
OpenShift Container Platform 4.2

Serverless applications

OpenShift Serverless installation, usage, and release notes

Last Updated: 2020-04-28

OpenShift Container Platform 4.2 Serverless applications

OpenShift Serverless installation, usage, and release notes

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information on how to use OpenShift Serverless in OpenShift Container
Platform 4.2

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. GETTING STARTED WITH OPENSHIFT SERVERLESS
1.1. HOW OPENSHIFT SERVERLESS WORKS
1.2. APPLICATIONS ON OPENSHIFT SERVERLESS

CHAPTER 2. OPENSHIFT SERVERLESS PRODUCT ARCHITECTURE
2.1. KNATIVE SERVING

2.1.1. Knative Serving components
2.2. KNATIVE CLIENT
2.3. KNATIVE EVENTING

CHAPTER 3. INSTALLING OPENSHIFT SERVERLESS
3.1. CLUSTER SIZE REQUIREMENTS

3.1.1. Scaling a MachineSet manually
3.2. INSTALLING THE OPENSHIFT SERVERLESS OPERATOR
3.3. INSTALLING KNATIVE SERVING
3.4. UNINSTALLING KNATIVE SERVING
3.5. DELETING THE OPENSHIFT SERVERLESS OPERATOR
3.6. DELETING KNATIVE SERVING CRDS FROM THE OPERATOR

CHAPTER 4. GETTING STARTED WITH KNATIVE SERVICES
4.1. CREATING A KNATIVE SERVICE
4.2. DEPLOYING A SERVERLESS APPLICATION
4.3. CONNECTING KNATIVE SERVICES TO EXISTING KUBERNETES DEPLOYMENTS

CHAPTER 5. MONITORING OPENSHIFT SERVERLESS COMPONENTS
5.1. CONFIGURING CLUSTER FOR APPLICATION MONITORING
5.2. VERIFYING AN OPENSHIFT CONTAINER PLATFORM MONITORING INSTALLATION FOR USE WITH
KNATIVE SERVING
5.3. MONITORING KNATIVE SERVING USING THE OPENSHIFT CONTAINER PLATFORM MONITORING
STACK

CHAPTER 6. USING METERING WITH OPENSHIFT SERVERLESS
6.1. INSTALLING METERING
6.2. DATASOURCES FOR KNATIVE SERVING METERING

6.2.1. Datasource for CPU usage in Knative Serving
6.2.2. Datasource for memory usage in Knative Serving
6.2.3. Applying Datasources for Knative Serving metering

6.3. QUERIES FOR KNATIVE SERVING METERING
6.3.1. Query for CPU usage in Knative Serving
6.3.2. Query for memory usage in Knative Serving
6.3.3. Applying Queries for Knative Serving metering

6.4. METERING REPORTS FOR KNATIVE SERVING
6.4.1. Running a metering report

CHAPTER 7. CLUSTER LOGGING WITH OPENSHIFT SERVERLESS
7.1. ABOUT CLUSTER LOGGING
7.2. ABOUT DEPLOYING AND CONFIGURING CLUSTER LOGGING

7.2.1. Configuring and Tuning Cluster Logging
7.2.2. Sample modified Cluster Logging Custom Resource

7.3. USING CLUSTER LOGGING TO FIND LOGS FOR KNATIVE SERVING COMPONENTS
7.4. USING CLUSTER LOGGING TO FIND LOGS FOR SERVICES DEPLOYED WITH KNATIVE SERVING

CHAPTER 8. CONFIGURING KNATIVE SERVING AUTOSCALING

4
4
4

5
5
5
5
6

7
7
7
8
8
9

10
10

11
11
11

12

13
13

13

14

15
15
15
15
15
16
16
16
17
18
19
19

20
20
20
20
22
23
24

25

Table of Contents

1

. .

. .

8.1. CONFIGURING CONCURRENT REQUESTS FOR KNATIVE SERVING AUTOSCALING
8.1.1. Configuring concurrent requests using the target annotation
8.1.2. Configuring concurrent requests using the containerConcurrency field

8.2. CONFIGURING SCALE BOUNDS KNATIVE SERVING AUTOSCALING

CHAPTER 9. GETTING STARTED WITH KNATIVE CLIENT
9.1. BEFORE YOU BEGIN
9.2. INSTALLING KNATIVE CLIENT

9.2.1. Installing the kn CLI using the OpenShift Container Platform web console
9.2.2. Installing the kn CLI for Linux using an RPM
9.2.3. Installing the kn CLI for Linux
9.2.4. Installing the kn CLI for macOS
9.2.5. Installing the kn CLI for Windows

9.3. BASIC WORKFLOW USING KNATIVE CLIENT
9.4. AUTOSCALING WORKFLOW USING KNATIVE CLIENT
9.5. TRAFFIC SPLITTING USING KNATIVE CLIENT

9.5.1. Assigning tag revisions
9.5.2. Unassigning tag revisions
9.5.3. Traffic flag operation precedence
9.5.4. Traffic splitting flags

CHAPTER 10. OPENSHIFT SERVERLESS RELEASE NOTES
10.1. GETTING SUPPORT
10.2. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS TECHNOLOGY PREVIEW 1.4.0

10.2.1. New features
10.2.2. Fixed issues
10.2.3. Known issues

10.3. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS TECHNOLOGY PREVIEW 1.3.0
10.3.1. New features
10.3.2. Fixed issues
10.3.3. Known issues

10.4. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS TECHNOLOGY PREVIEW 1.2.0
10.4.1. New features
10.4.2. Fixed issues
10.4.3. Known issues

10.5. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS TECHNOLOGY PREVIEW 1.1.0
10.5.1. New features
10.5.2. Fixed issues
10.5.3. Known issues

10.6. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS TECHNOLOGY PREVIEW 1.0.0
10.6.1. New features
10.6.2. Known issues

10.7. ADDITIONAL RESOURCES

25
26
26
26

28
28
28
28
29
29
30
30
30
32
32
33
34
34
35

36
36
36
36
37
37
37
37
37
37
38
38
38
38
39
39
39
39
40
40
40
40

OpenShift Container Platform 4.2 Serverless applications

2

Table of Contents

3

CHAPTER 1. GETTING STARTED WITH OPENSHIFT
SERVERLESS

IMPORTANT

You are viewing documentation for a release of Red Hat OpenShift Serverless that is no
longer supported. Red Hat OpenShift Serverless is currently supported on OpenShift
Container Platform 4.3 and newer.

IMPORTANT

OpenShift Serverless is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

OpenShift Serverless simplifies the process of delivering code from development into production by
reducing the need for infrastructure set up or back-end development by developers.

1.1. HOW OPENSHIFT SERVERLESS WORKS

Developers on OpenShift Serverless can use the provided Kubernetes-native APIs, as well as familiar
languages and frameworks, to deploy applications and container workloads. For information about
installing OpenShift Serverless, see Installing OpenShift Serverless .

OpenShift Serverless on OpenShift Container Platform enables stateful, stateless, and serverless
workloads to all run on a single multi-cloud container platform with automated operations. Developers
can use a single platform for hosting their microservices, legacy, and serverless applications.

OpenShift Serverless is based on the open source Knative project, which provides portability and
consistency across hybrid and multi-cloud environments by enabling an enterprise-grade serverless
platform.

1.2. APPLICATIONS ON OPENSHIFT SERVERLESS

Applications are created using Custom Resource Definitions (CRDs) and associated controllers in
Kubernetes, and are packaged as OCI compliant Linux containers that can be run anywhere.

To deploy applications in OpenShift Serverless, you must create Knative Services. For more information
see Getting started with Knative Services.

OpenShift Container Platform 4.2 Serverless applications

4

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/serverless_applications/#installing-openshift-serverless
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/serverless_applications/#getting-started-knative-services

CHAPTER 2. OPENSHIFT SERVERLESS PRODUCT
ARCHITECTURE

IMPORTANT

You are viewing documentation for a release of Red Hat OpenShift Serverless that is no
longer supported. Red Hat OpenShift Serverless is currently supported on OpenShift
Container Platform 4.3 and newer.

2.1. KNATIVE SERVING

Knative Serving on OpenShift Container Platform builds on Kubernetes and Istio to support deploying
and serving serverless applications.

It creates a set of Kubernetes Custom Resource Definitions (CRDs) that are used to define and control
the behavior of serverless workloads on an OpenShift Container Platform cluster.

These CRDs can be used as building blocks to address complex use cases, such as rapid deployment of
serverless containers, automatic scaling of Pods, routing and network programming for Istio
components, or viewing point-in-time snapshots of deployed code and configurations.

