
OpenShift Container Platform 4.1

Authentication

Configuring user authentication, encryption, and access controls for users and
services

Last Updated: 2020-04-07

OpenShift Container Platform 4.1 Authentication

Configuring user authentication, encryption, and access controls for users and services

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for defining identity providers in OpenShift Container Platform
4.1. It also discusses how to configure encryption and role-based access control to secure the
cluster.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. UNDERSTANDING AUTHENTICATION
1.1. USERS
1.2. GROUPS
1.3. API AUTHENTICATION

1.3.1. OpenShift Container Platform OAuth server
1.3.1.1. OAuth token requests
1.3.1.2. API impersonation
1.3.1.3. Authentication metrics for Prometheus

CHAPTER 2. CONFIGURING THE INTERNAL OAUTH SERVER
2.1. OPENSHIFT CONTAINER PLATFORM OAUTH SERVER
2.2. OAUTH TOKEN REQUEST FLOWS AND RESPONSES
2.3. OPTIONS FOR THE INTERNAL OAUTH SERVER

2.3.1. OAuth token duration options
2.3.2. OAuth grant options

2.4. CONFIGURING THE INTERNAL OAUTH SERVER’S TOKEN DURATION
2.5. REGISTER AN ADDITIONAL OAUTH CLIENT
2.6. OAUTH SERVER METADATA
2.7. TROUBLESHOOTING OAUTH API EVENTS

CHAPTER 3. UNDERSTANDING IDENTITY PROVIDER CONFIGURATION
3.1. ABOUT IDENTITY PROVIDERS IN OPENSHIFT CONTAINER PLATFORM
3.2. SUPPORTED IDENTITY PROVIDERS
3.3. REMOVING THE KUBEADMIN USER
3.4. IDENTITY PROVIDER PARAMETERS
3.5. SAMPLE IDENTITY PROVIDER CR

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS
4.1. CONFIGURING AN HTPASSWD IDENTITY PROVIDER

4.1.1. About identity providers in OpenShift Container Platform
4.1.2. Creating an HTPasswd file using Linux
4.1.3. Creating an HTPasswd file using Windows
4.1.4. Creating the HTPasswd Secret
4.1.5. Sample HTPasswd CR
4.1.6. Adding an identity provider to your clusters
4.1.7. Configuring identity providers using the web console

4.2. CONFIGURING A KEYSTONE IDENTITY PROVIDER
4.2.1. About identity providers in OpenShift Container Platform
4.2.2. Creating the Secret
4.2.3. Creating a ConfigMap
4.2.4. Sample Keystone CR
4.2.5. Adding an identity provider to your clusters

4.3. CONFIGURING AN LDAP IDENTITY PROVIDER
4.3.1. About identity providers in OpenShift Container Platform
4.3.2. About LDAP authentication
4.3.3. Creating the LDAP Secret
4.3.4. Creating a ConfigMap
4.3.5. Sample LDAP CR
4.3.6. Adding an identity provider to your clusters

4.4. CONFIGURING AN BASIC AUTHENTICATION IDENTITY PROVIDER
4.4.1. About identity providers in OpenShift Container Platform
4.4.2. About basic authentication

6
6
6
7
7
7
8
8

10
10
10
11
11
11
11

12
13
14

16
16
16
17
17
18

20
20
20
20
21
21
21
22
23
23
23
23
24
24
25
25
26
26
27
27
27
29
29
30
30

Table of Contents

1

. .

4.4.3. Creating the Secret
4.4.4. Creating a ConfigMap
4.4.5. Sample basic authentication CR
4.4.6. Adding an identity provider to your clusters
4.4.7. Example Apache HTTPD configuration for basic identity providers

4.4.7.1. File requirements
4.4.8. Basic authentication troubleshooting

4.5. CONFIGURING A REQUEST HEADER IDENTITY PROVIDER
4.5.1. About identity providers in OpenShift Container Platform
4.5.2. About request header authentication

4.5.2.1. SSPI connection support on Microsoft Windows
4.5.3. Creating a ConfigMap
4.5.4. Sample request header CR
4.5.5. Adding an identity provider to your clusters
4.5.6. Example Apache authentication configuration using request header

Custom proxy configuration
Configuring Apache authentication using request header

4.6. CONFIGURING A GITHUB OR GITHUB ENTERPRISE IDENTITY PROVIDER
4.6.1. About identity providers in OpenShift Container Platform
4.6.2. Registering a GitHub application
4.6.3. Creating the Secret
4.6.4. Creating a ConfigMap
4.6.5. Sample GitHub CR
4.6.6. Adding an identity provider to your clusters

4.7. CONFIGURING A GITLAB IDENTITY PROVIDER
4.7.1. About identity providers in OpenShift Container Platform
4.7.2. Creating the Secret
4.7.3. Creating a ConfigMap
4.7.4. Sample GitLab CR
4.7.5. Adding an identity provider to your clusters

4.8. CONFIGURING A GOOGLE IDENTITY PROVIDER
4.8.1. About identity providers in OpenShift Container Platform
4.8.2. Creating the Secret
4.8.3. Sample Google CR
4.8.4. Adding an identity provider to your clusters

4.9. CONFIGURING A OPENID CONNECT IDENTITY PROVIDER
4.9.1. About identity providers in OpenShift Container Platform
4.9.2. Creating the Secret
4.9.3. Creating a ConfigMap
4.9.4. Sample OpenID Connect CRs
4.9.5. Adding an identity provider to your clusters
4.9.6. Configuring identity providers using the web console

CHAPTER 5. CONFIGURING CERTIFICATES
5.1. REPLACING THE DEFAULT INGRESS CERTIFICATE

5.1.1. Understanding the default ingress certificate
5.1.2. Replacing the default ingress certificate

5.2. ADDING API SERVER CERTIFICATES
5.2.1. Add an API server named certificate

5.3. SECURING SERVICE TRAFFIC USING SERVICE SERVING CERTIFICATE SECRETS
5.3.1. Understanding service serving certificates
5.3.2. Add a service certificate
5.3.3. Add a service certificate to a ConfigMap

31
31
31
32
33
34
34
35
35
35
36
36
36
38
38
39
39
43
43
43
44
44
45
46
47
47
47
47
47
48
49
49
49
50
50
51
52
52
53
53
55
56

57
57
57
57
58
58
59
59
59
60

OpenShift Container Platform 4.1 Authentication

2

. .

. .

. .

. .

. .

. .

. .

. .

5.3.4. Manually rotate the generated service certificate
5.3.5. Manually rotate the service CA certificate

CHAPTER 6. USING RBAC TO DEFINE AND APPLY PERMISSIONS
6.1. RBAC OVERVIEW

6.1.1. Default cluster roles
6.1.2. Evaluating authorization

6.1.2.1. Cluster Role Aggregation
6.2. PROJECTS AND NAMESPACES
6.3. DEFAULT PROJECTS
6.4. VIEWING CLUSTER ROLES AND BINDINGS
6.5. VIEWING LOCAL ROLES AND BINDINGS
6.6. ADDING ROLES TO USERS
6.7. CREATING A LOCAL ROLE
6.8. CREATING A CLUSTER ROLE
6.9. LOCAL ROLE BINDING COMMANDS
6.10. CLUSTER ROLE BINDING COMMANDS
6.11. CREATING A CLUSTER ADMIN

CHAPTER 7. REMOVING THE KUBEADMIN USER
7.1. THE KUBEADMIN USER
7.2. REMOVING THE KUBEADMIN USER

CHAPTER 8. CONFIGURING THE USER AGENT
8.1. ABOUT THE USER AGENT
8.2. CONFIGURING THE USER AGENT

CHAPTER 9. UNDERSTANDING AND CREATING SERVICE ACCOUNTS
9.1. SERVICE ACCOUNTS OVERVIEW
9.2. CREATING SERVICE ACCOUNTS
9.3. EXAMPLES OF GRANTING ROLES TO SERVICE ACCOUNTS

CHAPTER 10. USING SERVICE ACCOUNTS IN APPLICATIONS
10.1. SERVICE ACCOUNTS OVERVIEW
10.2. DEFAULT SERVICE ACCOUNTS

10.2.1. Default cluster service accounts
10.2.2. Default project service accounts and roles

10.3. CREATING SERVICE ACCOUNTS
10.4. USING A SERVICE ACCOUNT’S CREDENTIALS EXTERNALLY

CHAPTER 11. USING A SERVICE ACCOUNT AS AN OAUTH CLIENT
11.1. SERVICE ACCOUNTS AS OAUTH CLIENTS

11.1.1. Redirect URIs for Service Accounts as OAuth Clients

CHAPTER 12. SCOPING TOKENS
12.1. ABOUT SCOPING TOKENS

12.1.1. User scopes
12.1.2. Role scope

CHAPTER 13. MANAGING SECURITY CONTEXT CONSTRAINTS
13.1. ABOUT SECURITY CONTEXT CONSTRAINTS

13.1.1. SCC Strategies
13.1.2. Controlling volumes
13.1.3. Admission
13.1.4. SCC prioritization

61
62

63
63
63
65
66
66
67
67
74
75
77
78
78
79
79

80
80
80

81
81
81

83
83
83
84

86
86
86
86
87
87
88

90
90
90

93
93
93
93

94
94
96
97
98
99

Table of Contents

3

. .

. .

13.2. ABOUT PRE-ALLOCATED SECURITY CONTEXT CONSTRAINTS VALUES
13.3. EXAMPLE SECURITY CONTEXT CONSTRAINTS
13.4. CREATING SECURITY CONTEXT CONSTRAINTS
13.5. ROLE-BASED ACCESS TO SECURITY CONTEXT CONSTRAINTS
13.6. SECURITY CONTEXT CONSTRAINTS REFERENCE COMMANDS

13.6.1. Listing SCCs
13.6.2. Examining an SCC
13.6.3. Deleting an SCC
13.6.4. Updating an SCC

CHAPTER 14. IMPERSONATING THE SYSTEM:ADMIN USER
14.1. API IMPERSONATION
14.2. IMPERSONATING THE SYSTEM:ADMIN USER

CHAPTER 15. SYNCING LDAP GROUPS
15.1. ABOUT CONFIGURING LDAP SYNC

15.1.1. About the RFC 2307 configuration file
15.1.2. About the Active Directory configuration file
15.1.3. About the augmented Active Directory configuration file

15.2. RUNNING LDAP SYNC
15.2.1. Syncing the LDAP server with OpenShift Container Platform
15.2.2. Syncing OpenShift Container Platform groups with the LDAP server
15.2.3. Syncing subgroups from the LDAP server with OpenShift Container Platform

15.3. RUNNING A GROUP PRUNING JOB
15.4. LDAP GROUP SYNC EXAMPLES

15.4.1. Syncing groups using the RFC 2307 schema
15.4.2. Syncing groups using the RFC2307 schema with user-defined name mappings
15.4.3. Syncing groups using RFC 2307 with user-defined error tolerances
15.4.4. Syncing groups using the Active Directory schema
15.4.5. Syncing groups using the augmented Active Directory schema

15.4.5.1. LDAP nested membership sync example
15.5. LDAP SYNC CONFIGURATION SPECIFICATION

15.5.1. v1.LDAPSyncConfig
15.5.2. v1.StringSource
15.5.3. v1.LDAPQuery
15.5.4. v1.RFC2307Config
15.5.5. v1.ActiveDirectoryConfig
15.5.6. v1.AugmentedActiveDirectoryConfig

99
100
102
104
105
105
105
106
106

108
108
108

109
109

111
112
113
114
114
114
114
115
116
116
118
119
122
123
125
128
129
131
131
132
134
134

OpenShift Container Platform 4.1 Authentication

4

Table of Contents

5

https://tools.ietf.org/html/rfc7591

CHAPTER 1. UNDERSTANDING AUTHENTICATION
For users to interact with OpenShift Container Platform, they must first authenticate to the cluster. The
authentication layer identifies the user associated with requests to the OpenShift Container Platform
API. The authorization layer then uses information about the requesting user to determine if the request
is allowed.

As an administrator, you can configure authentication for OpenShift Container Platform.

1.1. USERS

A user in OpenShift Container Platform is an entity that can make requests to the OpenShift Container
Platform API. An OpenShift Container Platform user object represents an actor which can be granted
permissions in the system by adding roles to them or to their groups. Typically, this represents the
account of a developer or administrator that is interacting with OpenShift Container Platform.

Several types of users can exist:

Regular users This is the way most interactive OpenShift Container Platform users are represented.
Regular users are created automatically in the system upon first login or can be created
via the API. Regular users are represented with the User object. Examples: joe alice

System users Many of these are created automatically when the infrastructure is defined, mainly for
the purpose of enabling the infrastructure to interact with the API securely. They
include a cluster administrator (with access to everything), a per-node user, users for
use by routers and registries, and various others. Finally, there is an anonymous
system user that is used by default for unauthenticated requests. Examples:
system:admin system:openshift-registry system:node:node1.example.com

Service
accounts

These are special system users associated with projects; some are created
automatically when the project is first created, while project administrators can create
more for the purpose of defining access to the contents of each project. Service
accounts are represented with the ServiceAccount object. Examples:
system:serviceaccount:default:deployer
system:serviceaccount:foo:builder

Each user must authenticate in some way in order to access OpenShift Container Platform. API requests
with no authentication or invalid authentication are authenticated as requests by the anonymous
system user. Once authenticated, policy determines what the user is authorized to do.

1.2. GROUPS

A user can be assigned to one or more groups, each of which represent a certain set of users. Groups are
useful when managing authorization policies to grant permissions to multiple users at once, for example
allowing access to objects within a project, versus granting them to users individually.

In addition to explicitly defined groups, there are also system groups, or virtual groups, that are
automatically provisioned by the cluster.

The following default virtual groups are most important:

OpenShift Container Platform 4.1 Authentication

6

Virtual group Description

system:authenticated Automatically associated with all authenticated users.

system:authenticated:oa
uth

Automatically associated with all users authenticated with an OAuth access
token.

system:unauthenticated Automatically associated with all unauthenticated users.

1.3. API AUTHENTICATION

Requests to the OpenShift Container Platform API are authenticated using the following methods:

OAuth Access Tokens

Obtained from the OpenShift Container Platform OAuth server using the
<namespace_route>/oauth/authorize and <namespace_route>/oauth/token endpoints.

Sent as an Authorization: Bearer… header.

Sent as a websocket subprotocol header in the form
base64url.bearer.authorization.k8s.io.<base64url-encoded-token> for websocket
requests.

X.509 Client Certificates

Requires a HTTPS connection to the API server.

Verified by the API server against a trusted certificate authority bundle.

The API server creates and distributes certificates to controllers to authenticate themselves.

Any request with an invalid access token or an invalid certificate is rejected by the authentication layer
with a 401 error.

If no access token or certificate is presented, the authentication layer assigns the system:anonymous
virtual user and the system:unauthenticated virtual group to the request. This allows the authorization
layer to determine which requests, if any, an anonymous user is allowed to make.

1.3.1. OpenShift Container Platform OAuth server

The OpenShift Container Platform master includes a built-in OAuth server. Users obtain OAuth access
tokens to authenticate themselves to the API.

When a person requests a new OAuth token, the OAuth server uses the configured identity provider to
determine the identity of the person making the request.

It then determines what user that identity maps to, creates an access token for that user, and returns
the token for use.

1.3.1.1. OAuth token requests

Every request for an OAuth token must specify the OAuth client that will receive and use the token. The

CHAPTER 1. UNDERSTANDING AUTHENTICATION

7

Every request for an OAuth token must specify the OAuth client that will receive and use the token. The
following OAuth clients are automatically created when starting the OpenShift Container Platform API:

OAuth Client Usage

openshift-browser-client Requests tokens at
<namespace_route>/oauth/token/request with
a user-agent that can handle interactive logins.

openshift-challenging-client Requests tokens with a user-agent that can handle
WWW-Authenticate challenges.

NOTE

<namespace_route> refers to the namespace’s route. This is found by running the
following command.

oc get route oauth-openshift -n openshift-authentication -o json | jq .spec.host

All requests for OAuth tokens involve a request to <namespace_route>/oauth/authorize. Most
authentication integrations place an authenticating proxy in front of this endpoint, or configure
OpenShift Container Platform to validate credentials against a backing identity provider. Requests to
<namespace_route>/oauth/authorize can come from user-agents that cannot display interactive login
pages, such as the CLI. Therefore, OpenShift Container Platform supports authenticating using a
WWW-Authenticate challenge in addition to interactive login flows.

If an authenticating proxy is placed in front of the <namespace_route>/oauth/authorize endpoint, it
sends unauthenticated, non-browser user-agents WWW-Authenticate challenges rather than
displaying an interactive login page or redirecting to an interactive login flow.

NOTE

To prevent cross-site request forgery (CSRF) attacks against browser clients, only send
Basic authentication challenges with if a X-CSRF-Token header is on the request. Clients
that expect to receive Basic WWW-Authenticate challenges must set this header to a
non-empty value.

If the authenticating proxy cannot support WWW-Authenticate challenges, or if
OpenShift Container Platform is configured to use an identity provider that does not
support WWW-Authenticate challenges, you must use a browser to manually obtain a
token from <namespace_route>/oauth/token/request.

1.3.1.2. API impersonation

You can configure a request to the OpenShift Container Platform API to act as though it originated
from another user. For more information, see User impersonation in the Kubernetes documentation.

1.3.1.3. Authentication metrics for Prometheus

OpenShift Container Platform captures the following Prometheus system metrics during authentication
attempts:

openshift_auth_basic_password_count counts the number of oc login user name and

OpenShift Container Platform 4.1 Authentication

8

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation

openshift_auth_basic_password_count counts the number of oc login user name and
password attempts.

openshift_auth_basic_password_count_result counts the number of oc login user name
and password attempts by result, success or error.

openshift_auth_form_password_count counts the number of web console login attempts.

openshift_auth_form_password_count_result counts the number of web console login
attempts by result, success or error.

openshift_auth_password_total counts the total number of oc login and web console login
attempts.

CHAPTER 1. UNDERSTANDING AUTHENTICATION

9

CHAPTER 2. CONFIGURING THE INTERNAL OAUTH SERVER

IMPORTANT

Configuring these options must change because they’re set in the master config file now.

2.1. OPENSHIFT CONTAINER PLATFORM OAUTH SERVER

The OpenShift Container Platform master includes a built-in OAuth server. Users obtain OAuth access
tokens to authenticate themselves to the API.

When a person requests a new OAuth token, the OAuth server uses the configured identity provider to
determine the identity of the person making the request.

It then determines what user that identity maps to, creates an access token for that user, and returns
the token for use.

2.2. OAUTH TOKEN REQUEST FLOWS AND RESPONSES

The OAuth server supports standard authorization code grant and the implicit grant OAuth
authorization flows.

When requesting an OAuth token using the implicit grant flow (response_type=token) with a client_id
configured to request WWW-Authenticate challenges (like openshift-challenging-client), these are
the possible server responses from /oauth/authorize, and how they should be handled:

Status Content Client response

302 Location header containing an
access_token parameter in the URL
fragment (RFC 4.2.2)

Use the access_token value as the OAuth
token

302 Location header containing an error query
parameter (RFC 4.1.2.1)

Fail, optionally surfacing the error (and
optional error_description) query values to
the user

302 Other Location header Follow the redirect, and process the result
using these rules

401 WWW-Authenticate header present Respond to challenge if type is recognized
(e.g. Basic, Negotiate, etc), resubmit
request, and process the result using these
rules

401 WWW-Authenticate header missing No challenge authentication is possible. Fail
and show response body (which might contain
links or details on alternate methods to obtain
an OAuth token)

Other Other Fail, optionally surfacing response body to the
user

OpenShift Container Platform 4.1 Authentication

10

https://tools.ietf.org/html/rfc6749#section-4.1
https://tools.ietf.org/html/rfc6749#section-4.2
https://tools.ietf.org/html/rfc6749#section-4.2.2
https://tools.ietf.org/html/rfc6749#section-4.1.2.1

2.3. OPTIONS FOR THE INTERNAL OAUTH SERVER

Several configuration options are available for the internal OAuth server.

2.3.1. OAuth token duration options

The internal OAuth server generates two kinds of tokens:

Access
tokens

Longer-lived tokens that grant access to the API.

Authorize
codes

Short-lived tokens whose only use is to be exchanged for an access token.

You can configure the default duration for both types of token. If necessary, you can override the
duration of the access token by using an OAuthClient object definition.

2.3.2. OAuth grant options

When the OAuth server receives token requests for a client to which the user has not previously granted
permission, the action that the OAuth server takes is dependent on the OAuth client’s grant strategy.

The OAuth client requesting token must provide its own grant strategy.

You can apply the following default methods:

auto Auto-approve the grant and retry the request.

prompt Prompt the user to approve or deny the grant.

2.4. CONFIGURING THE INTERNAL OAUTH SERVER’S TOKEN
DURATION

You can configure default options for the internal OAuth server’s token duration.

IMPORTANT

By default, tokens are only valid for 24 hours. Existing sessions expire after this time
elapses.

If the default time is insufficient, then this can be modified using the following procedure.

Procedure

1. Create a configuration file that contains the token duration options. The following file sets this
to 48 hours, twice the default.

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:

CHAPTER 2. CONFIGURING THE INTERNAL OAUTH SERVER

11

1

1

2

Set accessTokenMaxAgeSeconds to control the lifetime of access tokens. The default
lifetime is 24 hours, or 86400 seconds. This attribute cannot be negative.

2. Apply the new configuration file:

NOTE

Because you update the existing OAuth server, you must use the oc apply
command to apply the change.

$ oc apply -f </path/to/file.yaml>

3. Confirm that the changes are in effect:

$ oc describe oauth.config.openshift.io/cluster
...
Spec:
 Token Config:
 Access Token Max Age Seconds: 172800
...

2.5. REGISTER AN ADDITIONAL OAUTH CLIENT

If you need an additional OAuth client to manage authentication for your OpenShift Container Platform
cluster, you can register one.

Procedure

To register additional OAuth clients:

The name of the OAuth client is used as the client_id parameter when making requests to
<namespace_route>/oauth/authorize and <namespace_route>/oauth/token.

The secret is used as the client_secret parameter when making requests to
<namespace_route>/oauth/token.

 name: cluster
spec:
 tokenConfig:
 accessTokenMaxAgeSeconds: 172800 1

$ oc create -f <(echo '
kind: OAuthClient
apiVersion: oauth.openshift.io/v1
metadata:
 name: demo 1
secret: "..." 2
redirectURIs:
 - "http://www.example.com/" 3
grantMethod: prompt 4
')

OpenShift Container Platform 4.1 Authentication

12

3

4

1

2

3

4

The redirect_uri parameter specified in requests to
<namespace_route>/oauth/authorize and <namespace_route>/oauth/token must be

The grantMethod is used to determine what action to take when this client requests
tokens and has not yet been granted access by the user. Specify auto to automatically
approve the grant and retry the request, or prompt to prompt the user to approve or deny
the grant.

2.6. OAUTH SERVER METADATA

Applications running in OpenShift Container Platform might have to discover information about the
built-in OAuth server. For example, they might have to discover what the address of the
<namespace_route> is without manual configuration. To aid in this, OpenShift Container Platform
implements the IETF OAuth 2.0 Authorization Server Metadata draft specification.

Thus, any application running inside the cluster can issue a GET request to
https://openshift.default.svc/.well-known/oauth-authorization-server to fetch the following
information:

{
 "issuer": "https://<namespace_route>", 1
 "authorization_endpoint": "https://<namespace_route>/oauth/authorize", 2
 "token_endpoint": "https://<namespace_route>/oauth/token", 3
 "scopes_supported": [4
 "user:full",
 "user:info",
 "user:check-access",
 "user:list-scoped-projects",
 "user:list-projects"
],
 "response_types_supported": [5
 "code",
 "token"
],
 "grant_types_supported": [6
 "authorization_code",
 "implicit"
],
 "code_challenge_methods_supported": [7
 "plain",
 "S256"
]
}

The authorization server’s issuer identifier, which is a URL that uses the https scheme and has no
query or fragment components. This is the location where .well-known RFC 5785 resources
containing information about the authorization server are published.

URL of the authorization server’s authorization endpoint. See RFC 6749.

URL of the authorization server’s token endpoint. See RFC 6749.

JSON array containing a list of the OAuth 2.0 RFC 6749 scope values that this authorization server
supports. Note that not all supported scope values are advertised.

CHAPTER 2. CONFIGURING THE INTERNAL OAUTH SERVER

13

https://tools.ietf.org/html/draft-ietf-oauth-discovery-10
https://tools.ietf.org/html/rfc5785
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749

5

6

7

JSON array containing a list of the OAuth 2.0 response_type values that this authorization server
supports. The array values used are the same as those used with the response_types parameter

JSON array containing a list of the OAuth 2.0 grant type values that this authorization server
supports. The array values used are the same as those used with the grant_types parameter
defined by OAuth 2.0 Dynamic Client Registration Protocol in RFC 7591 .

JSON array containing a list of PKCE RFC 7636 code challenge methods supported by this
authorization server. Code challenge method values are used in the code_challenge_method
parameter defined in Section 4.3 of RFC 7636 . The valid code challenge method values are those
registered in the IANA PKCE Code Challenge Methods registry. See IANA OAuth Parameters.

2.7. TROUBLESHOOTING OAUTH API EVENTS

In some cases the API server returns an unexpected condition error message that is difficult to debug
without direct access to the API master log. The underlying reason for the error is purposely obscured in
order to avoid providing an unauthenticated user with information about the server’s state.

A subset of these errors is related to service account OAuth configuration issues. These issues are
captured in events that can be viewed by non-administrator users. When encountering an unexpected
condition server error during OAuth, run oc get events to view these events under ServiceAccount.

The following example warns of a service account that is missing a proper OAuth redirect URI:

$ oc get events | grep ServiceAccount
1m 1m 1 proxy ServiceAccount Warning
NoSAOAuthRedirectURIs service-account-oauth-client-getter
system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-
redirecturi.<some-value>=<redirect> or create a dynamic URI using
serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>

Running oc describe sa/<service-account-name> reports any OAuth events associated with the given
service account name.

