
OpenShift Container Platform 4.1

Images

Creating and managing images and imagestreams in OpenShift Container Platform
4.1

Last Updated: 2020-02-28

OpenShift Container Platform 4.1 Images

Creating and managing images and imagestreams in OpenShift Container Platform 4.1

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for creating and managing images and imagestreams in
OpenShift Container Platform 4.1. It also provides instructions on using templates.

. .

. .

. .

Table of Contents

CHAPTER 1. CONFIGURING THE SAMPLES OPERATOR
1.1. UNDERSTANDING THE SAMPLES OPERATOR
1.2. SAMPLES OPERATOR CONFIGURATION PARAMETERS

1.2.1. Configuration restrictions
1.2.2. Conditions

1.3. ACCESSING THE SAMPLES OPERATOR CONFIGURATION

CHAPTER 2. UNDERSTANDING CONTAINERS, IMAGES, AND IMAGESTREAMS
2.1. IMAGES
2.2. CONTAINERS
2.3. IMAGE REGISTRY
2.4. IMAGE REPOSITORY
2.5. IMAGE TAGS
2.6. IMAGE IDS
2.7. USING IMAGESTREAMS

2.7.1. Imagestreamtags
2.8. IMAGESTREAM IMAGES
2.9. IMAGESTREAM TRIGGERS
2.10. ADDITIONAL RESOURCES

CHAPTER 3. CREATING IMAGES
3.1. LEARNING CONTAINER BEST PRACTICES

3.1.1. General container image guidelines
Reuse images
Maintain compatibility within tags
Avoid multiple processes
Use exec in wrapper scripts
Clean temporary files
Place instructions in the proper order
Mark important ports
Set environment variables
Avoid default passwords
Avoid sshd
Use volumes for persistent data

3.1.2. OpenShift Container Platform-specific guidelines
Enable images for source-to-image (S2I)
Support arbitrary user ids
Use services for inter-image communication
Provide common libraries
Use environment variables for configuration
Set image metadata
Clustering
Logging
Liveness and readiness probes
Templates

3.2. INCLUDING METADATA IN IMAGES
3.2.1. Defining image metadata

3.3. TESTING S2I IMAGES
3.3.1. Understanding testing requirements
3.3.2. Generating scripts and tools
3.3.3. Testing locally

5
5
5
7
7
8

9
9
9

10
10
10
10
10
11
11

12
12

13
13
13
13
13
13
13
14
14
15
15
15
15
15
16
16
16
17
17
17
18
18
18
19
19
19
19

20
20
21
21

Table of Contents

1

. .

. .

. .

. .

3.3.4. Basic testing workflow
3.3.5. Using OpenShift Container Platform for building the image

CHAPTER 4. MANAGING IMAGES
4.1. MANAGING IMAGES OVERVIEW

4.1.1. Images overview
4.2. TAGGING IMAGES

4.2.1. Image tags
4.2.2. Image tag conventions
4.2.3. Adding tags to imagestreams
4.2.4. Removing tags from imagestreams
4.2.5. Referencing images in imagestreams
4.2.6. Additional information

4.3. IMAGE PULL POLICY
4.3.1. Image pull policy overview

4.4. USING IMAGE PULL SECRETS
4.4.1. Allowing Pods to reference images across projects
4.4.2. Allowing Pods to reference images from other secured registries

4.4.2.1. Pulling from private registries with delegated authentication

CHAPTER 5. MANAGING IMAGESTREAMS
5.1. USING IMAGESTREAMS
5.2. CONFIGURING IMAGESTREAMS
5.3. IMAGESTREAM IMAGES
5.4. IMAGESTREAMTAGS
5.5. IMAGESTREAM CHANGE TRIGGERS
5.6. IMAGESTREAM MAPPING
5.7. WORKING WITH IMAGESTREAMS

5.7.1. Getting information about imagestreams
5.7.2. Adding tags to an imagestream
5.7.3. Adding tags for an external image
5.7.4. Updating imagestreamtags
5.7.5. Removing imagestreamtags
5.7.6. Configuring periodic importing of imagestreamtags

CHAPTER 6. IMAGE CONFIGURATION RESOURCES
6.1. IMAGE CONTROLLER CONFIGURATION PARAMETERS
6.2. CONFIGURING IMAGE SETTINGS

6.2.1. Importing insecure registries and blocking registries

CHAPTER 7. USING TEMPLATES
7.1. UNDERSTANDING TEMPLATES
7.2. UPLOADING A TEMPLATE
7.3. CREATING AN APPLICATION USING THE WEB CONSOLE
7.4. CREATING OBJECTS FROM TEMPLATES USING THE CLI

7.4.1. Adding labels
7.4.2. Listing parameters
7.4.3. Generating a list of objects

7.5. MODIFYING UPLOADED TEMPLATES
7.6. USING INSTANT APP AND QUICKSTART TEMPLATES

7.6.1. Quickstart templates
7.6.1.1. Web framework Quickstart templates

7.7. WRITING TEMPLATES
7.7.1. Writing the template description

21
22

23
23
23
23
23
23
24
25
25
26
26
26
27
27
27
28

30
30
31
32
32
33
33
36
36
37
38
38
39
39

40
40
41

42

44
44
44
44
45
45
45
46
47
47
48
48
49
49

OpenShift Container Platform 4.1 Images

2

. .

. .

7.7.2. Writing template labels
7.7.3. Writing template parameters
7.7.4. Writing the template object list
7.7.5. Marking a template as bindable
7.7.6. Exposing template object fields
7.7.7. Waiting for template readiness
7.7.8. Creating a template from existing objects

CHAPTER 8. USING RUBY ON RAILS
8.1. SETTING UP THE DATABASE
8.2. WRITING YOUR APPLICATION

8.2.1. Creating a welcome page
8.2.2. Configuring application for OpenShift Container Platform
8.2.3. Storing your application in Git

8.3. DEPLOYING YOUR APPLICATION TO OPENSHIFT CONTAINER PLATFORM
8.3.1. Creating the database service
8.3.2. Creating the frontend service
8.3.3. Creating a route for your application

CHAPTER 9. USING IMAGES
9.1. USING IMAGES OVERVIEW
9.2. CONFIGURING JENKINS IMAGES

9.2.1. Configuration and customization
9.2.1.1. OpenShift Container Platform OAuth authentication
9.2.1.2. Jenkins authentication

9.2.2. Jenkins environment variables
9.2.3. Providing Jenkins cross project access
9.2.4. Jenkins cross volume mount points
9.2.5. Customizing the Jenkins image through Source-To-Image
9.2.6. Configuring the Jenkins Kubernetes plug-in
9.2.7. Jenkins permissions
9.2.8. Creating a Jenkins service from a template
9.2.9. Using the Jenkins Kubernetes plug-in
9.2.10. Jenkins memory requirements
9.2.11. Additional Resources

9.3. JENKINS AGENT
9.3.1. Jenkins agent images
9.3.2. Jenkins agent environment variables
9.3.3. Jenkins agent memory requirements
9.3.4. Jenkins agent Gradle builds
9.3.5. Jenkins agent pod retention

51
51

53
54
54
56
58

59
59
60
61
61

62
63
63
64
65

66
66
66
66
67
68
68
71
72
72
73
76
76
77
79
79
80
80
80
82
82
83

Table of Contents

3

OpenShift Container Platform 4.1 Images

4

CHAPTER 1. CONFIGURING THE SAMPLES OPERATOR
The Samples Operator, which operates in the OpenShift namespace, installs and updates the Red Hat
Enterprise Linux (RHEL)-based OpenShift Container Platform imagestreams and OpenShift Container
Platform templates.

Prerequisites

Deploy an OpenShift Container Platform cluster.

1.1. UNDERSTANDING THE SAMPLES OPERATOR

During installation, the Operator creates the default configuration object for itself and then creates the
sample imagestreams and templates, including quickstart templates.

The Samples Operator copies the pull secret that is captured by the installation program into the
OpenShift namespace and names the secret, samples-registry-credentials, to facilitate imagestream
imports from registry.redhat.io. Additionally, to facilitate imagestream imports from other registries
that require credentials, a cluster administrator can create any additional secrets that contain the
content of a Docker config.json file in the OpenShift namespace needed to facilitate image import.

The Samples Operator configuration is a cluster-wide resource, and the deployment is contained within
the openshift-cluster-samples-operator namespace.

The image for the Samples Operator contains imagestream and template definitions for the associated
OpenShift Container Platform release. When each sample is created or updated, the Samples Operator
includes an annotation that denotes the version of OpenShift Container Platform. The Operator uses
this annotation to ensure that each sample matches the release version. Samples outside of its
inventory are ignored, as are skipped samples. Modifications to any samples that are managed by the
Operator, where that version annotation is modified or deleted, will be reverted automatically. The
Jenkins images are actually part of the image payload from installation and are tagged into the
imagestreams directly.

The Samples Operator configuration resource includes a finalizer which cleans up the following upon
deletion:

Operator managed imagestreams.

Operator managed templates.

Operator generated configuration resources.

Cluster status resources.

The samples-registry-credentials secret.

Upon deletion of the samples resource, the Samples Operator recreates the resource using the default
configuration.

1.2. SAMPLES OPERATOR CONFIGURATION PARAMETERS

The samples resource offers the following configuration fields:

CHAPTER 1. CONFIGURING THE SAMPLES OPERATOR

5

Parameter Description

managementState Managed: The Samples Operator updates the samples as the configuration
dictates.

Unmanaged: The Samples Operator ignores updates to its configuration
resource object and any imagestreams or templates in the OpenShift
namespace.

Removed: The Samples Operator removes the set of Managed
imagestreams and templates in the OpenShift namespace. It ignores new
samples created by the cluster administrator or any samples in the skipped lists.
After the removals are complete, the Samples Operator works like it is in the
Unmanaged state and ignores any watch events on the sample resources,
imagestreams, or templates.

NOTE

Neither deletion nor setting the Management State to
Removed are completed while imagestream imports are still
in progress. Once progress has completed, either in success or
in error, the deletion or removal commences.

Secret, imagestream, and template watch events are ignored
once deletion or removal has started.

samplesRegistry Overrides the registry from which images are imported.

NOTE

Creation or update of RHEL content does not commence if the
secret for pull access is not in place when either Samples
Registry is not explicitly set (i.e., the empty string), or when it
is set to registry.redhat.io. In both cases, image imports will
work off of registry.redhat.io, which requires credentials.

Creation or update of RHEL content is not gated by the
existence of the pull secret if the Samples Registry is
overridden to a value other than the empty string or
registry.redhat.io.

architectures Placeholder to choose an architecture type. Currently only x86 is supported.

skippedImagestreams Imagestreams that are in the Samples Operator’s inventory but that the cluster
administrator wants the Operator to ignore or not manage. You can add a list of
imagestream names to this parameter. For example, ["httpd","perl"].

skippedTemplates Templates that are in the Samples Operator’s inventory, but that the cluster
administrator wants the Operator to ignore or not manage.

Secret, imagestream, and template watch events can come in before the initial samples resource object
is created, the Samples Operator detects and re-queues the event.

OpenShift Container Platform 4.1 Images

6

1.2.1. Configuration restrictions

When the Samples Operator starts supporting multiple architectures, the architecture list is not allowed
to be changed while in the Managed state.

In order to change the architectures values, a cluster administrator must:

Mark the Management State as Removed, saving the change.

In a subsequent change, edit the architecture and change the Management State back to
Managed.

The Samples Operator still processes secrets while in Removed state. You can create the secret before
switching to Removed, while in Removed before switching to Managed, or after switching to Managed
state (though there are delays in creating the samples until the secret event is processed if you create
the secret after switching to Managed). This helps facilitate the changing of the registry, where you
choose to remove all the samples before switching to insure a clean slate (removing before switching is
not required).

1.2.2. Conditions

The samples resource maintains the following conditions in its status:

Condition Description

SamplesExists Indicates the samples are created in the OpenShift namespace.

ImageChangesInProgr
ess

True when imagestreams are created or updated, but not all of the tag spec
generations and tag status generations match.

False when all of the generations match, or unrecoverable errors occurred
during import, the last seen error is in the message field. The list of pending
imagestreams is in the reason field.

ImportCredentialsExist A samples-registry-credentials secret is copied into the OpenShift
namespace.

ConfigurationValid True or False based on whether any of the restricted changes noted
previously are submitted.

RemovePending Indicator that there is a Management State: Removed setting pending, but
are waiting for in progress imagestreams to complete.

ImportImageErrorsExis
t

Indicator of which imagestreams had errors during the image import phase for
one of their tags.

True when an error has occurred. The list of imagestreams with an error is in
the reason field. The details of each error reported are in the message field.

MigrationInProgress True when the Samples Operator detects that the version is different than the
Samples Operator version with which the current samples set are installed.

CHAPTER 1. CONFIGURING THE SAMPLES OPERATOR

7

1.3. ACCESSING THE SAMPLES OPERATOR CONFIGURATION

You can configure the Samples Operator by editing the file with the provided parameters.

Prerequisites

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

Procedure

Access the Samples Operator configuration:

$ oc get configs.samples.operator.openshift.io/cluster -o yaml

The Samples Operator configuration resembles the following example:

apiVersion: samples.operator.openshift.io/v1
kind: Config
projectName: cluster-samples-operator
...

OpenShift Container Platform 4.1 Images

8

CHAPTER 2. UNDERSTANDING CONTAINERS, IMAGES, AND
IMAGESTREAMS

Containers, images, and imagestreams are important concepts to understand when you set out to create
and manage containerized software. An image holds a set of software that is ready to run, while a
container is a running instance of a container image. An imagestream provides a way of storing different
versions of the same basic image. Those different versions are represented by different tags on the
same image name.

2.1. IMAGES

Containers in OpenShift Container Platform are based on OCI- or Docker-formatted container images.
An image is a binary that includes all of the requirements for running a single container, as well as
metadata describing its needs and capabilities.

You can think of it as a packaging technology. Containers only have access to resources defined in the
image unless you give the container additional access when creating it. By deploying the same image in
multiple containers across multiple hosts and load balancing between them, OpenShift Container
Platform can provide redundancy and horizontal scaling for a service packaged into an image.

You can use the podman or docker CLI directly to build images, but OpenShift Container Platform also
supplies builder images that assist with creating new images by adding your code or configuration to
existing images.

Because applications develop over time, a single image name can actually refer to many different
versions of the same image. Each different image is referred to uniquely by its hash (a long hexadecimal
number e.g., fd44297e2ddb050ec4f… ​) which is usually shortened to 12 characters (e.g.,
fd44297e2ddb).

2.2. CONTAINERS

The basic units of OpenShift Container Platform applications are called containers. Linux container
technologies are lightweight mechanisms for isolating running processes so that they are limited to
interacting with only their designated resources. The word container is defined as a specific running or
paused instance of a container image.

Many application instances can be running in containers on a single host without visibility into each
others' processes, files, network, and so on. Typically, each container provides a single service, often
called a micro-service, such as a web server or a database, though containers can be used for arbitrary
workloads.

The Linux kernel has been incorporating capabilities for container technologies for years. The Docker
project developed a convenient management interface for Linux containers on a host. More recently,
the Open Container Initiative has developed open standards for container formats and container
runtimes. OpenShift Container Platform and Kubernetes add the ability to orchestrate OCI- and
Docker-formatted containers across multi-host installations.

Though you do not directly interact with container runtimes when using OpenShift Container Platform,
understanding their capabilities and terminology is important for understanding their role in OpenShift
Container Platform and how your applications function inside of containers.

Tools such as podman can be used to replace docker command-line tools for running and managing
containers directly. Using podman, you can experiment with containers separately from OpenShift
Container Platform.

CHAPTER 2. UNDERSTANDING CONTAINERS, IMAGES, AND IMAGESTREAMS

9

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/managing_containers/#using_podman_to_work_with_containers
https://access.redhat.com/articles/1353593
https://github.com/opencontainers/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/managing_containers/#using_podman_to_work_with_containers

2.3. IMAGE REGISTRY

An image registry is a content server that can store and serve container images. For example:

registry.redhat.io

A registry contains a collection of one or more image repositories, which contain one or more tagged
images. Red Hat provides a registry at registry.redhat.io for subscribers. OpenShift Container Platform
can also supply its own internal registry for managing custom container images.

2.4. IMAGE REPOSITORY

An image repository is a collection of related container images and tags identifying them. For example,
the OpenShift Jenkins images are in the repository:

docker.io/openshift/jenkins-2-centos7

2.5. IMAGE TAGS

An image tag is a label applied to a container image in a repository that distinguishes a specific image
from other images in an imagestream. Typically, the tag represents a version number of some sort. For
example, here v3.11.59-2 is the tag:

registry.access.redhat.com/openshift3/jenkins-2-rhel7:v3.11.59-2

You can add additional tags to an image. For example, an image might be assigned the tags :v3.11.59-2
and :latest.

OpenShift Container Platform provides the oc tag command, which is similar to the docker tag
command, but operates on imagestreams instead of directly on images.

2.6. IMAGE IDS

An image ID is a SHA (Secure Hash Algorithm) code that can be used to pull an image. A SHA image ID
cannot change. A specific SHA identifier always references the exact same container image content.
For example:

docker.io/openshift/jenkins-2-centos7@sha256:ab312bda324

2.7. USING IMAGESTREAMS

An imagestream and its associated tags provide an abstraction for referencing container images from
within OpenShift Container Platform. The imagestream and its tags allow you to see what images are
available and ensure that you are using the specific image you need even if the image in the repository
changes.

Imagestreams do not contain actual image data, but present a single virtual view of related images,
similar to an image repository.

You can configure Builds and Deployments to watch an imagestream for notifications when new images
are added and react by performing a Build or Deployment, respectively.

For example, if a Deployment is using a certain image and a new version of that image is created, a

OpenShift Container Platform 4.1 Images

10

For example, if a Deployment is using a certain image and a new version of that image is created, a
Deployment could be automatically performed to pick up the new version of the image.

However, if the imagestreamtag used by the Deployment or Build is not updated, then even if the
container image in the container image registry is updated, the Build or Deployment will continue using
the previous, presumably known good image.

The source images can be stored in any of the following:

OpenShift Container Platform’s integrated registry.

An external registry, for example registry.redhat.io or hub.docker.com.

Other imagestreams in the OpenShift Container Platform cluster.

When you define an object that references an imagestreamtag (such as a Build or Deployment
configuration), you point to an imagestreamtag, not the Docker repository. When you Build or Deploy
your application, OpenShift Container Platform queries the Docker repository using the
imagestreamtag to locate the associated ID of the image and uses that exact image.

The imagestream metadata is stored in the etcd instance along with other cluster information.

Using imagestreams has several significant benefits:

You can tag, rollback a tag, and quickly deal with images, without having to re-push using the
command line.

You can trigger Builds and Deployments when a new image is pushed to the registry. Also,
OpenShift Container Platform has generic triggers for other resources, such as Kubernetes
objects.

You can mark a tag for periodic re-import. If the source image has changed, that change is
picked up and reflected in the imagestream, which triggers the Build and/or Deployment flow,
depending upon the Build or Deployment configuration.

You can share images using fine-grained access control and quickly distribute images across
your teams.

