
OpenShift Container Platform 3.7

Installation and Configuration

OpenShift Container Platform 3.7 Installation and Configuration

Last Updated: 2019-04-27

OpenShift Container Platform 3.7 Installation and Configuration

OpenShift Container Platform 3.7 Installation and Configuration

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

OpenShift Installation and Configuration topics cover the basics of installing and configuring
OpenShift in your environment. Use these topics for the one-time tasks required to get OpenShift up
and running.

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. INSTALLING A CLUSTER
2.1. PLANNING

2.1.1. Initial Planning
2.1.2. Installation Methods
2.1.3. Sizing Considerations
2.1.4. Environment Scenarios

2.1.4.1. Single Master and Node on One System
2.1.4.2. Single Master and Multiple Nodes
2.1.4.3. Single Master, Multiple etcd, and Multiple Nodes
2.1.4.4. Multiple Masters Using Native HA
2.1.4.5. Stand-alone Registry

2.1.5. RPM Versus Containerized
2.2. PREREQUISITES

2.2.1. System Requirements
2.2.1.1. Red Hat Subscriptions
2.2.1.2. Minimum Hardware Requirements
2.2.1.3. Production Level Hardware Requirements
2.2.1.4. Storage management
2.2.1.5. Configuring Core Usage
2.2.1.6. SELinux

Using OverlayFS
2.2.1.7. Security Warning

2.2.2. Environment Requirements
2.2.2.1. DNS

2.2.2.1.1. Configuring Hosts to Use DNS
2.2.2.1.2. Configuring a DNS Wildcard

2.2.2.2. Network Access
2.2.2.2.1. NetworkManager
2.2.2.2.2. Configuring firewalld as the firewall
2.2.2.2.3. Required Ports

2.2.2.3. Persistent Storage
2.2.2.4. Cloud Provider Considerations

2.2.2.4.1. Overriding Detected IP Addresses and Host Names
2.2.2.4.2. Post-Installation Configuration for Cloud Providers

2.2.2.5. Containerized GlusterFS Considerations
2.2.2.5.1. Storage Nodes
2.2.2.5.2. Required Software Components

2.3. HOST PREPARATION
2.3.1. Setting PATH
2.3.2. Operating System Requirements
2.3.3. Host Registration
2.3.4. Installing Base Packages
2.3.5. Installing Docker
2.3.6. Configuring Docker Storage

2.3.6.1. Configuring OverlayFS
2.3.6.2. Configuring Thin Pool Storage
2.3.6.3. Reconfiguring Docker Storage
2.3.6.4. Enabling Image Signature Support
2.3.6.5. Managing Container Logs

20

21
21
21
21
21
22
22
22
22
23
23
24
24
24
24
24
25
26
28
28
28
28
29
29
30
31
31
31
31
32
34
35
35
36
36
36
37
37
37
37
37
38
39
40
40
40
43
44
45

Table of Contents

1

2.3.6.6. Viewing Available Container Logs
2.3.6.7. Blocking Local Volume Usage

2.3.7. Ensuring Host Access
2.3.8. Setting Proxy Overrides
2.3.9. What’s Next?

2.4. INSTALLING ON CONTAINERIZED HOSTS
2.4.1. RPM Versus Containerized Installation
2.4.2. Install Methods for Containerized Hosts
2.4.3. Required Images
2.4.4. Starting and Stopping Containers
2.4.5. File Paths
2.4.6. Storage Requirements
2.4.7. Open vSwitch SDN Initialization

2.5. QUICK INSTALLATION
2.5.1. Overview
2.5.2. Before You Begin
2.5.3. Running an Interactive Installation
2.5.4. Defining an Installation Configuration File
2.5.5. Running an Unattended Installation
2.5.6. Verifying the Installation
2.5.7. Uninstalling OpenShift Container Platform
2.5.8. What’s Next?

2.6. ADVANCED INSTALLATION
2.6.1. Overview
2.6.2. Before You Begin
2.6.3. Configuring Ansible Inventory Files

Image Version Policy
2.6.3.1. Configuring Cluster Variables
2.6.3.2. Configuring Deployment Type
2.6.3.3. Configuring Host Variables
2.6.3.4. Configuring Master API and Console Ports
2.6.3.5. Configuring Cluster Pre-install Checks
2.6.3.6. Configuring System Containers

2.6.3.6.1. Running Docker as a System Container
2.6.3.6.2. Running etcd as a System Container

2.6.3.7. Configuring a Registry Location
2.6.3.8. Configuring a Registry Route
2.6.3.9. Configuring the Registry Console

2.6.3.9.1. Configuring Registry Storage
Option A: NFS Host Group
Option B: External NFS Host
Option C: OpenStack Platform
Option D: AWS or Another S3 Storage Solution
Option E: Google Cloud Storage (GCS) bucket on Google Compute Engine (GCE)

2.6.3.10. Configuring Router Sharding
2.6.3.11. Configuring GlusterFS Persistent Storage

2.6.3.11.1. Configuring Containerized GlusterFS Persistent Storage
2.6.3.12. Configuring the OpenShift Container Registry

2.6.3.12.1. Configuring a Containerized GlusterFS-Backed Registry
2.6.3.13. Configuring Global Proxy Options
2.6.3.14. Configuring the Firewall
2.6.3.15. Configuring Schedulability on Masters
2.6.3.16. Configuring Node Host Labels

45
46
47
47
48
48
48
49
49
50
50
50
50
50
50
51
52
52
54
54
55
55
55
55
56
56
57
57
63
63
65
65
67
68
69
69
70
71
71
71
72
72
72
73
73
74
74
75
76
77
79
80
81

OpenShift Container Platform 3.7 Installation and Configuration

2

2.6.3.16.1. Configuring Dedicated Infrastructure Nodes
2.6.3.17. Configuring Session Options
2.6.3.18. Configuring Custom Certificates
2.6.3.19. Configuring Certificate Validity
2.6.3.20. Configuring Cluster Metrics

2.6.3.20.1. Configuring Metrics Storage
Option A: Dynamic
Option B: NFS Host Group
Option C: External NFS Host

2.6.3.21. Configuring Cluster Logging
2.6.3.21.1. Configuring Logging Storage

Option A: Dynamic
Option B: NFS Host Group
Option C: External NFS Host

2.6.3.22. Customizing Service Catalog Options
2.6.3.22.1. Configuring the OpenShift Ansible Broker

2.6.3.22.1.1. Configuring Persistent Storage for the OpenShift Ansible Broker
2.6.3.22.1.2. Configuring the OpenShift Ansible Broker for Local APB Development

2.6.3.22.2. Configuring the Template Service Broker
2.6.3.23. Configuring Web Console Customization

2.6.4. Example Inventory Files
2.6.4.1. Single Master Examples

Single Master, Single etcd, and Multiple Nodes
Single Master, Multiple etcd, and Multiple Nodes

2.6.4.2. Multiple Masters Examples
Multiple Masters with Multiple etcd
Multiple Masters with Master and etcd on the Same Host

2.6.5. Running the Advanced Installation
2.6.5.1. Running the RPM-based Installer
2.6.5.2. Running the Containerized Installer

2.6.5.2.1. Running the Installer as a System Container
2.6.5.2.2. Running Other Playbooks
2.6.5.2.3. Running the Installer as a Docker Container

2.6.5.3. Running Individual Component Playbooks
2.6.6. Verifying the Installation

Verifying Multiple etcd Hosts
Verifying Multiple Masters Using HAProxy

2.6.7. Optionally Securing Builds
2.6.8. Uninstalling OpenShift Container Platform

2.6.8.1. Uninstalling Nodes
2.6.9. Known Issues
2.6.10. What’s Next?

2.7. DISCONNECTED INSTALLATION
2.7.1. Overview
2.7.2. Prerequisites
2.7.3. Required Software and Components

2.7.3.1. Syncing Repositories
2.7.3.2. Syncing Images
2.7.3.3. Preparing Images for Export

2.7.4. Repository Server
2.7.4.1. Placing the Software

2.7.5. OpenShift Container Platform Systems
2.7.5.1. Building Your Hosts

81
82
82
83
84
84
84
84
85
85
85
85
86
86
86
87
87
88
89
89
90
90
90
92
93
94
96
98
98
99
99

100
100
102
103
103
104
104
104
105
106
106
106
106
107
107
107
108
111
113
113
113
113

Table of Contents

3

. .

2.7.5.2. Connecting the Repositories
2.7.5.3. Host Preparation

2.7.6. Installing OpenShift Container Platform
2.7.6.1. Importing OpenShift Container Platform Component Images
2.7.6.2. Running the OpenShift Container Platform Installer
2.7.6.3. Creating the Internal Docker Registry

2.7.7. Post-Installation Changes
2.7.7.1. Re-tagging S2I Builder Images
2.7.7.2. Configuring a Registry Location
2.7.7.3. Creating an Administrative User
2.7.7.4. Modifying the Security Policies
2.7.7.5. Editing the Image Stream Definitions
2.7.7.6. Loading the Container Images

2.7.8. Installing a Router
2.8. INSTALLING A STAND-ALONE DEPLOYMENT OF OPENSHIFT CONTAINER REGISTRY

2.8.1. About OpenShift Container Registry
2.8.2. Minimum Hardware Requirements
2.8.3. Supported System Topologies
2.8.4. Host Preparation
2.8.5. Installation Methods

2.8.5.1. Quick Installation for Stand-alone OpenShift Container Registry
2.8.5.2. Advanced Installation for Stand-alone OpenShift Container Registry

CHAPTER 3. SETTING UP THE REGISTRY
3.1. REGISTRY OVERVIEW

3.1.1. About the Registry
3.1.2. Integrated or Stand-alone Registries

3.2. DEPLOYING A REGISTRY ON EXISTING CLUSTERS
3.2.1. Overview
3.2.2. Deploying the Registry
3.2.3. Deploying the Registry as a DaemonSet
3.2.4. Registry Compute Resources
3.2.5. Storage for the Registry

3.2.5.1. Production Use
3.2.5.1.1. Use Amazon S3 as a Storage Back-end

3.2.5.2. Non-Production Use
3.2.6. Enabling the Registry Console

3.2.6.1. Deploying the Registry Console
3.2.6.2. Securing the Registry Console
3.2.6.3. Troubleshooting the Registry Console

3.2.6.3.1. Debug Mode
3.2.6.3.2. Display SSL Certificate Path

3.3. ACCESSING THE REGISTRY
3.3.1. Viewing Logs
3.3.2. File Storage
3.3.3. Accessing the Registry Directly

3.3.3.1. User Prerequisites
3.3.3.2. Logging in to the Registry
3.3.3.3. Pushing and Pulling Images

3.3.4. Accessing Registry Metrics
3.4. SECURING AND EXPOSING THE REGISTRY

3.4.1. Overview
3.4.2. Manually Securing the Registry

114
114
114
114
115
115
115
115
116
117
117
118
118
119
119
119
120
121
121
121
121
122

126
126
126
126
126
126
126
127
127
127
128
128
129
130
130
131
132
132
132
133
133
133
135
135
136
136
137
138
138
138

OpenShift Container Platform 3.7 Installation and Configuration

4

. .

3.4.3. Manually Exposing a Secure Registry
3.4.4. Manually Exposing a Non-Secure Registry

3.5. EXTENDED REGISTRY CONFIGURATION
3.5.1. Maintaining the Registry IP Address
3.5.2. Whitelisting Docker Registries
3.5.3. Setting the Registry Hostname
3.5.4. Overriding the Registry Configuration
3.5.5. Registry Configuration Reference

3.5.5.1. Log
3.5.5.2. Hooks
3.5.5.3. Storage
3.5.5.4. Auth
3.5.5.5. Middleware

3.5.5.5.1. CloudFront Middleware
3.5.5.5.2. Overriding Middleware Configuration Options
3.5.5.5.3. Image Pullthrough
3.5.5.5.4. Manifest Schema v2 Support

3.5.5.6. OpenShift
3.5.5.7. Reporting
3.5.5.8. HTTP
3.5.5.9. Notifications
3.5.5.10. Redis
3.5.5.11. Health
3.5.5.12. Proxy

3.6. KNOWN ISSUES
3.6.1. Overview
3.6.2. Image Push Errors with Scaled Registry Using Shared NFS Volume
3.6.3. Pull of Internally Managed Image Fails with "not found" Error
3.6.4. Image Push Fails with "500 Internal Server Error" on S3 Storage
3.6.5. Image Pruning Fails

CHAPTER 4. SETTING UP A ROUTER
4.1. ROUTER OVERVIEW

4.1.1. About Routers
4.1.2. Router Service Account

4.1.2.1. Permission to Access Labels
4.2. USING THE DEFAULT HAPROXY ROUTER

4.2.1. Overview
4.2.2. Creating a Router
4.2.3. Other Basic Router Commands
4.2.4. Filtering Routes to Specific Routers
4.2.5. HAProxy Strict SNI
4.2.6. TLS Cipher Suites
4.2.7. Highly-Available Routers
4.2.8. Customizing the Router Service Ports
4.2.9. Working With Multiple Routers
4.2.10. Adding a Node Selector to a Deployment Configuration
4.2.11. Using Router Shards

4.2.11.1. Creating Router Shards
4.2.11.2. Modifying Router Shards

4.2.12. Finding the Host Name of the Router
4.2.13. Customizing the Default Routing Subdomain
4.2.14. Forcing Route Host Names to a Custom Routing Subdomain

141
143
145
145
146
146
147
149
149
149
149
150
150
151
152
153
154
155
156
156
156
156
156
156
157
157
157
157
158
158

160
160
160
160
160
161
161
162
162
163
164
164
164
164
165
165
166
168
170
171
172
172

Table of Contents

5

. .

4.2.15. Using Wildcard Certificates
4.2.16. Manually Redeploy Certificates
4.2.17. Using Secured Routes
4.2.18. Using Wildcard Routes (for a Subdomain)
4.2.19. Using the Container Network Stack
4.2.20. Exposing Router Metrics
4.2.21. Preventing Connection Failures During Restarts
4.2.22. ARP Cache Tuning for Large-scale Clusters
4.2.23. Protecting Against DDoS Attacks

4.3. DEPLOYING A CUSTOMIZED HAPROXY ROUTER
4.3.1. Overview
4.3.2. Obtaining the Router Configuration Template
4.3.3. Modifying the Router Configuration Template

4.3.3.1. Background
4.3.3.2. Go Template Actions
4.3.3.3. Router Provided Information
4.3.3.4. Annotations
4.3.3.5. Environment Variables
4.3.3.6. Example Usage

4.3.4. Using a ConfigMap to Replace the Router Configuration Template
4.3.5. Using Stick Tables
4.3.6. Rebuilding Your Router

4.4. CONFIGURING THE HAPROXY ROUTER TO USE THE PROXY PROTOCOL
4.4.1. Overview
4.4.2. Why Use the PROXY Protocol?
4.4.3. Using the PROXY Protocol

4.5. USING THE F5 ROUTER PLUG-IN
4.5.1. Overview
4.5.2. Prerequisites and Supportability

4.5.2.1. Configuring the Virtual Servers
4.5.3. Deploying the F5 Router
4.5.4. F5 Router Partition Paths
4.5.5. Setting Up F5 Native Integration

CHAPTER 5. MASTER AND NODE CONFIGURATION
5.1. OVERVIEW
5.2. MASTER CONFIGURATION FILES

5.2.1. Admission Control Configuration
5.2.2. Asset Configuration
5.2.3. Authentication and Authorization Configuration
5.2.4. Controller Configuration
5.2.5. etcd Configuration
5.2.6. Grant Configuration
5.2.7. Image Configuration
5.2.8. Image Policy Configuration
5.2.9. Kubernetes Master Configuration
5.2.10. Network Configuration
5.2.11. OAuth Authentication Configuration
5.2.12. Project Configuration
5.2.13. Scheduler Configuration
5.2.14. Security Allocator Configuration
5.2.15. Service Account Configuration
5.2.16. Serving Information Configuration

173
173
174
176
181
182
184
184
185
186
186
187
187
187
187
188
193
193
194
196
197
198
199
199
199
200
203
203
204
205
206
207
207

210
210
210
210
211
212
212
213
213
214
214
215
216
217
217
218
218
218
219

OpenShift Container Platform 3.7 Installation and Configuration

6

. .

. .

. .

5.2.17. Volume Configuration
5.2.18. Audit Configuration
5.2.19. Advanced Audit
5.2.20. Specifying TLS ciphers for etcd

5.3. NODE CONFIGURATION FILES
5.3.1. Pod and Node Configuration
5.3.2. Docker Configuration
5.3.3. Parallel Image Pulls with Docker 1.9+

5.4. PASSWORDS AND OTHER SENSITIVE DATA
5.5. CREATING NEW CONFIGURATION FILES
5.6. LAUNCHING SERVERS USING CONFIGURATION FILES
5.7. CONFIGURING LOGGING LEVELS
5.8. RESTARTING OPENSHIFT CONTAINER PLATFORM SERVICES

CHAPTER 6. OPENSHIFT ANSIBLE BROKER CONFIGURATION
6.1. OVERVIEW
6.2. MODIFYING THE OPENSHIFT ANSIBLE BROKER CONFIGURATION
6.3. REGISTRY CONFIGURATION

6.3.1. Production or Development
6.3.2. Storing Registry Credentials
6.3.3. Mock Registry
6.3.4. Dockerhub Registry
6.3.5. APB Filtering
6.3.6. Local OpenShift Container Registry
6.3.7. Red Hat Container Catalog Registry
6.3.8. ISV Registry
6.3.9. Multiple Registries

6.4. DAO CONFIGURATION
6.5. LOG CONFIGURATION
6.6. OPENSHIFT CONFIGURATION
6.7. BROKER CONFIGURATION
6.8. SECRETS CONFIGURATION

CHAPTER 7. ADDING HOSTS TO AN EXISTING CLUSTER
7.1. OVERVIEW
7.2. ADDING HOSTS USING THE QUICK INSTALLER TOOL
7.3. ADDING HOSTS

Procedure
7.4. ADDING ETCD HOSTS TO EXISTING CLUSTER
7.5. REPLACING EXISTING MASTERS WITH ETCD COLOCATED
7.6. MIGRATING THE NODES

CHAPTER 8. LOADING THE DEFAULT IMAGE STREAMS AND TEMPLATES
8.1. OVERVIEW
8.2. OFFERINGS BY SUBSCRIPTION TYPE

8.2.1. OpenShift Container Platform Subscription
8.2.2. xPaaS Middleware Add-on Subscriptions

8.3. BEFORE YOU BEGIN
8.4. PREREQUISITES
8.5. CREATING IMAGE STREAMS FOR OPENSHIFT CONTAINER PLATFORM IMAGES
8.6. CREATING IMAGE STREAMS FOR XPAAS MIDDLEWARE IMAGES
8.7. CREATING DATABASE SERVICE TEMPLATES
8.8. CREATING INSTANT APP AND QUICKSTART TEMPLATES
8.9. WHAT’S NEXT?

220
220
222
225
227
228
228
229
229
230
231
231
235

237
237
238
238
239
240
242
242
242
243
244
244
244
245
245
245
246
247

248
248
248
249
249
251
252
254

255
255
255
255
256
256
256
257
257
257
258
259

Table of Contents

7

. .

. .

. .

CHAPTER 9. CONFIGURING CUSTOM CERTIFICATES
9.1. OVERVIEW
9.2. CONFIGURING CUSTOM CERTIFICATES DURING INSTALLATION
9.3. CONFIGURING CUSTOM CERTIFICATES FOR THE WEB CONSOLE OR CLI
9.4. CONFIGURING A CUSTOM MASTER HOST CERTIFICATE
9.5. CONFIGURING A CUSTOM WILDCARD CERTIFICATE FOR THE DEFAULT ROUTER
9.6. CONFIGURING A CUSTOM CERTIFICATE FOR THE IMAGE REGISTRY
9.7. CONFIGURING A CUSTOM CERTIFICATE FOR A LOAD BALANCER
9.8. RETROFIT CUSTOM CERTIFICATES INTO A CLUSTER

9.8.1. Retrofit Custom Master Certificates into a Cluster
9.8.2. Retrofit Custom Router Certificates into a Cluster

9.9. USING CUSTOM CERTIFICATES WITH OTHER COMPONENTS

CHAPTER 10. REDEPLOYING CERTIFICATES
10.1. OVERVIEW
10.2. CHECKING CERTIFICATE EXPIRATIONS

10.2.1. Role Variables
10.2.2. Running Certificate Expiration Playbooks

Other Example Playbooks
10.2.3. Output Formats

HTML Report
JSON Report

10.3. REDEPLOYING CERTIFICATES
10.3.1. Redeploying All Certificates Using the Current OpenShift Container Platform and etcd CA
10.3.2. Redeploying a New or Custom OpenShift Container Platform CA
10.3.3. Redeploying a New etcd CA
10.3.4. Redeploying Master Certificates Only
10.3.5. Redeploying etcd Certificates Only
10.3.6. Redeploying Node Certificates Only
10.3.7. Redeploying Registry or Router Certificates Only

10.3.7.1. Redeploying Registry Certificates Only
10.3.7.2. Redeploying Router Certificates Only

10.3.8. Redeploying Custom Registry or Router Certificates
10.3.8.1. Redeploying Registry Certificates Manually
10.3.8.2. Redeploying Router Certificates Manually

CHAPTER 11. CONFIGURING AUTHENTICATION AND USER AGENT
11.1. OVERVIEW
11.2. IDENTITY PROVIDER PARAMETERS
11.3. CONFIGURING IDENTITY PROVIDERS

11.3.1. Configuring identity providers with Ansible
11.3.2. Configuring identity providers in the master configuration file
11.3.3. Configuring an identity provider or method

11.3.3.1. Manually provisioning a user when using the lookup mapping method
11.3.4. Allow all
11.3.5. Deny all
11.3.6. HTPasswd
11.3.7. Keystone
11.3.8. LDAP authentication
11.3.9. Basic authentication (remote)
11.3.10. Request header
11.3.11. GitHub
11.3.12. GitLab

260
260
260
260
262
263
264
265
266
266
266
267

268
268
268
268
269
270
270
270
271
271
272
272
273
274
274
275
275
275
275
275
275
277

280
280
280
281
282
282
283
283
284
284
285
286
287
290
292
299
301

OpenShift Container Platform 3.7 Installation and Configuration

8

. .

. .

. .

. .

11.3.13. Google
11.3.14. OpenID connect

11.4. TOKEN OPTIONS
11.5. GRANT OPTIONS
11.6. SESSION OPTIONS
11.7. PREVENTING CLI VERSION MISMATCH WITH USER AGENT

CHAPTER 12. SYNCING GROUPS WITH LDAP
12.1. OVERVIEW
12.2. CONFIGURING LDAP SYNC

12.2.1. LDAP Client Configuration
12.2.2. LDAP Query Definition
12.2.3. User-Defined Name Mapping

12.3. RUNNING LDAP SYNC
12.4. RUNNING A GROUP PRUNING JOB
12.5. SYNC EXAMPLES

12.5.1. RFC 2307
12.5.1.1. RFC2307 with User-Defined Name Mappings

12.5.2. RFC 2307 with User-Defined Error Tolerances
12.5.3. Active Directory
12.5.4. Augmented Active Directory

12.6. NESTED MEMBERSHIP SYNC EXAMPLE
12.7. LDAP SYNC CONFIGURATION SPECIFICATION

12.7.1. v1.LDAPSyncConfig
12.7.2. v1.StringSource
12.7.3. v1.LDAPQuery
12.7.4. v1.RFC2307Config
12.7.5. v1.ActiveDirectoryConfig
12.7.6. v1.AugmentedActiveDirectoryConfig

CHAPTER 13. CONFIGURING LDAP FAILOVER
13.1. PREREQUISITES FOR CONFIGURING BASIC REMOTE AUTHENTICATION
13.2. GENERATING AND SHARING CERTIFICATES WITH THE REMOTE BASIC AUTHENTICATION SERVER

13.3. CONFIGURING SSSD FOR LDAP FAILOVER
13.4. CONFIGURING APACHE TO USE SSSD
13.5. CONFIGURING OPENSHIFT CONTAINER PLATFORM TO USE SSSD AS THE BASIC REMOTE
AUTHENTICATION SERVER

CHAPTER 14. CONFIGURING THE SDN
14.1. OVERVIEW
14.2. AVAILABLE SDN PROVIDERS

Installing VMware NSX-T (™) on OpenShift Container Platform
14.3. CONFIGURING THE POD NETWORK WITH ANSIBLE
14.4. CONFIGURING THE POD NETWORK ON MASTERS
14.5. CONFIGURING THE POD NETWORK ON NODES
14.6. MIGRATING BETWEEN SDN PLUG-INS

14.6.1. Migrating from ovs-multitenant to ovs-networkpolicy
14.7. EXTERNAL ACCESS TO THE CLUSTER NETWORK
14.8. USING FLANNEL

CHAPTER 15. CONFIGURING NUAGE SDN
15.1. NUAGE SDN AND OPENSHIFT CONTAINER PLATFORM
15.2. DEVELOPER WORKFLOW

302
303
306
306
307
308

310
310
310
310
311
312
312
313
313
314
316
318
320
322
325
328
328
330
331
332
333
334

336
336

336
337
339

342

344
344
344
344
344
345
347
347
348
349
349

352
352
352

Table of Contents

9

. .

. .

. .

. .

. .

15.3. OPERATIONS WORKFLOW
15.4. INSTALLATION

CHAPTER 16. CONFIGURING FOR AMAZON WEB SERVICES (AWS)
16.1. OVERVIEW
16.2. PERMISSIONS
16.3. CONFIGURING A SECURITY GROUP

16.3.1. Overriding Detected IP Addresses and Host Names
16.4. CONFIGURING AWS VARIABLES
16.5. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR AWS

16.5.1. Configuring OpenShift Container Platform for AWS with Ansible
16.5.2. Manually Configuring OpenShift Container Platform Masters for AWS
16.5.3. Manually Configuring OpenShift Container Platform Nodes for AWS
16.5.4. Manually Setting Key-Value Access Pairs

16.6. APPLYING CONFIGURATION CHANGES
16.7. LABELING CLUSTERS FOR AWS

16.7.1. Resources That Need Tags
16.7.2. Tagging an Existing Cluster

CHAPTER 17. CONFIGURING FOR OPENSTACK
17.1. OVERVIEW
17.2. PERMISSIONS
17.3. CONFIGURING A SECURITY GROUP
17.4. CONFIGURING OPENSTACK VARIABLES
17.5. CONFIGURING OPENSHIFT CONTAINER PLATFORM MASTERS FOR OPENSTACK

17.5.1. Configuring OpenShift Container Platform for OpenStack with Ansible
17.5.2. Manually Configuring OpenShift Container Platform Masters for OpenStack
17.5.3. Manually Configuring OpenShift Container Platform Nodes for OpenStack

17.6. APPLYING CONFIGURATION CHANGES

CHAPTER 18. CONFIGURING FOR GCE
18.1. OVERVIEW
18.2. PERMISSIONS
18.3. CONFIGURING MASTERS

18.3.1. Configuring OpenShift Container Platform Masters for GCE with Ansible
18.3.2. Manually Configuring OpenShift Container Platform Masters for GCE

18.4. CONFIGURING NODES
18.5. CONFIGURING MULTIZONE SUPPORT IN A GCE DEPLOYMENT
18.6. APPLYING CONFIGURATION CHANGES

CHAPTER 19. CONFIGURING FOR AZURE
19.1. OVERVIEW
19.2. PERMISSIONS
19.3. PREREQUISITES
19.4. THE AZURE CONFIGURATION FILE
19.5. CONFIGURING MASTERS
19.6. CONFIGURING NODES
19.7. APPLYING CONFIGURATION CHANGES

CHAPTER 20. CONFIGURING FOR VMWARE VSPHERE
20.1. OVERVIEW
20.2. ENABLING VMWARE VSPHERE CLOUD PROVIDER
20.3. THE VMWARE VSPHERE CONFIGURATION FILE
20.4. CONFIGURING MASTERS

352
352

355
355
355
356
357
357
358
358
359
359
360
360
360
361
361

363
363
363
363
364
364
364
365
366
366

368
368
368
368
368
368
369
370
370

372
372
372
372
372
373
373
374

375
375
375
377
378

OpenShift Container Platform 3.7 Installation and Configuration

10

. .

. .

20.5. CONFIGURING NODES
20.6. APPLYING CONFIGURATION CHANGES
20.7. BACKUP OF PERSISTENT VOLUMES

CHAPTER 21. CONFIGURING FOR LOCAL VOLUME
21.1. OVERVIEW
21.2. ENABLING LOCAL VOLUMES
21.3. MOUNTING LOCAL VOLUMES
21.4. CONFIGURING THE LOCAL PROVISIONER
21.5. DEPLOYING THE LOCAL PROVISIONER
21.6. ADDING NEW DEVICES

CHAPTER 22. CONFIGURING PERSISTENT STORAGE
22.1. OVERVIEW
22.2. PERSISTENT STORAGE USING NFS

22.2.1. Overview
22.2.2. Provisioning
22.2.3. Enforcing Disk Quotas
22.2.4. NFS Volume Security

22.2.4.1. Group IDs
22.2.4.2. User IDs
22.2.4.3. SELinux
22.2.4.4. Export Settings

22.2.5. Reclaiming Resources
22.2.6. Automation
22.2.7. Additional Configuration and Troubleshooting

22.3. PERSISTENT STORAGE USING GLUSTERFS
22.3.1. Overview

22.3.1.1. Containerized Red Hat Gluster Storage
22.3.1.2. Container Native Storage Recommendations

22.3.1.2.1. Creation Time of Volumes with Container Native Storage
22.3.1.2.2. Deletion Time of Volumes with Container Native Storage
22.3.1.2.3. Recommended Memory Requirements for Container Native Storage

22.3.1.3. Dedicated Storage Cluster
22.3.2. Support Requirements

22.3.2.1. Supported Operating Systems
22.3.2.2. Environment Requirements

22.3.3. Provisioning
22.3.3.1. Creating Gluster Endpoints
22.3.3.2. Creating the Persistent Volume
22.3.3.3. Creating the Persistent Volume Claim

22.3.4. Gluster Volume Security
22.3.4.1. Group IDs
22.3.4.2. User IDs
22.3.4.3. SELinux

22.4. PERSISTENT STORAGE USING OPENSTACK CINDER
22.4.1. Overview
22.4.2. Provisioning Cinder PVs

22.4.2.1. Creating the Persistent Volume
22.4.2.2. Cinder PV format
22.4.2.3. Cinder volume security

22.5. PERSISTENT STORAGE USING CEPH RADOS BLOCK DEVICE (RBD)
22.5.1. Overview

379
379
379

381
381
381
382
382
383
384

385
385
385
385
386
387
387
388
389
390
390
391
392
392
392
393
393
393
394
394
394
394
395
395
396
396
397
398
399
400
400
401
402
402
402
403
403
404
404
405
405

Table of Contents

11

22.5.2. Provisioning
22.5.2.1. Creating the Ceph Secret
22.5.2.2. Creating the Persistent Volume

22.5.3. Ceph Volume Security
22.6. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE

22.6.1. Overview
22.6.2. Provisioning

22.6.2.1. Creating the Persistent Volume
22.6.2.2. Volume Format
22.6.2.3. Maximum Number of EBS Volumes on a Node

22.7. PERSISTENT STORAGE USING GCE PERSISTENT DISK
22.7.1. Overview
22.7.2. Provisioning

22.7.2.1. Creating the Persistent Volume
22.7.2.2. Volume Format

22.8. PERSISTENT STORAGE USING ISCSI
22.8.1. Overview
22.8.2. Provisioning

22.8.2.1. Enforcing Disk Quotas
22.8.2.2. iSCSI Volume Security
22.8.2.3. iSCSI Multipathing

22.9. PERSISTENT STORAGE USING FIBRE CHANNEL
22.9.1. Overview
22.9.2. Provisioning

22.9.2.1. Enforcing Disk Quotas
22.9.2.2. Fibre Channel Volume Security

22.10. PERSISTENT STORAGE USING AZURE DISK
22.10.1. Overview
22.10.2. Prerequisites
22.10.3. Provisioning
22.10.4. Configuring Azure Disk for regional cloud

22.10.4.1. Creating the Persistent Volume
22.10.4.2. Volume Format

22.11. PERSISTENT STORAGE USING AZURE FILE
22.11.1. Overview
22.11.2. Before you begin
22.11.3. Configuring Azure File for regional cloud
22.11.4. Creating the PV
22.11.5. Creating the Azure Storage Account secret

22.12. PERSISTENT STORAGE USING FLEXVOLUME PLUG-INS
22.12.1. Overview
22.12.2. Installing FlexVolume Drivers
22.12.3. Consuming Storage using FlexVolume
22.12.4. FlexVolume Drivers

22.12.4.1. FlexVolume Drivers with Master-initiated Attach/Detach
22.12.4.2. FlexVolume Drivers Without Master-initiated Attach/Detach

22.13. USING VMWARE VSPHERE VOLUMES FOR PERSISTENT STORAGE
22.13.1. Overview

Prerequisites
22.13.2. Provisioning VMware vSphere volumes

22.13.2.1. Creating persistent volumes
22.13.2.2. Formatting VMware vSphere volumes

22.14. PERSISTENT STORAGE USING LOCAL VOLUME

406
406
407
408
409
409
410
410
411
411
411
411
412
412
413
413
413
414
414
414
415
415
415
415
416
416
416
416
417
417
417
417
419
419
419
419
420
420
420
421
421
422
422
423
424
426
427
427
427
428
428
429
429

OpenShift Container Platform 3.7 Installation and Configuration

12

. .

22.14.1. Overview
22.14.2. Provisioning
22.14.3. Creating Local Persistent Volume Claim
22.14.4. Feature Status

22.15. DYNAMIC PROVISIONING AND CREATING STORAGE CLASSES
22.15.1. Overview
22.15.2. Available dynamically provisioned plug-ins
22.15.3. Defining a StorageClass

22.15.3.1. Basic StorageClass object definition
22.15.3.2. StorageClass annotations
22.15.3.3. OpenStack Cinder object definition
22.15.3.4. AWS ElasticBlockStore (EBS) object definition
22.15.3.5. GCE PersistentDisk (gcePD) object definition
22.15.3.6. GlusterFS object definition
22.15.3.7. Ceph RBD object definition
22.15.3.8. Trident object definition
22.15.3.9. VMware vSphere object definition
22.15.3.10. Azure Disk object definition

22.15.4. Changing the default StorageClass
22.15.5. Additional information and examples

22.16. VOLUME SECURITY
22.16.1. Overview
22.16.2. SCCs, Defaults, and Allowed Ranges
22.16.3. Supplemental Groups
22.16.4. fsGroup
22.16.5. User IDs
22.16.6. SELinux Options

22.17. SELECTOR-LABEL VOLUME BINDING
22.17.1. Overview
22.17.2. Motivation
22.17.3. Deployment

22.17.3.1. Prerequisites
22.17.3.2. Define the Persistent Volume and Claim
22.17.3.3. Deploy the Persistent Volume and Claim

22.18. ENABLING CONTROLLER-MANAGED ATTACHMENT AND DETACHMENT
22.18.1. Overview
22.18.2. Determining What Is Managing Attachment and Detachment
22.18.3. Configuring Nodes to Enable Controller-managed Attachment and Detachment

CHAPTER 23. PERSISTENT STORAGE EXAMPLES
23.1. OVERVIEW
23.2. SHARING AN NFS MOUNT ACROSS TWO PERSISTENT VOLUME CLAIMS

23.2.1. Overview
23.2.2. Creating the Persistent Volume
23.2.3. Creating the Persistent Volume Claim
23.2.4. Ensuring NFS Volume Access
23.2.5. Creating the Pod
23.2.6. Creating an Additional Pod to Reference the Same PVC

23.3. COMPLETE EXAMPLE USING CEPH RBD
23.3.1. Overview
23.3.2. Installing the ceph-common Package
23.3.3. Creating the Ceph Secret
23.3.4. Creating the Persistent Volume

429
430
430
430
431
431
432
433
433
434
434
435
435
436
437
438
438
439
440
440
441
441
441
445
448
450
452
453
453
453
454
454
454
455
455
455
456
456

457
457
457
457
457
458
459
460
464
466
466
466
466
467

Table of Contents

13

23.3.5. Creating the Persistent Volume Claim
23.3.6. Creating the Pod
23.3.7. Defining Group and Owner IDs (Optional)
23.3.8. Setting ceph-user-secret as Default for Projects

23.4. USING CEPH RBD FOR DYNAMIC PROVISIONING
23.4.1. Overview
23.4.2. Creating a pool for dynamic volumes
23.4.3. Using an existing Ceph cluster for dynamic persistent storage
23.4.4. Setting ceph-user-secret as the default for projects

23.5. COMPLETE EXAMPLE USING GLUSTERFS
23.5.1. Overview
23.5.2. Installing the glusterfs-fuse Package
23.5.3. Creating the Gluster Endpoints and Gluster Service for Persistence
23.5.4. Creating the Persistent Volume
23.5.5. Creating the Persistent Volume Claim
23.5.6. Defining GlusterFS Volume Access
23.5.7. Creating the Pod using NGINX Web Server image

23.6. COMPLETE EXAMPLE OF DYNAMIC PROVISIONING USING CONTAINERIZED GLUSTERFS
23.6.1. Overview
23.6.2. Verify the Environment and Gather Needed Information
23.6.3. Create a Storage Class for Your GlusterFS Dynamic Provisioner
23.6.4. Create a PVC to Request Storage for Your Application
23.6.5. Create a NGINX Pod That Uses the PVC

23.7. COMPLETE EXAMPLE OF DYNAMIC PROVISIONING USING DEDICATED GLUSTERFS
23.7.1. Overview
23.7.2. Environment and Prerequisites
23.7.3. Installing and Configuring Heketi
23.7.4. Loading Topology
23.7.5. Dynamically Provision a Volume
23.7.6. Creating a NGINX Pod That Uses the PVC

23.8. EXAMPLE: CONTAINERIZED HEKETI FOR MANAGING DEDICATED GLUSTERFS STORAGE
23.8.1. Overview
23.8.2. Environment and Prerequisites
23.8.3. Installing and Configuring Heketi
23.8.4. Loading Topology
23.8.5. Dynamically Provision a Volume
23.8.6. Creating a NGINX Pod That Uses the PVC

23.9. MOUNTING VOLUMES ON PRIVILEGED PODS
23.9.1. Overview
23.9.2. Prerequisites
23.9.3. Creating the Persistent Volume
23.9.4. Creating a Regular User
23.9.5. Creating the Persistent Volume Claim
23.9.6. Verifying the Setup

23.9.6.1. Checking the Pod SCC
23.9.6.2. Verifying the Mount

23.10. BACKING DOCKER REGISTRY WITH GLUSTERFS STORAGE
23.10.1. Overview
23.10.2. Prerequisites
23.10.3. Create the Gluster Persistent Volume
23.10.4. Attach the PVC to the Docker Registry
23.10.5. Known Issues

23.10.5.1. Pod Cannot Resolve the Volume Host

468
469
470
470
471
471
471
472
475
476
476
476
476
478
479
480
480
485
485
485
486
487
488
490
490
490
491
492
494
495
496
497
497
497
498
500
502
503
503
503
503
504
504
505
505
505
506
506
506
506
507
507
507

OpenShift Container Platform 3.7 Installation and Configuration

14

. .

. .

. .

. .

. .

. .

23.11. BINDING PERSISTENT VOLUMES BY LABELS
23.11.1. Overview

23.11.1.1. Assumptions
23.11.2. Defining Specifications

23.11.2.1. Persistent Volume with Labels
23.11.2.2. Persistent Volume Claim with Selectors
23.11.2.3. Volume Endpoints
23.11.2.4. Deploy the PV, PVC, and Endpoints

23.12. USING STORAGE CLASSES FOR DYNAMIC PROVISIONING
23.12.1. Overview
23.12.2. Scenario 1: Basic Dynamic Provisioning with Two Types of StorageClasses
23.12.3. Scenario 2: How to enable Default StorageClass behavior for a Cluster

23.13. USING STORAGE CLASSES FOR EXISTING LEGACY STORAGE
23.13.1. Overview

23.13.1.1. Scenario 1: Link StorageClass to existing Persistent Volume with Legacy Data
23.14. CONFIGURING AZURE BLOB STORAGE FOR INTEGRATED DOCKER REGISTRY

23.14.1. Overview
23.14.2. Before You Begin
23.14.3. Overriding Registry Configuration

CHAPTER 24. WORKING WITH HTTP PROXIES
24.1. OVERVIEW
24.2. CONFIGURING NO_PROXY
24.3. CONFIGURING HOSTS FOR PROXIES
24.4. CONFIGURING HOSTS FOR PROXIES USING ANSIBLE
24.5. PROXYING DOCKER PULL
24.6. USING MAVEN BEHIND A PROXY
24.7. CONFIGURING S2I BUILDS FOR PROXIES
24.8. CONFIGURING DEFAULT TEMPLATES FOR PROXIES
24.9. SETTING PROXY ENVIRONMENT VARIABLES IN PODS
24.10. GIT REPOSITORY ACCESS

CHAPTER 25. CONFIGURING GLOBAL BUILD DEFAULTS AND OVERRIDES
25.1. OVERVIEW
25.2. SETTING GLOBAL BUILD DEFAULTS

25.2.1. Configuring Global Build Defaults with Ansible
25.2.2. Manually Setting Global Build Defaults

25.3. SETTING GLOBAL BUILD OVERRIDES
25.3.1. Configuring Global Build Overrides with Ansible
25.3.2. Manually Setting Global Build Overrides

CHAPTER 26. CONFIGURING PIPELINE EXECUTION
26.1. OVERVIEW
26.2. OPENSHIFT JENKINS CLIENT PLUGIN
26.3. OPENSHIFT JENKINS SYNC PLUGIN

CHAPTER 27. CONFIGURING ROUTE TIMEOUTS

CHAPTER 28. CONFIGURING NATIVE CONTAINER ROUTING
28.1. NETWORK OVERVIEW
28.2. CONFIGURE NATIVE CONTAINER ROUTING
28.3. SETTING UP A NODE FOR CONTAINER NETWORKING
28.4. SETTING UP A ROUTER FOR CONTAINER NETWORKING

CHAPTER 29. ROUTING FROM EDGE LOAD BALANCERS

508
508
509
509
509
510
510
511
511
511
511
514
518
518
518
521
521
521
521

523
523
523
524
525
525
526
526
526
527
527

529
529
529
530
531
532
532
533

535
535
536
536

538

539
539
539
540
540

541

Table of Contents

15

. .

. .

. .

29.1. OVERVIEW
29.2. INCLUDING THE LOAD BALANCER IN THE SDN
29.3. ESTABLISHING A TUNNEL USING A RAMP NODE

29.3.1. Configuring a Highly-Available Ramp Node

CHAPTER 30. AGGREGATING CONTAINER LOGS
30.1. OVERVIEW
30.2. PRE-DEPLOYMENT CONFIGURATION
30.3. SPECIFYING LOGGING ANSIBLE VARIABLES
30.4. DEPLOYING THE EFK STACK
30.5. UNDERSTANDING AND ADJUSTING THE DEPLOYMENT

30.5.1. Ops Cluster
30.5.2. Elasticsearch

30.5.2.1. Persistent Elasticsearch Storage
30.5.2.1.1. Using NFS as a persistent volume
30.5.2.1.2. Using NFS as local storage
30.5.2.1.3. Changing the Scale of Elasticsearch
30.5.2.1.4. Expose Elasticsearch as a Route

30.5.3. Fluentd
30.5.4. Kibana
30.5.5. Curator

30.5.5.1. Creating the Curator Configuration
30.6. CLEANUP
30.7. TROUBLESHOOTING KIBANA
30.8. SENDING LOGS TO AN EXTERNAL ELASTICSEARCH INSTANCE
30.9. SENDING LOGS TO AN EXTERNAL SYSLOG SERVER
30.10. PERFORMING ADMINISTRATIVE ELASTICSEARCH OPERATIONS
30.11. CHANGING THE AGGREGATED LOGGING DRIVER
30.12. UPDATING FLUENTD’S LOG SOURCE AFTER A DOCKER LOG DRIVER UPDATE
30.13. MANUAL ELASTICSEARCH ROLLOUTS

30.13.1. Performing an Elasticsearch Rolling Cluster Restart
30.13.2. Performing an Elasticsearch Full Cluster Restart

CHAPTER 31. AGGREGATE LOGGING SIZING GUIDELINES
31.1. OVERVIEW
31.2. INSTALLATION

31.2.1. Large Clusters
31.3. SYSTEMD-JOURNALD AND RSYSLOG
31.4. SCALING UP EFK LOGGING
31.5. STORAGE CONSIDERATIONS

CHAPTER 32. ENABLING CLUSTER METRICS
32.1. OVERVIEW
32.2. BEFORE YOU BEGIN
32.3. METRICS PROJECT
32.4. METRICS DATA STORAGE

32.4.1. Persistent Storage
32.4.2. Capacity Planning for Cluster Metrics

Recommendations for OpenShift Container Platform Version 3.7
Known Issues and Limitations

32.4.3. Non-Persistent Storage
32.5. METRICS ANSIBLE ROLE

32.5.1. Specifying Metrics Ansible Variables
32.5.2. Using Secrets

541
541
541
544

545
545
545
546
556
556
556
557
558
560
561
562
563
563
568
569
571
571
571
573
574
577
578
578
579
579
580

582
582
582
584
584
585
586

588
588
588
588
588
589
589
591
591
592
592
592
596

OpenShift Container Platform 3.7 Installation and Configuration

16

. .

. .

32.5.2.1. Providing Your Own Certificates
32.6. DEPLOYING THE METRIC COMPONENTS

32.6.1. Metrics Diagnostics
32.7. SETTING THE METRICS PUBLIC URL
32.8. ACCESSING HAWKULAR METRICS DIRECTLY

32.8.1. OpenShift Container Platform Projects and Hawkular Tenants
32.8.2. Authorization

32.9. SCALING OPENSHIFT CONTAINER PLATFORM CLUSTER METRICS PODS
32.10. INTEGRATION WITH AGGREGATED LOGGING
32.11. CLEANUP
32.12. PROMETHEUS ON OPENSHIFT CONTAINER PLATFORM

32.12.1. Setting Prometheus Role Variables
32.12.2. Deploying Prometheus Using Ansible Installer

32.12.2.1. Additional Methods for Deploying Prometheus
32.12.2.2. Accessing the Prometheus Web UI
32.12.2.3. Configuring Prometheus for OpenShift Container Platform

32.12.3. OpenShift Container Platform Metrics via Prometheus
32.12.3.1. Current Metrics

32.12.4. Undeploying Prometheus

CHAPTER 33. CUSTOMIZING THE WEB CONSOLE
33.1. OVERVIEW
33.2. LOADING EXTENSION SCRIPTS AND STYLESHEETS

33.2.1. Setting Extension Properties
33.3. EXTENSION OPTION FOR EXTERNAL LOGGING SOLUTIONS
33.4. CUSTOMIZING AND DISABLING THE GUIDED TOUR
33.5. CUSTOMIZING DOCUMENTATION LINKS
33.6. CUSTOMIZING THE LOGO
33.7. CHANGING LINKS TO DOCUMENTATION
33.8. ADDING OR CHANGING LINKS TO DOWNLOAD THE CLI

33.8.1. Customizing the About Page
33.9. CONFIGURING NAVIGATION MENUS

33.9.1. Top Navigation Dropdown Menus
33.9.2. Application Launcher
33.9.3. System Status Badge
33.9.4. Project Left Navigation

33.10. CONFIGURING FEATURED APPLICATIONS
33.11. CONFIGURING CATALOG CATEGORIES
33.12. CONFIGURING QUOTA NOTIFICATION MESSAGES
33.13. CONFIGURING THE CREATE FROM URL NAMESPACE WHITELIST
33.14. DISABLING THE COPY LOGIN COMMAND

33.14.1. Enabling Wildcard Routes
33.15. ENABLING FEATURES IN TECHNOLOGY PREVIEW
33.16. SERVING STATIC FILES

33.16.1. Enabling HTML5 Mode
33.17. CUSTOMIZING THE LOGIN PAGE

33.17.1. Example Usage
33.18. CUSTOMIZING THE OAUTH ERROR PAGE
33.19. CHANGING THE LOGOUT URL
33.20. CONFIGURING WEB CONSOLE CUSTOMIZATIONS WITH ANSIBLE

CHAPTER 34. DEPLOYING EXTERNAL PERSISTENT VOLUME PROVISIONERS
34.1. OVERVIEW

596
596
597
598
598
599
599
599
599
599
600
600
601
602
602
602
603
603
606

607
607
607
608
608
609
609
609
610
610
611
612
612
613
613
614
616
617
619
619
620
620
621
622
622
622
623
623
623
624

626
626

Table of Contents

17

. .

34.2. BEFORE YOU BEGIN
34.2.1. External Provisioners Ansible Role
34.2.2. External Provisioners Ansible Variables
34.2.3. AWS EFS Provisioner Ansible Variables

34.3. DEPLOYING THE PROVISIONERS
34.3.1. Deploying the AWS EFS Provisioner

34.3.1.1. AWS EFS Object Definition
34.4. CLEANUP

CHAPTER 35. REVISION HISTORY: INSTALLATION AND CONFIGURATION
35.1. MON MAR 12 2018
35.2. WED MAR 07 2018
35.3. MON FEB 26 2018
35.4. FRI FEB 23 2018
35.5. MON FEB 19 2018
35.6. FRI FEB 16 2018
35.7. TUE FEB 06 2018
35.8. THU JAN 25 2018
35.9. FRI DEC 22 2017
35.10. MON DEC 11 2017
35.11. WED NOV 29 2017

626
626
626
627
628
628
628
629

630
630
630
630
630
631
631
631
632
632
632
633

OpenShift Container Platform 3.7 Installation and Configuration

18

Table of Contents

19

CHAPTER 1. OVERVIEW
OpenShift Container Platform Installation and Configuration topics cover the basics of installing and
configuring OpenShift Container Platform in your environment. Configuration, management, and logging
are also covered. Use these topics for the one-time tasks required to quickly set up your OpenShift
Container Platform environment and configure it based on your organizational needs.

For day to day cluster administration tasks, see Cluster Administration.

OpenShift Container Platform 3.7 Installation and Configuration

20

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-index

CHAPTER 2. INSTALLING A CLUSTER

2.1. PLANNING

2.1.1. Initial Planning

For production environments, several factors influence installation. Consider the following questions as
you read through the documentation:

Which installation method do you want to use? The Installation Methods section provides some
information about the quick and advanced installation methods.

How many pods are required in your cluster? The Sizing Considerations section provides limits
for nodes and pods so you can calculate how large your environment needs to be.

How many hosts do you require in the cluster? The Environment Scenarios section provides
multiple examples of Single Master and Multiple Master configurations.

Is high availability required? High availability is recommended for fault tolerance. In this
situation, you might aim to use the Multiple Masters Using Native HA example as a basis for
your environment.

Which installation type do you want to use: RPM or containerized? Both installations provide a
working OpenShift Container Platform environment, but you might have a preference for a
particular method of installing, managing, and updating your services.

Which identity provider do you use for authentication? If you already use a supported identity
provider, it is a best practice to configure OpenShift Container Platform to use that identity
provider during advanced installation.

Is my installation supported if integrating with other technologies? See the OpenShift Container
Platform Tested Integrations for a list of tested integrations.

2.1.2. Installation Methods

Both the quick and advanced installation methods are supported for development and production
environments. If you want to quickly get OpenShift Container Platform up and running to try out for the
first time, use the quick installer and let the interactive CLI guide you through the configuration options
relevant to your environment.

For the most control over your cluster’s configuration, you can use the advanced installation method.
This method is particularly suited if you are already familiar with Ansible. However, following along with
the OpenShift Container Platform documentation should equip you with enough information to reliably
deploy your cluster and continue to manage its configuration post-deployment using the provided Ansible
playbooks directly.

If you install initially using the quick installer, you can always further tweak your cluster’s configuration
and adjust the number of hosts in the cluster using the same installer tool. If you wanted to later switch to
using the advanced method, you can create an inventory file for your configuration and carry on that
way.

2.1.3. Sizing Considerations

Determine how many nodes and pods you require for your OpenShift Container Platform cluster. Cluster

CHAPTER 2. INSTALLING A CLUSTER

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-high-availability
https://access.redhat.com/articles/2176281

scalability correlates to the number of pods in a cluster environment. That number influences the other
numbers in your setup. See Cluster Limits for the latest limits for objects in OpenShift Container
Platform.

2.1.4. Environment Scenarios

This section outlines different examples of scenarios for your OpenShift Container Platform environment.
Use these scenarios as a basis for planning your own OpenShift Container Platform cluster, based on
your sizing needs.

NOTE

Moving from a single master cluster to multiple masters after installation is not supported.

For information on updating labels, see Updating Labels on Nodes.

2.1.4.1. Single Master and Node on One System

OpenShift Container Platform can be installed on a single system for a development environment only.
An all-in-one environment is not considered a production environment.

2.1.4.2. Single Master and Multiple Nodes

The following table describes an example environment for a single master (with embedded etcd) and
two nodes:

Host Name Infrastructure Component to Install

master.example.com Master and node

node1.example.com Node

node2.example.com

2.1.4.3. Single Master, Multiple etcd, and Multiple Nodes

The following table describes an example environment for a single master, three etcd hosts, and two
nodes:

Host Name Infrastructure Component to Install

master.example.com Master and node

etcd1.example.com etcd

etcd2.example.com

etcd3.example.com

OpenShift Container Platform 3.7 Installation and Configuration

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/scaling_and_performance_guide/#scaling-performance-cluster-limits
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#updating-labels-on-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-promoting-application-de
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#node
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#node

node1.example.com Node

node2.example.com

Host Name Infrastructure Component to Install

NOTE

When specifying multiple etcd hosts, external etcd is installed and configured. Clustering
of OpenShift Container Platform’s embedded etcd is not supported.

2.1.4.4. Multiple Masters Using Native HA

The following describes an example environment for three masters, one HAProxy load balancer, three
etcd hosts, and two nodes using the native HA method:

Host Name Infrastructure Component to Install

master1.example.com Master (clustered using native HA) and node

master2.example.com

master3.example.com

lb.example.com HAProxy to load balance API master endpoints

etcd1.example.com etcd

etcd2.example.com

etcd3.example.com

node1.example.com Node

node2.example.com

NOTE

When specifying multiple etcd hosts, external etcd is installed and configured. Clustering
of OpenShift Container Platform’s embedded etcd is not supported.

2.1.4.5. Stand-alone Registry

You can also install OpenShift Container Platform to act as a stand-alone registry using the OpenShift
Container Platform’s integrated registry. See Installing a Stand-alone Registry for details on this
scenario.

CHAPTER 2. INSTALLING A CLUSTER

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#node

2.1.5. RPM Versus Containerized

An RPM installation installs all services through package management and configures services to run
within the same user space, while a containerized installation installs services using container images
and runs separate services in individual containers.

See the Installing on Containerized Hosts topic for more details on configuring your installation to use
containerized services.

2.2. PREREQUISITES

2.2.1. System Requirements

The following sections identify the hardware specifications and system-level requirements of all hosts
within your OpenShift Container Platform environment.

2.2.1.1. Red Hat Subscriptions

You must have an active OpenShift Container Platform subscription on your Red Hat account to
proceed. If you do not, contact your sales representative for more information.

IMPORTANT

OpenShift Container Platform 3.7 requires Docker 1.12.

2.2.1.2. Minimum Hardware Requirements

The system requirements vary per host type:

Masters
Physical or virtual system, or an instance running on a public or private IaaS.

Base OS: RHEL 7.3, 7.4, or 7.5 with the "Minimal" installation option and the latest
packages from the Extras channel, or RHEL Atomic Host 7.4.2 or later.

Minimum 4 vCPU (additional are strongly recommended).

Minimum 16 GB RAM (additional memory is strongly recommended, especially if etcd
is co-located on masters).

Minimum 40 GB hard disk space for the file system containing /var/.

Minimum 1 GB hard disk space for the file system containing /usr/local/bin/.

Minimum 1 GB hard disk space for the file system containing the system’s temporary

directory.

Masters with a co-located etcd require a minimum of 4 cores. 2 core systems will not
work.

OpenShift Container Platform 3.7 Installation and Configuration

24

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#master

Nodes
Physical or virtual system, or an instance running on a public or private IaaS.

Base OS: RHEL 7.3, 7.4, or 7.5 with "Minimal" installation option, or RHEL Atomic Host
7.4.2 or later.

NetworkManager 1.0 or later.

1 vCPU.

Minimum 8 GB RAM.

Minimum 15 GB hard disk space for the file system containing /var/.

Minimum 1 GB hard disk space for the file system containing /usr/local/bin/.

Minimum 1 GB hard disk space for the file system containing the system’s temporary

directory.

An additional minimum 15 GB unallocated space to be used for Docker’s storage back
end; see Configuring Docker Storage.

External
etcd
Nodes

Minimum 20 GB hard disk space for etcd data.

Consult Hardware Recommendations to properly size your etcd nodes.

Currently, OpenShift Container Platform stores image, build, and deployment metadata
in etcd. You must periodically prune old resources. If you are planning to leverage a
large number of these resources, place etcd on machines with large amounts of
memory and fast SSD drives.

 Meeting the /var/ file system sizing requirements in RHEL Atomic Host requires making changes to
the default configuration. See Managing Storage with Docker-formatted Containers for instructions on
configuring this during or after installation.

 The system’s temporary directory is determined according to the rules defined in the tempfile
module in Python’s standard library.

IMPORTANT

OpenShift Container Platform only supports servers with the x86_64 architecture.

2.2.1.3. Production Level Hardware Requirements

Test or sample environments function with the minimum requirements. For production environments, the
following recommendations apply:

Master Hosts

In a highly available OpenShift Container Platform cluster with external etcd, a master host should
have, in addition to the minimum requirements in the table above, 1 CPU core and 1.5 GB of memory
for each 1000 pods. Therefore, the recommended size of a master host in an OpenShift Container

CHAPTER 2. INSTALLING A CLUSTER

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#node
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/hardware.md#hardware-recommendations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-pruning-resources
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/managing_containers/managing_storage_with_docker_formatted_containers
https://docs.python.org/2/library/tempfile.html#tempfile.tempdir

Platform cluster of 2000 pods would be the minimum requirements of 2 CPU cores and 16 GB of
RAM, plus 2 CPU cores and 3 GB of RAM, totaling 4 CPU cores and 19 GB of RAM.

A minimum of three etcd hosts and a load-balancer between the master hosts are required.

The OpenShift Container Platform master caches deserialized versions of resources aggressively to
ease CPU load. However, in smaller clusters of less than 1000 pods, this cache can waste a lot of
memory for negligible CPU load reduction. The default cache size is 50,000 entries, which, depending on
the size of your resources, can grow to occupy 1 to 2 GB of memory. This cache size can be reduced
using the following setting the in /etc/origin/master/master-config.yaml:

kubernetesMasterConfig:
 apiServerArguments:
 deserialization-cache-size:
 - "1000"

Node Hosts

The size of a node host depends on the expected size of its workload. As an OpenShift Container
Platform cluster administrator, you will need to calculate the expected workload, then add about 10
percent for overhead. For production environments, allocate enough resources so that a node host
failure does not affect your maximum capacity.

Use the above with the following table to plan the maximum loads for nodes and pods:

Host Sizing Recommendation

Maximum nodes per cluster 2000

Maximum pods per cluster 120000

Maximum pods per nodes 250

Maximum pods per core 10

IMPORTANT

Oversubscribing the physical resources on a node affects resource guarantees the
Kubernetes scheduler makes during pod placement. Learn what measures you can take
to avoid memory swapping.

2.2.1.4. Storage management

Table 2.1. The main directories to which OpenShift Container Platform components write data

Directory Notes Sizing Expected Growth

OpenShift Container Platform 3.7 Installation and Configuration

26

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#disabling-swap-memory

/var/lib/openshift Used for etcd storage
only when in single
master mode and etcd is
embedded in the
atomic-openshift-
master process.

Less than 10GB. Will grow slowly with the
environment. Only
storing metadata.

/var/lib/etcd Used for etcd storage
when in Multi-Master
mode or when etcd is
made standalone by an
administrator.

Less than 20 GB. Will grow slowly with the
environment. Only
storing metadata.

/var/lib/docker When the run time is
docker, this is the mount
point. Storage used for
active container
runtimes (including
pods) and storage of
local images (not used
for registry storage).
Mount point should be
managed by docker-
storage rather than
manually.

50 GB for a Node with
16 GB memory.

Additional 20-25 GB for
every additional 8 GB of
memory.

Growth is limited by the
capacity for running
containers.

/var/lib/containers When the run time is
CRI-O, this is the mount
point. Storage used for
active container
runtimes (including
pods) and storage of
local images (not used
for registry storage).

50 GB for a Node with
16 GB memory.
Additional 20-25 GB for
every additional 8 GB of
memory.

Growth limited by
capacity for running
containers

/var/lib/origin/openshift
.local.volumes

Ephemeral volume
storage for pods. This
includes anything
external that is mounted
into a container at
runtime. Includes
environment variables,
kube secrets, and data
volumes not backed by
persistent storage PVs.

Varies Minimal if pods requiring
storage are using
persistent volumes. If
using ephemeral
storage, this can grow
quickly.

/var/log Log files for all
components.

10 to 30 GB. Log files can grow
quickly; size can be
managed by growing
disks or managed using
log rotate.

Directory Notes Sizing Expected Growth

CHAPTER 2. INSTALLING A CLUSTER

27

2.2.1.5. Configuring Core Usage

By default, OpenShift Container Platform masters and nodes use all available cores in the system they
run on. You can choose the number of cores you want OpenShift Container Platform to use by setting
the GOMAXPROCS environment variable.

For example, run the following before starting the server to make OpenShift Container Platform only run
on one core:

export GOMAXPROCS=1

2.2.1.6. SELinux

Security-Enhanced Linux (SELinux) must be enabled on all of the servers before installing OpenShift
Container Platform or the installer will fail. Also, configure SELINUXTYPE=targeted in the
/etc/selinux/config file:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=enforcing
SELINUXTYPE= can take one of these three values:
targeted - Targeted processes are protected,
minimum - Modification of targeted policy. Only selected processes
are protected.
mls - Multi Level Security protection.
SELINUXTYPE=targeted

Using OverlayFS
OverlayFS is a union file system that allows you to overlay one file system on top of another.

As of Red Hat Enterprise Linux 7.4, you have the option to configure your OpenShift Container Platform
environment to use OverlayFS. The overlay2 graph driver is fully supported in addition to the older
overlay driver. However, Red Hat recommends using overlay2 instead of overlay, because of its
speed and simple implementation.

See the Overlay Graph Driver section of the Atomic Host documentation for instructions on how to to
enable the overlay2 graph driver for the Docker service.

2.2.1.7. Security Warning

OpenShift Container Platform runs containers on hosts in the cluster, and in some cases, such as build
operations and the registry service, it does so using privileged containers. Furthermore, those containers
access the hosts' Docker daemon and perform docker build and docker push operations. As such,
cluster administrators should be aware of the inherent security risks associated with performing docker
run operations on arbitrary images as they effectively have root access. This is particularly relevant for
docker build operations.

Exposure to harmful containers can be limited by assigning specific builds to nodes so that any exposure
is limited to those nodes. To do this, see the Assigning Builds to Specific Nodes section of the Developer
Guide. For cluster administrators, see the Configuring Global Build Defaults and Overrides section of the
Installation and Configuration Guide.

OpenShift Container Platform 3.7 Installation and Configuration

28

https://golang.org/pkg/runtime/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/managing_containers/#overlay_graph_driver
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-assigning-builds-to-nodes

You can also use security context constraints to control the actions that a pod can perform and what it
has the ability to access. For instructions on how to enable images to run with USER in the Dockerfile,
see Managing Security Context Constraints (requires a user with cluster-admin privileges).

For more information, see these articles:

http://opensource.com/business/14/7/docker-security-selinux

https://docs.docker.com/engine/security/security/

2.2.2. Environment Requirements

The following section defines the requirements of the environment containing your OpenShift Container
Platform configuration. This includes networking considerations and access to external services, such as
Git repository access, storage, and cloud infrastructure providers.

2.2.2.1. DNS

OpenShift Container Platform requires a fully functional DNS server in the environment. This is ideally a
separate host running DNS software and can provide name resolution to hosts and containers running
on the platform.

IMPORTANT

Adding entries into the /etc/hosts file on each host is not enough. This file is not copied
into containers running on the platform.

Key components of OpenShift Container Platform run themselves inside of containers and use the
following process for name resolution:

1. By default, containers receive their DNS configuration file (/etc/resolv.conf) from their host.

2. OpenShift Container Platform then inserts one DNS value into the pods (above the node’s
nameserver values). That value is defined in the /etc/origin/node/node-config.yaml file by the
dnsIP parameter, which by default is set to the address of the host node because the host is
using dnsmasq.

3. If the dnsIP parameter is omitted from the node-config.yaml file, then the value defaults to the
kubernetes service IP, which is the first nameserver in the pod’s /etc/resolv.conf file.

As of OpenShift Container Platform 3.2, dnsmasq is automatically configured on all masters and nodes.
The pods use the nodes as their DNS, and the nodes forward the requests. By default, dnsmasq is
configured on the nodes to listen on port 53, therefore the nodes cannot run any other type of DNS
application.

NOTE

NetworkManager is required on the nodes in order to populate dnsmasq with the DNS
IP addresses. DNS does not work properly when the network interface for OpenShift
Container Platform has NM_CONTROLLED=no.

The following is an example set of DNS records:

master1 A 10.64.33.100

CHAPTER 2. INSTALLING A CLUSTER

29

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#security-context-constraints
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#how-do-i
http://opensource.com/business/14/7/docker-security-selinux
https://docs.docker.com/engine/security/security/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/administrator_solutions/#node-config-options
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/administrator_solutions/#node-config-options

master2 A 10.64.33.103
node1 A 10.64.33.101
node2 A 10.64.33.102

If you do not have a properly functioning DNS environment, you could experience failure with:

Product installation via the reference Ansible-based scripts

Deployment of the infrastructure containers (registry, routers)

Access to the OpenShift Container Platform web console, because it is not accessible via IP
address alone

2.2.2.1.1. Configuring Hosts to Use DNS

Make sure each host in your environment is configured to resolve hostnames from your DNS server. The
configuration for hosts' DNS resolution depend on whether DHCP is enabled. If DHCP is:

Disabled, then configure your network interface to be static, and add DNS nameservers to
NetworkManager.

Enabled, then the NetworkManager dispatch script automatically configures DNS based on the
DHCP configuration. Optionally, you can add a value to dnsIP in the node-config.yaml file to
prepend the pod’s resolv.conf file. The second nameserver is then defined by the host’s first
nameserver. By default, this will be the IP address of the node host.

NOTE

For most configurations, do not set the openshift_dns_ip option during the
advanced installation of OpenShift Container Platform (using Ansible), because
this option overrides the default IP address set by dnsIP.

Instead, allow the installer to configure each node to use dnsmasq and forward
requests to SkyDNS or the external DNS provider. If you do set the
openshift_dns_ip option, then it should be set either with a DNS IP that
queries SkyDNS first, or to the SkyDNS service or endpoint IP (the Kubernetes
service IP).

To verify that hosts can be resolved by your DNS server:

1. Check the contents of /etc/resolv.conf:

$ cat /etc/resolv.conf
Generated by NetworkManager
search example.com
nameserver 10.64.33.1
nameserver updated by /etc/NetworkManager/dispatcher.d/99-origin-
dns.sh

In this example, 10.64.33.1 is the address of our DNS server.

2. Test that the DNS servers listed in /etc/resolv.conf are able to resolve host names to the IP
addresses of all masters and nodes in your OpenShift Container Platform environment:

$ dig <node_hostname> @<IP_address> +short

OpenShift Container Platform 3.7 Installation and Configuration

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/administrator_solutions/#node-config-options
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/administrator_solutions/#node-config-options

For example:

$ dig master.example.com @10.64.33.1 +short
10.64.33.100
$ dig node1.example.com @10.64.33.1 +short
10.64.33.101

2.2.2.1.2. Configuring a DNS Wildcard

Optionally, configure a wildcard for the router to use, so that you do not need to update your DNS
configuration when new routes are added.

A wildcard for a DNS zone must ultimately resolve to the IP address of the OpenShift Container Platform
router.

For example, create a wildcard DNS entry for cloudapps that has a low time-to-live value (TTL) and
points to the public IP address of the host where the router will be deployed:

*.cloudapps.example.com. 300 IN A 192.168.133.2

In almost all cases, when referencing VMs you must use host names, and the host names that you use
must match the output of the hostname -f command on each node.

WARNING

In your /etc/resolv.conf file on each node host, ensure that the DNS server that has
the wildcard entry is not listed as a nameserver or that the wildcard domain is not
listed in the search list. Otherwise, containers managed by OpenShift Container
Platform may fail to resolve host names properly.

2.2.2.2. Network Access

A shared network must exist between the master and node hosts. If you plan to configure multiple
masters for high-availability using the advanced installation method, you must also select an IP to be
configured as your virtual IP (VIP) during the installation process. The IP that you select must be routable
between all of your nodes, and if you configure using a FQDN it should resolve on all nodes.

2.2.2.2.1. NetworkManager

NetworkManager, a program for providing detection and configuration for systems to automatically
connect to the network, is required. DNS does not work properly when the network interface for
OpenShift Container Platform has NM_CONTROLLED=no.

2.2.2.2.2. Configuring firewalld as the firewall

While iptables is the default firewall, firewalld is recommended for new installations. You can enable
firewalld by setting os_firewall_use_firewalld=true in the Ansible inventory file.



CHAPTER 2. INSTALLING A CLUSTER

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#routers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#high-availability-masters
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#master-components

[OSEv3:vars]
os_firewall_use_firewalld=True

Setting this variable to true opens the required ports and adds rules to the default zone, which ensure
that firewalld is configured correctly.

NOTE

Using the firewalld default configuration comes with limited configuration options, and
cannot be overridden. For example, while you can set up a storage network with
interfaces in multiple zones, the interface that nodes communicate on must be in the
default zone.

2.2.2.2.3. Required Ports

The OpenShift Container Platform installation automatically creates a set of internal firewall rules on
each host using iptables. However, if your network configuration uses an external firewall, such as a
hardware-based firewall, you must ensure infrastructure components can communicate with each other
through specific ports that act as communication endpoints for certain processes or services.

Ensure the following ports required by OpenShift Container Platform are open on your network and
configured to allow access between hosts. Some ports are optional depending on your configuration and
usage.

Table 2.2. Node to Node

4789 UDP Required for SDN communication between pods on separate hosts.

Table 2.3. Nodes to Master

53 or 8053 TCP/
UDP

Required for DNS resolution of cluster services (SkyDNS). Installations prior to
3.2 or environments upgraded to 3.2 use port 53. New installations will use
8053 by default so that dnsmasq may be configured.

4789 UDP Required for SDN communication between pods on separate hosts.

443 or 8443 TCP Required for node hosts to communicate to the master API, for the node hosts
to post back status, to receive tasks, and so on.

Table 2.4. Master to Node

4789 UDP Required for SDN communication between pods on separate hosts.

10250 TCP The master proxies to node hosts via the Kubelet for oc commands.

Table 2.5. Master to Master

53 or 8053 TCP/
UDP

Required for DNS resolution of cluster services (SkyDNS). Installations prior to
3.2 or environments upgraded to 3.2 use port 53. New installations will use
8053 by default so that dnsmasq may be configured.

OpenShift Container Platform 3.7 Installation and Configuration

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#overview

2049 TCP/
UDP

Required when provisioning an NFS host as part of the installer.

2379 TCP Used for standalone etcd (clustered) to accept changes in state.

2380 TCP etcd requires this port be open between masters for leader election and peering
connections when using standalone etcd (clustered).

4001 TCP Used for embedded etcd (non-clustered) to accept changes in state.

4789 UDP Required for SDN communication between pods on separate hosts.

Table 2.6. External to Load Balancer

9000 TCP If you choose the native HA method, optional to allow access to the
HAProxy statistics page.

Table 2.7. External to Master

443 or 8443 TCP Required for node hosts to communicate to the master API, for node hosts to
post back status, to receive tasks, and so on.

8444 TCP Port that the atomic-openshift-master-controllers service listens
on. Required to be open for the /metrics and /healthz endpoints.

Table 2.8. IaaS Deployments

22 TCP Required for SSH by the installer or system administrator.

53 or 8053 TCP/
UDP

Required for DNS resolution of cluster services (SkyDNS). Installations prior to
3.2 or environments upgraded to 3.2 use port 53. New installations will use
8053 by default so that dnsmasq may be configured. Only required to be
internally open on master hosts.

80 or 443 TCP For HTTP/HTTPS use for the router. Required to be externally open on node
hosts, especially on nodes running the router.