$ oc describe sa/proxy | grep -A5 Events
Events:
 FirstSeen LastSeen Count From SubObjectPath Type Reason
Message
 --------- -------- ----- ---- ------------- -------- ------ -------
 3m 3m 1 service-account-oauth-client-getter Warning
NoSAOAuthRedirectURIs system:serviceaccount:myproject:proxy has no redirectURIs; set
serviceaccounts.openshift.io/oauth-redirecturi.<some-value>=<redirect> or create a dynamic URI
using serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>

The following is a list of the possible event errors:

No redirect URI annotations or an invalid URI is specified

Reason Message
NoSAOAuthRedirectURIs system:serviceaccount:myproject:proxy has no redirectURIs; set
serviceaccounts.openshift.io/oauth-redirecturi.<some-value>=<redirect> or create a dynamic URI
using serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>

Invalid route specified

OpenShift Container Platform 4.1 Authentication

14

https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636#section-4.3
http://www.iana.org/assignments/oauth-parameters

Reason Message
NoSAOAuthRedirectURIs [routes.route.openshift.io "<name>" not found,
system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-
redirecturi.<some-value>=<redirect> or create a dynamic URI using
serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>]

Invalid reference type specified

Reason Message
NoSAOAuthRedirectURIs [no kind "<name>" is registered for version "v1",
system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-
redirecturi.<some-value>=<redirect> or create a dynamic URI using
serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>]

Missing SA tokens

Reason Message
NoSAOAuthTokens system:serviceaccount:myproject:proxy has no tokens

CHAPTER 2. CONFIGURING THE INTERNAL OAUTH SERVER

15

CHAPTER 3. UNDERSTANDING IDENTITY PROVIDER
CONFIGURATION

The OpenShift Container Platform master includes a built-in OAuth server. Developers and
administrators obtain OAuth access tokens to authenticate themselves to the API.

As an administrator, you can configure OAuth to specify an identity provider after you install your
cluster.

3.1. ABOUT IDENTITY PROVIDERS IN OPENSHIFT CONTAINER
PLATFORM

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

3.2. SUPPORTED IDENTITY PROVIDERS

You can configure the following types of identity providers:

Identity provider Description

HTPasswd Configure the htpasswd identity provider to validate user names and passwords
against a flat file generated using htpasswd.

Keystone Configure the keystone identity provider to integrate your OpenShift Container
Platform cluster with Keystone to enable shared authentication with an OpenStack
Keystone v3 server configured to store users in an internal database.

LDAP Configure the ldap identity provider to validate user names and passwords against an
LDAPv3 server, using simple bind authentication.

Basic
authentication

Configure a basic-authentication identity provider for users to log in to OpenShift
Container Platform with credentials validated against a remote identity provider. Basic
authentication is a generic backend integration mechanism.

Request header Configure a request-header identity provider to identify users from request header
values, such as X-Remote-User. It is typically used in combination with an
authenticating proxy, which sets the request header value.

GitHub or GitHub
Enterprise

Configure a github identity provider to validate user names and passwords against
GitHub or GitHub Enterprise’s OAuth authentication server.

GitLab Configure a gitlab identity provider to use GitLab.com or any other GitLab instance as
an identity provider.

OpenShift Container Platform 4.1 Authentication

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/authentication/#configuring-htpasswd-identity-provider
http://httpd.apache.org/docs/2.4/programs/htpasswd.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/authentication/#configuring-keystone-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/authentication/#configuring-ldap-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/authentication/#configuring-basic-authentication-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/authentication/#configuring-request-header-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/authentication/#configuring-github-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/authentication/#configuring-gitlab-identity-provider
https://gitlab.com/

Google Configure a google identity provider using Google’s OpenID Connect integration.

OpenID Connect Configure an oidc identity provider to integrate with an OpenID Connect identity
provider using an Authorization Code Flow.

Identity provider Description

Once an identity provider has been defined, you can use RBAC to define and apply permissions .

3.3. REMOVING THE KUBEADMIN USER

After you define an identity provider and create a new cluster-admin user, you can remove the
kubeadmin to improve cluster security.

WARNING

If you follow this procedure before another user is a cluster-admin, then OpenShift
Container Platform must be reinstalled. It is not possible to undo this command.

Prerequisites

You must have configured at least one identity provider.

You must have added the cluster-admin role to a user.

You must be logged in as an administrator.

Procedure

Remove the kubeadmin secrets:

$ oc delete secrets kubeadmin -n kube-system

3.4. IDENTITY PROVIDER PARAMETERS

The following parameters are common to all identity providers:

Parameter Description

name The provider name is prefixed to provider user names to form an identity name.

CHAPTER 3. UNDERSTANDING IDENTITY PROVIDER CONFIGURATION

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/authentication/#configuring-google-identity-provider
https://developers.google.com/identity/protocols/OpenIDConnect
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/authentication/#configuring-oidc-identity-provider
http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/authentication/#authorization-overview_using-rbac

1

mappingMethod Defines how new identities are mapped to users when they log in. Enter one of the
following values:

claim
The default value. Provisions a user with the identity’s preferred user name. Fails if a
user with that user name is already mapped to another identity.

lookup
Looks up an existing identity, user identity mapping, and user, but does not
automatically provision users or identities. This allows cluster administrators to set
up identities and users manually, or using an external process. Using this method
requires you to manually provision users.

generate
Provisions a user with the identity’s preferred user name. If a user with the preferred
user name is already mapped to an existing identity, a unique user name is
generated. For example, myuser2. This method should not be used in combination
with external processes that require exact matches between OpenShift Container
Platform user names and identity provider user names, such as LDAP group sync.

add
Provisions a user with the identity’s preferred user name. If a user with that user
name already exists, the identity is mapped to the existing user, adding to any
existing identity mappings for the user. Required when multiple identity providers
are configured that identify the same set of users and map to the same user names.

Parameter Description

NOTE

When adding or changing identity providers, you can map identities from the new
provider to existing users by setting the mappingMethod parameter to add.

3.5. SAMPLE IDENTITY PROVIDER CR

The following Custom Resource (CR) shows the parameters and default values that you use to
configure an identity provider. This example uses the HTPasswd identity provider.

Sample identity provider CR

This provider name is prefixed to provider user names to form an identity name.

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: my_identity_provider 1
 mappingMethod: claim 2
 type: HTPasswd
 htpasswd:
 fileData:
 name: htpass-secret 3

OpenShift Container Platform 4.1 Authentication

18

2

3

Controls how mappings are established between this provider’s identities and user objects.

An existing secret containing a file generated using htpasswd.

CHAPTER 3. UNDERSTANDING IDENTITY PROVIDER CONFIGURATION

19

http://httpd.apache.org/docs/2.4/programs/htpasswd.html

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

4.1. CONFIGURING AN HTPASSWD IDENTITY PROVIDER

4.1.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

To define an HTPasswd identity provider you must perform the following steps:

1. Create an htpasswd file to store the user and password information. Instructions are provided
for Linux and Windows.

2. Create an OpenShift Container Platform secret to represent the htpasswd file.

3. Define the HTPasswd identity provider resource .

4. Apply the resource to the default OAuth configuration .

4.1.2. Creating an HTPasswd file using Linux

To use the HTPasswd identity provider, you must generate a flat file that contains the user names and
passwords for your cluster by using htpasswd.

Prerequisites

Have access to the htpasswd utility. On Red Hat Enterprise Linux this is available by installing
the httpd-tools package.

Procedure

1. Create or update your flat file with a user name and hashed password:

$ htpasswd -c -B -b </path/to/users.htpasswd> <user_name> <password>

The command generates a hashed version of the password.

For example:

$ htpasswd -c -B -b users.htpasswd user1 MyPassword!

Adding password for user user1

2. Continue to add or update credentials to the file:

$ htpasswd -b </path/to/users.htpasswd> <user_name> <password>

OpenShift Container Platform 4.1 Authentication

20

http://httpd.apache.org/docs/2.4/programs/htpasswd.html

4.1.3. Creating an HTPasswd file using Windows

To use the HTPasswd identity provider, you must generate a flat file that contains the user names and
passwords for your cluster by using htpasswd.

Prerequisites

Have access to htpasswd.exe. This file is included in the \bin directory of many Apache httpd
distributions.

Procedure

1. Create or update your flat file with a user name and hashed password:

> htpasswd.exe -c -B -b <\path\to\users.htpasswd> <user_name> <password>

The command generates a hashed version of the password.

For example:

> htpasswd.exe -c -B -b users.htpasswd user1 MyPassword!

Adding password for user user1

2. Continue to add or update credentials to the file:

> htpasswd.exe -b <\path\to\users.htpasswd> <user_name> <password>

4.1.4. Creating the HTPasswd Secret

To use the HTPasswd identity provider, you must define a secret that contains the HTPasswd user file.

Prerequisites

Create an HTPasswd file.

Procedure

Create an OpenShift Container Platform Secret that contains the HTPasswd users file.

$ oc create secret generic htpass-secret --from-file=htpasswd=</path/to/users.htpasswd> -n
openshift-config

NOTE

The secret key containing the users file for the --from-file argument must be
named htpasswd, as shown in the above command.

4.1.5. Sample HTPasswd CR

The following Custom Resource (CR) shows the parameters and acceptable values for an HTPasswd
identity provider.

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

21

http://httpd.apache.org/docs/2.4/programs/htpasswd.html

1

2

3

HTPasswd CR

This provider name is prefixed to provider user names to form an identity name.

Controls how mappings are established between this provider’s identities and user objects.

An existing secret containing a file generated using htpasswd.

4.1.6. Adding an identity provider to your clusters

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

Create an OpenShift Container Platform cluster.

Create the Custom Resource (CR) for your identity providers.

You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

$ oc apply -f </path/to/CR>

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Log in to the cluster as a user from your identity provider, entering the password when
prompted.

$ oc login -u <username>

3. Confirm that the user logged in successfully, and display the user name.

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: my_htpasswd_provider 1
 mappingMethod: claim 2
 type: HTPasswd
 htpasswd:
 fileData:
 name: htpass-secret 3

OpenShift Container Platform 4.1 Authentication

22

http://httpd.apache.org/docs/2.4/programs/htpasswd.html

$ oc whoami

4.1.7. Configuring identity providers using the web console

Configure your identity provider (IDP) through the web console instead of the CLI.

Prerequisites

You must be logged in to the web console as a cluster administrator.

Procedure

1. Navigate to Administration → Cluster Settings.

2. Under the Global Configuration tab, click OAuth.

3. Under the Identity Providers section, select your identity provider from the Add drop-down
menu.

NOTE

You can specify multiple IDPs through the web console without overwriting existing IDPs.

4.2. CONFIGURING A KEYSTONE IDENTITY PROVIDER

Configure the keystone identity provider to integrate your OpenShift Container Platform cluster with
Keystone to enable shared authentication with an OpenStack Keystone v3 server configured to store
users in an internal database. This configuration allows users to log in to OpenShift Container Platform
with their Keystone credentials.

Keystone is an OpenStack project that provides identity, token, catalog, and policy services.

You can configure the integration with Keystone so that the new OpenShift Container Platform users
are based on either the Keystone user names or unique Keystone IDs. With both methods, users log in
by entering their Keystone user name and password. Basing the OpenShift Container Platform users off
of the Keystone ID is more secure. If you delete a Keystone user and create a new Keystone user with
that user name, the new user might have access to the old user’s resources.

4.2.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

4.2.2. Creating the Secret

Identity providers use OpenShift Container Platform Secrets in the openshift-config namespace to
contain the client secret, client certificates, and keys.

You can define an OpenShift Container Platform Secret containing a string by using the

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

23

http://docs.openstack.org/developer/keystone/

1

2

You can define an OpenShift Container Platform Secret containing a string by using the
following command.

$ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-
config

You can define an OpenShift Container Platform Secret containing the contents of a file, such
as a certificate file, by using the following command.

$ oc create secret generic <secret_name> --from-file=/path/to/file -n openshift-config

4.2.3. Creating a ConfigMap

Identity providers use OpenShift Container Platform ConfigMaps in the openshift-config namespace
to contain the certificate authority bundle. These are primarily used to contain certificate bundles
needed by the identity provider.

Define an OpenShift Container Platform ConfigMap containing the certificate authority by
using the following command. The certificate authority must be stored in the ca.crt key of the
ConfigMap.

$ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

4.2.4. Sample Keystone CR

The following Custom Resource (CR) shows the parameters and acceptable values for a Keystone
identity provider.

Keystone CR

This provider name is prefixed to provider user names to form an identity name.

Controls how mappings are established between this provider’s identities and user objects.

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: keystoneidp 1
 mappingMethod: claim 2
 type: Keystone
 keystone:
 domainName: default 3
 url: https://keystone.example.com:5000 4
 ca: 5
 name: ca-config-map
 tlsClientCert: 6
 name: client-cert-secret
 tlsClientKey: 7
 name: client-key-secret

OpenShift Container Platform 4.1 Authentication

24

3

4

5

6

7

Keystone domain name. In Keystone, usernames are domain-specific. Only a single domain is
supported.

The URL to use to connect to the Keystone server (required). This must use https.

Optional: Reference to an OpenShift Container Platform ConfigMap containing the PEM-encoded
certificate authority bundle to use in validating server certificates for the configured URL.

Optional: Reference to an OpenShift Container Platform Secret containing the client certificate to
present when making requests to the configured URL.

Reference to an OpenShift Container Platform Secret containing the key for the client certificate.
Required if tlsClientCert is specified.

4.2.5. Adding an identity provider to your clusters

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

Create an OpenShift Container Platform cluster.

Create the Custom Resource (CR) for your identity providers.

You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

$ oc apply -f </path/to/CR>

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Log in to the cluster as a user from your identity provider, entering the password when
prompted.

$ oc login -u <username>

3. Confirm that the user logged in successfully, and display the user name.

$ oc whoami

4.3. CONFIGURING AN LDAP IDENTITY PROVIDER

Configure the ldap identity provider to validate user names and passwords against an LDAPv3 server,
using simple bind authentication.

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

25

4.3.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

4.3.2. About LDAP authentication

During authentication, the LDAP directory is searched for an entry that matches the provided user
name. If a single unique match is found, a simple bind is attempted using the distinguished name (DN) of
the entry plus the provided password.

These are the steps taken:

1. Generate a search filter by combining the attribute and filter in the configured url with the
user-provided user name.

2. Search the directory using the generated filter. If the search does not return exactly one entry,
deny access.

3. Attempt to bind to the LDAP server using the DN of the entry retrieved from the search, and
the user-provided password.

4. If the bind is unsuccessful, deny access.

5. If the bind is successful, build an identity using the configured attributes as the identity, email
address, display name, and preferred user name.

The configured url is an RFC 2255 URL, which specifies the LDAP host and search parameters to use.
The syntax of the URL is:

ldap://host:port/basedn?attribute?scope?filter

For this URL:

URL Component Description

ldap For regular LDAP, use the string ldap. For secure LDAP (LDAPS), use ldaps instead.

host:port The name and port of the LDAP server. Defaults to localhost:389 for ldap and
localhost:636 for LDAPS.

basedn The DN of the branch of the directory where all searches should start from. At the very
least, this must be the top of your directory tree, but it could also specify a subtree in
the directory.

attribute The attribute to search for. Although RFC 2255 allows a comma-separated list of
attributes, only the first attribute will be used, no matter how many are provided. If no
attributes are provided, the default is to use uid. It is recommended to choose an
attribute that will be unique across all entries in the subtree you will be using.

OpenShift Container Platform 4.1 Authentication

26

scope The scope of the search. Can be either one or sub. If the scope is not provided, the
default is to use a scope of sub.

filter A valid LDAP search filter. If not provided, defaults to (objectClass=*)

URL Component Description

When doing searches, the attribute, filter, and provided user name are combined to create a search filter
that looks like:

(&(<filter>)(<attribute>=<username>))

For example, consider a URL of:

ldap://ldap.example.com/o=Acme?cn?sub?(enabled=true)

When a client attempts to connect using a user name of bob, the resulting search filter will be (&
(enabled=true)(cn=bob)).

If the LDAP directory requires authentication to search, specify a bindDN and bindPassword to use to
perform the entry search.

4.3.3. Creating the LDAP Secret

To use the identity provider, you must define an OpenShift Container Platform Secret that contains the
bindPassword.

Define an OpenShift Container Platform Secret that contains the bindPassword.

$ oc create secret generic ldap-secret --from-literal=bindPassword=<secret> -n openshift-
config

NOTE

The secret key containing the bindPassword for the --from-literal argument must
be called bindPassword, as shown in the above command.

4.3.4. Creating a ConfigMap

Identity providers use OpenShift Container Platform ConfigMaps in the openshift-config namespace
to contain the certificate authority bundle. These are primarily used to contain certificate bundles
needed by the identity provider.

Define an OpenShift Container Platform ConfigMap containing the certificate authority by
using the following command. The certificate authority must be stored in the ca.crt key of the
ConfigMap.

$ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

4.3.5. Sample LDAP CR

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

27

1

2

3

4

5

6

7

8

9

The following Custom Resource (CR) shows the parameters and acceptable values for an LDAP identity
provider.

LDAP CR

This provider name is prefixed to the returned user ID to form an identity name.

Controls how mappings are established between this provider’s identities and user objects.

List of attributes to use as the identity. First non-empty attribute is used. At least one attribute is
required. If none of the listed attribute have a value, authentication fails. Defined attributes are
retrieved as raw, allowing for binary values to be used.

List of attributes to use as the email address. First non-empty attribute is used.

List of attributes to use as the display name. First non-empty attribute is used.

List of attributes to use as the preferred user name when provisioning a user for this identity. First
non-empty attribute is used.

Optional DN to use to bind during the search phase. Must be set if bindPassword is defined.

Optional reference to an OpenShift Container Platform Secret containing the bind password. Must
be set if bindDN is defined.

Optional: Reference to an OpenShift Container Platform ConfigMap containing the PEM-encoded
certificate authority bundle to use in validating server certificates for the configured URL. Only
used when insecure is false.

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: ldapidp 1
 mappingMethod: claim 2
 type: LDAP
 ldap:
 attributes:
 id: 3
 - dn
 email: 4
 - mail
 name: 5
 - cn
 preferredUsername: 6
 - uid
 bindDN: "" 7
 bindPassword: 8
 name: ldap-secret
 ca: 9
 name: ca-config-map
 insecure: false 10
 url: "ldap://ldap.example.com/ou=users,dc=acme,dc=com?uid" 11

OpenShift Container Platform 4.1 Authentication

28

10

11

When true, no TLS connection is made to the server. When false, ldaps:// URLs connect using TLS,
and ldap:// URLs are upgraded to TLS. This should be set to false when ldaps:// URLs are in use, as

An RFC 2255 URL which specifies the LDAP host and search parameters to use.

NOTE

To whitelist users for an LDAP integration, use the lookup mapping method. Before a
login from LDAP would be allowed, a cluster administrator must create an identity and
user object for each LDAP user.

4.3.6. Adding an identity provider to your clusters

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

Create an OpenShift Container Platform cluster.

Create the Custom Resource (CR) for your identity providers.

You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

$ oc apply -f </path/to/CR>

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Log in to the cluster as a user from your identity provider, entering the password when
prompted.

$ oc login -u <username>

3. Confirm that the user logged in successfully, and display the user name.

$ oc whoami

4.4. CONFIGURING AN BASIC AUTHENTICATION IDENTITY PROVIDER

Configure a basic-authentication identity provider for users to log in to OpenShift Container Platform
with credentials validated against a remote identity provider. Basic authentication is a generic backend
integration mechanism.

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

29

1

4.4.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

4.4.2. About basic authentication

Basic authentication is a generic backend integration mechanism that allows users to log in to OpenShift
Container Platform with credentials validated against a remote identity provider.

Because basic authentication is generic, you can use this identity provider for advanced authentication
configurations.

CAUTION

Basic authentication must use an HTTPS connection to the remote server to prevent potential snooping
of the user ID and password and man-in-the-middle attacks.

With basic authentication configured, users send their user name and password to OpenShift Container
Platform, which then validates those credentials against a remote server by making a server-to-server
request, passing the credentials as a basic authentication header. This requires users to send their
credentials to OpenShift Container Platform during login.

NOTE

This only works for user name/password login mechanisms, and OpenShift Container
Platform must be able to make network requests to the remote authentication server.

User names and passwords are validated against a remote URL that is protected by basic authentication
and returns JSON.

A 401 response indicates failed authentication.

A non-200 status, or the presence of a non-empty "error" key, indicates an error:

{"error":"Error message"}

A 200 status with a sub (subject) key indicates success:

{"sub":"userid"} 1

The subject must be unique to the authenticated user and must not be able to be modified.

A successful response can optionally provide additional data, such as:

A display name using the name key. For example:

{"sub":"userid", "name": "User Name", ...}

OpenShift Container Platform 4.1 Authentication

30

An email address using the email key. For example:

{"sub":"userid", "email":"user@example.com", ...}

A preferred user name using the preferred_username key. This is useful when the unique,
unchangeable subject is a database key or UID, and a more human-readable name exists. This is
used as a hint when provisioning the OpenShift Container Platform user for the authenticated
identity. For example:

{"sub":"014fbff9a07c", "preferred_username":"bob", ...}

4.4.3. Creating the Secret

Identity providers use OpenShift Container Platform Secrets in the openshift-config namespace to
contain the client secret, client certificates, and keys.

You can define an OpenShift Container Platform Secret containing a string by using the
following command.

$ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-
config

You can define an OpenShift Container Platform Secret containing the contents of a file, such
as a certificate file, by using the following command.

$ oc create secret generic <secret_name> --from-file=/path/to/file -n openshift-config

4.4.4. Creating a ConfigMap

Identity providers use OpenShift Container Platform ConfigMaps in the openshift-config namespace
to contain the certificate authority bundle. These are primarily used to contain certificate bundles
needed by the identity provider.

Define an OpenShift Container Platform ConfigMap containing the certificate authority by
using the following command. The certificate authority must be stored in the ca.crt key of the
ConfigMap.

$ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

4.4.5. Sample basic authentication CR

The following Custom Resource (CR) shows the parameters and acceptable values for an basic
authentication identity provider.

Basic authentication CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

31

1

2

3

4

5

6

This provider name is prefixed to the returned user ID to form an identity name.

Controls how mappings are established between this provider’s identities and user objects.

URL accepting credentials in Basic authentication headers.

Optional: Reference to an OpenShift Container Platform ConfigMap containing the PEM-encoded
certificate authority bundle to use in validating server certificates for the configured URL.

Optional: Reference to an OpenShift Container Platform Secret containing the client certificate to
present when making requests to the configured URL.

Reference to an OpenShift Container Platform Secret containing the key for the client certificate.
Required if tlsClientCert is specified.

4.4.6. Adding an identity provider to your clusters

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

Create an OpenShift Container Platform cluster.

Create the Custom Resource (CR) for your identity providers.

You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

$ oc apply -f </path/to/CR>

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Log in to the cluster as a user from your identity provider, entering the password when

 - name: basicidp 1
 mappingMethod: claim 2
 type: BasicAuth
 basicAuth:
 url: https://www.example.com/remote-idp 3
 ca: 4
 name: ca-config-map
 tlsClientCert: 5
 name: client-cert-secret
 tlsClientKey: 6
 name: client-key-secret

OpenShift Container Platform 4.1 Authentication

32

2. Log in to the cluster as a user from your identity provider, entering the password when
prompted.

$ oc login -u <username>

3. Confirm that the user logged in successfully, and display the user name.

$ oc whoami

4.4.7. Example Apache HTTPD configuration for basic identity providers

The basic identify provider (IDP) configuration in OpenShift Container Platform 4 requires that the IDP
server respond with JSON for success and failures. You can use CGI scripting in Apache HTTPD to
accomplish this. This section provides examples.

/etc/httpd/conf.d/login.conf

<VirtualHost *:443>
 # CGI Scripts in here
 DocumentRoot /var/www/cgi-bin

 # SSL Directives
 SSLEngine on
 SSLCipherSuite PROFILE=SYSTEM
 SSLProxyCipherSuite PROFILE=SYSTEM
 SSLCertificateFile /etc/pki/tls/certs/localhost.crt
 SSLCertificateKeyFile /etc/pki/tls/private/localhost.key

 # Configure HTTPD to execute scripts
 ScriptAlias /basic /var/www/cgi-bin

 # Handles a failed login attempt
 ErrorDocument 401 /basic/fail.cgi

 # Handles authentication
 <Location /basic/login.cgi>
 AuthType Basic
 AuthName "Please Log In"
 AuthBasicProvider file
 AuthUserFile /etc/httpd/conf/passwords
 Require valid-user
 </Location>
</VirtualHost>

/var/www/cgi-bin/login.cgi

#!/bin/bash
echo "Content-Type: application/json"
echo ""
echo '{"sub":"userid", "name":"'$REMOTE_USER'"}'
exit 0

/var/www/cgi-bin/fail.cgi

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

33

#!/bin/bash
echo "Content-Type: application/json"
echo ""
echo '{"error": "Login failure"}'
exit 0

4.4.7.1. File requirements

These are the requirements for the files you create on an Apache HTTPD web server:

login.cgi and fail.cgi must be executable (chmod +x).

login.cgi and fail.cgi must have proper SELinux contexts if SELinux is enabled: restorecon -
RFv /var/www/cgi-bin, or ensure that the context is httpd_sys_script_exec_t using ls -laZ.

login.cgi is only executed if your user successfully logs in per Require and Auth directives.

fail.cgi is executed if the user fails to log in, resulting in an HTTP 401 response.

4.4.8. Basic authentication troubleshooting

The most common issue relates to network connectivity to the backend server. For simple debugging,
run curl commands on the master. To test for a successful login, replace the <user> and <password> in
the following example command with valid credentials. To test an invalid login, replace them with false
credentials.

curl --cacert /path/to/ca.crt --cert /path/to/client.crt --key /path/to/client.key -u <user>:<password> -v
https://www.example.com/remote-idp

Successful responses

A 200 status with a sub (subject) key indicates success:

{"sub":"userid"}

The subject must be unique to the authenticated user, and must not be able to be modified.

A successful response can optionally provide additional data, such as:

A display name using the name key:

{"sub":"userid", "name": "User Name", ...}

An email address using the email key:

{"sub":"userid", "email":"user@example.com", ...}

A preferred user name using the preferred_username key:

{"sub":"014fbff9a07c", "preferred_username":"bob", ...}

The preferred_username key is useful when the unique, unchangeable subject is a database

OpenShift Container Platform 4.1 Authentication

34

The preferred_username key is useful when the unique, unchangeable subject is a database
key or UID, and a more human-readable name exists. This is used as a hint when provisioning the
OpenShift Container Platform user for the authenticated identity.

Failed responses

A 401 response indicates failed authentication.