If the source image changes, the imagestreamtag will still point to a known-good version of the
image, ensuring that your application will not break unexpectedly.

You can configure security around who can view and use the images through permissions on the
imagestream objects.

Users that lack permission to read or list images on the cluster level can still retrieve the images
tagged in a project using imagestreams.

2.7.1. Imagestreamtags

An imagestreamtag is a named pointer to an image in an imagestream. An image stream tag is similar to
a container image tag.

2.8. IMAGESTREAM IMAGES

An imagestream image allows you to retrieve a specific container image from a particular imagestream

CHAPTER 2. UNDERSTANDING CONTAINERS, IMAGES, AND IMAGESTREAMS

11

An imagestream image allows you to retrieve a specific container image from a particular imagestream
where it is tagged. An image stream image is an API resource object that pulls together some metadata
about a particular image SHA identifier.

2.9. IMAGESTREAM TRIGGERS

An imagestream trigger causes a specific action when an imagestreamtag changes. For example,
importing can cause the value of the tag to change, which causes a trigger to fire when there are
Deployments, Builds, or other resources listening for those.

2.10. ADDITIONAL RESOURCES

For more information on using imagestreams, see Managing image streams.

OpenShift Container Platform 4.1 Images

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/images/#managing-image-streams

CHAPTER 3. CREATING IMAGES
Learn how to create your own container images, based on pre-built images that are ready to help you.
The process includes learning best practices for writing images, defining metadata for images, testing
images and using a custom builder workflow to create images that can be used on OpenShift Container
Platform. Once you have created an image, you can push it to the internal registry.

3.1. LEARNING CONTAINER BEST PRACTICES

When creating container images to run on OpenShift Container Platform there are a number of best
practices to consider as an image author to ensure a good experience for consumers of those images.
Because images are intended to be immutable and used as-is, the following guidelines help ensure that
your images are highly consumable and easy to use on OpenShift Container Platform.

3.1.1. General container image guidelines

The following guidelines apply when creating a container image in general, and are independent of
whether the images are used on OpenShift Container Platform.

Reuse images
Wherever possible, we recommend that you base your image on an appropriate upstream image using
the FROM statement. This ensures your image can easily pick up security fixes from an upstream image
when it is updated, rather than you having to update your dependencies directly.

In addition, use tags in the FROM instruction (for example, rhel:rhel7) to make it clear to users exactly
which version of an image your image is based on. Using a tag other than latest ensures your image is
not subjected to breaking changes that might go into the latest version of an upstream image.

Maintain compatibility within tags
When tagging your own images, we recommend that you try to maintain backwards compatibility within a
tag. For example, if you provide an image named foo and it currently includes version 1.0, you might
provide a tag of foo:v1. When you update the image, as long as it continues to be compatible with the
original image, you can continue to tag the new image foo:v1, and downstream consumers of this tag will
be able to get updates without being broken.

If you later release an incompatible update, then you should switch to a new tag, for example foo:v2. This
allows downstream consumers to move up to the new version at will, but not be inadvertently broken by
the new incompatible image. Any downstream consumer using foo:latest takes on the risk of any
incompatible changes being introduced.

Avoid multiple processes
We recommend that you do not start multiple services, such as a database and SSHD, inside one
container. This is not necessary because containers are lightweight and can be easily linked together for
orchestrating multiple processes. OpenShift Container Platform allows you to easily colocate and co-
manage related images by grouping them into a single pod.

This colocation ensures the containers share a network namespace and storage for communication.
Updates are also less disruptive as each image can be updated less frequently and independently. Signal
handling flows are also clearer with a single process as you do not have to manage routing signals to
spawned processes.

Use exec in wrapper scripts
Many images use wrapper scripts to do some setup before starting a process for the software being run.
If your image uses such a script, that script should use exec so that the script’s process is replaced by
your software. If you do not use exec, then signals sent by your container runtime will go to your wrapper

CHAPTER 3. CREATING IMAGES

13

script instead of your software’s process. This is not what you want, as illustrated here:

Say you have a wrapper script that starts a process for some server. You start your container (for
example, using podman run -i), which runs the wrapper script, which in turn starts your process. Now say
that you want to kill your container with CTRL+C. If your wrapper script used exec to start the server
process, podman will send SIGINT to the server process, and everything will work as you expect. If you
didn’t use exec in your wrapper script, podman will send SIGINT to the process for the wrapper script
and your process will keep running like nothing happened.

Also note that your process runs as PID 1 when running in a container. This means that if your main
process terminates, the entire container is stopped, killing any child processes you may have launched
from your PID 1 process.

See the "Docker and the PID 1 zombie reaping problem" blog article for additional implications. Also see
the "Demystifying the init system (PID 1)" blog article for a deep dive on PID 1 and init systems.

Clean temporary files
All temporary files you create during the build process should be removed. This also includes any files
added with the ADD command. For example, we strongly recommended that you run the yum clean
command after performing yum install operations.

You can prevent the yum cache from ending up in an image layer by creating your RUN statement as
follows:

RUN yum -y install mypackage && yum -y install myotherpackage && yum clean all -y

Note that if you instead write:

RUN yum -y install mypackage
RUN yum -y install myotherpackage && yum clean all -y

Then the first yum invocation leaves extra files in that layer, and these files cannot be removed when
the yum clean operation is run later. The extra files are not visible in the final image, but they are
present in the underlying layers.

The current container build process does not allow a command run in a later layer to shrink the space
used by the image when something was removed in an earlier layer. However, this may change in the
future. This means that if you perform an rm command in a later layer, although the files are hidden it
does not reduce the overall size of the image to be downloaded. Therefore, as with the yum clean
example, it is best to remove files in the same command that created them, where possible, so they do
not end up written to a layer.

In addition, performing multiple commands in a single RUN statement reduces the number of layers in
your image, which improves download and extraction time.

Place instructions in the proper order
The container builder reads the Dockerfile and runs the instructions from top to bottom. Every
instruction that is successfully executed creates a layer which can be reused the next time this or
another image is built. It is very important to place instructions that will rarely change at the top of your
Dockerfile. Doing so ensures the next builds of the same image are very fast because the cache is not
invalidated by upper layer changes.

For example, if you are working on a Dockerfile that contains an ADD command to install a file you are
iterating on, and a RUN command to yum install a package, it is best to put the ADD command last:

OpenShift Container Platform 4.1 Images

14

http://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem/
https://felipec.wordpress.com/2013/11/04/init/

FROM foo
RUN yum -y install mypackage && yum clean all -y
ADD myfile /test/myfile

This way each time you edit myfile and rerun podman build or docker build, the system reuses the
cached layer for the yum command and only generates the new layer for the ADD operation.

If instead you wrote the Dockerfile as:

FROM foo
ADD myfile /test/myfile
RUN yum -y install mypackage && yum clean all -y

Then each time you changed myfile and reran podman build or docker build, the ADD operation
would invalidate the RUN layer cache, so the yum operation must be rerun as well.

Mark important ports
The EXPOSE instruction makes a port in the container available to the host system and other containers.
While it is possible to specify that a port should be exposed with a podman run invocation, using the
EXPOSE instruction in a Dockerfile makes it easier for both humans and software to use your image by
explicitly declaring the ports your software needs to run:

Exposed ports will show up under podman ps associated with containers created from your
image

Exposed ports will also be present in the metadata for your image returned by podman inspect

Exposed ports will be linked when you link one container to another

Set environment variables
It is good practice to set environment variables with the ENV instruction. One example is to set the
version of your project. This makes it easy for people to find the version without looking at the
Dockerfile. Another example is advertising a path on the system that could be used by another process,
such as JAVA_HOME.

Avoid default passwords
It is best to avoid setting default passwords. Many people will extend the image and forget to remove or
change the default password. This can lead to security issues if a user in production is assigned a well-
known password. Passwords should be configurable using an environment variable instead.

If you do choose to set a default password, ensure that an appropriate warning message is displayed
when the container is started. The message should inform the user of the value of the default password
and explain how to change it, such as what environment variable to set.

Avoid sshd
It is best to avoid running sshd in your image. You can use the podman exec or docker exec command
to access containers that are running on the local host. Alternatively, you can use the oc exec command
or the oc rsh command to access containers that are running on the OpenShift Container Platform
cluster. Installing and running sshd in your image opens up additional vectors for attack and
requirements for security patching.

Use volumes for persistent data
Images should use a volume for persistent data. This way OpenShift Container Platform mounts the
network storage to the node running the container, and if the container moves to a new node the
storage is reattached to that node. By using the volume for all persistent storage needs, the content is

CHAPTER 3. CREATING IMAGES

15

https://docs.docker.com/reference/builder/#volume

preserved even if the container is restarted or moved. If your image writes data to arbitrary locations
within the container, that content might not be preserved.

All data that needs to be preserved even after the container is destroyed must be written to a volume.
Container engines support a readonly flag for containers which can be used to strictly enforce good
practices about not writing data to ephemeral storage in a container. Designing your image around that
capability now will make it easier to take advantage of it later.

Furthermore, explicitly defining volumes in your Dockerfile makes it easy for consumers of the image to
understand what volumes they must define when running your image.

See the Kubernetes documentation for more information on how volumes are used in OpenShift
Container Platform.

NOTE

Even with persistent volumes, each instance of your image has its own volume, and the
filesystem is not shared between instances. This means the volume cannot be used to
share state in a cluster.

Additional resources

Docker documentation - Best practices for writing Dockerfiles

Project Atomic documentation - Guidance for Container Image Authors

3.1.2. OpenShift Container Platform-specific guidelines

The following are guidelines that apply when creating container images specifically for use on OpenShift
Container Platform.

Enable images for source-to-image (S2I)
For images that are intended to run application code provided by a third party, such as a Ruby image
designed to run Ruby code provided by a developer, you can enable your image to work with the
Source-to-Image (S2I) build tool. S2I is a framework which makes it easy to write images that take
application source code as an input and produce a new image that runs the assembled application as
output.

For example, this Python image defines S2I scripts for building various versions of Python applications.

Support arbitrary user ids
By default, OpenShift Container Platform runs containers using an arbitrarily assigned user ID. This
provides additional security against processes escaping the container due to a container engine
vulnerability and thereby achieving escalated permissions on the host node.

For an image to support running as an arbitrary user, directories and files that may be written to by
processes in the image should be owned by the root group and be read/writable by that group. Files to
be executed should also have group execute permissions.

Adding the following to your Dockerfile sets the directory and file permissions to allow users in the root
group to access them in the built image:

RUN chgrp -R 0 /some/directory && \
 chmod -R g=u /some/directory

OpenShift Container Platform 4.1 Images

16

https://kubernetes.io/docs/concepts/storage/volumes/
https://docs.docker.com/articles/dockerfile_best-practices/
http://www.projectatomic.io/docs/docker-image-author-guidance/
https://github.com/openshift/source-to-image
https://github.com/sclorg/s2i-python-container

Because the container user is always a member of the root group, the container user can read and write
these files.

WARNING

Care must be taken when altering the directories and file permissions of sensitive
areas of a container (no different than to a normal system).

If applied to sensitive areas, such as /etc/passwd, this can allow the modification of
such files by unintended users potentially exposing the container or host. CRI-O
supports the insertion of random user IDs into the container’s /etc/passwd, so
changing it’s permissions should never be required.

In addition, the processes running in the container must not listen on privileged ports (ports below
1024), since they are not running as a privileged user.

IMPORTANT

If your S2I image does not include a USER declaration with a numeric user, your builds will
fail by default. In order to allow images that use either named users or the root (0) user to
build in OpenShift Container Platform, you can add the project’s builder service account
(system:serviceaccount:<your-project>:builder) to the privileged security context
constraint (SCC). Alternatively, you can allow all images to run as any user.

Use services for inter-image communication
For cases where your image needs to communicate with a service provided by another image, such as a
web front end image that needs to access a database image to store and retrieve data, your image
should consume an OpenShift Container Platform service. Services provide a static endpoint for access
which does not change as containers are stopped, started, or moved. In addition, services provide load
balancing for requests.

Provide common libraries
For images that are intended to run application code provided by a third party, ensure that your image
contains commonly used libraries for your platform. In particular, provide database drivers for common
databases used with your platform. For example, provide JDBC drivers for MySQL and PostgreSQL if
you are creating a Java framework image. Doing so prevents the need for common dependencies to be
downloaded during application assembly time, speeding up application image builds. It also simplifies the
work required by application developers to ensure all of their dependencies are met.

Use environment variables for configuration
Users of your image should be able to configure it without having to create a downstream image based
on your image. This means that the runtime configuration should be handled using environment
variables. For a simple configuration, the running process can consume the environment variables
directly. For a more complicated configuration or for runtimes which do not support this, configure the
runtime by defining a template configuration file that is processed during startup. During this processing,
values supplied using environment variables can be substituted into the configuration file or used to
make decisions about what options to set in the configuration file.

It is also possible and recommended to pass secrets such as certificates and keys into the container



CHAPTER 3. CREATING IMAGES

17

It is also possible and recommended to pass secrets such as certificates and keys into the container
using environment variables. This ensures that the secret values do not end up committed in an image
and leaked into a container image registry.

Providing environment variables allows consumers of your image to customize behavior, such as
database settings, passwords, and performance tuning, without having to introduce a new layer on top
of your image. Instead, they can simply define environment variable values when defining a pod and
change those settings without rebuilding the image.

For extremely complex scenarios, configuration can also be supplied using volumes that would be
mounted into the container at runtime. However, if you elect to do it this way you must ensure that your
image provides clear error messages on startup when the necessary volume or configuration is not
present.

This topic is related to the Using Services for Inter-image Communication topic in that configuration like
datasources should be defined in terms of environment variables that provide the service endpoint
information. This allows an application to dynamically consume a datasource service that is defined in
the OpenShift Container Platform environment without modifying the application image.

In addition, tuning should be done by inspecting the cgroups settings for the container. This allows the
image to tune itself to the available memory, CPU, and other resources. For example, Java-based
images should tune their heap based on the cgroup maximum memory parameter to ensure they do not
exceed the limits and get an out-of-memory error.

See the following references for more on how to manage cgroup quotas in containers:

Blog article - Resource management in Docker

Docker documentation - Runtime Metrics

Blog article - Memory inside Linux containers

Set image metadata
Defining image metadata helps OpenShift Container Platform better consume your container images,
allowing OpenShift Container Platform to create a better experience for developers using your image.
For example, you can add metadata to provide helpful descriptions of your image, or offer suggestions
on other images that may also be needed.

Clustering
You must fully understand what it means to run multiple instances of your image. In the simplest case,
the load balancing function of a service handles routing traffic to all instances of your image. However,
many frameworks must share information in order to perform leader election or failover state; for
example, in session replication.

Consider how your instances accomplish this communication when running in OpenShift Container
Platform. Although pods can communicate directly with each other, their IP addresses change anytime
the pod starts, stops, or is moved. Therefore, it is important for your clustering scheme to be dynamic.

Logging
It is best to send all logging to standard out. OpenShift Container Platform collects standard out from
containers and sends it to the centralized logging service where it can be viewed. If you must separate
log content, prefix the output with an appropriate keyword, which makes it possible to filter the
messages.

If your image logs to a file, users must use manual operations to enter the running container and retrieve
or view the log file.

OpenShift Container Platform 4.1 Images

18

https://goldmann.pl/blog/2014/09/11/resource-management-in-docker
https://docs.docker.com/engine/admin/runmetrics/
http://fabiokung.com/2014/03/13/memory-inside-linux-containers

Liveness and readiness probes
Document example liveness and readiness probes that can be used with your image. These probes will
allow users to deploy your image with confidence that traffic will not be routed to the container until it is
prepared to handle it, and that the container will be restarted if the process gets into an unhealthy state.

Templates
Consider providing an example template with your image. A template will give users an easy way to
quickly get your image deployed with a working configuration. Your template should include the liveness
and readiness probes you documented with the image, for completeness.

Additional resources

Docker basics

Dockerfile reference

Project Atomic Guidance for Container Image Authors

3.2. INCLUDING METADATA IN IMAGES

Defining image metadata helps OpenShift Container Platform better consume your container images,
allowing OpenShift Container Platform to create a better experience for developers using your image.
For example, you can add metadata to provide helpful descriptions of your image, or offer suggestions
on other images that may also be needed.

This topic only defines the metadata needed by the current set of use cases. Additional metadata or use
cases may be added in the future.

3.2.1. Defining image metadata

You can use the LABEL instruction in a Dockerfile to define image metadata. Labels are similar to
environment variables in that they are key value pairs attached to an image or a container. Labels are
different from environment variable in that they are not visible to the running application and they can
also be used for fast look-up of images and containers.

Docker documentation for more information on the LABEL instruction.

The label names should typically be namespaced. The namespace should be set accordingly to reflect
the project that is going to pick up the labels and use them. For OpenShift Container Platform the
namespace should be set to io.openshift and for Kubernetes the namespace is io.k8s.

See the Docker custom metadata documentation for details about the format.

Table 3.1. Supported Metadata

Variable Description

io.openshift.tags This label contains a list of tags represented as list of comma-separated string
values. The tags are the way to categorize the container images into broad
areas of functionality. Tags help UI and generation tools to suggest relevant
container images during the application creation process.

LABEL io.openshift.tags mongodb,mongodb24,nosql

CHAPTER 3. CREATING IMAGES

19

https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/reference/builder/
http://www.projectatomic.io/docs/docker-image-author-guidance
https://docs.docker.com/engine/reference/builder/#label
https://docs.docker.com/engine/userguide/labels-custom-metadata

io.openshift.wants Specifies a list of tags that the generation tools and the UI might use to provide
relevant suggestions if you don’t have the container images with given tags
already. For example, if the container image wants mysql and redis and you
don’t have the container image with redis tag, then UI might suggest you to
add this image into your deployment.

LABEL io.openshift.wants mongodb,redis

io.k8s.description This label can be used to give the container image consumers more detailed
information about the service or functionality this image provides. The UI can
then use this description together with the container image name to provide
more human friendly information to end users.

LABEL io.k8s.description The MySQL 5.5 Server with master-slave
replication support

io.openshift.non-
scalable

An image might use this variable to suggest that it does not support scaling.
The UI will then communicate this to consumers of that image. Being not-
scalable basically means that the value of replicas should initially not be set
higher than 1.

LABEL io.openshift.non-scalable true

io.openshift.min-
memory and
io.openshift.min-cpu

This label suggests how much resources the container image might need in
order to work properly. The UI might warn the user that deploying this container
image may exceed their user quota. The values must be compatible with
Kubernetes quantity.

LABEL io.openshift.min-memory 8Gi
LABEL io.openshift.min-cpu 4

Variable Description

3.3. TESTING S2I IMAGES

As an Source-to-Image (S2I) builder image author, you can test your S2I image locally and use the
OpenShift Container Platform build system for automated testing and continuous integration.

S2I requires the assemble and run scripts to be present in order to successfully run the S2I build.
Providing the save-artifacts script reuses the build artifacts, and providing the usage script ensures
that usage information is printed to console when someone runs the container image outside of the S2I.

The goal of testing an S2I image is to make sure that all of these described commands work properly,
even if the base container image has changed or the tooling used by the commands was updated.

