNetwork:
 type: OpenShiftSDN
 openshiftSDNConfig:
 mode: NetworkPolicy
 mtu: 1450
 vxlanPort: 4789

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

19

kubeProxyConfig object configuration
The values for the kubeProxyConfig object are defined in the following table:

Table 4.5. kubeProxyConfig object

Field Type Description

iptablesSyncPeriod string The refresh period for iptables rules. The default
value is 30s. Valid suffixes include s, m, and h and
are described in the Go time package
documentation.

NOTE

Because of performance
improvements introduced in
OpenShift Container Platform 4.3
and greater, adjusting the
iptablesSyncPeriod parameter is
no longer necessary.

proxyArguments.iptables-
min-sync-period

array The minimum duration before refreshing iptables
rules. This field ensures that the refresh does not
happen too frequently. Valid suffixes include s, m,
and h and are described in the Go time package.
The default value is:

4.5.2. Cluster Network Operator example configuration

A complete CNO configuration is specified in the following example:

Example Cluster Network Operator object

defaultNetwork:
 type: OVNKubernetes
 ovnKubernetesConfig:
 mtu: 1400
 genevePort: 6081
 ipsecConfig: {}

kubeProxyConfig:
 proxyArguments:
 iptables-min-sync-period:
 - 0s

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 clusterNetwork: 1
 - cidr: 10.128.0.0/14

OpenShift Container Platform 4.7 Networking

20

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

1 2 3 Configured only during cluster installation.

4.6. ADDITIONAL RESOURCES

Network API in the operator.openshift.io API group

 hostPrefix: 23
 serviceNetwork: 2
 - 172.30.0.0/16
 defaultNetwork: 3
 type: OpenShiftSDN
 openshiftSDNConfig:
 mode: NetworkPolicy
 mtu: 1450
 vxlanPort: 4789
 kubeProxyConfig:
 iptablesSyncPeriod: 30s
 proxyArguments:
 iptables-min-sync-period:
 - 0s

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/api_reference/#network-operator-openshift-io-v1

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods,
enabling DNS-based Kubernetes Service discovery in OpenShift.

5.1. DNS OPERATOR

The DNS Operator implements the dns API from the operator.openshift.io API group. The Operator
deploys CoreDNS using a daemon set, creates a service for the daemon set, and configures the kubelet
to instruct pods to use the CoreDNS service IP address for name resolution.

Procedure

The DNS Operator is deployed during installation with a Deployment object.

1. Use the oc get command to view the deployment status:

Example output

2. Use the oc get command to view the state of the DNS Operator:

Example output

AVAILABLE, PROGRESSING and DEGRADED provide information about the status of the
operator. AVAILABLE is True when at least 1 pod from the CoreDNS daemon set reports an
Available status condition.

5.2. VIEW THE DEFAULT DNS

Every new OpenShift Container Platform installation has a dns.operator named default.

Procedure

1. Use the oc describe command to view the default dns:

Example output

$ oc get -n openshift-dns-operator deployment/dns-operator

NAME READY UP-TO-DATE AVAILABLE AGE
dns-operator 1/1 1 1 23h

$ oc get clusteroperator/dns

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
dns 4.1.0-0.11 True False False 92m

$ oc describe dns.operator/default

Name: default

OpenShift Container Platform 4.7 Networking

22

1

2

The Cluster Domain field is the base DNS domain used to construct fully qualified pod and
service domain names.

The Cluster IP is the address pods query for name resolution. The IP is defined as the 10th
address in the service CIDR range.

2. To find the service CIDR of your cluster, use the oc get command:

Example output

5.3. USING DNS FORWARDING

You can use DNS forwarding to override the forwarding configuration identified in /etc/resolv.conf on a
per-zone basis by specifying which name server should be used for a given zone. If the forwarded zone is
the Ingress domain managed by OpenShift Container Platform, then the upstream name server must be
authorized for the domain.

Procedure

1. Modify the DNS Operator object named default:

This allows the Operator to create and update the ConfigMap named dns-default with
additional server configuration blocks based on Server. If none of the servers has a zone that
matches the query, then name resolution falls back to the name servers that are specified in
/etc/resolv.conf.

Sample DNS

Namespace:
Labels: <none>
Annotations: <none>
API Version: operator.openshift.io/v1
Kind: DNS
...
Status:
 Cluster Domain: cluster.local 1
 Cluster IP: 172.30.0.10 2
...

$ oc get networks.config/cluster -o jsonpath='{$.status.serviceNetwork}'

[172.30.0.0/16]

$ oc edit dns.operator/default

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
 name: default
spec:
 servers:
 - name: foo-server 1

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

23

1

2

3

name must comply with the rfc6335 service name syntax.

zones must conform to the definition of a subdomain in rfc1123. The cluster domain,
cluster.local, is an invalid subdomain for zones.

A maximum of 15 upstreams is allowed per forwardPlugin.

NOTE

If servers is undefined or invalid, the ConfigMap only contains the default server.

2. View the ConfigMap:

Sample DNS ConfigMap based on previous sample DNS

 zones: 2
 - example.com
 forwardPlugin:
 upstreams: 3
 - 1.1.1.1
 - 2.2.2.2:5353
 - name: bar-server
 zones:
 - bar.com
 - example.com
 forwardPlugin:
 upstreams:
 - 3.3.3.3
 - 4.4.4.4:5454

$ oc get configmap/dns-default -n openshift-dns -o yaml

apiVersion: v1
data:
 Corefile: |
 example.com:5353 {
 forward . 1.1.1.1 2.2.2.2:5353
 }
 bar.com:5353 example.com:5353 {
 forward . 3.3.3.3 4.4.4.4:5454 1
 }
 .:5353 {
 errors
 health
 kubernetes cluster.local in-addr.arpa ip6.arpa {
 pods insecure
 upstream
 fallthrough in-addr.arpa ip6.arpa
 }
 prometheus :9153
 forward . /etc/resolv.conf {
 policy sequential
 }

OpenShift Container Platform 4.7 Networking

24

1 Changes to the forwardPlugin triggers a rolling update of the CoreDNS daemon set.

Additional resources

For more information on DNS forwarding, see the CoreDNS forward documentation.

5.4. DNS OPERATOR STATUS

You can inspect the status and view the details of the DNS Operator using the oc describe command.

Procedure

View the status of the DNS Operator:

5.5. DNS OPERATOR LOGS

You can view DNS Operator logs by using the oc logs command.

Procedure

View the logs of the DNS Operator:

 cache 30
 reload
 }
kind: ConfigMap
metadata:
 labels:
 dns.operator.openshift.io/owning-dns: default
 name: dns-default
 namespace: openshift-dns

$ oc describe clusteroperators/dns

$ oc logs -n openshift-dns-operator deployment/dns-operator -c dns-operator

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

25

https://coredns.io/plugins/forward/

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

6.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated their own IP addresses. The IP addresses are accessible to other pods and services
running nearby but are not accessible to outside clients. The Ingress Operator implements the
IngressController API and is the component responsible for enabling external access to OpenShift
Container Platform cluster services.

The Ingress Operator makes it possible for external clients to access your service by deploying and
managing one or more HAProxy-based Ingress Controllers to handle routing. You can use the Ingress
Operator to route traffic by specifying OpenShift Container Platform Route and Kubernetes Ingress
resources. Configurations within the Ingress Controller, such as the ability to define
endpointPublishingStrategy type and internal load balancing, provide ways to publish Ingress
Controller endpoints.

6.2. THE INGRESS CONFIGURATION ASSET

The installation program generates an asset with an Ingress resource in the config.openshift.io API
group, cluster-ingress-02-config.yml.

YAML Definition of the Ingress resource

The installation program stores this asset in the cluster-ingress-02-config.yml file in the manifests/
directory. This Ingress resource defines the cluster-wide configuration for Ingress. This Ingress
configuration is used as follows:

The Ingress Operator uses the domain from the cluster Ingress configuration as the domain for
the default Ingress Controller.

The OpenShift API Server Operator uses the domain from the cluster Ingress configuration.
This domain is also used when generating a default host for a Route resource that does not
specify an explicit host.

6.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS

The ingresscontrollers.operator.openshift.io resource offers the following configuration parameters.

Parameter Description

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
spec:
 domain: apps.openshiftdemos.com

OpenShift Container Platform 4.7 Networking

26

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

domain domain is a DNS name serviced by the Ingress controller and is used to
configure multiple features:

For the LoadBalancerService endpoint publishing strategy,
domain is used to configure DNS records. See
endpointPublishingStrategy.

When using a generated default certificate, the certificate is valid for
domain and its subdomains. See defaultCertificate.

The value is published to individual Route statuses so that users know
where to target external DNS records.

The domain value must be unique among all Ingress controllers and cannot be
updated.

If empty, the default value is ingress.config.openshift.io/cluster
.spec.domain.

replicas replicas is the desired number of Ingress controller replicas. If not set, the
default value is 2.

endpointPublishingStr
ategy

endpointPublishingStrategy is used to publish the Ingress controller
endpoints to other networks, enable load balancer integrations, and provide
access to other systems.

If not set, the default value is based on
infrastructure.config.openshift.io/cluster .status.platform:

AWS: LoadBalancerService (with external scope)

Azure: LoadBalancerService (with external scope)

GCP: LoadBalancerService (with external scope)

Bare metal: NodePortService

Other: HostNetwork

The endpointPublishingStrategy value cannot be updated.

Parameter Description

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

27

defaultCertificate The defaultCertificate value is a reference to a secret that contains the
default certificate that is served by the Ingress controller. When Routes do not
specify their own certificate, defaultCertificate is used.

The secret must contain the following keys and data: * tls.crt: certificate file
contents * tls.key: key file contents

If not set, a wildcard certificate is automatically generated and used. The
certificate is valid for the Ingress controller domain and subdomains, and
the generated certificate’s CA is automatically integrated with the cluster’s
trust store.

The in-use certificate, whether generated or user-specified, is automatically
integrated with OpenShift Container Platform built-in OAuth server.

namespaceSelector namespaceSelector is used to filter the set of namespaces serviced by the
Ingress controller. This is useful for implementing shards.

routeSelector routeSelector is used to filter the set of Routes serviced by the Ingress
controller. This is useful for implementing shards.

nodePlacement nodePlacement enables explicit control over the scheduling of the Ingress
controller.

If not set, the defaults values are used.

NOTE

The nodePlacement parameter includes two parts,
nodeSelector and tolerations. For example:

Parameter Description

nodePlacement:
 nodeSelector:
 matchLabels:
 kubernetes.io/os: linux
 tolerations:
 - effect: NoSchedule
 operator: Exists

OpenShift Container Platform 4.7 Networking

28

tlsSecurityProfile tlsSecurityProfile specifies settings for TLS connections for Ingress
controllers.

If not set, the default value is based on the
apiservers.config.openshift.io/cluster resource.

When using the Old, Intermediate, and Modern profile types, the effective
profile configuration is subject to change between releases. For example, given
a specification to use the Intermediate profile deployed on release X.Y.Z, an
upgrade to release X.Y.Z+1 may cause a new profile configuration to be
applied to the Ingress controller, resulting in a rollout.

The minimum TLS version for Ingress controllers is 1.1, and the maximum TLS
version is 1.2.

IMPORTANT

The HAProxy Ingress controller image does not support TLS
1.3 and because the Modern profile requires TLS 1.3, it is not
supported. The Ingress Operator converts the Modern profile
to Intermediate.

The Ingress Operator also converts the TLS 1.0 of an Old or
Custom profile to 1.1, and TLS 1.3 of a Custom profile to
1.2.

OpenShift Container Platform router enables Red Hat-
distributed OpenSSL default set of TLS 1.3 cipher suites,
which uses TLS_AES_128_CCM_SHA256,
TLS_CHACHA20_POLY1305_SHA256,
TLS_AES_256_GCM_SHA384, and
TLS_AES_128_GCM_SHA256. Your cluster might accept TLS
1.3 connections and cipher suites, even though TLS 1.3 is
unsupported in OpenShift Container Platform 4.6, 4.7, and 4.8.

NOTE

Ciphers and the minimum TLS version of the configured
security profile are reflected in the TLSProfile status.

Parameter Description

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

29

routeAdmission routeAdmission defines a policy for handling new route claims, such as
allowing or denying claims across namespaces.

namespaceOwnership describes how hostname claims across namespaces
should be handled. The default is Strict.

Strict: does not allow routes to claim the same hostname across
namespaces.

InterNamespaceAllowed: allows routes to claim different paths of
the same hostname across namespaces.

wildcardPolicy describes how routes with wildcard policies are handled by
the Ingress Controller.

WildcardsAllowed: Indicates routes with any wildcard policy are
admitted by the Ingress Controller.

WildcardsDisallowed: Indicates only routes with a wildcard policy
of None are admitted by the Ingress Controller. Updating
wildcardPolicy from WildcardsAllowed to
WildcardsDisallowed causes admitted routes with a wildcard policy
of Subdomain to stop working. These routes must be recreated to a
wildcard policy of None to be readmitted by the Ingress Controller.
WildcardsDisallowed is the default setting.

Parameter Description

OpenShift Container Platform 4.7 Networking

30

IngressControllerLoggi
ng

logging defines parameters for what is logged where. If this field is empty,
operational logs are enabled but access logs are disabled.

access describes how client requests are logged. If this field is
empty, access logging is disabled.

destination describes a destination for log messages.

type is the type of destination for logs:

Container specifies that logs should go to a sidecar
container. The Ingress Operator configures the
container, named logs, on the Ingress Controller pod and
configures the Ingress Controller to write logs to the
container. The expectation is that the administrator
configures a custom logging solution that reads logs
from this container. Using container logs means that
logs may be dropped if the rate of logs exceeds the
container runtime capacity or the custom logging
solution capacity.

Syslog specifies that logs are sent to a Syslog
endpoint. The administrator must specify an endpoint
that can receive Syslog messages. The expectation is
that the administrator has configured a custom Syslog
instance.

container describes parameters for the Container logging
destination type. Currently there are no parameters for
container logging, so this field must be empty.

syslog describes parameters for the Syslog logging
destination type:

address is the IP address of the syslog endpoint that
receives log messages.

port is the UDP port number of the syslog endpoint that
receives log messages.

facility specifies the syslog facility of log messages. If
this field is empty, the facility is local1. Otherwise, it
must specify a valid syslog facility: kern, user, mail,
daemon, auth, syslog, lpr, news, uucp, cron, auth2,
ftp, ntp, audit, alert, cron2, local0, local1, local2,
local3. local4, local5, local6, or local7.

httpLogFormat specifies the format of the log message for an
HTTP request. If this field is empty, log messages use the
implementation’s default HTTP log format. For HAProxy’s default
HTTP log format, see the HAProxy documentation.

Parameter Description

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

31

http://cbonte.github.io/haproxy-dconv/2.0/configuration.html#8.2.3

httpHeaders httpHeaders defines the policy for HTTP headers.

By setting the forwardedHeaderPolicy for the
IngressControllerHTTPHeaders, you specify when and how the Ingress
controller sets the Forwarded, X-Forwarded-For, X-Forwarded-Host, X-
Forwarded-Port, X-Forwarded-Proto, and X-Forwarded-Proto-Version
HTTP headers.

By default, the policy is set to Append.

Append specifies that the Ingress Controller appends the headers,
preserving any existing headers.

Replace specifies that the Ingress Controller sets the headers,
removing any existing headers.

IfNone specifies that the Ingress Controller sets the headers if they
are not already set.

Never specifies that the Ingress Controller never sets the headers,
preserving any existing headers.

Parameter Description

NOTE

All parameters are optional.

6.3.1. Ingress Controller TLS security profiles

TLS security profiles provide a way for servers to regulate which ciphers a connecting client can use
when connecting to the server.

6.3.1.1. Understanding TLS security profiles

You can use a TLS (Transport Layer Security) security profile to define which TLS ciphers are required
by various OpenShift Container Platform components. The OpenShift Container Platform TLS security
profiles are based on Mozilla recommended configurations .

You can specify one of the following TLS security profiles for each component:

Table 6.1. TLS security profiles

Profile Description

OpenShift Container Platform 4.7 Networking

32

https://wiki.mozilla.org/Security/Server_Side_TLS

Old This profile is intended for use with legacy clients or libraries. The profile
is based on the Old backward compatibility recommended configuration.

The Old profile requires a minimum TLS version of 1.0.

NOTE

For the Ingress Controller, the minimum TLS version is
converted from 1.0 to 1.1.

Intermediate This profile is the recommended configuration for the majority of clients.
It is the default TLS security profile for the Ingress Controller and control
plane. The profile is based on the Intermediate compatibility
recommended configuration.

The Intermediate profile requires a minimum TLS version of 1.2.

Modern This profile is intended for use with modern clients that have no need for
backwards compatibility. This profile is based on the Modern
compatibility recommended configuration.

The Modern profile requires a minimum TLS version of 1.3.

NOTE

In OpenShift Container Platform 4.6, 4.7, and 4.8, the
Modern profile is unsupported. If selected, the
Intermediate profile is enabled.

IMPORTANT

The Modern profile is currently not supported.

Profile Description

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

33

https://wiki.mozilla.org/Security/Server_Side_TLS#Old_backward_compatibility
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29
https://wiki.mozilla.org/Security/Server_Side_TLS#Modern_compatibility

Custom This profile allows you to define the TLS version and ciphers to use.

WARNING

Use caution when using a Custom profile,
because invalid configurations can cause
problems.

NOTE

OpenShift Container Platform router enables Red Hat-
distributed OpenSSL default set of TLS 1.3 cipher
suites. Your cluster might accept TLS 1.3 connections
and cipher suites, even though TLS 1.3 is unsupported
in OpenShift Container Platform 4.6, 4.7, and 4.8.

Profile Description

NOTE

When using one of the predefined profile types, the effective profile configuration is
subject to change between releases. For example, given a specification to use the
Intermediate profile deployed on release X.Y.Z, an upgrade to release X.Y.Z+1 might
cause a new profile configuration to be applied, resulting in a rollout.

6.3.1.2. Configuring the TLS security profile for the Ingress Controller

To configure a TLS security profile for an Ingress Controller, edit the IngressController custom
resource (CR) to specify a predefined or custom TLS security profile. If a TLS security profile is not
configured, the default value is based on the TLS security profile set for the API server.

Sample IngressController CR that configures the Old TLS security profile

The TLS security profile defines the minimum TLS version and the TLS ciphers for TLS connections for
Ingress Controllers.

You can see the ciphers and the minimum TLS version of the configured TLS security profile in the
IngressController custom resource (CR) under Status.Tls Profile and the configured TLS security
profile under Spec.Tls Security Profile. For the Custom TLS security profile, the specific ciphers and

apiVersion: operator.openshift.io/v1
kind: IngressController
 ...
spec:
 tlsSecurityProfile:
 old: {}
 type: Old
 ...

OpenShift Container Platform 4.7 Networking

34

1

2

3

minimum TLS version are listed under both parameters.

IMPORTANT

The HAProxy Ingress Controller image does not support TLS 1.3 and because the
Modern profile requires TLS 1.3, it is not supported. The Ingress Operator converts the
Modern profile to Intermediate. The Ingress Operator also converts the TLS 1.0 of an
Old or Custom profile to 1.1, and TLS 1.3 of a Custom profile to 1.2.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the IngressController CR in the openshift-ingress-operator project to configure the TLS
security profile:

2. Add the spec.tlsSecurityProfile field:

Sample IngressController CR for a Custom profile

Specify the TLS security profile type (Old, Intermediate, or Custom). The default is
Intermediate.

Specify the appropriate field for the selected type:

old: {}

intermediate: {}

custom:

For the custom type, specify a list of TLS ciphers and minimum accepted TLS version.

3. Save the file to apply the changes.

$ oc edit IngressController default -n openshift-ingress-operator

apiVersion: operator.openshift.io/v1
kind: IngressController
 ...
spec:
 tlsSecurityProfile:
 type: Custom 1
 custom: 2
 ciphers: 3
 - ECDHE-ECDSA-CHACHA20-POLY1305
 - ECDHE-RSA-CHACHA20-POLY1305
 - ECDHE-RSA-AES128-GCM-SHA256
 - ECDHE-ECDSA-AES128-GCM-SHA256
 minTLSVersion: VersionTLS11
 ...

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

35

Verification

Verify that the profile is set in the IngressController CR:

Example output

6.3.2. Ingress controller endpoint publishing strategy

NodePortService endpoint publishing strategy

The NodePortService endpoint publishing strategy publishes the Ingress Controller using a Kubernetes
NodePort service.

In this configuration, the Ingress Controller deployment uses container networking. A NodePortService
is created to publish the deployment. The specific node ports are dynamically allocated by OpenShift
Container Platform; however, to support static port allocations, your changes to the node port field of
the managed NodePortService are preserved.

Figure 6.1. Diagram of NodePortService

$ oc describe IngressController default -n openshift-ingress-operator

Name: default
Namespace: openshift-ingress-operator
Labels: <none>
Annotations: <none>
API Version: operator.openshift.io/v1
Kind: IngressController
 ...
Spec:
 ...
 Tls Security Profile:
 Custom:
 Ciphers:
 ECDHE-ECDSA-CHACHA20-POLY1305
 ECDHE-RSA-CHACHA20-POLY1305
 ECDHE-RSA-AES128-GCM-SHA256
 ECDHE-ECDSA-AES128-GCM-SHA256
 Min TLS Version: VersionTLS11
 Type: Custom
 ...

OpenShift Container Platform 4.7 Networking

36

Figure 6.1. Diagram of NodePortService

The preceding graphic shows the following concepts pertaining to OpenShift Container Platform
Ingress NodePort endpoint publishing strategy:

All the available nodes in the cluster have their own, externally accessible IP addresses. The
service running in the cluster is bound to the unique NodePort for all the nodes.

When the client connects to a node that is down, for example, by connecting the 10.0.128.4 IP
address in the graphic, the node port directly connects the client to an available node that is
running the service. In this scenario, no load balancing is required. As the image shows, the
10.0.128.4 address is down and another IP address must be used instead.

NOTE

The Ingress Operator ignores any updates to .spec.ports[].nodePort fields of the
service.

By default, ports are allocated automatically and you can access the port allocations for
integrations. However, sometimes static port allocations are necessary to integrate with
existing infrastructure which may not be easily reconfigured in response to dynamic ports.
To achieve integrations with static node ports, you can update the managed service
resource directly.

For more information, see the Kubernetes Services documentation on NodePort.

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

37

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport

HostNetwork endpoint publishing strategy

The HostNetwork endpoint publishing strategy publishes the Ingress Controller on node ports where
the Ingress Controller is deployed.

An Ingress controller with the HostNetwork endpoint publishing strategy can have only one pod replica
per node. If you want n replicas, you must use at least n nodes where those replicas can be scheduled.
Because each pod replica requests ports 80 and 443 on the node host where it is scheduled, a replica
cannot be scheduled to a node if another pod on the same node is using those ports.

6.4. VIEW THE DEFAULT INGRESS CONTROLLER

The Ingress Operator is a core feature of OpenShift Container Platform and is enabled out of the box.

Every new OpenShift Container Platform installation has an ingresscontroller named default. It can be
supplemented with additional Ingress Controllers. If the default ingresscontroller is deleted, the
Ingress Operator will automatically recreate it within a minute.

Procedure

View the default Ingress Controller:

6.5. VIEW INGRESS OPERATOR STATUS

You can view and inspect the status of your Ingress Operator.

Procedure

View your Ingress Operator status:

6.6. VIEW INGRESS CONTROLLER LOGS

You can view your Ingress Controller logs.

Procedure

View your Ingress Controller logs:

6.7. VIEW INGRESS CONTROLLER STATUS

Your can view the status of a particular Ingress Controller.

Procedure

View the status of an Ingress Controller:

$ oc describe --namespace=openshift-ingress-operator ingresscontroller/default

$ oc describe clusteroperators/ingress

$ oc logs --namespace=openshift-ingress-operator deployments/ingress-operator

OpenShift Container Platform 4.7 Networking

38

6.8. CONFIGURING THE INGRESS CONTROLLER

6.8.1. Setting a custom default certificate

As an administrator, you can configure an Ingress Controller to use a custom certificate by creating a
Secret resource and editing the IngressController custom resource (CR).

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is signed by a
trusted certificate authority or by a private trusted certificate authority that you configured in a
custom PKI.

Your certificate meets the following requirements:

The certificate is valid for the ingress domain.

The certificate uses the subjectAltName extension to specify a wildcard domain, such as
*.apps.ocp4.example.com.

You must have an IngressController CR. You may use the default one:

Example output

NOTE

If you have intermediate certificates, they must be included in the tls.crt file of the secret
containing a custom default certificate. Order matters when specifying a certificate; list
your intermediate certificate(s) after any server certificate(s).

Procedure

The following assumes that the custom certificate and key pair are in the tls.crt and tls.key files in the
current working directory. Substitute the actual path names for tls.crt and tls.key. You also may
substitute another name for custom-certs-default when creating the Secret resource and referencing
it in the IngressController CR.

NOTE

This action will cause the Ingress Controller to be redeployed, using a rolling deployment
strategy.

1. Create a Secret resource containing the custom certificate in the openshift-ingress
namespace using the tls.crt and tls.key files.

$ oc describe --namespace=openshift-ingress-operator ingresscontroller/<name>

$ oc --namespace openshift-ingress-operator get ingresscontrollers

NAME AGE
default 10m

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

39

2. Update the IngressController CR to reference the new certificate secret:

3. Verify the update was effective:

where:

<domain>

Specifies the base domain name for your cluster.

Example output

The certificate secret name should match the value used to update the CR.

Once the IngressController CR has been modified, the Ingress Operator updates the Ingress Controller’s
deployment to use the custom certificate.

6.8.2. Removing a custom default certificate

As an administrator, you can remove a custom certificate that you configured an Ingress Controller to
use.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

You previously configured a custom default certificate for the Ingress Controller.

Procedure

To remove the custom certificate and restore the certificate that ships with OpenShift
Container Platform, enter the following command:

There can be a delay while the cluster reconciles the new certificate configuration.

$ oc --namespace openshift-ingress create secret tls custom-certs-default --cert=tls.crt --
key=tls.key

$ oc patch --type=merge --namespace openshift-ingress-operator ingresscontrollers/default \
 --patch '{"spec":{"defaultCertificate":{"name":"custom-certs-default"}}}'

$ echo Q |\
 openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null |\
 openssl x509 -noout -subject -issuer -enddate

subject=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = *.apps.example.com
issuer=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = example.com
notAfter=May 10 08:32:45 2022 GM

$ oc patch -n openshift-ingress-operator ingresscontrollers/default \
 --type json -p $'- op: remove\n path: /spec/defaultCertificate'

OpenShift Container Platform 4.7 Networking

40

Verification

To confirm that the original cluster certificate is restored, enter the following command:

where:

<domain>

Specifies the base domain name for your cluster.

Example output

6.8.3. Scaling an Ingress Controller

Manually scale an Ingress Controller to meeting routing performance or availability requirements such as
the requirement to increase throughput. oc commands are used to scale the IngressController
resource. The following procedure provides an example for scaling up the default IngressController.

Procedure

1. View the current number of available replicas for the default IngressController:

Example output

2. Scale the default IngressController to the desired number of replicas using the oc patch
command. The following example scales the default IngressController to 3 replicas:

Example output

3. Verify that the default IngressController scaled to the number of replicas that you specified:

$ echo Q | \
 openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null | \
 openssl x509 -noout -subject -issuer -enddate

subject=CN = *.apps.<domain>
issuer=CN = ingress-operator@1620633373
notAfter=May 10 10:44:36 2023 GMT

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

2

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":{"replicas":
3}}' --type=merge

ingresscontroller.operator.openshift.io/default patched

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

41

Example output

NOTE

Scaling is not an immediate action, as it takes time to create the desired number of
replicas.

6.8.4. Configuring Ingress access logging

You can configure the Ingress Controller to enable access logs. If you have clusters that do not receive
much traffic, then you can log to a sidecar. If you have high traffic clusters, to avoid exceeding the
capacity of the logging stack or to integrate with a logging infrastructure outside of OpenShift
Container Platform, you can forward logs to a custom syslog endpoint. You can also specify the format
for access logs.

Container logging is useful to enable access logs on low-traffic clusters when there is no existing Syslog
logging infrastructure, or for short-term use while diagnosing problems with the Ingress Controller.

Syslog is needed for high-traffic clusters where access logs could exceed the OpenShift Logging
stack’s capacity, or for environments where any logging solution needs to integrate with an existing
Syslog logging infrastructure. The Syslog use-cases can overlap.

Prerequisites

Log in as a user with cluster-admin privileges.

Procedure

Configure Ingress access logging to a sidecar.

To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination. To specify logging to a sidecar container, you must specify
Container spec.logging.access.destination.type. The following example is an Ingress
Controller definition that logs to a Container destination:

When you configure the Ingress Controller to log to a sidecar, the operator creates a container
named logs inside the Ingress Controller Pod:

3

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access:
 destination:
 type: Container

$ oc -n openshift-ingress logs deployment.apps/router-default -c logs

OpenShift Container Platform 4.7 Networking

42

Example output

Configure Ingress access logging to a Syslog endpoint.

To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination. To specify logging to a Syslog endpoint destination, you
must specify Syslog for spec.logging.access.destination.type. If the destination type is
Syslog, you must also specify a destination endpoint using
spec.logging.access.destination.syslog.endpoint and you can specify a facility using
spec.logging.access.destination.syslog.facility. The following example is an Ingress
Controller definition that logs to a Syslog destination:

NOTE

The syslog destination port must be UDP.

Configure Ingress access logging with a specific log format.

You can specify spec.logging.access.httpLogFormat to customize the log format. The
following example is an Ingress Controller definition that logs to a syslog endpoint with IP
address 1.2.3.4 and port 10514:

2020-05-11T19:11:50.135710+00:00 router-default-57dfc6cd95-bpmk6 router-default-
57dfc6cd95-bpmk6 haproxy[108]: 174.19.21.82:39654 [11/May/2020:19:11:50.133] public
be_http:hello-openshift:hello-openshift/pod:hello-openshift:hello-openshift:10.128.2.12:8080
0/0/1/0/1 200 142 - - --NI 1/1/0/0/0 0/0 "GET / HTTP/1.1"

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access:
 destination:
 type: Syslog
 syslog:
 address: 1.2.3.4
 port: 10514

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access:
 destination:
 type: Syslog
 syslog:

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

43

Disable Ingress access logging.

To disable Ingress access logging, leave spec.logging or spec.logging.access empty:

6.8.5. Ingress Controller sharding

As the primary mechanism for traffic to enter the cluster, the demands on the Ingress Controller, or
router, can be significant. As a cluster administrator, you can shard the routes to:

Balance Ingress Controllers, or routers, with several routes to speed up responses to changes.

Allocate certain routes to have different reliability guarantees than other routes.

Allow certain Ingress Controllers to have different policies defined.

Allow only specific routes to use additional features.

Expose different routes on different addresses so that internal and external users can see
different routes, for example.

Ingress Controller can use either route labels or namespace labels as a sharding method.

6.8.5.1. Configuring Ingress Controller sharding by using route labels

Ingress Controller sharding by using route labels means that the Ingress Controller serves any route in
any namespace that is selected by the route selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

 address: 1.2.3.4
 port: 10514
 httpLogFormat: '%ci:%cp [%t] %ft %b/%s %B %bq %HM %HU %HV'

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access: null

cat router-internal.yaml
apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:

OpenShift Container Platform 4.7 Networking

44

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that have the label type: sharded.

6.8.5.2. Configuring Ingress Controller sharding by using namespace labels

Ingress Controller sharding by using namespace labels means that the Ingress Controller serves any
route in any namespace that is selected by the namespace selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

WARNING

If you deploy the Keepalived Ingress VIP, do not deploy a non-default Ingress
Controller with value HostNetwork for the endpointPublishingStrategy
parameter. Doing so might cause issues. Use value NodePort instead of
HostNetwork for endpointPublishingStrategy.

Procedure

1. Edit the router-internal.yaml file:

Example output

 name: sharded
 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 routeSelector:
 matchLabels:
 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

oc apply -f router-internal.yaml

cat router-internal.yaml

apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

45

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that is selected by the namespace
selector that have the label type: sharded.

6.8.6. Configuring an Ingress Controller to use an internal load balancer

When creating an Ingress Controller on cloud platforms, the Ingress Controller is published by a public
cloud load balancer by default. As an administrator, you can create an Ingress Controller that uses an
internal cloud load balancer.

WARNING

If your cloud provider is Microsoft Azure, you must have at least one public load
balancer that points to your nodes. If you do not, all of your nodes will lose egress
connectivity to the internet.

IMPORTANT

If you want to change the scope for an IngressController object, you must delete and
then recreate that IngressController object. You cannot change the
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

Figure 6.2. Diagram of LoadBalancer

 kind: IngressController
 metadata:
 name: sharded
 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 namespaceSelector:
 matchLabels:
 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

oc apply -f router-internal.yaml

OpenShift Container Platform 4.7 Networking

46

Figure 6.2. Diagram of LoadBalancer

The preceding graphic shows the following concepts pertaining to OpenShift Container Platform
Ingress LoadBalancerService endpoint publishing strategy:

You can load load balance externally, using the cloud provider load balancer, or internally, using
the OpenShift Ingress Controller Load Balancer.

You can use the single IP address of the load balancer and more familiar ports, such as 8080
and 4200 as shown on the cluster depicted in the graphic.

Traffic from the external load balancer is directed at the pods, and managed by the load
balancer, as depicted in the instance of a down node. See the Kubernetes Services
documentation for implementation details.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an IngressController custom resource (CR) in a file named <name>-ingress-
controller.yaml, such as in the following example:

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

47

https://kubernetes.io/docs/concepts/services-networking/service/#internal-load-balancer

1

2

3

1

Replace <name> with a name for the IngressController object.

Specify the domain for the application published by the controller.

Specify a value of Internal to use an internal load balancer.

2. Create the Ingress Controller defined in the previous step by running the following command:

Replace <name> with the name of the IngressController object.

3. Optional: Confirm that the Ingress Controller was created by running the following command:

6.8.7. Configuring the default Ingress Controller for your cluster to be internal

You can configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

WARNING

If your cloud provider is Microsoft Azure, you must have at least one public load
balancer that points to your nodes. If you do not, all of your nodes will lose egress
connectivity to the internet.

IMPORTANT

If you want to change the scope for an IngressController object, you must delete and
then recreate that IngressController object. You cannot change the
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

Prerequisites

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: <name> 1
spec:
 domain: <domain> 2
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: Internal 3

$ oc create -f <name>-ingress-controller.yaml 1

$ oc --all-namespaces=true get ingresscontrollers

OpenShift Container Platform 4.7 Networking

48

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

6.8.8. Configuring the route admission policy

Administrators and application developers can run applications in multiple namespaces with the same
domain name. This is for organizations where multiple teams develop microservices that are exposed on
the same hostname.

WARNING

Allowing claims across namespaces should only be enabled for clusters with trust
between namespaces, otherwise a malicious user could take over a hostname. For
this reason, the default admission policy disallows hostname claims across
namespaces.

Prerequisites

Cluster administrator privileges.

Procedure

Edit the .spec.routeAdmission field of the ingresscontroller resource variable using the
following command:

Sample Ingress Controller configuration

$ oc replace --force --wait --filename - <<EOF
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: default
spec:
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: Internal
EOF

$ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":
{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

49

6.8.9. Using wildcard routes

The HAProxy Ingress Controller has support for wildcard routes. The Ingress Operator uses
wildcardPolicy to configure the ROUTER_ALLOW_WILDCARD_ROUTES environment variable of
the Ingress Controller.

The default behavior of the Ingress Controller is to admit routes with a wildcard policy of None, which is
backwards compatible with existing IngressController resources.

Procedure

1. Configure the wildcard policy.

a. Use the following command to edit the IngressController resource:

b. Under spec, set the wildcardPolicy field to WildcardsDisallowed or WildcardsAllowed:

6.8.10. Using X-Forwarded headers

You configure the HAProxy Ingress Controller to specify a policy for how to handle HTTP headers
including Forwarded and X-Forwarded-For. The Ingress Operator uses the HTTPHeaders field to
configure the ROUTER_SET_FORWARDED_HEADERS environment variable of the Ingress
Controller.

Procedure

1. Configure the HTTPHeaders field for the Ingress Controller.

a. Use the following command to edit the IngressController resource:

b. Under spec, set the HTTPHeaders policy field to Append, Replace, IfNone, or Never:

spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed
...

$ oc edit IngressController

spec:
 routeAdmission:
 wildcardPolicy: WildcardsDisallowed # or WildcardsAllowed

$ oc edit IngressController

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 httpHeaders:
 forwardedHeaderPolicy: Append

OpenShift Container Platform 4.7 Networking

50

Example use cases
As a cluster administrator, you can:

Configure an external proxy that injects the X-Forwarded-For header into each request before
forwarding it to an Ingress Controller.
To configure the Ingress Controller to pass the header through unmodified, you specify the
never policy. The Ingress Controller then never sets the headers, and applications receive only
the headers that the external proxy provides.

Configure the Ingress Controller to pass the X-Forwarded-For header that your external proxy
sets on external cluster requests through unmodified.
To configure the Ingress Controller to set the X-Forwarded-For header on internal cluster
requests, which do not go through the external proxy, specify the if-none policy. If an HTTP
request already has the header set through the external proxy, then the Ingress Controller
preserves it. If the header is absent because the request did not come through the proxy, then
the Ingress Controller adds the header.

As an application developer, you can:

Configure an application-specific external proxy that injects the X-Forwarded-For header.
To configure an Ingress Controller to pass the header through unmodified for an application’s
Route, without affecting the policy for other Routes, add an annotation
haproxy.router.openshift.io/set-forwarded-headers: if-none or
haproxy.router.openshift.io/set-forwarded-headers: never on the Route for the application.

NOTE

You can set the haproxy.router.openshift.io/set-forwarded-headers
annotation on a per route basis, independent from the globally set value for the
Ingress Controller.

6.8.11. Enabling HTTP/2 Ingress connectivity

You can enable transparent end-to-end HTTP/2 connectivity in HAProxy. It allows application owners
to make use of HTTP/2 protocol capabilities, including single connection, header compression, binary
streams, and more.

You can enable HTTP/2 connectivity for an individual Ingress Controller or for the entire cluster.

To enable the use of HTTP/2 for the connection from the client to HAProxy, a route must specify a
custom certificate. A route that uses the default certificate cannot use HTTP/2. This restriction is
necessary to avoid problems from connection coalescing, where the client re-uses a connection for
different routes that use the same certificate.

The connection from HAProxy to the application pod can use HTTP/2 only for re-encrypt routes and
not for edge-terminated or insecure routes. This restriction is because HAProxy uses Application-Level
Protocol Negotiation (ALPN), which is a TLS extension, to negotiate the use of HTTP/2 with the back-
end. The implication is that end-to-end HTTP/2 is possible with passthrough and re-encrypt and not
with insecure or edge-terminated routes.

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

51

WARNING

Using WebSockets with a re-encrypt route and with HTTP/2 enabled on an Ingress
Controller requires WebSocket support over HTTP/2. WebSockets over HTTP/2 is a
feature of HAProxy 2.4, which is unsupported in OpenShift Container Platform at
this time.

IMPORTANT

For non-passthrough routes, the Ingress Controller negotiates its connection to the
application independently of the connection from the client. This means a client may
connect to the Ingress Controller and negotiate HTTP/1.1, and the Ingress Controller may
then connect to the application, negotiate HTTP/2, and forward the request from the
client HTTP/1.1 connection using the HTTP/2 connection to the application. This poses a
problem if the client subsequently tries to upgrade its connection from HTTP/1.1 to the
WebSocket protocol, because the Ingress Controller cannot forward WebSocket to
HTTP/2 and cannot upgrade its HTTP/2 connection to WebSocket. Consequently, if you
have an application that is intended to accept WebSocket connections, it must not allow
negotiating the HTTP/2 protocol or else clients will fail to upgrade to the WebSocket
protocol.

Procedure

Enable HTTP/2 on a single Ingress Controller.

To enable HTTP/2 on an Ingress Controller, enter the oc annotate command:

Replace <ingresscontroller_name> with the name of the Ingress Controller to annotate.

Enable HTTP/2 on the entire cluster.

To enable HTTP/2 for the entire cluster, enter the oc annotate command:

6.8.12. Specifying an alternative cluster domain using the appsDomain option

As a cluster administrator, you can specify an alternative to the default cluster domain for user-created
routes by configuring the appsDomain field. The appsDomain field is an optional domain for
OpenShift Container Platform to use instead of the default, which is specified in the domain field. If you
specify an alternative domain, it overrides the default cluster domain for the purpose of determining the
default host for a new route.

For example, you can use the DNS domain for your company as the default domain for routes and
ingresses for applications running on your cluster.

Prerequisites

$ oc -n openshift-ingress-operator annotate ingresscontrollers/<ingresscontroller_name>
ingress.operator.openshift.io/default-enable-http2=true

$ oc annotate ingresses.config/cluster ingress.operator.openshift.io/default-enable-http2=true

OpenShift Container Platform 4.7 Networking

52

1

2

You deployed an OpenShift Container Platform cluster.

You installed the oc command line interface.

Procedure

1. Configure the appsDomain field by specifying an alternative default domain for user-created
routes.

a. Edit the ingress cluster resource:

b. Edit the YAML file:

Sample appsDomain configuration to test.example.com

Default domain

Optional: Domain for OpenShift Container Platform infrastructure to use for
application routes. Instead of the default prefix, apps, you can use an alternative prefix
like test.

2. Verify that an existing route contains the domain name specified in the appsDomain field by
exposing the route and verifying the route domain change:

NOTE

Wait for the openshift-apiserver finish rolling updates before exposing the
route.

a. Expose the route:

Example output:

$ oc edit ingresses.config/cluster -o yaml

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
spec:
 domain: apps.example.com 1
 appsDomain: <test.example.com> 2

$ oc expose service hello-openshift
route.route.openshift.io/hello-openshift exposed

$ oc get routes
NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD
hello-openshift hello_openshift-<my_project>.test.example.com
hello-openshift 8080-tcp None

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

53

6.9. ADDITIONAL RESOURCES

Configuring a custom PKI

OpenShift Container Platform 4.7 Networking

54

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-a-custom-pki

CHAPTER 7. VERIFYING CONNECTIVITY TO AN ENDPOINT
The Cluster Network Operator (CNO) runs a controller, the connectivity check controller, that performs
a connection health check between resources within your cluster. By reviewing the results of the health
checks, you can diagnose connection problems or eliminate network connectivity as the cause of an
issue that you are investigating.

7.1. CONNECTION HEALTH CHECKS PERFORMED

To verify that cluster resources are reachable, a TCP connection is made to each of the following cluster
API services:

Kubernetes API server service

Kubernetes API server endpoints

OpenShift API server service

OpenShift API server endpoints

Load balancers

To verify that services and service endpoints are reachable on every node in the cluster, a TCP
connection is made to each of the following targets:

Health check target service

Health check target endpoints

7.2. IMPLEMENTATION OF CONNECTION HEALTH CHECKS

The connectivity check controller orchestrates connection verification checks in your cluster. The results
for the connection tests are stored in PodNetworkConnectivity objects in the openshift-network-
diagnostics namespace. Connection tests are performed every minute in parallel.

The Cluster Network Operator (CNO) deploys several resources to the cluster to send and receive
connectivity health checks:

Health check source

This program deploys in a single pod replica set managed by a Deployment object. The program
consumes PodNetworkConnectivity objects and connects to the spec.targetEndpoint specified in
each object.

Health check target

A pod deployed as part of a daemon set on every node in the cluster. The pod listens for inbound
health checks. The presence of this pod on every node allows for the testing of connectivity to each
node.

7.3. PODNETWORKCONNECTIVITYCHECK OBJECT FIELDS

The PodNetworkConnectivityCheck object fields are described in the following tables.

Table 7.1. PodNetworkConnectivityCheck object fields

CHAPTER 7. VERIFYING CONNECTIVITY TO AN ENDPOINT

55

Field Type Description

metadata.name string The name of the object in the following format:
<source>-to-<target>. The destination described
by <target> includes one of following strings:

load-balancer-api-external

load-balancer-api-internal

kubernetes-apiserver-endpoint

kubernetes-apiserver-service-cluster

network-check-target

openshift-apiserver-endpoint

openshift-apiserver-service-cluster

metadata.namespace string The namespace that the object is associated with.
This value is always openshift-network-
diagnostics.

spec.sourcePod string The name of the pod where the connection check
originates, such as network-check-source-
596b4c6566-rgh92.

spec.targetEndpoint string The target of the connection check, such as
api.devcluster.example.com:6443.

spec.tlsClientCert object Configuration for the TLS certificate to use.

spec.tlsClientCert.name string The name of the TLS certificate used, if any. The
default value is an empty string.

status object An object representing the condition of the
connection test and logs of recent connection
successes and failures.

status.conditions array The latest status of the connection check and any
previous statuses.

status.failures array Connection test logs from unsuccessful attempts.

status.outages array Connect test logs covering the time periods of any
outages.

status.successes array Connection test logs from successful attempts.

The following table describes the fields for objects in the status.conditions array:

OpenShift Container Platform 4.7 Networking

56

Table 7.2. status.conditions

Field Type Description

lastTransitionTime string The time that the condition of the connection
transitioned from one status to another.

message string The details about last transition in a human readable
format.

reason string The last status of the transition in a machine readable
format.

status string The status of the condition.

type string The type of the condition.

The following table describes the fields for objects in the status.conditions array:

Table 7.3. status.outages

Field Type Description

end string The timestamp from when the connection failure is
resolved.

endLogs array Connection log entries, including the log entry
related to the successful end of the outage.

message string A summary of outage details in a human readable
format.

start string The timestamp from when the connection failure is
first detected.

startLogs array Connection log entries, including the original failure.

Connection log fields
The fields for a connection log entry are described in the following table. The object is used in the
following fields:

status.failures[]

status.successes[]

status.outages[].startLogs[]

status.outages[].endLogs[]

Table 7.4. Connection log object

CHAPTER 7. VERIFYING CONNECTIVITY TO AN ENDPOINT

57

Field Type Description

latency string Records the duration of the action.

message string Provides the status in a human readable format.

reason string Provides the reason for status in a machine readable
format. The value is one of TCPConnect,
TCPConnectError, DNSResolve, DNSError.

success boolean Indicates if the log entry is a success or failure.

time string The start time of connection check.

7.4. VERIFYING NETWORK CONNECTIVITY FOR AN ENDPOINT

As a cluster administrator, you can verify the connectivity of an endpoint, such as an API server, load
balancer, service, or pod.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. To list the current PodNetworkConnectivityCheck objects, enter the following command:

Example output

$ oc get podnetworkconnectivitycheck -n openshift-network-diagnostics

NAME AGE
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-1 73m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-2 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
service-cluster 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-default-
service-cluster 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-load-balancer-api-
external 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-load-balancer-api-
internal 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-master-0 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-

OpenShift Container Platform 4.7 Networking

58

2. View the connection test logs:

a. From the output of the previous command, identify the endpoint that you want to review
the connectivity logs for.

b. To view the object, enter the following command:

where <name> specifies the name of the PodNetworkConnectivityCheck object.

Example output

ln-x5sv9rb-f76d1-4rzrp-master-1 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-master-2 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh 74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-worker-c-n8mbf 74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-worker-d-4hnrz 74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-
service-cluster 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-1 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-2 74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
service-cluster 75m

$ oc get podnetworkconnectivitycheck <name> \
 -n openshift-network-diagnostics -o yaml

apiVersion: controlplane.operator.openshift.io/v1alpha1
kind: PodNetworkConnectivityCheck
metadata:
 name: network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-
apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0
 namespace: openshift-network-diagnostics
 ...
spec:
 sourcePod: network-check-source-7c88f6d9f-hmg2f
 targetEndpoint: 10.0.0.4:6443
 tlsClientCert:
 name: ""
status:
 conditions:
 - lastTransitionTime: "2021-01-13T20:11:34Z"
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnectSuccess
 status: "True"
 type: Reachable
 failures:
 - latency: 2.241775ms

CHAPTER 7. VERIFYING CONNECTIVITY TO AN ENDPOINT

59

 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: failed
 to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
 connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:10:34Z"
 - latency: 2.582129ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: failed
 to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
 connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:09:34Z"
 - latency: 3.483578ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: failed
 to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
 connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:08:34Z"
 outages:
 - end: "2021-01-13T20:11:34Z"
 endLogs:
 - latency: 2.032018ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 tcp connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T20:11:34Z"
 - latency: 2.241775ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
 connect: connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:10:34Z"
 - latency: 2.582129ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
 connect: connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:09:34Z"
 - latency: 3.483578ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
 connect: connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:08:34Z"
 message: Connectivity restored after 2m59.999789186s
 start: "2021-01-13T20:08:34Z"
 startLogs:
 - latency: 3.483578ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:

OpenShift Container Platform 4.7 Networking

60

 connect: connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:08:34Z"
 successes:
 - latency: 2.845865ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:14:34Z"
 - latency: 2.926345ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:13:34Z"
 - latency: 2.895796ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:12:34Z"
 - latency: 2.696844ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:11:34Z"
 - latency: 1.502064ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:10:34Z"
 - latency: 1.388857ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:09:34Z"
 - latency: 1.906383ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:08:34Z"
 - latency: 2.089073ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:07:34Z"
 - latency: 2.156994ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'

CHAPTER 7. VERIFYING CONNECTIVITY TO AN ENDPOINT

61

 reason: TCPConnect
 success: true
 time: "2021-01-13T21:06:34Z"
 - latency: 1.777043ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:05:34Z"

OpenShift Container Platform 4.7 Networking

62

CHAPTER 8. CONFIGURING THE NODE PORT SERVICE
RANGE

As a cluster administrator, you can expand the available node port range. If your cluster uses of a large
number of node ports, you might need to increase the number of available ports.

The default port range is 30000-32767. You can never reduce the port range, even if you first expand it
beyond the default range.

8.1. PREREQUISITES

Your cluster infrastructure must allow access to the ports that you specify within the expanded
range. For example, if you expand the node port range to 30000-32900, the inclusive port range
of 32768-32900 must be allowed by your firewall or packet filtering configuration.

8.2. EXPANDING THE NODE PORT RANGE

You can expand the node port range for the cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

1. To expand the node port range, enter the following command. Replace <port> with the largest
port number in the new range.

Example output

2. To confirm that the configuration is active, enter the following command. It can take several
minutes for the update to apply.

Example output

$ oc patch network.config.openshift.io cluster --type=merge -p \
 '{
 "spec":
 { "serviceNodePortRange": "30000-<port>" }
 }'

network.config.openshift.io/cluster patched

$ oc get configmaps -n openshift-kube-apiserver config \
 -o jsonpath="{.data['config\.yaml']}" | \
 grep -Eo '"service-node-port-range":["[[:digit:]]+-[[:digit:]]+"]'

"service-node-port-range":["30000-33000"]

CHAPTER 8. CONFIGURING THE NODE PORT SERVICE RANGE

63

8.3. ADDITIONAL RESOURCES

Configuring ingress cluster traffic using a NodePort

Network [config.openshift.io/v1]

Service [core/v1]

OpenShift Container Platform 4.7 Networking

64

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-ingress-cluster-traffic-nodeport
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/api_reference/#network-config-openshift-io-v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/api_reference/#service-core-v1

CHAPTER 9. USING THE STREAM CONTROL TRANSMISSION
PROTOCOL (SCTP) ON A BARE METAL CLUSTER

As a cluster administrator, you can use the Stream Control Transmission Protocol (SCTP) on a cluster.

9.1. SUPPORT FOR STREAM CONTROL TRANSMISSION PROTOCOL
(SCTP) ON OPENSHIFT CONTAINER PLATFORM

As a cluster administrator, you can enable SCTP on the hosts in the cluster. On Red Hat Enterprise Linux
CoreOS (RHCOS), the SCTP module is disabled by default.

SCTP is a reliable message based protocol that runs on top of an IP network.

When enabled, you can use SCTP as a protocol with pods, services, and network policy. A Service object
must be defined with the type parameter set to either the ClusterIP or NodePort value.

9.1.1. Example configurations using SCTP protocol

You can configure a pod or service to use SCTP by setting the protocol parameter to the SCTP value in
the pod or service object.