1936 TCP (Optional) Required to be open when running the template router to access
statistics. Can be open externally or internally to connections depending on if
you want the statistics to be expressed publicly. Can require extra configuration
to open. See the Notes section below for more information.

4001 TCP For embedded etcd (non-clustered) use. Only required to be internally open on
the master host. 4001 is for server-client connections.

2379 and 2380 TCP For standalone etcd use. Only required to be internally open on the master
host. 2379 is for server-client connections. 2380 is for server-server
connections, and is only required if you have clustered etcd.

CHAPTER 2. INSTALLING A CLUSTER

33

4789 UDP For VxLAN use (OpenShift SDN). Required only internally on node hosts.

8443 TCP For use by the OpenShift Container Platform web console, shared with the API
server.

10250 TCP For use by the Kubelet. Required to be externally open on nodes.

Notes

In the above examples, port 4789 is used for User Datagram Protocol (UDP).

When deployments are using the SDN, the pod network is accessed via a service proxy, unless
it is accessing the registry from the same node the registry is deployed on.

OpenShift Container Platform internal DNS cannot be received over SDN. Depending on the
detected values of openshift_facts, or if the openshift_ip and openshift_public_ip
values are overridden, it will be the computed value of openshift_ip. For non-cloud
deployments, this will default to the IP address associated with the default route on the master
host. For cloud deployments, it will default to the IP address associated with the first internal
interface as defined by the cloud metadata.

The master host uses port 10250 to reach the nodes and does not go over SDN. It depends on
the target host of the deployment and uses the computed values of openshift_hostname and
openshift_public_hostname.

Port 1936 can still be inaccessible due to your iptables rules. Use the following to configure
iptables to open port 1936:

iptables -A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m tcp \
 --dport 1936 -j ACCEPT

Table 2.9. Aggregated Logging

9200 TCP For Elasticsearch API use. Required to be internally open on any infrastructure
nodes so Kibana is able to retrieve logs for display. It can be externally opened
for direct access to Elasticsearch by means of a route. The route can be
created using oc expose.

9300 TCP For Elasticsearch inter-cluster use. Required to be internally open on any
infrastructure node so the members of the Elasticsearch cluster may
communicate with each other.

2.2.2.3. Persistent Storage

The Kubernetes persistent volume framework allows you to provision an OpenShift Container Platform
cluster with persistent storage using networked storage available in your environment. This can be done
after completing the initial OpenShift Container Platform installation depending on your application
needs, giving users a way to request those resources without having any knowledge of the underlying
infrastructure.

OpenShift Container Platform 3.7 Installation and Configuration

34

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

The Installation and Configuration Guide provides instructions for cluster administrators on provisioning
an OpenShift Container Platform cluster with persistent storage using NFS, GlusterFS, Ceph RBD,
OpenStack Cinder, AWS Elastic Block Store (EBS), GCE Persistent Disks, and iSCSI.

2.2.2.4. Cloud Provider Considerations

There are certain aspects to take into consideration if installing OpenShift Container Platform on a cloud
provider.

For Amazon Web Services, see the Permissions and the Configuring a Security Group sections.

For OpenStack, see the Permissions and the Configuring a Security Group sections.

2.2.2.4.1. Overriding Detected IP Addresses and Host Names

Some deployments require that the user override the detected host names and IP addresses for the
hosts. To see the default values, run the openshift_facts playbook:

ansible-playbook [-i /path/to/inventory] \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift_facts.yml

IMPORTANT

For Amazon Web Services, see the Overriding Detected IP Addresses and Host Names
section.

Now, verify the detected common settings. If they are not what you expect them to be, you can override
them.

The Advanced Installation topic discusses the available Ansible variables in greater detail.

Variable Usage

hostname
Should resolve to the internal IP from the instances themselves.

openshift_hostname overrides.

ip
Should be the internal IP of the instance.

openshift_ip will overrides.

public_hostname
Should resolve to the external IP from hosts outside of the
cloud.

Provider openshift_public_hostname overrides.

CHAPTER 2. INSTALLING A CLUSTER

35

public_ip
Should be the externally accessible IP associated with the
instance.

openshift_public_ip overrides.

use_openshift_sdn
Should be true unless the cloud is GCE.

openshift_use_openshift_sdn overrides.

Variable Usage

WARNING

If openshift_hostname is set to a value other than the metadata-provided
private-dns-name value, the native cloud integration for those providers will no
longer work.

2.2.2.4.2. Post-Installation Configuration for Cloud Providers

Following the installation process, you can configure OpenShift Container Platform for AWS, OpenStack,
or GCE.

2.2.2.5. Containerized GlusterFS Considerations

If you choose to configure containerized GlusterFS persistent storage for your cluster, or if you choose to
configure a containerized GlusterFS-backed OpenShift Container Registry, you must consider the
following prerequisites.

2.2.2.5.1. Storage Nodes

To use containerized GlusterFS persistent storage:

A minimum of 3 storage nodes is required.

Each storage node must have at least 1 raw block device with least 100 GB available.

To run a containerized GlusterFS-backed OpenShift Container Registry:

A minimum of 3 storage nodes is required.

Each storage node must have at least 1 raw block device with at least 10 GB of free storage.



OpenShift Container Platform 3.7 Installation and Configuration

36

IMPORTANT

While containerized GlusterFS persistent storage can be configured and deployed on the
same OpenShift Container Platform cluster as a containerized GlusterFS-backed registry,
their storage should be kept separate from each other and also requires additional
storage nodes. For example, if both are configured, a total of 6 storage nodes would be
needed: 3 for the registry and 3 for persistent storage. This limitation is imposed to avoid
potential impacts on performance in I/O and volume creation.

2.2.2.5.2. Required Software Components

For any RHEL (non-Atomic) storage nodes, the following RPM respository must be enabled:

subscription-manager repos --enable=rh-gluster-3-client-for-rhel-7-
server-rpms

The mount.glusterfs command must be available on all nodes that will host pods that will use
GlusterFS volumes. For RPM-based systems, the glusterfs-fuse package must be installed:

yum install glusterfs-fuse

If GlusterFS is already installed on the nodes, ensure the latest version is installed:

yum update glusterfs-fuse

2.3. HOST PREPARATION

2.3.1. Setting PATH

The PATH for the root user on each host must contain the following directories:

/bin

/sbin

/usr/bin

/usr/sbin

These should all be included by default in a fresh RHEL 7.x installation.

2.3.2. Operating System Requirements

A base installation of RHEL 7.3 or 7.4 (with the latest packages from the Extras channel) or RHEL Atomic
Host 7.4.2 or later is required for master and node hosts. See the following documentation for the
respective installation instructions, if required:

Red Hat Enterprise Linux 7 Installation Guide

Red Hat Enterprise Linux Atomic Host 7 Installation and Configuration Guide

2.3.3. Host Registration

CHAPTER 2. INSTALLING A CLUSTER

37

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/installation-and-configuration-guide/

Each host must be registered using Red Hat Subscription Manager (RHSM) and have an active
OpenShift Container Platform subscription attached to access the required packages.

1. On each host, register with RHSM:

subscription-manager register --username=<user_name> --password=
<password>

2. Pull the latest subscription data from RHSM:

subscription-manager refresh

3. List the available subscriptions:

subscription-manager list --available --matches '*OpenShift*'

4. In the output for the previous command, find the pool ID for an OpenShift Container Platform
subscription and attach it:

subscription-manager attach --pool=<pool_id>

5. Disable all yum repositories:

a. Disable all the enabled RHSM repositories:

subscription-manager repos --disable="*"

b. List the remaining yum repositories and note their names under repo id, if any:

yum repolist

c. Use yum-config-manager to disable the remaining yum repositories:

yum-config-manager --disable <repo_id>

Alternatively, disable all repositories:

 yum-config-manager --disable *

Note that this could take a few minutes if you have a large number of available repositories

6. Enable only the repositories required by OpenShift Container Platform 3.7:

subscription-manager repos \
 --enable="rhel-7-server-rpms" \
 --enable="rhel-7-server-extras-rpms" \
 --enable="rhel-7-server-ose-3.7-rpms" \
 --enable="rhel-7-fast-datapath-rpms"

2.3.4. Installing Base Packages

For RHEL 7 systems:

OpenShift Container Platform 3.7 Installation and Configuration

38

1. Install the following base packages:

yum install wget git net-tools bind-utils yum-utils iptables-
services bridge-utils bash-completion kexec-tools sos psacct

2. Update the system to the latest packages:

yum update
systemctl reboot

3. If you plan to use the RPM-based installer to run an advanced installation, you can skip this
step. However, if you plan to use the containerized installer (currently a Technology Preview
feature):

a. Install the atomic package:

yum install atomic

b. Skip to Installing Docker.

4. Install the following package, which provides RPM-based OpenShift Container Platform installer
utilities and pulls in other tools required by the quick and advanced installation methods, such as
Ansible and related configuration files:

yum install atomic-openshift-utils

For RHEL Atomic Host 7 systems:

1. Ensure the host is up to date by upgrading to the latest Atomic tree if one is available:

atomic host upgrade

2. After the upgrade is completed and prepared for the next boot, reboot the host:

systemctl reboot

2.3.5. Installing Docker

At this point, you should install Docker on all master and node hosts. This allows you to configure your
Docker storage options before installing OpenShift Container Platform.

For RHEL 7 systems, install Docker 1.12:

NOTE

On RHEL Atomic Host 7 systems, Docker should already be installed, configured, and
running by default.

yum install docker-1.12.6

After the package installation is complete, verify that version 1.12 was installed:

CHAPTER 2. INSTALLING A CLUSTER

39

rpm -V docker-1.12.6
docker version

NOTE

The Advanced Installation method automatically changes /etc/sysconfig/docker.

2.3.6. Configuring Docker Storage

Containers and the images they are created from are stored in Docker’s storage back end. This storage
is ephemeral and separate from any persistent storage allocated to meet the needs of your applications.

For RHEL Atomic Host

The default storage back end for Docker on RHEL Atomic Host is a thin pool logical volume, which is
supported for production environments. You must ensure that enough space is allocated for this volume
per the Docker storage requirements mentioned in System Requirements.

If you do not have enough allocated, see Managing Storage with Docker Formatted Containers for
details on using docker-storage-setup and basic instructions on storage management in RHEL Atomic
Host.

For RHEL

The default storage back end for Docker on RHEL 7 is a thin pool on loopback devices, which is not
supported for production use and only appropriate for proof of concept environments. For production
environments, you must create a thin pool logical volume and re-configure Docker to use that volume.

Docker stores images and containers in a graph driver, which is a pluggable storage technology, such as
DeviceMapper, OverlayFS, and Btrfs. Each has advantages and disadvantages. For example,
OverlayFS is faster than DeviceMapper at starting and stopping containers, but is not Portable Operating
System Interface for Unix (POSIX) compliant because of the architectural limitations of a union file
system and is not supported prior to Red Hat Enterprise Linux 7.2. See the Red Hat Enterprise Linux
release notes for information on using OverlayFS with your version of RHEL.

For more information on the benefits and limitations of DeviceMapper and OverlayFS, see Choosing a
Graph Driver.

2.3.6.1. Configuring OverlayFS

OverlayFS is a type of union file system. It allows you to overlay one file system on top of another.
Changes are recorded in the upper file system, while the lower file system remains unmodified.

Comparing the Overlay Versus Overlay2 Graph Drivers has more information about the overlay and
overlay2 drivers.

For information on enabling the OverlayFS storage driver for the Docker service, see the Red Hat
Enterprise Linux Atomic Host documentation.

2.3.6.2. Configuring Thin Pool Storage

You can use the docker-storage-setup script included with Docker to create a thin pool device and
configure Docker’s storage driver. This can be done after installing Docker and should be done before
creating images or containers. The script reads configuration options from the /etc/sysconfig/docker-
storage-setup file and supports three options for creating the logical volume:

OpenShift Container Platform 3.7 Installation and Configuration

40

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#managing_storage_with_docker_formatted_containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/?version=7
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/scaling_and_performance_guide/#choosing-a-graph-driver
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/scaling_and_performance_guide/#comparing-overlay-graph-drivers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/managing_containers/#using_the_overlay_graph_driver

Option A) Use an additional block device.

Option B) Use an existing, specified volume group.

Option C) Use the remaining free space from the volume group where your root file system is
located.

Option A is the most robust option, however it requires adding an additional block device to your host
before configuring Docker storage. Options B and C both require leaving free space available when
provisioning your host. Option C is known to cause issues with some applications, for example Red Hat
Mobile Application Platform (RHMAP).

1. Create the docker-pool volume using one of the following three options:

Option A) Use an additional block device.
In /etc/sysconfig/docker-storage-setup, set DEVS to the path of the block device you wish
to use. Set VG to the volume group name you wish to create; docker-vg is a reasonable
choice. For example:

cat <<EOF > /etc/sysconfig/docker-storage-setup
DEVS=/dev/vdc
VG=docker-vg
EOF

Then run docker-storage-setup and review the output to ensure the docker-pool volume
was created:

docker-storage-setup
[5/1868]
0
Checking that no-one is using this disk right now ...
OK

Disk /dev/vdc: 31207 cylinders, 16 heads, 63 sectors/track
sfdisk: /dev/vdc: unrecognized partition table type

Old situation:
sfdisk: No partitions found

New situation:
Units: sectors of 512 bytes, counting from 0

 Device Boot Start End #sectors Id System
/dev/vdc1 2048 31457279 31455232 8e Linux LVM
/dev/vdc2 0 - 0 0 Empty
/dev/vdc3 0 - 0 0 Empty
/dev/vdc4 0 - 0 0 Empty
Warning: partition 1 does not start at a cylinder boundary
Warning: partition 1 does not end at a cylinder boundary
Warning: no primary partition is marked bootable (active)
This does not matter for LILO, but the DOS MBR will not boot this
disk.
Successfully wrote the new partition table

Re-reading the partition table ...

CHAPTER 2. INSTALLING A CLUSTER

41

If you created or changed a DOS partition, /dev/foo7, say, then
use dd(1)
to zero the first 512 bytes: dd if=/dev/zero of=/dev/foo7 bs=512
count=1
(See fdisk(8).)
 Physical volume "/dev/vdc1" successfully created
 Volume group "docker-vg" successfully created
 Rounding up size to full physical extent 16.00 MiB
 Logical volume "docker-poolmeta" created.
 Logical volume "docker-pool" created.
 WARNING: Converting logical volume docker-vg/docker-pool and
docker-vg/docker-poolmeta to pool's data and metadata volumes.
 THIS WILL DESTROY CONTENT OF LOGICAL VOLUME (filesystem etc.)
 Converted docker-vg/docker-pool to thin pool.
 Logical volume "docker-pool" changed.

Option B) Use an existing, specified volume group.
In /etc/sysconfig/docker-storage-setup, set VG to the desired volume group. For example:

cat <<EOF > /etc/sysconfig/docker-storage-setup
VG=docker-vg
EOF

Then run docker-storage-setup and review the output to ensure the docker-pool volume
was created:

docker-storage-setup
 Rounding up size to full physical extent 16.00 MiB
 Logical volume "docker-poolmeta" created.
 Logical volume "docker-pool" created.
 WARNING: Converting logical volume docker-vg/docker-pool and
docker-vg/docker-poolmeta to pool's data and metadata volumes.
 THIS WILL DESTROY CONTENT OF LOGICAL VOLUME (filesystem etc.)
 Converted docker-vg/docker-pool to thin pool.
 Logical volume "docker-pool" changed.

Option C) Use the remaining free space from the volume group where your root file system
is located.
Verify that the volume group where your root file system resides has the desired free space,
then run docker-storage-setup and review the output to ensure the docker-pool volume
was created:

docker-storage-setup
 Rounding up size to full physical extent 32.00 MiB
 Logical volume "docker-poolmeta" created.
 Logical volume "docker-pool" created.
 WARNING: Converting logical volume rhel/docker-pool and
rhel/docker-poolmeta to pool's data and metadata volumes.
 THIS WILL DESTROY CONTENT OF LOGICAL VOLUME (filesystem etc.)
 Converted rhel/docker-pool to thin pool.
 Logical volume "docker-pool" changed.

2. Verify your configuration. You should have a dm.thinpooldev value in the
/etc/sysconfig/docker-storage file and a docker-pool logical volume:

OpenShift Container Platform 3.7 Installation and Configuration

42

cat /etc/sysconfig/docker-storage
DOCKER_STORAGE_OPTIONS=--storage-opt dm.fs=xfs --storage-opt
dm.thinpooldev=/dev/mapper/docker--vg-docker--pool

lvs
 LV VG Attr LSize Pool Origin Data% Meta% Move
Log Cpy%Sync Convert
 docker-pool rhel twi-a-t--- 9.29g 0.00 0.12

IMPORTANT

Before using Docker or OpenShift Container Platform, verify that the docker-pool
logical volume is large enough to meet your needs. The docker-pool volume
should be 60% of the available volume group and will grow to fill the volume group
via LVM monitoring.

3. Check if Docker is running:

systemctl is-active docker

4. If Docker has not yet been started on the host, enable and start the service:

systemctl enable docker
systemctl start docker

If Docker is already running, re-initialize Docker:

WARNING

This will destroy any containers or images currently on the host.

systemctl stop docker
rm -rf /var/lib/docker/*
systemctl restart docker

If there is any content in /var/lib/docker/, it must be deleted. Files will be present if Docker has
been used prior to the installation of OpenShift Container Platform.

2.3.6.3. Reconfiguring Docker Storage

Should you need to reconfigure Docker storage after having created the docker-pool, you should first
remove the docker-pool logical volume. If you are using a dedicated volume group, you should also
remove the volume group and any associated physical volumes before reconfiguring docker-storage-
setup according to the instructions above.

See Logical Volume Manager Administration for more detailed information on LVM management.



CHAPTER 2. INSTALLING A CLUSTER

43

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Logical_Volume_Manager_Administration/index.html

2.3.6.4. Enabling Image Signature Support

OpenShift Container Platform is capable of cryptographically verifying images are from trusted sources.
The Container Security Guide provides a high-level description of how image signing works.

You can configure image signature verification using the atomic command line interface (CLI), version
1.12.5 or greater. The atomic CLI is pre-installed on RHEL Atomic Host systems.

NOTE

For more on the atomic CLI, see the Atomic CLI documentation.

Install the atomic package if it is not installed on the host system:

$ yum install atomic

The atomic trust sub-command manages trust configuration. The default configuration is to whitelist all
registries. This means no signature verification is configured.

$ atomic trust show
* (default) accept

A reasonable configuration might be to whitelist a particular registry or namespace, blacklist (reject)
untrusted registries, and require signature verification on a vendor registry. The following set of
commands performs this example configuration:

Example Atomic Trust Configuration

$ atomic trust add --type insecureAcceptAnything 172.30.1.1:5000

$ atomic trust add --sigstoretype atomic \
 --pubkeys pub@example.com \
 172.30.1.1:5000/production

$ atomic trust add --sigstoretype atomic \
 --pubkeys /etc/pki/example.com.pub \
 172.30.1.1:5000/production

$ atomic trust add --sigstoretype web \
 --sigstore https://access.redhat.com/webassets/docker/content/sigstore \
 --pubkeys /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release \
 registry.access.redhat.com

atomic trust show
* (default) accept
172.30.1.1:5000 accept
172.30.1.1:5000/production signed security@example.com
registry.access.redhat.com signed
security@redhat.com,security@redhat.com

When all the signed sources are verified, nodes may be further hardened with a global reject default:

$ atomic trust default reject

OpenShift Container Platform 3.7 Installation and Configuration

44

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/container_security_guide/#security-deployment-from-where-images-deployed
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/cli_reference/prerequisites

$ atomic trust show
* (default) reject
172.30.1.1:5000 accept
172.30.1.1:5000/production signed security@example.com
registry.access.redhat.com signed
security@redhat.com,security@redhat.com

Use the atomic man page man atomic-trust for additional examples.

The following files and directories comprise the trust configuration of a host:

/etc/containers/registries.d/*

/etc/containers/policy.json

The trust configuration may be managed directly on each node or the generated files managed on a
separate host and distributed to the appropriate nodes using Ansible, for example. See this Red Hat
Knowledgebase Article for an example of automating file distribution with Ansible.

2.3.6.5. Managing Container Logs

Sometimes a container’s log file (the /var/lib/docker/containers/<hash>/<hash>-json.log file on the
node where the container is running) can increase to a problematic size. You can manage this by
configuring Docker’s json-file logging driver to restrict the size and number of log files.

Option Purpose

--log-opt max-size Sets the size at which a new log file is created.

--log-opt max-file Sets the file on each host to configure the options.

For example, to set the maximum file size to 1MB and always keep the last three log files, edit the
/etc/sysconfig/docker file to configure max-size=1M and max-file=3:

OPTIONS='--insecure-registry=172.30.0.0/16 --selinux-enabled --log-opt
max-size=1M --log-opt max-file=3'

Next, restart the Docker service:

systemctl restart docker

2.3.6.6. Viewing Available Container Logs

Container logs are stored in the /var/lib/docker/containers/<hash>/ directory on the node where the
container is running. For example:

ls -lh
/var/lib/docker/containers/f088349cceac173305d3e2c2e4790051799efe363842fda
b5732f51f5b001fd8/
total 2.6M
-rw-r--r--. 1 root root 5.6K Nov 24 00:12 config.json
-rw-r--r--. 1 root root 649K Nov 24 00:15

CHAPTER 2. INSTALLING A CLUSTER

45

https://access.redhat.com/articles/2750891#automating-cluster-configuration

f088349cceac173305d3e2c2e4790051799efe363842fdab5732f51f5b001fd8-json.log
-rw-r--r--. 1 root root 977K Nov 24 00:15
f088349cceac173305d3e2c2e4790051799efe363842fdab5732f51f5b001fd8-
json.log.1
-rw-r--r--. 1 root root 977K Nov 24 00:15
f088349cceac173305d3e2c2e4790051799efe363842fdab5732f51f5b001fd8-
json.log.2
-rw-r--r--. 1 root root 1.3K Nov 24 00:12 hostconfig.json
drwx------. 2 root root 6 Nov 24 00:12 secrets

See Docker’s documentation for additional information on how to configure logging drivers.

2.3.6.7. Blocking Local Volume Usage

When a volume is provisioned using the VOLUME instruction in a Dockerfile or using the docker run -
v <volumename> command, a host’s storage space is used. Using this storage can lead to an
unexpected out of space issue and could bring down the host.

In OpenShift Container Platform, users trying to run their own images risk filling the entire storage space
on a node host. One solution to this issue is to prevent users from running images with volumes. This
way, the only storage a user has access to can be limited, and the cluster administrator can assign
storage quota.

Using docker-novolume-plugin solves this issue by disallowing starting a container with local volumes
defined. In particular, the plug-in blocks docker run commands that contain:

The --volumes-from option

Images that have VOLUME(s) defined

References to existing volumes that were provisioned with the docker volume command

The plug-in does not block references to bind mounts.

To enable docker-novolume-plugin, perform the following steps on each node host:

1. Install the docker-novolume-plugin package:

$ yum install docker-novolume-plugin

2. Enable and start the docker-novolume-plugin service:

$ systemctl enable docker-novolume-plugin
$ systemctl start docker-novolume-plugin

3. Edit the /etc/sysconfig/docker file and append the following to the OPTIONS list:

--authorization-plugin=docker-novolume-plugin

4. Restart the docker service:

$ systemctl restart docker

OpenShift Container Platform 3.7 Installation and Configuration

46

https://docs.docker.com/engine/admin/logging/overview/#/options

After you enable this plug-in, containers with local volumes defined fail to start and show the following
error message:

runContainer: API error (500): authorization denied by plugin
docker-novolume-plugin: volumes are not allowed

2.3.7. Ensuring Host Access

The quick and advanced installation methods require a user that has access to all hosts. If you want to
run the installer as a non-root user, passwordless sudo rights must be configured on each destination
host.

For example, you can generate an SSH key on the host where you will invoke the installation process:

ssh-keygen

Do not use a password.

An easy way to distribute your SSH keys is by using a bash loop:

for host in master.example.com \
 node1.example.com \
 node2.example.com; \
 do ssh-copy-id -i ~/.ssh/id_rsa.pub $host; \
 done

Modify the host names in the above command according to your configuration.

2.3.8. Setting Proxy Overrides

If the /etc/environment file on your nodes contains either an http_proxy or https_proxy value, you
must also set a no_proxy value in that file to allow open communication between OpenShift Container
Platform components.

NOTE

The no_proxy parameter in /etc/environment file is not the same value as the global
proxy values that you set in your inventory file. The global proxy values configure specific
OpenShift Container Platform services with your proxy settings. See Configuring Global
Proxy Options for details.

If the /etc/environment file contains proxy values, define the following values in the no_proxy
parameter of that file on each node:

Master and node host names or their domain suffix.

Other internal host names or their domain suffix.

Etcd IP addresses. You must provide IP addresses and not host names because etcd access is
controlled by IP address.

Kubernetes IP address, by default 172.30.0.1. Must be the value set in the
openshift_portal_net parameter in your inventory file.

CHAPTER 2. INSTALLING A CLUSTER

47

Kubernetes internal domain suffix, cluster.local.

Kubernetes internal domain suffix, .svc.

NOTE

Because no_proxy does not support CIDR, you can use domain suffixes.

If you use either an http_proxy or https_proxy value, your no_proxy parameter value resembles
the following example:

no_proxy=.internal.example.com,10.0.0.1,10.0.0.2,10.0.0.3,.cluster.local,.
svc,localhost,127.0.0.1,172.30.0.1

2.3.9. What’s Next?

If you are interested in installing OpenShift Container Platform using the containerized method (optional
for RHEL but required for RHEL Atomic Host), see Installing on Containerized Hosts to prepare your
hosts.

When you are ready to proceed, you can install OpenShift Container Platform using the quick installation
or advanced installation method.

If you are installing a stand-alone registry, continue with Installing a Stand-alone Registry.

2.4. INSTALLING ON CONTAINERIZED HOSTS

2.4.1. RPM Versus Containerized Installation

You can opt to install OpenShift Container Platform using the RPM or containerized package method.
Either installation method results in a working environment, but the choice comes from the operating
system and how you choose to update your hosts.

IMPORTANT

The default method for installing OpenShift Container Platform on Red Hat Enterprise
Linux (RHEL) uses RPMs. When targeting a Red Hat Atomic Host system, the
containerized method is the only available option, and is automatically selected for you
based on the detection of the /run/ostree-booted file.

When using RPMs, all services are installed and updated via package management from an outside
source. These modify a host’s existing configuration within the same user space. Alternatively,
containerized installs instead are a complete, all-in-one resource using container images and its own
operating system within the container. Any updated, newer containers replace any existing ones on your
host. Choosing one method over the other depends on how you choose to update OpenShift Container
Platform in the future.

The following table outlines further differences between the RPM and Containerized methods:

OpenShift Container Platform 3.7 Installation and Configuration

48

 RPM Containerized

Installation Method Packages via yum Container images via docker

Service Management systemd docker and systemd units

Operating System Red Hat Enterprise Linux Red Hat Enterprise Linux or Red
Hat Atomic Host

2.4.2. Install Methods for Containerized Hosts

As with the RPM installation, you can choose between the quick and advanced install methods for the
containerized install.

For the quick installation method, you can choose between the RPM or containerized method on a per
host basis during the interactive installation, or set the values manually in an installation configuration
file.

For the advanced installation method, you can set the Ansible variable containerized=true in an
inventory file on a cluster-wide or per host basis.

For the disconnected installation method, to install the etcd container, you can set the Ansible variable
osm_etcd_image to be the fully qualified name of the etcd image on your local registry, for example,
registry.example.com/rhel7/etcd.

2.4.3. Required Images

Containerized installations make use of the following images:

openshift3/ose

openshift3/node

openshift3/openvswitch

registry.access.redhat.com/rhel7/etcd

By default, all of the above images are pulled from the Red Hat Registry at registry.access.redhat.com.

If you need to use a private registry to pull these images during the installation, you can specify the
registry information ahead of time. For the advanced installation method, you can set the following
Ansible variables in your inventory file, as required:

openshift_docker_additional_registries=<registry_hostname>
openshift_docker_insecure_registries=<registry_hostname>
openshift_docker_blocked_registries=<registry_hostname>

For the quick installation method, you can export the following environment variables on each target
host:

export OO_INSTALL_ADDITIONAL_REGISTRIES=<registry_hostname>
export OO_INSTALL_INSECURE_REGISTRIES=<registry_hostname>

CHAPTER 2. INSTALLING A CLUSTER

49

https://registry.access.redhat.com

Blocked Docker registries cannot currently be specified using the quick installation method.

The configuration of additional, insecure, and blocked Docker registries occurs at the beginning of the
installation process to ensure that these settings are applied before attempting to pull any of the required
images.

2.4.4. Starting and Stopping Containers

The installation process creates relevant systemd units which can be used to start, stop, and poll
services using normal systemctl commands. For containerized installations, these unit names match
those of an RPM installation, with the exception of the etcd service which is named etcd_container.

This change is necessary as currently RHEL Atomic Host ships with the etcd package installed as part
of the operating system, so a containerized version is used for the OpenShift Container Platform
installation instead. The installation process disables the default etcd service. The etcd package is
slated to be removed from RHEL Atomic Host in the future.

2.4.5. File Paths

All OpenShift Container Platform configuration files are placed in the same locations during
containerized installation as RPM based installations and will survive os-tree upgrades.

However, the default image stream and template files are installed at /etc/origin/examples/ for
containerized installations rather than the standard /usr/share/openshift/examples/, because that
directory is read-only on RHEL Atomic Host.

2.4.6. Storage Requirements

RHEL Atomic Host installations normally have a very small root file system. However, the etcd, master,
and node containers persist data in the /var/lib/ directory. Ensure that you have enough space on the
root file system before installing OpenShift Container Platform. See the System Requirements section
for details.

2.4.7. Open vSwitch SDN Initialization

OpenShift SDN initialization requires that the Docker bridge be reconfigured and that Docker is restarted.
This complicates the situation when the node is running within a container. When using the Open
vSwitch (OVS) SDN, you will see the node start, reconfigure Docker, restart Docker (which restarts all
containers), and finally start successfully.

In this case, the node service may fail to start and be restarted a few times, because the master services
are also restarted along with Docker. The current implementation uses a workaround which relies on
setting the Restart=always parameter in the Docker based systemd units.

2.5. QUICK INSTALLATION

2.5.1. Overview

The quick installation method allows you to use an interactive CLI utility, the atomic-openshift-
installer command, to install OpenShift Container Platform across a set of hosts. This installer can
deploy OpenShift Container Platform components on targeted hosts by either installing RPMs or running
containerized services.

OpenShift Container Platform 3.7 Installation and Configuration

50

IMPORTANT

While RHEL Atomic Host is supported for running containerized OpenShift Container
Platform services, the installer is provided by an RPM and not available by default in
RHEL Atomic Host. Therefore, it must be run from a Red Hat Enterprise Linux 7 system.
The host initiating the installation does not need to be intended for inclusion in the
OpenShift Container Platform cluster, but it can be.

This installation method is provided to make the installation experience easier by interactively gathering
the data needed to run on each host. The installer is a self-contained wrapper intended for usage on a
Red Hat Enterprise Linux (RHEL) 7 system.

In addition to running interactive installations from scratch, the atomic-openshift-installer
command can also be run or re-run using a predefined installation configuration file. This file can be used
with the installer to:

run an unattended installation,

add nodes to an existing cluster,

upgrade your cluster, or

reinstall the OpenShift Container Platform cluster completely.

Alternatively, you can use the advanced installation method for more complex environments.

NOTE

To install OpenShift Container Platform as a stand-alone registry, see Installing a Stand-
alone Registry.

2.5.2. Before You Begin

The installer allows you to install OpenShift Container Platform master and node components on a
defined set of hosts.

NOTE

By default, any hosts you designate as masters during the installation process are
automatically also configured as nodes so that the masters are configured as part of the
OpenShift Container Platform SDN. The node component on the masters, however, are
marked unschedulable, which blocks pods from being scheduled on it. After the
installation, you can mark them schedulable if you want.

Before installing OpenShift Container Platform, you must first satisfy the prerequisites on your hosts,
which includes verifying system and environment requirements and properly installing and configuring
Docker. You must also be prepared to provide or validate the following information for each of your
targeted hosts during the course of the installation:

User name on the target host that should run the Ansible-based installation (can be root or non-
root)

Host name

Whether to install components for master, node, or both

CHAPTER 2. INSTALLING A CLUSTER

51

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/upgrading_clusters/#install-config-upgrading-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#node
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#openshift-sdn
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#marking-nodes-as-unschedulable-or-schedulable

Whether to use the RPM or containerized method

Internal and external IP addresses

IMPORTANT

If you are installing OpenShift Container Platform using the containerized method
(optional for RHEL but required for RHEL Atomic Host), see the Installing on
Containerized Hosts topic to ensure that you understand the differences between these
methods, then return to this topic to continue.

After following the instructions in the Prerequisites topic and deciding between the RPM and
containerized methods, you can continue to running an interactive or unattended installation.

2.5.3. Running an Interactive Installation

NOTE

Ensure you have read through Before You Begin.

You can start the interactive installation by running:

$ atomic-openshift-installer install

Then follow the on-screen instructions to install a new OpenShift Container Platform cluster.

After it has finished, ensure that you back up the ~/.config/openshift/installer.cfg.ymlinstallation
configuration file that is created, as it is required if you later want to re-run the installation, add hosts to
the cluster, or upgrade your cluster. Then, verify the installation.

2.5.4. Defining an Installation Configuration File

The installer can use a predefined installation configuration file, which contains information about your
installation, individual hosts, and cluster. When running an interactive installation, an installation
configuration file based on your answers is created for you in ~/.config/openshift/installer.cfg.yml. The
file is created if you are instructed to exit the installation to manually modify the configuration or when the
installation completes. You can also create the configuration file manually from scratch to perform an
unattended installation.

Installation Configuration File Specification

version: v2 1

variant: openshift-enterprise 2

variant_version: 3.7 3

ansible_log_path: /tmp/ansible.log 4
deployment:

 ansible_ssh_user: root 5

 hosts: 6

 - ip: 10.0.0.1 7

 hostname: master-private.example.com 8

 public_ip: 24.222.0.1 9

 public_hostname: master.example.com 10

OpenShift Container Platform 3.7 Installation and Configuration

52

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/upgrading_clusters/#install-config-upgrading-index

1

2

3

4

5

6

7 8

9 10

11

12

The version of this installation configuration file. As of OpenShift Container Platform 3.3, the only
valid version here is v2.

The OpenShift Container Platform variant to install. For OpenShift Container Platform, set this to
openshift-enterprise.

A valid version of your selected variant: 3.7, 3.6, 3.5, 3.4, 3.3, 3.2, or 3.1. If not specified, this
defaults to the latest version for the specified variant.

Defines where the Ansible logs are stored. By default, this is the /tmp/ansible.log file.

Defines which user Ansible uses to SSH in to remote systems for gathering facts and for the
installation. By default, this is the root user, but you can set it to any user that has sudo privileges.

Defines a list of the hosts onto which you want to install the OpenShift Container Platform master
and node components.

Required. Allows the installer to connect to the system and gather facts before proceeding with the
install.

Required for unattended installations. If these details are not specified, then this information is
pulled from the facts gathered by the installer, and you are asked to confirm the details. If undefined
for an unattended installation, the installation fails.

Determines the type of services that are installed. Specified as a list.

 roles: 11
 - master
 - node

 containerized: true 12

 connect_to: 24.222.0.1 13
 - ip: 10.0.0.2
 hostname: node1-private.example.com
 public_ip: 24.222.0.2
 public_hostname: node1.example.com

 node_labels: {'region': 'infra'} 14
 roles:
 - node
 connect_to: 10.0.0.2
 - ip: 10.0.0.3
 hostname: node2-private.example.com
 public_ip: 24.222.0.3
 public_hostname: node2.example.com
 roles:
 - node
 connect_to: 10.0.0.3

 roles: 15
 master:

 <variable_name1>: "<value1>" 16
 <variable_name2>: "<value2>"
 node:

 <variable_name1>: "<value1>" 17

CHAPTER 2. INSTALLING A CLUSTER

53

13

14

15

16 17

If set to true, containerized OpenShift Container Platform services are run on target master and
node hosts instead of installed using RPM packages. If set to false or unset, the default RPM

The IP address that Ansible attempts to connect to when installing, upgrading, or uninstalling the
systems. If the configuration file was auto-generated, then this is the value you first enter for the
host during that interactive install process.

Node labels can optionally be set per-host.

Defines a dictionary of roles across the deployment.

Any ansible variables that should only be applied to hosts assigned a role can be defined. For
examples, see Configuring Ansible.

2.5.5. Running an Unattended Installation

NOTE

Ensure you have read through the Before You Begin.

Unattended installations allow you to define your hosts and cluster configuration in an installation
configuration file before running the installer so that you do not have to go through all of the interactive
installation questions and answers. It also allows you to resume an interactive installation you may have
left unfinished, and quickly get back to where you left off.

To run an unattended installation, first define an installation configuration file at
~/.config/openshift/installer.cfg.yml. Then, run the installer with the -u flag:

$ atomic-openshift-installer -u install

By default in interactive or unattended mode, the installer uses the configuration file located at
~/.config/openshift/installer.cfg.yml if the file exists. If it does not exist, attempting to start an
unattended installation fails.

Alternatively, you can specify a different location for the configuration file using the -c option, but doing
so will require you to specify the file location every time you run the installation:

$ atomic-openshift-installer -u -c </path/to/file> install

After the unattended installation finishes, ensure that you back up the
~/.config/openshift/installer.cfg.yml file that was used, as it is required if you later want to re-run the
installation, add hosts to the cluster, or upgrade your cluster. Then, verify the installation.

2.5.6. Verifying the Installation

1. Verify that the master is started and nodes are registered and reporting in Ready status. On the
master host, run the following as root:

oc get nodes

NAME STATUS AGE

OpenShift Container Platform 3.7 Installation and Configuration

54

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/upgrading_clusters/#install-config-upgrading-index

master.example.com Ready,SchedulingDisabled 165d
node1.example.com Ready 165d
node2.example.com Ready 165d

2. To verify that the web console is installed correctly, use the master host name and the web
console port number to access the web console with a web browser.
For example, for a master host with a host name of master.openshift.com and using the
default port of 8443, the web console would be found at
https://master.openshift.com:8443/console.

3. Then, see What’s Next for the next steps on configuring your OpenShift Container Platform
cluster.

2.5.7. Uninstalling OpenShift Container Platform

You can uninstall OpenShift Container Platform from all hosts in your cluster using the installer’s
uninstall command. By default, the installer uses the installation configuration file located at
~/.config/openshift/installer.cfg.yml if the file exists:

$ atomic-openshift-installer uninstall

Alternatively, you can specify a different location for the configuration file using the -c option:

$ atomic-openshift-installer -c </path/to/file> uninstall

See the advanced installation method for more options.

2.5.8. What’s Next?

Now that you have a working OpenShift Container Platform instance, you can:

Configure authentication; by default, authentication is set to Deny All.

Configure the automatically-deployed integrated Docker registry.

Configure the automatically-deployed router.

2.6. ADVANCED INSTALLATION

2.6.1. Overview

A reference configuration implemented using Ansible playbooks is available as the advanced installation
method for installing a OpenShift Container Platform cluster. Familiarity with Ansible is assumed,
however you can use this configuration as a reference to create your own implementation using the
configuration management tool of your choosing.

CHAPTER 2. INSTALLING A CLUSTER

55

http://docs.ansible.com/ansible/

IMPORTANT

While RHEL Atomic Host is supported for running containerized OpenShift Container
Platform services, the advanced installation method utilizes Ansible, which is not available
in RHEL Atomic Host, and must therefore be run from a RHEL 7 system. The host
initiating the installation does not need to be intended for inclusion in the OpenShift
Container Platform cluster, but it can be.

Alternatively, a containerized version of the installer is available as a system container,
which is currently a Technology Preview feature.

Alternatively, you can use the quick installation method if you prefer an interactive installation
experience.

NOTE

To install OpenShift Container Platform as a stand-alone registry, see Installing a Stand-
alone Registry.

IMPORTANT

Running Ansible playbooks with the --tags or --check options is not supported by Red
Hat.

2.6.2. Before You Begin

Before installing OpenShift Container Platform, you must first see the Prerequisites and Host
Preparation topics to prepare your hosts. This includes verifying system and environment requirements
per component type and properly installing and configuring Docker. It also includes installing Ansible
version 2.3 or later, as the advanced installation method is based on Ansible playbooks and as such
requires directly invoking Ansible.

If you are interested in installing OpenShift Container Platform using the containerized method (optional
for RHEL but required for RHEL Atomic Host), see Installing on Containerized Hosts to ensure that you
understand the differences between these methods, then return to this topic to continue.

For large-scale installs, including suggestions for optimizing install time, see the Scaling and
Performance Guide.

After following the instructions in the Prerequisites topic and deciding between the RPM and
containerized methods, you can continue in this topic to Configuring Ansible Inventory Files.

2.6.3. Configuring Ansible Inventory Files

The /etc/ansible/hosts file is Ansible’s inventory file for the playbook used to install OpenShift Container
Platform. The inventory file describes the configuration for your OpenShift Container Platform cluster.
You must replace the default contents of the file with your desired configuration.

The following sections describe commonly-used variables to set in your inventory file during an
advanced installation, followed by example inventory files you can use as a starting point for your
installation.

Many of the Ansible variables described are optional. Accepting the default values should suffice for
development environments, but for production environments, it is recommended you read through and
become familiar with the various options available.

OpenShift Container Platform 3.7 Installation and Configuration

56

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/scaling_and_performance_guide/#scaling-performance-install-best-practices

The example inventories describe various environment topographies, including using multiple masters
for high availability. You can choose an example that matches your requirements, modify it to match your
own environment, and use it as your inventory file when running the advanced installation.

Image Version Policy
Images require a version number policy in order to maintain updates. See the Image Version Tag Policy
section in the Architecture Guide for more information.

2.6.3.1. Configuring Cluster Variables

To assign environment variables during the Ansible install that apply more globally to your OpenShift
Container Platform cluster overall, indicate the desired variables in the /etc/ansible/hosts file on
separate, single lines within the [OSEv3:vars] section. For example:

[OSEv3:vars]

openshift_master_identity_providers=[{'name': 'htpasswd_auth',
'login': 'true', 'challenge': 'true',
'kind': 'HTPasswdPasswordIdentityProvider',
'filename': '/etc/origin/master/htpasswd'}]

openshift_master_default_subdomain=apps.test.example.com

IMPORTANT

If a parameter value in the Ansible inventory file contains special characters, such as #, {
or }, you must double-escape the value (that is enclose the value in both single and
double quotation marks). For example, to use mypasswordwith###hashsigns as a
value for the variable openshift_cloudprovider_openstack_password, declare it
as
openshift_cloudprovider_openstack_password='"mypasswordwith###hash
signs"' in the Ansible host inventory file.

The following table describe variables for use with the Ansible installer that can be assigned cluster-
wide:

Table 2.10. General Cluster Variables

Variable Purpose

ansible_ssh_user This variable sets the SSH user for the installer to
use and defaults to root. This user should allow
SSH-based authentication without requiring a
password. If using SSH key-based authentication,
then the key should be managed by an SSH agent.

ansible_become If ansible_ssh_user is not root, this variable
must be set to true and the user must be configured
for passwordless sudo.

CHAPTER 2. INSTALLING A CLUSTER

57

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-images-tag-policy

debug_level This variable sets which INFO messages are logged
to the systemd-journald.service. Set one
of the following:

0 to log errors and warnings only

2 to log normal information (This is the
default level.)

4 to log debugging-level information

6 to log API-level debugging information
(request / response)

8 to log body-level API debugging
information

For more information on debug log levels, see
Configuring Logging Levels .

containerized If set to true, containerized OpenShift Container
Platform services are run on all target master and
node hosts in the cluster instead of installed using
RPM packages. If set to false or unset, the default
RPM method is used. RHEL Atomic Host requires the
containerized method, and is automatically selected
for you based on the detection of the /run/ostree-
booted file. See Installing on Containerized Hosts for
more details. Containerized installations are
supported starting in OpenShift Container Platform
3.1.1.

openshift_clock_enabled Whether to enable Network Time Protocol (NTP) on
cluster nodes. true by default.

IMPORTANT

To prevent masters and nodes in the
cluster from going out of sync, do not
change the default value of this
parameter.

Variable Purpose

OpenShift Container Platform 3.7 Installation and Configuration

58

openshift_master_admission_plugin_co
nfig

This variable sets the parameter and arbitrary JSON
values as per the requirement in your inventory hosts
file. For example:

openshift_master_admission_plugin
_config=
{"ClusterResourceOverride":
{"configuration":
{"apiVersion":"v1","kind":"Cluste
rResourceOverrideConfig","memoryR
equestToLimitPercent":"25","cpuRe
questToLimitPercent":"25","limitC
PUToMemoryPercent":"200"}}}

openshift_master_audit_config This variable enables API service auditing. See Audit
Configuration for more information.

openshift_master_cluster_hostname This variable overrides the host name for the cluster,
which defaults to the host name of the master.

openshift_master_cluster_public_host
name

This variable overrides the public host name for the
cluster, which defaults to the host name of the
master. If you use an external load balancer, specify
the address of the external load balancer.

For example:

openshift_master_cluster_public_h
ostname=openshift-
ansible.public.example.com

openshift_master_cluster_method Optional. This variable defines the HA method when
deploying multiple masters. Supports the native
method. See Multiple Masters for more information.

openshift_rolling_restart_mode This variable enables rolling restarts of HA masters
(i.e., masters are taken down one at a time) when
running the upgrade playbook directly . It defaults to
services, which allows rolling restarts of services
on the masters. It can instead be set to system,
which enables rolling, full system restarts and also
works for single master clusters.

os_sdn_network_plugin_name This variable configures which OpenShift SDN plug-
in to use for the pod network, which defaults to
redhat/openshift-ovs-subnet for the
standard SDN plug-in. Set the variable to
redhat/openshift-ovs-multitenant to
use the multitenant plug-in.

Variable Purpose

CHAPTER 2. INSTALLING A CLUSTER

59

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/upgrading_clusters/#running-the-upgrade-playbook-directly
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-sdn

openshift_master_identity_providers This variable sets the identity provider. The default
value is Deny All. If you use a supported identity
provider, configure OpenShift Container Platform to
use it.

openshift_master_named_certificates These variables are used to configure custom
certificates which are deployed as part of the
installation. See Configuring Custom Certificates for
more information.

openshift_master_overwrite_named_cer
tificates

openshift_hosted_router_certificate Provide the location of the custom certificates for the
hosted router.

openshift_hosted_registry_cert_expir
e_days

Validity of the auto-generated registry certificate in
days. Defaults to 730 (2 years).

openshift_ca_cert_expire_days Validity of the auto-generated CA certificate in days.
Defaults to 1825 (5 years).

openshift_node_cert_expire_days Validity of the auto-generated node certificate in
days. Defaults to 730 (2 years).

openshift_master_cert_expire_days Validity of the auto-generated master certificate in
days. Defaults to 730 (2 years).

etcd_ca_default_days Validity of the auto-generated external etcd
certificates in days. Controls validity for etcd CA,
peer, server and client certificates. Defaults to 1825
(5 years).

os_firewall_use_firewalld Set to true to use firewalld instead of the default
iptables. Not available on RHEL Atomic Host. See the
Configuring the Firewall section for more information.

openshift_master_session_name These variables override defaults for session options
in the OAuth configuration. See Configuring Session
Options for more information.openshift_master_session_max_seconds

openshift_master_session_auth_secret
s

openshift_master_session_encryption_
secrets

Variable Purpose

OpenShift Container Platform 3.7 Installation and Configuration

60

openshift_set_node_ip This variable configures nodeIP in the node
configuration. This variable is needed in cases where
it is desired for node traffic to go over an interface
other than the default network interface. The host
variable openshift_ip can also be configured on
each node to set a specific IP that might not be the IP
of the default route.

openshift_portal_net This variable configures the subnet in which services
will be created within the OpenShift Container
Platform SDN. This network block should be private
and must not conflict with any existing network
blocks in your infrastructure to which pods, nodes, or
the master may require access to, or the installation
will fail. Defaults to 172.30.0.0/16, and cannot
be re-configured after deployment. If changing from
the default, avoid 172.17.0.0/16, which the
docker0 network bridge uses by default, or modify
the docker0 network.

openshift_master_default_subdomain This variable overrides the default subdomain to use
for exposed routes.

openshift_node_proxy_mode This variable specifies the service proxy mode to
use: either iptables for the default,
pure-iptables implementation, or userspace for
the user space proxy.

openshift_router_selector Default node selector for automatically deploying
router pods. See Configuring Node Host Labels for
details.

openshift_registry_selector Default node selector for automatically deploying
registry pods. See Configuring Node Host Labels for
details.

openshift_template_service_broker_na
mespaces

This variable enables the template service broker by
specifying one or more namespaces whose
templates will be served by the broker.

template_service_broker_selector Default node selector for automatically deploying
template service broker pods, defaults {"region":
"infra"}. See Configuring Node Host Labels for
details.

osm_default_node_selector This variable overrides the node selector that
projects will use by default when placing pods.

Variable Purpose

CHAPTER 2. INSTALLING A CLUSTER

61

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-sdn
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#service-proxy-mode

osm_cluster_network_cidr This variable overrides the SDN cluster network
CIDR block. This is the network from which pod IPs
are assigned. This network block should be a private
block and must not conflict with existing network
blocks in your infrastructure to which pods, nodes, or
the master may require access. Defaults to
10.128.0.0/14 and cannot be arbitrarily re-
configured after deployment, although certain
changes to it can be made in the SDN master
configuration.

osm_host_subnet_length This variable specifies the size of the per host subnet
allocated for pod IPs by OpenShift Container Platform
SDN. Defaults to 9 which means that a subnet of size
/23 is allocated to each host; for example, given the
default 10.128.0.0/14 cluster network, this will
allocate 10.128.0.0/23, 10.128.2.0/23, 10.128.4.0/23,
and so on. This cannot be re-configured after
deployment.

openshift_use_flannel This variable enables flannel as an alternative
networking layer instead of the default SDN. If
enabling flannel, disable the default SDN with the
openshift_use_openshift_sdn variable. For
more information, see Using Flannel .

openshift_docker_additional_registri
es

OpenShift Container Platform adds the specified
additional registry or registries to the docker
configuration. These are the registries to search.

openshift_docker_insecure_registries OpenShift Container Platform adds the specified
additional insecure registry or registries to the
docker configuration. For any of these registries,
secure sockets layer (SSL) is not verified. Also, add
these registries to
openshift_docker_additional_registri
es.

openshift_docker_blocked_registries OpenShift Container Platform adds the specified
blocked registry or registries to the docker
configuration. Block the listed registries. Setting this
to all blocks everything not in the other variables.

openshift_metrics_hawkular_hostname This variable sets the host name for integration with
the metrics console by overriding
metricsPublicURL in the master configuration
for cluster metrics. If you alter this variable, ensure
the host name is accessible via your router.

Variable Purpose

OpenShift Container Platform 3.7 Installation and Configuration

62

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#sdn-design-on-masters
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#sdn-design-on-masters

openshift_clusterid This variable is a cluster identifier unique to the AWS
Availability Zone. Using this avoids potential issues in
Amazon Web Service (AWS) with multiple zones or
multiple clusters. See Labeling Clusters for AWS for
details.

openshift_image_tag Use this variable to specify a container image tag to
install or configure.

openshift_pkg_version Use this variable to specify an RPM version to install
or configure.

Variable Purpose

WARNING

If you modify the openshift_image_tag or the openshift_pkg_version
variables after the cluster is set up, then an upgrade can be triggered, resulting in
downtime.

If openshift_image_tag is set, its value is used for all hosts in
containerized environments, even those that have another version installed.
If

openshift_pkg_version is set, its value is used for all hosts in RPM-
based environments, even those that have another version installed.

2.6.3.2. Configuring Deployment Type

Various defaults used throughout the playbooks and roles used by the installer are based on the
deployment type configuration (usually defined in an Ansible inventory file).

Ensure the openshift_deployment_type parameter in your inventory file’s [OSEv3:vars] section
is set to openshift-enterprise to install the OpenShift Container Platform variant:

[OSEv3:vars]
openshift_deployment_type=openshift-enterprise

2.6.3.3. Configuring Host Variables

To assign environment variables to hosts during the Ansible installation, indicate the desired variables in
the /etc/ansible/hosts file after the host entry in the [masters] or [nodes] sections. For example:

[masters]
ec2-52-6-179-239.compute-1.amazonaws.com openshift_public_hostname=ose3-
master.public.example.com



CHAPTER 2. INSTALLING A CLUSTER

63

The following table describes variables for use with the Ansible installer that can be assigned to
individual host entries:

Table 2.11. Host Variables

Variable Purpose

openshift_hostname This variable overrides the internal cluster host name
for the system. Use this when the system’s default IP
address does not resolve to the system host name.

openshift_public_hostname This variable overrides the system’s public host
name. Use this for cloud installations, or for hosts on
networks using a network address translation (NAT).

openshift_ip This variable overrides the cluster internal IP address
for the system. Use this when using an interface that
is not configured with the default
route.openshift_ip can be used for etcd.

openshift_public_ip This variable overrides the system’s public IP
address. Use this for cloud installations, or for hosts
on networks using a network address translation
(NAT).

containerized If set to true, containerized OpenShift Container
Platform services are run on the target master and
node hosts instead of installed using RPM packages.
If set to false or unset, the default RPM method is
used. RHEL Atomic Host requires the containerized
method, and is automatically selected for you based
on the detection of the /run/ostree-booted file. See
Installing on Containerized Hosts for more details.
Containerized installations are supported starting in
OpenShift Container Platform 3.1.1.

openshift_node_labels This variable adds labels to nodes during installation.
See Configuring Node Host Labels for more details.

openshift_node_kubelet_args This variable is used to configure
kubeletArguments on nodes, such as
arguments used in container and image garbage
collection, and to specify resources per node.
kubeletArguments are key value pairs that are
passed directly to the Kubelet that match the
Kubelet’s command line arguments .
kubeletArguments are not migrated or validated
and may become invalid if used. These values
override other settings in node configuration which
may cause invalid configurations. Example usage:
{'image-gc-high-threshold': ['90'],'image-gc-low-
threshold': ['80']}.

OpenShift Container Platform 3.7 Installation and Configuration

64

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-garbage-collection
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#configuring-node-resources
https://kubernetes.io/docs/admin/kubelet/

openshift_docker_options This variable configures additional docker options
within /etc/sysconfig/docker, such as options used
in Managing Container Logs. Use json-file or
journald. The default is journald. Example
usage:

"--log-driver json-file --log-opt
max-size=1M --log-opt max-file=3"
"--log-driver journald"

Do not use when running docker as a system
container.

openshift_schedulable This variable configures whether the host is marked
as a schedulable node, meaning that it is available for
placement of new pods. See Configuring
Schedulability on Masters.

Variable Purpose

2.6.3.4. Configuring Master API and Console Ports

To configure the default ports used by the master API and web console, configure the following variables
in the /etc/ansible/hosts file:

Table 2.12. Master API and Console Ports

Variable Purpose

openshift_master_api_port This variable sets the port number to access the
OpenShift Container Platform API.

openshift_master_console_port This variable sets the console port number to access
the OpenShift Container Platform console with a web
browser.

For example:

openshift_master_api_port=3443
openshift_master_console_port=8756

2.6.3.5. Configuring Cluster Pre-install Checks

Pre-install checks are a set of diagnostic tasks that run as part of the openshift_health_checker
Ansible role. They run prior to an Ansible installation of OpenShift Container Platform, ensure that
required inventory values are set, and identify potential issues on a host that can prevent or interfere
with a successful installation.

The following table describes available pre-install checks that will run before every Ansible installation of
OpenShift Container Platform:

CHAPTER 2. INSTALLING A CLUSTER

65

Table 2.13. Pre-install Checks

Check Name Purpose

memory_availability This check ensures that a host has the
recommended amount of memory for the specific
deployment of OpenShift Container Platform. Default
values have been derived from the latest installation
documentation. A user-defined value for minimum
memory requirements may be set by setting the
openshift_check_min_host_memory_gb
cluster variable in your inventory file.

disk_availability This check only runs on etcd, master, and node
hosts. It ensures that the mount path for an OpenShift
Container Platform installation has sufficient disk
space remaining. Recommended disk values are
taken from the latest installation documentation. A
user-defined value for minimum disk space
requirements may be set by setting
openshift_check_min_host_disk_gb
cluster variable in your inventory file.

docker_storage Only runs on hosts that depend on the docker
daemon (nodes and containerized installations).
Checks that docker's total usage does not exceed a
user-defined limit. If no user-defined limit is set,
docker's maximum usage threshold defaults to 90%
of the total size available. The threshold limit for total
percent usage can be set with a variable in your
inventory file:
max_thinpool_data_usage_percent=90. A
user-defined limit for maximum thinpool usage may
be set by setting the
max_thinpool_data_usage_percent cluster
variable in your inventory file.

docker_storage_driver Ensures that the docker daemon is using a storage
driver supported by OpenShift Container Platform. If
the devicemapper storage driver is being used,
the check additionally ensures that a loopback device
is not being used.

docker_image_availability Attempts to ensure that images required by an
OpenShift Container Platform installation are
available either locally or in at least one of the
configured container image registries on the host
machine.

openshift_release Specifies the generic release of OpenShift Container
Platform for containerized installations. For RPM
installations, set a package_availability
value.

OpenShift Container Platform 3.7 Installation and Configuration

66

https://docs.docker.com/engine/userguide/storagedriver/device-mapper-driver

package_version Runs on yum-based systems determining if multiple
releases of a required OpenShift Container Platform
package are available. Having multiple releases of a
package available during an enterprise
installation of OpenShift suggests that there are
multiple yum repositories enabled for different
releases, which may lead to installation problems.
This check is skipped if the openshift_release
variable is not defined in the inventory file.

package_availability Runs prior to non-containerized installations of
OpenShift Container Platform. Ensures that RPM
packages required for the current installation are
available.

package_update Checks whether a yum update or package
installation will succeed, without actually performing it
or running yum on the host.

Check Name Purpose

To disable specific pre-install checks, include the variable openshift_disable_check with a
comma-delimited list of check names in your inventory file. For example:

openshift_disable_check=memory_availability,disk_availability

NOTE

A similar set of health checks meant to run for diagnostics on existing clusters can be
found in Ansible-based Health Checks. Another set of checks for checking certificate
expiration can be found in Redeploying Certificates.

2.6.3.6. Configuring System Containers

IMPORTANT

All system container components are Technology Preview features in OpenShift
Container Platform 3.7. They must not be used in production and they are not supported
for upgrades to OpenShift Container Platform 3.7. During this phase, they are only meant
for use with new cluster installations in non-production environments.

System containers provide a way to containerize services that need to run before the docker daemon is
running. They are Docker-formatted containers that use:

OSTree for storage,

runC for the runtime,

systemd for service management, and

skopeo for searching.

CHAPTER 2. INSTALLING A CLUSTER

67

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-health-checks-via-ansible-playbook
https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.2/html/content_management_guide/managing_ostree_content
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/managing_containers/#running_containers_with_runc
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/managing_containers/#using_systemd_with_containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/managing_containers/#using_skopeo_to_work_with_container_registries

System containers are therefore stored and run outside of the traditional docker service. For more
details on system container technology, see Running System Containers in the Red Hat Enterprise Linux
Atomic Host: Managing Containers documentation.

You can configure your OpenShift Container Platform installation to run certain components as system
containers instead of their RPM or standard containerized methods. Currently, the docker and etcd
components can be run as system containers in OpenShift Container Platform.

WARNING

System containers are currently OS-specific because they require specific versions
of atomic and systemd. For example, different system containers are created for
RHEL, Fedora, or CentOS. Ensure that the system containers you are using match
the OS of the host they will run on. OpenShift Container Platform only supports
RHEL and RHEL Atomic as the host OS, so by default system containers built for
RHEL are used.

2.6.3.6.1. Running Docker as a System Container

IMPORTANT

All system container components are Technology Preview features in OpenShift
Container Platform 3.7. They must not be used in production and they are not supported
for upgrades to OpenShift Container Platform 3.7. During this phase, they are only meant
for use with new cluster installations in non-production environments.

The traditional method for using docker in an OpenShift Container Platform cluster is an RPM package
installation. For Red Hat Enterprise Linux (RHEL) systems, it must be specifically installed; for RHEL
Atomic Host systems, it is provided by default.

However, you can configure your OpenShift Container Platform installation to alternatively run docker
on node hosts as a system container. When using the system container method, the container-
engine container image and systemd service is used on the host instead of the docker package and
service.

To run docker as a system container:

1. Because the default storage back end for Docker on RHEL 7 is a thin pool on loopback devices,
for any RHEL systems you must still configure a thin pool logical volume for docker to use
before running the OpenShift Container Platform installation. You can skip these steps for any
RHEL Atomic Host systems.
For any RHEL systems, perform the steps described in the following sections:

i. Installing Docker

ii. Configuring Docker Storage

After completing the storage configuration steps, you can leave the RPM installed.

2. Set the following cluster variable to True in your inventory file in the [OSEv3:vars] section:



OpenShift Container Platform 3.7 Installation and Configuration

68

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/managing_containers/running_system_containers
https://access.redhat.com/support/offerings/techpreview

openshift_docker_use_system_container=True

When using the system container method, the following inventory variables for docker are ignored:

docker_version

docker_upgrade

Further, the following inventory variable must not be used:

openshift_docker_options

You can also force docker in the system container to use a specific container registry and repository
when pulling the container-engine image instead of from the default
registry.access.redhat.com/openshift3/. To do so, set the following cluster variable in your
inventory file in the [OSEv3:vars] section:

openshift_docker_systemcontainer_image_override="
<registry>/<user>/<image>:<tag>"

2.6.3.6.2. Running etcd as a System Container

IMPORTANT

All system container components are Technology Preview features in OpenShift
Container Platform 3.7. They must not be used in production and they are not supported
for upgrades to OpenShift Container Platform 3.7. During this phase, they are only meant
for use with new cluster installations in non-production environments.

When using the RPM-based installation method for OpenShift Container Platform, etcd is installed using
RPM packages on any RHEL systems. When using the containerized installation method, the
rhel7/etcd image is used instead for RHEL or RHEL Atomic Hosts.

However, you can configure your OpenShift Container Platform installation to alternatively run etcd as a
system container. Whereas the standard containerized method uses a systemd service named
etcd_container, the system container method uses the service name etcd, same as the RPM-based
method. The data directory for etcd using this method is /var/lib/etcd.

To run etcd as a system container, set the following cluster variable in your inventory file in the
[OSEv3:vars] section:

openshift_use_etcd_system_container=True

2.6.3.7. Configuring a Registry Location

If you are using an image registry other than the default at registry.access.redhat.com, specify
the desired registry within the /etc/ansible/hosts file.

oreg_url=example.com/openshift3/ose-${component}:${version}
openshift_examples_modify_imagestreams=true

Table 2.14. Registry Variables

CHAPTER 2. INSTALLING A CLUSTER

69

https://access.redhat.com/support/offerings/techpreview

Variable Purpose

oreg_url Set to the alternate image location. Necessary if you
are not using the default registry at
registry.access.redhat.com.

openshift_examples_modify_imagestrea
ms

Set to true if pointing to a registry other than the
default. Modifies the image stream location to the
value of oreg_url.

2.6.3.8. Configuring a Registry Route

To allow users to push and pull images to the internal Docker registry from outside of the OpenShift
Container Platform cluster, configure the registry route in the /etc/ansible/hosts file. By default, the
registry route is docker-registry-default.router.default.svc.cluster.local.

Table 2.15. Registry Route Variables

Variable Purpose

openshift_hosted_registry_routehost Set to the value of the desired registry route. The
route contains either a name that resolves to an
infrastructure node where a router manages
communication or the subdomain that you set as the
default application subdomain wildcard value. For
example, if you set the
openshift_master_default_subdomain
parameter to apps.example.com and
.apps.example.com resolves to infrastructure
nodes or a load balancer, you might use
registry.apps.example.com as the registry
route.

openshift_hosted_registry_routecerti
ficates

Set the paths to the registry certificates. If you do not
provide values for the certificate locations, certificates
are generated. You can define locations for the
following certificates:

certfile

keyfile

cafile

OpenShift Container Platform 3.7 Installation and Configuration

70

openshift_hosted_registry_routetermi
nation

Set to one of the following values:

Set to reencrypt to terminate encryption
at the edge router and re-encrypt it with a
new certificate supplied by the destination.

Set to passthrough to terminate
encryption at the destination. The
destination is responsible for decrypting
traffic.

Variable Purpose

For example:

openshift_hosted_registry_routehost=<path>
openshift_hosted_registry_routetermination=reencrypt
openshift_hosted_registry_routecertificates= "{'certfile': '<path>/org-
cert.pem', 'keyfile': '<path>/org-privkey.pem', 'cafile': '<path>/org-
chain.pem'}"

2.6.3.9. Configuring the Registry Console

If you are using a Cockpit registry console image other than the default or require a specific version of
the console, specify the desired registry within the /etc/ansible/hosts file.

openshift_cockpit_deployer_prefix=<registry-name>/<namespace>/
openshift_cockpit_deployer_version=<cockpit-image-tag>

Table 2.16. Registry Variables

Variable Purpose

openshift_cockpit_deployer_prefix Specify the URL and path to the directory where the
image is located.

openshift_cockpit_deployer_version Specify the Cockpit image verion.

For example: If your image is at registry.example.com/openshift3/registry-console and you require
version 1.4.1, enter:

openshift_cockpit_deployer_prefix='registry.example.com/openshift3/'
openshift_cockpit_deployer_version='1.4.1'

2.6.3.9.1. Configuring Registry Storage

There are several options for enabling registry storage when using the advanced install:

Option A: NFS Host Group

CHAPTER 2. INSTALLING A CLUSTER

71

NOTE

The use of NFS for registry storage is not recommended in OpenShift Container Platform.

When the following variables are set, an NFS volume is created during an advanced install with the path
<nfs_directory>/<volume_name> on the host within the [nfs] host group. For example, the volume
path using these options would be /exports/registry:

[OSEv3:vars]

openshift_hosted_registry_storage_kind=nfs
openshift_hosted_registry_storage_access_modes=['ReadWriteMany']
openshift_hosted_registry_storage_nfs_directory=/exports
openshift_hosted_registry_storage_nfs_options='*(rw,root_squash)'
openshift_hosted_registry_storage_volume_name=registry
openshift_hosted_registry_storage_volume_size=10Gi

Option B: External NFS Host

NOTE

The use of NFS for registry storage is not recommended in OpenShift Container Platform.

To use an external NFS volume, one must already exist with a path of
<nfs_directory>/<volume_name> on the storage host. The remote volume path using the following
options would be nfs.example.com:/exports/registry.

[OSEv3:vars]

openshift_hosted_registry_storage_kind=nfs
openshift_hosted_registry_storage_access_modes=['ReadWriteMany']
openshift_hosted_registry_storage_host=nfs.example.com
openshift_hosted_registry_storage_nfs_directory=/exports
openshift_hosted_registry_storage_volume_name=registry
openshift_hosted_registry_storage_volume_size=10Gi

Option C: OpenStack Platform
An OpenStack storage configuration must already exist.

[OSEv3:vars]

openshift_hosted_registry_storage_kind=openstack
openshift_hosted_registry_storage_access_modes=['ReadWriteOnce']
openshift_hosted_registry_storage_openstack_filesystem=ext4
openshift_hosted_registry_storage_openstack_volumeID=3a650b4f-c8c5-4e0a-
8ca5-eaee11f16c57
openshift_hosted_registry_storage_volume_size=10Gi

Option D: AWS or Another S3 Storage Solution
The simple storage solution (S3) bucket must already exist.

[OSEv3:vars]

#openshift_hosted_registry_storage_kind=object

OpenShift Container Platform 3.7 Installation and Configuration

72

#openshift_hosted_registry_storage_provider=s3
#openshift_hosted_registry_storage_s3_accesskey=access_key_id
#openshift_hosted_registry_storage_s3_secretkey=secret_access_key
#openshift_hosted_registry_storage_s3_bucket=bucket_name
#openshift_hosted_registry_storage_s3_region=bucket_region
#openshift_hosted_registry_storage_s3_chunksize=26214400
#openshift_hosted_registry_storage_s3_rootdirectory=/registry
#openshift_hosted_registry_pullthrough=true
#openshift_hosted_registry_acceptschema2=true
#openshift_hosted_registry_enforcequota=true

If you are using a different S3 service, such as Minio or ExoScale, also add the region endpoint
parameter:

openshift_hosted_registry_storage_s3_regionendpoint=https://myendpoint.exa
mple.com/

Option E: Google Cloud Storage (GCS) bucket on Google Compute Engine (GCE)
A GCS bucket must already exist.

[OSEv3:vars]

openshift_hosted_registry_storage_provider=gcs
openshift_hosted_registry_storage_gcs_bucket=bucket01
openshift_hosted_registry_storage_gcs_keyfile=test.key
openshift_hosted_registry_storage_gcs_rootdirectory=/registry

2.6.3.10. Configuring Router Sharding

Router sharding support is enabled by supplying the correct data to the inventory. The variable
openshift_hosted_routers holds the data, which is in the form of a list. If no data is passed, then a
default router is created. There are multiple combinations of router sharding. The following example
supports routers on separate nodes:

openshift_hosted_routers=[{'name': 'router1', 'certificate': {'certfile':
'/path/to/certificate/abc.crt',
'keyfile': '/path/to/certificate/abc.key', 'cafile':
'/path/to/certificate/ca.crt'}, 'replicas': 1, 'serviceaccount': 'router',
'namespace': 'default', 'stats_port': 1936, 'edits': [], 'images':
'openshift3/ose-${component}:${version}', 'selector': 'type=router1',
'ports':
['80:80', '443:443']},
{'name': 'router2', 'certificate': {'certfile':
'/path/to/certificate/xyz.crt',
'keyfile': '/path/to/certificate/xyz.key', 'cafile':
'/path/to/certificate/ca.crt'}, 'replicas': 1, 'serviceaccount': 'router',
'namespace': 'default', 'stats_port': 1936, 'edits': [{'action': 'append',
'key': 'spec.template.spec.containers[0].env', 'value': {'name':
'ROUTE_LABELS',
'value': 'route=external'}}], 'images':
'openshift3/ose-${component}:${version}', 'selector': 'type=router2',
'ports':
['80:80', '443:443']}]

CHAPTER 2. INSTALLING A CLUSTER

73

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#router-sharding

1

2

2.6.3.11. Configuring GlusterFS Persistent Storage

GlusterFS can be configured to provide peristent storage and dynamic provisioning for OpenShift
Container Platform. It can be used both containerized within OpenShift Container Platform and non-
containerized on its own nodes.

2.6.3.11.1. Configuring Containerized GlusterFS Persistent Storage

This option utilizes Red Hat Container Native Storage (CNS) for configuring containerized GlusterFS
persistent storage in OpenShift Container Platform.

IMPORTANT

See Containerized GlusterFS Considerations for specific host preparations and
prerequisites.

1. In your inventory file, add glusterfs in the [OSEv3:children] section to enable the
[glusterfs] group:

[OSEv3:children]
masters
nodes
glusterfs

2. (Optional) Include any of the following role variables in the [OSEv3:vars] section you wish to
change:

[OSEv3:vars]

openshift_storage_glusterfs_namespace=glusterfs 1

openshift_storage_glusterfs_name=storage 2

The project (namespace) to host the storage pods. Defaults to glusterfs.

A name to identify the GlusterFS cluster, which will be used in resource names. Defaults to
storage.

3. Add a [glusterfs] section with entries for each storage node that will host the GlusterFS
storage and include the glusterfs_ip and glusterfs_devices parameters in the form:

<hostname_or_ip> glusterfs_ip=<ip_address> glusterfs_devices='["
</path/to/device1/>", "</path/to/device2>", ...]'

For example:

[glusterfs]
192.168.10.11 glusterfs_ip=192.168.10.11 glusterfs_devices='[
"/dev/xvdc", "/dev/xvdd"]'
192.168.10.12 glusterfs_ip=192.168.10.12 glusterfs_devices='[
"/dev/xvdc", "/dev/xvdd"]'
192.168.10.13 glusterfs_ip=192.168.10.13 glusterfs_devices='[
"/dev/xvdc", "/dev/xvdd"]'

OpenShift Container Platform 3.7 Installation and Configuration

74

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.2/html/container-native_storage_for_openshift_container_platform/

Set glusterfs_devices to a list of raw block devices that will be completely managed as part
of a GlusterFS cluster. There must be at least one device listed. Each device must be bare, with
no partitions or LVM PVs. Set glusterfs_ip to the IP address that will be used by pods to
communicate with the GlusterFS node.