2.1.1. Knative Serving components

The components described in this section are the resources that Knative Serving requires to be
configured and run correctly.

Knative service resource

The service.serving.knative.dev resource automatically manages the whole lifecycle of a serverless
workload on a cluster. It controls the creation of other objects to ensure that an app has a route, a
configuration, and a new revision for each update of the service. Services can be defined to always
route traffic to the latest revision or to a pinned revision.

Knative route resource

The route.serving.knative.dev resource maps a network endpoint to one or more Knative revisions.
You can manage the traffic in several ways, including fractional traffic and named routes.

Knative configuration resource

The configuration.serving.knative.dev resource maintains the required state for your deployment.
Modifying a configuration creates a new revision.

Knative revision resource

The revision.serving.knative.dev resource is a point-in-time snapshot of the code and
configuration for each modification made to the workload. Revisions are immutable objects and can
be retained for as long as needed. Cluster administrators can modify the
revision.serving.knative.dev resource to enable automatic scaling of Pods in your OpenShift
Container Platform cluster.

2.2. KNATIVE CLIENT

The Knative Client (kn) extends the functionality of the oc or kubectl tools to enable interaction with
Knative components on OpenShift Container Platform. kn allows developers to deploy and manage
applications without editing YAML files directly.

CHAPTER 2. OPENSHIFT SERVERLESS PRODUCT ARCHITECTURE

5

2.3. KNATIVE EVENTING

A developer preview version of Knative Eventing is available for use with OpenShift Serverless.
However, this is not included in the OpenShift Serverless Operator and is not currently supported as part
of this Technology Preview. For more information about Knative Eventing, including installation
instructions and samples, see the Knative Eventing on OpenShift Container Platform documentation.

OpenShift Container Platform 4.2 Serverless applications

6

https://openshift-knative.github.io/docs/docs/index.html

CHAPTER 3. INSTALLING OPENSHIFT SERVERLESS

IMPORTANT

You are viewing documentation for a release of Red Hat OpenShift Serverless that is no
longer supported. Red Hat OpenShift Serverless is currently supported on OpenShift
Container Platform 4.3 and newer.

IMPORTANT

OpenShift Serverless is not tested or supported for installation in a restricted network
environment.

3.1. CLUSTER SIZE REQUIREMENTS

The cluster must be sized appropriately to ensure that OpenShift Serverless can run correctly. You can
use the MachineSet API to manually scale your cluster up to the desired size.

An OpenShift cluster with 10 CPUs and 40 GB memory is the minimum requirement for getting started
with your first serverless application. This usually means you must scale up one of the default
MachineSets by two additional machines.

NOTE

For this configuration, the requirements depend on the deployed applications. By default,
each pod requests ~400m of CPU and recommendations are based on this value. In the
given recommendation, an application can scale up to 10 replicas. Lowering the actual
CPU request of the application further pushes the boundary.

NOTE

The numbers given only relate to the pool of worker machines of the OpenShift cluster.
Master nodes are not used for general scheduling and are omitted.

For more advanced use-cases, such as using OpenShift logging, monitoring, metering, and tracing, you
must deploy more resources. Recommended requirements for such use-cases are 24 vCPUs and 96GB
of memory.

Additional resources

For more information on using the MachineSet API, see Creating MachineSets.

3.1.1. Scaling a MachineSet manually

If you must add or remove an instance of a machine in a MachineSet, you can manually scale the
MachineSet.

Prerequisites

Install an OpenShift Container Platform cluster and the oc command line.

Log in to oc as a user with cluster-admin permission.

Procedure

CHAPTER 3. INSTALLING OPENSHIFT SERVERLESS

7

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/machine_management/#creating-machineset-aws

Procedure

1. View the MachineSets that are in the cluster:

$ oc get machinesets -n openshift-machine-api

The MachineSets are listed in the form of <clusterid>-worker-<aws-region-az>.

2. Scale the MachineSet:

$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

Or:

$ oc edit machineset <machineset> -n openshift-machine-api

You can scale the MachineSet up or down. It takes several minutes for the new machines to be
available.

IMPORTANT

By default, the OpenShift Container Platform router pods are deployed on
workers. Because the router is required to access some cluster resources,
including the web console, do not scale the worker MachineSet to 0 unless you
first relocate the router pods.

3.2. INSTALLING THE OPENSHIFT SERVERLESS OPERATOR

The OpenShift Serverless Operator can be installed using the OpenShift Container Platform
instructions for installing Operators.

You can install the OpenShift Serverless Operator in the host cluster by following the OpenShift
Container Platform instructions on installing an Operator.

NOTE

The OpenShift Serverless Operator only works for OpenShift Container Platform
versions 4.1.13 and later.

For details, see the OpenShift Container Platform documentation on adding Operators to a cluster .

IMPORTANT

The OpenShift Serverless Operator automatically installs the Service Mesh Operator. If
you already have a community version of Maistra installed, this will cause a conflict with
the OpenShift Serverless Operator Service Mesh auto-install. In this case, the already
existing community version of Maistra will be used instead.

3.3. INSTALLING KNATIVE SERVING

You must create a KnativeServing object to install Knative Serving using the OpenShift Serverless
Operator.

IMPORTANT

OpenShift Container Platform 4.2 Serverless applications

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/operators/#olm-adding-operators-to-a-cluster

IMPORTANT

You must create the KnativeServing object in the knative-serving namespace, as
shown in the sample YAML, or it is ignored.

Sample serving.yaml

Prerequisite

An account with cluster administrator access.

Installed OpenShift Serverless Operator.

Procedure

1. Copy the sample YAML file into serving.yaml and apply it using:

$ oc apply -f serving.yaml

2. Verify the installation is complete by using the command:

$ oc get knativeserving.operator.knative.dev/knative-serving -n knative-serving --
template='{{range .status.conditions}}{{printf "%s=%s\n" .type .status}}{{end}}'

Results should be similar to:

DeploymentsAvailable=True
InstallSucceeded=True
Ready=True

3.4. UNINSTALLING KNATIVE SERVING

To uninstall Knative Serving, you must remove its custom resource and delete the knative-serving
namespace.

Prerequisite

Installed Knative Serving

Procedure

apiVersion: v1
kind: Namespace
metadata:
 name: knative-serving

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving

CHAPTER 3. INSTALLING OPENSHIFT SERVERLESS

9

1. To remove Knative Serving, use the following command:

$ oc delete knativeserving.operator.knative.dev knative-serving -n knative-serving

2. After the command has completed and all pods have been removed from the knative-serving
namespace, delete the namespace by using the command:

$ oc delete namespace knative-serving

3.5. DELETING THE OPENSHIFT SERVERLESS OPERATOR

You can remove the OpenShift Serverless Operator from the host cluster by following the OpenShift
Container Platform instructions on deleting an Operator.

For details, see the OpenShift Container Platform documentation on deleting Operators from a cluster .

3.6. DELETING KNATIVE SERVING CRDS FROM THE OPERATOR

After uninstalling the OpenShift Serverless Operator, the Operator CRDs and API services remain on
the cluster. Use this procedure to completely uninstall the remaining components.

Prerequisite

You have uninstalled Knative Serving and removed the OpenShift Serverless Operator using the
previous procedure.

Procedure

1. Run the following command to delete the remaining Knative Serving CRDs:

$ oc delete crd knativeservings.operator.knative.dev

OpenShift Container Platform 4.2 Serverless applications

10

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/operators/#olm-deleting-operators-from-a-cluster

1

2

3

4

5

CHAPTER 4. GETTING STARTED WITH KNATIVE SERVICES

IMPORTANT

You are viewing documentation for a release of Red Hat OpenShift Serverless that is no
longer supported. Red Hat OpenShift Serverless is currently supported on OpenShift
Container Platform 4.3 and newer.

Knative services are Kubernetes services that a user creates to deploy a serverless application. Each
Knative service is defined by a route and a configuration, contained in a .yaml file.

4.1. CREATING A KNATIVE SERVICE

To create a service, you must create the service.yaml file.

You can copy the sample below. This sample will create a sample golang application called helloworld-
go and allows you to specify the image for that application.

Current version of Knative

The name of the application

The namespace the application will use

The URL to the image of the application

The environment variable printed out by the sample application

4.2. DEPLOYING A SERVERLESS APPLICATION

To deploy a serverless application, you must apply the service.yaml file.