A non-200 status or the presence of a non-empty "error" key indicates an error: {"error":"Error
message"}

4.5. CONFIGURING A REQUEST HEADER IDENTITY PROVIDER

Configure a request-header identity provider to identify users from request header values, such as X-
Remote-User. It is typically used in combination with an authenticating proxy, which sets the request
header value.

4.5.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

4.5.2. About request header authentication

A request header identity provider identifies users from request header values, such as X-Remote-User.
It is typically used in combination with an authenticating proxy, which sets the request header value.

NOTE

You can also use the request header identity provider for advanced configurations such
as the community-supported SAML authentication. Note that this solution is not
supported by Red Hat.

For users to authenticate using this identity provider, they must access
https://<namespace_route>/oauth/authorize (and subpaths) via an authenticating proxy. To
accomplish this, configure the OAuth server to redirect unauthenticated requests for OAuth tokens to
the proxy endpoint that proxies to https://<namespace_route>/oauth/authorize.

To redirect unauthenticated requests from clients expecting browser-based login flows:

Set the provider.loginURL parameter to the authenticating proxy URL that will authenticate
interactive clients and then proxy the request to https://<namespace_route>/oauth/authorize.

To redirect unauthenticated requests from clients expecting WWW-Authenticate challenges:

Set the provider.challengeURL parameter to the authenticating proxy URL that will
authenticate clients expecting WWW-Authenticate challenges and then proxy the request to
https://<namespace_route>/oauth/authorize.

The provider.challengeURL and provider.loginURL parameters can include the following tokens in

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

35

https://github.com/openshift/request-header-saml-service-provider

The provider.challengeURL and provider.loginURL parameters can include the following tokens in
the query portion of the URL:

${url} is replaced with the current URL, escaped to be safe in a query parameter.
For example: https://www.example.com/sso-login?then=${url}

${query} is replaced with the current query string, unescaped.
For example: https://www.example.com/auth-proxy/oauth/authorize?${query}

IMPORTANT

As of OpenShift Container Platform 4.1, your proxy must support mutual TLS.

4.5.2.1. SSPI connection support on Microsoft Windows

IMPORTANT

Using SSPI connection support on Microsoft Windows is a Technology Preview feature.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information on Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

oc supports the Security Support Provider Interface (SSPI) to allow for SSO flows on Microsft Windows.
If you use the request header identity provider with a GSSAPI-enabled proxy to connect an Active
Directory server to OpenShift Container Platform, users can automatically authenticate to OpenShift
Container Platform by using the oc command line interface from a domain-joined Microsoft Windows
computer.

4.5.3. Creating a ConfigMap

Identity providers use OpenShift Container Platform ConfigMaps in the openshift-config namespace
to contain the certificate authority bundle. These are primarily used to contain certificate bundles
needed by the identity provider.

Define an OpenShift Container Platform ConfigMap containing the certificate authority by
using the following command. The certificate authority must be stored in the ca.crt key of the
ConfigMap.

$ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

4.5.4. Sample request header CR

The following Custom Resource (CR) shows the parameters and acceptable values for a request header
identity provider.

Request header CR

apiVersion: config.openshift.io/v1

OpenShift Container Platform 4.1 Authentication

36

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

6

This provider name is prefixed to the user name in the request header to form an identity name.

Controls how mappings are established between this provider’s identities and user objects.

Optional: URL to redirect unauthenticated /oauth/authorize requests to, that will authenticate
browser-based clients and then proxy their request to
https://<namespace_route>/oauth/authorize. The URL that proxies to
https://<namespace_route>/oauth/authorize must end with /authorize (with no trailing slash),
and also proxy subpaths, in order for OAuth approval flows to work properly. ${url} is replaced with
the current URL, escaped to be safe in a query parameter. ${query} is replaced with the current
query string. If this attribute is not defined, then loginURL must be used.

Optional: URL to redirect unauthenticated /oauth/authorize requests to, that will authenticate
clients which expect WWW-Authenticate challenges, and then proxy them to
https://<namespace_route>/oauth/authorize. ${url} is replaced with the current URL, escaped to
be safe in a query parameter. ${query} is replaced with the current query string. If this attribute is
not defined, then challengeURL must be used.

Reference to an OpenShift Container Platform ConfigMap containing a PEM-encoded certificate
bundle. Used as a trust anchor to validate the TLS certificates presented by the remote server.

IMPORTANT

As of OpenShift Container Platform 4.1, the ca field is required for this identity
provider. This means that your proxy must support mutual TLS.

Optional: list of common names (cn). If set, a valid client certificate with a Common Name (cn) in
the specified list must be presented before the request headers are checked for user names. If
empty, any Common Name is allowed. Can only be used in combination with ca.

kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: requestheaderidp 1
 mappingMethod: claim 2
 type: RequestHeader
 requestHeader:
 challengeURL: "https://www.example.com/challenging-proxy/oauth/authorize?${query}" 3
 loginURL: "https://www.example.com/login-proxy/oauth/authorize?${query}" 4
 ca: 5
 name: ca-config-map
 clientCommonNames: 6
 - my-auth-proxy
 headers: 7
 - X-Remote-User
 - SSO-User
 emailHeaders: 8
 - X-Remote-User-Email
 nameHeaders: 9
 - X-Remote-User-Display-Name
 preferredUsernameHeaders: 10
 - X-Remote-User-Login

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

37

7

8

9

10

Header names to check, in order, for the user identity. The first header containing a value is used as
the identity. Required, case-insensitive.

Header names to check, in order, for an email address. The first header containing a value is used as
the email address. Optional, case-insensitive.

Header names to check, in order, for a display name. The first header containing a value is used as
the display name. Optional, case-insensitive.

Header names to check, in order, for a preferred user name, if different than the immutable
identity determined from the headers specified in headers. The first header containing a value is
used as the preferred user name when provisioning. Optional, case-insensitive.

4.5.5. Adding an identity provider to your clusters

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

Create an OpenShift Container Platform cluster.

Create the Custom Resource (CR) for your identity providers.

You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

$ oc apply -f </path/to/CR>

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Log in to the cluster as a user from your identity provider, entering the password when
prompted.

$ oc login -u <username>

3. Confirm that the user logged in successfully, and display the user name.

$ oc whoami

4.5.6. Example Apache authentication configuration using request header

This example configures an Apache authentication proxy for the OpenShift Container Platform using
the request header identity provider.

OpenShift Container Platform 4.1 Authentication

38

Custom proxy configuration
Using the mod_auth_gssapi module is a popular way to configure the Apache authentication proxy
using the request header identity provider; however, it is not required. Other proxies can easily be used if
the following requirements are met:

Block the X-Remote-User header from client requests to prevent spoofing.

Enforce client certificate authentication in the RequestHeaderIdentityProvider configuration.

Require the X-Csrf-Token header be set for all authentication requests using the challenge
flow.

Make sure only the /oauth/authorize endpoint and its subpaths are proxied; redirects must be
rewritten to allow the backend server to send the client to the correct location.

The URL that proxies to https://<namespace_route>/oauth/authorize must end with
/authorize with no trailing slash. For example, https://proxy.example.com/login-
proxy/authorize?… must proxy to https://<namespace_route>/oauth/authorize?… .

Subpaths of the URL that proxies to https://<namespace_route>/oauth/authorize must proxy
to subpaths of https://<namespace_route>/oauth/authorize. For example,
https://proxy.example.com/login-proxy/authorize/approve?… must proxy to
https://<namespace_route>/oauth/authorize/approve?… .

NOTE

The https://<namespace_route> address is the Route to the OAuth server and can be
obtained by running oc get route -n openshift-authentication.

Configuring Apache authentication using request header
This example uses the mod_auth_gssapi module to configure an Apache authentication proxy using
the request header identity provider.

Prerequisites

Obtain the mod_auth_gssapi module from the Optional channel. You must have the following
packages installed on your local machine:

httpd

mod_ssl

mod_session

apr-util-openssl

mod_auth_gssapi

Generate a CA for validating requests that submit the trusted header. Define an OpenShift
Container Platform ConfigMap containing the CA. This is done by running:

$ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

The CA must be stored in the ca.crt key of the ConfigMap.

Generate a client certificate for the proxy. You can generate this certificate by using any x509

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

39

https://access.redhat.com/solutions/392003

Generate a client certificate for the proxy. You can generate this certificate by using any x509
certificate tooling. The client certificate must be signed by the CA you generated for validating
requests that submit the trusted header.

Create the Custom Resource (CR) for your identity providers.

Procedure

This proxy uses a client certificate to connect to the OAuth server, which is configured to trust the X-
Remote-User header.

1. Create the certificate for the Apache configuration. The certificate that you specify as the
SSLProxyMachineCertificateFile parameter value is the proxy’s client certificate that is used
to authenticate the proxy to the server. It must use TLS Web Client Authentication as the
extended key type.

2. Create the Apache configuration. Use the following template to provide your required settings
and values:

IMPORTANT

Carefully review the template and customize its contents to fit your environment.

LoadModule request_module modules/mod_request.so
LoadModule auth_gssapi_module modules/mod_auth_gssapi.so
Some Apache configurations might require these modules.
LoadModule auth_form_module modules/mod_auth_form.so
LoadModule session_module modules/mod_session.so

Nothing needs to be served over HTTP. This virtual host simply redirects to
HTTPS.
<VirtualHost *:80>
 DocumentRoot /var/www/html
 RewriteEngine On
 RewriteRule ^(.*)$ https://%{HTTP_HOST}$1 [R,L]
</VirtualHost>

<VirtualHost *:443>
 # This needs to match the certificates you generated. See the CN and X509v3
 # Subject Alternative Name in the output of:
 # openssl x509 -text -in /etc/pki/tls/certs/localhost.crt
 ServerName www.example.com

 DocumentRoot /var/www/html
 SSLEngine on
 SSLCertificateFile /etc/pki/tls/certs/localhost.crt
 SSLCertificateKeyFile /etc/pki/tls/private/localhost.key
 SSLCACertificateFile /etc/pki/CA/certs/ca.crt

 SSLProxyEngine on
 SSLProxyCACertificateFile /etc/pki/CA/certs/ca.crt
 # It is critical to enforce client certificates. Otherwise, requests can
 # spoof the X-Remote-User header by accessing the /oauth/authorize endpoint
 # directly.
 SSLProxyMachineCertificateFile /etc/pki/tls/certs/authproxy.pem

OpenShift Container Platform 4.1 Authentication

40

 # To use the challenging-proxy, an X-Csrf-Token must be present.
 RewriteCond %{REQUEST_URI} ^/challenging-proxy
 RewriteCond %{HTTP:X-Csrf-Token} ^$ [NC]
 RewriteRule ^.* - [F,L]

 <Location /challenging-proxy/oauth/authorize>
 # Insert your backend server name/ip here.
 ProxyPass https://<namespace_route>/oauth/authorize
 AuthName "SSO Login"
 # For Kerberos
 AuthType GSSAPI
 Require valid-user
 RequestHeader set X-Remote-User %{REMOTE_USER}s

 GssapiCredStore keytab:/etc/httpd/protected/auth-proxy.keytab
 # Enable the following if you want to allow users to fallback
 # to password based authentication when they do not have a client
 # configured to perform kerberos authentication.
 GssapiBasicAuth On

 # For ldap:
 # AuthBasicProvider ldap
 # AuthLDAPURL "ldap://ldap.example.com:389/ou=People,dc=my-domain,dc=com?uid?
sub?(objectClass=*)"
 </Location>

 <Location /login-proxy/oauth/authorize>
 # Insert your backend server name/ip here.
 ProxyPass https://<namespace_route>/oauth/authorize

 AuthName "SSO Login"
 AuthType GSSAPI
 Require valid-user
 RequestHeader set X-Remote-User %{REMOTE_USER}s env=REMOTE_USER

 GssapiCredStore keytab:/etc/httpd/protected/auth-proxy.keytab
 # Enable the following if you want to allow users to fallback
 # to password based authentication when they do not have a client
 # configured to perform kerberos authentication.
 GssapiBasicAuth On

 ErrorDocument 401 /login.html
 </Location>

</VirtualHost>

RequestHeader unset X-Remote-User

NOTE

The https://<namespace_route> address is the Route to the OAuth server and
can be obtained by running oc get route -n openshift-authentication.

3. Update the identityProviders stanza in the Custom Resource (CR):

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

41

1

4. Verify the configuration.

a. Confirm that you can bypass the proxy by requesting a token by supplying the correct client
certificate and header:

curl -L -k -H "X-Remote-User: joe" \
 --cert /etc/pki/tls/certs/authproxy.pem \
 https://<namespace_route>/oauth/token/request

b. Confirm that requests that do not supply the client certificate fail by requesting a token
without the certificate:

curl -L -k -H "X-Remote-User: joe" \
 https://<namespace_route>/oauth/token/request

c. Confirm that the challengeURL redirect is active:

curl -k -v -H 'X-Csrf-Token: 1' \
 https://<namespace_route>/oauth/authorize?client_id=openshift-challenging-
client&response_type=token

Copy the challengeURL redirect to use in the next step.

d. Run this command to show a 401 response with a WWW-Authenticate basic challenge, a
negotiate challenge, or both challenges:

curl -k -v -H 'X-Csrf-Token: 1' \
 <challengeURL_redirect + query>

e. Test logging in to the OpenShift CLI (oc) with and without using a Kerberos ticket:

i. If you generated a Kerberos ticket by using kinit, destroy it:

kdestroy -c cache_name 1

Make sure to provide the name of your Kerberos cache.

ii. Log in to the oc tool by using your Kerberos credentials:

oc login

identityProviders:
 - name: requestheaderidp
 type: RequestHeader
 requestHeader:
 challengeURL: "https://<namespace_route>/challenging-proxy/oauth/authorize?${query}"
 loginURL: "https://<namespace_route>/login-proxy/oauth/authorize?${query}"
 ca:
 name: ca-config-map
 clientCommonNames:
 - my-auth-proxy
 headers:
 - X-Remote-User

OpenShift Container Platform 4.1 Authentication

42

Enter your Kerberos user name and password at the prompt.

iii. Log out of the oc tool:

oc logout

iv. Use your Kerberos credentials to get a ticket:

kinit

Enter your Kerberos user name and password at the prompt.

v. Confirm that you can log in to the oc tool:

oc login

If your configuration is correct, you are logged in without entering separate credentials.

4.6. CONFIGURING A GITHUB OR GITHUB ENTERPRISE IDENTITY
PROVIDER

Configure a github identity provider to validate user names and passwords against GitHub or GitHub
Enterprise’s OAuth authentication server. OAuth facilitates a token exchange flow between OpenShift
Container Platform and GitHub or GitHub Enterprise.

You can use the GitHub integration to connect to either GitHub or GitHub Enterprise. For GitHub
Enterprise integrations, you must provide the hostname of your instance and can optionally provide a
ca certificate bundle to use in requests to the server.

NOTE

The following steps apply to both GitHub and GitHub Enterprise unless noted.

Configuring GitHub authentication allows users to log in to OpenShift Container Platform with their
GitHub credentials. To prevent anyone with any GitHub user ID from logging in to your OpenShift
Container Platform cluster, you can restrict access to only those in specific GitHub organizations.

4.6.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

4.6.2. Registering a GitHub application

To use GitHub or GitHub Enterprise as an identity provider, you must register an application to use.

Procedure

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

43

1. Register an application on GitHub:

For GitHub, click Settings → Developer settings → OAuth Apps → Register a new OAuth
application.

For GitHub Enterprise, go to your GitHub Enterprise home page and then click Settings →
Developer settings → Register a new application.

2. Enter an application name, for example My OpenShift Install.

3. Enter a homepage URL, such as https://oauth-openshift.apps.<cluster-name>.<cluster-
domain>.

4. Optional: Enter an application description.

5. Enter the authorization callback URL, where the end of the URL contains the identity provider
name:

https://oauth-openshift.apps.<cluster-name>.<cluster-domain>/oauth2callback/<idp-provider-
name>

For example:

https://oauth-openshift.apps.example-openshift-cluster.com/oauth2callback/github/

6. Click Register application. GitHub provides a Client ID and a Client Secret. You need these
values to complete the identity provider configuration.

4.6.3. Creating the Secret

Identity providers use OpenShift Container Platform Secrets in the openshift-config namespace to
contain the client secret, client certificates, and keys.

You can define an OpenShift Container Platform Secret containing a string by using the
following command.

$ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-
config

You can define an OpenShift Container Platform Secret containing the contents of a file, such
as a certificate file, by using the following command.

$ oc create secret generic <secret_name> --from-file=/path/to/file -n openshift-config

4.6.4. Creating a ConfigMap

Identity providers use OpenShift Container Platform ConfigMaps in the openshift-config namespace
to contain the certificate authority bundle. These are primarily used to contain certificate bundles
needed by the identity provider.

Define an OpenShift Container Platform ConfigMap containing the certificate authority by
using the following command. The certificate authority must be stored in the ca.crt key of the
ConfigMap.

OpenShift Container Platform 4.1 Authentication

44

https://github.com/settings/profile
https://github.com/settings/apps
https://github.com/settings/developers
https://github.com/settings/applications/new

1

2

3

4

5

6

7

$ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

4.6.5. Sample GitHub CR

The following Custom Resource (CR) shows the parameters and acceptable values for a GitHub identity
provider.

GitHub CR

This provider name is prefixed to the GitHub numeric user ID to form an identity name. It is also
used to build the callback URL.

Controls how mappings are established between this provider’s identities and user objects.

Optional: Reference to an OpenShift Container Platform ConfigMap containing the PEM-encoded
certificate authority bundle to use in validating server certificates for the configured URL. Only for
use in GitHub Enterprise with a non-publicly trusted root certificate.

The client ID of a registered GitHub OAuth application. The application must be configured with a
callback URL of https://oauth-openshift.apps.<cluster-name>.<cluster-
domain>/oauth2callback/<idp-provider-name>.

Reference to an OpenShift Container Platform Secret containing the client secret issued by
GitHub.

For GitHub Enterprise, you must provide the host name of your instance, such as example.com.
This value must match the GitHub Enterprise hostname value in in the /setup/settings file and
cannot include a port number. If this value is not set, then either teams or organizations must be
defined. For GitHub, omit this parameter.

Optional list of organizations. If specified, only GitHub users that are members of at least one of

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: githubidp 1
 mappingMethod: claim 2
 type: GitHub
 github:
 ca: 3
 name: ca-config-map
 clientID: {...} 4
 clientSecret: 5
 name: github-secret
 hostname: ... 6
 organizations: 7
 - myorganization1
 - myorganization2
 teams: 8
 - myorganization1/team-a
 - myorganization2/team-b

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

45

https://github.com/settings/applications/new

8

Optional list of organizations. If specified, only GitHub users that are members of at least one of
the listed organizations will be allowed to log in. If the GitHub OAuth application configured in

Optional list of teams. If specified, only GitHub users that are members of at least one of the listed
teams will be allowed to log in. If the GitHub OAuth application configured in clientID is not owned
by the team’s organization, an organization owner must grant third-party access in order to use this
option. This can be done during the first GitHub login by the organization’s administrator, or from
the GitHub organization settings. Cannot be used in combination with the organizations field.

4.6.6. Adding an identity provider to your clusters

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

Create an OpenShift Container Platform cluster.

Create the Custom Resource (CR) for your identity providers.

You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

$ oc apply -f </path/to/CR>

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Obtain a token from the OAuth server.
As long as the kubeadmin user has been removed, the oc login command provides instructions
on how to access a web page where you can retrieve the token.

You can also access this page from the web console by navigating to (?) Help → Command
Line Tools → Copy Login Command.

3. Log in to the cluster, passing in the token to authenticate.

$ oc login --token=<token>

NOTE

This identity provider does not support logging in with a user name and password.

4. Confirm that the user logged in successfully, and display the user name.

$ oc whoami

OpenShift Container Platform 4.1 Authentication

46

4.7. CONFIGURING A GITLAB IDENTITY PROVIDER

Configure a gitlab identity provider to use GitLab.com or any other GitLab instance as an identity
provider. If you use GitLab version 7.7.0 to 11.0, you connect using the OAuth integration. If you use
GitLab version 11.1 or later, you can use OpenID Connect (OIDC) to connect instead of OAuth.

4.7.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

4.7.2. Creating the Secret

Identity providers use OpenShift Container Platform Secrets in the openshift-config namespace to
contain the client secret, client certificates, and keys.

You can define an OpenShift Container Platform Secret containing a string by using the
following command.

$ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-
config

You can define an OpenShift Container Platform Secret containing the contents of a file, such
as a certificate file, by using the following command.

$ oc create secret generic <secret_name> --from-file=/path/to/file -n openshift-config

4.7.3. Creating a ConfigMap

Identity providers use OpenShift Container Platform ConfigMaps in the openshift-config namespace
to contain the certificate authority bundle. These are primarily used to contain certificate bundles
needed by the identity provider.

Define an OpenShift Container Platform ConfigMap containing the certificate authority by
using the following command. The certificate authority must be stored in the ca.crt key of the
ConfigMap.

$ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

4.7.4. Sample GitLab CR

The following Custom Resource (CR) shows the parameters and acceptable values for a GitLab identity
provider.

GitLab CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

47

https://gitlab.com/
http://doc.gitlab.com/ce/integration/oauth_provider.html
https://docs.gitlab.com/ce/integration/openid_connect_provider.html

1

2

3

4

5

6

This provider name is prefixed to the GitLab numeric user ID to form an identity name. It is also
used to build the callback URL.

Controls how mappings are established between this provider’s identities and user objects.

The client ID of a registered GitLab OAuth application. The application must be configured with a
callback URL of https://oauth-openshift.apps.<cluster-name>.<cluster-
domain>/oauth2callback/<idp-provider-name>.

Reference to an OpenShift Container Platform Secret containing the client secret issued by
GitLab.

The host URL of a GitLab provider. This could either be https://gitlab.com/ or any other self
hosted instance of GitLab.

Optional: Reference to an OpenShift Container Platform ConfigMap containing the PEM-encoded
certificate authority bundle to use in validating server certificates for the configured URL.

4.7.5. Adding an identity provider to your clusters

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

Create an OpenShift Container Platform cluster.

Create the Custom Resource (CR) for your identity providers.

You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

$ oc apply -f </path/to/CR>

NOTE

 name: cluster
spec:
 identityProviders:
 - name: gitlabidp 1
 mappingMethod: claim 2
 type: GitLab
 gitlab:
 clientID: {...} 3
 clientSecret: 4
 name: gitlab-secret
 url: https://gitlab.com 5
 ca: 6
 name: ca-config-map

OpenShift Container Platform 4.1 Authentication

48

https://docs.gitlab.com/ce/api/oauth2.html

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Log in to the cluster as a user from your identity provider, entering the password when
prompted.

$ oc login -u <username>

3. Confirm that the user logged in successfully, and display the user name.

$ oc whoami

4.8. CONFIGURING A GOOGLE IDENTITY PROVIDER

Configure a google identity provider using Google’s OpenID Connect integration.

NOTE

Using Google as an identity provider requires users to get a token using
<master>/oauth/token/request to use with command-line tools.

WARNING

Using Google as an identity provider allows any Google user to authenticate to your
server. You can limit authentication to members of a specific hosted domain with
the hostedDomain configuration attribute.

4.8.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

4.8.2. Creating the Secret

Identity providers use OpenShift Container Platform Secrets in the openshift-config namespace to
contain the client secret, client certificates, and keys.

You can define an OpenShift Container Platform Secret containing a string by using the
following command.

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

49

https://developers.google.com/identity/protocols/OpenIDConnect

1

2

3

4

5

$ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-
config

You can define an OpenShift Container Platform Secret containing the contents of a file, such
as a certificate file, by using the following command.

$ oc create secret generic <secret_name> --from-file=/path/to/file -n openshift-config

4.8.3. Sample Google CR

The following Custom Resource (CR) shows the parameters and acceptable values for a Google identity
provider.

Google CR

This provider name is prefixed to the Google numeric user ID to form an identity name. It is also
used to build the redirect URL.

Controls how mappings are established between this provider’s identities and user objects.

The client ID of a registered Google project. The project must be configured with a redirect URI of
https://oauth-openshift.apps.<cluster-name>.<cluster-domain>/oauth2callback/<idp-
provider-name>.

Reference to an OpenShift Container Platform Secret containing the client secret issued by
Google.

A hosted domain used to restrict sign-in accounts. Optional if the lookup mappingMethod is
used. If empty, any Google account is allowed to authenticate.

4.8.4. Adding an identity provider to your clusters

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

Create an OpenShift Container Platform cluster.

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: googleidp 1
 mappingMethod: claim 2
 type: Google
 google:
 clientID: {...} 3
 clientSecret: 4
 name: google-secret
 hostedDomain: "example.com" 5

OpenShift Container Platform 4.1 Authentication

50

https://console.developers.google.com/
https://developers.google.com/identity/protocols/OpenIDConnect#hd-param

Create the Custom Resource (CR) for your identity providers.

You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

$ oc apply -f </path/to/CR>

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Obtain a token from the OAuth server.
As long as the kubeadmin user has been removed, the oc login command provides instructions
on how to access a web page where you can retrieve the token.

You can also access this page from the web console by navigating to (?) Help → Command
Line Tools → Copy Login Command.

3. Log in to the cluster, passing in the token to authenticate.

$ oc login --token=<token>

NOTE

This identity provider does not support logging in with a user name and password.

4. Confirm that the user logged in successfully, and display the user name.

$ oc whoami

4.9. CONFIGURING A OPENID CONNECT IDENTITY PROVIDER

Configure an oidc identity provider to integrate with an OpenID Connect identity provider using an
Authorization Code Flow.

You can configure Red Hat Single Sign-On as an OpenID Connect identity provider for OpenShift
Container Platform.

IMPORTANT

The Authentication Operator in OpenShift Container Platform requires that the
configured OpenID Connect identity provider implements the OpenID Connect
Discovery specification.

NOTE

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

51

http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/
https://openid.net/specs/openid-connect-discovery-1_0.html

NOTE

ID Token and UserInfo decryptions are not supported.

By default, the openid scope is requested. If required, extra scopes can be specified in the extraScopes
field.

Claims are read from the JWT id_token returned from the OpenID identity provider and, if specified,
from the JSON returned by the UserInfo URL.

At least one claim must be configured to use as the user’s identity. The standard identity claim is sub.