In the following example, a pod is configured to use SCTP:

In the following example, a service is configured to use SCTP:

In the following example, a NetworkPolicy object is configured to apply to SCTP network traffic on port

apiVersion: v1
kind: Pod
metadata:
 namespace: project1
 name: example-pod
spec:
 containers:
 - name: example-pod
...
 ports:
 - containerPort: 30100
 name: sctpserver
 protocol: SCTP

apiVersion: v1
kind: Service
metadata:
 namespace: project1
 name: sctpserver
spec:
...
 ports:
 - name: sctpserver
 protocol: SCTP
 port: 30100
 targetPort: 30100
 type: ClusterIP

CHAPTER 9. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL CLUSTER

65

In the following example, a NetworkPolicy object is configured to apply to SCTP network traffic on port
80 from any pods with a specific label:

9.2. ENABLING STREAM CONTROL TRANSMISSION PROTOCOL
(SCTP)

As a cluster administrator, you can load and enable the blacklisted SCTP kernel module on worker nodes
in your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a file named load-sctp-module.yaml that contains the following YAML definition:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-sctp-on-http
spec:
 podSelector:
 matchLabels:
 role: web
 ingress:
 - ports:
 - protocol: SCTP
 port: 80

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 name: load-sctp-module
 labels:
 machineconfiguration.openshift.io/role: worker
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - path: /etc/modprobe.d/sctp-blacklist.conf
 mode: 0644
 overwrite: true
 contents:
 source: data:,
 - path: /etc/modules-load.d/sctp-load.conf
 mode: 0644
 overwrite: true
 contents:
 source: data:,sctp

OpenShift Container Platform 4.7 Networking

66

2. To create the MachineConfig object, enter the following command:

3. Optional: To watch the status of the nodes while the MachineConfig Operator applies the
configuration change, enter the following command. When the status of a node transitions to
Ready, the configuration update is applied.

9.3. VERIFYING STREAM CONTROL TRANSMISSION PROTOCOL
(SCTP) IS ENABLED

You can verify that SCTP is working on a cluster by creating a pod with an application that listens for
SCTP traffic, associating it with a service, and then connecting to the exposed service.

Prerequisites

Access to the Internet from the cluster to install the nc package.

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a pod starts an SCTP listener:

a. Create a file named sctp-server.yaml that defines a pod with the following YAML:

b. Create the pod by entering the following command:

2. Create a service for the SCTP listener pod.

$ oc create -f load-sctp-module.yaml

$ oc get nodes

apiVersion: v1
kind: Pod
metadata:
 name: sctpserver
 labels:
 app: sctpserver
spec:
 containers:
 - name: sctpserver
 image: registry.access.redhat.com/ubi8/ubi
 command: ["/bin/sh", "-c"]
 args:
 ["dnf install -y nc && sleep inf"]
 ports:
 - containerPort: 30102
 name: sctpserver
 protocol: SCTP

$ oc create -f sctp-server.yaml

CHAPTER 9. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL CLUSTER

67

a. Create a file named sctp-service.yaml that defines a service with the following YAML:

b. To create the service, enter the following command:

3. Create a pod for the SCTP client.

a. Create a file named sctp-client.yaml with the following YAML:

b. To create the Pod object, enter the following command:

4. Run an SCTP listener on the server.

a. To connect to the server pod, enter the following command:

b. To start the SCTP listener, enter the following command:

apiVersion: v1
kind: Service
metadata:
 name: sctpservice
 labels:
 app: sctpserver
spec:
 type: NodePort
 selector:
 app: sctpserver
 ports:
 - name: sctpserver
 protocol: SCTP
 port: 30102
 targetPort: 30102

$ oc create -f sctp-service.yaml

apiVersion: v1
kind: Pod
metadata:
 name: sctpclient
 labels:
 app: sctpclient
spec:
 containers:
 - name: sctpclient
 image: registry.access.redhat.com/ubi8/ubi
 command: ["/bin/sh", "-c"]
 args:
 ["dnf install -y nc && sleep inf"]

$ oc apply -f sctp-client.yaml

$ oc rsh sctpserver

$ nc -l 30102 --sctp

OpenShift Container Platform 4.7 Networking

68

5. Connect to the SCTP listener on the server.

a. Open a new terminal window or tab in your terminal program.

b. Obtain the IP address of the sctpservice service. Enter the following command:

c. To connect to the client pod, enter the following command:

d. To start the SCTP client, enter the following command. Replace <cluster_IP> with the
cluster IP address of the sctpservice service.

$ oc get services sctpservice -o go-template='{{.spec.clusterIP}}{{"\n"}}'

$ oc rsh sctpclient

nc <cluster_IP> 30102 --sctp

CHAPTER 9. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL CLUSTER

69

CHAPTER 10. CONFIGURING PTP HARDWARE

IMPORTANT

Precision Time Protocol (PTP) hardware is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

10.1. ABOUT PTP HARDWARE

OpenShift Container Platform includes the capability to use Precision Time Protocol (PTP)hardware on
your nodes. You can configure linuxptp services on nodes in your cluster that have PTP-capable
hardware.

NOTE

The PTP Operator works with PTP-capable devices on clusters provisioned only on bare
metal infrastructure.

You can use the OpenShift Container Platform console to install PTP by deploying the PTP Operator.
The PTP Operator creates and manages the linuxptp services. The Operator provides the following
features:

Discovery of the PTP-capable devices in a cluster.

Management of the configuration of linuxptp services.

10.2. AUTOMATED DISCOVERY OF PTP NETWORK DEVICES

The PTP Operator adds the NodePtpDevice.ptp.openshift.io custom resource definition (CRD) to
OpenShift Container Platform. The PTP Operator will search your cluster for PTP capable network
devices on each node. The Operator creates and updates a NodePtpDevice custom resource (CR)
object for each node that provides a compatible PTP device.

One CR is created for each node, and shares the same name as the node. The .status.devices list
provides information about the PTP devices on a node.

The following is an example of a NodePtpDevice CR created by the PTP Operator:

apiVersion: ptp.openshift.io/v1
kind: NodePtpDevice
metadata:
 creationTimestamp: "2019-11-15T08:57:11Z"
 generation: 1
 name: dev-worker-0 1
 namespace: openshift-ptp 2
 resourceVersion: "487462"

OpenShift Container Platform 4.7 Networking

70

https://access.redhat.com/support/offerings/techpreview/

1

2

3

The value for the name parameter is the same as the name of the node.

The CR is created in openshift-ptp namespace by PTP Operator.

The devices collection includes a list of all of the PTP capable devices discovered by the Operator
on the node.

10.3. INSTALLING THE PTP OPERATOR

As a cluster administrator, you can install the PTP Operator using the OpenShift Container Platform CLI
or the web console.

10.3.1. CLI: Installing the PTP Operator

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

A cluster installed on bare-metal hardware with nodes that have hardware that supports PTP.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. To create a namespace for the PTP Operator, enter the following command:

 selfLink: /apis/ptp.openshift.io/v1/namespaces/openshift-ptp/nodeptpdevices/dev-worker-0
 uid: 08d133f7-aae2-403f-84ad-1fe624e5ab3f
spec: {}
status:
 devices: 3
 - name: eno1
 - name: eno2
 - name: ens787f0
 - name: ens787f1
 - name: ens801f0
 - name: ens801f1
 - name: ens802f0
 - name: ens802f1
 - name: ens803

$ cat << EOF| oc create -f -
apiVersion: v1
kind: Namespace
metadata:
 name: openshift-ptp
 labels:
 name: openshift-ptp
 openshift.io/cluster-monitoring: "true"
EOF

CHAPTER 10. CONFIGURING PTP HARDWARE

71

2. To create an Operator group for the Operator, enter the following command:

3. Subscribe to the PTP Operator.

a. Run the following command to set the OpenShift Container Platform major and minor
version as an environment variable, which is used as the channel value in the next step.

b. To create a subscription for the PTP Operator, enter the following command:

4. To verify that the Operator is installed, enter the following command:

Example output

10.3.2. Web console: Installing the PTP Operator

As a cluster administrator, you can install the Operator using the web console.

NOTE

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: ptp-operators
 namespace: openshift-ptp
spec:
 targetNamespaces:
 - openshift-ptp
EOF

$ OC_VERSION=$(oc version -o yaml | grep openshiftVersion | \
 grep -o '[0-9]*[.][0-9]*' | head -1)

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: ptp-operator-subscription
 namespace: openshift-ptp
spec:
 channel: "${OC_VERSION}"
 name: ptp-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc get csv -n openshift-ptp \
 -o custom-columns=Name:.metadata.name,Phase:.status.phase

Name Phase
ptp-operator.4.4.0-202006160135 Succeeded

OpenShift Container Platform 4.7 Networking

72

NOTE

You have to create the namespace and operator group as mentioned in the previous
section.

Procedure

1. Install the PTP Operator using the OpenShift Container Platform web console:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Choose PTP Operator from the list of available Operators, and then click Install.

c. On the Install Operator page, under A specific namespace on the cluster select
openshift-ptp. Then, click Install.

2. Optional: Verify that the PTP Operator installed successfully:

a. Switch to the Operators → Installed Operators page.

b. Ensure that PTP Operator is listed in the openshift-ptp project with a Status of
InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the operator does not appear as installed, to troubleshoot further:

Go to the Operators → Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

Go to the Workloads → Pods page and check the logs for pods in the openshift-ptp
project.

10.4. CONFIGURING LINUXPTP SERVICES

The PTP Operator adds the PtpConfig.ptp.openshift.io custom resource definition (CRD) to
OpenShift Container Platform. You can configure the Linuxptp services (ptp4l, phc2sys) by creating a
PtpConfig custom resource (CR) object.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

You must have installed the PTP Operator.

Procedure

1. Create the following PtpConfig CR, and then save the YAML in the <name>-ptp-config.yaml
file. Replace <name> with the name for this configuration.

CHAPTER 10. CONFIGURING PTP HARDWARE

73

1

2

3

4

5

6

7

8

9

10

11

12

13

Specify a name for the PtpConfig CR.

Specify the namespace where the PTP Operator is installed.

Specify an array of one or more profile objects.

Specify the name of a profile object which is used to uniquely identify a profile object.

Specify the network interface name to use by the ptp4l service, for example ens787f1.

Specify system config options for the ptp4l service, for example -s -2. This should not
include the interface name -i <interface> and service config file -f /etc/ptp4l.conf
because these will be automatically appended.

Specify system config options for the phc2sys service, for example -a -r.

Specify an array of one or more recommend objects which define rules on how the profile
should be applied to nodes.

Specify the profile object name defined in the profile section.

Specify the priority with an integer value between 0 and 99. A larger number gets lower
priority, so a priority of 99 is lower than a priority of 10. If a node can be matched with
multiple profiles according to rules defined in the match field, the profile with the higher
priority will be applied to that node.

Specify match rules with nodeLabel or nodeName.

Specify nodeLabel with the key of node.Labels from the node object.

Specify nodeName with node.Name from the node object.

2. Create the CR by running the following command:

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
 name: <name> 1
 namespace: openshift-ptp 2
spec:
 profile: 3
 - name: "profile1" 4
 interface: "ens787f1" 5
 ptp4lOpts: "-s -2" 6
 phc2sysOpts: "-a -r" 7
 recommend: 8
 - profile: "profile1" 9
 priority: 10 10
 match: 11
 - nodeLabel: "node-role.kubernetes.io/worker" 12
 nodeName: "dev-worker-0" 13

$ oc create -f <filename> 1

OpenShift Container Platform 4.7 Networking

74

1

1

2

3

4

Replace <filename> with the name of the file you created in the previous step.

3. Optional: Check that the PtpConfig profile is applied to nodes that match with nodeLabel or
nodeName.

Example output

Profile Name is the name that is applied to node dev-worker-0.

Interface is the PTP device specified in the profile1 interface field. The ptp4l service runs
on this interface.

Ptp4lOpts are the ptp4l sysconfig options specified in profile1 Ptp4lOpts field.

Phc2sysOpts are the phc2sys sysconfig options specified in profile1 Phc2sysOpts field.

$ oc get pods -n openshift-ptp -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
linuxptp-daemon-4xkbb 1/1 Running 0 43m 192.168.111.15 dev-worker-0
<none> <none>
linuxptp-daemon-tdspf 1/1 Running 0 43m 192.168.111.11 dev-master-0
<none> <none>
ptp-operator-657bbb64c8-2f8sj 1/1 Running 0 43m 10.128.0.116 dev-master-0
<none> <none>

$ oc logs linuxptp-daemon-4xkbb -n openshift-ptp
I1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
I1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
I1115 09:41:17.117607 4143292 daemon.go:110] ------------------------------------
I1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1 1
I1115 09:41:17.117616 4143292 daemon.go:102] Interface: ens787f1 2
I1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -s -2 3
I1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r 4
I1115 09:41:17.117626 4143292 daemon.go:116] ------------------------------------
I1115 09:41:18.117934 4143292 daemon.go:186] Starting phc2sys...
I1115 09:41:18.117985 4143292 daemon.go:187] phc2sys cmd: &{Path:/usr/sbin/phc2sys
Args:[/usr/sbin/phc2sys -a -r] Env:[] Dir: Stdin:<nil> Stdout:<nil> Stderr:<nil> ExtraFiles:[]
SysProcAttr:<nil> Process:<nil> ProcessState:<nil> ctx:<nil> lookPathErr:<nil> finished:false
childFiles:[] closeAfterStart:[] closeAfterWait:[] goroutine:[] errch:<nil> waitDone:<nil>}
I1115 09:41:19.118175 4143292 daemon.go:186] Starting ptp4l...
I1115 09:41:19.118209 4143292 daemon.go:187] ptp4l cmd: &{Path:/usr/sbin/ptp4l Args:
[/usr/sbin/ptp4l -m -f /etc/ptp4l.conf -i ens787f1 -s -2] Env:[] Dir: Stdin:<nil> Stdout:<nil>
Stderr:<nil> ExtraFiles:[] SysProcAttr:<nil> Process:<nil> ProcessState:<nil> ctx:<nil>
lookPathErr:<nil> finished:false childFiles:[] closeAfterStart:[] closeAfterWait:[] goroutine:[]
errch:<nil> waitDone:<nil>}
ptp4l[102189.864]: selected /dev/ptp5 as PTP clock
ptp4l[102189.886]: port 1: INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[102189.886]: port 0: INITIALIZING to LISTENING on INIT_COMPLETE

CHAPTER 10. CONFIGURING PTP HARDWARE

75

CHAPTER 11. NETWORK POLICY

11.1. ABOUT NETWORK POLICY

As a cluster administrator, you can define network policies that restrict traffic to pods in your cluster.

11.1.1. About network policy

In a cluster using a Kubernetes Container Network Interface (CNI) plug-in that supports Kubernetes
network policy, network isolation is controlled entirely by NetworkPolicy objects. In OpenShift
Container Platform 4.7, OpenShift SDN supports using network policy in its default network isolation
mode.

NOTE

When using the OpenShift SDN cluster network provider, the following limitations apply
regarding network policies:

Egress network policy as specified by the egress field is not supported.

IPBlock is supported by network policy, but without support for except clauses. If
you create a policy with an IPBlock section that includes an except clause, the
SDN pods log warnings and the entire IPBlock section of that policy is ignored.

WARNING

Network policy does not apply to the host network namespace. Pods with host
networking enabled are unaffected by network policy rules.

By default, all pods in a project are accessible from other pods and network endpoints. To isolate one or
more pods in a project, you can create NetworkPolicy objects in that project to indicate the allowed
incoming connections. Project administrators can create and delete NetworkPolicy objects within their
own project.

If a pod is matched by selectors in one or more NetworkPolicy objects, then the pod will accept only
connections that are allowed by at least one of those NetworkPolicy objects. A pod that is not selected
by any NetworkPolicy objects is fully accessible.

The following example NetworkPolicy objects demonstrate supporting different scenarios:

Deny all traffic:
To make a project deny by default, add a NetworkPolicy object that matches all pods but
accepts no traffic:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default

OpenShift Container Platform 4.7 Networking

76

Only allow connections from the OpenShift Container Platform Ingress Controller:
To make a project allow only connections from the OpenShift Container Platform Ingress
Controller, add the following NetworkPolicy object.

Only accept connections from pods within a project:
To make pods accept connections from other pods in the same project, but reject all other
connections from pods in other projects, add the following NetworkPolicy object:

Only allow HTTP and HTTPS traffic based on pod labels:
To enable only HTTP and HTTPS access to the pods with a specific label (role=frontend in
following example), add a NetworkPolicy object similar to the following:

spec:
 podSelector: {}
 ingress: []

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: ingress
 podSelector: {}
 policyTypes:
 - Ingress

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector: {}

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-http-and-https
spec:
 podSelector:
 matchLabels:
 role: frontend
 ingress:
 - ports:
 - protocol: TCP
 port: 80
 - protocol: TCP
 port: 443

CHAPTER 11. NETWORK POLICY

77

Accept connections by using both namespace and pod selectors:
To match network traffic by combining namespace and pod selectors, you can use a
NetworkPolicy object similar to the following:

NetworkPolicy objects are additive, which means you can combine multiple NetworkPolicy objects
together to satisfy complex network requirements.

For example, for the NetworkPolicy objects defined in previous samples, you can define both allow-
same-namespace and allow-http-and-https policies within the same project. Thus allowing the pods
with the label role=frontend, to accept any connection allowed by each policy. That is, connections on
any port from pods in the same namespace, and connections on ports 80 and 443 from pods in any
namespace.

11.1.2. Optimizations for network policy

Use a network policy to isolate pods that are differentiated from one another by labels within a
namespace.

NOTE

The guidelines for efficient use of network policy rules applies to only the OpenShift SDN
cluster network provider.

It is inefficient to apply NetworkPolicy objects to large numbers of individual pods in a single
namespace. Pod labels do not exist at the IP address level, so a network policy generates a separate
Open vSwitch (OVS) flow rule for every possible link between every pod selected with a podSelector.

For example, if the spec podSelector and the ingress podSelector within a NetworkPolicy object each
match 200 pods, then 40,000 (200*200) OVS flow rules are generated. This might slow down a node.

When designing your network policy, refer to the following guidelines:

Reduce the number of OVS flow rules by using namespaces to contain groups of pods that need
to be isolated.
NetworkPolicy objects that select a whole namespace, by using the namespaceSelector or an
empty podSelector, generate only a single OVS flow rule that matches the VXLAN virtual
network ID (VNID) of the namespace.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-pod-and-namespace-both
spec:
 podSelector:
 matchLabels:
 name: test-pods
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 project: project_name
 podSelector:
 matchLabels:
 name: test-pods

OpenShift Container Platform 4.7 Networking

78

Keep the pods that do not need to be isolated in their original namespace, and move the pods
that require isolation into one or more different namespaces.

Create additional targeted cross-namespace network policies to allow the specific traffic that
you do want to allow from the isolated pods.

11.1.3. Next steps

Creating a network policy

Optional: Defining a default network policy

11.1.4. Additional resources

Projects and namespaces

Configuring multitenant network policy

NetworkPolicy API

11.2. CREATING A NETWORK POLICY

As a user with the admin role, you can create a network policy for a namespace.

11.2.1. Creating a network policy

To define granular rules describing ingress or egress network traffic allowed for namespaces in your
cluster, you can create a network policy.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Prerequisites

Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OVN-Kubernetes network provider or the OpenShift SDN network provider with mode:
NetworkPolicy set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy rule:

a. Create a <policy_name>.yaml file:

$ touch <policy_name>.yaml

CHAPTER 11. NETWORK POLICY

79

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#creating-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#default-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/authentication_and_authorization/#rbac-projects-namespaces_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#multitenant-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/api_reference/#networkpolicy-networking-k8s-io-v1

where:

<policy_name>

Specifies the network policy file name.

b. Define a network policy in the file that you just created, such as in the following examples:

Deny ingress from all pods in all namespaces

Allow ingress from all pods in the same namespace

2. To create the network policy object, enter the following command:

where:

<policy_name>

Specifies the network policy file name.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

11.2.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
spec:
 podSelector:
 ingress: []

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}

$ oc apply -f <policy_name>.yaml -n <namespace>

networkpolicy "default-deny" created

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

OpenShift Container Platform 4.7 Networking

80

1

2

3

4

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

11.3. VIEWING A NETWORK POLICY

As a user with the admin role, you can view a network policy for a namespace.

11.3.1. Viewing network policies

You can examine the network policies in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can view any network policy
in the cluster.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace where the network policy exists.

Procedure

List network policies in a namespace:

To view NetworkPolicy objects defined in a namespace, enter the following command:

 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3
 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

$ oc get networkpolicy

CHAPTER 11. NETWORK POLICY

81

Optional: To examine a specific network policy, enter the following command:

where:

<policy_name>

Specifies the name of the network policy to inspect.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

For example:

Output for oc describe command

11.3.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

$ oc describe networkpolicy <policy_name> -n <namespace>

$ oc describe networkpolicy allow-same-namespace

Name: allow-same-namespace
Namespace: ns1
Created on: 2021-05-24 22:28:56 -0400 EDT
Labels: <none>
Annotations: <none>
Spec:
 PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
 Allowing ingress traffic:
 To Port: <any> (traffic allowed to all ports)
 From:
 PodSelector: <none>
 Not affecting egress traffic
 Policy Types: Ingress

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3
 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

OpenShift Container Platform 4.7 Networking

82

1

2

3

4

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

11.4. EDITING A NETWORK POLICY

As a user with the admin role, you can edit an existing network policy for a namespace.

11.4.1. Editing a network policy

You can edit a network policy in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can edit a network policy in
any namespace in the cluster.

Prerequisites

Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OVN-Kubernetes network provider or the OpenShift SDN network provider with mode:
NetworkPolicy set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace where the network policy exists.

Procedure

1. Optional: To list the network policy objects in a namespace, enter the following command:

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

2. Edit the NetworkPolicy object.

If you saved the network policy definition in a file, edit the file and make any necessary
changes, and then enter the following command.

$ oc get networkpolicy -n <namespace>

$ oc apply -n <namespace> -f <policy_file>.yaml

CHAPTER 11. NETWORK POLICY

83

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

<policy_file>

Specifies the name of the file containing the network policy.

If you need to update the NetworkPolicy object directly, enter the following command:

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

3. Confirm that the NetworkPolicy object is updated.

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

11.4.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

$ oc edit networkpolicy <policy_name> -n <namespace>

$ oc describe networkpolicy <policy_name> -n <namespace>

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3
 matchLabels:
 app: app

OpenShift Container Platform 4.7 Networking

84

1

2

3

4

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

11.4.3. Additional resources

Creating a network policy

11.5. DELETING A NETWORK POLICY

As a user with the admin role, you can delete a network policy from a namespace.

11.5.1. Deleting a network policy

You can delete a network policy in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can delete any network
policy in the cluster.

Prerequisites

Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OVN-Kubernetes network provider or the OpenShift SDN network provider with mode:
NetworkPolicy set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace where the network policy exists.

Procedure

To delete a NetworkPolicy object, enter the following command:

where:

<policy_name>

Specifies the name of the network policy.

 ports: 4
 - protocol: TCP
 port: 27017

$ oc delete networkpolicy <policy_name> -n <namespace>

CHAPTER 11. NETWORK POLICY

85

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#creating-network-policy

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

11.6. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS

As a cluster administrator, you can modify the new project template to automatically include network
policies when you create a new project. If you do not yet have a customized template for new projects,
you must first create one.

11.6.1. Modifying the template for new projects

As a cluster administrator, you can modify the default project template so that new projects are created
using your custom requirements.

To create your own custom project template:

Procedure

1. Log in as a user with cluster-admin privileges.

2. Generate the default project template:

3. Use a text editor to modify the generated template.yaml file by adding objects or modifying
existing objects.

4. The project template must be created in the openshift-config namespace. Load your modified
template:

5. Edit the project configuration resource using the web console or CLI.

Using the web console:

i. Navigate to the Administration → Cluster Settings page.

ii. Click Global Configuration to view all configuration resources.

iii. Find the entry for Project and click Edit YAML.

Using the CLI:

i. Edit the project.config.openshift.io/cluster resource:

6. Update the spec section to include the projectRequestTemplate and name parameters, and

networkpolicy.networking.k8s.io/allow-same-namespace deleted

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

$ oc create -f template.yaml -n openshift-config

$ oc edit project.config.openshift.io/cluster

OpenShift Container Platform 4.7 Networking

86

6. Update the spec section to include the projectRequestTemplate and name parameters, and
set the name of your uploaded project template. The default name is project-request.

Project configuration resource with custom project template

7. After you save your changes, create a new project to verify that your changes were successfully
applied.

11.6.2. Adding network policies to the new project template

As a cluster administrator, you can add network policies to the default template for new projects.
OpenShift Container Platform will automatically create all the NetworkPolicy objects specified in the
template in the project.

Prerequisites

Your cluster uses a default CNI network provider that supports NetworkPolicy objects, such as
the OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default
for OpenShift SDN.

You installed the OpenShift CLI (oc).

You must log in to the cluster with a user with cluster-admin privileges.

You must have created a custom default project template for new projects.

Procedure

1. Edit the default template for a new project by running the following command:

Replace <project_template> with the name of the default template that you configured for
your cluster. The default template name is project-request.

2. In the template, add each NetworkPolicy object as an element to the objects parameter. The
objects parameter accepts a collection of one or more objects.
In the following example, the objects parameter collection includes several NetworkPolicy
objects.

IMPORTANT

For the OVN-Kubernetes network provider plug-in, when the Ingress Controller
is configured to use the HostNetwork endpoint publishing strategy, there is no
supported way to apply network policy so that ingress traffic is allowed and all
other traffic is denied.

apiVersion: config.openshift.io/v1
kind: Project
metadata:
 ...
spec:
 projectRequestTemplate:
 name: <template_name>

$ oc edit template <project_template> -n openshift-config

CHAPTER 11. NETWORK POLICY

87

1

3. Optional: Create a new project to confirm that your network policy objects are created
successfully by running the following commands:

a. Create a new project:

Replace <project> with the name for the project you are creating.

b. Confirm that the network policy objects in the new project template exist in the new project:

11.7. CONFIGURING MULTITENANT ISOLATION WITH NETWORK
POLICY

As a cluster administrator, you can configure your network policies to provide multitenant network
isolation.

NOTE

If you are using the OpenShift SDN cluster network provider, configuring network policies
as described in this section provides network isolation similar to multitenant mode but
with network policy mode set.

objects:
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-from-same-namespace
 spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector: {}
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-from-openshift-ingress
 spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: ingress
 podSelector: {}
 policyTypes:
 - Ingress
...

$ oc new-project <project> 1

$ oc get networkpolicy
NAME POD-SELECTOR AGE
allow-from-openshift-ingress <none> 7s
allow-from-same-namespace <none> 7s

OpenShift Container Platform 4.7 Networking

88

11.7.1. Configuring multitenant isolation by using network policy

You can configure your project to isolate it from pods and services in other project namespaces.

Prerequisites

Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OVN-Kubernetes network provider or the OpenShift SDN network provider with mode:
NetworkPolicy set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

Procedure

1. Create the following NetworkPolicy objects:

a. A policy named allow-from-openshift-ingress.

NOTE

policy-group.network.openshift.io/ingress: "" is the preferred namespace
selector label for OpenShift SDN. You can use the
network.openshift.io/policy-group: ingress namespace selector label, but
this is a legacy label.

b. A policy named allow-from-openshift-monitoring:

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 policy-group.network.openshift.io/ingress: ""
 podSelector: {}
 policyTypes:
 - Ingress
EOF

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-monitoring
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:

CHAPTER 11. NETWORK POLICY

89

c. A policy named allow-same-namespace:

2. Optional: To confirm that the network policies exist in your current project, enter the following
command:

Example output

 network.openshift.io/policy-group: monitoring
 podSelector: {}
 policyTypes:
 - Ingress
EOF

$ cat << EOF| oc create -f -
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}
EOF

$ oc describe networkpolicy

Name: allow-from-openshift-ingress
Namespace: example1
Created on: 2020-06-09 00:28:17 -0400 EDT
Labels: <none>
Annotations: <none>
Spec:
 PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
 Allowing ingress traffic:
 To Port: <any> (traffic allowed to all ports)
 From:
 NamespaceSelector: network.openshift.io/policy-group: ingress
 Not affecting egress traffic
 Policy Types: Ingress

Name: allow-from-openshift-monitoring
Namespace: example1
Created on: 2020-06-09 00:29:57 -0400 EDT
Labels: <none>
Annotations: <none>
Spec:
 PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
 Allowing ingress traffic:
 To Port: <any> (traffic allowed to all ports)
 From:
 NamespaceSelector: network.openshift.io/policy-group: monitoring
 Not affecting egress traffic
 Policy Types: Ingress

OpenShift Container Platform 4.7 Networking

90

11.7.2. Next steps

Defining a default network policy

11.7.3. Additional resources

OpenShift SDN network isolation modes

CHAPTER 11. NETWORK POLICY

91

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#default-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#nw-openshift-sdn-modes_about-openshift-sdn

CHAPTER 12. MULTIPLE NETWORKS

12.1. UNDERSTANDING MULTIPLE NETWORKS

In Kubernetes, container networking is delegated to networking plug-ins that implement the Container
Network Interface (CNI).

OpenShift Container Platform uses the Multus CNI plug-in to allow chaining of CNI plug-ins. During
cluster installation, you configure your default pod network. The default network handles all ordinary
network traffic for the cluster. You can define an additional network based on the available CNI plug-ins
and attach one or more of these networks to your pods. You can define more than one additional
network for your cluster, depending on your needs. This gives you flexibility when you configure pods
that deliver network functionality, such as switching or routing.

12.1.1. Usage scenarios for an additional network

You can use an additional network in situations where network isolation is needed, including data plane
and control plane separation. Isolating network traffic is useful for the following performance and
security reasons:

Performance

You can send traffic on two different planes to manage how much traffic is along each plane.

Security

You can send sensitive traffic onto a network plane that is managed specifically for security
considerations, and you can separate private data that must not be shared between tenants or
customers.

All of the pods in the cluster still use the cluster-wide default network to maintain connectivity across
the cluster. Every pod has an eth0 interface that is attached to the cluster-wide pod network. You can
view the interfaces for a pod by using the oc exec -it <pod_name> -- ip a command. If you add
additional network interfaces that use Multus CNI, they are named net1, net2, …, netN.

To attach additional network interfaces to a pod, you must create configurations that define how the
interfaces are attached. You specify each interface by using a NetworkAttachmentDefinition custom
resource (CR). A CNI configuration inside each of these CRs defines how that interface is created.

12.1.2. Additional networks in OpenShift Container Platform

OpenShift Container Platform provides the following CNI plug-ins for creating additional networks in
your cluster:

bridge: Configure a bridge-based additional network to allow pods on the same host to
communicate with each other and the host.

host-device: Configure a host-device additional network to allow pods access to a physical
Ethernet network device on the host system.

ipvlan: Configure an ipvlan-based additional network to allow pods on a host to communicate
with other hosts and pods on those hosts, similar to a macvlan-based additional network. Unlike
a macvlan-based additional network, each pod shares the same MAC address as the parent
physical network interface.

macvlan: Configure a macvlan-based additional network to allow pods on a host to
communicate with other hosts and pods on those hosts by using a physical network interface.

OpenShift Container Platform 4.7 Networking

92

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#nw-multus-bridge-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#nw-multus-host-device-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#nw-multus-ipvlan-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#nw-multus-macvlan-object_configuring-additional-network

Each pod that is attached to a macvlan-based additional network is provided a unique MAC
address.

SR-IOV: Configure an SR-IOV based additional network to allow pods to attach to a virtual
function (VF) interface on SR-IOV capable hardware on the host system.

12.2. CONFIGURING AN ADDITIONAL NETWORK

As a cluster administrator, you can configure an additional network for your cluster. The following
network types are supported:

Bridge

Host device

IPVLAN

MACVLAN

12.2.1. Approaches to managing an additional network

You can manage the life cycle of an additional network by two approaches. Each approach is mutually
exclusive and you can only use one approach for managing an additional network at a time. For either
approach, the additional network is managed by a Container Network Interface (CNI) plug-in that you
configure.

For an additional network, IP addresses are provisioned through an IP Address Management (IPAM) CNI
plug-in that you configure as part of the additional network. The IPAM plug-in supports a variety of IP
address assignment approaches including DHCP and static assignment.

Modify the Cluster Network Operator (CNO) configuration: The CNO automatically creates and
manages the NetworkAttachmentDefinition object. In addition to managing the object
lifecycle the CNO ensures a DHCP is available for an additional network that uses a DHCP
assigned IP address.

Applying a YAML manifest: You can manage the additional network directly by creating an
NetworkAttachmentDefinition object. This approach allows for the chaining of CNI plug-ins.

12.2.2. Configuration for an additional network attachment

An additional network is configured via the NetworkAttachmentDefinition API in the k8s.cni.cncf.io
API group. The configuration for the API is described in the following table:

Table 12.1. NetworkAttachmentDefinition API fields

Field Type Description

metadata.name string The name for the additional network.

metadata.namespace string The namespace that the object is associated with.

spec.config string The CNI plug-in configuration in JSON format.

CHAPTER 12. MULTIPLE NETWORKS

93

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#about-sriov
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#nw-multus-bridge-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#nw-multus-host-device-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#nw-multus-ipvlan-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#nw-multus-macvlan-object_configuring-additional-network

1

2

3

4

1

2

12.2.2.1. Configuration of an additional network through the Cluster Network Operator

The configuration for an additional network attachment is specified as part of the Cluster Network
Operator (CNO) configuration.

The following YAML describes the configuration parameters for managing an additional network with
the CNO:

Cluster Network Operator configuration

An array of one or more additional network configurations.

The name for the additional network attachment that you are creating. The name must be unique
within the specified namespace.

The namespace to create the network attachment in. If you do not specify a value, then the default
namespace is used.

A CNI plug-in configuration in JSON format.

12.2.2.2. Configuration of an additional network from a YAML manifest

The configuration for an additional network is specified from a YAML configuration file, such as in the
following example:

The name for the additional network attachment that you are creating.

A CNI plug-in configuration in JSON format.

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 # ...
 additionalNetworks: 1
 - name: <name> 2
 namespace: <namespace> 3
 rawCNIConfig: |- 4
 {
 ...
 }
 type: Raw

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: <name> 1
spec:
 config: |- 2
 {
 ...
 }

OpenShift Container Platform 4.7 Networking

94

12.2.3. Configurations for additional network types

The specific configuration fields for additional networks is described in the following sections.

12.2.3.1. Configuration for a bridge additional network

The following object describes the configuration parameters for the bridge CNI plug-in:

Table 12.2. Bridge CNI plug-in JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

name string The value for the name parameter you provided previously for
the CNO configuration.

type string

bridge string Specify the name of the virtual bridge to use. If the bridge
interface does not exist on the host, it is created. The default
value is cni0.

ipam object The configuration object for the IPAM CNI plug-in. The plug-in
manages IP address assignment for the attachment definition.

ipMasq boolean Set to true to enable IP masquerading for traffic that leaves the
virtual network. The source IP address for all traffic is rewritten
to the bridge’s IP address. If the bridge does not have an IP
address, this setting has no effect. The default value is false.

isGateway boolean Set to true to assign an IP address to the bridge. The default
value is false.

isDefaultGatewa
y

boolean Set to true to configure the bridge as the default gateway for
the virtual network. The default value is false. If
isDefaultGateway is set to true, then isGateway is also set
to true automatically.

forceAddress boolean Set to true to allow assignment of a previously assigned IP
address to the virtual bridge. When set to false, if an IPv4
address or an IPv6 address from overlapping subsets is assigned
to the virtual bridge, an error occurs. The default value is false.

hairpinMode boolean Set to true to allow the virtual bridge to send an Ethernet frame
back through the virtual port it was received on. This mode is
also known as reflective relay. The default value is false.

promiscMode boolean Set to true to enable promiscuous mode on the bridge. The
default value is false.

CHAPTER 12. MULTIPLE NETWORKS

95

vlan string Specify a virtual LAN (VLAN) tag as an integer value. By default,
no VLAN tag is assigned.

mtu string Set the maximum transmission unit (MTU) to the specified value.
The default value is automatically set by the kernel.

Field Type Description

12.2.3.1.1. bridge configuration example

The following example configures an additional network named bridge-net:

12.2.3.2. Configuration for a host device additional network

NOTE

Specify your network device by setting only one of the following parameters: device,
hwaddr, kernelpath, or pciBusID.

The following object describes the configuration parameters for the host-device CNI plug-in:

Table 12.3. Host device CNI plug-in JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

name string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plug-in to configure: host-device.

device string Optional: The name of the device, such as eth0.

hwaddr string Optional: The device hardware MAC address.

{
 "cniVersion": "0.3.1",
 "name": "work-network",
 "type": "bridge",
 "isGateway": true,
 "vlan": 2,
 "ipam": {
 "type": "dhcp"
 }
}

OpenShift Container Platform 4.7 Networking

96

kernelpath string Optional: The Linux kernel device path, such as
/sys/devices/pci0000:00/0000:00:1f.6.

pciBusID string Optional: The PCI address of the network device, such as
0000:00:1f.6.

ipam object The configuration object for the IPAM CNI plug-in. The plug-in
manages IP address assignment for the attachment definition.

Field Type Description

12.2.3.2.1. host-device configuration example

The following example configures an additional network named hostdev-net:

12.2.3.3. Configuration for an IPVLAN additional network

The following object describes the configuration parameters for the IPVLAN CNI plug-in:

Table 12.4. IPVLAN CNI plug-in JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

name string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plug-in to configure: ipvlan.

mode string The operating mode for the virtual network. The value must be
l2, l3, or l3s. The default value is l2.

master string The Ethernet interface to associate with the network
attachment. If a master is not specified, the interface for the
default network route is used.

mtu integer Set the maximum transmission unit (MTU) to the specified value.
The default value is automatically set by the kernel.

{
 "cniVersion": "0.3.1",
 "name": "work-network",
 "type": "host-device",
 "device": "eth1",
 "ipam": {
 "type": "dhcp"
 }
}

CHAPTER 12. MULTIPLE NETWORKS

97

ipam object The configuration object for the IPAM CNI plug-in. The plug-in
manages IP address assignment for the attachment definition.

Do not specify dhcp. Configuring IPVLAN with DHCP is not
supported because IPVLAN interfaces share the MAC address
with the host interface.

Field Type Description

12.2.3.3.1. ipvlan configuration example

The following example configures an additional network named ipvlan-net:

12.2.3.4. Configuration for a MACVLAN additional network

The following object describes the configuration parameters for the macvlan CNI plug-in:

Table 12.5. MACVLAN CNI plug-in JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

name string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plug-in to configure: macvlan.

mode string Configures traffic visibility on the virtual network. Must be either
bridge, passthru, private, or vepa. If a value is not provided,
the default value is bridge.

{
 "cniVersion": "0.3.1",
 "name": "work-network",
 "type": "ipvlan",
 "master": "eth1",
 "mode": "l3",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "192.168.10.10/24"
 }
]
 }
}

OpenShift Container Platform 4.7 Networking

98

master string The Ethernet, bonded, or VLAN interface to associate with the
virtual interface. If a value is not specified, then the host
system’s primary Ethernet interface is used.

mtu string The maximum transmission unit (MTU) to the specified value.
The default value is automatically set by the kernel.

ipam object The configuration object for the IPAM CNI plug-in. The plug-in
manages IP address assignment for the attachment definition.

Field Type Description

12.2.3.4.1. macvlan configuration example

The following example configures an additional network named macvlan-net:

12.2.4. Configuration of IP address assignment for an additional network

The IP address management (IPAM) Container Network Interface (CNI) plug-in provides IP addresses
for other CNI plug-ins.

You can use the following IP address assignment types:

Static assignment.

Dynamic assignment through a DHCP server. The DHCP server you specify must be reachable
from the additional network.

Dynamic assignment through the Whereabouts IPAM CNI plug-in.

12.2.4.1. Static IP address assignment configuration

The following table describes the configuration for static IP address assignment:

Table 12.6. ipam static configuration object

Field Type Description

type string The IPAM address type. The value static is required.

{
 "cniVersion": "0.3.1",
 "name": "macvlan-net",
 "type": "macvlan",
 "master": "eth1",
 "mode": "bridge",
 "ipam": {
 "type": "dhcp"
 }
}

CHAPTER 12. MULTIPLE NETWORKS

99

addresses array An array of objects specifying IP addresses to assign to the
virtual interface. Both IPv4 and IPv6 IP addresses are supported.

routes array An array of objects specifying routes to configure inside the pod.

dns array Optional: An array of objects specifying the DNS configuration.

Field Type Description

The addresses array requires objects with the following fields:

Table 12.7. ipam.addresses[] array

Field Type Description

address string An IP address and network prefix that you specify. For example,
if you specify 10.10.21.10/24, then the additional network is
assigned an IP address of 10.10.21.10 and the netmask is
255.255.255.0.

gateway string The default gateway to route egress network traffic to.

Table 12.8. ipam.routes[] array

Field Type Description

dst string The IP address range in CIDR format, such as 192.168.17.0/24
or 0.0.0.0/0 for the default route.

gw string The gateway where network traffic is routed.

Table 12.9. ipam.dns object

Field Type Description

nameservers array An of array of one or more IP addresses for to send DNS queries
to.

domain array The default domain to append to a hostname. For example, if
the domain is set to example.com, a DNS lookup query for
example-host is rewritten as example-host.example.com.

search array An array of domain names to append to an unqualified
hostname, such as example-host, during a DNS lookup query.

Static IP address assignment configuration example

OpenShift Container Platform 4.7 Networking

100

12.2.4.2. Dynamic IP address (DHCP) assignment configuration

The following JSON describes the configuration for dynamic IP address address assignment with DHCP.

RENEWAL OF DHCP LEASES

A pod obtains its original DHCP lease when it is created. The lease must be periodically
renewed by a minimal DHCP server deployment running on the cluster.

To trigger the deployment of the DHCP server, you must create a shim network
attachment by editing the Cluster Network Operator configuration, as in the following
example:

Example shim network attachment definition

Table 12.10. ipam DHCP configuration object

Field Type Description

type string The IPAM address type. The value dhcp is required.

{
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.7/24"
 }
]
 }
}

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks:
 - name: dhcp-shim
 namespace: default
 type: Raw
 rawCNIConfig: |-
 {
 "name": "dhcp-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "ipam": {
 "type": "dhcp"
 }
 }
 # ...

CHAPTER 12. MULTIPLE NETWORKS

101

Dynamic IP address (DHCP) assignment configuration example

12.2.4.3. Dynamic IP address assignment configuration with Whereabouts

The Whereabouts CNI plug-in allows the dynamic assignment of an IP address to an additional network
without the use of a DHCP server.

The following table describes the configuration for dynamic IP address assignment with Whereabouts:

Table 12.11. ipam whereabouts configuration object

Field Type Description

type string The IPAM address type. The value whereabouts is required.

range string An IP address and range in CIDR notation. IP addresses are
assigned from within this range of addresses.

exclude array Optional: A list of zero ore more IP addresses and ranges in
CIDR notation. IP addresses within an excluded address range
are not assigned.

Dynamic IP address assignment configuration example that uses Whereabouts

12.2.5. Creating an additional network attachment with the Cluster Network
Operator

The Cluster Network Operator (CNO) manages additional network definitions. When you specify an
additional network to create, the CNO creates the NetworkAttachmentDefinition object automatically.

IMPORTANT

Do not edit the NetworkAttachmentDefinition objects that the Cluster Network
Operator manages. Doing so might disrupt network traffic on your additional network.

{
 "ipam": {
 "type": "dhcp"
 }
}

{
 "ipam": {
 "type": "whereabouts",
 "range": "192.0.2.192/27",
 "exclude": [
 "192.0.2.192/30",
 "192.0.2.196/32"
]
 }
}

OpenShift Container Platform 4.7 Networking

102

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. To edit the CNO configuration, enter the following command:

2. Modify the CR that you are creating by adding the configuration for the additional network that
you are creating, as in the following example CR.

3. Save your changes and quit the text editor to commit your changes.

Verification

Confirm that the CNO created the NetworkAttachmentDefinition object by running the
following command. There might be a delay before the CNO creates the object.

where:

<namespace>

Specifies the namespace for the network attachment that you added to the CNO

$ oc edit networks.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 # ...
 additionalNetworks:
 - name: tertiary-net
 namespace: project2
 type: Raw
 rawCNIConfig: |-
 {
 "cniVersion": "0.3.1",
 "name": "tertiary-net",
 "type": "ipvlan",
 "master": "eth1",
 "mode": "l2",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "192.168.1.23/24"
 }
]
 }
 }

$ oc get network-attachment-definitions -n <namespace>

CHAPTER 12. MULTIPLE NETWORKS

103

Specifies the namespace for the network attachment that you added to the CNO
configuration.

Example output

12.2.6. Creating an additional network attachment by applying a YAML manifest

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a YAML file with your additional network configuration, such as in the following example:

2. To create the additional network, enter the following command:

where:

<file>

Specifies the name of the file contained the YAML manifest.

12.3. ABOUT VIRTUAL ROUTING AND FORWARDING

12.3.1. About virtual routing and forwarding

Virtual routing and forwarding (VRF) devices combined with IP rules provide the ability to create virtual
routing and forwarding domains. VRF reduces the number of permissions needed by CNF, and provides
increased visibility of the network topology of secondary networks. VRF is used to provide multi-tenancy

NAME AGE
test-network-1 14m

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: next-net
spec:
 config: |-
 {
 "cniVersion": "0.3.1",
 "name": "work-network",
 "type": "host-device",
 "device": "eth1",
 "ipam": {
 "type": "dhcp"
 }
 }

$ oc apply -f <file>.yaml

OpenShift Container Platform 4.7 Networking

104

1

functionality, for example, where each tenant has its own unique routing tables and requires different
default gateways.

Processes can bind a socket to the VRF device. Packets through the binded socket use the routing table
associated with the VRF device. An important feature of VRF is that it impacts only OSI model layer 3
traffic and above so L2 tools, such as LLDP, are not affected. This allows higher priority IP rules such as
policy based routing to take precedence over the VRF device rules directing specific traffic.

12.3.1.1. Benefits of secondary networks for pods for telecommunications operators

In telecommunications use cases, each CNF can potentially be connected to multiple different networks
sharing the same address space. These secondary networks can potentially conflict with the cluster’s
main network CIDR. Using the CNI VRF plug-in, network functions can be connected to different
customers' infrastructure using the same IP address, keeping different customers isolated. IP addresses
are overlapped with OpenShift Container Platform IP space. The CNI VRF plug-in also reduces the
number of permissions needed by CNF and increases the visibility of network topologies of secondary
networks.

12.4. ATTACHING A POD TO AN ADDITIONAL NETWORK

As a cluster user you can attach a pod to an additional network.

12.4.1. Adding a pod to an additional network

You can add a pod to an additional network. The pod continues to send normal cluster-related network
traffic over the default network.

When a pod is created additional networks are attached to it. However, if a pod already exists, you
cannot attach additional networks to it.

The pod must be in the same namespace as the additional network.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster.

Procedure

1. Add an annotation to the Pod object. Only one of the following annotation formats can be used:

a. To attach an additional network without any customization, add an annotation with the
following format. Replace <network> with the name of the additional network to associate
with the pod:

To specify more than one additional network, separate each network with a comma. Do
not include whitespace between the comma. If you specify the same additional
network multiple times, that pod will have multiple network interfaces attached to that
network.

b. To attach an additional network with customizations, add an annotation with the following

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: <network>[,<network>,...] 1

CHAPTER 12. MULTIPLE NETWORKS

105

1

2

3

b. To attach an additional network with customizations, add an annotation with the following
format:

Specify the name of the additional network defined by a
NetworkAttachmentDefinition object.

Specify the namespace where the NetworkAttachmentDefinition object is defined.

Optional: Specify an override for the default route, such as 192.168.17.1.

2. To create the pod, enter the following command. Replace <name> with the name of the pod.

3. Optional: To Confirm that the annotation exists in the Pod CR, enter the following command,
replacing <name> with the name of the pod.

In the following example, the example-pod pod is attached to the net1 additional network:

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "<network>", 1
 "namespace": "<namespace>", 2
 "default-route": ["<default-route>"] 3
 }
]

$ oc create -f <name>.yaml

$ oc get pod <name> -o yaml

$ oc get pod example-pod -o yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: macvlan-bridge
 k8s.v1.cni.cncf.io/networks-status: |- 1
 [{
 "name": "openshift-sdn",
 "interface": "eth0",
 "ips": [
 "10.128.2.14"
],
 "default": true,
 "dns": {}
 },{
 "name": "macvlan-bridge",
 "interface": "net1",
 "ips": [
 "20.2.2.100"
],
 "mac": "22:2f:60:a5:f8:00",

OpenShift Container Platform 4.7 Networking

106

1

1

The k8s.v1.cni.cncf.io/networks-status parameter is a JSON array of objects. Each
object describes the status of an additional network attached to the pod. The annotation
value is stored as a plain text value.

12.4.1.1. Specifying pod-specific addressing and routing options

When attaching a pod to an additional network, you may want to specify further properties about that
network in a particular pod. This allows you to change some aspects of routing, as well as specify static
IP addresses and MAC addresses. To accomplish this, you can use the JSON formatted annotations.

Prerequisites

The pod must be in the same namespace as the additional network.

Install the OpenShift Command-line Interface (oc).

You must log in to the cluster.

Procedure

To add a pod to an additional network while specifying addressing and/or routing options, complete the
following steps:

1. Edit the Pod resource definition. If you are editing an existing Pod resource, run the following
command to edit its definition in the default editor. Replace <name> with the name of the Pod
resource to edit.

2. In the Pod resource definition, add the k8s.v1.cni.cncf.io/networks parameter to the pod
metadata mapping. The k8s.v1.cni.cncf.io/networks accepts a JSON string of a list of objects
that reference the name of NetworkAttachmentDefinition custom resource (CR) names in
addition to specifying additional properties.

Replace <network> with a JSON object as shown in the following examples. The single
quotes are required.

3. In the following example the annotation specifies which network attachment will have the
default route, using the default-route parameter.

 "dns": {}
 }]
 name: example-pod
 namespace: default
spec:
 ...
status:
 ...

$ oc edit pod <name>

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: '[<network>[,<network>,...]]' 1

CHAPTER 12. MULTIPLE NETWORKS

107

1

2

The name key is the name of the additional network to associate with the pod.

The default-route key specifies a value of a gateway for traffic to be routed over if no
other routing entry is present in the routing table. If more than one default-route key is
specified, this will cause the pod to fail to become active.

The default route will cause any traffic that is not specified in other routes to be routed to the gateway.

IMPORTANT

Setting the default route to an interface other than the default network interface for
OpenShift Container Platform may cause traffic that is anticipated for pod-to-pod
traffic to be routed over another interface.

To verify the routing properties of a pod, the oc command may be used to execute the ip command
within a pod.

NOTE

You may also reference the pod’s k8s.v1.cni.cncf.io/networks-status to see which
additional network has been assigned the default route, by the presence of the default-
route key in the JSON-formatted list of objects.

To set a static IP address or MAC address for a pod you can use the JSON formatted annotations. This
requires you create networks that specifically allow for this functionality. This can be specified in a
rawCNIConfig for the CNO.

1. Edit the CNO CR by running the following command:

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: '
 {
 "name": "net1"
 },
 {
 "name": "net2", 1
 "default-route": ["192.0.2.1"] 2
 }'
spec:
 containers:
 - name: example-pod
 command: ["/bin/bash", "-c", "sleep 2000000000000"]
 image: centos/tools

$ oc exec -it <pod_name> -- ip route

$ oc edit networks.operator.openshift.io cluster

OpenShift Container Platform 4.7 Networking

108

1

2

3

1

2

3

4

5

The following YAML describes the configuration parameters for the CNO:

Cluster Network Operator YAML configuration

Specify a name for the additional network attachment that you are creating. The name must be
unique within the specified namespace.

Specify the namespace to create the network attachment in. If you do not specify a value, then the
default namespace is used.

Specify the CNI plug-in configuration in JSON format, which is based on the following template.

The following object describes the configuration parameters for utilizing static MAC address and IP
address using the macvlan CNI plug-in:

macvlan CNI plug-in JSON configuration object using static IP and MAC address

Specifies the name for the additional network attachment to create. The name must be unique
within the specified namespace.

Specifies an array of CNI plug-in configurations. The first object specifies a macvlan plug-in
configuration and the second object specifies a tuning plug-in configuration.