Procedure

1. Navigate to the directory where the service.yaml file is contained.

2. Deploy the application by applying the service.yaml file.

apiVersion: serving.knative.dev/v1alpha1 1
kind: Service
metadata:
 name: helloworld-go 2
 namespace: default 3
spec:
 template:
 spec:
 containers:
 - image: gcr.io/knative-samples/helloworld-go 4
 env:
 - name: TARGET 5
 value: "Go Sample v1"

CHAPTER 4. GETTING STARTED WITH KNATIVE SERVICES

11

$ oc apply --filename service.yaml

Now that service has been created and the application has been deployed, Knative will create a new
immutable revision for this version of the application.

Knative will also perform network programming to create a route, ingress, service, and load balancer for
your application, and will automatically scale your pods up and down based on traffic, including inactive
pods.

NOTE

The first time that a Knative service is created in a namespace, that namespace will
automatically receive a new networking configuration. This might cause the initial service
to take longer than is usually required for a service to become ready.

If the namespace has no existing NetworkPolicy configuration, an "allow all" type policy
will be applied automatically. This policy will be removed automatically if all Knative
Services are removed from that namespace and no other NetworkPolicy configurations
have been applied.

4.3. CONNECTING KNATIVE SERVICES TO EXISTING KUBERNETES
DEPLOYMENTS

Knative Services can call a Kubernetes deployment in any namespace, provided that there are no
existing additional network barriers.

A Kubernetes deployment can call a Knative Service if:

The Kubernetes deployment is in the same namespace as the target Knative Service.

The Kubernetes deployment is in a namespace that was manually added to the
ServiceMeshMemberRoll in knative-serving-ingress.

The Kubernetes deployment uses the target Knative Service’s public URL.

NOTE

Knative Services are accessed using a public URL by default. The target Knative
Service must not be configured as a private, cluster-local visibility service if you
want to connect it to your existing Kubernetes deploying using a public URL.

OpenShift Container Platform 4.2 Serverless applications

12

CHAPTER 5. MONITORING OPENSHIFT SERVERLESS
COMPONENTS

IMPORTANT

You are viewing documentation for a release of Red Hat OpenShift Serverless that is no
longer supported. Red Hat OpenShift Serverless is currently supported on OpenShift
Container Platform 4.3 and newer.

As a cluster administrator, you can deploy the OpenShift Container Platform monitoring stack and
monitor the metrics of OpenShift Serverless components.

When using the OpenShift Serverless Operator, the required ServiceMonitor objects are created
automatically for monitoring the deployed components.

OpenShift Serverless components, such as Knative Serving, expose metrics data. Administrators can
monitor this data by using the OpenShift Container Platform web console.

5.1. CONFIGURING CLUSTER FOR APPLICATION MONITORING

Before application developers can monitor their applications, the human operator of the cluster needs
to configure the cluster accordingly. This procedure shows how to.

Prerequisites

You must log in as a user that belongs to a role with administrative privileges for the cluster.

Procedure

1. In the OpenShift Container Platform web console, navigate to the Operators → OperatorHub
page and install the Prometheus Operator in the namespace where your application is.

2. Navigate to the Operators → Installed Operators page and install Prometheus, Alertmanager,
Prometheus Rule, and Service Monitor in the same namespace.

5.2. VERIFYING AN OPENSHIFT CONTAINER PLATFORM
MONITORING INSTALLATION FOR USE WITH KNATIVE SERVING

Manual configuration for monitoring by an administrator is not required, but you can carry out these
steps to verify that monitoring is installed correctly.

Procedure

1. Verify that the ServiceMonitor objects are deployed.

$ oc get servicemonitor -n knative-serving
NAME AGE
activator 11m
autoscaler 11m
controller 11m

2. Verify that the openshift.io/cluster-monitoring=true label has been added to the Knative

CHAPTER 5. MONITORING OPENSHIFT SERVERLESS COMPONENTS

13

2. Verify that the openshift.io/cluster-monitoring=true label has been added to the Knative
Serving namespace:

$ oc get namespace knative-serving --show-labels
NAME STATUS AGE LABELS
knative-serving Active 4d istio-injection=enabled,openshift.io/cluster-
monitoring=true,serving.knative.dev/release=v0.7.0

5.3. MONITORING KNATIVE SERVING USING THE OPENSHIFT
CONTAINER PLATFORM MONITORING STACK

This section provides example instructions for the visualization of Knative Serving Pod autoscaling
metrics by using the OpenShift Container Platform monitoring tools.

Prerequisites

You must have the OpenShift Container Platform monitoring stack installed.

Procedure

1. Navigate to the OpenShift Container Platform web console and authenticate.

2. Navigate to Monitoring → Metrics.

3. Enter the Expression and select Run queries. To monitor Knative Serving autoscaler Pods, use
this example expression.

autoscaler_actual_pods

You will now see monitoring information for the Knative Serving autoscaler Pods in the console.

OpenShift Container Platform 4.2 Serverless applications

14

CHAPTER 6. USING METERING WITH OPENSHIFT
SERVERLESS

IMPORTANT

You are viewing documentation for a release of Red Hat OpenShift Serverless that is no
longer supported. Red Hat OpenShift Serverless is currently supported on OpenShift
Container Platform 4.3 and newer.

As a cluster administrator, you can use metering to analyze what is happening in your OpenShift
Serverless cluster.

For more information about metering on OpenShift Container Platform, see About metering.

6.1. INSTALLING METERING

For information about installing metering on OpenShift Container Platform, see Installing Metering .

6.2. DATASOURCES FOR KNATIVE SERVING METERING

The following ReportDataSources are examples of how Knative Serving can be used with OpenShift
Container Platform metering.

6.2.1. Datasource for CPU usage in Knative Serving

This datasource provides the accumulated CPU seconds used per Knative service over the report time
period.

YAML file

6.2.2. Datasource for memory usage in Knative Serving

apiVersion: metering.openshift.io/v1
kind: ReportDataSource
metadata:
 name: knative-service-cpu-usage
spec:
 prometheusMetricsImporter:
 query: >
 sum
 by(namespace,
 label_serving_knative_dev_service,
 label_serving_knative_dev_revision)
 (

label_replace(rate(container_cpu_usage_seconds_total{container_name!="POD",container_name!="",p
od_name!=""}[1m]), "pod", "$1", "pod_name", "(.*)")
 *
 on(pod, namespace)
 group_left(label_serving_knative_dev_service, label_serving_knative_dev_revision)
 kube_pod_labels{label_serving_knative_dev_service!=""}
)

CHAPTER 6. USING METERING WITH OPENSHIFT SERVERLESS

15

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/metering/#about-metering
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/metering/#installing-metering

This datasource provides the average memory consumption per Knative service over the report time
period.

YAML file

6.2.3. Applying Datasources for Knative Serving metering

You can apply the ReportDataSources by using the following command:

$ oc apply -f <datasource-name>.yaml

Example

$ oc apply -f knative-service-memory-usage.yaml

6.3. QUERIES FOR KNATIVE SERVING METERING

The following ReportQuery resources reference the example DataSources provided.

6.3.1. Query for CPU usage in Knative Serving

YAML file

apiVersion: metering.openshift.io/v1
kind: ReportDataSource
metadata:
 name: knative-service-memory-usage
spec:
 prometheusMetricsImporter:
 query: >
 sum
 by(namespace,
 label_serving_knative_dev_service,
 label_serving_knative_dev_revision)
 (
 label_replace(container_memory_usage_bytes{container_name!="POD",
container_name!="",pod_name!=""}, "pod", "$1", "pod_name", "(.*)")
 *
 on(pod, namespace)
 group_left(label_serving_knative_dev_service, label_serving_knative_dev_revision)
 kube_pod_labels{label_serving_knative_dev_service!=""}
)

apiVersion: metering.openshift.io/v1
kind: ReportQuery
metadata:
 name: knative-service-cpu-usage
spec:
 inputs:
 - name: ReportingStart
 type: time
 - name: ReportingEnd

OpenShift Container Platform 4.2 Serverless applications

16

6.3.2. Query for memory usage in Knative Serving

YAML file

 type: time
 - default: knative-service-cpu-usage
 name: KnativeServiceCpuUsageDataSource
 type: ReportDataSource
 columns:
 - name: period_start
 type: timestamp
 unit: date
 - name: period_end
 type: timestamp
 unit: date
 - name: namespace
 type: varchar
 unit: kubernetes_namespace
 - name: service
 type: varchar
 - name: data_start
 type: timestamp
 unit: date
 - name: data_end
 type: timestamp
 unit: date
 - name: service_cpu_seconds
 type: double
 unit: cpu_core_seconds
 query: |
 SELECT
 timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart| prestoTimestamp |}'
AS period_start,
 timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd | prestoTimestamp |}' AS
period_end,
 labels['namespace'] as project,
 labels['label_serving_knative_dev_service'] as service,
 min("timestamp") as data_start,
 max("timestamp") as data_end,
 sum(amount * "timeprecision") AS service_cpu_seconds
 FROM {| dataSourceTableName .Report.Inputs.KnativeServiceCpuUsageDataSource |}
 WHERE "timestamp" >= timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart
| prestoTimestamp |}'
 AND "timestamp" < timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd |
prestoTimestamp |}'
 GROUP BY labels['namespace'],labels['label_serving_knative_dev_service']

apiVersion: metering.openshift.io/v1
kind: ReportQuery
metadata:
 name: knative-service-memory-usage
spec:
 inputs:
 - name: ReportingStart
 type: time