You can also indicate which claims to use as the user’s preferred user name, display name, and email
address. If multiple claims are specified, the first one with a non-empty value is used. The standard
claims are:

sub Short for "subject identifier." The remote identity for the user at the issuer.

preferred_
username

The preferred user name when provisioning a user. A shorthand name that the user wants to
be referred to as, such as janedoe. Typically a value that corresponding to the user’s login or
username in the authentication system, such as username or email.

email Email address.

name Display name.

See the OpenID claims documentation for more information.

NOTE

Using an OpenID Connect identity provider requires users to get a token using
<master>/oauth/token/request to use with command-line tools.

4.9.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

4.9.2. Creating the Secret

Identity providers use OpenShift Container Platform Secrets in the openshift-config namespace to
contain the client secret, client certificates, and keys.

You can define an OpenShift Container Platform Secret containing a string by using the
following command.

$ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-
config

OpenShift Container Platform 4.1 Authentication

52

http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

1

2

You can define an OpenShift Container Platform Secret containing the contents of a file, such
as a certificate file, by using the following command.

$ oc create secret generic <secret_name> --from-file=/path/to/file -n openshift-config

4.9.3. Creating a ConfigMap

Identity providers use OpenShift Container Platform ConfigMaps in the openshift-config namespace
to contain the certificate authority bundle. These are primarily used to contain certificate bundles
needed by the identity provider.

Define an OpenShift Container Platform ConfigMap containing the certificate authority by
using the following command. The certificate authority must be stored in the ca.crt key of the
ConfigMap.

$ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

4.9.4. Sample OpenID Connect CRs

The following Custom Resources (CRs) show the parameters and acceptable values for an OpenID
Connect identity provider.

If you must specify a custom certificate bundle, extra scopes, extra authorization request parameters, or
a userInfo URL, use the full OpenID Connect CR.

Standard OpenID Connect CR

This provider name is prefixed to the value of the identity claim to form an identity name. It is also
used to build the redirect URL.

Controls how mappings are established between this provider’s identities and user objects.

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: oidcidp 1
 mappingMethod: claim 2
 type: OpenID
 openID:
 clientID: ... 3
 clientSecret: 4
 name: idp-secret
 claims: 5
 preferredUsername:
 - preferred_username
 name:
 - name
 email:
 - email
 issuer: https://www.idp-issuer.com 6

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

53

3

4

5

6

1

2

3

The client ID of a client registered with the OpenID provider. The client must be allowed to redirect
to https://oauth-openshift.apps.<cluster_name>.

Reference to an OpenShift Container Platform Secret containing the client secret.

List of claims to use as the identity. First non-empty claim is used. At least one claim is required. If
none of the listed claims have a value, authentication fails. For example, this uses the value of the
sub claim in the returned id_token as the user’s identity.

Issuer Identifier described in the OpenID spec. Must use https without query or fragment
component.

Full OpenID Connect CR

Optional: Reference to an OpenShift Container Platform ConfigMap containing the PEM-encoded
certificate authority bundle to use in validating server certificates for the configured URL.

Optional list of scopes to request, in addition to the openid scope, during the authorization token
request.

Optional map of extra parameters to add to the authorization token request.

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: oidcidp
 mappingMethod: claim
 type: OpenID
 openID:
 clientID: ...
 clientSecret:
 name: idp-secret
 ca: 1
 name: ca-config-map
 extraScopes: 2
 - email
 - profile
 extraAuthorizeParameters: 3
 include_granted_scopes: "true"
 claims:
 preferredUsername: 4
 - preferred_username
 - email
 name: 5
 - nickname
 - given_name
 - name
 email: 6
 - custom_email_claim
 - email
 issuer: https://www.idp-issuer.com

OpenShift Container Platform 4.1 Authentication

54

https://openid.net/specs/openid-connect-core-1_0.html#IssuerIdentifier

4

5

6

List of claims to use as the preferred user name when provisioning a user for this identity. First non-
empty claim is used.

List of claims to use as the display name. First non-empty claim is used.

List of claims to use as the email address. First non-empty claim is used.

4.9.5. Adding an identity provider to your clusters

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

Create an OpenShift Container Platform cluster.

Create the Custom Resource (CR) for your identity providers.

You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

$ oc apply -f </path/to/CR>

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Obtain a token from the OAuth server.
As long as the kubeadmin user has been removed, the oc login command provides instructions
on how to access a web page where you can retrieve the token.

You can also access this page from the web console by navigating to (?) Help → Command
Line Tools → Copy Login Command.

3. Log in to the cluster, passing in the token to authenticate.

$ oc login --token=<token>

NOTE

This identity provider does not support logging in with a user name and password.

4. Confirm that the user logged in successfully, and display the user name.

$ oc whoami

CHAPTER 4. CONFIGURING IDENTITY PROVIDERS

55

4.9.6. Configuring identity providers using the web console

Configure your identity provider (IDP) through the web console instead of the CLI.

Prerequisites

You must be logged in to the web console as a cluster administrator.

Procedure

1. Navigate to Administration → Cluster Settings.

2. Under the Global Configuration tab, click OAuth.

3. Under the Identity Providers section, select your identity provider from the Add drop-down
menu.

NOTE

You can specify multiple IDPs through the web console without overwriting existing IDPs.

OpenShift Container Platform 4.1 Authentication

56

1

2

3

1

CHAPTER 5. CONFIGURING CERTIFICATES

5.1. REPLACING THE DEFAULT INGRESS CERTIFICATE

5.1.1. Understanding the default ingress certificate

By default OpenShift Container Platform uses the Ingress Operator to create an internal CA and issue a
wildcard certificate that is valid for applications under the .apps sub-domain. Both the web console and
CLI use this certificate as well.

The internal infrastructure CA certificates are self-signed. While this process might be perceived as bad
practice by some security or PKI teams, any risk here is minimal. The only clients that implicitly trust
these certificates are other components within the cluster. Replacing the default wildcard certificate
with one that is issued by a public CA already included in the CA bundle as provided by the container
userspace allows external clients to connect securely to applications running under the .apps sub-
domain.

5.1.2. Replacing the default ingress certificate

You can replace the default ingress certificate for all applications under the .apps subdomain. After you
replace the certificate, all applications, including the web console and CLI, will have encryption provided
by specified certificate.

Prerequisites

You must have a wildcard certificate and its private key, both in the PEM format, for use.

The certificate must have a subjectAltName extension of *.apps.<clustername>.<domain>.

Procedure

1. Create a secret that contains the wildcard certificate and key:

$ oc create secret tls <certificate> \ 1
 --cert=</path/to/cert.crt> \ 2
 --key=</path/to/cert.key> \ 3
 -n openshift-ingress

<certificate> is the name of the secret that will contain the certificate and private key.

</path/to/cert.crt> is the path to the certificate on your local file system.

</path/to/cert.key> is the path to the private key associated with this certificate.

2. Update the Ingress Controller configuration with the newly created secret:

$ oc patch ingresscontroller.operator default \
 --type=merge -p \
 '{"spec":{"defaultCertificate": {"name": "<certificate>"}}}' \ 1
 -n openshift-ingress-operator

Replace <certificate> with the name used for the secret in the previous step.

CHAPTER 5. CONFIGURING CERTIFICATES

57

5.2. ADDING API SERVER CERTIFICATES

The default API server certificate is issued by an internal OpenShift Container Platform cluster CA.
Clients outside of the cluster will not be able to verify the API server’s certificate by default. This
certificate can be replaced by one that is issued by a CA that clients trust.

5.2.1. Add an API server named certificate

The default API server certificate is issued by an internal OpenShift Container Platform cluster CA. You
can add additional certificates to the API server to send based on the client’s requested URL, such as
when a reverse proxy or load balancer is used.

Prerequisites

You must have the certificate and key, in the PEM format, for the client’s URL.

The certificate must be issued for the URL used by the client to reach the API server.

The certificate must have the subjectAltName extension for the URL.

If a certificate chain is required to certify the server certificate, then the certificate chain must
be appended to the server certificate. Certificate files must be Base64 PEM-encoded and
typically have a .crt or .pem extension. For example:

$ cat server_cert.pem int2ca_cert.pem int1ca_cert.pem rootca_cert.pem>combined_cert.pem

When combining certificates, the order of the certificates is important. Each following
certificate must directly certify the certificate preceding it, for example:

1. OpenShift Container Platform master host server certificate.

2. Intermediate CA certificate that certifies the server certificate.

3. Root CA certificate that certifies the intermediate CA certificate.

WARNING

Do not provide a named certificate for the internal load balancer (host name api-
int.<cluster_name>.<base_domain>). Doing so will leave your cluster in a
degraded state.

Procedure

1. Create a secret that contains the certificate and key in the openshift-config namespace.

$ oc create secret tls <certificate> \ 1
 --cert=</path/to/cert.crt> \ 2
 --key=</path/to/cert.key> \ 3
 -n openshift-config

OpenShift Container Platform 4.1 Authentication

58

1

2

3

1

2

<certificate> is the name of the secret that will contain the certificate.

</path/to/cert.crt> is the path to the certificate on your local file system.

</path/to/cert.key> is the path to the private key associated with this certificate.

2. Update the API server to reference the created secret.

$ oc patch apiserver cluster \
 --type=merge -p \
 '{"spec":{"servingCerts": {"namedCertificates":
 [{"names": ["<hostname>"], 1
 "servingCertificate": {"name": "<certificate>"}}]}}}' 2

Replace <hostname> with the hostname that the API server should provide the certificate
for.

Replace <certificate> with the name used for the secret in the previous step.

3. Examine the apiserver/cluster object and confirm the secret is now referenced.

$ oc get apiserver cluster -o yaml
...
spec:
 servingCerts:
 namedCertificates:
 - names:
 - <hostname>
 servingCertificate:
 name: <certificate>
...

5.3. SECURING SERVICE TRAFFIC USING SERVICE SERVING
CERTIFICATE SECRETS

5.3.1. Understanding service serving certificates

Service serving certificates are intended to support complex middleware applications that require
encryption. These certificates are issued as TLS web server certificates.

The service-ca controller uses the x509.SHA256WithRSA signature algorithm to generate service
certificates.

The generated certificate and key are in PEM format, stored in tls.crt and tls.key respectively, within a
created secret. The certificate and key are automatically replaced when they get close to expiration. The
service CA certificate, which signs the service certificates, is only valid for one year after OpenShift
Container Platform is installed.

5.3.2. Add a service certificate

To secure communication to your service, generate a signed serving certificate and key pair into a secret
in the same namespace as the service.

CHAPTER 5. CONFIGURING CERTIFICATES

59

1

2

IMPORTANT

The generated certificate is only valid for the internal service DNS name
<service.name>.<service.namespace>.svc, and are only valid for internal
communications.

Prerequisites:

You must have a service defined.

Procedure

1. Annotate the service with service.beta.openshift.io/serving-cert-secret-name.

$ oc annotate service <service-name> \ 1
 service.beta.openshift.io/serving-cert-secret-name=<secret-name> 2

Replace <service-name> with the name of the service to secure.

<secret-name> will be the name of the generated secret containing the certificate and
key pair. For convenience, it is recommended that this be the same as <service-name>.

For instance, use the following command to annotate the service foo:

$ oc annotate service foo service.beta.openshift.io/serving-cert-secret-name=foo

2. Examine the service to confirm the annotations are present.

$ oc describe service <service-name>
...
Annotations: service.beta.openshift.io/serving-cert-secret-name: <service-name>
 service.beta.openshift.io/serving-cert-signed-by: openshift-service-serving-
signer@1556850837
...

3. After the cluster generates a secret for your service, your PodSpec can mount it, and the Pod
will run after it becomes available.

5.3.3. Add a service certificate to a ConfigMap

A Pod can access the service CA certificate by mounting a ConfigMap that is annotated with
service.beta.openshift.io/inject-cabundle=true. Once annotated, the cluster automatically injects the
service CA certificate into the service-ca.crt key on the ConfigMap. Access to this CA certificate allows
TLS clients to verify connections to services using service serving certificates.

IMPORTANT

After adding this annotation to a ConfigMap all existing data in it is deleted. It is
recommended to use a separate ConfigMap to contain the service-ca.crt, instead of
using the same ConfigMap that stores your Pod’s configuration.

Procedure

OpenShift Container Platform 4.1 Authentication

60

1

1

1. Annotate the ConfigMap with service.beta.openshift.io/inject-cabundle=true.

$ oc annotate configmap <configmap-name> \ 1
 service.beta.openshift.io/inject-cabundle=true

Replace <configmap-name> with the name of the ConfigMap to annotate.

NOTE

Explicitly referencing the service-ca.crt key in a volumeMount will prevent a Pod
from starting until the ConfigMap has been injected with the CA bundle.

For instance, to annotate the ConfigMap foo the following command would be used:

$ oc annotate configmap foo service.beta.openshift.io/inject-cabundle=true

2. View the ConfigMap to ensure the certificate has been generated. This appears as a service-
ca.crt in the YAML output.

$ oc get configmap <configmap-name> -o yaml
apiVersion: v1
data:
 service-ca.crt: |
 -----BEGIN CERTIFICATE-----
...

5.3.4. Manually rotate the generated service certificate

You can rotate the service certificate by deleting the associated secret. Deleting the secret results in a
new one being automatically created, resulting in a new certificate.

Prerequisites

A secret containing the certificate and key pair must have been generated for the service.

Procedure

1. Examine the service to determine the secret containing the certificate. This is found in the
serving-cert-secret-name annotation, as seen below.

$ oc describe service <service-name>
...
service.beta.openshift.io/serving-cert-secret-name: <secret>
...

2. Delete the generated secret for the service. This process will automatically recreate the secret.

$ oc delete secret <secret> 1

Replace <secret> with the name of the secret from the previous step.

CHAPTER 5. CONFIGURING CERTIFICATES

61

3. Confirm that the certificate has been recreated by obtaining the new secret and examining the
AGE.

$ oc get secret <service-name>

NAME TYPE DATA AGE
<service.name> kubernetes.io/tls 2 1s

5.3.5. Manually rotate the service CA certificate

The service CA is valid for one year after OpenShift Container Platform is installed. Follow these steps
to manually refresh the service CA before the expiration date.

Prerequisites

You must be logged in as a cluster admin.

Procedure

1. View the expiration date of the current service CA certificate by using the following command.

$ oc get secrets/signing-key -n openshift-service-ca \
 -o template='{{index .data "tls.crt"}}' \
 | base64 -d \
 | openssl x509 -noout -enddate

2. Manually rotate the service CA. This process generates a new service CA which will be used to
sign the new service certificates.

$ oc delete secret/signing-key -n openshift-service-ca

3. To apply the new certificates to all services, restart all the Pods in your cluster. This command
ensures that all services use the updated certificates.

$ for I in $(oc get ns -o jsonpath='{range .items[*]} {.metadata.name}{"\n"} {end}'); \
 do oc delete pods --all -n $I; \
 sleep 1; \
 done

WARNING

This command will cause a service interruption, as it goes through and
deletes every running pod in every namespace. These pods will
automatically restart after they are deleted.

OpenShift Container Platform 4.1 Authentication

62

CHAPTER 6. USING RBAC TO DEFINE AND APPLY
PERMISSIONS

6.1. RBAC OVERVIEW

Role-based access control (RBAC) objects determine whether a user is allowed to perform a given
action within a project.

Cluster administrators can use the cluster roles and bindings to control who has various access levels to
the OpenShift Container Platform platform itself and all projects.

Developers can use local roles and bindings to control who has access to their projects. Note that
authorization is a separate step from authentication, which is more about determining the identity of
who is taking the action.

Authorization is managed using:

Rules Sets of permitted verbs on a set of objects. For example, whether a user or service account can
create pods.

Roles Collections of rules. You can associate, or bind, users and groups to multiple roles.

Bindings Associations between users and/or groups with a role.

There are two levels of RBAC roles and bindings that control authorization:

Cluster RBAC Roles and bindings that are applicable across all projects. Cluster roles exist cluster-
wide, and cluster role bindings can reference only cluster roles.

Local RBAC Roles and bindings that are scoped to a given project. While local roles exist only in a
single project, local role bindings can reference both cluster and local roles.

A cluster role binding is a binding that exists at the cluster level. A role binding exists at the project level.
The cluster role view must be bound to a user using a local role binding for that user to view the project.
Create local roles only if a cluster role does not provide the set of permissions needed for a particular
situation.

This two-level hierarchy allows reuse across multiple projects through the cluster roles while allowing
customization inside of individual projects through local roles.

During evaluation, both the cluster role bindings and the local role bindings are used. For example:

1. Cluster-wide "allow" rules are checked.

2. Locally-bound "allow" rules are checked.

3. Deny by default.

6.1.1. Default cluster roles

OpenShift Container Platform includes a set of default cluster roles that you can bind to users and

CHAPTER 6. USING RBAC TO DEFINE AND APPLY PERMISSIONS

63

OpenShift Container Platform includes a set of default cluster roles that you can bind to users and
groups cluster-wide or locally. You can manually modify the default cluster roles, if required, but you
must take extra steps each time you restart a master node.

Default Cluster
Role

Description

admin A project manager. If used in a local binding, an admin has rights to view any resource
in the project and modify any resource in the project except for quota.

basic-user A user that can get basic information about projects and users.

cluster-admin A super-user that can perform any action in any project. When bound to a user with a
local binding, they have full control over quota and every action on every resource in the
project.

cluster-status A user that can get basic cluster status information.

edit A user that can modify most objects in a project but does not have the power to view or
modify roles or bindings.

self-provisioner A user that can create their own projects.

view A user who cannot make any modifications, but can see most objects in a project. They
cannot view or modify roles or bindings.

Be mindful of the difference between local and cluster bindings. For example, if you bind the cluster-
admin role to a user by using a local role binding, it might appear that this user has the privileges of a
cluster administrator. This is not the case. Binding the cluster-admin to a user in a project grants super
administrator privileges for only that project to the user. That user has the permissions of the cluster
role admin, plus a few additional permissions like the ability to edit rate limits, for that project. This
binding can be confusing via the web console UI, which does not list cluster role bindings that are bound
to true cluster administrators. However, it does list local role bindings that you can use to locally bind
cluster-admin.

The relationships between cluster roles, local roles, cluster role bindings, local role bindings, users,
groups and service accounts are illustrated below.

OpenShift Container Platform 4.1 Authentication

64

6.1.2. Evaluating authorization

OpenShift Container Platform evaluates authorization by using:

Identity

The user name and list of groups that the user belongs to.

Action

The action you perform. In most cases, this consists of:

Project: The project you access. A project is a Kubernetes namespace with additional
annotations that allows a community of users to organize and manage their content in
isolation from other communities.

Verb : The action itself: get, list, create, update, delete, deletecollection, or watch.

Resource Name: The API endpoint that you access.

Bindings

The full list of bindings, the associations between users or groups with a role.

OpenShift Container Platform evaluates authorization by using the following steps:

1. The identity and the project-scoped action is used to find all bindings that apply to the user or
their groups.

2. Bindings are used to locate all the roles that apply.

CHAPTER 6. USING RBAC TO DEFINE AND APPLY PERMISSIONS

65

3. Roles are used to find all the rules that apply.

4. The action is checked against each rule to find a match.

5. If no matching rule is found, the action is then denied by default.

TIP

Remember that users and groups can be associated with, or bound to, multiple roles at the same time.

Project administrators can use the CLI to view local roles and bindings, including a matrix of the verbs
and resources each are associated with.

IMPORTANT

The cluster role bound to the project administrator is limited in a project through a local
binding. It is not bound cluster-wide like the cluster roles granted to the cluster-admin or
system:admin.

Cluster roles are roles defined at the cluster level but can be bound either at the cluster
level or at the project level.

6.1.2.1. Cluster Role Aggregation

The default admin, edit, view, and cluster-reader cluster roles support cluster role aggregation, where
the cluster rules for each role are dynamically updated as new rules are created. This feature is relevant
only if you extend the Kubernetes API by creating custom resources.

6.2. PROJECTS AND NAMESPACES

A Kubernetes namespace provides a mechanism to scope resources in a cluster. The Kubernetes
documentation has more information on namespaces.

Namespaces provide a unique scope for:

Named resources to avoid basic naming collisions.

Delegated management authority to trusted users.

The ability to limit community resource consumption.

Most objects in the system are scoped by namespace, but some are excepted and have no namespace,
including nodes and users.

A project is a Kubernetes namespace with additional annotations and is the central vehicle by which
access to resources for regular users is managed. A project allows a community of users to organize and
manage their content in isolation from other communities. Users must be given access to projects by
administrators, or if allowed to create projects, automatically have access to their own projects.

Projects can have a separate name, displayName, and description.

The mandatory name is a unique identifier for the project and is most visible when using the CLI
tools or API. The maximum name length is 63 characters.

The optional displayName is how the project is displayed in the web console (defaults to

OpenShift Container Platform 4.1 Authentication

66

https://kubernetes.io/docs/admin/authorization/rbac/#aggregated-clusterroles
https://kubernetes.io/docs/tasks/administer-cluster/namespaces/

The optional displayName is how the project is displayed in the web console (defaults to
name).

The optional description can be a more detailed description of the project and is also visible in
the web console.

Each project scopes its own set of:

Objects Pods, services, replication controllers, etc.

Policies Rules for which users can or cannot perform actions on objects.

Constraints Quotas for each kind of object that can be limited.

Service
accounts

Service accounts act automatically with designated access to objects in the project.

Cluster administrators can create projects and delegate administrative rights for the project to any
member of the user community. Cluster administrators can also allow developers to create their own
projects.

Developers and administrators can interact with projects the CLI or the web console.

6.3. DEFAULT PROJECTS

OpenShift Container Platform comes with a number of default projects, and projects starting with
openshift- are the most essential to users. These projects host master components that run as pods
and other infrastructure components. The pods created in these namespaces that have a critical pod
annotation are considered critical, and the have guaranteed admission by kubelet. Pods created for
master components in these namespaces are already marked as critical.

6.4. VIEWING CLUSTER ROLES AND BINDINGS

You can use the oc CLI to view cluster roles and bindings by using the oc describe command.

Prerequisites

Install the oc CLI.

Obtain permission to view the cluster roles and bindings.

Users with the cluster-admin default cluster role bound cluster-wide can perform any action on any
resource, including viewing cluster roles and bindings.

Procedure

1. To view the cluster roles and their associated rule sets:

$ oc describe clusterrole.rbac
Name: admin
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true

CHAPTER 6. USING RBAC TO DEFINE AND APPLY PERMISSIONS

67

https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/#rescheduler-guaranteed-scheduling-of-critical-add-ons

PolicyRule:
 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------- -------------- -----
 .packages.apps.redhat.com [] [] [* create update
patch delete get list watch]
 imagestreams [] [] [create delete
deletecollection get list patch update watch create get list watch]
 imagestreams.image.openshift.io [] [] [create delete
deletecollection get list patch update watch create get list watch]
 secrets [] [] [create delete deletecollection
get list patch update watch get list watch create delete deletecollection patch update]
 buildconfigs/webhooks [] [] [create delete
deletecollection get list patch update watch get list watch]
 buildconfigs [] [] [create delete
deletecollection get list patch update watch get list watch]
 buildlogs [] [] [create delete deletecollection
get list patch update watch get list watch]
 deploymentconfigs/scale [] [] [create delete
deletecollection get list patch update watch get list watch]
 deploymentconfigs [] [] [create delete
deletecollection get list patch update watch get list watch]
 imagestreamimages [] [] [create delete
deletecollection get list patch update watch get list watch]
 imagestreammappings [] [] [create delete
deletecollection get list patch update watch get list watch]
 imagestreamtags [] [] [create delete
deletecollection get list patch update watch get list watch]
 processedtemplates [] [] [create delete
deletecollection get list patch update watch get list watch]
 routes [] [] [create delete deletecollection
get list patch update watch get list watch]
 templateconfigs [] [] [create delete
deletecollection get list patch update watch get list watch]
 templateinstances [] [] [create delete
deletecollection get list patch update watch get list watch]
 templates [] [] [create delete
deletecollection get list patch update watch get list watch]
 deploymentconfigs.apps.openshift.io/scale [] [] [create delete
deletecollection get list patch update watch get list watch]
 deploymentconfigs.apps.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 buildconfigs.build.openshift.io/webhooks [] [] [create delete
deletecollection get list patch update watch get list watch]
 buildconfigs.build.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 buildlogs.build.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 imagestreamimages.image.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 imagestreammappings.image.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 imagestreamtags.image.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 routes.route.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 processedtemplates.template.openshift.io [] [] [create delete

OpenShift Container Platform 4.1 Authentication

68

deletecollection get list patch update watch get list watch]
 templateconfigs.template.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 templateinstances.template.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 templates.template.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 serviceaccounts [] [] [create delete
deletecollection get list patch update watch impersonate create delete deletecollection patch
update get list watch]
 imagestreams/secrets [] [] [create delete
deletecollection get list patch update watch]
 rolebindings [] [] [create delete
deletecollection get list patch update watch]
 roles [] [] [create delete deletecollection
get list patch update watch]
 rolebindings.authorization.openshift.io [] [] [create delete
deletecollection get list patch update watch]
 roles.authorization.openshift.io [] [] [create delete
deletecollection get list patch update watch]
 imagestreams.image.openshift.io/secrets [] [] [create delete
deletecollection get list patch update watch]
 rolebindings.rbac.authorization.k8s.io [] [] [create delete
deletecollection get list patch update watch]
 roles.rbac.authorization.k8s.io [] [] [create delete
deletecollection get list patch update watch]
 networkpolicies.extensions [] [] [create delete
deletecollection patch update create delete deletecollection get list patch update watch get
list watch]
 networkpolicies.networking.k8s.io [] [] [create delete
deletecollection patch update create delete deletecollection get list patch update watch get
list watch]
 configmaps [] [] [create delete
deletecollection patch update get list watch]
 endpoints [] [] [create delete
deletecollection patch update get list watch]
 persistentvolumeclaims [] [] [create delete
deletecollection patch update get list watch]
 pods [] [] [create delete deletecollection
patch update get list watch]
 replicationcontrollers/scale [] [] [create delete
deletecollection patch update get list watch]
 replicationcontrollers [] [] [create delete
deletecollection patch update get list watch]
 services [] [] [create delete deletecollection
patch update get list watch]
 daemonsets.apps [] [] [create delete
deletecollection patch update get list watch]
 deployments.apps/scale [] [] [create delete
deletecollection patch update get list watch]
 deployments.apps [] [] [create delete
deletecollection patch update get list watch]
 replicasets.apps/scale [] [] [create delete
deletecollection patch update get list watch]
 replicasets.apps [] [] [create delete
deletecollection patch update get list watch]