Specifies that a request is made to enable the static IP address functionality of the CNI plug-in
runtime configuration capabilities.

Specifies the interface that the macvlan plug-in uses.

Specifies that a request is made to enable the static MAC address functionality of a CNI plug-in.

name: <name> 1
namespace: <namespace> 2
rawCNIConfig: '{ 3
 ...
}'
type: Raw

{
 "cniVersion": "0.3.1",
 "name": "<name>", 1
 "plugins": [{ 2
 "type": "macvlan",
 "capabilities": { "ips": true }, 3
 "master": "eth0", 4
 "mode": "bridge",
 "ipam": {
 "type": "static"
 }
 }, {
 "capabilities": { "mac": true }, 5
 "type": "tuning"
 }]
}

CHAPTER 12. MULTIPLE NETWORKS

109

1

2

3

The above network attachment can be referenced in a JSON formatted annotation, along with keys to
specify which static IP and MAC address will be assigned to a given pod.

Edit the pod with:

macvlan CNI plug-in JSON configuration object using static IP and MAC address

Use the <name> as provided when creating the rawCNIConfig above.

Provide an IP address including the subnet mask.

Provide the MAC address.

NOTE

Static IP addresses and MAC addresses do not have to be used at the same time, you
may use them individually, or together.

To verify the IP address and MAC properties of a pod with additional networks, use the oc command to
execute the ip command within a pod.

12.5. REMOVING A POD FROM AN ADDITIONAL NETWORK

As a cluster user you can remove a pod from an additional network.

12.5.1. Removing a pod from an additional network

You can remove a pod from an additional network only by deleting the pod.

Prerequisites

An additional network is attached to the pod.

Install the OpenShift CLI (oc).

$ oc edit pod <name>

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: '[
 {
 "name": "<name>", 1
 "ips": ["192.0.2.205/24"], 2
 "mac": "CA:FE:C0:FF:EE:00" 3
 }
]'

$ oc exec -it <pod_name> -- ip a

OpenShift Container Platform 4.7 Networking

110

Log in to the cluster.

Procedure

To delete the pod, enter the following command:

<name> is the name of the pod.

<namespace> is the namespace that contains the pod.

12.6. EDITING AN ADDITIONAL NETWORK

As a cluster administrator you can modify the configuration for an existing additional network.

12.6.1. Modifying an additional network attachment definition

As a cluster administrator, you can make changes to an existing additional network. Any existing pods
attached to the additional network will not be updated.

Prerequisites

You have configured an additional network for your cluster.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

To edit an additional network for your cluster, complete the following steps:

1. Run the following command to edit the Cluster Network Operator (CNO) CR in your default text
editor:

2. In the additionalNetworks collection, update the additional network with your changes.

3. Save your changes and quit the text editor to commit your changes.

4. Optional: Confirm that the CNO updated the NetworkAttachmentDefinition object by running
the following command. Replace <network-name> with the name of the additional network to
display. There might be a delay before the CNO updates the NetworkAttachmentDefinition
object to reflect your changes.

For example, the following console output displays a NetworkAttachmentDefinition object that
is named net1:

$ oc delete pod <name> -n <namespace>

$ oc edit networks.operator.openshift.io cluster

$ oc get network-attachment-definitions <network-name> -o yaml

$ oc get network-attachment-definitions net1 -o go-template='{{printf "%s\n" .spec.config}}'
{ "cniVersion": "0.3.1", "type": "macvlan",

CHAPTER 12. MULTIPLE NETWORKS

111

1

12.7. REMOVING AN ADDITIONAL NETWORK

As a cluster administrator you can remove an additional network attachment.

12.7.1. Removing an additional network attachment definition

As a cluster administrator, you can remove an additional network from your OpenShift Container
Platform cluster. The additional network is not removed from any pods it is attached to.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

To remove an additional network from your cluster, complete the following steps:

1. Edit the Cluster Network Operator (CNO) in your default text editor by running the following
command:

2. Modify the CR by removing the configuration from the additionalNetworks collection for the
network attachment definition you are removing.

If you are removing the configuration mapping for the only additional network attachment
definition in the additionalNetworks collection, you must specify an empty collection.

3. Save your changes and quit the text editor to commit your changes.

4. Optional: Confirm that the additional network CR was deleted by running the following
command:

12.8. ASSIGNING A SECONDARY NETWORK TO A VRF

"master": "ens5",
"mode": "bridge",
"ipam": {"type":"static","routes":[{"dst":"0.0.0.0/0","gw":"10.128.2.1"}],"addresses":
[{"address":"10.128.2.100/23","gateway":"10.128.2.1"}],"dns":{"nameservers":
["172.30.0.10"],"domain":"us-west-2.compute.internal","search":["us-west-
2.compute.internal"]}} }

$ oc edit networks.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks: [] 1

$ oc get network-attachment-definition --all-namespaces

OpenShift Container Platform 4.7 Networking

112

IMPORTANT

CNI VRF plug-in is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

12.8.1. Assigning a secondary network to a VRF

As a cluster administrator, you can configure an additional network for your VRF domain by using the
CNI VRF plug-in. The virtual network created by this plug-in is associated with a physical interface that
you specify.

NOTE

Applications that use VRFs need to bind to a specific device. The common usage is to use
the SO_BINDTODEVICE option for a socket. SO_BINDTODEVICE binds the socket to a
device that is specified in the passed interface name, for example, eth1. To use
SO_BINDTODEVICE, the application must have CAP_NET_RAW capabilities.

12.8.1.1. Creating an additional network attachment with the CNI VRF plug-in

The Cluster Network Operator (CNO) manages additional network definitions. When you specify an
additional network to create, the CNO creates the NetworkAttachmentDefinition custom resource
(CR) automatically.

NOTE

Do not edit the NetworkAttachmentDefinition CRs that the Cluster Network Operator
manages. Doing so might disrupt network traffic on your additional network.

To create an additional network attachment with the CNI VRF plug-in, perform the following procedure.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in to the OpenShift cluster as a user with cluster-admin privileges.

Procedure

1. Create the Network custom resource (CR) for the additional network attachment and insert the
rawCNIConfig configuration for the additional network, as in the following example CR. Save
the YAML as the file additional-network-attachment.yaml.

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
 spec:

CHAPTER 12. MULTIPLE NETWORKS

113

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

plugins must be a list. The first item in the list must be the secondary network
underpinning the VRF network. The second item in the list is the VRF plugin configuration.

type must be set to vrf.

vrfname is the name of the VRF that the interface is assigned to. If it does not exist in the
pod, it is created.

Optional. table is the routing table ID. By default, the tableid parameter is used. If it is not
specified, the CNI assigns a free routing table ID to the VRF.

NOTE

VRF functions correctly only when the resource is of type netdevice.

2. Create the Network resource:

3. Confirm that the CNO created the NetworkAttachmentDefinition CR by running the following
command. Replace <namespace> with the namespace that you specified when configuring the
network attachment, for example, additional-network-1.

Example output

 additionalNetworks:
 - name: test-network-1
 namespace: additional-network-1
 type: Raw
 rawCNIConfig: '{
 "cniVersion": "0.3.1",
 "name": "macvlan-vrf",
 "plugins": [1
 {
 "type": "macvlan", 2
 "master": "eth1",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.23/24"
 }
]
 }
 },
 {
 "type": "vrf",
 "vrfname": "example-vrf-name", 3
 "table": 1001 4
 }]
 }'

$ oc create -f additional-network-attachment.yaml

$ oc get network-attachment-definitions -n <namespace>

OpenShift Container Platform 4.7 Networking

114

NOTE

There might be a delay before the CNO creates the CR.

Verifying that the additional VRF network attachment is successful

To verify that the VRF CNI is correctly configured and the additional network attachment is attached, do
the following:

1. Create a network that uses the VRF CNI.

2. Assign the network to a pod.

3. Verify that the pod network attachment is connected to the VRF additional network. Remote
shell into the pod and run the following command:

Example output

4. Confirm the VRF interface is master of the secondary interface:

Example output

NAME AGE
additional-network-1 14m

$ ip vrf show

Name Table

red 10

$ ip link

5: net1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master red
state UP mode

CHAPTER 12. MULTIPLE NETWORKS

115

CHAPTER 13. HARDWARE NETWORKS

13.1. ABOUT SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) HARDWARE
NETWORKS

The Single Root I/O Virtualization (SR-IOV) specification is a standard for a type of PCI device
assignment that can share a single device with multiple pods.

SR-IOV enables you to segment a compliant network device, recognized on the host node as a physical
function (PF), into multiple virtual functions (VFs). The VF is used like any other network device. The
SR-IOV device driver for the device determines how the VF is exposed in the container:

netdevice driver: A regular kernel network device in the netns of the container

vfio-pci driver: A character device mounted in the container

You can use SR-IOV network devices with additional networks on your OpenShift Container Platform
cluster installed on bare metal or Red Hat OpenStack Platform (RHOSP) infrastructure for applications
that require high bandwidth or low latency.

You can enable SR-IOV on a node by using the following command:

13.1.1. Components that manage SR-IOV network devices

The SR-IOV Network Operator creates and manages the components of the SR-IOV stack. It performs
the following functions:

Orchestrates discovery and management of SR-IOV network devices

Generates NetworkAttachmentDefinition custom resources for the SR-IOV Container
Network Interface (CNI)

Creates and updates the configuration of the SR-IOV network device plug-in

Creates node specific SriovNetworkNodeState custom resources

Updates the spec.interfaces field in each SriovNetworkNodeState custom resource

The Operator provisions the following components:

SR-IOV network configuration daemon

A DaemonSet that is deployed on worker nodes when the SR-IOV Operator starts. The daemon is
responsible for discovering and initializing SR-IOV network devices in the cluster.

SR-IOV Operator webhook

A dynamic admission controller webhook that validates the Operator custom resource and sets
appropriate default values for unset fields.

SR-IOV Network resources injector

A dynamic admission controller webhook that provides functionality for patching Kubernetes pod
specifications with requests and limits for custom network resources such as SR-IOV VFs. The SR-
IOV network resources injector adds the resource field to only the first container in a pod
automatically.

$ oc label node <node_name> feature.node.kubernetes.io/network-sriov.capable="true"

OpenShift Container Platform 4.7 Networking

116

SR-IOV network device plug-in

A device plug-in that discovers, advertises, and allocates SR-IOV network virtual function (VF)
resources. Device plug-ins are used in Kubernetes to enable the use of limited resources, typically in
physical devices. Device plug-ins give the Kubernetes scheduler awareness of resource availability, so
that the scheduler can schedule pods on nodes with sufficient resources.

SR-IOV CNI plug-in

A CNI plug-in that attaches VF interfaces allocated from the SR-IOV device plug-in directly into a
pod.

SR-IOV InfiniBand CNI plug-in

A CNI plug-in that attaches InfiniBand (IB) VF interfaces allocated from the SR-IOV device plug-in
directly into a pod.

NOTE

The SR-IOV Network resources injector and SR-IOV Network Operator webhook are
enabled by default and can be disabled by editing the default SriovOperatorConfig CR.

13.1.1.1. Supported platforms

The SR-IOV Network Operator is supported on the following platforms:

Bare metal

Red Hat OpenStack Platform (RHOSP)

13.1.1.2. Supported devices

OpenShift Container Platform supports the following network interface controllers:

Table 13.1. Supported network interface controllers

Manufacturer Model Vendor ID Device ID

Intel X710 8086 1572

Intel XXV710 8086 158b

Mellanox MT27700 Family [ConnectX‑4] 15b3 1013

Mellanox MT27710 Family [ConnectX‑4 Lx] 15b3 1015

Mellanox MT27800 Family [ConnectX‑5] 15b3 1017

Mellanox MT28908 Family [ConnectX‑6] 15b3 101b

13.1.1.3. Automated discovery of SR-IOV network devices

The SR-IOV Network Operator searches your cluster for SR-IOV capable network devices on worker
nodes. The Operator creates and updates a SriovNetworkNodeState custom resource (CR) for each
worker node that provides a compatible SR-IOV network device.

The CR is assigned the same name as the worker node. The status.interfaces list provides information

CHAPTER 13. HARDWARE NETWORKS

117

The CR is assigned the same name as the worker node. The status.interfaces list provides information
about the network devices on a node.

IMPORTANT

Do not modify a SriovNetworkNodeState object. The Operator creates and manages
these resources automatically.

13.1.1.3.1. Example SriovNetworkNodeState object

The following YAML is an example of a SriovNetworkNodeState object created by the SR-IOV Network
Operator:

An SriovNetworkNodeState object

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodeState
metadata:
 name: node-25 1
 namespace: openshift-sriov-network-operator
 ownerReferences:
 - apiVersion: sriovnetwork.openshift.io/v1
 blockOwnerDeletion: true
 controller: true
 kind: SriovNetworkNodePolicy
 name: default
spec:
 dpConfigVersion: "39824"
status:
 interfaces: 2
 - deviceID: "1017"
 driver: mlx5_core
 mtu: 1500
 name: ens785f0
 pciAddress: "0000:18:00.0"
 totalvfs: 8
 vendor: 15b3
 - deviceID: "1017"
 driver: mlx5_core
 mtu: 1500
 name: ens785f1
 pciAddress: "0000:18:00.1"
 totalvfs: 8
 vendor: 15b3
 - deviceID: 158b
 driver: i40e
 mtu: 1500
 name: ens817f0
 pciAddress: 0000:81:00.0
 totalvfs: 64
 vendor: "8086"
 - deviceID: 158b
 driver: i40e
 mtu: 1500
 name: ens817f1

OpenShift Container Platform 4.7 Networking

118

1

2

The value of the name field is the same as the name of the worker node.

The interfaces stanza includes a list of all of the SR-IOV devices discovered by the Operator on
the worker node.

13.1.1.4. Example use of a virtual function in a pod

You can run a remote direct memory access (RDMA) or a Data Plane Development Kit (DPDK)
application in a pod with SR-IOV VF attached.

This example shows a pod using a virtual function (VF) in RDMA mode:

Pod spec that uses RDMA mode

The following example shows a pod with a VF in DPDK mode:

Pod spec that uses DPDK mode

 pciAddress: 0000:81:00.1
 totalvfs: 64
 vendor: "8086"
 - deviceID: 158b
 driver: i40e
 mtu: 1500
 name: ens803f0
 pciAddress: 0000:86:00.0
 totalvfs: 64
 vendor: "8086"
 syncStatus: Succeeded

apiVersion: v1
kind: Pod
metadata:
 name: rdma-app
 annotations:
 k8s.v1.cni.cncf.io/networks: sriov-rdma-mlnx
spec:
 containers:
 - name: testpmd
 image: <RDMA_image>
 imagePullPolicy: IfNotPresent
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"]
 command: ["sleep", "infinity"]

apiVersion: v1
kind: Pod
metadata:
 name: dpdk-app
 annotations:
 k8s.v1.cni.cncf.io/networks: sriov-dpdk-net
spec:

CHAPTER 13. HARDWARE NETWORKS

119

13.1.1.5. DPDK library for use with container applications

An optional library, app-netutil, provides several API methods for gathering network information about a
pod from within a container running within that pod.

This library is intended to assist with integrating SR-IOV virtual functions (VFs) in Data Plane
Development Kit (DPDK) mode into the container. The library provides both a Golang API and a C API.

Currently there are three API methods implemented:

GetCPUInfo()

This function determines which CPUs are available to the container and returns the list to the caller.

GetHugepages()

This function determines the amount of hugepage memory requested in the Pod spec for each
container and returns the values to the caller.

NOTE

Exposing hugepages via Kubernetes Downward API is an alpha feature in Kubernetes
1.20 and is not enabled in OpenShift Container Platform. The API can be tested by
enabling the feature gate, FEATURE_GATES="DownwardAPIHugePages=true" on
Kubernetes 1.20 or greater.

GetInterfaces()

This function determines the set of interfaces in the container and returns the list, along with the
interface type and type specific data.

There is also a sample Docker image, dpdk-app-centos, which can run one of the following DPDK

 containers:
 - name: testpmd
 image: <DPDK_image>
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"]
 volumeMounts:
 - mountPath: /dev/hugepages
 name: hugepage
 resources:
 limits:
 memory: "1Gi"
 cpu: "2"
 hugepages-1Gi: "4Gi"
 requests:
 memory: "1Gi"
 cpu: "2"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

OpenShift Container Platform 4.7 Networking

120

https://github.com/openshift/app-netutil

sample applications based on an environmental variable in the pod-spec: l2fwd, l3wd or testpmd. This
Docker image provides an example of integrating the app-netutil into the container image itself. The
library can also integrate into an init-container which collects the required data and passes the data to
an existing DPDK workload.

13.1.2. Next steps

Installing the SR-IOV Network Operator

Optional: Configuring the SR-IOV Network Operator

Configuring an SR-IOV network device

If you use OpenShift Virtualization: Configuring an SR-IOV network device for virtual machines

Configuring an SR-IOV network attachment

Adding a pod to an SR-IOV additional network

13.2. INSTALLING THE SR-IOV NETWORK OPERATOR

You can install the Single Root I/O Virtualization (SR-IOV) Network Operator on your cluster to manage
SR-IOV network devices and network attachments.

13.2.1. Installing SR-IOV Network Operator

As a cluster administrator, you can install the SR-IOV Network Operator by using the OpenShift
Container Platform CLI or the web console.

13.2.1.1. CLI: Installing the SR-IOV Network Operator

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

A cluster installed on bare-metal hardware with nodes that have hardware that supports SR-
IOV.

Install the OpenShift CLI (oc).

An account with cluster-admin privileges.

Procedure

1. To create the openshift-sriov-network-operator namespace, enter the following command:

2. To create an OperatorGroup CR, enter the following command:

$ cat << EOF| oc create -f -
apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sriov-network-operator
EOF

CHAPTER 13. HARDWARE NETWORKS

121

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#installing-sriov-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-sriov-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-sriov-device
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/openshift_virtualization/#virt-configuring-sriov-device-for-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-sriov-net-attach
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#add-pod

3. Subscribe to the SR-IOV Network Operator.

a. Run the following command to get the OpenShift Container Platform major and minor
version. It is required for the channel value in the next step.

b. To create a Subscription CR for the SR-IOV Network Operator, enter the following
command:

4. To verify that the Operator is installed, enter the following command:

Example output

13.2.1.2. Web console: Installing the SR-IOV Network Operator

As a cluster administrator, you can install the Operator using the web console.

NOTE

You must create the operator group by using the CLI.

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: sriov-network-operators
 namespace: openshift-sriov-network-operator
spec:
 targetNamespaces:
 - openshift-sriov-network-operator
EOF

$ OC_VERSION=$(oc version -o yaml | grep openshiftVersion | \
 grep -o '[0-9]*[.][0-9]*' | head -1)

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: sriov-network-operator-subscription
 namespace: openshift-sriov-network-operator
spec:
 channel: "${OC_VERSION}"
 name: sriov-network-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc get csv -n openshift-sriov-network-operator \
 -o custom-columns=Name:.metadata.name,Phase:.status.phase

Name Phase
sriov-network-operator.4.4.0-202006160135 Succeeded

OpenShift Container Platform 4.7 Networking

122

Prerequisites

A cluster installed on bare-metal hardware with nodes that have hardware that supports SR-
IOV.

Install the OpenShift CLI (oc).

An account with cluster-admin privileges.

Procedure

1. Create a namespace for the SR-IOV Network Operator:

a. In the OpenShift Container Platform web console, click Administration → Namespaces.

b. Click Create Namespace.

c. In the Name field, enter openshift-sriov-network-operator, and then click Create.

2. Install the SR-IOV Network Operator:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Select SR-IOV Network Operator from the list of available Operators, and then click
Install.

c. On the Install Operator page, under A specific namespace on the cluster, select
openshift-sriov-network-operator.

d. Click Install.

3. Verify that the SR-IOV Network Operator is installed successfully:

a. Navigate to the Operators → Installed Operators page.

b. Ensure that SR-IOV Network Operator is listed in the openshift-sriov-network-operator
project with a Status of InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the operator does not appear as installed, to troubleshoot further:

Inspect the Operator Subscriptions and Install Plans tabs for any failure or errors
under Status.

Navigate to the Workloads → Pods page and check the logs for pods in the openshift-
sriov-network-operator project.

13.2.2. Next steps

Optional: Configuring the SR-IOV Network Operator

CHAPTER 13. HARDWARE NETWORKS

123

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-sriov-operator

13.3. CONFIGURING THE SR-IOV NETWORK OPERATOR

The Single Root I/O Virtualization (SR-IOV) Network Operator manages the SR-IOV network devices
and network attachments in your cluster.

13.3.1. Configuring the SR-IOV Network Operator

IMPORTANT

Modifying the SR-IOV Network Operator configuration is not normally necessary. The
default configuration is recommended for most use cases. Complete the steps to modify
the relevant configuration only if the default behavior of the Operator is not compatible
with your use case.

The SR-IOV Network Operator adds the SriovOperatorConfig.sriovnetwork.openshift.io
CustomResourceDefinition resource. The operator automatically creates a SriovOperatorConfig custom
resource (CR) named default in the openshift-sriov-network-operator namespace.

NOTE

The default CR contains the SR-IOV Network Operator configuration for your cluster. To
change the operator configuration, you must modify this CR.

The SriovOperatorConfig object provides several fields for configuring the operator:

enableInjector allows project administrators to enable or disable the Network Resources
Injector daemon set.

enableOperatorWebhook allows project administrators to enable or disable the Operator
Admission Controller webhook daemon set.

configDaemonNodeSelector allows project administrators to schedule the SR-IOV Network
Config Daemon on selected nodes.

13.3.1.1. About the Network Resources Injector

The Network Resources Injector is a Kubernetes Dynamic Admission Controller application. It provides
the following capabilities:

Mutation of resource requests and limits in Pod specification to add an SR-IOV resource name
according to an SR-IOV network attachment definition annotation.

Mutation of Pod specifications with downward API volume to expose pod annotations and
labels to the running container as files under the /etc/podnetinfo path.

By default the Network Resources Injector is enabled by the SR-IOV operator and runs as a daemon set
on all control plane nodes (also known as the master nodes). The following is an example of Network
Resources Injector pods running in a cluster with three control plane nodes:

Example output

$ oc get pods -n openshift-sriov-network-operator

OpenShift Container Platform 4.7 Networking

124

13.3.1.2. About the SR-IOV Operator admission controller webhook

The SR-IOV Operator Admission Controller webhook is a Kubernetes Dynamic Admission Controller
application. It provides the following capabilities:

Validation of the SriovNetworkNodePolicy CR when it is created or updated.

Mutation of the SriovNetworkNodePolicy CR by setting the default value for the priority and
deviceType fields when the CR is created or updated.

By default the SR-IOV Operator Admission Controller webhook is enabled by the operator and runs as a
daemon set on all control plane nodes. The following is an example of the Operator Admission Controller
webhook pods running in a cluster with three control plane nodes:

Example output

13.3.1.3. About custom node selectors

The SR-IOV Network Config daemon discovers and configures the SR-IOV network devices on cluster
nodes. By default, it is deployed to all the worker nodes in the cluster. You can use node labels to
specify on which nodes the SR-IOV Network Config daemon runs.

13.3.1.4. Disabling or enabling the Network Resources Injector

To disable or enable the Network Resources Injector, which is enabled by default, complete the following
procedure.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

You must have installed the SR-IOV Operator.

Procedure

Set the enableInjector field. Replace <value> with false to disable the feature or true to
enable the feature.

NAME READY STATUS RESTARTS AGE
network-resources-injector-5cz5p 1/1 Running 0 10m
network-resources-injector-dwqpx 1/1 Running 0 10m
network-resources-injector-lktz5 1/1 Running 0 10m

$ oc get pods -n openshift-sriov-network-operator

NAME READY STATUS RESTARTS AGE
operator-webhook-9jkw6 1/1 Running 0 16m
operator-webhook-kbr5p 1/1 Running 0 16m
operator-webhook-rpfrl 1/1 Running 0 16m

CHAPTER 13. HARDWARE NETWORKS

125

13.3.1.5. Disabling or enabling the SR-IOV Operator admission controller webhook

To disable or enable the admission controller webhook, which is enabled by default, complete the
following procedure.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

You must have installed the SR-IOV Operator.

Procedure

Set the enableOperatorWebhook field. Replace <value> with false to disable the feature or
true to enable it:

13.3.1.6. Configuring a custom NodeSelector for the SR-IOV Network Config daemon

The SR-IOV Network Config daemon discovers and configures the SR-IOV network devices on cluster
nodes. By default, it is deployed to all the worker nodes in the cluster. You can use node labels to
specify on which nodes the SR-IOV Network Config daemon runs.

To specify the nodes where the SR-IOV Network Config daemon is deployed, complete the following
procedure.

IMPORTANT

When you update the configDaemonNodeSelector field, the SR-IOV Network Config
daemon is recreated on each selected node. While the daemon is recreated, cluster users
are unable to apply any new SR-IOV Network node policy or create new SR-IOV pods.

Procedure

To update the node selector for the operator, enter the following command:

Replace <node-label> with a label to apply as in the following example: "node-

$ oc patch sriovoperatorconfig default \
 --type=merge -n openshift-sriov-network-operator \
 --patch '{ "spec": { "enableInjector": <value> } }'

$ oc patch sriovoperatorconfig default --type=merge \
 -n openshift-sriov-network-operator \
 --patch '{ "spec": { "enableOperatorWebhook": <value> } }'

$ oc patch sriovoperatorconfig default --type=json \
 -n openshift-sriov-network-operator \
 --patch '[{
 "op": "replace",
 "path": "/spec/configDaemonNodeSelector",
 "value": {<node-label>}
 }]'

OpenShift Container Platform 4.7 Networking

126

1

2

3

4

5

Replace <node-label> with a label to apply as in the following example: "node-
role.kubernetes.io/worker": "".

13.3.2. Next steps

Configuring an SR-IOV network device

13.4. CONFIGURING AN SR-IOV NETWORK DEVICE

You can configure a Single Root I/O Virtualization (SR-IOV) device in your cluster.

13.4.1. SR-IOV network node configuration object

You specify the SR-IOV network device configuration for a node by creating an SR-IOV network node
policy. The API object for the policy is part of the sriovnetwork.openshift.io API group.

The following YAML describes an SR-IOV network node policy:

The name for the custom resource object.

The namespace where the SR-IOV Operator is installed.

The resource name of the SR-IOV device plug-in. You can create multiple SR-IOV network node
policies for a resource name.

The node selector specifies the nodes to configure. Only SR-IOV network devices on the selected
nodes are configured. The SR-IOV Container Network Interface (CNI) plug-in and device plug-in
are deployed on selected nodes only.

Optional: The priority is an integer value between 0 and 99. A smaller value receives higher priority.
For example, a priority of 10 is a higher priority than 99. The default value is 99.

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true" 4
 priority: <priority> 5
 mtu: <mtu> 6
 numVfs: <num> 7
 nicSelector: 8
 vendor: "<vendor_code>" 9
 deviceID: "<device_id>" 10
 pfNames: ["<pf_name>", ...] 11
 rootDevices: ["<pci_bus_id>", ...] 12
 netFilter: "<filter_string>" 13
 deviceType: <device_type> 14
 isRdma: false 15
 linkType: <link_type> 16

CHAPTER 13. HARDWARE NETWORKS

127

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-sriov-device

6

7

8

9

10

11

12

13

14

15

16

Optional: The maximum transmission unit (MTU) of the virtual function. The maximum MTU value
can vary for different network interface controller (NIC) models.

The number of the virtual functions (VF) to create for the SR-IOV physical network device. For an
Intel network interface controller (NIC), the number of VFs cannot be larger than the total VFs
supported by the device. For a Mellanox NIC, the number of VFs cannot be larger than 128.

The NIC selector identifies the device for the Operator to configure. You do not have to specify
values for all the parameters. It is recommended to identify the network device with enough
precision to avoid selecting a device unintentionally.

If you specify rootDevices, you must also specify a value for vendor, deviceID, or pfNames. If you
specify both pfNames and rootDevices at the same time, ensure that they refer to the same
device. If you specify a value for netFilter, then you do not need to specify any other parameter
because a network ID is unique.

Optional: The vendor hexadecimal code of the SR-IOV network device. The only allowed values are
8086 and 15b3.

Optional: The device hexadecimal code of the SR-IOV network device. The only allowed values are
158b, 1015, and 1017.

Optional: An array of one or more physical function (PF) names for the device.

Optional: An array of one or more PCI bus addresses for the PF of the device. Provide the address
in the following format: 0000:02:00.1.

Optional: The platform-specific network filter. The only supported platform is Red Hat OpenStack
Platform (RHOSP). Acceptable values use the following format: openstack/NetworkID:xxxxxxxx-
xxxx-xxxx-xxxx-xxxxxxxxxxxx. Replace xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx with the value
from the /var/config/openstack/latest/network_data.json metadata file.

Optional: The driver type for the virtual functions. The only allowed values are netdevice and vfio-
pci. The default value is netdevice.

For a Mellanox NIC to work in Data Plane Development Kit (DPDK) mode on bare metal nodes, use
the netdevice driver type and set isRdma to true.

Optional: Whether to enable remote direct memory access (RDMA) mode. The default value is
false.

If the isRDMA parameter is set to true, you can continue to use the RDMA-enabled VF as a normal
network device. A device can be used in either mode.

Optional: The link type for the VFs. You can specify one of the following values: eth or ib. Specify
eth for Ethernet or ib for InfiniBand. The default value is eth.

When linkType is set to ib, isRdma is automatically set to true by the SR-IOV Network Operator
webhook. When linkType is set to ib, deviceType should not be set to vfio-pci.

13.4.1.1. SR-IOV network node configuration examples

The following example describes the configuration for an InfiniBand device:

Example configuration for an InfiniBand device

OpenShift Container Platform 4.7 Networking

128

1

2

The following example describes the configuration for an SR-IOV network device in a RHOSP virtual
machine:

Example configuration for an SR-IOV device in a virtual machine

The numVfs field is always set to 1 when configuring the node network policy for a virtual machine.

The netFilter field must refer to a network ID when the virtual machine is deployed on RHOSP.
Valid values for netFilter are available from an SriovNetworkNodeState object.

13.4.1.2. Virtual function (VF) partitioning for SR-IOV devices

In some cases, you might want to split virtual functions (VFs) from the same physical function (PF) into
multiple resource pools. For example, you might want some of the VFs to load with the default driver
and the remaining VFs load with the vfio-pci driver. In such a deployment, the pfNames selector in your
SriovNetworkNodePolicy custom resource (CR) can be used to specify a range of VFs for a pool using
the following format: <pfname>#<first_vf>-<last_vf>.

For example, the following YAML shows the selector for an interface named netpf0 with VF 2 through 7:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-ib-net-1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: ibnic1
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 4
 nicSelector:
 vendor: "15b3"
 deviceID: "101b"
 rootDevices:
 - "0000:19:00.0"
 linkType: ib
 isRdma: true

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-sriov-net-openstack-1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: sriovnic1
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 1 1
 nicSelector:
 vendor: "15b3"
 deviceID: "101b"
 netFilter: "openstack/NetworkID:ea24bd04-8674-4f69-b0ee-fa0b3bd20509" 2

CHAPTER 13. HARDWARE NETWORKS

129

netpf0 is the PF interface name.

2 is the first VF index (0-based) that is included in the range.

7 is the last VF index (0-based) that is included in the range.

You can select VFs from the same PF by using different policy CRs if the following requirements are
met:

The numVfs value must be identical for policies that select the same PF.

The VF index must be in the range of 0 to <numVfs>-1. For example, if you have a policy with
numVfs set to 8, then the <first_vf> value must not be smaller than 0, and the <last_vf> must
not be larger than 7.

The VFs ranges in different policies must not overlap.

The <first_vf> must not be larger than the <last_vf>.

The following example illustrates NIC partitioning for an SR-IOV device.

The policy policy-net-1 defines a resource pool net-1 that contains the VF 0 of PF netpf0 with the
default VF driver. The policy policy-net-1-dpdk defines a resource pool net-1-dpdk that contains the
VF 8 to 15 of PF netpf0 with the vfio VF driver.

Policy policy-net-1:

Policy policy-net-1-dpdk:

pfNames: ["netpf0#2-7"]

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-net-1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: net1
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 16
 nicSelector:
 pfNames: ["netpf0#0-0"]
 deviceType: netdevice

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-net-1-dpdk
 namespace: openshift-sriov-network-operator
spec:
 resourceName: net1dpdk
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 16

OpenShift Container Platform 4.7 Networking

130

13.4.2. Configuring SR-IOV network devices

The SR-IOV Network Operator adds the SriovNetworkNodePolicy.sriovnetwork.openshift.io
CustomResourceDefinition to OpenShift Container Platform. You can configure an SR-IOV network
device by creating a SriovNetworkNodePolicy custom resource (CR).

NOTE

When applying the configuration specified in a SriovNetworkNodePolicy object, the SR-
IOV Operator might drain the nodes, and in some cases, reboot nodes.

It might take several minutes for a configuration change to apply.

Prerequisites

You installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have installed the SR-IOV Network Operator.

You have enough available nodes in your cluster to handle the evicted workload from drained
nodes.

You have not selected any control plane nodes for SR-IOV network device configuration.

Procedure

1. Create an SriovNetworkNodePolicy object, and then save the YAML in the <name>-sriov-
node-network.yaml file. Replace <name> with the name for this configuration.

2. Optional: Label the SR-IOV capable cluster nodes with
SriovNetworkNodePolicy.Spec.NodeSelector if they are not already labeled. For more
information about labeling nodes, see "Understanding how to update labels on nodes".

2. Create the SriovNetworkNodePolicy object:

where <name> specifies the name for this configuration.

After applying the configuration update, all the pods in sriov-network-operator namespace
transition to the Running status.

3. To verify that the SR-IOV network device is configured, enter the following command. Replace
<node_name> with the name of a node with the SR-IOV network device that you just
configured.

 nicSelector:
 pfNames: ["netpf0#8-15"]
 deviceType: vfio-pci

$ oc create -f <name>-sriov-node-network.yaml

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name> -o
jsonpath='{.status.syncStatus}'

CHAPTER 13. HARDWARE NETWORKS

131

Additional resources

Understanding how to update labels on nodes .

13.4.3. Troubleshooting SR-IOV configuration

After following the procedure to configure an SR-IOV network device, the following sections address
some error conditions.

To display the state of nodes, run the following command:

where: <node_name> specifies the name of a node with an SR-IOV network device.

Error output: Cannot allocate memory

When a node indicates that it cannot allocate memory, check the following items:

Confirm that global SR-IOV settings are enabled in the BIOS for the node.

Confirm that VT-d is enabled in the BIOS for the node.

13.4.4. Assigning an SR-IOV network to a VRF

IMPORTANT

CNI VRF plug-in is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

As a cluster administrator, you can assign an SR-IOV network interface to your VRF domain by using the
CNI VRF plug-in.

To do this, add the VRF configuration to the optional metaPlugins parameter of the SriovNetwork
resource.

NOTE

Applications that use VRFs need to bind to a specific device. The common usage is to use
the SO_BINDTODEVICE option for a socket. SO_BINDTODEVICE binds the socket to a
device that is specified in the passed interface name, for example, eth1. To use
SO_BINDTODEVICE, the application must have CAP_NET_RAW capabilities.

13.4.4.1. Creating an additional SR-IOV network attachment with the CNI VRF plug-in

The SR-IOV Network Operator manages additional network definitions. When you specify an additional

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name>

"lastSyncError": "write /sys/bus/pci/devices/0000:3b:00.1/sriov_numvfs: cannot allocate memory"

OpenShift Container Platform 4.7 Networking

132

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/nodes/#nodes-nodes-working-updating_nodes-nodes-working
https://access.redhat.com/support/offerings/techpreview/

1

2

The SR-IOV Network Operator manages additional network definitions. When you specify an additional
SR-IOV network to create, the SR-IOV Network Operator creates the NetworkAttachmentDefinition
custom resource (CR) automatically.

NOTE

Do not edit NetworkAttachmentDefinition custom resources that the SR-IOV Network
Operator manages. Doing so might disrupt network traffic on your additional network.

To create an additional SR-IOV network attachment with the CNI VRF plug-in, perform the following
procedure.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in to the OpenShift Container Platform cluster as a user with cluster-admin privileges.

Procedure

1. Create the SriovNetwork custom resource (CR) for the additional SR-IOV network attachment
and insert the metaPlugins configuration, as in the following example CR. Save the YAML as
the file sriov-network-attachment.yaml.

type must be set to vrf.

vrfname is the name of the VRF that the interface is assigned to. If it does not exist in the
pod, it is created.

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: example-network
 namespace: additional-sriov-network-1
spec:
 ipam: |
 {
 "type": "host-local",
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",
 "routes": [{
 "dst": "0.0.0.0/0"
 }],
 "gateway": "10.56.217.1"
 }
 vlan: 0
 resourceName: intelnics
 metaPlugins : |
 {
 "type": "vrf", 1
 "vrfname": "example-vrf-name" 2
 }

CHAPTER 13. HARDWARE NETWORKS

133

1

2. Create the SriovNetwork resource:

Verifying that the NetworkAttachmentDefinition CR is successfully created

Confirm that the SR-IOV Network Operator created the NetworkAttachmentDefinition CR by
running the following command.

Replace <namespace> with the namespace that you specified when configuring the
network attachment, for example, additional-sriov-network-1.

Example output

NOTE

There might be a delay before the SR-IOV Network Operator creates the CR.

Verifying that the additional SR-IOV network attachment is successful

To verify that the VRF CNI is correctly configured and the additional SR-IOV network attachment is
attached, do the following:

1. Create an SR-IOV network that uses the VRF CNI.

2. Assign the network to a pod.

3. Verify that the pod network attachment is connected to the SR-IOV additional network.
Remote shell into the pod and run the following command:

Example output

4. Confirm the VRF interface is master of the secondary interface:

Example output

$ oc create -f sriov-network-attachment.yaml

$ oc get network-attachment-definitions -n <namespace> 1

NAME AGE
additional-sriov-network-1 14m

$ ip vrf show

Name Table

red 10

$ ip link

...
5: net1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master red

OpenShift Container Platform 4.7 Networking

134

1

2

3

4

5

6

13.4.5. Next steps

Configuring an SR-IOV network attachment

13.5. CONFIGURING AN SR-IOV ETHERNET NETWORK ATTACHMENT

You can configure an Ethernet network attachment for an Single Root I/O Virtualization (SR-IOV)
device in the cluster.

13.5.1. Ethernet device configuration object

You can configure an Ethernet network device by defining an SriovNetwork object.

The following YAML describes an SriovNetwork object:

A name for the object. The SR-IOV Network Operator creates a NetworkAttachmentDefinition
object with same name.

The namespace where the SR-IOV Network Operator is installed.

The value for the spec.resourceName parameter from the SriovNetworkNodePolicy object that
defines the SR-IOV hardware for this additional network.

The target namespace for the SriovNetwork object. Only pods in the target namespace can
attach to the additional network.

Optional: A Virtual LAN (VLAN) ID for the additional network. The integer value must be from 0 to
4095. The default value is 0.

Optional: The spoof check mode of the VF. The allowed values are the strings "on" and "off".

IMPORTANT

state UP mode
...

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 networkNamespace: <target_namespace> 4
 vlan: <vlan> 5
 spoofChk: "<spoof_check>" 6
 ipam: |- 7
 {}
 linkState: <link_state> 8
 maxTxRate: <max_tx_rate> 9
 minTxRate: <min_tx_rate> 10
 vlanQoS: <vlan_qos> 11
 trust: "<trust_vf>" 12
 capabilities: <capabilities> 13

CHAPTER 13. HARDWARE NETWORKS

135

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-sriov-net-attach

7

8

9

10

11

12

13

IMPORTANT

You must enclose the value you specify in quotes or the object is rejected by the
SR-IOV Network Operator.

A configuration object for the IPAM CNI plug-in as a YAML block scalar. The plug-in manages IP
address assignment for the attachment definition.

Optional: The link state of virtual function (VF). Allowed value are enable, disable and auto.

Optional: A maximum transmission rate, in Mbps, for the VF.

Optional: A minimum transmission rate, in Mbps, for the VF. This value must be less than or equal to
the maximum transmission rate.

NOTE

Intel NICs do not support the minTxRate parameter. For more information, see
BZ#1772847.

Optional: An IEEE 802.1p priority level for the VF. The default value is 0.

Optional: The trust mode of the VF. The allowed values are the strings "on" and "off".

IMPORTANT

You must enclose the value that you specify in quotes, or the SR-IOV Network
Operator rejects the object.

Optional: The capabilities to configure for this additional network. You can specify "{ "ips": true }"
to enable IP address support or "{ "mac": true }" to enable MAC address support.

13.5.1.1. Configuration of IP address assignment for an additional network

The IP address management (IPAM) Container Network Interface (CNI) plug-in provides IP addresses
for other CNI plug-ins.

You can use the following IP address assignment types:

Static assignment.

Dynamic assignment through a DHCP server. The DHCP server you specify must be reachable
from the additional network.

Dynamic assignment through the Whereabouts IPAM CNI plug-in.

13.5.1.1.1. Static IP address assignment configuration

The following table describes the configuration for static IP address assignment:

Table 13.2. ipam static configuration object

OpenShift Container Platform 4.7 Networking

136

https://bugzilla.redhat.com/show_bug.cgi?id=1772847

Field Type Description

type string The IPAM address type. The value static is required.

addresses array An array of objects specifying IP addresses to assign to the
virtual interface. Both IPv4 and IPv6 IP addresses are supported.

routes array An array of objects specifying routes to configure inside the pod.

dns array Optional: An array of objects specifying the DNS configuration.

The addresses array requires objects with the following fields:

Table 13.3. ipam.addresses[] array

Field Type Description

address string An IP address and network prefix that you specify. For example,
if you specify 10.10.21.10/24, then the additional network is
assigned an IP address of 10.10.21.10 and the netmask is
255.255.255.0.

gateway string The default gateway to route egress network traffic to.

Table 13.4. ipam.routes[] array

Field Type Description

dst string The IP address range in CIDR format, such as 192.168.17.0/24
or 0.0.0.0/0 for the default route.

gw string The gateway where network traffic is routed.

Table 13.5. ipam.dns object

Field Type Description

nameservers array An of array of one or more IP addresses for to send DNS queries
to.

domain array The default domain to append to a hostname. For example, if
the domain is set to example.com, a DNS lookup query for
example-host is rewritten as example-host.example.com.

search array An array of domain names to append to an unqualified
hostname, such as example-host, during a DNS lookup query.

CHAPTER 13. HARDWARE NETWORKS

137

Static IP address assignment configuration example

13.5.1.1.2. Dynamic IP address (DHCP) assignment configuration

The following JSON describes the configuration for dynamic IP address address assignment with DHCP.

RENEWAL OF DHCP LEASES

A pod obtains its original DHCP lease when it is created. The lease must be periodically
renewed by a minimal DHCP server deployment running on the cluster.

The SR-IOV Network Operator does not create a DHCP server deployment; The Cluster
Network Operator is responsible for creating the minimal DHCP server deployment.

To trigger the deployment of the DHCP server, you must create a shim network
attachment by editing the Cluster Network Operator configuration, as in the following
example:

Example shim network attachment definition

Table 13.6. ipam DHCP configuration object

{
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.7/24"
 }
]
 }
}

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks:
 - name: dhcp-shim
 namespace: default
 type: Raw
 rawCNIConfig: |-
 {
 "name": "dhcp-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "ipam": {
 "type": "dhcp"
 }
 }
 # ...

OpenShift Container Platform 4.7 Networking

138

Field Type Description

type string The IPAM address type. The value dhcp is required.

Dynamic IP address (DHCP) assignment configuration example

13.5.1.1.3. Dynamic IP address assignment configuration with Whereabouts

The Whereabouts CNI plug-in allows the dynamic assignment of an IP address to an additional network
without the use of a DHCP server.

The following table describes the configuration for dynamic IP address assignment with Whereabouts:

Table 13.7. ipam whereabouts configuration object

Field Type Description

type string The IPAM address type. The value whereabouts is required.

range string An IP address and range in CIDR notation. IP addresses are
assigned from within this range of addresses.

exclude array Optional: A list of zero ore more IP addresses and ranges in
CIDR notation. IP addresses within an excluded address range
are not assigned.

Dynamic IP address assignment configuration example that uses Whereabouts

13.5.2. Configuring SR-IOV additional network

You can configure an additional network that uses SR-IOV hardware by creating a SriovNetwork object.
When you create a SriovNetwork object, the SR-IOV Operator automatically creates a
NetworkAttachmentDefinition object.

{
 "ipam": {
 "type": "dhcp"
 }
}

{
 "ipam": {
 "type": "whereabouts",
 "range": "192.0.2.192/27",
 "exclude": [
 "192.0.2.192/30",
 "192.0.2.196/32"
]
 }
}

CHAPTER 13. HARDWARE NETWORKS

139

NOTE

Do not modify or delete a SriovNetwork object if it is attached to any pods in the
running state.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a SriovNetwork object, and then save the YAML in the <name>.yaml file, where
<name> is a name for this additional network. The object specification might resemble the
following example:

2. To create the object, enter the following command:

where <name> specifies the name of the additional network.

3. Optional: To confirm that the NetworkAttachmentDefinition object that is associated with the
SriovNetwork object that you created in the previous step exists, enter the following command.
Replace <namespace> with the networkNamespace you specified in the SriovNetwork object.

13.5.3. Next steps

Adding a pod to an SR-IOV additional network

13.5.4. Additional resources

Configuring an SR-IOV network device

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: attach1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: net1
 networkNamespace: project2
 ipam: |-
 {
 "type": "host-local",
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",
 "gateway": "10.56.217.1"
 }

$ oc create -f <name>.yaml

$ oc get net-attach-def -n <namespace>

OpenShift Container Platform 4.7 Networking

140

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#add-pod
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-sriov-device

1

2

3

4

5

6

7

13.6. CONFIGURING AN SR-IOV INFINIBAND NETWORK ATTACHMENT

You can configure an InfiniBand (IB) network attachment for an Single Root I/O Virtualization (SR-IOV)
device in the cluster.

13.6.1. InfiniBand device configuration object

You can configure an InfiniBand (IB) network device by defining an SriovIBNetwork object.

The following YAML describes an SriovIBNetwork object:

A name for the object. The SR-IOV Network Operator creates a NetworkAttachmentDefinition
object with same name.

The namespace where the SR-IOV Operator is installed.

The value for the spec.resourceName parameter from the SriovNetworkNodePolicy object that
defines the SR-IOV hardware for this additional network.

The target namespace for the SriovIBNetwork object. Only pods in the target namespace can
attach to the network device.

Optional: A configuration object for the IPAM CNI plug-in as a YAML block scalar. The plug-in
manages IP address assignment for the attachment definition.

Optional: The link state of virtual function (VF). Allowed values are enable, disable and auto.

Optional: The capabilities to configure for this network. You can specify "{ "ips": true }" to enable
IP address support or "{ "infinibandGUID": true }" to enable IB Global Unique Identifier (GUID)
support.

13.6.1.1. Configuration of IP address assignment for an additional network

The IP address management (IPAM) Container Network Interface (CNI) plug-in provides IP addresses
for other CNI plug-ins.

You can use the following IP address assignment types:

Static assignment.

Dynamic assignment through a DHCP server. The DHCP server you specify must be reachable

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovIBNetwork
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 networkNamespace: <target_namespace> 4
 ipam: |- 5
 {}
 linkState: <link_state> 6
 capabilities: <capabilities> 7

CHAPTER 13. HARDWARE NETWORKS

141

Dynamic assignment through a DHCP server. The DHCP server you specify must be reachable
from the additional network.

Dynamic assignment through the Whereabouts IPAM CNI plug-in.

13.6.1.1.1. Static IP address assignment configuration

The following table describes the configuration for static IP address assignment:

Table 13.8. ipam static configuration object

Field Type Description

type string The IPAM address type. The value static is required.

addresses array An array of objects specifying IP addresses to assign to the
virtual interface. Both IPv4 and IPv6 IP addresses are supported.

routes array An array of objects specifying routes to configure inside the pod.

dns array Optional: An array of objects specifying the DNS configuration.

The addresses array requires objects with the following fields:

Table 13.9. ipam.addresses[] array

Field Type Description

address string An IP address and network prefix that you specify. For example,
if you specify 10.10.21.10/24, then the additional network is
assigned an IP address of 10.10.21.10 and the netmask is
255.255.255.0.

gateway string The default gateway to route egress network traffic to.

Table 13.10. ipam.routes[] array

Field Type Description

dst string The IP address range in CIDR format, such as 192.168.17.0/24
or 0.0.0.0/0 for the default route.

gw string The gateway where network traffic is routed.

Table 13.11. ipam.dns object

Field Type Description

OpenShift Container Platform 4.7 Networking

142

nameservers array An of array of one or more IP addresses for to send DNS queries
to.

domain array The default domain to append to a hostname. For example, if
the domain is set to example.com, a DNS lookup query for
example-host is rewritten as example-host.example.com.

search array An array of domain names to append to an unqualified
hostname, such as example-host, during a DNS lookup query.

Field Type Description

Static IP address assignment configuration example

13.6.1.1.2. Dynamic IP address (DHCP) assignment configuration

The following JSON describes the configuration for dynamic IP address address assignment with DHCP.

RENEWAL OF DHCP LEASES

{
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.7/24"
 }
]
 }
}

CHAPTER 13. HARDWARE NETWORKS

143

RENEWAL OF DHCP LEASES

A pod obtains its original DHCP lease when it is created. The lease must be periodically
renewed by a minimal DHCP server deployment running on the cluster.

To trigger the deployment of the DHCP server, you must create a shim network
attachment by editing the Cluster Network Operator configuration, as in the following
example:

Example shim network attachment definition

Table 13.12. ipam DHCP configuration object

Field Type Description

type string The IPAM address type. The value dhcp is required.

Dynamic IP address (DHCP) assignment configuration example

13.6.1.1.3. Dynamic IP address assignment configuration with Whereabouts

The Whereabouts CNI plug-in allows the dynamic assignment of an IP address to an additional network
without the use of a DHCP server.

The following table describes the configuration for dynamic IP address assignment with Whereabouts:

Table 13.13. ipam whereabouts configuration object

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks:
 - name: dhcp-shim
 namespace: default
 type: Raw
 rawCNIConfig: |-
 {
 "name": "dhcp-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "ipam": {
 "type": "dhcp"
 }
 }
 # ...

{
 "ipam": {
 "type": "dhcp"
 }
}

OpenShift Container Platform 4.7 Networking

144

Field Type Description

type string The IPAM address type. The value whereabouts is required.

range string An IP address and range in CIDR notation. IP addresses are
assigned from within this range of addresses.

exclude array Optional: A list of zero ore more IP addresses and ranges in
CIDR notation. IP addresses within an excluded address range
are not assigned.

Dynamic IP address assignment configuration example that uses Whereabouts

13.6.2. Configuring SR-IOV additional network

You can configure an additional network that uses SR-IOV hardware by creating a SriovIBNetwork
object. When you create a SriovIBNetwork object, the SR-IOV Operator automatically creates a
NetworkAttachmentDefinition object.

NOTE

Do not modify or delete a SriovIBNetwork object if it is attached to any pods in the
running state.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a SriovIBNetwork object, and then save the YAML in the <name>.yaml file, where
<name> is a name for this additional network. The object specification might resemble the
following example:

{
 "ipam": {
 "type": "whereabouts",
 "range": "192.0.2.192/27",
 "exclude": [
 "192.0.2.192/30",
 "192.0.2.196/32"
]
 }
}

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovIBNetwork
metadata:
 name: attach1
 namespace: openshift-sriov-network-operator

CHAPTER 13. HARDWARE NETWORKS

145

2. To create the object, enter the following command:

where <name> specifies the name of the additional network.

3. Optional: To confirm that the NetworkAttachmentDefinition object that is associated with the
SriovIBNetwork object that you created in the previous step exists, enter the following
command. Replace <namespace> with the networkNamespace you specified in the
SriovIBNetwork object.

13.6.3. Next steps

Adding a pod to an SR-IOV additional network

13.6.4. Additional resources

Configuring an SR-IOV network device

13.7. ADDING A POD TO AN SR-IOV ADDITIONAL NETWORK

You can add a pod to an existing Single Root I/O Virtualization (SR-IOV) network.

13.7.1. Runtime configuration for a network attachment

When attaching a pod to an additional network, you can specify a runtime configuration to make specific
customizations for the pod. For example, you can request a specific MAC hardware address.