4. Add the hosts listed under [glusterfs] to the [nodes] group as well:

[nodes]
192.168.10.11
192.168.10.12
192.168.10.13

5. After completing the cluster installation per Running the Advanced Installation, run the following
from a master to verify the necessary objects were successfully created:

a. Verfiy that the GlusterFS StorageClass was created:

oc get storageclass
NAME TYPE
glusterfs-storage kubernetes.io/glusterfs

b. Verify that the route was created:

oc get routes
NAME HOST/PORT
PATH SERVICES PORT TERMINATION WILDCARD
heketi-glusterfs-route heketi-glusterfs-
default.cloudapps.example.com heketi-glusterfs <all>
None

NOTE

The name for the route will be heketi-glusterfs-route unless the
default glusterfs value was overridden using the
openshift_glusterfs_storage_name variable in the inventory file.

c. Use curl to verify the route works correctly:

curl http://heketi-glusterfs-
default.cloudapps.example.com/hello
Hello from Heketi.

After successful installation, see Operations on a Red Hat Gluster Storage Pod in an OpenShift
Environment to check the status of the GlusterFS clusters.

Dynamic provisioning of GlusterFS volumes can occur by creating a PVC to request storage.

2.6.3.12. Configuring the OpenShift Container Registry

Additional configuration options are available at installation time for the OpenShift Container Registry.

If no registry storage options are used, the default OpenShift Container Platform registry is ephermal and
all data will be lost if the pod no longer exists. OpenShift Container Platform also supports a single node

CHAPTER 2. INSTALLING A CLUSTER

75

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.2/html/container-native_storage_for_openshift_container_platform/chap-documentation-red_hat_gluster_storage_container_native_with_openshift_platform-gluster_pod_operations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#integrated-openshift-registry

NFS-backed registry, but this option lacks redundancy and reliability compared with the GlusterFS-
backed option.

2.6.3.12.1. Configuring a Containerized GlusterFS-Backed Registry

Similar to configuring containerized GlusterFS for persistent storage, GlusterFS storage can be
configured and deployed for an OpenShift Container Registry during the initial installation of the cluster to
offer redundant and more reliable storage for the registry.

IMPORTANT

See Containerized GlusterFS Considerations for specific host preparations and
prerequisites.

Configuration of storage for an OpenShift Container Registry is very similar to configuration for
GlusterFS persistent storage in that it can be either containerized or non-containerized. For this
containerized method, the following exceptions and additions apply:

1. In your inventory file, add glusterfs_registry in the [OSEv3:children] section to enable
the [glusterfs_registry] group:

[OSEv3:children]
masters
nodes
glusterfs_registry

2. Add the following role variable in the [OSEv3:vars] section to enable the GlusterFS-backed
registry, provided that the glusterfs_registry group name and the
[glusterfs_registry] group exist:

[OSEv3:vars]
openshift_hosted_registry_storage_kind=glusterfs

3. It is recommended to have at least three registry pods, so set the following role variable in the
[OSEv3:vars] section:

openshift_hosted_registry_replicas=3

4. If you want to specify the volume size for the GlusterFS-backed registry, set the following role
variable in [OSEv3:vars] section:

openshift_hosted_registry_storage_volume_size=10Gi

If unspecified, the volume size defaults to 5Gi.

5. The installer will deploy the OpenShift Container Registry pods and associated routers on nodes
containing the region=infra label. Add this label on at least one node entry in the [nodes]
section, otherwise the registry deployment will fail. For example:

[nodes]
192.168.10.14 openshift_schedulable=True openshift_node_labels="
{'region': 'infra'}"

OpenShift Container Platform 3.7 Installation and Configuration

76

6. Add a [glusterfs_registry] section with entries for each storage node that will host the
GlusterFS-backed registry and include the glusterfs_ip and glusterfs_devices
parameters in the form:

<hostname_or_ip> glusterfs_ip=<ip_address> glusterfs_devices='["
</path/to/device1/>", "</path/to/device2>", ...]'

For example:

[glusterfs_registry]
192.168.10.14 glusterfs_ip=192.168.10.14 glusterfs_devices='[
"/dev/xvdc", "/dev/xvdd"]'
192.168.10.15 glusterfs_ip=192.168.10.15 glusterfs_devices='[
"/dev/xvdc", "/dev/xvdd"]'
192.168.10.16 glusterfs_ip=192.168.10.16 glusterfs_devices='[
"/dev/xvdc", "/dev/xvdd"]'

Set glusterfs_devices to a list of raw block devices that will be completely managed as part
of a GlusterFS cluster. There must be at least one device listed. Each device must be bare, with
no partitions or LVM PVs. Set glusterfs_ip to the IP address that will be used by pods to
communicate with the GlusterFS node.

7. Add the hosts listed under [glusterfs_registry] to the [nodes] group as well:

[nodes]
192.168.10.14
192.168.10.15
192.168.10.16

After successful installation, see Operations on a Red Hat Gluster Storage Pod in an OpenShift
Environment to check the status of the GlusterFS clusters.

2.6.3.13. Configuring Global Proxy Options

If your hosts require use of a HTTP or HTTPS proxy in order to connect to external hosts, there are
many components that must be configured to use the proxy, including masters, Docker, and builds. Node
services only connect to the master API requiring no external access and therefore do not need to be
configured to use a proxy.

In order to simplify this configuration, the following Ansible variables can be specified at a cluster or host
level to apply these settings uniformly across your environment.

NOTE

See Configuring Global Build Defaults and Overrides for more information on how the
proxy environment is defined for builds.

Table 2.17. Cluster Proxy Variables

Variable Purpose

CHAPTER 2. INSTALLING A CLUSTER

77

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.2/html/container-native_storage_for_openshift_container_platform/chap-documentation-red_hat_gluster_storage_container_native_with_openshift_platform-gluster_pod_operations

openshift_http_proxy This variable specifies the HTTP_PROXY
environment variable for masters and the Docker
daemon.

openshift_https_proxy This variable specifices the HTTPS_PROXY
environment variable for masters and the Docker
daemon.

openshift_no_proxy This variable is used to set the NO_PROXY
environment variable for masters and the Docker
daemon. Provide a comma-separated list of host
names, domain names, or wildcard host names that
do not use the defined proxy. By default, this list is
augmented with the list of all defined OpenShift
Container Platform host names.

The host names that do not use the defined proxy
include:

Master and node host names. You must
include the domain suffix.

Other internal host names. You must include
the domain suffix.

etcd IP addresses. You must provide the IP
address because etcd access is managed
by IP address.

The Docker registry IP address.

The Kubernetes IP address. This value is
172.30.0.1 by default and the
openshift_portal_net parameter
value if you provided one.

The cluster.local Kubernetes internal
domain suffix.

The svc Kubernetes internal domain suffix.

openshift_generate_no_proxy_hosts This boolean variable specifies whether or not the
names of all defined OpenShift hosts and
*.cluster.local should be automatically
appended to the NO_PROXY list. Defaults to true; set
it to false to override this option.

Variable Purpose

OpenShift Container Platform 3.7 Installation and Configuration

78

openshift_builddefaults_http_proxy This variable defines the HTTP_PROXY environment
variable inserted into builds using the
BuildDefaults admission controller. If you do
not define this parameter but define the
openshift_http_proxy parameter, the
openshift_http_proxy value is used. Set the
openshift_builddefaults_http_proxy
value to False to disable default http proxy for
builds regardless of the
openshift_http_proxy value.

openshift_builddefaults_https_proxy This variable defines the HTTPS_PROXY
environment variable inserted into builds using the
BuildDefaults admission controller. If you do
not define this parameter but define the
openshift_http_proxy parameter, the
openshift_https_proxy value is used. Set the
openshift_builddefaults_https_proxy
value to False to disable default https proxy for
builds regardless of the
openshift_https_proxy value.

openshift_builddefaults_no_proxy This variable defines the NO_PROXY environment
variable inserted into builds using the
BuildDefaults admission controller. Set the
openshift_builddefaults_no_proxy
value to False to disable default no proxy settings
for builds regardless of the
openshift_no_proxy value.

openshift_builddefaults_git_http_pro
xy

This variable defines the HTTP proxy used by git
clone operations during a build, defined using the
BuildDefaults admission controller. Set the
openshift_builddefaults_git_http_pro
xy value to False to disable default http proxy for
git clone operations during a build regardless of
the openshift_http_proxy value.

openshift_builddefaults_git_https_pr
oxy

This variable defines the HTTPS proxy used by git
clone operations during a build, defined using the
BuildDefaults admission controller. Set the
openshift_builddefaults_git_https_pr
oxy value to False to disable default https proxy for
git clone operations during a build regardless of
the openshift_https_proxy value.

Variable Purpose

2.6.3.14. Configuring the Firewall

CHAPTER 2. INSTALLING A CLUSTER

79

1

IMPORTANT

If you are changing the default firewall, ensure that each host in your cluster is
using the same firewall type to prevent inconsistencies.

Do not use firewalld with the OpenShift Container Platform installed on Atomic
Host. firewalld is not supported on Atomic host.

NOTE

While iptables is the default firewall, firewalld is recommended for new installations.

OpenShift Container Platform uses iptables as the default firewall, but you can configure your cluster to
use firewalld during the install process.

Because iptables is the default firewall, OpenShift Container Platform is designed to have it configured
automatically. However, iptables rules can break OpenShift Container Platform if not configured
correctly. The advantages of firewalld include allowing multiple objects to safely share the firewall rules.

To use firewalld as the firewall for an OpenShift Container Platform installation, add the
os_firewall_use_firewalld variable to the list of configuration variables in the Ansible host file at
install:

[OSEv3:vars]

os_firewall_use_firewalld=True 1

Setting this variable to true opens the required ports and adds rules to the default zone, ensuring
that firewalld is configured correctly.

NOTE

Using the firewalld default configuration comes with limited configuration options, and
cannot be overridden. For example, while you can set up a storage network with
interfaces in multiple zones, the interface that nodes communicate on must be in the
default zone.

2.6.3.15. Configuring Schedulability on Masters

Any hosts you designate as masters during the installation process should also be configured as nodes
so that the masters are configured as part of the OpenShift SDN. You must do so by adding entries for
these hosts to the [nodes] section:

[nodes]
master.example.com

In order to ensure that your masters are not burdened with running pods, they are automatically marked
unschedulable by default by the installer, meaning that new pods cannot be placed on the hosts. This is
the same as setting the openshift_schedulable=False host variable.

You can manually set a master host to schedulable during installation using the
openshift_schedulable=true host variable, though this is not recommended in production
environments:

OpenShift Container Platform 3.7 Installation and Configuration

80

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#openshift-sdn

[nodes]
master.example.com openshift_schedulable=true

If you want to change the schedulability of a host post-installation, see Marking Nodes as Unschedulable
or Schedulable.

2.6.3.16. Configuring Node Host Labels

You can assign labels to node hosts during the Ansible install by configuring the /etc/ansible/hosts file.
Labels are useful for determining the placement of pods onto nodes using the scheduler. Other than
region=infra (discussed in Configuring Dedicated Infrastructure Nodes), the actual label names and
values are arbitrary and can be assigned however you see fit per your cluster’s requirements.

To assign labels to a node host during an Ansible install, use the openshift_node_labels variable
with the desired labels added to the desired node host entry in the [nodes] section. In the following
example, labels are set for a region called primary and a zone called east:

[nodes]
node1.example.com openshift_node_labels="{'region': 'primary', 'zone':
'east'}"

2.6.3.16.1. Configuring Dedicated Infrastructure Nodes

The openshift_router_selector and openshift_registry_selector Ansible settings
determine the label selectors used when placing registry and router pods. They are set to
region=infra by default:

default selectors for router and registry services
openshift_router_selector='region=infra'
openshift_registry_selector='region=infra'

The default router and registry will be automatically deployed during installation if nodes exist in the
[nodes] section that match the selector settings. For example:

[nodes]
infra-node1.example.com openshift_node_labels="{'region': 'infra','zone':
'default'}"

IMPORTANT

The registry and router are only able to run on node hosts with the region=infra label.
Ensure that at least one node host in your OpenShift Container Platform environment has
the region=infra label.

It is recommended for production environments that you maintain dedicated infrastructure nodes where
the registry and router pods can run separately from pods used for user applications.

If you do not intend to use OpenShift Container Platform to manage the registry and router, configure the
following Ansible settings:

openshift_hosted_manage_registry=false
openshift_hosted_manage_router=false

CHAPTER 2. INSTALLING A CLUSTER

81

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#marking-nodes-as-unschedulable-or-schedulable
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#labels
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#configurable-predicates

If you are using an image registry other than the default registry.access.redhat.com, you need to
specify the desired registry in the /etc/ansible/hosts file.

As described in Configuring Schedulability on Masters, master hosts are marked unschedulable by
default. If you label a master host with region=infra and have no other dedicated infrastructure
nodes, you must also explicitly mark these master hosts as schedulable. Otherwise, the registry and
router pods cannot be placed anywhere:

[nodes]
master.example.com openshift_node_labels="{'region': 'infra','zone':
'default'}" openshift_schedulable=true

2.6.3.17. Configuring Session Options

Session options in the OAuth configuration are configurable in the inventory file. By default, Ansible
populates a sessionSecretsFile with generated authentication and encryption secrets so that
sessions generated by one master can be decoded by the others. The default location is
/etc/origin/master/session-secrets.yaml, and this file will only be re-created if deleted on all masters.

You can set the session name and maximum number of seconds with
openshift_master_session_name and openshift_master_session_max_seconds:

openshift_master_session_name=ssn
openshift_master_session_max_seconds=3600

If provided, openshift_master_session_auth_secrets and
openshift_master_encryption_secrets must be equal length.

For openshift_master_session_auth_secrets, used to authenticate sessions using HMAC, it is
recommended to use secrets with 32 or 64 bytes:

openshift_master_session_auth_secrets=['DONT+USE+THIS+SECRET+b4NV+pmZNSO']

For openshift_master_encryption_secrets, used to encrypt sessions, secrets must be 16, 24, or
32 characters long, to select AES-128, AES-192, or AES-256:

openshift_master_session_encryption_secrets=
['DONT+USE+THIS+SECRET+b4NV+pmZNSO']

2.6.3.18. Configuring Custom Certificates

Custom serving certificates for the public host names of the OpenShift Container Platform API and web
console can be deployed during an advanced installation and are configurable in the inventory file.

NOTE

Custom certificates should only be configured for the host name associated with the
publicMasterURL which can be set using
openshift_master_cluster_public_hostname. Using a custom serving certificate
for the host name associated with the masterURL
(openshift_master_cluster_hostname) will result in TLS errors as infrastructure
components will attempt to contact the master API using the internal masterURL host.

OpenShift Container Platform 3.7 Installation and Configuration

82

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-infrastructure-components-web-console

Certificate and key file paths can be configured using the openshift_master_named_certificates
cluster variable:

openshift_master_named_certificates=[{"certfile": "/path/to/custom1.crt",
"keyfile": "/path/to/custom1.key", "cafile": "/path/to/custom-ca1.crt"}]

File paths must be local to the system where Ansible will be run. Certificates are copied to master hosts
and are deployed within the /etc/origin/master/named_certificates/ directory.

Ansible detects a certificate’s Common Name and Subject Alternative Names. Detected names
can be overridden by providing the "names" key when setting
openshift_master_named_certificates:

openshift_master_named_certificates=[{"certfile": "/path/to/custom1.crt",
"keyfile": "/path/to/custom1.key", "names": ["public-master-host.com"],
"cafile": "/path/to/custom-ca1.crt"}]

Certificates configured using openshift_master_named_certificates are cached on masters,
meaning that each additional Ansible run with a different set of certificates results in all previously
deployed certificates remaining in place on master hosts and within the master configuration file.

If you would like openshift_master_named_certificates to be overwritten with the provided
value (or no value), specify the openshift_master_overwrite_named_certificates cluster
variable:

openshift_master_overwrite_named_certificates=true

For a more complete example, consider the following cluster variables in an inventory file:

openshift_master_cluster_method=native
openshift_master_cluster_hostname=lb-internal.openshift.com
openshift_master_cluster_public_hostname=custom.openshift.com

To overwrite the certificates on a subsequent Ansible run, you could set the following:

openshift_master_named_certificates=[{"certfile":
"/root/STAR.openshift.com.crt", "keyfile": "/root/STAR.openshift.com.key",
"names": ["custom.openshift.com"]}]
openshift_master_overwrite_named_certificates=true

2.6.3.19. Configuring Certificate Validity

By default, the certificates used to govern the etcd, master, and kubelet expire after two to five years.
The validity (length in days until they expire) for the auto-generated registry, CA, node, and master
certificates can be configured during installation using the following variables (default values shown):

[OSEv3:vars]

openshift_hosted_registry_cert_expire_days=730
openshift_ca_cert_expire_days=1825
openshift_node_cert_expire_days=730
openshift_master_cert_expire_days=730
etcd_ca_default_days=1825

CHAPTER 2. INSTALLING A CLUSTER

83

These values are also used when redeploying certificates via Ansible post-installation.

2.6.3.20. Configuring Cluster Metrics

The OpenShift Container Platform web console uses the data coming from the Hawkular Metrics service
to display its graphs. The metrics public URL can be set during cluster installation using the
openshift_metrics_hawkular_hostname Ansible variable, which defaults to:

https://hawkular-metrics.
{{openshift_master_default_subdomain}}/hawkular/metrics

If you alter this variable, ensure the host name is accessible via your router.

IMPORTANT

In accordance with upstream Kubernetes rules, metrics can be collected only on the
default interface of eth0.

NOTE

You must set an openshift_master_default_subdomain value to deploy metrics.

2.6.3.20.1. Configuring Metrics Storage

The openshift_metrics_cassandra_storage_type variable must be set in order to use
persistent storage for metrics. If openshift_metrics_cassandra_storage_type is not set, then
cluster metrics data is stored in an emptyDir volume, which will be deleted when the Cassandra pod
terminates.

There are three options for enabling cluster metrics storage when using the advanced install:

Option A: Dynamic
If your OpenShift Container Platform environment supports dynamic volume provisioning for your cloud
provider, use the following variable:

[OSEv3:vars]

openshift_metrics_cassandra_storage_type=dynamic

If there are multiple default dynamically provisioned volume types, such as gluster-storage and glusterfs-
storage-block, you can specify the provisioned volume type by variable. For example,
openshift_metrics_cassandra_pvc_storage_class_name=glusterfs-storage-block.

Check Volume Configuration for more information on using DynamicProvisioningEnabled to enable
or disable dynamic provisioning.

Option B: NFS Host Group

IMPORTANT

The use of NFS for metrics storage is not recommended in OpenShift Container Platform.

OpenShift Container Platform 3.7 Installation and Configuration

84

When the following variables are set, an NFS volume is created during an advanced install with path
<nfs_directory>/<volume_name> on the host within the [nfs] host group. For example, the volume
path using these options would be /exports/metrics:

[OSEv3:vars]

openshift_metrics_storage_kind=nfs
openshift_metrics_storage_access_modes=['ReadWriteOnce']
openshift_metrics_storage_nfs_directory=/exports
openshift_metrics_storage_nfs_options='*(rw,root_squash)'
openshift_metrics_storage_volume_name=metrics
openshift_metrics_storage_volume_size=10Gi

Option C: External NFS Host

IMPORTANT

The use of NFS for metrics storage is not recommended in OpenShift Container Platform.

To use an external NFS volume, one must already exist with a path of
<nfs_directory>/<volume_name> on the storage host.

[OSEv3:vars]

openshift_metrics_storage_kind=nfs
openshift_metrics_storage_access_modes=['ReadWriteOnce']
openshift_metrics_storage_host=nfs.example.com
openshift_metrics_storage_nfs_directory=/exports
openshift_metrics_storage_volume_name=metrics
openshift_metrics_storage_volume_size=10Gi

The remote volume path using the following options would be nfs.example.com:/exports/metrics.

2.6.3.21. Configuring Cluster Logging

Cluster logging is not set to automatically deploy by default. Set the following to enable cluster logging
when using the advanced installation method:

[OSEv3:vars]

openshift_logging_install_logging=true

2.6.3.21.1. Configuring Logging Storage

The openshift_logging_es_pvc_dynamic variable must be set in order to use persistent storage
for logging. If openshift_logging_es_pvc_dynamic is not set, then cluster logging data is stored in
an emptyDir volume, which will be deleted when the Elasticsearch pod terminates.

There are three options for enabling cluster logging storage when using the advanced install:

Option A: Dynamic
If your OpenShift Container Platform environment supports dynamic volume provisioning for your cloud
provider, use the following variable:

CHAPTER 2. INSTALLING A CLUSTER

85

[OSEv3:vars]

openshift_logging_es_pvc_dynamic=true

If there are multiple default dynamically provisioned volume types, such as gluster-storage and glusterfs-
storage-block, you can specify the provisioned volume type by variable. For example,
openshift_logging_es_pvc_storage_class_name=glusterfs-storage-block.

Check Volume Configuration for more information on using DynamicProvisioningEnabled to enable
or disable dynamic provisioning.

Option B: NFS Host Group

IMPORTANT

The use of NFS for logging storage is not recommended in OpenShift Container Platform.

When the following variables are set, an NFS volume is created during an advanced install with path
<nfs_directory>/<volume_name> on the host within the [nfs] host group. For example, the volume
path using these options would be /exports/logging:

[OSEv3:vars]

openshift_logging_storage_kind=nfs
openshift_logging_storage_access_modes=['ReadWriteOnce']
openshift_logging_storage_nfs_directory=/exports
openshift_logging_storage_nfs_options='*(rw,root_squash)'
openshift_logging_storage_volume_name=logging
openshift_logging_storage_volume_size=10Gi

Option C: External NFS Host

IMPORTANT

The use of NFS for logging storage is not recommended in OpenShift Container Platform.

To use an external NFS volume, one must already exist with a path of
<nfs_directory>/<volume_name> on the storage host.

[OSEv3:vars]

openshift_logging_storage_kind=nfs
openshift_logging_storage_access_modes=['ReadWriteOnce']
openshift_logging_storage_host=nfs.example.com
openshift_logging_storage_nfs_directory=/exports
openshift_logging_storage_volume_name=logging
openshift_logging_storage_volume_size=10Gi

The remote volume path using the following options would be nfs.example.com:/exports/logging.

2.6.3.22. Customizing Service Catalog Options

Starting with OpenShift Container Platform 3.7, the service catalog is enabled by default during

OpenShift Container Platform 3.7 Installation and Configuration

86

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-service-catalog

installation. Enabling the service broker allows you to register service brokers with the catalog. When the
service catalog is enabled, the OpenShift Ansible broker and template service broker are both installed
as well; see Configuring the OpenShift Ansible Broker and Configuring the Template Service Broker for
more information. If you disable the service catalog, the OpenShift Ansible broker and template service
broker are not installed.

To disable automatic deployment of the service catalog, set the following cluster variable in your
inventory file:

openshift_enable_service_catalog=false

When the service catalog is enabled, the web console shows the updated landing page. The OpenShift
Ansible broker and template service broker are both enabled as well; see Configuring the OpenShift
Ansible Broker and Configuring the Template Service Broker for more information.

2.6.3.22.1. Configuring the OpenShift Ansible Broker

Starting with OpenShift Container Platform 3.7, the OpenShift Ansible broker (OAB) is enabled by
default during installation.

If you do not want to install the OAB, set the ansible_service_broker_install parameter value to
false in the inventory file:

ansible_service_broker_install=false

2.6.3.22.1.1. Configuring Persistent Storage for the OpenShift Ansible Broker

The OAB deploys its own etcd instance separate from the etcd used by the rest of the OpenShift
Container Platform cluster. The OAB’s etcd instance requires separate storage using persistent volumes
(PVs) to function. If no PV is available, etcd will wait until the PV can be satisfied. The OAB application
will enter a CrashLoop state until its etcd instance is available.

You can use the installer with the following variables to configure persistent storage for the OAB using
NFS.

Table 2.18. OpenShift Ansible Broker Storage Ansible Variables

Variable Purpose

openshift_hosted_etcd_storage_kind Storage type to use for the etcd PV. nfs is
supported using this method.

openshift_hosted_etcd_storage_volume
_name

Name of etcd PV.

openshift_hosted_etcd_storage_access
_modes

Defaults to ReadWriteOnce.

openshift_hosted_etcd_storage_volume
_size

Size of the etcd PV. Defaults to 1Gi.

CHAPTER 2. INSTALLING A CLUSTER

87

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#arch-ansible-service-broker

1 2

openshift_hosted_etcd_storage_labels Labels to use for the etcd PV. Defaults to
{'storage': 'etcd'}

openshift_hosted_etcd_storage_nfs_op
tions

NFS options to use. Defaults to *
(rw,root_squash)

openshift_hosted_etcd_storage_nfs_di
rectory

Directory for NFS exports. Defaults to /exports.

Variable Purpose

Some Ansible playbook bundles (APBs) may also require a PV for their own usage. Two APBs are
currently provided with OpenShift Container Platform 3.7: MediaWiki and PostgreSQL. Both of these
require their own PV to deploy.

To configure persistent storage for the OAB:

1. In your inventory file, add nfs to the [OSEv3:children] section to enable the [nfs] group:

[OSEv3:children]
masters
nodes
nfs

2. Add a [nfs] group section and add the host name for the system that will be the NFS host:

[nfs]
master1.example.com

3. Add the following in the [OSEv3:vars] section:

openshift_hosted_etcd_storage_kind=nfs
openshift_hosted_etcd_storage_nfs_options="*
(rw,root_squash,sync,no_wdelay)"

openshift_hosted_etcd_storage_nfs_directory=/opt/osev3-etcd 1

openshift_hosted_etcd_storage_volume_name=etcd-vol2 2
openshift_hosted_etcd_storage_access_modes=["ReadWriteOnce"]
openshift_hosted_etcd_storage_volume_size=1G
openshift_hosted_etcd_storage_labels={'storage': 'etcd'}

An NFS volume will be created with path <nfs_directory>/<volume_name> on the
host within the [nfs] group. For example, the volume path using these options would be
/opt/osev3-etcd/etcd-vol2.

These settings create a persistent volume that is attached to the OAB’s etcd instance during
cluster installation.

2.6.3.22.1.2. Configuring the OpenShift Ansible Broker for Local APB Development

OpenShift Container Platform 3.7 Installation and Configuration

88

In order to do APB development with the OpenShift Container Registry in conjunction with the OAB, a
whitelist of images the OAB can access must be defined. If a whitelist is not defined, the broker will
ignore APBs and users will not see any APBs available.

By default, the whitelist is empty so that a user cannot add APB images to the broker without a cluster
administrator configuring the broker. To whitelist all images that end in -apb:

1. In your inventory file, add the following to the [OSEv3:vars] section:

ansible_service_broker_local_registry_whitelist=['.*-apb$']

2.6.3.22.2. Configuring the Template Service Broker

Starting with OpenShift Container Platform 3.7, the template service broker (TSB) is enabled by default.

If you do not want to install the TSB, set the template_service_broker_install parameter value
to false:

template_service_broker_install=false

To configure the TSB, one or more projects must be defined as the broker’s source namespace(s) for
loading templates and image streams into the service catalog. Set the desired projects by modifying the
following in your inventory file’s [OSEv3:vars] section:

openshift_template_service_broker_namespaces=['openshift','myproject']

By default, the TSB will use the nodeselector {"region": "infra"} for deploying its pods. You can
modify this by setting the desired nodeselector in your inventory file’s [OSEv3:vars] section:

template_service_broker_selector={"region": "infra"}

2.6.3.23. Configuring Web Console Customization

The following Ansible variables set master configuration options for customizing the web console. See
Customizing the Web Console for more details on these customization options.

Table 2.19. Web Console Customization Variables

Variable Purpose

openshift_master_logout_url Sets logoutURL in the master configuration. See
Changing the Logout URL for details. Example value:
http://example.com

openshift_master_extension_scripts Sets extensionScripts in the master
configuration. See Loading Extension Scripts and
Stylesheets for details. Example value:
['/path/to/script1.js','/path/to/scr
ipt2.js']

CHAPTER 2. INSTALLING A CLUSTER

89

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/ansible_playbook_bundle_development_guide/#apb-devel-intro
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#arch-template-service-broker

openshift_master_extension_styleshee
ts

Sets extensionStylesheets in the master
configuration. See Loading Extension Scripts and
Stylesheets for details. Example value:
['/path/to/stylesheet1.css','/path/t
o/stylesheet2.css']

openshift_master_extensions Sets extensions in the master configuration. See
Serving Static Files and Customizing the About Page
for details. Example value: [{'name':
'images', 'sourceDirectory':
'/path/to/my_images'}]

openshift_master_oauth_template Sets the OAuth template in the master configuration.
See Customizing the Login Page for details. Example
value: ['/path/to/login-
template.html']

openshift_master_metrics_public_url Sets metricsPublicURL in the master
configuration. See Setting the Metrics Public URL for
details. Example value: https://hawkular-
metrics.example.com/hawkular/metrics

openshift_master_logging_public_url Sets loggingPublicURL in the master
configuration. See Kibana for details. Example value:
https://kibana.example.com

Variable Purpose

2.6.4. Example Inventory Files

2.6.4.1. Single Master Examples

You can configure an environment with a single master and multiple nodes, and either a single or
multiple number of external etcd hosts.

NOTE

Moving from a single master cluster to multiple masters after installation is not supported.

Single Master, Single etcd, and Multiple Nodes
The following table describes an example environment for a single master (with a single etcd on the
same host), two nodes for hosting user applications, and two nodes with the region=infra label for
hosting dedicated infrastructure:

Host Name Infrastructure Component to Install

master.example.com Master, etcd, and node

node1.example.com Node

OpenShift Container Platform 3.7 Installation and Configuration

90

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#node

node2.example.com

infra-node1.example.com Node (with region=infra label)

infra-node2.example.com

Host Name Infrastructure Component to Install

You can see these example hosts present in the [masters], [etcd], and [nodes] sections of the
following example inventory file:

Single Master, Single etcd, and Multiple Nodes Inventory File

Create an OSEv3 group that contains the masters, nodes, and etcd groups
[OSEv3:children]
masters
nodes
etcd

Set variables common for all OSEv3 hosts
[OSEv3:vars]
SSH user, this user should allow ssh based auth without requiring a
password
ansible_ssh_user=root

If ansible_ssh_user is not root, ansible_become must be set to true
#ansible_become=true

openshift_deployment_type=openshift-enterprise

uncomment the following to enable htpasswd authentication; defaults to
DenyAllPasswordIdentityProvider
#openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':
'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider',
'filename': '/etc/origin/master/htpasswd'}]

host group for masters
[masters]
master.example.com

host group for etcd
[etcd]
master.example.com

host group for nodes, includes region info
[nodes]
master.example.com
node1.example.com openshift_node_labels="{'region': 'primary', 'zone':
'east'}"
node2.example.com openshift_node_labels="{'region': 'primary', 'zone':
'west'}"
infra-node1.example.com openshift_node_labels="{'region': 'infra', 'zone':

CHAPTER 2. INSTALLING A CLUSTER

91

'default'}"
infra-node2.example.com openshift_node_labels="{'region': 'infra', 'zone':
'default'}"

To use this example, modify the file to match your environment and specifications, and save it as
/etc/ansible/hosts.

Single Master, Multiple etcd, and Multiple Nodes
The following table describes an example environment for a single master, three etcd hosts, two nodes
for hosting user applications, and two nodes with the region=infra label for hosting dedicated
infrastructure:

Host Name Infrastructure Component to Install

master.example.com Master and node

etcd1.example.com etcd

etcd2.example.com

etcd3.example.com

node1.example.com Node

node2.example.com

infra-node1.example.com Node (with region=infra label)

infra-node2.example.com

You can see these example hosts present in the [masters], [nodes], and [etcd] sections of the
following example inventory file:

Single Master, Multiple etcd, and Multiple Nodes Inventory File

Create an OSEv3 group that contains the masters, nodes, and etcd groups
[OSEv3:children]
masters
nodes
etcd

Set variables common for all OSEv3 hosts
[OSEv3:vars]
ansible_ssh_user=root
openshift_deployment_type=openshift-enterprise

uncomment the following to enable htpasswd authentication; defaults to
DenyAllPasswordIdentityProvider
#openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':
'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider',
'filename': '/etc/origin/master/htpasswd'}]

OpenShift Container Platform 3.7 Installation and Configuration

92

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#node

host group for masters
[masters]
master.example.com

host group for etcd
[etcd]
etcd1.example.com
etcd2.example.com
etcd3.example.com

host group for nodes, includes region info
[nodes]
master.example.com
node1.example.com openshift_node_labels="{'region': 'primary', 'zone':
'east'}"
node2.example.com openshift_node_labels="{'region': 'primary', 'zone':
'west'}"
infra-node1.example.com openshift_node_labels="{'region': 'infra', 'zone':
'default'}"
infra-node2.example.com openshift_node_labels="{'region': 'infra', 'zone':
'default'}"

To use this example, modify the file to match your environment and specifications, and save it as
/etc/ansible/hosts.

2.6.4.2. Multiple Masters Examples

You can configure an environment with multiple masters, multiple etcd hosts, and multiple nodes.
Configuring multiple masters for high availability (HA) ensures that the cluster has no single point of
failure.

NOTE

Moving from a single master cluster to multiple masters after installation is not supported.

When configuring multiple masters, the advanced installation supports the native high availability (HA)
method. This method leverages the native HA master capabilities built into OpenShift Container Platform
and can be combined with any load balancing solution.

If a host is defined in the [lb] section of the inventory file, Ansible installs and configures HAProxy
automatically as the load balancing solution. If no host is defined, it is assumed you have pre-configured
an external load balancing solution of your choice to balance the master API (port 8443) on all master
hosts.

NOTE

This HAProxy load balancer is intended to demonstrate the API server’s HA mode and is
not recommended for production environments. If you are deploying to a cloud provider,
Red Hat recommends deploying a cloud-native TCP-based load balancer or take other
steps to provide a highly available load balancer.

For an external load balancing solution, you must have:

CHAPTER 2. INSTALLING A CLUSTER

93

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#high-availability-masters

A pre-created load balancer VIP configured for SSL passthrough.

A VIP listening on the port specified by the openshift_master_api_port and
openshift_master_console_port values (8443 by default) and proxying back to all master
hosts on that port.

A domain name for VIP registered in DNS.

The domain name will become the value of both
openshift_master_cluster_public_hostname and
openshift_master_cluster_hostname in the OpenShift Container Platform installer.

See External Load Balancer Integrations for more information. For more on the high availability master
architecture, see Kubernetes Infrastructure.

NOTE

The advanced installation method does not currently support multiple HAProxy load
balancers in an active-passive setup. See the Load Balancer Administration
documentation for post-installation amendments.

To configure multiple masters, refer to the following section.

Multiple Masters with Multiple etcd
The following describes an example environment for three masters using the native HA method:, one
HAProxy load balancer, three etcd hosts, two nodes for hosting user applications, and two nodes with
the region=infra label for hosting dedicated infrastructure:

Host Name Infrastructure Component to Install

master1.example.com Master (clustered using native HA) and node

master2.example.com

master3.example.com

lb.example.com HAProxy to load balance API master endpoints

etcd1.example.com etcd

etcd2.example.com

etcd3.example.com

node1.example.com Node

node2.example.com

infra-node1.example.com Node (with region=infra label)

OpenShift Container Platform 3.7 Installation and Configuration

94

https://github.com/redhat-cop/openshift-playbooks/blob/master/playbooks/installation/load_balancing.adoc
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#master
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Load_Balancer_Administration/ch-lvs-overview-VSA.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#node

infra-node2.example.com

Host Name Infrastructure Component to Install

You can see these example hosts present in the [masters], [etcd], [lb], and [nodes] sections of the
following example inventory file:

Multiple Masters Using HAProxy Inventory File

Create an OSEv3 group that contains the master, nodes, etcd, and lb
groups.
The lb group lets Ansible configure HAProxy as the load balancing
solution.
Comment lb out if your load balancer is pre-configured.
[OSEv3:children]
masters
nodes
etcd
lb

Set variables common for all OSEv3 hosts
[OSEv3:vars]
ansible_ssh_user=root
openshift_deployment_type=openshift-enterprise

Uncomment the following to enable htpasswd authentication; defaults to
DenyAllPasswordIdentityProvider.
#openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':
'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider',
'filename': '/etc/origin/master/htpasswd'}]

Native high availbility cluster method with optional load balancer.
If no lb group is defined installer assumes that a load balancer has
been preconfigured. For installation the value of
openshift_master_cluster_hostname must resolve to the load balancer
or to one or all of the masters defined in the inventory if no load
balancer is present.
openshift_master_cluster_method=native
openshift_master_cluster_hostname=openshift-internal.example.com
openshift_master_cluster_public_hostname=openshift-cluster.example.com

apply updated node defaults
openshift_node_kubelet_args={'pods-per-core': ['10'], 'max-pods': ['250'],
'image-gc-high-threshold': ['90'], 'image-gc-low-threshold': ['80']}

enable ntp on masters to ensure proper failover
openshift_clock_enabled=true

host group for masters
[masters]
master1.example.com
master2.example.com
master3.example.com

CHAPTER 2. INSTALLING A CLUSTER

95

host group for etcd
[etcd]
etcd1.example.com
etcd2.example.com
etcd3.example.com

Specify load balancer host
[lb]
lb.example.com

host group for nodes, includes region info
[nodes]
master[1:3].example.com
node1.example.com openshift_node_labels="{'region': 'primary', 'zone':
'east'}"
node2.example.com openshift_node_labels="{'region': 'primary', 'zone':
'west'}"
infra-node1.example.com openshift_node_labels="{'region': 'infra', 'zone':
'default'}"
infra-node2.example.com openshift_node_labels="{'region': 'infra', 'zone':
'default'}"

To use this example, modify the file to match your environment and specifications, and save it as
/etc/ansible/hosts.

Multiple Masters with Master and etcd on the Same Host
The following describes an example environment for three masters using the native HA method (with
etcd on each host), one HAProxy load balancer, two nodes for hosting user applications, and two nodes
with the region=infra label for hosting dedicated infrastructure:

Host Name Infrastructure Component to Install

master1.example.com Master (clustered using native HA) and node with
etcd on each host

master2.example.com

master3.example.com

lb.example.com HAProxy to load balance API master endpoints

node1.example.com Node

node2.example.com

infra-node1.example.com Node (with region=infra label)

infra-node2.example.com

You can see these example hosts present in the [masters], [etcd], [lb], and [nodes] sections of the
following example inventory file:

OpenShift Container Platform 3.7 Installation and Configuration

96

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#node

Create an OSEv3 group that contains the master, nodes, etcd, and lb
groups.
The lb group lets Ansible configure HAProxy as the load balancing
solution.
Comment lb out if your load balancer is pre-configured.
[OSEv3:children]
masters
nodes
etcd
lb

Set variables common for all OSEv3 hosts
[OSEv3:vars]
ansible_ssh_user=root
openshift_deployment_type=openshift-enterprise

Uncomment the following to enable htpasswd authentication; defaults to
DenyAllPasswordIdentityProvider.
#openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':
'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider',
'filename': '/etc/origin/master/htpasswd'}]

Native high availability cluster method with optional load balancer.
If no lb group is defined installer assumes that a load balancer has
been preconfigured. For installation the value of
openshift_master_cluster_hostname must resolve to the load balancer
or to one or all of the masters defined in the inventory if no load
balancer is present.
openshift_master_cluster_method=native
openshift_master_cluster_hostname=openshift-internal.example.com
openshift_master_cluster_public_hostname=openshift-cluster.example.com

host group for masters
[masters]
master1.example.com
master2.example.com
master3.example.com

host group for etcd
[etcd]
master1.example.com
master2.example.com
master3.example.com

Specify load balancer host
[lb]
lb.example.com

host group for nodes, includes region info
[nodes]
master[1:3].example.com
node1.example.com openshift_node_labels="{'region': 'primary', 'zone':
'east'}"
node2.example.com openshift_node_labels="{'region': 'primary', 'zone':
'west'}"
infra-node1.example.com openshift_node_labels="{'region': 'infra', 'zone':

CHAPTER 2. INSTALLING A CLUSTER

97

'default'}"
infra-node2.example.com openshift_node_labels="{'region': 'infra', 'zone':
'default'}"

To use this example, modify the file to match your environment and specifications, and save it as
/etc/ansible/hosts.

2.6.5. Running the Advanced Installation

After you have configured Ansible by defining an inventory file in /etc/ansible/hosts, you run the
advanced installation playbook via Ansible. OpenShift Container Platform installations are currently
supported using the RPM-based installer, while the containerized installer is currently a Technology
Preview feature.

The installer uses modularized playbooks allowing administrators to install specific components as
needed. By breaking up the roles and playbooks, there is better targeting of ad hoc administration tasks.
This results in an increased level of control during installations and results in time savings.

The playbooks and their ordering are detailed below in Running Individual Component Playbooks.

NOTE

Due to a known issue, after running the installation, if NFS volumes are provisioned for
any component, the following directories might be created whether their components are
being deployed to NFS volumes or not:

/exports/logging-es

/exports/logging-es-ops/

/exports/metrics/

/exports/prometheus

/exports/prometheus-alertbuffer/

/exports/prometheus-alertmanager/

You can delete these directories after installation, as needed.

2.6.5.1. Running the RPM-based Installer

The RPM-based installer uses Ansible installed via RPM packages to run playbooks and configuration
files available on the local host. To run the installer, use the following command, specifying -i if your
inventory file located somewhere other than /etc/ansible/hosts:

If you are using a proxy, you must add the IP address of the etcd endpoints to the
openshift_no_proxy cluster variable in your inventory file.

NOTE

If you are not using a proxy, you can skip this step.

OpenShift Container Platform 3.7 Installation and Configuration

98

IMPORTANT

Do not run OpenShift Ansible playbooks under nohup. Using nohup with the playbooks
causes file descriptors to be created and not closed. Therefore, the system can run out of
files to open and the playbook will fail.

In OpenShift Container Platform:

ansible-playbook [-i /path/to/inventory] \
 /usr/share/ansible/openshift-ansible/playbooks/byo/config.yml

If for any reason the installation fails, before re-running the installer, see Known Issues to check for any
specific instructions or workarounds.

WARNING

The installer caches playbook configuration values for 10 minutes, by default. If you
change any system, network, or inventory configuration, and then re-run the installer
within that 10 minute period, the new values are not used, and the previous values
are used instead. You can delete the contents of the cache, which is defined by the
fact_caching_connection value in the /etc/ansible/ansible.cfg file. An
example of this file is shown in Recommended Installation Practices.

2.6.5.2. Running the Containerized Installer

The openshift3/ose-ansible image is a containerized version of the OpenShift Container Platform
installer. This installer image provides the same functionality as the RPM-based installer, but it runs in a
containerized environment that provides all of its dependencies rather than being installed directly on the
host. The only requirement to use it is the ability to run a container.

2.6.5.2.1. Running the Installer as a System Container

IMPORTANT

All system container components are Technology Preview features in OpenShift
Container Platform 3.7. They must not be used in production and they are not supported
for upgrades to OpenShift Container Platform 3.7. During this phase, they are only meant
for use with new cluster installations in non-production environments.

The installer image can be used as a system container. System containers are stored and run outside of
the traditional docker service. This enables running the installer image from one of the target hosts
without concern for the install restarting docker on the host.

1. As the root user, use the Atomic CLI to run the installer as a run-once system container:

atomic install --system \
 --storage=ostree \

 --set INVENTORY_FILE=/path/to/inventory \ 1
 registry.access.redhat.com/openshift3/ose-ansible:v3.7



CHAPTER 2. INSTALLING A CLUSTER

99

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/scaling_and_performance_guide/#scaling-performance-install-optimization
https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/managing_containers/running_system_containers

1

1

2

Specify the location on the local host for your inventory file.

This command initiates the cluster installation by using the inventory file specified and the root
user’s SSH configuration. It logs the output on the terminal and also saves it in the
/var/log/ansible.log file. The first time this command is run, the image is imported into OSTree
storage (system containers use this rather than docker daemon storage). On subsequent runs,
it reuses the stored image.

If for any reason the installation fails, before re-running the installer, see Known Issues to check
for any specific instructions or workarounds.

2.6.5.2.2. Running Other Playbooks

You can use the PLAYBOOK_FILE environment variable to specify other playbooks you want to run by
using the containerized installer. The default value of the PLAYBOOK_FILE is
/usr/share/ansible/openshift-ansible/playbooks/byo/config.yml, which is the main cluster installation
playbook, but you can set it to the path of another playbook inside the container.

For example, to run the pre-install checks playbook before installation, use the following command:

atomic install --system \
 --storage=ostree \
 --set INVENTORY_FILE=/path/to/inventory \
 --set PLAYBOOK_FILE=/usr/share/ansible/openshift-

ansible/playbooks/byo/openshift-checks/pre-install.yml \ 1

 --set OPTS="-v" \ 2
 registry.access.redhat.com/openshift3/ose-ansible:v3.7

Set PLAYBOOK_FILE to the full path of the playbook starting at the playbooks/ directory. Playbooks
are located in the same locations as with the RPM-based installer.

Set OPTS to add command line options to ansible-playbook.

2.6.5.2.3. Running the Installer as a Docker Container

The installer image can also run as a docker container anywhere that docker can run.

WARNING

This method must not be used to run the installer on one of the hosts being
configured, as the install may restart docker on the host, disrupting the installer
container execution.

NOTE

Although this method and the system container method above use the same image, they
run with different entry points and contexts, so runtime parameters are not the same.



OpenShift Container Platform 3.7 Installation and Configuration

100

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.2/html/content_management_guide/managing_ostree_content

1

2

3 4

5

At a minimum, when running the installer as a docker container you must provide:

SSH key(s), so that Ansible can reach your hosts.

An Ansible inventory file.

The location of the Ansible playbook to run against that inventory.

Here is an example of how to run an install via docker. Note that this must be run by a non-root user
with access to docker.

$ docker run -t -u `id -u` \ 1

 -v $HOME/.ssh/id_rsa:/opt/app-root/src/.ssh/id_rsa:Z \ 2

 -v $HOME/ansible/hosts:/tmp/inventory:Z \ 3

 -e INVENTORY_FILE=/tmp/inventory \ 4

 -e PLAYBOOK_FILE=playbooks/byo/config.yml \ 5

 -e OPTS="-v" \ 6
 registry.access.redhat.com/openshift3/ose-ansible:v3.7

-u `id -u` makes the container run with the same UID as the current user, which allows that
user to use the SSH key inside the container (SSH private keys are expected to be readable only
by their owner).

-v $HOME/.ssh/id_rsa:/opt/app-root/src/.ssh/id_rsa:Z mounts your SSH key
($HOME/.ssh/id_rsa) under the container user’s $HOME/.ssh (/opt/app-root/src is the $HOME
of the user in the container). If you mount the SSH key into a non-standard location you can add an
environment variable with -e ANSIBLE_PRIVATE_KEY_FILE=/the/mount/point or set
ansible_ssh_private_key_file=/the/mount/point as a variable in the inventory to point
Ansible at it.

Note that the SSH key is mounted with the :Z flag. This is required so that the container can read
the SSH key under its restricted SELinux context. This also means that your original SSH key file
will be re-labeled to something like system_u:object_r:container_file_t:s0:c113,c247.
For more details about :Z, check the docker-run(1) man page. Keep this in mind when
providing these volume mount specifications because this might have unexpected consequences:
for example, if you mount (and therefore re-label) your whole $HOME/.ssh directory it will block the
host’s sshd from accessing your public keys to login. For this reason you may want to use a
separate copy of the SSH key (or directory), so that the original file labels remain untouched.

-v $HOME/ansible/hosts:/tmp/inventory:Z and -e
INVENTORY_FILE=/tmp/inventory mount a static Ansible inventory file into the container as
/tmp/inventory and set the corresponding environment variable to point at it. As with the SSH key,
the inventory file SELinux labels may need to be relabeled by using the :Z flag to allow reading in
the container, depending on the existing label (for files in a user $HOME directory this is likely to be
needed). So again you may prefer to copy the inventory to a dedicated location before mounting it.

The inventory file can also be downloaded from a web server if you specify the INVENTORY_URL
environment variable, or generated dynamically using DYNAMIC_SCRIPT_URL to specify an
executable script that provides a dynamic inventory.

-e PLAYBOOK_FILE=playbooks/byo/config.yml specifies the playbook to run (in this
example, the BYO installer) as a relative path from the top level directory of openshift-ansible
content. The full path from the RPM can also be used, as well as the path to any other playbook file
in the container.

CHAPTER 2. INSTALLING A CLUSTER

101

6 -e OPTS="-v" supplies arbitrary command line options (in this case, -v to increase verbosity) to
the ansible-playbook command that runs inside the container.

2.6.5.3. Running Individual Component Playbooks

The main installation playbook /usr/share/ansible/openshift-ansible/playbooks/byo/config.yml runs
a set of individual component playbooks in a specific order, and the installer reports back at the end what
phases you have gone through. If the installation fails, you are notified which phase failed along with the
errors from the Ansible run.

After you resolve the errors, you can continue installation:

You can run the remaining individual installation playbooks.

If you are installing in a new environment, you can run the deploy_cluster.yml playbook again.

If you want to run only the remaining playbooks, start by running the playbook for the phase that failed
and then run each of the remaining playbooks in order:

ansible-playbook [-i /path/to/inventory] <playbook_file_location>

The following table lists the playbooks in the order that they must run:

Table 2.20. Individual Component Playbook Run Order

Playbook Name File Location

Health Check /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-checks/pre-
install.yml

etcd Install /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
etcd/config.yml

NFS Install /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-nfs/config.yml

Load Balancer Install /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
loadbalancer/config.yml

Master Install /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
master/config.yml

Master Additional Install /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
master/additional_config.yml

Node Install /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
node/config.yml

GlusterFS Install /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
glusterfs/config.yml

OpenShift Container Platform 3.7 Installation and Configuration

102

Hosted Install /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/openshift-hosted.yml

Metrics Install /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/openshift-metrics.yml

Logging Install /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/openshift-logging.yml

Prometheus Install /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/openshift-prometheus.yml

Service Catalog Install /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/service-catalog.yml

Management Install /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
management/config.yml

Playbook Name File Location

2.6.6. Verifying the Installation

After the installation completes:

1. Verify that the master is started and nodes are registered and reporting in Ready status. On the
master host, run the following as root:

oc get nodes

NAME STATUS AGE
master.example.com Ready,SchedulingDisabled 165d
node1.example.com Ready 165d
node2.example.com Ready 165d

2. To verify that the web console is installed correctly, use the master host name and the web
console port number to access the web console with a web browser.
For example, for a master host with a host name of master.openshift.com and using the
default port of 8443, the web console would be found at
https://master.openshift.com:8443/console.

NOTE

The default port for the console is 8443. If this was changed during the installation, the
port can be found at openshift_master_console_port in the /etc/ansible/hosts file.

Verifying Multiple etcd Hosts
If you installed multiple etcd hosts:

1. First, verify that the etcd package, which provides the etcdctl command, is installed:

yum install etcd

CHAPTER 2. INSTALLING A CLUSTER

103

2. On a master host, verify the etcd cluster health, substituting for the FQDNs of your etcd hosts in
the following:

etcdctl -C \

https://etcd1.example.com:2379,https://etcd2.example.com:2379,https:
//etcd3.example.com:2379 \
 --ca-file=/etc/origin/master/master.etcd-ca.crt \
 --cert-file=/etc/origin/master/master.etcd-client.crt \
 --key-file=/etc/origin/master/master.etcd-client.key cluster-
health

3. Also verify the member list is correct:

etcdctl -C \

https://etcd1.example.com:2379,https://etcd2.example.com:2379,https:
//etcd3.example.com:2379 \
 --ca-file=/etc/origin/master/master.etcd-ca.crt \
 --cert-file=/etc/origin/master/master.etcd-client.crt \
 --key-file=/etc/origin/master/master.etcd-client.key member list

Verifying Multiple Masters Using HAProxy
If you installed multiple masters using HAProxy as a load balancer, browse to the following URL
according to your [lb] section definition and check HAProxy’s status:

http://<lb_hostname>:9000

You can verify your installation by consulting the HAProxy Configuration documentation.

2.6.7. Optionally Securing Builds

Running docker build is a privileged process, so the container has more access to the node than
might be considered acceptable in some multi-tenant environments. If you do not trust your users, you
can use a more secure option at the time of installation. Disable Docker builds on the cluster and require
that users build images outside of the cluster. See Securing Builds by Strategy for more information on
this optional process.

2.6.8. Uninstalling OpenShift Container Platform

You can uninstall OpenShift Container Platform hosts in your cluster by running the uninstall.yml
playbook. This playbook deletes OpenShift Container Platform content installed by Ansible, including:

Configuration

Containers

Default templates and image streams

Images

RPM packages

OpenShift Container Platform 3.7 Installation and Configuration

104

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Load_Balancer_Administration/ch-haproxy-setup-VSA.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-securing-builds

1

2

The playbook will delete content for any hosts defined in the inventory file that you specify when running
the playbook. If you want to uninstall OpenShift Container Platform across all hosts in your cluster, run
the playbook using the inventory file you used when installing OpenShift Container Platform initially or
ran most recently:

ansible-playbook [-i /path/to/file] \
 /usr/share/ansible/openshift-ansible/playbooks/adhoc/uninstall.yml

2.6.8.1. Uninstalling Nodes

You can also uninstall node components from specific hosts using the uninstall.yml playbook while
leaving the remaining hosts and cluster alone:

WARNING

This method should only be used when attempting to uninstall specific node hosts
and not for specific masters or etcd hosts, which would require further configuration
changes within the cluster.

1. First follow the steps in Deleting Nodes to remove the node object from the cluster, then continue
with the remaining steps in this procedure.

2. Create a different inventory file that only references those hosts. For example, to only delete
content from one node:

[OSEv3:children]

nodes 1

[OSEv3:vars]
ansible_ssh_user=root
openshift_deployment_type=openshift-enterprise

[nodes]
node3.example.com openshift_node_labels="{'region': 'primary',

'zone': 'west'}" 2

Only include the sections that pertain to the hosts you are interested in uninstalling.

Only include hosts that you want to uninstall.

3. Specify that new inventory file using the -i option when running the uninstall.yml playbook:

ansible-playbook -i /path/to/new/file \
 /usr/share/ansible/openshift-
ansible/playbooks/adhoc/uninstall.yml

When the playbook completes, all OpenShift Container Platform content should be removed from any
specified hosts.



CHAPTER 2. INSTALLING A CLUSTER

105

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#deleting-nodes

2.6.9. Known Issues

On failover in multiple master clusters, it is possible for the controller manager to overcorrect,
which causes the system to run more pods than what was intended. However, this is a transient
event and the system does correct itself over time. See
https://github.com/kubernetes/kubernetes/issues/10030 for details.

If the Ansible installer fails, you can still install OpenShift Container Platform:

If you did not modify the SDN configuration or generate new certificates, run the
deploy_cluster.yml playbook again.

If you modified the SDN configuration, generated new certificates, or the installer fails again,
you must either start over with a clean operating system installation or uninstall and install
again.

If you use virtual machines, start from a fresh image or uninstall and install again.

If you use bare metal machines, uninstall and install again.

2.6.10. What’s Next?

Now that you have a working OpenShift Container Platform instance, you can:

Deploy an integrated Docker registry.

Deploy a router.

2.7. DISCONNECTED INSTALLATION

2.7.1. Overview

Frequently, portions of a datacenter may not have access to the Internet, even via proxy servers.
Installing OpenShift Container Platform in these environments is considered a disconnected installation.

An OpenShift Container Platform disconnected installation differs from a regular installation in two
primary ways:

The OpenShift Container Platform software channels and repositories are not available via Red
Hat’s content distribution network.

OpenShift Container Platform uses several containerized components. Normally, these images
are pulled directly from Red Hat’s Docker registry. In a disconnected environment, this is not
possible.

A disconnected installation ensures the OpenShift Container Platform software is made available to the
relevant servers, then follows the same installation process as a standard connected installation. This
topic additionally details how to manually download the container images and transport them onto the
relevant servers.

Once installed, in order to use OpenShift Container Platform, you will need source code in a source
control repository (for example, Git). This topic assumes that an internal Git repository is available that
can host source code and this repository is accessible from the OpenShift Container Platform nodes.
Installing the source control repository is outside the scope of this document.

Also, when building applications in OpenShift Container Platform, your build may have some external

OpenShift Container Platform 3.7 Installation and Configuration

106

https://github.com/kubernetes/kubernetes/issues/10030

dependencies, such as a Maven Repository or Gem files for Ruby applications. For this reason, and
because they might require certain tags, many of the Quickstart templates offered by OpenShift
Container Platform may not work on a disconnected environment. However, while Red Hat container
images try to reach out to external repositories by default, you can configure OpenShift Container
Platform to use your own internal repositories. For the purposes of this document, we assume that such
internal repositories already exist and are accessible from the OpenShift Container Platform nodes
hosts. Installing such repositories is outside the scope of this document.

NOTE

You can also have a Red Hat Satellite server that provides access to Red Hat content via
an intranet or LAN. For environments with Satellite, you can synchronize the OpenShift
Container Platform software onto the Satellite for use with the OpenShift Container
Platform servers.

Red Hat Satellite 6.1 also introduces the ability to act as a Docker registry, and it can be
used to host the OpenShift Container Platform containerized components. Doing so is
outside of the scope of this document.

2.7.2. Prerequisites

This document assumes that you understand OpenShift Container Platform’s overall architecture and
that you have already planned out what the topology of your environment will look like.

2.7.3. Required Software and Components

In order to pull down the required software repositories and container images, you will need a Red Hat
Enterprise Linux (RHEL) 7 server with access to the Internet and at least 100GB of additional free space.
All steps in this section should be performed on the Internet-connected server as the root system user.

2.7.3.1. Syncing Repositories

Before you sync with the required repositories, you may need to import the appropriate GPG key:

If the key is not imported, the indicated package is deleted after syncing the repository.

To sync the required repositories:

1. Register the server with the Red Hat Customer Portal. You must use the login and password
associated with the account that has access to the OpenShift Container Platform subscriptions:

2. Pull the latest subscription data from RHSM:

3. Attach to a subscription that provides OpenShift Container Platform channels. You can find the
list of available subscriptions using:

$ rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release

$ subscription-manager register

$ subscription-manager refresh

$ subscription-manager list --available --matches '*OpenShift*'

CHAPTER 2. INSTALLING A CLUSTER

107

http://www.redhat.com/en/technologies/linux-platforms/satellite
https://access.redhat.com/documentation/en/red-hat-satellite/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-index

Then, find the pool ID for the subscription that provides OpenShift Container Platform, and
attach it:

4. The yum-utils command provides the reposync utility, which lets you mirror yum repositories,
and createrepo can create a usable yum repository from a directory:

You will need up to 110GB of free space in order to sync the software. Depending on how
restrictive your organization’s policies are, you could re-connect this server to the disconnected
LAN and use it as the repository server. You could use USB-connected storage and transport
the software to another server that will act as the repository server. This topic covers these
options.

5. Make a path to where you want to sync the software (either locally or on your USB or other
device):

6. Sync the packages and create the repository for each of them. You will need to modify the
command for the appropriate path you created above:

2.7.3.2. Syncing Images

To sync the container images:

1. Start the Docker daemon:

2. If you are performing a containerized install, pull all of the required OpenShift Container Platform
host component images. Replace <tag> with v3.7.108 for the latest version.

docker pull registry.access.redhat.com/rhel7/etcd
docker pull registry.access.redhat.com/openshift3/ose:<tag>

$ subscription-manager attach --pool=<pool_id>
$ subscription-manager repos --disable="*"
$ subscription-manager repos \
 --enable="rhel-7-server-rpms" \
 --enable="rhel-7-server-extras-rpms" \
 --enable="rhel-7-fast-datapath-rpms" \
 --enable="rhel-7-server-ose-3.7-rpms"

$ sudo yum -y install yum-utils createrepo docker git

$ mkdir -p </path/to/repos>

$ for repo in \
rhel-7-server-rpms \
rhel-7-server-extras-rpms \
rhel-7-fast-datapath-rpms \
rhel-7-server-ose-3.7-rpms
do
 reposync --gpgcheck -lm --repoid=${repo} --
download_path=/path/to/repos
 createrepo -v </path/to/repos/>${repo} -o </path/to/repos/>${repo}
done

$ systemctl start docker

OpenShift Container Platform 3.7 Installation and Configuration

108

docker pull registry.access.redhat.com/openshift3/node:<tag>
docker pull registry.access.redhat.com/openshift3/openvswitch:
<tag>

3. Pull all of the required OpenShift Container Platform infrastructure component images. Replace
<tag> with v3.7.108 for the latest version.

NOTE

If you are using NFS, you need the ose-recycler image. Otherwise, the
volumes will not recycle, potentially causing errors.

4. Pull all of the required OpenShift Container Platform component images for the additional
centralized log aggregation and metrics aggregation components. Replace <tag> with
v3.7.108 for the latest version.

$ docker pull registry.access.redhat.com/openshift3/ose-ansible:
<tag>
$ docker pull registry.access.redhat.com/openshift3/ose-cluster-
capacity:<tag>
$ docker pull registry.access.redhat.com/openshift3/ose-deployer:
<tag>
$ docker pull registry.access.redhat.com/openshift3/ose-docker-
builder:<tag>
$ docker pull registry.access.redhat.com/openshift3/ose-docker-
registry:<tag>
$ docker pull registry.access.redhat.com/openshift3/registry-
console:<tag>
$ docker pull registry.access.redhat.com/openshift3/ose-egress-http-
proxy:<tag>
$ docker pull registry.access.redhat.com/openshift3/ose-egress-
router:<tag>
$ docker pull registry.access.redhat.com/openshift3/ose-f5-router:
<tag>
$ docker pull registry.access.redhat.com/openshift3/ose-haproxy-
router:<tag>
$ docker pull registry.access.redhat.com/openshift3/ose-keepalived-
ipfailover:<tag>
$ docker pull registry.access.redhat.com/openshift3/ose-pod:<tag>
$ docker pull registry.access.redhat.com/openshift3/ose-sti-builder:
<tag>
$ docker pull registry.access.redhat.com/openshift3/ose:<tag>
$ docker pull registry.access.redhat.com/openshift3/container-
engine:<tag>
$ docker pull registry.access.redhat.com/openshift3/node:<tag>
$ docker pull registry.access.redhat.com/openshift3/openvswitch:
<tag>

$ docker pull registry.access.redhat.com/openshift3/logging-auth-
proxy:<tag>
$ docker pull registry.access.redhat.com/openshift3/logging-curator:
<tag>
$ docker pull registry.access.redhat.com/openshift3/logging-
elasticsearch:<tag>

CHAPTER 2. INSTALLING A CLUSTER

109

IMPORTANT

Prometheus on OpenShift Container Platform is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production
service level agreements (SLAs), might not be functionally complete, and Red
Hat does not recommend to use them for production. These features provide
early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information on Red Hat Technology Preview features support scope,
see https://access.redhat.com/support/offerings/techpreview/.

5. For the service catalog, OpenShift Ansible broker, and template service broker features (as
described in Advanced Installation), pull the following images.

a. Replace <tag> with v3.7.108 for the latest version.

b. Replace <tag> with v3.7.108 for the latest version.

6. Pull the Red Hat-certified Source-to-Image (S2I) builder images that you intend to use in your
OpenShift environment. You can pull the following images:

$ docker pull registry.access.redhat.com/openshift3/logging-fluentd:
<tag>
$ docker pull registry.access.redhat.com/openshift3/logging-kibana:
<tag>
$ docker pull registry.access.redhat.com/openshift3/metrics-
cassandra:<tag>
$ docker pull registry.access.redhat.com/openshift3/metrics-
hawkular-metrics:<tag>
$ docker pull registry.access.redhat.com/openshift3/metrics-
hawkular-openshift-agent:<tag>
$ docker pull registry.access.redhat.com/openshift3/metrics-
heapster:<tag>
$ docker pull registry.access.redhat.com/openshift3/oauth-proxy:
<tag>

$ docker pull registry.access.redhat.com/openshift3/ose-service-
catalog:<tag>
$ docker pull registry.access.redhat.com/openshift3/ose-ansible-
service-broker:<tag>
$ docker pull registry.access.redhat.com/openshift3/ose-template-
service-broker:<tag>

$ docker pull registry.access.redhat.com/openshift3/mediawiki-
apb:<tag>
$ docker pull registry.access.redhat.com/openshift3/postgresql-
apb:<tag>

$ docker pull registry.access.redhat.com/jboss-amq-6/amq63-openshift
$ docker pull registry.access.redhat.com/jboss-datagrid-
7/datagrid71-openshift
$ docker pull registry.access.redhat.com/jboss-datagrid-
7/datagrid71-client-openshift

OpenShift Container Platform 3.7 Installation and Configuration

110

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#source-build

Make sure to indicate the correct tag specifying the desired version number. For example, to pull
both the previous and latest version of the Tomcat image:

2.7.3.3. Preparing Images for Export

Container images can be exported from a system by first saving them to a tarball and then transporting
them:

1. Make and change into a repository home directory:

$ docker pull registry.access.redhat.com/jboss-datavirt-
6/datavirt63-openshift
$ docker pull registry.access.redhat.com/jboss-datavirt-
6/datavirt63-driver-openshift
$ docker pull registry.access.redhat.com/jboss-decisionserver-
6/decisionserver64-openshift
$ docker pull registry.access.redhat.com/jboss-processserver-
6/processserver64-openshift
$ docker pull registry.access.redhat.com/jboss-eap-6/eap64-openshift
$ docker pull registry.access.redhat.com/jboss-eap-7/eap70-openshift
$ docker pull registry.access.redhat.com/jboss-webserver-
3/webserver31-tomcat7-openshift
$ docker pull registry.access.redhat.com/jboss-webserver-
3/webserver31-tomcat8-openshift
$ docker pull registry.access.redhat.com/openshift3/jenkins-1-rhel7
$ docker pull registry.access.redhat.com/openshift3/jenkins-2-rhel7
$ docker pull registry.access.redhat.com/openshift3/jenkins-slave-
base-rhel7
$ docker pull registry.access.redhat.com/openshift3/jenkins-slave-
maven-rhel7
$ docker pull registry.access.redhat.com/openshift3/jenkins-slave-
nodejs-rhel7
$ docker pull registry.access.redhat.com/rhscl/mongodb-32-rhel7
$ docker pull registry.access.redhat.com/rhscl/mysql-57-rhel7
$ docker pull registry.access.redhat.com/rhscl/perl-524-rhel7
$ docker pull registry.access.redhat.com/rhscl/php-56-rhel7
$ docker pull registry.access.redhat.com/rhscl/postgresql-95-rhel7
$ docker pull registry.access.redhat.com/rhscl/python-35-rhel7
$ docker pull registry.access.redhat.com/redhat-sso-7/sso70-
openshift
$ docker pull registry.access.redhat.com/rhscl/ruby-24-rhel7
$ docker pull registry.access.redhat.com/redhat-openjdk-
18/openjdk18-openshift
$ docker pull registry.access.redhat.com/redhat-sso-7/sso71-
openshift
$ docker pull registry.access.redhat.com/rhscl/nodejs-6-rhel7
$ docker pull registry.access.redhat.com/rhscl/mariadb-101-rhel7

$ docker pull \
registry.access.redhat.com/jboss-webserver-3/webserver30-tomcat7-
openshift:latest
$ docker pull \
registry.access.redhat.com/jboss-webserver-3/webserver30-tomcat7-
openshift:1.1

CHAPTER 2. INSTALLING A CLUSTER

111

2. If you are performing a containerized install, export the OpenShift Container Platform host
component images:

docker save -o ose3-host-images.tar \
 registry.access.redhat.com/rhel7/etcd \
 registry.access.redhat.com/openshift3/ose \
 registry.access.redhat.com/openshift3/node \
 registry.access.redhat.com/openshift3/openvswitch

3. Export the OpenShift Container Platform infrastructure component images:

4. If you synchronized the metrics and log aggregation images, export them:

5. Export the S2I builder images that you synced in the previous section. For example, if you
synced only the Jenkins and Tomcat images:

$ mkdir </path/to/repos/images>
$ cd </path/to/repos/images>

$ docker save -o ose3-images.tar \
 registry.access.redhat.com/openshift3/ose-ansible \
 registry.access.redhat.com/openshift3/ose-cluster-capacity \
 registry.access.redhat.com/openshift3/ose-deployer \
 registry.access.redhat.com/openshift3/ose-docker-builder \
 registry.access.redhat.com/openshift3/ose-docker-registry \
 registry.access.redhat.com/openshift3/registry-console
 registry.access.redhat.com/openshift3/ose-egress-http-proxy \
 registry.access.redhat.com/openshift3/ose-egress-router \
 registry.access.redhat.com/openshift3/ose-f5-router \
 registry.access.redhat.com/openshift3/ose-haproxy-router \
 registry.access.redhat.com/openshift3/ose-keepalived-ipfailover
\
 registry.access.redhat.com/openshift3/ose-pod \
 registry.access.redhat.com/openshift3/ose-sti-builder \
 registry.access.redhat.com/openshift3/ose \
 registry.access.redhat.com/openshift3/container-engine \
 registry.access.redhat.com/openshift3/node \
 registry.access.redhat.com/openshift3/openvswitch

$ docker save -o ose3-logging-metrics-images.tar \
 registry.access.redhat.com/openshift3/logging-auth-proxy \
 registry.access.redhat.com/openshift3/logging-curator \
 registry.access.redhat.com/openshift3/logging-elasticsearch \
 registry.access.redhat.com/openshift3/logging-fluentd \
 registry.access.redhat.com/openshift3/logging-kibana \
 registry.access.redhat.com/openshift3/metrics-cassandra \
 registry.access.redhat.com/openshift3/metrics-hawkular-metrics \
 registry.access.redhat.com/openshift3/metrics-hawkular-
openshift-agent \
 registry.access.redhat.com/openshift3/metrics-heapster

$ docker save -o ose3-builder-images.tar \
 registry.access.redhat.com/jboss-webserver-3/webserver30-
tomcat7-openshift:latest \

OpenShift Container Platform 3.7 Installation and Configuration

112

2.7.4. Repository Server

During the installation (and for later updates, should you so choose), you will need a webserver to host
the repositories. RHEL 7 can provide the Apache webserver.

Option 1: Re-configuring as a Web server

If you can re-connect the server where you synchronized the software and images to your LAN, then you
can simply install Apache on the server:

Skip to Placing the Software.

Option 2: Building a Repository Server

If you need to build a separate server to act as the repository server, install a new RHEL 7 system with at
least 110GB of space. On this repository server during the installation, make sure you select the Basic
Web Server option.

2.7.4.1. Placing the Software

1. If necessary, attach the external storage, and then copy the repository files into Apache’s root
folder. Note that the below copy step (cp -a) should be substituted with move (mv) if you are
repurposing the server you used to sync:

2. Add the firewall rules:

3. Enable and start Apache for the changes to take effect:

2.7.5. OpenShift Container Platform Systems

2.7.5.1. Building Your Hosts

 registry.access.redhat.com/jboss-webserver-3/webserver30-
tomcat7-openshift:1.1 \
 registry.access.redhat.com/openshift3/jenkins-1-rhel7 \
 registry.access.redhat.com/openshift3/jenkins-2-rhel7 \
 registry.access.redhat.com/openshift3/jenkins-slave-base-rhel7 \
 registry.access.redhat.com/openshift3/jenkins-slave-maven-rhel7
\
 registry.access.redhat.com/openshift3/jenkins-slave-nodejs-rhel7

$ sudo yum install httpd

$ cp -a /path/to/repos /var/www/html/
$ chmod -R +r /var/www/html/repos
$ restorecon -vR /var/www/html

$ sudo firewall-cmd --permanent --add-service=http
$ sudo firewall-cmd --reload

$ systemctl enable httpd
$ systemctl start httpd

CHAPTER 2. INSTALLING A CLUSTER

113

At this point you can perform the initial creation of the hosts that will be part of the OpenShift Container
Platform environment. It is recommended to use the latest version of RHEL 7 and to perform a minimal
installation. You will also want to pay attention to the other OpenShift Container Platform-specific
prerequisites.

Once the hosts are initially built, the repositories can be set up.

2.7.5.2. Connecting the Repositories

On all of the relevant systems that will need OpenShift Container Platform software components, create
the required repository definitions. Place the following text in the /etc/yum.repos.d/ose.repo file,
replacing <server_IP> with the IP or host name of the Apache server hosting the software
repositories:

[rhel-7-server-rpms]
name=rhel-7-server-rpms
baseurl=http://<server_IP>/repos/rhel-7-server-rpms
enabled=1
gpgcheck=0
[rhel-7-server-extras-rpms]
name=rhel-7-server-extras-rpms
baseurl=http://<server_IP>/repos/rhel-7-server-extras-rpms
enabled=1
gpgcheck=0
[rhel-7-fast-datapath-rpms]
name=rhel-7-fast-datapath-rpms
baseurl=http://<server_IP>/repos/rhel-7-fast-datapath-rpms
enabled=1
gpgcheck=0
[rhel-7-server-ose-3.7-rpms]
name=rhel-7-server-ose-3.7-rpms
baseurl=http://<server_IP>/repos/rhel-7-server-ose-3.7-rpms
enabled=1
gpgcheck=0

2.7.5.3. Host Preparation

At this point, the systems are ready to continue to be prepared following the OpenShift Container
Platform documentation.