CHAPTER 6. USING RBAC TO DEFINE AND APPLY PERMISSIONS

69

 statefulsets.apps/scale [] [] [create delete
deletecollection patch update get list watch]
 statefulsets.apps [] [] [create delete
deletecollection patch update get list watch]
 horizontalpodautoscalers.autoscaling [] [] [create delete
deletecollection patch update get list watch]
 cronjobs.batch [] [] [create delete
deletecollection patch update get list watch]
 jobs.batch [] [] [create delete
deletecollection patch update get list watch]
 daemonsets.extensions [] [] [create delete
deletecollection patch update get list watch]
 deployments.extensions/scale [] [] [create delete
deletecollection patch update get list watch]
 deployments.extensions [] [] [create delete
deletecollection patch update get list watch]
 ingresses.extensions [] [] [create delete
deletecollection patch update get list watch]
 replicasets.extensions/scale [] [] [create delete
deletecollection patch update get list watch]
 replicasets.extensions [] [] [create delete
deletecollection patch update get list watch]
 replicationcontrollers.extensions/scale [] [] [create delete
deletecollection patch update get list watch]
 poddisruptionbudgets.policy [] [] [create delete
deletecollection patch update get list watch]
 deployments.apps/rollback [] [] [create delete
deletecollection patch update]
 deployments.extensions/rollback [] [] [create delete
deletecollection patch update]
 catalogsources.operators.coreos.com [] [] [create update
patch delete get list watch]
 clusterserviceversions.operators.coreos.com [] [] [create update
patch delete get list watch]
 installplans.operators.coreos.com [] [] [create update
patch delete get list watch]
 packagemanifests.operators.coreos.com [] [] [create update
patch delete get list watch]
 subscriptions.operators.coreos.com [] [] [create update
patch delete get list watch]
 buildconfigs/instantiate [] [] [create]
 buildconfigs/instantiatebinary [] [] [create]
 builds/clone [] [] [create]
 deploymentconfigrollbacks [] [] [create]
 deploymentconfigs/instantiate [] [] [create]
 deploymentconfigs/rollback [] [] [create]
 imagestreamimports [] [] [create]
 localresourceaccessreviews [] [] [create]
 localsubjectaccessreviews [] [] [create]
 podsecuritypolicyreviews [] [] [create]
 podsecuritypolicyselfsubjectreviews [] [] [create]
 podsecuritypolicysubjectreviews [] [] [create]
 resourceaccessreviews [] [] [create]
 routes/custom-host [] [] [create]
 subjectaccessreviews [] [] [create]
 subjectrulesreviews [] [] [create]

OpenShift Container Platform 4.1 Authentication

70

 deploymentconfigrollbacks.apps.openshift.io [] [] [create]
 deploymentconfigs.apps.openshift.io/instantiate [] [] [create]
 deploymentconfigs.apps.openshift.io/rollback [] [] [create]
 localsubjectaccessreviews.authorization.k8s.io [] [] [create]
 localresourceaccessreviews.authorization.openshift.io [] [] [create]
 localsubjectaccessreviews.authorization.openshift.io [] [] [create]
 resourceaccessreviews.authorization.openshift.io [] [] [create]
 subjectaccessreviews.authorization.openshift.io [] [] [create]
 subjectrulesreviews.authorization.openshift.io [] [] [create]
 buildconfigs.build.openshift.io/instantiate [] [] [create]
 buildconfigs.build.openshift.io/instantiatebinary [] [] [create]
 builds.build.openshift.io/clone [] [] [create]
 imagestreamimports.image.openshift.io [] [] [create]
 routes.route.openshift.io/custom-host [] [] [create]
 podsecuritypolicyreviews.security.openshift.io [] [] [create]
 podsecuritypolicyselfsubjectreviews.security.openshift.io [] [] [create]
 podsecuritypolicysubjectreviews.security.openshift.io [] [] [create]
 jenkins.build.openshift.io [] [] [edit view view admin
edit view]
 builds [] [] [get create delete
deletecollection get list patch update watch get list watch]
 builds.build.openshift.io [] [] [get create delete
deletecollection get list patch update watch get list watch]
 projects [] [] [get delete get delete get patch
update]
 projects.project.openshift.io [] [] [get delete get delete
get patch update]
 namespaces [] [] [get get list watch]
 pods/attach [] [] [get list watch create delete
deletecollection patch update]
 pods/exec [] [] [get list watch create delete
deletecollection patch update]
 pods/portforward [] [] [get list watch create
delete deletecollection patch update]
 pods/proxy [] [] [get list watch create delete
deletecollection patch update]
 services/proxy [] [] [get list watch create delete
deletecollection patch update]
 routes/status [] [] [get list watch update]
 routes.route.openshift.io/status [] [] [get list watch update]
 appliedclusterresourcequotas [] [] [get list watch]
 bindings [] [] [get list watch]
 builds/log [] [] [get list watch]
 deploymentconfigs/log [] [] [get list watch]
 deploymentconfigs/status [] [] [get list watch]
 events [] [] [get list watch]
 imagestreams/status [] [] [get list watch]
 limitranges [] [] [get list watch]
 namespaces/status [] [] [get list watch]
 pods/log [] [] [get list watch]
 pods/status [] [] [get list watch]
 replicationcontrollers/status [] [] [get list watch]
 resourcequotas/status [] [] [get list watch]
 resourcequotas [] [] [get list watch]
 resourcequotausages [] [] [get list watch]
 rolebindingrestrictions [] [] [get list watch]

CHAPTER 6. USING RBAC TO DEFINE AND APPLY PERMISSIONS

71

 deploymentconfigs.apps.openshift.io/log [] [] [get list watch]
 deploymentconfigs.apps.openshift.io/status [] [] [get list watch]
 controllerrevisions.apps [] [] [get list watch]
 rolebindingrestrictions.authorization.openshift.io [] [] [get list watch]
 builds.build.openshift.io/log [] [] [get list watch]
 imagestreams.image.openshift.io/status [] [] [get list watch]
 appliedclusterresourcequotas.quota.openshift.io [] [] [get list watch]
 imagestreams/layers [] [] [get update get]
 imagestreams.image.openshift.io/layers [] [] [get update get]
 builds/details [] [] [update]
 builds.build.openshift.io/details [] [] [update]

Name: basic-user
Labels: <none>
Annotations: openshift.io/description: A user that can get basic information about projects.
 rbac.authorization.kubernetes.io/autoupdate: true
PolicyRule:
 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------- -------------- -----
 selfsubjectrulesreviews [] [] [create]
 selfsubjectaccessreviews.authorization.k8s.io [] [] [create]
 selfsubjectrulesreviews.authorization.openshift.io [] [] [create]
 clusterroles.rbac.authorization.k8s.io [] [] [get list watch]
 clusterroles [] [] [get list]
 clusterroles.authorization.openshift.io [] [] [get list]
 storageclasses.storage.k8s.io [] [] [get list]
 users [] [~] [get]
 users.user.openshift.io [] [~] [get]
 projects [] [] [list watch]
 projects.project.openshift.io [] [] [list watch]
 projectrequests [] [] [list]
 projectrequests.project.openshift.io [] [] [list]

Name: cluster-admin
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
PolicyRule:
Resources Non-Resource URLs Resource Names Verbs
--------- ----------------- -------------- -----
. [] [] [*]
 [*] [] [*]

...

2. To view the current set of cluster role bindings, which shows the users and groups that are
bound to various roles:

$ oc describe clusterrolebinding.rbac
Name: alertmanager-main
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: alertmanager-main
Subjects:

OpenShift Container Platform 4.1 Authentication

72

 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount alertmanager-main openshift-monitoring

Name: basic-users
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
Role:
 Kind: ClusterRole
 Name: basic-user
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:authenticated

Name: cloud-credential-operator-rolebinding
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: cloud-credential-operator-role
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount default openshift-cloud-credential-operator

Name: cluster-admin
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
Role:
 Kind: ClusterRole
 Name: cluster-admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:masters

Name: cluster-admins
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
Role:
 Kind: ClusterRole
 Name: cluster-admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:cluster-admins
 User system:admin

Name: cluster-api-manager-rolebinding
Labels: <none>

CHAPTER 6. USING RBAC TO DEFINE AND APPLY PERMISSIONS

73

Annotations: <none>
Role:
 Kind: ClusterRole
 Name: cluster-api-manager-role
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount default openshift-machine-api

...

6.5. VIEWING LOCAL ROLES AND BINDINGS

You can use the oc CLI to view local roles and bindings by using the oc describe command.

Prerequisites

Install the oc CLI.

Obtain permission to view the local roles and bindings:

Users with the cluster-admin default cluster role bound cluster-wide can perform any
action on any resource, including viewing local roles and bindings.

Users with the admin default cluster role bound locally can view and manage roles and
bindings in that project.

Procedure

1. To view the current set of local role bindings, which show the users and groups that are bound to
various roles for the current project:

$ oc describe rolebinding.rbac

2. To view the local role bindings for a different project, add the -n flag to the command:

$ oc describe rolebinding.rbac -n joe-project
Name: admin
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 User kube:admin

Name: system:deployers
Labels: <none>
Annotations: openshift.io/description:
 Allows deploymentconfigs in this namespace to rollout pods in
 this namespace. It is auto-managed by a controller; remove
 subjects to disa...

OpenShift Container Platform 4.1 Authentication

74

Role:
 Kind: ClusterRole
 Name: system:deployer
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount deployer joe-project

Name: system:image-builders
Labels: <none>
Annotations: openshift.io/description:
 Allows builds in this namespace to push images to this
 namespace. It is auto-managed by a controller; remove subjects
 to disable.
Role:
 Kind: ClusterRole
 Name: system:image-builder
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount builder joe-project

Name: system:image-pullers
Labels: <none>
Annotations: openshift.io/description:
 Allows all pods in this namespace to pull images from this
 namespace. It is auto-managed by a controller; remove subjects
 to disable.
Role:
 Kind: ClusterRole
 Name: system:image-puller
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:serviceaccounts:joe-project

6.6. ADDING ROLES TO USERS

You can use the oc adm administrator CLI to manage the roles and bindings.

Binding, or adding, a role to users or groups gives the user or group the access that is granted by the
role. You can add and remove roles to and from users and groups using oc adm policy commands.

You can bind any of the default cluster roles to local users or groups in your project.

Procedure

1. Add a role to a user in a specific project:

$ oc adm policy add-role-to-user <role> <user> -n <project>

For example, you can add the admin role to the alice user in joe project by running:

CHAPTER 6. USING RBAC TO DEFINE AND APPLY PERMISSIONS

75

$ oc adm policy add-role-to-user admin alice -n joe

2. View the local role bindings and verify the addition in the output:

$ oc describe rolebinding.rbac -n <project>

For example, to view the local role bindings for the joe project:

$ oc describe rolebinding.rbac -n joe
Name: admin
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 User kube:admin

Name: admin-0
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 User alice 1

Name: system:deployers
Labels: <none>
Annotations: openshift.io/description:
 Allows deploymentconfigs in this namespace to rollout pods in
 this namespace. It is auto-managed by a controller; remove
 subjects to disa...
Role:
 Kind: ClusterRole
 Name: system:deployer
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount deployer joe

Name: system:image-builders
Labels: <none>
Annotations: openshift.io/description:
 Allows builds in this namespace to push images to this
 namespace. It is auto-managed by a controller; remove subjects
 to disable.
Role:

OpenShift Container Platform 4.1 Authentication

76

1

 Kind: ClusterRole
 Name: system:image-builder
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount builder joe

Name: system:image-pullers
Labels: <none>
Annotations: openshift.io/description:
 Allows all pods in this namespace to pull images from this
 namespace. It is auto-managed by a controller; remove subjects
 to disable.
Role:
 Kind: ClusterRole
 Name: system:image-puller
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:serviceaccounts:joe

The alice user has been added to the admins RoleBinding.

6.7. CREATING A LOCAL ROLE

You can create a local role for a project and then bind it to a user.

Procedure

1. To create a local role for a project, run the following command:

$ oc create role <name> --verb=<verb> --resource=<resource> -n <project>

In this command, specify:

<name>, the local role’s name

<verb>, a comma-separated list of the verbs to apply to the role

<resource>, the resources that the role applies to

<project>, the project name

For example, to create a local role that allows a user to view pods in the blue project, run the
following command:

$ oc create role podview --verb=get --resource=pod -n blue

2. To bind the new role to a user, run the following command:

$ oc adm policy add-role-to-user podview user2 --role-namespace=blue -n blue

CHAPTER 6. USING RBAC TO DEFINE AND APPLY PERMISSIONS

77

6.8. CREATING A CLUSTER ROLE

You can create a cluster role.

Procedure

1. To create a cluster role, run the following command:

$ oc create clusterrole <name> --verb=<verb> --resource=<resource>

In this command, specify:

<name>, the local role’s name

<verb>, a comma-separated list of the verbs to apply to the role

<resource>, the resources that the role applies to
For example, to create a cluster role that allows a user to view pods, run the following
command:

$ oc create clusterrole podviewonly --verb=get --resource=pod

6.9. LOCAL ROLE BINDING COMMANDS

When you manage a user or group’s associated roles for local role bindings using the following
operations, a project may be specified with the -n flag. If it is not specified, then the current project is
used.

You can use the following commands for local RBAC management.

Table 6.1. Local role binding operations

Command Description

$ oc adm policy who-can <verb> <resource> Indicates which users can perform an action on a
resource.

$ oc adm policy add-role-to-user <role>
<username>

Binds a specified role to specified users in the
current project.

$ oc adm policy remove-role-from-user
<role> <username>

Removes a given role from specified users in the
current project.

$ oc adm policy remove-user <username> Removes specified users and all of their roles in the
current project.

$ oc adm policy add-role-to-group <role>
<groupname>

Binds a given role to specified groups in the current
project.

$ oc adm policy remove-role-from-group
<role> <groupname>

Removes a given role from specified groups in the
current project.

OpenShift Container Platform 4.1 Authentication

78

$ oc adm policy remove-group <groupname> Removes specified groups and all of their roles in the
current project.

Command Description

6.10. CLUSTER ROLE BINDING COMMANDS

You can also manage cluster role bindings using the following operations. The -n flag is not used for
these operations because cluster role bindings use non-namespaced resources.

Table 6.2. Cluster role binding operations

Command Description

$ oc adm policy add-cluster-role-to-user
<role> <username>

Binds a given role to specified users for all projects in
the cluster.

$ oc adm policy remove-cluster-role-from-
user <role> <username>

Removes a given role from specified users for all
projects in the cluster.

$ oc adm policy add-cluster-role-to-group
<role> <groupname>

Binds a given role to specified groups for all projects
in the cluster.

$ oc adm policy remove-cluster-role-from-
group <role> <groupname>

Removes a given role from specified groups for all
projects in the cluster.

6.11. CREATING A CLUSTER ADMIN

The cluster-admin role is required to perform administrator level tasks on the OpenShift Container
Platform cluster, such as modifying cluster resources.

Prerequisites

You must have created a user to define as the cluster admin.

Procedure

Define the user as a cluster admin:

$ oc adm policy add-cluster-role-to-user cluster-admin <user>

CHAPTER 6. USING RBAC TO DEFINE AND APPLY PERMISSIONS

79

CHAPTER 7. REMOVING THE KUBEADMIN USER

7.1. THE KUBEADMIN USER

OpenShift Container Platform creates a cluster administrator, kubeadmin, after the installation process
completes.

This user has the cluster-admin role automatically applied and is treated as the root user for the cluster.
The password is dynamically generated and unique to your OpenShift Container Platform environment.
After installation completes the password is provided in the installation program’s output. For example:

INFO Install complete!
INFO Run 'export KUBECONFIG=<your working directory>/auth/kubeconfig' to manage the cluster
with 'oc', the OpenShift CLI.
INFO The cluster is ready when 'oc login -u kubeadmin -p <provided>' succeeds (wait a few minutes).
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.demo1.openshift4-beta-abcorp.com
INFO Login to the console with user: kubeadmin, password: <provided>

7.2. REMOVING THE KUBEADMIN USER

After you define an identity provider and create a new cluster-admin user, you can remove the
kubeadmin to improve cluster security.

WARNING

If you follow this procedure before another user is a cluster-admin, then OpenShift
Container Platform must be reinstalled. It is not possible to undo this command.

Prerequisites

You must have configured at least one identity provider.

You must have added the cluster-admin role to a user.

You must be logged in as an administrator.

Procedure

Remove the kubeadmin secrets:

$ oc delete secrets kubeadmin -n kube-system

OpenShift Container Platform 4.1 Authentication

80

CHAPTER 8. CONFIGURING THE USER AGENT

8.1. ABOUT THE USER AGENT

OpenShift Container Platform implements a user agent that can be used to prevent an application
developer’s CLI accessing the OpenShift Container Platform API. If a client uses a particular library or
binary file, they cannot access the OpenShift Container Platform API.

You construct user agents for the OpenShift Container Platform CLI from a set of values within
OpenShift Container Platform:

<command>/<version> (<platform>/<architecture>) <client>/<git_commit>

For example, when:

<command> = oc

<version> = The client version. For example, v4.1.0. Requests made against the Kubernetes API
at /api receive the Kubernetes version, while requests made against the OpenShift Container
Platform API at /oapi receive the OpenShift Container Platform version (as specified by oc
version)

<platform> = linux

<architecture> = amd64

<client> = openshift, or kubernetes depending on if the request is made against the Kubernetes
API at /api, or the OpenShift Container Platform API at /oapi

<git_commit> = The Git commit of the client version (for example, f034127)

the user agent is:

oc/v3.3.0 (linux/amd64) openshift/f034127

8.2. CONFIGURING THE USER AGENT

As an OpenShift Container Platform administrator, you can prevent clients from accessing the API with
the userAgentMatching configuration setting of a master configuration.

Procedure

Modify the master configuration file to include the user agent configuration. For example, the
following user agent denies the Kubernetes 1.2 client binary, OKD 1.1.3 binary, and the POST and
PUT httpVerbs:

policyConfig:
 userAgentMatchingConfig:
 defaultRejectionMessage: "Your client is too old. Go to https://example.org to update it."
 deniedClients:
 - regex: '\w+/v(?:(?:1\.1\.1)|(?:1\.0\.1)) \(.+/.+\) openshift/\w{7}'
 - regex: '\w+/v(?:1\.1\.3) \(.+/.+\) openshift/\w{7}'
 httpVerbs:
 - POST

CHAPTER 8. CONFIGURING THE USER AGENT

81

The following example denies clients that do not exactly match an expected client:

 - PUT
 - regex: '\w+/v1\.2\.0 \(.+/.+\) kubernetes/\w{7}'
 httpVerbs:
 - POST
 - PUT
 requiredClients: null

policyConfig:
 userAgentMatchingConfig:
 defaultRejectionMessage: "Your client is too old. Go to https://example.org to update it."
 deniedClients: []
 requiredClients:
 - regex: '\w+/v1\.1\.3 \(.+/.+\) openshift/\w{7}'
 - regex: '\w+/v1\.2\.0 \(.+/.+\) kubernetes/\w{7}'
 httpVerbs:
 - POST
 - PUT

OpenShift Container Platform 4.1 Authentication

82

CHAPTER 9. UNDERSTANDING AND CREATING SERVICE
ACCOUNTS

9.1. SERVICE ACCOUNTS OVERVIEW

A service account is an OpenShift Container Platform account that allows a component to directly
access the API. Service accounts are API objects that exist within each project. Service accounts provide
a flexible way to control API access without sharing a regular user’s credentials.

When you use the OpenShift Container Platform CLI or web console, your API token authenticates you
to the API. You can associate a component with a service account so that they can access the API
without using a regular user’s credentials. For example, service accounts can allow:

Replication controllers to make API calls to create or delete pods.

Applications inside containers to make API calls for discovery purposes.

External applications to make API calls for monitoring or integration purposes.

Each service account’s user name is derived from its project and name:

system:serviceaccount:<project>:<name>

Every service account is also a member of two groups:

system:serviceaccounts

Includes all service accounts in the system.

system:serviceaccounts:<project>

Includes all service accounts in the specified project.

Each service account automatically contains two secrets:

An API token

Credentials for the OpenShift Container Registry

The generated API token and registry credentials do not expire, but you can revoke them by deleting
the secret. When you delete the secret, a new one is automatically generated to take its place.

9.2. CREATING SERVICE ACCOUNTS

You can create a service account in a project and grant it permissions by binding it to a role.

Procedure

1. Optional: To view the service accounts in the current project:

$ oc get sa

NAME SECRETS AGE
builder 2 2d
default 2 2d
deployer 2 2d

CHAPTER 9. UNDERSTANDING AND CREATING SERVICE ACCOUNTS

83

1

2. To create a new service account in the current project:

$ oc create sa <service_account_name> 1

serviceaccount "robot" created

To create a service account in a different project, specify -n <project_name>.

3. Optional: View the secrets for the service account:

$ oc describe sa robot
Name: robot
Namespace: project1
Labels: <none>
Annotations: <none>

Image pull secrets: robot-dockercfg-qzbhb

Mountable secrets: robot-token-f4khf
 robot-dockercfg-qzbhb

Tokens: robot-token-f4khf
 robot-token-z8h44

9.3. EXAMPLES OF GRANTING ROLES TO SERVICE ACCOUNTS

You can grant roles to service accounts in the same way that you grant roles to a regular user account.

You can modify the service accounts for the current project. For example, to add the view role
to the robot service account in the top-secret project:

$ oc policy add-role-to-user view system:serviceaccount:top-secret:robot

You can also grant access to a specific service account in a project. For example, from the
project to which the service account belongs, use the -z flag and specify the
<serviceaccount_name>

$ oc policy add-role-to-user <role_name> -z <serviceaccount_name>

IMPORTANT

If you want to grant access to a specific service account in a project, use the -z
flag. Using this flag helps prevent typos and ensures that access is granted to
only the specified service account.

To modify a different namespace, you can use the -n option to indicate the project namespace
it applies to, as shown in the following examples.

For example, to allow all service accounts in all projects to view resources in the top-secret
project:

OpenShift Container Platform 4.1 Authentication

84

$ oc policy add-role-to-group view system:serviceaccounts -n top-secret

To allow all service accounts in the managers project to edit resources in the top-secret
project:

$ oc policy add-role-to-group edit system:serviceaccounts:managers -n top-secret

CHAPTER 9. UNDERSTANDING AND CREATING SERVICE ACCOUNTS

85

CHAPTER 10. USING SERVICE ACCOUNTS IN APPLICATIONS

10.1. SERVICE ACCOUNTS OVERVIEW

A service account is an OpenShift Container Platform account that allows a component to directly
access the API. Service accounts are API objects that exist within each project. Service accounts provide
a flexible way to control API access without sharing a regular user’s credentials.

When you use the OpenShift Container Platform CLI or web console, your API token authenticates you
to the API. You can associate a component with a service account so that they can access the API
without using a regular user’s credentials. For example, service accounts can allow:

Replication controllers to make API calls to create or delete pods.

Applications inside containers to make API calls for discovery purposes.

External applications to make API calls for monitoring or integration purposes.

Each service account’s user name is derived from its project and name:

system:serviceaccount:<project>:<name>

Every service account is also a member of two groups:

system:serviceaccounts

Includes all service accounts in the system.

system:serviceaccounts:<project>

Includes all service accounts in the specified project.

Each service account automatically contains two secrets:

An API token

Credentials for the OpenShift Container Registry

The generated API token and registry credentials do not expire, but you can revoke them by deleting
the secret. When you delete the secret, a new one is automatically generated to take its place.

10.2. DEFAULT SERVICE ACCOUNTS

Your OpenShift Container Platform cluster contains default service accounts for cluster management
and generates more service accounts for each project.

10.2.1. Default cluster service accounts

Several infrastructure controllers run using service account credentials. The following service accounts
are created in the OpenShift Container Platform infrastructure project (openshift-infra) at server start,
and given the following roles cluster-wide:

Service Account Description

replication-controller Assigned the system:replication-controller role

OpenShift Container Platform 4.1 Authentication

86

1

deployment-
controller

Assigned the system:deployment-controller role

build-controller Assigned the system:build-controller role. Additionally, the build-controller
service account is included in the privileged Security Context Constraint in order
to create privileged build pods.

Service Account Description

10.2.2. Default project service accounts and roles

Three service accounts are automatically created in each project:

Service Account Usage

builder Used by build pods. It is given the system:image-builder role, which allows
pushing images to any imagestream in the project using the internal Docker
registry.

deployer Used by deployment pods and given the system:deployer role, which allows
viewing and modifying replication controllers and pods in the project.

default Used to run all other pods unless they specify a different service account.

All service accounts in a project are given the system:image-puller role, which allows pulling images
from any imagestream in the project using the internal container image registry.

10.3. CREATING SERVICE ACCOUNTS

You can create a service account in a project and grant it permissions by binding it to a role.

Procedure

1. Optional: To view the service accounts in the current project:

$ oc get sa

NAME SECRETS AGE
builder 2 2d
default 2 2d
deployer 2 2d

2. To create a new service account in the current project:

$ oc create sa <service_account_name> 1

serviceaccount "robot" created

To create a service account in a different project, specify -n <project_name>.

CHAPTER 10. USING SERVICE ACCOUNTS IN APPLICATIONS

87

3. Optional: View the secrets for the service account:

$ oc describe sa robot
Name: robot
Namespace: project1
Labels: <none>
Annotations: <none>

Image pull secrets: robot-dockercfg-qzbhb

Mountable secrets: robot-token-f4khf
 robot-dockercfg-qzbhb

Tokens: robot-token-f4khf
 robot-token-z8h44

10.4. USING A SERVICE ACCOUNT’S CREDENTIALS EXTERNALLY

You can distribute a service account’s token to external applications that must authenticate to the API.

In order to pull an image, the authenticated user must have get rights on the requested
imagestreams/layers. In order to push an image, the authenticated user must have update rights on the
requested imagestreams/layers.

By default, all service accounts in a project have rights to pull any image in the same project, and the
builder service account has rights to push any image in the same project.

Procedure

1. View the service account’s API token:

$ oc describe secret <secret-name>

For example:

$ oc describe secret robot-token-uzkbh -n top-secret

Name: robot-token-uzkbh
Labels: <none>
Annotations: kubernetes.io/service-account.name=robot,kubernetes.io/service-
account.uid=49f19e2e-16c6-11e5-afdc-3c970e4b7ffe

Type: kubernetes.io/service-account-token

Data

token: eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9...