You specify the runtime configuration by setting an annotation in the pod specification. The annotation
key is k8s.v1.cni.cncf.io/networks, and it accepts a JSON object that describes the runtime
configuration.

13.7.1.1. Runtime configuration for an Ethernet-based SR-IOV attachment

The following JSON describes the runtime configuration options for an Ethernet-based SR-IOV
network attachment.

spec:
 resourceName: net1
 networkNamespace: project2
 ipam: |-
 {
 "type": "host-local",
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",
 "gateway": "10.56.217.1"
 }

$ oc create -f <name>.yaml

$ oc get net-attach-def -n <namespace>

[
 {

OpenShift Container Platform 4.7 Networking

146

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#add-pod
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-sriov-device

1

2

3

1

The name of the SR-IOV network attachment definition CR.

Optional: The MAC address for the SR-IOV device that is allocated from the resource type defined
in the SR-IOV network attachment definition CR. To use this feature, you also must specify {
"mac": true } in the SriovNetwork object.

Optional: IP addresses for the SR-IOV device that is allocated from the resource type defined in
the SR-IOV network attachment definition CR. Both IPv4 and IPv6 addresses are supported. To
use this feature, you also must specify { "ips": true } in the SriovNetwork object.

Example runtime configuration

13.7.1.2. Runtime configuration for an InfiniBand-based SR-IOV attachment

The following JSON describes the runtime configuration options for an InfiniBand-based SR-IOV
network attachment.

The name of the SR-IOV network attachment definition CR.

The InfiniBand GUID for the SR-IOV device. To use this feature, you also must specify {

 "name": "<name>", 1
 "mac": "<mac_address>", 2
 "ips": ["<cidr_range>"] 3
 }
]

apiVersion: v1
kind: Pod
metadata:
 name: sample-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "net1",
 "mac": "20:04:0f:f1:88:01",
 "ips": ["192.168.10.1/24", "2001::1/64"]
 }
]
spec:
 containers:
 - name: sample-container
 image: <image>
 imagePullPolicy: IfNotPresent
 command: ["sleep", "infinity"]

[
 {
 "name": "<network_attachment>", 1
 "infiniband-guid": "<guid>", 2
 "ips": ["<cidr_range>"] 3
 }
]

CHAPTER 13. HARDWARE NETWORKS

147

2

3

The InfiniBand GUID for the SR-IOV device. To use this feature, you also must specify {
"infinibandGUID": true } in the SriovIBNetwork object.

The IP addresses for the SR-IOV device that is allocated from the resource type defined in the
SR-IOV network attachment definition CR. Both IPv4 and IPv6 addresses are supported. To use
this feature, you also must specify { "ips": true } in the SriovIBNetwork object.

Example runtime configuration

13.7.2. Adding a pod to an additional network

You can add a pod to an additional network. The pod continues to send normal cluster-related network
traffic over the default network.

When a pod is created additional networks are attached to it. However, if a pod already exists, you
cannot attach additional networks to it.

The pod must be in the same namespace as the additional network.

NOTE

The SR-IOV Network Resource Injector adds the resource field to the first container in a
pod automatically.

If you are using an Intel network interface controller (NIC) in Data Plane Development Kit
(DPDK) mode, only the first container in your pod is configured to access the NIC. Your
SR-IOV additional network is configured for DPDK mode if the deviceType is set to vfio-
pci in the SriovNetworkNodePolicy object.

You can work around this issue by either ensuring that the container that needs access to
the NIC is the first container defined in the Pod object or by disabling the Network
Resource Injector. For more information, see BZ#1990953.

Prerequisites

apiVersion: v1
kind: Pod
metadata:
 name: sample-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "ib1",
 "infiniband-guid": "c2:11:22:33:44:55:66:77",
 "ips": ["192.168.10.1/24", "2001::1/64"]
 }
]
spec:
 containers:
 - name: sample-container
 image: <image>
 imagePullPolicy: IfNotPresent
 command: ["sleep", "infinity"]

OpenShift Container Platform 4.7 Networking

148

https://bugzilla.redhat.com/show_bug.cgi?id=1990953

1

1

2

3

Install the OpenShift CLI (oc).

Log in to the cluster.

Install the SR-IOV Operator.

Create either an SriovNetwork object or an SriovIBNetwork object to attach the pod to.

Procedure

1. Add an annotation to the Pod object. Only one of the following annotation formats can be used:

a. To attach an additional network without any customization, add an annotation with the
following format. Replace <network> with the name of the additional network to associate
with the pod:

To specify more than one additional network, separate each network with a comma. Do
not include whitespace between the comma. If you specify the same additional
network multiple times, that pod will have multiple network interfaces attached to that
network.

b. To attach an additional network with customizations, add an annotation with the following
format:

Specify the name of the additional network defined by a
NetworkAttachmentDefinition object.

Specify the namespace where the NetworkAttachmentDefinition object is defined.

Optional: Specify an override for the default route, such as 192.168.17.1.

2. To create the pod, enter the following command. Replace <name> with the name of the pod.

3. Optional: To Confirm that the annotation exists in the Pod CR, enter the following command,
replacing <name> with the name of the pod.

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: <network>[,<network>,...] 1

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "<network>", 1
 "namespace": "<namespace>", 2
 "default-route": ["<default-route>"] 3
 }
]

$ oc create -f <name>.yaml

CHAPTER 13. HARDWARE NETWORKS

149

1

In the following example, the example-pod pod is attached to the net1 additional network:

The k8s.v1.cni.cncf.io/networks-status parameter is a JSON array of objects. Each
object describes the status of an additional network attached to the pod. The annotation
value is stored as a plain text value.

13.7.3. Creating a non-uniform memory access (NUMA) aligned SR-IOV pod

You can create a NUMA aligned SR-IOV pod by restricting SR-IOV and the CPU resources allocated
from the same NUMA node with restricted or single-numa-node Topology Manager polices.

Prerequisites

You have installed the OpenShift CLI (oc).

You have configured the CPU Manager policy to static. For more information on CPU Manager,
see the "Additional resources" section.

You have configured the Topology Manager policy to single-numa-node.

NOTE

$ oc get pod <name> -o yaml

$ oc get pod example-pod -o yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: macvlan-bridge
 k8s.v1.cni.cncf.io/networks-status: |- 1
 [{
 "name": "openshift-sdn",
 "interface": "eth0",
 "ips": [
 "10.128.2.14"
],
 "default": true,
 "dns": {}
 },{
 "name": "macvlan-bridge",
 "interface": "net1",
 "ips": [
 "20.2.2.100"
],
 "mac": "22:2f:60:a5:f8:00",
 "dns": {}
 }]
 name: example-pod
 namespace: default
spec:
 ...
status:
 ...

OpenShift Container Platform 4.7 Networking

150

1

2

3

4

1

NOTE

When single-numa-node is unable to satisfy the request, you can configure the
Topology Manager policy to restricted.

Procedure

1. Create the following SR-IOV pod spec, and then save the YAML in the <name>-sriov-
pod.yaml file. Replace <name> with a name for this pod.
The following example shows an SR-IOV pod spec:

Replace <name> with the name of the SR-IOV network attachment definition CR.

Replace <image> with the name of the sample-pod image.

To create the SR-IOV pod with guaranteed QoS, set memory limits equal to memory
requests.

To create the SR-IOV pod with guaranteed QoS, set cpu limits equals to cpu requests.

2. Create the sample SR-IOV pod by running the following command:

Replace <filename> with the name of the file you created in the previous step.

3. Confirm that the sample-pod is configured with guaranteed QoS.

4. Confirm that the sample-pod is allocated with exclusive CPUs.

apiVersion: v1
kind: Pod
metadata:
 name: sample-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: <name> 1
spec:
 containers:
 - name: sample-container
 image: <image> 2
 command: ["sleep", "infinity"]
 resources:
 limits:
 memory: "1Gi" 3
 cpu: "2" 4
 requests:
 memory: "1Gi"
 cpu: "2"

$ oc create -f <filename> 1

$ oc describe pod sample-pod

$ oc exec sample-pod -- cat /sys/fs/cgroup/cpuset/cpuset.cpus

CHAPTER 13. HARDWARE NETWORKS

151

5. Confirm that the SR-IOV device and CPUs that are allocated for the sample-pod are on the
same NUMA node.

13.7.4. Additional resources

Configuring an SR-IOV Ethernet network attachment

Configuring an SR-IOV InfiniBand network attachment

Using CPU Manager

13.8. USING HIGH PERFORMANCE MULTICAST

You can use multicast on your Single Root I/O Virtualization (SR-IOV) hardware network.

13.8.1. High performance multicast

The OpenShift SDN default Container Network Interface (CNI) network provider supports multicast
between pods on the default network. This is best used for low-bandwidth coordination or service
discovery, and not high-bandwidth applications. For applications such as streaming media, like Internet
Protocol television (IPTV) and multipoint videoconferencing, you can utilize Single Root I/O
Virtualization (SR-IOV) hardware to provide near-native performance.

When using additional SR-IOV interfaces for multicast:

Multicast packages must be sent or received by a pod through the additional SR-IOV interface.

The physical network which connects the SR-IOV interfaces decides the multicast routing and
topology, which is not controlled by OpenShift Container Platform.

13.8.2. Configuring an SR-IOV interface for multicast

The follow procedure creates an example SR-IOV interface for multicast.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

1. Create a SriovNetworkNodePolicy object:

$ oc exec sample-pod -- cat /sys/fs/cgroup/cpuset/cpuset.cpus

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-example
 namespace: openshift-sriov-network-operator
spec:
 resourceName: example
 nodeSelector:

OpenShift Container Platform 4.7 Networking

152

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-sriov-device
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-sriov-ib-attach
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/scalability_and_performance/#using-cpu-manager

1 2

1

2. Create a SriovNetwork object:

If you choose to configure DHCP as IPAM, ensure that you provision the following default
routes through your DHCP server: 224.0.0.0/5 and 232.0.0.0/5. This is to override the
static multicast route set by the default network provider.

3. Create a pod with multicast application:

The NET_ADMIN capability is required only if your application needs to assign the
multicast IP address to the SR-IOV interface. Otherwise, it can be omitted.

 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 4
 nicSelector:
 vendor: "8086"
 pfNames: ['ens803f0']
 rootDevices: ['0000:86:00.0']

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: net-example
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: default
 ipam: | 1
 {
 "type": "host-local", 2
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",
 "routes": [
 {"dst": "224.0.0.0/5"},
 {"dst": "232.0.0.0/5"}
],
 "gateway": "10.56.217.1"
 }
 resourceName: example

apiVersion: v1
kind: Pod
metadata:
 name: testpmd
 namespace: default
 annotations:
 k8s.v1.cni.cncf.io/networks: nic1
spec:
 containers:
 - name: example
 image: rhel7:latest
 securityContext:
 capabilities:
 add: ["NET_ADMIN"] 1
 command: ["sleep", "infinity"]

CHAPTER 13. HARDWARE NETWORKS

153

1

13.9. USING VIRTUAL FUNCTIONS (VFS) WITH DPDK AND RDMA
MODES

You can use Single Root I/O Virtualization (SR-IOV) network hardware with the Data Plane
Development Kit (DPDK) and with remote direct memory access (RDMA).

IMPORTANT

The Data Plane Development Kit (DPDK) is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

13.9.1. Using a virtual function in DPDK mode with an Intel NIC

Prerequisites

Install the OpenShift CLI (oc).

Install the SR-IOV Network Operator.

Log in as a user with cluster-admin privileges.

Procedure

1. Create the following SriovNetworkNodePolicy object, and then save the YAML in the intel-
dpdk-node-policy.yaml file.

Specify the driver type for the virtual functions to vfio-pci.

NOTE

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: intel-dpdk-node-policy
 namespace: openshift-sriov-network-operator
spec:
 resourceName: intelnics
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 priority: <priority>
 numVfs: <num>
 nicSelector:
 vendor: "8086"
 deviceID: "158b"
 pfNames: ["<pf_name>", ...]
 rootDevices: ["<pci_bus_id>", "..."]
 deviceType: vfio-pci 1

OpenShift Container Platform 4.7 Networking

154

https://access.redhat.com/support/offerings/techpreview/

1

NOTE

Please refer to the Configuring SR-IOV network devices section for a detailed
explanation on each option in SriovNetworkNodePolicy.

When applying the configuration specified in a SriovNetworkNodePolicy object,
the SR-IOV Operator may drain the nodes, and in some cases, reboot nodes. It
may take several minutes for a configuration change to apply. Ensure that there
are enough available nodes in your cluster to handle the evicted workload
beforehand.

After the configuration update is applied, all the pods in openshift-sriov-
network-operator namespace will change to a Running status.

2. Create the SriovNetworkNodePolicy object by running the following command:

3. Create the following SriovNetwork object, and then save the YAML in the intel-dpdk-
network.yaml file.

Specify an empty object "{}" for the ipam CNI plug-in. DPDK works in userspace mode and
does not require an IP address.

NOTE

See the "Configuring SR-IOV additional network" section for a detailed
explanation on each option in SriovNetwork.

4. Create the SriovNetwork object by running the following command:

5. Create the following Pod spec, and then save the YAML in the intel-dpdk-pod.yaml file.

$ oc create -f intel-dpdk-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: intel-dpdk-network
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: <target_namespace>
 ipam: "{}" 1
 vlan: <vlan>
 resourceName: intelnics

$ oc create -f intel-dpdk-network.yaml

apiVersion: v1
kind: Pod
metadata:
 name: dpdk-app
 namespace: <target_namespace> 1
 annotations:
 k8s.v1.cni.cncf.io/networks: intel-dpdk-network

CHAPTER 13. HARDWARE NETWORKS

155

1

2

3

4

5

6

7

Specify the same target_namespace where the SriovNetwork object intel-dpdk-network
is created. If you would like to create the pod in a different namespace, change
target_namespace in both the Pod spec and the SriovNetowrk object.

Specify the DPDK image which includes your application and the DPDK library used by
application.

Specify additional capabilities required by the application inside the container for
hugepage allocation, system resource allocation, and network interface access.

Mount a hugepage volume to the DPDK pod under /dev/hugepages. The hugepage
volume is backed by the emptyDir volume type with the medium being Hugepages.

Optional: Specify the number of DPDK devices allocated to DPDK pod. This resource
request and limit, if not explicitly specified, will be automatically added by the SR-IOV
network resource injector. The SR-IOV network resource injector is an admission controller
component managed by the SR-IOV Operator. It is enabled by default and can be disabled
by setting enableInjector option to false in the default SriovOperatorConfig CR.

Specify the number of CPUs. The DPDK pod usually requires exclusive CPUs to be
allocated from the kubelet. This is achieved by setting CPU Manager policy to static and
creating a pod with Guaranteed QoS.

Specify hugepage size hugepages-1Gi or hugepages-2Mi and the quantity of hugepages
that will be allocated to the DPDK pod. Configure 2Mi and 1Gi hugepages separately.
Configuring 1Gi hugepage requires adding kernel arguments to Nodes. For example,
adding kernel arguments default_hugepagesz=1GB, hugepagesz=1G and
hugepages=16 will result in 16*1Gi hugepages be allocated during system boot.

spec:
 containers:
 - name: testpmd
 image: <DPDK_image> 2
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"] 3
 volumeMounts:
 - mountPath: /dev/hugepages 4
 name: hugepage
 resources:
 limits:
 openshift.io/intelnics: "1" 5
 memory: "1Gi"
 cpu: "4" 6
 hugepages-1Gi: "4Gi" 7
 requests:
 openshift.io/intelnics: "1"
 memory: "1Gi"
 cpu: "4"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

OpenShift Container Platform 4.7 Networking

156

1

2

3

6. Create the DPDK pod by running the following command:

13.9.2. Using a virtual function in DPDK mode with a Mellanox NIC

Prerequisites

Install the OpenShift CLI (oc).

Install the SR-IOV Network Operator.

Log in as a user with cluster-admin privileges.

Procedure

1. Create the following SriovNetworkNodePolicy object, and then save the YAML in the mlx-
dpdk-node-policy.yaml file.

Specify the device hex code of the SR-IOV network device. The only allowed values for
Mellanox cards are 1015, 1017.

Specify the driver type for the virtual functions to netdevice. Mellanox SR-IOV VF can
work in DPDK mode without using the vfio-pci device type. VF device appears as a kernel
network interface inside a container.

Enable RDMA mode. This is required by Mellanox cards to work in DPDK mode.

NOTE

$ oc create -f intel-dpdk-pod.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: mlx-dpdk-node-policy
 namespace: openshift-sriov-network-operator
spec:
 resourceName: mlxnics
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 priority: <priority>
 numVfs: <num>
 nicSelector:
 vendor: "15b3"
 deviceID: "1015" 1
 pfNames: ["<pf_name>", ...]
 rootDevices: ["<pci_bus_id>", "..."]
 deviceType: netdevice 2
 isRdma: true 3

CHAPTER 13. HARDWARE NETWORKS

157

1

NOTE

Please refer to Configuring SR-IOV network devices section for detailed
explanation on each option in SriovNetworkNodePolicy.

When applying the configuration specified in a SriovNetworkNodePolicy object,
the SR-IOV Operator may drain the nodes, and in some cases, reboot nodes. It
may take several minutes for a configuration change to apply. Ensure that there
are enough available nodes in your cluster to handle the evicted workload
beforehand.

After the configuration update is applied, all the pods in the openshift-sriov-
network-operator namespace will change to a Running status.

2. Create the SriovNetworkNodePolicy object by running the following command:

3. Create the following SriovNetwork object, and then save the YAML in the mlx-dpdk-
network.yaml file.

Specify a configuration object for the ipam CNI plug-in as a YAML block scalar. The plug-in
manages IP address assignment for the attachment definition.

NOTE

See the "Configuring SR-IOV additional network" section for a detailed
explanation on each option in SriovNetwork.

4. Create the SriovNetworkNodePolicy object by running the following command:

5. Create the following Pod spec, and then save the YAML in the mlx-dpdk-pod.yaml file.

$ oc create -f mlx-dpdk-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: mlx-dpdk-network
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: <target_namespace>
 ipam: |- 1
 ...
 vlan: <vlan>
 resourceName: mlxnics

$ oc create -f mlx-dpdk-network.yaml

apiVersion: v1
kind: Pod
metadata:
 name: dpdk-app
 namespace: <target_namespace> 1
 annotations:

OpenShift Container Platform 4.7 Networking

158

1

2

3

4

5

6

7

Specify the same target_namespace where SriovNetwork object mlx-dpdk-network is
created. If you would like to create the pod in a different namespace, change
target_namespace in both Pod spec and SriovNetowrk object.

Specify the DPDK image which includes your application and the DPDK library used by
application.

Specify additional capabilities required by the application inside the container for
hugepage allocation, system resource allocation, and network interface access.

Mount the hugepage volume to the DPDK pod under /dev/hugepages. The hugepage
volume is backed by the emptyDir volume type with the medium being Hugepages.

Optional: Specify the number of DPDK devices allocated to the DPDK pod. This resource
request and limit, if not explicitly specified, will be automatically added by SR-IOV network
resource injector. The SR-IOV network resource injector is an admission controller
component managed by SR-IOV Operator. It is enabled by default and can be disabled by
setting the enableInjector option to false in the default SriovOperatorConfig CR.

Specify the number of CPUs. The DPDK pod usually requires exclusive CPUs be allocated
from kubelet. This is achieved by setting CPU Manager policy to static and creating a pod
with Guaranteed QoS.

Specify hugepage size hugepages-1Gi or hugepages-2Mi and the quantity of hugepages
that will be allocated to DPDK pod. Configure 2Mi and 1Gi hugepages separately.
Configuring 1Gi hugepage requires adding kernel arguments to Nodes.

 k8s.v1.cni.cncf.io/networks: mlx-dpdk-network
spec:
 containers:
 - name: testpmd
 image: <DPDK_image> 2
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"] 3
 volumeMounts:
 - mountPath: /dev/hugepages 4
 name: hugepage
 resources:
 limits:
 openshift.io/mlxnics: "1" 5
 memory: "1Gi"
 cpu: "4" 6
 hugepages-1Gi: "4Gi" 7
 requests:
 openshift.io/mlxnics: "1"
 memory: "1Gi"
 cpu: "4"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

CHAPTER 13. HARDWARE NETWORKS

159

1

2

3

6. Create the DPDK pod by running the following command:

13.9.3. Using a virtual function in RDMA mode with a Mellanox NIC

RDMA over Converged Ethernet (RoCE) is the only supported mode when using RDMA on OpenShift
Container Platform.

Prerequisites

Install the OpenShift CLI (oc).

Install the SR-IOV Network Operator.

Log in as a user with cluster-admin privileges.

Procedure

1. Create the following SriovNetworkNodePolicy object, and then save the YAML in the mlx-
rdma-node-policy.yaml file.

Specify the device hex code of SR-IOV network device. The only allowed values for
Mellanox cards are 1015, 1017.

Specify the driver type for the virtual functions to netdevice.

Enable RDMA mode.

NOTE

$ oc create -f mlx-dpdk-pod.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: mlx-rdma-node-policy
 namespace: openshift-sriov-network-operator
spec:
 resourceName: mlxnics
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 priority: <priority>
 numVfs: <num>
 nicSelector:
 vendor: "15b3"
 deviceID: "1015" 1
 pfNames: ["<pf_name>", ...]
 rootDevices: ["<pci_bus_id>", "..."]
 deviceType: netdevice 2
 isRdma: true 3

OpenShift Container Platform 4.7 Networking

160

1

NOTE

Please refer to the Configuring SR-IOV network devices section for a detailed
explanation on each option in SriovNetworkNodePolicy.

When applying the configuration specified in a SriovNetworkNodePolicy object,
the SR-IOV Operator may drain the nodes, and in some cases, reboot nodes. It
may take several minutes for a configuration change to apply. Ensure that there
are enough available nodes in your cluster to handle the evicted workload
beforehand.

After the configuration update is applied, all the pods in the openshift-sriov-
network-operator namespace will change to a Running status.

2. Create the SriovNetworkNodePolicy object by running the following command:

3. Create the following SriovNetwork object, and then save the YAML in the mlx-rdma-
network.yaml file.

Specify a configuration object for the ipam CNI plug-in as a YAML block scalar. The plug-in
manages IP address assignment for the attachment definition.

NOTE

See the "Configuring SR-IOV additional network" section for a detailed
explanation on each option in SriovNetwork.

4. Create the SriovNetworkNodePolicy object by running the following command:

5. Create the following Pod spec, and then save the YAML in the mlx-rdma-pod.yaml file.

$ oc create -f mlx-rdma-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: mlx-rdma-network
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: <target_namespace>
 ipam: |- 1
 ...
 vlan: <vlan>
 resourceName: mlxnics

$ oc create -f mlx-rdma-network.yaml

apiVersion: v1
kind: Pod
metadata:
 name: rdma-app
 namespace: <target_namespace> 1
 annotations:

CHAPTER 13. HARDWARE NETWORKS

161

1

2

3

4

5

6

Specify the same target_namespace where SriovNetwork object mlx-rdma-network is
created. If you would like to create the pod in a different namespace, change
target_namespace in both Pod spec and SriovNetowrk object.

Specify the RDMA image which includes your application and RDMA library used by
application.

Specify additional capabilities required by the application inside the container for
hugepage allocation, system resource allocation, and network interface access.

Mount the hugepage volume to RDMA pod under /dev/hugepages. The hugepage volume
is backed by the emptyDir volume type with the medium being Hugepages.

Specify number of CPUs. The RDMA pod usually requires exclusive CPUs be allocated
from the kubelet. This is achieved by setting CPU Manager policy to static and create pod
with Guaranteed QoS.

Specify hugepage size hugepages-1Gi or hugepages-2Mi and the quantity of hugepages
that will be allocated to the RDMA pod. Configure 2Mi and 1Gi hugepages separately.
Configuring 1Gi hugepage requires adding kernel arguments to Nodes.

6. Create the RDMA pod by running the following command:

13.10. UNINSTALLING THE SR-IOV NETWORK OPERATOR

 k8s.v1.cni.cncf.io/networks: mlx-rdma-network
spec:
 containers:
 - name: testpmd
 image: <RDMA_image> 2
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"] 3
 volumeMounts:
 - mountPath: /dev/hugepages 4
 name: hugepage
 resources:
 limits:
 memory: "1Gi"
 cpu: "4" 5
 hugepages-1Gi: "4Gi" 6
 requests:
 memory: "1Gi"
 cpu: "4"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

$ oc create -f mlx-rdma-pod.yaml

OpenShift Container Platform 4.7 Networking

162

To uninstall the SR-IOV Network Operator, you must delete any running SR-IOV workloads, uninstall the
Operator, and delete the webhooks that the Operator used.

13.10.1. Uninstalling the SR-IOV Network Operator

As a cluster administrator, you can uninstall the SR-IOV Network Operator.

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

You have the SR-IOV Network Operator installed.

Procedure

1. Delete all SR-IOV custom resources (CRs):

2. Follow the instructions in the "Deleting Operators from a cluster" section to remove the SR-IOV
Network Operator from your cluster.

3. Delete the SR-IOV custom resource definitions that remain in the cluster after the SR-IOV
Network Operator is uninstalled:

4. Delete the SR-IOV webhooks:

$ oc delete sriovnetwork -n openshift-sriov-network-operator --all

$ oc delete sriovnetworknodepolicy -n openshift-sriov-network-operator --all

$ oc delete sriovibnetwork -n openshift-sriov-network-operator --all

$ oc delete crd sriovibnetworks.sriovnetwork.openshift.io

$ oc delete crd sriovnetworknodepolicies.sriovnetwork.openshift.io

$ oc delete crd sriovnetworknodestates.sriovnetwork.openshift.io

$ oc delete crd sriovnetworkpoolconfigs.sriovnetwork.openshift.io

$ oc delete crd sriovnetworks.sriovnetwork.openshift.io

$ oc delete crd sriovoperatorconfigs.sriovnetwork.openshift.io

$ oc delete mutatingwebhookconfigurations network-resources-injector-config

$ oc delete MutatingWebhookConfiguration sriov-operator-webhook-config

$ oc delete ValidatingWebhookConfiguration sriov-operator-webhook-config

CHAPTER 13. HARDWARE NETWORKS

163

5. Delete the SR-IOV Network Operator namespace:

Additional resources

Deleting Operators from a cluster

$ oc delete namespace openshift-sriov-network-operator

OpenShift Container Platform 4.7 Networking

164

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-deleting-operators-from-a-cluster

CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK
PROVIDER

14.1. ABOUT THE OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

OpenShift Container Platform uses a software-defined networking (SDN) approach to provide a unified
cluster network that enables communication between pods across the OpenShift Container Platform
cluster. This pod network is established and maintained by the OpenShift SDN, which configures an
overlay network using Open vSwitch (OVS).

14.1.1. OpenShift SDN network isolation modes

OpenShift SDN provides three SDN modes for configuring the pod network:

Network policy mode allows project administrators to configure their own isolation policies using
NetworkPolicy objects. Network policy is the default mode in OpenShift Container Platform
4.7.

Multitenant mode provides project-level isolation for pods and services. Pods from different
projects cannot send packets to or receive packets from pods and services of a different
project. You can disable isolation for a project, allowing it to send network traffic to all pods and
services in the entire cluster and receive network traffic from those pods and services.

Subnet mode provides a flat pod network where every pod can communicate with every other
pod and service. The network policy mode provides the same functionality as subnet mode.

14.1.2. Supported default CNI network provider feature matrix

OpenShift Container Platform offers two supported choices, OpenShift SDN and OVN-Kubernetes, for
the default Container Network Interface (CNI) network provider. The following table summarizes the
current feature support for both network providers:

Table 14.1. Default CNI network provider feature comparison

Feature OpenShift SDN OVN-Kubernetes

Egress IPs Supported Supported

Egress firewall [1] Supported Supported

Egress router Supported Partially supported [3]

IPsec encryption Not supported Supported

Kubernetes network policy Partially supported [2] Supported

Multicast Supported Supported

1. Egress firewall is also known as egress network policy in OpenShift SDN. This is not the same as
network policy egress.

CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

165

2. Network policy for OpenShift SDN does not support egress rules and some ipBlock rules.

3. Egress router for OVN-Kubernetes supports only redirect mode.

14.2. CONFIGURING EGRESS IPS FOR A PROJECT

As a cluster administrator, you can configure the OpenShift SDN default Container Network Interface
(CNI) network provider to assign one or more egress IP addresses to a project.

14.2.1. Egress IP address assignment for project egress traffic

By configuring an egress IP address for a project, all outgoing external connections from the specified
project will share the same, fixed source IP address. External resources can recognize traffic from a
particular project based on the egress IP address. An egress IP address assigned to a project is different
from the egress router, which is used to send traffic to specific destinations.

Egress IP addresses are implemented as additional IP addresses on the primary network interface of the
node and must be in the same subnet as the node’s primary IP address.

IMPORTANT

Egress IP addresses must not be configured in any Linux network configuration files, such
as ifcfg-eth0.

Egress IPs on Amazon Web Services (AWS), Google Cloud Platform (GCP), and Azure
are supported only on OpenShift Container Platform version 4.10 and later.

Allowing additional IP addresses on the primary network interface might require extra
configuration when using some virtual machines solutions.

You can assign egress IP addresses to namespaces by setting the egressIPs parameter of the
NetNamespace object. After an egress IP is associated with a project, OpenShift SDN allows you to
assign egress IPs to hosts in two ways:

In the automatically assigned approach, an egress IP address range is assigned to a node.

In the manually assigned approach, a list of one or more egress IP address is assigned to a node.

Namespaces that request an egress IP address are matched with nodes that can host those egress IP
addresses, and then the egress IP addresses are assigned to those nodes. If the egressIPs parameter is
set on a NetNamespace object, but no node hosts that egress IP address, then egress traffic from the
namespace will be dropped.

High availability of nodes is automatic. If a node that hosts an egress IP address is unreachable and
there are nodes that are able to host that egress IP address, then the egress IP address will move to a
new node. When the unreachable node comes back online, the egress IP address automatically moves
to balance egress IP addresses across nodes.

IMPORTANT

OpenShift Container Platform 4.7 Networking

166

IMPORTANT

The following limitations apply when using egress IP addresses with the OpenShift SDN
cluster network provider:

You cannot use manually assigned and automatically assigned egress IP
addresses on the same nodes.

If you manually assign egress IP addresses from an IP address range, you must
not make that range available for automatic IP assignment.

You cannot share egress IP addresses across multiple namespaces using the
OpenShift SDN egress IP address implementation. If you need to share IP
addresses across namespaces, the OVN-Kubernetes cluster network provider
egress IP address implementation allows you to span IP addresses across
multiple namespaces.

NOTE

If you use OpenShift SDN in multitenant mode, you cannot use egress IP addresses with
any namespace that is joined to another namespace by the projects that are associated
with them. For example, if project1 and project2 are joined by running the oc adm pod-
network join-projects --to=project1 project2 command, neither project can use an
egress IP address. For more information, see BZ#1645577.

14.2.1.1. Considerations when using automatically assigned egress IP addresses

When using the automatic assignment approach for egress IP addresses the following considerations
apply:

You set the egressCIDRs parameter of each node’s HostSubnet resource to indicate the
range of egress IP addresses that can be hosted by a node. OpenShift Container Platform sets
the egressIPs parameter of the HostSubnet resource based on the IP address range you
specify.

Only a single egress IP address per namespace is supported when using the automatic
assignment mode.

If the node hosting the namespace’s egress IP address is unreachable, OpenShift Container Platform
will reassign the egress IP address to another node with a compatible egress IP address range. The
automatic assignment approach works best for clusters installed in environments with flexibility in
associating additional IP addresses with nodes.

14.2.1.2. Considerations when using manually assigned egress IP addresses

This approach is used for clusters where there can be limitations on associating additional IP addresses
with nodes such as in public cloud environments.

When using the manual assignment approach for egress IP addresses the following considerations apply:

You set the egressIPs parameter of each node’s HostSubnet resource to indicate the IP
addresses that can be hosted by a node.

Multiple egress IP addresses per namespace are supported.

When a namespace has multiple egress IP addresses, if the node hosting the first egress IP address is

CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

167

https://bugzilla.redhat.com/show_bug.cgi?id=1645577

1

2

When a namespace has multiple egress IP addresses, if the node hosting the first egress IP address is
unreachable, OpenShift Container Platform will automatically switch to using the next available egress
IP address until the first egress IP address is reachable again.

14.2.2. Configuring automatically assigned egress IP addresses for a namespace

In OpenShift Container Platform you can enable automatic assignment of an egress IP address for a
specific namespace across one or more nodes.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Update the NetNamespace object with the egress IP address using the following JSON:

Specify the name of the project.

Specify a single egress IP address. Using multiple IP addresses is not supported.

For example, to assign project1 to an IP address of 192.168.1.100 and project2 to an IP address
of 192.168.1.101:

NOTE

Because OpenShift SDN manages the NetNamespace object, you can make
changes only by modifying the existing NetNamespace object. Do not create a
new NetNamespace object.

2. Indicate which nodes can host egress IP addresses by setting the egressCIDRs parameter for
each host using the following JSON:

 $ oc patch netnamespace <project_name> --type=merge -p \ 1
 '{
 "egressIPs": [
 "<ip_address>" 2
]
 }'

$ oc patch netnamespace project1 --type=merge -p \
 '{"egressIPs": ["192.168.1.100"]}'
$ oc patch netnamespace project2 --type=merge -p \
 '{"egressIPs": ["192.168.1.101"]}'

$ oc patch hostsubnet <node_name> --type=merge -p \ 1
 '{
 "egressCIDRs": [
 "<ip_address_range_1>", "<ip_address_range_2>" 2
]
 }'

OpenShift Container Platform 4.7 Networking

168

1

2

1

2

Specify a node name.

Specify one or more IP address ranges in CIDR format.

For example, to set node1 and node2 to host egress IP addresses in the range 192.168.1.0 to
192.168.1.255:

OpenShift Container Platform automatically assigns specific egress IP addresses to available
nodes in a balanced way. In this case, it assigns the egress IP address 192.168.1.100 to node1 and
the egress IP address 192.168.1.101 to node2 or vice versa.

14.2.3. Configuring manually assigned egress IP addresses for a namespace

In OpenShift Container Platform you can associate one or more egress IP addresses with a namespace.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Update the NetNamespace object by specifying the following JSON object with the desired IP
addresses:

Specify the name of the project.

Specify one or more egress IP addresses. The egressIPs parameter is an array.

For example, to assign the project1 project to an IP address of 192.168.1.100:

You can set egressIPs to two or more IP addresses on different nodes to provide high
availability. If multiple egress IP addresses are set, pods use the first IP in the list for egress, but
if the node hosting that IP address fails, pods switch to using the next IP in the list after a short
delay.

NOTE

$ oc patch hostsubnet node1 --type=merge -p \
 '{"egressCIDRs": ["192.168.1.0/24"]}'
$ oc patch hostsubnet node2 --type=merge -p \
 '{"egressCIDRs": ["192.168.1.0/24"]}'

$ oc patch netnamespace <project> --type=merge -p \ 1
 '{
 "egressIPs": [2
 "<ip_address>"
]
 }'

$ oc patch netnamespace project1 --type=merge \
 -p '{"egressIPs": ["192.168.1.100"]}'

CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

169

1

2

NOTE

Because OpenShift SDN manages the NetNamespace object, you can make
changes only by modifying the existing NetNamespace object. Do not create a
new NetNamespace object.

2. Manually assign the egress IP to the node hosts. Set the egressIPs parameter on the
HostSubnet object on the node host. Using the following JSON, include as many IPs as you
want to assign to that node host:

Specify the name of the node.

Specify one or more egress IP addresses. The egressIPs field is an array.

For example, to specify that node1 should have the egress IPs 192.168.1.100, 192.168.1.101,
and 192.168.1.102:

In the previous example, all egress traffic for project1 will be routed to the node hosting the
specified egress IP, and then connected (using NAT) to that IP address.

14.3. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can create an egress firewall for a project that restricts egress traffic
leaving your OpenShift Container Platform cluster.

14.3.1. How an egress firewall works in a project

As a cluster administrator, you can use an egress firewall to limit the external hosts that some or all pods
can access from within the cluster. An egress firewall supports the following scenarios:

A pod can only connect to internal hosts and cannot initiate connections to the public Internet.

A pod can only connect to the public Internet and cannot initiate connections to internal hosts
that are outside the OpenShift Container Platform cluster.

A pod cannot reach specified internal subnets or hosts outside the OpenShift Container
Platform cluster.

A pod can connect to only specific external hosts.

For example, you can allow one project access to a specified IP range but deny the same access to a
different project. Or you can restrict application developers from updating from Python pip mirrors, and
force updates to come only from approved sources.

$ oc patch hostsubnet <node_name> --type=merge -p \ 1
 '{
 "egressIPs": [2
 "<ip_address_1>",
 "<ip_address_N>"
]
 }'

$ oc patch hostsubnet node1 --type=merge -p \
 '{"egressIPs": ["192.168.1.100", "192.168.1.101", "192.168.1.102"]}'

OpenShift Container Platform 4.7 Networking

170

1
2
3

You configure an egress firewall policy by creating an EgressNetworkPolicy custom resource (CR)
object. The egress firewall matches network traffic that meets any of the following criteria:

An IP address range in CIDR format

A DNS name that resolves to an IP address

IMPORTANT

If your egress firewall includes a deny rule for 0.0.0.0/0, access to your OpenShift
Container Platform API servers is blocked. To ensure that pods can continue to access
the OpenShift Container Platform API servers, you must include the IP address range
that the API servers listen on in your egress firewall rules, as in the following example:

The namespace for the egress firewall.
The IP address range that includes your OpenShift Container Platform API servers.
A global deny rule prevents access to the OpenShift Container Platform API servers.

To find the IP address for your API servers, run oc get ep kubernetes -n default.

For more information, see BZ#1988324.

IMPORTANT

You must have OpenShift SDN configured to use either the network policy or multitenant
mode to configure an egress firewall.

If you use network policy mode, an egress firewall is compatible with only one policy per
namespace and will not work with projects that share a network, such as global projects.

WARNING

Egress firewall rules do not apply to traffic that goes through routers. Any user with
permission to create a Route CR object can bypass egress firewall policy rules by
creating a route that points to a forbidden destination.

apiVersion: network.openshift.io/v1
kind: EgressNetworkPolicy
metadata:
 name: default
 namespace: <namespace> 1
spec:
 egress:
 - to:
 cidrSelector: <api_server_address_range> 2
 type: Allow
...
 - to:
 cidrSelector: 0.0.0.0/0 3
 type: Deny

CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

171

https://bugzilla.redhat.com/show_bug.cgi?id=1988324

14.3.1.1. Limitations of an egress firewall

An egress firewall has the following limitations:

No project can have more than one EgressNetworkPolicy object.

A maximum of one EgressNetworkPolicy object with a maximum of 1,000 rules can be defined
per project.

The default project cannot use an egress firewall.

When using the OpenShift SDN default Container Network Interface (CNI) network provider in
multitenant mode, the following limitations apply:

Global projects cannot use an egress firewall. You can make a project global by using the oc
adm pod-network make-projects-global command.

Projects merged by using the oc adm pod-network join-projects command cannot use an
egress firewall in any of the joined projects.

Violating any of these restrictions results in a broken egress firewall for the project, and may cause all
external network traffic to be dropped.

An Egress Firewall resource can be created in the kube-node-lease, kube-public, kube-system,
openshift and openshift- projects.

14.3.1.2. Matching order for egress firewall policy rules

The egress firewall policy rules are evaluated in the order that they are defined, from first to last. The
first rule that matches an egress connection from a pod applies. Any subsequent rules are ignored for
that connection.

14.3.1.3. How Domain Name Server (DNS) resolution works

If you use DNS names in any of your egress firewall policy rules, proper resolution of the domain names
is subject to the following restrictions:

Domain name updates are polled based on the TTL (time to live) value of the domain returned
by the local non-authoritative servers.

The pod must resolve the domain from the same local name servers when necessary. Otherwise
the IP addresses for the domain known by the egress firewall controller and the pod can be
different. If the IP addresses for a hostname differ, the egress firewall might not be enforced
consistently.

Because the egress firewall controller and pods asynchronously poll the same local name server,
the pod might obtain the updated IP address before the egress controller does, which causes a
race condition. Due to this current limitation, domain name usage in EgressNetworkPolicy
objects is only recommended for domains with infrequent IP address changes.

NOTE

OpenShift Container Platform 4.7 Networking

172

1

2

1

2

3

4

NOTE

The egress firewall always allows pods access to the external interface of the node that
the pod is on for DNS resolution.

If you use domain names in your egress firewall policy and your DNS resolution is not
handled by a DNS server on the local node, then you must add egress firewall rules that
allow access to your DNS server’s IP addresses. if you are using domain names in your
pods.

14.3.2. EgressNetworkPolicy custom resource (CR) object

You can define one or more rules for an egress firewall. A rule is either an Allow rule or a Deny rule, with
a specification for the traffic that the rule applies to.

The following YAML describes an EgressNetworkPolicy CR object:

EgressNetworkPolicy object

A name for your egress firewall policy.

A collection of one or more egress network policy rules as described in the following section.

14.3.2.1. EgressNetworkPolicy rules

The following YAML describes an egress firewall rule object. The egress stanza expects an array of one
or more objects.

Egress policy rule stanza

The type of rule. The value must be either Allow or Deny.

A stanza describing an egress traffic match rule. A value for either the cidrSelector field or the
dnsName field for the rule. You cannot use both fields in the same rule.

An IP address range in CIDR format.

A domain name.

apiVersion: network.openshift.io/v1
kind: EgressNetworkPolicy
metadata:
 name: <name> 1
spec:
 egress: 2
 ...

egress:
- type: <type> 1
 to: 2
 cidrSelector: <cidr> 3
 dnsName: <dns_name> 4

CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

173

1

14.3.2.2. Example EgressNetworkPolicy CR objects

The following example defines several egress firewall policy rules:

A collection of egress firewall policy rule objects.

14.3.3. Creating an egress firewall policy object

As a cluster administrator, you can create an egress firewall policy object for a project.

IMPORTANT

If the project already has an EgressNetworkPolicy object defined, you must edit the
existing policy to make changes to the egress firewall rules.

Prerequisites

A cluster that uses the OpenShift SDN default Container Network Interface (CNI) network
provider plug-in.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Create a policy rule:

a. Create a <policy_name>.yaml file where <policy_name> describes the egress policy rules.

b. In the file you created, define an egress policy object.

2. Enter the following command to create the policy object. Replace <policy_name> with the
name of the policy and <project> with the project that the rule applies to.

In the following example, a new EgressNetworkPolicy object is created in a project named

apiVersion: network.openshift.io/v1
kind: EgressNetworkPolicy
metadata:
 name: default
spec:
 egress: 1
 - type: Allow
 to:
 cidrSelector: 1.2.3.0/24
 - type: Allow
 to:
 dnsName: www.example.com
 - type: Deny
 to:
 cidrSelector: 0.0.0.0/0

$ oc create -f <policy_name>.yaml -n <project>

OpenShift Container Platform 4.7 Networking

174

In the following example, a new EgressNetworkPolicy object is created in a project named
project1:

Example output

3. Optional: Save the <policy_name>.yaml file so that you can make changes later.

14.4. EDITING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can modify network traffic rules for an existing egress firewall.

14.4.1. Viewing an EgressNetworkPolicy object

You can view an EgressNetworkPolicy object in your cluster.

Prerequisites

A cluster using the OpenShift SDN default Container Network Interface (CNI) network provider
plug-in.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster.

Procedure

1. Optional: To view the names of the EgressNetworkPolicy objects defined in your cluster, enter
the following command:

2. To inspect a policy, enter the following command. Replace <policy_name> with the name of
the policy to inspect.

Example output

14.5. EDITING AN EGRESS FIREWALL FOR A PROJECT

$ oc create -f default.yaml -n project1

egressnetworkpolicy.network.openshift.io/v1 created

$ oc get egressnetworkpolicy --all-namespaces

$ oc describe egressnetworkpolicy <policy_name>

Name: default
Namespace: project1
Created: 20 minutes ago
Labels: <none>
Annotations: <none>
Rule: Allow to 1.2.3.0/24
Rule: Allow to www.example.com
Rule: Deny to 0.0.0.0/0

CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

175

As a cluster administrator, you can modify network traffic rules for an existing egress firewall.

14.5.1. Editing an EgressNetworkPolicy object

As a cluster administrator, you can update the egress firewall for a project.

Prerequisites

A cluster using the OpenShift SDN default Container Network Interface (CNI) network provider
plug-in.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Find the name of the EgressNetworkPolicy object for the project. Replace <project> with the
name of the project.

2. Optional: If you did not save a copy of the EgressNetworkPolicy object when you created the
egress network firewall, enter the following command to create a copy.

Replace <project> with the name of the project. Replace <name> with the name of the object.
Replace <filename> with the name of the file to save the YAML to.

3. After making changes to the policy rules, enter the following command to replace the
EgressNetworkPolicy object. Replace <filename> with the name of the file containing the
updated EgressNetworkPolicy object.

14.6. REMOVING AN EGRESS FIREWALL FROM A PROJECT

As a cluster administrator, you can remove an egress firewall from a project to remove all restrictions on
network traffic from the project that leaves the OpenShift Container Platform cluster.

14.6.1. Removing an EgressNetworkPolicy object

As a cluster administrator, you can remove an egress firewall from a project.

Prerequisites

A cluster using the OpenShift SDN default Container Network Interface (CNI) network provider
plug-in.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

$ oc get -n <project> egressnetworkpolicy

$ oc get -n <project> egressnetworkpolicy <name> -o yaml > <filename>.yaml

$ oc replace -f <filename>.yaml

OpenShift Container Platform 4.7 Networking

176

Procedure

1. Find the name of the EgressNetworkPolicy object for the project. Replace <project> with the
name of the project.

2. Enter the following command to delete the EgressNetworkPolicy object. Replace <project>
with the name of the project and <name> with the name of the object.

14.7. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD

14.7.1. About an egress router pod

The OpenShift Container Platform egress router pod redirects traffic to a specified remote server from
a private source IP address that is not used for any other purpose. An egress router pod enables you to
send network traffic to servers that are set up to allow access only from specific IP addresses.

NOTE

The egress router pod is not intended for every outgoing connection. Creating large
numbers of egress router pods can exceed the limits of your network hardware. For
example, creating an egress router pod for every project or application could exceed the
number of local MAC addresses that the network interface can handle before reverting to
filtering MAC addresses in software.

IMPORTANT

The egress router image is not compatible with Amazon AWS, Azure Cloud, or any other
cloud platform that does not support layer 2 manipulations due to their incompatibility
with macvlan traffic.

14.7.1.1. Egress router modes

In redirect mode , an egress router pod configures iptables rules to redirect traffic from its own IP
address to one or more destination IP addresses. Client pods that need to use the reserved source IP
address must be modified to connect to the egress router rather than connecting directly to the
destination IP.

In HTTP proxy mode , an egress router pod runs as an HTTP proxy on port 8080. This mode only works for
clients that are connecting to HTTP-based or HTTPS-based services, but usually requires fewer
changes to the client pods to get them to work. Many programs can be told to use an HTTP proxy by
setting an environment variable.

In DNS proxy mode , an egress router pod runs as a DNS proxy for TCP-based services from its own IP
address to one or more destination IP addresses. To make use of the reserved, source IP address, client
pods must be modified to connect to the egress router pod rather than connecting directly to the
destination IP address. This modification ensures that external destinations treat traffic as though it
were coming from a known source.

Redirect mode works for all services except for HTTP and HTTPS. For HTTP and HTTPS services, use

$ oc get -n <project> egressnetworkpolicy

$ oc delete -n <project> egressnetworkpolicy <name>

CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

177

Redirect mode works for all services except for HTTP and HTTPS. For HTTP and HTTPS services, use
HTTP proxy mode. For TCP-based services with IP addresses or domain names, use DNS proxy mode.

14.7.1.2. Egress router pod implementation

The egress router pod setup is performed by an initialization container. That container runs in a
privileged context so that it can configure the macvlan interface and set up iptables rules. After the
initialization container finishes setting up the iptables rules, it exits. Next the egress router pod
executes the container to handle the egress router traffic. The image used varies depending on the
egress router mode.

The environment variables determine which addresses the egress-router image uses. The image
configures the macvlan interface to use EGRESS_SOURCE as its IP address, with
EGRESS_GATEWAY as the IP address for the gateway.

Network Address Translation (NAT) rules are set up so that connections to the cluster IP address of the
pod on any TCP or UDP port are redirected to the same port on IP address specified by the
EGRESS_DESTINATION variable.

If only some of the nodes in your cluster are capable of claiming the specified source IP address and
using the specified gateway, you can specify a nodeName or nodeSelector to identify which nodes are
acceptable.

14.7.1.3. Deployment considerations

An egress router pod adds an additional IP address and MAC address to the primary network interface
of the node. As a result, you might need to configure your hypervisor or cloud provider to allow the
additional address.

Red Hat OpenStack Platform (RHOSP)

If you deploy OpenShift Container Platform on RHOSP, you must allow traffic from the IP and MAC
addresses of the egress router pod on your OpenStack environment. If you do not allow the traffic,
then communication will fail :

Red Hat Virtualization (RHV)

If you are using RHV, you must select No Network Filter for the Virtual network interface controller
(vNIC).

VMware vSphere

If you are using VMware vSphere, see the VMware documentation for securing vSphere standard
switches. View and change VMware vSphere default settings by selecting the host virtual switch from
the vSphere Web Client.

Specifically, ensure that the following are enabled:

MAC Address Changes

Forged Transits

Promiscuous Mode Operation

14.7.1.4. Failover configuration
To avoid downtime, you can deploy an egress router pod with a Deployment resource, as in the

$ openstack port set --allowed-address \
 ip_address=<ip_address>,mac_address=<mac_address> <neutron_port_uuid>

OpenShift Container Platform 4.7 Networking

178

https://access.redhat.com/solutions/2803331
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/administration_guide/chap-logical_networks#Explanation_of_Settings_in_the_VM_Interface_Profile_Window
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-3507432E-AFEA-4B6B-B404-17A020575358.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-942BD3AA-731B-4A05-8196-66F2B4BF1ACB.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-7DC6486F-5400-44DF-8A62-6273798A2F80.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-92F3AB1F-B4C5-4F25-A010-8820D7250350.html

1

2

To avoid downtime, you can deploy an egress router pod with a Deployment resource, as in the
following example. To create a new Service object for the example deployment, use the oc expose
deployment/egress-demo-controller command.

Ensure that replicas is set to 1, because only one pod can use a given egress source IP address at
any time. This means that only a single copy of the router runs on a node.

Specify the Pod object template for the egress router pod.

14.7.2. Additional resources

Deploying an egress router in redirection mode

Deploying an egress router in HTTP proxy mode

Deploying an egress router in DNS proxy mode

14.8. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

As a cluster administrator, you can deploy an egress router pod that is configured to redirect traffic to
specified destination IP addresses.

14.8.1. Egress router pod specification for redirect mode

Define the configuration for an egress router pod in the Pod object. The following YAML describes the
fields for the configuration of an egress router pod in redirect mode:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: egress-demo-controller
spec:
 replicas: 1 1
 selector:
 matchLabels:
 name: egress-router
 template:
 metadata:
 name: egress-router
 labels:
 name: egress-router
 annotations:
 pod.network.openshift.io/assign-macvlan: "true"
 spec: 2
 initContainers:
 ...
 containers:
 ...

apiVersion: v1
kind: Pod
metadata:
 name: egress-1

CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

179

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#deploying-egress-router-layer3-redirection
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#deploying-egress-router-http-redirection
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#deploying-egress-router-dns-redirection

1

2

3

4

The annotation tells OpenShift Container Platform to create a macvlan network interface on the
primary network interface controller (NIC) and move that macvlan interface into the pod’s network
namespace. You must include the quotation marks around the "true" value. To have OpenShift
Container Platform create the macvlan interface on a different NIC interface, set the annotation
value to the name of that interface. For example, eth1.

IP address from the physical network that the node is on that is reserved for use by the egress
router pod. Optional: You can include the subnet length, the /24 suffix, so that a proper route to the
local subnet is set. If you do not specify a subnet length, then the egress router can access only the
host specified with the EGRESS_GATEWAY variable and no other hosts on the subnet.

Same value as the default gateway used by the node.