Skip the section titled Host Registration and start with Installing Base Packages.

2.7.6. Installing OpenShift Container Platform

2.7.6.1. Importing OpenShift Container Platform Component Images

To import the relevant components, securely copy the images from the connected host to the individual
OpenShift Container Platform hosts:

$ scp /var/www/html/repos/images/ose3-images.tar
root@<openshift_host_name>:
$ ssh root@<openshift_host_name> "docker load -i ose3-images.tar"
$ scp /var/www/html/images/ose3-builder-images.tar

OpenShift Container Platform 3.7 Installation and Configuration

114

Perform the same steps for the host components if your install will be containerized. Perform the same
steps for the metrics and logging images, if your cluster will use them.

If you prefer, you could use wget on each OpenShift Container Platform host to fetch the tar file, and
then perform the Docker import command locally.

2.7.6.2. Running the OpenShift Container Platform Installer

You can now choose to follow the quick or advanced OpenShift Container Platform installation
instructions in the documentation.

2.7.6.3. Creating the Internal Docker Registry

You now need to create the internal Docker registry.

If you want to install a stand-alone registry, you must pull the registry-console container image and set
deployment_subtype=registry in the inventory file.

2.7.7. Post-Installation Changes

In one of the previous steps, the S2I images were imported into the Docker daemon running on one of
the OpenShift Container Platform master hosts. In a connected installation, these images would be
pulled from Red Hat’s registry on demand. Since the Internet is not available to do this, the images must
be made available in another Docker registry.

OpenShift Container Platform provides an internal registry for storing the images that are built as a result
of the S2I process, but it can also be used to hold the S2I builder images. The following steps assume
you did not customize the service IP subnet (172.30.0.0/16) or the Docker registry port (5000).

2.7.7.1. Re-tagging S2I Builder Images

1. On the master host where you imported the S2I builder images, obtain the service address of
your Docker registry that you installed on the master:

2. Next, tag all of the builder images that you synced and exported before pushing them into the
OpenShift Container Platform Docker registry. For example, if you synced and exported only the
Tomcat image:

root@<openshift_master_host_name>:
$ ssh root@<openshift_master_host_name> "docker load -i ose3-builder-
images.tar"

$ export REGISTRY=$(oc get service -n default \
 docker-registry --output=go-template='{{.spec.clusterIP}}
{{"\n"}}')

$ docker tag \
registry.access.redhat.com/jboss-webserver-3/webserver30-tomcat7-
openshift:1.1 \
$REGISTRY:5000/openshift/webserver30-tomcat7-openshift:1.1
$ docker tag \
registry.access.redhat.com/jboss-webserver-3/webserver30-tomcat7-
openshift:latest \
$REGISTRY:5000/openshift/webserver30-tomcat7-openshift:1.2
$ docker tag \

CHAPTER 2. INSTALLING A CLUSTER

115

2.7.7.2. Configuring a Registry Location

If you are using an image registry other than the default at registry.access.redhat.com, specify
the desired registry within the /etc/ansible/hosts file.

oreg_url=example.com/openshift3/ose-${component}:${version}
openshift_examples_modify_imagestreams=true

Depending on your registry, you may need to configure:

openshift_docker_additional_registries=example.com
openshift_docker_insecure_registries=example.com

NOTE

You can also set the openshift_docker_insecure_registries variable to the IP
address of the host. 0.0.0.0/0 is not a valid setting.

Table 2.21. Registry Variables

Variable Purpose

oreg_url Set to the alternate image location. Necessary if you
are not using the default registry at
registry.access.redhat.com.

openshift_examples_modify_imagestrea
ms

Set to true if pointing to a registry other than the
default. Modifies the image stream location to the
value of oreg_url.

openshift_docker_additional_registri
es

Set
openshift_docker_additional_registri
es to add its value in the add_registry line in
/etc/sysconfig/docker. With add_registry, you
can add your own registry to be used for Docker
search and Docker pull. Use the add_registry
option to list a set of registries, each prepended with
--add-registry flag. The first registry added
will be the first registry searched. For example,
add_registry=--add-registry
registry.access.redhat.com --add-
registry example.com.

registry.access.redhat.com/jboss-webserver-3/webserver30-tomcat7-
openshift:latest \
$REGISTRY:5000/openshift/webserver30-tomcat7-openshift:latest

OpenShift Container Platform 3.7 Installation and Configuration

116

openshift_docker_insecure_registries Set
openshift_docker_insecure_registries
to add its value in the insecure_registry line
in /etc/sysconfig/docker. If you have a registry
secured with HTTPS but do not have proper
certificates distributed, you can tell Docker not to look
for full authorization by adding the registry to the
insecure_registry line and uncommenting it.
For example, insecure_registry— ​
insecure-registry example.com. Can be
set to the host name or IP address of the host.
0.0.0.0/0 is not a valid setting for the IP address.

Variable Purpose

2.7.7.3. Creating an Administrative User

Pushing the container images into OpenShift Container Platform’s Docker registry requires a user with
cluster-admin privileges. Because the default OpenShift Container Platform system administrator does
not have a standard authorization token, they cannot be used to log in to the Docker registry.

To create an administrative user:

1. Create a new user account in the authentication system you are using with OpenShift Container
Platform. For example, if you are using local htpasswd-based authentication:

2. The external authentication system now has a user account, but a user must log in to OpenShift
Container Platform before an account is created in the internal database. Log in to OpenShift
Container Platform for this account to be created. This assumes you are using the self-signed
certificates generated by OpenShift Container Platform during the installation:

3. Get the user’s authentication token:

2.7.7.4. Modifying the Security Policies

1. Using oc login switches to the new user. Switch back to the OpenShift Container Platform
system administrator in order to make policy changes:

$ htpasswd -b /etc/openshift/openshift-passwd <admin_username>
<password>

$ oc login --certificate-authority=/etc/origin/master/ca.crt \
 -u <admin_username> https://<openshift_master_host>:8443

$ MYTOKEN=$(oc whoami -t)
$ echo $MYTOKEN
iwo7hc4XilD2KOLL4V1O55ExH2VlPmLD-W2-JOd6Fko

$ oc login -u system:admin

CHAPTER 2. INSTALLING A CLUSTER

117

2. In order to push images into the OpenShift Container Platform Docker registry, an account must
have the image-builder security role. Add this to your OpenShift Container Platform
administrative user:

3. Next, add the administrative role to the user in the openshift project. This allows the
administrative user to edit the openshift project, and, in this case, push the container images:

2.7.7.5. Editing the Image Stream Definitions

The openshift project is where all of the image streams for builder images are created by the installer.
They are loaded by the installer from the /usr/share/openshift/examples directory. Change all of the
definitions by deleting the image streams which had been loaded into OpenShift Container Platform’s
database, then re-create them:

1. Delete the existing image streams:

2. Make a backup of the files in /usr/share/openshift/examples/ if you desire. Next, edit the file
image-streams-rhel7.json in the /usr/share/openshift/examples/image-streams folder. You
will find an image stream section for each of the builder images. Edit the spec stanza to point to
your internal Docker registry.
For example, change:

"from": {
 "kind": "DockerImage",
 "name": "registry.access.redhat.com/rhscl/httpd-24-rhel7"
}

to:

"from": {
 "kind": "DockerImage",
 "name": "172.30.69.44:5000/openshift/httpd-24-rhel7"
}

In the above, the repository name was changed from rhscl to openshift. You will need to ensure
the change, regardless of whether the repository is rhscl, openshift3, or another directory.
Every definition should have the following format:

<registry_ip>:5000/openshift/<image_name>

Repeat this change for every image stream in the file. Ensure you use the correct IP address
that you determined earlier. When you are finished, save and exit. Repeat the same process for
the JBoss image streams in the /usr/share/openshift/examples/xpaas-streams/jboss-image-
streams.json file.

2.7.7.6. Loading the Container Images

$ oc adm policy add-role-to-user system:image-builder
<admin_username>

$ oc adm policy add-role-to-user admin <admin_username> -n openshift

$ oc delete is -n openshift --all

OpenShift Container Platform 3.7 Installation and Configuration

118

At this point the system is ready to load the container images.

1. Log in to the Docker registry using the token and registry service IP obtained earlier:

2. Push the Docker images:

3. Load the updated image stream definitions:

4. Verify that all the image streams now have the tags populated:

2.7.8. Installing a Router

At this point, the OpenShift Container Platform environment is almost ready for use. It is likely that you
will want to install and configure a router.

2.8. INSTALLING A STAND-ALONE DEPLOYMENT OF OPENSHIFT
CONTAINER REGISTRY

2.8.1. About OpenShift Container Registry

OpenShift Container Platform is a fully-featured enterprise solution that includes an integrated container
registry called OpenShift Container Registry (OCR). Alternatively, instead of deploying OpenShift
Container Platform as a full PaaS environment for developers, you can install OCR as a stand-alone
container registry to run on-premise or in the cloud.

When installing a stand-alone deployment of OCR, a cluster of masters and nodes is still installed,
similar to a typical OpenShift Container Platform installation. Then, the container registry is deployed to
run on the cluster. This stand-alone deployment option is useful for administrators that want a container
registry, but do not require the full OpenShift Container Platform environment that includes the developer-
focused web console and application build and deployment tools.

$ docker login -u adminuser -e mailto:adminuser@abc.com \
 -p $MYTOKEN $REGISTRY:5000

$ docker push $REGISTRY:5000/openshift/webserver30-tomcat7-
openshift:1.1
$ docker push $REGISTRY:5000/openshift/webserver30-tomcat7-
openshift:1.2
$ docker push $REGISTRY:5000/openshift/webserver30-tomcat7-
openshift:latest

$ oc create -f /usr/share/openshift/examples/image-streams/image-
streams-rhel7.json -n openshift
$ oc create -f /usr/share/openshift/examples/xpaas-streams/jboss-
image-streams.json -n openshift

$ oc get imagestreams -n openshift
NAME DOCKER REPO
TAGS UPDATED
jboss-webserver30-tomcat7-openshift $REGISTRY/jboss-webserver-
3/webserver30-jboss-tomcat7-openshift 1.1,1.1-2,1.1-6 + 2 more...
2 weeks ago
...

CHAPTER 2. INSTALLING A CLUSTER

119

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#integrated-openshift-registry

NOTE

OCR has replaced the upstream Atomic Registry project, which was a different
implementation that used a non-Kubernetes deployment method that leveraged systemd
and local configuration files to manage services.

OCR provides the following capabilities:

A user-focused registry web console, Cockpit.

Secured traffic by default, served via TLS.

Global identity provider authentication.

A project namespace model to enable teams to collaborate through role-based access control
(RBAC) authorization.

A Kubernetes-based cluster to manage services.

An image abstraction called image streams to enhance image management.

Administrators may want to deploy a stand-alone OCR to manage a registry separately that supports
multiple OpenShift Container Platform clusters. A stand-alone OCR also enables administrators to
separate their registry to satisfy their own security or compliance requirements.

2.8.2. Minimum Hardware Requirements

Installing a stand-alone OCR has the following hardware requirements:

Physical or virtual system, or an instance running on a public or private IaaS.

Base OS: RHEL 7.3 or 7.4 with the "Minimal" installation option and the latest packages from the
RHEL 7 Extras channel, or RHEL Atomic Host 7.4.2 or later.

NetworkManager 1.0 or later

2 vCPU.

Minimum 16 GB RAM.

Minimum 15 GB hard disk space for the file system containing /var/.

An additional minimum 15 GB unallocated space to be used for Docker’s storage back end; see
Configuring Docker Storage for details.

IMPORTANT

OpenShift Container Platform only supports servers with x86_64 architecture.

NOTE

Meeting the /var/ file system sizing requirements in RHEL Atomic Host requires making
changes to the default configuration. See Managing Storage in Red Hat Enterprise Linux
Atomic Host for instructions on configuring this during or after installation.

OpenShift Container Platform 3.7 Installation and Configuration

120

https://www.projectatomic.io/blog/2017/05/oo-standalone-registry/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-core-concepts-projects-and-users
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-infrastructure-components-kubernetes-infrastructure
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#managing_storage_in_red_hat_enterprise_linux_atomic_host

2.8.3. Supported System Topologies

The following system topologies are supported for stand-alone OCR:

All-in-one A single host that includes the master, node, etcd, and registry components.

Multiple
Masters
(Highly-
Available)

Three hosts with all components included on each (master, node, etcd, and registry), with the
masters configured for native high-availability.

2.8.4. Host Preparation

Before installing stand-alone OCR, all of the same steps detailed in the Host Preparation topic for
installing a full OpenShift Container Platform PaaS must be performed. This includes registering and
subscribing the host(s) to the proper repositories, installing or updating certain packages, and setting up
Docker and its storage requirements.

Follow the steps in the Host Preparation topic, then continue to Installation Methods.

2.8.5. Installation Methods

To install a stand-alone registry, use either of the standard installation methods (quick or advanced)
used to install any variant of OpenShift Container Platform.

2.8.5.1. Quick Installation for Stand-alone OpenShift Container Registry

The following shows the step-by-step process for running the quick install tool to install an OpenShift
Container Registry, instead of the full OpenShift Container Platform install.

1. Start the interactive installation:

$ atomic-openshift-installer install

2. Follow the on-screen instructions to install a new registry. The installation questions will be
largely the same as if you were installing a full OpenShift Container Platform PaaS. When you
reach the following screen, choose 2 to follow the registry installation path:

Which variant would you like to install?

(1) OpenShift Container Platform
(2) Registry

3. Specify the hosts that make up your cluster:

Enter hostname or IP address:
Will this host be an OpenShift master? [y/N]:
Will this host be RPM or Container based (rpm/container)? [rpm]:

See the Installing on Containerized Hosts topic for information about RPM versus containerized
hosts.

CHAPTER 2. INSTALLING A CLUSTER

121

4. Change the cluster host name, if desired:

Enter hostname or IP address [None]:

5. Choose the host to act as the storage host (the master host by default):

Enter hostname or IP address [master.host.example.com]:

6. Change the default subdomain, if desired:

New default subdomain (ENTER for none) []:

NOTE

All certificates and routes are created with this subdomain. Ensure this is set to
the correct desired subdomain to avoid having to change the configuration after
installation.

7. Specify a HTTP or HTTPS proxy, if needed:

Specify your http proxy ? (ENTER for none) []:
Specify your https proxy ? (ENTER for none) []:

After the previous has been entered, the next page summarizes your install and starts to gather the host
information.

NOTE

For further usage details on the quick installer in general, including next steps, see the full
topic at Quick Installation.

2.8.5.2. Advanced Installation for Stand-alone OpenShift Container Registry

When using the advanced installation method to install stand-alone OCR, use the same steps for
installing a full OpenShift Container Platform PaaS using Ansible described in the full Advanced
Installation topic. The main difference is that you must set deployment_subtype=registry in the
inventory file within the [OSEv3:vars] section for the playbooks to follow the registry installation path.

See the following example inventory files for the different supported system topologies:

All-in-one Stand-alone OpenShift Container Registry Inventory File

Create an OSEv3 group that contains the masters and nodes groups
[OSEv3:children]
masters
nodes

Set variables common for all OSEv3 hosts
[OSEv3:vars]
SSH user, this user should allow ssh based auth without requiring a
password
ansible_ssh_user=root

OpenShift Container Platform 3.7 Installation and Configuration

122

1

2

openshift_master_default_subdomain=apps.test.example.com

If ansible_ssh_user is not root, ansible_become must be set to true
#ansible_become=true

openshift_deployment_type=openshift-enterprise

deployment_subtype=registry 1

uncomment the following to enable htpasswd authentication; defaults to
DenyAllPasswordIdentityProvider
#openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':
'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider',
'filename': '/etc/origin/master/htpasswd'}]

host group for masters
[masters]
registry.example.com

host group for nodes, includes region info
[nodes]
registry.example.com openshift_node_labels="{'region': 'infra', 'zone':

'default'}" openshift_schedulable=true 2

Set deployment_subtype=registry to ensure installation of stand-alone OCR and not a full
OpenShift Container Platform environment.

Set openshift_schedulable=true on the node entry to make the single node schedulable for
pod placement.

Multiple Masters (Highly-Available) Stand-alone OpenShift Container Registry Inventory
File

Create an OSEv3 group that contains the master, nodes, etcd, and lb
groups.
The lb group lets Ansible configure HAProxy as the load balancing
solution.
Comment lb out if your load balancer is pre-configured.
[OSEv3:children]
masters
nodes
etcd
lb

Set variables common for all OSEv3 hosts
[OSEv3:vars]
ansible_ssh_user=root
openshift_deployment_type=openshift-enterprise

deployment_subtype=registry 1

openshift_master_default_subdomain=apps.test.example.com

Uncomment the following to enable htpasswd authentication; defaults to
DenyAllPasswordIdentityProvider.
#openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':

CHAPTER 2. INSTALLING A CLUSTER

123

1

'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider',
'filename': '/etc/origin/master/htpasswd'}]

Native high availability cluster method with optional load balancer.
If no lb group is defined installer assumes that a load balancer has
been preconfigured. For installation the value of
openshift_master_cluster_hostname must resolve to the load balancer
or to one or all of the masters defined in the inventory if no load
balancer is present.
openshift_master_cluster_method=native
openshift_master_cluster_hostname=openshift-internal.example.com
openshift_master_cluster_public_hostname=openshift-cluster.example.com

apply updated node defaults
openshift_node_kubelet_args={'pods-per-core': ['10'], 'max-pods': ['250'],
'image-gc-high-threshold': ['90'], 'image-gc-low-threshold': ['80']}

override the default controller lease ttl
#osm_controller_lease_ttl=30

enable ntp on masters to ensure proper failover
openshift_clock_enabled=true

host group for masters
[masters]
master1.example.com
master2.example.com
master3.example.com

host group for etcd
[etcd]
etcd1.example.com
etcd2.example.com
etcd3.example.com

Specify load balancer host
[lb]
lb.example.com

host group for nodes, includes region info
[nodes]
master[1:3].example.com openshift_node_labels="{'region': 'infra', 'zone':
'default'}" openshift_schedulable=true
node1.example.com openshift_node_labels="{'region': 'primary', 'zone':
'east'}"
node2.example.com openshift_node_labels="{'region': 'primary', 'zone':
'west'}"

Set deployment_subtype=registry to ensure installation of stand-alone OCR and not a full
OpenShift Container Platform environment.

After you have configured Ansible by defining an inventory file in /etc/ansible/hosts, you can run the
advanced installation using the following playbook:

OpenShift Container Platform 3.7 Installation and Configuration

124

ansible-playbook /usr/share/ansible/openshift-
ansible/playbooks/byo/config.yml

NOTE

For more detailed usage information on the advanced installation method, including a
comprehensive list of available Ansible variables, see the full topic at Advanced
Installation.

CHAPTER 2. INSTALLING A CLUSTER

125

1

2

3

CHAPTER 3. SETTING UP THE REGISTRY

3.1. REGISTRY OVERVIEW

3.1.1. About the Registry

OpenShift Container Platform can build container images from your source code, deploy them, and
manage their lifecycle. To enable this, OpenShift Container Platform provides an internal, integrated
Docker registry that can be deployed in your OpenShift Container Platform environment to locally
manage images.

3.1.2. Integrated or Stand-alone Registries

During an initial installation of a full OpenShift Container Platform cluster, it is likely that the registry was
deployed automatically during the installation process. If it was not, or if you want to further customize
the configuration of your registry, see Deploying a Registry on Existing Clusters.

While it can be deployed to run as an integrated part of your full OpenShift Container Platform cluster,
the OpenShift Container Platform registry can alternatively be installed separately as a stand-alone
container image registry.

To install a stand-alone registry, follow Installing a Stand-alone Registry. This installation path deploys an
all-in-one cluster running a registry and specialized web console.

3.2. DEPLOYING A REGISTRY ON EXISTING CLUSTERS

3.2.1. Overview

If the integrated registry was not previously deployed automatically during the initial installation of your
OpenShift Container Platform cluster, or if it is no longer running successfully and you need to redeploy
it on your existing cluster, see the following sections for options on deploying a new registry.

NOTE

This topic is not required if you installed a stand-alone registry.

3.2.2. Deploying the Registry

To deploy the integrated Docker registry, use the oc adm registry command as a user with cluster
administrator privileges. For example:

$ oc adm registry --config=/etc/origin/master/admin.kubeconfig \ 1

 --service-account=registry \ 2
 --images='registry.access.redhat.com/openshift3/ose-

${component}:${version}' 3

--config is the path to the CLI configuration file for the cluster administrator.

--service-account is the service account used to run the registry’s pod.

Required to pull the correct image for OpenShift Container Platform.

OpenShift Container Platform 3.7 Installation and Configuration

126

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#docker-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#integrated-openshift-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cli_reference/#cli-reference-manage-cli-profiles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#roles

This creates a service and a deployment configuration, both called docker-registry. Once deployed
successfully, a pod is created with a name similar to docker-registry-1-cpty9 .

To see a full list of options that you can specify when creating the registry:

$ oc adm registry --help

The value for --fs-group must be permitted by the SCC used by the registry (typically, the restricted
SCC).

3.2.3. Deploying the Registry as a DaemonSet

Use the oc adm registry command to deploy the registry as a DaemonSet with the --daemonset
option.

Daemonsets ensure that when nodes are created, they contain copies of a specified pod. When the
nodes are removed, the pods are garbage collected.

For more information on DaemonSets, see Using Daemonsets.

3.2.4. Registry Compute Resources

By default, the registry is created with no settings for compute resource requests or limits. For
production, it is highly recommended that the deployment configuration for the registry be updated to set
resource requests and limits for the registry pod. Otherwise, the registry pod will be considered a
BestEffort pod.

See Compute Resources for more information on configuring requests and limits.

3.2.5. Storage for the Registry

The registry stores container images and metadata. If you simply deploy a pod with the registry, it uses
an ephemeral volume that is destroyed if the pod exits. Any images anyone has built or pushed into the
registry would disappear.

This section lists the supported registry storage drivers.

The following list includes storage drivers that need to be configured in the registry’s configuration file:

Filesystem. Filesystem is the default and does not need to be configured.

S3. Learn more about CloudFront configuration.

OpenStack Swift

Google Cloud Storage (GCS)

Microsoft Azure

Aliyun OSS

General registry storage configuration options are supported.

The following storage options need to be configured through the filesystem driver:

Backing Docker Registry with GlusterFS Storage

CHAPTER 3. SETTING UP THE REGISTRY

127

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-daemonsets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-compute-resources
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#quality-of-service-tiers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-compute-resources
https://docs.docker.com/registry/configuration/#storage
https://docs.docker.com/registry/storage-drivers/filesystem
https://docs.docker.com/registry/storage-drivers/s3/
https://github.com/docker/docker.github.io/blob/master/registry/storage-drivers/s3.md#cloudfront-as-middleware-with-s3-backend
https://docs.docker.com/registry/storage-drivers/swift/
https://docs.docker.com/registry/storage-drivers/gcs/
https://docs.docker.com/registry/storage-drivers/azure/
https://docs.docker.com/registry/storage-drivers/oss/
https://docs.docker.com/registry/configuration/#maintenance
https://docs.docker.com/registry/storage-drivers/filesystem

Ceph Rados Block Device

NOTE

For more information on supported persistent storage drivers, see Configuring Persistent
Storage and Persistent Storage Examples.

3.2.5.1. Production Use

For production use, attach a remote volume or define and use the persistent storage method of your
choice.

For example, to use an existing persistent volume claim:

$ oc volume deploymentconfigs/docker-registry --add --name=registry-
storage -t pvc \
 --claim-name=<pvc_name> --overwrite

IMPORTANT

Testing shows issues with using the RHEL NFS server as a storage backend for the
container image registry. This includes the OpenShift Container Registry and Quay.
Therefore, using the RHEL NFS server to back PVs used by core services is not
recommended.

Other NFS implementations on the marketplace might not have these issues. Contact the
individual NFS implementation vendor for more information on any testing that was
possibly completed against these OpenShift core components.

3.2.5.1.1. Use Amazon S3 as a Storage Back-end

There is also an option to use Amazon Simple Storage Service storage with the internal Docker registry.
It is a secure cloud storage manageable through AWS Management Console. To use it, the registry’s
configuration file must be manually edited and mounted to the registry pod. However, before you start
with the configuration, look at upstream’s recommended steps.

Take a default YAML configuration file as a base and replace the filesystem entry in the storage section
with s3 entry such as below. The resulting storage section may look like this:

storage:
 cache:
 layerinfo: inmemory
 delete:
 enabled: true
 s3:

 accesskey: awsaccesskey 1

 secretkey: awssecretkey 2
 region: us-west-1
 regionendpoint: http://myobjects.local
 bucket: bucketname
 encrypt: true
 keyid: mykeyid
 secure: true

OpenShift Container Platform 3.7 Installation and Configuration

128

https://aws.amazon.com/s3/getting-started/
https://docs.docker.com/docker-trusted-registry/configure/config-storage/#amazon-s3

1

2

Replace with your Amazon access key.

Replace with your Amazon secret key.

All of the s3 configuration options are documented in upstream’s driver reference documentation.

Overriding the registry configuration will take you through the additional steps on mounting the
configuration file into pod.

WARNING

When the registry runs on the S3 storage back-end, there are reported issues.

3.2.5.2. Non-Production Use

For non-production use, you can use the --mount-host=<path> option to specify a directory for the
registry to use for persistent storage. The registry volume is then created as a host-mount at the
specified <path>.

IMPORTANT

The --mount-host option mounts a directory from the node on which the registry
container lives. If you scale up the docker-registry deployment configuration, it is
possible that your registry pods and containers will run on different nodes, which can
result in two or more registry containers, each with its own local storage. This will lead to
unpredictable behavior, as subsequent requests to pull the same image repeatedly may
not always succeed, depending on which container the request ultimately goes to.

The --mount-host option requires that the registry container run in privileged mode. This is
automatically enabled when you specify --mount-host. However, not all pods are allowed to run
privileged containers by default. If you still want to use this option, create the registry and specify that it
use the registry service account that was created during installation:

$ oc adm registry --service-account=registry \
 --config=/etc/origin/master/admin.kubeconfig \
 --images='registry.access.redhat.com/openshift3/ose-
${component}:${version}' \
 --mount-host=<path>

 v4auth: false
 chunksize: 5242880
 rootdirectory: /s3/object/name/prefix



CHAPTER 3. SETTING UP THE REGISTRY

129

https://docs.docker.com/registry/storage-drivers/s3/

IMPORTANT

The Docker registry pod runs as user 1001. This user must be able to write to the host
directory. You may need to change directory ownership to user ID 1001 with this
command:

$ sudo chown 1001:root <path>

3.2.6. Enabling the Registry Console

OpenShift Container Platform provides a web-based interface to the integrated registry. This registry
console is an optional component for browsing and managing images. It is deployed as a stateless
service running as a pod.

NOTE

If you installed OpenShift Container Platform as a stand-alone registry, the registry
console is already deployed and secured automatically during installation.

IMPORTANT

If Cockpit is already running, you’ll need to shut it down before proceeding in order to
avoid a port conflict (9090 by default) with the registry console.

3.2.6.1. Deploying the Registry Console

IMPORTANT

You must first have exposed the registry.

1. Create a passthrough route in the default project. You will need this when creating the registry
console application in the next step.

$ oc create route passthrough --service registry-console \
 --port registry-console \
 -n default

2. Deploy the registry console application. Replace <openshift_oauth_url> with the URL of
the OpenShift Container Platform OAuth provider, which is typically the master.

$ oc new-app -n default --template=registry-console \
 -p
OPENSHIFT_OAUTH_PROVIDER_URL="https://<openshift_oauth_url>:8443" \
 -p REGISTRY_HOST=$(oc get route docker-registry -n default --
template='{{ .spec.host }}') \
 -p COCKPIT_KUBE_URL=$(oc get route registry-console -n default -
-template='https://{{ .spec.host }}')

NOTE

If the redirection URL is wrong when you are trying to log in to the registry console, check
your OAuth client with oc get oauthclients.

OpenShift Container Platform 3.7 Installation and Configuration

130

1. Finally, use a web browser to view the console using the route URI.

3.2.6.2. Securing the Registry Console

By default, the registry console generates self-signed TLS certificates if deployed manually per the steps
in Deploying the Registry Console. See Troubleshooting the Registry Console for more information.

Use the following steps to add your organization’s signed certificates as a secret volume. This assumes
your certificates are available on the oc client host.

1. Create a .cert file containing the certificate and key. Format the file with:

One or more BEGIN CERTIFICATE blocks for the server certificate and the intermediate
certificate authorities

A block containing a BEGIN PRIVATE KEY or similar for the key. The key must not be
encrypted
For example:

-----BEGIN CERTIFICATE-----
MIIDUzCCAjugAwIBAgIJAPXW+CuNYS6QMA0GCSqGSIb3DQEBCwUAMD8xKTAnBgNV
BAoMIGI0OGE2NGNkNmMwNTQ1YThhZTgxOTEzZDE5YmJjMmRjMRIwEAYDVQQDDAls
...
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
MIIDUzCCAjugAwIBAgIJAPXW+CuNYS6QMA0GCSqGSIb3DQEBCwUAMD8xKTAnBgNV
BAoMIGI0OGE2NGNkNmMwNTQ1YThhZTgxOTEzZDE5YmJjMmRjMRIwEAYDVQQDDAls
...
-----END CERTIFICATE-----
-----BEGIN PRIVATE KEY-----
MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQCyOJ5garOYw0sm
8TBCDSqQ/H1awGMzDYdB11xuHHsxYS2VepPMzMzryHR137I4dGFLhvdTvJUH8lUS
...
-----END PRIVATE KEY-----

The secured registry should contain the following Subject Alternative Names (SAN) list:

Two service hostnames.
For example:

docker-registry.default.svc.cluster.local
docker-registry.default.svc

Service IP address.
For example:

172.30.124.220

Use the following command to get the Docker registry service IP address:

oc get service docker-registry --
template='{{.spec.clusterIP}}'

Public hostname.

CHAPTER 3. SETTING UP THE REGISTRY

131

For example:

docker-registry-default.apps.example.com

Use the following command to get the Docker registry public hostname:

oc get route docker-registry --template '{{.spec.host}}'

For example, the server certificate should contain SAN details similar to the following:

X509v3 Subject Alternative Name:
 DNS:docker-registry-public.openshift.com,
DNS:docker-registry.default.svc, DNS:docker-
registry.default.svc.cluster.local, DNS:172.30.2.98, IP
Address:172.30.2.98

The registry console loads a certificate from the /etc/cockpit/ws-certs.d directory. It
uses the last file with a .cert extension in alphabetical order. Therefore, the .cert file
should contain at least two PEM blocks formatted in the OpenSSL style.

If no certificate is found, a self-signed certificate is created using the openssl command
and stored in the 0-self-signed.cert file.

2. Create the secret:

$ oc secrets new console-secret \
 /path/to/console.cert

3. Add the secrets to the registry-console deployment configuration:

$ oc volume dc/registry-console --add --type=secret \
 --secret-name=console-secret -m /etc/cockpit/ws-certs.d

This triggers a new deployment of the registry console to include your signed certificates.

3.2.6.3. Troubleshooting the Registry Console

3.2.6.3.1. Debug Mode

The registry console debug mode is enabled using an environment variable. The following command
redeploys the registry console in debug mode:

$ oc set env dc registry-console G_MESSAGES_DEBUG=cockpit-ws,cockpit-
wrapper

Enabling debug mode allows more verbose logging to appear in the registry console’s pod logs.

3.2.6.3.2. Display SSL Certificate Path

To check which certificate the registry console is using, a command can be run from inside the console
pod.

1. List the pods in the default project and find the registry console’s pod name:

OpenShift Container Platform 3.7 Installation and Configuration

132

$ oc get pods -n default
NAME READY STATUS RESTARTS AGE
registry-console-1-rssrw 1/1 Running 0 1d

2. Using the pod name from the previous command, get the certificate path that the cockpit-ws
process is using. This example shows the console using the auto-generated certificate:

$ oc exec registry-console-1-rssrw remotectl certificate
certificate: /etc/cockpit/ws-certs.d/0-self-signed.cert

3.3. ACCESSING THE REGISTRY

3.3.1. Viewing Logs

To view the logs for the Docker registry, use the oc logs command with the deployment configuration:

$ oc logs dc/docker-registry
2015-05-01T19:48:36.300593110Z time="2015-05-01T19:48:36Z" level=info
msg="version=v2.0.0+unknown"
2015-05-01T19:48:36.303294724Z time="2015-05-01T19:48:36Z" level=info
msg="redis not configured" instance.id=9ed6c43d-23ee-453f-9a4b-
031fea646002
2015-05-01T19:48:36.303422845Z time="2015-05-01T19:48:36Z" level=info
msg="using inmemory layerinfo cache" instance.id=9ed6c43d-23ee-453f-9a4b-
031fea646002
2015-05-01T19:48:36.303433991Z time="2015-05-01T19:48:36Z" level=info
msg="Using OpenShift Auth handler"
2015-05-01T19:48:36.303439084Z time="2015-05-01T19:48:36Z" level=info
msg="listening on :5000" instance.id=9ed6c43d-23ee-453f-9a4b-031fea646002

3.3.2. File Storage

Tag and image metadata is stored in OpenShift Container Platform, but the registry stores layer and
signature data in a volume that is mounted into the registry container at /registry. As oc exec does not
work on privileged containers, to view a registry’s contents you must manually SSH into the node
housing the registry pod’s container, then run docker exec on the container itself:

1. List the current pods to find the pod name of your Docker registry:

oc get pods

Then, use oc describe to find the host name for the node running the container:

oc describe pod <pod_name>

2. Log into the desired node:

ssh node.example.com

3. List the running containers from the default project on the node host and identify the container ID
for the Docker registry:

CHAPTER 3. SETTING UP THE REGISTRY

133

docker ps --filter=name=registry_docker-registry.*_default_

4. List the registry contents using the oc rsh command:

oc rsh dc/docker-registry find /registry
/registry/docker
/registry/docker/registry
/registry/docker/registry/v2

/registry/docker/registry/v2/blobs 1
/registry/docker/registry/v2/blobs/sha256
/registry/docker/registry/v2/blobs/sha256/ed
/registry/docker/registry/v2/blobs/sha256/ed/ede17b139a271d6b1331ca3
d83c648c24f92cece5f89d95ac6c34ce751111810
/registry/docker/registry/v2/blobs/sha256/ed/ede17b139a271d6b1331ca3

d83c648c24f92cece5f89d95ac6c34ce751111810/data 2
/registry/docker/registry/v2/blobs/sha256/a3
/registry/docker/registry/v2/blobs/sha256/a3/a3ed95caeb02ffe68cdd9fd
84406680ae93d633cb16422d00e8a7c22955b46d4
/registry/docker/registry/v2/blobs/sha256/a3/a3ed95caeb02ffe68cdd9fd
84406680ae93d633cb16422d00e8a7c22955b46d4/data
/registry/docker/registry/v2/blobs/sha256/f7
/registry/docker/registry/v2/blobs/sha256/f7/f72a00a23f01987b42cb26f
259582bb33502bdb0fcf5011e03c60577c4284845
/registry/docker/registry/v2/blobs/sha256/f7/f72a00a23f01987b42cb26f
259582bb33502bdb0fcf5011e03c60577c4284845/data

/registry/docker/registry/v2/repositories 3
/registry/docker/registry/v2/repositories/p1

/registry/docker/registry/v2/repositories/p1/pause 4
/registry/docker/registry/v2/repositories/p1/pause/_manifests
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons/sha256
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c
068b1cf
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c

068b1cf/signatures 5
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c
068b1cf/signatures/sha256
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c
068b1cf/signatures/sha256/ede17b139a271d6b1331ca3d83c648c24f92cece5f
89d95ac6c34ce751111810
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c
068b1cf/signatures/sha256/ede17b139a271d6b1331ca3d83c648c24f92cece5f

89d95ac6c34ce751111810/link 6

/registry/docker/registry/v2/repositories/p1/pause/_uploads 7

/registry/docker/registry/v2/repositories/p1/pause/_layers 8
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/a3

OpenShift Container Platform 3.7 Installation and Configuration

134

1

2

3

4

5

6

7

8

9

ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/a3
ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4/link

9
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/f7
2a00a23f01987b42cb26f259582bb33502bdb0fcf5011e03c60577c4284845
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/f7
2a00a23f01987b42cb26f259582bb33502bdb0fcf5011e03c60577c4284845/link

This directory stores all layers and signatures as blobs.

This file contains the blob’s contents.

This directory stores all the image repositories.

This directory is for a single image repository p1/pause.

This directory contains signatures for a particular image manifest revision.

This file contains a reference back to a blob (which contains the signature data).

This directory contains any layers that are currently being uploaded and staged for the
given repository.

This directory contains links to all the layers this repository references.

This file contains a reference to a specific layer that has been linked into this repository via
an image.

3.3.3. Accessing the Registry Directly

For advanced usage, you can access the registry directly to invoke docker commands. This allows you
to push images to or pull them from the integrated registry directly using operations like docker push
or docker pull. To do so, you must be logged in to the registry using the docker login command.
The operations you can perform depend on your user permissions, as described in the following
sections.

3.3.3.1. User Prerequisites

To access the registry directly, the user that you use must satisfy the following, depending on your
intended usage:

For any direct access, you must have a regular user, if one does not already exist, for your
preferred identity provider. A regular user can generate an access token required for logging in
to the registry. System users, such as system:admin, cannot obtain access tokens and,
therefore, cannot access the registry directly.
For example, if you are using HTPASSWD authentication, you can create one using the following
command:

htpasswd /etc/origin/openshift-htpasswd <user_name>

For pulling images, for example when using the docker pull command, the user must have
the registry-viewer role. To add this role:

CHAPTER 3. SETTING UP THE REGISTRY

135

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#users
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#users

$ oc policy add-role-to-user registry-viewer <user_name>

For writing or pushing images, for example when using the docker push command, the user
must have the registry-editor role. To add this role:

$ oc policy add-role-to-user registry-editor <user_name>

For more information on user permissions, see Managing Role Bindings.

3.3.3.2. Logging in to the Registry

NOTE

Ensure your user satisfies the prerequisites for accessing the registry directly.

To log in to the registry directly:

1. Ensure you are logged in to OpenShift Container Platform as a regular user:

$ oc login

2. Log in to the Docker registry by using your access token:

docker login -u openshift -p $(oc whoami -t) <registry_ip>:<port>

NOTE

You can pass any value for the username, the token contains all necessary information.
Passing a username that contains colons will result in a login failure.

3.3.3.3. Pushing and Pulling Images

After logging in to the registry, you can perform docker pull and docker push operations against
your registry.

IMPORTANT

You can pull arbitrary images, but if you have the system:registry role added, you can
only push images to the registry in your project.

In the following examples, we use:

Component Value

<registry_ip> 172.30.124.220

<port> 5000

<project> openshift

OpenShift Container Platform 3.7 Installation and Configuration

136

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#managing-role-bindings

<image> busybox

<tag> omitted (defaults to latest)

1. Pull an arbitrary image:

$ docker pull docker.io/busybox

2. Tag the new image with the form <registry_ip>:<port>/<project>/<image>. The
project name must appear in this pull specification for OpenShift Container Platform to correctly
place and later access the image in the registry.

$ docker tag docker.io/busybox 172.30.124.220:5000/openshift/busybox

NOTE

Your regular user must have the system:image-builder role for the specified
project, which allows the user to write or push an image. Otherwise, the docker
push in the next step will fail. To test, you can create a new project to push the
busybox image.

3. Push the newly-tagged image to your registry:

$ docker push 172.30.124.220:5000/openshift/busybox
...
cf2616975b4a: Image successfully pushed
Digest:
sha256:3662dd821983bc4326bee12caec61367e7fb6f6a3ee547cbaff98f77403ca
b55

3.3.4. Accessing Registry Metrics

The OpenShift Container Registry provides an endpoint for Prometheus metrics. Prometheus is a stand-
alone, open source systems monitoring and alerting toolkit.

The metrics are exposed at the /extensions/v2/metrics path of the registry endpoint. However, this
route must first be enabled; see Extended Registry Configuration for instructions.

The following is a simple example of a metrics query:

$ curl -s -u <user>:<secret> \ 1
 http://172.30.30.30:5000/extensions/v2/metrics | grep openshift | head
-n 10

HELP openshift_build_info A metric with a constant '1' value labeled by
major, minor, git commit & git version from which OpenShift was built.
TYPE openshift_build_info gauge
openshift_build_info{gitCommit="67275e1",gitVersion="v3.6.0-
alpha.1+67275e1-803",major="3",minor="6+"} 1
HELP openshift_registry_request_duration_seconds Request latency summary
in microseconds for each operation

CHAPTER 3. SETTING UP THE REGISTRY

137

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#create-a-project
https://prometheus.io/docs/introduction/overview/

1

TYPE openshift_registry_request_duration_seconds summary
openshift_registry_request_duration_seconds{name="test/origin-
pod",operation="blobstore.create",quantile="0.5"} 0
openshift_registry_request_duration_seconds{name="test/origin-
pod",operation="blobstore.create",quantile="0.9"} 0
openshift_registry_request_duration_seconds{name="test/origin-
pod",operation="blobstore.create",quantile="0.99"} 0
openshift_registry_request_duration_seconds_sum{name="test/origin-
pod",operation="blobstore.create"} 0
openshift_registry_request_duration_seconds_count{name="test/origin-
pod",operation="blobstore.create"} 5

<user> can be arbitrary, but <secret> must match the value specified in the registry
configuration.

See the upstream Prometheus documentation for more advanced queries and recommended visualizers.

3.4. SECURING AND EXPOSING THE REGISTRY

3.4.1. Overview

By default, the OpenShift Container Registry is secured during cluster installation so that it serves traffic
via TLS. A passthrough route is also created by default to expose the service externally.

If for any reason your registry has not been secured or exposed, see the following sections for steps on
how to manually do so.

3.4.2. Manually Securing the Registry

To manually secure the registry to serve traffic via TLS:

1. Deploy the registry.

2. Fetch the service IP and port of the registry:

$ oc get svc/docker-registry
NAME LABELS
SELECTOR IP(S) PORT(S)
docker-registry docker-registry=default docker-
registry=default 172.30.124.220 5000/TCP

3. You can use an existing server certificate, or create a key and server certificate valid for
specified IPs and host names, signed by a specified CA. To create a server certificate for the
registry service IP and the docker-registry.default.svc.cluster.local host name, run the
following command from the first master listed in the Ansible host inventory file, by default
/etc/ansible/hosts:

$ oc adm ca create-server-cert \
 --signer-cert=/etc/origin/master/ca.crt \
 --signer-key=/etc/origin/master/ca.key \
 --signer-serial=/etc/origin/master/ca.serial.txt \
 --hostnames='docker-registry.default.svc.cluster.local,docker-
registry.default.svc,172.30.124.220' \
 --cert=/etc/secrets/registry.crt \

OpenShift Container Platform 3.7 Installation and Configuration

138

https://prometheus.io/docs/querying/basics/

 --key=/etc/secrets/registry.key

If the router will be exposed externally, add the public route host name in the --hostnames
flag:

--hostnames='mydocker-registry.example.com,docker-
registry.default.svc.cluster.local,172.30.124.220 \

See Redeploying Registry and Router Certificates for additional details on updating the default
certificate so that the route is externally accessible.

NOTE

The oc adm ca create-server-cert command generates a certificate that
is valid for two years. This can be altered with the --expire-days option, but
for security reasons, it is recommended to not make it greater than this value.

4. Create the secret for the registry certificates:

$ oc secrets new registry-certificates \
 /etc/secrets/registry.crt \
 /etc/secrets/registry.key

5. Add the secret to the registry pod’s service accounts (including the default service account):

$ oc secrets link registry registry-certificates
$ oc secrets link default registry-certificates

NOTE

Limiting secrets to only the service accounts that reference them is disabled by
default. This means that if
serviceAccountConfig.limitSecretReferences is set to false (the
default setting) in the master configuration file, linking secrets to a service is not
required.

6. Pause the docker-registry service:

$ oc rollout pause dc/docker-registry

7. Add the secret volume to the registry deployment configuration:

$ oc volume dc/docker-registry --add --type=secret \
 --secret-name=registry-certificates -m /etc/secrets

8. Enable TLS by adding the following environment variables to the registry deployment
configuration:

$ oc set env dc/docker-registry \
 REGISTRY_HTTP_TLS_CERTIFICATE=/etc/secrets/registry.crt \
 REGISTRY_HTTP_TLS_KEY=/etc/secrets/registry.key

CHAPTER 3. SETTING UP THE REGISTRY

139

1

See more details on overriding registry options.

9. Update the scheme used for the registry’s liveness probe from HTTP to HTTPS:

$ oc patch dc/docker-registry -p '{"spec": {"template": {"spec":
{"containers":[{
 "name":"registry",
 "livenessProbe": {"httpGet": {"scheme":"HTTPS"}}
 }]}}}}'

10. If your registry was initially deployed on OpenShift Container Platform 3.2 or later, update the
scheme used for the registry’s readiness probe from HTTP to HTTPS:

$ oc patch dc/docker-registry -p '{"spec": {"template": {"spec":
{"containers":[{
 "name":"registry",
 "readinessProbe": {"httpGet": {"scheme":"HTTPS"}}
 }]}}}}'

11. Resume the docker-registry service:

$ oc rollout resume dc/docker-registry

12. Validate the registry is running in TLS mode. Wait until the latest docker-registry deployment
completes and verify the Docker logs for the registry container. You should find an entry for
listening on :5000, tls.

$ oc logs dc/docker-registry | grep tls
time="2015-05-27T05:05:53Z" level=info msg="listening on :5000, tls"
instance.id=deeba528-c478-41f5-b751-dc48e4935fc2

13. Copy the CA certificate to the Docker certificates directory. This must be done on all nodes in the
cluster:

$ dcertsdir=/etc/docker/certs.d
$ destdir_addr=$dcertsdir/172.30.124.220:5000
$ destdir_name=$dcertsdir/docker-
registry.default.svc.cluster.local:5000

$ sudo mkdir -p $destdir_addr $destdir_name

$ sudo cp ca.crt $destdir_addr 1
$ sudo cp ca.crt $destdir_name

The ca.crt file is a copy of /etc/origin/master/ca.crt on the master.

14. When using authentication, some versions of docker also require you to configure your cluster
to trust the certificate at the OS level.

a. Copy the certificate:

$ cp /etc/origin/master/ca.crt /etc/pki/ca-
trust/source/anchors/myregistrydomain.com.crt

OpenShift Container Platform 3.7 Installation and Configuration

140

https://github.com/docker/distribution/blob/master/docs/configuration.md#override-configuration-options

b. Run:

$ update-ca-trust enable

15. Remove the --insecure-registry option only for this particular registry in the
/etc/sysconfig/docker file. Then, reload the daemon and restart the docker service to reflect
this configuration change:

$ sudo systemctl daemon-reload
$ sudo systemctl restart docker

16. Validate the docker client connection. Running docker push to the registry or docker pull
from the registry should succeed. Make sure you have logged into the registry.

$ docker tag|push <registry/image> <internal_registry/project/image>

For example:

$ docker pull busybox
$ docker tag docker.io/busybox 172.30.124.220:5000/openshift/busybox
$ docker push 172.30.124.220:5000/openshift/busybox
...
cf2616975b4a: Image successfully pushed
Digest:
sha256:3662dd821983bc4326bee12caec61367e7fb6f6a3ee547cbaff98f77403ca
b55

3.4.3. Manually Exposing a Secure Registry

Instead of logging in to the OpenShift Container Registry from within the OpenShift Container Platform
cluster, you can gain external access to it by first securing the registry and then exposing it with a route.
This allows you to log in to the registry from outside the cluster using the route address, and to tag and
push images using the route host.

1. Each of the following prerequisite steps are performed by default during a typical cluster
installation. If they have not been, perform them manually:

a. Manually deploy the registry.

b. Manually secure the registry.

c. Manually deploy a router.

2. A passthrough route should have been created by default for the registry during the initial cluster
installation:

a. Verify whether the route exists:

$ oc get route/docker-registry -o yaml
apiVersion: v1
kind: Route
metadata:
 name: docker-registry
spec:

CHAPTER 3. SETTING UP THE REGISTRY

141

https://docs.docker.com/reference/commandline/push/
https://docs.docker.com/reference/commandline/pull/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#secured-routes

1

2

3

1

2

 host: <host> 1
 to:
 kind: Service

 name: docker-registry 2
 tls:

 termination: passthrough 3

The host for your route. You must be able to resolve this name externally via DNS to
the router’s IP address.

The service name for your registry.

Specifies this route as a passthrough route.

NOTE

Re-encrypt routes are also supported for exposing the secure registry.

b. If it does not exist, create the route via the oc create route passthrough command,
specifying the registry as the route’s service. By default, the name of the created route is the
same as the service name:

i. Get the docker-registry service details:

$ oc get svc
NAME CLUSTER_IP EXTERNAL_IP PORT(S)
SELECTOR AGE
docker-registry 172.30.69.167 <none> 5000/TCP
docker-registry=default 4h
kubernetes 172.30.0.1 <none>
443/TCP,53/UDP,53/TCP <none> 4h
router 172.30.172.132 <none> 80/TCP
router=router 4h

ii. Create the route:

$ oc create route passthrough \

 --service=docker-registry \ 1
 --hostname=<host>

route "docker-registry" created 2

Specifies the registry as the route’s service.

The route name is identical to the service name.

3. Next, you must trust the certificates being used for the registry on your host system to allow the
host to push and pull images. The certificates referenced were created when you secured your
registry.

$ sudo mkdir -p /etc/docker/certs.d/<host>
$ sudo cp <ca_certificate_file> /etc/docker/certs.d/<host>
$ sudo systemctl restart docker

OpenShift Container Platform 3.7 Installation and Configuration

142

4. Log in to the registry using the information from securing the registry. However, this time point to
the host name used in the route rather than your service IP. When logging in to a secured and
exposed registry, make sure you specify the registry in the docker login command:

docker login -e user@company.com \
 -u f83j5h6 \
 -p Ju1PeM47R0B92Lk3AZp-bWJSck2F7aGCiZ66aFGZrs2 \
 <host>

5. You can now tag and push images using the route host. For example, to tag and push a
busybox image in a project called test:

$ oc get imagestreams -n test
NAME DOCKER REPO TAGS UPDATED

$ docker pull busybox
$ docker tag busybox <host>/test/busybox
$ docker push <host>/test/busybox
The push refers to a repository [<host>/test/busybox] (len: 1)
8c2e06607696: Image already exists
6ce2e90b0bc7: Image successfully pushed
cf2616975b4a: Image successfully pushed
Digest:
sha256:6c7e676d76921031532d7d9c0394d0da7c2906f4cb4c049904c4031147d8c
a31

$ docker pull <host>/test/busybox
latest: Pulling from <host>/test/busybox
cf2616975b4a: Already exists
6ce2e90b0bc7: Already exists
8c2e06607696: Already exists
Digest:
sha256:6c7e676d76921031532d7d9c0394d0da7c2906f4cb4c049904c4031147d8c
a31
Status: Image is up to date for <host>/test/busybox:latest

$ oc get imagestreams -n test
NAME DOCKER REPO TAGS UPDATED
busybox 172.30.11.215:5000/test/busybox latest 2 seconds ago

NOTE

Your image streams will have the IP address and port of the registry service, not
the route name and port. See oc get imagestreams for details.

3.4.4. Manually Exposing a Non-Secure Registry

Instead of securing the registry in order to expose the registry, you can simply expose a non-secure
registry for non-production OpenShift Container Platform environments. This allows you to have an
external route to the registry without using SSL certificates.

CHAPTER 3. SETTING UP THE REGISTRY

143

WARNING

Only non-production environments should expose a non-secure registry to external
access.

To expose a non-secure registry:

1. Expose the registry:

oc expose service docker-registry --hostname=<hostname> -n default

This creates the following JSON file:

apiVersion: v1
kind: Route
metadata:
 creationTimestamp: null
 labels:
 docker-registry: default
 name: docker-registry
spec:
 host: registry.example.com
 port:
 targetPort: "5000"
 to:
 kind: Service
 name: docker-registry
status: {}

2. Verify that the route has been created successfully:

oc get route
NAME HOST/PORT PATH SERVICE
LABELS INSECURE POLICY TLS TERMINATION
docker-registry registry.example.com docker-registry
docker-registry=default

3. Check the health of the registry:

$ curl -v http://registry.example.com/healthz

Expect an HTTP 200/OK message.

After exposing the registry, update your /etc/sysconfig/docker file by adding the port number to
the OPTIONS entry. For example:

OPTIONS='--selinux-enabled --insecure-registry=172.30.0.0/16 --
insecure-registry registry.example.com:80'



OpenShift Container Platform 3.7 Installation and Configuration

144

IMPORTANT

The above options should be added on the client from which you are trying to log
in.

Also, ensure that Docker is running on the client.

When logging in to the non-secured and exposed registry, make sure you specify the registry in the
docker login command. For example:

docker login -e user@company.com \
 -u f83j5h6 \
 -p Ju1PeM47R0B92Lk3AZp-bWJSck2F7aGCiZ66aFGZrs2 \
 <host>

3.5. EXTENDED REGISTRY CONFIGURATION

3.5.1. Maintaining the Registry IP Address

OpenShift Container Platform refers to the integrated registry by its service IP address, so if you decide
to delete and recreate the docker-registry service, you can ensure a completely transparent transition
by arranging to re-use the old IP address in the new service. If a new IP address cannot be avoided, you
can minimize cluster disruption by rebooting only the masters.

Re-using the Address

To re-use the IP address, you must save the IP address of the old docker-registry service prior to
deleting it, and arrange to replace the newly assigned IP address with the saved one in the new
docker-registry service.

1. Make a note of the clusterIP for the service:

$ oc get svc/docker-registry -o yaml | grep clusterIP:

2. Delete the service:

$ oc delete svc/docker-registry dc/docker-registry

3. Create the registry definition in registry.yaml, replacing <options> with, for example, those
used in step 3 of the instructions in the Non-Production Use section:

$ oc adm registry <options> -o yaml > registry.yaml

4. Edit registry.yaml, find the Service there, and change its clusterIP to the address noted in
step 1.

5. Create the registry using the modified registry.yaml:

$ oc create -f registry.yaml

Rebooting the Masters

If you are unable to re-use the IP address, any operation that uses a pull specification that includes
the old IP address will fail. To minimize cluster disruption, you must reboot the masters:

CHAPTER 3. SETTING UP THE REGISTRY

145

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#image-streams

systemctl restart atomic-openshift-master-api atomic-openshift-master-
controllers

This ensures that the old registry URL, which includes the old IP address, is cleared from the cache.

NOTE

We recommend against rebooting the entire cluster because that incurs unnecessary
downtime for pods and does not actually clear the cache.

3.5.2. Whitelisting Docker Registries

You can specify a whitelist of docker registries, allowing you to curate a set of images and templates that
are available for download by OpenShift Container Platform users. This curated set can be placed in one
or more docker registries, and then added to the whitelist. When using a whitelist, only the specified
registries are accessible within OpenShift Container Platform, and all other registries are denied access
by default.

To configure a whitelist:

1. Edit the /etc/sysconfig/docker file to block all registries:

BLOCK_REGISTRY='--block-registry=all'

You may need to uncomment the BLOCK_REGISTRY line.

2. In the same file, add registries to which you want to allow access:

ADD_REGISTRY='--add-registry=<registry1> --add-registry=<registry2>'

Allowing Access to Registries

ADD_REGISTRY='--add-registry=registry.access.redhat.com'

This example would restrict access to images available on the Red Hat Customer Portal.

Once the whitelist is configured, if a user tries to pull from a docker registry that is not on the whitelist,
they will receive an error message stating that this registry is not allowed.

3.5.3. Setting the Registry Hostname

You can configure the hostname and port the registry is known by for both internal and external
references. By doing this, image streams will provide hostname based push and pull specifications for
images, allowing consumers of the images to be isolated from changes to the registry service ip and
potentially allowing image streams and their references to be portable between clusters.

To set the hostname used to reference the registry from within the cluster, set the
internalRegistryHostname in the imagePolicyConfig section of the master configuration file.
The external hostname is controlled by setting the externalRegistryHostname value in the same
location.

Image Policy Configuration

OpenShift Container Platform 3.7 Installation and Configuration

146

https://access.redhat.com/search/#/container-images

NOTE

If you have enabled TLS for your registry the server certificate must include the
hostnames by which you expect the registry to be referenced. See securing the registry
for instructions on adding hostnames to the server certificate.

3.5.4. Overriding the Registry Configuration

You can override the integrated registry’s default configuration, found by default at /config.yml in a
running registry’s container, with your own custom configuration.

NOTE

Upstream configuration options in this file may also be overridden using environment
variables. The middleware section is an exception as there are just a few options that can
be overridden using environment variables. Learn how to override specific configuration
options.

To enable management of the registry configuration file directly and deploy an updated configuration
using a ConfigMap:

1. Deploy the registry.

2. Edit the registry configuration file locally as needed. The initial YAML file deployed on the
registry is provided below. Review supported options.

Registry Configuration File

imagePolicyConfig:
 internalRegistryHostname: docker-registry.default.svc.cluster.local:5000
 externalRegistryHostname: docker-registry.mycompany.com

version: 0.1
log:
 level: debug
http:
 addr: :5000
storage:
 cache:
 blobdescriptor: inmemory
 filesystem:
 rootdirectory: /registry
 delete:
 enabled: true
auth:
 openshift:
 realm: openshift
middleware:
 registry:
 - name: openshift
 repository:
 - name: openshift
 options:
 acceptschema2: true

CHAPTER 3. SETTING UP THE REGISTRY

147

https://docs.docker.com/registry/configuration/#override-specific-configuration-options
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-configmaps

3. Create a ConfigMap holding the content of each file in this directory:

$ oc create configmap registry-config \
 --from-file=</path/to/custom/registry/config.yml>/

4. Add the registry-config ConfigMap as a volume to the registry’s deployment configuration to
mount the custom configuration file at /etc/docker/registry/:

$ oc volume dc/docker-registry --add --type=configmap \
 --configmap-name=registry-config -m /etc/docker/registry/

5. Update the registry to reference the configuration path from the previous step by adding the
following environment variable to the registry’s deployment configuration:

$ oc set env dc/docker-registry \
 REGISTRY_CONFIGURATION_PATH=/etc/docker/registry/config.yml

This may be performed as an iterative process to achieve the desired configuration. For example, during
troubleshooting, the configuration may be temporarily updated to put it in debug mode.

To update an existing configuration:

WARNING

This procedure will overwrite the currently deployed registry configuration.

1. Edit the local registry configuration file, config.yml.

2. Delete the registry-config secret:

$ oc delete secret registry-config

3. Recreate the secret to reference the updated configuration file:

$ oc secrets new registry-config config.yml=
</path/to/custom/registry/config.yml>

 pullthrough: true
 enforcequota: false
 projectcachettl: 1m
 blobrepositorycachettl: 10m
 storage:
 - name: openshift
openshift:
 version: 1.0
 metrics:
 enabled: false
 secret: <secret>



OpenShift Container Platform 3.7 Installation and Configuration

148

4. Redeploy the registry to read the updated configuration:

$ oc rollout latest docker-registry

TIP

Maintain configuration files in a source control repository.

3.5.5. Registry Configuration Reference

There are many configuration options available in the upstream docker distribution library. Not all
configuration options are supported or enabled. Use this section as a reference when overriding the
registry configuration.

NOTE

Upstream configuration options in this file may also be overridden using environment
variables. However, the middleware section may not be overridden using environment
variables. Learn how to override specific configuration options.

3.5.5.1. Log

Upstream options are supported.

Example:

3.5.5.2. Hooks

Mail hooks are not supported.

3.5.5.3. Storage

This section lists the supported registry storage drivers.

The following list includes storage drivers that need to be configured in the registry’s configuration file:

Filesystem. Filesystem is the default and does not need to be configured.

S3. Learn more about CloudFront configuration.

OpenStack Swift

Google Cloud Storage (GCS)

Microsoft Azure

Aliyun OSS

log:
 level: debug
 formatter: text
 fields:
 service: registry
 environment: staging

CHAPTER 3. SETTING UP THE REGISTRY

149

https://github.com/docker/distribution
https://docs.docker.com/registry/configuration/
https://docs.docker.com/registry/configuration/#override-specific-configuration-options
https://docs.docker.com/registry/configuration/#log
https://docs.docker.com/registry/configuration/#storage
https://docs.docker.com/registry/storage-drivers/filesystem
https://docs.docker.com/registry/storage-drivers/s3/
https://github.com/docker/docker.github.io/blob/master/registry/storage-drivers/s3.md#cloudfront-as-middleware-with-s3-backend
https://docs.docker.com/registry/storage-drivers/swift/
https://docs.docker.com/registry/storage-drivers/gcs/
https://docs.docker.com/registry/storage-drivers/azure/
https://docs.docker.com/registry/storage-drivers/oss/

1

General registry storage configuration options are supported.

The following storage options need to be configured through the filesystem driver:

Backing Docker Registry with GlusterFS Storage

Ceph Rados Block Device

NOTE

For more information on supported persistent storage drivers, see Configuring Persistent
Storage and Persistent Storage Examples.

General Storage Configuration Options

This entry is mandatory for image pruning to work properly.

3.5.5.4. Auth

Auth options should not be altered. The openshift extension is the only supported option.

3.5.5.5. Middleware

The repository middleware extension allows to configure OpenShift Container Platform middleware
responsible for interaction with OpenShift Container Platform and image proxying.

storage:
 delete:

 enabled: true 1
 redirect:
 disable: false
 cache:
 blobdescriptor: inmemory
 maintenance:
 uploadpurging:
 enabled: true
 age: 168h
 interval: 24h
 dryrun: false
 readonly:
 enabled: false

auth:
 openshift:
 realm: openshift

middleware:
 registry:

 - name: openshift 1
 repository:

 - name: openshift 2
 options:

OpenShift Container Platform 3.7 Installation and Configuration

150

https://docs.docker.com/registry/configuration/#maintenance
https://docs.docker.com/registry/storage-drivers/filesystem

1 2 9

3

4

5

6

7

8

These entries are mandatory. Their presence ensures required components are loaded. These
values should not be changed.

Allows you to store manifest schema v2 during a push to the registry. See below for more details.

Allows the registry to act as a proxy for remote blobs. See below for more details.

Allows the registry cache blobs to be served from remote registries for fast access later. The
mirroring starts when the blob is accessed for the first time. The option has no effect if the
pullthrough is disabled.

Prevents blob uploads exceeding the size limit, which are defined in the targeted project.

An expiration timeout for limits cached in the registry. The lower the value, the less time it takes for
the limit changes to propagate to the registry. However, the registry will query limits from the server
more frequently and, as a consequence, pushes will be slower.

An expiration timeout for remembered associations between blob and repository. The higher the
value, the higher probability of fast lookup and more efficient registry operation. On the other hand,
memory usage will raise as well as a risk of serving image layer to user, who is no longer
authorized to access it.

3.5.5.5.1. CloudFront Middleware

The CloudFront middleware extension can be added to support AWS, CloudFront CDN storage
provider. CloudFront middleware speeds up distribution of image content internationally. The blobs are
distributed to several edge locations around the world. The client is always directed to the edge with the
lowest latency.

NOTE

The CloudFront middleware extension can be only used with S3 storage. It is utilized
only during blob serving. Therefore, only blob downloads can be speeded up, not
uploads.

The following is an example of minimal configuration of S3 storage driver with a CloudFront middleware:

 acceptschema2: true 3

 pullthrough: true 4

 mirrorpullthrough: true 5

 enforcequota: false 6

 projectcachettl: 1m 7

 blobrepositorycachettl: 10m 8
 storage:

 - name: openshift 9

version: 0.1
log:
 level: debug
http:
 addr: :5000
storage:
 cache:

CHAPTER 3. SETTING UP THE REGISTRY

151

https://github.com/docker/distribution/blob/master/docs/spec/manifest-v2-2.md#image-manifest-version-2-schema-2
https://docs.docker.com/registry/configuration/#cloudfront
https://docs.docker.com/registry/configuration/#cloudfront
https://docs.docker.com/registry/storage-drivers/s3/

1

2

3

4

5

The S3 storage must be configured the same way regardless of CloudFront middleware.

The CloudFront storage middleware needs to be listed before OpenShift middleware.

The CloudFront base URL. In the AWS management console, this is listed as Domain Name of
CloudFront distribution.

The location of your AWS private key on the filesystem. This must be not confused with Amazon
EC2 key pair. See the AWS documentation on creating CloudFront key pairs for your trusted
signers. The file needs to be mounted as a secret into the registry pod.

The ID of your Cloudfront key pair.

3.5.5.5.2. Overriding Middleware Configuration Options

The middleware section cannot be overridden using environment variables. There are a few exceptions,
however. For example:

 blobdescriptor: inmemory
 delete:
 enabled: true

 s3: 1
 accesskey: BJKMSZBRESWJQXRWMAEQ
 secretkey: 5ah5I91SNXbeoUXXDasFtadRqOdy62JzlnOW1goS
 region: us-east-1
 bucket: docker.myregistry.com
auth:
 openshift:
 realm: openshift
middleware:
 registry:
 - name: openshift
 repository:
 - name: openshift
 storage:

 - name: cloudfront 2
 options:

 baseurl: https://jrpbyn0k5k88bi.cloudfront.net/ 3

 privatekey: /etc/docker/cloudfront-ABCEDFGHIJKLMNOPQRST.pem 4

 keypairid: ABCEDFGHIJKLMNOPQRST 5
 - name: openshift

middleware:
 repository:
 - name: openshift
 options:

 acceptschema2: true 1

 pullthrough: true 2

 mirrorpullthrough: true 3

 enforcequota: false 4

 projectcachettl: 1m 5

 blobrepositorycachettl: 10m 6

OpenShift Container Platform 3.7 Installation and Configuration

152

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-trusted-signers.html#private-content-creating-cloudfront-key-pairs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-secrets

1

2

3

4

5

6

A configuration option that can be overridden by the boolean environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_ACCEPTSCHEMA2, which allows for the
ability to accept manifest schema v2 on manifest put requests. Recognized values are true and
false (which applies to all the other boolean variables below).

A configuration option that can be overridden by the boolean environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_PULLTHROUGH, which enables a proxy
mode for remote repositories.

A configuration option that can be overridden by the boolean environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_MIRRORPULLTHROUGH, which instructs
registry to mirror blobs locally if serving remote blobs.

A configuration option that can be overridden by the boolean environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_ENFORCEQUOTA, which allows the ability to
turn quota enforcement on or off. By default, quota enforcement is off.

A configuration option that can be overridden by the environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_PROJECTCACHETTL, specifying an eviction
timeout for project quota objects. It takes a valid time duration string (for example, 2m). If empty,
you get the default timeout. If zero (0m), caching is disabled.

A configuration option that can be overridden by the environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_BLOBREPOSITORYCACHETTL, specifying
an eviction timeout for associations between blob and containing repository. The format of the value
is the same as in projectcachettl case.

3.5.5.5.3. Image Pullthrough

If enabled, the registry will attempt to fetch requested blob from a remote registry unless the blob exists
locally. The remote candidates are calculated from DockerImage entries stored in status of the image
stream, a client pulls from. All the unique remote registry references in such entries will be tried in turn
until the blob is found.

Pullthrough will only occur if an image stream tag exists for the image being pulled. For example, if the
image being pulled is docker-registry.default.svc:5000/yourproject/yourimage:prod
then the registry will look for an image stream tag named yourimage:prod in the project
yourproject. If it finds one, it will attempt to pull the image using the dockerImageReference
associated with that image stream tag.

When performing pullthrough, the registry will use pull credentials found in the project associated with
the image stream tag that is being referenced. This capability also makes it possible for you to pull
images that reside on a registry they do not have credentials to access, as long as you have access to
the image stream tag that references the image.

You must ensure that your registry has appropriate certificates to trust any external registries you do a
pullthrough against. The certificates need to be placed in the /etc/pki/tls/certs directory on the pod. You
can mount the certificates using a configuration map or secret. Note that the entire /etc/pki/tls/certs
directory must be replaced. You must include the new certificates and replace the system certificates in
your secret or configuration map that you mount.

Note that by default image stream tags use a reference policy type of Source which means that when
the image stream reference is resolved to an image pull specification, the specification used will point to
the source of the image. For images hosted on external registries, this will be the external registry and as
a result the resource will reference and pull the image by the external registry. For example,

CHAPTER 3. SETTING UP THE REGISTRY

153

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#configmaps-creating-from-directories
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-secrets

registry.access.redhat.com/openshift3/jenkins-2-rhel7 and pullthrough will not apply.
To ensure that resources referencing image streams use a pull specification that points to the internal
registry, the image stream tag should use a reference policy type of Local. More information is available
on Reference Policy.

This feature is on by default. However, it can be disabled using a configuration option.

By default, all the remote blobs served this way are stored locally for subsequent faster access unless
mirrorpullthrough is disabled. The downside of this mirroring feature is an increased storage usage.

NOTE

The mirroring starts when a client tries to fetch at least a single byte of the blob. To pre-
fetch a particular image into integrated registry before it is actually needed, you can run
the following command:

$ oc get imagestreamtag/${IS}:${TAG} -o jsonpath='{
.image.dockerImageLayers[*].name }' | \
 xargs -n1 -I {} curl -H "Range: bytes=0-1" -u user:${TOKEN} \
 http://${REGISTRY_IP}:${PORT}/v2/default/mysql/blobs/{}

NOTE

This OpenShift Container Platform mirroring feature should not be confused with the
upstream registry pull through cache feature, which is a similar but distinct capability.

3.5.5.5.4. Manifest Schema v2 Support

Each image has a manifest describing its blobs, instructions for running it and additional metadata. The
manifest is versioned, with each version having different structure and fields as it evolves over time. The
same image can be represented by multiple manifest versions. Each version will have different digest
though.

The registry currently supports manifest v2 schema 1 (schema1) and manifest v2 schema 2
(schema2). The former is being obsoleted but will be supported for an extended amount of time.

You should be wary of compatibility issues with various Docker clients:

Docker clients of version 1.9 or older support only schema1. Any manifest this client pulls or
pushes will be of this legacy schema.

Docker clients of version 1.10 support both schema1 and schema2. And by default, it will push
the latter to the registry if it supports newer schema.

The registry, storing an image with schema1 will always return it unchanged to the client. Schema2 will
be transferred unchanged only to newer Docker client. For the older one, it will be converted on-the-fly to
schema1.

This has significant consequences. For example an image pushed to the registry by a newer Docker
client cannot be pulled by the older Docker by its digest. That’s because the stored image’s manifest is
of schema2 and its digest can be used to pull only this version of manifest.

For this reason, the registry is configured by default not to store schema2. This ensures that any docker
client will be able to pull from the registry any image pushed there regardless of client’s version.

OpenShift Container Platform 3.7 Installation and Configuration

154

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#reference-policy
https://docs.docker.com/registry/recipes/mirror/
https://github.com/docker/distribution/blob/master/docs/spec/manifest-v2-1.md#image-manifest-version-2-schema-1
https://github.com/docker/distribution/blob/master/docs/spec/manifest-v2-2.md#image-manifest-version-2-schema-2

1

2

3

4

5

6

7

8

9

Once you’re confident that all the registry clients support schema2, you’ll be safe to enable its support in
the registry. See the middleware configuration reference above for particular option.

3.5.5.6. OpenShift

This section reviews the configuration of global settings for features specific to OpenShift Container
Platform. In a future release, openshift-related settings in the Middleware section will be obsoleted.

Currently, this section allows you to configure registry metrics collection:

openshift:

 version: 1.0 1
 server:

 addr: docker-registry.default.svc 2
 metrics:

 enabled: false 3

 secret: <secret> 4
 requests:
 read:

 maxrunning: 10 5

 maxinqueue: 10 6

 maxwaitinqueue 2m 7
 write:

 maxrunning: 10 8

 maxinqueue: 10 9

 maxwaitinqueue 2m 10

A mandatory entry specifying configuration version of this section. The only supported value is 1.0.

The hostname of the registry. Should be set to the same value configured on the master. It can be
overridden by the environment variable REGISTRY_OPENSHIFT_SERVER_ADDR.

Can be set to true to enable metrics collection. It can be overridden by the boolean environment
variable REGISTRY_OPENSHIFT_METRICS_ENABLED.

A secret used to authorize client requests. Metrics clients must use it as a bearer token in
Authorization header. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_METRICS_SECRET.

Maximum number of simultaneous pull requests. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_REQUESTS_READ_MAXRUNNING. Zero indicates no limit.

Maximum number of queued pull requests. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_REQUESTS_READ_MAXINQUEUE. Zero indicates no limit.

Maximum time a pull request can wait in the queue before being rejected. It can be overridden by
the environment variable REGISTRY_OPENSHIFT_REQUESTS_READ_MAXWAITINQUEUE. Zero
indicates no limit.