CHAPTER 6. USING METERING WITH OPENSHIFT SERVERLESS

17

6.3.3. Applying Queries for Knative Serving metering

You can apply the ReportQuery by using the following command:

$ oc apply -f <query-name>.yaml

Example

$ oc apply -f knative-service-memory-usage.yaml

 - name: ReportingEnd
 type: time
 - default: knative-service-memory-usage
 name: KnativeServiceMemoryUsageDataSource
 type: ReportDataSource
 columns:
 - name: period_start
 type: timestamp
 unit: date
 - name: period_end
 type: timestamp
 unit: date
 - name: namespace
 type: varchar
 unit: kubernetes_namespace
 - name: service
 type: varchar
 - name: data_start
 type: timestamp
 unit: date
 - name: data_end
 type: timestamp
 unit: date
 - name: service_usage_memory_byte_seconds
 type: double
 unit: byte_seconds
 query: |
 SELECT
 timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart| prestoTimestamp |}'
AS period_start,
 timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd | prestoTimestamp |}' AS
period_end,
 labels['namespace'] as project,
 labels['label_serving_knative_dev_service'] as service,
 min("timestamp") as data_start,
 max("timestamp") as data_end,
 sum(amount * "timeprecision") AS service_usage_memory_byte_seconds
 FROM {| dataSourceTableName .Report.Inputs.KnativeServiceMemoryUsageDataSource |}
 WHERE "timestamp" >= timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart
| prestoTimestamp |}'
 AND "timestamp" < timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd |
prestoTimestamp |}'
 GROUP BY labels['namespace'],labels['label_serving_knative_dev_service']

OpenShift Container Platform 4.2 Serverless applications

18

1

2

3

6.4. METERING REPORTS FOR KNATIVE SERVING

You can run metering reports against Knative Serving by creating Report resources. Before you run a
report, you must modify the input parameter within the Report resource to specify the start and end
dates of the reporting period.

YAML file

Start date of the report, in ISO 8601 format.

End date of the report, in ISO 8601 format.

Either knative-service-cpu-usage for CPU usage report or knative-service-memory-usage for a
memory usage report.

6.4.1. Running a metering report

Once you have provided the input parameters, you can run the report using the command:

$ oc apply -f <report-name>.yml

You can then check the report as shown in the following example:

$ kubectl get report

NAME QUERY SCHEDULE RUNNING FAILED LAST REPORT
TIME AGE
knative-service-cpu-usage knative-service-cpu-usage Finished 2019-06-
30T23:59:59Z 10h

apiVersion: metering.openshift.io/v1
kind: Report
metadata:
 name: knative-service-cpu-usage
spec:
 reportingStart: '2019-06-01T00:00:00Z' 1
 reportingEnd: '2019-06-30T23:59:59Z' 2
 query: knative-service-cpu-usage 3
runImmediately: true

CHAPTER 6. USING METERING WITH OPENSHIFT SERVERLESS

19

CHAPTER 7. CLUSTER LOGGING WITH OPENSHIFT
SERVERLESS

IMPORTANT

You are viewing documentation for a release of Red Hat OpenShift Serverless that is no
longer supported. Red Hat OpenShift Serverless is currently supported on OpenShift
Container Platform 4.3 and newer.

7.1. ABOUT CLUSTER LOGGING

OpenShift Container Platform cluster administrators can deploy cluster logging using a few CLI
commands and the OpenShift Container Platform web console to install the Elasticsearch Operator and
Cluster Logging Operator. When the operators are installed, create a Cluster Logging Custom Resource
(CR) to schedule cluster logging pods and other resources necessary to support cluster logging. The
operators are responsible for deploying, upgrading, and maintaining cluster logging.

You can configure cluster logging by modifying the Cluster Logging Custom Resource (CR), named
instance. The CR defines a complete cluster logging deployment that includes all the components of
the logging stack to collect, store and visualize logs. The Cluster Logging Operator watches the
ClusterLogging Custom Resource and adjusts the logging deployment accordingly.

Administrators and application developers can view the logs of the projects for which they have view
access.

7.2. ABOUT DEPLOYING AND CONFIGURING CLUSTER LOGGING

OpenShift Container Platform cluster logging is designed to be used with the default configuration,
which is tuned for small to medium sized OpenShift Container Platform clusters.

The installation instructions that follow include a sample Cluster Logging Custom Resource (CR), which
you can use to create a cluster logging instance and configure your cluster logging deployment.

If you want to use the default cluster logging install, you can use the sample CR directly.

If you want to customize your deployment, make changes to the sample CR as needed. The following
describes the configurations you can make when installing your cluster logging instance or modify after
installation. See the Configuring sections for more information on working with each component,
including modifications you can make outside of the Cluster Logging Custom Resource.

7.2.1. Configuring and Tuning Cluster Logging

You can configure your cluster logging environment by modifying the Cluster Logging Custom Resource
deployed in the openshift-logging project.

You can modify any of the following components upon install or after install:

Memory and CPU

You can adjust both the CPU and memory limits for each component by modifying the resources
block with valid memory and CPU values:

spec:
 logStore:

OpenShift Container Platform 4.2 Serverless applications

20

 elasticsearch:
 resources:
 limits:
 cpu:
 memory:
 requests:
 cpu: 1
 memory: 16Gi
 type: "elasticsearch"
 collection:
 logs:
 fluentd:
 resources:
 limits:
 cpu:
 memory:
 requests:
 cpu:
 memory:
 type: "fluentd"
 visualization:
 kibana:
 resources:
 limits:
 cpu:
 memory:
 requests:
 cpu:
 memory:
 type: kibana
 curation:
 curator:
 resources:
 limits:
 memory: 200Mi
 requests:
 cpu: 200m
 memory: 200Mi
 type: "curator"

Elasticsearch storage

You can configure a persistent storage class and size for the Elasticsearch cluster using the
storageClass name and size parameters. The Cluster Logging Operator creates a
PersistentVolumeClaim for each data node in the Elasticsearch cluster based on these parameters.

 spec:
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage:
 storageClassName: "gp2"
 size: "200G"

This example specifies each data node in the cluster will be bound to a PersistentVolumeClaim that

CHAPTER 7. CLUSTER LOGGING WITH OPENSHIFT SERVERLESS

21

This example specifies each data node in the cluster will be bound to a PersistentVolumeClaim that
requests "200G" of "gp2" storage. Each primary shard will be backed by a single replica.

NOTE

Omitting the storage block results in a deployment that includes ephemeral storage only.

 spec:
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage: {}

Elasticsearch replication policy

You can set the policy that defines how Elasticsearch shards are replicated across data nodes in the
cluster:

FullRedundancy. The shards for each index are fully replicated to every data node.

MultipleRedundancy. The shards for each index are spread over half of the data nodes.

SingleRedundancy. A single copy of each shard. Logs are always available and recoverable
as long as at least two data nodes exist.

ZeroRedundancy. No copies of any shards. Logs may be unavailable (or lost) in the event a
node is down or fails.

Curator schedule

You specify the schedule for Curator in the cron format.

 spec:
 curation:
 type: "curator"
 resources:
 curator:
 schedule: "30 3 * * *"

7.2.2. Sample modified Cluster Logging Custom Resource

The following is an example of a Cluster Logging Custom Resource modified using the options
previously described.