External server to direct traffic to. Using this example, connections to the pod are redirected to
203.0.113.25, with a source IP address of 192.168.12.99.

Example egress router pod specification

 labels:
 name: egress-1
 annotations:
 pod.network.openshift.io/assign-macvlan: "true" 1
spec:
 initContainers:
 - name: egress-router
 image: registry.redhat.io/openshift4/ose-egress-router
 securityContext:
 privileged: true
 env:
 - name: EGRESS_SOURCE 2
 value: <egress_router>
 - name: EGRESS_GATEWAY 3
 value: <egress_gateway>
 - name: EGRESS_DESTINATION 4
 value: <egress_destination>
 - name: EGRESS_ROUTER_MODE
 value: init
 containers:
 - name: egress-router-wait
 image: registry.redhat.io/openshift4/ose-pod

apiVersion: v1
kind: Pod
metadata:
 name: egress-multi
 labels:
 name: egress-multi
 annotations:
 pod.network.openshift.io/assign-macvlan: "true"
spec:
 initContainers:
 - name: egress-router
 image: registry.redhat.io/openshift4/ose-egress-router
 securityContext:

OpenShift Container Platform 4.7 Networking

180

14.8.2. Egress destination configuration format

When an egress router pod is deployed in redirect mode, you can specify redirection rules by using one
or more of the following formats:

<port> <protocol> <ip_address> - Incoming connections to the given <port> should be
redirected to the same port on the given <ip_address>. <protocol> is either tcp or udp.

<port> <protocol> <ip_address> <remote_port> - As above, except that the connection is
redirected to a different <remote_port> on <ip_address>.

<ip_address> - If the last line is a single IP address, then any connections on any other port will
be redirected to the corresponding port on that IP address. If there is no fallback IP address
then connections on other ports are rejected.

In the example that follows several rules are defined:

The first line redirects traffic from local port 80 to port 80 on 203.0.113.25.

The second and third lines redirect local ports 8080 and 8443 to remote ports 80 and 443 on
203.0.113.26.

The last line matches traffic for any ports not specified in the previous rules.

Example configuration

14.8.3. Deploying an egress router pod in redirect mode

In redirect mode , an egress router pod sets up iptables rules to redirect traffic from its own IP address to
one or more destination IP addresses. Client pods that need to use the reserved source IP address
must be modified to connect to the egress router rather than connecting directly to the destination IP.

 privileged: true
 env:
 - name: EGRESS_SOURCE
 value: 192.168.12.99/24
 - name: EGRESS_GATEWAY
 value: 192.168.12.1
 - name: EGRESS_DESTINATION
 value: |
 80 tcp 203.0.113.25
 8080 tcp 203.0.113.26 80
 8443 tcp 203.0.113.26 443
 203.0.113.27
 - name: EGRESS_ROUTER_MODE
 value: init
 containers:
 - name: egress-router-wait
 image: registry.redhat.io/openshift4/ose-pod

80 tcp 203.0.113.25
8080 tcp 203.0.113.26 80
8443 tcp 203.0.113.26 443
203.0.113.27

CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

181

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an egress router pod.

2. To ensure that other pods can find the IP address of the egress router pod, create a service to
point to the egress router pod, as in the following example:

Your pods can now connect to this service. Their connections are redirected to the
corresponding ports on the external server, using the reserved egress IP address.

14.8.4. Additional resources

Configuring an egress router destination mappings with a ConfigMap

14.9. DEPLOYING AN EGRESS ROUTER POD IN HTTP PROXY MODE

As a cluster administrator, you can deploy an egress router pod configured to proxy traffic to specified
HTTP and HTTPS-based services.

14.9.1. Egress router pod specification for HTTP mode

Define the configuration for an egress router pod in the Pod object. The following YAML describes the
fields for the configuration of an egress router pod in HTTP mode:

apiVersion: v1
kind: Service
metadata:
 name: egress-1
spec:
 ports:
 - name: http
 port: 80
 - name: https
 port: 443
 type: ClusterIP
 selector:
 name: egress-1

apiVersion: v1
kind: Pod
metadata:
 name: egress-1
 labels:
 name: egress-1
 annotations:
 pod.network.openshift.io/assign-macvlan: "true" 1
spec:
 initContainers:

OpenShift Container Platform 4.7 Networking

182

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-egress-router-configmap

1

2

3

4

The annotation tells OpenShift Container Platform to create a macvlan network interface on the
primary network interface controller (NIC) and move that macvlan interface into the pod’s network
namespace. You must include the quotation marks around the "true" value. To have OpenShift
Container Platform create the macvlan interface on a different NIC interface, set the annotation
value to the name of that interface. For example, eth1.

IP address from the physical network that the node is on that is reserved for use by the egress
router pod. Optional: You can include the subnet length, the /24 suffix, so that a proper route to the
local subnet is set. If you do not specify a subnet length, then the egress router can access only the
host specified with the EGRESS_GATEWAY variable and no other hosts on the subnet.

Same value as the default gateway used by the node.

A string or YAML multi-line string specifying how to configure the proxy. Note that this is specified
as an environment variable in the HTTP proxy container, not with the other environment variables
in the init container.

14.9.2. Egress destination configuration format

When an egress router pod is deployed in HTTP proxy mode, you can specify redirection rules by using
one or more of the following formats. Each line in the configuration specifies one group of connections
to allow or deny:

An IP address allows connections to that IP address, such as 192.168.1.1.

A CIDR range allows connections to that CIDR range, such as 192.168.1.0/24.

A hostname allows proxying to that host, such as www.example.com.

A domain name preceded by *. allows proxying to that domain and all of its subdomains, such as
*.example.com.

A ! followed by any of the previous match expressions denies the connection instead.

If the last line is *, then anything that is not explicitly denied is allowed. Otherwise, anything that

 - name: egress-router
 image: registry.redhat.io/openshift4/ose-egress-router
 securityContext:
 privileged: true
 env:
 - name: EGRESS_SOURCE 2
 value: <egress-router>
 - name: EGRESS_GATEWAY 3
 value: <egress-gateway>
 - name: EGRESS_ROUTER_MODE
 value: http-proxy
 containers:
 - name: egress-router-pod
 image: registry.redhat.io/openshift4/ose-egress-http-proxy
 env:
 - name: EGRESS_HTTP_PROXY_DESTINATION 4
 value: |-
 ...
 ...

CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

183

1

If the last line is *, then anything that is not explicitly denied is allowed. Otherwise, anything that
is not allowed is denied.

You can also use * to allow connections to all remote destinations.

Example configuration

14.9.3. Deploying an egress router pod in HTTP proxy mode

In HTTP proxy mode , an egress router pod runs as an HTTP proxy on port 8080. This mode only works for
clients that are connecting to HTTP-based or HTTPS-based services, but usually requires fewer
changes to the client pods to get them to work. Many programs can be told to use an HTTP proxy by
setting an environment variable.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an egress router pod.

2. To ensure that other pods can find the IP address of the egress router pod, create a service to
point to the egress router pod, as in the following example:

Ensure the http port is set to 8080.

3. To configure the client pod (not the egress proxy pod) to use the HTTP proxy, set the
http_proxy or https_proxy variables:

!*.example.com
!192.168.1.0/24
192.168.2.1
*

apiVersion: v1
kind: Service
metadata:
 name: egress-1
spec:
 ports:
 - name: http-proxy
 port: 8080 1
 type: ClusterIP
 selector:
 name: egress-1

apiVersion: v1
kind: Pod
metadata:
 name: app-1
 labels:

OpenShift Container Platform 4.7 Networking

184

1 The service created in the previous step.

NOTE

Using the http_proxy and https_proxy environment variables is not necessary
for all setups. If the above does not create a working setup, then consult the
documentation for the tool or software you are running in the pod.

14.9.4. Additional resources

Configuring an egress router destination mappings with a ConfigMap

14.10. DEPLOYING AN EGRESS ROUTER POD IN DNS PROXY MODE

As a cluster administrator, you can deploy an egress router pod configured to proxy traffic to specified
DNS names and IP addresses.

14.10.1. Egress router pod specification for DNS mode

Define the configuration for an egress router pod in the Pod object. The following YAML describes the
fields for the configuration of an egress router pod in DNS mode:

 name: app-1
spec:
 containers:
 env:
 - name: http_proxy
 value: http://egress-1:8080/ 1
 - name: https_proxy
 value: http://egress-1:8080/
 ...

apiVersion: v1
kind: Pod
metadata:
 name: egress-1
 labels:
 name: egress-1
 annotations:
 pod.network.openshift.io/assign-macvlan: "true" 1
spec:
 initContainers:
 - name: egress-router
 image: registry.redhat.io/openshift4/ose-egress-router
 securityContext:
 privileged: true
 env:
 - name: EGRESS_SOURCE 2
 value: <egress-router>
 - name: EGRESS_GATEWAY 3
 value: <egress-gateway>
 - name: EGRESS_ROUTER_MODE
 value: dns-proxy

CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

185

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-egress-router-configmap

1

2

3

4

5

The annotation tells OpenShift Container Platform to create a macvlan network interface on the
primary network interface controller (NIC) and move that macvlan interface into the pod’s network
namespace. You must include the quotation marks around the "true" value. To have OpenShift
Container Platform create the macvlan interface on a different NIC interface, set the annotation
value to the name of that interface. For example, eth1.

IP address from the physical network that the node is on that is reserved for use by the egress
router pod. Optional: You can include the subnet length, the /24 suffix, so that a proper route to the
local subnet is set. If you do not specify a subnet length, then the egress router can access only the
host specified with the EGRESS_GATEWAY variable and no other hosts on the subnet.

Same value as the default gateway used by the node.

Specify a list of one or more proxy destinations.

Optional: Specify to output the DNS proxy log output to stdout.

14.10.2. Egress destination configuration format

When the router is deployed in DNS proxy mode, you specify a list of port and destination mappings. A
destination may be either an IP address or a DNS name.

An egress router pod supports the following formats for specifying port and destination mappings:

Port and remote address

You can specify a source port and a destination host by using the two field format: <port>
<remote_address>.

The host can be an IP address or a DNS name. If a DNS name is provided, DNS resolution occurs at
runtime. For a given host, the proxy connects to the specified source port on the destination host when
connecting to the destination host IP address.

Port and remote address pair example

Port, remote address, and remote port

You can specify a source port, a destination host, and a destination port by using the three field
format: <port> <remote_address> <remote_port>.

 containers:
 - name: egress-router-pod
 image: registry.redhat.io/openshift4/ose-egress-dns-proxy
 securityContext:
 privileged: true
 env:
 - name: EGRESS_DNS_PROXY_DESTINATION 4
 value: |-
 ...
 - name: EGRESS_DNS_PROXY_DEBUG 5
 value: "1"
 ...

80 172.16.12.11
100 example.com

OpenShift Container Platform 4.7 Networking

186

The three field format behaves identically to the two field version, with the exception that the
destination port can be different than the source port.

Port, remote address, and remote port example

14.10.3. Deploying an egress router pod in DNS proxy mode

In DNS proxy mode , an egress router pod acts as a DNS proxy for TCP-based services from its own IP
address to one or more destination IP addresses.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an egress router pod.

2. Create a service for the egress router pod:

a. Create a file named egress-router-service.yaml that contains the following YAML. Set
spec.ports to the list of ports that you defined previously for the
EGRESS_DNS_PROXY_DESTINATION environment variable.

For example:

8080 192.168.60.252 80
8443 web.example.com 443

apiVersion: v1
kind: Service
metadata:
 name: egress-dns-svc
spec:
 ports:
 ...
 type: ClusterIP
 selector:
 name: egress-dns-proxy

apiVersion: v1
kind: Service
metadata:
 name: egress-dns-svc
spec:
 ports:
 - name: con1
 protocol: TCP
 port: 80
 targetPort: 80
 - name: con2
 protocol: TCP

CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

187

b. To create the service, enter the following command:

Pods can now connect to this service. The connections are proxied to the corresponding
ports on the external server, using the reserved egress IP address.

14.10.4. Additional resources

Configuring an egress router destination mappings with a ConfigMap

14.11. CONFIGURING AN EGRESS ROUTER POD DESTINATION LIST
FROM A CONFIG MAP

As a cluster administrator, you can define a ConfigMap object that specifies destination mappings for
an egress router pod. The specific format of the configuration depends on the type of egress router
pod. For details on the format, refer to the documentation for the specific egress router pod.

14.11.1. Configuring an egress router destination mappings with a config map

For a large or frequently-changing set of destination mappings, you can use a config map to externally
maintain the list. An advantage of this approach is that permission to edit the config map can be
delegated to users without cluster-admin privileges. Because the egress router pod requires a
privileged container, it is not possible for users without cluster-admin privileges to edit the pod
definition directly.

NOTE

The egress router pod does not automatically update when the config map changes. You
must restart the egress router pod to get updates.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a file containing the mapping data for the egress router pod, as in the following example:

Egress routes for Project "Test", version 3

80 tcp 203.0.113.25

8080 tcp 203.0.113.26 80
8443 tcp 203.0.113.26 443

 port: 100
 targetPort: 100
 type: ClusterIP
 selector:
 name: egress-dns-proxy

$ oc create -f egress-router-service.yaml

OpenShift Container Platform 4.7 Networking

188

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-egress-router-configmap

Fallback
203.0.113.27

You can put blank lines and comments into this file.

2. Create a ConfigMap object from the file:

In the previous command, the egress-routes value is the name of the ConfigMap object to
create and my-egress-destination.txt is the name of the file that the data is read from.

3. Create an egress router pod definition and specify the configMapKeyRef stanza for the
EGRESS_DESTINATION field in the environment stanza:

14.11.2. Additional resources

Redirect mode

HTTP proxy mode

DNS proxy mode

14.12. ENABLING MULTICAST FOR A PROJECT

14.12.1. About multicast

With IP multicast, data is broadcast to many IP addresses simultaneously.

IMPORTANT

At this time, multicast is best used for low-bandwidth coordination or service discovery
and not a high-bandwidth solution.

Multicast traffic between OpenShift Container Platform pods is disabled by default. If you are using the
OpenShift SDN default Container Network Interface (CNI) network provider, you can enable multicast
on a per-project basis.

When using the OpenShift SDN network plug-in in networkpolicy isolation mode:

Multicast packets sent by a pod will be delivered to all other pods in the project, regardless of

$ oc delete configmap egress-routes --ignore-not-found

$ oc create configmap egress-routes \
 --from-file=destination=my-egress-destination.txt

...
env:
- name: EGRESS_DESTINATION
 valueFrom:
 configMapKeyRef:
 name: egress-routes
 key: destination
...

CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

189

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#nw-egress-router-dest-var_deploying-egress-router-layer3-redirection
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#nw-egress-router-dest-var_deploying-egress-router-http-redirection
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#nw-egress-router-dest-var_deploying-egress-router-dns-redirection

Multicast packets sent by a pod will be delivered to all other pods in the project, regardless of
NetworkPolicy objects. Pods might be able to communicate over multicast even when they
cannot communicate over unicast.

Multicast packets sent by a pod in one project will never be delivered to pods in any other
project, even if there are NetworkPolicy objects that allow communication between the
projects.

When using the OpenShift SDN network plug-in in multitenant isolation mode:

Multicast packets sent by a pod will be delivered to all other pods in the project.

Multicast packets sent by a pod in one project will be delivered to pods in other projects only if
each project is joined together and multicast is enabled in each joined project.

14.12.2. Enabling multicast between pods

You can enable multicast between pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Run the following command to enable multicast for a project. Replace <namespace> with the
namespace for the project you want to enable multicast for.

Verification

To verify that multicast is enabled for a project, complete the following procedure:

1. Change your current project to the project that you enabled multicast for. Replace <project>
with the project name.

2. Create a pod to act as a multicast receiver:

$ oc annotate netnamespace <namespace> \
 netnamespace.network.openshift.io/multicast-enabled=true

$ oc project <project>

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: mlistener
 labels:
 app: multicast-verify
spec:
 containers:
 - name: mlistener
 image: registry.access.redhat.com/ubi8

OpenShift Container Platform 4.7 Networking

190

3. Create a pod to act as a multicast sender:

4. In a new terminal window or tab, start the multicast listener.

a. Get the IP address for the Pod:

b. Start the multicast listener by entering the following command:

5. Start the multicast transmitter.

a. Get the pod network IP address range:

b. To send a multicast message, enter the following command:

If multicast is working, the previous command returns the following output:

 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat hostname && sleep inf"]
 ports:
 - containerPort: 30102
 name: mlistener
 protocol: UDP
EOF

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: msender
 labels:
 app: multicast-verify
spec:
 containers:
 - name: msender
 image: registry.access.redhat.com/ubi8
 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat && sleep inf"]
EOF

$ POD_IP=$(oc get pods mlistener -o jsonpath='{.status.podIP}')

$ oc exec mlistener -i -t -- \
 socat UDP4-RECVFROM:30102,ip-add-membership=224.1.0.1:$POD_IP,fork
EXEC:hostname

$ CIDR=$(oc get Network.config.openshift.io cluster \
 -o jsonpath='{.status.clusterNetwork[0].cidr}')

$ oc exec msender -i -t -- \
 /bin/bash -c "echo | socat STDIO UDP4-
DATAGRAM:224.1.0.1:30102,range=$CIDR,ip-multicast-ttl=64"

CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

191

1

14.13. DISABLING MULTICAST FOR A PROJECT

14.13.1. Disabling multicast between pods

You can disable multicast between pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Disable multicast by running the following command:

The namespace for the project you want to disable multicast for.

14.14. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN

When your cluster is configured to use the multitenant isolation mode for the OpenShift SDN CNI plug-
in, each project is isolated by default. Network traffic is not allowed between pods or services in
different projects in multitenant isolation mode.

You can change the behavior of multitenant isolation for a project in two ways:

You can join one or more projects, allowing network traffic between pods and services in
different projects.

You can disable network isolation for a project. It will be globally accessible, accepting network
traffic from pods and services in all other projects. A globally accessible project can access pods
and services in all other projects.

14.14.1. Prerequisites

You must have a cluster configured to use the OpenShift SDN Container Network Interface
(CNI) plug-in in multitenant isolation mode.

14.14.2. Joining projects

You can join two or more projects to allow network traffic between pods and services in different
projects.

Prerequisites

Install the OpenShift CLI (oc).

mlistener

$ oc annotate netnamespace <namespace> \ 1
 netnamespace.network.openshift.io/multicast-enabled-

OpenShift Container Platform 4.7 Networking

192

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

1. Use the following command to join projects to an existing project network:

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option to specify projects based upon an associated label.

2. Optional: Run the following command to view the pod networks that you have joined together:

Projects in the same pod-network have the same network ID in the NETID column.

14.14.3. Isolating a project

You can isolate a project so that pods and services in other projects cannot access its pods and
services.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

To isolate the projects in the cluster, run the following command:

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option to specify projects based upon an associated label.

14.14.4. Disabling network isolation for a project

You can disable network isolation for a project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Run the following command for the project:

Alternatively, instead of specifying specific project names, you can use the --selector=

$ oc adm pod-network join-projects --to=<project1> <project2> <project3>

$ oc get netnamespaces

$ oc adm pod-network isolate-projects <project1> <project2>

$ oc adm pod-network make-projects-global <project1> <project2>

CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

193

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option to specify projects based upon an associated label.

14.15. CONFIGURING KUBE-PROXY

The Kubernetes network proxy (kube-proxy) runs on each node and is managed by the Cluster Network
Operator (CNO). kube-proxy maintains network rules for forwarding connections for endpoints
associated with services.

14.15.1. About iptables rules synchronization

The synchronization period determines how frequently the Kubernetes network proxy (kube-proxy)
syncs the iptables rules on a node.

A sync begins when either of the following events occurs:

An event occurs, such as service or endpoint is added to or removed from the cluster.

The time since the last sync exceeds the sync period defined for kube-proxy.

14.15.2. kube-proxy configuration parameters

You can modify the following kubeProxyConfig parameters.

NOTE

Because of performance improvements introduced in OpenShift Container Platform 4.3
and greater, adjusting the iptablesSyncPeriod parameter is no longer necessary.

Table 14.2. Parameters

Parameter Description Values Defaul
t

iptablesSyncPeriod The refresh period for
iptables rules.

A time interval, such as 30s or
2m. Valid suffixes include s,
m, and h and are described in
the Go time package
documentation.

30s

proxyArguments.iptables-
min-sync-period

The minimum duration before
refreshing iptables rules. This
parameter ensures that the
refresh does not happen too
frequently. By default, a
refresh starts as soon as a
change that affects iptables
rules occurs.

A time interval, such as 30s or
2m. Valid suffixes include s,
m, and h and are described in
the Go time package

0s

14.15.3. Modifying the kube-proxy configuration

You can modify the Kubernetes network proxy configuration for your cluster.

OpenShift Container Platform 4.7 Networking

194

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

Prerequisites

Install the OpenShift CLI (oc).

Log in to a running cluster with the cluster-admin role.

Procedure

1. Edit the Network.operator.openshift.io custom resource (CR) by running the following
command:

2. Modify the kubeProxyConfig parameter in the CR with your changes to the kube-proxy
configuration, such as in the following example CR:

3. Save the file and exit the text editor.
The syntax is validated by the oc command when you save the file and exit the editor. If your
modifications contain a syntax error, the editor opens the file and displays an error message.

4. Enter the following command to confirm the configuration update:

Example output

$ oc edit network.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 kubeProxyConfig:
 iptablesSyncPeriod: 30s
 proxyArguments:
 iptables-min-sync-period: ["30s"]

$ oc get networks.operator.openshift.io -o yaml

apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: Network
 metadata:
 name: cluster
 spec:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 defaultNetwork:
 type: OpenShiftSDN
 kubeProxyConfig:
 iptablesSyncPeriod: 30s
 proxyArguments:
 iptables-min-sync-period:
 - 30s
 serviceNetwork:

CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

195

5. Optional: Enter the following command to confirm that the Cluster Network Operator accepted
the configuration change:

Example output

The AVAILABLE field is True when the configuration update is applied successfully.

 - 172.30.0.0/16
 status: {}
kind: List

$ oc get clusteroperator network

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
network 4.1.0-0.9 True False False 1m

OpenShift Container Platform 4.7 Networking

196

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK
PROVIDER

15.1. ABOUT THE OVN-KUBERNETES DEFAULT CONTAINER NETWORK
INTERFACE (CNI) NETWORK PROVIDER

The OpenShift Container Platform cluster uses a virtualized network for pod and service networks. The
OVN-Kubernetes Container Network Interface (CNI) plug-in is a network provider for the default
cluster network. OVN-Kubernetes is based on Open Virtual Network (OVN) and provides an overlay-
based networking implementation. A cluster that uses the OVN-Kubernetes network provider also runs
Open vSwitch (OVS) on each node. OVN configures OVS on each node to implement the declared
network configuration.

15.1.1. OVN-Kubernetes features

The OVN-Kubernetes Container Network Interface (CNI) cluster network provider implements the
following features:

Uses OVN (Open Virtual Network) to manage network traffic flows. OVN is a community
developed, vendor-agnostic network virtualization solution.

Implements Kubernetes network policy support, including ingress and egress rules.

Uses the Geneve (Generic Network Virtualization Encapsulation) protocol rather than VXLAN
to create an overlay network between nodes.

15.1.2. Supported default CNI network provider feature matrix

OpenShift Container Platform offers two supported choices, OpenShift SDN and OVN-Kubernetes, for
the default Container Network Interface (CNI) network provider. The following table summarizes the
current feature support for both network providers:

Table 15.1. Default CNI network provider feature comparison

Feature OVN-Kubernetes OpenShift SDN

Egress IPs Supported Supported

Egress firewall [1] Supported Supported

Egress router Partially supported [3] Supported

IPsec encryption Supported Not supported

Kubernetes network policy Supported Partially supported [2]

Multicast Supported Supported

1. Egress firewall is also known as egress network policy in OpenShift SDN. This is not the same as
network policy egress.

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

197

2. Network policy for OpenShift SDN does not support egress rules and some ipBlock rules.

3. Egress router for OVN-Kubernetes supports only redirect mode.

15.1.3. OVN-Kubernetes limitations

The OVN-Kubernetes Container Network Interface (CNI) cluster network provider has a limitation that
is related to traffic policies. The network provider does not support setting the external traffic policy or
internal traffic policy for a Kubernetes service to local. The default value, cluster, is supported for both
parameters. This limitation can affect you when you add a service of type LoadBalancer, NodePort, or
add a service with an external IP.

Additional resources

Configuring an egress firewall for a project

About network policy

Enabling multicast for a project

IPsec encryption configuration

Network [operator.openshift.io/v1]

15.2. MIGRATING FROM THE OPENSHIFT SDN CLUSTER NETWORK
PROVIDER

As a cluster administrator, you can migrate to the OVN-Kubernetes Container Network Interface (CNI)
cluster network provider from the OpenShift SDN CNI cluster network provider.

To learn more about OVN-Kubernetes, read About the OVN-Kubernetes network provider .

15.2.1. Migration to the OVN-Kubernetes network provider

Migrating to the OVN-Kubernetes Container Network Interface (CNI) cluster network provider is a
manual process that includes some downtime during which your cluster is unreachable. Although a
rollback procedure is provided, the migration is intended to be a one-way process.

A migration to the OVN-Kubernetes cluster network provider is supported on installer-provisioned
clusters on the following platforms:

Bare metal hardware

Amazon Web Services (AWS)

Google Cloud Platform (GCP)

Microsoft Azure

Red Hat OpenStack Platform (RHOSP)

VMware vSphere

NOTE

OpenShift Container Platform 4.7 Networking

198

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-egress-firewall-ovn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#about-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#nw-ovn-kubernetes-enabling-multicast
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#about-ipsec-ovn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/api_reference/#network-operator-openshift-io-v1

NOTE

Performing a migration on a user-provisioned cluster is not supported.

15.2.1.1. Considerations for migrating to the OVN-Kubernetes network provider

The subnets assigned to nodes and the IP addresses assigned to individual pods are not preserved
during the migration.

While the OVN-Kubernetes network provider implements many of the capabilities present in the
OpenShift SDN network provider, the configuration is not the same.

If your cluster uses any of the following OpenShift SDN capabilities, you must manually
configure the same capability in OVN-Kubernetes:

Namespace isolation

Egress IP addresses

Egress network policies

Egress router pods

Multicast

If your cluster uses any part of the 100.64.0.0/16 IP address range, you cannot migrate to OVN-
Kubernetes because it uses this IP address range internally.

The following sections highlight the differences in configuration between the aforementioned
capabilities in OVN-Kubernetes and OpenShift SDN.

Namespace isolation
OVN-Kubernetes supports only the network policy isolation mode.

IMPORTANT

If your cluster uses OpenShift SDN configured in either the multitenant or subnet
isolation modes, you cannot migrate to the OVN-Kubernetes network provider.

Egress IP addresses
The differences in configuring an egress IP address between OVN-Kubernetes and OpenShift SDN is
described in the following table:

Table 15.2. Differences in egress IP address configuration

OVN-Kubernetes OpenShift SDN

Create an EgressIPs object

Add an annotation on a Node object

Patch a NetNamespace object

Patch a HostSubnet object

For more information on using egress IP addresses in OVN-Kubernetes, see "Configuring an egress IP
address".

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

199

Egress network policies
The difference in configuring an egress network policy, also known as an egress firewall, between OVN-
Kubernetes and OpenShift SDN is described in the following table:

Table 15.3. Differences in egress network policy configuration

OVN-Kubernetes OpenShift SDN

Create an EgressFirewall object in a
namespace

Create an EgressNetworkPolicy object
in a namespace

For more information on using an egress firewall in OVN-Kubernetes, see "Configuring an egress firewall
for a project".

Egress router pods
OVN-Kubernetes does not support using egress router pods in OpenShift Container Platform 4.7.

Multicast
The difference between enabling multicast traffic on OVN-Kubernetes and OpenShift SDN is described
in the following table:

Table 15.4. Differences in multicast configuration

OVN-Kubernetes OpenShift SDN

Add an annotation on a Namespace
object

Add an annotation on a NetNamespace
object

For more information on using multicast in OVN-Kubernetes, see "Enabling multicast for a project".

Network policies
OVN-Kubernetes fully supports the Kubernetes NetworkPolicy API in the networking.k8s.io/v1 API
group. No changes are necessary in your network policies when migrating from OpenShift SDN.

15.2.1.2. How the migration process works

The migration process works as follows:

1. Set a temporary annotation set on the Cluster Network Operator (CNO) configuration object.
This annotation triggers the CNO to watch for a change to the defaultNetwork field.

2. Suspend the Machine Config Operator (MCO) to ensure that it does not interrupt the
migration.

3. Update the defaultNetwork field. The update causes the CNO to destroy the OpenShift SDN
control plane pods and deploy the OVN-Kubernetes control plane pods. Additionally, it updates
the Multus objects to reflect the new cluster network provider.

4. Reboot each node in the cluster. Because the existing pods in the cluster are unaware of the
change to the cluster network provider, rebooting each node ensures that each node is drained
of pods. New pods are attached to the new cluster network provided by OVN-Kubernetes.

OpenShift Container Platform 4.7 Networking

200

5. Enable the MCO after all nodes in the cluster reboot. The MCO rolls out an update to the
systemd configuration necessary to complete the migration. The MCO updates a single
machine per pool at a time by default, so the total time the migration takes increases with the
size of the cluster.

15.2.2. Migrating to the OVN-Kubernetes default CNI network provider

As a cluster administrator, you can change the default Container Network Interface (CNI) network
provider for your cluster to OVN-Kubernetes. During the migration, you must reboot every node in your
cluster.

IMPORTANT

While performing the migration, your cluster is unavailable and workloads might be
interrupted. Perform the migration only when an interruption in service is acceptable.

Prerequisites

A cluster installed on installer-provisioned infrastructure and configured with the OpenShift
SDN default CNI network provider in the network policy isolation mode.

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

A recent backup of the etcd database is available.

The cluster is in a known good state, without any errors.

A reboot can be triggered manually for each node.

Procedure

1. To backup the configuration for the cluster network, enter the following command:

2. To enable the migration, set an annotation on the Cluster Network Operator configuration
object by entering the following command:

3. Stop all of the machine configuration pools managed by the Machine Config Operator (MCO):

Stop the master configuration pool:

Stop the worker configuration pool:

$ oc get Network.config.openshift.io cluster -o yaml > cluster-openshift-sdn.yaml

$ oc annotate Network.operator.openshift.io cluster \
 'networkoperator.openshift.io/network-migration'=""

$ oc patch MachineConfigPool master --type='merge' --patch \
 '{ "spec": { "paused": true } }'

$ oc patch MachineConfigPool worker --type='merge' --patch \
 '{ "spec":{ "paused" :true } }'

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

201

4. Configure the OVN-Kubernetes cluster network provider by using one of the following
commands:

To specify the network provider without changing the cluster network IP address block,
enter the following command:

To specify a different cluster network IP address block, enter the following command:

where cidr is a CIDR block and prefix is the slice of the CIDR block apportioned to each
node in your cluster. You cannot use any CIDR block that overlaps with the 100.64.0.0/16
CIDR block, because the OVN-Kubernetes network provider uses this block internally.

IMPORTANT

You cannot change the service network address block during the migration.

5. Optional: You can customize the following settings for OVN-Kubernetes to meet your network
infrastructure requirements:

Maximum transmission unit (MTU)

Geneve (Generic Network Virtualization Encapsulation) overlay network port

To customize either of the previously noted settings, enter and customize the following command. If you
do not need to change the default value, omit the key from the patch.

+

mtu

The MTU for the Geneve overlay network. This value is normally configured automatically, but if the

$ oc patch Network.config.openshift.io cluster \
 --type='merge' --patch '{ "spec": { "networkType": "OVNKubernetes" } }'

$ oc patch Network.config.openshift.io cluster \
 --type='merge' --patch '{
 "spec": {
 "clusterNetwork": [
 {
 "cidr": "<cidr>",
 "hostPrefix": "<prefix>"
 }
],
 "networkType": "OVNKubernetes"
 }
 }'

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{
 "defaultNetwork":{
 "ovnKubernetesConfig":{
 "mtu":<mtu>,
 "genevePort":<port>
 }}}}'

OpenShift Container Platform 4.7 Networking

202

The MTU for the Geneve overlay network. This value is normally configured automatically, but if the
nodes in your cluster do not all use the same MTU, then you must set this explicitly to 100 less than
the smallest node MTU value.

port

The UDP port for the Geneve overlay network. If a value is not specified, the default is 6081. The port
cannot be the same as the VXLAN port that is used by OpenShift SDN. The default value for the
VXLAN port is 4789.

+ .Example patch command to update mtu field

1. Wait until the Multus daemon set rollout completes.

The name of the Multus pods is in form of multus-<xxxxx> where <xxxxx> is a random
sequence of letters. It might take several moments for the pods to restart.

Example output

2. To complete the migration, reboot each node in your cluster. For example, you can use a bash
script similar to the following example. The script assumes that you can connect to each host by
using ssh and that you have configured sudo to not prompt for a password.

If ssh access is not available, you might be able to reboot each node through the management
portal for your infrastructure provider.

3. After the nodes in your cluster have rebooted, start all of the machine configuration pools:

Start the master configuration pool:

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{
 "defaultNetwork":{
 "ovnKubernetesConfig":{
 "mtu":1200
 }}}}'

$ oc -n openshift-multus rollout status daemonset/multus

Waiting for daemon set "multus" rollout to finish: 1 out of 6 new pods have been updated...
...
Waiting for daemon set "multus" rollout to finish: 5 of 6 updated pods are available...
daemon set "multus" successfully rolled out

#!/bin/bash

for ip in $(oc get nodes -o jsonpath='{.items[*].status.addresses[?
(@.type=="InternalIP")].address}')
do
 echo "reboot node $ip"
 ssh -o StrictHostKeyChecking=no core@$ip sudo shutdown -r -t 3
done

$ oc patch MachineConfigPool master --type='merge' --patch \
 '{ "spec": { "paused": false } }'

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

203

Start the worker configuration pool:

As the MCO updates machines in each config pool, it reboots each node.

By default the MCO updates a single machine per pool at a time, so the time that the migration
requires to complete grows with the size of the cluster.

4. Confirm the status of the new machine configuration on the hosts:

a. To list the machine configuration state and the name of the applied machine configuration,
enter the following command:

Example output

Verify that the following statements are true:

The value of machineconfiguration.openshift.io/state field is Done.

The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

b. To confirm that the machine config is correct, enter the following command:

where <config_name> is the name of the machine config from the
machineconfiguration.openshift.io/currentConfig field.

The machine config must include the following update to the systemd configuration:

5. Confirm that the migration succeeded:

a. To confirm that the default CNI network provider is OVN-Kubernetes, enter the following
command. The value of status.networkType must be OVNKubernetes.

b. To confirm that the cluster nodes are in the Ready state, enter the following command:

$ oc patch MachineConfigPool worker --type='merge' --patch \
 '{ "spec": { "paused": false } }'

$ oc describe node | egrep "hostname|machineconfig"

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

$ oc get machineconfig <config_name> -o yaml | grep ExecStart

ExecStart=/usr/local/bin/configure-ovs.sh OVNKubernetes

$ oc get network.config/cluster -o jsonpath='{.status.networkType}{"\n"}'

OpenShift Container Platform 4.7 Networking

204

c. If a node is stuck in the NotReady state, investigate the machine config daemon pod logs
and resolve any errors.

i. To list the pods, enter the following command:

Example output

The names for the config daemon pods are in the following format: machine-config-
daemon-<seq>. The <seq> value is a random five character alphanumeric sequence.

ii. Display the pod log for the first machine config daemon pod shown in the previous
output by enter the following command:

where pod is the name of a machine config daemon pod.

iii. Resolve any errors in the logs shown by the output from the previous command.

d. To confirm that your pods are not in an error state, enter the following command:

If pods on a node are in an error state, reboot that node.

6. Complete the following steps only if the migration succeeds and your cluster is in a good state:

a. To remove the migration annotation from the Cluster Network Operator configuration
object, enter the following command:

b. To remove the OpenShift SDN network provider namespace, enter the following command:

$ oc get nodes

$ oc get pod -n openshift-machine-config-operator

NAME READY STATUS RESTARTS AGE
machine-config-controller-75f756f89d-sjp8b 1/1 Running 0 37m
machine-config-daemon-5cf4b 2/2 Running 0 43h
machine-config-daemon-7wzcd 2/2 Running 0 43h
machine-config-daemon-fc946 2/2 Running 0 43h
machine-config-daemon-g2v28 2/2 Running 0 43h
machine-config-daemon-gcl4f 2/2 Running 0 43h
machine-config-daemon-l5tnv 2/2 Running 0 43h
machine-config-operator-79d9c55d5-hth92 1/1 Running 0 37m
machine-config-server-bsc8h 1/1 Running 0 43h
machine-config-server-hklrm 1/1 Running 0 43h
machine-config-server-k9rtx 1/1 Running 0 43h

$ oc logs <pod> -n openshift-machine-config-operator

$ oc get pods --all-namespaces -o wide --sort-by='{.spec.nodeName}'

$ oc annotate Network.operator.openshift.io cluster \
 networkoperator.openshift.io/network-migration-

$ oc delete namespace openshift-sdn

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

205

15.2.3. Additional resources

Configuration parameters for the OVN-Kubernetes default CNI network provider

Backing up etcd

About network policy

OVN-Kubernetes capabilities

Configuring an egress IP address

Configuring an egress firewall for a project

Enabling multicast for a project

OpenShift SDN capabilities

Configuring egress IPs for a project

Configuring an egress firewall for a project

Enabling multicast for a project

Network [operator.openshift.io/v1]

15.3. ROLLING BACK TO THE OPENSHIFT SDN NETWORK PROVIDER

As a cluster administrator, you can rollback to the OpenShift SDN Container Network Interface (CNI)
cluster network provider from the OVN-Kubernetes CNI cluster network provider if the migration to
OVN-Kubernetes is unsuccessful.

15.3.1. Rolling back the default CNI network provider to OpenShift SDN

As a cluster administrator, you can rollback your cluster to the OpenShift SDN default Container
Network Interface (CNI) network provider. During the rollback, you must reboot every node in your
cluster.

IMPORTANT

Only rollback to OpenShift SDN if the migration to OVN-Kubernetes fails.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

A cluster installed on infrastructure configured with the OVN-Kubernetes default CNI network
provider.

Procedure

1. To enable the migration, set an annotation on the Cluster Network Operator configuration
object by entering the following command:

OpenShift Container Platform 4.7 Networking

206

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#nw-operator-configuration-parameters-for-ovn-sdn_cluster-network-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/backup_and_restore/#backup-etcd
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#about-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-egress-ips-ovn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-egress-firewall-ovn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#nw-ovn-kubernetes-enabling-multicast
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#assigning-egress-ips
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-egress-firewall
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#enabling-multicast
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/api_reference/#network-operator-openshift-io-v1

2. Stop all of the machine configuration pools managed by the Machine Config Operator (MCO):

Stop the master configuration pool:

Stop the worker configuration pool:

3. To configure the OpenShift SDN cluster network provider, enter the following command:

4. Optional: You can customize the following settings for OpenShift SDN to meet your network
infrastructure requirements:

Maximum transmission unit (MTU)

VXLAN port

To customize either or both of the previously noted settings, customize and enter the following
command. If you do not need to change the default value, omit the key from the patch.

mtu

The MTU for the VXLAN overlay network. This value is normally configured automatically,
but if the nodes in your cluster do not all use the same MTU, then you must set this explicitly
to 50 less than the smallest node MTU value.

port

The UDP port for the VXLAN overlay network. If a value is not specified, the default is 4789.
The port cannot be the same as the Geneve port that is used by OVN-Kubernetes. The
default value for the Geneve port is 6081.

Example patch command

$ oc annotate Network.operator.openshift.io cluster \
 'networkoperator.openshift.io/network-migration'=""

$ oc patch MachineConfigPool master --type='merge' --patch \
 '{ "spec": { "paused": true } }'

$ oc patch MachineConfigPool worker --type='merge' --patch \
 '{ "spec":{ "paused" :true } }'

$ oc patch Network.config.openshift.io cluster \
 --type='merge' --patch '{ "spec": { "networkType": "OpenShiftSDN" } }'

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{
 "defaultNetwork":{
 "openshiftSDNConfig":{
 "mtu":<mtu>,
 "vxlanPort":<port>
 }}}}'

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

207

5. Wait until the Multus daemon set rollout completes.

The name of the Multus pods is in form of multus-<xxxxx> where <xxxxx> is a random
sequence of letters. It might take several moments for the pods to restart.

Example output

6. To complete the rollback, reboot each node in your cluster. For example, you could use a bash
script similar to the following. The script assumes that you can connect to each host by using
ssh and that you have configured sudo to not prompt for a password.

If ssh access is not available, you might be able to reboot each node through the management
portal for your infrastructure provider.

7. After the nodes in your cluster have rebooted, start all of the machine configuration pools:

Start the master configuration pool:

Start the worker configuration pool:

As the MCO updates machines in each config pool, it reboots each node.

By default the MCO updates a single machine per pool at a time, so the time that the migration
requires to complete grows with the size of the cluster.

8. Confirm the status of the new machine configuration on the hosts:

a. To list the machine configuration state and the name of the applied machine configuration,

 "defaultNetwork":{
 "openshiftSDNConfig":{
 "mtu":1200
 }}}}'

$ oc -n openshift-multus rollout status daemonset/multus

Waiting for daemon set "multus" rollout to finish: 1 out of 6 new pods have been updated...
...
Waiting for daemon set "multus" rollout to finish: 5 of 6 updated pods are available...
daemon set "multus" successfully rolled out

#!/bin/bash

for ip in $(oc get nodes -o jsonpath='{.items[*].status.addresses[?
(@.type=="InternalIP")].address}')
do
 echo "reboot node $ip"
 ssh -o StrictHostKeyChecking=no core@$ip sudo shutdown -r -t 3
done

$ oc patch MachineConfigPool master --type='merge' --patch \
 '{ "spec": { "paused": false } }'

$ oc patch MachineConfigPool worker --type='merge' --patch \
 '{ "spec": { "paused": false } }'

OpenShift Container Platform 4.7 Networking

208

a. To list the machine configuration state and the name of the applied machine configuration,
enter the following command:

Example output

Verify that the following statements are true:

The value of machineconfiguration.openshift.io/state field is Done.

The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

b. To confirm that the machine config is correct, enter the following command:

where <config_name> is the name of the machine config from the
machineconfiguration.openshift.io/currentConfig field.

9. Confirm that the migration succeeded:

a. To confirm that the default CNI network provider is OVN-Kubernetes, enter the following
command. The value of status.networkType must be OpenShiftSDN.

b. To confirm that the cluster nodes are in the Ready state, enter the following command:

c. If a node is stuck in the NotReady state, investigate the machine config daemon pod logs
and resolve any errors.

i. To list the pods, enter the following command:

Example output

$ oc describe node | egrep "hostname|machineconfig"

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

$ oc get machineconfig <config_name> -o yaml

$ oc get network.config/cluster -o jsonpath='{.status.networkType}{"\n"}'

$ oc get nodes

$ oc get pod -n openshift-machine-config-operator

NAME READY STATUS RESTARTS AGE
machine-config-controller-75f756f89d-sjp8b 1/1 Running 0 37m
machine-config-daemon-5cf4b 2/2 Running 0 43h
machine-config-daemon-7wzcd 2/2 Running 0 43h
machine-config-daemon-fc946 2/2 Running 0 43h

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

209

The names for the config daemon pods are in the following format: machine-config-
daemon-<seq>. The <seq> value is a random five character alphanumeric sequence.

ii. To display the pod log for each machine config daemon pod shown in the previous
output, enter the following command:

where pod is the name of a machine config daemon pod.

iii. Resolve any errors in the logs shown by the output from the previous command.

d. To confirm that your pods are not in an error state, enter the following command:

If pods on a node are in an error state, reboot that node.

10. Complete the following steps only if the migration succeeds and your cluster is in a good state:

a. To remove the migration annotation from the Cluster Network Operator configuration
object, enter the following command:

b. To remove the OVN-Kubernetes network provider namespace, enter the following
command:

15.4. IPSEC ENCRYPTION CONFIGURATION

With IPsec enabled, all network traffic between nodes on the OVN-Kubernetes Container Network
Interface (CNI) cluster network travels through an encrypted tunnel.

IPsec is disabled by default.

NOTE

IPsec encryption can be enabled only during cluster installation and cannot be disabled
after it is enabled. For installation documentation, refer to Selecting a cluster installation
method and preparing it for users.

15.4.1. Types of network traffic flows encrypted by IPsec

machine-config-daemon-g2v28 2/2 Running 0 43h
machine-config-daemon-gcl4f 2/2 Running 0 43h
machine-config-daemon-l5tnv 2/2 Running 0 43h
machine-config-operator-79d9c55d5-hth92 1/1 Running 0 37m
machine-config-server-bsc8h 1/1 Running 0 43h
machine-config-server-hklrm 1/1 Running 0 43h
machine-config-server-k9rtx 1/1 Running 0 43h

$ oc logs <pod> -n openshift-machine-config-operator

$ oc get pods --all-namespaces -o wide --sort-by='{.spec.nodeName}'

$ oc annotate Network.operator.openshift.io cluster \
 networkoperator.openshift.io/network-migration-

$ oc delete namespace openshift-ovn-kubernetes

OpenShift Container Platform 4.7 Networking

210

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/installing/#installing-preparing

With IPsec enabled, only the following network traffic flows between pods are encrypted:

Traffic between pods on different nodes on the cluster network

Traffic from a pod on the host network to a pod on the cluster network

The following traffic flows are not encrypted:

Traffic between pods on the same node on the cluster network

Traffic between pods on the host network

Traffic from a pod on the cluster network to a pod on the host network

The encrypted and unencrypted flows are illustrated in the following diagram:

15.4.2. Encryption protocol and tunnel mode for IPsec

The encrypt cipher used is AES-GCM-16-256. The integrity check value (ICV) is 16 bytes. The key length
is 256 bits.

The IPsec tunnel mode used is Transport mode, a mode that encrypts end-to-end communication.

15.4.3. Security certificate generation and rotation

The Cluster Network Operator (CNO) generates a self-signed X.509 certificate authority (CA) that is
used by IPsec for encryption. Certificate signing requests (CSRs) from each node are automatically
fulfilled by the CNO.

The CA is valid for 10 years. The individual node certificates are valid for 5 years and are automatically

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

211

The CA is valid for 10 years. The individual node certificates are valid for 5 years and are automatically
rotated after 4 1/2 years elapse.

15.5. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can create an egress firewall for a project that restricts egress traffic
leaving your OpenShift Container Platform cluster.

15.5.1. How an egress firewall works in a project

As a cluster administrator, you can use an egress firewall to limit the external hosts that some or all pods
can access from within the cluster. An egress firewall supports the following scenarios:

A pod can only connect to internal hosts and cannot initiate connections to the public Internet.

A pod can only connect to the public Internet and cannot initiate connections to internal hosts
that are outside the OpenShift Container Platform cluster.

A pod cannot reach specified internal subnets or hosts outside the OpenShift Container
Platform cluster.

A pod can connect to only specific external hosts.

For example, you can allow one project access to a specified IP range but deny the same access to a
different project. Or you can restrict application developers from updating from Python pip mirrors, and
force updates to come only from approved sources.

You configure an egress firewall policy by creating an EgressFirewall custom resource (CR) object. The
egress firewall matches network traffic that meets any of the following criteria:

An IP address range in CIDR format

A DNS name that resolves to an IP address

A port number

A protocol that is one of the following protocols: TCP, UDP, and SCTP

IMPORTANT

OpenShift Container Platform 4.7 Networking

212

1
2
3

IMPORTANT

If your egress firewall includes a deny rule for 0.0.0.0/0, access to your OpenShift
Container Platform API servers is blocked. To ensure that pods can continue to access
the OpenShift Container Platform API servers, you must include the IP address range
that the API servers listen on in your egress firewall rules, as in the following example:

The namespace for the egress firewall.
The IP address range that includes your OpenShift Container Platform API servers.
A global deny rule prevents access to the OpenShift Container Platform API servers.

To find the IP address for your API servers, run oc get ep kubernetes -n default.

For more information, see BZ#1988324.

WARNING

Egress firewall rules do not apply to traffic that goes through routers. Any user with
permission to create a Route CR object can bypass egress firewall policy rules by
creating a route that points to a forbidden destination.

15.5.1.1. Limitations of an egress firewall

An egress firewall has the following limitations:

No project can have more than one EgressFirewall object.

A maximum of one EgressFirewall object with a maximum of 8,000 rules can be defined per
project.

Violating any of these restrictions results in a broken egress firewall for the project, and may cause all
external network traffic to be dropped.

An Egress Firewall resource can be created in the kube-node-lease, kube-public, kube-system,
openshift and openshift- projects.

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
 name: default
 namespace: <namespace> 1
spec:
 egress:
 - to:
 cidrSelector: <api_server_address_range> 2
 type: Allow
...
 - to:
 cidrSelector: 0.0.0.0/0 3
 type: Deny

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

213

https://bugzilla.redhat.com/show_bug.cgi?id=1988324

1

2

15.5.1.2. Matching order for egress firewall policy rules

The egress firewall policy rules are evaluated in the order that they are defined, from first to last. The
first rule that matches an egress connection from a pod applies. Any subsequent rules are ignored for
that connection.

15.5.1.3. How Domain Name Server (DNS) resolution works

If you use DNS names in any of your egress firewall policy rules, proper resolution of the domain names
is subject to the following restrictions:

Domain name updates are polled based on the TTL (time to live) value of the domain returned
by the local non-authoritative servers.

The pod must resolve the domain from the same local name servers when necessary. Otherwise
the IP addresses for the domain known by the egress firewall controller and the pod can be
different. If the IP addresses for a hostname differ, the egress firewall might not be enforced
consistently.

Because the egress firewall controller and pods asynchronously poll the same local name server,
the pod might obtain the updated IP address before the egress controller does, which causes a
race condition. Due to this current limitation, domain name usage in EgressFirewall objects is
only recommended for domains with infrequent IP address changes.

NOTE

The egress firewall always allows pods access to the external interface of the node that
the pod is on for DNS resolution.

If you use domain names in your egress firewall policy and your DNS resolution is not
handled by a DNS server on the local node, then you must add egress firewall rules that
allow access to your DNS server’s IP addresses. if you are using domain names in your
pods.

15.5.2. EgressFirewall custom resource (CR) object

You can define one or more rules for an egress firewall. A rule is either an Allow rule or a Deny rule, with
a specification for the traffic that the rule applies to.

The following YAML describes an EgressFirewall CR object:

EgressFirewall object

The name for the object must be default.

A collection of one or more egress network policy rules as described in the following section.

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
 name: <name> 1
spec:
 egress: 2
 ...

OpenShift Container Platform 4.7 Networking

214

1

2

3

4

5

1

2

15.5.2.1. EgressFirewall rules

The following YAML describes an egress firewall rule object. The egress stanza expects an array of one
or more objects.

Egress policy rule stanza

The type of rule. The value must be either Allow or Deny.

A stanza describing an egress traffic match rule that specifies the cidrSelector field or the
dnsName field. You cannot use both fields in the same rule.

An IP address range in CIDR format.

A DNS domain name.

Optional: A stanza describing a collection of network ports and protocols for the rule.

Ports stanza

A network port, such as 80 or 443. If you specify a value for this field, you must also specify a value
for protocol.

A network protocol. The value must be either TCP, UDP, or SCTP.

15.5.2.2. Example EgressFirewall CR objects

The following example defines several egress firewall policy rules:

egress:
- type: <type> 1
 to: 2
 cidrSelector: <cidr> 3
 dnsName: <dns_name> 4
 ports: 5
 ...

ports:
- port: <port> 1
 protocol: <protocol> 2

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
 name: default
spec:
 egress: 1
 - type: Allow
 to:
 cidrSelector: 1.2.3.0/24

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

215

1 A collection of egress firewall policy rule objects.

The following example defines a policy rule that denies traffic to the host at the 172.16.1.1 IP address, if
the traffic is using either the TCP protocol and destination port 80 or any protocol and destination port
443.

15.5.3. Creating an egress firewall policy object

As a cluster administrator, you can create an egress firewall policy object for a project.

IMPORTANT

If the project already has an EgressFirewall object defined, you must edit the existing
policy to make changes to the egress firewall rules.