3.3.1. Understanding testing requirements

OpenShift Container Platform 4.1 Images

20

The standard location for the test script is test/run. This script is invoked by the OpenShift Container
Platform S2I image builder and it could be a simple Bash script or a static Go binary.

The test/run script performs the S2I build, so you must have the S2I binary available in your $PATH. If
required, follow the installation instructions in the S2I README.

S2I combines the application source code and builder image, so in order to test it you need a sample
application source to verify that the source successfully transforms into a runnable container image. The
sample application should be simple, but it should exercise the crucial steps of assemble and run
scripts.

3.3.2. Generating scripts and tools

The S2I tooling comes with powerful generation tools to speed up the process of creating a new S2I
image. The s2i create command produces all the necessary S2I scripts and testing tools along with the
Makefile:

$ s2i create _<image name>_ _<destination directory>_

The generated test/run script must be adjusted to be useful, but it provides a good starting point to
begin developing.

NOTE

The test/run script produced by the s2i create command requires that the sample
application sources are inside the test/test-app directory.

3.3.3. Testing locally

The easiest way to run the S2I image tests locally is to use the generated Makefile.

If you did not use the s2i create command, you can copy the following Makefile template and replace
the IMAGE_NAME parameter with your image name.

Sample Makefile

IMAGE_NAME = openshift/ruby-20-centos7
CONTAINER_ENGINE := $(shell command -v podman 2> /dev/null | echo docker)

build:
 ${CONTAINER_ENGINE} build -t $(IMAGE_NAME) .

.PHONY: test
test:
 ${CONTAINER_ENGINE} build -t $(IMAGE_NAME)-candidate .
 IMAGE_NAME=$(IMAGE_NAME)-candidate test/run

3.3.4. Basic testing workflow

The test script assumes you have already built the image you want to test. If required, first build the S2I
image. Run one of the following commands:

If you use Podman, run the following command:

CHAPTER 3. CREATING IMAGES

21

https://github.com/openshift/source-to-image/blob/master/README.md#installation

$ podman build -t _<BUILDER_IMAGE_NAME>_

If you use Docker, run the following command:

$ docker build -t _<BUILDER_IMAGE_NAME>_

The following steps describe the default workflow to test S2I image builders:

1. Verify the usage script is working:

If you use Podman, run the following command:

$ podman run _<BUILDER_IMAGE_NAME>_ .

If you use Docker, run the following command:

$ docker run _<BUILDER_IMAGE_NAME>_ .

2. Build the image:

$ s2i build file:///path-to-sample-app _<BUILDER_IMAGE_NAME>_
_<OUTPUT_APPLICATION_IMAGE_NAME>_

3. Optional: if you support save-artifacts, run step 2 once again to verify that saving and restoring
artifacts works properly.

4. Run the container:

If you use Podman, run the following command:

$ podman run _<OUTPUT_APPLICATION_IMAGE_NAME>_

If you use Docker, run the following command:

$ docker run _<OUTPUT_APPLICATION_IMAGE_NAME>_

5. Verify the container is running and the application is responding.

Running these steps is generally enough to tell if the builder image is working as expected.

3.3.5. Using OpenShift Container Platform for building the image

Once you have a Dockerfile and the other artifacts that make up your new S2I builder image, you can
put them in a git repository and use OpenShift Container Platform to build and push the image. Simply
define a Docker build that points to your repository.

If your OpenShift Container Platform instance is hosted on a public IP address, the build can be
triggered each time you push into your S2I builder image GitHub repository.

You can also use the ImageChangeTrigger to trigger a rebuild of your applications that are based on
the S2I builder image you updated.

OpenShift Container Platform 4.1 Images

22

CHAPTER 4. MANAGING IMAGES

4.1. MANAGING IMAGES OVERVIEW

With OpenShift Container Platform you can interact with images and set up imagestreams, depending
on where the images' registries are located, any authentication requirements around those registries,
and how you want your builds and deployments to behave.

4.1.1. Images overview

An imagestream comprises any number of container images identified by tags. It presents a single virtual
view of related images, similar to a container image repository.

By watching an imagestream, builds and deployments can receive notifications when new images are
added or modified and react by performing a build or deployment, respectively.

4.2. TAGGING IMAGES

The following sections provide an overview and instructions for using image tags in the context of
container images for working with OpenShift Container Platform imagestreams and their tags.

4.2.1. Image tags

An image tag is a label applied to a container image in a repository that distinguishes a specific image
from other images in an imagestream. Typically, the tag represents a version number of some sort. For
example, here v3.11.59-2 is the tag:

registry.access.redhat.com/openshift3/jenkins-2-rhel7:v3.11.59-2

You can add additional tags to an image. For example, an image might be assigned the tags :v3.11.59-2
and :latest.

OpenShift Container Platform provides the oc tag command, which is similar to the docker tag
command, but operates on imagestreams instead of directly on images.

4.2.2. Image tag conventions

Images evolve over time and their tags reflect this. Generally, an image tag always points to the latest
image built.

If there is too much information embedded in a tag name, like v2.0.1-may-2019, the tag points to just
one revision of an image and is never updated. Using default image pruning options, such an image is
never removed. In very large clusters, the schema of creating new tags for every revised image could
eventually fill up the etcd datastore with excess tag metadata for images that are long outdated.

If the tag is named v2.0, image revisions are more likely. This results in longer tag history and, therefore,
the image pruner is more likely to remove old and unused images.

Although tag naming convention is up to you, here are a few examples in the format <image_name>:
<image_tag>:

Table 4.1. Image tag naming conventions

CHAPTER 4. MANAGING IMAGES

23

Description Example

Revision myimage:v2.0.1

Architecture myimage:v2.0-x86_64

Base image myimage:v1.2-centos7

Latest (potentially unstable) myimage:latest

Latest stable myimage:stable

If you require dates in tag names, periodically inspect old and unsupported images and istags and
remove them. Otherwise, you can experience increasing resource usage caused by retaining old images.

4.2.3. Adding tags to imagestreams

An imagestream in OpenShift Container Platform comprises zero or more container images identified
by tags.

There are different types of tags available. The default behavior uses a permanent tag, which points to a
specific image in time. If the _permanent_tag is in use and the source changes, the tag does not change
for the destination.

A tracking tag means the destination tag’s metadata is updated during the import of the source tag.

Procedure

You can add tags to an imagestream using the oc tag command:

$ oc tag <source> <destination>

For example, to configure the ruby imagestreams static-2.0 tag to always refer to the current
image for the ruby imagestreams 2.0 tag:

$ oc tag ruby:2.0 ruby:static-2.0

This creates a new imagestreamtag named static-2.0 in the ruby imagestream. The new tag
directly references the image id that the ruby:2.0 imagestreamtag pointed to at the time oc
tag was run, and the image it points to never changes.

To ensure the destination tag is updated whenever the source tag changes, use the --
alias=true flag:

$ oc tag --alias=true <source> <destination>

NOTE

Use a tracking tag for creating permanent aliases, for example, latest or stable. The tag
only works correctly within a single imagestream. Trying to create a cross-imagestream
alias produces an error.

OpenShift Container Platform 4.1 Images

24

You can also add the --scheduled=true flag to have the destination tag be refreshed, or re-
imported, periodically. The period is configured globally at the system level.

The --reference flag creates an imagestreamtag that is not imported. The tag points to the
source location, permanently.
If you want to instruct OpenShift to always fetch the tagged image from the integrated registry,
use --reference-policy=local. The registry uses the pull-through feature to serve the image to
the client. By default, the image blobs are mirrored locally by the registry. As a result, they can
be pulled more quickly the next time they are needed. The flag also allows for pulling from
insecure registries without a need to supply --insecure-registry to the container runtime as
long as the imagestream has an insecure annotation or the tag has an insecure import policy.

4.2.4. Removing tags from imagestreams

You can remove tags from an imagestream.

Procedure

To remove a tag completely from an imagestream run:

$ oc delete istag/ruby:latest

or:

$ oc tag -d ruby:latest

4.2.5. Referencing images in imagestreams

You can use tags to reference images in imagestreams using the following reference types.

Table 4.2. Imagestream reference types

Reference type Description

ImageStreamTag An ImageStreamTag is used to reference or
retrieve an image for a given imagestream and tag.

ImageStreamImage An ImageStreamImage is used to reference or
retrieve an image for a given imagestream and image
sha ID.

DockerImage A DockerImage is used to reference or retrieve an
image for a given external registry. It uses standard
Docker pull specification for its name.

When viewing example imagestream definitions you may notice they contain definitions of
ImageStreamTag and references to DockerImage, but nothing related to ImageStreamImage.

This is because the ImageStreamImage objects are automatically created in OpenShift Container
Platform when you import or tag an image into the imagestream. You should never have to explicitly
define an ImageStreamImage object in any imagestream definition that you use to create
imagestreams.

CHAPTER 4. MANAGING IMAGES

25

Procedure

To reference an image for a given imagestream and tag, use ImageStreamTag:

<image_stream_name>:<tag>

To reference an image for a given imagestream and image sha ID, use ImageStreamImage:

<image_stream_name>@<id>

The <id> is an immutable identifier for a specific image, also called a digest.

To reference or retrieve an image for a given external registry, use DockerImage:

openshift/ruby-20-centos7:2.0

NOTE

When no tag is specified, it is assumed the latest tag is used.

You can also reference a third-party registry:

registry.redhat.io/rhel7:latest

Or an image with a digest:

centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8986b2
8e

4.2.6. Additional information

Example imagestream definitions for CentOS imagestreams.

4.3. IMAGE PULL POLICY

Each container in a Pod has a container image. Once you have created an image and pushed it to a
registry, you can then refer to it in the Pod.

4.3.1. Image pull policy overview

When OpenShift Container Platform creates containers, it uses the container’s imagePullPolicy to
determine if the image should be pulled prior to starting the container. There are three possible values
for imagePullPolicy:

Table 4.3. imagePullPolicy values

Value Description

Always Always pull the image.

OpenShift Container Platform 4.1 Images

26

https://github.com/openshift/origin/blob/master/examples/image-streams/image-streams-centos7.json

IfNotPresent Only pull the image if it does not already exist on the
node.

Never Never pull the image.

Value Description

If a container’s imagePullPolicy parameter is not specified, OpenShift Container Platform sets it based
on the image’s tag:

1. If the tag is latest, OpenShift Container Platform defaults imagePullPolicy to Always.

2. Otherwise, OpenShift Container Platform defaults imagePullPolicy to IfNotPresent.

4.4. USING IMAGE PULL SECRETS

If you are using OpenShift Container Platform’s internal registry and are pulling from imagestreams
located in the same project, then your Pod’s service account should already have the correct
permissions and no additional action should be required.

However, for other scenarios, such as referencing images across OpenShift Container Platform projects
or from secured registries, then additional configuration steps are required.

4.4.1. Allowing Pods to reference images across projects

When using the internal registry, to allow Pods in project-a to reference images in project-b, a service
account in project-a must be bound to the system:image-puller role in project-b.

Procedure

1. To allow Pods in project-a to reference images in project-b, bind a service account in project-
a to the system:image-puller role in project-b:

$ oc policy add-role-to-user \
 system:image-puller system:serviceaccount:project-a:default \
 --namespace=project-b

After adding that role, the pods in project-a that reference the default service account are able
to pull images from project-b.

2. To allow access for any service account in project-a, use the group:

$ oc policy add-role-to-group \
 system:image-puller system:serviceaccounts:project-a \
 --namespace=project-b

4.4.2. Allowing Pods to reference images from other secured registries

The .dockercfg $HOME/.docker/config.json file for Docker clients is a Docker credentials file that
stores your authentication information if you have previously logged into a secured or insecure registry.

CHAPTER 4. MANAGING IMAGES

27

To pull a secured container image that is not from OpenShift Container Platform’s internal registry, you
must create a pull secret from your Docker credentials and add it to your service account.

Procedure

If you already have a .dockercfg file for the secured registry, you can create a secret from that
file by running:

$ oc create secret generic <pull_secret_name> \
 --from-file=.dockercfg=<path/to/.dockercfg> \
 --type=kubernetes.io/dockercfg

Or if you have a $HOME/.docker/config.json file:

$ oc create secret generic <pull_secret_name> \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

If you do not already have a Docker credentials file for the secured registry, you can create a
secret by running:

$ oc create secret docker-registry <pull_secret_name> \
 --docker-server=<registry_server> \
 --docker-username=<user_name> \
 --docker-password=<password> \
 --docker-email=<email>

To use a secret for pulling images for Pods, you must add the secret to your service account.
The name of the service account in this example should match the name of the service account
the Pod uses. default is the default service account:

$ oc secrets link default <pull_secret_name> --for=pull

To use a secret for pushing and pulling build images, the secret must be mountable inside of a
Pod. You can do this by running:

$ oc secrets link builder <pull_secret_name>

4.4.2.1. Pulling from private registries with delegated authentication

A private registry can delegate authentication to a separate service. In these cases, image pull secrets
must be defined for both the authentication and registry endpoints.

Procedure

1. Create a secret for the delegated authentication server:

$ oc create secret docker-registry \
 --docker-server=sso.redhat.com \
 --docker-username=developer@example.com \
 --docker-password=******** \
 --docker-email=unused \

OpenShift Container Platform 4.1 Images

28

 redhat-connect-sso

secret/redhat-connect-sso

2. Create a secret for the private registry:

$ oc create secret docker-registry \
 --docker-server=privateregistry.example.com \
 --docker-username=developer@example.com \
 --docker-password=******** \
 --docker-email=unused \
 private-registry

secret/private-registry

CHAPTER 4. MANAGING IMAGES

29

CHAPTER 5. MANAGING IMAGESTREAMS
Imagestreams provide a means of creating and updating container images in an on-going way. As
improvements are made to an image, tags can be used to assign new version numbers and keep track of
changes. This document describes how image streams are managed.

5.1. USING IMAGESTREAMS

An imagestream and its associated tags provide an abstraction for referencing container images from
within OpenShift Container Platform. The imagestream and its tags allow you to see what images are
available and ensure that you are using the specific image you need even if the image in the repository
changes.

Imagestreams do not contain actual image data, but present a single virtual view of related images,
similar to an image repository.

You can configure Builds and Deployments to watch an imagestream for notifications when new images
are added and react by performing a Build or Deployment, respectively.

For example, if a Deployment is using a certain image and a new version of that image is created, a
Deployment could be automatically performed to pick up the new version of the image.

However, if the imagestreamtag used by the Deployment or Build is not updated, then even if the
container image in the container image registry is updated, the Build or Deployment will continue using
the previous, presumably known good image.

The source images can be stored in any of the following:

OpenShift Container Platform’s integrated registry.

An external registry, for example registry.redhat.io or hub.docker.com.

Other imagestreams in the OpenShift Container Platform cluster.

When you define an object that references an imagestreamtag (such as a Build or Deployment
configuration), you point to an imagestreamtag, not the Docker repository. When you Build or Deploy
your application, OpenShift Container Platform queries the Docker repository using the
imagestreamtag to locate the associated ID of the image and uses that exact image.

The imagestream metadata is stored in the etcd instance along with other cluster information.

Using imagestreams has several significant benefits:

You can tag, rollback a tag, and quickly deal with images, without having to re-push using the
command line.

You can trigger Builds and Deployments when a new image is pushed to the registry. Also,
OpenShift Container Platform has generic triggers for other resources, such as Kubernetes
objects.

You can mark a tag for periodic re-import. If the source image has changed, that change is
picked up and reflected in the imagestream, which triggers the Build and/or Deployment flow,
depending upon the Build or Deployment configuration.

You can share images using fine-grained access control and quickly distribute images across
your teams.

OpenShift Container Platform 4.1 Images

30

1

2

3

If the source image changes, the imagestreamtag will still point to a known-good version of the
image, ensuring that your application will not break unexpectedly.

You can configure security around who can view and use the images through permissions on the
imagestream objects.

Users that lack permission to read or list images on the cluster level can still retrieve the images
tagged in a project using imagestreams.

5.2. CONFIGURING IMAGESTREAMS

An imagestream object file contains the following elements.

Imagestream object definition

The name of the imagestream.

Docker repository path where new images can be pushed to add/update them in this imagestream.

The SHA identifier that this imagestreamtag currently references. Resources that reference this
imagestreamtag use this identifier.

The SHA identifier that this imagestreamtag previously referenced. Can be used to rollback to an

apiVersion: v1
kind: ImageStream
metadata:
 annotations:
 openshift.io/generated-by: OpenShiftNewApp
 creationTimestamp: 2017-09-29T13:33:49Z
 generation: 1
 labels:
 app: ruby-sample-build
 template: application-template-stibuild
 name: origin-ruby-sample 1
 namespace: test
 resourceVersion: "633"
 selflink: /oapi/v1/namespaces/test/imagestreams/origin-ruby-sample
 uid: ee2b9405-c68c-11e5-8a99-525400f25e34
spec: {}
status:
 dockerImageRepository: 172.30.56.218:5000/test/origin-ruby-sample 2
 tags:
 - items:
 - created: 2017-09-02T10:15:09Z
 dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d 3
 generation: 2
 image: sha256:909de62d1f609a717ec433cc25ca5cf00941545c83a01fb31527771e1fab3fc5 4
 - created: 2017-09-29T13:40:11Z
 dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:909de62d1f609a717ec433cc25ca5cf00941545c83a01fb31527771e1fab3fc5
 generation: 1
 image: sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d
 tag: latest 5

CHAPTER 5. MANAGING IMAGESTREAMS

31

4

5

The SHA identifier that this imagestreamtag previously referenced. Can be used to rollback to an
older image.

The imagestreamtag name.

5.3. IMAGESTREAM IMAGES

An imagestream image points from within an imagestream to a particular image ID.

Imagestream images allow you to retrieve metadata about an image from a particular imagestream
where it is tagged.

Imagestream image objects are automatically created in OpenShift Container Platform whenever you
import or tag an image into the imagestream. You should never have to explicitly define an imagestream
image object in any imagestream definition that you use to create imagestreams.

The imagestream image consists of the imagestream name and image ID from the repository, delimited
by an @ sign:

<image-stream-name>@<image-id>

To refer to the image in the imagestream object example, the imagestream image looks like:

origin-ruby-
sample@sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d

5.4. IMAGESTREAMTAGS

An imagestreamtag is a named pointer to an image in an imagestream. It is often abbreviated as istag. An
imagestreamtag is used to reference or retrieve an image for a given imagestream and tag.

Imagestreamtags can reference any local or externally managed image. It contains a history of images
represented as a stack of all images the tag ever pointed to. Whenever a new or existing image is tagged
under particular image stream tag, it is placed at the first position in the history stack. The image
previously occupying the top position will be available at the second position, and so forth. This allows
for easy rollbacks to make tags point to historical images again.

The following imagestreamtag is from an imagestream object:

Imagestreamtag with two images in its history

 tags:
 - items:
 - created: 2017-09-02T10:15:09Z
 dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d
 generation: 2
 image: sha256:909de62d1f609a717ec433cc25ca5cf00941545c83a01fb31527771e1fab3fc5
 - created: 2017-09-29T13:40:11Z
 dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:909de62d1f609a717ec433cc25ca5cf00941545c83a01fb31527771e1fab3fc5

OpenShift Container Platform 4.1 Images

32

Imagestreamtags can be permanent tags or tracking tags.