Sample modified Cluster Logging Custom Resource

apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogging"
metadata:
 name: "instance"
 namespace: "openshift-logging"
spec:
 managementState: "Managed"

OpenShift Container Platform 4.2 Serverless applications

22

https://en.wikipedia.org/wiki/Cron

 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 2
 resources:
 limits:
 memory: 2Gi
 requests:
 cpu: 200m
 memory: 2Gi
 storage: {}
 redundancyPolicy: "SingleRedundancy"
 visualization:
 type: "kibana"
 kibana:
 resources:
 limits:
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 1Gi
 replicas: 1
 curation:
 type: "curator"
 curator:
 resources:
 limits:
 memory: 200Mi
 requests:
 cpu: 200m
 memory: 200Mi
 schedule: "*/5 * * * *"
 collection:
 logs:
 type: "fluentd"
 fluentd:
 resources:
 limits:
 memory: 1Gi
 requests:
 cpu: 200m
 memory: 1Gi

7.3. USING CLUSTER LOGGING TO FIND LOGS FOR KNATIVE
SERVING COMPONENTS

Procedure

1. To open the Kibana UI, the visualization tool for Elasticsearch, use the following command to
get the Kibana route:

$ oc -n openshift-logging get route kibana

2. Use the route’s URL to navigate to the Kibana dashboard and log in.

CHAPTER 7. CLUSTER LOGGING WITH OPENSHIFT SERVERLESS

23

3. Ensure the index is set to .all. If the index is not set to .all, only the OpenShift system logs will be
listed.

4. You can filter the logs by using the knative-serving namespace. Enter
kubernetes.namespace_name:knative-serving in the search box to filter results.

NOTE

Knative Serving uses structured logging by default. You can enable the parsing of
these logs by customizing the cluster logging Fluentd settings. This makes the
logs more searchable and enables filtering on the log level to quickly identify
issues.

7.4. USING CLUSTER LOGGING TO FIND LOGS FOR SERVICES
DEPLOYED WITH KNATIVE SERVING

With OpenShift Cluster Logging, the logs that your applications write to the console are collected in
Elasticsearch. The following procedure outlines how to apply these capabilities to applications deployed
by using Knative Serving.

Procedure

1. Use the following command to find the URL to Kibana:

$ oc -n cluster-logging get route kibana`

2. Enter the URL in your browser to open the Kibana UI.

3. Ensure the index is set to .all. If the index is not set to .all, only the OpenShift system logs will be
listed.

4. Filter the logs by using the Kubernetes namespace your service is deployed in. Add a filter to
identify the service itself: kubernetes.namespace_name:default AND
kubernetes.labels.serving_knative_dev\/service:{SERVICE_NAME}.

NOTE

You can also filter by using /configuration or /revision.

5. You can narrow your search by using kubernetes.container_name:<user-container> to only
display the logs generated by your application. Otherwise, you will see logs from the queue-
proxy.

NOTE

Use JSON-based structured logging in your application to allow for the quick
filtering of these logs in production environments.

OpenShift Container Platform 4.2 Serverless applications

24

CHAPTER 8. CONFIGURING KNATIVE SERVING
AUTOSCALING

IMPORTANT

You are viewing documentation for a release of Red Hat OpenShift Serverless that is no
longer supported. Red Hat OpenShift Serverless is currently supported on OpenShift
Container Platform 4.3 and newer.

OpenShift Serverless provides capabilities for automatic Pod scaling, including scaling inactive Pods to
zero, by enabling the Knative Serving autoscaling system in an OpenShift Container Platform cluster.

To enable autoscaling for Knative Serving, you must configure concurrency and scale bounds in the
revision template.

NOTE

Any limits or targets set in the revision template are measured against a single instance of
your application. For example, setting the target annotation to 50 will configure the
autoscaler to scale the application so that each instance of it will handle 50 requests at a
time.

8.1. CONFIGURING CONCURRENT REQUESTS FOR KNATIVE SERVING
AUTOSCALING

You can specify the number of concurrent requests that should be handled by each instance of an
application (revision container) by adding the target annotation or the containerConcurrency field in
the revision template.

Here is an example of target being used in a revision template:

Here is an example of containerConcurrency being used in a revision template:

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
 name: myapp
spec:
 template:
 metadata:
 annotations:
 autoscaling.knative.dev/target: 50
 spec:
 containers:
 - image: myimage

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
 name: myapp
spec:
 template:

CHAPTER 8. CONFIGURING KNATIVE SERVING AUTOSCALING

25

Adding a value for both target and containerConcurrency will target the target number of concurrent
requests, but impose a hard limit of the containerConcurrency number of requests.

For example, if the target value is 50 and the containerConcurrency value is 100, the targeted number
of requests will be 50, but the hard limit will be 100.

If the containerConcurrency value is less than the target value, the target value will be tuned down,
since there is no need to target more requests than the number that can actually be handled.

NOTE

containerConcurrency should only be used if there is a clear need to limit how many
requests reach the application at a given time. Using containerConcurrency is only
advised if the application needs to have an enforced constraint of concurrency.

8.1.1. Configuring concurrent requests using the target annotation

The default target for the number of concurrent requests is 100, but you can override this value by
adding or modifying the autoscaling.knative.dev/target annotation value in the revision template.

Here is an example of how this annotation is used in the revision template to set the target to 50.

8.1.2. Configuring concurrent requests using the containerConcurrency field

containerConcurrency sets a hard limit on the number of concurrent requests handled.

0

allows unlimited concurrent requests.

1

guarantees that only one request is handled at a time by a given instance of the revision container.

2 or more

will limit request concurrency to that value.

NOTE

If there is no target annotation, autoscaling is configured as if target is equal to the value
of containerConcurrency.

8.2. CONFIGURING SCALE BOUNDS KNATIVE SERVING
AUTOSCALING

 metadata:
 annotations:
 spec:
 containerConcurrency: 100
 containers:
 - image: myimage

autoscaling.knative.dev/target: 50

containerConcurrency: 0 | 1 | 2-N

OpenShift Container Platform 4.2 Serverless applications

26

The minScale and maxScale annotations can be used to configure the minimum and maximum number
of Pods that can serve applications. These annotations can be used to prevent cold starts or to help
control computing costs.

minScale

If the minScale annotation is not set, Pods will scale to zero (or to 1 if enable-scale-to-zero is false
per the ConfigMap).

maxScale

If the maxScale annotation is not set, there will be no upper limit for the number of Pods created.

minScale and maxScale can be configured as follows in the revision template:

Using these annotations in the revision template will propagate this confguration to PodAutoscaler
objects.

NOTE

These annotations apply for the full lifetime of a revision. Even when a revision is not
referenced by any route, the minimal Pod count specified by minScale will still be
provided. Keep in mind that non-routeable revisions may be garbage collected, which
enables Knative to reclaim the resources.

spec:
 template:
 metadata:
 autoscaling.knative.dev/minScale: "2"
 autoscaling.knative.dev/maxScale: "10"

CHAPTER 8. CONFIGURING KNATIVE SERVING AUTOSCALING

27

CHAPTER 9. GETTING STARTED WITH KNATIVE CLIENT

IMPORTANT

You are viewing documentation for a release of Red Hat OpenShift Serverless that is no
longer supported. Red Hat OpenShift Serverless is currently supported on OpenShift
Container Platform 4.3 and newer.

Knative Client (kn) is the Knative command line interface (CLI). The CLI exposes commands for
managing your applications, as well as lower level tools to interact with components of OpenShift
Container Platform. With kn, you can create applications and manage OpenShift Container Platform
projects from the terminal.

9.1. BEFORE YOU BEGIN

Knative Client does not have its own log in mechanism. To log in to the cluster you must install the oc
CLI and use oc login.

Installation options for the oc CLI will vary depending on your operating system. For more information
on installing the oc CLI for your operating system and logging in with oc, see the CLI getting started
documentation.

9.2. INSTALLING KNATIVE CLIENT

9.2.1. Installing the kn CLI using the OpenShift Container Platform web console

Once the OpenShift Serverless Operator is installed, you will see a link to download the kn CLI for Linux,
macOS and Windows from the Command Line Tools page in the OpenShift Container Platform web
console.

You can access the Command Line Tools page by clicking the icon in the top right corner of the
web console and selecting Command Line Tools in the drop down menu.

Procedure

1. Download the kn CLI from the Command Line Tools page.

2. Unpack the archive:

$ tar -xf <file>

3. Move the kn binary to a directory on your PATH.

4. To check your path, run:

$ echo $PATH

NOTE

OpenShift Container Platform 4.2 Serverless applications

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/cli_tools/#cli-getting-started

1

NOTE

If you do not use RHEL or Fedora, ensure that libc is installed in a directory on
your library path. If libc is not available, you might see the following error when
you run CLI commands:

$ kn: No such file or directory

9.2.2. Installing the kn CLI for Linux using an RPM

For Red Hat Enterprise Linux (RHEL), you can install kn as an RPM if you have an active OpenShift
Container Platform subscription on your Red Hat account.

Procedure

Use the following command to install kn:

subscription-manager register
subscription-manager refresh
subscription-manager attach --pool=<pool_id> 1
subscription-manager repos --enable="openshift-serverless-1-for-rhel-8-x86_64-rpms"
yum install openshift-serverless-clients

Pool ID for an active OpenShift Container Platform subscription

9.2.3. Installing the kn CLI for Linux

For Linux distributions, you can download the CLI directly as a tar.gz archive.