Prerequisites

A cluster that uses the OVN-Kubernetes default Container Network Interface (CNI) network
provider plug-in.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Create a policy rule:

a. Create a <policy_name>.yaml file where <policy_name> describes the egress policy rules.

b. In the file you created, define an egress policy object.

2. Enter the following command to create the policy object. Replace <policy_name> with the
name of the policy and <project> with the project that the rule applies to.

 - type: Deny
 to:
 cidrSelector: 0.0.0.0/0

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
 name: default
spec:
 egress:
 - type: Deny
 to:
 cidrSelector: 172.16.1.1
 ports:
 - port: 80
 protocol: TCP
 - port: 443

$ oc create -f <policy_name>.yaml -n <project>

OpenShift Container Platform 4.7 Networking

216

In the following example, a new EgressFirewall object is created in a project named project1:

Example output

3. Optional: Save the <policy_name>.yaml file so that you can make changes later.

15.6. VIEWING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can list the names of any existing egress firewalls and view the traffic
rules for a specific egress firewall.

15.6.1. Viewing an EgressFirewall object

You can view an EgressFirewall object in your cluster.

Prerequisites

A cluster using the OVN-Kubernetes default Container Network Interface (CNI) network
provider plug-in.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster.

Procedure

1. Optional: To view the names of the EgressFirewall objects defined in your cluster, enter the
following command:

2. To inspect a policy, enter the following command. Replace <policy_name> with the name of
the policy to inspect.

Example output

$ oc create -f default.yaml -n project1

egressfirewall.k8s.ovn.org/v1 created

$ oc get egressfirewall --all-namespaces

$ oc describe egressfirewall <policy_name>

Name: default
Namespace: project1
Created: 20 minutes ago
Labels: <none>
Annotations: <none>
Rule: Allow to 1.2.3.0/24
Rule: Allow to www.example.com
Rule: Deny to 0.0.0.0/0

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

217

15.7. EDITING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can modify network traffic rules for an existing egress firewall.

15.7.1. Editing an EgressFirewall object

As a cluster administrator, you can update the egress firewall for a project.

Prerequisites

A cluster using the OVN-Kubernetes default Container Network Interface (CNI) network
provider plug-in.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Find the name of the EgressFirewall object for the project. Replace <project> with the name of
the project.

2. Optional: If you did not save a copy of the EgressFirewall object when you created the egress
network firewall, enter the following command to create a copy.

Replace <project> with the name of the project. Replace <name> with the name of the object.
Replace <filename> with the name of the file to save the YAML to.

3. After making changes to the policy rules, enter the following command to replace the
EgressFirewall object. Replace <filename> with the name of the file containing the updated
EgressFirewall object.

15.8. REMOVING AN EGRESS FIREWALL FROM A PROJECT

As a cluster administrator, you can remove an egress firewall from a project to remove all restrictions on
network traffic from the project that leaves the OpenShift Container Platform cluster.

15.8.1. Removing an EgressFirewall object

As a cluster administrator, you can remove an egress firewall from a project.

Prerequisites

A cluster using the OVN-Kubernetes default Container Network Interface (CNI) network
provider plug-in.

Install the OpenShift CLI (oc).

$ oc get -n <project> egressfirewall

$ oc get -n <project> egressfirewall <name> -o yaml > <filename>.yaml

$ oc replace -f <filename>.yaml

OpenShift Container Platform 4.7 Networking

218

You must log in to the cluster as a cluster administrator.

Procedure

1. Find the name of the EgressFirewall object for the project. Replace <project> with the name of
the project.

2. Enter the following command to delete the EgressFirewall object. Replace <project> with the
name of the project and <name> with the name of the object.

15.9. CONFIGURING AN EGRESS IP ADDRESS

As a cluster administrator, you can configure the OVN-Kubernetes default Container Network Interface
(CNI) network provider to assign one or more egress IP addresses to a namespace, or to specific pods in
a namespace.

15.9.1. Egress IP address architectural design and implementation

The OpenShift Container Platform egress IP address functionality allows you to ensure that the traffic
from one or more pods in one or more namespaces has a consistent source IP address for services
outside the cluster network.

For example, you might have a pod that periodically queries a database that is hosted on a server
outside of your cluster. To enforce access requirements for the server, a packet filtering device is
configured to allow traffic only from specific IP addresses. To ensure that you can reliably allow access
to the server from only that specific pod, you can configure a specific egress IP address for the pod that
makes the requests to the server.

An egress IP address is implemented as an additional IP address on the primary network interface of a
node and must be in the same subnet as the primary IP address of the node. The additional IP address
must not be assigned to any other node in the cluster.

In some cluster configurations, application pods and ingress router pods run on the same node. If you
configure an egress IP for an application project in this scenario, the IP is not used when you send a
request to a route from the application project.

15.9.1.1. Platform support

Support for the egress IP address functionality on various platforms is summarized in the following
table:

IMPORTANT

The egress IP address implementation is not compatible with Amazon Web Services
(AWS), Azure Cloud, or any other public cloud platform incompatible with the automatic
layer 2 network manipulation required by the egress IP feature.

$ oc get -n <project> egressfirewall

$ oc delete -n <project> egressfirewall <name>

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

219

Platform Supported

Bare metal Yes

vSphere Yes

Red Hat OpenStack Platform (RHOSP) No

Public cloud No

15.9.1.2. Assignment of egress IPs to pods

To assign one or more egress IPs to a namespace or specific pods in a namespace, the following
conditions must be satisfied:

At least one node in your cluster must have the k8s.ovn.org/egress-assignable: "" label.

An EgressIP object exists that defines one or more egress IP addresses to use as the source IP
address for traffic leaving the cluster from pods in a namespace.

IMPORTANT

If you create EgressIP objects prior to labeling any nodes in your cluster for egress IP
assignment, OpenShift Container Platform might assign every egress IP address to the
first node with the k8s.ovn.org/egress-assignable: "" label.

To ensure that egress IP addresses are widely distributed across nodes in the cluster,
always apply the label to the nodes you intent to host the egress IP addresses before
creating any EgressIP objects.

15.9.1.3. Assignment of egress IPs to nodes

When creating an EgressIP object, the following conditions apply to nodes that are labeled with the
k8s.ovn.org/egress-assignable: "" label:

An egress IP address is never assigned to more than one node at a time.

An egress IP address is equally balanced between available nodes that can host the egress IP
address.

If the spec.EgressIPs array in an EgressIP object specifies more than one IP address, no node
will ever host more than one of the specified addresses.

If a node becomes unavailable, any egress IP addresses assigned to it are automatically
reassigned, subject to the previously described conditions.

When a pod matches the selector for multiple EgressIP objects, there is no guarantee which of the
egress IP addresses that are specified in the EgressIP objects is assigned as the egress IP address for
the pod.

Additionally, if an EgressIP object specifies multiple egress IP addresses, there is no guarantee which of
the egress IP addresses might be used. For example, if a pod matches a selector for an EgressIP object
with two egress IP addresses, 10.10.20.1 and 10.10.20.2, either might be used for each TCP connection

OpenShift Container Platform 4.7 Networking

220

or UDP conversation.

15.9.1.4. Architectural diagram of an egress IP address configuration

The following diagram depicts an egress IP address configuration. The diagram describes four pods in
two different namespaces running on three nodes in a cluster. The nodes are assigned IP addresses
from the 192.168.126.0/18 CIDR block on the host network.

Node 1

meta:
name: node1
labels:
k8s.ovn.org/egress-assignable: ""

Both Node 1 and Node 3 are labeled with k8s.ovn.org/egress-assignable: "" and thus available for the
assignment of egress IP addresses.

The dashed lines in the diagram depict the traffic flow from pod1, pod2, and pod3 traveling through the
pod network to egress the cluster from Node 1 and Node 3. When an external service receives traffic
from any of the pods selected by the example EgressIP object, the source IP address is either
192.168.126.10 or 192.168.126.102.

The following resources from the diagram are illustrated in detail:

Namespace objects

The namespaces are defined in the following manifest:

Namespace objects

EgressIP object

The following EgressIP object describes a configuration that selects all pods in any namespace with
the env label set to prod. The egress IP addresses for the selected pods are 192.168.126.10 and
192.168.126.102.

EgressIP object

apiVersion: v1
kind: Namespace
metadata:
 name: namespace1
 labels:
 env: prod

apiVersion: v1
kind: Namespace
metadata:
 name: namespace2
 labels:
 env: prod

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

221

1

2

3

4

For the configuration in the previous example, OpenShift Container Platform assigns both egress IP
addresses to the available nodes. The status field reflects whether and where the egress IP
addresses are assigned.

15.9.2. EgressIP object

The following YAML describes the API for the EgressIP object. The scope of the object is cluster-wide;
it is not created in a namespace.

The name for the EgressIPs object.

An array of one or more IP addresses.

One or more selectors for the namespaces to associate the egress IP addresses with.

Optional: One or more selectors for pods in the specified namespaces to associate egress IP
addresses with. Applying these selectors allows for the selection of a subset of pods within a
namespace.

The following YAML describes the stanza for the namespace selector:

Namespace selector stanza

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egressips-prod
spec:
 egressIPs:
 - 192.168.126.10
 - 192.168.126.102
 namespaceSelector:
 matchLabels:
 env: prod
status:
 assignments:
 - node: node1
 egressIP: 192.168.126.10
 - node: node3
 egressIP: 192.168.126.102

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: <name> 1
spec:
 egressIPs: 2
 - <ip_address>
 namespaceSelector: 3
 ...
 podSelector: 4
 ...

OpenShift Container Platform 4.7 Networking

222

1

1

One or more matching rules for namespaces. If more than one match rule is provided, all matching
namespaces are selected.

The following YAML describes the optional stanza for the pod selector:

Pod selector stanza

Optional: One or more matching rules for pods in the namespaces that match the specified
namespaceSelector rules. If specified, only pods that match are selected. Others pods in the
namespace are not selected.

In the following example, the EgressIP object associates the 192.168.126.11 and 192.168.126.102
egress IP addresses with pods that have the app label set to web and are in the namespaces that have
the env label set to prod:

Example EgressIP object

In the following example, the EgressIP object associates the 192.168.127.30 and 192.168.127.40
egress IP addresses with any pods that do not have the environment label set to development:

Example EgressIP object

namespaceSelector: 1
 matchLabels:
 <label_name>: <label_value>

podSelector: 1
 matchLabels:
 <label_name>: <label_value>

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egress-group1
spec:
 egressIPs:
 - 192.168.126.11
 - 192.168.126.102
 podSelector:
 matchLabels:
 app: web
 namespaceSelector:
 matchLabels:
 env: prod

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egress-group2
spec:
 egressIPs:
 - 192.168.127.30
 - 192.168.127.40

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

223

1

15.9.3. Labeling a node to host egress IP addresses

You can apply the k8s.ovn.org/egress-assignable="" label to a node in your cluster so that OpenShift
Container Platform can assign one or more egress IP addresses to the node.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster as a cluster administrator.

Procedure

To label a node so that it can host one or more egress IP addresses, enter the following
command:

The name of the node to label.

15.9.4. Next steps

Assigning egress IPs

15.9.5. Additional resources

LabelSelector meta/v1

LabelSelectorRequirement meta/v1

15.10. ASSIGNING AN EGRESS IP ADDRESS

As a cluster administrator, you can assign an egress IP address for traffic leaving the cluster from a
namespace or from specific pods in a namespace.

15.10.1. Assigning an egress IP address to a namespace

You can assign one or more egress IP addresses to a namespace or to specific pods in a namespace.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster as a cluster administrator.

 namespaceSelector:
 matchExpressions:
 - key: environment
 operator: NotIn
 values:
 - development

$ oc label nodes <node_name> k8s.ovn.org/egress-assignable="" 1

OpenShift Container Platform 4.7 Networking

224

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#assigning-egress-ips-ovn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/api_reference/#labelselector-meta-v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/api_reference/#labelselectorrequirement-meta-v1

1

1

Configure at least one node to host an egress IP address.

Procedure

1. Create an EgressIP object:

a. Create a <egressips_name>.yaml file where <egressips_name> is the name of the
object.

b. In the file that you created, define an EgressIP object, as in the following example:

2. To create the object, enter the following command.

Replace <egressips_name> with the name of the object.

Example output

3. Optional: Save the <egressips_name>.yaml file so that you can make changes later.

4. Add labels to the namespace that requires egress IP addresses. To add a label to the
namespace of an EgressIP object defined in step 1, run the following command:

Replace <namespace> with the namespace that requires egress IP addresses.

15.10.2. Additional resources

Configuring egress IP addresses

15.11. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD

15.11.1. About an egress router pod

The OpenShift Container Platform egress router pod redirects traffic to a specified remote server from

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egress-project1
spec:
 egressIPs:
 - 192.168.127.10
 - 192.168.127.11
 namespaceSelector:
 matchLabels:
 env: qa

$ oc apply -f <egressips_name>.yaml 1

egressips.k8s.ovn.org/<egressips_name> created

$ oc label ns <namespace> env=qa 1

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

225

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-egress-ips-ovn

The OpenShift Container Platform egress router pod redirects traffic to a specified remote server from
a private source IP address that is not used for any other purpose. An egress router pod enables you to
send network traffic to servers that are set up to allow access only from specific IP addresses.

NOTE

The egress router pod is not intended for every outgoing connection. Creating large
numbers of egress router pods can exceed the limits of your network hardware. For
example, creating an egress router pod for every project or application could exceed the
number of local MAC addresses that the network interface can handle before reverting to
filtering MAC addresses in software.

IMPORTANT

The egress router image is not compatible with Amazon AWS, Azure Cloud, or any other
cloud platform that does not support layer 2 manipulations due to their incompatibility
with macvlan traffic.

15.11.1.1. Egress router modes

In redirect mode , an egress router pod configures iptables rules to redirect traffic from its own IP
address to one or more destination IP addresses. Client pods that need to use the reserved source IP
address must be modified to connect to the egress router rather than connecting directly to the
destination IP.

NOTE

The egress router CNI plug-in supports redirect mode only. This is a difference with the
egress router implementation that you can deploy with OpenShift SDN. Unlike the egress
router for OpenShift SDN, the egress router CNI plug-in does not support HTTP proxy
mode or DNS proxy mode .

15.11.1.2. Egress router pod implementation

The egress router implementation uses the egress router Container Network Interface (CNI) plug-in.
The plug-in adds a secondary network interface to a pod.

An egress router is a pod that has two network interfaces. For example, the pod can have eth0 and net1
network interfaces. The eth0 interface is on the cluster network and the pod continues to use the
interface for ordinary cluster-related network traffic. The net1 interface is on a secondary network and
has an IP address and gateway for that network. Other pods in the OpenShift Container Platform
cluster can access the egress router service and the service enables the pods to access external
services. The egress router acts as a bridge between pods and an external system.

Traffic that leaves the egress router exits through a node, but the packets have the MAC address of the
net1 interface from the egress router pod.

15.11.1.3. Deployment considerations

An egress router pod adds an additional IP address and MAC address to the primary network interface
of the node. As a result, you might need to configure your hypervisor or cloud provider to allow the
additional address.

Red Hat OpenStack Platform (RHOSP)

If you deploy OpenShift Container Platform on RHOSP, you must allow traffic from the IP and MAC

OpenShift Container Platform 4.7 Networking

226

1

2

If you deploy OpenShift Container Platform on RHOSP, you must allow traffic from the IP and MAC
addresses of the egress router pod on your OpenStack environment. If you do not allow the traffic,
then communication will fail :

Red Hat Virtualization (RHV)

If you are using RHV, you must select No Network Filter for the Virtual network interface controller
(vNIC).

VMware vSphere

If you are using VMware vSphere, see the VMware documentation for securing vSphere standard
switches. View and change VMware vSphere default settings by selecting the host virtual switch from
the vSphere Web Client.

Specifically, ensure that the following are enabled:

MAC Address Changes

Forged Transits

Promiscuous Mode Operation

15.11.1.4. Failover configuration

To avoid downtime, you can deploy an egress router pod with a Deployment resource, as in the
following example. To create a new Service object for the example deployment, use the oc expose
deployment/egress-demo-controller command.

Ensure that replicas is set to 1, because only one pod can use a given egress source IP address at
any time. This means that only a single copy of the router runs on a node.

Specify the Pod object template for the egress router pod.

$ openstack port set --allowed-address \
 ip_address=<ip_address>,mac_address=<mac_address> <neutron_port_uuid>

apiVersion: apps/v1
kind: Deployment
metadata:
 name: egress-demo-controller
spec:
 replicas: 1 1
 selector:
 matchLabels:
 name: egress-router
 template:
 metadata:
 name: egress-router
 labels:
 name: egress-router
 annotations:
 k8s.v1.cni.cncf.io/networks: egress-router-redirect
 spec: 2
 containers:
 - name: egress-router-redirect
 image: registry.redhat.io/openshift3/ose-pod

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

227

https://access.redhat.com/solutions/2803331
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/administration_guide/chap-logical_networks#Explanation_of_Settings_in_the_VM_Interface_Profile_Window
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-3507432E-AFEA-4B6B-B404-17A020575358.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-942BD3AA-731B-4A05-8196-66F2B4BF1ACB.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-7DC6486F-5400-44DF-8A62-6273798A2F80.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-92F3AB1F-B4C5-4F25-A010-8820D7250350.html

15.11.2. Additional resources

Deploying an egress router in redirection mode

15.12. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

As a cluster administrator, you can deploy an egress router pod to redirect traffic to specified
destination IP addresses from a reserved source IP address.

The egress router implementation uses the egress router Container Network Interface (CNI) plug-in.

IMPORTANT

The egress router CNI plug-in is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

15.12.1. Network attachment definition for an egress router in redirect mode

Before a pod can act as an egress router, you must specify the network interface configuration as a
NetworkAttachmentDefinition object. The object specifies information such as the IP address to attach
to the egress router pod, the network destinations, and a network gateway. As the pod for the egress
router starts, Multus uses the network attachment definition to add a network interface with the
specified properties to the pod.

Example network attachment definition

<.> The name of the network attachment definition is used later in the specification for the egress router
pod.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: egress-router-redirect <.>
spec:
 config: '{
 "cniVersion": "0.4.0",
 "type": "egress-router",
 "name": "egress-router",
 "ip": {
 "addresses": [
 "192.168.12.99/24" <.>
],
 "destinations": [
 "192.168.12.91/32" <.>
],
 "gateway": "192.168.12.1" <.>
 }
 }'

OpenShift Container Platform 4.7 Networking

228

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#deploying-egress-router-ovn-redirection
https://access.redhat.com/support/offerings/techpreview/

<.> The addresses key specifies the reserved source IP address to use with the additional network
interface. Specify a single IP address in CIDR notation, such as 192.168.12.99/24.

<.> The destinations key specifies a single IP address in CIDR notation that the egress router sends
packets to. The network address translation (NAT) tables for the egress router pod are configured so
that connections to the cluster IP address of the pod are redirected to the same port on the destination
IP address. Using this example, connections to the pod are redirected to 192.168.12.91, with a source IP
address of 192.168.12.99.

<.> The gateway key specifies the IP address for the network gateway.

15.12.2. Egress router pod specification for redirect mode

After you create a network attachment definition, you add a pod that references the definition.

Example egress router pod specification

<.> The specified network must match the name of the network attachment definition. You can specify a
namespace, interface name, or both, by replacing the values in the following pattern:
<namespace>/<network>@<interface>. By default, Multus adds a secondary network interface to the
pod with a name such as net1, net2, and so on.

15.12.3. Deploying an egress router pod in redirect mode

You can deploy an egress router pod to redirect traffic from its own reserved source IP address to one
or more destination IP addresses.

After you add an egress router pod, the client pods that need to use the reserved source IP address
must be modified to connect to the egress router rather than connecting directly to the destination IP.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a network attachment definition.

2. Create an egress router pod.

3. To ensure that other pods can find the IP address of the egress router pod, create a service that
uses the egress router pod, as in the following example:

apiVersion: v1
kind: Pod
metadata:
 name: egress-router-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: egress-router-redirect <.>
spec:
 containers:
 - name: egress-router-pod
 image: registry.redhat.com/openshift3/ose-pod

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

229

After you create the service, your pods can connect to the service. The egress router pod
redirects the connection to the corresponding port on the destination IP address. The
connections originate from the reserved source IP address.

Verification

To verify that the egress router pod started and has the secondary network interface, complete the
following procedure:

1. View the events for the egress router pod:

If the pod references the network attachment definition, the previous command returns output
that is similar to the following:

Example output

2. Optional: View the routing table for the egress router pod.

a. Get the node name for the egress router pod:

b. Enter into a debug session on the target node. This step instantiates a debug pod called
<node_name>-debug:

c. Set /host as the root directory within the debug shell. The debug pod mounts the root file
system of the host in /host within the pod. By changing the root directory to /host, you can
run binaries from the executable paths of the host:

apiVersion: v1
kind: Service
metadata:
 name: egress-1
spec:
 ports:
 - name: database
 protocol: TCP
 port: 3306
 type: ClusterIP
 selector:
 name: egress-router-pod

$ oc get events --field-selector involvedObject.name=egress-router-pod

LAST SEEN TYPE REASON OBJECT MESSAGE
5m4s Normal Scheduled pod/egress-router-pod Successfully assigned
default/egress-router-pod to ci-ln-9x2bnsk-f76d1-j2v6g-worker-c-24g65
5m3s Normal AddedInterface pod/egress-router-pod Add eth0 [10.129.2.31/23]
5m3s Normal AddedInterface pod/egress-router-pod Add net1 [192.168.12.99/24]
from default/egress-router-redirect

$ POD_NODENAME=$(oc get pod egress-router-pod -o jsonpath="{.spec.nodeName}")

$ oc debug node/$POD_NODENAME

chroot /host

OpenShift Container Platform 4.7 Networking

230

d. From within the chroot environment console, get the container ID:

Example output

e. Determine the process ID of the container. In this example, the container ID is
bac9fae69ddb6:

Example output

f. Enter the network namespace of the container:

g. Display the routing table:

In the following example output, the net1 network interface is the default route. Traffic for
the cluster network uses the eth0 network interface. Traffic for the 192.168.12.0/24
network uses the net1 network interface and originates from the reserved source IP
address 192.168.12.99. The pod routes all other traffic to the gateway at IP address
192.168.12.1. Routing for the service network is not shown.

Example output

15.13. ENABLING MULTICAST FOR A PROJECT

15.13.1. About multicast

With IP multicast, data is broadcast to many IP addresses simultaneously.

IMPORTANT

At this time, multicast is best used for low-bandwidth coordination or service discovery
and not a high-bandwidth solution.

Multicast traffic between OpenShift Container Platform pods is disabled by default. If you are using the

crictl ps --name egress-router-redirect | awk '{print $1}'

CONTAINER
bac9fae69ddb6

crictl inspect -o yaml bac9fae69ddb6 | grep 'pid:' | awk '{print $2}'

68857

nsenter -n -t 68857

ip route

default via 192.168.12.1 dev net1
10.129.2.0/23 dev eth0 proto kernel scope link src 10.129.2.31
192.168.12.0/24 dev net1 proto kernel scope link src 192.168.12.99
192.168.12.1 dev net1

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

231

Multicast traffic between OpenShift Container Platform pods is disabled by default. If you are using the
OVN-Kubernetes default Container Network Interface (CNI) network provider, you can enable multicast
on a per-project basis.

15.13.2. Enabling multicast between pods

You can enable multicast between pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Run the following command to enable multicast for a project. Replace <namespace> with the
namespace for the project you want to enable multicast for.

Verification

To verify that multicast is enabled for a project, complete the following procedure:

1. Change your current project to the project that you enabled multicast for. Replace <project>
with the project name.

2. Create a pod to act as a multicast receiver:

3. Create a pod to act as a multicast sender:

$ oc annotate namespace <namespace> \
 k8s.ovn.org/multicast-enabled=true

$ oc project <project>

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: mlistener
 labels:
 app: multicast-verify
spec:
 containers:
 - name: mlistener
 image: registry.access.redhat.com/ubi8
 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat hostname && sleep inf"]
 ports:
 - containerPort: 30102
 name: mlistener
 protocol: UDP
EOF

OpenShift Container Platform 4.7 Networking

232

4. In a new terminal window or tab, start the multicast listener.

a. Get the IP address for the Pod:

b. Start the multicast listener by entering the following command:

5. Start the multicast transmitter.

a. Get the pod network IP address range:

b. To send a multicast message, enter the following command:

If multicast is working, the previous command returns the following output:

15.14. DISABLING MULTICAST FOR A PROJECT

15.14.1. Disabling multicast between pods

You can disable multicast between pods for your project.

Prerequisites

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: msender
 labels:
 app: multicast-verify
spec:
 containers:
 - name: msender
 image: registry.access.redhat.com/ubi8
 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat && sleep inf"]
EOF

$ POD_IP=$(oc get pods mlistener -o jsonpath='{.status.podIP}')

$ oc exec mlistener -i -t -- \
 socat UDP4-RECVFROM:30102,ip-add-membership=224.1.0.1:$POD_IP,fork
EXEC:hostname

$ CIDR=$(oc get Network.config.openshift.io cluster \
 -o jsonpath='{.status.clusterNetwork[0].cidr}')

$ oc exec msender -i -t -- \
 /bin/bash -c "echo | socat STDIO UDP4-
DATAGRAM:224.1.0.1:30102,range=$CIDR,ip-multicast-ttl=64"

mlistener

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

233

1

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Disable multicast by running the following command:

The namespace for the project you want to disable multicast for.

15.15. CONFIGURING HYBRID NETWORKING

As a cluster administrator, you can configure the OVN-Kubernetes Container Network Interface (CNI)
cluster network provider to allow Linux and Windows nodes to host Linux and Windows workloads,
respectively.

15.15.1. Configuring hybrid networking with OVN-Kubernetes

You can configure your cluster to use hybrid networking with OVN-Kubernetes. This allows a hybrid
cluster that supports different node networking configurations. For example, this is necessary to run
both Linux and Windows nodes in a cluster.

IMPORTANT

You must configure hybrid networking with OVN-Kubernetes cluster provider during the
installation of your cluster. You cannot switch to hybrid networking after the installation
process.

In addition, the hybrid OVN-Kubernetes cluster network provider is a requirement for
Windows Machine Config Operator (WMCO).

Prerequisites

You defined OVNKubernetes for the networking.networkType parameter in the install-
config.yaml file. See the installation documentation for configuring OpenShift Container
Platform network customizations on your chosen cloud provider for more information.

Procedure

1. Change to the directory that contains the installation program and create the manifests:

where:

<installation_directory>

Specifies the name of the directory that contains the install-config.yaml file for your
cluster.

2. Create a stub manifest file for the advanced network configuration that is named cluster-

$ oc annotate namespace <namespace> \ 1
 k8s.ovn.org/multicast-enabled-

$./openshift-install create manifests --dir <installation_directory>

OpenShift Container Platform 4.7 Networking

234

1

2

2. Create a stub manifest file for the advanced network configuration that is named cluster-
network-03-config.yml in the <installation_directory>/manifests/ directory:

where:

<installation_directory>

Specifies the directory name that contains the manifests/ directory for your cluster.

3. Open the cluster-network-03-config.yml file in an editor and configure OVN-Kubernetes with
hybrid networking, such as in the following example:

Specify a hybrid networking configuration

Specify the CIDR configuration used for nodes on the additional overlay network. The
hybridClusterNetwork CIDR cannot overlap with the clusterNetwork CIDR.

Specify a custom VXLAN port for the additional overlay network. This is required for
running Windows nodes in a cluster installed on vSphere, and must not be configured for
any other cloud provider. The custom port can be any open port excluding the default 4789
port. For more information on this requirement, see the Microsoft documentation on Pod-
to-pod connectivity between hosts is broken.

NOTE

Windows Server Long-Term Servicing Channel (LTSC): Windows Server 2019 is
not supported on clusters with a custom hybridOverlayVXLANPort value
because this Windows server version does not support selecting a custom VXLAN
port.

4. Save the cluster-network-03-config.yml file and quit the text editor.

5. Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program

$ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
EOF

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 ovnKubernetesConfig:
 hybridOverlayConfig:
 hybridClusterNetwork: 1
 - cidr: 10.132.0.0/14
 hostPrefix: 23
 hybridOverlayVXLANPort: 9898 2

CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

235

https://docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/common-problems#pod-to-pod-connectivity-between-hosts-is-broken-on-my-kubernetes-cluster-running-on-vsphere

5. Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program
deletes the manifests/ directory when creating the cluster.

Complete any further installation configurations, and then create your cluster. Hybrid networking is
enabled when the installation process is finished.

15.15.2. Additional resources

Understanding Windows container workloads

Enabling Windows container workloads

Installing a cluster on AWS with network customizations

Installing a cluster on Azure with network customizations

OpenShift Container Platform 4.7 Networking

236

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/windows_container_support_for_openshift/#understanding-windows-container-workloads
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/windows_container_support_for_openshift/#enabling-windows-container-workloads
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/installing/#installing-aws-network-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/installing/#installing-azure-network-customizations

CHAPTER 16. CONFIGURING ROUTES

16.1. ROUTE CONFIGURATION

16.1.1. Creating an HTTP-based route

A route allows you to host your application at a public URL. It can either be secure or unsecured,
depending on the network security configuration of your application. An HTTP-based route is an
unsecured route that uses the basic HTTP routing protocol and exposes a service on an unsecured
application port.

The following procedure describes how to create a simple HTTP-based route to a web application, using
the hello-openshift application as an example.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in as an administrator.

You have a web application that exposes a port and a TCP endpoint listening for traffic on the
port.

Procedure

1. Create a project called hello-openshift by running the following command:

2. Create a pod in the project by running the following command:

3. Create a service called hello-openshift by running the following command:

4. Create an unsecured route to the hello-openshift application by running the following
command:

If you examine the resulting Route resource, it should look similar to the following:

YAML definition of the created unsecured route:

$ oc new-project hello-openshift

$ oc create -f https://raw.githubusercontent.com/openshift/origin/master/examples/hello-
openshift/hello-pod.json

$ oc expose pod/hello-openshift

$ oc expose svc hello-openshift

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: hello-openshift
spec:

CHAPTER 16. CONFIGURING ROUTES

237

1

1

<Ingress_Domain> is the default ingress domain name.

NOTE

To display your default ingress domain, run the following command:

16.1.2. Configuring route timeouts

You can configure the default timeouts for an existing route when you have services in need of a low
timeout, which is required for Service Level Availability (SLA) purposes, or a high timeout, for cases with
a slow back end.

Prerequisites

You need a deployed Ingress Controller on a running cluster.

Procedure

1. Using the oc annotate command, add the timeout to the route:

Supported time units are microseconds (us), milliseconds (ms), seconds (s), minutes (m),
hours (h), or days (d).

The following example sets a timeout of two seconds on a route named myroute:

16.1.3. Enabling HTTP strict transport security

HTTP Strict Transport Security (HSTS) policy is a security enhancement, which ensures that only
HTTPS traffic is allowed on the host. Any HTTP requests are dropped by default. This is useful for
ensuring secure interactions with websites, or to offer a secure application for the user’s benefit.

When HSTS is enabled, HSTS adds a Strict Transport Security header to HTTPS responses from the
site. You can use the insecureEdgeTerminationPolicy value in a route to redirect to send HTTP to
HTTPS. However, when HSTS is enabled, the client changes all requests from the HTTP URL to HTTPS
before the request is sent, eliminating the need for a redirect. This is not required to be supported by the
client, and can be disabled by setting max-age=0.

IMPORTANT

 host: hello-openshift-hello-openshift.<Ingress_Domain> 1
 port:
 targetPort: 8080
 to:
 kind: Service
 name: hello-openshift

$ oc get ingresses.config/cluster -o jsonpath={.spec.domain}

$ oc annotate route <route_name> \
 --overwrite haproxy.router.openshift.io/timeout=<timeout><time_unit> 1

$ oc annotate route myroute --overwrite haproxy.router.openshift.io/timeout=2s

OpenShift Container Platform 4.7 Networking

238

1

2

3

1

IMPORTANT

HSTS works only with secure routes (either edge terminated or re-encrypt). The
configuration is ineffective on HTTP or passthrough routes.

Procedure

To enable HSTS on a route, add the haproxy.router.openshift.io/hsts_header value to the
edge terminated or re-encrypt route:

max-age is the only required parameter. It measures the length of time, in seconds, that
the HSTS policy is in effect. The client updates max-age whenever a response with a HSTS
header is received from the host. When max-age times out, the client discards the policy.

includeSubDomains is optional. When included, it tells the client that all subdomains of
the host are to be treated the same as the host.

preload is optional. When max-age is greater than 0, then including preload in
haproxy.router.openshift.io/hsts_header allows external services to include this site in
their HSTS preload lists. For example, sites such as Google can construct a list of sites that
have preload set. Browsers can then use these lists to determine which sites they can
communicate with over HTTPS, before they have interacted with the site. Without preload
set, browsers must have interacted with the site over HTTPS to get the header.

16.1.4. Troubleshooting throughput issues

Sometimes applications deployed through OpenShift Container Platform can cause network throughput
issues such as unusually high latency between specific services.

Use the following methods to analyze performance issues if pod logs do not reveal any cause of the
problem:

Use a packet analyzer, such as ping or tcpdump to analyze traffic between a pod and its node.
For example, run the tcpdump tool on each pod while reproducing the behavior that led to the
issue. Review the captures on both sides to compare send and receive timestamps to analyze
the latency of traffic to and from a pod. Latency can occur in OpenShift Container Platform if a
node interface is overloaded with traffic from other pods, storage devices, or the data plane.

podip is the IP address for the pod. Run the oc get pod <pod_name> -o wide command
to get the IP address of a pod.

tcpdump generates a file at /tmp/dump.pcap containing all traffic between these two pods.
Ideally, run the analyzer shortly before the issue is reproduced and stop the analyzer shortly
after the issue is finished reproducing to minimize the size of the file. You can also run a packet

apiVersion: v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/hsts_header: max-age=31536000;includeSubDomains;preload
1 2 3

$ tcpdump -s 0 -i any -w /tmp/dump.pcap host <podip 1> && host <podip 2> 1

CHAPTER 16. CONFIGURING ROUTES

239

http://www.tcpdump.org/

analyzer between the nodes (eliminating the SDN from the equation) with:

Use a bandwidth measuring tool, such as iperf, to measure streaming throughput and UDP
throughput. Run the tool from the pods first, then from the nodes, to locate any bottlenecks.

For information on installing and using iperf, see this Red Hat Solution .

16.1.5. Using cookies to keep route statefulness

OpenShift Container Platform provides sticky sessions, which enables stateful application traffic by
ensuring all traffic hits the same endpoint. However, if the endpoint pod terminates, whether through
restart, scaling, or a change in configuration, this statefulness can disappear.

OpenShift Container Platform can use cookies to configure session persistence. The Ingress controller
selects an endpoint to handle any user requests, and creates a cookie for the session. The cookie is
passed back in the response to the request and the user sends the cookie back with the next request in
the session. The cookie tells the Ingress Controller which endpoint is handling the session, ensuring that
client requests use the cookie so that they are routed to the same pod.

NOTE

Cookies cannot be set on passthrough routes, because the HTTP traffic cannot be seen.
Instead, a number is calculated based on the source IP address, which determines the
backend.

If backends change, the traffic can be directed to the wrong server, making it less sticky.
If you are using a load balancer, which hides source IP, the same number is set for all
connections and traffic is sent to the same pod.

16.1.5.1. Annotating a route with a cookie

You can set a cookie name to overwrite the default, auto-generated one for the route. This allows the
application receiving route traffic to know the cookie name. By deleting the cookie it can force the next
request to re-choose an endpoint. So, if a server was overloaded it tries to remove the requests from
the client and redistribute them.

Procedure

1. Annotate the route with the specified cookie name:

where:

<route_name>

Specifies the name of the route.

<cookie_name>

Specifies the name for the cookie.

For example, to annotate the route my_route with the cookie name my_cookie:

$ tcpdump -s 0 -i any -w /tmp/dump.pcap port 4789

$ oc annotate route <route_name> router.openshift.io/cookie_name="<cookie_name>"

OpenShift Container Platform 4.7 Networking

240

https://access.redhat.com/solutions/33103

2. Capture the route hostname in a variable:

where:

<route_name>

Specifies the name of the route.

3. Save the cookie, and then access the route:

Use the cookie saved by the previous command when connecting to the route:

16.1.6. Path-based routes

Path-based routes specify a path component that can be compared against a URL, which requires that
the traffic for the route be HTTP based. Thus, multiple routes can be served using the same hostname,
each with a different path. Routers should match routes based on the most specific path to the least.
However, this depends on the router implementation.

The following table shows example routes and their accessibility:

Table 16.1. Route availability

Route When Compared to Accessible

www.example.com/test www.example.com/test Yes

www.example.com No

www.example.com/test and
www.example.com

www.example.com/test Yes

www.example.com Yes

www.example.com www.example.com/text Yes (Matched by the host, not the
route)

www.example.com Yes

An unsecured route with a path

$ oc annotate route my_route router.openshift.io/cookie_name="my_cookie"

$ ROUTE_NAME=$(oc get route <route_name> -o jsonpath='{.spec.host}')

$ curl $ROUTE_NAME -k -c /tmp/cookie_jar

$ curl $ROUTE_NAME -k -b /tmp/cookie_jar

apiVersion: route.openshift.io/v1
kind: Route
metadata:

CHAPTER 16. CONFIGURING ROUTES

241

1 The path is the only added attribute for a path-based route.

NOTE

Path-based routing is not available when using passthrough TLS, as the router does not
terminate TLS in that case and cannot read the contents of the request.

16.1.7. Route-specific annotations

The Ingress Controller can set the default options for all the routes it exposes. An individual route can
override some of these defaults by providing specific configurations in its annotations. Red Hat does not
support adding a route annotation to an operator-managed route.

IMPORTANT

To create a whitelist with multiple source IPs or subnets, use a space-delimited list. Any
other delimiter type causes the list to be ignored without a warning or error message.

Table 16.2. Route annotations

Variable Description Environment variable used as
default

haproxy.router.openshift.io/b
alance

Sets the load-balancing
algorithm. Available options are
source, roundrobin, and
leastconn.

ROUTER_TCP_BALANCE_S
CHEME for passthrough routes.
Otherwise, use
ROUTER_LOAD_BALANCE_
ALGORITHM.

haproxy.router.openshift.io/d
isable_cookies

Disables the use of cookies to
track related connections. If set to
'true' or 'TRUE', the balance
algorithm is used to choose which
back-end serves connections for
each incoming HTTP request.

router.openshift.io/cookie_n
ame

Specifies an optional cookie to
use for this route. The name must
consist of any combination of
upper and lower case letters,
digits, "_", and "-". The default is
the hashed internal key name for
the route.

 name: route-unsecured
spec:
 host: www.example.com
 path: "/test" 1
 to:
 kind: Service
 name: service-name

OpenShift Container Platform 4.7 Networking

242

haproxy.router.openshift.io/p
od-concurrent-connections

Sets the maximum number of
connections that are allowed to a
backing pod from a router.
Note: If there are multiple pods,
each can have this many
connections. If you have multiple
routers, there is no coordination
among them, each may connect
this many times. If not set, or set
to 0, there is no limit.

haproxy.router.openshift.io/r
ate-limit-connections

Setting 'true' or 'TRUE' enables
rate limiting functionality which is
implemented through stick-tables
on the specific backend per route.
Note: Using this annotation
provides basic protection against
distributed denial-of-service
(DDoS) attacks.

haproxy.router.openshift.io/r
ate-limit-
connections.concurrent-tcp

Limits the number of concurrent
TCP connections made through
the same source IP address. It
accepts a numeric value.
Note: Using this annotation
provides basic protection against
distributed denial-of-service
(DDoS) attacks.

haproxy.router.openshift.io/r
ate-limit-connections.rate-
http

Limits the rate at which a client
with the same source IP address
can make HTTP requests. It
accepts a numeric value.
Note: Using this annotation
provides basic protection against
distributed denial-of-service
(DDoS) attacks.

haproxy.router.openshift.io/r
ate-limit-connections.rate-
tcp

Limits the rate at which a client
with the same source IP address
can make TCP connections. It
accepts a numeric value.
Note: Using this annotation
provides basic protection against
distributed denial-of-service
(DDoS) attacks.

haproxy.router.openshift.io/ti
meout

Sets a server-side timeout for the
route. (TimeUnits)

ROUTER_DEFAULT_SERVE
R_TIMEOUT

Variable Description Environment variable used as
default

CHAPTER 16. CONFIGURING ROUTES

243

haproxy.router.openshift.io/ti
meout-tunnel

This timeout applies to a tunnel
connection, for example,
WebSocket over cleartext, edge,
reencrypt, or passthrough routes.
With cleartext, edge, or reencrypt
route types, this annotation is
applied as a timeout tunnel with
the existing timeout value. For the
passthrough route types, the
annotation takes precedence over
any existing timeout value set.

ROUTER_DEFAULT_TUNNE
L_TIMEOUT

ingresses.config/cluster
ingress.operator.openshift.io
/hard-stop-after

You can set either an
IngressController or the ingress
config . This annotation redeploys
the router and configures the HA
proxy to emit the haproxy hard-
stop-after global option, which
defines the maximum time
allowed to perform a clean soft-
stop.

ROUTER_HARD_STOP_AFT
ER

router.openshift.io/haproxy.h
ealth.check.interval

Sets the interval for the back-end
health checks. (TimeUnits)

ROUTER_BACKEND_CHEC
K_INTERVAL

haproxy.router.openshift.io/i
p_whitelist

Sets a whitelist for the route. The
whitelist is a space-separated list
of IP addresses and CIDR ranges
for the approved source
addresses. Requests from IP
addresses that are not in the
whitelist are dropped.

The maximum number of IP
addresses and CIDR ranges
allowed in a whitelist is 61.

haproxy.router.openshift.io/h
sts_header

Sets a Strict-Transport-Security
header for the edge terminated or
re-encrypt route.

haproxy.router.openshift.io/l
og-send-hostname

Sets the hostname field in the
Syslog header. Uses the
hostname of the system. log-
send-hostname is enabled by
default if any Ingress API logging
method, such as sidecar or Syslog
facility, is enabled for the router.

Variable Description Environment variable used as
default

OpenShift Container Platform 4.7 Networking

244

haproxy.router.openshift.io/r
ewrite-target

Sets the rewrite path of the
request on the backend.

router.openshift.io/cookie-
same-site

Sets a value to restrict cookies.
The values are:

Lax: cookies are transferred
between the visited site and third-
party sites.

Strict: cookies are restricted to
the visited site.

None: cookies are restricted to
the visited site.

This value is applicable to re-
encrypt and edge routes only. For
more information, see the
SameSite cookies documentation.

haproxy.router.openshift.io/s
et-forwarded-headers

Sets the policy for handling the
Forwarded and X-Forwarded-
For HTTP headers per route. The
values are:

append: appends the header,
preserving any existing header.
This is the default value.

replace: sets the header,
removing any existing header.

never: never sets the header, but
preserves any existing header.

if-none: sets the header if it is not
already set.

ROUTER_SET_FORWARDE
D_HEADERS

Variable Description Environment variable used as
default

NOTE

Environment variables cannot be edited.

Router timeout variables

TimeUnits are represented by a number followed by the unit: us *(microseconds), ms (milliseconds,
default), s (seconds), m (minutes), h *(hours), d (days).

The regular expression is: [1-9][0-9]*(us\|ms\|s\|m\|h\|d).

CHAPTER 16. CONFIGURING ROUTES

245

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

Variable Default Description

ROUTER_BACKEND_CHECK_INTE
RVAL

5000ms Length of time between subsequent
liveness checks on back ends.

ROUTER_CLIENT_FIN_TIMEOUT 1s Controls the TCP FIN timeout period for
the client connecting to the route. If the
FIN sent to close the connection does not
answer within the given time, HAProxy
closes the connection. This is harmless if
set to a low value and uses fewer
resources on the router.

ROUTER_DEFAULT_CLIENT_TIME
OUT

30s Length of time that a client has to
acknowledge or send data.

ROUTER_DEFAULT_CONNECT_TI
MEOUT

5s The maximum connection time.

ROUTER_DEFAULT_SERVER_FIN_
TIMEOUT

1s Controls the TCP FIN timeout from the
router to the pod backing the route.

ROUTER_DEFAULT_SERVER_TIME
OUT

30s Length of time that a server has to
acknowledge or send data.

ROUTER_DEFAULT_TUNNEL_TIME
OUT

1h Length of time for TCP or WebSocket
connections to remain open. This timeout
period resets whenever HAProxy reloads.

ROUTER_SLOWLORIS_HTTP_KEE
PALIVE

300s Set the maximum time to wait for a new
HTTP request to appear. If this is set too
low, it can cause problems with browsers
and applications not expecting a small
keepalive value.

Some effective timeout values can be the
sum of certain variables, rather than the
specific expected timeout. For example,
ROUTER_SLOWLORIS_HTTP_KEE
PALIVE adjusts timeout http-keep-
alive. It is set to 300s by default, but
HAProxy also waits on tcp-request
inspect-delay, which is set to 5s. In this
case, the overall timeout would be 300s
plus 5s.

ROUTER_SLOWLORIS_TIMEOUT 10s Length of time the transmission of an
HTTP request can take.

RELOAD_INTERVAL 5s Allows the minimum frequency for the
router to reload and accept new changes.

OpenShift Container Platform 4.7 Networking

246

1

ROUTER_METRICS_HAPROXY_TIM
EOUT

5s Timeout for the gathering of HAProxy
metrics.

Variable Default Description

A route setting custom timeout

Specifies the new timeout with HAProxy supported units (us, ms, s, m, h, d). If the unit is not
provided, ms is the default.

NOTE

Setting a server-side timeout value for passthrough routes too low can cause WebSocket
connections to timeout frequently on that route.

A route that allows only one specific IP address

A route that allows several IP addresses

A route that allows an IP address CIDR network

A route that allows both IP an address and IP address CIDR networks

A route specifying a rewrite target

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/timeout: 5500ms 1
...

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 192.168.1.10

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 192.168.1.10 192.168.1.11 192.168.1.12

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 192.168.1.0/24

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 180.5.61.153 192.168.1.0/24 10.0.0.0/8

CHAPTER 16. CONFIGURING ROUTES

247

1 Sets / as rewrite path of the request on the backend.

Setting the haproxy.router.openshift.io/rewrite-target annotation on a route specifies that the Ingress
Controller should rewrite paths in HTTP requests using this route before forwarding the requests to the
backend application. The part of the request path that matches the path specified in spec.path is
replaced with the rewrite target specified in the annotation.

The following table provides examples of the path rewriting behavior for various combinations of
spec.path, request path, and rewrite target.

Table 16.3. rewrite-target examples:

Route.spec.path Request path Rewrite target Forwarded request
path

/foo /foo / /

/foo /foo/ / /

/foo /foo/bar / /bar

/foo /foo/bar/ / /bar/

/foo /foo /bar /bar

/foo /foo/ /bar /bar/

/foo /foo/bar /baz /baz/bar

/foo /foo/bar/ /baz /baz/bar/

/foo/ /foo / N/A (request path does
not match route path)

/foo/ /foo/ / /

/foo/ /foo/bar / /bar

16.1.8. Configuring the route admission policy

Administrators and application developers can run applications in multiple namespaces with the same
domain name. This is for organizations where multiple teams develop microservices that are exposed on
the same hostname.

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/rewrite-target: / 1
...

OpenShift Container Platform 4.7 Networking

248

WARNING

Allowing claims across namespaces should only be enabled for clusters with trust
between namespaces, otherwise a malicious user could take over a hostname. For
this reason, the default admission policy disallows hostname claims across
namespaces.

Prerequisites

Cluster administrator privileges.

Procedure

Edit the .spec.routeAdmission field of the ingresscontroller resource variable using the
following command:

Sample Ingress Controller configuration

16.1.9. Creating a route through an Ingress object

Some ecosystem components have an integration with Ingress resources but not with route resources.
To cover this case, OpenShift Container Platform automatically creates managed route objects when an
Ingress object is created. These route objects are deleted when the corresponding Ingress objects are
deleted.

Procedure

1. Define an Ingress object in the OpenShift Container Platform console or by entering the oc
create command:

YAML Definition of an Ingress

$ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":
{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge

spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed
...

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: frontend
 annotations:
 route.openshift.io/termination: "reencrypt" 1
spec:
 rules:
 - host: www.example.com

CHAPTER 16. CONFIGURING ROUTES

249

1 The route.openshift.io/termination annotation can be used to configure the
spec.tls.termination field of the Route as Ingress has no field for this. The accepted
values are edge, passthrough and reencrypt. All other values are silently ignored. When
the annotation value is unset, edge is the default route. The TLS certificate details must
be defined in the template file to implement the default edge route.

a. If you specify the passthrough value in the route.openshift.io/termination
annotation, set path to '' and pathType to ImplementationSpecific in the spec:

2. List your routes:

The result includes an autogenerated route whose name starts with frontend-:

If you inspect this route, it looks this:

YAML Definition of an autogenerated route

 http:
 paths:
 - backend:
 service:
 name: frontend
 port:
 number: 443
 path: /
 pathType: Prefix
 tls:
 - hosts:
 - www.example.com
 secretName: example-com-tls-certificate

 spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - path: ''
 pathType: ImplementationSpecific
 backend:
 service:
 name: frontend
 port:
 number: 443

$ oc apply -f ingress.yaml

$ oc get routes

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
frontend-gnztq www.example.com frontend 443 reencrypt/Redirect None

apiVersion: route.openshift.io/v1

OpenShift Container Platform 4.7 Networking

250

16.2. SECURED ROUTES

Secure routes provide the ability to use several types of TLS termination to serve certificates to the
client. The following sections describe how to create re-encrypt, edge, and passthrough routes with
custom certificates.

IMPORTANT

If you create routes in Microsoft Azure through public endpoints, the resource names are
subject to restriction. You cannot create resources that use certain terms. For a list of
terms that Azure restricts, see Resolve reserved resource name errors in the Azure
documentation.

16.2.1. Creating a re-encrypt route with a custom certificate

You can configure a secure route using reencrypt TLS termination with a custom certificate by using the
oc create route command.

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

kind: Route
metadata:
 name: frontend-gnztq
 ownerReferences:
 - apiVersion: networking.k8s.io/v1
 controller: true
 kind: Ingress
 name: frontend
 uid: 4e6c59cc-704d-4f44-b390-617d879033b6
spec:
 host: www.example.com
 path: /
 port:
 targetPort: https
 tls:
 certificate: |
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 insecureEdgeTerminationPolicy: Redirect
 key: |
 -----BEGIN RSA PRIVATE KEY-----
 [...]
 -----END RSA PRIVATE KEY-----
 termination: reencrypt
 to:
 kind: Service
 name: frontend

CHAPTER 16. CONFIGURING ROUTES

251

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-reserved-resource-name

You must have a separate destination CA certificate in a PEM-encoded file.

You must have a service that you want to expose.

NOTE

Password protected key files are not supported. To remove a passphrase from a key file,
use the following command:

Procedure

This procedure creates a Route resource with a custom certificate and reencrypt TLS termination. The
following assumes that the certificate/key pair are in the tls.crt and tls.key files in the current working
directory. You must also specify a destination CA certificate to enable the Ingress Controller to trust the
service’s certificate. You may also specify a CA certificate if needed to complete the certificate chain.
Substitute the actual path names for tls.crt, tls.key, cacert.crt, and (optionally) ca.crt. Substitute the
name of the Service resource that you want to expose for frontend. Substitute the appropriate
hostname for www.example.com.

Create a secure Route resource using reencrypt TLS termination and a custom certificate:

If you examine the resulting Route resource, it should look similar to the following:

YAML Definition of the Secure Route

$ openssl rsa -in password_protected_tls.key -out tls.key

$ oc create route reencrypt --service=frontend --cert=tls.crt --key=tls.key --dest-ca-
cert=destca.crt --ca-cert=ca.crt --hostname=www.example.com

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend
 tls:
 termination: reencrypt
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 destinationCACertificate: |-

OpenShift Container Platform 4.7 Networking

252

See oc create route reencrypt --help for more options.

16.2.2. Creating an edge route with a custom certificate

You can configure a secure route using edge TLS termination with a custom certificate by using the oc
create route command. With an edge route, the Ingress Controller terminates TLS encryption before
forwarding traffic to the destination pod. The route specifies the TLS certificate and key that the
Ingress Controller uses for the route.