Permanent tags are version-specific tags that point to a particular version of an image, such as
Python 3.5.

Tracking tags are reference tags that follow another imagestreamtag and could be updated in
the future to change which image they follow, much like a symlink. Note that these new levels
are not guaranteed to be backwards-compatible.
For example, the latest imagestreamtags that ship with OpenShift Container Platform are
tracking tags. This means consumers of the latest imagestreamtag will be updated to the
newest level of the framework provided by the image when a new level becomes available. A
latest imagestreamtag to v3.10 could be changed to v3.11 at any time. It is important to be
aware that these latest image stream tags behave differently than the Docker latest tag. The
latest image stream tag, in this case, does not point to the latest image in the Docker repository.
It points to another imagestreamtag, which might not be the latest version of an image. For
example, if the latest imagestreamtag points to v3.10 of an image, when the 3.11 version is
released, the latest tag is not automatically updated to v3.11, and remains at v3.10 until it is
manually updated to point to a v3.11 imagestreamtag.

NOTE

Tracking tags are limited to a single imagestream and cannot reference other
imagestreams.

You can create your own imagestreamtags for your own needs.

The imagestreamtag is composed of the name of the imagestream and a tag, separated by a colon:

<imagestream name>:<tag>

For example, to refer to the
sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d image in the
imagestream object example earlier, the imagestreamtag would be:

origin-ruby-sample:latest

5.5. IMAGESTREAM CHANGE TRIGGERS

Imagestream triggers allow your Builds and Deployments to be automatically invoked when a new
version of an upstream image is available.

For example, Builds and Deployments can be automatically started when an image stream tag is
modified. This is achieved by monitoring that particular image stream tag and notifying the Build or
Deployment when a change is detected.

5.6. IMAGESTREAM MAPPING

When the integrated registry receives a new image, it creates and sends an image stream mapping to
OpenShift Container Platform, providing the image’s project, name, tag, and image metadata.

 generation: 1
 image: sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d
 tag: latest

CHAPTER 5. MANAGING IMAGESTREAMS

33

NOTE

Configuring imagestream mappings is an advanced feature.

This information is used to create a new image (if it does not already exist) and to tag the image into the
imagestream. OpenShift Container Platform stores complete metadata about each image, such as
commands, entry point, and environment variables. Images in OpenShift Container Platform are
immutable and the maximum name length is 63 characters.

The following imagestream mapping example results in an image being tagged as test/origin-ruby-
sample:latest:

Imagestream mapping object definition

apiVersion: v1
kind: ImageStreamMapping
metadata:
 creationTimestamp: null
 name: origin-ruby-sample
 namespace: test
tag: latest
image:
 dockerImageLayers:
 - name: sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef
 size: 0
 - name: sha256:ee1dd2cb6df21971f4af6de0f1d7782b81fb63156801cfde2bb47b4247c23c29
 size: 196634330
 - name: sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef
 size: 0
 - name: sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef
 size: 0
 - name: sha256:ca062656bff07f18bff46be00f40cfbb069687ec124ac0aa038fd676cfaea092
 size: 177723024
 - name: sha256:63d529c59c92843c395befd065de516ee9ed4995549f8218eac6ff088bfa6b6e
 size: 55679776
 - name: sha256:92114219a04977b5563d7dff71ec4caa3a37a15b266ce42ee8f43dba9798c966
 size: 11939149
 dockerImageMetadata:
 Architecture: amd64
 Config:
 Cmd:
 - /usr/libexec/s2i/run
 Entrypoint:
 - container-entrypoint
 Env:
 - RACK_ENV=production
 - OPENSHIFT_BUILD_NAMESPACE=test
 - OPENSHIFT_BUILD_SOURCE=https://github.com/openshift/ruby-hello-world.git
 - EXAMPLE=sample-app
 - OPENSHIFT_BUILD_NAME=ruby-sample-build-1
 - PATH=/opt/app-root/src/bin:/opt/app-
root/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 - STI_SCRIPTS_URL=image:///usr/libexec/s2i
 - STI_SCRIPTS_PATH=/usr/libexec/s2i
 - HOME=/opt/app-root/src
 - BASH_ENV=/opt/app-root/etc/scl_enable

OpenShift Container Platform 4.1 Images

34

 - ENV=/opt/app-root/etc/scl_enable
 - PROMPT_COMMAND=. /opt/app-root/etc/scl_enable
 - RUBY_VERSION=2.2
 ExposedPorts:
 8080/tcp: {}
 Labels:
 build-date: 2015-12-23
 io.k8s.description: Platform for building and running Ruby 2.2 applications
 io.k8s.display-name: 172.30.56.218:5000/test/origin-ruby-sample:latest
 io.openshift.build.commit.author: Ben Parees <bparees@users.noreply.github.com>
 io.openshift.build.commit.date: Wed Jan 20 10:14:27 2016 -0500
 io.openshift.build.commit.id: 00cadc392d39d5ef9117cbc8a31db0889eedd442
 io.openshift.build.commit.message: 'Merge pull request #51 from php-coder/fix_url_and_sti'
 io.openshift.build.commit.ref: master
 io.openshift.build.image: centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8986b28e
 io.openshift.build.source-location: https://github.com/openshift/ruby-hello-world.git
 io.openshift.builder-base-version: 8d95148
 io.openshift.builder-version: 8847438ba06307f86ac877465eadc835201241df
 io.openshift.s2i.scripts-url: image:///usr/libexec/s2i
 io.openshift.tags: builder,ruby,ruby22
 io.s2i.scripts-url: image:///usr/libexec/s2i
 license: GPLv2
 name: CentOS Base Image
 vendor: CentOS
 User: "1001"
 WorkingDir: /opt/app-root/src
 Container: 86e9a4a3c760271671ab913616c51c9f3cea846ca524bf07c04a6f6c9e103a76
 ContainerConfig:
 AttachStdout: true
 Cmd:
 - /bin/sh
 - -c
 - tar -C /tmp -xf - && /usr/libexec/s2i/assemble
 Entrypoint:
 - container-entrypoint
 Env:
 - RACK_ENV=production
 - OPENSHIFT_BUILD_NAME=ruby-sample-build-1
 - OPENSHIFT_BUILD_NAMESPACE=test
 - OPENSHIFT_BUILD_SOURCE=https://github.com/openshift/ruby-hello-world.git
 - EXAMPLE=sample-app
 - PATH=/opt/app-root/src/bin:/opt/app-
root/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 - STI_SCRIPTS_URL=image:///usr/libexec/s2i
 - STI_SCRIPTS_PATH=/usr/libexec/s2i
 - HOME=/opt/app-root/src
 - BASH_ENV=/opt/app-root/etc/scl_enable
 - ENV=/opt/app-root/etc/scl_enable
 - PROMPT_COMMAND=. /opt/app-root/etc/scl_enable
 - RUBY_VERSION=2.2
 ExposedPorts:
 8080/tcp: {}
 Hostname: ruby-sample-build-1-build
 Image: centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8986b28e

CHAPTER 5. MANAGING IMAGESTREAMS

35

5.7. WORKING WITH IMAGESTREAMS

The following sections describe how to use imagestreams and imagestreamtags.

5.7.1. Getting information about imagestreams

You can get general information about the imagestream and detailed information about all the tags it is
pointing to.

Procedure

Get general information about the imagestream and detailed information about all the tags it is
pointing to:

$ oc describe is/<image-name>

For example:

$ oc describe is/python

Name: python
Namespace: default
Created: About a minute ago
Labels: <none>
Annotations: openshift.io/image.dockerRepositoryCheck=2017-10-02T17:05:11Z
Docker Pull Spec: docker-registry.default.svc:5000/default/python
Image Lookup: local=false
Unique Images: 1
Tags: 1

3.5
 tagged from centos/python-35-centos7

 * centos/python-35-
centos7@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
 About a minute ago

Get all the information available about particular imagestreamtag:

 OpenStdin: true
 StdinOnce: true
 User: "1001"
 WorkingDir: /opt/app-root/src
 Created: 2016-01-29T13:40:00Z
 DockerVersion: 1.8.2.fc21
 Id: 9d7fd5e2d15495802028c569d544329f4286dcd1c9c085ff5699218dbaa69b43
 Parent: 57b08d979c86f4500dc8cad639c9518744c8dd39447c055a3517dc9c18d6fccd
 Size: 441976279
 apiVersion: "1.0"
 kind: DockerImage
 dockerImageMetadataVersion: "1.0"
 dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d

OpenShift Container Platform 4.1 Images

36

$ oc describe istag/<image-stream>:<tag-name>

For example:

$ oc describe istag/python:latest

Image Name: sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
Docker Image: centos/python-35-
centos7@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
Name: sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
Created: 2 minutes ago
Image Size: 251.2 MB (first layer 2.898 MB, last binary layer 72.26 MB)
Image Created: 2 weeks ago
Author: <none>
Arch: amd64
Entrypoint: container-entrypoint
Command: /bin/sh -c $STI_SCRIPTS_PATH/usage
Working Dir: /opt/app-root/src
User: 1001
Exposes Ports: 8080/tcp
Docker Labels: build-date=20170801

NOTE

More information is output than shown.

5.7.2. Adding tags to an imagestream

You can add additional tags to imagestreams.

Procedure

Add a tag that points to one of the existing tags by using the oc tag command:

$ oc tag <image-name:tag1> <image-name:tag2>

For example:

$ oc tag python:3.5 python:latest

Tag python:latest set to
python@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25.

Confirm the imagestream has two tags, one (3.5) pointing at the external container image and
another tag (latest) pointing to the same image because it was created based on the first tag.

$ oc describe is/python

Name: python
Namespace: default
Created: 5 minutes ago
Labels: <none>
Annotations: openshift.io/image.dockerRepositoryCheck=2017-10-02T17:05:11Z

CHAPTER 5. MANAGING IMAGESTREAMS

37

Docker Pull Spec: docker-registry.default.svc:5000/default/python
Image Lookup: local=false
Unique Images: 1
Tags: 2

latest
 tagged from
python@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25

 * centos/python-35-
centos7@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
 About a minute ago

3.5
 tagged from centos/python-35-centos7

 * centos/python-35-
centos7@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
 5 minutes ago

5.7.3. Adding tags for an external image

You can add tags for external images.

Procedure

Add tags pointing to internal or external images, by using the oc tag command for all tag-
related operations:

$ oc tag <repository/image> <image-name:tag>

For example, this command maps the docker.io/python:3.6.0 image to the 3.6 tag in the
python imagestream.

$ oc tag docker.io/python:3.6.0 python:3.6
Tag python:3.6 set to docker.io/python:3.6.0.

If the external image is secured, you must create a secret with credentials for accessing that
registry.

5.7.4. Updating imagestreamtags

You can update a tag to reflect another tag in an imagestream.

Procedure

Update a tag:

$ oc tag <image-name:tag> <image-name:latest>

For example, the following updates the latest tag to reflect the 3.6 tag in an imagestream:

OpenShift Container Platform 4.1 Images

38

$ oc tag python:3.6 python:latest
Tag python:latest set to
python@sha256:438208801c4806548460b27bd1fbcb7bb188273d13871ab43f.

5.7.5. Removing imagestreamtags

You can remove old tags from an imagestream.

Procedure

Remove old tags from an imagestream:

$ oc tag -d <image-name:tag>

For example:

$ oc tag -d python:3.5

Deleted tag default/python:3.5.

5.7.6. Configuring periodic importing of imagestreamtags

When working with an external container image registry, to periodically re-import an image, for example
to get latest security updates, you can use the --scheduled flag.

Procedure

1. Schedule importing images:

$ oc tag <repositiory/image> <image-name:tag> --scheduled

For example:

$ oc tag docker.io/python:3.6.0 python:3.6 --scheduled

Tag python:3.6 set to import docker.io/python:3.6.0 periodically.

This command causes OpenShift Container Platform to periodically update this particular image
stream tag. This period is a cluster-wide setting set to 15 minutes by default.

2. Remove the periodic check, re-run above command but omit the --scheduled flag. This will
reset its behavior to default.

$ oc tag <repositiory/image> <image-name:tag>

CHAPTER 5. MANAGING IMAGESTREAMS

39

CHAPTER 6. IMAGE CONFIGURATION RESOURCES
Use the following procedure to configure image registries.

6.1. IMAGE CONTROLLER CONFIGURATION PARAMETERS

The image.config.openshift.io/cluster resource offers the following configuration parameters.

Parameter Description

Image Holds cluster-wide information about how to handle images. The canonical, and
only valid name is cluster.

spec: Holds user-settable values for configuration. You can edit the spec
subsection.

status: Holds observed values from the cluster.

ImageSpec allowedRegistriesForImport: Limits the container image registries from
which normal users may import images. Set this list to the registries that you
trust to contain valid images, and that you want applications to be able to
import from. Users with permission to create images or
ImageStreamMappings from the API are not affected by this policy.
Typically only cluster administrators will have the appropriate permissions.

additionalTrustedCA: A reference to a ConfigMap containing additional CAs
that should be trusted during ImageStream import, pod image pull,
openshift-image-registry pullthrough, and builds.

The namespace for this ConfigMap is openshift-config. The format of the
ConfigMap is to use the registry hostname as the key, and the PEM-encoded
certificate as the value, for each additional registry CA to trust.

registrySources: Contains configuration that determines how the container
runtime should treat individual registries when accessing images for builds and
pods. For instance, whether or not to allow insecure access. It does not contain
configuration for the internal cluster registry.

ImageStatus internalRegistryHostname: Set by the Image Registry Operator, which
controls the internalRegistryHostname. It sets the hostname for the
default internal image registry. The value must be in hostname[:port] format.
For backward compatibility, you can still use the
OPENSHIFT_DEFAULT_REGISTRY environment variable, but this setting
overrides the environment variable.

externalRegistryHostnames: Provides the hostnames for the default
external image registry. The external hostname should be set only when the
image registry is exposed externally. The first value is used in
publicDockerImageRepository field in ImageStreams. The value must be
in hostname[:port] format.

OpenShift Container Platform 4.1 Images

40

RegistryLocation Contains a location of the registry specified by the registry domain name. The
domain name might include wildcards.

domainName: Specifies a domain name for the registry. In case the registry
uses a non-standard (80 or 443) port, the port should be included in the
domain name as well.

insecure: Insecure indicates whether the registry is secure or insecure. By
default, if not otherwise specified, the registry is assumed to be secure.

RegistrySources Holds cluster-wide information about how to handle the registries config.

insecureRegistries: Registries which do not have a valid TLS certificate or
only support HTTP connections.

blockedRegistries: Blacklisted for image pull and push actions. All other
registries are allowed.

allowedRegistries: Whitelisted for image pull and push actions. All other
registries are blocked.

Only one of blockedRegistries or allowedRegistries may be set

Parameter Description

6.2. CONFIGURING IMAGE SETTINGS

You can configure image registry settings by editing the image.config.openshift.io/cluster resource.
The Machine Config Operator (MCO) watches the `image.config.openshift.io/cluster`for any changes
to registries and reboots the nodes when it detects changes.

Procedure

1. Edit the image.config.openshift.io/cluster custom resource:

$ oc edit image.config.openshift.io/cluster

The following is an example image.config.openshift.io/cluster resource:

apiVersion: config.openshift.io/v1
kind: Image 1
metadata:
 annotations:
 release.openshift.io/create-only: "true"
 creationTimestamp: "2019-05-17T13:44:26Z"
 generation: 1
 name: cluster
 resourceVersion: "8302"
 selfLink: /apis/config.openshift.io/v1/images/cluster
 uid: e34555da-78a9-11e9-b92b-06d6c7da38dc
spec:
 allowedRegistriesForImport: 2

CHAPTER 6. IMAGE CONFIGURATION RESOURCES

41

1

2

3

4

5

6

Image: Holds cluster-wide information about how to handle images. The canonical, and
only valid name is cluster.

allowedRegistriesForImport: Limits the container image registries from which normal
users may import images. Set this list to the registries that you trust to contain valid
images, and that you want applications to be able to import from. Users with permission to
create images or ImageStreamMappings from the API are not affected by this policy.
Typically only cluster administrators will have the appropriate permissions.

additionalTrustedCA: A reference to a ConfigMap containing additional CAs that should
be trusted during ImageStream import, pod image pull, openshift-image-registry
pullthrough, and builds. The namespace for this ConfigMap is openshift-config. The
format of the ConfigMap is to use the registry hostname as the key, and the base64-
encoded certificate as the value, for each additional registry CA to trust.

registrySources: Contains configuration that determines how the container runtime
should treat individual registries when accessing images for builds and pods. For instance,
whether or not to allow insecure access. It does not contain configuration for the internal
cluster registry.

insecureRegistries: Registries which do not have a valid TLS certificate or only support
HTTP connections.

blockedRegistries: Blacklisted for image pull and push actions. All other registries are
allowed.

6.2.1. Importing insecure registries and blocking registries

You can add insecure registries or block any registry by editing the image.config.openshift.io/cluster
custom resource (CR). OpenShift Container Platform applies the changes to this CR to all nodes in the
cluster.

Insecure external registries, such as those do not have a valid TLS certificate or only support HTTP
connections, should be avoided.

Procedure

1. Edit the image.config.openshift.io/cluster custom resource:

$ oc edit image.config.openshift.io/cluster

The following is an example image.config.openshift.io/cluster resource:

 - domainName: quay.io
 insecure: false
 additionalTrustedCA: 3
 name: myconfigmap
 registrySources: 4
 insecureRegistries: 5
 - insecure.com
 blockedRegistries: 6
 - untrusted.com
status:
 internalRegistryHostname: image-registry.openshift-image-registry.svc:5000

OpenShift Container Platform 4.1 Images

42

1

2

Specify an insecure registry.

Specify any registries that should be blacklisted for image pull and push actions. All other
registries are allowed.

The Machine Config Operator (MCO) watches the image.config.openshift.io/cluster for any
changes to registries and reboots the nodes when it detects changes. Changes to the registries
appear in the /host/etc/containers/registries.conf file on each node.

cat /host/etc/containers/registries.conf
[registries]
 [registries.search]
 registries = ["registry.access.redhat.com", "docker.io"]
 [registries.insecure]
 registries = ["insecure.com"]
 [registries.block]
 registries = ["untrusted.com"]

apiVersion: config.openshift.io/v1
kind: Image
metadata:
 annotations:
 release.openshift.io/create-only: "true"
 creationTimestamp: "2019-05-17T13:44:26Z"
 generation: 1
 name: cluster
 resourceVersion: "8302"
 selfLink: /apis/config.openshift.io/v1/images/cluster
 uid: e34555da-78a9-11e9-b92b-06d6c7da38dc
spec:
 allowedRegistriesForImport:
 - domainName: quay.io
 insecure: false
 additionalTrustedCA:
 name: myconfigmap
 registrySources:
 insecureRegistries: 1
 - insecure.com
 blockedRegistries: 2
 - untrusted.com
status:
 internalRegistryHostname: image-registry.openshift-image-registry.svc:5000

CHAPTER 6. IMAGE CONFIGURATION RESOURCES

43

CHAPTER 7. USING TEMPLATES
The following sections provide an overview of templates, as well as how to use and create them.