2. Log in using the token that you obtained:

$ oc login --token=eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9...

Logged into "https://server:8443" as "system:serviceaccount:top-secret:robot" using the
token provided.

OpenShift Container Platform 4.1 Authentication

88

You don't have any projects. You can try to create a new project, by running

 $ oc new-project <projectname>

3. Confirm that you logged in as the service account:

$ oc whoami

system:serviceaccount:top-secret:robot

CHAPTER 10. USING SERVICE ACCOUNTS IN APPLICATIONS

89

CHAPTER 11. USING A SERVICE ACCOUNT AS AN OAUTH
CLIENT

11.1. SERVICE ACCOUNTS AS OAUTH CLIENTS

You can use a service account as a constrained form of OAuth client. Service accounts can request only
a subset of scopes that allow access to some basic user information and role-based power inside of the
service account’s own namespace:

user:info

user:check-access

role:<any_role>:<serviceaccount_namespace>

role:<any_role>:<serviceaccount_namespace>:!

When using a service account as an OAuth client:

client_id is system:serviceaccount:<serviceaccount_namespace>:
<serviceaccount_name>.

client_secret can be any of the API tokens for that service account. For example:

$ oc sa get-token <serviceaccount_name>

To get WWW-Authenticate challenges, set an serviceaccounts.openshift.io/oauth-want-
challenges annotation on the service account to true.

redirect_uri must match an annotation on the service account.

11.1.1. Redirect URIs for Service Accounts as OAuth Clients

Annotation keys must have the prefix serviceaccounts.openshift.io/oauth-redirecturi. or
serviceaccounts.openshift.io/oauth-redirectreference. such as:

serviceaccounts.openshift.io/oauth-redirecturi.<name>

In its simplest form, the annotation can be used to directly specify valid redirect URIs. For example:

"serviceaccounts.openshift.io/oauth-redirecturi.first": "https://example.com"
"serviceaccounts.openshift.io/oauth-redirecturi.second": "https://other.com"

The first and second postfixes in the above example are used to separate the two valid redirect URIs.

In more complex configurations, static redirect URIs may not be enough. For example, perhaps you want
all Ingresses for a route to be considered valid. This is where dynamic redirect URIs via the
serviceaccounts.openshift.io/oauth-redirectreference. prefix come into play.

For example:

OpenShift Container Platform 4.1 Authentication

90

1

2

3

"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

Since the value for this annotation contains serialized JSON data, it is easier to see in an expanded
format:

{
 "kind": "OAuthRedirectReference",
 "apiVersion": "v1",
 "reference": {
 "kind": "Route",
 "name": "jenkins"
 }
}

Now you can see that an OAuthRedirectReference allows us to reference the route named jenkins.
Thus, all Ingresses for that route will now be considered valid. The full specification for an
OAuthRedirectReference is:

{
 "kind": "OAuthRedirectReference",
 "apiVersion": "v1",
 "reference": {
 "kind": ..., 1
 "name": ..., 2
 "group": ... 3
 }
}

kind refers to the type of the object being referenced. Currently, only route is supported.

name refers to the name of the object. The object must be in the same namespace as the service
account.

group refers to the group of the object. Leave this blank, as the group for a route is the empty
string.

Both annotation prefixes can be combined to override the data provided by the reference object. For
example:

"serviceaccounts.openshift.io/oauth-redirecturi.first": "custompath"
"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

The first postfix is used to tie the annotations together. Assuming that the jenkins route had an Ingress
of https://example.com, now https://example.com/custompath is considered valid, but
https://example.com is not. The format for partially supplying override data is as follows:

CHAPTER 11. USING A SERVICE ACCOUNT AS AN OAUTH CLIENT

91

Type Syntax

Scheme "https://"

Hostname "//website.com"

Port "//:8000"

Path "examplepath"

NOTE

Specifying a host name override will replace the host name data from the referenced
object, which is not likely to be desired behavior.

Any combination of the above syntax can be combined using the following format:

<scheme:>//<hostname><:port>/<path>

The same object can be referenced more than once for more flexibility:

"serviceaccounts.openshift.io/oauth-redirecturi.first": "custompath"
"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"
"serviceaccounts.openshift.io/oauth-redirecturi.second": "//:8000"
"serviceaccounts.openshift.io/oauth-redirectreference.second": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

Assuming that the route named jenkins has an Ingress of https://example.com, then both
https://example.com:8000 and https://example.com/custompath are considered valid.

Static and dynamic annotations can be used at the same time to achieve the desired behavior:

"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"
"serviceaccounts.openshift.io/oauth-redirecturi.second": "https://other.com"

OpenShift Container Platform 4.1 Authentication

92

CHAPTER 12. SCOPING TOKENS

12.1. ABOUT SCOPING TOKENS

You can created scoped tokens to delegate some of your permissions to another user or service
account. For example, a project administrator might want to delegate the power to create pods.

A scoped token is a token that identifies as a given user but is limited to certain actions by its scope.
Only a user with the cluster-admin role can create scoped tokens.

Scopes are evaluated by converting the set of scopes for a token into a set of PolicyRules. Then, the
request is matched against those rules. The request attributes must match at least one of the scope
rules to be passed to the "normal" authorizer for further authorization checks.

12.1.1. User scopes

User scopes are focused on getting information about a given user. They are intent-based, so the rules
are automatically created for you:

user:full - Allows full read/write access to the API with all of the user’s permissions.

user:info - Allows read-only access to information about the user, such as name and groups.

user:check-access - Allows access to self-localsubjectaccessreviews and self-
subjectaccessreviews. These are the variables where you pass an empty user and groups in
your request object.

user:list-projects - Allows read-only access to list the projects the user has access to.

12.1.2. Role scope

The role scope allows you to have the same level of access as a given role filtered by namespace.

role:<cluster-role name>:<namespace or * for all> - Limits the scope to the rules specified
by the cluster-role, but only in the specified namespace .

NOTE

Caveat: This prevents escalating access. Even if the role allows access to
resources like secrets, rolebindings, and roles, this scope will deny access to
those resources. This helps prevent unexpected escalations. Many people do not
think of a role like edit as being an escalating role, but with access to a secret it is.

role:<cluster-role name>:<namespace or * for all>:! - This is similar to the example above,
except that including the bang causes this scope to allow escalating access.

CHAPTER 12. SCOPING TOKENS

93

CHAPTER 13. MANAGING SECURITY CONTEXT CONSTRAINTS

13.1. ABOUT SECURITY CONTEXT CONSTRAINTS

Similar to the way that RBAC resources control user access, administrators can use Security Context
Constraints (SCCs) to control permissions for pods. These permissions include actions that a pod, a
collection of containers, can perform and what resources it can access. You can use SCCs to define a
set of conditions that a pod must run with in order to be accepted into the system.

SCCs allow an administrator to control:

Whether a pod can run privileged containers.

The capabilities that a container can request.

The use of host directories as volumes.

The SELinux context of the container.

The container user ID.

The use of host namespaces and networking.

The allocation of an FSGroup that owns the pod’s volumes.

The configuration of allowable supplemental groups.

Whether a container requires the use of a read only root file system.

The usage of volume types.

The configuration of allowable seccomp profiles.

Docker has a default list of capabilities that are allowed for each container of a pod. The containers use
the capabilities from this default list, but pod manifest authors can alter it by requesting additional
capabilities or removing some of the default behaviors. Use the allowedCapabilities,
defaultAddCapabilities, and requiredDropCapabilities parameters to control such requests from the
pods and to dictate which capabilities can be requested, which ones must be added to each container,
and which ones must be forbidden.

The cluster contains eight default SCCs:

anyuid

hostaccess

hostmount-anyuid

hostnetwork

OpenShift Container Platform 4.1 Authentication

94

https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

WARNING

If additional workloads are run on master hosts, use caution when providing
access to hostnetwork. A workload that runs hostnetwork on a master
host is effectively root on the cluster and must be trusted accordingly.

node-exporter

nonroot

privileged

restricted

IMPORTANT

Do not modify the default SCCs. Customizing the default SCCs can lead to issues when
OpenShift Container Platform is upgraded. Instead, create new SCCs.

The privileged SCC allows:

Users to run privileged pods

Pods to mount host directories as volumes

Pods to run as any user

Pods to run with any MCS label

Pods to use the host’s IPC namespace

Pods to use the host’s PID namespace

Pods to use any FSGroup

Pods to use any supplemental group

Pods to use any seccomp profiles

Pods to request any capabilities

The restricted SCC:

Ensures that pods cannot run as privileged.

Ensures that pods cannot mount host directory volumes.

Requires that a pod run as a user in a pre-allocated range of UIDs.

Requires that a pod run with a pre-allocated MCS label.

Allows pods to use any FSGroup.

CHAPTER 13. MANAGING SECURITY CONTEXT CONSTRAINTS

95

Allows pods to use any supplemental group.

NOTE

For more information about each SCC, see the kubernetes.io/description annotation
available on the SCC.

SCCs are composed of settings and strategies that control the security features a pod has access to.
These settings fall into three categories:

Controlled by a
boolean

Fields of this type default to the most restrictive value. For example,
AllowPrivilegedContainer is always set to false if unspecified.

Controlled by an
allowable set

Fields of this type are checked against the set to ensure their value is allowed.

Controlled by a
strategy

Items that have a strategy to generate a value provide:

A mechanism to generate the value, and

A mechanism to ensure that a specified value falls into the set of allowable
values.

13.1.1. SCC Strategies

RunAsUser

1. MustRunAs - Requires a runAsUser to be configured. Uses the configured runAsUser as the
default. Validates against the configured runAsUser.

2. MustRunAsRange - Requires minimum and maximum values to be defined if not using pre-
allocated values. Uses the minimum as the default. Validates against the entire allowable range.

3. MustRunAsNonRoot - Requires that the pod be submitted with a non-zero runAsUser or have
the USER directive defined in the image. No default provided.

4. RunAsAny - No default provided. Allows any runAsUser to be specified.

SELinuxContext

1. MustRunAs - Requires seLinuxOptions to be configured if not using pre-allocated values.
Uses seLinuxOptions as the default. Validates against seLinuxOptions.

2. RunAsAny - No default provided. Allows any seLinuxOptions to be specified.

SupplementalGroups

1. MustRunAs - Requires at least one range to be specified if not using pre-allocated values. Uses
the minimum value of the first range as the default. Validates against all ranges.

2. RunAsAny - No default provided. Allows any supplementalGroups to be specified.

FSGroup

OpenShift Container Platform 4.1 Authentication

96

FSGroup

1. MustRunAs - Requires at least one range to be specified if not using pre-allocated values. Uses
the minimum value of the first range as the default. Validates against the first ID in the first
range.

2. RunAsAny - No default provided. Allows any fsGroup ID to be specified.

13.1.2. Controlling volumes

The usage of specific volume types can be controlled by setting the volumes field of the SCC. The
allowable values of this field correspond to the volume sources that are defined when creating a volume:

azureFile

azureDisk

flocker

flexVolume

hostPath

emptyDir

gcePersistentDisk

awsElasticBlockStore

gitRepo

secret

nfs

iscsi

glusterfs

persistentVolumeClaim

rbd

cinder

cephFS

downwardAPI

fc

configMap

vsphereVolume

quobyte

photonPersistentDisk

CHAPTER 13. MANAGING SECURITY CONTEXT CONSTRAINTS

97

https://kubernetes.io/docs/concepts/storage/volumes/#azurefilevolume
https://kubernetes.io/docs/concepts/storage/volumes/#azurediskvolume
https://kubernetes.io/docs/concepts/storage/volumes/#flocker
https://kubernetes.io/docs/concepts/storage/volumes/#flexvolume
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#gcepersistentdisk
https://kubernetes.io/docs/concepts/storage/volumes/#awselasticblockstore
https://kubernetes.io/docs/concepts/storage/volumes/#gitrepo
https://kubernetes.io/docs/concepts/storage/volumes/#secret
https://kubernetes.io/docs/concepts/storage/volumes/#nfs
https://kubernetes.io/docs/concepts/storage/volumes/#iscsi
https://kubernetes.io/docs/concepts/storage/volumes/#glusterfs
https://kubernetes.io/docs/concepts/storage/volumes/#persistentvolumeclaim
https://kubernetes.io/docs/concepts/storage/volumes/#rbd
https://kubernetes.io/docs/concepts/storage/volumes/#cephfs
https://kubernetes.io/docs/concepts/storage/volumes/#downwardapi
https://kubernetes.io/docs/concepts/storage/volumes/#fc-fibre-channel
https://kubernetes.io/docs/concepts/storage/volumes/#vspherevolume
https://kubernetes.io/docs/concepts/storage/volumes/#quobyte

projected

portworxVolume

scaleIO

storageos

* (a special value to allow the use of all volume types)

none (a special value to disallow the use of all volumes types. Exist only for backwards
compatibility)

The recommended minimum set of allowed volumes for new SCCs are configMap, downwardAPI,
emptyDir, persistentVolumeClaim, secret, and projected.

NOTE

The list of allowable volume types is not exhaustive because new types are added with
each release of OpenShift Container Platform.

NOTE

For backwards compatibility, the usage of allowHostDirVolumePlugin overrides settings
in the volumes field. For example, if allowHostDirVolumePlugin is set to false but
allowed in the volumes field, then the hostPath value will be removed from volumes.

13.1.3. Admission

Admission control with SCCs allows for control over the creation of resources based on the capabilities
granted to a user.

In terms of the SCCs, this means that an admission controller can inspect the user information made
available in the context to retrieve an appropriate set of SCCs. Doing so ensures the pod is authorized
to make requests about its operating environment or to generate a set of constraints to apply to the
pod.

The set of SCCs that admission uses to authorize a pod are determined by the user identity and groups
that the user belongs to. Additionally, if the pod specifies a service account, the set of allowable SCCs
includes any constraints accessible to the service account.

Admission uses the following approach to create the final security context for the pod:

1. Retrieve all SCCs available for use.

2. Generate field values for security context settings that were not specified on the request.

3. Validate the final settings against the available constraints.

If a matching set of constraints is found, then the pod is accepted. If the request cannot be matched to
an SCC, the pod is rejected.

A pod must validate every field against the SCC. The following are examples for just two of the fields
that must be validated:

NOTE

OpenShift Container Platform 4.1 Authentication

98

https://kubernetes.io/docs/concepts/storage/volumes/#projected
https://kubernetes.io/docs/concepts/storage/volumes/#portworxvolume
https://kubernetes.io/docs/concepts/storage/volumes/#scaleio
https://kubernetes.io/docs/concepts/storage/volumes/#storageos

NOTE

These examples are in the context of a strategy using the preallocated values.

A FSGroup SCC strategy of MustRunAs

If the pod defines a fsGroup ID, then that ID must equal the default fsGroup ID. Otherwise, the pod is
not validated by that SCC and the next SCC is evaluated.

If the SecurityContextConstraints.fsGroup field has value RunAsAny and the pod specification omits
the Pod.spec.securityContext.fsGroup, then this field is considered valid. Note that it is possible that
during validation, other SCC settings will reject other pod fields and thus cause the pod to fail.

A SupplementalGroups SCC strategy of MustRunAs

If the pod specification defines one or more supplementalGroups IDs, then the pod’s IDs must equal
one of the IDs in the namespace’s openshift.io/sa.scc.supplemental-groups annotation. Otherwise,
the pod is not validated by that SCC and the next SCC is evaluated.

If the SecurityContextConstraints.supplementalGroups field has value RunAsAny and the pod
specification omits the Pod.spec.securityContext.supplementalGroups, then this field is considered
valid. Note that it is possible that during validation, other SCC settings will reject other pod fields and
thus cause the pod to fail.

13.1.4. SCC prioritization

SCCs have a priority field that affects the ordering when attempting to validate a request by the
admission controller. A higher priority SCC is moved to the front of the set when sorting. When the
complete set of available SCCs are determined they are ordered by:

1. Highest priority first, nil is considered a 0 priority

2. If priorities are equal, the SCCs will be sorted from most restrictive to least restrictive

3. If both priorities and restrictions are equal the SCCs will be sorted by name

By default, the anyuid SCC granted to cluster administrators is given priority in their SCC set. This
allows cluster administrators to run pods as any user by without specifying a RunAsUser on the pod’s
SecurityContext. The administrator may still specify a RunAsUser if they wish.

13.2. ABOUT PRE-ALLOCATED SECURITY CONTEXT CONSTRAINTS
VALUES

The admission controller is aware of certain conditions in the Security Context Constraints (SCCs) that
trigger it to look up pre-allocated values from a namespace and populate the SCC before processing
the pod. Each SCC strategy is evaluated independently of other strategies, with the pre-allocated
values, where allowed, for each policy aggregated with pod specification values to make the final values
for the various IDs defined in the running pod.

The following SCCs cause the admission controller to look for pre-allocated values when no ranges are
defined in the pod specification:

1. A RunAsUser strategy of MustRunAsRange with no minimum or maximum set. Admission
looks for the openshift.io/sa.scc.uid-range annotation to populate range fields.

2. An SELinuxContext strategy of MustRunAs with no level set. Admission looks for the

CHAPTER 13. MANAGING SECURITY CONTEXT CONSTRAINTS

99

2. An SELinuxContext strategy of MustRunAs with no level set. Admission looks for the
openshift.io/sa.scc.mcs annotation to populate the level.

3. A FSGroup strategy of MustRunAs. Admission looks for the
openshift.io/sa.scc.supplemental-groups annotation.

4. A SupplementalGroups strategy of MustRunAs. Admission looks for the
openshift.io/sa.scc.supplemental-groups annotation.

During the generation phase, the security context provider uses default values for any parameter values
that are not specifically set in the pod. Default values are based on the selected strategy:

1. RunAsAny and MustRunAsNonRoot strategies do not provide default values. If the pod needs
a parameter value, such as a group ID, you must define the value in the pod specification.

2. MustRunAs (single value) strategies provide a default value that is always used. For example,
for group IDs, even if the pod specification defines its own ID value, the namespace’s default
parameter value also appears in the pod’s groups.

3. MustRunAsRange and MustRunAs (range-based) strategies provide the minimum value of
the range. As with a single value MustRunAs strategy, the namespace’s default parameter value
appears in the running pod. If a range-based strategy is configurable with multiple ranges, it
provides the minimum value of the first configured range.

NOTE

FSGroup and SupplementalGroups strategies fall back to the openshift.io/sa.scc.uid-
range annotation if the openshift.io/sa.scc.supplemental-groups annotation does not
exist on the namespace. If neither exists, the SCC is not created.

NOTE

By default, the annotation-based FSGroup strategy configures itself with a single range
based on the minimum value for the annotation. For example, if your annotation reads
1/3, the FSGroup strategy configures itself with a minimum and maximum value of 1. If
you want to allow more groups to be accepted for the FSGroup field, you can configure a
custom SCC that does not use the annotation.

NOTE

The openshift.io/sa.scc.supplemental-groups annotation accepts a comma-delimited
list of blocks in the format of <start>/<length or <start>-<end>. The
openshift.io/sa.scc.uid-range annotation accepts only a single block.

13.3. EXAMPLE SECURITY CONTEXT CONSTRAINTS

The following examples show the Security Context Constraint (SCC) format and annotations:

Annotated priviledged SCC

allowHostDirVolumePlugin: true
allowHostIPC: true
allowHostNetwork: true
allowHostPID: true
allowHostPorts: true

OpenShift Container Platform 4.1 Authentication

100

1

2

3

4

5

6

7

8

A list of capabilities that a pod can request. An empty list means that none of capabilities can be
requested while the special symbol * allows any capabilities.

A list of additional capabilities that are added to any pod.

The FSGroup strategy, which dictates the allowable values for the Security Context.

The groups that can access this SCC.

A list of capabilities that are be dropped from a pod.

The runAsUser strategy type, which dictates the allowable values for the Security Context.

The seLinuxContext strategy type, which dictates the allowable values for the Security Context.

The supplementalGroups strategy, which dictates the allowable supplemental groups for the
Security Context.

allowPrivilegedContainer: true
allowedCapabilities: 1
- '*'
apiVersion: v1
defaultAddCapabilities: [] 2
fsGroup: 3
 type: RunAsAny
groups: 4
- system:cluster-admins
- system:nodes
kind: SecurityContextConstraints
metadata:
 annotations:
 kubernetes.io/description: 'privileged allows access to all privileged and host
 features and the ability to run as any user, any group, any fsGroup, and with
 any SELinux context. WARNING: this is the most relaxed SCC and should be used
 only for cluster administration. Grant with caution.'
 creationTimestamp: null
 name: privileged
priority: null
readOnlyRootFilesystem: false
requiredDropCapabilities: [] 5
runAsUser: 6
 type: RunAsAny
seLinuxContext: 7
 type: RunAsAny
seccompProfiles:
- '*'
supplementalGroups: 8
 type: RunAsAny
users: 9
- system:serviceaccount:default:registry
- system:serviceaccount:default:router
- system:serviceaccount:openshift-infra:build-controller
volumes:
- '*'

CHAPTER 13. MANAGING SECURITY CONTEXT CONSTRAINTS

101

9

1

1

The users who can access this SCC.

The users and groups fields on the SCC control which users can access the SCC. By default, cluster
administrators, nodes, and the build controller are granted access to the privileged SCC. All
authenticated users are granted access to the restricted SCC.

Without explicit runAsUser setting

When a container or pod does not request a user ID under which it should be run, the effective UID
depends on the SCC that emits this pod. Because restricted SCC is granted to all authenticated
users by default, it will be available to all users and service accounts and used in most cases. The
restricted SCC uses MustRunAsRange strategy for constraining and defaulting the possible
values of the securityContext.runAsUser field. The admission plug-in will look for the
openshift.io/sa.scc.uid-range annotation on the current project to populate range fields, as it
does not provide this range. In the end, a container will have runAsUser equal to the first value of
the range that is hard to predict because every project has different ranges.

With explicit runAsUser setting

A container or pod that requests a specific user ID will be accepted by OpenShift Container
Platform only when a service account or a user is granted access to a SCC that allows such a user
ID. The SCC can allow arbitrary IDs, an ID that falls into a range, or the exact user ID specific to the
request.

This configuration is valid for SELinux, fsGroup, and Supplemental Groups.

13.4. CREATING SECURITY CONTEXT CONSTRAINTS

You can create a Security Context Constraint (SCC) by using the CLI.

apiVersion: v1
kind: Pod
metadata:
 name: security-context-demo
spec:
 securityContext: 1
 containers:
 - name: sec-ctx-demo
 image: gcr.io/google-samples/node-hello:1.0

apiVersion: v1
kind: Pod
metadata:
 name: security-context-demo
spec:
 securityContext:
 runAsUser: 1000 1
 containers:
 - name: sec-ctx-demo
 image: gcr.io/google-samples/node-hello:1.0

OpenShift Container Platform 4.1 Authentication

102

Prerequisites

You must install the oc command line.

Your account must have cluster-admin privileges to create SCCs.

Procedure

1. Define the SCC in a JSON or YAML file:

Security Context Constraint Object Definition

kind: SecurityContextConstraints
apiVersion: v1
metadata:
 name: scc-admin
allowPrivilegedContainer: true
runAsUser:
 type: RunAsAny
seLinuxContext:
 type: RunAsAny
fsGroup:
 type: RunAsAny
supplementalGroups:
 type: RunAsAny
users:
- my-admin-user
groups:
- my-admin-group

Optionally, you can add drop capabilities to an SCC by setting the requiredDropCapabilities
field with the desired values. Any specified capabilities will be dropped from the container. For
example, to create an SCC with the KILL, MKNOD, and SYS_CHROOT required drop
capabilities, add the following to the SCC object:

requiredDropCapabilities:
- KILL
- MKNOD
- SYS_CHROOT

You can see the list of possible values in the Docker documentation.

TIP

Because capabilities are passed to the Docker, you can use a special ALL value to drop all
possible capabilities.

2. Then, run oc create passing the file to create it:

$ oc create -f scc_admin.yaml
securitycontextconstraints "scc-admin" created

3. Verify that the SCC was created:

CHAPTER 13. MANAGING SECURITY CONTEXT CONSTRAINTS

103

https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

1

2

3

4

5

6

$ oc get scc scc-admin
NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP
PRIORITY READONLYROOTFS VOLUMES
scc-admin true [] RunAsAny RunAsAny RunAsAny RunAsAny <none> false
[awsElasticBlockStore azureDisk azureFile cephFS cinder configMap downwardAPI
emptyDir fc flexVolume flocker gcePersistentDisk gitRepo glusterfs iscsi nfs
persistentVolumeClaim photonPersistentDisk quobyte rbd secret vsphere]

13.5. ROLE-BASED ACCESS TO SECURITY CONTEXT CONSTRAINTS

You can specify SCCs as resources that are handled by RBAC. This allows you to scope access to your
SCCs to a certain project or to the entire cluster. Assigning users, groups, or service accounts directly to
an SCC retains cluster-wide scope.

To include access to SCCs for your role, specify the scc resource when creating a role.

$ oc create role <role-name> --verb=use --resource=scc --resource-name=<scc-name> -n
<namespace>

This results in the following role definition:

The role’s name.

Namespace of the defined role. Defaults to default if not specified.

The API group that includes the SecurityContextConstraint resource. Automatically defined when
scc is specified as a resource.

An example name for an SCC you want to have access.

Name of the resource group that allows users to specify SCC names in the resourceNames field.

A list of verbs to apply to the role.

A local or cluster role with such a rule allows the subjects that are bound to it with a RoleBinding or a
ClusterRoleBinding to use the user-defined SCC called scc-name.

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
...
 name: role-name 1
 namespace: namespace 2
...
rules:
- apiGroups:
 - security.openshift.io 3
 resourceNames:
 - scc-name 4
 resources:
 - securitycontextconstraints 5
 verbs: 6
 - use

OpenShift Container Platform 4.1 Authentication

104

NOTE

Because RBAC is designed to prevent escalation, even project administrators will be
unable to grant access to an SCC. By defualt, they are not allowed to use the verb use on
SCC resources, including the restricted SCC.

13.6. SECURITY CONTEXT CONSTRAINTS REFERENCE COMMANDS

You can manage SCCs in your instance as normal API objects using the CLI.

NOTE

You must have cluster-admin privileges to manage SCCs.

IMPORTANT

Do not modify the default SCCs. Customizing the default SCCs can lead to issues when
upgrading. Instead, create new SCCs.