Procedure

1. Download the CLI.

2. Unpack the archive:

$ tar -xf <file>

3. Move the kn binary to a directory on your PATH.

4. To check your path, run:

$ echo $PATH

NOTE

If you do not use RHEL or Fedora, ensure that libc is installed in a directory on
your library path. If libc is not available, you might see the following error when
you run CLI commands:

$ kn: No such file or directory

CHAPTER 9. GETTING STARTED WITH KNATIVE CLIENT

29

https://mirror.openshift.com/pub/openshift-v4/clients/serverless/latest

9.2.4. Installing the kn CLI for macOS

kn for macOS is provided as a tar.gz archive.

Procedure

1. Download the CLI.

2. Unpack and unzip the archive.

3. Move the kn binary to a directory on your PATH.

4. To check your PATH, open a terminal window and run:

$ echo $PATH

9.2.5. Installing the kn CLI for Windows

The CLI for Windows is provided as a zip archive.

Procedure

1. Download the CLI.

2. Unzip the archive with a ZIP program.

3. Move the kn binary to a directory on your PATH.

4. To check your PATH, open the Command Prompt and run the command:

C:\> path

9.3. BASIC WORKFLOW USING KNATIVE CLIENT

Use this basic workflow to create, read, update, delete (CRUD) operations on a service. The following
example deploys a simple Hello World service that reads the environment variable TARGET and prints
its output.

Procedure

1. Create a service in the default namespace from an image.

$ kn service create hello --image gcr.io/knative-samples/helloworld-go --env
TARGET=Knative
Creating service 'hello' in namespace 'default':

 0.085s The Route is still working to reflect the latest desired specification.
 0.101s Configuration "hello" is waiting for a Revision to become ready.
 11.590s ...
 11.650s Ingress has not yet been reconciled.
 11.726s Ready to serve.

Service 'hello' created with latest revision 'hello-gsdks-1' and URL:
http://hello.default.apps-crc.testing

OpenShift Container Platform 4.2 Serverless applications

30

https://mirror.openshift.com/pub/openshift-v4/clients/serverless/latest
https://mirror.openshift.com/pub/openshift-v4/clients/serverless/latest
https://github.com/knative/docs/tree/master/docs/serving/samples/hello-world/helloworld-go

2. List the service.

$ kn service list
NAME URL LATEST AGE CONDITIONS READY
REASON
hello http://hello.default.apps-crc.testing hello-gsdks-1 8m35s 3 OK / 3 True

3. Check if the service is working by using the curl service endpoint command:

$ curl http://hello.default.apps-crc.testing

Hello Knative!

4. Update the service.

$ kn service update hello --env TARGET=Kn
Updating Service 'hello' in namespace 'default':

 10.136s Traffic is not yet migrated to the latest revision.
 10.175s Ingress has not yet been reconciled.
 10.348s Ready to serve.

Service 'hello' updated with latest revision 'hello-dghll-2' and URL:
http://hello.default.apps-crc.testing

The service’s environment variable TARGET is now set to Kn.

5. Describe the service.

$ kn service describe hello
Name: hello
Namespace: default
Age: 13m
URL: http://hello.default.apps-crc.testing
Address: http://hello.default.svc.cluster.local

Revisions:
 100% @latest (hello-dghll-2) [2] (1m)
 Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 1m
 ++ ConfigurationsReady 1m
 ++ RoutesReady 1m

6. Delete the service.

$ kn service delete hello
Service 'hello' successfully deleted in namespace 'default'.

You can then verify that the hello service is deleted by attempting to list it.

CHAPTER 9. GETTING STARTED WITH KNATIVE CLIENT

31

$ kn service list hello
No services found.

9.4. AUTOSCALING WORKFLOW USING KNATIVE CLIENT

You can access autoscaling capabilities by using kn to modify Knative services without editing YAML
files directly.

Use the service create and service update commands with the appropriate flags to configure the
autoscaling behavior.

Flag Description

--concurrency-limit
int

Hard limit of concurrent requests to be processed by a single replica.

--concurrency-target
int

Recommendation for when to scale up based on the concurrent number of
incoming requests. Defaults to --concurrency-limit.

--max-scale int Maximum number of replicas.

--min-scale int Minimum number of replicas.

9.5. TRAFFIC SPLITTING USING KNATIVE CLIENT

kn helps you control which revisions get routed traffic on your Knative service.

Knative service allows for traffic mapping, which is the mapping of revisions of the service to an
allocated portion of traffic. It offers the option to create unique URLs for particular revisions and has the
ability to assign traffic to the latest revision.

With every update to the configuration of the service, a new revision is created with the service route
pointing all the traffic to the latest ready revision by default.

You can change this behavior by defining which revision gets a portion of the traffic.

Procedure

Use the kn service update command with the --traffic flag to update the traffic.

NOTE

OpenShift Container Platform 4.2 Serverless applications

32

NOTE

--traffic RevisionName=Percent uses the following syntax:

The --traffic flag requires two values separated by separated by an equals sign
(=).

The RevisionName string refers to the name of the revision.

Percent integer denotes the traffic portion assigned to the revision.

Use identifier @latest for the RevisionName to refer to the latest ready revision
of the service. You can use this identifier only once with the --traffic flag.

If the service update command updates the configuration values for the service
along with traffic flags, the @latest reference will point to the created revision to
which the updates are applied.

--traffic flag can be specified multiple times and is valid only if the sum of the
Percent values in all flags totals 100.

NOTE

For example, to route 10% of traffic to your new revision before putting all traffic on, use
the following command:

$ kn service update svc --traffic @latest=10 --traffic svc-vwxyz=90

9.5.1. Assigning tag revisions

A tag in a traffic block of service creates a custom URL, which points to a referenced revision. A user can
define a unique tag for an available revision of a service which creates a custom URL by using the format
http(s)://TAG-SERVICE.DOMAIN.

A given tag must be unique to its traffic block of the service. kn supports assigning and unassigning
custom tags for revisions of services as part of the kn service update command.

NOTE

If you have assigned a tag to a particular revision, a user can reference the revision by its
tag in the --traffic flag as --traffic Tag=Percent.

Procedure

Use the following command:

$ kn service update svc --tag @latest=candidate --tag svc-vwxyz=current

NOTE

CHAPTER 9. GETTING STARTED WITH KNATIVE CLIENT

33

NOTE

--tag RevisionName=Tag uses the following syntax:

--tag flag requires two values separated by a =.

RevisionName string refers to name of the Revision.

Tag string denotes the custom tag to be given for this Revision.

Use the identifier @latest for the RevisionName to refer to the latest ready
revision of the service. You can use this identifier only once with the --tag flag.

If the service update command is updating the configuration values for the
Service (along with tag flags), @latest reference will be pointed to the created
Revision after applying the update.

--tag flag can be specified multiple times.

--tag flag may assign different tags to the same revision.

9.5.2. Unassigning tag revisions

Tags assigned to revisions in a traffic block can be unassigned. Unassigning tags removes the custom
URLs.

NOTE

If a revision is untagged and it is assigned 0% of the traffic, it is removed from the traffic
block entirely.

Procedure

A user can unassign the tags for revisions using the kn service update command:

$ kn service update svc --untag candidate

NOTE

--untag Tag uses the following syntax:

The --untag flag requires one value.

The tag string denotes the unique tag in the traffic block of the service which
needs to be unassigned. This also removes the respective custom URL.

The --untag flag can be specified multiple times.

9.5.3. Traffic flag operation precedence

All traffic-related flags can be specified using a single kn service update command. kn defines the
precedence of these flags. The order of the flags specified when using the command is not taken into
account.

The precedence of the flags as they are evaluated by kn are:

OpenShift Container Platform 4.2 Serverless applications

34

1. --untag: All the referenced revisions with this flag are removed from the traffic block.

2. --tag: Revisions are tagged as specified in the traffic block.

3. --traffic: The referenced revisions are assigned a portion of the traffic split.

9.5.4. Traffic splitting flags

kn supports traffic operations on the traffic block of a service as part of the kn service update
command.

The following table displays a summary of traffic splitting flags, value formats, and the operation the flag
performs. The "Repetition" column denotes whether repeating the particular value of flag is allowed in a
kn service update command.