7.1. UNDERSTANDING TEMPLATES

A template describes a set of objects that can be parameterized and processed to produce a list of
objects for creation by OpenShift Container Platform. A template can be processed to create anything
you have permission to create within a project, for example services, build configurations, and
DeploymentConfigs. A template may also define a set of labels to apply to every object defined in the
template.

You can create a list of objects from a template using the CLI or, if a template has been uploaded to
your project or the global template library, using the web console.

7.2. UPLOADING A TEMPLATE

If you have a JSON or YAML file that defines a template, for example as seen in this example, you can
upload the template to projects using the CLI. This saves the template to the project for repeated use
by any user with appropriate access to that project. Instructions on writing your own templates are
provided later in this topic.

Procedure

Upload a template to your current project’s template library, pass the JSON or YAML file with
the following command:

$ oc create -f <filename>

Upload a template to a different project using the -n option with the name of the project:

$ oc create -f <filename> -n <project>

The template is now available for selection using the web console or the CLI.

7.3. CREATING AN APPLICATION USING THE WEB CONSOLE

You can use the web console to create an application from a template.

Procedure

1. While in the desired project, click Add to Project.

2. Select either a builder image from the list of images in your project, or from the service catalog.

NOTE

Only imagestreamtags that have the builder tag listed in their annotations
appear in this list, as demonstrated here:

kind: "ImageStream"
apiVersion: "v1"

OpenShift Container Platform 4.1 Images

44

1

metadata:
 name: "ruby"
 creationTimestamp: null
spec:
 dockerImageRepository: "registry.redhat.io/openshift3/ruby-20-rhel7"
 tags:
 -
 name: "2.0"
 annotations:
 description: "Build and run Ruby 2.0 applications"
 iconClass: "icon-ruby"
 tags: "builder,ruby" 1
 supports: "ruby:2.0,ruby"
 version: "2.0"

Including builder here ensures this ImageStreamTag appears in the web console as a
builder.

3. Modify the settings in the new application screen to configure the objects to support your
application.

7.4. CREATING OBJECTS FROM TEMPLATES USING THE CLI

You can use the CLI to process templates and use the configuration that is generated to create objects.

7.4.1. Adding labels

Labels are used to manage and organize generated objects, such as pods. The labels specified in the
template are applied to every object that is generated from the template.

Procedure

Add labels in the template from the command line:

$ oc process -f <filename> -l name=otherLabel

7.4.2. Listing parameters

The list of parameters that you can override are listed in the parameters section of the template.

Procedure

1. You can list parameters with the CLI by using the following command and specifying the file to
be used:

$ oc process --parameters -f <filename>

Alternatively, if the template is already uploaded:

$ oc process --parameters -n <project> <template_name>

For example, the following shows the output when listing the parameters for one of the

CHAPTER 7. USING TEMPLATES

45

For example, the following shows the output when listing the parameters for one of the
Quickstart templates in the default openshift project:

$ oc process --parameters -n openshift rails-postgresql-example
NAME DESCRIPTION
GENERATOR VALUE
SOURCE_REPOSITORY_URL The URL of the repository with your application source
code https://github.com/sclorg/rails-ex.git
SOURCE_REPOSITORY_REF Set this to a branch name, tag or other ref of your
repository if you are not using the default branch
CONTEXT_DIR Set this to the relative path to your project if it is not in the root of
your repository
APPLICATION_DOMAIN The exposed hostname that will route to the Rails service
rails-postgresql-example.openshiftapps.com
GITHUB_WEBHOOK_SECRET A secret string used to configure the GitHub webhook
expression [a-zA-Z0-9]{40}
SECRET_KEY_BASE Your secret key for verifying the integrity of signed cookies
expression [a-z0-9]{127}
APPLICATION_USER The application user that is used within the sample application
to authorize access on pages openshift
APPLICATION_PASSWORD The application password that is used within the sample
application to authorize access on pages secret
DATABASE_SERVICE_NAME Database service name
postgresql
POSTGRESQL_USER database username
expression user[A-Z0-9]{3}
POSTGRESQL_PASSWORD database password
expression [a-zA-Z0-9]{8}
POSTGRESQL_DATABASE database name
root
POSTGRESQL_MAX_CONNECTIONS database max connections
10
POSTGRESQL_SHARED_BUFFERS database shared buffers
12MB

The output identifies several parameters that are generated with a regular expression-like
generator when the template is processed.

7.4.3. Generating a list of objects

Using the CLI, you can process a file defining a template to return the list of objects to standard output.

Procedure

1. Process a file defining a template to return the list of objects to standard output:

$ oc process -f <filename>

Alternatively, if the template has already been uploaded to the current project:

$ oc process <template_name>

2. Create objects from a template by processing the template and piping the output to oc create:

OpenShift Container Platform 4.1 Images

46

$ oc process -f <filename> | oc create -f -

Alternatively, if the template has already been uploaded to the current project:

$ oc process <template> | oc create -f -

3. You can override any parameter values defined in the file by adding the -p option for each
<name>=<value> pair you want to override. A parameter reference may appear in any text field
inside the template items.
For example, in the following the POSTGRESQL_USER and POSTGRESQL_DATABASE
parameters of a template are overridden to output a configuration with customized
environment variables:

a. Creating a List of Objects from a Template

$ oc process -f my-rails-postgresql \
 -p POSTGRESQL_USER=bob \
 -p POSTGRESQL_DATABASE=mydatabase

b. The JSON file can either be redirected to a file or applied directly without uploading the
template by piping the processed output to the oc create command:

$ oc process -f my-rails-postgresql \
 -p POSTGRESQL_USER=bob \
 -p POSTGRESQL_DATABASE=mydatabase \
 | oc create -f -

c. If you have large number of parameters, you can store them in a file and then pass this file to
oc process:

$ cat postgres.env
POSTGRESQL_USER=bob
POSTGRESQL_DATABASE=mydatabase
$ oc process -f my-rails-postgresql --param-file=postgres.env

d. You can also read the environment from standard input by using "-" as the argument to --
param-file:

$ sed s/bob/alice/ postgres.env | oc process -f my-rails-postgresql --param-file=-

7.5. MODIFYING UPLOADED TEMPLATES

You can edit a template that has already been uploaded to your project.

Procedure

Modify a template that has already been uploaded:

$ oc edit template <template>

7.6. USING INSTANT APP AND QUICKSTART TEMPLATES

CHAPTER 7. USING TEMPLATES

47

OpenShift Container Platform provides a number of default Instant App and Quickstart templates to
make it easy to quickly get started creating a new application for different languages. Templates are
provided for Rails (Ruby), Django (Python), Node.js, CakePHP (PHP), and Dancer (Perl). Your cluster
administrator should have created these templates in the default, global openshift project so you have
access to them.

By default, the templates build using a public source repository on GitHub that contains the necessary
application code.

Procedure

1. You can list the available default Instant App and Quickstart templates with:

$ oc get templates -n openshift

2. To modify the source and build your own version of the application:

a. Fork the repository referenced by the template’s default SOURCE_REPOSITORY_URL
parameter.

b. Override the value of the SOURCE_REPOSITORY_URL parameter when creating from the
template, specifying your fork instead of the default value.
By doing this, the build configuration created by the template will now point to your fork of
the application code, and you can modify the code and rebuild the application at will.

NOTE

Some of the Instant App and Quickstart templates define a database deployment
configuration. The configuration they define uses ephemeral storage for the database
content. These templates should be used for demonstration purposes only as all
database data will be lost if the database pod restarts for any reason.

7.6.1. Quickstart templates

A Quickstart is a basic example of an application running on OpenShift Container Platform. Quickstarts
come in a variety of languages and frameworks, and are defined in a template, which is constructed from
a set of services, build configurations, and DeploymentConfigs. This template references the necessary
images and source repositories to build and deploy the application.

To explore a Quickstart, create an application from a template. Your administrator may have already
installed these templates in your OpenShift Container Platform cluster, in which case you can simply
select it from the web console.

Quickstarts refer to a source repository that contains the application source code. To customize the
Quickstart, fork the repository and, when creating an application from the template, substitute the
default source repository name with your forked repository. This results in builds that are performed
using your source code instead of the provided example source. You can then update the code in your
source repository and launch a new build to see the changes reflected in the deployed application.

7.6.1.1. Web framework Quickstart templates

These Quickstart templates provide a basic application of the indicated framework and language:

CakePHP: a PHP web framework (includes a MySQL database)

OpenShift Container Platform 4.1 Images

48

Dancer: a Perl web framework (includes a MySQL database)

Django: a Python web framework (includes a PostgreSQL database)

NodeJS: a NodeJS web application (includes a MongoDB database)

Rails: a Ruby web framework (includes a PostgreSQL database)

7.7. WRITING TEMPLATES

You can define new templates to make it easy to recreate all the objects of your application. The
template will define the objects it creates along with some metadata to guide the creation of those
objects.

The following is an example of a simple template object definition (YAML):

7.7.1. Writing the template description

The template description informs users what the template does and helps them find it when searching in
the web console. Additional metadata beyond the template name is optional, but useful to have. In
addition to general descriptive information, the metadata also includes a set of tags. Useful tags include
the name of the language the template is related to (for example, java, php, ruby, and so on).

The following is an example of template description metadata:

apiVersion: v1
kind: Template
metadata:
 name: redis-template
 annotations:
 description: "Description"
 iconClass: "icon-redis"
 tags: "database,nosql"
objects:
- apiVersion: v1
 kind: Pod
 metadata:
 name: redis-master
 spec:
 containers:
 - env:
 - name: REDIS_PASSWORD
 value: ${REDIS_PASSWORD}
 image: dockerfile/redis
 name: master
 ports:
 - containerPort: 6379
 protocol: TCP
parameters:
- description: Password used for Redis authentication
 from: '[A-Z0-9]{8}'
 generate: expression
 name: REDIS_PASSWORD
labels:
 redis: master

CHAPTER 7. USING TEMPLATES

49

1

2

3

4

5

6

7

8

9

10

The unique name of the template.

A brief, user-friendly name, which can be employed by user interfaces.

A description of the template. Include enough detail that the user will understand what is being
deployed and any caveats they must know before deploying. It should also provide links to
additional information, such as a README file. Newlines can be included to create paragraphs.

Additional template description. This may be displayed by the service catalog, for example.

Tags to be associated with the template for searching and grouping. Add tags that will include it
into one of the provided catalog categories. Refer to the id and categoryAliases in
CATALOG_CATEGORIES in the console’s constants file. The categories can also be customized
for the whole cluster.

An icon to be displayed with your template in the web console. Choose from our existing logo icons
when possible. You can also use icons from FontAwesome and PatternFly. Alternatively, provide
icons through CSS customizations that can be added to an OpenShift Container Platform cluster
that uses your template. You must specify an icon class that exists, or it will prevent falling back to
the generic icon.

The name of the person or organization providing the template.

A URL referencing further documentation for the template.

A URL where support can be obtained for the template.

An instructional message that is displayed when this template is instantiated. This field should
inform the user how to use the newly created resources. Parameter substitution is performed on

kind: Template
apiVersion: v1
metadata:
 name: cakephp-mysql-example 1
 annotations:
 openshift.io/display-name: "CakePHP MySQL Example (Ephemeral)" 2
 description: >-
 An example CakePHP application with a MySQL database. For more information
 about using this template, including OpenShift considerations, see
 https://github.com/sclorg/cakephp-ex/blob/master/README.md.

 WARNING: Any data stored will be lost upon pod destruction. Only use this
 template for testing." 3
 openshift.io/long-description: >-
 This template defines resources needed to develop a CakePHP application,
 including a build configuration, application DeploymentConfig, and
 database DeploymentConfig. The database is stored in
 non-persistent storage, so this configuration should be used for
 experimental purposes only. 4
 tags: "quickstart,php,cakephp" 5
 iconClass: icon-php 6
 openshift.io/provider-display-name: "Red Hat, Inc." 7
 openshift.io/documentation-url: "https://github.com/sclorg/cakephp-ex" 8
 openshift.io/support-url: "https://access.redhat.com" 9
message: "Your admin credentials are ${ADMIN_USERNAME}:${ADMIN_PASSWORD}" 10

OpenShift Container Platform 4.1 Images

50

1

2

inform the user how to use the newly created resources. Parameter substitution is performed on
the message before being displayed so that generated credentials and other parameters can be
included in the output. Include links to any next-steps documentation that users should follow.

7.7.2. Writing template labels

Templates can include a set of labels. These labels will be added to each object created when the
template is instantiated. Defining a label in this way makes it easy for users to find and manage all the
objects created from a particular template.

The following is an example of template object labels:

A label that will be applied to all objects created from this template.

A parameterized label that will also be applied to all objects created from this template. Parameter
expansion is carried out on both label keys and values.

7.7.3. Writing template parameters

Parameters allow a value to be supplied by the user or generated when the template is instantiated.
Then, that value is substituted wherever the parameter is referenced. References can be defined in any
field in the objects list field. This is useful for generating random passwords or allowing the user to
supply a host name or other user-specific value that is required to customize the template. Parameters
can be referenced in two ways:

As a string value by placing values in the form ${PARAMETER_NAME} in any string field in the
template.

As a json/yaml value by placing values in the form ${{PARAMETER_NAME}} in place of any
field in the template.

When using the ${PARAMETER_NAME} syntax, multiple parameter references can be combined in a
single field and the reference can be embedded within fixed data, such as
"http://${PARAMETER_1}${PARAMETER_2}". Both parameter values will be substituted and the
resulting value will be a quoted string.

When using the ${{PARAMETER_NAME}} syntax only a single parameter reference is allowed and
leading/trailing characters are not permitted. The resulting value will be unquoted unless, after
substitution is performed, the result is not a valid json object. If the result is not a valid json value, the
resulting value will be quoted and treated as a standard string.

A single parameter can be referenced multiple times within a template and it can be referenced using
both substitution syntaxes within a single template.

A default value can be provided, which is used if the user does not supply a different value:

The following is an example of setting an explicit value as the default value:

kind: "Template"
apiVersion: "v1"
...
labels:
 template: "cakephp-mysql-example" 1
 app: "${NAME}" 2

CHAPTER 7. USING TEMPLATES

51

Parameter values can also be generated based on rules specified in the parameter definition, for
example generating a parameter value:

In the previous example, processing will generate a random password 12 characters long consisting of all
upper and lowercase alphabet letters and numbers.

The syntax available is not a full regular expression syntax. However, you can use \w, \d, and \a modifiers:

[\w]{10} produces 10 alphabet characters, numbers, and underscores. This follows the PCRE
standard and is equal to [a-zA-Z0-9_]{10}.

[\d]{10} produces 10 numbers. This is equal to [0-9]{10}.

[\a]{10} produces 10 alphabetical characters. This is equal to [a-zA-Z]{10}.

Here is an example of a full template with parameter definitions and references:

parameters:
 - name: USERNAME
 description: "The user name for Joe"
 value: joe

parameters:
 - name: PASSWORD
 description: "The random user password"
 generate: expression
 from: "[a-zA-Z0-9]{12}"

kind: Template
apiVersion: v1
metadata:
 name: my-template
objects:
 - kind: BuildConfig
 apiVersion: v1
 metadata:
 name: cakephp-mysql-example
 annotations:
 description: Defines how to build the application
 spec:
 source:
 type: Git
 git:
 uri: "${SOURCE_REPOSITORY_URL}" 1
 ref: "${SOURCE_REPOSITORY_REF}"
 contextDir: "${CONTEXT_DIR}"
 - kind: DeploymentConfig
 apiVersion: v1
 metadata:
 name: frontend
 spec:
 replicas: "${{REPLICA_COUNT}}" 2
parameters:
 - name: SOURCE_REPOSITORY_URL 3
 displayName: Source Repository URL 4

OpenShift Container Platform 4.1 Images

52

1

2

3

4

5

6

7

8

9

10

This value will be replaced with the value of the SOURCE_REPOSITORY_URL parameter when
the template is instantiated.

This value will be replaced with the unquoted value of the REPLICA_COUNT parameter when the
template is instantiated.

The name of the parameter. This value is used to reference the parameter within the template.

The user-friendly name for the parameter. This will be displayed to users.

A description of the parameter. Provide more detailed information for the purpose of the
parameter, including any constraints on the expected value. Descriptions should use complete
sentences to follow the console’s text standards. Don’t make this a duplicate of the display name.

A default value for the parameter which will be used if the user does not override the value when
instantiating the template. Avoid using default values for things like passwords, instead use
generated parameters in combination with Secrets.

Indicates this parameter is required, meaning the user cannot override it with an empty value. If the
parameter does not provide a default or generated value, the user must supply a value.

A parameter which has its value generated.

The input to the generator. In this case, the generator will produce a 40 character alphanumeric
value including upper and lowercase characters.

Parameters can be included in the template message. This informs the user about generated
values.

7.7.4. Writing the template object list

The main portion of the template is the list of objects which will be created when the template is
instantiated. This can be any valid API object, such as a BuildConfig, DeploymentConfig, Service, etc.
The object will be created exactly as defined here, with any parameter values substituted in prior to
creation. The definition of these objects can reference parameters defined earlier.

The following is an example of an object list:

 description: The URL of the repository with your application source code 5
 value: https://github.com/sclorg/cakephp-ex.git 6
 required: true 7
 - name: GITHUB_WEBHOOK_SECRET
 description: A secret string used to configure the GitHub webhook
 generate: expression 8
 from: "[a-zA-Z0-9]{40}" 9
 - name: REPLICA_COUNT
 description: Number of replicas to run
 value: "2"
 required: true
message: "... The GitHub webhook secret is ${GITHUB_WEBHOOK_SECRET} ..." 10

kind: "Template"
apiVersion: "v1"
metadata:

CHAPTER 7. USING TEMPLATES

53

1 The definition of a Service which will be created by this template.

NOTE

If an object definition’s metadata includes a fixed namespace field value, the field will be
stripped out of the definition during template instantiation. If the namespace field
contains a parameter reference, normal parameter substitution will be performed and the
object will be created in whatever namespace the parameter substitution resolved the
value to, assuming the user has permission to create objects in that namespace.

7.7.5. Marking a template as bindable

The Template Service Broker advertises one service in its catalog for each Template object of which it is
aware. By default, each of these services is advertised as being "bindable", meaning an end user is
permitted to bind against the provisioned service.

Procedure

Template authors can prevent end users from binding against services provisioned from a given
Template.

Prevent end user from binding against services provisioned from a given template by adding the
annotation template.openshift.io/bindable: "false" to the Template.

7.7.6. Exposing template object fields

Template authors can indicate that fields of particular objects in a template should be exposed. The
Template Service Broker recognizes exposed fields on ConfigMap, Secret, Service and Route objects,
and returns the values of the exposed fields when a user binds a service backed by the broker.

To expose one or more fields of an object, add annotations prefixed by template.openshift.io/expose-
or template.openshift.io/base64-expose- to the object in the template.

Each annotation key, with its prefix removed, is passed through to become a key in a bind response.

Each annotation value is a Kubernetes JSONPath expression, which is resolved at bind time to indicate
the object field whose value should be returned in the bind response.