13.6.1. Listing SCCs

To get a current list of SCCs:

$ oc get scc

NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP
PRIORITY READONLYROOTFS VOLUMES
anyuid false [] MustRunAs RunAsAny RunAsAny RunAsAny 10 false
[configMap downwardAPI emptyDir persistentVolumeClaim projected secret]
hostaccess false [] MustRunAs MustRunAsRange MustRunAs RunAsAny <none>
false [configMap downwardAPI emptyDir hostPath persistentVolumeClaim projected secret]
hostmount-anyuid false [] MustRunAs RunAsAny RunAsAny RunAsAny <none>
false [configMap downwardAPI emptyDir hostPath nfs persistentVolumeClaim projected
secret]
hostnetwork false [] MustRunAs MustRunAsRange MustRunAs MustRunAs <none>
false [configMap downwardAPI emptyDir persistentVolumeClaim projected secret]
node-exporter false [] RunAsAny RunAsAny RunAsAny RunAsAny <none> false
[*]
nonroot false [] MustRunAs MustRunAsNonRoot RunAsAny RunAsAny <none>
false [configMap downwardAPI emptyDir persistentVolumeClaim projected secret]
privileged true [*] RunAsAny RunAsAny RunAsAny RunAsAny <none> false
[*]
restricted false [] MustRunAs MustRunAsRange MustRunAs RunAsAny <none>
false [configMap downwardAPI emptyDir persistentVolumeClaim projected secret]

13.6.2. Examining an SCC

You can view information about a particular SCC, including which users, service accounts, and groups
the SCC is applied to.

For example, to examine the restricted SCC:

$ oc describe scc restricted

CHAPTER 13. MANAGING SECURITY CONTEXT CONSTRAINTS

105

1

2

Name: restricted
Priority: <none>
Access:
 Users: <none> 1
 Groups: system:authenticated 2
Settings:
 Allow Privileged: false
 Default Add Capabilities: <none>
 Required Drop Capabilities: KILL,MKNOD,SYS_CHROOT,SETUID,SETGID
 Allowed Capabilities: <none>
 Allowed Seccomp Profiles: <none>
 Allowed Volume Types:
configMap,downwardAPI,emptyDir,persistentVolumeClaim,projected,secret
 Allow Host Network: false
 Allow Host Ports: false
 Allow Host PID: false
 Allow Host IPC: false
 Read Only Root Filesystem: false
 Run As User Strategy: MustRunAsRange
 UID: <none>
 UID Range Min: <none>
 UID Range Max: <none>
 SELinux Context Strategy: MustRunAs
 User: <none>
 Role: <none>
 Type: <none>
 Level: <none>
 FSGroup Strategy: MustRunAs
 Ranges: <none>
 Supplemental Groups Strategy: RunAsAny
 Ranges: <none>

Lists which users and service accounts the SCC is applied to.

Lists which groups the SCC is applied to.

NOTE

To preserve customized SCCs during upgrades, do not edit settings on the default SCCs.

13.6.3. Deleting an SCC

To delete an SCC:

$ oc delete scc <scc_name>

NOTE

If you delete a default SCC, it will regenerate when you restart the cluster.

13.6.4. Updating an SCC

To update an existing SCC:

OpenShift Container Platform 4.1 Authentication

106

$ oc edit scc <scc_name>

NOTE

To preserve customized SCCs during upgrades, do not edit settings on the default SCCs.

CHAPTER 13. MANAGING SECURITY CONTEXT CONSTRAINTS

107

CHAPTER 14. IMPERSONATING THE SYSTEM:ADMIN USER

14.1. API IMPERSONATION

You can configure a request to the OpenShift Container Platform API to act as though it originated
from another user. For more information, see User impersonation in the Kubernetes documentation.

14.2. IMPERSONATING THE SYSTEM:ADMIN USER

You can grant a user permission to impersonate system:admin, which grants them cluster administrator
permissions.

Procedure

To grant a user permission to impersonate system:admin, run the following command:

$ oc create clusterrolebinding <any_valid_name> --clusterrole=sudoer --user=<username>

OpenShift Container Platform 4.1 Authentication

108

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation

1

2

3

CHAPTER 15. SYNCING LDAP GROUPS
As an OpenShift Container Platform administrator, you can use groups to manage users, change their
permissions, and enhance collaboration. Your organization may have already created user groups and
stored them in an LDAP server. OpenShift Container Platform can sync those LDAP records with
internal OpenShift Container Platform records, enabling you to manage your groups in one place.
OpenShift Container Platform currently supports group sync with LDAP servers using three common
schemas for defining group membership: RFC 2307, Active Directory, and augmented Active Directory.

For more information on configuring LDAP, see Configuring an LDAP identity provider .

NOTE

You must have cluster-admin privileges to sync groups.

15.1. ABOUT CONFIGURING LDAP SYNC

Before you can run LDAP sync, you need a sync configuration file. This file contains the following LDAP
client configuration details:

Configuration for connecting to your LDAP server.

Sync configuration options that are dependent on the schema used in your LDAP server.

An administrator-defined list of name mappings that maps OpenShift Container Platform group
names to groups in your LDAP server.

The format of the configuration file depends upon the schema you are using: RFC 2307, Active
Directory, or augmented Active Directory.

LDAP client configuration

The LDAP client configuration section of the configuration defines the connections to your LDAP
server.

The LDAP client configuration section of the configuration defines the connections to your LDAP
server.

LDAP client configuration

The connection protocol, IP address of the LDAP server hosting your database, and the port to
connect to, formatted as scheme://host:port.

Optional distinguished name (DN) to use as the Bind DN. OpenShift Container Platform uses this if
elevated privilege is required to retrieve entries for the sync operation.

Optional password to use to bind. OpenShift Container Platform uses this if elevated privilege is
necessary to retrieve entries for the sync operation. This value may also be provided in an
environment variable, external file, or encrypted file.

url: ldap://10.0.0.0:389 1
bindDN: cn=admin,dc=example,dc=com 2
bindPassword: password 3
insecure: false 4
ca: my-ldap-ca-bundle.crt 5

CHAPTER 15. SYNCING LDAP GROUPS

109

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/authentication/#configuring-ldap-identity-provider

4

5

1

2

3

4

5

6

When false, secure LDAP (ldaps://) URLs connect using TLS, and insecure LDAP (ldap://) URLs
are upgraded to TLS. When true, no TLS connection is made to the server unless you specify an

The certificate bundle to use for validating server certificates for the configured URL. If empty,
OpenShift Container Platform uses system-trusted roots. This only applies if insecure is set to
false.

LDAP query definition

Sync configurations consist of LDAP query definitions for the entries that are required for
synchronization. The specific definition of an LDAP query depends on the schema used to store
membership information in the LDAP server.

LDAP query definition

The distinguished name (DN) of the branch of the directory where all searches will start from. It is
required that you specify the top of your directory tree, but you can also specify a subtree in the
directory.

The scope of the search. Valid values are base, one, or sub. If this is left undefined, then a scope of
sub is assumed. Descriptions of the scope options can be found in the table below.

The behavior of the search with respect to aliases in the LDAP tree. Valid values are never, search,
base, or always. If this is left undefined, then the default is to always dereference aliases.
Descriptions of the dereferencing behaviors can be found in the table below.

The time limit allowed for the search by the client, in seconds. A value of 0 imposes no client-side
limit.

A valid LDAP search filter. If this is left undefined, then the default is (objectClass=*).

The optional maximum size of response pages from the server, measured in LDAP entries. If set to
0, no size restrictions will be made on pages of responses. Setting paging sizes is necessary when
queries return more entries than the client or server allow by default.

Table 15.1. LDAP search scope options

LDAP search
scope

Description

base Only consider the object specified by the base DN given for the query.

one Consider all of the objects on the same level in the tree as the base DN for the query.

sub Consider the entire subtree rooted at the base DN given for the query.

baseDN: ou=users,dc=example,dc=com 1
scope: sub 2
derefAliases: never 3
timeout: 0 4
filter: (objectClass=inetOrgPerson) 5
pageSize: 0 6

OpenShift Container Platform 4.1 Authentication

110

Table 15.2. LDAP dereferencing behaviors

Dereferencing
behavior

Description

never Never dereference any aliases found in the LDAP tree.

search Only dereference aliases found while searching.

base Only dereference aliases while finding the base object.

always Always dereference all aliases found in the LDAP tree.

User-defined name mapping

A user-defined name mapping explicitly maps the names of OpenShift Container Platform groups to
unique identifiers that find groups on your LDAP server. The mapping uses normal YAML syntax. A
user-defined mapping can contain an entry for every group in your LDAP server or only a subset of
those groups. If there are groups on the LDAP server that do not have a user-defined name
mapping, the default behavior during sync is to use the attribute specified as the OpenShift
Container Platform group’s name.

User-defined name mapping

15.1.1. About the RFC 2307 configuration file

The RFC 2307 schema requires you to provide an LDAP query definition for both user and group
entries, as well as the attributes with which to represent them in the internal OpenShift Container
Platform records.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the
common name. The following configuration file creates these relationships:

NOTE

If using user-defined name mappings, your configuration file will differ.

LDAP sync configuration that uses RFC 2307 schema: rfc2307_config.yaml

groupUIDNameMapping:
 "cn=group1,ou=groups,dc=example,dc=com": firstgroup
 "cn=group2,ou=groups,dc=example,dc=com": secondgroup
 "cn=group3,ou=groups,dc=example,dc=com": thirdgroup

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389 1
insecure: false 2
rfc2307:
 groupsQuery:

CHAPTER 15. SYNCING LDAP GROUPS

111

1

2

3

4

5

6

7

The IP address and host of the LDAP server where this group’s record is stored.

When false, secure LDAP (ldaps://) URLs connect using TLS, and insecure LDAP (ldap://) URLs
are upgraded to TLS. When true, no TLS connection is made to the server unless you specify an
ldaps:// URL, in which case URLs still attempt to connect by using TLS.

The attribute that uniquely identifies a group on the LDAP server. You cannot specify
groupsQuery filters when using DN for groupUIDAttribute. For fine-grained filtering, use the
whitelist / blacklist method.

The attribute to use as the name of the group.

The attribute on the group that stores the membership information.

The attribute that uniquely identifies a user on the LDAP server. You cannot specify usersQuery
filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist
method.

The attribute to use as the name of the user in the OpenShift Container Platform group record.

15.1.2. About the Active Directory configuration file

The Active Directory schema requires you to provide an LDAP query definition for user entries, as well as
the attributes to represent them with in the internal OpenShift Container Platform group records.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of an OpenShift Container Platform group by their e-mail, but define the name of the group by
the name of the group on the LDAP server. The following configuration file creates these relationships:

LDAP sync configuration that uses Active Directory schema: active_directory_config.yaml

 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub
 derefAliases: never
 pageSize: 0
 groupUIDAttribute: dn 3
 groupNameAttributes: [cn] 4
 groupMembershipAttributes: [member] 5
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 pageSize: 0
 userUIDAttribute: dn 6
 userNameAttributes: [mail] 7
 tolerateMemberNotFoundErrors: false
 tolerateMemberOutOfScopeErrors: false

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
activeDirectory:
 usersQuery:

OpenShift Container Platform 4.1 Authentication

112

1

2

1

2

3

The attribute to use as the name of the user in the OpenShift Container Platform group record.

The attribute on the user that stores the membership information.

15.1.3. About the augmented Active Directory configuration file

The augmented Active Directory schema requires you to provide an LDAP query definition for both user
entries and group entries, as well as the attributes with which to represent them in the internal
OpenShift Container Platform group records.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the
common name. The following configuration file creates these relationships.

LDAP sync configuration that uses augmented Active Directory schema:
augmented_active_directory_config.yaml

The attribute that uniquely identifies a group on the LDAP server. You cannot specify
groupsQuery filters when using DN for groupUIDAttribute. For fine-grained filtering, use the
whitelist / blacklist method.

The attribute to use as the name of the group.

The attribute to use as the name of the user in the OpenShift Container Platform group record.

 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 filter: (objectclass=inetOrgPerson)
 pageSize: 0
 userNameAttributes: [mail] 1
 groupMembershipAttributes: [memberOf] 2

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
augmentedActiveDirectory:
 groupsQuery:
 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub
 derefAliases: never
 pageSize: 0
 groupUIDAttribute: dn 1
 groupNameAttributes: [cn] 2
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 filter: (objectclass=inetOrgPerson)
 pageSize: 0
 userNameAttributes: [mail] 3
 groupMembershipAttributes: [memberOf] 4

CHAPTER 15. SYNCING LDAP GROUPS

113

4 The attribute on the user that stores the membership information.

15.2. RUNNING LDAP SYNC

Once you have created a sync configuration file, you can begin to sync. OpenShift Container Platform
allows administrators to perform a number of different sync types with the same server.

15.2.1. Syncing the LDAP server with OpenShift Container Platform

You can sync all groups from the LDAP server with OpenShift Container Platform.

Prerequisites

Create a sync configuration file.

Procedure

1. To sync all groups from the LDAP server with OpenShift Container Platform:

$ oc adm groups sync --sync-config=config.yaml --confirm

NOTE

By default, all group synchronization operations are dry-run, so you must set the -
-confirm flag on the oc adm groups sync command in order to make changes
to OpenShift Container Platform group records.

15.2.2. Syncing OpenShift Container Platform groups with the LDAP server

You can sync all groups already in OpenShift Container Platform that correspond to groups in the LDAP
server specified in the configuration file.

Prerequisites

Create a sync configuration file.

Procedure

1. To sync OpenShift Container Platform groups with the LDAP server:

$ oc adm groups sync --type=openshift --sync-config=config.yaml --confirm

NOTE

By default, all group synchronization operations are dry-run, so you must set the -
-confirm flag on the oc adm groups sync command in order to make changes
to OpenShift Container Platform group records.

15.2.3. Syncing subgroups from the LDAP server with OpenShift Container Platform

You can sync a subset of LDAP groups with OpenShift Container Platform using whitelist files, blacklist

OpenShift Container Platform 4.1 Authentication

114

You can sync a subset of LDAP groups with OpenShift Container Platform using whitelist files, blacklist
files, or both.

NOTE

You can use any combination of blacklist files, whitelist files, or whitelist literals. Whitelist
and blacklist files must contain one unique group identifier per line, and you can include
whitelist literals directly in the command itself. These guidelines apply to groups found on
LDAP servers as well as groups already present in OpenShift Container Platform.

Prerequisite

Create a sync configuration file.

Procedure

1. To sync a subset of LDAP groups with OpenShift Container Platform, use any the following
commands:

$ oc adm groups sync --whitelist=<whitelist_file> \
 --sync-config=config.yaml \
 --confirm
$ oc adm groups sync --blacklist=<blacklist_file> \
 --sync-config=config.yaml \
 --confirm
$ oc adm groups sync <group_unique_identifier> \
 --sync-config=config.yaml \
 --confirm
$ oc adm groups sync <group_unique_identifier> \
 --whitelist=<whitelist_file> \
 --blacklist=<blacklist_file> \
 --sync-config=config.yaml \
 --confirm
$ oc adm groups sync --type=openshift \
 --whitelist=<whitelist_file> \
 --sync-config=config.yaml \
 --confirm

NOTE

By default, all group synchronization operations are dry-run, so you must set the -
-confirm flag on the oc adm groups sync command in order to make changes
to OpenShift Container Platform group records.

15.3. RUNNING A GROUP PRUNING JOB

An administrator can also choose to remove groups from OpenShift Container Platform records if the
records on the LDAP server that created them are no longer present. The prune job will accept the
same sync configuration file and whitelists or blacklists as used for the sync job.

For example:

$ oc adm prune groups --sync-config=/path/to/ldap-sync-config.yaml --confirm
$ oc adm prune groups --whitelist=/path/to/whitelist.txt --sync-config=/path/to/ldap-sync-config.yaml --

CHAPTER 15. SYNCING LDAP GROUPS

115

confirm
$ oc adm prune groups --blacklist=/path/to/blacklist.txt --sync-config=/path/to/ldap-sync-config.yaml --
confirm

15.4. LDAP GROUP SYNC EXAMPLES

This section contains examples for the RFC 2307, Active Directory, and augmented Active Directory
schemas.

NOTE

These examples assume that all users are direct members of their respective groups.
Specifically, no groups have other groups as members. See the Nested Membership Sync
Example for information on how to sync nested groups.

15.4.1. Syncing groups using the RFC 2307 schema

For the RFC 2307 schema, the following examples synchronize a group named admins that has two
members: Jane and Jim. The examples explain:

How the group and users are added to the LDAP server.

What the resulting group record in OpenShift Container Platform will be after synchronization.

NOTE

These examples assume that all users are direct members of their respective groups.
Specifically, no groups have other groups as members. See the Nested Membership Sync
Example for information on how to sync nested groups.

In the RFC 2307 schema, both users (Jane and Jim) and groups exist on the LDAP server as first-class
entries, and group membership is stored in attributes on the group. The following snippet of ldif defines
the users and group for this schema:

LDAP entries that use RFC 2307 schema: rfc2307.ldif

 dn: ou=users,dc=example,dc=com
 objectClass: organizationalUnit
 ou: users
 dn: cn=Jane,ou=users,dc=example,dc=com
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 cn: Jane
 sn: Smith
 displayName: Jane Smith
 mail: jane.smith@example.com
 dn: cn=Jim,ou=users,dc=example,dc=com
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 cn: Jim
 sn: Adams
 displayName: Jim Adams

OpenShift Container Platform 4.1 Authentication

116

1

2

1

2

3

4

The group is a first-class entry in the LDAP server.

Members of a group are listed with an identifying reference as attributes on the group.

Prerequisites

Create the configuration file.

Procedure

1. Run the sync with the rfc2307_config.yaml file:

$ oc adm groups sync --sync-config=rfc2307_config.yaml --confirm

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the rfc2307_config.yaml file

The last time this OpenShift Container Platform group was synchronized with the LDAP
server, in ISO 6801 format.

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this group’s record is stored.

The name of the group as specified by the sync file.

 mail: jim.adams@example.com
 dn: ou=groups,dc=example,dc=com
 objectClass: organizationalUnit
 ou: groups
 dn: cn=admins,ou=groups,dc=example,dc=com 1
 objectClass: groupOfNames
 cn: admins
 owner: cn=admin,dc=example,dc=com
 description: System Administrators
 member: cn=Jane,ou=users,dc=example,dc=com 2
 member: cn=Jim,ou=users,dc=example,dc=com

apiVersion: user.openshift.io/v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1
 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2
 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:
 name: admins 4
users: 5
- jane.smith@example.com
- jim.adams@example.com

CHAPTER 15. SYNCING LDAP GROUPS

117

5

1

2

3

4

The users that are members of the group, named as specified by the sync file.

15.4.2. Syncing groups using the RFC2307 schema with user-defined name
mappings

When syncing groups with user-defined name mappings, the configuration file changes to contain these
mappings as shown below.

LDAP sync configuration that uses RFC 2307 schema with user-defined name mappings:
rfc2307_config_user_defined.yaml

The user-defined name mapping.

The unique identifier attribute that is used for the keys in the user-defined name mapping. You
cannot specify groupsQuery filters when using DN for groupUIDAttribute. For fine-grained
filtering, use the whitelist / blacklist method.

The attribute to name OpenShift Container Platform groups with if their unique identifier is not in
the user-defined name mapping.

The attribute that uniquely identifies a user on the LDAP server. You cannot specify usersQuery
filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist
method.

Prerequisites

Create the configuration file.

Procedure

kind: LDAPSyncConfig
apiVersion: v1
groupUIDNameMapping:
 "cn=admins,ou=groups,dc=example,dc=com": Administrators 1
rfc2307:
 groupsQuery:
 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub
 derefAliases: never
 pageSize: 0
 groupUIDAttribute: dn 2
 groupNameAttributes: [cn] 3
 groupMembershipAttributes: [member]
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 pageSize: 0
 userUIDAttribute: dn 4
 userNameAttributes: [mail]
 tolerateMemberNotFoundErrors: false
 tolerateMemberOutOfScopeErrors: false

OpenShift Container Platform 4.1 Authentication

118

1

1. Run the sync with the rfc2307_config_user_defined.yaml file:

$ oc adm groups sync --sync-config=rfc2307_config_user_defined.yaml --confirm

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the
rfc2307_config_user_defined.yaml file

The name of the group as specified by the user-defined name mapping.

15.4.3. Syncing groups using RFC 2307 with user-defined error tolerances

By default, if the groups being synced contain members whose entries are outside of the scope defined
in the member query, the group sync fails with an error:

Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in
group "<group>" failed because of "search for entry with dn="<user-dn>" would search outside of the
base dn specified (dn="<base-dn>")".

This often indicates a misconfigured baseDN in the usersQuery field. However, in cases where the
baseDN intentionally does not contain some of the members of the group, setting
tolerateMemberOutOfScopeErrors: true allows the group sync to continue. Out of scope members
will be ignored.

Similarly, when the group sync process fails to locate a member for a group, it fails outright with errors:

Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in
group "<group>" failed because of "search for entry with base dn="<user-dn>" refers to a non-
existent entry".
Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in
group "<group>" failed because of "search for entry with base dn="<user-dn>" and filter "<filter>" did
not return any results".

This often indicates a misconfigured usersQuery field. However, in cases where the group contains
member entries that are known to be missing, setting tolerateMemberNotFoundErrors: true allows the
group sync to continue. Problematic members will be ignored.

apiVersion: user.openshift.io/v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400
 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com
 openshift.io/ldap.url: LDAP_SERVER_IP:389
 creationTimestamp:
 name: Administrators 1
users:
- jane.smith@example.com
- jim.adams@example.com

CHAPTER 15. SYNCING LDAP GROUPS

119

1

2

WARNING

Enabling error tolerances for the LDAP group sync causes the sync process to
ignore problematic member entries. If the LDAP group sync is not configured
correctly, this could result in synced OpenShift Container Platform groups missing
members.

LDAP entries that use RFC 2307 schema with problematic group membership:
rfc2307_problematic_users.ldif

A member that does not exist on the LDAP server.

A member that may exist, but is not under the baseDN in the user query for the sync job.

In order to tolerate the errors in the above example, the following additions to your sync configuration
file must be made:

LDAP sync configuration that uses RFC 2307 schema tolerating errors:

 dn: ou=users,dc=example,dc=com
 objectClass: organizationalUnit
 ou: users
 dn: cn=Jane,ou=users,dc=example,dc=com
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 cn: Jane
 sn: Smith
 displayName: Jane Smith
 mail: jane.smith@example.com
 dn: cn=Jim,ou=users,dc=example,dc=com
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 cn: Jim
 sn: Adams
 displayName: Jim Adams
 mail: jim.adams@example.com
 dn: ou=groups,dc=example,dc=com
 objectClass: organizationalUnit
 ou: groups
 dn: cn=admins,ou=groups,dc=example,dc=com
 objectClass: groupOfNames
 cn: admins
 owner: cn=admin,dc=example,dc=com
 description: System Administrators
 member: cn=Jane,ou=users,dc=example,dc=com
 member: cn=Jim,ou=users,dc=example,dc=com
 member: cn=INVALID,ou=users,dc=example,dc=com 1
 member: cn=Jim,ou=OUTOFSCOPE,dc=example,dc=com 2

OpenShift Container Platform 4.1 Authentication

120

1

2

3

LDAP sync configuration that uses RFC 2307 schema tolerating errors:
rfc2307_config_tolerating.yaml

The attribute that uniquely identifies a user on the LDAP server. You cannot specify usersQuery
filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist
method.

When true, the sync job tolerates groups for which some members were not found, and members
whose LDAP entries are not found are ignored. The default behavior for the sync job is to fail if a
member of a group is not found.

When true, the sync job tolerates groups for which some members are outside the user scope
given in the usersQuery base DN, and members outside the member query scope are ignored.
The default behavior for the sync job is to fail if a member of a group is out of scope.

Prerequisites

Create the configuration file.

Procedure

1. Run the sync with the rfc2307_config_tolerating.yaml file:

$ oc adm groups sync --sync-config=rfc2307_config_tolerating.yaml --confirm

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the rfc2307_config.yaml file

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
rfc2307:
 groupsQuery:
 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub
 derefAliases: never
 groupUIDAttribute: dn
 groupNameAttributes: [cn]
 groupMembershipAttributes: [member]
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 userUIDAttribute: dn 1
 userNameAttributes: [mail]
 tolerateMemberNotFoundErrors: true 2
 tolerateMemberOutOfScopeErrors: true 3

apiVersion: user.openshift.io/v1
kind: Group
metadata:

CHAPTER 15. SYNCING LDAP GROUPS

121

1

1

The users that are members of the group, as specified by the sync file. Members for which
lookup encountered tolerated errors are absent.

15.4.4. Syncing groups using the Active Directory schema

In the Active Directory schema, both users (Jane and Jim) exist in the LDAP server as first-class
entries, and group membership is stored in attributes on the user. The following snippet of ldif defines
the users and group for this schema:

LDAP entries that use Active Directory schema: active_directory.ldif

The user’s group memberships are listed as attributes on the user, and the group does not exist as
an entry on the server. The memberOf attribute does not have to be a literal attribute on the user;
in some LDAP servers, it is created during search and returned to the client, but not committed to
the database.

 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400
 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com
 openshift.io/ldap.url: LDAP_SERVER_IP:389
 creationTimestamp:
 name: admins
users: 1
- jane.smith@example.com
- jim.adams@example.com

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jane
sn: Smith
displayName: Jane Smith
mail: jane.smith@example.com
memberOf: admins 1

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jim
sn: Adams
displayName: Jim Adams
mail: jim.adams@example.com
memberOf: admins

OpenShift Container Platform 4.1 Authentication

122

1

2

3

4

5

Prerequisites

Create the configuration file.

Procedure

1. Run the sync with the active_directory_config.yaml file:

$ oc adm groups sync --sync-config=active_directory_config.yaml --confirm

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the
active_directory_config.yaml file

The last time this OpenShift Container Platform group was synchronized with the LDAP
server, in ISO 6801 format.

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this group’s record is stored.

The name of the group as listed in the LDAP server.

The users that are members of the group, named as specified by the sync file.