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

You must have a service that you want to expose.

NOTE

Password protected key files are not supported. To remove a passphrase from a key file,
use the following command:

Procedure

This procedure creates a Route resource with a custom certificate and edge TLS termination. The
following assumes that the certificate/key pair are in the tls.crt and tls.key files in the current working
directory. You may also specify a CA certificate if needed to complete the certificate chain. Substitute
the actual path names for tls.crt, tls.key, and (optionally) ca.crt. Substitute the name of the service that
you want to expose for frontend. Substitute the appropriate hostname for www.example.com.

Create a secure Route resource using edge TLS termination and a custom certificate.

If you examine the resulting Route resource, it should look similar to the following:

YAML Definition of the Secure Route

 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

$ openssl rsa -in password_protected_tls.key -out tls.key

$ oc create route edge --service=frontend --cert=tls.crt --key=tls.key --ca-cert=ca.crt --
hostname=www.example.com

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 to:

CHAPTER 16. CONFIGURING ROUTES

253

See oc create route edge --help for more options.

16.2.3. Creating a passthrough route

You can configure a secure route using passthrough termination by using the oc create route
command. With passthrough termination, encrypted traffic is sent straight to the destination without
the router providing TLS termination. Therefore no key or certificate is required on the route.

Prerequisites

You must have a service that you want to expose.

Procedure

Create a Route resource:

If you examine the resulting Route resource, it should look similar to the following:

A Secured Route Using Passthrough Termination

 kind: Service
 name: frontend
 tls:
 termination: edge
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

$ oc create route passthrough route-passthrough-secured --service=frontend --port=8080

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: route-passthrough-secured 1
spec:
 host: www.example.com
 port:
 targetPort: 8080
 tls:
 termination: passthrough 2
 insecureEdgeTerminationPolicy: None 3
 to:
 kind: Service
 name: frontend

OpenShift Container Platform 4.7 Networking

254

1

2

3

The name of the object, which is limited to 63 characters.

The termination field is set to passthrough. This is the only required tls field.

Optional insecureEdgeTerminationPolicy. The only valid values are None, Redirect, or
empty for disabled.

The destination pod is responsible for serving certificates for the traffic at the endpoint. This is
currently the only method that can support requiring client certificates, also known as two-way
authentication.

CHAPTER 16. CONFIGURING ROUTES

255

CHAPTER 17. CONFIGURING INGRESS CLUSTER TRAFFIC

17.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW

OpenShift Container Platform provides the following methods for communicating from outside the
cluster with services running in the cluster.

The methods are recommended, in order or preference:

If you have HTTP/HTTPS, use an Ingress Controller.

If you have a TLS-encrypted protocol other than HTTPS. For example, for TLS with the SNI
header, use an Ingress Controller.

Otherwise, use a Load Balancer, an External IP, or a NodePort.

Method Purpose

Use an Ingress Controller Allows access to HTTP/HTTPS traffic and TLS-
encrypted protocols other than HTTPS (for example,
TLS with the SNI header).

Automatically assign an external IP using a load
balancer service

Allows traffic to non-standard ports through an IP
address assigned from a pool.

Manually assign an external IP to a service Allows traffic to non-standard ports through a
specific IP address.

Configure a NodePort Expose a service on all nodes in the cluster.

17.2. CONFIGURING EXTERNALIPS FOR SERVICES

As a cluster administrator, you can designate an IP address block that is external to the cluster that can
send traffic to services in the cluster.

This functionality is generally most useful for clusters installed on bare-metal hardware.

17.2.1. Prerequisites

Your network infrastructure must route traffic for the external IP addresses to your cluster.

17.2.2. About ExternalIP

For non-cloud environments, OpenShift Container Platform supports the assignment of external IP
addresses to a Service object spec.externalIPs[] field through the ExternalIP facility. By setting this
field, OpenShift Container Platform assigns an additional virtual IP address to the service. The IP
address can be outside the service network defined for the cluster. A service configured with an
ExternalIP functions similarly to a service with type=NodePort, allowing you to direct traffic to a local
node for load balancing.

You must configure your networking infrastructure to ensure that the external IP address blocks that

OpenShift Container Platform 4.7 Networking

256

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-ingress-cluster-traffic-ingress-controller
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-ingress-cluster-traffic-load-balancer
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-ingress-cluster-traffic-service-external-ip
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-ingress-cluster-traffic-nodeport

You must configure your networking infrastructure to ensure that the external IP address blocks that
you define are routed to the cluster.

OpenShift Container Platform extends the ExternalIP functionality in Kubernetes by adding the
following capabilities:

Restrictions on the use of external IP addresses by users through a configurable policy

Allocation of an external IP address automatically to a service upon request

WARNING

Disabled by default, use of ExternalIP functionality can be a security risk, because
in-cluster traffic to an external IP address is directed to that service. This could
allow cluster users to intercept sensitive traffic destined for external resources.

IMPORTANT

This feature is supported only in non-cloud deployments. For cloud deployments, use the
load balancer services for automatic deployment of a cloud load balancer to target the
endpoints of a service.

You can assign an external IP address in the following ways:

Automatic assignment of an external IP

OpenShift Container Platform automatically assigns an IP address from the autoAssignCIDRs CIDR
block to the spec.externalIPs[] array when you create a Service object with
spec.type=LoadBalancer set. In this case, OpenShift Container Platform implements a non-cloud
version of the load balancer service type and assigns IP addresses to the services. Automatic
assignment is disabled by default and must be configured by a cluster administrator as described in
the following section.

Manual assignment of an external IP

OpenShift Container Platform uses the IP addresses assigned to the spec.externalIPs[] array when
you create a Service object. You cannot specify an IP address that is already in use by another
service.

17.2.2.1. Configuration for ExternalIP

Use of an external IP address in OpenShift Container Platform is governed by the following fields in the
Network.config.openshift.io CR named cluster:

spec.externalIP.autoAssignCIDRs defines an IP address block used by the load balancer when
choosing an external IP address for the service. OpenShift Container Platform supports only a
single IP address block for automatic assignment. This can be simpler than having to manage
the port space of a limited number of shared IP addresses when manually assigning ExternalIPs
to services. If automatic assignment is enabled, a Service object with
spec.type=LoadBalancer is allocated an external IP address.

spec.externalIP.policy defines the permissible IP address blocks when manually specifying an

CHAPTER 17. CONFIGURING INGRESS CLUSTER TRAFFIC

257

spec.externalIP.policy defines the permissible IP address blocks when manually specifying an
IP address. OpenShift Container Platform does not apply policy rules to IP address blocks
defined by spec.externalIP.autoAssignCIDRs.

If routed correctly, external traffic from the configured external IP address block can reach service
endpoints through any TCP or UDP port that the service exposes.

IMPORTANT

You must ensure that the IP address block you assign terminates at one or more nodes in
your cluster.

OpenShift Container Platform supports both the automatic and manual assignment of IP addresses,
and each address is guaranteed to be assigned to a maximum of one service. This ensures that each
service can expose its chosen ports regardless of the ports exposed by other services.

NOTE

To use IP address blocks defined by autoAssignCIDRs in OpenShift Container Platform,
you must configure the necessary IP address assignment and routing for your host
network.

The following YAML describes a service with an external IP address configured:

Example Service object with spec.externalIPs[] set

17.2.2.2. Restrictions on the assignment of an external IP address

As a cluster administrator, you can specify IP address blocks to allow and to reject.

apiVersion: v1
kind: Service
metadata:
 name: http-service
spec:
 clusterIP: 172.30.163.110
 externalIPs:
 - 192.168.132.253
 externalTrafficPolicy: Cluster
 ports:
 - name: highport
 nodePort: 31903
 port: 30102
 protocol: TCP
 targetPort: 30102
 selector:
 app: web
 sessionAffinity: None
 type: LoadBalancer
status:
 loadBalancer:
 ingress:
 - ip: 192.168.132.253

OpenShift Container Platform 4.7 Networking

258

Restrictions apply only to users without cluster-admin privileges. A cluster administrator can always set
the service spec.externalIPs[] field to any IP address.

You configure IP address policy with a policy object defined by specifying the spec.ExternalIP.policy
field. The policy object has the following shape:

When configuring policy restrictions, the following rules apply:

If policy={} is set, then creating a Service object with spec.ExternalIPs[] set will fail. This is the
default for OpenShift Container Platform. The behavior when policy=null is set is identical.

If policy is set and either policy.allowedCIDRs[] or policy.rejectedCIDRs[] is set, the following
rules apply:

If allowedCIDRs[] and rejectedCIDRs[] are both set, then rejectedCIDRs[] has
precedence over allowedCIDRs[].

If allowedCIDRs[] is set, creating a Service object with spec.ExternalIPs[] will succeed
only if the specified IP addresses are allowed.

If rejectedCIDRs[] is set, creating a Service object with spec.ExternalIPs[] will succeed
only if the specified IP addresses are not rejected.

17.2.2.3. Example policy objects

The examples that follow demonstrate several different policy configurations.

In the following example, the policy prevents OpenShift Container Platform from creating any
service with an external IP address specified:

Example policy to reject any value specified for Service object spec.externalIPs[]

In the following example, both the allowedCIDRs and rejectedCIDRs fields are set.

Example policy that includes both allowed and rejected CIDR blocks

{
 "policy": {
 "allowedCIDRs": [],
 "rejectedCIDRs": []
 }
}

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 policy: {}
 ...

apiVersion: config.openshift.io/v1
kind: Network
metadata:

CHAPTER 17. CONFIGURING INGRESS CLUSTER TRAFFIC

259

1

2

In the following example, policy is set to null. If set to null, when inspecting the configuration
object by entering oc get networks.config.openshift.io -o yaml, the policy field will not
appear in the output.

Example policy to allow any value specified for Service object spec.externalIPs[]

17.2.3. ExternalIP address block configuration

The configuration for ExternalIP address blocks is defined by a Network custom resource (CR) named
cluster. The Network CR is part of the config.openshift.io API group.

IMPORTANT

During cluster installation, the Cluster Version Operator (CVO) automatically creates a
Network CR named cluster. Creating any other CR objects of this type is not supported.

The following YAML describes the ExternalIP configuration:

Network.config.openshift.io CR named cluster

Defines the IP address block in CIDR format that is available for automatic assignment of external
IP addresses to a service. Only a single IP address range is allowed.

Defines restrictions on manual assignment of an IP address to a service. If no restrictions are

 name: cluster
spec:
 externalIP:
 policy:
 allowedCIDRs:
 - 172.16.66.10/23
 rejectedCIDRs:
 - 172.16.66.10/24
 ...

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 policy: null
 ...

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 autoAssignCIDRs: [] 1
 policy: 2
 ...

OpenShift Container Platform 4.7 Networking

260

1

2

Defines restrictions on manual assignment of an IP address to a service. If no restrictions are
defined, specifying the spec.externalIP field in a Service object is not allowed. By default, no

The following YAML describes the fields for the policy stanza:

Network.config.openshift.io policy stanza

A list of allowed IP address ranges in CIDR format.

A list of rejected IP address ranges in CIDR format.

Example external IP configurations
Several possible configurations for external IP address pools are displayed in the following examples:

The following YAML describes a configuration that enables automatically assigned external IP
addresses:

Example configuration with spec.externalIP.autoAssignCIDRs set

The following YAML configures policy rules for the allowed and rejected CIDR ranges:

Example configuration with spec.externalIP.policy set

17.2.4. Configure external IP address blocks for your cluster

policy:
 allowedCIDRs: [] 1
 rejectedCIDRs: [] 2

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 externalIP:
 autoAssignCIDRs:
 - 192.168.132.254/29

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 externalIP:
 policy:
 allowedCIDRs:
 - 192.168.132.0/29
 - 192.168.132.8/29
 rejectedCIDRs:
 - 192.168.132.7/32

CHAPTER 17. CONFIGURING INGRESS CLUSTER TRAFFIC

261

1

As a cluster administrator, you can configure the following ExternalIP settings:

An ExternalIP address block used by OpenShift Container Platform to automatically populate
the spec.clusterIP field for a Service object.

A policy object to restrict what IP addresses may be manually assigned to the spec.clusterIP
array of a Service object.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Optional: To display the current external IP configuration, enter the following command:

2. To edit the configuration, enter the following command:

3. Modify the ExternalIP configuration, as in the following example:

Specify the configuration for the externalIP stanza.

4. To confirm the updated ExternalIP configuration, enter the following command:

17.2.5. Next steps

Configuring ingress cluster traffic for a service external IP

17.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS
CONTROLLER

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses an Ingress Controller.

$ oc describe networks.config cluster

$ oc edit networks.config cluster

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 externalIP: 1
 ...

$ oc get networks.config cluster -o go-template='{{.spec.externalIP}}{{"\n"}}'

OpenShift Container Platform 4.7 Networking

262

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-ingress-cluster-traffic-service-external-ip

17.3.1. Using Ingress Controllers and routes

The Ingress Operator manages Ingress Controllers and wildcard DNS.

Using an Ingress Controller is the most common way to allow external access to an OpenShift Container
Platform cluster.

An Ingress Controller is configured to accept external requests and proxy them based on the configured
routes. This is limited to HTTP, HTTPS using SNI, and TLS using SNI, which is sufficient for web
applications and services that work over TLS with SNI.

Work with your administrator to configure an Ingress Controller to accept external requests and proxy
them based on the configured routes.

The administrator can create a wildcard DNS entry and then set up an Ingress Controller. Then, you can
work with the edge Ingress Controller without having to contact the administrators.

By default, every ingress controller in the cluster can admit any route created in any project in the
cluster.

The Ingress Controller:

Has two replicas by default, which means it should be running on two worker nodes.

Can be scaled up to have more replicas on more nodes.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

17.3.2. Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

$ oc adm policy add-cluster-role-to-user cluster-admin username

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

17.3.3. Creating a project and service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, skip to the procedure on exposing the service to create a route.

Prerequisites

CHAPTER 17. CONFIGURING INGRESS CLUSTER TRAFFIC

263

Install the oc CLI and log in as a cluster administrator.

Procedure

1. Create a new project for your service by running the oc new-project command:

2. Use the oc new-app command to create your service:

3. To verify that the service was created, run the following command:

Example output

By default, the new service does not have an external IP address.

17.3.4. Exposing the service by creating a route

You can expose the service as a route by using the oc expose command.

Procedure

To expose the service:

1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

3. Run the oc expose service command to expose the route:

Example output

4. To verify that the service is exposed, you can use a tool, such as cURL, to make sure the service
is accessible from outside the cluster.

a. Use the oc get route command to find the route’s host name:

$ oc new-project myproject

$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.197.157 <none> 8080/TCP 70s

$ oc project myproject

$ oc expose service nodejs-ex

route.route.openshift.io/nodejs-ex exposed

$ oc get route

OpenShift Container Platform 4.7 Networking

264

Example output

b. Use cURL to check that the host responds to a GET request:

Example output

17.3.5. Configuring Ingress Controller sharding by using route labels

Ingress Controller sharding by using route labels means that the Ingress Controller serves any route in
any namespace that is selected by the route selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

2. Apply the Ingress Controller router-internal.yaml file:

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
nodejs-ex nodejs-ex-myproject.example.com nodejs-ex 8080-tcp None

$ curl --head nodejs-ex-myproject.example.com

HTTP/1.1 200 OK
...

cat router-internal.yaml
apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: sharded
 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 routeSelector:
 matchLabels:
 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

CHAPTER 17. CONFIGURING INGRESS CLUSTER TRAFFIC

265

The Ingress Controller selects routes in any namespace that have the label type: sharded.

17.3.6. Configuring Ingress Controller sharding by using namespace labels

Ingress Controller sharding by using namespace labels means that the Ingress Controller serves any
route in any namespace that is selected by the namespace selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

WARNING

If you deploy the Keepalived Ingress VIP, do not deploy a non-default Ingress
Controller with value HostNetwork for the endpointPublishingStrategy
parameter. Doing so might cause issues. Use value NodePort instead of
HostNetwork for endpointPublishingStrategy.

Procedure

1. Edit the router-internal.yaml file:

Example output

oc apply -f router-internal.yaml

cat router-internal.yaml

apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: sharded
 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 namespaceSelector:
 matchLabels:
 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

OpenShift Container Platform 4.7 Networking

266

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that is selected by the namespace
selector that have the label type: sharded.

17.3.7. Additional resources

The Ingress Operator manages wildcard DNS. For more information, see Ingress Operator in
OpenShift Container Platform, Installing a cluster on bare metal , and Installing a cluster on
vSphere.

17.4. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD
BALANCER

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses a load balancer.

17.4.1. Using a load balancer to get traffic into the cluster

If you do not need a specific external IP address, you can configure a load balancer service to allow
external access to an OpenShift Container Platform cluster.

A load balancer service allocates a unique IP. The load balancer has a single edge router IP, which can be
a virtual IP (VIP), but is still a single machine for initial load balancing.

NOTE

If a pool is configured, it is done at the infrastructure level, not by a cluster administrator.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

17.4.2. Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

$ oc adm policy add-cluster-role-to-user cluster-admin username

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

oc apply -f router-internal.yaml

CHAPTER 17. CONFIGURING INGRESS CLUSTER TRAFFIC

267

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/installing/#installing-vsphere

17.4.3. Creating a project and service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, skip to the procedure on exposing the service to create a route.

Prerequisites

Install the oc CLI and log in as a cluster administrator.

Procedure

1. Create a new project for your service by running the oc new-project command:

2. Use the oc new-app command to create your service:

3. To verify that the service was created, run the following command:

Example output

By default, the new service does not have an external IP address.

17.4.4. Exposing the service by creating a route

You can expose the service as a route by using the oc expose command.

Procedure

To expose the service:

1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

3. Run the oc expose service command to expose the route:

Example output

$ oc new-project myproject

$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.197.157 <none> 8080/TCP 70s

$ oc project myproject

$ oc expose service nodejs-ex

route.route.openshift.io/nodejs-ex exposed

OpenShift Container Platform 4.7 Networking

268

4. To verify that the service is exposed, you can use a tool, such as cURL, to make sure the service
is accessible from outside the cluster.

a. Use the oc get route command to find the route’s host name:

Example output

b. Use cURL to check that the host responds to a GET request:

Example output

17.4.5. Creating a load balancer service

Use the following procedure to create a load balancer service.

Prerequisites

Make sure that the project and service you want to expose exist.

Procedure

To create a load balancer service:

1. Log in to OpenShift Container Platform.

2. Load the project where the service you want to expose is located.

3. Open a text file on the control plane node (also known as the master node) and paste the
following text, editing the file as needed:

Sample load balancer configuration file

apiVersion: v1
kind: Service
metadata:
 name: egress-2 1
spec:
 ports:
 - name: db
 port: 3306 2

$ oc get route

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
nodejs-ex nodejs-ex-myproject.example.com nodejs-ex 8080-tcp None

$ curl --head nodejs-ex-myproject.example.com

HTTP/1.1 200 OK
...

$ oc project project1

CHAPTER 17. CONFIGURING INGRESS CLUSTER TRAFFIC

269

1

2

3

4

5

 loadBalancerIP:
 loadBalancerSourceRanges: 3
 - 10.0.0.0/8
 - 192.168.0.0/16
 type: LoadBalancer 4
 selector:
 name: mysql 5

Enter a descriptive name for the load balancer service.

Enter the same port that the service you want to expose is listening on.

Enter a list of specific IP addresses to restrict traffic through the load balancer. This field is
ignored if the cloud-provider does not support the feature.

Enter Loadbalancer as the type.

Enter the name of the service.

NOTE

To restrict traffic through the load balancer to specific IP addresses, it is
recommended to use the service.beta.kubernetes.io/load-balancer-source-
ranges annotation rather than setting the loadBalancerSourceRanges field.
With the annotation, you can more easily migrate to the OpenShift API, which will
be implemented in a future release.

4. Save and exit the file.

5. Run the following command to create the service:

For example:

6. Execute the following command to view the new service:

Example output

The service has an external IP address automatically assigned if there is a cloud provider
enabled.

7. On the master, use a tool, such as cURL, to make sure you can reach the service using the public

$ oc create -f <file-name>

$ oc create -f mysql-lb.yaml

$ oc get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
egress-2 LoadBalancer 172.30.22.226 ad42f5d8b303045-487804948.example.com
3306:30357/TCP 15m

OpenShift Container Platform 4.7 Networking

270

7. On the master, use a tool, such as cURL, to make sure you can reach the service using the public
IP address:

For example:

The examples in this section use a MySQL service, which requires a client application. If you get a
string of characters with the Got packets out of order message, you are connecting with the
service:

If you have a MySQL client, log in with the standard CLI command:

Example output

17.5. CONFIGURING INGRESS CLUSTER TRAFFIC ON AWS USING A
NETWORK LOAD BALANCER

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses a Network Load Balancer (NLB), which forwards the
client’s IP address to the node. You can configure an NLB on a new or existing AWS cluster.

17.5.1. Replacing Ingress Controller Classic Load Balancer with Network Load
Balancer

You can replace an Ingress Controller that is using a Classic Load Balancer (CLB) with one that uses a
Network Load Balancer (NLB) on AWS.

WARNING

This procedure causes an expected outage that can last several minutes due to new
DNS records propagation, new load balancers provisioning, and other factors. IP
addresses and canonical names of the Ingress Controller load balancer might
change after applying this procedure.

Procedure

1. Create a file with a new default Ingress Controller. The following example assumes that your
default Ingress Controller has an External scope and no other customizations:

Example ingresscontroller.yml file

$ curl <public-ip>:<port>

$ curl 172.29.121.74:3306

$ mysql -h 172.30.131.89 -u admin -p

Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

CHAPTER 17. CONFIGURING INGRESS CLUSTER TRAFFIC

271

Example ingresscontroller.yml file

If your default Ingress Controller has other customizations, ensure that you modify the file
accordingly.

2. Force replace the Ingress Controller YAML file:

Wait until the Ingress Controller is replaced. Expect serveral of minutes of outages.

17.5.2. Configuring an Ingress Controller Network Load Balancer on an existing AWS
cluster

You can create an Ingress Controller backed by an AWS Network Load Balancer (NLB) on an existing
cluster.

Prerequisites

You must have an installed AWS cluster.

PlatformStatus of the infrastructure resource must be AWS.

To verify that the PlatformStatus is AWS, run:

Procedure

Create an Ingress Controller backed by an AWS NLB on an existing cluster.

1. Create the Ingress Controller manifest:

Example output

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: null
 name: default
 namespace: openshift-ingress-operator
spec:
 endpointPublishingStrategy:
 loadBalancer:
 scope: External
 providerParameters:
 type: AWS
 aws:
 type: NLB
 type: LoadBalancerService

$ oc replace --force --wait -f ingresscontroller.yml

$ oc get infrastructure/cluster -o jsonpath='{.status.platformStatus.type}'
AWS

 $ cat ingresscontroller-aws-nlb.yaml

OpenShift Container Platform 4.7 Networking

272

1

2

3

1

Replace $my_ingress_controller with a unique name for the Ingress Controller.

Replace $my_unique_ingress_domain with a domain name that is unique among all
Ingress Controllers in the cluster.

You can replace External with Internal to use an internal NLB.

2. Create the resource in the cluster:

IMPORTANT

Before you can configure an Ingress Controller NLB on a new AWS cluster, you must
complete the Creating the installation configuration file procedure.

17.5.3. Configuring an Ingress Controller Network Load Balancer on a new AWS
cluster

You can create an Ingress Controller backed by an AWS Network Load Balancer (NLB) on a new cluster.

Prerequisites

Create the install-config.yaml file and complete any modifications to it.

Procedure

Create an Ingress Controller backed by an AWS NLB on a new cluster.

1. Change to the directory that contains the installation program and create the manifests:

For <installation_directory>, specify the name of the directory that contains the install-
config.yaml file for your cluster.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: $my_ingress_controller 1
 namespace: openshift-ingress-operator
spec:
 domain: $my_unique_ingress_domain 2
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: External 3
 providerParameters:
 type: AWS
 aws:
 type: NLB

$ oc create -f ingresscontroller-aws-nlb.yaml

$./openshift-install create manifests --dir <installation_directory> 1

CHAPTER 17. CONFIGURING INGRESS CLUSTER TRAFFIC

273

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/installing/#installation-initializing_installing-aws-network-customizations

1

2. Create a file that is named cluster-ingress-default-ingresscontroller.yaml in the
<installation_directory>/manifests/ directory:

For <installation_directory>, specify the directory name that contains the manifests/
directory for your cluster.

After creating the file, several network configuration files are in the manifests/ directory, as
shown:

Example output

3. Open the cluster-ingress-default-ingresscontroller.yaml file in an editor and enter a custom
resource (CR) that describes the Operator configuration you want:

4. Save the cluster-ingress-default-ingresscontroller.yaml file and quit the text editor.

5. Optional: Back up the manifests/cluster-ingress-default-ingresscontroller.yaml file. The
installation program deletes the manifests/ directory when creating the cluster.

17.5.4. Additional resources

Installing a cluster on AWS with network customizations .

For more information, see Network Load Balancer support on AWS .

17.6. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE
EXTERNAL IP

You can attach an external IP address to a service so that it is available to traffic outside the cluster. This

$ touch <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml 1

$ ls <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml

cluster-ingress-default-ingresscontroller.yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: null
 name: default
 namespace: openshift-ingress-operator
spec:
 endpointPublishingStrategy:
 loadBalancer:
 scope: External
 providerParameters:
 type: AWS
 aws:
 type: NLB
 type: LoadBalancerService

OpenShift Container Platform 4.7 Networking

274

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/installing/#installing-aws-network-customizations
https://kubernetes.io/docs/concepts/services-networking/service/#aws-nlb-support

You can attach an external IP address to a service so that it is available to traffic outside the cluster. This
is generally useful only for a cluster installed on bare metal hardware. The external network
infrastructure must be configured correctly to route traffic to the service.

17.6.1. Prerequisites

Your cluster is configured with ExternalIPs enabled. For more information, read Configuring
ExternalIPs for services.

17.6.2. Attaching an ExternalIP to a service

You can attach an ExternalIP to a service. If your cluster is configured to allocate an ExternalIP
automatically, you might not need to manually attach an ExternalIP to the service.

Procedure

1. Optional: To confirm what IP address ranges are configured for use with ExternalIP, enter the
following command:

If autoAssignCIDRs is set, OpenShift Container Platform automatically assigns an ExternalIP
to a new Service object if the spec.externalIPs field is not specified.

2. Attach an ExternalIP to the service.

a. If you are creating a new service, specify the spec.externalIPs field and provide an array of
one or more valid IP addresses. For example:

b. If you are attaching an ExternalIP to an existing service, enter the following command.
Replace <name> with the service name. Replace <ip_address> with a valid ExternalIP
address. You can provide multiple IP addresses separated by commas.

For example:

Example output

$ oc get networks.config cluster -o jsonpath='{.spec.externalIP}{"\n"}'

apiVersion: v1
kind: Service
metadata:
 name: svc-with-externalip
spec:
 ...
 externalIPs:
 - 192.174.120.10

$ oc patch svc <name> -p \
 '{
 "spec": {
 "externalIPs": ["<ip_address>"]
 }
 }'

$ oc patch svc mysql-55-rhel7 -p '{"spec":{"externalIPs":["192.174.120.10"]}}'

CHAPTER 17. CONFIGURING INGRESS CLUSTER TRAFFIC

275

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-externalip

3. To confirm that an ExternalIP address is attached to the service, enter the following command.
If you specified an ExternalIP for a new service, you must create the service first.

Example output

17.6.3. Additional resources

Configuring ExternalIPs for services

17.7. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses a NodePort.

17.7.1. Using a NodePort to get traffic into the cluster

Use a NodePort-type Service resource to expose a service on a specific port on all nodes in the cluster.
The port is specified in the Service resource’s .spec.ports[*].nodePort field.

IMPORTANT

Using a node port requires additional port resources.

A NodePort exposes the service on a static port on the node’s IP address. NodePorts are in the 30000
to 32767 range by default, which means a NodePort is unlikely to match a service’s intended port. For
example, port 8080 may be exposed as port 31020 on the node.

The administrator must ensure the external IP addresses are routed to the nodes.

NodePorts and external IPs are independent and both can be used concurrently.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

17.7.2. Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

"mysql-55-rhel7" patched

$ oc get svc

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-55-rhel7 172.30.131.89 192.174.120.10 3306/TCP 13m

OpenShift Container Platform 4.7 Networking

276

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-externalip

$ oc adm policy add-cluster-role-to-user cluster-admin <user_name>

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

17.7.3. Creating a project and service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, skip to the procedure on exposing the service to create a route.

Prerequisites

Install the oc CLI and log in as a cluster administrator.

Procedure

1. Create a new project for your service by running the oc new-project command:

2. Use the oc new-app command to create your service:

3. To verify that the service was created, run the following command:

Example output

By default, the new service does not have an external IP address.

17.7.4. Exposing the service by creating a route

You can expose the service as a route by using the oc expose command.

Procedure

To expose the service:

1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

3. To expose a node port for the application, enter the following command. OpenShift Container

$ oc new-project myproject

$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.197.157 <none> 8080/TCP 70s

$ oc project myproject

CHAPTER 17. CONFIGURING INGRESS CLUSTER TRAFFIC

277

3. To expose a node port for the application, enter the following command. OpenShift Container
Platform automatically selects an available port in the 30000-32767 range.

Example output

4. Optional: To confirm the service is available with a node port exposed, enter the following
command:

Example output

5. Optional: To remove the service created automatically by the oc new-app command, enter the
following command:

17.7.5. Additional resources

Configuring the node port service range

$ oc expose service nodejs-ex --type=NodePort --name=nodejs-ex-nodeport --
generator="service/v2"

service/nodejs-ex-nodeport exposed

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.217.127 <none> 3306/TCP 9m44s
nodejs-ex-ingress NodePort 172.30.107.72 <none> 3306:31345/TCP 39s

$ oc delete svc nodejs-ex

OpenShift Container Platform 4.7 Networking

278

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-node-port-service-range

CHAPTER 18. KUBERNETES NMSTATE

18.1. ABOUT THE KUBERNETES NMSTATE OPERATOR

The Kubernetes NMState Operator provides a Kubernetes API for performing state-driven network
configuration across the OpenShift Container Platform cluster’s nodes with NMState. The Kubernetes
NMState Operator provides users with functionality to configure various network interface types, DNS,
and routing on cluster nodes. Additionally, the daemons on the cluster nodes periodically report on the
state of each node’s network interfaces to the API server.

IMPORTANT

Kubernetes NMState Operator is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

Before you can use NMState with OpenShift Container Platform, you must install the Kubernetes
NMState Operator.

18.1.1. Installing the Kubernetes NMState Operator

You must install the Kubernetes NMState Operator from the OpenShift web console while logged in
with administrator privileges. Once installed, the Operator can deploy the NMState State Controller as a
daemon set across all of the cluster nodes.

Procedure

1. Select Operators → OperatorHub.

2. In the search field below All Items, enter nmstate and click Enter to search for the Kubernetes
NMState Operator.

3. Click on the Kubernetes NMState Operator search result.

4. Click on Install to open the Install Operator window.

5. Under Installed Namespace, ensure the namespace is openshift-nmstate. If openshift-
nmstate does not exist in the combo box, click on Create Namespace and enter openshift-
nmstate in the Name field of the dialog box and press Create.

6. Click Install to install the Operator.

7. Once the Operator finishes installing, click View Operator.

8. Under Provided APIs, click Create Instance to open the dialog box for creating an instance of
kubernetes-nmstate.

9. In the Name field of the dialog box, ensure the name of the instance is nmstate.

NOTE

CHAPTER 18. KUBERNETES NMSTATE

279

https://access.redhat.com/support/offerings/techpreview/

NOTE

The name restriction is a known issue. The instance is a singleton for the entire
cluster.

10. Accept the default settings and click Create to create the instance.

Summary

Once complete, the Operator has deployed the NMState State Controller as a daemon set across all of
the cluster nodes.

18.2. OBSERVING NODE NETWORK STATE

Node network state is the network configuration for all nodes in the cluster.

18.2.1. About nmstate

OpenShift Container Platform uses nmstate to report on and configure the state of the node network.
This makes it possible to modify network policy configuration, such as by creating a Linux bridge on all
nodes, by applying a single configuration manifest to the cluster.

Node networking is monitored and updated by the following objects:

NodeNetworkState

Reports the state of the network on that node.

NodeNetworkConfigurationPolicy

Describes the requested network configuration on nodes. You update the node network
configuration, including adding and removing interfaces, by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

NodeNetworkConfigurationEnactment

Reports the network policies enacted upon each node.

OpenShift Container Platform supports the use of the following nmstate interface types:

Linux Bridge

VLAN

Bond

Ethernet

NOTE

If your OpenShift Container Platform cluster uses OVN-Kubernetes as the default
Container Network Interface (CNI) provider, you cannot attach a Linux bridge or bonding
to the default interface of a host because of a change in the host network topology of
OVN-Kubernetes. As a workaround, you can use a secondary network interface
connected to your host, or switch to the OpenShift SDN default CNI provider.

18.2.2. Viewing the network state of a node

A NodeNetworkState object exists on every node in the cluster. This object is periodically updated and

OpenShift Container Platform 4.7 Networking

280

https://nmstate.github.io/

1

2

3

A NodeNetworkState object exists on every node in the cluster. This object is periodically updated and
captures the state of the network for that node.

Procedure

1. List all the NodeNetworkState objects in the cluster:

2. Inspect a NodeNetworkState object to view the network on that node. The output in this
example has been redacted for clarity:

Example output

The name of the NodeNetworkState object is taken from the node.

The currentState contains the complete network configuration for the node, including
DNS, interfaces, and routes.

Timestamp of the last successful update. This is updated periodically as long as the node is
reachable and can be used to evalute the freshness of the report.

18.3. UPDATING NODE NETWORK CONFIGURATION

You can update the node network configuration, such as adding or removing interfaces from nodes, by
applying NodeNetworkConfigurationPolicy manifests to the cluster.

18.3.1. About nmstate

OpenShift Container Platform uses nmstate to report on and configure the state of the node network.
This makes it possible to modify network policy configuration, such as by creating a Linux bridge on all
nodes, by applying a single configuration manifest to the cluster.

Node networking is monitored and updated by the following objects:

$ oc get nns

$ oc get nns node01 -o yaml

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkState
metadata:
 name: node01 1
status:
 currentState: 2
 dns-resolver:
...
 interfaces:
...
 route-rules:
...
 routes:
...
 lastSuccessfulUpdateTime: "2020-01-31T12:14:00Z" 3

CHAPTER 18. KUBERNETES NMSTATE

281

https://nmstate.github.io/

NodeNetworkState

Reports the state of the network on that node.

NodeNetworkConfigurationPolicy

Describes the requested network configuration on nodes. You update the node network
configuration, including adding and removing interfaces, by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

NodeNetworkConfigurationEnactment

Reports the network policies enacted upon each node.

OpenShift Container Platform supports the use of the following nmstate interface types:

Linux Bridge

VLAN

Bond

Ethernet

NOTE

If your OpenShift Container Platform cluster uses OVN-Kubernetes as the default
Container Network Interface (CNI) provider, you cannot attach a Linux bridge or bonding
to the default interface of a host because of a change in the host network topology of
OVN-Kubernetes. As a workaround, you can use a secondary network interface
connected to your host, or switch to the OpenShift SDN default CNI provider.

18.3.2. Creating an interface on nodes

Create an interface on nodes in the cluster by applying a NodeNetworkConfigurationPolicy manifest
to the cluster. The manifest details the requested configuration for the interface.

By default, the manifest applies to all nodes in the cluster. To add the interface to specific nodes, add
the spec: nodeSelector parameter and the appropriate <key>:<value> for your node selector.

Procedure

1. Create the NodeNetworkConfigurationPolicy manifest. The following example configures a
Linux bridge on all worker nodes:

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: <br1-eth1-policy> 1
spec:
 nodeSelector: 2
 node-role.kubernetes.io/worker: "" 3
 desiredState:
 interfaces:
 - name: br1
 description: Linux bridge with eth1 as a port 4
 type: linux-bridge
 state: up

OpenShift Container Platform 4.7 Networking

282

1

2

3

4

1

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes
in the cluster.

This example uses the node-role.kubernetes.io/worker: "" node selector to select all
worker nodes in the cluster.

Optional: Human-readable description for the interface.

2. Create the node network policy:

File name of the node network configuration policy manifest.

Additional resources

Example for creating multiple interfaces in the same policy

Examples of different IP management methods in policies

18.3.3. Confirming node network policy updates on nodes

A NodeNetworkConfigurationPolicy manifest describes your requested network configuration for
nodes in the cluster. The node network policy includes your requested network configuration and the
status of execution of the policy on the cluster as a whole.

When you apply a node network policy, a NodeNetworkConfigurationEnactment object is created for
every node in the cluster. The node network configuration enactment is a read-only object that
represents the status of execution of the policy on that node. If the policy fails to be applied on the
node, the enactment for that node includes a traceback for troubleshooting.

Procedure

1. To confirm that a policy has been applied to the cluster, list the policies and their status:

2. Optional: If a policy is taking longer than expected to successfully configure, you can inspect the
requested state and status conditions of a particular policy:

 ipv4:
 dhcp: true
 enabled: true
 bridge:
 options:
 stp:
 enabled: false
 port:
 - name: eth1

$ oc apply -f <br1-eth1-policy.yaml> 1

$ oc get nncp

$ oc get nncp <policy> -o yaml

CHAPTER 18. KUBERNETES NMSTATE

283

3. Optional: If a policy is taking longer than expected to successfully configure on all nodes, you
can list the status of the enactments on the cluster:

4. Optional: To view the configuration of a particular enactment, including any error reporting for a
failed configuration:

18.3.4. Removing an interface from nodes

You can remove an interface from one or more nodes in the cluster by editing the
NodeNetworkConfigurationPolicy object and setting the state of the interface to absent.

Removing an interface from a node does not automatically restore the node network configuration to a
previous state. If you want to restore the previous state, you will need to define that node network
configuration in the policy.

If you remove a bridge or bonding interface, any node NICs in the cluster that were previously attached
or subordinate to that bridge or bonding interface are placed in a down state and become unreachable.
To avoid losing connectivity, configure the node NIC in the same policy so that it has a status of up and
either DHCP or a static IP address.

NOTE

Deleting the node network policy that added an interface does not change the
configuration of the policy on the node. Although a NodeNetworkConfigurationPolicy is
an object in the cluster, it only represents the requested configuration.
Similarly, removing an interface does not delete the policy.

Procedure

1. Update the NodeNetworkConfigurationPolicy manifest used to create the interface. The
following example removes a Linux bridge and configures the eth1 NIC with DHCP to avoid
losing connectivity:

$ oc get nnce

$ oc get nnce <node>.<policy> -o yaml

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: <br1-eth1-policy> 1
spec:
 nodeSelector: 2
 node-role.kubernetes.io/worker: "" 3
 desiredState:
 interfaces:
 - name: br1
 type: linux-bridge
 state: absent 4
 - name: eth1 5
 type: ethernet 6
 state: up 7

OpenShift Container Platform 4.7 Networking

284

1

2

3

4

5

6

7

8

9

1

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes
in the cluster.

This example uses the node-role.kubernetes.io/worker: "" node selector to select all
worker nodes in the cluster.

Changing the state to absent removes the interface.

The name of the interface that is to be unattached from the bridge interface.

The type of interface. This example creates an Ethernet networking interface.

The requested state for the interface.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface
without an IP address.

Enables ipv4 in this example.

2. Update the policy on the node and remove the interface:

File name of the policy manifest.

18.3.5. Example policy configurations for different interfaces

18.3.5.1. Example: Linux bridge interface node network configuration policy

Create a Linux bridge interface on nodes in the cluster by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

The following YAML file is an example of a manifest for a Linux bridge interface. It includes samples
values that you must replace with your own information.

 ipv4:
 dhcp: true 8
 enabled: true 9

$ oc apply -f <br1-eth1-policy.yaml> 1

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: br1-eth1-policy 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: br1 4
 description: Linux bridge with eth1 as a port 5

CHAPTER 18. KUBERNETES NMSTATE

285

1

2

3

4

5

6

7

8

9

10

11

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a bridge.

The requested state for the interface after creation.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface without an IP
address.

Enables ipv4 in this example.

Disables stp in this example.

The node NIC to which the bridge attaches.

18.3.5.2. Example: VLAN interface node network configuration policy

Create a VLAN interface on nodes in the cluster by applying a NodeNetworkConfigurationPolicy
manifest to the cluster.

The following YAML file is an example of a manifest for a VLAN interface. It includes samples values that
you must replace with your own information.

 type: linux-bridge 6
 state: up 7
 ipv4:
 dhcp: true 8
 enabled: true 9
 bridge:
 options:
 stp:
 enabled: false 10
 port:
 - name: eth1 11

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: vlan-eth1-policy 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: eth1.102 4

OpenShift Container Platform 4.7 Networking

286

1

2

3

4

5

6

7

8

9

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a VLAN.

The requested state for the interface after creation.

The node NIC to which the VLAN is attached.

The VLAN tag.

18.3.5.3. Example: Bond interface node network configuration policy

Create a bond interface on nodes in the cluster by applying a NodeNetworkConfigurationPolicy
manifest to the cluster.

NOTE

OpenShift Container Platform only supports the following bond modes:

mode=1 active-backup

mode=2 balance-xor

mode=4 802.3ad

mode=5 balance-tlb

mode=6 balance-alb

The following YAML file is an example of a manifest for a bond interface. It includes samples values that
you must replace with your own information.

 description: VLAN using eth1 5
 type: vlan 6
 state: up 7
 vlan:
 base-iface: eth1 8
 id: 102 9

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: bond0-eth1-eth2-policy 1
spec:
 nodeSelector: 2

CHAPTER 18. KUBERNETES NMSTATE

287

1

2

3

4

5

6

7

8

9

10

11

12

13

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a bond.

The requested state for the interface after creation.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface without an IP
address.

Enables ipv4 in this example.

The driver mode for the bond. This example uses an active backup mode.

Optional: This example uses miimon to inspect the bond link every 140ms.

The subordinate node NICs in the bond.

Optional: The maximum transmission unit (MTU) for the bond. If not specified, this value is set to
1500 by default.

18.3.5.4. Example: Ethernet interface node network configuration policy

Configure an Ethernet interface on nodes in the cluster by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

The following YAML file is an example of a manifest for an Ethernet interface. It includes sample values

 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: bond0 4
 description: Bond enslaving eth1 and eth2 5
 type: bond 6
 state: up 7
 ipv4:
 dhcp: true 8
 enabled: true 9
 link-aggregation:
 mode: active-backup 10
 options:
 miimon: '140' 11
 slaves: 12
 - eth1
 - eth2
 mtu: 1450 13

OpenShift Container Platform 4.7 Networking

288

1

2

3

4

5

6

7

8

9

The following YAML file is an example of a manifest for an Ethernet interface. It includes sample values
that you must replace with your own information.

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates an Ethernet networking interface.

The requested state for the interface after creation.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface without an IP
address.

Enables ipv4 in this example.

18.3.5.5. Example: Multiple interfaces in the same node network configuration policy

You can create multiple interfaces in the same node network configuration policy. These interfaces can
reference each other, allowing you to build and deploy a network configuration by using a single policy
manifest.

The following example snippet creates a bond that is named bond10 across two NICs and a Linux bridge
that is named br1 that connects to the bond.

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: eth1-policy 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: eth1 4
 description: Configuring eth1 on node01 5
 type: ethernet 6
 state: up 7
 ipv4:
 dhcp: true 8
 enabled: true 9

...
 interfaces:
 - name: bond10
 description: Bonding eth2 and eth3 for Linux bridge
 type: bond

CHAPTER 18. KUBERNETES NMSTATE

289

1

18.3.6. Examples: IP management

The following example configuration snippets demonstrate different methods of IP management.

These examples use the ethernet interface type to simplify the example while showing the related
context in the policy configuration. These IP management examples can be used with the other
interface types.

18.3.6.1. Static

The following snippet statically configures an IP address on the Ethernet interface:

Replace this value with the static IP address for the interface.

18.3.6.2. No IP address

The following snippet ensures that the interface has no IP address:

 state: up
 link-aggregation:
 slaves:
 - eth2
 - eth3
 - name: br1
 description: Linux bridge on bond
 type: linux-bridge
 state: up
 bridge:
 port:
 - name: bond10
...

...
 interfaces:
 - name: eth1
 description: static IP on eth1
 type: ethernet
 state: up
 ipv4:
 address:
 - ip: 192.168.122.250 1
 prefix-length: 24
 enabled: true
...

...
 interfaces:
 - name: eth1
 description: No IP on eth1
 type: ethernet
 state: up

OpenShift Container Platform 4.7 Networking

290

18.3.6.3. Dynamic host configuration

The following snippet configures an Ethernet interface that uses a dynamic IP address, gateway
address, and DNS:

The following snippet configures an Ethernet interface that uses a dynamic IP address but does not use
a dynamic gateway address or DNS:

18.3.6.4. DNS

The following snippet sets DNS configuration on the host.

18.3.6.5. Static routing

 ipv4:
 enabled: false
...

...
 interfaces:
 - name: eth1
 description: DHCP on eth1
 type: ethernet
 state: up
 ipv4:
 dhcp: true
 enabled: true
...

...
 interfaces:
 - name: eth1
 description: DHCP without gateway or DNS on eth1
 type: ethernet
 state: up
 ipv4:
 dhcp: true
 auto-gateway: false
 auto-dns: false
 enabled: true
...

...
 interfaces:
 ...
 dns-resolver:
 config:
 search:
 - example.com
 - example.org
 server:
 - 8.8.8.8
...

CHAPTER 18. KUBERNETES NMSTATE

291

1

2

The following snippet configures a static route and a static IP on interface eth1.

The static IP address for the Ethernet interface.

Next hop address for the node traffic. This must be in the same subnet as the IP address set for
the Ethernet interface.

18.4. TROUBLESHOOTING NODE NETWORK CONFIGURATION

If the node network configuration encounters an issue, the policy is automatically rolled back and the
enactments report failure. This includes issues such as:

The configuration fails to be applied on the host.

The host loses connection to the default gateway.

The host loses connection to the API server.

18.4.1. Troubleshooting an incorrect node network configuration policy
configuration

You can apply changes to the node network configuration across your entire cluster by applying a node
network configuration policy. If you apply an incorrect configuration, you can use the following example
to troubleshoot and correct the failed node network policy.

In this example, a Linux bridge policy is applied to an example cluster that has three control plane nodes
(master) and three compute (worker) nodes. The policy fails to be applied because it references an
incorrect interface. To find the error, investigate the available NMState resources. You can then update
the policy with the correct configuration.

Procedure

1. Create a policy and apply it to your cluster. The following example creates a simple bridge on the
ens01 interface:

...
 interfaces:
 - name: eth1
 description: Static routing on eth1
 type: ethernet
 state: up
 ipv4:
 address:
 - ip: 192.0.2.251 1
 prefix-length: 24
 enabled: true
 routes:
 config:
 - destination: 198.51.100.0/24
 metric: 150
 next-hop-address: 192.0.2.1 2
 next-hop-interface: eth1
 table-id: 254
...

OpenShift Container Platform 4.7 Networking

292

Example output

2. Verify the status of the policy by running the following command:

The output shows that the policy failed:

Example output

However, the policy status alone does not indicate if it failed on all nodes or a subset of nodes.

3. List the node network configuration enactments to see if the policy was successful on any of the
nodes. If the policy failed for only a subset of nodes, it suggests that the problem is with a
specific node configuration. If the policy failed on all nodes, it suggests that the problem is with
the policy.

The output shows that the policy failed on all nodes:

Example output

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: ens01-bridge-testfail
spec:
 desiredState:
 interfaces:
 - name: br1
 description: Linux bridge with the wrong port
 type: linux-bridge
 state: up
 ipv4:
 dhcp: true
 enabled: true
 bridge:
 options:
 stp:
 enabled: false
 port:
 - name: ens01

$ oc apply -f ens01-bridge-testfail.yaml

nodenetworkconfigurationpolicy.nmstate.io/ens01-bridge-testfail created

$ oc get nncp

NAME STATUS
ens01-bridge-testfail FailedToConfigure

$ oc get nnce

NAME STATUS
control-plane-1.ens01-bridge-testfail FailedToConfigure

CHAPTER 18. KUBERNETES NMSTATE

293

4. View one of the failed enactments and look at the traceback. The following command uses the
output tool jsonpath to filter the output:

This command returns a large traceback that has been edited for brevity:

Example output

control-plane-2.ens01-bridge-testfail FailedToConfigure
control-plane-3.ens01-bridge-testfail FailedToConfigure
compute-1.ens01-bridge-testfail FailedToConfigure
compute-2.ens01-bridge-testfail FailedToConfigure
compute-3.ens01-bridge-testfail FailedToConfigure

$ oc get nnce compute-1.ens01-bridge-testfail -o jsonpath='{.status.conditions[?
(@.type=="Failing")].message}'

error reconciling NodeNetworkConfigurationPolicy at desired state apply: , failed to execute
nmstatectl set --no-commit --timeout 480: 'exit status 1' ''
...
libnmstate.error.NmstateVerificationError:
desired
=======

name: br1
type: linux-bridge
state: up
bridge:
 options:
 group-forward-mask: 0
 mac-ageing-time: 300
 multicast-snooping: true
 stp:
 enabled: false
 forward-delay: 15
 hello-time: 2
 max-age: 20
 priority: 32768
 port:
 - name: ens01
description: Linux bridge with the wrong port
ipv4:
 address: []
 auto-dns: true
 auto-gateway: true
 auto-routes: true
 dhcp: true
 enabled: true
ipv6:
 enabled: false
mac-address: 01-23-45-67-89-AB
mtu: 1500

current
=======

OpenShift Container Platform 4.7 Networking

294

The NmstateVerificationError lists the desired policy configuration, the current configuration
of the policy on the node, and the difference highlighting the parameters that do not match. In
this example, the port is included in the difference, which suggests that the problem is the port
configuration in the policy.

5. To ensure that the policy is configured properly, view the network configuration for one or all of
the nodes by requesting the NodeNetworkState object. The following command returns the
network configuration for the control-plane-1 node:

$ oc get nns control-plane-1 -o yaml

name: br1
type: linux-bridge
state: up
bridge:
 options:
 group-forward-mask: 0
 mac-ageing-time: 300
 multicast-snooping: true
 stp:
 enabled: false
 forward-delay: 15
 hello-time: 2
 max-age: 20
 priority: 32768
 port: []
description: Linux bridge with the wrong port
ipv4:
 address: []
 auto-dns: true
 auto-gateway: true
 auto-routes: true
 dhcp: true
 enabled: true
ipv6:
 enabled: false
mac-address: 01-23-45-67-89-AB
mtu: 1500

difference
==========
--- desired
+++ current
@@ -13,8 +13,7 @@
 hello-time: 2
 max-age: 20
 priority: 32768
- port:
- - name: ens01
+ port: []
 description: Linux bridge with the wrong port
 ipv4:
 address: []
 line 651, in _assert_interfaces_equal\n
current_state.interfaces[ifname],\nlibnmstate.error.NmstateVerificationError:

CHAPTER 18. KUBERNETES NMSTATE

295

The output shows that the interface name on the nodes is ens1 but the failed policy incorrectly
uses ens01:

Example output

6. Correct the error by editing the existing policy:

Save the policy to apply the correction.

7. Check the status of the policy to ensure it updated successfully:

Example output

The updated policy is successfully configured on all nodes in the cluster.

 - ipv4:
 ...
 name: ens1
 state: up
 type: ethernet

$ oc edit nncp ens01-bridge-testfail

...
 port:
 - name: ens1

$ oc get nncp

NAME STATUS
ens01-bridge-testfail SuccessfullyConfigured

OpenShift Container Platform 4.7 Networking

296

CHAPTER 19. CONFIGURING THE CLUSTER-WIDE PROXY
Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS
proxy available. You can configure OpenShift Container Platform to use a proxy by modifying the Proxy
object for existing clusters or by configuring the proxy settings in the install-config.yaml file for new
clusters.

19.1. PREREQUISITES

Review the sites that your cluster requires access to and determine whether any of them must
bypass the proxy. By default, all cluster system egress traffic is proxied, including calls to the
cloud provider API for the cloud that hosts your cluster. System-wide proxy affects system
components only, not user workloads. Add sites to the Proxy object’s spec.noProxy field to
bypass the proxy if necessary.