NOTE

 name: my-template
objects:
 - kind: "Service" 1
 apiVersion: "v1"
 metadata:
 name: "cakephp-mysql-example"
 annotations:
 description: "Exposes and load balances the application pods"
 spec:
 ports:
 - name: "web"
 port: 8080
 targetPort: 8080
 selector:
 name: "cakephp-mysql-example"

OpenShift Container Platform 4.1 Images

54

NOTE

Bind response key/value pairs can be used in other parts of the system as environment
variables. Therefore, it is recommended that every annotation key with its prefix removed
should be a valid environment variable name — beginning with a character A-Z, a-z, or _,
and being followed by zero or more characters A-Z, a-z, 0-9, or _.

NOTE

Unless escaped with a backslash, Kubernetes' JSONPath implementation interprets
characters such as ., @, and others as metacharacters, regardless of their position in the
expression. Therefore, for example, to refer to a ConfigMap datum named my.key, the
required JSONPath expression would be {.data['my\.key']}. Depending on how the
JSONPath expression is then written in YAML, an additional backslash might be required,
for example "{.data['my\\.key']}".

The following is an example of different objects' fields being exposed:

kind: Template
apiVersion: v1
metadata:
 name: my-template
objects:
- kind: ConfigMap
 apiVersion: v1
 metadata:
 name: my-template-config
 annotations:
 template.openshift.io/expose-username: "{.data['my\\.username']}"
 data:
 my.username: foo
- kind: Secret
 apiVersion: v1
 metadata:
 name: my-template-config-secret
 annotations:
 template.openshift.io/base64-expose-password: "{.data['password']}"
 stringData:
 password: bar
- kind: Service
 apiVersion: v1
 metadata:
 name: my-template-service
 annotations:
 template.openshift.io/expose-service_ip_port: "{.spec.clusterIP}:{.spec.ports[?
(.name==\"web\")].port}"
 spec:
 ports:
 - name: "web"
 port: 8080
- kind: Route
 apiVersion: v1
 metadata:
 name: my-template-route
 annotations:

CHAPTER 7. USING TEMPLATES

55

An example response to a bind operation given the above partial template follows:

Procedure

Use the template.openshift.io/expose- annotation to return the field value as a string. This is
convenient, although it does not handle arbitrary binary data.

If you want to return binary data, use the template.openshift.io/base64-expose- annotation
instead to base64 encode the data before it is returned.

7.7.7. Waiting for template readiness

Template authors can indicate that certain objects within a template should be waited for before a
template instantiation by the service catalog, Template Service Broker, or TemplateInstance API is
considered complete.

To use this feature, mark one or more objects of kind Build, BuildConfig, Deployment,
DeploymentConfig, Job, or StatefulSet in a template with the following annotation:

"template.alpha.openshift.io/wait-for-ready": "true"

Template instantiation will not complete until all objects marked with the annotation report ready.
Similarly, if any of the annotated objects report failed, or if the template fails to become ready within a
fixed timeout of one hour, the template instantiation will fail.

For the purposes of instantiation, readiness and failure of each object kind are defined as follows:

Kind Readiness Failure

Build Object reports phase Complete Object reports phase Canceled, Error, or
Failed

BuildConfig Latest associated Build object reports
phase Complete

Latest associated Build object reports
phase Canceled, Error, or Failed

Deployment Object reports new ReplicaSet and
deployment available (this honors
readiness probes defined on the object)

Object reports Progressing condition as
false

 template.openshift.io/expose-uri: "http://{.spec.host}{.spec.path}"
 spec:
 path: mypath

{
 "credentials": {
 "username": "foo",
 "password": "YmFy",
 "service_ip_port": "172.30.12.34:8080",
 "uri": "http://route-test.router.default.svc.cluster.local/mypath"
 }
}

OpenShift Container Platform 4.1 Images

56

DeploymentCon
fig

Object reports new ReplicationController
and deployment available (this honors
readiness probes defined on the object)

Object reports Progressing condition as
false

Job Object reports completion Object reports that one or more failures
have occurred

StatefulSet Object reports all replicas ready (this
honors readiness probes defined on the
object)

Not applicable

Kind Readiness Failure

The following is an example template extract, which uses the wait-for-ready annotation. Further
examples can be found in the OpenShift quickstart templates.

Additional recommendations

Set memory, CPU, and storage default sizes to make sure your application is given enough
resources to run smoothly.

Avoid referencing the latest tag from images if that tag is used across major versions. This may

kind: Template
apiVersion: v1
metadata:
 name: my-template
objects:
- kind: BuildConfig
 apiVersion: v1
 metadata:
 name: ...
 annotations:
 # wait-for-ready used on BuildConfig ensures that template instantiation
 # will fail immediately if build fails
 template.alpha.openshift.io/wait-for-ready: "true"
 spec:
 ...
- kind: DeploymentConfig
 apiVersion: v1
 metadata:
 name: ...
 annotations:
 template.alpha.openshift.io/wait-for-ready: "true"
 spec:
 ...
- kind: Service
 apiVersion: v1
 metadata:
 name: ...
 spec:
 ...

CHAPTER 7. USING TEMPLATES

57

Avoid referencing the latest tag from images if that tag is used across major versions. This may
cause running applications to break when new images are pushed to that tag.

A good template builds and deploys cleanly without requiring modifications after the template is
deployed.

7.7.8. Creating a template from existing objects

Rather than writing an entire template from scratch, you can export existing objects from your project in
YAML form, and then modify the YAML from there by adding parameters and other customizations as
template form.

Procedure

1. Export objects in a project in YAML form:

$ oc get -o yaml --export all > <yaml_filename>

You can also substitute a particular resource type or multiple resources instead of all. Run oc
get -h for more examples.

The object types included in oc get --export all are:

BuildConfig

Build

DeploymentConfig

ImageStream

Pod

ReplicationController

Route

Service

OpenShift Container Platform 4.1 Images

58

CHAPTER 8. USING RUBY ON RAILS
Ruby on Rails is a web framework written in Ruby. This guide covers using Rails 4 on OpenShift Container
Platform.

WARNING

Go through the whole tutorial to have an overview of all the steps necessary to run
your application on the OpenShift Container Platform. If you experience a problem
try reading through the entire tutorial and then going back to your issue. It can also
be useful to review your previous steps to ensure that all the steps were executed
correctly.

Prerequisites

Basic Ruby and Rails knowledge.

Locally installed version of Ruby 2.0.0+, Rubygems, Bundler.

Basic Git knowledge.

Running instance of OpenShift Container Platform 4.

Make sure that an instance of OpenShift Container Platform is running and is available. Also
make sure that your oc CLI client is installed and the command is accessible from your
command shell, so you can use it to log in using your email address and password.

8.1. SETTING UP THE DATABASE

Rails applications are almost always used with a database. For the local development use the
PostgreSQL database.

Procedure

1. Install the database:

$ sudo yum install -y postgresql postgresql-server postgresql-devel

2. Initialize the database:

$ sudo postgresql-setup initdb

This command will create the /var/lib/pgsql/data directory, in which the data will be stored.

3. Start the database:

$ sudo systemctl start postgresql.service

4. When the database is running, create your rails user:



CHAPTER 8. USING RUBY ON RAILS

59

$ sudo -u postgres createuser -s rails

Note that the user created has no password.

8.2. WRITING YOUR APPLICATION

If you are starting your Rails application from scratch, you must install the Rails gem first. Then you can
proceed with writing your application.

Procedure

1. Install the Rails gem:

$ gem install rails
Successfully installed rails-4.2.0
1 gem installed

2. After you install the Rails gem, create a new application with PostgreSQL as your database:

$ rails new rails-app --database=postgresql

3. Change into your new application directory:

$ cd rails-app

4. If you already have an application, make sure the pg (postgresql) gem is present in your Gemfile.
If not, edit your Gemfile by adding the gem:

gem 'pg'

5. Generate a new Gemfile.lock with all your dependencies:

$ bundle install

6. In addition to using the postgresql database with the pg gem, you also must ensure that the
config/database.yml is using the postgresql adapter.
Make sure you updated default section in the config/database.yml file, so it looks like this:

default: &default
 adapter: postgresql
 encoding: unicode
 pool: 5
 host: localhost
 username: rails
 password:

7. Create your application’s development and test databases:

$ rake db:create

This will create development and test database in your PostgreSQL server.

OpenShift Container Platform 4.1 Images

60

8.2.1. Creating a welcome page

Since Rails 4 no longer serves a static public/index.html page in production, you must create a new root
page.

In order to have a custom welcome page must do following steps:

Create a controller with an index action

Create a view page for the welcome controller index action

Create a route that will serve applications root page with the created controller and view

Rails offers a generator that will do all necessary steps for you.

Procedure

1. Run Rails generator:

$ rails generate controller welcome index

All the necessary files are created.

2. edit line 2 in config/routes.rb file as follows:

root 'welcome#index'

3. Run the rails server to verify the page is available:

$ rails server

You should see your page by visiting http://localhost:3000 in your browser. If you don’t see the
page, check the logs that are output to your server to debug.

8.2.2. Configuring application for OpenShift Container Platform

To have your application communicate with the PostgreSQL database service running in OpenShift
Container Platform you must edit the default section in your config/database.yml to use environment
variables, which you will define later, upon the database service creation.

Procedure

Edit the default section in your config/database.yml with pre-defined variables as follows:

<% user = ENV.key?("POSTGRESQL_ADMIN_PASSWORD") ? "root" :
ENV["POSTGRESQL_USER"] %>
<% password = ENV.key?("POSTGRESQL_ADMIN_PASSWORD") ?
ENV["POSTGRESQL_ADMIN_PASSWORD"] : ENV["POSTGRESQL_PASSWORD"] %>
<% db_service = ENV.fetch("DATABASE_SERVICE_NAME","").upcase %>

default: &default
 adapter: postgresql
 encoding: unicode
 # For details on connection pooling, see rails configuration guide
 # http://guides.rubyonrails.org/configuring.html#database-pooling

CHAPTER 8. USING RUBY ON RAILS

61

http://localhost:3000

 pool: <%= ENV["POSTGRESQL_MAX_CONNECTIONS"] || 5 %>
 username: <%= user %>
 password: <%= password %>
 host: <%= ENV["#{db_service}_SERVICE_HOST"] %>
 port: <%= ENV["#{db_service}_SERVICE_PORT"] %>
 database: <%= ENV["POSTGRESQL_DATABASE"] %>

8.2.3. Storing your application in Git

Building an application in OpenShift Container Platform usually requires that the source code be stored
in a git repository, so you must install git if you do not already have it.

Prerequisites

Install git.

Procedure

1. Make sure you are in your Rails application directory by running the ls -1 command. The output
of the command should look like:

$ ls -1
app
bin
config
config.ru
db
Gemfile
Gemfile.lock
lib
log
public
Rakefile
README.rdoc
test
tmp
vendor

2. Run the following commands in your Rails app directory to initialize and commit your code to git:

$ git init
$ git add .
$ git commit -m "initial commit"

+ After your application is committed you must push it to a remote repository. GitHub account, in which
you create a new repository.

1. Set the remote that points to your git repository:

$ git remote add origin git@github.com:<namespace/repository-name>.git

2. Push your application to your remote git repository.

$ git push

OpenShift Container Platform 4.1 Images

62

8.3. DEPLOYING YOUR APPLICATION TO OPENSHIFT CONTAINER
PLATFORM

You can deploy you application to OpenShift Container Platform.

After creating the rails-app project, you will be automatically switched to the new project namespace.

Deploying your application in OpenShift Container Platform involves three steps:

Creating a database service from OpenShift Container Platform’s PostgreSQL image.

Creating a frontend service from OpenShift Container Platform’s Ruby 2.0 builder image and
your Ruby on Rails source code, which are wired with the database service.

Creating a route for your application.

Procedure

To deploy your Ruby on Rails application, create a new Project for the application:

$ oc new-project rails-app --description="My Rails application" --display-name="Rails
Application"

8.3.1. Creating the database service

Your Rails application expects a running database service. For this service use PostgeSQL database
image.

To create the database service you will use the oc new-app command. To this command you must pass
some necessary environment variables which will be used inside the database container. These
environment variables are required to set the username, password, and name of the database. You can
change the values of these environment variables to anything you would like. The variables are as
follows:

POSTGRESQL_DATABASE

POSTGRESQL_USER

POSTGRESQL_PASSWORD

Setting these variables ensures:

A database exists with the specified name.

A user exists with the specified name.

The user can access the specified database with the specified password.

Procedure

1. Create the database service:

$ oc new-app postgresql -e POSTGRESQL_DATABASE=db_name -e
POSTGRESQL_USER=username -e POSTGRESQL_PASSWORD=password

CHAPTER 8. USING RUBY ON RAILS

63

To also set the password for the database administrator, append to the previous command with:

-e POSTGRESQL_ADMIN_PASSWORD=admin_pw

2. Watch the progress:

$ oc get pods --watch

8.3.2. Creating the frontend service

To bring your application to OpenShift Container Platform, you must specify a repository in which your
application lives.

Procedure

1. Create the frontend service and specify database related environment variables that were
setup when creating the database service:

$ oc new-app path/to/source/code --name=rails-app -e POSTGRESQL_USER=username -e
POSTGRESQL_PASSWORD=password -e POSTGRESQL_DATABASE=db_name -e
DATABASE_SERVICE_NAME=postgresql

With this command, OpenShift Container Platform fetches the source code, sets up the builder
builds your application image, and deploys the newly created image together with the specified
environment variables. The application is named rails-app.

2. Verify the environment variables have been added by viewing the JSON document of the rails-
app DeploymentConfig:

$ oc get dc rails-app -o json

You should see the following section:

env": [
 {
 "name": "POSTGRESQL_USER",
 "value": "username"
 },
 {
 "name": "POSTGRESQL_PASSWORD",
 "value": "password"
 },
 {
 "name": "POSTGRESQL_DATABASE",
 "value": "db_name"
 },
 {
 "name": "DATABASE_SERVICE_NAME",
 "value": "postgresql"
 }

],

OpenShift Container Platform 4.1 Images

64

3. Check the build process:

$ oc logs -f build/rails-app-1

4. Once the build is complete, look at the running pods in OpenShift Container Platform:

$ oc get pods

You should see a line starting with myapp-<number>-<hash>, and that is your application
running in OpenShift Container Platform.

5. Before your application will be functional, you must initialize the database by running the
database migration script. There are two ways you can do this:

Manually from the running frontend container:

Exec into frontend container with rsh command:

 $ oc rsh <FRONTEND_POD_ID>

Run the migration from inside the container:

 $ RAILS_ENV=production bundle exec rake db:migrate

If you are running your Rails application in a development or test environment you don’t
have to specify the RAILS_ENV environment variable.

By adding pre-deployment lifecycle hooks in your template.

8.3.3. Creating a route for your application

You can expose a service to create a route for your application.

Procedure

To expose a service by giving it an externally-reachable hostname like www.example.com use
OpenShift Container Platform route. In your case you need to expose the frontend service by
typing:

$ oc expose service rails-app --hostname=www.example.com

WARNING

Ensure the hostname you specify resolves into the IP address of the router.

CHAPTER 8. USING RUBY ON RAILS

65

CHAPTER 9. USING IMAGES

9.1. USING IMAGES OVERVIEW

Use the following topics to discover the different Source-to-Image (S2I), database, and other container
images that are available for OpenShift Container Platform users.

Red Hat’s official container images are provided in the Red Hat Registry at registry.redhat.io. OpenShift
Container Platform’s supported S2I, database, and Jenkins images are provided in the openshift4
repository in the Red Hat Quay Registry. For example, quay.io/openshift-release-dev/ocp-v4.0-
<address> is the name of the OpenShift Application Platform image.

The xPaaS middleware images are provided in their respective product repositories on the Red Hat
Registry but suffixed with a -openshift. For example, registry.redhat.io/jboss-eap-6/eap64-openshift
is the name of the JBoss EAP image.

All Red Hat supported images covered in this section are described in the Red Hat Container Catalog.
For every version of each image, you can find details on its contents and usage. Browse or search for the
image that interests you.

IMPORTANT

The newer versions of container images are not compatible with earlier versions of
OpenShift Container Platform. Verify and use the correct version of container images,
based on your version of OpenShift Container Platform.

9.2. CONFIGURING JENKINS IMAGES

OpenShift Container Platform provides a container image for running Jenkins. This image provides a
Jenkins server instance, which can be used to set up a basic flow for continuous testing, integration, and
delivery.

The image is based on the Red Hat Universal Base Images (UBI).

OpenShift Container Platform follows the LTS release of Jenkins. OpenShift Container Platform
provides an image that contains Jenkins 2.x.

The OpenShift Container Platform Jenkins images are available on quay.io or registry.redhat.io.

For example:

$ docker pull registry.redhat.io/openshift4/ose-jenkins:<v4.1.4>

To use these images, you can either access them directly from these registries or push them into your
OpenShift Container Platform container image registry. Additionally, you can create an ImageStream
that points to the image, either in your container image registry or at the external location. Your
OpenShift Container Platform resources can then reference the ImageStream.

But for convenience, OpenShift Container Platform provides ImageStreams in the openshift
namespace for the core Jenkins image as well as the example Agent images provided for OpenShift
Container Platform integration with Jenkins.

9.2.1. Configuration and customization

OpenShift Container Platform 4.1 Images

66

registry.redhat.io
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/getting_started_with_containers/index#using_red_hat_base_container_images_standard_and_minimal
https://jenkins.io/changelog-stable/

You can manage Jenkins authentication in two ways:

OpenShift Container Platform OAuth authentication provided by the OpenShift Login plug-in.

Standard authentication provided by Jenkins.

9.2.1.1. OpenShift Container Platform OAuth authentication

OAuth authentication is activated by configuring options on the Configure Global Security panel in the
Jenkins UI, or by setting the OPENSHIFT_ENABLE_OAUTH environment variable on the Jenkins
Deployment configuration to anything other than false. This activates the OpenShift Container
Platform Login plug-in, which retrieves the configuration information from Pod data or by interacting
with the OpenShift Container Platform API server.

Valid credentials are controlled by the OpenShift Container Platform identity provider.

Jenkins supports both browser and non-browser access.

Valid users are automatically added to the Jenkins authorization matrix at log in, where OpenShift
Container Platform Roles dictate the specific Jenkins permissions the users have. The Roles used by
default are the predefined admin, edit, and view. The login plug-in executes self-SAR requests against
those Roles in the Project or namespace that Jenkins is running in.

Users with the admin role have the traditional Jenkins administrative user permissions. Users with the
edit or view role have progressively fewer permissions.

The default OpenShift Container Platform admin, edit, and view Roles and the Jenkins permissions
those Roles are assigned in the Jenkins instance are configurable.

When running Jenkins in an OpenShift Container Platform Pod, the login plug-in looks for a ConfigMap
named openshift-jenkins-login-plugin-config in the namespace that Jenkins is running in.

If this plugin finds and can read in that ConfigMap, you can define the Role to Jenkins Permission
mappings. Specifically:

The login plug-in treats the key and value pairs in the ConfigMap as Jenkins permission to
OpenShift Role mappings.

The key is the Jenkins permission group short ID and the Jenkins permission short ID, with
those two separated by a hyphen character.

If you want to add the Overall Jenkins Administer permission to an OpenShift Container
Platform Role, the key should be Overall-Administer.