Flag Value(s) Operation Repetition

--traffic RevisionName=
Percent

Gives Percent traffic to
RevisionName

Yes

--traffic Tag=Percent Gives Percent traffic to the Revision
having Tag

Yes

--traffic @latest=Percen
t

Gives Percent traffic to the latest ready
Revision

No

--tag RevisionName=
Tag

Gives Tag to RevisionName Yes

--tag @latest=Tag Gives Tag to the latest ready Revision No

--untag Tag Removes Tag from Revision Yes

CHAPTER 9. GETTING STARTED WITH KNATIVE CLIENT

35

CHAPTER 10. OPENSHIFT SERVERLESS RELEASE NOTES

IMPORTANT

You are viewing documentation for a release of Red Hat OpenShift Serverless that is no
longer supported. Red Hat OpenShift Serverless is currently supported on OpenShift
Container Platform 4.3 and newer.

For an overview of OpenShift Serverless functionality, see Getting started with OpenShift Serverless.

10.1. GETTING SUPPORT

If you experience difficulty with a procedure described in this documentation, visit the Customer Portal
to learn more about support for Technology Preview features.

10.2. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS
TECHNOLOGY PREVIEW 1.4.0

IMPORTANT

OpenShift Serverless 1.4.0 contains a bad owner reference that causes the Kubernetes
Garbage Collector to incorrectly remove the entire Knative control plane, including all of
your services. You must install OpenShift Serverless 1.4.1 to fix this issue.

10.2.1. New features

OpenShift Serverless 1.4.0 is available on OpenShift Container Platform 4.2 and newer versions.

OpenShift Serverless has been updated to use Knative Serving 0.11.1.

OpenShift Serverless has been updated to use Knative Client (kn CLI) 0.11.0.

OpenShift Serverless has been updated to use Knative Serving Operator 0.11.1.

The kn CLI is now available for download through the Command Line Tools page in the
OpenShift Container Platform web console.

The KnativeServing object’s API group has changed in this release from serving.knative.dev
to operator.knative.dev. You will need to adjust any of your scripts or applications that rely on
the old API group to use the new API group. The OpenShift Serverless installation instructions
have been updated to use the new API group.
When upgrading from OpenShift Serverless 1.3.0 to 1.4.0, the OpenShift Serverless Operator will
create a KnativeServing custom resource (CR) in the new API group for you. This CR will be a
mirror of the KnativeServing CR in the old group that was used in OpenShift Serverless 1.3.0.

If you need to keep using the old group temporarily, you can use the old CR as before. However,
this CR is deprecated and will eventually be removed.

Once you have updated references to the new API group, you can remove any older CR versions
and use the newly deployed KnativeServing CR instead. To safely do this without downtime,
remove the owner reference from the newly deployed KnativeServing CR using:

OpenShift Container Platform 4.2 Serverless applications

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/serverless_applications/#serverless-getting-started
https://access.redhat.com/support/offerings/techpreview/

 $ oc edit knativeserving.operator.knative.dev knative-serving -n knative-serving

After the owner reference has been removed, you can safely remove any older CR versions and
start using the new one.

IMPORTANT

If a previous version of the CR exists, changes to the new CR will be overwritten
by the OpenShift Serverless Operator. While the old CR is still active, all changes
need to be made to that CR.

10.2.2. Fixed issues

Connecting to a private, cluster local Knative Service from a namespace that was not part of the
knative-serving-ingress Service Mesh was failing on i/o timeout. This issue is now fixed.

The container_name and pod_name metric labels were removed in OpenShift Container
Platform 4.3. The documentation has been updated to use the new container and pod metric
labels instead. If you are using metering with Serverless on OpenShift Container Platform 4.3 or
later, you must update your Prometheus queries according to the current version of the
Serverless metering documentation.

10.2.3. Known issues

Unqualified usage of knativeserving in oc commands no longer works because of the migration
to a new API group. For example, this command will not work:

$ oc get knativeserving -n knative-serving

Use the explicit fully-qualified format instead. For example:

$ oc get knativeserving.operator.knative.dev -n knative-serving

OpenShift Container Platform scale from zero latency causes a delay of approximately 10
seconds when creating pods. This is a current OpenShift Container Platform limitation.

10.3. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS
TECHNOLOGY PREVIEW 1.3.0

10.3.1. New features

OpenShift Serverless has been updated to use Knative Serving 0.10.1.

OpenShift Serverless has been updated to use Knative Client (kn CLI) 0.10.0.

OpenShift Serverless 1.3.0 is available on OpenShift Container Platform 4.2 and newer versions.

10.3.2. Fixed issues

Fixed a bug which caused Routes to have incorrect cross-namespaced OwnerReferences.

10.3.3. Known issues

CHAPTER 10. OPENSHIFT SERVERLESS RELEASE NOTES

37

Connecting to a private, cluster local Knative Service from a namespace that is not part of the
knative-serving-ingress Service Mesh fails on i/o timeout.

10.4. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS
TECHNOLOGY PREVIEW 1.2.0

10.4.1. New features

OpenShift Serverless has been updated to use Knative Serving 0.9.0.

OpenShift Serverless has been updated to use Knative Client (kn CLI) 0.9.0.

OpenShift Serverless on OpenShift Container Platform 4.2 now uses the Operator Lifecycle
Manager (OLM) dependency resolution mechanism to install the ServiceMesh Operator
automatically. The required ServiceMeshControlPlane and ServiceMeshMemberRoll are also
installed and managed for the user.

Access to the KnativeServing resource is now restricted to cluster-admin roles to prevent any
user from blocking the resource. Only cluster-admin roles can create KnativeServing CRs.

The OpenShift Serverless Operator can now be found in the OperatorHub by searching for
"knative".

The OpenShift Container Platform web console now shows status conditions for the
KnativeServing resource.

In version 1.2.0, the OpenShift Serverless Operator inspects network policies for namespaces.
If no network policy exists, the Operator automatically creates a wide open policy, to ensure that
traffic can flow in and out of the namespace and OpenShift routes can be used.

If there is an existing network policy, OpenShift Serverless will not create a new policy. The
Operator expects the user to continue managing their own network policies as needed for their
applications. For example, the user must set policies that allow traffic to flow in and out of the
namespace, and allow OpenShift routes to still be used after the namespace is added to a
ServiceMeshMemberRoll.

10.4.2. Fixed issues

In previous releases, using the same services or routes in different namespaces caused services
to not work properly and caused OpenShift Container Platform routes to be overriden. This
issue has been fixed.

In previous releases, different traffic split targets required a mandatory tag. A single traffic split
can now be defined with untagged traffic targets.

Existing Knative Services and Routes which had been created with public visibility in OpenShift
Serverless Operator version 1.1.0 were not able to be updated to cluster-local visibility. This issue
is now fixed.

The Unknown Uninitialized : Waiting for VirtualService error has been fixed.

Knative service no longer returns a 503 status code when the cluster is running for a long time.

10.4.3. Known issues

Installing the OpenShift Serverless Operator on OpenShift Container Platform versions older

OpenShift Container Platform 4.2 Serverless applications

38

Installing the OpenShift Serverless Operator on OpenShift Container Platform versions older
than 4.2.4 using OLM may incorrectly use community versions of the required dependencies. As
a workaround, on OpenShift Container Platform versions older than 4.2.4, explicitly install the
Red Hat provided versions of the Elastic Search, Jaeger, Kiali and ServiceMesh Operators
before installing the OpenShift Serverless Operator.

If you are upgrading the OpenShift Serverless from version 1.1.0 to version 1.2.0 and you have set
up a ServiceMeshControlPlane and ServiceMeshMemberRoll to work with your Knative Serving
instance, you must remove the knative-serving namespace and any other namespaces that
contain Knative Services from the ServiceMeshMemberRoll in istio-system.
You can also delete the ServiceMeshControlPlane from the namespace entirely if it is not
required for other applications.

Once the upgrade starts, existing services will continue to work as before, but new Services will
never become ready. Once you unblock the release by removing the knative-serving and any
other relevant namespaces from the ServiceMeshMemberRoll, there will be a brief outage to all
active Services. This will fix itself. Make sure that you remove all namespaces containing Knative
Services from the original ServiceMeshMemberRoll.

gRPC and HTTP2 do not work against routes. This is a known limitation of OpenShift routes.

10.5. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS
TECHNOLOGY PREVIEW 1.1.0

10.5.1. New features

OpenShift Serverless has been updated to use Knative Serving 0.8.1.

Enhanced Operator metadata now includes more information regarding support state and a link
to the official installation documentation.

A developer preview version of Knative Eventing is now available for use with OpenShift
Serverless, however this is not included in the OpenShift Serverless Operator and is not
currently supported as part of this Technology Preview. For more information, see Knative
Eventing on OpenShift Container Platform.