Maximum number of simultaneous push requests. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_REQUESTS_WRITE_MAXRUNNING. Zero indicates no limit.

Maximum number of queued push requests. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_REQUESTS_WRITE_MAXINQUEUE. Zero indicates no limit.

CHAPTER 3. SETTING UP THE REGISTRY

155

10 Maximum time a push request can wait in the queue before being rejected. It can be overridden by
the environment variable REGISTRY_OPENSHIFT_REQUESTS_WRITE_MAXWAITINQUEUE. Zero
indicates no limit.

See Accessing Registry Metrics for usage information.

3.5.5.7. Reporting

Reporting is unsupported.

3.5.5.8. HTTP

Upstream options are supported. Learn how to alter these settings via environment variables. Only the
tls section should be altered. For example:

3.5.5.9. Notifications

Upstream options are supported.

Example:

3.5.5.10. Redis

Redis is not supported.

3.5.5.11. Health

Upstream options are supported. The registry deployment configuration provides an integrated health
check at /healthz.

3.5.5.12. Proxy

Proxy configuration should not be enabled. This functionality is provided by the OpenShift Container
Platform repository middleware extension, pullthrough: true.

http:
 addr: :5000
 tls:
 certificate: /etc/secrets/registry.crt
 key: /etc/secrets/registry.key

notifications:
 endpoints:
 - name: registry
 disabled: false
 url: https://url:port/path
 headers:
 Accept:
 - text/plain
 timeout: 500
 threshold: 5
 backoff: 1000

OpenShift Container Platform 3.7 Installation and Configuration

156

https://docs.docker.com/registry/configuration/#http
https://docs.docker.com/registry/configuration/#notifications
https://docs.docker.com/registry/configuration/#health

3.6. KNOWN ISSUES

3.6.1. Overview

The following are the known issues when deploying or using the integrated registry.

3.6.2. Image Push Errors with Scaled Registry Using Shared NFS Volume

When using a scaled registry with a shared NFS volume, you may see one of the following errors during
the push of an image:

digest invalid: provided digest did not match uploaded content

blob upload unknown

blob upload invalid

These errors are returned by an internal registry service when Docker attempts to push the image. Its
cause originates in the synchronization of file attributes across nodes. Factors such as NFS client side
caching, network latency, and layer size can all contribute to potential errors that might occur when
pushing an image using the default round-robin load balancing configuration.

You can perform the following steps to minimize the probability of such a failure:

1. Ensure that the sessionAffinity of your docker-registry service is set to ClientIP:

$ oc get svc/docker-registry --template='{{.spec.sessionAffinity}}'

This should return ClientIP, which is the default in recent OpenShift Container Platform
versions. If not, change it:

$ oc patch svc/docker-registry -p '{"spec":{"sessionAffinity":
"ClientIP"}}'

2. Ensure that the NFS export line of your registry volume on your NFS server has the no_wdelay
options listed. The no_wdelay option prevents the server from delaying writes, which greatly
improves read-after-write consistency, a requirement of the registry.

IMPORTANT

Testing shows issues with using the RHEL NFS server as a storage backend for the
container image registry. This includes the OpenShift Container Registry and Quay.
Therefore, using the RHEL NFS server to back PVs used by core services is not
recommended.

Other NFS implementations on the marketplace might not have these issues. Contact the
individual NFS implementation vendor for more information on any testing that was
possibly completed against these OpenShift core components.

3.6.3. Pull of Internally Managed Image Fails with "not found" Error

This error occurs when the pulled image is pushed to an image stream different from the one it is being
pulled from. This is caused by re-tagging a built image into an arbitrary image stream:

CHAPTER 3. SETTING UP THE REGISTRY

157

$ oc tag srcimagestream:latest anyproject/pullimagestream:latest

And subsequently pulling from it, using an image reference such as:

internal.registry.url:5000/anyproject/pullimagestream:latest

During a manual Docker pull, this will produce a similar error:

Error: image anyproject/pullimagestream:latest not found

To prevent this, avoid the tagging of internally managed images completely, or re-push the built image to
the desired namespace manually.

3.6.4. Image Push Fails with "500 Internal Server Error" on S3 Storage

There are problems reported happening when the registry runs on S3 storage back-end. Pushing to a
Docker registry occasionally fails with the following error:

Received unexpected HTTP status: 500 Internal Server Error

To debug this, you need to view the registry logs. In there, look for similar error messages occurring at
the time of the failed push:

time="2016-03-30T15:01:21.22287816-04:00" level=error msg="unknown error
completing upload: driver.Error{DriverName:\"s3\", Enclosed:(*url.Error)
(0xc20901cea0)}" http.request.method=PUT
...
time="2016-03-30T15:01:21.493067808-04:00" level=error msg="response
completed with error" err.code=UNKNOWN err.detail="s3: Put
https://s3.amazonaws.com/oso-tsi-
docker/registry/docker/registry/v2/blobs/sha256/ab/abe5af443833d60cf672e2a
c57589410dddec060ed725d3e676f1865af63d2e2/data: EOF" err.message="unknown
error" http.request.method=PUT
...
time="2016-04-02T07:01:46.056520049-04:00" level=error msg="error putting
into main store: s3: The request signature we calculated does not match
the signature you provided. Check your key and signing method."
http.request.method=PUT
atest

If you see such errors, contact your Amazon S3 support. There may be a problem in your region or with
your particular bucket.

3.6.5. Image Pruning Fails

If you encounter the following error when pruning images:

BLOB
sha256:49638d540b2b62f3b01c388e9d8134c55493b1fa659ed84e97cb59b87a6b8e6c
error deleting blob

And your registry log contains the following information:

OpenShift Container Platform 3.7 Installation and Configuration

158

error deleting blob
\"sha256:49638d540b2b62f3b01c388e9d8134c55493b1fa659ed84e97cb59b87a6b8e6c\
": operation unsupported

It means that your custom configuration file lacks mandatory entries in the storage section, namely
storage:delete:enabled set to true. Add them, re-deploy the registry, and repeat your image
pruning operation.

CHAPTER 3. SETTING UP THE REGISTRY

159

CHAPTER 4. SETTING UP A ROUTER

4.1. ROUTER OVERVIEW

4.1.1. About Routers

There are many ways to get traffic into the cluster. The most common approach is to use the OpenShift
Container Platform router as the ingress point for external traffic destined for services in your OpenShift
Container Platform installation.

OpenShift Container Platform provides and supports the following router plug-ins:

The HAProxy template router is the default plug-in. It uses the openshift3/ose-haproxy-router
image to run an HAProxy instance alongside the template router plug-in inside a container on
OpenShift Container Platform. It currently supports HTTP(S) traffic and TLS-enabled traffic via
SNI. The router’s container listens on the host network interface, unlike most containers that
listen only on private IPs. The router proxies external requests for route names to the IPs of
actual pods identified by the service associated with the route.

The F5 router integrates with an existing F5 BIG-IP® system in your environment to synchronize
routes. F5 BIG-IP® version 11.4 or newer is required in order to have the F5 iControl REST API.

NOTE

The F5 router plug-in is available starting in OpenShift Container Platform 3.0.2.

Deploying a Default HAProxy Router

Deploying a Custom HAProxy Router

Deploying a F5 BIG-IP® Router

Configuring the HAProxy Router to Use PROXY Protocol

Configuring Route Timeouts

4.1.2. Router Service Account

Before deploying an OpenShift Container Platform cluster, you must have a service account for the
router. Starting in OpenShift Container Platform 3.1, a router service account is automatically created
during a quick or advanced installation (previously, this required manual creation). This service account
has permissions to a security context constraint (SCC) that allows it to specify host ports.

4.1.2.1. Permission to Access Labels

When namespace labels are used, for example in creating router shards, the service account for the
router must have cluster-reader permission.

$ oc adm policy add-cluster-role-to-user \
 cluster-reader \
 system:serviceaccount:default:router

OpenShift Container Platform 3.7 Installation and Configuration

160

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#getting-traffic-into-cluster-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#haproxy-template-router
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-f5-big-ip
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#security-context-constraints
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#labels

1

With a service account in place, you can proceed to installing a default HAProxy Router, a customized
HAProxy Router or F5 Router.

4.2. USING THE DEFAULT HAPROXY ROUTER

4.2.1. Overview

The oc adm router command is provided with the administrator CLI to simplify the tasks of setting up
routers in a new installation. If you followed the quick installation, then a default router was automatically
created for you. The oc adm router command creates the service and deployment configuration
objects. Use the --service-account option to specify the service account the router will use to
contact the master.

The router service account can be created in advance or created by the oc adm router --
service-account command.

Every form of communication between OpenShift Container Platform components is secured by TLS and
uses various certificates and authentication methods. The --default-certificate .pem format file
can be supplied or one is created by the oc adm router command. When routes are created, the user
can provide route certificates that the router will use when handling the route.

IMPORTANT

When deleting a router, ensure the deployment configuration, service, and secret are
deleted as well.

Routers are deployed on specific nodes. This makes it easier for the cluster administrator and external
network manager to coordinate which IP address will run a router and which traffic the router will handle.
The routers are deployed on specific nodes by using node selectors.

IMPORTANT

Routers use host networking by default, and they directly attach to port 80 and 443 on all
interfaces on a host. Restrict routers to hosts where ports 80/443 are available and not
being consumed by another service, and set this using node selectors and the scheduler
configuration. As an example, you can achieve this by dedicating infrastructure nodes to
run services such as routers.

IMPORTANT

It is recommended to use separate distinct openshift-router service account with your
router. This can be provided using the --service-account flag to the oc adm
router command.

$ oc adm router --dry-run --service-account=router 1

--service-account is the name of a service account for the openshift-router.

CHAPTER 4. SETTING UP A ROUTER

161

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-scheduler
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-service-accounts

IMPORTANT

Router pods created using oc adm router have default resource requests that a node
must satisfy for the router pod to be deployed. In an effort to increase the reliability of
infrastructure components, the default resource requests are used to increase the QoS
tier of the router pods above pods without resource requests. The default values
represent the observed minimum resources required for a basic router to be deployed and
can be edited in the routers deployment configuration and you may want to increase them
based on the load of the router.

4.2.2. Creating a Router

The quick installation process automatically creates a default router. If the router does not exist, run the
following to create a router:

$ oc adm router <router_name> --replicas=<number> --service-account=router

--replicas is usually 1 unless a high availability configuration is being created.

To find the host IP address of the router:

$ oc get po <router-pod> --template={{.status.hostIP}}

You can also use router shards to ensure that the router is filtered to specific namespaces or routes, or
set any environment variables after router creation. In this case create a router for each shard.

4.2.3. Other Basic Router Commands

Checking the Default Router

The default router service account, named router, is automatically created during quick and
advanced installations. To verify that this account already exists:

$ oc adm router --dry-run --service-account=router

Viewing the Default Router

To see what the default router would look like if created:

$ oc adm router --dry-run -o yaml --service-account=router

Deploying the Router to a Labeled Node

To deploy the router to any node(s) that match a specified node label:

$ oc adm router <router_name> --replicas=<number> --selector=<label> \
 --service-account=router

For example, if you want to create a router named router and have it placed on a node labeled with
region=infra:

$ oc adm router router --replicas=1 --selector='region=infra' \
 --service-account=router

During advanced installation, the openshift_router_selector and

OpenShift Container Platform 3.7 Installation and Configuration

162

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#updating-labels-on-nodes

openshift_registry_selector Ansible settings are set to region=infra by default. The default
router and registry will only be automatically deployed if a node exists that matches the region=infra
label.

For information on updating labels, see Updating Labels on Nodes.

Multiple instances are created on different hosts according to the scheduler policy.

Using a Different Router Image

To use a different router image and view the router configuration that would be used:

$ oc adm router <router_name> -o <format> --images=<image> \
 --service-account=router

For example:

$ oc adm router region-west -o yaml --images=myrepo/somerouter:mytag \
 --service-account=router

4.2.4. Filtering Routes to Specific Routers

Using the ROUTE_LABELS environment variable, you can filter routes so that they are used only by
specific routers.

For example, if you have multiple routers, and 100 routes, you can attach labels to the routes so that a
portion of them are handled by one router, whereas the rest are handled by another.

1. After creating a router, use the ROUTE_LABELS environment variable to tag the router:

$ oc env dc/<router=name> ROUTE_LABELS="key=value"

2. Add the label to the desired routes:

oc label route <route=name> key=value

3. To verify that the label has been attached to the route, check the route configuration:

$ oc describe dc/<route_name>

Setting the Maximum Number of Concurrent Connections

The router can handle a maximum number of 20000 connections by default. You can change that
limit depending on your needs. Having too few connections prevents the health check from working,
which causes unnecessary restarts. You need to configure the system to support the maximum
number of connections. The limits shown in 'sysctl fs.nr_open' and 'sysctl fs.file-
max' must be large enough. Otherwise, HAproxy will not start.

When the router is created, the --max-connections= option sets the desired limit:

$ oc adm router --max-connections=10000

CHAPTER 4. SETTING UP A ROUTER

163

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#updating-labels-on-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-scheduler
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#env-variables

Edit the ROUTER_MAX_CONNECTIONS environment variable in the router’s deployment configuration to
change the value. The router pods are restarted with the new value. If ROUTER_MAX_CONNECTIONS is
not present, the default value of 20000, is used.

NOTE

A connection includes the frontend and internal backend. This counts as two connections.
Be sure to set ROUTER_MAX_CONNECTIONS to double than the number of connections
you intend to create.

4.2.5. HAProxy Strict SNI

The HAProxy strict-sni can be controlled through the ROUTER_STRICT_SNI environment variable
in the router’s deployment configuration. It can also be set when the router is created by using the --
strict-sni command line option.

$ oc adm router --strict-sni

4.2.6. TLS Cipher Suites

Set the router cipher suite using the --ciphers option when creating a router:

$ oc adm router --ciphers=modern

The values are: modern, intermediate, or old, with intermediate as the default. Alternatively, a
set of ":" separated ciphers can be provided. The ciphers must be from the set displayed by:

$ openssl ciphers

Alternatively, use the ROUTER_CIPHERS environment variable for an existing router.

4.2.7. Highly-Available Routers

You can set up a highly-available router on your OpenShift Container Platform cluster using IP failover.
This setup has multiple replicas on different nodes so the failover software can switch to another replica
if the current one fails.

4.2.8. Customizing the Router Service Ports

You can customize the service ports that a template router binds to by setting the environment variables
ROUTER_SERVICE_HTTP_PORT and ROUTER_SERVICE_HTTPS_PORT. This can be done by creating a
template router, then editing its deployment configuration.

The following example creates a router deployment with 0 replicas and customizes the router service
HTTP and HTTPS ports, then scales it appropriately (to 1 replica).

$ oc adm router --replicas=0 --ports='10080:10080,10443:10443' 1
$ oc set env dc/router ROUTER_SERVICE_HTTP_PORT=10080 \
 ROUTER_SERVICE_HTTPS_PORT=10443
$ oc scale dc/router --replicas=1

OpenShift Container Platform 3.7 Installation and Configuration

164

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#strict-sni
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#ciphers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-high-availability
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#env-variables

1 Ensures exposed ports are appropriately set for routers that use the container networking mode --
host-network=false.

IMPORTANT

If you do customize the template router service ports, you will also need to ensure that the
nodes where the router pods run have those custom ports opened in the firewall (either
via Ansible or iptables, or any other custom method that you use via firewall-cmd).

The following is an example using iptables to open the custom router service ports.

$ iptables -A INPUT -p tcp --dport 10080 -j ACCEPT
$ iptables -A INPUT -p tcp --dport 10443 -j ACCEPT

4.2.9. Working With Multiple Routers

An administrator can create multiple routers with the same definition to serve the same set of routes.
Each router will be on a different node and will have a different IP address. The network administrator will
need to get the desired traffic to each node.

Multiple routers can be grouped to distribute routing load in the cluster and separate tenants to different
routers or shards. Each router or shard in the group admits routes based on the selectors in the router.
An administrator can create shards over the whole cluster using ROUTE_LABELS. A user can create
shards over a namespace (project) by using NAMESPACE_LABELS.

4.2.10. Adding a Node Selector to a Deployment Configuration

Making specific routers deploy on specific nodes requires two steps:

1. Add a label to the desired node:

$ oc label node 10.254.254.28 "router=first"

2. Add a node selector to the router deployment configuration:

$ oc edit dc <deploymentConfigName>

Add the template.spec.nodeSelector field with a key and value corresponding to the label:

...
 template:
 metadata:
 creationTimestamp: null
 labels:
 router: router1
 spec:

 nodeSelector: 1
 router: "first"
...

CHAPTER 4. SETTING UP A ROUTER

165

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#router-sharding
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#updating-labels-on-nodes

1 The key and value are router and first, respectively, corresponding to the
router=first label.

4.2.11. Using Router Shards

Router sharding uses NAMESPACE_LABELS and ROUTE_LABELS, to filter router namespaces and
routes. This enables you to distribute subsets of routes over multiple router deployments. By using non-
overlapping subsets, you can effectively partition the set of routes. Alternatively, you can define shards
comprising overlapping subsets of routes.

By default, a router selects all routes from all projects (namespaces). Sharding involves adding labels to
routes or namespaces and label selectors to routers. Each router shard comprises the routes that are
selected by a specific set of label selectors or belong to the namespaces that are selected by a specific
set of label selectors.

NOTE

The router service account must have the [cluster reader] permission set to allow
access to labels in other namespaces.

Router Sharding and DNS

Because an external DNS server is needed to route requests to the desired shard, the administrator is
responsible for making a separate DNS entry for each router in a project. A router will not forward
unknown routes to another router.

Consider the following example:

Router A lives on host 192.168.0.5 and has routes with *.foo.com.

Router B lives on host 192.168.1.9 and has routes with *.example.com.

Separate DNS entries must resolve *.foo.com to the node hosting Router A and *.example.com to the
node hosting Router B:

*.foo.com A IN 192.168.0.5

*.example.com A IN 192.168.1.9

Router Sharding Examples

This section describes router sharding using namespace and route labels.

OpenShift Container Platform 3.7 Installation and Configuration

166

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#router-sharding
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#projects

Figure 4.1. Router Sharding Based on Namespace Labels

1. Configure a router with a namespace label selector:

$ oc set env dc/router NAMESPACE_LABELS="router=r1"

2. Because the router has a selector on the namespace, the router will handle routes only for
matching namespaces. In order to make this selector match a namespace, label the namespace
accordingly:

$ oc label namespace default "router=r1"

3. Now, if you create a route in the default namespace, the route is available in the default router:

$ oc create -f route1.yaml

4. Create a new project (namespace) and create a route, route2:

$ oc new-project p1
$ oc create -f route2.yaml

Notice the route is not available in your router.

5. Label namespace p1 with router=r1

CHAPTER 4. SETTING UP A ROUTER

167

$ oc label namespace p1 "router=r1"

Adding this label makes the route available in the router.

Example

A router deployment finops-router is configured with the label selector
NAMESPACE_LABELS="name in (finance, ops)", and a router deployment dev-router is
configured with the label selector NAMESPACE_LABELS="name=dev".
If all routes are in namespaces labeled name=finance, name=ops, and name=dev, then this
configuration effectively distributes your routes between the two router deployments.

In the above scenario, sharding becomes a special case of partitioning, with no overlapping subsets.
Routes are divided between router shards.

The criteria for route selection govern how the routes are distributed. It is possible to have
overlapping subsets of routes across router deployments.

Example

In addition to finops-router and dev-router in the example above, you also have devops-
router, which is configured with a label selector NAMESPACE_LABELS="name in (dev, ops)".
The routes in namespaces labeled name=dev or name=ops now are serviced by two different router
deployments. This becomes a case in which you have defined overlapping subsets of routes, as
illustrated in the procedure in Router Sharding Based on Namespace Labels.

In addition, this enables you to create more complex routing rules, allowing the diversion of higher
priority traffic to the dedicated finops-router while sending lower priority traffic to devops-
router.

Router Sharding Based on Route Labels

NAMESPACE_LABELS allows filtering of the projects to service and selecting all the routes from those
projects, but you may want to partition routes based on other criteria associated with the routes
themselves. The ROUTE_LABELS selector allows you to slice-and-dice the routes themselves.

Example

A router deployment prod-router is configured with the label selector
ROUTE_LABELS="mydeployment=prod", and a router deployment devtest-router is
configured with the label selector ROUTE_LABELS="mydeployment in (dev, test)".
This configuration partitions routes between the two router deployments according to the routes'
labels, irrespective of their namespaces.

The example assumes you have all the routes you want to be serviced tagged with a label
"mydeployment=<tag>".

4.2.11.1. Creating Router Shards

This section describes an advanced example of router sharding. Suppose there are 26 routes, named a 
— z, with various labels:

Possible labels on routes

OpenShift Container Platform 3.7 Installation and Configuration

168

1

2

3

4

5

sla=high geo=east hw=modest dept=finance
sla=medium geo=west hw=strong dept=dev
sla=low dept=ops

These labels express the concepts including service level agreement, geographical location, hardware
requirements, and department. The routes can have at most one label from each column. Some routes
may have other labels or no labels at all.

Name(s) SLA Geo HW Dept Other Labels

a high east modest finance type=static

b west strong type=dynamic

c, d, e low modest type=static

g — k medium strong dev

l — s high modest ops

t — z west type=dynamic

Here is a convenience script mkshard that illustrates how oc adm router, oc set env, and oc
scale can be used together to make a router shard.

The created router has name router-shard-<id>.

Specify no scaling for now.

The deployment configuration for the router.

Set the selection expression using oc set env. The selection expression is the value of the
ROUTE_LABELS environment variable.

Scale it up.

Running mkshard several times creates several routers:

#!/bin/bash
Usage: mkshard ID SELECTION-EXPRESSION
id=$1
sel="$2"

router=router-shard-$id 1

oc adm router $router --replicas=0 2

dc=dc/router-shard-$id 3

oc set env $dc ROUTE_LABELS="$sel" 4

oc scale $dc --replicas=3 5

CHAPTER 4. SETTING UP A ROUTER

169

1

2

3

4

5

Router Selection Expression Routes

router-shard-1 sla=high a, l — s

router-shard-2 geo=west b, t — z

router-shard-3 dept=dev g — k

4.2.11.2. Modifying Router Shards

Because a router shard is a construct based on labels, you can modify either the labels (via oc label)
or the selection expression (via oc set env).

This section extends the example started in the Creating Router Shards section, demonstrating how to
change the selection expression.

Here is a convenience script modshard that modifies an existing router to use a new selection
expression:

The modified router has name router-shard-<id>.

The deployment configuration where the modifications occur.

Scale it down.

Set the new selection expression using oc set env. Unlike mkshard from the Creating Router
Shards section, the selection expression specified as the non-ID arguments to modshard must
include the environment variable name as well as its value.

Scale it back up.

NOTE

In modshard, the oc scale commands are not necessary if the deployment strategy for
router-shard-<id> is Rolling.

For example, to expand the department for router-shard-3 to include ops as well as dev:

$ modshard 3 ROUTE_LABELS='dept in (dev, ops)'

#!/bin/bash
Usage: modshard ID SELECTION-EXPRESSION...
id=$1
shift

router=router-shard-$id 1

dc=dc/$router 2

oc scale $dc --replicas=0 3

oc set env $dc "$@" 4

oc scale $dc --replicas=3 5

OpenShift Container Platform 3.7 Installation and Configuration

170

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#router-sharding
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cli_reference/#oc-label
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cli_reference/#oc-set-env
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#strategies

The result is that router-shard-3 now selects routes g — s (the combined sets of g — k and l — s).

This example takes into account that there are only three departments in this example scenario, and
specifies a department to leave out of the shard, thus achieving the same result as the preceding
example:

$ modshard 3 ROUTE_LABELS='dept != finance'

This example specifies three comma-separated qualities, and results in only route b being selected:

$ modshard 3 ROUTE_LABELS='hw=strong,type=dynamic,geo=west'

Similarly to ROUTE_LABELS, which involves a route’s labels, you can select routes based on the labels
of the route’s namespace using the NAMESPACE_LABELS environment variable. This example modifies
router-shard-3 to serve routes whose namespace has the label frequency=weekly:

$ modshard 3 NAMESPACE_LABELS='frequency=weekly'

The last example combines ROUTE_LABELS and NAMESPACE_LABELS to select routes with label
sla=low and whose namespace has the label frequency=weekly:

$ modshard 3 \
 NAMESPACE_LABELS='frequency=weekly' \
 ROUTE_LABELS='sla=low'

4.2.12. Finding the Host Name of the Router

When exposing a service, a user can use the same route from the DNS name that external users use to
access the application. The network administrator of the external network must make sure the host
name resolves to the name of a router that has admitted the route. The user can set up their DNS with a
CNAME that points to this host name. However, the user may not know the host name of the router.
When it is not known, the cluster administrator can provide it.

The cluster administrator can use the --router-canonical-hostname option with the router’s
canonical host name when creating the router. For example:

oc adm router myrouter --router-canonical-hostname="rtr.example.com"

This creates the ROUTER_CANONICAL_HOSTNAME environment variable in the router’s deployment
configuration containing the host name of the router.

For routers that already exist, the cluster administrator can edit the router’s deployment configuration and
add the ROUTER_CANONICAL_HOSTNAME environment variable:

spec:
 template:
 spec:
 containers:
 - env:
 - name: ROUTER_CANONICAL_HOSTNAME
 value: rtr.example.com

The ROUTER_CANONICAL_HOSTNAME value is displayed in the route status for all routers that have

CHAPTER 4. SETTING UP A ROUTER

171

admitted the route. The route status is refreshed every time the router is reloaded.

When a user creates a route, all of the active routers evaluate the route and, if conditions are met, admit
it. When a router that defines the ROUTER_CANONICAL_HOSTNAME environment variable admits the
route, the router places the value in the routerCanonicalHostname field in the route status. The user
can examine the route status to determine which, if any, routers have admitted the route, select a router
from the list, and find the host name of the router to pass along to the network administrator.

status:
 ingress:
 conditions:
 lastTransitionTime: 2016-12-07T15:20:57Z
 status: "True"
 type: Admitted
 host: hello.in.mycloud.com
 routerCanonicalHostname: rtr.example.com
 routerName: myrouter
 wildcardPolicy: None

oc describe inclues the host name when available:

$ oc describe route/hello-route3
...
Requested Host: hello.in.mycloud.com exposed on router myroute (host
rtr.example.com) 12 minutes ago

Using the above information, the user can ask the DNS administrator to set up a CNAME from the route’s
host, hello.in.mycloud.com, to the router’s canonical hostname, rtr.example.com. This results
in any traffic to hello.in.mycloud.com reaching the user’s application.

4.2.13. Customizing the Default Routing Subdomain

You can customize the suffix used as the default routing subdomain for your environment by modifying
the master configuration file (the /etc/origin/master/master-config.yaml file by default). Routes that do
not specify a host name would have one generated using this default routing subdomain.

The following example shows how you can set the configured suffix to v3.openshift.test:

routingConfig:
 subdomain: v3.openshift.test

NOTE

This change requires a restart of the master if it is running.

With the OpenShift Container Platform master(s) running the above configuration, the generated host
name for the example of a route named no-route-hostname without a host name added to a
namespace mynamespace would be:

no-route-hostname-mynamespace.v3.openshift.test

4.2.14. Forcing Route Host Names to a Custom Routing Subdomain

OpenShift Container Platform 3.7 Installation and Configuration

172

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#route-hostnames

If an administrator wants to restrict all routes to a specific routing subdomain, they can pass the --
force-subdomain option to the oc adm router command. This forces the router to override any
host names specified in a route and generate one based on the template provided to the --force-
subdomain option.

The following example runs a router, which overrides the route host names using a custom subdomain
template ${name}-${namespace}.apps.example.com.

$ oc adm router --force-subdomain='${name}-${namespace}.apps.example.com'

4.2.15. Using Wildcard Certificates

A TLS-enabled route that does not include a certificate uses the router’s default certificate instead. In
most cases, this certificate should be provided by a trusted certificate authority, but for convenience you
can use the OpenShift Container Platform CA to create the certificate. For example:

$ CA=/etc/origin/master
$ oc adm ca create-server-cert --signer-cert=$CA/ca.crt \
 --signer-key=$CA/ca.key --signer-serial=$CA/ca.serial.txt \
 --hostnames='*.cloudapps.example.com' \
 --cert=cloudapps.crt --key=cloudapps.key

NOTE

The oc adm ca create-server-cert command generates a certificate that is valid
for two years. This can be altered with the --expire-days option, but for security
reasons, it is recommended to not make it greater than this value.

Run oc adm commands only from the first master listed in the Ansible host inventory file,
by default /etc/ansible/hosts.

The router expects the certificate and key to be in PEM format in a single file:

$ cat cloudapps.crt cloudapps.key $CA/ca.crt > cloudapps.router.pem

From there you can use the --default-cert flag:

$ oc adm router --default-cert=cloudapps.router.pem --service-
account=router

NOTE

Browsers only consider wildcards valid for subdomains one level deep. So in this
example, the certificate would be valid for a.cloudapps.example.com but not for
a.b.cloudapps.example.com.

4.2.16. Manually Redeploy Certificates

To manually redeploy the router certificates:

1. Check to see if a secret containing the default router certificate was added to the router:

CHAPTER 4. SETTING UP A ROUTER

173

$ oc volumes dc/router

deploymentconfigs/router
 secret/router-certs as server-certificate
 mounted at /etc/pki/tls/private

If the certificate is added, skip the following step and overwrite the secret.

2. Make sure that you have a default certificate directory set for the following variable
DEFAULT_CERTIFICATE_DIR:

$ oc env dc/router --list

DEFAULT_CERTIFICATE_DIR=/etc/pki/tls/private

If not, create the directory using the following command:

$ oc env dc/router DEFAULT_CERTIFICATE_DIR=/etc/pki/tls/private

3. Export the certificate to PEM format:

$ cat custom-router.key custom-router.crt custom-ca.crt > custom-
router.crt

4. Overwrite or create a router certificate secret:
If the certificate secret was added to the router, overwrite the secret. If not, create a new secret.

To overwrite the secret, run the following command:

$ oc secrets new router-certs tls.crt=custom-router.crt
tls.key=custom-router.key -o json --type='kubernetes.io/tls' --
confirm | oc replace -f -

To create a new secret, run the following commands:

$ oc secrets new router-certs tls.crt=custom-router.crt
tls.key=custom-router.key --type='kubernetes.io/tls' --confirm

$ oc volume dc/router --add --mount-path=/etc/pki/tls/private --
secret-name='router-certs' --name router-certs

5. Deploy the router.

$ oc rollout latest dc/router

4.2.17. Using Secured Routes

Currently, password protected key files are not supported. HAProxy prompts for a password upon
starting and does not have a way to automate this process. To remove a passphrase from a keyfile, you
can run:

openssl rsa -in <passwordProtectedKey.key> -out <new.key>

OpenShift Container Platform 3.7 Installation and Configuration

174

Here is an example of how to use a secure edge terminated route with TLS termination occurring on the
router before traffic is proxied to the destination. The secure edge terminated route specifies the TLS
certificate and key information. The TLS certificate is served by the router front end.

First, start up a router instance:

oc adm router --replicas=1 --service-account=router

Next, create a private key, csr and certificate for our edge secured route. The instructions on how to do
that would be specific to your certificate authority and provider. For a simple self-signed certificate for a
domain named www.example.test, see the example shown below:

sudo openssl genrsa -out example-test.key 2048
#
sudo openssl req -new -key example-test.key -out example-test.csr \
 -subj "/C=US/ST=CA/L=Mountain View/O=OS3/OU=Eng/CN=www.example.test"
#
sudo openssl x509 -req -days 366 -in example-test.csr \
 -signkey example-test.key -out example-test.crt

Generate a route using the above certificate and key.

$ oc create route edge --service=my-service \
 --hostname=www.example.test \
 --key=example-test.key --cert=example-test.crt
route "my-service" created

Look at its definition.

$ oc get route/my-service -o yaml
apiVersion: v1
kind: Route
metadata:
 name: my-service
spec:
 host: www.example.test
 to:
 kind: Service
 name: my-service
 tls:
 termination: edge
 key: |
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

Make sure your DNS entry for www.example.test points to your router instance(s) and the route to
your domain should be available. The example below uses curl along with a local resolver to simulate the
DNS lookup:

CHAPTER 4. SETTING UP A ROUTER

175

routerip="4.1.1.1" # replace with IP address of one of your router
instances.
curl -k --resolve www.example.test:443:$routerip
https://www.example.test/

4.2.18. Using Wildcard Routes (for a Subdomain)

The HAProxy router has support for wildcard routes, which are enabled by setting the
ROUTER_ALLOW_WILDCARD_ROUTES environment variable to true. Any routes with a wildcard policy of
Subdomain that pass the router admission checks will be serviced by the HAProxy router. Then, the
HAProxy router exposes the associated service (for the route) per the route’s wildcard policy.

IMPORTANT

To change a route’s wildcard policy, you must remove the route and recreate it with the
updated wildcard policy. Editing only the route’s wildcard policy in a route’s .yaml file does
not work.

$ oc adm router --replicas=0 ...
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true
$ oc scale dc/router --replicas=1

Learn how to configure the web console for wildcard routes.

Using a Secure Wildcard Edge Terminated Route

This example reflects TLS termination occurring on the router before traffic is proxied to the destination.
Traffic sent to any hosts in the subdomain example.org (*.example.org) is proxied to the exposed
service.

The secure edge terminated route specifies the TLS certificate and key information. The TLS certificate is
served by the router front end for all hosts that match the subdomain (*.example.org).

1. Start up a router instance:

$ oc adm router --replicas=0 --service-account=router
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true
$ oc scale dc/router --replicas=1

2. Create a private key, certificate signing request (CSR), and certificate for the edge secured
route.
The instructions on how to do this are specific to your certificate authority and provider. For a
simple self-signed certificate for a domain named *.example.test, see this example:

sudo openssl genrsa -out example-test.key 2048
#
sudo openssl req -new -key example-test.key -out example-test.csr
\
 -subj "/C=US/ST=CA/L=Mountain View/O=OS3/OU=Eng/CN=*.example.test"
#
sudo openssl x509 -req -days 366 -in example-test.csr \
 -signkey example-test.key -out example-test.crt

OpenShift Container Platform 3.7 Installation and Configuration

176

3. Generate a wildcard route using the above certificate and key:

$ cat > route.yaml <<REOF
apiVersion: v1
kind: Route
metadata:
 name: my-service
spec:
 host: www.example.test
 wildcardPolicy: Subdomain
 to:
 kind: Service
 name: my-service
 tls:
 termination: edge
 key: "$(perl -pe 's/\n/\\n/' example-test.key)"
 certificate: "$(perl -pe 's/\n/\\n/' example-test.cert)"
REOF
$ oc create -f route.yaml

Ensure your DNS entry for *.example.test points to your router instance(s) and the route to
your domain is available.

This example uses curl with a local resolver to simulate the DNS lookup:

routerip="4.1.1.1" # replace with IP address of one of your
router instances.
curl -k --resolve www.example.test:443:$routerip
https://www.example.test/
curl -k --resolve abc.example.test:443:$routerip
https://abc.example.test/
curl -k --resolve anyname.example.test:443:$routerip
https://anyname.example.test/

For routers that allow wildcard routes (ROUTER_ALLOW_WILDCARD_ROUTES set to true), there are
some caveats to the ownership of a subdomain associated with a wildcard route.

Prior to wildcard routes, ownership was based on the claims made for a host name with the namespace
with the oldest route winning against any other claimants. For example, route r1 in namespace ns1 with
a claim for one.example.test would win over another route r2 in namespace ns2 for the same host
name one.example.test if route r1 was older than route r2.

In addition, routes in other namespaces were allowed to claim non-overlapping hostnames. For
example, route rone in namespace ns1 could claim www.example.test and another route rtwo in
namespace d2 could claim c3po.example.test.

This is still the case if there are no wildcard routes claiming that same subdomain (example.test in
the above example).

However, a wildcard route needs to claim all of the host names within a subdomain (host names of the
form *.example.test). A wildcard route’s claim is allowed or denied based on whether or not the
oldest route for that subdomain (example.test) is in the same namespace as the wildcard route. The
oldest route can be either a regular route or a wildcard route.

For example, if there is already a route eldest that exists in the ns1 namespace that claimed a host

CHAPTER 4. SETTING UP A ROUTER

177

named owner.example.test and, if at a later point in time, a new wildcard route wildthing
requesting for routes in that subdomain (example.test) is added, the claim by the wildcard route will
only be allowed if it is the same namespace (ns1) as the owning route.

The following examples illustrate various scenarios in which claims for wildcard routes will succeed or
fail.

In the example below, a router that allows wildcard routes will allow non-overlapping claims for hosts in
the subdomain example.test as long as a wildcard route has not claimed a subdomain.

$ oc adm router ...
$ oc set env dc/router
$ oc project ns1 ROUTER_ALLOW_WILDCARD_ROUTES=true

$ oc project ns1
$ oc expose service myservice --hostname=owner.example.test
$ oc expose service myservice --hostname=aname.example.test
$ oc expose service myservice --hostname=bname.example.test

$ oc project ns2
$ oc expose service anotherservice --hostname=second.example.test
$ oc expose service anotherservice --hostname=cname.example.test

$ oc project otherns
$ oc expose service thirdservice --hostname=emmy.example.test
$ oc expose service thirdservice --hostname=webby.example.test

In the example below, a router that allows wildcard routes will not allow the claim for
owner.example.test or aname.example.test to succeed since the owning namespace is ns1.

$ oc adm router ...
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true

$ oc project ns1
$ oc expose service myservice --hostname=owner.example.test
$ oc expose service myservice --hostname=aname.example.test

$ oc project ns2
$ oc expose service secondservice --hostname=bname.example.test
$ oc expose service secondservice --hostname=cname.example.test

$ # Router will not allow this claim with a different path name `/p1` as
$ # namespace `ns1` has an older route claiming host `aname.example.test`.
$ oc expose service secondservice --hostname=aname.example.test --
path="/p1"

$ # Router will not allow this claim as namespace `ns1` has an older route
$ # claiming host name `owner.example.test`.
$ oc expose service secondservice --hostname=owner.example.test

$ oc project otherns

$ # Router will not allow this claim as namespace `ns1` has an older route
$ # claiming host name `aname.example.test`.
$ oc expose service thirdservice --hostname=aname.example.test

OpenShift Container Platform 3.7 Installation and Configuration

178

In the example below, a router that allows wildcard routes will allow the claim for `*.example.test
to succeed since the owning namespace is ns1 and the wildcard route belongs to that same
namespace.

$ oc adm router ...
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true

$ oc project ns1
$ oc expose service myservice --hostname=owner.example.test

$ # Reusing the route.yaml from the previous example.
$ # spec:
$ # host: www.example.test
$ # wildcardPolicy: Subdomain

$ oc create -f route.yaml # router will allow this claim.

In the example below, a router that allows wildcard routes will not allow the claim for
`*.example.test to succeed since the owning namespace is ns1 and the wildcard route belongs to
another namespace cyclone.

$ oc adm router ...
$ oc set env dc/router
$ oc project ns1 ROUTER_ALLOW_WILDCARD_ROUTES=true

$ oc project ns1
$ oc expose service myservice --hostname=owner.example.test

$ # Switch to a different namespace/project.
$ oc project cyclone

$ # Reusing the route.yaml from a prior example.
$ # spec:
$ # host: www.example.test
$ # wildcardPolicy: Subdomain

$ oc create -f route.yaml # router will deny (_NOT_ allow) this claim.

Similarly, once a namespace with a wildcard route claims a subdomain, only routes within that
namespace can claim any hosts in that same subdomain.

In the example below, once a route in namespace ns1 with a wildcard route claims subdomain
example.test, only routes in the namespace ns1 are allowed to claim any hosts in that same
subdomain.

$ oc adm router ...
$ oc set env dc/router
$ oc project ns1 ROUTER_ALLOW_WILDCARD_ROUTES=true

$ oc project ns1
$ oc expose service myservice --hostname=owner.example.test

$ oc project otherns

$ # namespace `otherns` is allowed to claim for other.example.test

CHAPTER 4. SETTING UP A ROUTER

179

$ oc expose service otherservice --hostname=other.example.test

$ oc project ns1

$ # Reusing the route.yaml from the previous example.
$ # spec:
$ # host: www.example.test
$ # wildcardPolicy: Subdomain

$ oc create -f route.yaml # Router will allow this claim.

$ # In addition, route in namespace otherns will lose its claim to host
$ # `other.example.test` due to the wildcard route claiming the
subdomain.

$ # namespace `ns1` is allowed to claim for deux.example.test
$ oc expose service mysecondservice --hostname=deux.example.test

$ # namespace `ns1` is allowed to claim for deux.example.test with path
/p1
$ oc expose service mythirdservice --hostname=deux.example.test --
path="/p1"

$ oc project otherns

$ # namespace `otherns` is not allowed to claim for deux.example.test
$ # with a different path '/otherpath'
$ oc expose service otherservice --hostname=deux.example.test --
path="/otherpath"

$ # namespace `otherns` is not allowed to claim for owner.example.test
$ oc expose service yetanotherservice --hostname=owner.example.test

$ # namespace `otherns` is not allowed to claim for unclaimed.example.test
$ oc expose service yetanotherservice --hostname=unclaimed.example.test

In the example below, different scenarios are shown, in which the owner routes are deleted and
ownership is passed within and across namespaces. While a route claiming host
eldest.example.test in the namespace ns1 exists, wildcard routes in that namespace can claim
subdomain example.test. When the route for host eldest.example.test is deleted, the next
oldest route senior.example.test would become the oldest route and would not affect any other
routes. Once the route for host senior.example.test is deleted, the next oldest route
junior.example.test becomes the oldest route and block the wildcard route claimant.

$ oc adm router ...
$ oc set env dc/router
$ oc project ns1 ROUTER_ALLOW_WILDCARD_ROUTES=true

$ oc project ns1
$ oc expose service myservice --hostname=eldest.example.test
$ oc expose service seniorservice --hostname=senior.example.test

$ oc project otherns

$ # namespace `otherns` is allowed to claim for other.example.test
$ oc expose service juniorservice --hostname=junior.example.test

OpenShift Container Platform 3.7 Installation and Configuration

180

$ oc project ns1

$ # Reusing the route.yaml from the previous example.
$ # spec:
$ # host: www.example.test
$ # wildcardPolicy: Subdomain

$ oc create -f route.yaml # Router will allow this claim.

$ # In addition, route in namespace otherns will lose its claim to host
$ # `junior.example.test` due to the wildcard route claiming the
subdomain.

$ # namespace `ns1` is allowed to claim for dos.example.test
$ oc expose service mysecondservice --hostname=dos.example.test

$ # Delete route for host `eldest.example.test`, the next oldest route is
$ # the one claiming `senior.example.test`, so route claims are
unaffacted.
$ oc delete route myservice

$ # Delete route for host `senior.example.test`, the next oldest route is
$ # the one claiming `junior.example.test` in another namespace, so claims
$ # for a wildcard route would be affected. The route for the host
$ # `dos.example.test` would be unaffected as there are no other wildcard
$ # claimants blocking it.
$ oc delete route seniorservice

4.2.19. Using the Container Network Stack

The OpenShift Container Platform router runs inside a container and the default behavior is to use the
network stack of the host (i.e., the node where the router container runs). This default behavior benefits
performance because network traffic from remote clients does not need to take multiple hops through
user space to reach the target service and container.

Additionally, this default behavior enables the router to get the actual source IP address of the remote
connection rather than getting the node’s IP address. This is useful for defining ingress rules based on
the originating IP, supporting sticky sessions, and monitoring traffic, among other uses.

This host network behavior is controlled by the --host-network router command line option, and the
default behaviour is the equivalent of using --host-network=true. If you wish to run the router with
the container network stack, use the --host-network=false option when creating the router. For
example:

$ oc adm router --service-account=router --host-network=false

Internally, this means the router container must publish the 80 and 443 ports in order for the external
network to communicate with the router.

NOTE

Running with the container network stack means that the router sees the source IP
address of a connection to be the NATed IP address of the node, rather than the actual
remote IP address.

CHAPTER 4. SETTING UP A ROUTER

181

NOTE

On OpenShift Container Platform clusters using multi-tenant network isolation, routers on
a non-default namespace with the --host-network=false option will load all routes in
the cluster, but routes across the namespaces will not be reachable due to network
isolation. With the --host-network=true option, routes bypass the container network
and it can access any pod in the cluster. If isolation is needed in this case, then do not add
routes across the namespaces.

4.2.20. Exposing Router Metrics

The HAProxy router metrics are, by default, exposed or published in Prometheus format for consumption
by external metrics collection and aggregation systems (e.g. Prometheus, statsd). Metrics are also
available directly from the HAProxy router in its own HTML format for viewing in a browser or CSV
download. These metrics include the HAProxy native metrics and some controller metrics.

When you create a router using the following command, OpenShift Container Platform makes metrics
available in Prometheus format on the stats port, by default 1936.

$ oc adm router --service-account=router

To extract the raw statistics in Prometheus format run the following command:

curl <user>:<password>@<router_IP>:<STATS_PORT>

For example:

$ curl admin:sLzdR6SgDJ@10.254.254.35:1936/metrics

You can get the information you need to access the metrics from the router service annotations:

$ oc edit router service <router-service-name>

apiVersion: v1
kind: Service
metadata:
 annotations:
 prometheus.io/port: "1936"
 prometheus.io/scrape: "true"
 prometheus.openshift.io/password: IImoDqON02
 prometheus.openshift.io/username: admin

The prometheus.io/port is the stats port, by default 1936. You might need to configure your
firewall to permit access. Use the previous user name and password to access the metrics. The
path is /metrics.

$ curl <user>:<password>@<router_IP>:<STATS_PORT>
for example:
$ curl admin:sLzdR6SgDJ@10.254.254.35:1936/metrics
...
HELP haproxy_backend_connections_total Total number of
connections.
TYPE haproxy_backend_connections_total gauge
haproxy_backend_connections_total{backend="http",namespace="default"

OpenShift Container Platform 3.7 Installation and Configuration

182

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#network-isolation-multitenant
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#haproxy-metrics
https://prometheus.io/docs/concepts/data_model/
https://cbonte.github.io/haproxy-dconv/1.5/configuration.html#9

,route="hello-route"} 0
haproxy_backend_connections_total{backend="http",namespace="default"
,route="hello-route-alt"} 0
haproxy_backend_connections_total{backend="http",namespace="default"
,route="hello-route01"} 0
...
HELP haproxy_exporter_server_threshold Number of servers tracked
and the current threshold value.
TYPE haproxy_exporter_server_threshold gauge
haproxy_exporter_server_threshold{type="current"} 11
haproxy_exporter_server_threshold{type="limit"} 500
...
HELP haproxy_frontend_bytes_in_total Current total of incoming
bytes.
TYPE haproxy_frontend_bytes_in_total gauge
haproxy_frontend_bytes_in_total{frontend="fe_no_sni"} 0
haproxy_frontend_bytes_in_total{frontend="fe_sni"} 0
haproxy_frontend_bytes_in_total{frontend="public"} 119070
...
HELP haproxy_server_bytes_in_total Current total of incoming
bytes.
TYPE haproxy_server_bytes_in_total gauge
haproxy_server_bytes_in_total{namespace="",pod="",route="",server="f
e_no_sni",service=""} 0
haproxy_server_bytes_in_total{namespace="",pod="",route="",server="f
e_sni",service=""} 0
haproxy_server_bytes_in_total{namespace="default",pod="docker-
registry-5-nk5fz",route="docker-
registry",server="10.130.0.89:5000",service="docker-registry"} 0
haproxy_server_bytes_in_total{namespace="default",pod="hello-rc-
vkjqx",route="hello-route",server="10.130.0.90:8080",service="hello-
svc-1"} 0
...

To get metrics in a browser:

1. Delete the following environment variables from the router deployment configuration file:

$ oc edit dc router

- name: ROUTER_LISTEN_ADDR
 value: 0.0.0.0:1936
- name: ROUTER_METRICS_TYPE
 value: haproxy

2. Launch the stats window using the following URL in a browser, where the STATS_PORT
value is 1936 by default:

http://admin:<Password>@<router_IP>:<STATS_PORT>

You can get the stats in CSV format by adding ;csv to the URL:

For example:

http://admin:<Password>@<router_IP>:1936;csv

CHAPTER 4. SETTING UP A ROUTER

183

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#env-variables

To get the router IP, admin name, and password:

oc describe pod <router_pod>

To suppress metrics collection:

$ oc adm router --service-account=router --stats-port=0

4.2.21. Preventing Connection Failures During Restarts

If you connect to the router while the proxy is reloading, there is a small chance that your connection will
end up in the wrong network queue and be dropped. The issue is being addressed. In the meantime, it is
possible to work around the problem by installing iptables rules to prevent connections during the
reload window. However, doing so means that the router needs to run with elevated privilege so that it
can manipulate iptables on the host. It also

means that connections that happen during the reload are temporarily ignored and must retransmit their
connection start, lengthening the time it takes to connect, but preventing connection failure.

To prevent this, configure the router to use iptables by changing the service account, and setting an
environment variable on the router.

Use a Privileged SCC

When creating the router, allow it to use the privileged SCC. This gives the router user the ability to
create containers with root privileges on the nodes:

$ oc adm policy add-scc-to-user privileged -z router

Patch the Router Deployment Configuration to Create a Privileged Container

You can now create privileged containers. Next, configure the router deployment configuration to use the
privilege so that the router can set the iptables rules it needs. This patch changes the router deployment
configuration so that the container that is created runs as privileged (and therefore gets correct
capabilities) and run as root:

$ oc patch dc router -p '{"spec":{"template":{"spec":{"containers":
[{"name":"router","securityContext":
{"privileged":true}}],"securityContext":{"runAsUser": 0}}}}}'

Configure the Router to Use iptables

Set the option on the router deployment configuration:

$ oc set env dc/router -c router DROP_SYN_DURING_RESTART=true

If you used a non-default name for the router, you must change dc/router accordingly.

4.2.22. ARP Cache Tuning for Large-scale Clusters

In OpenShift Container Platform clusters with large numbers of routes (greater than the value of
net.ipv4.neigh.default.gc_thresh3, which is 65536 by default), you must increase the default
values of sysctl variables on each node in the cluster running the router pod to allow more entries in the

OpenShift Container Platform 3.7 Installation and Configuration

184

1

ARP cache.

When the problem is occuring, the kernel messages would be similar to the following:

[1738.811139] net_ratelimit: 1045 callbacks suppressed
[1743.823136] net_ratelimit: 293 callbacks suppressed

When this issue occurs, the oc commands might start to fail with the following error:

Unable to connect to the server: dial tcp: lookup <hostname> on <ip>:
<port>: write udp <ip>:<port>-><ip>:<port>: write: invalid argument

To verify the actual amount of ARP entries for IPv4, run the following:

ip -4 neigh show nud all | wc -l

If the number begins to approach the net.ipv4.neigh.default.gc_thresh3 threshold, increase
the values. Get the current value by running:

sysctl net.ipv4.neigh.default.gc_thresh1
net.ipv4.neigh.default.gc_thresh1 = 128
sysctl net.ipv4.neigh.default.gc_thresh2
net.ipv4.neigh.default.gc_thresh2 = 512
sysctl net.ipv4.neigh.default.gc_thresh3
net.ipv4.neigh.default.gc_thresh3 = 1024

The following sysctl sets the variables to the OpenShift Container Platform current default values.

sysctl net.ipv4.neigh.default.gc_thresh1=8192
sysctl net.ipv4.neigh.default.gc_thresh2=32768
sysctl net.ipv4.neigh.default.gc_thresh3=65536

To make these settings permanent, see this document.

4.2.23. Protecting Against DDoS Attacks

Add timeout http-request to the default HAProxy router image to protect the deployment against
distributed denial-of-service (DDoS) attacks (for example, slowloris):

and the haproxy stats socket is available at /var/run/haproxy.stats
global
 stats socket ./haproxy.stats level admin

defaults
 option http-server-close
 mode http
 timeout http-request 5s

 timeout connect 5s 1
 timeout server 10s
 timeout client 30s

timeout http-request is set up to 5 seconds. HAProxy gives a client 5 seconds *to send its whole
HTTP request. Otherwise, HAProxy shuts the connection with *an error.

CHAPTER 4. SETTING UP A ROUTER

185

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Performance_Tuning_Guide/index.html#custom-profiles

Also, when the environment variable ROUTER_SLOWLORIS_TIMEOUT is set, it limits the amount of time a
client has to send the whole HTTP request. Otherwise, HAProxy will shut down the connection.

Setting the environment variable allows information to be captured as part of the router’s deployment
configuration and does not require manual modification of the template, whereas manually adding the
HAProxy setting requires you to rebuild the router pod and maintain your router template file.

Using annotations implements basic DDoS protections in the HAProxy template router, including the
ability to limit the:

number of concurrent TCP connections

rate at which a client can request TCP connections

rate at which HTTP requests can be made

These are enabled on a per route basis because applications can have extremely different traffic
patterns.

Table 4.1. HAProxy Template Router Settings

Setting Description

haproxy.router.openshift.io/rate-
limit-connections

Enables the settings be configured (when set to true,
for example).

haproxy.router.openshift.io/rate-
limit-connections.concurrent-tcp

The number of concurrent TCP connections that can
be made by the same IP address on this route.

haproxy.router.openshift.io/rate-
limit-connections.rate-tcp

The number of TCP connections that can be opened
by a client IP.

haproxy.router.openshift.io/rate-
limit-connections.rate-http

The number of HTTP requests that a client IP can
make in a 3-second period.

4.3. DEPLOYING A CUSTOMIZED HAPROXY ROUTER

4.3.1. Overview

The default HAProxy router is intended to satisfy the needs of most users. However, it does not expose
all of the capability of HAProxy. Therefore, users may need to modify the router for their own needs.

You may need to implement new features within the application back-ends, or modify the current
operation. The router plug-in provides all the facilities necessary to make this customization.

The router pod uses a template file to create the needed HAProxy configuration file. The template file is a
golang template. When processing the template, the router has access to OpenShift Container Platform
information, including the router’s deployment configuration, the set of admitted routes, and some helper
functions.

When the router pod starts, and every time it reloads, it creates an HAProxy configuration file, and then it
starts HAProxy. The HAProxy configuration manual describes all of the features of HAProxy and how to
construct a valid configuration file.

OpenShift Container Platform 3.7 Installation and Configuration

186

http://golang.org/pkg/text/template/
https://cbonte.github.io/haproxy-dconv/configuration-1.5.html

A configMap can be used to add the new template to the router pod. With this approach, the router
deployment configuration is modified to mount the configMap as a volume in the router pod. The
TEMPLATE_FILE environment variable is set to the full path name of the template file in the router pod.

Alternatively, you can build a custom router image and use it when deploying some or all of your routers.
There is no need for all routers to run the same image. To do this, modify the haproxy-template.config
file, and rebuild the router image. The new image is pushed to the the cluster’s Docker repository, and
the router’s deployment configuration image: field is updated with the new name. When the cluster is
updated, the image needs to be rebuilt and pushed.

In either case, the router pod starts with the template file.

4.3.2. Obtaining the Router Configuration Template

The HAProxy template file is fairly large and complex. For some changes, it may be easier to modify the
existing template rather than writing a complete replacement. You can obtain a haproxy-
config.template file from a running router by running this on master, referencing the router pod:

oc get po
NAME READY STATUS RESTARTS AGE
router-2-40fc3 1/1 Running 0 11d
oc rsh router-2-40fc3 cat haproxy-config.template > haproxy-
config.template
oc rsh router-2-40fc3 cat haproxy.config > haproxy.config

Alternatively, you can log onto the node that is running the router:

docker run --rm --interactive=true --tty --entrypoint=cat \
 registry.access.redhat.com/openshift3/ose-haproxy-router:v3.7 haproxy-
config.template

The image name is from docker images.

Save this content to a file for use as the basis of your customized template. The saved haproxy.config
shows what is actually running.

4.3.3. Modifying the Router Configuration Template

4.3.3.1. Background

The template is based on the golang template. It can reference any of the environment variables in the
router’s deployment configuration, any configuration information that is described below, and router
provided helper functions.

The structure of the template file mirrors the resulting HAProxy configuration file. As the template is
processed, anything not surrounded by {{" something "}} is directly copied to the configuration file.
Passages that are surrounded by {{" something "}} are evaluated. The resulting text, if any, is
copied to the configuration file.

4.3.3.2. Go Template Actions

The define action names the file that will contain the processed template.

{{define "/var/lib/haproxy/conf/haproxy.config"}}pipeline{{end}}

CHAPTER 4. SETTING UP A ROUTER

187

https://golang.org/pkg/text/template/

Table 4.2. Template Router Functions

Function Meaning

processEndpointsForAlias(alias
ServiceAliasConfig, svc ServiceUnit,
action string) []Endpoint

Returns the list of valid endpoints. When action is
"shuffle", the order of endpoints is randomized.

env(variable, default … ​string)
string

Tries to get the named environment variable from the
pod. If it is not defined or empty, it returns the
optional second argument. Otherwise, it returns an
empty string.

matchPattern(pattern, s string) bool The first argument is a string that contains the regular
expression, the second argument is the variable to
test. Returns a Boolean value indicating whether the
regular expression provided as the first argument
matches the string provided as the second argument.

isInteger(s string) bool Determines if a given variable is an integer.

firstMatch(s string, allowedValues … ​
string) bool

Compares a given string to a list of allowed strings.
Returns first match scanning left to right through the
list.

matchValues(s string, allowedValues
… ​string) bool

Compares a given string to a list of allowed strings.
Returns "true" if the string is an allowed value,
otherwise returns false.

generateRouteRegexp(hostname, path
string, wildcard bool) string

Generates a regular expression matching the route
hosts (and paths). The first argument is the host
name, the second is the path, and the third is a
wildcard Boolean.

genCertificateHostName(hostname
string, wildcard bool) string

Generates host name to use for serving/matching
certificates. First argument is the host name and the
second is the wildcard Boolean.

isTrue(s string) bool Determines if a given variable contains "true".

These functions are provided by the HAProxy template router plug-in.

4.3.3.3. Router Provided Information

This section reviews the OpenShift Container Platform information that the router makes available to the
template. The router configuration parameters are the set of data that the HAProxy router plug-in is
given. The fields are accessed by (dot) .Fieldname.

The tables below the Router Configuration Parameters expand on the definitions of the various fields. In
particular, .State has the set of admitted routes.

OpenShift Container Platform 3.7 Installation and Configuration

188

Table 4.3. Router Configuration Parameters

Field Type Description

WorkingDir string The directory that files will be
written to, defaults to
/var/lib/containers/router

State map[string]
(ServiceAliasConfig)`

The routes.

ServiceUnits map[string]ServiceUnit The service lookup.

DefaultCertificate string Full path name to the default
certificate in pem format.

PeerEndpoints `[]Endpoint Peers.

StatsUser string User name to expose stats with (if
the template supports it).

StatsPassword string Password to expose stats with (if
the template supports it).

StatsPort int Port to expose stats with (if the
template supports it).

BindPorts bool Whether the router should bind
the default ports.

Table 4.4. Router ServiceAliasConfig (A Route)

Field Type Description

Name string The user-specified name of the
route.

Namespace string The namespace of the route.

Host string The host name. For example,
www.example.com.

Path string Optional path. For example,
www.example.com/myservi
ce where myservice is the
path.

CHAPTER 4. SETTING UP A ROUTER

189

TLSTermination routeapi.TLSTermination
Type

The termination policy for this
back-end; drives the mapping files
and router configuration.

Certificates map[string]Certificate Certificates used for securing this
back-end. Keyed by the certificate
ID.

Status ServiceAliasConfigStatu
s

Indicates the status of
configuration that needs to be
persisted.

PreferPort string Indicates the port the user wants
to expose. If empty, a port will be
selected for the service.

InsecureEdgeTermination
Policy

routeapi.InsecureEdgeTe
rminationPolicyType

Indicates desired behavior for
insecure connections to an edge-
terminated route: none (or
disable), allow, or
redirect.

RoutingKeyName string Hash of the route + namespace
name used to obscure the cookie
ID.

IsWildcard bool Indicates this service unit needing
wildcard support.

Annotations map[string]string Annotations attached to this route.

ServiceUnitNames map[string]int32 Collection of services that support
this route, keyed by service name
and valued on the weight
attached to it with respect to other
entries in the map.

ActiveServiceUnits int Count of the
ServiceUnitNames with a
non-zero weight.

Field Type Description

The ServiceAliasConfig is a route for a service. Uniquely identified by host + path. The default
template iterates over routes using {{range $cfgIdx, $cfg := .State }}. Within such a
{{range}} block, the template can refer to any field of the current ServiceAliasConfig using
$cfg.Field.

Table 4.5. Router ServiceUnit

OpenShift Container Platform 3.7 Installation and Configuration

190

Field Type Description

Name string Name corresponds to a service
name + namespace. Uniquely
identifies the ServiceUnit.

EndpointTable []Endpoint Endpoints that back the service.
This translates into a final back-
end implementation for routers.

ServiceUnit is an encapsulation of a service, the endpoints that back that service, and the routes that
point to the service. This is the data that drives the creation of the router configuration files

Table 4.6. Router Endpoint

Field Type

ID string

IP string

Port string

TargetName string

PortName string

IdHash string

NoHealthCheck bool

Endpoint is an internal representation of a Kubernetes endpoint.

Table 4.7. Router Certificate, ServiceAliasConfigStatus

Field Type Description

Certificate string Represents a public/private key
pair. It is identified by an ID, which
will become the file name. A CA
certificate will not have a
PrivateKey set.

CHAPTER 4. SETTING UP A ROUTER

191

ServiceAliasConfigStatu
s

string Indicates that the necessary files
for this configuration have been
persisted to disk. Valid values:
"saved", "".

Field Type Description

Table 4.8. Router Certificate Type

Field Type Description

ID string

Contents string The certificate.

PrivateKey string The private key.

Table 4.9. Router TLSTerminationType

Field Type Description

TLSTerminationType string Dictates where the secure
communication will stop.

InsecureEdgeTermination
PolicyType

string Indicates the desired behavior for
insecure connections to a route.
While each router may make its
own decisions on which ports to
expose, this is normally port 80.

TLSTerminationType and InsecureEdgeTerminationPolicyType dictate where the secure
communication will stop.

Table 4.10. Router TLSTerminationType Values

Constant Value Meaning

TLSTerminationEdge edge Terminate encryption at the edge
router.

TLSTerminationPassthrou
gh

passthrough Terminate encryption at the
destination, the destination is
responsible for decrypting traffic.

TLSTerminationReencrypt reencrypt Terminate encryption at the edge
router and re-encrypt it with a new
certificate supplied by the
destination.

OpenShift Container Platform 3.7 Installation and Configuration

192

Table 4.11. Router InsecureEdgeTerminationPolicyType Values

Type Meaning

Allow Traffic is sent to the server on the insecure port
(default).

Disable No traffic is allowed on the insecure port.

Redirect Clients are redirected to the secure port.

None ("") is the same as Disable.

4.3.3.4. Annotations

Each route can have annotations attached. Each annotation is just a name and a value.

The name can be anything that does not conflict with existing Annotations. The value is any string. The
string can have multiple tokens separated by a space. For example, aa bb cc. The template uses
{{index}} to extract the value of an annotation. For example:

{{$balanceAlgo := index $cfg.Annotations
"haproxy.router.openshift.io/balance"}}

This is an example of how this could be used for mutual client authorization.

{{ with $cnList := index $cfg.Annotations "whiteListCertCommonName" }}
 {{ if ne $cnList "" }}
 acl test ssl_c_s_dn(CN) -m str {{ $cnList }}
 http-request deny if !test
 {{ end }}
{{ end }}

Then, you can handle the white-listed CNs with this command.

$ oc annotate route <route-name> --overwrite whiteListCertCommonName="CN1
CN2 CN3"

See Route-specific Annotations for more information.

4.3.3.5. Environment Variables

The template can use any environment variables that exist in the router pod. The environment variables
can be set in the deployment configuration. New environment variables can be added.

apiVersion: v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/timeout: 5500ms
[...]

CHAPTER 4. SETTING UP A ROUTER

193

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#route-specific-annotations

They are referenced by the env function:

{{env "ROUTER_MAX_CONNECTIONS" "20000"}}

The first string is the variable, and the second string is the default when the variable is missing or nil.
When ROUTER_MAX_CONNECTIONS is not set or is nil, 20000 is used. Environment variables are a
map where the key is the environment variable name and the content is the value of the variable.

See Route-specific Environment variables for more information.

4.3.3.6. Example Usage

Here is a simple template based on the HAProxy template file.

Start with a comment:

{{/*
 Here is a small example of how to work with templates
 taken from the HAProxy template file.
*/}}

The template can create any number of output files. Use a define construct to create an output file.
The file name is specified as an argument to define, and everything inside the define block up to the
matching end is written as the contents of that file.

{{ define "/var/lib/haproxy/conf/haproxy.config" }}
global
{{ end }}

The above will copy global to the /var/lib/haproxy/conf/haproxy.config file, and then close the file.

Set up logging based on environment variables.

{{ with (env "ROUTER_SYSLOG_ADDRESS" "") }}
 log {{.}} {{env "ROUTER_LOG_FACILITY" "local1"}} {{env
"ROUTER_LOG_LEVEL" "warning"}}
{{ end }}

The env function extracts the value for the environment variable. If the environment variable is not
defined or nil, the second argument is returned.

The with construct sets the value of "." (dot) within the with block to whatever value is provided as an
argument to with. The with action tests Dot for nil. If not nil, the clause is processed up to the end. In
the above, assume ROUTER_SYSLOG_ADDRESS contains /var/log/msg, ROUTER_LOG_FACILITY is not
defined, and ROUTER_LOG_LEVEL contains info. The following will be copied to the output file:

 log /var/log/msg local1 info

Each admitted route ends up generating lines in the configuration file. Use range to go through the
admitted routes:

OpenShift Container Platform 3.7 Installation and Configuration

194

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#env-variables

{{ range $cfgIdx, $cfg := .State }}
 backend be_http_{{$cfgIdx}}
{{end}}

.State is a map of ServiceAliasConfig, where the key is the route name. range steps through the
map and, for each pass, it sets $cfgIdx with the key, and sets ̀ $cfg to point to the
ServiceAliasConfig that describes the route. If there are two routes named myroute and
hisroute, the above will copy the following to the output file:

 backend be_http_myroute
 backend be_http_hisroute

Route Annotations, $cfg.Annotations, is also a map with the annotation name as the key and the
content string as the value. The route can have as many annotations as desired and the use is defined
by the template author. The user codes the annotation into the route and the template author customized
the HAProxy template to handle the annotation.

The common usage is to index the annotation to get the value.

{{$balanceAlgo := index $cfg.Annotations
"haproxy.router.openshift.io/balance"}}

The index extracts the value for the given annotation, if any. Therefore, `$balanceAlgo will contain the
string associated with the annotation or nil. As above, you can test for a non-nil string and act on it
with the with construct.

{{ with $balanceAlgo }}
 balance $balanceAlgo
{{ end }}

Here when $balanceAlgo is not nil, balance $balanceAlgo is copied to the output file.

In a second example, you want to set a server timeout based on a timeout value set in an annotation.

$value := index $cfg.Annotations "haproxy.router.openshift.io/timeout"

The $value can now be evaluated to make sure it contains a properly constructed string. The
matchPattern function accepts a regular expression and returns true if the argument satisfies the
expression.

matchPattern "[1-9][0-9]*(us\|ms\|s\|m\|h\|d)?" $value

This would accept 5000ms but not 7y. The results can be used in a test.

{{if (matchPattern "[1-9][0-9]*(us\|ms\|s\|m\|h\|d)?" $value) }}
 timeout server {{$value}}
{{ end }}

It can also be used to match tokens:

matchPattern "roundrobin|leastconn|source" $balanceAlgo

CHAPTER 4. SETTING UP A ROUTER

195

Alternatively matchValues can be used to match tokens:

matchValues $balanceAlgo "roundrobin" "leastconn" "source"

4.3.4. Using a ConfigMap to Replace the Router Configuration Template

You can use a ConfigMap to customize the router instance without rebuilding the router image. The
haproxy-config.template, reload-haproxy, and other scripts can be modified as well as creating and
modifying router environment variables.

1. Copy the haproxy-config.template that you want to modify as described above. Modify it as
desired.

2. Create a ConfigMap:

The customrouter ConfigMap now contains a copy of the modified haproxy-config.template
file.

3. Modify the router deployment configuration to mount the ConfigMap as a file and point the
TEMPLATE_FILE environment variable to it. This can be done via oc set env and oc
volume commands, or alternatively by editing the router deployment configuration.

Using oc commands

Editing the Router Deployment Configuration

Use oc edit dc router to edit the router deployment configuration with a text editor.

$ oc create configmap customrouter --from-file=haproxy-
config.template

$ oc volume dc/router --add --overwrite \
 --name=config-volume \
 --mount-path=/var/lib/haproxy/conf/custom \
 --source='{"configMap": { "name": "customrouter"}}'
$ oc set env dc/router \
 TEMPLATE_FILE=/var/lib/haproxy/conf/custom/haproxy-
config.template

...
 - name: STATS_USERNAME
 value: admin

 - name: TEMPLATE_FILE 1
 value: /var/lib/haproxy/conf/custom/haproxy-
config.template
 image: openshift/origin-haproxy-routerp
...
 terminationMessagePath: /dev/termination-log

 volumeMounts: 2
 - mountPath: /var/lib/haproxy/conf/custom
 name: config-volume
 dnsPolicy: ClusterFirst
...
 terminationGracePeriodSeconds: 30

OpenShift Container Platform 3.7 Installation and Configuration

196

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-configmaps

1

2

3

In the spec.container.env field, add the TEMPLATE_FILE environment variable to
point to the mounted haproxy-config.template file.

Add the spec.container.volumeMounts field to create the mount point.

Add a new spec.volumes field to mention the ConfigMap.

Save the changes and exit the editor. This restarts the router.

4.3.5. Using Stick Tables

The following example customization can be used in a highly-available routing setup to use stick-tables
that synchronize between peers.

Adding a Peer Section

In order to synchronize stick-tables amongst peers you must a define a peers section in your HAProxy
configuration. This section determines how HAProxy will identify and connect to peers. The plug-in
provides data to the template under the .PeerEndpoints variable to allow you to easily identify
members of the router service. You may add a peer section to the haproxy-config.template file inside
the router image by adding:

{{ if (len .PeerEndpoints) gt 0 }}
peers openshift_peers
 {{ range $endpointID, $endpoint := .PeerEndpoints }}
 peer {{$endpoint.TargetName}} {{$endpoint.IP}}:1937
 {{ end }}
{{ end }}

Changing the Reload Script

When using stick-tables, you have the option of telling HAProxy what it should consider the name of the
local host in the peer section. When creating endpoints, the plug-in attempts to set the TargetName to
the value of the endpoint’s TargetRef.Name. If TargetRef is not set, it will set the TargetName to the
IP address. The TargetRef.Name corresponds with the Kubernetes host name, therefore you can add
the -L option to the reload-haproxy script to identify the local host in the peer section.

peer_name=$HOSTNAME 1

if [-n "$old_pid"]; then
 /usr/sbin/haproxy -f $config_file -p $pid_file -L $peer_name -sf
$old_pid
else
 /usr/sbin/haproxy -f $config_file -p $pid_file -L $peer_name
fi

 volumes: 3
 - configMap:
 name: customrouter
 name: config-volume
...

CHAPTER 4. SETTING UP A ROUTER

197

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#configuring-a-highly-available-service

1 Must match an endpoint target name that is used in the peer section.

Modifying Back Ends

Finally, to use the stick-tables within back ends, you can modify the HAProxy configuration to use the
stick-tables and peer set. The following is an example of changing the existing back end for TCP
connections to use stick-tables:

 {{ if eq $cfg.TLSTermination "passthrough" }}
backend be_tcp_{{$cfgIdx}}
 balance leastconn
 timeout check 5000ms
 stick-table type ip size 1m expire 5m{{ if (len $.PeerEndpoints) gt 0 }}
peers openshift_peers {{ end }}
 stick on src
 {{ range $endpointID, $endpoint :=
$serviceUnit.EndpointTable }}
 server {{$endpointID}} {{$endpoint.IP}}:{{$endpoint.Port}} check inter
5000ms
 {{ end }}
 {{ end }}

After this modification, you can rebuild your router.

4.3.6. Rebuilding Your Router

In order to rebuild the router, you need copies of several files that are present on a running router. Make
a work directory and copy the files from the router:

mkdir - myrouter/conf
cd myrouter
oc get po
NAME READY STATUS RESTARTS AGE
router-2-40fc3 1/1 Running 0 11d
oc rsh router-2-40fc3 cat haproxy-config.template > conf/haproxy-
config.template
oc rsh router-2-40fc3 cat error-page-503.http > conf/error-page-503.http
oc rsh router-2-40fc3 cat default_pub_keys.pem >
conf/default_pub_keys.pem
oc rsh router-2-40fc3 cat ../Dockerfile > Dockerfile
oc rsh router-2-40fc3 cat ../reload-haproxy > reload-haproxy

You can edit or replace any of these files. However, conf/haproxy-config.template and reload-
haproxy are the most likely to be modified.