To get a sense of which permission groups and permissions IDs are available, go to the matrix
authorization page in the Jenkins console and IDs for the groups and individual permissions in
the table they provide.

The value of the key and value pair is the list of OpenShift Container Platform Roles the
permission should apply to, with each role separated by a comma.

If you want to add the Overall Jenkins Administer permission to both the default admin and
edit Roles, as well as a new jenkins role you have created, the value for the key Overall-
Administer would be admin,edit,jenkins.

NOTE

CHAPTER 9. USING IMAGES

67

NOTE

The admin user that is pre-populated in the OpenShift Container Platform Jenkins
image with administrative privileges is not given those privileges when OpenShift
Container Platform OAuth is used. To grant these permissions the OpenShift Container
Platform cluster administrator must explicitly define that user in the OpenShift Container
Platform identity provider and assigs the admin role to the user.

Jenkins users' permissions that are stored can be changed after the users are initially established. The
OpenShift Login plug-in polls the OpenShift Container Platform API server for permissions and updates
the permissions stored in Jenkins for each user with the permissions retrieved from OpenShift Container
Platform. If the Jenkins UI is used to update permissions for a Jenkins user, the permission changes are
overwritten the next time the plug-in polls OpenShift Container Platform.

You can control how often the polling occurs with the OPENSHIFT_PERMISSIONS_POLL_INTERVAL
environment variable. The default polling interval is five minutes.

The easiest way to create a new Jenkins service using OAuth authentication is to use a template.

9.2.1.2. Jenkins authentication

Jenkins authentication is used by default if the image is run directly, without using a template.

The first time Jenkins starts, the configuration is created along with the administrator user and
password. The default user credentials are admin and password. Configure the default password by
setting the JENKINS_PASSWORD environment variable when using, and only when using, standard
Jenkins authentication.

Procedure

Create a Jenkins application that uses standard Jenkins authentication:

$ oc new-app -e \
 JENKINS_PASSWORD=<password> \
 openshift4/ose-jenkins

9.2.2. Jenkins environment variables

The Jenkins server can be configured with the following environment variables:

Variable Definition Example values and settings

OPENSHIFT_ENABLE_OAUT
H

Determines whether the
OpenShift Login plug-in manages
authentication when logging into
Jenkins. To enable, set to true.

Default: false

JENKINS_PASSWORD The password for the admin user
when using standard Jenkins
authentication. Not applicable
when
OPENSHIFT_ENABLE_OAUT
H is set to true.

Default: password

OpenShift Container Platform 4.1 Images

68

JAVA_MAX_HEAP_PARAM,
CONTAINER_HEAP_PERCEN
T,
JENKINS_MAX_HEAP_UPPE
R_BOUND_MB

These values control the
maximum heap size of the Jenkins
JVM. If
JAVA_MAX_HEAP_PARAM is
set, its value takes precedence.
Otherwise, the maximum heap
size is dynamically calculated as
CONTAINER_HEAP_PERCE
NT of the container memory limit,
optionally capped at
JENKINS_MAX_HEAP_UPPE
R_BOUND_MB MiB.

By default, the maximum heap
size of the Jenkins JVM is set to
50% of the container memory
limit with no cap.

JAVA_MAX_HEAP_PARAM
example setting: -Xmx512m

CONTAINER_HEAP_PERCE
NT default: 0.5, or 50%

JENKINS_MAX_HEAP_UPPE
R_BOUND_MB example
setting: 512 MiB

JAVA_INITIAL_HEAP_PARA
M,
CONTAINER_INITIAL_PERC
ENT

These values control the initial
heap size of the Jenkins JVM. If
JAVA_INITIAL_HEAP_PARA
M is set, its value takes
precedence. Otherwise, the initial
heap size is dynamically calculated
as
CONTAINER_INITIAL_PERC
ENT of the dynamically
calculated maximum heap size.

By default, the JVM sets the
initial heap size.

JAVA_INITIAL_HEAP_PARA
M example setting: -Xms32m

CONTAINER_INITIAL_PERC
ENT example setting: 0.1, or 10%

CONTAINER_CORE_LIMIT If set, specifies an integer number
of cores used for sizing numbers
of internal JVM threads.

Example setting: 2

JAVA_TOOL_OPTIONS Specifies options to apply to all
JVMs running in this container. It
is not recommended to override
this value.

Default: -
XX:+UnlockExperimentalVM
Options -
XX:+UseCGroupMemoryLimi
tForHeap -
Dsun.zip.disableMemoryMap
ping=true

JAVA_GC_OPTS Specifies Jenkins JVM garbage
collection parameters. It is not
recommended to override this
value.

Default: -XX:+UseParallelGC -
XX:MinHeapFreeRatio=5 -
XX:MaxHeapFreeRatio=10 -
XX:GCTimeRatio=4 -
XX:AdaptiveSizePolicyWeigh
t=90

Variable Definition Example values and settings

CHAPTER 9. USING IMAGES

69

JENKINS_JAVA_OVERRIDES Specifies additional options for
the Jenkins JVM. These options
are appended to all other options,
including the Java options above,
and may be used to override any
of them if necessary. Separate
each additional option with a
space; if any option contains
space characters, escape them
with a backslash.

Example settings: -Dfoo -Dbar; -
Dfoo=first\ value -
Dbar=second\ value.

JENKINS_OPTS Specifies arguments to Jenkins.

INSTALL_PLUGINS Specifies additional Jenkins plug-
ins to install when the container is
first run or when
OVERRIDE_PV_PLUGINS_WI
TH_IMAGE_PLUGINS is set to
true. Plug-ins are specified as a
comma-delimited list of
name:version pairs.

Example setting:
git:3.7.0,subversion:2.10.2.

OPENSHIFT_PERMISSIONS_
POLL_INTERVAL

Specifies the interval in
milliseconds that the OpenShift
Login plug-in polls OpenShift
Container Platform for the
permissions that are associated
with each user that is defined in
Jenkins.

Default: 300000 - 5 minutes

OVERRIDE_PV_CONFIG_WIT
H_IMAGE_CONFIG

When running this image with an
OpenShift Container Platform
persistent volume for the Jenkins
configuration directory, the
transfer of configuration from the
image to the Persistent Volume is
performed only the first time the
image starts because the
Persistent Volume is assigned
when the Persistent Volume
Claim is created. If you create a
custom image that extends this
image and updates configuration
in the custom image after the
initial startup, the configuration is
not copied over unless you set
this environment variable to true.

Default: false

Variable Definition Example values and settings

OpenShift Container Platform 4.1 Images

70

OVERRIDE_PV_PLUGINS_WI
TH_IMAGE_PLUGINS

When running this image with an
OpenShift Container Platform
persistent volume for the Jenkins
configuration directory, the
transfer of plugins from the image
to the Persistent Volume is
performed only the first time the
image starts because the
Persistent Volume is assigned
when the Persistent Volume
Claim is created. If you create a
custom image that extends this
image and updates plug-ins in the
custom image after the initial
startup, the plug-ins are not
copied over unless you set this
environment variable to true.

Default: false

ENABLE_FATAL_ERROR_L
OG_FILE

When running this image with an
OpenShift Container Platform
Persistent Volume Claim for the
Jenkins configuration directory,
this environment variable allows
the fatal error log file to persist
when a fatal error occurs. The
fatal error file is saved at
/var/lib/jenkins/logs.

Default: false

NODEJS_SLAVE_IMAGE Setting this value overrides the
image that is used for the default
NodeJS agent Pod configuration.
A related imagestreamtag named
jenkins-agent-nodejs is in in
the project. This variable must be
set before Jenkins starts the first
time for it to have an effect.

Default NodeJS agent image in
Jenkins server: image-
registry.openshift-image-
registry.svc:5000/openshift/j
enkins-agent-nodejs:latest

MAVEN_SLAVE_IMAGE Setting this value overrides the
image used for the default maven
agent Pod configuration. A
related imagestreamtag named
jenkins-agent-maven is in the
project. This variable must be set
before Jenkins starts the first
time for it to have an effect.

Default Maven agent image in
Jenkins server: image-
registry.openshift-image-
registry.svc:5000/openshift/j
enkins-agent-maven:latest

Variable Definition Example values and settings

9.2.3. Providing Jenkins cross project access

If you are going to run Jenkins somewhere other than your same project, you must provide an access
token to Jenkins to access your project.

CHAPTER 9. USING IMAGES

71

Procedure

1. Identify the secret for the service account that has appropriate permissions to access the
project Jenkins must access:

$ oc describe serviceaccount jenkins
Name: default
Labels: <none>
Secrets: { jenkins-token-uyswp }
 { jenkins-dockercfg-xcr3d }
Tokens: jenkins-token-izv1u
 jenkins-token-uyswp

In this case the secret is named jenkins-token-uyswp.

2. Retrieve the token from the secret:

$ oc describe secret <secret name from above>
Name: jenkins-token-uyswp
Labels: <none>
Annotations: kubernetes.io/service-account.name=jenkins,kubernetes.io/service-
account.uid=32f5b661-2a8f-11e5-9528-3c970e3bf0b7
Type: kubernetes.io/service-account-token
Data
====
ca.crt: 1066 bytes
token: eyJhbGc..<content cut>....wRA

The token parameter contains the token value Jenkins requires to access the project.

9.2.4. Jenkins cross volume mount points

The Jenkins image can be run with mounted volumes to enable persistent storage for the configuration:

/var/lib/jenkins - This is the data directory where Jenkins stores configuration files, including
job definitions.

9.2.5. Customizing the Jenkins image through Source-To-Image

To customize the official OpenShift Container Platform Jenkins image, you can use the image as a
Source-To-Image (S2I) builder.

You can use S2I to copy your custom Jenkins Jobs definitions, add additional plug-ins, or replace the
provided config.xml file with your own, custom, configuration.

To include your modifications in the Jenkins image, you must have a Git repository with the following
directory structure:

plugins

This directory contains those binary Jenkins plug-ins you want to copy into Jenkins.

plugins.txt

This file lists the plug-ins you want to install using the following syntax:

pluginId:pluginVersion

OpenShift Container Platform 4.1 Images

72

1

2

3

configuration/jobs

This directory contains the Jenkins job definitions.

configuration/config.xml

This file contains your custom Jenkins configuration.

The contents of the configuration/ directory is copied to the /var/lib/jenkins/ directory, so you can also
include additional files, such as credentials.xml, there.

The following example build configuration customizes the Jenkins image in OpenShift Container
Platform:

The source parameter defines the source Git repository with the layout described above.

The strategy parameter defines the original Jenkins image to use as a source image for the build.

The output parameter defines the resulting, customized Jenkins image that you can use in
deployment configurations instead of the official Jenkins image.

9.2.6. Configuring the Jenkins Kubernetes plug-in

The OpenShift Container Platform Jenkins image includes the pre-installed Kubernetes plug-in that
allows Jenkins agents to be dynamically provisioned on multiple container hosts using Kubernetes and
OpenShift Container Platform.

To use the Kubernetes plug-in, OpenShift Container Platform provides images that are suitable for use
as Jenkins agents: the Base, Maven, and Node.js images.

Both the Maven and Node.js agent images are automatically configured as Kubernetes Pod Template
images within the OpenShift Container Platform Jenkins image’s configuration for the Kubernetes plug-
in. That configuration includes labels for each of the images that can be applied to any of your Jenkins
jobs under their Restrict where this project can be run setting. If the label is applied, jobs run under an
OpenShift Container Platform Pod running the respective agent image.

apiVersion: v1
kind: BuildConfig
metadata:
 name: custom-jenkins-build
spec:
 source: 1
 git:
 uri: https://github.com/custom/repository
 type: Git
 strategy: 2
 sourceStrategy:
 from:
 kind: ImageStreamTag
 name: jenkins:2
 namespace: openshift
 type: Source
 output: 3
 to:
 kind: ImageStreamTag
 name: custom-jenkins:latest

CHAPTER 9. USING IMAGES

73

https://wiki.jenkins-ci.org/display/JENKINS/Kubernetes+Plugin

The Jenkins image also provides auto-discovery and auto-configuration of additional agent images for
the Kubernetes plug-in.

With the OpenShift Container Platform Sync plug-in, the Jenkins image on Jenkins start-up searches
for the following within the project that it is running or the projects specifically listed in the plug-in’s
configuration:

Imagestreams that have the label role set to jenkins-slave.

Imagestreamtags that have the annotation role set to jenkins-slave.

ConfigMaps that have the label role set to jenkins-slave.

When it finds an imagestream with the appropriate label, or imagestreamtag with the appropriate
annotation, it generates the corresponding Kubernetes plug-in configuration so you can assign your
Jenkins jobs to run in a Pod that runs the container image that is provided by the imagestream.

The name and image references of the imagestream or imagestreamtag are mapped to the name and
image fields in the Kubernetes plug-in Pod template. You can control the label field of the Kubernetes
plug-in Pod template by setting an annotation on the imagestream or imagestreamtag object with the
key slave-label. Otherwise, the name is used as the label.

NOTE

Do not log into the Jenkins console and modify the Pod Template configuration. If you
do so after the Pod Template is created, and the OpenShift Sync plug-in detects that
the image associated with the ImageStream or ImageStreamTag has changed, it replaces
the Pod Template and overwrites those configuration changes. You cannot merge a new
configuration with the existing configuration.

Consider the ConfigMap approach if you have more complex configuration needs.

When it finds a ConfigMap with the appropriate label, it assumes that any values in the key-value data
payload of the ConfigMap contains XML that is consistent with the configuration format for Jenkins and
the Kubernetes plug-in Pod templates. A key differentiator to note when using ConfigMaps, instead of
imagestreams or imagestreamtags, is that you can control all the parameters of the Kubernetes plug-in
Pod template.

Example ConfigMap for jenkins-agent:

kind: ConfigMap
apiVersion: v1
metadata:
 name: jenkins-agent
 labels:
 role: jenkins-slave
data:
 template1: |-
 <org.csanchez.jenkins.plugins.kubernetes.PodTemplate>
 <inheritFrom></inheritFrom>
 <name>template1</name>
 <instanceCap>2147483647</instanceCap>
 <idleMinutes>0</idleMinutes>
 <label>template1</label>
 <serviceAccount>jenkins</serviceAccount>
 <nodeSelector></nodeSelector>

OpenShift Container Platform 4.1 Images

74

NOTE

If you log into the Jenkins console and make further changes to the Pod Template
configuration after the Pod Template is created, and the OpenShift Sync plug-in detects
that the ConfigMap has changed, it will replace the Pod Template and overwrite those
configuration changes. You cannot merge a new configuration with the existing
configuration.

Do not log into the Jenkins console and modify the Pod Template configuration. If you
do so after the Pod Template is created, and the OpenShift Sync plug-in detects that
the image associated with the ImageStream or ImageStreamTag has changed, it replaces
the Pod Template and overwrites those configuration changes. You cannot merge a new
configuration with the existing configuration.

Consider the ConfigMap approach if you have more complex configuration needs.

After it is installed, the OpenShift Sync plug-in monitors the API server of OpenShift Container
Platform for updates to ImageStreams, ImageStreamTags, and ConfigMaps and adjusts the
configuration of the Kubernetes plug-in.

The following rules apply:

Removing the label or annotation from the ConfigMap, ImageStream, or ImageStreamTag
results in the deletion of any existing PodTemplate from the configuration of the Kubernetes
plug-in.

If those objects are removed, the corresponding configuration is removed from the Kubernetes
plug-in.

Either creating appropriately labeled or annotated ConfigMap, ImageStream, or

 <volumes/>
 <containers>
 <org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 <name>jnlp</name>
 
 <privileged>false</privileged>
 <alwaysPullImage>true</alwaysPullImage>
 <workingDir>/tmp</workingDir>
 <command></command>
 <args>${computer.jnlpmac} ${computer.name}</args>
 <ttyEnabled>false</ttyEnabled>
 <resourceRequestCpu></resourceRequestCpu>
 <resourceRequestMemory></resourceRequestMemory>
 <resourceLimitCpu></resourceLimitCpu>
 <resourceLimitMemory></resourceLimitMemory>
 <envVars/>
 </org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 </containers>
 <envVars/>
 <annotations/>
 <imagePullSecrets/>
 <nodeProperties/>
 </org.csanchez.jenkins.plugins.kubernetes.PodTemplate>

CHAPTER 9. USING IMAGES

75

Either creating appropriately labeled or annotated ConfigMap, ImageStream, or
ImageStreamTag objects, or the adding of labels after their initial creation, leads to creating of
a PodTemplate in the Kubernetes-plugin configuration.

In the case of the PodTemplate by ConfigMap form, changes to the ConfigMap data for the
PodTemplate are applied to the PodTemplate settings in the Kubernetes plug-in configuration
and overrides any changes that were made to the PodTemplate through the Jenkins UI
between changes to the ConfigMap.

To use a container image as a Jenkins agent, the image must run the slave agent as an entrypoint. For
more details about this, refer to the official Jenkins documentation.

9.2.7. Jenkins permissions

If in the ConfigMap the <serviceAccount> element of the Pod Template XML is the OpenShift
Container Platform Service Account used for the resulting Pod, the service account credentials are
mounted into the Pod. The permissions are associated with the service account and control which
operations against the OpenShift Container Platform master are allowed from the Pod.

Consider the following scenario with service accounts used for the Pod, which is launched by the
Kubernetes Plug-in that runs in the OpenShift Container Platform Jenkins image:

If you use the example template for Jenkins that is provided by OpenShift Container Platform, the
jenkins service account is defined with the edit role for the project Jenkins runs in, and the master
Jenkins Pod has that service account mounted.

The two default Maven and NodeJS Pod Templates that are injected into the Jenkins configuration are
also set to use the same service account as the Jenkins master.

Any Pod templates that are automatically discovered by the OpenShift Sync plug-in because
their imagestreams or imagestreamtags have the required label or annotations are configured
to use the Jenkins master’s service account as their service account.

For the other ways you can provide a Pod Template definition into Jenkins and the Kubernetes
plug-in, you have to explicitly specify the service account to use. Those other ways include the
Jenkins console, the podTemplate pipeline DSL that is provided by the Kubernetes plug-in, or
labeling a ConfigMap whose data is the XML configuration for a Pod Template.

If you do not specify a value for the service account, the default service account is used.

Ensure that whatever service account is used has the necessary permissions, roles, and so on
defined within OpenShift Container Platform to manipulate whatever projects you choose to
manipulate from the within the Pod.

9.2.8. Creating a Jenkins service from a template

Templates provide parameter fields to define all the environment variables with predefined default
values. OpenShift Container Platform provides templates to make creating a new Jenkins service easy.
The Jenkins templates should be registered in the default openshift project by your cluster
administrator during the initial cluster setup.

The two available templates both define deployment configuration and a service. The templates differ
in their storage strategy, which affects whether or not the Jenkins content persists across a Pod restart.

NOTE

OpenShift Container Platform 4.1 Images

76

https://wiki.jenkins-ci.org/display/JENKINS/Distributed+builds#Distributedbuilds-Launchslaveagentheadlessly

NOTE

A Pod might be restarted when it is moved to another node or when an update of the
deployment configuration triggers a redeployment.

jenkins-ephemeral uses ephemeral storage. On Pod restart, all data is lost. This template is
only useful for development or testing.

jenkins-persistent uses a Persistent Volume store. Data survives a Pod restart.