15.4.5. Syncing groups using the augmented Active Directory schema

In the augmented Active Directory schema, both users (Jane and Jim) and groups exist in the LDAP
server as first-class entries, and group membership is stored in attributes on the user. The following
snippet of ldif defines the users and group for this schema:

LDAP entries that use augmented Active Directory schema:
augmented_active_directory.ldif

apiVersion: user.openshift.io/v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1
 openshift.io/ldap.uid: admins 2
 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:
 name: admins 4
users: 5
- jane.smith@example.com
- jim.adams@example.com

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

CHAPTER 15. SYNCING LDAP GROUPS

123

1

2

The user’s group memberships are listed as attributes on the user.

The group is a first-class entry on the LDAP server.

Prerequisites

Create the configuration file.

Procedure

1. Run the sync with the augmented_active_directory_config.yaml file:

$ oc adm groups sync --sync-config=augmented_active_directory_config.yaml --confirm

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift group created by using the augmented_active_directory_config.yaml file

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jane
sn: Smith
displayName: Jane Smith
mail: jane.smith@example.com
memberOf: cn=admins,ou=groups,dc=example,dc=com 1

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jim
sn: Adams
displayName: Jim Adams
mail: jim.adams@example.com
memberOf: cn=admins,ou=groups,dc=example,dc=com

dn: ou=groups,dc=example,dc=com
objectClass: organizationalUnit
ou: groups

dn: cn=admins,ou=groups,dc=example,dc=com 2
objectClass: groupOfNames
cn: admins
owner: cn=admin,dc=example,dc=com
description: System Administrators
member: cn=Jane,ou=users,dc=example,dc=com
member: cn=Jim,ou=users,dc=example,dc=com

apiVersion: user.openshift.io/v1

OpenShift Container Platform 4.1 Authentication

124

1

2

3

4

5

The last time this OpenShift Container Platform group was synchronized with the LDAP
server, in ISO 6801 format.

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this group’s record is stored.

The name of the group as specified by the sync file.

The users that are members of the group, named as specified by the sync file.

15.4.5.1. LDAP nested membership sync example

Groups in OpenShift Container Platform do not nest. The LDAP server must flatten group membership
before the data can be consumed. Microsoft’s Active Directory Server supports this feature via the
LDAP_MATCHING_RULE_IN_CHAIN rule, which has the OID 1.2.840.113556.1.4.1941. Furthermore,
only explicitly whitelisted groups can be synced when using this matching rule.

This section has an example for the augmented Active Directory schema, which synchronizes a group
named admins that has one user Jane and one group otheradmins as members. The otheradmins
group has one user member: Jim. This example explains:

How the group and users are added to the LDAP server.

What the LDAP sync configuration file looks like.

What the resulting group record in OpenShift Container Platform will be after synchronization.

In the augmented Active Directory schema, both users (Jane and Jim) and groups exist in the LDAP
server as first-class entries, and group membership is stored in attributes on the user or the group. The
following snippet of ldif defines the users and groups for this schema:

LDAP entries that use augmented Active Directory schema with nested members:
augmented_active_directory_nested.ldif

kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1
 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2
 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:
 name: admins 4
users: 5
- jane.smith@example.com
- jim.adams@example.com

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson

CHAPTER 15. SYNCING LDAP GROUPS

125

https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

1 2 5

3 4

6

The user’s and group’s memberships are listed as attributes on the object.

The groups are first-class entries on the LDAP server.

The otheradmins group is a member of the admins group.

When syncing nested groups with Active Directory, you must provide an LDAP query definition for both
user entries and group entries, as well as the attributes with which to represent them in the internal
OpenShift Container Platform group records. Furthermore, certain changes are required in this
configuration:

The oc adm groups sync command must explicitly whitelist groups.

The user’s groupMembershipAttributes must include "memberOf:1.2.840.113556.1.4.1941:"
to comply with the LDAP_MATCHING_RULE_IN_CHAIN rule.

objectClass: inetOrgPerson
objectClass: testPerson
cn: Jane
sn: Smith
displayName: Jane Smith
mail: jane.smith@example.com
memberOf: cn=admins,ou=groups,dc=example,dc=com 1

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jim
sn: Adams
displayName: Jim Adams
mail: jim.adams@example.com
memberOf: cn=otheradmins,ou=groups,dc=example,dc=com 2

dn: ou=groups,dc=example,dc=com
objectClass: organizationalUnit
ou: groups

dn: cn=admins,ou=groups,dc=example,dc=com 3
objectClass: group
cn: admins
owner: cn=admin,dc=example,dc=com
description: System Administrators
member: cn=Jane,ou=users,dc=example,dc=com
member: cn=otheradmins,ou=groups,dc=example,dc=com

dn: cn=otheradmins,ou=groups,dc=example,dc=com 4
objectClass: group
cn: otheradmins
owner: cn=admin,dc=example,dc=com
description: Other System Administrators
memberOf: cn=admins,ou=groups,dc=example,dc=com 5 6
member: cn=Jim,ou=users,dc=example,dc=com

OpenShift Container Platform 4.1 Authentication

126

https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

1

2

3

4

5

The groupUIDAttribute must be set to dn.

The groupsQuery:

Must not set filter.

Must set a valid derefAliases.

Should not set baseDN as that value is ignored.

Should not set scope as that value is ignored.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the
common name. The following configuration file creates these relationships:

LDAP sync configuration that uses augmented Active Directory schema with nested
members: augmented_active_directory_config_nested.yaml

groupsQuery filters cannot be specified. The groupsQuery base DN and scope values are
ignored. groupsQuery must set a valid derefAliases.

The attribute that uniquely identifies a group on the LDAP server. It must be set to dn.

The attribute to use as the name of the group.

The attribute to use as the name of the user in the OpenShift Container Platform group record.
mail or sAMAccountName are preferred choices in most installations.

The attribute on the user that stores the membership information. Note the use of
LDAP_MATCHING_RULE_IN_CHAIN.

Prerequisites

Create the configuration file.

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
augmentedActiveDirectory:
 groupsQuery: 1
 derefAliases: never
 pageSize: 0
 groupUIDAttribute: dn 2
 groupNameAttributes: [cn] 3
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 filter: (objectclass=inetOrgPerson)
 pageSize: 0
 userNameAttributes: [mail] 4
 groupMembershipAttributes: ["memberOf:1.2.840.113556.1.4.1941:"] 5

CHAPTER 15. SYNCING LDAP GROUPS

127

https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

1

2

3

4

5

Procedure

1. Run the sync with the augmented_active_directory_config_nested.yaml file:

$ oc adm groups sync \
 'cn=admins,ou=groups,dc=example,dc=com' \
 --sync-config=augmented_active_directory_config_nested.yaml \
 --confirm

NOTE

You must explicitly whitelist the cn=admins,ou=groups,dc=example,dc=com
group.

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift group created by using the augmented_active_directory_config_nested.yaml file

The last time this OpenShift Container Platform group was synchronized with the LDAP server, in
ISO 6801 format.

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this group’s record is stored.

The name of the group as specified by the sync file.

The users that are members of the group, named as specified by the sync file. Note that members
of nested groups are included since the group membership was flattened by the Microsoft Active
Directory Server.

15.5. LDAP SYNC CONFIGURATION SPECIFICATION

The object specification for the configuration file is below. Note that the different schema objects have
different fields. For example, v1.ActiveDirectoryConfig has no groupsQuery field whereas
v1.RFC2307Config and v1.AugmentedActiveDirectoryConfig both do.

IMPORTANT

apiVersion: user.openshift.io/v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1
 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2
 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:
 name: admins 4
users: 5
- jane.smith@example.com
- jim.adams@example.com

OpenShift Container Platform 4.1 Authentication

128

IMPORTANT

There is no support for binary attributes. All attribute data coming from the LDAP server
must be in the format of a UTF-8 encoded string. For example, never use a binary
attribute, such as objectGUID, as an ID attribute. You must use string attributes, such as
sAMAccountName or userPrincipalName, instead.

15.5.1. v1.LDAPSyncConfig

LDAPSyncConfig holds the necessary configuration options to define an LDAP group sync.

Name Description Schema

kind String value representing the
REST resource this object
represents. Servers may infer this
from the endpoint the client
submits requests to. Cannot be
updated. In CamelCase. More
info:
https://github.com/kubernetes/c
ommunity/blob/master/contribut
ors/devel/api-
conventions.md#types-kinds

string

apiVersion Defines the versioned schema of
this representation of an object.
Servers should convert
recognized schemas to the latest
internal value, and may reject
unrecognized values. More info:
https://github.com/kubernetes/c
ommunity/blob/master/contribut
ors/devel/api-
conventions.md#resources

string

url Host is the scheme, host and port
of the LDAP server to connect to:
scheme://host:port

string

bindDN Optional DN to bind to the LDAP
server with.

string

bindPassword Optional password to bind with
during the search phase.

v1.StringSource

CHAPTER 15. SYNCING LDAP GROUPS

129

https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md#types-kinds
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md#resources

insecure If true, indicates the connection
should not use TLS. If false,
ldaps:// URLs connect using TLS,
and ldap:// URLs are upgraded to
a TLS connection using StartTLS
as specified in
https://tools.ietf.org/html/rfc283
0. If you set insecure to true
and use a ldaps:// URL scheme,
URLs still attempt to make a TLS
connection using the specified ca.

boolean

ca Optional trusted certificate
authority bundle to use when
making requests to the server. If
empty, the default system roots
are used.

string

groupUIDNameMapping Optional direct mapping of LDAP
group UIDs to OpenShift
Container Platform group names.

object

rfc2307 Holds the configuration for
extracting data from an LDAP
server set up in a fashion similar
to RFC2307: first-class group
and user entries, with group
membership determined by a
multi-valued attribute on the
group entry listing its members.

v1.RFC2307Config

activeDirectory Holds the configuration for
extracting data from an LDAP
server set up in a fashion similar
to that used in Active Directory:
first-class user entries, with group
membership determined by a
multi-valued attribute on
members listing groups they are a
member of.

v1.ActiveDirectoryConfig

augmentedActiveDirectory Holds the configuration for
extracting data from an LDAP
server set up in a fashion similar
to that used in Active Directory as
described above, with one
addition: first-class group entries
exist and are used to hold
metadata but not group
membership.

v1.AugmentedActiveDirectoryCon
fig

Name Description Schema

OpenShift Container Platform 4.1 Authentication

130

https://tools.ietf.org/html/rfc2830

15.5.2. v1.StringSource

StringSource allows specifying a string inline, or externally via environment variable or file. When it
contains only a string value, it marshals to a simple JSON string.

Name Description Schema

value Specifies the cleartext value, or
an encrypted value if keyFile is
specified.

string

env Specifies an environment variable
containing the cleartext value, or
an encrypted value if the keyFile
is specified.

string

file References a file containing the
cleartext value, or an encrypted
value if a keyFile is specified.

string

keyFile References a file containing the
key to use to decrypt the value.

string

15.5.3. v1.LDAPQuery

LDAPQuery holds the options necessary to build an LDAP query.

Name Description Schema

baseDN DN of the branch of the directory
where all searches should start
from.

string

scope The optional scope of the search.
Can be base: only the base
object, one: all objects on the
base level, sub: the entire
subtree. Defaults to sub if not
set.

string

derefAliases The optional behavior of the
search with regards to alisases.
Can be never: never dereference
aliases, search: only dereference
in searching, base: only
dereference in finding the base
object, always: always
dereference. Defaults to always
if not set.

string

CHAPTER 15. SYNCING LDAP GROUPS

131

timeout Holds the limit of time in seconds
that any request to the server can
remain outstanding before the
wait for a response is given up. If
this is 0, no client-side limit is
imposed.

integer

filter A valid LDAP search filter that
retrieves all relevant entries from
the LDAP server with the base
DN.

string

pageSize Maximum preferred page size,
measured in LDAP entries. A page
size of 0 means no paging will be
done.

integer

Name Description Schema

15.5.4. v1.RFC2307Config

RFC2307Config holds the necessary configuration options to define how an LDAP group sync interacts
with an LDAP server using the RFC2307 schema.

Name Description Schema

groupsQuery Holds the template for an LDAP
query that returns group entries.

v1.LDAPQuery

groupUIDAttribute Defines which attribute on an
LDAP group entry will be
interpreted as its unique
identifier. (ldapGroupUID)

string

groupNameAttributes Defines which attributes on an
LDAP group entry will be
interpreted as its name to use for
an OpenShift Container Platform
group.

string array

groupMembershipAttributes Defines which attributes on an
LDAP group entry will be
interpreted as its members. The
values contained in those
attributes must be queryable by
your UserUIDAttribute.

string array

usersQuery Holds the template for an LDAP
query that returns user entries.

v1.LDAPQuery

OpenShift Container Platform 4.1 Authentication

132

userUIDAttribute Defines which attribute on an
LDAP user entry will be
interpreted as its unique
identifier. It must correspond to
values that will be found from the
GroupMembershipAttributes.

string

userNameAttributes Defines which attributes on an
LDAP user entry will be used, in
order, as its OpenShift Container
Platform user name. The first
attribute with a non-empty value
is used. This should match your
PreferredUsername setting for
your
LDAPPasswordIdentityProvi
der. The attribute to use as the
name of the user in the OpenShift
Container Platform group record.
mail or sAMAccountName are
preferred choices in most
installations.

string array

tolerateMemberNotFoundErr
ors

Determines the behavior of the
LDAP sync job when missing user
entries are encountered. If true,
an LDAP query for users that
does not find any will be tolerated
and an only and error will be
logged. If false, the LDAP sync
job will fail if a query for users
doesn’t find any. The default
value is false. Misconfigured
LDAP sync jobs with this flag set
to true can cause group
membership to be removed, so it
is recommended to use this flag
with caution.

boolean

Name Description Schema

CHAPTER 15. SYNCING LDAP GROUPS

133

tolerateMemberOutOfScopeE
rrors

Determines the behavior of the
LDAP sync job when out-of-
scope user entries are
encountered. If true, an LDAP
query for a user that falls outside
of the base DN given for the all
user query will be tolerated and
only an error will be logged. If
false, the LDAP sync job will fail if
a user query would search outside
of the base DN specified by the all
user query. Misconfigured LDAP
sync jobs with this flag set to true
can result in groups missing users,
so it is recommended to use this
flag with caution.

boolean

Name Description Schema

15.5.5. v1.ActiveDirectoryConfig

ActiveDirectoryConfig holds the necessary configuration options to define how an LDAP group sync
interacts with an LDAP server using the Active Directory schema.

Name Description Schema

usersQuery Holds the template for an LDAP
query that returns user entries.

v1.LDAPQuery

userNameAttributes Defines which attributes on an
LDAP user entry will be
interpreted as its OpenShift
Container Platform user name.
The attribute to use as the name
of the user in the OpenShift
Container Platform group record.
mail or sAMAccountName are
preferred choices in most
installations.

string array

groupMembershipAttributes Defines which attributes on an
LDAP user entry will be
interpreted as the groups it is a
member of.

string array

15.5.6. v1.AugmentedActiveDirectoryConfig

AugmentedActiveDirectoryConfig holds the necessary configuration options to define how an LDAP
group sync interacts with an LDAP server using the augmented Active Directory schema.

OpenShift Container Platform 4.1 Authentication

134

Name Description Schema

usersQuery Holds the template for an LDAP
query that returns user entries.

v1.LDAPQuery

userNameAttributes Defines which attributes on an
LDAP user entry will be
interpreted as its OpenShift
Container Platform user name.
The attribute to use as the name
of the user in the OpenShift
Container Platform group record.
mail or sAMAccountName are
preferred choices in most
installations.

string array

groupMembershipAttributes Defines which attributes on an
LDAP user entry will be
interpreted as the groups it is a
member of.

string array

groupsQuery Holds the template for an LDAP
query that returns group entries.

v1.LDAPQuery

groupUIDAttribute Defines which attribute on an
LDAP group entry will be
interpreted as its unique
identifier. (ldapGroupUID)

string

groupNameAttributes Defines which attributes on an
LDAP group entry will be
interpreted as its name to use for
an OpenShift Container Platform
group.

string array

CHAPTER 15. SYNCING LDAP GROUPS

135

	Table of Contents
	CHAPTER 1. UNDERSTANDING AUTHENTICATION
	1.1. USERS
	1.2. GROUPS
	1.3. API AUTHENTICATION
	1.3.1. OpenShift Container Platform OAuth server
	1.3.1.1. OAuth token requests
	1.3.1.2. API impersonation
	1.3.1.3. Authentication metrics for Prometheus

	CHAPTER 2. CONFIGURING THE INTERNAL OAUTH SERVER
	2.1. OPENSHIFT CONTAINER PLATFORM OAUTH SERVER
	2.2. OAUTH TOKEN REQUEST FLOWS AND RESPONSES
	2.3. OPTIONS FOR THE INTERNAL OAUTH SERVER
	2.3.1. OAuth token duration options
	2.3.2. OAuth grant options

	2.4. CONFIGURING THE INTERNAL OAUTH SERVER’S TOKEN DURATION
	2.5. REGISTER AN ADDITIONAL OAUTH CLIENT
	2.6. OAUTH SERVER METADATA
	2.7. TROUBLESHOOTING OAUTH API EVENTS

	CHAPTER 3. UNDERSTANDING IDENTITY PROVIDER CONFIGURATION
	3.1. ABOUT IDENTITY PROVIDERS IN OPENSHIFT CONTAINER PLATFORM
	3.2. SUPPORTED IDENTITY PROVIDERS
	3.3. REMOVING THE KUBEADMIN USER
	3.4. IDENTITY PROVIDER PARAMETERS
	3.5. SAMPLE IDENTITY PROVIDER CR

	CHAPTER 4. CONFIGURING IDENTITY PROVIDERS
	4.1. CONFIGURING AN HTPASSWD IDENTITY PROVIDER
	4.1.1. About identity providers in OpenShift Container Platform
	4.1.2. Creating an HTPasswd file using Linux
	4.1.3. Creating an HTPasswd file using Windows
	4.1.4. Creating the HTPasswd Secret
	4.1.5. Sample HTPasswd CR
	4.1.6. Adding an identity provider to your clusters
	4.1.7. Configuring identity providers using the web console

	4.2. CONFIGURING A KEYSTONE IDENTITY PROVIDER
	4.2.1. About identity providers in OpenShift Container Platform
	4.2.2. Creating the Secret
	4.2.3. Creating a ConfigMap
	4.2.4. Sample Keystone CR
	4.2.5. Adding an identity provider to your clusters

	4.3. CONFIGURING AN LDAP IDENTITY PROVIDER
	4.3.1. About identity providers in OpenShift Container Platform
	4.3.2. About LDAP authentication
	4.3.3. Creating the LDAP Secret
	4.3.4. Creating a ConfigMap
	4.3.5. Sample LDAP CR
	4.3.6. Adding an identity provider to your clusters

	4.4. CONFIGURING AN BASIC AUTHENTICATION IDENTITY PROVIDER
	4.4.1. About identity providers in OpenShift Container Platform
	4.4.2. About basic authentication
	4.4.3. Creating the Secret
	4.4.4. Creating a ConfigMap
	4.4.5. Sample basic authentication CR
	4.4.6. Adding an identity provider to your clusters
	4.4.7. Example Apache HTTPD configuration for basic identity providers
	4.4.7.1. File requirements

	4.4.8. Basic authentication troubleshooting

	4.5. CONFIGURING A REQUEST HEADER IDENTITY PROVIDER
	4.5.1. About identity providers in OpenShift Container Platform
	4.5.2. About request header authentication
	4.5.2.1. SSPI connection support on Microsoft Windows

	4.5.3. Creating a ConfigMap
	4.5.4. Sample request header CR
	4.5.5. Adding an identity provider to your clusters
	4.5.6. Example Apache authentication configuration using request header
	Custom proxy configuration
	Configuring Apache authentication using request header

	4.6. CONFIGURING A GITHUB OR GITHUB ENTERPRISE IDENTITY PROVIDER
	4.6.1. About identity providers in OpenShift Container Platform
	4.6.2. Registering a GitHub application
	4.6.3. Creating the Secret
	4.6.4. Creating a ConfigMap
	4.6.5. Sample GitHub CR
	4.6.6. Adding an identity provider to your clusters

	4.7. CONFIGURING A GITLAB IDENTITY PROVIDER
	4.7.1. About identity providers in OpenShift Container Platform
	4.7.2. Creating the Secret
	4.7.3. Creating a ConfigMap
	4.7.4. Sample GitLab CR
	4.7.5. Adding an identity provider to your clusters

	4.8. CONFIGURING A GOOGLE IDENTITY PROVIDER
	4.8.1. About identity providers in OpenShift Container Platform
	4.8.2. Creating the Secret
	4.8.3. Sample Google CR
	4.8.4. Adding an identity provider to your clusters

	4.9. CONFIGURING A OPENID CONNECT IDENTITY PROVIDER
	4.9.1. About identity providers in OpenShift Container Platform
	4.9.2. Creating the Secret
	4.9.3. Creating a ConfigMap
	4.9.4. Sample OpenID Connect CRs
	4.9.5. Adding an identity provider to your clusters
	4.9.6. Configuring identity providers using the web console

	CHAPTER 5. CONFIGURING CERTIFICATES
	5.1. REPLACING THE DEFAULT INGRESS CERTIFICATE
	5.1.1. Understanding the default ingress certificate
	5.1.2. Replacing the default ingress certificate

	5.2. ADDING API SERVER CERTIFICATES
	5.2.1. Add an API server named certificate

	5.3. SECURING SERVICE TRAFFIC USING SERVICE SERVING CERTIFICATE SECRETS
	5.3.1. Understanding service serving certificates
	5.3.2. Add a service certificate
	5.3.3. Add a service certificate to a ConfigMap
	5.3.4. Manually rotate the generated service certificate
	5.3.5. Manually rotate the service CA certificate

	CHAPTER 6. USING RBAC TO DEFINE AND APPLY PERMISSIONS
	6.1. RBAC OVERVIEW
	6.1.1. Default cluster roles
	6.1.2. Evaluating authorization
	6.1.2.1. Cluster Role Aggregation

	6.2. PROJECTS AND NAMESPACES
	6.3. DEFAULT PROJECTS
	6.4. VIEWING CLUSTER ROLES AND BINDINGS
	6.5. VIEWING LOCAL ROLES AND BINDINGS
	6.6. ADDING ROLES TO USERS
	6.7. CREATING A LOCAL ROLE
	6.8. CREATING A CLUSTER ROLE
	6.9. LOCAL ROLE BINDING COMMANDS
	6.10. CLUSTER ROLE BINDING COMMANDS
	6.11. CREATING A CLUSTER ADMIN

	CHAPTER 7. REMOVING THE KUBEADMIN USER
	7.1. THE KUBEADMIN USER
	7.2. REMOVING THE KUBEADMIN USER

	CHAPTER 8. CONFIGURING THE USER AGENT
	8.1. ABOUT THE USER AGENT
	8.2. CONFIGURING THE USER AGENT

	CHAPTER 9. UNDERSTANDING AND CREATING SERVICE ACCOUNTS
	9.1. SERVICE ACCOUNTS OVERVIEW
	9.2. CREATING SERVICE ACCOUNTS
	9.3. EXAMPLES OF GRANTING ROLES TO SERVICE ACCOUNTS

	CHAPTER 10. USING SERVICE ACCOUNTS IN APPLICATIONS
	10.1. SERVICE ACCOUNTS OVERVIEW
	10.2. DEFAULT SERVICE ACCOUNTS
	10.2.1. Default cluster service accounts
	10.2.2. Default project service accounts and roles

	10.3. CREATING SERVICE ACCOUNTS
	10.4. USING A SERVICE ACCOUNT’S CREDENTIALS EXTERNALLY

	CHAPTER 11. USING A SERVICE ACCOUNT AS AN OAUTH CLIENT
	11.1. SERVICE ACCOUNTS AS OAUTH CLIENTS
	11.1.1. Redirect URIs for Service Accounts as OAuth Clients

	CHAPTER 12. SCOPING TOKENS
	12.1. ABOUT SCOPING TOKENS
	12.1.1. User scopes
	12.1.2. Role scope

	CHAPTER 13. MANAGING SECURITY CONTEXT CONSTRAINTS
	13.1. ABOUT SECURITY CONTEXT CONSTRAINTS
	13.1.1. SCC Strategies
	13.1.2. Controlling volumes
	13.1.3. Admission
	13.1.4. SCC prioritization

	13.2. ABOUT PRE-ALLOCATED SECURITY CONTEXT CONSTRAINTS VALUES
	13.3. EXAMPLE SECURITY CONTEXT CONSTRAINTS
	13.4. CREATING SECURITY CONTEXT CONSTRAINTS
	13.5. ROLE-BASED ACCESS TO SECURITY CONTEXT CONSTRAINTS
	13.6. SECURITY CONTEXT CONSTRAINTS REFERENCE COMMANDS
	13.6.1. Listing SCCs
	13.6.2. Examining an SCC
	13.6.3. Deleting an SCC
	13.6.4. Updating an SCC

	CHAPTER 14. IMPERSONATING THE SYSTEM:ADMIN USER
	14.1. API IMPERSONATION
	14.2. IMPERSONATING THE SYSTEM:ADMIN USER

	CHAPTER 15. SYNCING LDAP GROUPS
	15.1. ABOUT CONFIGURING LDAP SYNC
	15.1.1. About the RFC 2307 configuration file
	15.1.2. About the Active Directory configuration file
	15.1.3. About the augmented Active Directory configuration file

	15.2. RUNNING LDAP SYNC
	15.2.1. Syncing the LDAP server with OpenShift Container Platform
	15.2.2. Syncing OpenShift Container Platform groups with the LDAP server
	15.2.3. Syncing subgroups from the LDAP server with OpenShift Container Platform

	15.3. RUNNING A GROUP PRUNING JOB
	15.4. LDAP GROUP SYNC EXAMPLES
	15.4.1. Syncing groups using the RFC 2307 schema
	15.4.2. Syncing groups using the RFC2307 schema with user-defined name mappings
	15.4.3. Syncing groups using RFC 2307 with user-defined error tolerances
	15.4.4. Syncing groups using the Active Directory schema
	15.4.5. Syncing groups using the augmented Active Directory schema
	15.4.5.1. LDAP nested membership sync example

	15.5. LDAP SYNC CONFIGURATION SPECIFICATION
	15.5.1. v1.LDAPSyncConfig
	15.5.2. v1.StringSource
	15.5.3. v1.LDAPQuery
	15.5.4. v1.RFC2307Config
	15.5.5. v1.ActiveDirectoryConfig
	15.5.6. v1.AugmentedActiveDirectoryConfig