After updating the files:

docker build -t openshift/origin-haproxy-router-myversion .
docker tag openshift/origin-haproxy-router-myversion

172.30.243.98:5000/openshift/haproxy-router-myversion 1
docker push 172.30.243.98:5000/openshift/origin-haproxy-router-pc:latest

2

OpenShift Container Platform 3.7 Installation and Configuration

198

1

2

Tag the version with the repository. In this case the repository is 172.30.243.98:5000.

Push the tagged version to the repository. It may be necessary to docker login to the repository
first.

To use the new router, edit the router deployment configuration either by changing the image: string or
by adding the --images=<repo>/<image>:<tag> flag to the oc adm router command.

When debugging the changes, it is helpful to set imagePullPolicy: Always in the deployment
configuration to force an image pull on each pod creation. When debugging is complete, you can change
it back to imagePullPolicy: IfNotPresent to avoid the pull on each pod start.

4.4. CONFIGURING THE HAPROXY ROUTER TO USE THE PROXY
PROTOCOL

4.4.1. Overview

By default, the HAProxy router expects incoming connections to unsecure, edge, and re-encrypt routes
to use HTTP. However, you can configure the router to expect incoming requests by using the PROXY
protocol instead. This topic describes how to configure the HAProxy router and an external load balancer
to use the PROXY protocol.

4.4.2. Why Use the PROXY Protocol?

When an intermediary service such as a proxy server or load balancer forwards an HTTP request, it
appends the source address of the connection to the request’s "Forwarded" header in order to provide
this information to subsequent intermediaries and to the back-end service to which the request is
ultimately forwarded. However, if the connection is encrypted, intermediaries cannot modify the
"Forwarded" header. In this case, the HTTP header will not accurately communicate the original source
address when the request is forwarded.

To solve this problem, some load balancers encapsulate HTTP requests using the PROXY protocol as
an alternative to simply forwarding HTTP. Encapsulation enables the load balancer to add information to
the request without modifying the forwarded request itself. In particular, this means that the load balancer
can communicate the source address even when forwarding an encrypted connection.

The HAProxy router can be configured to accept the PROXY protocol and decapsulate the HTTP
request. Because the router terminates encryption for edge and re-encrypt routes, the router can then
update the "Forwarded" HTTP header (and related HTTP headers) in the request, appending any source
address that is communicated using the PROXY protocol.

WARNING

The PROXY protocol and HTTP are incompatible and cannot be mixed. If you use a
load balancer in front of the router, both must use either the PROXY protocol or
HTTP. Configuring one to use one protocol and the other to use the other protocol
will cause routing to fail.



CHAPTER 4. SETTING UP A ROUTER

199

http://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

1

2

3

4

4.4.3. Using the PROXY Protocol

By default, the HAProxy router does not use the PROXY protocol. The router can be configured using
the ROUTER_USE_PROXY_PROTOCOL environment variable to expect the PROXY protocol for incoming
connections:

Enable the PROXY Protocol

$ oc env dc/router ROUTER_USE_PROXY_PROTOCOL=true

Set the variable to any value other than true or TRUE to disable the PROXY protocol:

Disable the PROXY Protocol

$ oc env dc/router ROUTER_USE_PROXY_PROTOCOL=false

If you enable the PROXY protocol in the router, you must configure your load balancer in front of the
router to use the PROXY protocol as well. Following is an example of configuring Amazon’s Elastic Load
Balancer (ELB) service to use the PROXY protocol. This example assumes that ELB is forwarding ports
80 (HTTP), 443 (HTTPS), and 5000 (for the image registry) to the router running on one or more EC2
instances.

Configure Amazon ELB to Use the PROXY Protocol

1. To simplify subsequent steps, first set some shell variables:

$ lb='infra-lb' 1

$ instances=('i-079b4096c654f563c') 2

$ secgroups=('sg-e1760186') 3

$ subnets=('subnet-cf57c596') 4

The name of your ELB.

The instance or instances on which the router is running.

The security group or groups for this ELB.

The subnet or subnets for this ELB.

2. Next, create the ELB with the appropriate listeners, security groups, and subnets.

NOTE

You must configure all listeners to use the TCP protocol, not the HTTP protocol.

$ aws elb create-load-balancer --load-balancer-name "$lb" \
 --listeners \

'Protocol=TCP,LoadBalancerPort=80,InstanceProtocol=TCP,InstancePort=
80' \

'Protocol=TCP,LoadBalancerPort=443,InstanceProtocol=TCP,InstancePort

OpenShift Container Platform 3.7 Installation and Configuration

200

=443' \

'Protocol=TCP,LoadBalancerPort=5000,InstanceProtocol=TCP,InstancePor
t=5000' \
 --security-groups $secgroups \
 --subnets $subnets
{
 "DNSName": "infra-lb-2006263232.us-east-1.elb.amazonaws.com"
}

3. Register your router instance or instances with the ELB:

$ aws elb register-instances-with-load-balancer --load-balancer-name
"$lb" \
 --instances $instances
{
 "Instances": [
 {
 "InstanceId": "i-079b4096c654f563c"
 }
]
}

4. Configure the ELB’s health check:

$ aws elb configure-health-check --load-balancer-name "$lb" \
 --health-check
'Target=HTTP:1936/healthz,Interval=30,UnhealthyThreshold=2,HealthyTh
reshold=2,Timeout=5'
{
 "HealthCheck": {
 "HealthyThreshold": 2,
 "Interval": 30,
 "Target": "HTTP:1936/healthz",
 "Timeout": 5,
 "UnhealthyThreshold": 2
 }
}

5. Finally, create a load-balancer policy with the ProxyProtocol attribute enabled, and configure
it on the ELB’s TCP ports 80 and 443:

$ aws elb create-load-balancer-policy --load-balancer-name "$lb" \
 --policy-name "${lb}-ProxyProtocol-policy" \
 --policy-type-name 'ProxyProtocolPolicyType' \
 --policy-attributes
'AttributeName=ProxyProtocol,AttributeValue=true'
$ for port in 80 443
 do
 aws elb set-load-balancer-policies-for-backend-server \
 --load-balancer-name "$lb" \
 --instance-port "$port" \
 --policy-names "${lb}-ProxyProtocol-policy"
 done

CHAPTER 4. SETTING UP A ROUTER

201

1

2

3

Verify the Configuration

You can examine the load balancer as follows to verify that the configuration is correct:

$ aws elb describe-load-balancers --load-balancer-name "$lb" |
 jq '.LoadBalancerDescriptions| [.[]|.ListenerDescriptions]'
[
 [
 {
 "Listener": {
 "InstancePort": 80,
 "LoadBalancerPort": 80,
 "Protocol": "TCP",
 "InstanceProtocol": "TCP"
 },

 "PolicyNames": ["infra-lb-ProxyProtocol-policy"] 1
 },
 {
 "Listener": {
 "InstancePort": 443,
 "LoadBalancerPort": 443,
 "Protocol": "TCP",
 "InstanceProtocol": "TCP"
 },

 "PolicyNames": ["infra-lb-ProxyProtocol-policy"] 2
 },
 {
 "Listener": {
 "InstancePort": 5000,
 "LoadBalancerPort": 5000,
 "Protocol": "TCP",
 "InstanceProtocol": "TCP"
 },

 "PolicyNames": [] 3
 }
]
]

The listener for TCP port 80 should have the policy for using the PROXY protocol.

The listener for TCP port 443 should have the same policy.

The listener for TCP port 5000 should not have the policy.

Alternatively, if you already have an ELB configured, but it is not configured to use the PROXY protocol,
you will need to change the existing listener for TCP port 80 to use the TCP protocol instead of HTTP
(TCP port 443 should already be using the TCP protocol):

$ aws elb delete-load-balancer-listeners --load-balancer-name "$lb" \
 --load-balancer-ports 80
$ aws elb create-load-balancer-listeners --load-balancer-name "$lb" \
 --listeners
'Protocol=TCP,LoadBalancerPort=80,InstanceProtocol=TCP,InstancePort=80'

OpenShift Container Platform 3.7 Installation and Configuration

202

1

Verify the Protocol Updates

Verify that the protocol has been updated as follows:

$ aws elb describe-load-balancers --load-balancer-name "$lb" |
 jq '[.LoadBalancerDescriptions[]|.ListenerDescriptions]'
[
 [
 {
 "Listener": {
 "InstancePort": 443,
 "LoadBalancerPort": 443,
 "Protocol": "TCP",
 "InstanceProtocol": "TCP"
 },
 "PolicyNames": []
 },
 {
 "Listener": {
 "InstancePort": 5000,
 "LoadBalancerPort": 5000,
 "Protocol": "TCP",
 "InstanceProtocol": "TCP"
 },
 "PolicyNames": []
 },
 {
 "Listener": {
 "InstancePort": 80,
 "LoadBalancerPort": 80,

 "Protocol": "TCP", 1
 "InstanceProtocol": "TCP"
 },
 "PolicyNames": []
 }
]
]

All listeners, including the listener for TCP port 80, should be using the TCP protocol.

Then, create a load-balancer policy and add it to the ELB as described in Step 5 above.

4.5. USING THE F5 ROUTER PLUG-IN

4.5.1. Overview

NOTE

The F5 router plug-in is available starting in OpenShift Container Platform 3.0.2.

The F5 router plug-in is provided as a container image and run as a pod, just like the default HAProxy
router.

CHAPTER 4. SETTING UP A ROUTER

203

IMPORTANT

Support relationships between F5 and Red Hat provide a full scope of support for F5
integration. F5 provides support for the F5 BIG-IP® product. Both F5 and Red Hat jointly
support the integration with Red Hat OpenShift. While Red Hat helps with bug fixes and
feature enhancements, all get communicated to F5 Networks where they are managed as
part of their development cycles.

4.5.2. Prerequisites and Supportability

When deploying the F5 router plug-in, ensure you meet the following requirements:

A F5 host IP with:

Credentials for API access

SSH access via a private key

An F5 user with Advanced Shell access

A virtual server for HTTP routes:

HTTP profile must be http.

A virtual server with HTTP profile routes:

HTTP profile must be http

SSL Profile (client) must be clientssl

SSL Profile (server) must be serverssl

For edge integration (not recommended):

A working ramp node

A working tunnel to the ramp node

For native integration:

A host-internal IP capable of communicating with all nodes on the port 4789/UDP

The sdn-services add-on license installed on the F5 host.

OpenShift Container Platform supports only the following F5 BIG-IP® versions:

11.x

12.x

OpenShift Container Platform 3.7 Installation and Configuration

204

IMPORTANT

The following features are not supported with F5 BIG-IP®:

Wildcard routes together with re-encrypt routes - you must supply a certificate
and a key in the route. If you provide a certificate, a key, and a certificate authority
(CA), the CA is never used.

A pool is created for all services, even for the ones with no associated route.

Idling applications

Unencrypted HTTP traffic in redirect mode, with edge TLS termination.
(insecureEdgeTerminationPolicy: Redirect)

Sharding, that is, having multiple vservers on the F5.

SSL cipher (ROUTER_CIPHERS=modern/old)

Customizing the endpoint health checks for time-intervals and the type of checks.

Serving F5 metrics by using a metrics server.

Specifying a different target port (PreferPort/TargetPort) rather than the
ones specified in the service.

Customizing the source IP whitelists, that is, allowing traffic for a route only from
specific IP addresses.

Customizing timeout values, such as max connect time, or tcp FIN
timeout.

HA mode for the F5 BIG-IP®.

4.5.2.1. Configuring the Virtual Servers

As a prerequisite to working with the openshift-F5 integrated router, two virtual servers (one virtual
server each for HTTP and HTTPS profiles, respectively) need to be set up in the F5 BIG-IP® appliance.

To set up a virtual server in the F5 BIG-IP® appliance, follow the instructions from F5.

While creating the virtual server, ensure the following settings are in place:

For the HTTP server, set the ServicePort to 'http'/80.

For the HTTPS server, set the ServicePort to 'https'/443.

In the basic configuration, set the HTTP profile to /Common/http for both of the virtual servers.

For the HTTPS server, create a default client-ssl profile and select it for the SSL Profile
(Client).

To create the default client SSL profile, follow the instructions from F5, especially the
Configuring the fallback (default) client SSL profile section, which discusses that the
certificate/key pair is the default that will be served in the case that custom certificates are
not provided for a route or server name.

CHAPTER 4. SETTING UP A ROUTER

205

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-idling-applications
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/ltm-basics-12-1-0/2.html
https://support.f5.com/csp/article/K13452

4.5.3. Deploying the F5 Router

IMPORTANT

The F5 router must be run in privileged mode, because route certificates are copied using
the scp command:

$ oc adm policy remove-scc-from-user hostnetwork -z router
$ oc adm policy add-scc-to-user privileged -z router

Deploy the F5 router with the oc adm router command, but provide additional flags (or environment
variables) specifying the following parameters for the F5 BIG-IP® host:

Flag Description

--type=f5-
router

Specifies that an F5 router should be launched (the default --type is haproxy-
router).

--external-
host

Specifies the F5 BIG-IP® host’s management interface’s host name or IP address.

--external-
host-
username

Specifies the F5 BIG-IP® user name (typically admin). The F5 BIG-IP user account
must have access to the Advanced Shell (Bash) on the F5 BIG-IP system.

--external-
host-
password

Specifies the F5 BIG-IP® password.

--external-
host-http-
vserver

Specifies the name of the F5 virtual server for HTTP connections. This must be
configured by the user prior to launching the router pod.

--external-
host-https-
vserver

Specifies the name of the F5 virtual server for HTTPS connections. This must be
configured by the user prior to launching the router pod.

--external-
host-
private-key

Specifies the path to the SSH private key file for the F5 BIG-IP® host. Required to
upload and delete key and certificate files for routes.

--external-
host-
insecure

A Boolean flag that indicates that the F5 router should skip strict certificate verification
with the F5 BIG-IP® host.

--external-
host-
partition-
path

Specifies the F5 BIG-IP® partition path (the default is /Common).

OpenShift Container Platform 3.7 Installation and Configuration

206

For example:

$ oc adm router \
 --type=f5-router \
 --external-host=10.0.0.2 \
 --external-host-username=admin \
 --external-host-password=mypassword \
 --external-host-http-vserver=ose-vserver \
 --external-host-https-vserver=https-ose-vserver \
 --external-host-private-key=/path/to/key \
 --host-network=false \
 --service-account=router

As with the HAProxy router, the oc adm router command creates the service and deployment
configuration objects, and thus the replication controllers and pod(s) in which the F5 router itself runs.
The replication controller restarts the F5 router in case of crashes. Because the F5 router is watching
routes, endpoints, and nodes and configuring F5 BIG-IP® accordingly, running the F5 router in this way,
along with an appropriately configured F5 BIG-IP® deployment, should satisfy high-availability
requirements.

4.5.4. F5 Router Partition Paths

Partition paths allow you to store your OpenShift Container Platform routing configuration in a custom F5
BIG-IP® administrative partition, instead of the default /Common partition. You can use custom
administrative partitions to secure F5 BIG-IP® environments. This means that an OpenShift Container
Platform-specific configuration stored in F5 BIG-IP® system objects reside within a logical container,
allowing administrators to define access control policies on that specific administrative partition.

See the F5 BIG-IP® documentation for more information about administrative partitions.

To configure your OpenShift Container Platform for partition paths:

1. Optionally, perform some cleaning steps:

a. Ensure F5 is configured to be able to switch to the /Common and /Custom paths.

b. Delete the static FDB of vxlan5000. See the F5 BIG-IP® documentation for more
information.

2. Configure a virtual server for the custom partition.

3. Deploy the F5 router using the --external-host-partition-path flag to specify a partition
path:

$ oc adm router --external-host-partition-path=/OpenShift/zone1 ...

4.5.5. Setting Up F5 Native Integration

NOTE

This section reviews how to set up F5 native integration with OpenShift Container
Platform. The concepts of F5 appliance and OpenShift Container Platform connection and
data flow of F5 native integration are discussed in the F5 Native Integration section.

CHAPTER 4. SETTING UP A ROUTER

207

https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/tmos_management_guide_10_0_0/tmos_partitions.html
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/tmos-implementations-12-0-0/9.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-f5-native-integration

1

2

NOTE

Only F5 BIG-IP® appliance version 12.x and above works with the native integration
presented in this section. You also need sdn-services add-on license for the integration to
work properly. For version 11.x, follow the instructions to set up a ramp node.

As of OpenShift Container Platform version 3.4, using native integration of F5 with OpenShift Container
Platform does not require configuring a ramp node for F5 to be able to reach the pods on the overlay
network as created by OpenShift SDN.

The F5 controller pod needs to be launched with enough information so that it can successfully directly
connect to pods.

1. Create a ghost hostsubnet on the OpenShift Container Platform cluster:

$ cat > f5-hostsubnet.yaml << EOF
{
 "kind": "HostSubnet",
 "apiVersion": "v1",
 "metadata": {
 "name": "openshift-f5-node",
 "annotations": {
 "pod.network.openshift.io/assign-subnet": "true",

 "pod.network.openshift.io/fixed-vnid-host": "0" 1
 }
 },
 "host": "openshift-f5-node",

 "hostIP": "10.3.89.213" 2
} EOF
$ oc create -f f5-hostsubnet.yaml

Make F5 global.

The internal IP of the F5 appliance.

2. Determine the subnet allocated for the ghost hostsubnet just created:

$ oc get hostsubnets
NAME HOST HOST IP
SUBNET
openshift-f5-node openshift-f5-node 10.3.89.213
10.131.0.0/23
openshift-master-node openshift-master-node 172.17.0.2
10.129.0.0/23
openshift-node-1 openshift-node-1 172.17.0.3
10.128.0.0/23
openshift-node-2 openshift-node-2 172.17.0.4
10.130.0.0/23

3. Check the SUBNET for the newly created hostsubnet. In this example, 10.131.0.0/23.

4. Get the entire pod network’s CIDR:

$ oc get clusternetwork

OpenShift Container Platform 3.7 Installation and Configuration

208

This value will be something like 10.128.0.0/14, noting the mask (14 in this example).

5. To construct the gateway address, pick any IP address from the hostsubnet (for example,
10.131.0.5). Use the mask of the pod network (14). The gateway address becomes:
10.131.0.5/14.

6. Launch the F5 controller pod, following these instructions. Additionally, allow the access to 'node'
cluster resource for the service account and use the two new additional options for VXLAN
native integration.

$ # Add policy to allow router to access nodes using the sdn-reader
role
$ oc adm policy add-cluster-role-to-user system:sdn-reader
system:serviceaccount:default:router
$ # Launch the router pod with vxlan-gw and F5's internal IP as
extra arguments
$ #--external-host-internal-ip=10.3.89.213
$ #--external-host-vxlan-gw=10.131.0.5/14
$ oc adm router \
 --type=f5-router \
 --external-host=10.3.89.90 \
 --external-host-username=admin \
 --external-host-password=mypassword \
 --external-host-http-vserver=ose-vserver \
 --external-host-https-vserver=https-ose-vserver \
 --external-host-private-key=/path/to/key \
 --service-account=router \
 --host-network=false \
 --external-host-internal-ip=10.3.89.213 \
 --external-host-vxlan-gw=10.131.0.5/14

NOTE

The external-host-username is a F5 BIG-IP user account with access to the
Advanced Shell (Bash) on the F5 BIG-IP system.

The F5 setup is now ready, without the need to set up the ramp node.

CHAPTER 4. SETTING UP A ROUTER

209

CHAPTER 5. MASTER AND NODE CONFIGURATION

5.1. OVERVIEW

The openshift start command is used to launch OpenShift Container Platform servers. The
command and its subcommands (master to launch a master server and node to launch a node server)
all take a limited set of arguments that are sufficient for launching servers in a development or
experimental environment.

However, these arguments are insufficient to describe and control the full set of configuration and
security options that are necessary in a production environment. To provide those options, it is
necessary to use the dedicated master and node configuration files.

Master configuration files and node configuration files are fully specified with no default values.
Therefore, any empty value indicates that you want to start up with an empty value for that parameter.
This makes it easy to reason about exactly what your configuration is, but it also makes it difficult to
remember all of the options to specify. To make this easier, the configuration files can be created with
the --write-config option and then used with the --config option.

5.2. MASTER CONFIGURATION FILES

This section reviews parameters mentioned in the master-config.yaml file.

You can create a new master configuration file to see the valid options for your installed version of
OpenShift Container Platform.

IMPORTANT

Whenever you modify the master-config.yaml file, you must restart the master for the
changes to take effect. See Restarting OpenShift Container Platform services.

5.2.1. Admission Control Configuration

Table 5.1. Admission Control Configuration Parameters

Parameter Name Description

AdmissionConfig Contains admission control plug-in configuration.

APIServerArguments Key-value pairs that will be passed directly to the Kube API server that
match the API servers' command line arguments. These are not
migrated, but if you reference a value that does not exist the server will
not start. These values may override other settings in
KubernetesMasterConfig, which may cause invalid
configurations.

ControllerArguments Key-value pairs that will be passed directly to the Kube controller
manager that match the controller manager’s command line arguments.
These are not migrated, but if you reference a value that does not exist
the server will not start. These values may override other settings in
KubernetesMasterConfig, which may cause invalid
configurations.

OpenShift Container Platform 3.7 Installation and Configuration

210

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#node

DefaultAdmissionConfig Used to enable or disable various admission plug-ins. When this type is
present as the configuration object under pluginConfig and if the
admission plug-in supports it, this will cause an off by default admission
plug-in to be enabled.

PluginConfig Allows specifying a configuration file per admission control plug-in.

PluginOrderOverride A list of admission control plug-in names that will be installed on the
master. Order is significant. If empty, a default list of plug-ins is used.

SchedulerArguments Key-value pairs that will be passed directly to the Kube scheduler that
match the scheduler’s command line arguments. These are not
migrated, but if you reference a value that does not exist the server will
not start. These values may override other settings in
KubernetesMasterConfig, which may cause invalid
configurations.

Parameter Name Description

5.2.2. Asset Configuration

Table 5.2. Asset Configuration Parameters

Parameter Name Description

AssetConfig Holds the necessary configuration options for serving assets.

corsAllowedOrigins To access the API server from a web application using a different host
name, you must whitelist that host name by specifying
corsAllowedOrigins in the configuration field or by specifying the
--cors-allowed-origins option on openshift start. No
pinning or escaping is done to the value. See Web Console for example
usage.

DisabledFeatures A list of features that should not be started. You will likely want to set this
as null. It is very unlikely that anyone will want to manually disable
features and that is not encouraged.

Extensions Files to serve from the asset server file system under a subcontext.

ExtensionDevelopment When set to true, tells the asset server to reload extension scripts and
stylesheets for every request rather than only at startup. It lets you
develop extensions without having to restart the server for every change.

ExtensionProperties Key- (string) and value- (string) pairs that will be injected into the console
under the global variable OPENSHIFT_EXTENSION_PROPERTIES.

ExtensionScripts File paths on the asset server files to load as scripts when the web
console loads.

CHAPTER 5. MASTER AND NODE CONFIGURATION

211

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#corsAllowedOrigins

ExtensionStylesheets File paths on the asset server files to load as style sheets when the web
console loads.

LoggingPublicURL The public endpoint for logging (optional).

LogoutURL An optional, absolute URL to redirect web browsers to after logging out of
the web console. If not specified, the built-in logout page is shown.

MasterPublicURL How the web console can access the OpenShift Container Platform
server.

MetricsPublicURL The public endpoint for metrics (optional).

PublicURL URL of the the asset server.

Parameter Name Description

5.2.3. Authentication and Authorization Configuration

Table 5.3. Authentication and Authorization Parameters

Parameter Name Description

authConfig Holds authentication and authorization configuration options.

AuthenticationCacheSiz
e

Indicates how many authentication results should be cached. If 0, the
default cache size is used.

AuthorizationCacheTTL Indicates how long an authorization result should be cached. It takes a
valid time duration string (e.g. "5m"). If empty, you get the default
timeout. If zero (e.g. "0m"), caching is disabled.

5.2.4. Controller Configuration

Table 5.4. Controller Configuration Parameters

Parameter Name Description

Controllers List of the controllers that should be started. If set to none, no controllers
will start automatically. The default value is * which will start all
controllers. When using *, you may exclude controllers by prepending a
- in front of their name. No other values are recognized at this time.

ControllerLeaseTTL Enables controller election, instructing the master to attempt to acquire a
lease before controllers start and renewing it within a number of seconds
defined by this value. Setting this value non-negative forces
pauseControllers=true. This value defaults off (0, or omitted)
and controller election can be disabled with -1.

OpenShift Container Platform 3.7 Installation and Configuration

212

PauseControllers Instructs the master to not automatically start controllers, but instead to
wait until a notification to the server is received before launching them.

Parameter Name Description

5.2.5. etcd Configuration

Table 5.5. etcd Configuration Parameters

Parameter Name Description

Address The advertised host:port for client connections to etcd.

etcdClientInfo Contains information about how to connect to etcd.

etcdConfig Holds the necessary configuration options for connecting with an etcd
database.

etcdStorageConfig Contains information about how API resources are stored in etcd. These
values are only relevant when etcd is the backing store for the cluster.

KubernetesStoragePrefi
x

The path within etcd that the Kubernetes resources will be rooted under.
This value, if changed, will mean existing objects in etcd will no longer
be located. The default value is kubernetes.io.

KubernetesStorageVersi
on

The API version that Kubernetes resources in etcd should be serialized
to. This value should not be advanced until all clients in the cluster that
read from etcd have code that allows them to read the new version.

OpenShiftStoragePrefix The path within etcd that the OpenShift Container Platform resources will
be rooted under. This value, if changed, will mean existing objects in
etcd will no longer be located. The default value is openshift.io.

OpenShiftStorageVersio
n

API version that OS resources in etcd should be serialized to. This value
should not be advanced until all clients in the cluster that read from etcd
have code that allows them to read the new version.

PeerAddress The advertised host:port for peer connections to etcd.

PeerServingInfo Describes how to start serving the etcd peer.

ServingInfo Describes how to start serving the etcd master.

StorageDir The path to the etcd storage directory.

5.2.6. Grant Configuration

Table 5.6. Grant Configuration Parameters

CHAPTER 5. MASTER AND NODE CONFIGURATION

213

Parameter Name Description

GrantConfig Describes how to handle grants.

GrantHandlerAuto Auto-approves client authorization grant requests.

GrantHandlerDeny Auto-denies client authorization grant requests.

GrantHandlerPrompt Prompts the user to approve new client authorization grant requests.

Method Determines the default strategy to use when an OAuth client requests a
grant.This method will be used only if the specific OAuth client does not
provide a strategy of their own. Valid grant handling methods are:

auto: always approves grant requests, useful for trusted clients

prompt: prompts the end user for approval of grant requests,
useful for third-party clients

deny: always denies grant requests, useful for black-listed
clients

5.2.7. Image Configuration

Table 5.7. Image Configuration Parameters

Parameter Name Description

Format The format of the name to be built for the system component.

Latest Determines if the latest tag will be pulled from the registry.

5.2.8. Image Policy Configuration

Table 5.8. Image Policy Configuration Parameters

Parameter Name Description

DisableScheduledImport Allows scheduled background import of images to be disabled.

MaxImagesBulkImportedP
erRepository

Controls the number of images that are imported when a user does a
bulk import of a Docker repository. This number defaults to 5 to prevent
users from importing large numbers of images accidentally. Set -1 for no
limit.

MaxScheduledImageImpor
tsPerMinute

The maximum number of scheduled image streams that will be imported
in the background per minute. The default value is 60.

OpenShift Container Platform 3.7 Installation and Configuration

214

ScheduledImageImportMi
nimumIntervalSeconds

The minimum number of seconds that can elapse between when image
streams scheduled for background import are checked against the
upstream repository. The default value is 15 minutes.

AllowedRegistriesForIm
port

Limits the docker registries that normal users may import images from.
Set this list to the registries that you trust to contain valid Docker images
and that you want applications to be able to import from. Users with
permission to create Images or ImageStreamMappings via the API are
not affected by this policy - typically only administrators or system
integrations will have those permissions.

InternalRegistryHostna
me

Sets the hostname for the default internal image registry. The value must
be in hostname[:port] format. For backward compatibility, users
can still use OPENSHIFT_DEFAULT_REGISTRY environment variable
but this setting overrides the environment variable. When this is set, the
internal registry must have its hostname set as well. See setting the
registry hostname for more details.

ExternalRegistryHostna
me

ExternalRegistryHostname sets the hostname for the default external
image registry. The external hostname should be set only when the
image registry is exposed externally. The value is used in
publicDockerImageRepository field in ImageStreams. The
value must be in hostname[:port] format.

Parameter Name Description

5.2.9. Kubernetes Master Configuration

Table 5.9. Kubernetes Master Configuration Parameters

Parameter Name Description

APILevels A list of API levels that should be enabled on startup, v1 as examples.

DisabledAPIGroupVersio
ns

A map of groups to the versions (or *) that should be disabled.

KubeletClientInfo Contains information about how to connect to kubelets.

KubernetesMasterConfig Holds the necessary configuration options for the Kubernetes master.

MasterCount The number of expected masters that should be running. This value
defaults to 1 and may be set to a positive integer, or if set to -1, indicates
this is part of a cluster.

MasterIP The public IP address of Kubernetes resources. If empty, the first result
from net.InterfaceAddrs will be used.

MasterKubeConfig File name for the .kubeconfig file that describes how to connect this
node to the master.

CHAPTER 5. MASTER AND NODE CONFIGURATION

215

ServicesNodePortRange The range to use for assigning service public ports on a host. Default
30000-32767.

ServicesSubnet The subnet to use for assigning service IPs.

StaticNodeNames The list of nodes that are statically known.

Parameter Name Description

5.2.10. Network Configuration

Choose the CIDRs in the following parameters carefully, because the IPv4 address space is shared by
all users of the nodes. OpenShift Container Platform reserves CIDRs from the IPv4 address space for its
own use, and reserves CIDRs from the IPv4 address space for addresses that are shared between the
external user and the cluster.

Table 5.10. Network Configuration Parameters

Parameter Name Description

ClusterNetworkCIDR The CIDR string to specify the global overlay network’s L3 space. This is
reserved for the internal use of the cluster networking.

externalIPNetworkCIDRs Controls what values are acceptable for the service external IP field. If
empty, no externalIP may be set. It may contain a list of CIDRs
which are checked for access. If a CIDR is prefixed with !, IPs in that
CIDR will be rejected. Rejections will be applied first, then the IP
checked against one of the allowed CIDRs. You must ensure this range
does not overlap with your nodes, pods, or service CIDRs for security
reasons.

HostSubnetLength The number of bits to allocate to each host’s subnet. For example, 8
would mean a /24 network on the host.

ingressIPNetworkCIDR Controls the range to assign ingress IPs from for services of type
LoadBalancer on bare metal. It may contain a single CIDR that it will be
allocated from. By default 172.46.0.0/16 is configured. For security
reasons, you should ensure that this range does not overlap with the
CIDRs reserved for external IPs, nodes, pods, or services.

HostSubnetLength The number of bits to allocate to each host’s subnet. For example, 8
would mean a /24 network on the host.

NetworkConfig Provides network options for the node.

NetworkPluginName The name of the network plug-in to use.

ServiceNetwork The CIDR string to specify the service networks.

OpenShift Container Platform 3.7 Installation and Configuration

216

5.2.11. OAuth Authentication Configuration

Table 5.11. OAuth Configuration Parameters

Parameter Name Description

AlwaysShowProviderSele
ction

Forces the provider selection page to render even when there is only a
single provider.

AssetPublicURL Used for building valid client redirect URLs for external access.

Error A path to a file containing a go template used to render error pages
during the authentication or grant flow If unspecified, the default error
page is used.

IdentityProviders Ordered list of ways for a user to identify themselves.

Login A path to a file containing a go template used to render the login page. If
unspecified, the default login page is used.

MasterCA CA for verifying the TLS connection back to the MasterURL.

MasterPublicURL Used for building valid client redirect URLs for external access.

MasterURL Used for making server-to-server calls to exchange authorization codes
for access tokens.

OAuthConfig Holds the necessary configuration options for OAuth authentication.

OAuthTemplates Allows for customization of pages like the login page.

ProviderSelection A path to a file containing a go template used to render the provider
selection page. If unspecified, the default provider selection page is
used.

SessionConfig Holds information about configuring sessions.

Templates Allows you to customize pages like the login page.

TokenConfig Contains options for authorization and access tokens.

5.2.12. Project Configuration

Table 5.12. Project Configuration Parameters

Parameter Name Description

DefaultNodeSelector Holds default project node label selector.

CHAPTER 5. MASTER AND NODE CONFIGURATION

217

ProjectConfig Holds information about project creation and defaults.

ProjectRequestMessage The string presented to a user if they are unable to request a project via
the project request API endpoint.

ProjectRequestTemplate The template to use for creating projects in response to projectrequest.
It is in the format namespace/template and it is optional. If it is not
specified, a default template is used.

Parameter Name Description

5.2.13. Scheduler Configuration

Table 5.13. Scheduler Configuration Parameters

Parameter Name Description

SchedulerConfigFile Points to a file that describes how to set up the scheduler. If empty, you
get the default scheduling rules

5.2.14. Security Allocator Configuration

Table 5.14. Security Allocator Parameters

Parameter Name Description

MCSAllocatorRange Defines the range of MCS categories that will be assigned to
namespaces. The format is <prefix>/<numberOfLabels>[,
<maxCategory>]. The default is s0/2 and will allocate from c0 to
c1023, which means a total of 535k labels are available (1024 choose 2
~ 535k). If this value is changed after startup, new projects may receive
labels that are already allocated to other projects. Prefix may be any
valid SELinux set of terms (including user, role, and type), although
leaving them as the default will allow the server to set them
automatically.

SecurityAllocator Controls the automatic allocation of UIDs and MCS labels to a project. If
nil, allocation is disabled.

UIDAllocatorRange Defines the total set of Unix user IDs (UIDs) that will be allocated to
projects automatically, and the size of the block each namespace gets.
For example, 1000-1999/10 will allocate ten UIDs per namespace, and
will be able to allocate up to 100 blocks before running out of space. The
default is to allocate from 1 billion to 2 billion in 10k blocks (which is the
expected size of the ranges container images will use once user
namespaces are started).

5.2.15. Service Account Configuration

OpenShift Container Platform 3.7 Installation and Configuration

218

Table 5.15. Service Account Configuration Parameters

Parameter Name Description

LimitSecretReferences Controls whether or not to allow a service account to reference any
secret in a namespace without explicitly referencing them.

ManagedNames A list of service account names that will be auto-created in every
namespace. If no names are specified, the
ServiceAccountsController will not be started.

MasterCA The CA for verifying the TLS connection back to the master. The service
account controller will automatically inject the contents of this file into
pods so they can verify connections to the master.

PrivateKeyFile A file containing a PEM-encoded private RSA key, used to sign service
account tokens. If no private key is specified, the service account
TokensController will not be started.

PublicKeyFiles A list of files, each containing a PEM-encoded public RSA key. If any file
contains a private key, the public portion of the key is used. The list of
public keys is used to verify presented service account tokens. Each key
is tried in order until the list is exhausted or verification succeeds. If no
keys are specified, no service account authentication will be available.

ServiceAccountConfig Holds the necessary configuration options for a service account.

5.2.16. Serving Information Configuration

Table 5.16. Serving Information Configuration Parameters

Parameter Name Description

AllowRecursiveQueries Allows the DNS server on the master to answer queries recursively.
Note that open resolvers can be used for DNS amplification attacks and
the master DNS should not be made accessible to public networks.

BindAddress The ip:port to serve on.

BindNetwork Controls limits and behavior for importing images.

CertFile A file containing a PEM-encoded certificate.

CertInfo TLS cert information for serving secure traffic.

ClientCA The certificate bundle for all the signers that you recognize for incoming
client certificates.

dnsConfig Holds the necessary configuration options for DNS.

CHAPTER 5. MASTER AND NODE CONFIGURATION

219

DNSDomain Holds the domain suffix.

DNSIP Holds the IP.

KeyFile A file containing a PEM-encoded private key for the certificate specified
by CertFile.

MasterClientConnection
Overrides

Provides overrides to the client connection used to connect to the
master.

MaxRequestsInFlight The number of concurrent requests allowed to the server. If zero, no
limit.

NamedCertificates A list of certificates to use to secure requests to specific host names.

RequestTimeoutSecond The number of seconds before requests are timed out. The default is 60
minutes. If -1, there is no limit on requests.

ServingInfo The HTTP serving information for the assets.

Parameter Name Description

5.2.17. Volume Configuration

Table 5.17. Volume Configuration Parameters

Parameter Name Description

DynamicProvisioningEna
bled

A boolean to enable or disable dynamic provisioning. Default is true.

FSGroup Can be specified to enable a quota on local storage use per unique
FSGroup ID. At present this is only implemented for emptyDir volumes,
and if the underlying volumeDirectory is on an XFS filesystem.

LocalQuota Contains options for controlling local volume quota on the node.

MasterVolumeConfig Contains options for configuring volume plug-ins in the master node.

NodeVolumeConfig Contains options for configuring volumes on the node.

VolumeConfig Contains options for configuring volumes on the node.

VolumeDirectory The directory that volumes are stored under.

5.2.18. Audit Configuration

OpenShift Container Platform 3.7 Installation and Configuration

220

Audit provides a security-relevant chronological set of records documenting the sequence of activities
that have affected system by individual users, administrators, or other components of the system.

Audit works at the API server level, logging all requests coming to the server. Each audit log contains
two entries:

1. The request line containing:

a. A Unique ID allowing to match the response line (see #2)

b. The source IP of the request

c. The HTTP method being invoked

d. The original user invoking the operation

e. The impersonated user for the operation (self meaning himself)

f. The impersonated group for the operation (lookup meaning user’s group)

g. The namespace of the request or <none>

h. The URI as requested

2. The response line containing:

a. The the unique ID from #1

b. The response code

Example output for user admin asking for a list of pods:

AUDIT: id="5c3b8227-4af9-4322-8a71-542231c3887b" ip="127.0.0.1"
method="GET" user="admin" as="<self>" asgroups="<lookup>"
namespace="default" uri="/api/v1/namespaces/default/pods"
AUDIT: id="5c3b8227-4af9-4322-8a71-542231c3887b" response="200"

The openshift_master_audit_config variable enables API service auditing. It takes an array of
the following options:

Table 5.18. Audit Configuration Parameters

Parameter Name Description

enabled A boolean to enable or disable audit logs. Default is false.

auditFilePath File path where the requests should be logged to. If not set, logs are
printed to master logs.

maximumFileRetentionDa
ys

Specifies maximum number of days to retain old audit log files based on
the time stamp encoded in their filename.

maximumRetainedFiles Specifies the maximum number of old audit log files to retain.

CHAPTER 5. MASTER AND NODE CONFIGURATION

221

maximumFileSizeMegabyt
es

Specifies maximum size in megabytes of the log file before it gets
rotated. Defaults to 100MB.

Parameter Name Description

Example Audit Configuration

auditConfig:
 auditFilePath: "/var/log/audit-ocp.log"
 enabled: true
 maximumFileRetentionDays: 10
 maximumFileSizeMegabytes: 10
 maximumRetainedFiles: 10

Advanced Setup for the Audit Log

If you want more advanced setup for the audit log, you can use:

openshift_master_audit_config={"enabled": true}

The directory in auditFilePath will be created if it does not exist.

openshift_master_audit_config={"enabled": true, "auditFilePath":
"/var/log/openpaas-oscp-audit/openpaas-oscp-audit.log",
"maximumFileRetentionDays": 14, "maximumFileSizeMegabytes": 500,
"maximumRetainedFiles": 5}

5.2.19. Advanced Audit

IMPORTANT

Advanced audit is a Technology Preview feature and it is subject to change in future
releases. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during the
development process.

For more information on Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

The advanced audit feature provides several improvements over the basic audit functionality, including
fine-grained events filtering and multiple output back ends.

To enable the advanced audit feature, provide the following values in the
openshift_master_audit_config parameter

openshift_master_audit_config={"enabled": true, "auditFilePath":
"/var/log/oscp-audit/-oscp-audit.log", "maximumFileRetentionDays": 14,
"maximumFileSizeMegabytes": 500, "maximumRetainedFiles": 5, "policyFile":

OpenShift Container Platform 3.7 Installation and Configuration

222

https://access.redhat.com/support/offerings/techpreview/

"/etc/security/adv-audit.yaml", "logFormat":"json"}

IMPORTANT

The policy file /etc/security/adv-audit.yaml must be available on each master node.

The following table contains additional options you can use.

Table 5.19. Advanced Audit Configuration Parameters

Parameter Name Description

policyFile Path to the file that defines the audit policy configuration.

policyConfiguration An embedded audit policy configuration.

logFormat Specifies the format of the saved audit logs. Allowed values are
legacy (the format used in basic audit), and json.

webHookKubeConfig Path to a .kubeconfig-formatted file that defines the audit webhook
configuration, where the events are sent to.

webHookMode Specifies the strategy for sending audit events. Allowed values are
block (blocks processing another event until the previous has fully
processed) and batch (buffers events and delivers in batches).

IMPORTANT

To enable the advanced audit feature, you must provide either policyFile
orpolicyConfiguration describing the audit policy rules:

Sample Audit Policy Configuration

apiVersion: audit.k8s.io/v1alpha1
kind: Policy
rules:

 # A catch-all rule to log all other requests at the Metadata level.

 - level: Metadata 1

 # Do not log watch requests by the "system:kube-proxy" on endpoints or
services

 - level: None 2

 users: ["system:kube-proxy"] 3

 verbs: ["watch"] 4

 resources: 5
 - group: ""
 resources: ["endpoints", "services"]

 # Do not log authenticated requests to certain non-resource URL paths.
 - level: None

CHAPTER 5. MASTER AND NODE CONFIGURATION

223

1 2

3

4

5

There are four possible levels every event can be logged at:

None - Do not log events that match this rule.

Metadata - Log request metadata (requesting user, time stamp, resource, verb, etc.), but
not request or response body. This is the same level as the one used in basic audit.

Request - Log event metadata and request body, but not response body.

RequestResponse - Log event metadata, request, and response bodies.

A list of users the rule applies to. An empty list implies every user.

A list of verbs this rule applies to. An empty list implies every verb. This is Kubernetes verb
associated with API requests (including get, list, watch, create, update, patch, delete,
deletecollection, and proxy).

A list of resources the rule applies to. An empty list implies every resource. Each resource is
specified as a group it is assigned to (for example, an empty for Kubernetes core API, batch,
build.openshift.io, etc.), and a resource list from that group.

 userGroups: ["system:authenticated"] 6

 nonResourceURLs: 7
 - "/api*" # Wildcard matching.
 - "/version"

 # Log the request body of configmap changes in kube-system.
 - level: Request
 resources:
 - group: "" # core API group
 resources: ["configmaps"]
 # This rule only applies to resources in the "kube-system" namespace.
 # The empty string "" can be used to select non-namespaced resources.

 namespaces: ["kube-system"] 8

 # Log configmap and secret changes in all other namespaces at the
metadata level.
 - level: Metadata
 resources:
 - group: "" # core API group
 resources: ["secrets", "configmaps"]

 # Log all other resources in core and extensions at the request level.
 - level: Request
 resources:
 - group: "" # core API group
 - group: "extensions" # Version of group should NOT be included.

 # Log login failures from the web console or CLI. Review the logs and
refine your policies.
 - level: Metadata
 nonResourceURLs:

 - /login* 9

 - /oauth* 10

OpenShift Container Platform 3.7 Installation and Configuration

224

6

7

8

9

10

A list of groups the rule applies to. An empty list implies every group.

A list of non-resources URLs the rule applies to.

A list of namespaces the rule applies to. An empty list implies every namespace.

Endpoint used by the web console.

Endpoint used by the CLI.

For more information on advanced audit, see the Kubernetes documentation

5.2.20. Specifying TLS ciphers for etcd

You can specify the supported TLS ciphers to use in communication between the master and etcd
servers.

1. On each etcd node, upgrade etcd:

yum update etcd iptables-services

2. Confirm that your etcd version is 3.2.22 or later:

etcd --version
etcd Version: 3.2.22

3. On each master host, specify the ciphers to enable in the /etc/origin/master/master-
config.yaml file:

servingInfo:
 ...
 minTLSVersion: VersionTLS12
 cipherSuites:
 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 - TLS_RSA_WITH_AES_256_CBC_SHA
 - TLS_RSA_WITH_AES_128_CBC_SHA
...

4. On each master host, restart the master service:

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

5. Confirm that the cipher is applied. For example, for TLSv1.2 cipher ECDHE-RSA-AES128-GCM-
SHA256, run the following command:

openssl s_client -connect etcd1.example.com:2379 1
CONNECTED(00000003)
depth=0 CN = etcd1.example.com
verify error:num=20:unable to get local issuer certificate
verify return:1
depth=0 CN = etcd1.example.com
verify error:num=21:unable to verify the first certificate

CHAPTER 5. MASTER AND NODE CONFIGURATION

225

https://kubernetes.io/docs/tasks/debug-application-cluster/audit
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#arch-index-how-is-it-secured-tls

1

verify return:1
139905367488400:error:14094412:SSL routines:ssl3_read_bytes:sslv3
alert bad certificate:s3_pkt.c:1493:SSL alert number 42
139905367488400:error:140790E5:SSL routines:ssl23_write:ssl
handshake failure:s23_lib.c:177:

Certificate chain
 0 s:/CN=etcd1.example.com
 i:/CN=etcd-signer@1529635004

Server certificate
-----BEGIN CERTIFICATE-----
MIIEkjCCAnqgAwIBAgIBATANBgkqhkiG9w0BAQsFADAhMR8wHQYDVQQDDBZldGNk
........
....
eif87qttt0Sl1vS8DG1KQO1oOBlNkg==
-----END CERTIFICATE-----
subject=/CN=etcd1.example.com
issuer=/CN=etcd-signer@1529635004

Acceptable client certificate CA names
/CN=etcd-signer@1529635004
Client Certificate Types: RSA sign, ECDSA sign
Requested Signature Algorithms:
RSA+SHA256:ECDSA+SHA256:RSA+SHA384:ECDSA+SHA384:RSA+SHA1:ECDSA+SHA1
Shared Requested Signature Algorithms:
RSA+SHA256:ECDSA+SHA256:RSA+SHA384:ECDSA+SHA384:RSA+SHA1:ECDSA+SHA1
Peer signing digest: SHA384
Server Temp Key: ECDH, P-256, 256 bits

SSL handshake has read 1666 bytes and written 138 bytes

New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES128-GCM-SHA256
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
SSL-Session:
 Protocol : TLSv1.2
 Cipher : ECDHE-RSA-AES128-GCM-SHA256
 Session-ID:
 Session-ID-ctx:
 Master-Key:
1EFA00A91EE5FC5EDDCFC67C8ECD060D44FD3EB23D834EDED929E4B74536F273C0F9
299935E5504B562CD56E76ED208D
 Key-Arg : None
 Krb5 Principal: None
 PSK identity: None
 PSK identity hint: None
 Start Time: 1529651744
 Timeout : 300 (sec)
 Verify return code: 21 (unable to verify the first certificate)

etcd1.example.com is the name of an etcd host.

OpenShift Container Platform 3.7 Installation and Configuration

226

1

2

5.3. NODE CONFIGURATION FILES

The following node-config.yaml file is a sample node configuration file that was generated with the
default values as of writing. You can create a new node configuration file to see the valid options for your
installed version of OpenShift Container Platform.

Example 5.1. Sample Node Configuration File

Configures an IP address to be prepended to a pod’s /etc/resolv.conf by adding the address
here.

Allows pods to be placed directly on certain set of nodes, or on all nodes without going through
the scheduler. You can then use pods to perform the same administrative tasks and support the
same services on each node.

allowDisabledDocker: false
apiVersion: v1
authConfig:
 authenticationCacheSize: 1000
 authenticationCacheTTL: 5m
 authorizationCacheSize: 1000
 authorizationCacheTTL: 5m
dnsDomain: cluster.local

dnsIP: 10.0.2.15 1
dockerConfig:
 execHandlerName: native
imageConfig:
 format: openshift/origin-${component}:${version}
 latest: false
iptablesSyncPeriod: 5s
kind: NodeConfig
masterKubeConfig: node.kubeconfig
networkConfig:
 mtu: 1450
 networkPluginName: ""
nodeIP: ""
nodeName: node1.example.com

podManifestConfig: 2

 path: "/path/to/pod-manifest-file" 3

 fileCheckIntervalSeconds: 30 4
proxyArguments:
 proxy-mode:

 - iptables 5
volumeConfig:
 localQuota:

 perFSGroup: null 6
servingInfo:
 bindAddress: 0.0.0.0:10250
 bindNetwork: tcp4
 certFile: server.crt
 clientCA: node-client-ca.crt
 keyFile: server.key
 namedCertificates: null
volumeDirectory: /root/openshift.local.volumes

CHAPTER 5. MASTER AND NODE CONFIGURATION

227

3

4

5

6

Specifies the path for the pod manifest file or directory. If it is a directory, then it is expected to
contain one or more manifest files. This is used by the Kubelet to create pods on the node.

This is the interval (in seconds) for checking the manifest file for new data. The interval must be
a positive value.

The service proxy implementation to use.

Preliminary support for local emptyDir volume quotas, set this value to a resource quantity
representing the desired quota per FSGroup, per node. (i.e. 1Gi, 512Mi, etc) Currently requires
that the volumeDirectory be on an XFS filesystem mounted with the 'gquota' option, and the
matching security context contraint’s fsGroup type set to 'MustRunAs'.

The node configuration file determines the resources of a node. See the Allocating node resources
section in the Cluster Administrator guide for more information.

5.3.1. Pod and Node Configuration

Table 5.20. Pod and Node Configuration Parameters

Parameter Name Description

NodeConfig The fully specified configuration starting an OpenShift Container Platform
node.

NodeIP Node may have multiple IPs, so this specifies the IP to use for pod traffic
routing. If not specified, network parse/lookup on the nodeName is
performed and the first non-loopback address is used.

NodeName The value used to identify this particular node in the cluster. If possible,
this should be your fully qualified hostname. If you are describing a set of
static nodes to the master, this value must match one of the values in the
list.

PodEvictionTimeout Controls grace period for deleting pods on failed nodes. It takes valid
time duration string. If empty, you get the default pod eviction timeout.

ProxyClientInfo Specifies the client cert/key to use when proxying to pods.

5.3.2. Docker Configuration

Table 5.21. Docker Configuration Parameters

Parameter Name Description

AllowDisabledDocker If true, the kubelet will ignore errors from Docker. This means that a
node can start on a machine that does not have docker started.

DockerConfig Holds Docker related configuration options

OpenShift Container Platform 3.7 Installation and Configuration

228

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#pods
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#service-proxy-mode
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-allocating-node-resources

1

ExecHandlerName The handler to use for executing commands in Docker containers.

Parameter Name Description

5.3.3. Parallel Image Pulls with Docker 1.9+

If you are using Docker 1.9+, you may want to consider enabling parallel image pulling, as the default is
to pull images one at a time.

NOTE

There is a potential issue with data corruption prior to Docker 1.9. However, starting with
1.9, the corruption issue is resolved and it is safe to switch to parallel pulls.

Change to true to disable parallel pulls. (This is the default config)

5.4. PASSWORDS AND OTHER SENSITIVE DATA

For some authentication configurations, an LDAP bindPassword or OAuth clientSecret value is
required. Instead of specifying these values directly in the master configuration file, these values may be
provided as environment variables, external files, or in encrypted files.

Environment Variable Example

External File Example

Encrypted External File Example

To create the encrypted file and key file for the above example:

$ oc adm ca encrypt --genkey=bindPassword.key --out=bindPassword.encrypted
> Data to encrypt: B1ndPass0rd!

kubeletArguments:
 serialize-image-pulls:

 - "false" 1

 ...
 bindPassword:
 env: BIND_PASSWORD_ENV_VAR_NAME

 ...
 bindPassword:
 file: bindPassword.txt

 ...
 bindPassword:
 file: bindPassword.encrypted
 keyFile: bindPassword.key

CHAPTER 5. MASTER AND NODE CONFIGURATION

229

Run oc adm commands only from the first master listed in the Ansible host inventory file, by default
/etc/ansible/hosts.

WARNING

Encrypted data is only as secure as the decrypting key. Care should be taken to limit
filesystem permissions and access to the key file.

5.5. CREATING NEW CONFIGURATION FILES

When defining an OpenShift Container Platform configuration from scratch, start by creating new
configuration files.

For master host configuration files, use the openshift start command with the --write-config
option to write the configuration files. For node hosts, use the oc adm create-node-config
command to write the configuration files.

The following commands write the relevant launch configuration file(s), certificate files, and any other
necessary files to the specified --write-config or --node-dir directory.

Generated certificate files are valid for two years, while the certification authority (CA) certificate is valid
for five years. This can be altered with the --expire-days and --signer-expire-days options, but
for security reasons, it is recommended to not make them greater than these values.

To create configuration files for an all-in-one server (a master and a node on the same host) in the
specified directory:

$ openshift start --write-config=/openshift.local.config

To create a master configuration file and other required files in the specified directory:

$ openshift start master --write-config=/openshift.local.config/master

To create a node configuration file and other related files in the specified directory:

$ oc adm create-node-config \
 --node-dir=/openshift.local.config/node-<node_hostname> \
 --node=<node_hostname> \
 --hostnames=<node_hostname>,<ip_address> \
 --certificate-authority="/path/to/ca.crt" \
 --signer-cert="/path/to/ca.crt" \
 --signer-key="/path/to/ca.key"
 --signer-serial="/path/to/ca.serial.txt"
 --node-client-certificate-authority="/path/to/ca.crt"

When creating node configuration files, the --hostnames option accepts a comma-delimited list of
every host name or IP address you want server certificates to be valid for.



OpenShift Container Platform 3.7 Installation and Configuration

230

5.6. LAUNCHING SERVERS USING CONFIGURATION FILES

Once you have modified the master and/or node configuration files to your specifications, you can use
them when launching servers by specifying them as an argument. Keep in mind that if you specify a
configuration file, none of the other command line options you pass are respected.

To launch an all-in-one server using a master configuration and a node configuration file:

$ openshift start --master-config=/openshift.local.config/master/master-
config.yaml --node-config=/openshift.local.config/node-
<node_hostname>/node-config.yaml

To launch a master server using a master configuration file:

$ openshift start master --config=/openshift.local.config/master/master-
config.yaml

To launch a node server using a node configuration file:

$ openshift start node --config=/openshift.local.config/node-
<node_hostname>/node-config.yaml

5.7. CONFIGURING LOGGING LEVELS

OpenShift Container Platform uses the systemd-journald.service to collect log messages for
debugging, using five log message severities. The logging levels are based on Kubernetes logging
conventions, as follows:

Table 5.22. Log Level Options

Option Description

0 Errors and warnings only

2 Normal information

4 Debugging-level information

6 API-level debugging information (request / response)

8 Body-level API debugging information

You can control which INFO messages are logged by setting the loglevel option in the in
/etc/sysconfig/atomic-openshift-node, the /etc/sysconfig/atomic-openshift-master-api file and the
/etc/sysconfig/atomic-openshift-master-controllers file. Configuring the logs to collect all messages
can lead to large logs that are difficult to interpret and can take up excessive space. Collecting all
messages should only be used in debug situations.

CHAPTER 5. MASTER AND NODE CONFIGURATION

231

NOTE

Messages with FATAL, ERROR, WARNING and some INFO severities appear in the logs
regardless of the log configuration.

You can view logs for the master or the node system using the following command:

journalctl -r -u <journal_name>

Use the -r option to show the newest entries first.

For example:

journalctl -r -u atomic-openshift-master-controllers
journalctl -r -u atomic-openshift-master-api
journalctl -r -u atomic-openshift-node.service

To change the logging level:

1. Edit the /etc/sysconfig/atomic-openshift-master file for the master or /etc/sysconfig/atomic-
openshift-node file for the nodes.

2. Enter a value from the Log Level Options table above in the OPTIONS=--loglevel= field.
For example:

OPTIONS=--loglevel=4

3. Restart the master or node host as appropriate. See Restarting OpenShift Container Platform
services.

After the restart, all new log messages will conform to the new setting. Older messages do not change.

NOTE

The default log level can be set using the Advanced Install. For more information, see
Cluster Variables.

The following examples are excerpts from a master journald log at various log levels. Timestamps and
system information have been removed from these examples.

Excerpt of journalctl -u atomic-openshift-master-controllers.service output at loglevel=0

4897 plugins.go:77] Registered admission plugin "NamespaceLifecycle"
4897 start_master.go:290] Warning: assetConfig.loggingPublicURL: Invalid
value: "": required to view aggregated container logs in the console,
master start will continue.
4897 start_master.go:290] Warning: assetConfig.metricsPublicURL: Invalid
value: "": required to view cluster metrics in the console, master start
will continue.
4897 start_master.go:290] Warning: aggregatorConfig.proxyClientInfo:
Invalid value: "": if no client certificate is specified, the aggregator
will be unable to proxy to remote servers,
4897 start_master.go:412] Starting controllers on 0.0.0.0:8444 (v3.7.14)
4897 start_master.go:416] Using images from "openshift3/ose-

OpenShift Container Platform 3.7 Installation and Configuration

232

<component>:v3.7.14"
4897 standalone_apiserver.go:106] Started health checks at 0.0.0.0:8444
4897 plugins.go:77] Registered admission plugin "NamespaceLifecycle"
4897 configgetter.go:53] Initializing cache sizes based on 0MB limit
4897 leaderelection.go:105] Attempting to acquire openshift-master-
controllers lease as master-bkr-hv03-guest44.dsal.lab.eng.bos.redhat.com-
10.19.41.74-xtz6lbqb, renewing every 3s, hold
4897 leaderelection.go:179] attempting to acquire leader lease...
systemd[1]: Started Atomic OpenShift Master Controllers.
4897 leaderelection.go:189] successfully acquired lease kube-
system/openshift-master-controllers
4897 event.go:218] Event(v1.ObjectReference{Kind:"ConfigMap",
Namespace:"kube-system", Name:"openshift-master-controllers",
UID:"aca86731-ffbe-11e7-8d33-525400c845a8", APIVersion:"v1",
4897 start_master.go:627] Started serviceaccount-token controller
4897 factory.go:351] Creating scheduler from configuration: {{ }
[{NoVolumeZoneConflict <nil>} {MaxEBSVolumeCount <nil>}
{MaxGCEPDVolumeCount <nil>} {MaxAzureDiskVolumeCount <nil>} {Mat
4897 factory.go:360] Registering predicate: NoVolumeZoneConflict
4897 plugins.go:145] Predicate type NoVolumeZoneConflict already
registered, reusing.
4897 factory.go:360] Registering predicate: MaxEBSVolumeCount
4897 plugins.go:145] Predicate type MaxEBSVolumeCount already registered,
reusing.
4897 factory.go:360] Registering predicate: MaxGCEPDVolumeCount

Excerpt of journalctl -u atomic-openshift-master-controllers.service output at loglevel=2

4897 master.go:47] Initializing SDN master of type "redhat/openshift-ovs-
subnet"
4897 master.go:107] Created ClusterNetwork default (network:
"10.128.0.0/14", hostSubnetBits: 9, serviceNetwork: "172.30.0.0/16",
pluginName: "redhat/openshift-ovs-subnet")
4897 start_master.go:690] Started "openshift.io/sdn"
4897 start_master.go:680] Starting "openshift.io/service-serving-cert"
4897 controllermanager.go:466] Started "namespace"
4897 controllermanager.go:456] Starting "daemonset"
4897 controller_utils.go:1025] Waiting for caches to sync for namespace
controller
4897 shared_informer.go:298] resyncPeriod 120000000000 is smaller than
resyncCheckPeriod 600000000000 and the informer has already started.
Changing it to 600000000000
4897 start_master.go:690] Started "openshift.io/service-serving-cert"
4897 start_master.go:680] Starting "openshift.io/image-signature-import"
4897 start_master.go:690] Started "openshift.io/image-signature-import"
4897 start_master.go:680] Starting "openshift.io/templateinstance"
4897 controllermanager.go:466] Started "daemonset"
4897 controllermanager.go:456] Starting "statefulset"
4897 daemoncontroller.go:222] Starting daemon sets controller
4897 controller_utils.go:1025] Waiting for caches to sync for daemon sets
controller
4897 controllermanager.go:466] Started "statefulset"
4897 controllermanager.go:456] Starting "cronjob"
4897 stateful_set.go:147] Starting stateful set controller
4897 controller_utils.go:1025] Waiting for caches to sync for stateful set
controller

CHAPTER 5. MASTER AND NODE CONFIGURATION

233

4897 start_master.go:690] Started "openshift.io/templateinstance"
4897 start_master.go:680] Starting "openshift.io/horizontalpodautoscaling

Excerpt of journalctl -u atomic-openshift-master-controllers.service output at loglevel=4

4897 factory.go:366] Registering priority: Zone
4897 factory.go:401] Creating scheduler with fit predicates
'map[GeneralPredicates:{} CheckNodeMemoryPressure:{}
CheckNodeDiskPressure:{} NoVolumeNodeConflict:{} Region:{} NoVolumeZoneC
4897 controller_utils.go:1025] Waiting for caches to sync for tokens
controller
4897 controllermanager.go:108] Version: v1.7.6+a08f5eeb62
4897 leaderelection.go:179] attempting to acquire leader lease...
4897 leaderelection.go:189] successfully acquired lease kube-system/kube-
controller-manager
4897 event.go:218] Event(v1.ObjectReference{Kind:"ConfigMap",
Namespace:"kube-system", Name:"kube-controller-manager", UID:"acb3e9c6-
ffbe-11e7-8d33-525400c845a8", APIVersion:"v1", Resou
4897 controller_utils.go:1032] Caches are synced for tokens controller
4897 plugins.go:101] No cloud provider specified.
4897 controllermanager.go:481] "serviceaccount-token" is disabled
4897 controllermanager.go:450] "bootstrapsigner" is disabled
4897 controllermanager.go:450] "tokencleaner" is disabled
4897 controllermanager.go:456] Starting "garbagecollector"
4897 start_master.go:680] Starting "openshift.io/build"
4897 controllermanager.go:466] Started "garbagecollector"
4897 controllermanager.go:456] Starting "deployment"
4897 garbagecollector.go:126] Starting garbage collector controller
4897 controller_utils.go:1025] Waiting for caches to sync for garbage
collector controller
4897 controllermanager.go:466] Started "deployment"
4897 controllermanager.go:450] "horizontalpodautoscaling" is disabled
4897 controllermanager.go:456] Starting "disruption"
4897 deployment_controller.go:152] Starting deployment controller

Excerpt of journalctl -u atomic-openshift-master-controllers.service output at loglevel=8

4897 plugins.go:77] Registered admission plugin "NamespaceLifecycle"
4897 start_master.go:290] Warning: assetConfig.loggingPublicURL: Invalid
value: "": required to view aggregated container logs in the console,
master start will continue.
4897 start_master.go:290] Warning: assetConfig.metricsPublicURL: Invalid
value: "": required to view cluster metrics in the console, master start
will continue.
4897 start_master.go:290] Warning: aggregatorConfig.proxyClientInfo:
Invalid value: "": if no client certificate is specified, the aggregator
will be unable to proxy to remote serv
4897 start_master.go:412] Starting controllers on 0.0.0.0:8444 (v3.7.14)
4897 start_master.go:416] Using images from "openshift3/ose-
<component>:v3.7.14"
4897 standalone_apiserver.go:106] Started health checks at 0.0.0.0:8444
4897 plugins.go:77] Registered admission plugin "NamespaceLifecycle"
4897 configgetter.go:53] Initializing cache sizes based on 0MB limit
4897 leaderelection.go:105] Attempting to acquire openshift-master-
controllers lease as master-bkr-hv03-guest44.dsal.lab.eng.bos.redhat.com-

OpenShift Container Platform 3.7 Installation and Configuration

234

10.19.41.74-xtz6lbqb, renewing every 3s,
4897 leaderelection.go:179] attempting to acquire leader lease...
systemd[1]: Started Atomic OpenShift Master Controllers.
4897 leaderelection.go:189] successfully acquired lease kube-
system/openshift-master-controllers
4897 event.go:218] Event(v1.ObjectReference{Kind:"ConfigMap",
Namespace:"kube-system", Name:"openshift-master-controllers",
UID:"aca86731-ffbe-11e7-8d33-525400c845a8", APIVersion:"
4897 start_master.go:627] Started serviceaccount-token controller

Excerpt of journalctl -u atomic-openshift-master-api.service output at loglevel=2

4613 plugins.go:77] Registered admission plugin "NamespaceLifecycle"
4613 master.go:320] Starting Web Console https://bkr-hv03-
guest44.dsal.lab.eng.bos.redhat.com:8443/console/
4613 master.go:329] Starting OAuth2 API at /oauth
4613 master.go:320] Starting Web Console https://bkr-hv03-
guest44.dsal.lab.eng.bos.redhat.com:8443/console/
4613 master.go:329] Starting OAuth2 API at /oauth
4613 master.go:320] Starting Web Console https://bkr-hv03-
guest44.dsal.lab.eng.bos.redhat.com:8443/console/
4613 master.go:329] Starting OAuth2 API at /oauth
4613 swagger.go:38] No API exists for predefined swagger description
/oapi/v1
4613 swagger.go:38] No API exists for predefined swagger description
/api/v1
[restful] 2018/01/22 16:53:14 log.go:33: [restful/swagger] listing is
available at https://bkr-hv03-
guest44.dsal.lab.eng.bos.redhat.com:8443/swaggerapi
[restful] 2018/01/22 16:53:14 log.go:33: [restful/swagger] https://bkr-
hv03-guest44.dsal.lab.eng.bos.redhat.com:8443/swaggerui/ is mapped to
folder /swagger-ui/
4613 master.go:320] Starting Web Console https://bkr-hv03-
guest44.dsal.lab.eng.bos.redhat.com:8443/console/
4613 master.go:329] Starting OAuth2 API at /oauth
4613 swagger.go:38] No API exists for predefined swagger description
/oapi/v1
4613 swagger.go:38] No API exists for predefined swagger description
/api/v1
[restful] 2018/01/22 16:53:14 log.go:33: [restful/swagger] listing is
available at https://bkr-hv03-
guest44.dsal.lab.eng.bos.redhat.com:8443/swaggerapi
[restful] 2018/01/22 16:53:14 log.go:33: [restful/swagger] https://bkr-
hv03-guest44.dsal.lab.eng.bos.redhat.com:8443/swaggerui/ is mapped to
folder /swagger-ui/
Starting Web Console https://bkr-hv03-
guest44.dsal.lab.eng.bos.redhat.com:8443/console/
Starting OAuth2 API at /oauth
No API exists for predefined swagger description /oapi/v1
No API exists for predefined swagger description /api/v1

5.8. RESTARTING OPENSHIFT CONTAINER PLATFORM SERVICES

To apply configuration changes, you must restart OpenShift Container Platform services.

CHAPTER 5. MASTER AND NODE CONFIGURATION

235

To restart master, run the command:

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

To restart node hosts, on each node, run the command:

systemctl restart atomic-openshift-node

OpenShift Container Platform 3.7 Installation and Configuration

236

CHAPTER 6. OPENSHIFT ANSIBLE BROKER CONFIGURATION

6.1. OVERVIEW

When the OpenShift Ansible broker (OAB) is deployed in a cluster, its behavior is largely dictated by the
broker’s configuration file loaded on startup. The broker’s configuration is stored as a ConfigMap object
in the broker’s namespace (openshift-ansible-service-broker by default).

Example OpenShift Ansible Broker Configuration File

registry: 1
 - type: dockerhub
 name: docker
 url: https://registry.hub.docker.com
 org: <dockerhub_org>
 fail_on_error: false
 - type: rhcc
 name: rhcc
 url: https://registry.access.redhat.com
 fail_on_error: true
 white_list:
 - "^foo.*-apb$"
 - ".*-apb$"
 black_list:
 - "bar.*-apb$"
 - "^my-apb$"
 - type: local_openshift
 name: lo
 namespaces:
 - openshift
 white_list:
 - ".*-apb$"

dao: 2
 etcd_host: localhost
 etcd_port: 2379

log: 3
 logfile: /var/log/ansible-service-broker/asb.log
 stdout: true
 level: debug
 color: true

openshift: 4
 host: ""
 ca_file: ""
 bearer_token_file: ""
 image_pull_policy: IfNotPresent
 sandbox_role: "edit"
 keep_namespace: false
 keep_namespace_on_error: true

broker: 5
 bootstrap_on_startup: true
 dev_broker: true
 launch_apb_on_bind: false
 recovery: true
 output_request: true

CHAPTER 6. OPENSHIFT ANSIBLE BROKER CONFIGURATION

237

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#arch-ansible-service-broker

1

2

3

4

5

6

See Registry Configuration for details.

See DAO Configuration for details.

See Log Configuration for details.

See OpenShift Configuration for details.

See Broker Configuration for details.

See Secrets Configuration for details.

6.2. MODIFYING THE OPENSHIFT ANSIBLE BROKER CONFIGURATION

To modify the OAB’s default broker configuration after it has been deployed:

1. Edit the the broker-config ConfigMap object in the OAB’s namespace as a user with cluster-
admin privileges:

$ oc edit configmap broker-config -n openshift-ansible-service-
broker

2. After saving any updates, redeploy the OAB’s deployment configuration for the changes to take
effect:

$ oc rollout latest dc/asb -n openshift-ansible-service-broker

6.3. REGISTRY CONFIGURATION

The registry section allows you to define the registries that the broker should look at for APBs.

Table 6.1. registry Section Configuration Options

Field Description Required

name The name of the registry. Used by the broker to identify APBs
from this registry.

Y

 ssl_cert_key: /path/to/key
 ssl_cert: /path/to/cert
 refresh_interval: "600s"
 auth:
 - type: basic
 enabled: true

secrets: 6
 - title: Database credentials
 secret: db_creds
 apb_name: dh-rhscl-postgresql-apb

OpenShift Container Platform 3.7 Installation and Configuration

238

auth_type How the broker should read the registry credentials. Can be
config (uses user and pass as defined in the registry
section), secret (uses a secret in the broker namespace), or
file (uses a mounted file).

N [a]

auth_name Name of the secret or file storing the registry credentials that
should be read. Used when auth_type is set to secret.

N [a]

user The user name for authenticating to the registry when using
auth_type: config.

N

pass The password for authenticating to the registry when using
auth_type: config.

N

org The namespace or organization that the image is contained in. N

type The type of registry. Available adapters are mock, rhcc,
openshift, dockerhub, and local_openshift.

Y

namespaces The list of namespaces to configure the local_openshift
registry type with. By default, a user should use openshift.

N

url The URL that is used to retrieve image information. Used
extensively for RHCC while the dockerhub type uses hard-
coded URLs.

N

fail_on_erro
r

Should this registry fail, the bootstrap request if it fails. Will stop
the execution of other registries loading.

N

white_list The list of regular expressions used to define which image
names should be allowed through. Must have a white list to allow
APBs to be added to the catalog. The most permissive regular
expression that you can use is .*-apb$ if you would want to
retrieve all APBs in a registry. See APB Filtering for more details.

N

black_list The list of regular expressions used to define which images
names should never be allowed through. See APB Filtering for
more details.

N

images The list of images to be used with an OpenShift Container
Registry.

N

[a] auth_type is currently required for the openshift registry type, due to a bug that will be addressed in an
upcoming release (BZ#1526949). auth_name is only required in this case if auth_type is set to secret or
file. See ISV Registry .

Field Description Required

6.3.1. Production or Development

CHAPTER 6. OPENSHIFT ANSIBLE BROKER CONFIGURATION

239

https://bugzilla.redhat.com/show_bug.cgi?id=1526949

A production broker configuration is designed to be pointed at a trusted container distribution registry,
such as the Red Hat Container Catalog (RHCC):

However, a development broker configuration is primarily used by developers working on the broker. To
enable developer settings, set the registry name to dev and the dev_broker field in the broker
section to true:

6.3.2. Storing Registry Credentials

The auth_type field in the registry section of the broker configuration determines how the broker
should read the registry credentials, either the config, secret, or file type.

With the config type, the registry credentials are read from the broker configuration’s user and pass
values in the registry section, for example:

registry:
 - name: isv
 type: openshift
 url: https://registry.connect.redhat.com
 auth_type: config
 user: <user>
 pass: <password>
...

If you want to ensure these credentials are not publicly accessible, you can use the secret type to
configure a registry to use a secret from the broker’s namespace. Alternatively, you can use the file to
configure a registry to use a secret mounted as a volume.