NOTE

The Proxy object status.noProxy field is populated with the values of the
networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and
networking.serviceNetwork[] fields from your installation configuration.

For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP),
Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object
status.noProxy field is also populated with the instance metadata endpoint
(169.254.169.254).

19.2. ENABLING THE CLUSTER-WIDE PROXY

The Proxy object is used to manage the cluster-wide egress proxy. When a cluster is installed or
upgraded without the proxy configured, a Proxy object is still generated but it will have a nil spec. For
example:

A cluster administrator can configure the proxy for OpenShift Container Platform by modifying this
cluster Proxy object.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

Prerequisites

Cluster administrator permissions

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 trustedCA:
 name: ""
status:

CHAPTER 19. CONFIGURING THE CLUSTER-WIDE PROXY

297

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#nw-proxy-configure-object_config-cluster-wide-proxy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/installing/#configuring-firewall

1

2

3

4

OpenShift Container Platform oc CLI tool installed

Procedure

1. Create a ConfigMap that contains any additional CA certificates required for proxying HTTPS
connections.

NOTE

You can skip this step if the proxy’s identity certificate is signed by an authority
from the RHCOS trust bundle.

a. Create a file called user-ca-bundle.yaml with the following contents, and provide the
values of your PEM-encoded certificates:

This data key must be named ca-bundle.crt.

One or more PEM-encoded X.509 certificates used to sign the proxy’s identity
certificate.

The ConfigMap name that will be referenced from the Proxy object.

The ConfigMap must be in the openshift-config namespace.

b. Create the ConfigMap from this file:

2. Use the oc edit command to modify the Proxy object:

3. Configure the necessary fields for the proxy:

apiVersion: v1
data:
 ca-bundle.crt: | 1
 <MY_PEM_ENCODED_CERTS> 2
kind: ConfigMap
metadata:
 name: user-ca-bundle 3
 namespace: openshift-config 4

$ oc create -f user-ca-bundle.yaml

$ oc edit proxy/cluster

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: http://<username>:<pswd>@<ip>:<port> 2
 noProxy: example.com 3
 readinessEndpoints:

OpenShift Container Platform 4.7 Networking

298

1

2

3

4

5

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster.

A comma-separated list of destination domain names, domains, IP addresses or other
network CIDRs to exclude proxying.

Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com,
but not y.com. Use * to bypass proxy for all destinations. If you scale up workers that are
not included in the network defined by the networking.machineNetwork[].cidr field from
the installation configuration, you must add them to this list to prevent connection issues.

This field is ignored if neither the httpProxy or httpsProxy fields are set.

One or more URLs external to the cluster to use to perform a readiness check before
writing the httpProxy and httpsProxy values to status.

A reference to the ConfigMap in the openshift-config namespace that contains additional
CA certificates required for proxying HTTPS connections. Note that the ConfigMap must
already exist before referencing it here. This field is required unless the proxy’s identity
certificate is signed by an authority from the RHCOS trust bundle.

4. Save the file to apply the changes.

19.3. REMOVING THE CLUSTER-WIDE PROXY

The cluster Proxy object cannot be deleted. To remove the proxy from a cluster, remove all spec fields
from the Proxy object.

Prerequisites

Cluster administrator permissions

OpenShift Container Platform oc CLI tool installed

Procedure

1. Use the oc edit command to modify the proxy:

2. Remove all spec fields from the Proxy object. For example:

 - http://www.google.com 4
 - https://www.google.com
 trustedCA:
 name: user-ca-bundle 5

$ oc edit proxy/cluster

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:

CHAPTER 19. CONFIGURING THE CLUSTER-WIDE PROXY

299

3. Save the file to apply the changes.

Additional resources

Replacing the CA Bundle certificate

Proxy certificate customization

 name: cluster
spec: {}
status: {}

OpenShift Container Platform 4.7 Networking

300

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/security_and_compliance/#ca-bundle-understanding_updating-ca-bundle
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/security_and_compliance/#customization

CHAPTER 20. CONFIGURING A CUSTOM PKI
Some platform components, such as the web console, use Routes for communication and must trust
other components' certificates to interact with them. If you are using a custom public key infrastructure
(PKI), you must configure it so its privately signed CA certificates are recognized across the cluster.

You can leverage the Proxy API to add cluster-wide trusted CA certificates. You must do this either
during installation or at runtime.

During installation, configure the cluster-wide proxy. You must define your privately signed CA
certificates in the install-config.yaml file’s additionalTrustBundle setting.
The installation program generates a ConfigMap that is named user-ca-bundle that contains
the additional CA certificates you defined. The Cluster Network Operator then creates a
trusted-ca-bundle ConfigMap that merges these CA certificates with the Red Hat Enterprise
Linux CoreOS (RHCOS) trust bundle; this ConfigMap is referenced in the Proxy object’s
trustedCA field.

At runtime, modify the default Proxy object to include your privately signed CA certificates
(part of cluster’s proxy enablement workflow). This involves creating a ConfigMap that contains
the privately signed CA certificates that should be trusted by the cluster, and then modifying
the proxy resource with the trustedCA referencing the privately signed certificates' ConfigMap.

NOTE

The installer configuration’s additionalTrustBundle field and the proxy resource’s
trustedCA field are used to manage the cluster-wide trust bundle;
additionalTrustBundle is used at install time and the proxy’s trustedCA is used at
runtime.

The trustedCA field is a reference to a ConfigMap containing the custom certificate and
key pair used by the cluster component.

20.1. CONFIGURING THE CLUSTER-WIDE PROXY DURING
INSTALLATION

Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS
proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by
configuring the proxy settings in the install-config.yaml file.

Prerequisites

You have an existing install-config.yaml file.

You reviewed the sites that your cluster requires access to and determined whether any of
them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to
hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to
bypass the proxy if necessary.

NOTE

CHAPTER 20. CONFIGURING A CUSTOM PKI

301

1

2

3

4

NOTE

The Proxy object status.noProxy field is populated with the values of the
networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and
networking.serviceNetwork[] fields from your installation configuration.

For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP),
Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object
status.noProxy field is also populated with the instance metadata endpoint
(169.254.169.254).

Procedure

1. Edit your install-config.yaml file and add the proxy settings. For example:

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster.

A comma-separated list of destination domain names, IP addresses, or other network
CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For
example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all
destinations.

If provided, the installation program generates a config map that is named user-ca-bundle
in the openshift-config namespace to hold the additional CA certificates. If you provide
additionalTrustBundle and at least one proxy setting, the Proxy object is configured to
reference the user-ca-bundle config map in the trustedCA field. The Cluster Network
Operator then creates a trusted-ca-bundle config map that merges the contents
specified for the trustedCA parameter with the RHCOS trust bundle. The
additionalTrustBundle field is required unless the proxy’s identity certificate is signed by
an authority from the RHCOS trust bundle.

NOTE

The installation program does not support the proxy readinessEndpoints field.

2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings

apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: example.com 3
additionalTrustBundle: | 4
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...

OpenShift Container Platform 4.7 Networking

302

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings
in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still
created, but it will have a nil spec.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

20.2. ENABLING THE CLUSTER-WIDE PROXY

The Proxy object is used to manage the cluster-wide egress proxy. When a cluster is installed or
upgraded without the proxy configured, a Proxy object is still generated but it will have a nil spec. For
example:

A cluster administrator can configure the proxy for OpenShift Container Platform by modifying this
cluster Proxy object.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

Prerequisites

Cluster administrator permissions

OpenShift Container Platform oc CLI tool installed

Procedure

1. Create a ConfigMap that contains any additional CA certificates required for proxying HTTPS
connections.

NOTE

You can skip this step if the proxy’s identity certificate is signed by an authority
from the RHCOS trust bundle.

a. Create a file called user-ca-bundle.yaml with the following contents, and provide the
values of your PEM-encoded certificates:

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 trustedCA:
 name: ""
status:

apiVersion: v1
data:

CHAPTER 20. CONFIGURING A CUSTOM PKI

303

1

2

3

4

1

2

3

This data key must be named ca-bundle.crt.

One or more PEM-encoded X.509 certificates used to sign the proxy’s identity
certificate.

The ConfigMap name that will be referenced from the Proxy object.

The ConfigMap must be in the openshift-config namespace.

b. Create the ConfigMap from this file:

2. Use the oc edit command to modify the Proxy object:

3. Configure the necessary fields for the proxy:

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster.

A comma-separated list of destination domain names, domains, IP addresses or other
network CIDRs to exclude proxying.

Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com,
but not y.com. Use * to bypass proxy for all destinations. If you scale up workers that are
not included in the network defined by the networking.machineNetwork[].cidr field from
the installation configuration, you must add them to this list to prevent connection issues.

 ca-bundle.crt: | 1
 <MY_PEM_ENCODED_CERTS> 2
kind: ConfigMap
metadata:
 name: user-ca-bundle 3
 namespace: openshift-config 4

$ oc create -f user-ca-bundle.yaml

$ oc edit proxy/cluster

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: http://<username>:<pswd>@<ip>:<port> 2
 noProxy: example.com 3
 readinessEndpoints:
 - http://www.google.com 4
 - https://www.google.com
 trustedCA:
 name: user-ca-bundle 5

OpenShift Container Platform 4.7 Networking

304

4

5

1

This field is ignored if neither the httpProxy or httpsProxy fields are set.

One or more URLs external to the cluster to use to perform a readiness check before
writing the httpProxy and httpsProxy values to status.

A reference to the ConfigMap in the openshift-config namespace that contains additional
CA certificates required for proxying HTTPS connections. Note that the ConfigMap must
already exist before referencing it here. This field is required unless the proxy’s identity
certificate is signed by an authority from the RHCOS trust bundle.

4. Save the file to apply the changes.

20.3. CERTIFICATE INJECTION USING OPERATORS

Once your custom CA certificate is added to the cluster via ConfigMap, the Cluster Network Operator
merges the user-provided and system CA certificates into a single bundle and injects the merged
bundle into the Operator requesting the trust bundle injection.

Operators request this injection by creating an empty ConfigMap with the following label:

An example of the empty ConfigMap:

Specifies the empty ConfigMap name.

The Operator mounts this ConfigMap into the container’s local trust store.

NOTE

Adding a trusted CA certificate is only needed if the certificate is not included in the Red
Hat Enterprise Linux CoreOS (RHCOS) trust bundle.

Certificate injection is not limited to Operators. The Cluster Network Operator injects certificates across
any namespace when an empty ConfigMap is created with the config.openshift.io/inject-trusted-
cabundle=true label.

The ConfigMap can reside in any namespace, but the ConfigMap must be mounted as a volume to each
container within a pod that requires a custom CA. For example:

config.openshift.io/inject-trusted-cabundle="true"

apiVersion: v1
data: {}
kind: ConfigMap
metadata:
 labels:
 config.openshift.io/inject-trusted-cabundle: "true"
 name: ca-inject 1
 namespace: apache

apiVersion: apps/v1
kind: Deployment
metadata:

CHAPTER 20. CONFIGURING A CUSTOM PKI

305

1

2

ca-bundle.crt is required as the ConfigMap key.

tls-ca-bundle.pem is required as the ConfigMap path.

 name: my-example-custom-ca-deployment
 namespace: my-example-custom-ca-ns
spec:
 ...
 spec:
 ...
 containers:
 - name: my-container-that-needs-custom-ca
 volumeMounts:
 - name: trusted-ca
 mountPath: /etc/pki/ca-trust/extracted/pem
 readOnly: true
 volumes:
 - name: trusted-ca
 configMap:
 name: trusted-ca
 items:
 - key: ca-bundle.crt 1
 path: tls-ca-bundle.pem 2

OpenShift Container Platform 4.7 Networking

306

1

CHAPTER 21. LOAD BALANCING ON RHOSP

21.1. USING THE OCTAVIA OVN LOAD BALANCER PROVIDER DRIVER
WITH KURYR SDN

If your OpenShift Container Platform cluster uses Kuryr and was installed on a Red Hat OpenStack
Platform (RHOSP) 13 cloud that was later upgraded to RHOSP 16, you can configure it to use the
Octavia OVN provider driver.

IMPORTANT

Kuryr replaces existing load balancers after you change provider drivers. This process
results in some downtime.

Prerequisites

Install the RHOSP CLI, openstack.

Install the OpenShift Container Platform CLI, oc.

Verify that the Octavia OVN driver on RHOSP is enabled.

TIP

To view a list of available Octavia drivers, on a command line, enter openstack loadbalancer
provider list.

The ovn driver is displayed in the command’s output.

Procedure

To change from the Octavia Amphora provider driver to Octavia OVN:

1. Open the kuryr-config ConfigMap. On a command line, enter:

2. In the ConfigMap, delete the line that contains kuryr-octavia-provider: default. For example:

Delete this line. The cluster will regenerate it with ovn as the value.

Wait for the Cluster Network Operator to detect the modification and to redeploy the kuryr-
controller and kuryr-cni pods. This process might take several minutes.

3. Verify that the kuryr-config ConfigMap annotation is present with ovn as its value. On a

$ oc -n openshift-kuryr edit cm kuryr-config

...
kind: ConfigMap
metadata:
 annotations:
 networkoperator.openshift.io/kuryr-octavia-provider: default 1
...

CHAPTER 21. LOAD BALANCING ON RHOSP

307

3. Verify that the kuryr-config ConfigMap annotation is present with ovn as its value. On a
command line, enter:

The ovn provider value is displayed in the output:

4. Verify that RHOSP recreated its load balancers.

a. On a command line, enter:

A single Amphora load balancer is displayed. For example:

b. Search for ovn load balancers by entering:

The remaining load balancers of the ovn type are displayed. For example:

21.2. SCALING CLUSTERS FOR APPLICATION TRAFFIC BY USING
OCTAVIA

OpenShift Container Platform clusters that run on Red Hat OpenStack Platform (RHOSP) can use the
Octavia load balancing service to distribute traffic across multiple virtual machines (VMs) or floating IP
addresses. This feature mitigates the bottleneck that single machines or addresses create.

If your cluster uses Kuryr, the Cluster Network Operator created an internal Octavia load balancer at
deployment. You can use this load balancer for application network scaling.

If your cluster does not use Kuryr, you must create your own Octavia load balancer to use it for
application network scaling.

21.2.1. Scaling clusters by using Octavia

If you want to use multiple API load balancers, or if your cluster does not use Kuryr, create an Octavia

$ oc -n openshift-kuryr edit cm kuryr-config

...
kind: ConfigMap
metadata:
 annotations:
 networkoperator.openshift.io/kuryr-octavia-provider: ovn
...

$ openstack loadbalancer list | grep amphora

a4db683b-2b7b-4988-a582-c39daaad7981 | ostest-7mbj6-kuryr-api-loadbalancer |
84c99c906edd475ba19478a9a6690efd | 172.30.0.1 | ACTIVE | amphora

$ openstack loadbalancer list | grep ovn

2dffe783-98ae-4048-98d0-32aa684664cc | openshift-apiserver-operator/metrics |
84c99c906edd475ba19478a9a6690efd | 172.30.167.119 | ACTIVE | ovn
0b1b2193-251f-4243-af39-2f99b29d18c5 | openshift-etcd/etcd |
84c99c906edd475ba19478a9a6690efd | 172.30.143.226 | ACTIVE | ovn
f05b07fc-01b7-4673-bd4d-adaa4391458e | openshift-dns-operator/metrics |
84c99c906edd475ba19478a9a6690efd | 172.30.152.27 | ACTIVE | ovn

OpenShift Container Platform 4.7 Networking

308

If you want to use multiple API load balancers, or if your cluster does not use Kuryr, create an Octavia
load balancer and then configure your cluster to use it.

Prerequisites

Octavia is available on your Red Hat OpenStack Platform (RHOSP) deployment.

Procedure

1. From a command line, create an Octavia load balancer that uses the Amphora driver:

You can use a name of your choice instead of API_OCP_CLUSTER.

2. After the load balancer becomes active, create listeners:

NOTE

To view the status of the load balancer, enter openstack loadbalancer list.

3. Create a pool that uses the round robin algorithm and has session persistence enabled:

4. To ensure that control plane machines are available, create a health monitor:

5. Add the control plane machines as members of the load balancer pool:

6. Optional: To reuse the cluster API floating IP address, unset it:

7. Add either the unset API_FIP or a new address to the created load balancer VIP:

$ openstack loadbalancer create --name API_OCP_CLUSTER --vip-subnet-id
<id_of_worker_vms_subnet>

$ openstack loadbalancer listener create --name API_OCP_CLUSTER_6443 --protocol
HTTPS--protocol-port 6443 API_OCP_CLUSTER

$ openstack loadbalancer pool create --name API_OCP_CLUSTER_pool_6443 --lb-
algorithm ROUND_ROBIN --session-persistence type=<source_IP_address> --listener
API_OCP_CLUSTER_6443 --protocol HTTPS

$ openstack loadbalancer healthmonitor create --delay 5 --max-retries 4 --timeout 10 --type
TCP API_OCP_CLUSTER_pool_6443

$ for SERVER in $(MASTER-0-IP MASTER-1-IP MASTER-2-IP)
do
 openstack loadbalancer member create --address $SERVER --protocol-port 6443
API_OCP_CLUSTER_pool_6443
done

$ openstack floating ip unset $API_FIP

$ openstack floating ip set --port $(openstack loadbalancer show -c <vip_port_id> -f value
API_OCP_CLUSTER) $API_FIP

CHAPTER 21. LOAD BALANCING ON RHOSP

309

Your cluster now uses Octavia for load balancing.

NOTE

If Kuryr uses the Octavia Amphora driver, all traffic is routed through a single Amphora
virtual machine (VM).

You can repeat this procedure to create additional load balancers, which can alleviate the
bottleneck.

21.2.2. Scaling clusters that use Kuryr by using Octavia

If your cluster uses Kuryr, associate the API floating IP address of your cluster with the pre-existing
Octavia load balancer.

Prerequisites

Your OpenShift Container Platform cluster uses Kuryr.

Octavia is available on your Red Hat OpenStack Platform (RHOSP) deployment.

Procedure

1. Optional: From a command line, to reuse the cluster API floating IP address, unset it:

2. Add either the unset API_FIP or a new address to the created load balancer VIP:

Your cluster now uses Octavia for load balancing.

NOTE

If Kuryr uses the Octavia Amphora driver, all traffic is routed through a single Amphora
virtual machine (VM).

You can repeat this procedure to create additional load balancers, which can alleviate the
bottleneck.

21.3. SCALING FOR INGRESS TRAFFIC BY USING RHOSP OCTAVIA

You can use Octavia load balancers to scale Ingress controllers on clusters that use Kuryr.

Prerequisites

Your OpenShift Container Platform cluster uses Kuryr.

Octavia is available on your RHOSP deployment.

Procedure

$ openstack floating ip unset $API_FIP

$ openstack floating ip set --port $(openstack loadbalancer show -c <vip_port_id> -f value
${OCP_CLUSTER}-kuryr-api-loadbalancer) $API_FIP

OpenShift Container Platform 4.7 Networking

310

1

2

1. To copy the current internal router service, on a command line, enter:

2. In the file external_router.yaml, change the values of metadata.name and spec.type to
LoadBalancer.

Example router file

Ensure that this value is descriptive, like router-external-default.

Ensure that this value is LoadBalancer.

NOTE

You can delete timestamps and other information that is irrelevant to load balancing.

1. From a command line, create a service from the external_router.yaml file:

2. Verify that the external IP address of the service is the same as the one that is associated with
the load balancer:

a. On a command line, retrieve the external IP address of the service:

$ oc -n openshift-ingress get svc router-internal-default -o yaml > external_router.yaml

apiVersion: v1
kind: Service
metadata:
 labels:
 ingresscontroller.operator.openshift.io/owning-ingresscontroller: default
 name: router-external-default 1
 namespace: openshift-ingress
spec:
 ports:
 - name: http
 port: 80
 protocol: TCP
 targetPort: http
 - name: https
 port: 443
 protocol: TCP
 targetPort: https
 - name: metrics
 port: 1936
 protocol: TCP
 targetPort: 1936
 selector:
 ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
 sessionAffinity: None
 type: LoadBalancer 2

$ oc apply -f external_router.yaml

$ oc -n openshift-ingress get svc

CHAPTER 21. LOAD BALANCING ON RHOSP

311

Example output

b. Retrieve the IP address of the load balancer:

Example output

c. Verify that the addresses you retrieved in the previous steps are associated with each other
in the floating IP list:

Example output

You can now use the value of EXTERNAL-IP as the new Ingress address.

NOTE

If Kuryr uses the Octavia Amphora driver, all traffic is routed through a single Amphora
virtual machine (VM).

You can repeat this procedure to create additional load balancers, which can alleviate the
bottleneck.

21.4. CONFIGURING AN EXTERNAL LOAD BALANCER

You can configure a OpenShift Container Platform cluster on Red Hat OpenStack Platform (RHOSP) to
use an external load balancer in place of the default load balancer.

Prerequisites

On your load balancer, TCP over ports 6443, 443, and 80 must be available to any users of your
system.

Load balance the API port, 6443, between each of the control plane nodes.

Load balance the application ports, 443 and 80, between all of the compute nodes.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
router-external-default LoadBalancer 172.30.235.33 10.46.22.161
80:30112/TCP,443:32359/TCP,1936:30317/TCP 3m38s
router-internal-default ClusterIP 172.30.115.123 <none>
80/TCP,443/TCP,1936/TCP 22h

$ openstack loadbalancer list | grep router-external

| 21bf6afe-b498-4a16-a958-3229e83c002c | openshift-ingress/router-external-default |
66f3816acf1b431691b8d132cc9d793c | 172.30.235.33 | ACTIVE | octavia |

$ openstack floating ip list | grep 172.30.235.33

| e2f80e97-8266-4b69-8636-e58bacf1879e | 10.46.22.161 | 172.30.235.33 | 655e7122-
806a-4e0a-a104-220c6e17bda6 | a565e55a-99e7-4d15-b4df-f9d7ee8c9deb |
66f3816acf1b431691b8d132cc9d793c |

OpenShift Container Platform 4.7 Networking

312

On your load balancer, port 22623, which is used to serve ignition startup configurations to
nodes, is not exposed outside of the cluster.

Your load balancer must be able to access every machine in your cluster. Methods to allow this
access include:

Attaching the load balancer to the cluster’s machine subnet.

Attaching floating IP addresses to machines that use the load balancer.

Procedure

1. Enable access to the cluster from your load balancer on ports 6443, 443, and 80.
As an example, note this HAProxy configuration:

A section of a sample HAProxy configuration

2. Add records to your DNS server for the cluster API and apps over the load balancer. For
example:

3. From a command line, use curl to verify that the external load balancer and DNS configuration
are operational.

a. Verify that the cluster API is accessible:

If the configuration is correct, you receive a JSON object in response:

...
listen my-cluster-api-6443
 bind 0.0.0.0:6443
 mode tcp
 balance roundrobin
 server my-cluster-master-2 192.0.2.2:6443 check
 server my-cluster-master-0 192.0.2.3:6443 check
 server my-cluster-master-1 192.0.2.1:6443 check
listenmy-cluster-apps-443
 bind 0.0.0.0:443
 mode tcp
 balance roundrobin
 server my-cluster-worker-0 192.0.2.6:443 check
 server my-cluster-worker-1 192.0.2.5:443 check
 server my-cluster-worker-2 192.0.2.4:443 check
listenmy-cluster-apps-80
 bind 0.0.0.0:80
 mode tcp
 balance roundrobin
 server my-cluster-worker-0 192.0.2.7:80 check
 server my-cluster-worker-1 192.0.2.9:80 check
 server my-cluster-worker-2 192.0.2.8:80 check

<load_balancer_ip_address> api.<cluster_name>.<base_domain>
<load_balancer_ip_address> apps.<cluster_name>.<base_domain>

$ curl https://<loadbalancer_ip_address>:6443/version --insecure

CHAPTER 21. LOAD BALANCING ON RHOSP

313

b. Verify that cluster applications are accessible:

NOTE

You can also verify application accessibility by opening the OpenShift
Container Platform console in a web browser.

If the configuration is correct, you receive an HTTP response:

{
 "major": "1",
 "minor": "11+",
 "gitVersion": "v1.11.0+ad103ed",
 "gitCommit": "ad103ed",
 "gitTreeState": "clean",
 "buildDate": "2019-01-09T06:44:10Z",
 "goVersion": "go1.10.3",
 "compiler": "gc",
 "platform": "linux/amd64"
}

$ curl http://console-openshift-console.apps.<cluster_name>.<base_domain> -I -L --
insecure

HTTP/1.1 302 Found
content-length: 0
location: https://console-openshift-console.apps.<cluster-name>.<base domain>/
cache-control: no-cacheHTTP/1.1 200 OK
referrer-policy: strict-origin-when-cross-origin
set-cookie: csrf-
token=39HoZgztDnzjJkq/JuLJMeoKNXlfiVv2YgZc09c3TBOBU4NI6kDXaJH1LdicNhN1UsQ
Wzon4Dor9GWGfopaTEQ==; Path=/; Secure
x-content-type-options: nosniff
x-dns-prefetch-control: off
x-frame-options: DENY
x-xss-protection: 1; mode=block
date: Tue, 17 Nov 2020 08:42:10 GMT
content-type: text/html; charset=utf-8
set-cookie:
1e2670d92730b515ce3a1bb65da45062=9b714eb87e93cf34853e87a92d6894be; path=/;
HttpOnly; Secure; SameSite=None
cache-control: private

OpenShift Container Platform 4.7 Networking

314

CHAPTER 22. ASSOCIATING SECONDARY INTERFACES
METRICS TO NETWORK ATTACHMENTS

22.1. ASSOCIATING SECONDARY INTERFACES METRICS TO
NETWORK ATTACHMENTS

Secondary devices, or interfaces, are used for different purposes. It is important to have a way to classify
them to be able to aggregate the metrics for secondary devices with the same classification.

Exposed metrics contain the interface but do not specify where the interface originates. This is workable
when there are no additional interfaces, but if a secondary interface is added, it is difficult to make use of
the metrics since it is hard to identify the interfaces using only the interface name as an identifier.

When adding secondary interfaces, their names depend on the order in which they are added, and
different secondary interfaces might belong to different networks and can be used for different
purposes.

With pod_network_name_info it is possible to extend the current metrics with the additional
information that identifies the interface type. In this way, it is possible to aggregate the metrics and to
add specific alarms to specific interface types.

The network type is generated using the name of the related NetworkAttachmentDefinition, that in
turn is used to differentiate different classes of secondary networks. For example, different interfaces
belonging to different networks or using different CNIs use different network attachment definition
names.

22.1.1. Network Metrics Daemon

The Network Metrics Daemon is a daemon component that collects and publishes network related
metrics.

The kubelet is already publishing network related metrics you can observe. These metrics are:

container_network_receive_bytes_total

container_network_receive_errors_total

container_network_receive_packets_total

container_network_receive_packets_dropped_total

container_network_transmit_bytes_total

container_network_transmit_errors_total

container_network_transmit_packets_total

container_network_transmit_packets_dropped_total

The labels in these metrics contain, among others:

Pod name

Pod namespace

CHAPTER 22. ASSOCIATING SECONDARY INTERFACES METRICS TO NETWORK ATTACHMENTS

315

Interface name (such as eth0)

These metrics work well until new interfaces are added to the Pod, for example via Multus, as it is not
clear what the interface names refer to.

The interface label refers to the interface name, but it is not clear what that interface is meant for. In
case of many different interfaces, it would be impossible to understand what network the metrics you are
monitoring refer to.

This is addressed by introducing the new pod_network_name_info described in the following section.

22.1.2. Metrics with network name

This daemonset publishes a pod_network_name_info gauge metric, with a fixed value of 0:

The network name label is produced using the annotation added by Multus. It ia the concatenation of
the namespace the network attachment definition belongs to, plus the name of the network attachment
definition.

The new metric alone does not provide much value, but combined with the network related
container_network_* metrics, it offers better support for monitoring secondary networks.

Using a promql query like the following ones, it is possible to get a new metric containing the value and
the network name retrieved from the k8s.v1.cni.cncf.io/networks-status annotation:

pod_network_name_info{interface="net0",namespace="namespacename",network_name="nadname
space/firstNAD",pod="podname"} 0

(container_network_receive_bytes_total) + on(namespace,pod,interface) group_left(network_name) (
pod_network_name_info)
(container_network_receive_errors_total) + on(namespace,pod,interface) group_left(network_name) (
pod_network_name_info)
(container_network_receive_packets_total) + on(namespace,pod,interface)
group_left(network_name) (pod_network_name_info)
(container_network_receive_packets_dropped_total) + on(namespace,pod,interface)
group_left(network_name) (pod_network_name_info)
(container_network_transmit_bytes_total) + on(namespace,pod,interface) group_left(network_name)
(pod_network_name_info)
(container_network_transmit_errors_total) + on(namespace,pod,interface) group_left(network_name)
(pod_network_name_info)
(container_network_transmit_packets_total) + on(namespace,pod,interface)
group_left(network_name) (pod_network_name_info)
(container_network_transmit_packets_dropped_total) + on(namespace,pod,interface)
group_left(network_name)

OpenShift Container Platform 4.7 Networking

316

https://github.com/intel/multus-cni

	Table of Contents
	CHAPTER 1. UNDERSTANDING NETWORKING
	1.1. OPENSHIFT CONTAINER PLATFORM DNS
	1.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
	1.2.1. Comparing routes and Ingress

	CHAPTER 2. ACCESSING HOSTS
	2.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN INSTALLER-PROVISIONED INFRASTRUCTURE CLUSTER

	CHAPTER 3. NETWORKING OPERATORS OVERVIEW
	3.1. CLUSTER NETWORK OPERATOR
	3.2. DNS OPERATOR
	3.3. INGRESS OPERATOR

	CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	4.1. CLUSTER NETWORK OPERATOR
	4.2. VIEWING THE CLUSTER NETWORK CONFIGURATION
	4.3. VIEWING CLUSTER NETWORK OPERATOR STATUS
	4.4. VIEWING CLUSTER NETWORK OPERATOR LOGS
	4.5. CLUSTER NETWORK OPERATOR CONFIGURATION
	4.5.1. Cluster Network Operator configuration object
	defaultNetwork object configuration
	kubeProxyConfig object configuration

	4.5.2. Cluster Network Operator example configuration

	4.6. ADDITIONAL RESOURCES

	CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	5.1. DNS OPERATOR
	5.2. VIEW THE DEFAULT DNS
	5.3. USING DNS FORWARDING
	5.4. DNS OPERATOR STATUS
	5.5. DNS OPERATOR LOGS

	CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	6.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
	6.2. THE INGRESS CONFIGURATION ASSET
	6.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS
	6.3.1. Ingress Controller TLS security profiles
	6.3.1.1. Understanding TLS security profiles
	6.3.1.2. Configuring the TLS security profile for the Ingress Controller

	6.3.2. Ingress controller endpoint publishing strategy

	6.4. VIEW THE DEFAULT INGRESS CONTROLLER
	6.5. VIEW INGRESS OPERATOR STATUS
	6.6. VIEW INGRESS CONTROLLER LOGS
	6.7. VIEW INGRESS CONTROLLER STATUS
	6.8. CONFIGURING THE INGRESS CONTROLLER
	6.8.1. Setting a custom default certificate
	6.8.2. Removing a custom default certificate
	6.8.3. Scaling an Ingress Controller
	6.8.4. Configuring Ingress access logging
	6.8.5. Ingress Controller sharding
	6.8.5.1. Configuring Ingress Controller sharding by using route labels
	6.8.5.2. Configuring Ingress Controller sharding by using namespace labels

	6.8.6. Configuring an Ingress Controller to use an internal load balancer
	6.8.7. Configuring the default Ingress Controller for your cluster to be internal
	6.8.8. Configuring the route admission policy
	6.8.9. Using wildcard routes
	6.8.10. Using X-Forwarded headers
	Example use cases

	6.8.11. Enabling HTTP/2 Ingress connectivity
	6.8.12. Specifying an alternative cluster domain using the appsDomain option

	6.9. ADDITIONAL RESOURCES

	CHAPTER 7. VERIFYING CONNECTIVITY TO AN ENDPOINT
	7.1. CONNECTION HEALTH CHECKS PERFORMED
	7.2. IMPLEMENTATION OF CONNECTION HEALTH CHECKS
	7.3. PODNETWORKCONNECTIVITYCHECK OBJECT FIELDS
	Connection log fields

	7.4. VERIFYING NETWORK CONNECTIVITY FOR AN ENDPOINT

	CHAPTER 8. CONFIGURING THE NODE PORT SERVICE RANGE
	8.1. PREREQUISITES
	8.2. EXPANDING THE NODE PORT RANGE
	8.3. ADDITIONAL RESOURCES

	CHAPTER 9. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL CLUSTER
	9.1. SUPPORT FOR STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON OPENSHIFT CONTAINER PLATFORM
	9.1.1. Example configurations using SCTP protocol

	9.2. ENABLING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP)
	9.3. VERIFYING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) IS ENABLED

	CHAPTER 10. CONFIGURING PTP HARDWARE
	10.1. ABOUT PTP HARDWARE
	10.2. AUTOMATED DISCOVERY OF PTP NETWORK DEVICES
	10.3. INSTALLING THE PTP OPERATOR
	10.3.1. CLI: Installing the PTP Operator
	10.3.2. Web console: Installing the PTP Operator

	10.4. CONFIGURING LINUXPTP SERVICES

	CHAPTER 11. NETWORK POLICY
	11.1. ABOUT NETWORK POLICY
	11.1.1. About network policy
	11.1.2. Optimizations for network policy
	11.1.3. Next steps
	11.1.4. Additional resources

	11.2. CREATING A NETWORK POLICY
	11.2.1. Creating a network policy
	11.2.2. Example NetworkPolicy object

	11.3. VIEWING A NETWORK POLICY
	11.3.1. Viewing network policies
	11.3.2. Example NetworkPolicy object

	11.4. EDITING A NETWORK POLICY
	11.4.1. Editing a network policy
	11.4.2. Example NetworkPolicy object
	11.4.3. Additional resources

	11.5. DELETING A NETWORK POLICY
	11.5.1. Deleting a network policy

	11.6. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS
	11.6.1. Modifying the template for new projects
	11.6.2. Adding network policies to the new project template

	11.7. CONFIGURING MULTITENANT ISOLATION WITH NETWORK POLICY
	11.7.1. Configuring multitenant isolation by using network policy
	11.7.2. Next steps
	11.7.3. Additional resources

	CHAPTER 12. MULTIPLE NETWORKS
	12.1. UNDERSTANDING MULTIPLE NETWORKS
	12.1.1. Usage scenarios for an additional network
	12.1.2. Additional networks in OpenShift Container Platform

	12.2. CONFIGURING AN ADDITIONAL NETWORK
	12.2.1. Approaches to managing an additional network
	12.2.2. Configuration for an additional network attachment
	12.2.2.1. Configuration of an additional network through the Cluster Network Operator
	12.2.2.2. Configuration of an additional network from a YAML manifest

	12.2.3. Configurations for additional network types
	12.2.3.1. Configuration for a bridge additional network
	12.2.3.2. Configuration for a host device additional network
	12.2.3.3. Configuration for an IPVLAN additional network
	12.2.3.4. Configuration for a MACVLAN additional network

	12.2.4. Configuration of IP address assignment for an additional network
	12.2.4.1. Static IP address assignment configuration
	12.2.4.2. Dynamic IP address (DHCP) assignment configuration
	12.2.4.3. Dynamic IP address assignment configuration with Whereabouts

	12.2.5. Creating an additional network attachment with the Cluster Network Operator
	12.2.6. Creating an additional network attachment by applying a YAML manifest

	12.3. ABOUT VIRTUAL ROUTING AND FORWARDING
	12.3.1. About virtual routing and forwarding
	12.3.1.1. Benefits of secondary networks for pods for telecommunications operators

	12.4. ATTACHING A POD TO AN ADDITIONAL NETWORK
	12.4.1. Adding a pod to an additional network
	12.4.1.1. Specifying pod-specific addressing and routing options

	12.5. REMOVING A POD FROM AN ADDITIONAL NETWORK
	12.5.1. Removing a pod from an additional network

	12.6. EDITING AN ADDITIONAL NETWORK
	12.6.1. Modifying an additional network attachment definition

	12.7. REMOVING AN ADDITIONAL NETWORK
	12.7.1. Removing an additional network attachment definition

	12.8. ASSIGNING A SECONDARY NETWORK TO A VRF
	12.8.1. Assigning a secondary network to a VRF
	12.8.1.1. Creating an additional network attachment with the CNI VRF plug-in

	CHAPTER 13. HARDWARE NETWORKS
	13.1. ABOUT SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) HARDWARE NETWORKS
	13.1.1. Components that manage SR-IOV network devices
	13.1.1.1. Supported platforms
	13.1.1.2. Supported devices
	13.1.1.3. Automated discovery of SR-IOV network devices
	13.1.1.4. Example use of a virtual function in a pod
	13.1.1.5. DPDK library for use with container applications

	13.1.2. Next steps

	13.2. INSTALLING THE SR-IOV NETWORK OPERATOR
	13.2.1. Installing SR-IOV Network Operator
	13.2.1.1. CLI: Installing the SR-IOV Network Operator
	13.2.1.2. Web console: Installing the SR-IOV Network Operator

	13.2.2. Next steps

	13.3. CONFIGURING THE SR-IOV NETWORK OPERATOR
	13.3.1. Configuring the SR-IOV Network Operator
	13.3.1.1. About the Network Resources Injector
	13.3.1.2. About the SR-IOV Operator admission controller webhook
	13.3.1.3. About custom node selectors
	13.3.1.4. Disabling or enabling the Network Resources Injector
	13.3.1.5. Disabling or enabling the SR-IOV Operator admission controller webhook
	13.3.1.6. Configuring a custom NodeSelector for the SR-IOV Network Config daemon

	13.3.2. Next steps

	13.4. CONFIGURING AN SR-IOV NETWORK DEVICE
	13.4.1. SR-IOV network node configuration object
	13.4.1.1. SR-IOV network node configuration examples
	13.4.1.2. Virtual function (VF) partitioning for SR-IOV devices

	13.4.2. Configuring SR-IOV network devices
	13.4.3. Troubleshooting SR-IOV configuration
	13.4.4. Assigning an SR-IOV network to a VRF
	13.4.4.1. Creating an additional SR-IOV network attachment with the CNI VRF plug-in

	13.4.5. Next steps

	13.5. CONFIGURING AN SR-IOV ETHERNET NETWORK ATTACHMENT
	13.5.1. Ethernet device configuration object
	13.5.1.1. Configuration of IP address assignment for an additional network

	13.5.2. Configuring SR-IOV additional network
	13.5.3. Next steps
	13.5.4. Additional resources

	13.6. CONFIGURING AN SR-IOV INFINIBAND NETWORK ATTACHMENT
	13.6.1. InfiniBand device configuration object
	13.6.1.1. Configuration of IP address assignment for an additional network

	13.6.2. Configuring SR-IOV additional network
	13.6.3. Next steps
	13.6.4. Additional resources

	13.7. ADDING A POD TO AN SR-IOV ADDITIONAL NETWORK
	13.7.1. Runtime configuration for a network attachment
	13.7.1.1. Runtime configuration for an Ethernet-based SR-IOV attachment
	13.7.1.2. Runtime configuration for an InfiniBand-based SR-IOV attachment

	13.7.2. Adding a pod to an additional network
	13.7.3. Creating a non-uniform memory access (NUMA) aligned SR-IOV pod
	13.7.4. Additional resources

	13.8. USING HIGH PERFORMANCE MULTICAST
	13.8.1. High performance multicast
	13.8.2. Configuring an SR-IOV interface for multicast

	13.9. USING VIRTUAL FUNCTIONS (VFS) WITH DPDK AND RDMA MODES
	13.9.1. Using a virtual function in DPDK mode with an Intel NIC
	13.9.2. Using a virtual function in DPDK mode with a Mellanox NIC
	13.9.3. Using a virtual function in RDMA mode with a Mellanox NIC

	13.10. UNINSTALLING THE SR-IOV NETWORK OPERATOR
	13.10.1. Uninstalling the SR-IOV Network Operator

	CHAPTER 14. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER
	14.1. ABOUT THE OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER
	14.1.1. OpenShift SDN network isolation modes
	14.1.2. Supported default CNI network provider feature matrix

	14.2. CONFIGURING EGRESS IPS FOR A PROJECT
	14.2.1. Egress IP address assignment for project egress traffic
	14.2.1.1. Considerations when using automatically assigned egress IP addresses
	14.2.1.2. Considerations when using manually assigned egress IP addresses

	14.2.2. Configuring automatically assigned egress IP addresses for a namespace
	14.2.3. Configuring manually assigned egress IP addresses for a namespace

	14.3. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
	14.3.1. How an egress firewall works in a project
	14.3.1.1. Limitations of an egress firewall
	14.3.1.2. Matching order for egress firewall policy rules
	14.3.1.3. How Domain Name Server (DNS) resolution works

	14.3.2. EgressNetworkPolicy custom resource (CR) object
	14.3.2.1. EgressNetworkPolicy rules
	14.3.2.2. Example EgressNetworkPolicy CR objects

	14.3.3. Creating an egress firewall policy object

	14.4. EDITING AN EGRESS FIREWALL FOR A PROJECT
	14.4.1. Viewing an EgressNetworkPolicy object

	14.5. EDITING AN EGRESS FIREWALL FOR A PROJECT
	14.5.1. Editing an EgressNetworkPolicy object

	14.6. REMOVING AN EGRESS FIREWALL FROM A PROJECT
	14.6.1. Removing an EgressNetworkPolicy object

	14.7. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD
	14.7.1. About an egress router pod
	14.7.1.1. Egress router modes
	14.7.1.2. Egress router pod implementation
	14.7.1.3. Deployment considerations
	14.7.1.4. Failover configuration

	14.7.2. Additional resources

	14.8. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE
	14.8.1. Egress router pod specification for redirect mode
	14.8.2. Egress destination configuration format
	14.8.3. Deploying an egress router pod in redirect mode
	14.8.4. Additional resources

	14.9. DEPLOYING AN EGRESS ROUTER POD IN HTTP PROXY MODE
	14.9.1. Egress router pod specification for HTTP mode
	14.9.2. Egress destination configuration format
	14.9.3. Deploying an egress router pod in HTTP proxy mode
	14.9.4. Additional resources

	14.10. DEPLOYING AN EGRESS ROUTER POD IN DNS PROXY MODE
	14.10.1. Egress router pod specification for DNS mode
	14.10.2. Egress destination configuration format
	14.10.3. Deploying an egress router pod in DNS proxy mode
	14.10.4. Additional resources

	14.11. CONFIGURING AN EGRESS ROUTER POD DESTINATION LIST FROM A CONFIG MAP
	14.11.1. Configuring an egress router destination mappings with a config map
	14.11.2. Additional resources

	14.12. ENABLING MULTICAST FOR A PROJECT
	14.12.1. About multicast
	14.12.2. Enabling multicast between pods

	14.13. DISABLING MULTICAST FOR A PROJECT
	14.13.1. Disabling multicast between pods

	14.14. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN
	14.14.1. Prerequisites
	14.14.2. Joining projects
	14.14.3. Isolating a project
	14.14.4. Disabling network isolation for a project

	14.15. CONFIGURING KUBE-PROXY
	14.15.1. About iptables rules synchronization
	14.15.2. kube-proxy configuration parameters
	14.15.3. Modifying the kube-proxy configuration

	CHAPTER 15. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER
	15.1. ABOUT THE OVN-KUBERNETES DEFAULT CONTAINER NETWORK INTERFACE (CNI) NETWORK PROVIDER
	15.1.1. OVN-Kubernetes features
	15.1.2. Supported default CNI network provider feature matrix
	15.1.3. OVN-Kubernetes limitations

	15.2. MIGRATING FROM THE OPENSHIFT SDN CLUSTER NETWORK PROVIDER
	15.2.1. Migration to the OVN-Kubernetes network provider
	15.2.1.1. Considerations for migrating to the OVN-Kubernetes network provider
	15.2.1.2. How the migration process works

	15.2.2. Migrating to the OVN-Kubernetes default CNI network provider
	15.2.3. Additional resources

	15.3. ROLLING BACK TO THE OPENSHIFT SDN NETWORK PROVIDER
	15.3.1. Rolling back the default CNI network provider to OpenShift SDN

	15.4. IPSEC ENCRYPTION CONFIGURATION
	15.4.1. Types of network traffic flows encrypted by IPsec
	15.4.2. Encryption protocol and tunnel mode for IPsec
	15.4.3. Security certificate generation and rotation

	15.5. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
	15.5.1. How an egress firewall works in a project
	15.5.1.1. Limitations of an egress firewall
	15.5.1.2. Matching order for egress firewall policy rules
	15.5.1.3. How Domain Name Server (DNS) resolution works

	15.5.2. EgressFirewall custom resource (CR) object
	15.5.2.1. EgressFirewall rules
	15.5.2.2. Example EgressFirewall CR objects

	15.5.3. Creating an egress firewall policy object

	15.6. VIEWING AN EGRESS FIREWALL FOR A PROJECT
	15.6.1. Viewing an EgressFirewall object

	15.7. EDITING AN EGRESS FIREWALL FOR A PROJECT
	15.7.1. Editing an EgressFirewall object

	15.8. REMOVING AN EGRESS FIREWALL FROM A PROJECT
	15.8.1. Removing an EgressFirewall object

	15.9. CONFIGURING AN EGRESS IP ADDRESS
	15.9.1. Egress IP address architectural design and implementation
	15.9.1.1. Platform support
	15.9.1.2. Assignment of egress IPs to pods
	15.9.1.3. Assignment of egress IPs to nodes
	15.9.1.4. Architectural diagram of an egress IP address configuration

	15.9.2. EgressIP object
	15.9.3. Labeling a node to host egress IP addresses
	15.9.4. Next steps
	15.9.5. Additional resources

	15.10. ASSIGNING AN EGRESS IP ADDRESS
	15.10.1. Assigning an egress IP address to a namespace
	15.10.2. Additional resources

	15.11. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD
	15.11.1. About an egress router pod
	15.11.1.1. Egress router modes
	15.11.1.2. Egress router pod implementation
	15.11.1.3. Deployment considerations
	15.11.1.4. Failover configuration

	15.11.2. Additional resources

	15.12. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE
	15.12.1. Network attachment definition for an egress router in redirect mode
	15.12.2. Egress router pod specification for redirect mode
	15.12.3. Deploying an egress router pod in redirect mode

	15.13. ENABLING MULTICAST FOR A PROJECT
	15.13.1. About multicast
	15.13.2. Enabling multicast between pods

	15.14. DISABLING MULTICAST FOR A PROJECT
	15.14.1. Disabling multicast between pods

	15.15. CONFIGURING HYBRID NETWORKING
	15.15.1. Configuring hybrid networking with OVN-Kubernetes
	15.15.2. Additional resources

	CHAPTER 16. CONFIGURING ROUTES
	16.1. ROUTE CONFIGURATION
	16.1.1. Creating an HTTP-based route
	16.1.2. Configuring route timeouts
	16.1.3. Enabling HTTP strict transport security
	16.1.4. Troubleshooting throughput issues
	16.1.5. Using cookies to keep route statefulness
	16.1.5.1. Annotating a route with a cookie

	16.1.6. Path-based routes
	16.1.7. Route-specific annotations
	16.1.8. Configuring the route admission policy
	16.1.9. Creating a route through an Ingress object

	16.2. SECURED ROUTES
	16.2.1. Creating a re-encrypt route with a custom certificate
	16.2.2. Creating an edge route with a custom certificate
	16.2.3. Creating a passthrough route

	CHAPTER 17. CONFIGURING INGRESS CLUSTER TRAFFIC
	17.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW
	17.2. CONFIGURING EXTERNALIPS FOR SERVICES
	17.2.1. Prerequisites
	17.2.2. About ExternalIP
	17.2.2.1. Configuration for ExternalIP
	17.2.2.2. Restrictions on the assignment of an external IP address
	17.2.2.3. Example policy objects

	17.2.3. ExternalIP address block configuration
	Example external IP configurations

	17.2.4. Configure external IP address blocks for your cluster
	17.2.5. Next steps

	17.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS CONTROLLER
	17.3.1. Using Ingress Controllers and routes
	17.3.2. Prerequisites
	17.3.3. Creating a project and service
	17.3.4. Exposing the service by creating a route
	17.3.5. Configuring Ingress Controller sharding by using route labels
	17.3.6. Configuring Ingress Controller sharding by using namespace labels
	17.3.7. Additional resources

	17.4. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD BALANCER
	17.4.1. Using a load balancer to get traffic into the cluster
	17.4.2. Prerequisites
	17.4.3. Creating a project and service
	17.4.4. Exposing the service by creating a route
	17.4.5. Creating a load balancer service

	17.5. CONFIGURING INGRESS CLUSTER TRAFFIC ON AWS USING A NETWORK LOAD BALANCER
	17.5.1. Replacing Ingress Controller Classic Load Balancer with Network Load Balancer
	17.5.2. Configuring an Ingress Controller Network Load Balancer on an existing AWS cluster
	17.5.3. Configuring an Ingress Controller Network Load Balancer on a new AWS cluster
	17.5.4. Additional resources

	17.6. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE EXTERNAL IP
	17.6.1. Prerequisites
	17.6.2. Attaching an ExternalIP to a service
	17.6.3. Additional resources

	17.7. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT
	17.7.1. Using a NodePort to get traffic into the cluster
	17.7.2. Prerequisites
	17.7.3. Creating a project and service
	17.7.4. Exposing the service by creating a route
	17.7.5. Additional resources

	CHAPTER 18. KUBERNETES NMSTATE
	18.1. ABOUT THE KUBERNETES NMSTATE OPERATOR
	18.1.1. Installing the Kubernetes NMState Operator

	18.2. OBSERVING NODE NETWORK STATE
	18.2.1. About nmstate
	18.2.2. Viewing the network state of a node

	18.3. UPDATING NODE NETWORK CONFIGURATION
	18.3.1. About nmstate
	18.3.2. Creating an interface on nodes
	Additional resources

	18.3.3. Confirming node network policy updates on nodes
	18.3.4. Removing an interface from nodes
	18.3.5. Example policy configurations for different interfaces
	18.3.5.1. Example: Linux bridge interface node network configuration policy
	18.3.5.2. Example: VLAN interface node network configuration policy
	18.3.5.3. Example: Bond interface node network configuration policy
	18.3.5.4. Example: Ethernet interface node network configuration policy
	18.3.5.5. Example: Multiple interfaces in the same node network configuration policy

	18.3.6. Examples: IP management
	18.3.6.1. Static
	18.3.6.2. No IP address
	18.3.6.3. Dynamic host configuration
	18.3.6.4. DNS
	18.3.6.5. Static routing

	18.4. TROUBLESHOOTING NODE NETWORK CONFIGURATION
	18.4.1. Troubleshooting an incorrect node network configuration policy configuration

	CHAPTER 19. CONFIGURING THE CLUSTER-WIDE PROXY
	19.1. PREREQUISITES
	19.2. ENABLING THE CLUSTER-WIDE PROXY
	19.3. REMOVING THE CLUSTER-WIDE PROXY
	Additional resources

	CHAPTER 20. CONFIGURING A CUSTOM PKI
	20.1. CONFIGURING THE CLUSTER-WIDE PROXY DURING INSTALLATION
	20.2. ENABLING THE CLUSTER-WIDE PROXY
	20.3. CERTIFICATE INJECTION USING OPERATORS

	CHAPTER 21. LOAD BALANCING ON RHOSP
	21.1. USING THE OCTAVIA OVN LOAD BALANCER PROVIDER DRIVER WITH KURYR SDN
	21.2. SCALING CLUSTERS FOR APPLICATION TRAFFIC BY USING OCTAVIA
	21.2.1. Scaling clusters by using Octavia
	21.2.2. Scaling clusters that use Kuryr by using Octavia

	21.3. SCALING FOR INGRESS TRAFFIC BY USING RHOSP OCTAVIA
	21.4. CONFIGURING AN EXTERNAL LOAD BALANCER

	CHAPTER 22. ASSOCIATING SECONDARY INTERFACES METRICS TO NETWORK ATTACHMENTS
	22.1. ASSOCIATING SECONDARY INTERFACES METRICS TO NETWORK ATTACHMENTS
	22.1.1. Network Metrics Daemon
	22.1.2. Metrics with network name