To use a Persistent Volume store, the cluster administrator must define a Persistent Volume pool in the
OpenShift Container Platform deployment.

After you select which template you want, you must instantiate the template to be able to use Jenkins.

Procedure

1. Create a new Jenkins application using one of the following methods:

A Persistent Volume:

$ oc new-app jenkins-persistent

Or an emptyDir type volume where configuration does not persist across Pod restarts:

$ oc new-app jenkins-ephemeral

9.2.9. Using the Jenkins Kubernetes plug-in

In the following example, the openshift-jee-sample BuildConfig causes a Jenkins Maven agent Pod to
be dynamically provisioned. The Pod clones some Java source code, builds a WAR file, and causes a
second BuildConfig, openshift-jee-sample-docker to run. The second BuildConfig layers the new WAR
file into a container image.

The following example is a BuildConfig that uses the Jenkins Kubernetes plug-in.

kind: List
apiVersion: v1
items:
- kind: ImageStream
 apiVersion: v1
 metadata:
 name: openshift-jee-sample
- kind: BuildConfig
 apiVersion: v1
 metadata:
 name: openshift-jee-sample-docker
 spec:
 strategy:
 type: Docker
 source:
 type: Docker
 dockerfile: |-
 FROM openshift/wildfly-101-centos7:latest
 COPY ROOT.war /wildfly/standalone/deployments/ROOT.war

CHAPTER 9. USING IMAGES

77

It is also possible to override the specification of the dynamically created Jenkins agent Pod. The
following is a modification to the previous example, which overrides the container memory and specifies
an environment variable:

The following example is a BuildConfig that the Jenkins Kubernetes Plug-in, specifying memory limit
and environment variable.

 CMD $STI_SCRIPTS_PATH/run
 binary:
 asFile: ROOT.war
 output:
 to:
 kind: ImageStreamTag
 name: openshift-jee-sample:latest
- kind: BuildConfig
 apiVersion: v1
 metadata:
 name: openshift-jee-sample
 spec:
 strategy:
 type: JenkinsPipeline
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 node("maven") {
 sh "git clone https://github.com/openshift/openshift-jee-sample.git ."
 sh "mvn -B -Popenshift package"
 sh "oc start-build -F openshift-jee-sample-docker --from-file=target/ROOT.war"
 }
 triggers:
 - type: ConfigChange

kind: BuildConfig
apiVersion: v1
metadata:
 name: openshift-jee-sample
spec:
 strategy:
 type: JenkinsPipeline
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 podTemplate(label: "mypod", 1
 cloud: "openshift", 2
 inheritFrom: "maven", 3
 containers: [
 containerTemplate(name: "jnlp", 4
 image: "openshift/jenkins-agent-maven-35-centos7:v3.10", 5
 resourceRequestMemory: "512Mi", 6
 resourceLimitMemory: "512Mi", 7
 envVars: [
 envVar(key: "CONTAINER_HEAP_PERCENT", value: "0.25") 8
])
]) {
 node("mypod") { 9
 sh "git clone https://github.com/openshift/openshift-jee-sample.git ."
 sh "mvn -B -Popenshift package"

OpenShift Container Platform 4.1 Images

78

1

2

3

4

5

6

7

8

9

A new Pod template called mypod is defined dynamically. The new Pod template name is
referenced in the node stanza.

The cloud value must be set to openshift.

The new Pod template can inherit its configuration from an existing Pod template. In this case,
inherited from the Maven Pod template that is pre-defined by OpenShift Container Platform.

This example overrides values in the pre-existing Container, and must be specified by name. All
Jenkins agent images shipped with OpenShift Container Platform use the Container name jnlp.

Specify the Container image name again. This is a known issue.

A memory request of 512 Mi is specified.

A memory limit of 512 Mi is specified.

An environment variable CONTAINER_HEAP_PERCENT, with value 0.25, is specified.

The node stanza references the name of the defined Pod template.

By default, the pod is deleted when the build completes. This behavior can be modified with the plug-in
or within a pipeline Jenkinsfile.

9.2.10. Jenkins memory requirements

When deployed by the provided Jenkins Ephemeral or Jenkins Persistent templates, the default
memory limit is 1 Gi.

By default, all other process that run in the Jenkins container cannot use more than a total of 512 MiB
of memory. If they require more memory, the container halts. It is therefore highly recommended that
pipelines run external commands in an agent container wherever possible.

And if Project quotas allow for it, see recommendations from the Jenkins documentation on what a
Jenkins master should have from a memory perspective. Those recommendations proscribe to allocate
even more memory for the Jenkins master.

It is recommended to specify memory request and limit values on agent containers created by the
Jenkins Kubernetes Plug-in. Admin users can set default values on a per-agent image basis through the
Jenkins configuration. The memory request and limit parameters can also be overridden on a per-
container basis.

You can increase the amount of memory available to Jenkins by overriding the MEMORY_LIMIT
parameter when instantiating the Jenkins Ephemeral or Jenkins Persistent template.

9.2.11. Additional Resources

See Base image options for more information on the Red Hat Universal Base Images (UBI).

 sh "oc start-build -F openshift-jee-sample-docker --from-file=target/ROOT.war"
 }
 }
 triggers:
 - type: ConfigChange

CHAPTER 9. USING IMAGES

79

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/architecture/#base-image-options
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/getting_started_with_containers/index#using_red_hat_base_container_images_standard_and_minimal

9.3. JENKINS AGENT

OpenShift Container Platform provides three images that are suitable for use as Jenkins agents: the
Base, Maven, and Node.js images.

The first is a base image for Jenkins agents:

It pulls in both the required tools, headless Java, the Jenkins JNLP client, and the useful ones
including git, tar, zip, and nss among others.

It establishes the JNLP agent as the entrypoint.

It includes the oc client tooling for invoking command line operations from within Jenkins jobs.

It provides Dockerfiles for both Red Hat Enterprise Linux (RHEL) and localdev images.

Two more images that extend the base image are also provided:

Maven v3.5 image

Node.js v8 image

The Maven and Node.js Jenkins agent images provide Dockerfiles for the Universal Base Image (UBI)
that you can reference when building new agent images. Also note the contrib and contrib/bin
subdirectories. They allow for the insertion of configuration files and executable scripts for your image.

IMPORTANT

Use and extend an appropriate agent image version for the your of OpenShift Container
Platform. If the oc client version that is embedded in the agent image is not compatible
with the OpenShift Container Platform version, unexpected behavior can result.

9.3.1. Jenkins agent images

The OpenShift Container Platform Jenkins agent images are available on quay.io or registry.redhat.io.

Jenkins images are available through the Red Hat Registry:

$ docker pull registry.redhat.io/openshift4/ose-jenkins:<v4.1.4>
$ docker pull registry.redhat.io/openshift4/ose-jenkins-agent-nodejs:<v4.1.4>
$ docker pull registry.redhat.io/openshift4/ose-jenkins-agent-maven:<v4.1.4>
$ docker pull registry.redhat.io/openshift4/ose-jenkins-agent-base:<v4.1.4>

To use these images, you can either access them directly from quay.io or registry.redhat.io or push
them into your OpenShift Container Platform container image registry.

9.3.2. Jenkins agent environment variables

Each Jenkins agent container can be configured with the following environment variables.

OpenShift Container Platform 4.1 Images

80

Variable Definition Example values and settings

JAVA_MAX_HEAP_PARAM,
CONTAINER_HEAP_PERCEN
T,
JENKINS_MAX_HEAP_UPPE
R_BOUND_MB

These values control the
maximum heap size of the Jenkins
JVM. If
JAVA_MAX_HEAP_PARAM is
set, its value takes precedence.
Otherwise, the maximum heap
size is dynamically calculated as
CONTAINER_HEAP_PERCE
NT of the container memory limit,
optionally capped at
JENKINS_MAX_HEAP_UPPE
R_BOUND_MB MiB.

By default, the maximum heap
size of the Jenkins JVM is set to
50% of the container memory
limit with no cap.

JAVA_MAX_HEAP_PARAM
example setting: -Xmx512m

CONTAINER_HEAP_PERCE
NT default: 0.5, or 50%

JENKINS_MAX_HEAP_UPPE
R_BOUND_MB example
setting: 512 MiB

JAVA_INITIAL_HEAP_PARA
M,
CONTAINER_INITIAL_PERC
ENT

These values control the initial
heap size of the Jenkins JVM. If
JAVA_INITIAL_HEAP_PARA
M is set, its value takes
precedence. Otherwise, the initial
heap size is dynamically calculated
as
CONTAINER_INITIAL_PERC
ENT of the dynamically
calculated maximum heap size.

By default, the JVM sets the
initial heap size.

JAVA_INITIAL_HEAP_PARA
M example setting: -Xms32m

CONTAINER_INITIAL_PERC
ENT example setting: 0.1, or 10%

CONTAINER_CORE_LIMIT If set, specifies an integer number
of cores used for sizing numbers
of internal JVM threads.

Example setting: 2

JAVA_TOOL_OPTIONS Specifies options to apply to all
JVMs running in this container. It
is not recommended to override
this value.

Default: -
XX:+UnlockExperimentalVM
Options -
XX:+UseCGroupMemoryLimi
tForHeap -
Dsun.zip.disableMemoryMap
ping=true

JAVA_GC_OPTS Specifies Jenkins JVM garbage
collection parameters. It is not
recommended to override this
value.

Default: -XX:+UseParallelGC -
XX:MinHeapFreeRatio=5 -
XX:MaxHeapFreeRatio=10 -
XX:GCTimeRatio=4 -
XX:AdaptiveSizePolicyWeigh
t=90

CHAPTER 9. USING IMAGES

81

JENKINS_JAVA_OVERRIDES Specifies additional options for
the Jenkins JVM. These options
are appended to all other options,
including the Java options above,
and can be used to override any
of them, if necessary. Separate
each additional option with a
space; if any option contains
space characters, escape them
with a backslash.

Example settings: -Dfoo -Dbar; -
Dfoo=first\ value -
Dbar=second\ value

Variable Definition Example values and settings

9.3.3. Jenkins agent memory requirements

A JVM is used in all Jenkins agents to host the Jenkins JNLP agent as well as to run any Java
applications such as javac, Maven, or Gradle.

By default, the Jenkins JNLP agent JVM uses 50% of the container memory limit for its heap. This value
can be modified by the CONTAINER_HEAP_PERCENT environment variable. It can also be capped at
an upper limit or overridden entirely.

By default any other processes run in the Jenkins agent container, such as shell scripts or oc commands
run from pipelines, cannot use more than the remaining 50% memory limit without provoking an OOM
kill.

By default, each further JVM process that runs in a Jenkins agent container uses up to 25% of the
container memory limit for it’s heap. It might be necessary to tune this limit for many build workloads.

9.3.4. Jenkins agent Gradle builds

Hosting Gradle builds in the Jenkins agent on OpenShift Container Platform presents additional
complications because in addition to the Jenkins JNLP agent and Gradle JVMs, Gradle spawns a third
JVM to run tests if they are specified.

The following settings are suggested as a starting point for running Gradle builds in a memory
constrained Jenkins agent on OpenShift Container Platform. You can modify these settings as required.

Ensure the long-lived Gradle daemon is disabled by adding org.gradle.daemon=false to the
gradle.properties file.

Disable parallel build execution by ensuring org.gradle.parallel=true is not set in the
gradle.properties file and that --parallel is not set as a command line argument.

To prevent Java compilations running out-of-process, set java { options.fork = false } in the
build.gradle file .

Disable multiple additional test processes by ensuring test { maxParallelForks = 1 } is set in the
build.gradle file.

Override the Gradle JVM memory parameters by the GRADLE_OPTS, JAVA_OPTS or
JAVA_TOOL_OPTIONS environment. variables.

Set the maximum heap size and JVM arguments for any Gradle test JVM by defining the

OpenShift Container Platform 4.1 Images

82

1

Set the maximum heap size and JVM arguments for any Gradle test JVM by defining the
maxHeapSize and jvmArgs settings in build.gradle, or though the -Dorg.gradle.jvmargs
command line argument.

9.3.5. Jenkins agent pod retention

Jenkins agent pods, also known as slave pods, are deleted by default after the build completes or is
stopped. This behavior can be changed by the Kubernetes plug-in Pod Retention setting. Pod retention
can be set for all Jenkins builds, with overrides for each pod template. The following behaviors are
supported:

Always keeps the build pod regardless of build result.

Default uses the plug-in value (pod template only).

Never always deletes the pod.

On Failure keeps the pod if it fails during the build.

You can override pod retention in the pipeline Jenkinsfile:

Allowed values for podRetention are never(), onFailure(), always(), and default().

WARNING

Pods that are kept might continue to run and count against resource quotas.

podTemplate(label: "mypod",
 cloud: "openshift",
 inheritFrom: "maven",
 podRetention: onFailure(), 1
 containers: [
 ...
]) {
 node("mypod") {
 ...
 }
}



CHAPTER 9. USING IMAGES

83

	Table of Contents
	CHAPTER 1. CONFIGURING THE SAMPLES OPERATOR
	1.1. UNDERSTANDING THE SAMPLES OPERATOR
	1.2. SAMPLES OPERATOR CONFIGURATION PARAMETERS
	1.2.1. Configuration restrictions
	1.2.2. Conditions

	1.3. ACCESSING THE SAMPLES OPERATOR CONFIGURATION

	CHAPTER 2. UNDERSTANDING CONTAINERS, IMAGES, AND IMAGESTREAMS
	2.1. IMAGES
	2.2. CONTAINERS
	2.3. IMAGE REGISTRY
	2.4. IMAGE REPOSITORY
	2.5. IMAGE TAGS
	2.6. IMAGE IDS
	2.7. USING IMAGESTREAMS
	2.7.1. Imagestreamtags

	2.8. IMAGESTREAM IMAGES
	2.9. IMAGESTREAM TRIGGERS
	2.10. ADDITIONAL RESOURCES

	CHAPTER 3. CREATING IMAGES
	3.1. LEARNING CONTAINER BEST PRACTICES
	3.1.1. General container image guidelines
	Reuse images
	Maintain compatibility within tags
	Avoid multiple processes
	Use exec in wrapper scripts
	Clean temporary files
	Place instructions in the proper order
	Mark important ports
	Set environment variables
	Avoid default passwords
	Avoid sshd
	Use volumes for persistent data

	3.1.2. OpenShift Container Platform-specific guidelines
	Enable images for source-to-image (S2I)
	Support arbitrary user ids
	Use services for inter-image communication
	Provide common libraries
	Use environment variables for configuration
	Set image metadata
	Clustering
	Logging
	Liveness and readiness probes
	Templates

	3.2. INCLUDING METADATA IN IMAGES
	3.2.1. Defining image metadata

	3.3. TESTING S2I IMAGES
	3.3.1. Understanding testing requirements
	3.3.2. Generating scripts and tools
	3.3.3. Testing locally
	3.3.4. Basic testing workflow
	3.3.5. Using OpenShift Container Platform for building the image

	CHAPTER 4. MANAGING IMAGES
	4.1. MANAGING IMAGES OVERVIEW
	4.1.1. Images overview

	4.2. TAGGING IMAGES
	4.2.1. Image tags
	4.2.2. Image tag conventions
	4.2.3. Adding tags to imagestreams
	4.2.4. Removing tags from imagestreams
	4.2.5. Referencing images in imagestreams
	4.2.6. Additional information

	4.3. IMAGE PULL POLICY
	4.3.1. Image pull policy overview

	4.4. USING IMAGE PULL SECRETS
	4.4.1. Allowing Pods to reference images across projects
	4.4.2. Allowing Pods to reference images from other secured registries
	4.4.2.1. Pulling from private registries with delegated authentication

	CHAPTER 5. MANAGING IMAGESTREAMS
	5.1. USING IMAGESTREAMS
	5.2. CONFIGURING IMAGESTREAMS
	5.3. IMAGESTREAM IMAGES
	5.4. IMAGESTREAMTAGS
	5.5. IMAGESTREAM CHANGE TRIGGERS
	5.6. IMAGESTREAM MAPPING
	5.7. WORKING WITH IMAGESTREAMS
	5.7.1. Getting information about imagestreams
	5.7.2. Adding tags to an imagestream
	5.7.3. Adding tags for an external image
	5.7.4. Updating imagestreamtags
	5.7.5. Removing imagestreamtags
	5.7.6. Configuring periodic importing of imagestreamtags

	CHAPTER 6. IMAGE CONFIGURATION RESOURCES
	6.1. IMAGE CONTROLLER CONFIGURATION PARAMETERS
	6.2. CONFIGURING IMAGE SETTINGS
	6.2.1. Importing insecure registries and blocking registries

	CHAPTER 7. USING TEMPLATES
	7.1. UNDERSTANDING TEMPLATES
	7.2. UPLOADING A TEMPLATE
	7.3. CREATING AN APPLICATION USING THE WEB CONSOLE
	7.4. CREATING OBJECTS FROM TEMPLATES USING THE CLI
	7.4.1. Adding labels
	7.4.2. Listing parameters
	7.4.3. Generating a list of objects

	7.5. MODIFYING UPLOADED TEMPLATES
	7.6. USING INSTANT APP AND QUICKSTART TEMPLATES
	7.6.1. Quickstart templates
	7.6.1.1. Web framework Quickstart templates

	7.7. WRITING TEMPLATES
	7.7.1. Writing the template description
	7.7.2. Writing template labels
	7.7.3. Writing template parameters
	7.7.4. Writing the template object list
	7.7.5. Marking a template as bindable
	7.7.6. Exposing template object fields
	7.7.7. Waiting for template readiness
	7.7.8. Creating a template from existing objects

	CHAPTER 8. USING RUBY ON RAILS
	8.1. SETTING UP THE DATABASE
	8.2. WRITING YOUR APPLICATION
	8.2.1. Creating a welcome page
	8.2.2. Configuring application for OpenShift Container Platform
	8.2.3. Storing your application in Git

	8.3. DEPLOYING YOUR APPLICATION TO OPENSHIFT CONTAINER PLATFORM
	8.3.1. Creating the database service
	8.3.2. Creating the frontend service
	8.3.3. Creating a route for your application

	CHAPTER 9. USING IMAGES
	9.1. USING IMAGES OVERVIEW
	9.2. CONFIGURING JENKINS IMAGES
	9.2.1. Configuration and customization
	9.2.1.1. OpenShift Container Platform OAuth authentication
	9.2.1.2. Jenkins authentication

	9.2.2. Jenkins environment variables
	9.2.3. Providing Jenkins cross project access
	9.2.4. Jenkins cross volume mount points
	9.2.5. Customizing the Jenkins image through Source-To-Image
	9.2.6. Configuring the Jenkins Kubernetes plug-in
	9.2.7. Jenkins permissions
	9.2.8. Creating a Jenkins service from a template
	9.2.9. Using the Jenkins Kubernetes plug-in
	9.2.10. Jenkins memory requirements
	9.2.11. Additional Resources

	9.3. JENKINS AGENT
	9.3.1. Jenkins agent images
	9.3.2. Jenkins agent environment variables
	9.3.3. Jenkins agent memory requirements
	9.3.4. Jenkins agent Gradle builds
	9.3.5. Jenkins agent pod retention