To use the secret or file type:

1. The associated secret should have the values username and password defined. When using a
secret, you must ensure that the openshift-ansible-service-broker namespace exists,
as this is where the secret will be read from.
For example, create a reg-creds.yaml file:

registry:
 - name: rhcc
 type: rhcc
 url: https://registry.access.redhat.com
 tag: v3.7
 white_list:
 - ".*-apb$"
 - type: local_openshift
 name: localregistry
 namespaces:
 - openshift
 white_list: []

registry:
 name: dev

broker:
 dev_broker: true

OpenShift Container Platform 3.7 Installation and Configuration

240

$ cat reg-creds.yaml

username: <username>
password: <password>

2. Create a secret from this file in the openshift-ansible-service-broker namespace:

$ oc create secret generic \
 registry-credentials-secret \
 --from-file reg-creds.yaml \
 -n openshift-ansible-service-broker

3. Choose whether you want to use the secret or file type:

To use the secret type, in the broker configuration, set auth_type to secret and
auth_name to the name of the secret:

registry:
 - name: isv
 type: openshift
 url: https://registry.connect.redhat.com
 auth_type: secret
 auth_name: registry-credentials-secret

To use the file type:

a. Edit the asb deployment configuration to mount your file into /tmp/registry-
credentials/reg-creds.yaml:

$ oc edit dc/asb -n openshift-ansible-service-broker

In the containers.volumeMounts section, add:

 volumeMounts:
 - name: reg-auth
 mountPath: /tmp/registry-credentials

In the volumes section, add:

 volumes:
 - name: reg-auth
 secret:
 defaultMode: 420
 secretName: registry-credentials-secret

b. In the broker configuration, set auth_type to file and auth_type to the location of
the file:

registry:
 - name: isv
 type: openshift

CHAPTER 6. OPENSHIFT ANSIBLE BROKER CONFIGURATION

241

 url: https://registry.connect.redhat.com
 auth_type: file
 auth_name: /tmp/registry-credentials/reg-creds.yaml

6.3.3. Mock Registry

A mock registry is useful for reading local APB specs. Instead of going out to a registry to search for
image specs, this uses a list of local specs. Set the name of the registry to mock to use the mock
registry.

6.3.4. Dockerhub Registry

The dockerhub type allows you to load APBs from a specific organization in the DockerHub. For
example, the ansibleplaybookbundle organization.

6.3.5. APB Filtering

APBs can be filtered out by their image name using a combination of the white_list or black_list
parameters, set on a registry basis inside the broker’s configuration.

Both are optional lists of regular expressions that will be run over the total set of discovered APBs for a
given registry to determine matches.

Table 6.2. APB Filter Behavior

Present Allowed Blocked

Only whitelist Matches a regex in list. Any APB that does not match.

Only blacklist All APBs that do not match. APBs that match a regex in list.

Both present Matches regex in whitelist but not
in blacklist.

APBs that match a regex in
blacklist.

None No APBs from the registry. All APBs from that registry.

For example:

registry:
 - name: mock
 type: mock

registry:
 - name: dockerhub
 type: dockerhub
 org: ansibleplaybookbundle
 user: <user>
 pass: <password>
 white_list:
 - ".*-apb$"

OpenShift Container Platform 3.7 Installation and Configuration

242

https://hub.docker.com/u/ansibleplaybookbundle/

Whitelist Only

Anything matching on foo.*-apb$ and only my-apb will be allowed through in this case. All other
APBs will be rejected.

Blacklist Only

Anything matching on bar.*-apb$ and only foobar-apb will be blocked in this case. All other APBs
will be allowed through.

Whitelist and Blacklist

Here, foo-rootkit-apb is specifically blocked by the blacklist despite its match in the whitelist
because the whitelist match is overridden.

Otherwise, only those matching on foo.*-apb$ and my-apb will be allowed through.

Example Broker Configuration registry Section:

6.3.6. Local OpenShift Container Registry

Using the local_openshift type will allow you to load APBs from the OpenShift Container Registry
that is internal to the OpenShift Container Platform cluster. You can configure the namespaces in which
you want to look for published APBs.

white_list:
 - "foo.*-apb$"
 - "^my-apb$"

black_list:
 - "bar.*-apb$"
 - "^foobar-apb$"

white_list:
 - "foo.*-apb$"
 - "^my-apb$"
black_list:
 - "^foo-rootkit-apb$"

registry:
 - type: dockerhub
 name: dockerhub
 url: https://registry.hub.docker.com
 user: <user>
 pass: <password>
 org: <org>
 white_list:
 - "foo.*-apb$"
 - "^my-apb$"
 black_list:
 - "bar.*-apb$"
 - "^foobar-apb$"

CHAPTER 6. OPENSHIFT ANSIBLE BROKER CONFIGURATION

243

1

2

6.3.7. Red Hat Container Catalog Registry

Using the rhcc type will allow you to load APBs that are published to the Red Hat Container Catalog
(RHCC) registry.

6.3.8. ISV Registry

Using the openshift type allows you to load APBs that are published to the ISV container registry at
registry.connect.redhat.com.

Using the openshift registry type currently requires that auth_type be declared in the
configuration (to config, secret, or file) due to a bug that will be addressed in a future release
(BZ#1526949). See Storing Registry Credentials for options.

Because the openshift type currently cannot search the configured registry, it is required that you
configure the broker with a list of images you would like to source from for when the broker
bootstraps. The image names must be the fully qualified name without the registry URL.

6.3.9. Multiple Registries

You can use more than one registry to separate APBs into logical organizations and be able to manage
them from the same broker. The registries must have a unique, non-empty name. If there is no unique
name, the service broker will fail to start with an error message alerting you to the problem.

registry:
 - type: local_openshift
 name: lo
 namespaces:
 - openshift
 white_list:
 - ".*-apb$"

registry:
 - name: rhcc
 type: rhcc
 url: https://registry.access.redhat.com
 white_list:
 - ".*-apb$"

registry:
 - name: isv
 type: openshift

 auth_type: config 1
 user: <user>
 pass: <password>
 url: https://registry.connect.redhat.com

 images: 2
 - <image_1>
 - <image_2>
 white_list:
 - ".*-apb$"

OpenShift Container Platform 3.7 Installation and Configuration

244

https://access.redhat.com/containers
https://registry.connect.redhat.com
https://bugzilla.redhat.com/show_bug.cgi?id=1526949

6.4. DAO CONFIGURATION

Field Description Required

etcd_host The URL of the etcd host. Y

etcd_port The port to use when communicating with etcd_host. Y

6.5. LOG CONFIGURATION

Field Description Required

logfile Where to write the broker’s logs. Y

stdout Write logs to stdout. Y

level Level of the log output. Y

color Color the logs. Y

6.6. OPENSHIFT CONFIGURATION

Field Description Required

host OpenShift Container Platform host. N

ca_file Location of the certificate authority file. N

bearer_token
_file

Location of bearer token to be used. N

registry:
 - name: dockerhub
 type: dockerhub
 org: ansibleplaybookbundle
 user: <user>
 pass: <password>
 white_list:
 - ".*-apb$"
 - name: rhcc
 type: rhcc
 url: <rhcc_url>
 white_list:
 - ".*-apb$"

CHAPTER 6. OPENSHIFT ANSIBLE BROKER CONFIGURATION

245

image_pull_p
olicy

When to pull the image. Y

sandbox_role Role to give to an APB sandbox environment. Y

keep_namespa
ce

Always keep namespace after an APB execution. N

keep_namespa
ce_on_error

Keep namespace after an APB execution has an error. N

Field Description Required

6.7. BROKER CONFIGURATION

The broker section tells the broker what functionality should be enabled and disabled. It will also tell the
broker where to find files on disk that will enable the full functionality.

NOTE

With the absence of async bind, setting launch_apb_on_bind to true can cause the
bind action to timeout and will span a retry. The broker will handle this with "409 Conflicts"
because it is the same bind request with different parameters.

Field Description Default Value Required

dev_broker Allow development routes to be accessible. false N

launch_apb
_on_bind

Allow bind to be a no-op. false N

bootstrap_
on_startup

Allow the broker attempt to bootstrap itself on start
up. Will retrieve the APBs from configured registries.

false N

recovery Allow the broker to attempt to recover itself by
dealing with pending jobs noted in etcd.

false N

output_req
uest

Allow the broker to output the requests to the log file
as they come in for easier debugging.

false N

ssl_cert_k
ey

Tells the broker where to find the TLS key file. If not
set, the API server will attempt to create one.

"" N

ssl_cert Tells the broker where to find the TLS .crt file. If not
set, the API server will attempt to create one.

"" N

refresh_in
terval

The interval to query registries for new image specs. "600s" N

OpenShift Container Platform 3.7 Installation and Configuration

246

auto_escal
ate

Allows the broker to escalate the permissions of a
user while running the APB.

false N

cluster_ur
l

Sets the prefix for the URL that the broker is
expecting.

ansible-
service-
broker

N

Field Description Default Value Required

6.8. SECRETS CONFIGURATION

The secrets section creates associations between secrets in the broker’s namespace and APBs the
broker runs. The broker uses these rules to mount secrets into running APBs, allowing the user to use
secrets to pass parameters without exposing them to the catalog or users.

The section is a list where each entry has the following structure:

Field Description Required

title The title of the rule. This is just for display and output purposes. Y

apb_name The name of the APB to associate with the specified secret. This
is the fully qualified name (<registry_name>-
<image_name>).

Y

secret The name of the secret to pull parameters from. Y

You can download and use the create_broker_secret.py file to create and format this configuration
section.

secrets:
- title: Database credentials
 secret: db_creds
 apb_name: dh-rhscl-postgresql-apb

CHAPTER 6. OPENSHIFT ANSIBLE BROKER CONFIGURATION

247

https://github.com/openshift/ansible-service-broker/blob/master/scripts/create_broker_secret.py

CHAPTER 7. ADDING HOSTS TO AN EXISTING CLUSTER

7.1. OVERVIEW

Depending on how your OpenShift Container Platform cluster was installed, you can add new hosts
(either nodes or masters) to your installation by using the install tool for quick installations, or by using
the scaleup.yml playbook for advanced installations.

7.2. ADDING HOSTS USING THE QUICK INSTALLER TOOL

If you used the quick install tool to install your OpenShift Container Platform cluster, you can use the
quick install tool to add a new node host to your existing cluster.

NOTE

Currently, you can not use the quick installer tool to add new master hosts. You must use
the advanced installation method to do so.

If you used the installer in either interactive or unattended mode, you can re-run the installation as long
as you have an installation configuration file at ~/.config/openshift/installer.cfg.yml (or specify a
different location with the -c option).

IMPORTANT

See the cluster limits section for the recommended maximum number of nodes.

To add nodes to your installation:

1. Ensure you have the latest installer and playbooks by updating the atomic-openshift-utils
package:

yum update atomic-openshift-utils

2. Run the installer with the scaleup subcommand in interactive or unattended mode:

atomic-openshift-installer [-u] [-c </path/to/file>] scaleup

3. The installer detects your current environment and allows you to add additional nodes:

*** Installation Summary ***

Hosts:
- 100.100.1.1
 - OpenShift master
 - OpenShift node
 - Etcd (Embedded)
 - Storage

Total OpenShift masters: 1
Total OpenShift nodes: 1

OpenShift Container Platform 3.7 Installation and Configuration

248

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/scaling_and_performance_guide/#scaling-performance-cluster-limits

We have detected this previously installed OpenShift environment.

This tool will guide you through the process of adding additional
nodes to your cluster.

Are you ready to continue? [y/N]:

Choose (y) and follow the on-screen instructions to complete your desired task.

7.3. ADDING HOSTS

You can add new hosts to your cluster by running the scaleup.yml playbook. This playbook queries the
master, generates and distributes new certificates for the new hosts, and then runs the configuration
playbooks on only the new hosts. Before running the scaleup.yml playbook, complete all prerequisite
host preparation steps.

IMPORTANT

The scaleup.yml playbook configures only the new host. It does not update NO_PROXY
in master services, and it does not restart master services.

You must have an existing inventory file,for example /etc/ansible/hosts, that is representative of your
current cluster configuration in order to run the scaleup.yml playbook. If you previously used the
atomic-openshift-installer command to run your installation, you can check
~/.config/openshift/hosts for the last inventory file that the installer generated and use that file as your
inventory file. You can modify this file as required. You must then specify the file location with -i when
you run the ansible-playbook.

IMPORTANT

See the cluster limits section for the recommended maximum number of nodes.

Procedure

1. Ensure you have the latest playbooks by updating the atomic-openshift-utils package:

yum update atomic-openshift-utils

2. Edit your /etc/ansible/hosts file and add new_<host_type> to the [OSEv3:children] section:
For example, to add a new node host, add new_nodes:

[OSEv3:children]
masters
nodes
new_nodes

To add new master hosts, add new_masters.

3. Create a [new_<host_type>] section to specify host information for the new hosts. Format this
section like an existing section, as shown in the following example of adding a new node:

CHAPTER 7. ADDING HOSTS TO AN EXISTING CLUSTER

249

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/scaling_and_performance_guide/#scaling-performance-cluster-limits

[nodes]
master[1:3].example.com
node1.example.com openshift_node_labels="{'region': 'primary',
'zone': 'east'}"
node2.example.com openshift_node_labels="{'region': 'primary',
'zone': 'west'}"
infra-node1.example.com openshift_node_labels="{'region': 'infra',
'zone': 'default'}"
infra-node2.example.com openshift_node_labels="{'region': 'infra',
'zone': 'default'}"

[new_nodes]
node3.example.com openshift_node_labels="{'region': 'primary',
'zone': 'west'}"

See Configuring Host Variables for more options.

When adding new masters, add hosts to both the [new_masters] section and the [new_nodes]
section to ensure that the new master host is part of the OpenShift SDN.

[masters]
master[1:2].example.com

[new_masters]
master3.example.com

[nodes]
master[1:2].example.com
node1.example.com openshift_node_labels="{'region': 'primary',
'zone': 'east'}"
node2.example.com openshift_node_labels="{'region': 'primary',
'zone': 'west'}"
infra-node1.example.com openshift_node_labels="{'region': 'infra',
'zone': 'default'}"
infra-node2.example.com openshift_node_labels="{'region': 'infra',
'zone': 'default'}"

[new_nodes]
master3.example.com

IMPORTANT

If you label a master host with the region=infra label and have no other
dedicated infrastructure nodes, you must also explicitly mark the host as
schedulable by adding openshift_schedulable=true to the entry.
Otherwise, the registry and router pods cannot be placed anywhere.

4. Run the scaleup.yml playbook. If your inventory file is located somewhere other than the default
of /etc/ansible/hosts, specify the location with the -i option.

For additional nodes:

OpenShift Container Platform 3.7 Installation and Configuration

250

ansible-playbook [-i /path/to/file] \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
node/scaleup.yml

For additional masters:

ansible-playbook [-i /path/to/file] \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
master/scaleup.yml

5. After the playbook runs, verify the installation.

6. Move any hosts that you defined in the [new_<host_type>] section to their appropriate section.
By moving these hosts, subsequent playbook runs that use this inventory file treat the nodes
correctly. You can keep the empty [new_<host_type>] section. For example, when adding new
nodes:

[nodes]
master[1:3].example.com
node1.example.com openshift_node_labels="{'region': 'primary',
'zone': 'east'}"
node2.example.com openshift_node_labels="{'region': 'primary',
'zone': 'west'}"
node3.example.com openshift_node_labels="{'region': 'primary',
'zone': 'west'}"
infra-node1.example.com openshift_node_labels="{'region': 'infra',
'zone': 'default'}"
infra-node2.example.com openshift_node_labels="{'region': 'infra',
'zone': 'default'}"

[new_nodes]

7.4. ADDING ETCD HOSTS TO EXISTING CLUSTER

You can add new etcd hosts to your cluster by running the etcd scaleup playbook. This playbook queries
the master, generates and distributes new certificates for the new hosts, and then runs the configuration
playbooks on the new hosts only. Before running the etcd scaleup.yml playbook, complete all
prerequisite host preparation steps.

To add an etcd host to an existing cluster:

1. Ensure you have the latest playbooks by updating the atomic-openshift-utils package:

2. Edit your /etc/ansible/hosts file, add new_<host_type> to the [OSEv3:children] group and add
hosts under the new_<host_type> group:
For example, to add a new etcd, add new_etcd:

[OSEv3:children]
masters
nodes
etcd
new_etcd

$ yum update atomic-openshift-utils

CHAPTER 7. ADDING HOSTS TO AN EXISTING CLUSTER

251

[etcd]
etcd1.example.com
etcd2.example.com

[new_etcd]
etcd3.example.com

3. Run the etcd scaleup.yml playbook. If your inventory file is located somewhere other than the
default of /etc/ansible/hosts, specify the location with the -i option.

4. After the playbook completes successfully, verify the installation.

7.5. REPLACING EXISTING MASTERS WITH ETCD COLOCATED

Follow these steps when you are migrating your machines to a different data center and the network and
IPs assigned to it will change.

1. Back up the primary etcd and master nodes.

IMPORTANT

Ensure that you back up the /etc/etcd/ directory, as noted in the etcd backup
instructions.

2. Provision as many new machines as there are masters to replace.

3. Add or expand the cluster. for example, if you want to add 3 masters with etcd colocated, scale
up 3 master nodes or 3 etcd nodes.

a. Add a master. In step 3 of that process, add the host of the new data center in
[new_masters] and [new_nodes] and run the master scaleup.yml playbook.

b. Put the same host in the etcd section and run the etcd scaleup.yml playbook.

c. Verify that the host was added:

oc get nodes

d. Verify that the master host IP was added:

oc get ep kubernetes

e. Verify that etcd was added. The value of ETCDCTL_API depends on the version being used:

source /etc/etcd/etcd.conf
ETCDCTL_API=2 etcdctl --cert-file=$ETCD_PEER_CERT_FILE --key-
file=$ETCD_PEER_KEY_FILE \
 --ca-file=/etc/etcd/ca.crt --endpoints=$ETCD_LISTEN_CLIENT_URLS
member list

$ ansible-playbook [-i /path/to/file] \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
etcd/scaleup.yml

OpenShift Container Platform 3.7 Installation and Configuration

252

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/day_two_operations_guide/#etcd-backup_deprecating-etcd
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/day_two_operations_guide/#creating-master-backup_deprecating-etcd
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/day_two_operations_guide/#backing-up-etcd_deprecating-etcd

f. Copy /etc/origin/master/ca.serial.txt from the /etc/origin/master directory to the new
master host that is listed first in your inventory file. By default, this is /etc/ansible/hosts.

4. Remove the etcd hosts.

a. Copy the /etc/etcd/ca directory to the new etcd host that is listed first in your inventory file.
By default, this is /etc/ansible/hosts.

b. Remove the old etcd clients from the master-config.yaml file:

grep etcdClientInfo -A 11 /etc/origin/master/master-config.yaml

c. Restart the masters:

systemctl restart atomic-openshift-master-*

d. Remove the old etcd members from the cluster. The value of ETCDCTL_API depends on the
version being used:

source /etc/etcd/etcd.conf
ETCDCTL_API=2 etcdctl --cert-file=$ETCD_PEER_CERT_FILE --key-
file=$ETCD_PEER_KEY_FILE \
 --ca-file=/etc/etcd/ca.crt --endpoints=$ETCD_LISTEN_CLIENT_URLS
member list

e. Take the IDs from the output of the command above and remove the old members using the
IDs:

etcdctl --cert-file=$ETCD_PEER_CERT_FILE --key-
file=$ETCD_PEER_KEY_FILE \
 --ca-file=/etc/etcd/ca.crt --endpoints=$ETCD_LISTEN_CLIENT_URL
member remove 1609b5a3a078c227

f. Stop and disable the etcd services on the old etcd hosts:

systemctl stop etcd
systemctl disable etcd

5. Shut down old master API and controller services:

systemctl stop atomic-openshift-master-api

6. Remove the master nodes from the HA proxy configuration, which was installed as a load
balancer by default during the native installation process.

7. Decommission the machine.

a. Stop the atomic-openshift-node service on the master to be removed:

systemctl stop atomic-openshift-node

b. Delete the node resource:

CHAPTER 7. ADDING HOSTS TO AN EXISTING CLUSTER

253

oc delete node

7.6. MIGRATING THE NODES

You can migrate nodes individually or in groups (of 2, 5, 10, and so on), depending on what you are
comfortable with and how the services on the node are run and scaled.

1. For the migration node or nodes, provision new VMs for the node’s use in the new data center.

2. To add the new node, scale up the infrastructure. Ensure the labels for the new node are set
properly and that your new API servers are added to your load balancer and successfully serving
traffic.

3. Evaluate and scale down.

a. Mark the current node (in the old data center) unscheduled.

b. Evacuate the node, so that pods on it are scheduled to other nodes.

c. Verify that the evacuated services are running on the new nodes.

4. Remove the node.

a. Verify that the node is empty and does not have running processes.

b. Stop the service or delete the node.

OpenShift Container Platform 3.7 Installation and Configuration

254

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#marking-nodes-as-unschedulable-or-schedulable
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#evacuating-pods-on-nodes

CHAPTER 8. LOADING THE DEFAULT IMAGE STREAMS AND
TEMPLATES

8.1. OVERVIEW

Your OpenShift Container Platform installation includes useful sets of Red Hat-provided image streams
and templates to make it easy for developers to create new applications. By default, the quick and
advanced installation methods automatically create these sets in the openshift project, which is a
default global project to which all users have view access.

8.2. OFFERINGS BY SUBSCRIPTION TYPE

Depending on the active subscriptions on your Red Hat account, the following sets of image streams and
templates are provided and supported by Red Hat. Contact your Red Hat sales representative for further
subscription details.

8.2.1. OpenShift Container Platform Subscription

The core set of image streams and templates are provided and supported with an active OpenShift
Container Platform subscription. This includes the following technologies:

Type Technology

Languages &
Frameworks .NET Core

Node.js

Perl

PHP

Python

Ruby

Databases
MongoDB

MySQL

PostgreSQL

Middleware Services
Red Hat JBoss Web Server (Tomcat)

Red Hat Single Sign-on

Other Services
Jenkins

CHAPTER 8. LOADING THE DEFAULT IMAGE STREAMS AND TEMPLATES

255

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/using_images/#using-images-using-dot-net-core
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/using_images/#using-images-s2i-images-nodejs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/using_images/#using-images-s2i-images-perl
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/using_images/#using-images-s2i-images-php
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/using_images/#using-images-s2i-images-python
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/using_images/#using-images-s2i-images-ruby
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/using_images/#using-images-db-images-mongodb
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/using_images/#using-images-db-images-mysql
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/using_images/#using-images-db-images-postgresql
https://access.redhat.com/documentation/en/red-hat-jboss-middleware-for-openshift/3/single/red-hat-jboss-web-server-for-openshift/
https://access.redhat.com/documentation/en/red-hat-jboss-middleware-for-openshift/3/single/red-hat-jboss-sso-for-openshift/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/using_images/#using-images-other-images-jenkins

8.2.2. xPaaS Middleware Add-on Subscriptions

Support for xPaaS middleware images are provided by xPaaS Middleware add-on subscriptions, which
are separate subscriptions for each xPaaS product. If the relevant subscription is active on your account,
image streams and templates are provided and supported for the following technologies:

Type Technology

Middleware Services
Red Hat JBoss A-MQ

Red Hat JBoss BPM Suite Intelligent Process Server

Red Hat JBoss BRMS Decision Server

Red Hat JBoss Data Grid

Red Hat JBoss EAP

Red Hat JBoss Fuse Integration Services

Red Hat JBoss Data Virtualization

8.3. BEFORE YOU BEGIN

Before you consider performing the tasks in this topic, confirm if these image streams and templates are
already registered in your OpenShift Container Platform cluster by doing one of the following:

Log into the web console and click Add to Project.

List them for the openshift project using the CLI:

$ oc get is -n openshift
$ oc get templates -n openshift

If the default image streams and templates are ever removed or changed, you can follow this topic to
create the default objects yourself. Otherwise, the following instructions are not necessary.

8.4. PREREQUISITES

Before you can create the default image streams and templates:

The integrated Docker registry service must be deployed in your OpenShift Container Platform
installation.

You must be able to run the oc create command with cluster-admin privileges, because they
operate on the default openshiftproject.

You must have installed the atomic-openshift-utils RPM package. See Software Prerequisites
for instructions.

Define shell variables for the directories containing image streams and templates. This
significantly shortens the commands in the following sections. To do this:

$ IMAGESTREAMDIR="/usr/share/ansible/openshift-

OpenShift Container Platform 3.7 Installation and Configuration

256

https://access.redhat.com/documentation/en-us/red_hat_jboss_a-mq/6.3/html-single/red_hat_jboss_a-mq_for_openshift/
https://access.redhat.com/documentation/en-us/red_hat_jboss_bpm_suite/6.4/html-single/red_hat_jboss_bpm_suite_intelligent_process_server_for_openshift/
https://access.redhat.com/documentation/en-us/red_hat_jboss_brms/6.4/html-single/red_hat_jboss_brms_realtime_decision_server_for_openshift/
https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.1/html-single/data_grid_for_openshift/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/red_hat_jboss_enterprise_application_platform_for_openshift/
https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse/6.2.1/html-single/fuse_integration_services_1.0_for_openshift/
https://access.redhat.com/documentation/en-us/red_hat_jboss_data_virtualization/6.4/html/red_hat_jboss_data_virtualization_for_openshift/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#projects

ansible/roles/openshift_examples/files/examples/v3.7/image-streams";
\
 XPAASSTREAMDIR="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.7/xpaas-streams";
\
 XPAASTEMPLATES="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.7/xpaas-
templates"; \
 DBTEMPLATES="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.7/db-templates";
\
 QSTEMPLATES="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.7/quickstart-
templates"

8.5. CREATING IMAGE STREAMS FOR OPENSHIFT CONTAINER
PLATFORM IMAGES

If your node hosts are subscribed using Red Hat Subscription Manager and you want to use the core set
of image streams that used Red Hat Enterprise Linux (RHEL) 7 based images:

$ oc create -f $IMAGESTREAMDIR/image-streams-rhel7.json -n openshift

Alternatively, to create the core set of image streams that use the CentOS 7 based images:

$ oc create -f $IMAGESTREAMDIR/image-streams-centos7.json -n openshift

Creating both the CentOS and RHEL sets of image streams is not possible, because they use the same
names. To have both sets of image streams available to users, either create one set in a different
project, or edit one of the files and modify the image stream names to make them unique.

8.6. CREATING IMAGE STREAMS FOR XPAAS MIDDLEWARE IMAGES

The xPaaS Middleware image streams provide images for JBoss EAP, JBoss JWS, JBoss A-MQ,
JBoss Fuse Integration Services, Decision Server, JBoss Data Virtualization and JBoss Data
Grid. They can be used to build applications for those platforms using the provided templates.

To create the xPaaS Middleware set of image streams:

$ oc create -f $XPAASSTREAMDIR/jboss-image-streams.json -n openshift

NOTE

Access to the images referenced by these image streams requires the relevant xPaaS
Middleware subscriptions.

8.7. CREATING DATABASE SERVICE TEMPLATES

The database service templates make it easy to run a database image which can be utilized by other
components. For each database (MongoDB, MySQL, and PostgreSQL), two templates are defined.

CHAPTER 8. LOADING THE DEFAULT IMAGE STREAMS AND TEMPLATES

257

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/using_images/#using-images-db-images-mongodb
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/using_images/#using-images-db-images-mysql
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/using_images/#using-images-db-images-postgresql

One template uses ephemeral storage in the container which means data stored will be lost if the
container is restarted, for example if the pod moves. This template should be used for demonstration
purposes only.

The other template defines a persistent volume for storage, however it requires your OpenShift
Container Platform installation to have persistent volumes configured.

To create the core set of database templates:

$ oc create -f $DBTEMPLATES -n openshift

After creating the templates, users are able to easily instantiate the various templates, giving them quick
access to a database deployment.

8.8. CREATING INSTANT APP AND QUICKSTART TEMPLATES

The Instant App and Quickstart templates define a full set of objects for a running application. These
include:

Build configurations to build the application from source located in a GitHub public repository

Deployment configurations to deploy the application image after it is built.

Services to provide load balancing for the application pods.

Routes to provide external access to the application.

Some of the templates also define a database deployment and service so the application can perform
database operations.

NOTE

The templates which define a database use ephemeral storage for the database content.
These templates should be used for demonstration purposes only as all database data
will be lost if the database pod restarts for any reason.

Using these templates, users are able to easily instantiate full applications using the various language
images provided with OpenShift Container Platform. They can also customize the template parameters
during instantiation so that it builds source from their own repository rather than the sample repository,
so this provides a simple starting point for building new applications.

To create the core Instant App and Quickstart templates:

$ oc create -f $QSTEMPLATES -n openshift

There is also a set of templates for creating applications using various xPaaS Middleware products
(JBoss EAP, JBoss JWS, JBoss A-MQ, JBoss Fuse Integration Services, Decision Server, and
JBoss Data Grid), which can be registered by running:

$ oc create -f $XPAASTEMPLATES -n openshift

OpenShift Container Platform 3.7 Installation and Configuration

258

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#pods
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-core-concepts-routes

NOTE

The xPaaS Middleware templates require the xPaaS Middleware image streams, which in
turn require the relevant xPaaS Middleware subscriptions.

NOTE

The templates which define a database use ephemeral storage for the database content.
These templates should be used for demonstration purposes only as all database data
will be lost if the database pod restarts for any reason.

8.9. WHAT’S NEXT?

With these artifacts created, developers can now log into the web console and follow the flow for creating
from a template. Any of the database or application templates can be selected to create a running
database service or application in the current project. Note that some of the application templates define
their own database services as well.

The example applications are all built out of GitHub repositories which are referenced in the templates
by default, as seen in the SOURCE_REPOSITORY_URL parameter value. Those repositories can be
forked, and the fork can be provided as the SOURCE_REPOSITORY_URL parameter value when creating
from the templates. This allows developers to experiment with creating their own applications.

You can direct your developers to the Using the Instant App and Quickstart Templates section in the
Developer Guide for these instructions.

CHAPTER 8. LOADING THE DEFAULT IMAGE STREAMS AND TEMPLATES

259

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#creating-from-templates-using-the-web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#using-the-instantapp-templates

1

2

3

CHAPTER 9. CONFIGURING CUSTOM CERTIFICATES

9.1. OVERVIEW

Administrators can configure custom serving certificates for the public host names of the OpenShift
Container Platform API and web console. This can be done during an advanced installation or
configured after installation.

9.2. CONFIGURING CUSTOM CERTIFICATES DURING INSTALLATION

During advanced installations, custom certificates can be configured using the
openshift_master_named_certificates and
openshift_master_overwrite_named_certificates parameters, which are configurable in the
inventory file. More details are available about configuring custom certificates with Ansible.

Custom Certificate Configuration Parameters

If you provide a value for the openshift_master_named_certificates parameter, set this
parameter to true.

Provisions a master API certificate.

Provisions a wildcard API certificate.

Example parameters for a master API certificate:

openshift_master_overwrite_named_certificates=true
openshift_master_named_certificates=[{"names":
["master.148.251.233.173.nip.io"], "certfile": "/home/cloud-user/master-
bundle.cert.pem", "keyfile": "/home/cloud-
user/master.148.251.233.173.nip.io.key.pem"]

Example parameters for a wildcard API certificate:

openshift_hosted_router_certificate={"certfile": "/home/cloud-user/star-
apps.148.251.233.173.nip.io.cert.pem", "keyfile": "/home/cloud-user/star-
apps.148.251.233.173.nip.io.key.pem", "cafile": "/home/cloud-user/ca-
chain.cert.pem"}

9.3. CONFIGURING CUSTOM CERTIFICATES FOR THE WEB CONSOLE
OR CLI

openshift_master_overwrite_named_certificates=true 1
openshift_master_named_certificates=[{"certfile": "/path/on/host/to/crt-
file", "keyfile": "/path/on/host/to/key-file", "names": ["public-master-

host.com"], "cafile": "/path/on/host/to/ca-file"}] 2
openshift_hosted_router_certificate={"certfile": "/path/on/host/to/app-
crt-file", "keyfile": "/path/on/host/to/app-key-file", "cafile":

"/path/on/host/to/app-ca-file"} 3

OpenShift Container Platform 3.7 Installation and Configuration

260

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-infrastructure-components-web-console

1 2

3 4

You can specify custom certificates for the web console and for the CLI through the servingInfo
section of the master configuration file:

The servingInfo.namedCertificates section serves up custom certificates for the web
console.

The servingInfo section serves up custom certificates for the CLI and other API calls.

You can configure multiple certificates this way, and each certificate can be associated with multiple
host names, multiple routers, or the OpenShift Container Platform image registry.

A default certificate must be configured in the servingInfo.certFile and servingInfo.keyFile
configuration sections in addition to namedCertificates.

NOTE

The namedCertificates section should be configured for only the host name
associated with the masterPublicURL, assetConfig.publicURL, and
oauthConfig.assetPublicURL settings. Using a custom serving certificate for the
host name associated with the masterURL will result in TLS errors as infrastructure
components will attempt to contact the master API using the internal masterURL host.

Custom Certificates Configuration

servingInfo:
logoutURL: ""
masterPublicURL: https://openshift.example.com:8443
publicURL: https://openshift.example.com:8443/console/
bindAddress: 0.0.0.0:8443
bindNetwork: tcp4

certFile: master.server.crt 1
clientCA: ""

keyFile: master.server.key 2
maxRequestsInFlight: 0
requestTimeoutSeconds: 0
namedCertificates:

 - certFile: wildcard.example.com.crt 3

 keyFile: wildcard.example.com.key 4
 names:
 - "openshift.example.com"
metricsPublicURL: "https://metrics.os.example.com/hawkular/metrics"

Path to certificate and key files for the CLI and other API calls.

Path to certificate and key files for the web console.

The openshift_master_cluster_public_hostname and
openshift_master_cluster_hostname parameters in the Ansible inventory file, by default
/etc/ansible/hosts, must be different. If they are the same, the named certificates will fail and you
will need to re-install them.

CHAPTER 9. CONFIGURING CUSTOM CERTIFICATES

261

Native HA with External LB VIPs
openshift_master_cluster_hostname=internal.paas.example.com
openshift_master_cluster_public_hostname=external.paas.example.com

For more information on using DNS with OpenShift Container Platform, see the DNS installation
prerequisites.

This approach allows you to take advantage of the self-signed certificates generated by OpenShift
Container Platform and add custom trusted certificates to individual components as needed.

Note that the internal infrastructure certificates remain self-signed, which might be perceived as bad
practice by some security or PKI teams. However, any risk here is minimal, as the only clients that trust
these certificates are other components within the cluster. All external users and systems use custom
trusted certificates.

Relative paths are resolved based on the location of the master configuration file. Restart the server to
pick up the configuration changes.

9.4. CONFIGURING A CUSTOM MASTER HOST CERTIFICATE

In order to facilitate trusted connections with external users of OpenShift Container Platform, you can
provision a named certificate that matches the domain name provided in the
openshift_master_cluster_public_hostname paramater in the Ansible inventory file, by default
/etc/ansible/hosts.

You must place this certificate in a directory accessible to Ansible and add the path in the Ansible
inventory file, as follows:

openshift_master_named_certificates=[{"certfile": "/path/to/console.ocp-
c1.myorg.com.crt", "keyfile": "/path/to/console.ocp-c1.myorg.com.key",
"names": ["console.ocp-c1.myorg.com"]}]

Where the parameter values are:

certfile is the path to the file that contains the OpenShift Container Platform custom certificate.

keyfile is the path to the file that contains the OpenShift Container Platform custom key.

names is the cluster public hostname.

The file paths must be local to the system where Ansible runs. Certificates are copied to master hosts
and are deployed within the /etc/origin/master/named_certificates/ directory.

When securing the registry, add the service hostnames and IP addresses to the server certificate for the
registry. The Subject Alternative Names (SAN) must contain the following.

Two service hostnames:

docker-registry.default.svc.cluster.local
docker-registry.default.svc

Service IP address.
For example:

172.30.252.46

OpenShift Container Platform 3.7 Installation and Configuration

262

Use the following command to get the Docker registry service IP address:

oc get service docker-registry --template='{{.spec.clusterIP}}'

Public hostname.

docker-registry-default.apps.example.com

Use the following command to get the Docker registry public hostname:

oc get route docker-registry --template '{{.spec.host}}'

For example, the server certificate should contain SAN details similar to the following:

X509v3 Subject Alternative Name:
 DNS:docker-registry-public.openshift.com, DNS:docker-
registry.default.svc, DNS:docker-registry.default.svc.cluster.local,
DNS:172.30.2.98, IP Address:172.30.2.98

9.5. CONFIGURING A CUSTOM WILDCARD CERTIFICATE FOR THE
DEFAULT ROUTER

You can configure the OpenShift Container Platform default router with a default wildcard certificate. A
default wildcard certificate provides a convenient way for applications that are deployed in OpenShift
Container Platform to use default encryption without needing custom certificates.

NOTE

Default wildcard certificates are recommended for non-production environments only.

To configure a default wildcard certificate, provision a certificate that is valid for *.<app_domain>,
where <app_domain> is the value of openshift_master_default_subdomain in the Ansible
inventory file, by default /etc/ansible/hosts. Once provisioned, place the certificate, key, and ca
certificate files on your Ansible host, and add the following line to your Ansible inventory file.

openshift_hosted_router_certificate={"certfile": "/path/to/apps.c1-
ocp.myorg.com.crt", "keyfile": "/path/to/apps.c1-ocp.myorg.com.key",
"cafile": "/path/to/apps.c1-ocp.myorg.com.ca.crt"}

For example:

openshift_hosted_router_certificate={"certfile": "/home/cloud-user/star-
apps.148.251.233.173.nip.io.cert.pem", "keyfile": "/home/cloud-user/star-
apps.148.251.233.173.nip.io.key.pem", "cafile": "/home/cloud-user/ca-
chain.cert.pem"}

Where the parameter values are:

certfile is the path to the file that contains the OpenShift Container Platform router certificate.

CHAPTER 9. CONFIGURING CUSTOM CERTIFICATES

263

1

2

keyfile is the path to the file that contains the OpenShift Container Platform wildcard key.

cafile is the path to the file that contains the root CA for this key and certificate. If an intermediate
CA is in use, the file should contain both the intermediate and root CA.

If these certificate files are new to your OpenShift Container Platform cluster, run the Ansible
byo/config.yml playbook to add these files to the OpenShift Container Platform configuration files. The
playbook adds the certificate files to the /etc/origin/master/ directory.

ansible-playbook [-i /path/to/inventory] \
 /usr/share/ansible/openshift-ansible/playbooks/byo/config.yml

If the certificates are not new, for example, you want to change existing certificates or replace expired
certificates, run the following playbook:

ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/redeploy-
certificates.yml

NOTE

For this playbook to run, the certificate names must not change. If the certificate names
change, rerun the Ansible byo/config.yml playbook as if the certificates were new.

9.6. CONFIGURING A CUSTOM CERTIFICATE FOR THE IMAGE
REGISTRY

The OpenShift Container Platform image registry is an internal service that facilitates builds and
deployments. Most of the communication with the registry is handled by internal components in
OpenShift Container Platform. As such, you should not need to replace the certificate used by the
registry service itself.

However, by default, the registry uses routes to allow external systems and users to do pulls and pushes
of images. You can use a re-encrypt route with a custom certificate that is presented to external users
instead of using the internal, self-signed certificate.

To configure this, add the following lines of code to the [OSEv3:vars] section of the Ansible inventory file,
by default /etc/ansible/hosts file. Specify the certificates to use with the registry route.

openshift_hosted_registry_routehost=registry.apps.c1-ocp.myorg.com 1
openshift_hosted_registry_routecertificates={"certfile":
"/path/to/registry.apps.c1-ocp.myorg.com.crt", "keyfile":
"/path/to/registry.apps.c1-ocp.myorg.com.key", "cafile":

"/path/to/registry.apps.c1-ocp.myorg.com-ca.crt"} 2

openshift_hosted_registry_routetermination=reencrypt 3

The host name of the registry.

The locations of the cacert, root, and cafile files.

certfile is the path to the file that contains the OpenShift Container Platform router
certificate.

keyfile is the path to the file that contains the OpenShift Container Platform wildcard key.

OpenShift Container Platform 3.7 Installation and Configuration

264

3

1

2

cafile is the path to the file that contains the root CA for this key and certificate. If an
intermediate CA is in use, the file should contain both the intermediate and root CA.

Specify where encryption is performed:

Set to reencrypt with a re-encrypt route to terminate encryption at the edge router and re-
encrypt it with a new certificate supplied by the destination.

Set to passthrough to terminate encryption at the destination. The destination is
responsible for decrypting traffic.

9.7. CONFIGURING A CUSTOM CERTIFICATE FOR A LOAD BALANCER

If your OpenShift Container Platform cluster uses the default load balancer or an enterprise-level load
balancer, you can use custom certificates to make the web console and API available externally using a
publicly-signed custom certificate. leaving the existing internal certificates for the internal endpoints.

To configure OpenShift Container Platform to use custom certificates in this way:

1. Edit the servingInfo section of the master configuration file:

servingInfo:
 logoutURL: ""
 masterPublicURL: https://openshift.example.com:8443
 publicURL: https://openshift.example.com:8443/console/
 bindAddress: 0.0.0.0:8443
 bindNetwork: tcp4
 certFile: master.server.crt
 clientCA: ""
 keyFile: master.server.key
 maxRequestsInFlight: 0
 requestTimeoutSeconds: 0
 namedCertificates:

 - certFile: wildcard.example.com.crt 1

 keyFile: wildcard.example.com.key 2
 names:
 - "openshift.example.com"
 metricsPublicURL:
"https://metrics.os.example.com/hawkular/metrics"

Path to the certificate file for the web console.

Path to the key file for the web console.

NOTE

Configure the namedCertificates section for only the host name associated
with the masterPublicURL and oauthConfig.assetPublicURL settings.
Using a custom serving certificate for the host name associated with the
masterURL causes in TLS errors as infrastructure components attempt to
contact the master API using the internal masterURL host.

CHAPTER 9. CONFIGURING CUSTOM CERTIFICATES

265

1

2

1

2. Specify the openshift_master_cluster_public_hostname and
openshift_master_cluster_hostname paramaters in the Ansible inventory file, by default
/etc/ansible/hosts. These values must be different. If they are the same, the named certificates
will fail.

Native HA with External LB VIPs

openshift_master_cluster_hostname=paas.example.com 1

openshift_master_cluster_public_hostname=public.paas.example.com 2

The FQDN for internal load balancer configured for SSL passthrough.

The FQDN for external the load balancer with custom (public) certificate.

For information specific to your load balancer environment, refer to the OpenShift Container Platform
Reference Architecture for your provider and Custom Certificate SSL Termination (Production).

9.8. RETROFIT CUSTOM CERTIFICATES INTO A CLUSTER

You can retrofit custom master and custom router certificates into an existing OpenShift Container
Platform cluster by editing the the Ansible inventory file, by default /etc/ansible/hosts, and running a
playbook.

9.8.1. Retrofit Custom Master Certificates into a Cluster

To retrofit custom certificates:

1. Edit the Ansible inventory file to set the
openshift_master_overwrite_named_certificates=true.

2. Specify the path to the certificate using the openshift_master_named_certificates
parameter.

Path to a master API certificate.

3. Run the following playbook:

ansible-playbook /usr/share/ansible/openshift-
ansible/playbooks/redeploy-certificates.yml

9.8.2. Retrofit Custom Router Certificates into a Cluster

To retrofit custom router certificates:

1. Edit the Ansible inventory file to set the
openshift_master_overwrite_named_certificates=true.

openshift_master_overwrite_named_certificates=true
openshift_master_named_certificates=[{"certfile":
"/path/on/host/to/crt-file", "keyfile": "/path/on/host/to/key-file",
"names": ["public-master-host.com"], "cafile": "/path/on/host/to/ca-

file"}] 1

OpenShift Container Platform 3.7 Installation and Configuration

266

https://access.redhat.com/documentation/en-us/reference_architectures/?category=openshift%2520container%2520platform&version=current%2520release
http://v1.uncontained.io/playbooks/installation/load_balancing.html#custom-certificate-ssl-termination-production

1

2. Specify the path to the certificate using the openshift_hosted_router_certificate
parameter.

Path to a wildcard API certificate.

3. Run the following playbook:

ansible-playbook /usr/share/ansible/openshift-
ansible/playbooks/byo/openshift-cluster/redeploy-router-
certificates.yml

9.9. USING CUSTOM CERTIFICATES WITH OTHER COMPONENTS

For information on how other components, such as Logging & Metrics, use custom certificates, see
Certificate Management.

openshift_master_overwrite_named_certificates=true
openshift_hosted_router_certificate={"certfile":
"/path/on/host/to/app-crt-file", "keyfile": "/path/on/host/to/app-

key-file", "cafile": "/path/on/host/to/app-ca-file"} 1

CHAPTER 9. CONFIGURING CUSTOM CERTIFICATES

267

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/administrator_solutions/#admin-solutions-certificate-management

CHAPTER 10. REDEPLOYING CERTIFICATES

10.1. OVERVIEW

OpenShift Container Platform uses certificates to provide secure connections for the following
components:

masters (API server and controllers)

etcd

nodes

registry

router

You can use Ansible playbooks provided with the installer to automate checking expiration dates for
cluster certificates. Playbooks are also provided to automate backing up and redeploying these
certificates, which can fix common certificate errors.

Possible use cases for redeploying certificates include:

The installer detected the wrong host names and the issue was identified too late.

The certificates are expired and you need to update them.

You have a new CA and want to create certificates using it instead.

10.2. CHECKING CERTIFICATE EXPIRATIONS

You can use the installer to warn you about any certificates expiring within a configurable window of
days and notify you about any certificates that have already expired. Certificate expiry playbooks use the
Ansible role openshift_certificate_expiry.

Certificates examined by the role include:

Master and node service certificates

Router and registry service certificates from etcd secrets

Master, node, router, registry, and kubeconfig files for cluster-admin users

etcd certificates (including embedded)

10.2.1. Role Variables

The openshift_certificate_expiry role uses the following variables:

Table 10.1. Core Variables

OpenShift Container Platform 3.7 Installation and Configuration

268

Variable Name Default Value Description

openshift_certificate_expiry
_config_base

/etc/origin Base OpenShift Container Platform
configuration directory.

openshift_certificate_expiry
_warning_days

30 Flag certificates that will expire in this
many days from now.

openshift_certificate_expiry
_show_all

no Include healthy (non-expired and non-
warning) certificates in results.

Table 10.2. Optional Variables

Variable Name Default Value Description

openshift_certificate_expiry
_generate_html_report

no Generate an HTML report of the expiry
check results.

openshift_certificate_expiry
_html_report_path

/tmp/cert-
expiry-
report.html

The full path for saving the HTML report.

openshift_certificate_expiry
_save_json_results

no Save expiry check results as a JSON file.

openshift_certificate_expiry
_json_results_path

/tmp/cert-
expiry-
report.json

The full path for saving the JSON report.

10.2.2. Running Certificate Expiration Playbooks

The OpenShift Container Platform installer provides a set of example certificate expiration playbooks,
using different sets of configuration for the openshift_certificate_expiry role.

These playbooks must be used with an inventory file that is representative of the cluster. For best
results, run ansible-playbook with the -v option.

Using the easy-mode.yaml example playbook, you can try the role out before tweaking it to your
specifications as needed. This playbook:

Produces JSON and stylized HTML reports in /tmp/.

Sets the warning window very large, so you will almost always get results back.

Includes all certificates (healthy or not) in the results.

easy-mode.yaml Playbook

- name: Check cert expirys
 hosts: nodes:masters:etcd
 become: yes

CHAPTER 10. REDEPLOYING CERTIFICATES

269

 gather_facts: no
 vars:
 openshift_certificate_expiry_warning_days: 1500
 openshift_certificate_expiry_save_json_results: yes
 openshift_certificate_expiry_generate_html_report: yes
 openshift_certificate_expiry_show_all: yes
 roles:
 - role: openshift_certificate_expiry

To run the easy-mode.yaml playbook:

$ ansible-playbook -v -i <inventory_file> \
 /usr/share/ansible/openshift-
ansible/playbooks/certificate_expiry/easy-mode.yaml

Other Example Playbooks
The other example playbooks are also available to run directly out of the /usr/share/ansible/openshift-
ansible/playbooks/certificate_expiry/ directory.

Table 10.3. Other Example Playbooks

File Name Usage

default.yaml Produces the default behavior of the
openshift_certificate_expiry role.

html_and_json_default_paths.yaml Generates HTML and JSON artifacts in their default
paths.

longer_warning_period.yaml Changes the expiration warning window to 1500
days.

longer-warning-period-json-results.yaml Changes the expiration warning window to 1500 days
and saves the results as a JSON file.

To run any of these example playbooks:

$ ansible-playbook -v -i <inventory_file> \
 /usr/share/ansible/openshift-
ansible/playbooks/certificate_expiry/<playbook>

10.2.3. Output Formats

As noted above, there are two ways to format your check report. In JSON format for machine parsing, or
as a stylized HTML page for easy skimming.

HTML Report
An example of an HTML report is provided with the installer. You can open the following file in your
browser to view it:

/usr/share/ansible/openshift-ansible/roles/openshift_certificate_expiry/examples/cert-expiry-
report.html

OpenShift Container Platform 3.7 Installation and Configuration

270

JSON Report
There are two top-level keys in the saved JSON results: data and summary.

The data key is a hash where the keys are the names of each host examined and the values are the
check results for the certificates identified on each respective host.

The summary key is a hash that summarizes the total number of certificates:

examined on the entire cluster

that are OK

expiring within the configured warning window

already expired

For an example of the full JSON report, see /usr/share/ansible/openshift-
ansible/roles/openshift_certificate_expiry/examples/cert-expiry-report.json.

The summary from the JSON data can be easily checked for warnings or expirations using a variety of
command-line tools. For example, using grep you can look for the word summary and print out the two
lines after the match (-A2):

$ grep -A2 summary /tmp/cert-expiry-report.json
 "summary": {
 "warning": 16,
 "expired": 0

If available, the jq tool can also be used to pick out specific values. The first two examples below show
how to select just one value, either warning or expired. The third example shows how to select both
values at once:

$ jq '.summary.warning' /tmp/cert-expiry-report.json
16

$ jq '.summary.expired' /tmp/cert-expiry-report.json
0

$ jq '.summary.warning,.summary.expired' /tmp/cert-expiry-report.json
16
0

10.3. REDEPLOYING CERTIFICATES

Use the following playbooks to redeploy master, etcd, node, registry, and router certificates on all
relevant hosts. You can redeploy all of them at once using the current CA, redeploy certificates for
specific components only, or redeploy a newly generated or custom CA on its own.

Just like the certificate expiry playbooks, these playbooks must be run with an inventory file that is
representative of the cluster.

In particular, the inventory must specify or override all host names and IP addresses set via the following
variables such that they match the current cluster configuration:

openshift_hostname

CHAPTER 10. REDEPLOYING CERTIFICATES

271

openshift_public_hostname

openshift_ip

openshift_public_ip

openshift_master_cluster_hostname

openshift_master_cluster_public_hostname

The playbooks you need are provided by:

yum install atomic-openshift-utils

NOTE

The validity (length in days until they expire) for any certificates auto-generated while
redeploying can be configured via Ansible as well. See Configuring Certificate Validity.

NOTE

OpenShift Container Platform CA and etcd certificates expire after five years. Signed
OpenShift Container Platform certificates expire after two years.

10.3.1. Redeploying All Certificates Using the Current OpenShift Container
Platform and etcd CA

The redeploy-certificates.yml playbook does not regenerate the OpenShift Container Platform CA
certificate. New master, etcd, node, registry, and router certificates are created using the current CA
certificate to sign new certificates.

This also includes serial restarts of:

etcd

master services

node services

To redeploy master, etcd, and node certificates using the current OpenShift Container Platform CA, run
this playbook, specifying your inventory file:

$ ansible-playbook -i <inventory_file> \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/redeploy-certificates.yml

10.3.2. Redeploying a New or Custom OpenShift Container Platform CA

The redeploy-openshift-ca.yml playbook redeploys the OpenShift Container Platform CA certificate by
generating a new CA certificate and distributing an updated bundle to all components including client
kubeconfig files and the node’s database of trusted CAs (the CA-trust).

This also includes serial restarts of:

OpenShift Container Platform 3.7 Installation and Configuration

272

master services

node services

docker

Additionally, you can specify a custom CA certificate when redeploying certificates instead of relying on a
CA generated by OpenShift Container Platform.

When the master services are restarted, the registry and routers can continue to communicate with the
master without being redeployed because the master’s serving certificate is the same, and the CA the
registry and routers have are still valid.

To redeploy a newly generated or custom CA:

1. If you want to use a custom CA, set the following variable in your inventory file. To use the
current CA, skip this step.

Configure custom ca certificate
NOTE: CA certificate will not be replaced with existing clusters.
This option may only be specified when creating a new cluster or
when redeploying cluster certificates with the redeploy-
certificates
playbook.
openshift_master_ca_certificate={'certfile': '</path/to/ca.crt>',
'keyfile': '</path/to/ca.key>'}

If the CA certificate is issued by an intermediate CA, the bundled certificate must contain the full
chain (the intermediate and root certificates) for the CA in order to validate child certificates.

For example:

$ cat intermediate/certs/intermediate.cert.pem \
 certs/ca.cert.pem >> intermediate/certs/ca-chain.cert.pem

2. Run the redeploy-openshift-ca.yml playbook, specifying your inventory file:

$ ansible-playbook -i <inventory_file> \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/redeploy-openshift-ca.yml

With the new OpenShift Container Platform CA in place, you can then use the redeploy-certificates.yml
playbook at your discretion whenever you want to redeploy certificates signed by the new CA on all
components.

10.3.3. Redeploying a New etcd CA

The redeploy-etcd-ca.yml playbook redeploys the etcd CA certificate by generating a new CA certificate
and distributing an updated bundle to all etcd peers and master clients.

This also includes serial restarts of:

etcd

master services

CHAPTER 10. REDEPLOYING CERTIFICATES

273

NOTE

The redeploy-etcd-ca.yml playbook is only available for OpenShift Container Platform
v3.5.91-1 and above.

To redeploy a newly generated etcd CA:

1. Run the redeploy-etcd-ca.yml playbook, specifying your inventory file:

$ ansible-playbook -i <inventory_file> \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/redeploy-etcd-ca.yml

With the new etcd CA in place, you can then use the redeploy-etcd-certificates.yml playbook at your
discretion whenever you want to redeploy certificates signed by the new etcd CA on etcd peers and
master clients. Alternatively, you can use the redeploy-certificates.yml playbook to redeploy
certificates for OpenShift Container Platform components in addition to etcd peers and master clients.

NOTE

The etcd certificate redeployment can result in copying the serial to all master hosts.

10.3.4. Redeploying Master Certificates Only

The redeploy-master-certificates.yml playbook only redeploys master certificates. This also includes
serial restarts of master services.

To redeploy master certificates, run this playbook, specifying your inventory file:

$ ansible-playbook -i <inventory_file> \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/redeploy-master-certificates.yml

NOTE

After running this playbook, you must regenerate any service signing certificate or key
pairs by deleting existing secrets that contain service serving certificates or removing and
re-adding annotations to appropriate services.

10.3.5. Redeploying etcd Certificates Only

The redeploy-etcd-certificates.yml playbook only redeploys etcd certificates including master client
certificates.

This also include serial restarts of:

etcd

master services.

To redeploy etcd certificates, run this playbook, specifying your inventory file:

$ ansible-playbook -i <inventory_file> \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-

OpenShift Container Platform 3.7 Installation and Configuration

274

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#service-serving-certificate-secrets

cluster/redeploy-etcd-certificates.yml

10.3.6. Redeploying Node Certificates Only

The redeploy-node-certificates.yml playbook only redeploys node certificates. This also include serial
restarts of node services.

To redeploy node certificates, run this playbook, specifying your inventory file:

$ ansible-playbook -i <inventory_file> \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/redeploy-node-certificates.yml

10.3.7. Redeploying Registry or Router Certificates Only

The redeploy-registry-certificates.yml and redeploy-router-certificates.yml playbooks replace
installer-created certificates for the registry and router. If custom certificates are in use for these
components, see Redeploying Custom Registry or Router Certificates to replace them manually.

10.3.7.1. Redeploying Registry Certificates Only

To redeploy registry certificates, run the following playbook, specifying your inventory file:

$ ansible-playbook -i <inventory_file> \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/redeploy-registry-certificates.yml

10.3.7.2. Redeploying Router Certificates Only

To redeploy router certificates, run the following playbook, specifying your inventory file:

$ ansible-playbook -i <inventory_file> \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/redeploy-router-certificates.yml

10.3.8. Redeploying Custom Registry or Router Certificates

When nodes are evacuated due to a redeployed CA, registry and router pods are restarted. If the registry
and router certificates were not also redeployed with the new CA, this can cause outages because they
cannot reach the masters using their old certificates.

The playbooks for redeploying certificates cannot redeploy custom registry or router certificates, so to
address this issue, you can manually redeploy the registry and router certificates.

10.3.8.1. Redeploying Registry Certificates Manually

To redeploy registry certificates manually, you must add new registry certificates to a secret named
registry-certificates, then redeploy the registry:

1. Switch to the default project for the remainder of these steps:

$ oc project default

CHAPTER 10. REDEPLOYING CERTIFICATES

275

2. If your registry was initially created on OpenShift Container Platform 3.1 or earlier, it may still be
using environment variables to store certificates (which has been deprecated in favor of using
secrets).

a. Run the following and look for the OPENSHIFT_CA_DATA, OPENSHIFT_CERT_DATA,
OPENSHIFT_KEY_DATA environment variables:

$ oc env dc/docker-registry --list

b. If they do not exist, skip this step. If they do, create the following ClusterRoleBinding:

$ cat <<EOF |
apiVersion: v1
groupNames: null
kind: ClusterRoleBinding
metadata:
 creationTimestamp: null
 name: registry-registry-role
roleRef:
 kind: ClusterRole
 name: system:registry
subjects:
- kind: ServiceAccount
 name: registry
 namespace: default
userNames:
- system:serviceaccount:default:registry
EOF
oc create -f -

Then, run the following to remove the environment variables:

$ oc env dc/docker-registry OPENSHIFT_CA_DATA-
OPENSHIFT_CERT_DATA- OPENSHIFT_KEY_DATA- OPENSHIFT_MASTER-

3. Set the following environment variables locally to make later commands less complex:

$ REGISTRY_IP=`oc get service docker-registry -o
jsonpath='{.spec.clusterIP}'`
$ REGISTRY_HOSTNAME=`oc get route/docker-registry -o
jsonpath='{.spec.host}'`

4. Create new registry certificates:

$ oc adm ca create-server-cert \
 --signer-cert=/etc/origin/master/ca.crt \
 --signer-key=/etc/origin/master/ca.key \
 --hostnames=$REGISTRY_IP,docker-registry.default.svc,docker-
registry.default.svc.cluster.local,$REGISTRY_HOSTNAME
 --cert=/etc/origin/master/registry.crt \
 --key=/etc/origin/master/registry.key \
 --signer-serial=/etc/origin/master/ca.serial.txt

OpenShift Container Platform 3.7 Installation and Configuration

276

Run oc adm commands only from the first master listed in the Ansible host inventory file, by
default /etc/ansible/hosts.

5. Update the registry-certificates secret with the new registry certificates:

$ oc secret new registry-certificates \
 /etc/origin/master/registry.crt \
 /etc/origin/master/registry.key \
 -o json | oc replace -f -

6. Redeploy the registry:

$ oc deploy dc/docker-registry --latest

10.3.8.2. Redeploying Router Certificates Manually

To redeploy router certificates manually, you must add new router certificates to a secret named
router-certs, then redeploy the router:

1. Switch to the default project for the remainder of these steps:

$ oc project default

2. If your router was initially created on OpenShift Container Platform 3.1 or earlier, it might still
use environment variables to store certificates, which has been deprecated in favor of using
service serving certificate secret.

a. Run the following command and look for the OPENSHIFT_CA_DATA,
OPENSHIFT_CERT_DATA, OPENSHIFT_KEY_DATA environment variables:

$ oc env dc/router --list

b. If those variables exist, create the following ClusterRoleBinding:

$ cat <<EOF |
apiVersion: v1
groupNames: null
kind: ClusterRoleBinding
metadata:
 creationTimestamp: null
 name: router-router-role
roleRef:
 kind: ClusterRole
 name: system:router
subjects:
- kind: ServiceAccount
 name: router
 namespace: default
userNames:
- system:serviceaccount:default:router
EOF
oc create -f -

c. If those variables exist, run the following command to remove them:

CHAPTER 10. REDEPLOYING CERTIFICATES

277

1

$ oc env dc/router OPENSHIFT_CA_DATA- OPENSHIFT_CERT_DATA-
OPENSHIFT_KEY_DATA- OPENSHIFT_MASTER-

3. Obtain a certificate.

If you use an external Certificate Authority (CA) to sign your certificates, create a new
certificate and provide it to OpenShift Container Platform by following your internal
processes.

If you use the internal OpenShift Container Platform CA to sign certificates, run the following
commands:

IMPORTANT

The following commands generate a certificate that is internally signed. It will
be trusted by only clients that trust the OpenShift Container Platform CA.

$ cd /root
$ mkdir cert ; cd cert
$ oc adm ca create-server-cert \
 --signer-cert=/etc/origin/master/ca.crt \
 --signer-key=/etc/origin/master/ca.key \
 --signer-serial=/etc/origin/master/ca.serial.txt \
 --hostnames='*.hostnames.for.the.certificate' \
 --cert=router.crt \
 --key=router.key \

These commands generate the following files:

A new certificate named router.crt.

A copy of the signing CA certificate chain, /etc/origin/master/ca.crt. This chain can
contain more than one certificate if you use intermediate CAs.

A corresponding private key named router.key.

4. Create a new file that concatenates the generated certificates:

$ cat router.crt /etc/origin/master/ca.crt router.key > router.pem

5. Before you generate a new secret, back up the current one:

$ oc export secret router-certs > ~/old-router-certs-secret.yaml

6. Create a new secret to hold the new certificate and key, and replace the contents of the existing
secret:

$ oc create secret tls router-certs --cert=router.pem \ 1
 --key=router.key -o json --dry-run | \
 oc replace -f -

router.pem is the file that contains the concatenation of the certificates that you generated.

OpenShift Container Platform 3.7 Installation and Configuration

278

7. Redeploy the router:

$ oc rollout latest dc/router

When routers are initially deployed, an annotation is added to the router’s service that
automatically creates a service serving certificate secret named router-metrics-tls.

To redeploy router-metrics-tls certificates manually, that service serving certificate can be
triggered to be recreated by deleting the secret, removing and re-adding annotations to the
router service, then redeploying the router-metrics-tls secret:

8. Remove the following annotations from the router service:

$ oc annotate service router \
 service.alpha.openshift.io/serving-cert-secret-name- \
 service.alpha.openshift.io/serving-cert-signed-by-

9. Remove the existing router-metrics-tls secret.

$ oc delete secret router-metrics-tls

10. Re-add the annotations:

$ oc annotate service router \
 service.alpha.openshift.io/serving-cert-secret-name=router-
metrics-tls

CHAPTER 10. REDEPLOYING CERTIFICATES

279

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#service-serving-certificate-secrets

CHAPTER 11. CONFIGURING AUTHENTICATION AND USER
AGENT

11.1. OVERVIEW

The OpenShift Container Platform master includes a built-in OAuth server. Developers and
administrators obtain OAuth access tokens to authenticate themselves to the API.

As an administrator, you can configure OAuth using the master configuration file to specify an identity
provider. It is a best practice to configure your identity provider during advanced installation, but you can
configure it after installation.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

If you installed OpenShift Container Platform using the Quick Installation or Advanced Installation
method, the Deny All identity provider is used by default, which denies access for all user names and
passwords. To allow access, you must choose a different identity provider and configure the master
configuration file appropriately (located at /etc/origin/master/master-config.yaml by default).

When you run a master without a configuration file, the Allow All identity provider is used by default,
which allows any non-empty user name and password to log in. This is useful for testing purposes. To
use other identity providers, or to modify any token, grant, or session options, you must run the master
from a configuration file.

NOTE

Roles need to be assigned to administer the setup with an external user.

NOTE

After making changes to an identity provider, you must restart the master services for the
changes to take effect:

systemctl restart atomic-openshift-master-api atomic-
openshift-master-controllers

11.2. IDENTITY PROVIDER PARAMETERS

There are four parameters common to all identity providers:

Parameter Description

name The provider name is prefixed to provider user names to form an identity name.

OpenShift Container Platform 3.7 Installation and Configuration

280

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#oauth
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#api-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#roles

challenge When true, unauthenticated token requests from non-web clients (like the CLI) are sent
a WWW-Authenticate challenge header. Not supported by all identity providers.

To prevent cross-site request forgery (CSRF) attacks against browser clients Basic
authentication challenges are only sent if a X-CSRF-Token header is present on the
request. Clients that expect to receive Basic WWW-Authenticate challenges should
set this header to a non-empty value.

login When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider. Not supported by all identity
providers.

If you want users to be sent to a branded page before being redirected to the identity
provider’s login, then set oauthConfig → alwaysShowProviderSelection:
true in the master configuration file. This provider selection page can be customized.

mappingMetho
d

Defines how new identities are mapped to users when they log in. Enter one of the
following values:

claim

The default value. Provisions a user with the identity’s preferred user name. Fails if
a user with that user name is already mapped to another identity.

lookup

Looks up an existing identity, user identity mapping, and user, but does not
automatically provision users or identities. This allows cluster administrators to set
up identities and users manually, or using an external process. Using this method
requires you to manually provision users. See Manually Provisioning a User When
Using the Lookup Mapping Method.

generate

Provisions a user with the identity’s preferred user name. If a user with the preferred
user name is already mapped to an existing identity, a unique user name is
generated. For example, myuser2. This method should not be used in combination
with external processes that require exact matches between OpenShift Container
Platform user names and identity provider user names, such as LDAP group sync.

add

Provisions a user with the identity’s preferred user name. If a user with that user
name already exists, the identity is mapped to the existing user, adding to any
existing identity mappings for the user. Required when multiple identity providers are
configured that identify the same set of users and map to the same user names.

Parameter Description

NOTE

When adding or changing identity providers, you can map identities from the new provider
to existing users by setting the mappingMethod parameter to add.

11.3. CONFIGURING IDENTITY PROVIDERS

OpenShift Container Platform supports configuring only a single identity provider. However, you can
extend the basic authentication for more complex configurations such as LDAP failover.

CHAPTER 11. CONFIGURING AUTHENTICATION AND USER AGENT

281

1

You can use these parameters to define the identity provider during installation or after installation.

11.3.1. Configuring identity providers with Ansible

For initial advanced installations, the Deny All identity provider is configured by default, though it can be
overridden during installation using the openshift_master_identity_providers parameter, which
is configurable in the inventory file. Session options in the OAuth configuration are also configurable in
the inventory file.

Example 11.1. Example identity provider configuration with Ansible

htpasswd auth
openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':
'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider',
'filename': '/etc/origin/master/htpasswd'}]
Defining htpasswd users
#openshift_master_htpasswd_users={'user1': '<pre-hashed password>',
'user2': '<pre-hashed password>'}
or
#openshift_master_htpasswd_file=<path to local pre-generated htpasswd
file>

Allow all auth
#openshift_master_identity_providers=[{'name': 'allow_all', 'login':
'true', 'challenge': 'true', 'kind':
'AllowAllPasswordIdentityProvider'}]

LDAP auth
#openshift_master_identity_providers=[{'name': 'my_ldap_provider',
'challenge': 'true', 'login': 'true', 'kind':
'LDAPPasswordIdentityProvider', 'attributes': {'id': ['dn'], 'email':
['mail'], 'name': ['cn'], 'preferredUsername': ['uid']}, 'bindDN': '',
'bindPassword': '', 'ca': '', 'insecure': 'false', 'url':
'ldap://ldap.example.com:389/ou=users,dc=example,dc=com?uid'}]

Configuring the ldap ca certificate 1
#openshift_master_ldap_ca=<ca text>
or
#openshift_master_ldap_ca_file=<path to local ca file to use>

Available variables for configuring certificates for other identity
providers:
#openshift_master_openid_ca
#openshift_master_openid_ca_file
#openshift_master_request_header_ca
#openshift_master_request_header_ca_file

If you specify your CA certificate location in the openshift_master_identity_providers
parameter, do not specify a certificate value in the openshift_master_ldap_ca parameter or
path in the openshift_master_ldap_ca_file parameter.

11.3.2. Configuring identity providers in the master configuration file

OpenShift Container Platform 3.7 Installation and Configuration

282

You can configure the master host for authentication using your desired identity provider by modifying
the master configuration file.

Example 11.2. Example identity provider configuration in the master configuration file

...
oauthConfig:
 identityProviders:
 - name: htpasswd_auth
 challenge: true
 login: true
 mappingMethod: "claim"
...

When set to the default claim value, OAuth will fail if the identity is mapped to a previously-existing user
name.

11.3.3. Configuring an identity provider or method

11.3.3.1. Manually provisioning a user when using the lookup mapping method

When using the lookup mapping method, user provisioning is done by an external system, via the API.
Typically, identities are automatically mapped to users during login. The 'lookup' mapping method
automatically disables this automatic mapping, which requires you to provision users manually.

For more information on identity objects, see the Identity user API obejct.

If you are using the lookup mapping method, use the following steps for each user after configuring the
identity provider:

1. Create an OpenShift Container Platform User, if not created already:

$ oc create user <username>

For example, the following command creates a OpenShift Container Platform User bob:

$ oc create user bob

2. Create an OpenShift Container Platform Identity, if not created already. Use the name of the
identity provider and the name that uniquely represents this identity in the scope of the identity
provider:

$ oc create identity <identity-provider>:<user-id-from-identity-
provider>

The <identity-provider> is the name of the identity provider in the master configuration, as
shown in the appropriate identity provider section below.

For example, the following commands creates an Identity with identity provider
ldap_provider and the identity provider user name bob_s.

$ oc create identity ldap_provider:bob_s

CHAPTER 11. CONFIGURING AUTHENTICATION AND USER AGENT

283

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#identity

1

2

3

4

3. Create a user/identity mapping for the created user and identity:

$ oc create useridentitymapping <identity-provider>:<user-id-from-
identity-provider> <username>

For example, the following command maps the identity to the user:

$ oc create useridentitymapping ldap_provider:bob_s bob

11.3.4. Allow all

Set AllowAllPasswordIdentityProvider in the identityProviders stanza to allow any non-empty
user name and password to log in.

Example 11.3. Master Configuration Using AllowAllPasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: my_allow_provider 1

 challenge: true 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: AllowAllPasswordIdentityProvider

This provider name is prefixed to provider user names to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

11.3.5. Deny all

Set DenyAllPasswordIdentityProvider in the identityProviders stanza to deny access for all user
names and passwords.

Example 11.4. Master Configuration Using DenyAllPasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: my_deny_provider 1

OpenShift Container Platform 3.7 Installation and Configuration

284

1

2

3

4

 challenge: true 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: DenyAllPasswordIdentityProvider

This provider name is prefixed to provider user names to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

11.3.6. HTPasswd

Set HTPasswdPasswordIdentityProvider in the identityProviders stanza to validate user names
and passwords against a flat file generated using htpasswd.

NOTE

The htpasswd utility is in the httpd-tools package:

yum install httpd-tools

OpenShift Container Platform supports the Bcrypt, SHA-1, and MD5 cryptographic hash functions, and
MD5 is the default for htpasswd. Plaintext, encrypted text, and other hash functions are not currently
supported.

The flat file is reread if its modification time changes, without requiring a server restart.

To use the htpasswd command:

To create a flat file with a user name and hashed password, run:

$ htpasswd -c </path/to/users.htpasswd> <user_name>

Then, enter and confirm a clear-text password for the user. The command generates a hashed
version of the password.

For example:

htpasswd -c users.htpasswd user1
New password:
Re-type new password:
Adding password for user user1

CHAPTER 11. CONFIGURING AUTHENTICATION AND USER AGENT

285

http://httpd.apache.org/docs/2.4/programs/htpasswd.html

1

2

3

4

5

NOTE

You can include the -b option to supply the password on the command line:

$ htpasswd -c -b <user_name> <password>

For example:

$ htpasswd -c -b file user1 MyPassword!
Adding password for user user1

To add or update a login to the file, run:

$ htpasswd </path/to/users.htpasswd> <user_name>

To remove a login from the file, run:

$ htpasswd -D </path/to/users.htpasswd> <user_name>

Example 11.5. Master Configuration Using HTPasswdPasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: my_htpasswd_provider 1

 challenge: true 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: HTPasswdPasswordIdentityProvider

 file: /path/to/users.htpasswd 5

This provider name is prefixed to provider user names to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

File generated using htpasswd.