10.5.2. Fixed issues

Users who were not project administrators would previously see the following error when using
OpenShift Serverless:

revisions.serving.knative.dev: User "sounds" cannot list resource "revisions

This issue has now been fixed with the addition of new RBAC rules.

A race condition was preventing Istio sidecar injection from working correctly. Istio did not
consider the knative-serving namespace to be present in the ServiceMeshMemberRoll at the
time of Pod creation. Istio now waits for status information from ServiceMeshMemberRoll which
fixes this issue.

10.5.3. Known issues

Users may see the error Unknown Uninitialized : Waiting for VirtualService to be ready while
waiting for a service in a newly created namespace to be ready, which can take several minutes.

CHAPTER 10. OPENSHIFT SERVERLESS RELEASE NOTES

39

https://openshift-knative.github.io/docs/docs/index.html

If a user allows enough time between the creation of a namespace and the creation of a service
in the namespace (approximately one minute), this error may be avoided.

Existing Knative Services and Routes which have been created with public visibility cannot be
updated to cluster-local visibility. If you require cluster-local visibility on Knative Services and
Routes, this must be configured at the time of creating these resources.

Knative service returns a 503 status code when the cluster is running for a long time. The
Knative Serving Pods do not show any errors. Restarting the istio-pilot Pod temporarily fixes
the issue.

gRPC and HTTP2 do not work against routes. This is a known limitation of OpenShift routes.

10.6. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS
TECHNOLOGY PREVIEW 1.0.0

10.6.1. New features

This release of OpenShift Serverless introduces the OpenShift Serverless Operator, which supports
Knative Serving 0.7.1 and is tested for OpenShift Service Mesh 1.0.

10.6.2. Known issues

The following limitations exist in OpenShift Serverless at this time:

The Knative Serving Operator should wait for ServiceMeshMemberRoll to include the knative-
serving namespace. The installation procedure recommends creating the knative-serving
namespace and then installing the operator. Istio does not consider the knative-serving
namespace to be in the ServiceMeshMemberRoll when the Knative Serving Pods are being
created. Consequently, the sidecars are not injected.

Knative service returns a 503 status code when the cluster is running for a long time. The
Knative Serving Pods do not show any errors. Restarting the istio-pilot Pod temporarily fixes
the issue.

The gRPC and HTTP2 do not work against routes. This is a known limitation of OpenShift
routes.

10.7. ADDITIONAL RESOURCES

OpenShift Serverless is based on the open source Knative project.

For details about the latest Knative Serving release, see the Knative Serving releases page .

For details about the latest Knative Client release, see the Knative Client releases page .

For details about the latest Knative Eventing release, see the Knative Eventing releases page .

NOTE

Knative Eventing is currently available as a Developer Preview on OpenShift Container
Platform. See the upstream Knative Eventing on OpenShift Container Platform
documentation.

OpenShift Container Platform 4.2 Serverless applications

40

https://github.com/knative/serving/releases
https://github.com/knative/client/releases
https://github.com/knative/eventing/releases
https://openshift-knative.github.io/docs/docs/index.html

CHAPTER 10. OPENSHIFT SERVERLESS RELEASE NOTES

41

	Table of Contents
	CHAPTER 1. GETTING STARTED WITH OPENSHIFT SERVERLESS
	1.1. HOW OPENSHIFT SERVERLESS WORKS
	1.2. APPLICATIONS ON OPENSHIFT SERVERLESS

	CHAPTER 2. OPENSHIFT SERVERLESS PRODUCT ARCHITECTURE
	2.1. KNATIVE SERVING
	2.1.1. Knative Serving components

	2.2. KNATIVE CLIENT
	2.3. KNATIVE EVENTING

	CHAPTER 3. INSTALLING OPENSHIFT SERVERLESS
	3.1. CLUSTER SIZE REQUIREMENTS
	3.1.1. Scaling a MachineSet manually

	3.2. INSTALLING THE OPENSHIFT SERVERLESS OPERATOR
	3.3. INSTALLING KNATIVE SERVING
	3.4. UNINSTALLING KNATIVE SERVING
	3.5. DELETING THE OPENSHIFT SERVERLESS OPERATOR
	3.6. DELETING KNATIVE SERVING CRDS FROM THE OPERATOR

	CHAPTER 4. GETTING STARTED WITH KNATIVE SERVICES
	4.1. CREATING A KNATIVE SERVICE
	4.2. DEPLOYING A SERVERLESS APPLICATION
	4.3. CONNECTING KNATIVE SERVICES TO EXISTING KUBERNETES DEPLOYMENTS

	CHAPTER 5. MONITORING OPENSHIFT SERVERLESS COMPONENTS
	5.1. CONFIGURING CLUSTER FOR APPLICATION MONITORING
	5.2. VERIFYING AN OPENSHIFT CONTAINER PLATFORM MONITORING INSTALLATION FOR USE WITH KNATIVE SERVING
	5.3. MONITORING KNATIVE SERVING USING THE OPENSHIFT CONTAINER PLATFORM MONITORING STACK

	CHAPTER 6. USING METERING WITH OPENSHIFT SERVERLESS
	6.1. INSTALLING METERING
	6.2. DATASOURCES FOR KNATIVE SERVING METERING
	6.2.1. Datasource for CPU usage in Knative Serving
	6.2.2. Datasource for memory usage in Knative Serving
	6.2.3. Applying Datasources for Knative Serving metering

	6.3. QUERIES FOR KNATIVE SERVING METERING
	6.3.1. Query for CPU usage in Knative Serving
	6.3.2. Query for memory usage in Knative Serving
	6.3.3. Applying Queries for Knative Serving metering

	6.4. METERING REPORTS FOR KNATIVE SERVING
	6.4.1. Running a metering report

	CHAPTER 7. CLUSTER LOGGING WITH OPENSHIFT SERVERLESS
	7.1. ABOUT CLUSTER LOGGING
	7.2. ABOUT DEPLOYING AND CONFIGURING CLUSTER LOGGING
	7.2.1. Configuring and Tuning Cluster Logging
	7.2.2. Sample modified Cluster Logging Custom Resource

	7.3. USING CLUSTER LOGGING TO FIND LOGS FOR KNATIVE SERVING COMPONENTS
	7.4. USING CLUSTER LOGGING TO FIND LOGS FOR SERVICES DEPLOYED WITH KNATIVE SERVING

	CHAPTER 8. CONFIGURING KNATIVE SERVING AUTOSCALING
	8.1. CONFIGURING CONCURRENT REQUESTS FOR KNATIVE SERVING AUTOSCALING
	8.1.1. Configuring concurrent requests using the target annotation
	8.1.2. Configuring concurrent requests using the containerConcurrency field

	8.2. CONFIGURING SCALE BOUNDS KNATIVE SERVING AUTOSCALING

	CHAPTER 9. GETTING STARTED WITH KNATIVE CLIENT
	9.1. BEFORE YOU BEGIN
	9.2. INSTALLING KNATIVE CLIENT
	9.2.1. Installing the kn CLI using the OpenShift Container Platform web console
	9.2.2. Installing the kn CLI for Linux using an RPM
	9.2.3. Installing the kn CLI for Linux
	9.2.4. Installing the kn CLI for macOS
	9.2.5. Installing the kn CLI for Windows

	9.3. BASIC WORKFLOW USING KNATIVE CLIENT
	9.4. AUTOSCALING WORKFLOW USING KNATIVE CLIENT
	9.5. TRAFFIC SPLITTING USING KNATIVE CLIENT
	9.5.1. Assigning tag revisions
	9.5.2. Unassigning tag revisions
	9.5.3. Traffic flag operation precedence
	9.5.4. Traffic splitting flags

	CHAPTER 10. OPENSHIFT SERVERLESS RELEASE NOTES
	10.1. GETTING SUPPORT
	10.2. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS TECHNOLOGY PREVIEW 1.4.0
	10.2.1. New features
	10.2.2. Fixed issues
	10.2.3. Known issues

	10.3. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS TECHNOLOGY PREVIEW 1.3.0
	10.3.1. New features
	10.3.2. Fixed issues
	10.3.3. Known issues

	10.4. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS TECHNOLOGY PREVIEW 1.2.0
	10.4.1. New features
	10.4.2. Fixed issues
	10.4.3. Known issues

	10.5. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS TECHNOLOGY PREVIEW 1.1.0
	10.5.1. New features
	10.5.2. Fixed issues
	10.5.3. Known issues

	10.6. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS TECHNOLOGY PREVIEW 1.0.0
	10.6.1. New features
	10.6.2. Known issues

	10.7. ADDITIONAL RESOURCES