11.3.7. Keystone

OpenShift Container Platform 3.7 Installation and Configuration

286

http://httpd.apache.org/docs/2.4/programs/htpasswd.html

1

2

3

4

5

6

7

8

9

Set KeystonePasswordIdentityProvider in the identityProviders stanza to validate user names
and passwords against an OpenStack Keystone v3 server. This enables shared authentication with an
OpenStack server configured to store users in an internal Keystone database.

Example 11.6. Master Configuration Using KeystonePasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: my_keystone_provider 1

 challenge: true 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: KeystonePasswordIdentityProvider

 domainName: default 5

 url: http://keystone.example.com:5000 6

 ca: ca.pem 7

 certFile: keystone.pem 8

 keyFile: keystonekey.pem 9

This provider name is prefixed to provider user names to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

Keystone domain name. In Keystone, usernames are domain-specific. Only a single domain is
supported.

The URL to use to connect to the Keystone server (required).

Optional: Certificate bundle to use to validate server certificates for the configured URL.

Optional: Client certificate to present when making requests to the configured URL.

Key for the client certificate. Required if certFile is specified.

11.3.8. LDAP authentication

Set LDAPPasswordIdentityProvider in the identityProviders stanza to validate user names and
passwords against an LDAPv3 server, using simple bind authentication.

CHAPTER 11. CONFIGURING AUTHENTICATION AND USER AGENT

287

NOTE

If you require failover for your LDAP server, instead of following these steps, extend the
basic authentication method by configuring SSSD for LDAP failover.

During authentication, the LDAP directory is searched for an entry that matches the provided user name.
If a single unique match is found, a simple bind is attempted using the distinguished name (DN) of the
entry plus the provided password.

These are the steps taken:

1. Generate a search filter by combining the attribute and filter in the configured url with the user-
provided user name.

2. Search the directory using the generated filter. If the search does not return exactly one entry,
deny access.

3. Attempt to bind to the LDAP server using the DN of the entry retrieved from the search, and the
user-provided password.

4. If the bind is unsuccessful, deny access.

5. If the bind is successful, build an identity using the configured attributes as the identity, email
address, display name, and preferred user name.

The configured url is an RFC 2255 URL, which specifies the LDAP host and search parameters to use.
The syntax of the URL is:

ldap://host:port/basedn?attribute?scope?filter

For the above example:

URL Component Description

ldap For regular LDAP, use the string ldap. For secure LDAP (LDAPS), use ldaps
instead.

host:port The name and port of the LDAP server. Defaults to localhost:389 for ldap and
localhost:636 for LDAPS.

basedn The DN of the branch of the directory where all searches should start from. At the very
least, this must be the top of your directory tree, but it could also specify a subtree in
the directory.

attribute The attribute to search for. Although RFC 2255 allows a comma-separated list of
attributes, only the first attribute will be used, no matter how many are provided. If no
attributes are provided, the default is to use uid. It is recommended to choose an
attribute that will be unique across all entries in the subtree you will be using.

scope The scope of the search. Can be either either one or sub. If the scope is not provided,
the default is to use a scope of sub.

OpenShift Container Platform 3.7 Installation and Configuration

288

1

2

filter A valid LDAP search filter. If not provided, defaults to (objectClass=*)

URL Component Description

When doing searches, the attribute, filter, and provided user name are combined to create a search filter
that looks like:

(&(<filter>)(<attribute>=<username>))

For example, consider a URL of:

ldap://ldap.example.com/o=Acme?cn?sub?(enabled=true)

When a client attempts to connect using a user name of bob, the resulting search filter will be (&
(enabled=true)(cn=bob)).

If the LDAP directory requires authentication to search, specify a bindDN and bindPassword to use to
perform the entry search.

Master Configuration Using LDAPPasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: "my_ldap_provider" 1

 challenge: true 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: LDAPPasswordIdentityProvider
 attributes:

 id: 5
 - dn

 email: 6
 - mail

 name: 7
 - cn

 preferredUsername: 8
 - uid

 bindDN: "" 9

 bindPassword: "" 10

 ca: my-ldap-ca-bundle.crt 11

 insecure: false 12

 url: "ldap://ldap.example.com/ou=users,dc=acme,dc=com?uid" 13

This provider name is prefixed to the returned user ID to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider.

CHAPTER 11. CONFIGURING AUTHENTICATION AND USER AGENT

289

3

4

5

6

7

8

9

10

11

12

13

When true, unauthenticated token requests from web clients (like the web console) are redirected
to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

List of attributes to use as the identity. First non-empty attribute is used. At least one attribute is
required. If none of the listed attribute have a value, authentication fails.

List of attributes to use as the email address. First non-empty attribute is used.

List of attributes to use as the display name. First non-empty attribute is used.

List of attributes to use as the preferred user name when provisioning a user for this identity. First
non-empty attribute is used.

Optional DN to use to bind during the search phase.

Optional password to use to bind during the search phase. This value may also be provided in an
environment variable, external file, or encrypted file.

Certificate bundle to use to validate server certificates for the configured URL. If empty, system
trusted roots are used. Only applies if insecure: false.

When true, no TLS connection is made to the server. When false, ldaps:// URLs connect using
TLS, and ldap:// URLs are upgraded to TLS.

An RFC 2255 URL which specifies the LDAP host and search parameters to use, as described
above.

NOTE

To whitelist users for an LDAP integration, use the lookup mapping method. Before a
login from LDAP would be allowed, a cluster administrator must create an identity and
user object for each LDAP user.

11.3.9. Basic authentication (remote)

Basic Authentication is a generic backend integration mechanism that allows users to log in to OpenShift
Container Platform with credentials validated against a remote identity provider.

Because basic authentication is generic, you can use this identity provider for advanced authentication
configurations. You can configure LDAP failover or use the containerized basic authentication repository
as a starting point for another advanced remote basic authentication configuration.

CAUTION

Basic authentication must use an HTTPS connection to the remote server to prevent potential snooping
of the user ID and password and man-in-the-middle attacks.

With BasicAuthPasswordIdentityProvider configured, users send their user name and password
to OpenShift Container Platform, which then validates those credentials against a remote server by
making a server-to-server request, passing the credentials as a Basic Auth header. This requires users
to send their credentials to OpenShift Container Platform during login.

OpenShift Container Platform 3.7 Installation and Configuration

290

https://github.com/openshift/basic-authentication-provider-example

1

Set BasicAuthPasswordIdentityProvider in the identityProviders stanza to validate user names
and passwords against a remote server using a server-to-server Basic authentication request. User
names and passwords are validated against a remote URL that is protected by Basic authentication and
returns JSON.

A 401 response indicates failed authentication.

A non-200 status, or the presence of a non-empty "error" key, indicates an error:

{"error":"Error message"}

A 200 status with a sub (subject) key indicates success:

{"sub":"userid"} 1

The subject must be unique to the authenticated user and must not be able to be modified.

A successful response may optionally provide additional data, such as:

A display name using the name key. For example:

{"sub":"userid", "name": "User Name", ...}

An email address using the email key. For example:

{"sub":"userid", "email":"user@example.com", ...}

A preferred user name using the preferred_username key. This is useful when the unique,
unchangeable subject is a database key or UID, and a more human-readable name exists. This
is used as a hint when provisioning the OpenShift Container Platform user for the authenticated
identity. For example:

{"sub":"014fbff9a07c", "preferred_username":"bob", ...}

Example 11.7. Master Configuration Using BasicAuthPasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: my_remote_basic_auth_provider 1

 challenge: true 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: BasicAuthPasswordIdentityProvider

 url: https://www.example.com/remote-idp 5

 ca: /path/to/ca.file 6

 certFile: /path/to/client.crt 7

 keyFile: /path/to/client.key 8

CHAPTER 11. CONFIGURING AUTHENTICATION AND USER AGENT

291

1

2

3

4

5

6

7

8

This provider name is prefixed to the returned user ID to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

URL accepting credentials in Basic authentication headers.

Optional: Certificate bundle to use to validate server certificates for the configured URL.

Optional: Client certificate to present when making requests to the configured URL.

Key for the client certificate. Required if certFile is specified.

11.3.10. Request header

Set RequestHeaderIdentityProvider in the identityProviders stanza to identify users from request
header values, such as X-Remote-User. It is typically used in combination with an authenticating proxy,
which sets the request header value. This is similar to how the remote user plug-in in OpenShift
Enterprise 2 allowed administrators to provide Kerberos, LDAP, and many other forms of enterprise
authentication.

You can also use the request header identity provider for advanced configurations such as SAML
authentication.

For users to authenticate using this identity provider, they must access
https://<master>/oauth/authorize (and subpaths) via an authenticating proxy. To accomplish
this, configure the OAuth server to redirect unauthenticated requests for OAuth tokens to the proxy
endpoint that proxies to https://<master>/oauth/authorize.

To redirect unauthenticated requests from clients expecting browser-based login flows:

1. Set the login parameter to true.

2. Set the provider.loginURL parameter to the authenticating proxy URL that will authenticate
interactive clients and then proxy the request to https://<master>/oauth/authorize.

To redirect unauthenticated requests from clients expecting WWW-Authenticate challenges:

1. Set the challenge parameter to true.

2. Set the provider.challengeURL parameter to the authenticating proxy URL that will
authenticate clients expecting WWW-Authenticate challenges and then proxy the request to
https://<master>/oauth/authorize.

The provider.challengeURL and provider.loginURL parameters can include the following
tokens in the query portion of the URL:

${url} is replaced with the current URL, escaped to be safe in a query parameter.

OpenShift Container Platform 3.7 Installation and Configuration

292

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html/Deployment_Guide/Configuring_OpenShift_Enterprise_Authentication.html
https://github.com/openshift/request-header-saml-service-provider

1

2

For example: https://www.example.com/sso-login?then=${url}

${query} is replaced with the current query string, unescaped.
For example: https://www.example.com/auth-proxy/oauth/authorize?${query}

WARNING

If you expect unauthenticated requests to reach the OAuth server, a clientCA
parameter MUST be set for this identity provider, so that incoming requests are
checked for a valid client certificate before the request’s headers are checked for a
user name. Otherwise, any direct request to the OAuth server can impersonate any
identity from this provider, merely by setting a request header.

Example 11.8. Master Configuration Using RequestHeaderIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: my_request_header_provider 1

 challenge: true 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: RequestHeaderIdentityProvider
 challengeURL: "https://www.example.com/challenging-

proxy/oauth/authorize?${query}" 5
 loginURL: "https://www.example.com/login-proxy/oauth/authorize?

${query}" 6

 clientCA: /path/to/client-ca.file 7

 clientCommonNames: 8
 - my-auth-proxy

 headers: 9
 - X-Remote-User
 - SSO-User

 emailHeaders: 10
 - X-Remote-User-Email

 nameHeaders: 11
 - X-Remote-User-Display-Name

 preferredUsernameHeaders: 12
 - X-Remote-User-Login

This provider name is prefixed to the user name in the request header to form an identity name.

RequestHeaderIdentityProvider can only respond to clients that request WWW-Authenticate
challenges by redirecting to a configured challengeURL. The configured URL should respond
with a WWW-Authenticate challenge.



CHAPTER 11. CONFIGURING AUTHENTICATION AND USER AGENT

293

3

4

5

6

7

8

9

10

11

12

RequestHeaderIdentityProvider can only respond to clients requesting a login flow by
redirecting to a configured loginURL. The configured URL should respond with a login flow.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

Optional: URL to redirect unauthenticated /oauth/authorize requests to, that will
authenticate browser-based clients and then proxy their request to
https://<master>/oauth/authorize. The URL that proxies to
https://<master>/oauth/authorize must end with /authorize (with no trailing slash),
and also proxy subpaths, in order for OAuth approval flows to work properly. ${url} is
replaced with the current URL, escaped to be safe in a query parameter. ${query} is replaced
with the current query string.

Optional: URL to redirect unauthenticated /oauth/authorize requests to, that will
authenticate clients which expect WWW-Authenticate challenges, and then proxy them to
https://<master>/oauth/authorize. ${url} is replaced with the current URL, escaped
to be safe in a query parameter. ${query} is replaced with the current query string.

Optional: PEM-encoded certificate bundle. If set, a valid client certificate must be presented and
validated against the certificate authorities in the specified file before the request headers are
checked for user names.

Optional: list of common names (cn). If set, a valid client certificate with a Common Name (cn)
in the specified list must be presented before the request headers are checked for user names.
If empty, any Common Name is allowed. Can only be used in combination with clientCA.

Header names to check, in order, for the user identity. The first header containing a value is
used as the identity. Required, case-insensitive.

Header names to check, in order, for an email address. The first header containing a value is
used as the email address. Optional, case-insensitive.

Header names to check, in order, for a display name. The first header containing a value is used
as the display name. Optional, case-insensitive.

Header names to check, in order, for a preferred user name, if different than the immutable
identity determined from the headers specified in headers. The first header containing a value
is used as the preferred user name when provisioning. Optional, case-insensitive.

Example 11.9. Apache Authentication Using RequestHeaderIdentityProvider

This example configures an authentication proxy on the same host as the master. Having the proxy
and master on the same host is merely a convenience and may not be suitable for your environment.
For example, if you were already running a router on the master, port 443 would not be available.

It is also important to note that while this reference configuration uses Apache’s mod_auth_form, it is
by no means required and other proxies can easily be used if the following requirements are met:

1. Block the X-Remote-User header from client requests to prevent spoofing.

2. Enforce client certificate authentication in the RequestHeaderIdentityProvider
configuration.

OpenShift Container Platform 3.7 Installation and Configuration

294

3. Require the X-Csrf-Token header be set for all authentication request using the challenge
flow.

4. Only the /oauth/authorize endpoint and its subpaths should be proxied, and redirects
should not be rewritten to allow the backend server to send the client to the correct location.

5. The URL that proxies to https://<master>/oauth/authorize must end with
/authorize (with no trailing slash). For example:

https://proxy.example.com/login-proxy/authorize?… ​ →
https://<master>/oauth/authorize?… ​

6. Subpaths of the URL that proxies to https://<master>/oauth/authorize must proxy
to subpaths of https://<master>/oauth/authorize. For example:

https://proxy.example.com/login-proxy/authorize/approve?… ​ →
https://<master>/oauth/authorize/approve?… ​

Installing the Prerequisites

The mod_auth_form module is shipped as part of the mod_session package that is found in the
Optional channel:

yum install -y httpd mod_ssl mod_session apr-util-openssl

Generate a CA for validating requests that submit the trusted header. This CA should be used as the
file name for clientCA in the master’s identity provider configuration.

oc adm ca create-signer-cert \
 --cert='/etc/origin/master/proxyca.crt' \
 --key='/etc/origin/master/proxyca.key' \
 --name='openshift-proxy-signer@1432232228' \
 --serial='/etc/origin/master/proxyca.serial.txt'

The oc adm ca create-signer-cert command generates a certificate that is valid for five years.
This can be altered with the --expire-days option, but for security reasons, it is recommended to not
make it greater than this value.

Run oc adm commands only from the first master listed in the Ansible host inventory file, by default
/etc/ansible/hosts.

Generate a client certificate for the proxy. This can be done using any x509 certificate tooling. For
convenience, the oc adm CLI can be used:

oc adm create-api-client-config \
 --certificate-authority='/etc/origin/master/proxyca.crt' \
 --client-dir='/etc/origin/master/proxy' \
 --signer-cert='/etc/origin/master/proxyca.crt' \
 --signer-key='/etc/origin/master/proxyca.key' \
 --signer-serial='/etc/origin/master/proxyca.serial.txt' \

 --user='system:proxy' 1

pushd /etc/origin/master

CHAPTER 11. CONFIGURING AUTHENTICATION AND USER AGENT

295

https://access.redhat.com/solutions/392003

1

2

cp master.server.crt /etc/pki/tls/certs/localhost.crt 2
cp master.server.key /etc/pki/tls/private/localhost.key
cp ca.crt /etc/pki/CA/certs/ca.crt
cat proxy/system\:proxy.crt \
 proxy/system\:proxy.key > \
 /etc/pki/tls/certs/authproxy.pem
popd

The user name can be anything, however it is useful to give it a descriptive name as it will appear
in logs.

When running the authentication proxy on a different host name than the master, it is important to
generate a certificate that matches the host name instead of using the default master certificate as
shown above. The value for masterPublicURL in the /etc/origin/master/master-config.yaml file
must be included in the X509v3 Subject Alternative Name in the certificate that is specified
for SSLCertificateFile. If a new certificate needs to be created, the oc adm ca create-
server-cert command can be used.

The oc adm create-api-client-config command generates a certificate that is valid for two
years. This can be altered with the --expire-days option, but for security reasons, it is recommended
to not make it greater than this value. Run oc adm commands only from the first master listed in the
Ansible host inventory file, by default /etc/ansible/hosts.

Configuring Apache

This proxy does not need to reside on the same host as the master. It uses a client certificate to connect
to the master, which is configured to trust the X-Remote-User header.

1. Create the certificate for the Apache configuration. The certificate that you specify as the
SSLProxyMachineCertificateFile parameter value is the proxy’s client cert that is used to
authenticate the proxy to the server. It must use TLS Web Client Authentication as the
extended key type.

2. Configure Apache per the following:

LoadModule auth_form_module modules/mod_auth_form.so
LoadModule session_module modules/mod_session.so
LoadModule request_module modules/mod_request.so

Nothing needs to be served over HTTP. This virtual host simply
redirects to
HTTPS.
<VirtualHost *:80>
 DocumentRoot /var/www/html
 RewriteEngine On
 RewriteRule ^(.*)$ https://%{HTTP_HOST}$1 [R,L]
</VirtualHost>

<VirtualHost *:443>
 # This needs to match the certificates you generated. See the CN and
X509v3
 # Subject Alternative Name in the output of:
 # openssl x509 -text -in /etc/pki/tls/certs/localhost.crt
 ServerName www.example.com

OpenShift Container Platform 3.7 Installation and Configuration

296

 DocumentRoot /var/www/html
 SSLEngine on
 SSLCertificateFile /etc/pki/tls/certs/localhost.crt
 SSLCertificateKeyFile /etc/pki/tls/private/localhost.key
 SSLCACertificateFile /etc/pki/CA/certs/ca.crt

 SSLProxyEngine on
 SSLProxyCACertificateFile /etc/pki/CA/certs/ca.crt
 # It's critical to enforce client certificates on the Master. Otherwise
 # requests could spoof the X-Remote-User header by accessing the
Master's
 # /oauth/authorize endpoint directly.
 SSLProxyMachineCertificateFile /etc/pki/tls/certs/authproxy.pem

 # Send all requests to the console
 RewriteEngine On
 RewriteRule ^/console(.*)$ https://%{HTTP_HOST}:8443/console$1
[R,L]

 # In order to using the challenging-proxy an X-Csrf-Token must be
present.
 RewriteCond %{REQUEST_URI} ^/challenging-proxy
 RewriteCond %{HTTP:X-Csrf-Token} ^$ [NC]
 RewriteRule ^.* - [F,L]

 <Location /challenging-proxy/oauth/authorize>
 # Insert your backend server name/ip here.
 ProxyPass https://[MASTER]:8443/oauth/authorize
 AuthType basic
 </Location>

 <Location /login-proxy/oauth/authorize>
 # Insert your backend server name/ip here.
 ProxyPass https://[MASTER]:8443/oauth/authorize

 # mod_auth_form providers are implemented by mod_authn_dbm,
mod_authn_file,
 # mod_authn_dbd, mod_authnz_ldap and mod_authn_socache.
 AuthFormProvider file
 AuthType form
 AuthName openshift
 ErrorDocument 401 /login.html
 </Location>

 <ProxyMatch /oauth/authorize>
 AuthUserFile /etc/origin/master/htpasswd
 AuthName openshift
 Require valid-user
 RequestHeader set X-Remote-User %{REMOTE_USER}s env=REMOTE_USER

 # For ldap:
 # AuthBasicProvider ldap
 # AuthLDAPURL "ldap://ldap.example.com:389/ou=People,dc=my-
domain,dc=com?uid?sub?(objectClass=*)"

 # It's possible to remove the mod_auth_form usage and replace it with

CHAPTER 11. CONFIGURING AUTHENTICATION AND USER AGENT

297

 # something like mod_auth_kerb, mod_auth_gssapi or even
mod_auth_mellon.
 # The former would be able to support both the login and challenge
flows
 # from the Master. Mellon would likely only support the login flow.

 # For Kerberos
 # yum install mod_auth_gssapi
 # AuthType GSSAPI
 # GssapiCredStore keytab:/etc/httpd.keytab
 </ProxyMatch>

</VirtualHost>

RequestHeader unset X-Remote-User

Additional mod_auth_form Requirements

A sample login page is available from the openshift_extras repository. This file should be placed in the
DocumentRoot location (/var/www/html by default).

Creating Users

At this point, you can create the users in the system Apache is using to store accounts information. In
this example, file-backed authentication is used:

yum -y install httpd-tools
touch /etc/origin/master/htpasswd
htpasswd /etc/origin/master/htpasswd <user_name>

Configuring the Master

The identityProviders stanza in the /etc/origin/master/master-config.yaml file must be updated
as well:

 identityProviders:
 - name: requestheader
 challenge: true
 login: true
 provider:
 apiVersion: v1
 kind: RequestHeaderIdentityProvider
 challengeURL: "https://[MASTER]/challenging-proxy/oauth/authorize?
${query}"
 loginURL: "https://[MASTER]/login-proxy/oauth/authorize?${query}"
 clientCA: /etc/origin/master/proxyca.crt
 headers:
 - X-Remote-User

Restarting Services

Finally, restart the following services:

OpenShift Container Platform 3.7 Installation and Configuration

298

https://github.com/openshift/openshift-extras/tree/master/misc/form_auth

systemctl restart httpd
systemctl restart atomic-openshift-master-api atomic-openshift-master-
controllers

Verifying the Configuration

1. Test by bypassing the proxy. You should be able to request a token if you supply the correct
client certificate and header:

curl -L -k -H "X-Remote-User: joe" \
 --cert /etc/pki/tls/certs/authproxy.pem \
 https://[MASTER]:8443/oauth/token/request

2. If you do not supply the client certificate, the request should be denied:

curl -L -k -H "X-Remote-User: joe" \
 https://[MASTER]:8443/oauth/token/request

3. This should show a redirect to the configured challengeURL (with additional query
parameters):

curl -k -v -H 'X-Csrf-Token: 1' \
 '<masterPublicURL>/oauth/authorize?client_id=openshift-
challenging-client&response_type=token'

4. This should show a 401 response with a WWW-Authenticate basic challenge:

curl -k -v -H 'X-Csrf-Token: 1' \
 '<redirected challengeURL from step 3 +query>'

5. This should show a redirect with an access token:

curl -k -v -u <your_user>:<your_password> \
 -H 'X-Csrf-Token: 1' '<redirected_challengeURL_from_step_3
+query>'

11.3.11. GitHub

Set GitHubIdentityProvider in the identityProviders stanza to use GitHub as an identity provider,
using the OAuth integration.

NOTE

Using GitHub as an identity provider requires users to get a token using
<master>/oauth/token/request to use with command-line tools.

CHAPTER 11. CONFIGURING AUTHENTICATION AND USER AGENT

299

https://github.com/
https://developer.github.com/v3/oauth/

1

2

3

4

5

6

7

WARNING

Using GitHub as an identity provider allows any GitHub user to authenticate to your
server. You can limit authentication to members of specific GitHub organizations
with the organizations configuration attribute, as shown below.

Example 11.10. Master Configuration Using GitHubIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: github 1

 challenge: false 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: GitHubIdentityProvider

 clientID: ... 5

 clientSecret: ... 6

 organizations: 7
 - myorganization1
 - myorganization2

 teams: 8
 - myorganization1/team-a
 - myorganization2/team-b

This provider name is prefixed to the GitHub numeric user ID to form an identity name. It is also
used to build the callback URL.

GitHubIdentityProvider cannot be used to send WWW-Authenticate challenges.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to GitHub to log in.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

The client ID of a registered GitHub OAuth application. The application must be configured with
a callback URL of <master>/oauth2callback/<identityProviderName>.

The client secret issued by GitHub. This value may also be provided in an environment variable,
external file, or encrypted file.

Optional list of organizations. If specified, only GitHub users that are members of at least one of
the listed organizations will be allowed to log in. If the GitHub OAuth application configured in
clientID is not owned by the organization, an organization owner must grant third-party access
in order to use this option. This can be done during the first GitHub login by the organization’s
administrator, or from the GitHub organization settings. Cannot be used in combination with the
teams field.



OpenShift Container Platform 3.7 Installation and Configuration

300

https://github.com/settings/applications/new

8

1

2

3

4

5

6

7

Optional list of teams. If specified, only GitHub users that are members of at least one of the
listed teams will be allowed to log in. If the GitHub OAuth application configured in clientID is
not owned by the team’s organization, an organization owner must grant third-party access in
order to use this option. This can be done during the first GitHub login by the organization’s
administrator, or from the GitHub organization settings. Cannot be used in combination with the
organizations field.

11.3.12. GitLab

Set GitLabIdentityProvider in the identityProviders stanza to use GitLab.com or any other GitLab
instance as an identity provider, using the OAuth integration. The OAuth provider feature requires GitLab
version 7.7.0 or higher.

Example 11.11. Master Configuration Using GitLabIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: gitlab 1

 challenge: true 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: GitLabIdentityProvider

 url: ... 5

 clientID: ... 6

 clientSecret: ... 7

 ca: ... 8

This provider name is prefixed to the GitLab numeric user ID to form an identity name. It is also
used to build the callback URL.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider. This uses the Resource Owner Password
Credentials grant flow to obtain an access token from GitLab.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to GitLab to log in.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

The host URL of a GitLab OAuth provider. This could either be https://gitlab.com/ or any
other self hosted instance of GitLab.

The client ID of a registered GitLab OAuth application. The application must be configured with
a callback URL of <master>/oauth2callback/<identityProviderName>.

The client secret issued by GitLab. This value may also be provided in an environment variable,
external file, or encrypted file.

CHAPTER 11. CONFIGURING AUTHENTICATION AND USER AGENT

301

https://gitlab.com/
http://doc.gitlab.com/ce/integration/oauth_provider.html
http://doc.gitlab.com/ce/api/oauth2.html#resource-owner-password-credentials
https://docs.gitlab.com/ce/api/oauth2.html

8

1

2

3

4

CA is an optional trusted certificate authority bundle to use when making requests to the GitLab
instance. If empty, the default system roots are used.

11.3.13. Google

Set GoogleIdentityProvider in the identityProviders stanza to use Google as an identity provider,
using Google’s OpenID Connect integration.

NOTE

Using Google as an identity provider requires users to get a token using
<master>/oauth/token/request to use with command-line tools.

WARNING

Using Google as an identity provider allows any Google user to authenticate to your
server. You can limit authentication to members of a specific hosted domain with the
hostedDomain configuration attribute, as shown below.

Example 11.12. Master Configuration Using GoogleIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: google 1

 challenge: false 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: GoogleIdentityProvider

 clientID: ... 5

 clientSecret: ... 6

 hostedDomain: "" 7

This provider name is prefixed to the Google numeric user ID to form an identity name. It is also
used to build the redirect URL.

GoogleIdentityProvider cannot be used to send WWW-Authenticate challenges.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to Google to log in.

Controls how mappings are established between this provider’s identities and user objects, as
described above.



OpenShift Container Platform 3.7 Installation and Configuration

302

https://developers.google.com/identity/protocols/OpenIDConnect

5

6

7

The client ID of a registered Google project. The project must be configured with a redirect URI
of <master>/oauth2callback/<identityProviderName>.

The client secret issued by Google. This value may also be provided in an environment variable,
external file, or encrypted file.

Optional hosted domain to restrict sign-in accounts to. If empty, any Google account is allowed
to authenticate.

11.3.14. OpenID connect

Set OpenIDIdentityProvider in the identityProviders stanza to integrate with an OpenID Connect
identity provider using an Authorization Code Flow.

NOTE

ID Token and UserInfo decryptions are not supported.

By default, the openid scope is requested. If required, extra scopes can be specified in the
extraScopes field.

Claims are read from the JWT id_token returned from the OpenID identity provider and, if specified,
from the JSON returned by the UserInfo URL.

At least one claim must be configured to use as the user’s identity. The standard identity claim is sub.

You can also indicate which claims to use as the user’s preferred user name, display name, and email
address. If multiple claims are specified, the first one with a non-empty value is used. The standard
claims are:

sub Short for "subject identifier." The remote identity for the user at the issuer.

preferred
_username

The preferred user name when provisioning a user. A shorthand name that the user wants to
be referred to as, such as janedoe. Typically a value that corresponding to the user’s login
or username in the authentication system, such as username or email.

email Email address.

name Display name.

See the OpenID claims documentation for more information.

NOTE

Using an OpenID Connect identity provider requires users to get a token using
<master>/oauth/token/request to use with command-line tools.

Standard Master Configuration Using OpenIDIdentityProvider

CHAPTER 11. CONFIGURING AUTHENTICATION AND USER AGENT

303

https://console.developers.google.com/
https://developers.google.com/identity/protocols/OpenIDConnect#hd-param
http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

1

2

3

4

5

6

7

8

9

oauthConfig:
 ...
 identityProviders:

 - name: my_openid_connect 1

 challenge: true 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: OpenIDIdentityProvider

 clientID: ... 5

 clientSecret: ... 6
 claims:

 id: 7
 - sub
 preferredUsername:
 - preferred_username
 name:
 - name
 email:
 - email
 urls:

 authorize: https://myidp.example.com/oauth2/authorize 8

 token: https://myidp.example.com/oauth2/token 9

This provider name is prefixed to the value of the identity claim to form an identity name. It is also
used to build the redirect URL.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider. This requires the OpenID provider to support
the Resource Owner Password Credentials grant flow.

When true, unauthenticated token requests from web clients (like the web console) are redirected
to the authorize URL to log in.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

The client ID of a client registered with the OpenID provider. The client must be allowed to redirect
to <master>/oauth2callback/<identityProviderName>.

The client secret. This value may also be provided in an environment variable, external file, or
encrypted file.

List of claims to use as the identity. First non-empty claim is used. At least one claim is required. If
none of the listed claims have a value, authentication fails. For example, this uses the value of the
sub claim in the returned id_token as the user’s identity.

Authorization Endpoint described in the OpenID spec. Must use https.

Token Endpoint described in the OpenID spec. Must use https.

A custom certificate bundle, extra scopes, extra authorization request parameters, and userInfo URL
can also be specified:

OpenShift Container Platform 3.7 Installation and Configuration

304

https://tools.ietf.org/html/rfc6749#section-1.3.3
http://openid.net/specs/openid-connect-core-1_0.html#AuthorizationEndpoint
http://openid.net/specs/openid-connect-core-1_0.html#TokenEndpoint

1

2

3

4

5

6

Example 11.13. Full Master Configuration Using OpenIDIdentityProvider

oauthConfig:
 ...
 identityProviders:
 - name: my_openid_connect
 challenge: false
 login: true
 mappingMethod: claim
 provider:
 apiVersion: v1
 kind: OpenIDIdentityProvider
 clientID: ...
 clientSecret: ...

 ca: my-openid-ca-bundle.crt 1

 extraScopes: 2
 - email
 - profile

 extraAuthorizeParameters: 3
 include_granted_scopes: "true"
 claims:

 id: 4
 - custom_id_claim
 - sub

 preferredUsername: 5
 - preferred_username
 - email

 name: 6
 - nickname
 - given_name
 - name

 email: 7
 - custom_email_claim
 - email
 urls:
 authorize: https://myidp.example.com/oauth2/authorize
 token: https://myidp.example.com/oauth2/token

 userInfo: https://myidp.example.com/oauth2/userinfo 8

Certificate bundle to use to validate server certificates for the configured URLs. If empty, system
trusted roots are used.

Optional list of scopes to request, in addition to the openid scope, during the authorization token
request.

Optional map of extra parameters to add to the authorization token request.

List of claims to use as the identity. First non-empty claim is used. At least one claim is required.
If none of the listed claims have a value, authentication fails.

List of claims to use as the preferred user name when provisioning a user for this identity. First
non-empty claim is used.

List of claims to use as the display name. First non-empty claim is used.

CHAPTER 11. CONFIGURING AUTHENTICATION AND USER AGENT

305

7

8

1

2

List of claims to use as the email address. First non-empty claim is used.

UserInfo Endpoint described in the OpenID spec. Must use https.

11.4. TOKEN OPTIONS

The OAuth server generates two kinds of tokens:

Access
tokens

Longer-lived tokens that grant access to the API.

Authorize
codes

Short-lived tokens whose only use is to be exchanged for an access token.

Use the tokenConfig stanza to set token options:

Example 11.14. Master Configuration Token Options

oauthConfig:
 ...
 tokenConfig:

 accessTokenMaxAgeSeconds: 86400 1

 authorizeTokenMaxAgeSeconds: 300 2

Set accessTokenMaxAgeSeconds to control the lifetime of access tokens. The default lifetime
is 24 hours.

Set authorizeTokenMaxAgeSeconds to control the lifetime of authorize codes. The default
lifetime is five minutes.

NOTE

You can override the accessTokenMaxAgeSeconds value through an OAuthClient
object definition.

11.5. GRANT OPTIONS

When the OAuth server receives token requests for a client to which the user has not previously granted
permission, the action that the OAuth server takes is dependent on the OAuth client’s grant strategy.

When the OAuth client requesting token does not provide its own grant strategy, the server-wide default
strategy is used. To configure the default strategy, set the method value in the grantConfig stanza.
Valid values for method are:

auto Auto-approve the grant and retry the request.

OpenShift Container Platform 3.7 Installation and Configuration

306

http://openid.net/specs/openid-connect-core-1_0.html#UserInfo
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#oauthclient

1

2

3

prompt Prompt the user to approve or deny the grant.

deny Auto-deny the grant and return a failure error to the client.

Example 11.15. Master Configuration Grant Options

oauthConfig:
 ...
 grantConfig:
 method: auto

11.6. SESSION OPTIONS

The OAuth server uses a signed and encrypted cookie-based session during login and redirect flows.

Use the sessionConfig stanza to set session options:

Example 11.16. Master Configuration Session Options

oauthConfig:
 ...
 sessionConfig:

 sessionMaxAgeSeconds: 300 1

 sessionName: ssn 2

 sessionSecretsFile: "..." 3

Controls the maximum age of a session; sessions auto-expire once a token request is complete.
If auto-grant is not enabled, sessions must last as long as the user is expected to take to
approve or reject a client authorization request.

Name of the cookie used to store the session.

File name containing serialized SessionSecrets object. If empty, a random signing and
encryption secret is generated at each server start.

If no sessionSecretsFile is specified, a random signing and encryption secret is generated at each
start of the master server. This means that any logins in progress will have their sessions invalidated if
the master is restarted. It also means they will not be able to decode sessions generated by one of the
other masters.

To specify the signing and encryption secret to use, specify a sessionSecretsFile. This allows you
separate secret values from the configuration file and keep the configuration file distributable, for
example for debugging purposes.

Multiple secrets can be specified in the sessionSecretsFile to enable rotation. New sessions are
signed and encrypted using the first secret in the list. Existing sessions are decrypted and authenticated
by each secret until one succeeds.

CHAPTER 11. CONFIGURING AUTHENTICATION AND USER AGENT

307

1

2

3

Example 11.17. Session Secret Configuration:

apiVersion: v1
kind: SessionSecrets

secrets: 1

- authentication: "..." 2

 encryption: "..." 3
- authentication: "..."
 encryption: "..."
...

List of secrets used to authenticate and encrypt cookie sessions. At least one secret must be
specified. Each secret must set an authentication and encryption secret.

Signing secret, used to authenticate sessions using HMAC. Recommended to use a secret with
32 or 64 bytes.

Encrypting secret, used to encrypt sessions. Must be 16, 24, or 32 characters long, to select
AES-128, AES-192, or AES-256.

11.7. PREVENTING CLI VERSION MISMATCH WITH USER AGENT

OpenShift Container Platform implements a user agent that can be used to prevent an application
developer’s CLI accessing the OpenShift Container Platform API.

User agents for the OpenShift Container Platform CLI are constructed from a set of values within
OpenShift Container Platform:

<command>/<version> (<platform>/<architecture>) <client>/<git_commit>

So, for example, when:

<command> = oc

<version> = The client version. For example, v3.3.0. Requests made against the Kubernetes
API at /api receive the Kubernetes version, while requests made against the OpenShift
Container Platform API at /oapi receive the OpenShift Container Platform version (as specified
by oc version)

<platform> = linux

<architecture> = amd64

<client> = openshift, or kubernetes depending on if the request is made against the
Kubernetes API at /api, or the OpenShift Container Platform API at /oapi

<git_commit> = The Git commit of the client version (for example, f034127)

the user agent will be:

oc/v3.3.0 (linux/amd64) openshift/f034127

OpenShift Container Platform 3.7 Installation and Configuration

308

As an OpenShift Container Platform administrator, you can prevent clients from accessing the API with
the userAgentMatching configuration setting of a master configuration. So, if a client is using a
particular library or binary, they will be prevented from accessing the API.

The following user agent example denies the Kubernetes 1.2 client binary, OpenShift Origin 1.1.3 binary,
and the POST and PUT httpVerbs:

policyConfig:
 userAgentMatchingConfig:
 defaultRejectionMessage: "Your client is too old. Go to
https://example.org to update it."
 deniedClients:
 - regex: '\w+/v(?:(?:1\.1\.1)|(?:1\.0\.1)) \(.+/.+\) openshift/\w{7}'
 - regex: '\w+/v(?:1\.1\.3) \(.+/.+\) openshift/\w{7}'
 httpVerbs:
 - POST
 - PUT
 - regex: '\w+/v1\.2\.0 \(.+/.+\) kubernetes/\w{7}'
 httpVerbs:
 - POST
 - PUT
 requiredClients: null

Administrators can also deny clients that do not exactly match the expected clients:

policyConfig:
 userAgentMatchingConfig:
 defaultRejectionMessage: "Your client is too old. Go to
https://example.org to update it."
 deniedClients: []
 requiredClients:
 - regex: '\w+/v1\.1\.3 \(.+/.+\) openshift/\w{7}'
 - regex: '\w+/v1\.2\.0 \(.+/.+\) kubernetes/\w{7}'
 httpVerbs:
 - POST
 - PUT

NOTE

When the client’s user agent mismatches the configuration, errors occur. To ensure that
mutating requests match, enforce a whitelist. Rules are mapped to specific verbs, so you
can ban mutating requests while allowing non-mutating requests.

CHAPTER 11. CONFIGURING AUTHENTICATION AND USER AGENT

309

1

2

3

4

5

CHAPTER 12. SYNCING GROUPS WITH LDAP

12.1. OVERVIEW

As an OpenShift Container Platform administrator, you can use groups to manage users, change their
permissions, and enhance collaboration. Your organization may have already created user groups and
stored them in an LDAP server. OpenShift Container Platform can sync those LDAP records with
internal OpenShift Container Platform records, enabling you to manage your groups in one place.
OpenShift Container Platform currently supports group sync with LDAP servers using three common
schemas for defining group membership: RFC 2307, Active Directory, and augmented Active Directory.

NOTE

You must have cluster-admin privileges to sync groups.

12.2. CONFIGURING LDAP SYNC

Before you can run LDAP sync, you need a sync configuration file. This file contains LDAP client
configuration details:

Configuration for connecting to your LDAP server.

Sync configuration options that are dependent on the schema used in your LDAP server.

A sync configuration file can also contain an administrator-defined list of name mappings that maps
OpenShift Container Platform Group names to groups in your LDAP server.

12.2.1. LDAP Client Configuration

Example 12.1. LDAP Client Configuration

The connection protocol, IP address of the LDAP server hosting your database, and the port to
connect to, formatted as scheme://host:port.

Optional distinguished name (DN) to use as the Bind DN. OpenShift Container Platform uses
this if elevated privilege is required to retrieve entries for the sync operation.

Optional password to use to bind. OpenShift Container Platform uses this if elevated privilege is
necessary to retrieve entries for the sync operation. This value may also be provided in an
environment variable, external file, or encrypted file.

When true, no TLS connection is made to the server. When false, secure LDAP (ldaps://)
URLs connect using TLS, and insecure LDAP (ldap://) URLs are upgraded to TLS.

The certificate bundle to use for validating server certificates for the configured URL. If empty,
OpenShift Container Platform uses system-trusted roots. This only applies if insecure is set to
false.

url: ldap://10.0.0.0:389 1

bindDN: cn=admin,dc=example,dc=com 2

bindPassword: password 3

insecure: false 4

ca: my-ldap-ca-bundle.crt 5

OpenShift Container Platform 3.7 Installation and Configuration

310

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#roles

1

2

3

4

5

6

12.2.2. LDAP Query Definition

Sync configurations consist of LDAP query definitions for the entries that are required for
synchronization. The specific definition of an LDAP query depends on the schema used to store
membership information in the LDAP server.

Example 12.2. LDAP Query Definition

The distinguished name (DN) of the branch of the directory where all searches will start from. It
is required that you specify the top of your directory tree, but you can also specify a subtree in
the directory.

The scope of the search. Valid values are base, one, or sub. If this is left undefined, then a
scope of sub is assumed. Descriptions of the scope options can be found in the table below.

The behavior of the search with respect to aliases in the LDAP tree. Valid values are never,
search, base, or always. If this is left undefined, then the default is to always dereference
aliases. Descriptions of the dereferencing behaviors can be found in the table below.

The time limit allowed for the search by the client, in seconds. A value of 0 imposes no client-
side limit.

A valid LDAP search filter. If this is left undefined, then the default is (objectClass=*).

The optional maximum size of response pages from the server, measured in LDAP entries. If
set to 0, no size restrictions will be made on pages of responses. Setting paging sizes is
necessary when queries return more entries than the client or server allow by default.

Table 12.1. LDAP Search Scope Options

LDAP Search
Scope

Description

base Only consider the object specified by the base DN given for the query.

one Consider all of the objects on the same level in the tree as the base DN for the query.

sub Consider the entire subtree rooted at the base DN given for the query.

Table 12.2. LDAP Dereferencing Behaviors

baseDN: ou=users,dc=example,dc=com 1

scope: sub 2

derefAliases: never 3

timeout: 0 4

filter: (objectClass=inetOrgPerson) 5

pageSize: 0 6

CHAPTER 12. SYNCING GROUPS WITH LDAP

311

Dereferencing
Behavior

Description

never Never dereference any aliases found in the LDAP tree.

search Only dereference aliases found while searching.

base Only dereference aliases while finding the base object.

always Always dereference all aliases found in the LDAP tree.

12.2.3. User-Defined Name Mapping

A user-defined name mapping explicitly maps the names of OpenShift Container Platform Groups to
unique identifiers that find groups on your LDAP server. The mapping uses normal YAML syntax. A user-
defined mapping can contain an entry for every group in your LDAP server or only a subset of those
groups. If there are groups on the LDAP server that do not have a user-defined name mapping, the
default behavior during sync is to use the attribute specified as the Group’s name.

Example 12.3. User-Defined Name Mapping

12.3. RUNNING LDAP SYNC

Once you have created a sync configuration file, then sync can begin. OpenShift Container Platform
allows administrators to perform a number of different sync types with the same server.

NOTE

By default, all group synchronization or pruning operations are dry-run, so you must set
the --confirm flag on the sync-groups command in order to make changes to
OpenShift Container Platform Group records.

To sync all groups from the LDAP server with OpenShift Container Platform:

$ oc adm groups sync --sync-config=config.yaml --confirm

To sync all Groups already in OpenShift Container Platform that correspond to groups in the LDAP
server specified in the configuration file:

$ oc adm groups sync --type=openshift --sync-config=config.yaml --confirm

To sync a subset of LDAP groups with OpenShift Container Platform, you can use whitelist files,
blacklist files, or both:

groupUIDNameMapping:
 "cn=group1,ou=groups,dc=example,dc=com": firstgroup
 "cn=group2,ou=groups,dc=example,dc=com": secondgroup
 "cn=group3,ou=groups,dc=example,dc=com": thirdgroup

OpenShift Container Platform 3.7 Installation and Configuration

312

NOTE

Any combination of blacklist files, whitelist files, or whitelist literals will work; whitelist
literals can be included directly in the command itself. This applies to groups found on
LDAP servers, as well as Groups already present in OpenShift Container Platform. Your
files must contain one unique group identifier per line.

$ oc adm groups sync --whitelist=<whitelist_file> \
 --sync-config=config.yaml \
 --confirm
$ oc adm groups sync --blacklist=<blacklist_file> \
 --sync-config=config.yaml \
 --confirm
$ oc adm groups sync <group_unique_identifier> \
 --sync-config=config.yaml \
 --confirm
$ oc adm groups sync <group_unique_identifier> \
 --whitelist=<whitelist_file> \
 --blacklist=<blacklist_file> \
 --sync-config=config.yaml \
 --confirm
$ oc adm groups sync --type=openshift \
 --whitelist=<whitelist_file> \
 --sync-config=config.yaml \
 --confirm

12.4. RUNNING A GROUP PRUNING JOB

An administrator can also choose to remove groups from OpenShift Container Platform records if the
records on the LDAP server that created them are no longer present. The prune job will accept the same
sync configuration file and white- or black-lists as used for the sync job.

For example, if groups had previously been synchronized from LDAP using some config.yaml file, and
some of those groups no longer existed on the LDAP server, the following command would determine
which Groups in OpenShift Container Platform corresponded to the deleted groups in LDAP and then
remove them from OpenShift Container Platform:

$ oc adm groups prune --sync-config=config.yaml --confirm

12.5. SYNC EXAMPLES

This section contains examples for the RFC 2307, Active Directory, and augmented Active Directory
schemas. All of the following examples synchronize a group named admins that has two members:
Jane and Jim. Each example explains:

How the group and users are added to the LDAP server.

What the LDAP sync configuration file looks like.

What the resulting Group record in OpenShift Container Platform will be after synchronization.

CHAPTER 12. SYNCING GROUPS WITH LDAP

313

1

2

NOTE

These examples assume that all users are direct members of their respective groups.
Specifically, no groups have other groups as members. See Nested Membership Sync
Example for information on how to sync nested groups.

12.5.1. RFC 2307

In the RFC 2307 schema, both users (Jane and Jim) and groups exist on the LDAP server as first-class
entries, and group membership is stored in attributes on the group. The following snippet of ldif defines
the users and group for this schema:

Example 12.4. LDAP Entries Using RFC 2307 Schema: rfc2307.ldif

The group is a first-class entry in the LDAP server.

Members of a group are listed with an identifying reference as attributes on the group.

 dn: ou=users,dc=example,dc=com
 objectClass: organizationalUnit
 ou: users

 dn: cn=Jane,ou=users,dc=example,dc=com
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 cn: Jane
 sn: Smith
 displayName: Jane Smith
 mail: jane.smith@example.com

 dn: cn=Jim,ou=users,dc=example,dc=com
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 cn: Jim
 sn: Adams
 displayName: Jim Adams
 mail: jim.adams@example.com

 dn: ou=groups,dc=example,dc=com
 objectClass: organizationalUnit
 ou: groups

 dn: cn=admins,ou=groups,dc=example,dc=com 1
 objectClass: groupOfNames
 cn: admins
 owner: cn=admin,dc=example,dc=com
 description: System Administrators

 member: cn=Jane,ou=users,dc=example,dc=com 2
 member: cn=Jim,ou=users,dc=example,dc=com

OpenShift Container Platform 3.7 Installation and Configuration

314

1

2

3

4

5

6

To sync this group, you must first create the configuration file. The RFC 2307 schema requires you to
provide an LDAP query definition for both user and group entries, as well as the attributes with which to
represent them in the internal OpenShift Container Platform records.

For clarity, the Group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of a Group by their e-mail, and use the name of the group as the common name. The following
configuration file creates these relationships:

NOTE

If using user-defined name mappings, your configuration file will differ.

Example 12.5. LDAP Sync Configuration Using RFC 2307 Schema: rfc2307_config.yaml

The IP address and host of the LDAP server where this group’s record is stored.

When true, no TLS connection is made to the server. When false, secure LDAP (ldaps://)
URLs connect using TLS, and insecure LDAP (ldap://) URLs are upgraded to TLS.

The attribute that uniquely identifies a group on the LDAP server. You cannot specify
groupsQuery filters when using DN for groupUIDAttribute. For fine-grained filtering, use the
whitelist / blacklist method.

The attribute to use as the name of the Group.

The attribute on the group that stores the membership information.

The attribute that uniquely identifies a user on the LDAP server. You cannot specify
usersQuery filters when using DN for userUIDAttribute. For fine-grained filtering, use the
whitelist / blacklist method.

kind: LDAPSyncConfig
apiVersion: v1

url: ldap://LDAP_SERVICE_IP:389 1

insecure: false 2
rfc2307:
 groupsQuery:
 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub
 derefAliases: never
 pageSize: 0

 groupUIDAttribute: dn 3

 groupNameAttributes: [cn] 4

 groupMembershipAttributes: [member] 5
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 pageSize: 0

 userUIDAttribute: dn 6

 userNameAttributes: [mail] 7
 tolerateMemberNotFoundErrors: false
 tolerateMemberOutOfScopeErrors: false

CHAPTER 12. SYNCING GROUPS WITH LDAP

315

7

1

2

3

4

5

The attribute to use as the name of the user in the OpenShift Container Platform Group record.

To run sync with the rfc2307_config.yaml file:

$ oc adm groups sync --sync-config=rfc2307_config.yaml --confirm

OpenShift Container Platform creates the following Group record as a result of the above sync
operation:

Example 12.6. OpenShift Container Platform Group Created Using rfc2307_config.yaml

The last time this Group was synchronized with the LDAP server, in ISO 6801 format.

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this Group’s record is stored.

The name of the Group as specified by the sync file.

The users that are members of the Group, named as specified by the sync file.

12.5.1.1. RFC2307 with User-Defined Name Mappings

When syncing groups with user-defined name mappings, the configuration file changes to contain these
mappings as shown below.

Example 12.7. LDAP Sync Configuration Using RFC 2307 Schema With User-Defined Name
Mappings: rfc2307_config_user_defined.yaml

apiVersion: v1
kind: Group
metadata:
 annotations:

 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1

 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2

 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:

 name: admins 4

users: 5
- jane.smith@example.com
- jim.adams@example.com

kind: LDAPSyncConfig
apiVersion: v1
groupUIDNameMapping:

 "cn=admins,ou=groups,dc=example,dc=com": Administrators 1
rfc2307:
 groupsQuery:
 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub

OpenShift Container Platform 3.7 Installation and Configuration

316

1

2

3

4

The user-defined name mapping.

The unique identifier attribute that is used for the keys in the user-defined name mapping. You
cannot specify groupsQuery filters when using DN for groupUIDAttribute. For fine-grained
filtering, use the whitelist / blacklist method.

The attribute to name OpenShift Container Platform Groups with if their unique identifier is not
in the user-defined name mapping.

The attribute that uniquely identifies a user on the LDAP server. You cannot specify
usersQuery filters when using DN for userUIDAttribute. For fine-grained filtering, use the
whitelist / blacklist method.

To run sync with the rfc2307_config_user_defined.yaml file:

$ oc adm groups sync --sync-config=rfc2307_config_user_defined.yaml --
confirm

OpenShift Container Platform creates the following Group record as a result of the above sync
operation:

Example 12.8. OpenShift Container Platform Group Created Using
rfc2307_config_user_defined.yaml

 derefAliases: never
 pageSize: 0

 groupUIDAttribute: dn 2

 groupNameAttributes: [cn] 3
 groupMembershipAttributes: [member]
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 pageSize: 0

 userUIDAttribute: dn 4
 userNameAttributes: [mail]
 tolerateMemberNotFoundErrors: false
 tolerateMemberOutOfScopeErrors: false

apiVersion: v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400
 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com
 openshift.io/ldap.url: LDAP_SERVER_IP:389
 creationTimestamp:

 name: Administrators 1
users:
- jane.smith@example.com
- jim.adams@example.com

CHAPTER 12. SYNCING GROUPS WITH LDAP

317

1 The name of the Group as specified by the user-defined name mapping.

12.5.2. RFC 2307 with User-Defined Error Tolerances

By default, if the groups being synced contain members whose entries are outside of the scope defined
in the member query, the group sync fails with an error:

Error determining LDAP group membership for "<group>": membership lookup
for user "<user>" in group "<group>" failed because of "search for entry
with dn="<user-dn>" would search outside of the base dn specified (dn="
<base-dn>")".

This often indicates a mis-configured baseDN in the usersQuery field. However, in cases where the
baseDN intentionally does not contain some of the members of the group, setting
tolerateMemberOutOfScopeErrors: true allows the group sync to continue. Out of scope
members will be ignored.

Similarly, when the group sync process fails to locate a member for a group, it fails outright with errors:

Error determining LDAP group membership for "<group>": membership lookup
for user "<user>" in group "<group>" failed because of "search for entry
with base dn="<user-dn>" refers to a non-existent entry".

Error determining LDAP group membership for "<group>": membership lookup
for user "<user>" in group "<group>" failed because of "search for entry
with base dn="<user-dn>" and filter "<filter>" did not return any results".

This often indicates a mis-configured usersQuery field. However, in cases where the group contains
member entries that are known to be missing, setting tolerateMemberNotFoundErrors: true
allows the group sync to continue. Problematic members will be ignored.

WARNING

Enabling error tolerances for the LDAP group sync causes the sync process to
ignore problematic member entries. If the LDAP group sync is not configured
correctly, this could result in synced OpenShift Container Platform groups missing
members.

Example 12.9. LDAP Entries Using RFC 2307 Schema With Problematic Group Membership:
rfc2307_problematic_users.ldif



 dn: ou=users,dc=example,dc=com
 objectClass: organizationalUnit
 ou: users

 dn: cn=Jane,ou=users,dc=example,dc=com
 objectClass: person

OpenShift Container Platform 3.7 Installation and Configuration

318

1

2

A member that does not exist on the LDAP server.

A member that may exist, but is not under the baseDN in the user query for the sync job.

In order to tolerate the errors in the above example, the following additions to your sync configuration file
must be made:

Example 12.10. LDAP Sync Configuration Using RFC 2307 Schema Tolerating Errors:
rfc2307_config_tolerating.yaml

 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 cn: Jane
 sn: Smith
 displayName: Jane Smith
 mail: jane.smith@example.com

 dn: cn=Jim,ou=users,dc=example,dc=com
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 cn: Jim
 sn: Adams
 displayName: Jim Adams
 mail: jim.adams@example.com

 dn: ou=groups,dc=example,dc=com
 objectClass: organizationalUnit
 ou: groups

 dn: cn=admins,ou=groups,dc=example,dc=com
 objectClass: groupOfNames
 cn: admins
 owner: cn=admin,dc=example,dc=com
 description: System Administrators
 member: cn=Jane,ou=users,dc=example,dc=com
 member: cn=Jim,ou=users,dc=example,dc=com

 member: cn=INVALID,ou=users,dc=example,dc=com 1

 member: cn=Jim,ou=OUTOFSCOPE,dc=example,dc=com 2

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
rfc2307:
 groupsQuery:
 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub
 derefAliases: never
 groupUIDAttribute: dn
 groupNameAttributes: [cn]
 groupMembershipAttributes: [member]
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"

CHAPTER 12. SYNCING GROUPS WITH LDAP

319

2

3

1

1

When true, the sync job tolerates groups for which some members were not found, and
members whose LDAP entries are not found are ignored. The default behavior for the sync job
is to fail if a member of a group is not found.

When true, the sync job tolerates groups for which some members are outside the user scope
given in the usersQuery base DN, and members outside the member query scope are ignored.
The default behavior for the sync job is to fail if a member of a group is out of scope.

The attribute that uniquely identifies a user on the LDAP server. You cannot specify
usersQuery filters when using DN for userUIDAttribute. For fine-grained filtering, use the
whitelist / blacklist method.

To run sync with the rfc2307_config_tolerating.yaml file:

$ oc adm groups sync --sync-config=rfc2307_config_tolerating.yaml --
confirm

OpenShift Container Platform creates the following group record as a result of the above sync operation:

Example 12.11. OpenShift Container Platform Group Created Using rfc2307_config.yaml

The users that are members of the group, as specified by the sync file. Members for which
lookup encountered tolerated errors are absent.

12.5.3. Active Directory

In the Active Directory schema, both users (Jane and Jim) exist in the LDAP server as first-class entries,
and group membership is stored in attributes on the user. The following snippet of ldif defines the
users and group for this schema:

 scope: sub
 derefAliases: never

 userUIDAttribute: dn 1
 userNameAttributes: [mail]

 tolerateMemberNotFoundErrors: true 2

 tolerateMemberOutOfScopeErrors: true 3

apiVersion: v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400
 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com
 openshift.io/ldap.url: LDAP_SERVER_IP:389
 creationTimestamp:
 name: admins

users: 1
- jane.smith@example.com
- jim.adams@example.com

OpenShift Container Platform 3.7 Installation and Configuration

320

1

Example 12.12. LDAP Entries Using Active Directory Schema: active_directory.ldif

The user’s group memberships are listed as attributes on the user, and the group does not exist
as an entry on the server. The memberOf attribute does not have to be a literal attribute on the
user; in some LDAP servers, it is created during search and returned to the client, but not
committed to the database.

To sync this group, you must first create the configuration file. The Active Directory schema requires you
to provide an LDAP query definition for user entries, as well as the attributes to represent them with in
the internal OpenShift Container Platform Group records.

For clarity, the Group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of a Group by their e-mail, but define the name of the Group by the name of the group on the
LDAP server. The following configuration file creates these relationships:

Example 12.13. LDAP Sync Configuration Using Active Directory Schema:
active_directory_config.yaml

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jane
sn: Smith
displayName: Jane Smith
mail: jane.smith@example.com

memberOf: admins 1

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jim
sn: Adams
displayName: Jim Adams
mail: jim.adams@example.com
memberOf: admins

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
activeDirectory:
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never

CHAPTER 12. SYNCING GROUPS WITH LDAP

321

1

2

1

2

3

4

5

The attribute to use as the name of the user in the OpenShift Container Platform Group record.

The attribute on the user that stores the membership information.

To run sync with the active_directory_config.yaml file:

$ oc adm groups sync --sync-config=active_directory_config.yaml --confirm

OpenShift Container Platform creates the following Group record as a result of the above sync
operation:

Example 12.14. OpenShift Container Platform Group Created Using
active_directory_config.yaml

The last time this Group was synchronized with the LDAP server, in ISO 6801 format.

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this Group’s record is stored.

The name of the group as listed in the LDAP server.

The users that are members of the Group, named as specified by the sync file.

12.5.4. Augmented Active Directory

In the augmented Active Directory schema, both users (Jane and Jim) and groups exist in the LDAP
server as first-class entries, and group membership is stored in attributes on the user. The following
snippet of ldif defines the users and group for this schema:

 filter: (objectclass=inetOrgPerson)
 pageSize: 0

 userNameAttributes: [mail] 1

 groupMembershipAttributes: [memberOf] 2

apiVersion: v1
kind: Group
metadata:
 annotations:

 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1

 openshift.io/ldap.uid: admins 2

 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:

 name: admins 4

users: 5
- jane.smith@example.com
- jim.adams@example.com

OpenShift Container Platform 3.7 Installation and Configuration

322

1

2

Example 12.15. LDAP Entries Using Augmented Active Directory Schema:
augmented_active_directory.ldif

The user’s group memberships are listed as attributes on the user.

The group is a first-class entry on the LDAP server.

To sync this group, you must first create the configuration file. The augmented Active Directory schema
requires you to provide an LDAP query definition for both user entries and group entries, as well as the
attributes with which to represent them in the internal OpenShift Container Platform Group records.

For clarity, the Group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of a Group by their e-mail, and use the name of the Group as the common name. The following
configuration file creates these relationships.

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jane
sn: Smith
displayName: Jane Smith
mail: jane.smith@example.com

memberOf: cn=admins,ou=groups,dc=example,dc=com 1

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jim
sn: Adams
displayName: Jim Adams
mail: jim.adams@example.com
memberOf: cn=admins,ou=groups,dc=example,dc=com

dn: ou=groups,dc=example,dc=com
objectClass: organizationalUnit
ou: groups

dn: cn=admins,ou=groups,dc=example,dc=com 2
objectClass: groupOfNames
cn: admins
owner: cn=admin,dc=example,dc=com
description: System Administrators
member: cn=Jane,ou=users,dc=example,dc=com
member: cn=Jim,ou=users,dc=example,dc=com

CHAPTER 12. SYNCING GROUPS WITH LDAP

323

1

2

3

4

Example 12.16. LDAP Sync Configuration Using Augmented Active Directory Schema:
augmented_active_directory_config.yaml

The attribute that uniquely identifies a group on the LDAP server. You cannot specify
groupsQuery filters when using DN for groupUIDAttribute. For fine-grained filtering, use the
whitelist / blacklist method.

The attribute to use as the name of the Group.

The attribute to use as the name of the user in the OpenShift Container Platform Group record.

The attribute on the user that stores the membership information.

To run sync with the augmented_active_directory_config.yaml file:

$ oc adm groups sync --sync-config=augmented_active_directory_config.yaml
--confirm

OpenShift Container Platform creates the following Group record as a result of the above sync
operation:

Example 12.17. OpenShift Group Created Using augmented_active_directory_config.yaml

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
augmentedActiveDirectory:
 groupsQuery:
 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub
 derefAliases: never
 pageSize: 0

 groupUIDAttribute: dn 1

 groupNameAttributes: [cn] 2
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 filter: (objectclass=inetOrgPerson)
 pageSize: 0

 userNameAttributes: [mail] 3

 groupMembershipAttributes: [memberOf] 4

apiVersion: v1
kind: Group
metadata:
 annotations:

 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1

 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2

 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:

 name: admins 4

OpenShift Container Platform 3.7 Installation and Configuration

324

1

2

3

4

5

The last time this Group was synchronized with the LDAP server, in ISO 6801 format.

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this Group’s record is stored.

The name of the Group as specified by the sync file.

The users that are members of the Group, named as specified by the sync file.

12.6. NESTED MEMBERSHIP SYNC EXAMPLE

Groups in OpenShift Container Platform do not nest. The LDAP server must flatten group membership
before the data can be consumed. Microsoft’s Active Directory Server supports this feature via the
LDAP_MATCHING_RULE_IN_CHAIN rule, which has the OID 1.2.840.113556.1.4.1941.
Furthermore, only explicitly whitelisted groups can be synced when using this matching rule.

This section has an example for the augmented Active Directory schema, which synchronizes a group
named admins that has one user Jane and one group otheradmins as members. The otheradmins
group has one user member: Jim. This example explains:

How the group and users are added to the LDAP server.

What the LDAP sync configuration file looks like.

What the resulting Group record in OpenShift Container Platform will be after synchronization.

In the augmented Active Directory schema, both users (Jane and Jim) and groups exist in the LDAP
server as first-class entries, and group membership is stored in attributes on the user or the group. The
following snippet of ldif defines the users and groups for this schema:

LDAP Entries Using Augmented Active Directory Schema With Nested Members:
augmented_active_directory_nested.ldif

users: 5
- jane.smith@example.com
- jim.adams@example.com

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jane
sn: Smith
displayName: Jane Smith
mail: jane.smith@example.com

memberOf: cn=admins,ou=groups,dc=example,dc=com 1

CHAPTER 12. SYNCING GROUPS WITH LDAP

325

https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

1 2 5

3 4

6

The user’s and group’s memberships are listed as attributes on the object.

The groups are first-class entries on the LDAP server.

The otheradmins group is a member of the admins group.

To sync nested groups with Active Directory, you must provide an LDAP query definition for both user
entries and group entries, as well as the attributes with which to represent them in the internal OpenShift
Container Platform Group records. Furthermore, certain changes are required in this configuration:

The oc adm groups sync command must explicitly whitelist groups.

The user’s groupMembershipAttributes must include
"memberOf:1.2.840.113556.1.4.1941:" to comply with the
LDAP_MATCHING_RULE_IN_CHAIN rule.

The groupUIDAttribute must be set to dn.

The groupsQuery:

Must not set filter.

Must set a valid derefAliases.

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jim
sn: Adams
displayName: Jim Adams
mail: jim.adams@example.com

memberOf: cn=otheradmins,ou=groups,dc=example,dc=com 2

dn: ou=groups,dc=example,dc=com
objectClass: organizationalUnit
ou: groups

dn: cn=admins,ou=groups,dc=example,dc=com 3
objectClass: group
cn: admins
owner: cn=admin,dc=example,dc=com
description: System Administrators
member: cn=Jane,ou=users,dc=example,dc=com
member: cn=otheradmins,ou=groups,dc=example,dc=com

dn: cn=otheradmins,ou=groups,dc=example,dc=com 4
objectClass: group
cn: otheradmins
owner: cn=admin,dc=example,dc=com
description: Other System Administrators

memberOf: cn=admins,ou=groups,dc=example,dc=com 5 6
member: cn=Jim,ou=users,dc=example,dc=com

OpenShift Container Platform 3.7 Installation and Configuration

326

https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

1

2

3

4

5

Should not set baseDN as that value is ignored.

Should not set scope as that value is ignored.

For clarity, the Group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of a Group by their e-mail, and use the name of the Group as the common name. The following
configuration file creates these relationships:

LDAP Sync Configuration Using Augmented Active Directory Schema With Nested
Members: augmented_active_directory_config_nested.yaml

groupsQuery filters cannot be specified. The groupsQuery base DN and scope values are
ignored. groupsQuery must set a valid derefAliases.

The attribute that uniquely identifies a group on the LDAP server. It must be set to dn.

The attribute to use as the name of the Group.

The attribute to use as the name of the user in the OpenShift Container Platform Group record.
mail or sAMAccountName are preferred choices in most installations.

The attribute on the user that stores the membership information. Note the use of
LDAP_MATCHING_RULE_IN_CHAIN.

To run sync with the augmented_active_directory_config_nested.yaml file:

$ oc adm groups sync \
 'cn=admins,ou=groups,dc=example,dc=com' \
 --sync-config=augmented_active_directory_config_nested.yaml \
 --confirm

NOTE

You must explicitly whitelist the cn=admins,ou=groups,dc=example,dc=com group.

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
augmentedActiveDirectory:

 groupsQuery: 1
 derefAliases: never
 pageSize: 0

 groupUIDAttribute: dn 2

 groupNameAttributes: [cn] 3
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 filter: (objectclass=inetOrgPerson)
 pageSize: 0

 userNameAttributes: [mail] 4

 groupMembershipAttributes: ["memberOf:1.2.840.113556.1.4.1941:"] 5

CHAPTER 12. SYNCING GROUPS WITH LDAP

327

https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

1

2

3

4

5

OpenShift Container Platform creates the following Group record as a result of the above sync
operation:

OpenShift Group Created Using augmented_active_directory_config_nested.yaml

The last time this Group was synchronized with the LDAP server, in ISO 6801 format.

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this Group’s record is stored.

The name of the Group as specified by the sync file.

The users that are members of the Group, named as specified by the sync file. Note that members
of nested groups are included since the group membership was flattened by the Microsoft Active
Directory Server.

12.7. LDAP SYNC CONFIGURATION SPECIFICATION

The object specification for the configuration file is below. Note that the different schema objects have
different fields. For example, v1.ActiveDirectoryConfig has no groupsQuery field whereas
v1.RFC2307Config and v1.AugmentedActiveDirectoryConfig both do.

IMPORTANT

There is no support for binary attributes. All attribute data coming from the LDAP server
must be in the format of a UTF-8 encoded string. For example, never use a binary
attribute, such as objectGUID, as an ID attribute. You must use string attributes, such
as sAMAccountName or userPrincipalName, instead.

12.7.1. v1.LDAPSyncConfig

LDAPSyncConfig holds the necessary configuration options to define an LDAP group sync.

Name Description Schema

apiVersion: v1
kind: Group
metadata:
 annotations:

 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1

 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2

 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:

 name: admins 4

users: 5
- jane.smith@example.com
- jim.adams@example.com

OpenShift Container Platform 3.7 Installation and Configuration

328

kind String value representing the
REST resource this object
represents. Servers may infer this
from the endpoint the client
submits requests to. Cannot be
updated. In CamelCase. More
info:
https://github.com/kubernetes/co
mmunity/blob/master/contributors/
devel/api-conventions.md#types-
kinds

string

apiVersion Defines the versioned schema of
this representation of an object.
Servers should convert
recognized schemas to the latest
internal value, and may reject
unrecognized values. More info:
https://github.com/kubernetes/co
mmunity/blob/master/contributors/
devel/api-
conventions.md#resources

string

url Host is the scheme, host and port
of the LDAP server to connect to:
scheme://host:port

string

bindDN Optional DN to bind to the LDAP
server with.

string

bindPassword Optional password to bind with
during the search phase.

v1.StringSource

insecure If true, indicates the connection
should not use TLS. Cannot be
set to true with a URL scheme of
ldaps:// If false,
ldaps:// URLs connect using
TLS, and ldap:// URLs are
upgraded to a TLS connection
using StartTLS as specified in
https://tools.ietf.org/html/rfc2830.

boolean

ca Optional trusted certificate
authority bundle to use when
making requests to the server. If
empty, the default system roots
are used.

string

Name Description Schema

CHAPTER 12. SYNCING GROUPS WITH LDAP

329

https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md#types-kinds
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md#resources
https://tools.ietf.org/html/rfc2830

groupUIDNameMapping Optional direct mapping of LDAP
group UIDs to OpenShift
Container Platform Group names.

object

rfc2307 Holds the configuration for
extracting data from an LDAP
server set up in a fashion similar
to RFC2307: first-class group and
user entries, with group
membership determined by a
multi-valued attribute on the group
entry listing its members.

v1.RFC2307Config

activeDirectory Holds the configuration for
extracting data from an LDAP
server set up in a fashion similar
to that used in Active Directory:
first-class user entries, with group
membership determined by a
multi-valued attribute on members
listing groups they are a member
of.

v1.ActiveDirectoryConfig

augmentedActiveDirector
y

Holds the configuration for
extracting data from an LDAP
server set up in a fashion similar
to that used in Active Directory as
described above, with one
addition: first-class group entries
exist and are used to hold
metadata but not group
membership.

v1.AugmentedActiveDirectoryCon
fig

Name Description Schema

12.7.2. v1.StringSource

StringSource allows specifying a string inline, or externally via environment variable or file. When it
contains only a string value, it marshals to a simple JSON string.

Name Description Schema

value Specifies the cleartext value, or
an encrypted value if keyFile is
specified.

string

env Specifies an environment variable
containing the cleartext value, or
an encrypted value if the
keyFile is specified.

string

OpenShift Container Platform 3.7 Installation and Configuration

330

file References a file containing the
cleartext value, or an encrypted
value if a keyFile is specified.

string

keyFile References a file containing the
key to use to decrypt the value.

string

Name Description Schema

12.7.3. v1.LDAPQuery

LDAPQuery holds the options necessary to build an LDAP query.

Name Description Schema

baseDN DN of the branch of the directory
where all searches should start
from.

string

scope The (optional) scope of the
search. Can be base (only the
base object), one (all objects on
the base level), sub (the entire
subtree). Defaults to sub if not
set.

string

derefAliases The (optional) behavior of the
search with regards to alisases.
Can be never (never
dereference aliases), search
(only dereference in searching),
base (only dereference in finding
the base object), always
(always dereference). Defaults to
always if not set.

string

timeout Holds the limit of time in seconds
that any request to the server can
remain outstanding before the
wait for a response is given up. If
this is 0, no client-side limit is
imposed.

integer

filter A valid LDAP search filter that
retrieves all relevant entries from
the LDAP server with the base
DN.

string

CHAPTER 12. SYNCING GROUPS WITH LDAP

331

pageSize Maximum preferred page size,
measured in LDAP entries. A
page size of 0 means no paging
will be done.

integer

Name Description Schema

12.7.4. v1.RFC2307Config

RFC2307Config holds the necessary configuration options to define how an LDAP group sync interacts
with an LDAP server using the RFC2307 schema.

Name Description Schema

groupsQuery Holds the template for an LDAP
query that returns group entries.

v1.LDAPQuery

groupUIDAttribute Defines which attribute on an
LDAP group entry will be
interpreted as its unique identifier.
(ldapGroupUID)

string

groupNameAttributes Defines which attributes on an
LDAP group entry will be
interpreted as its name to use for
an OpenShift Container Platform
group.

string array

groupMembershipAttribut
es

Defines which attributes on an
LDAP group entry will be
interpreted as its members. The
values contained in those
attributes must be queryable by
your UserUIDAttribute.

string array

usersQuery Holds the template for an LDAP
query that returns user entries.

v1.LDAPQuery

userUIDAttribute Defines which attribute on an
LDAP user entry will be
interpreted as its unique identifier.
It must correspond to values that
will be found from the
GroupMembershipAttribut
es.

string

OpenShift Container Platform 3.7 Installation and Configuration

332

userNameAttributes Defines which attributes on an
LDAP user entry will be used, in
order, as its OpenShift Container
Platform user name. The first
attribute with a non-empty value is
used. This should match your
PreferredUsername setting
for your
LDAPPasswordIdentityPro
vider. The attribute to use as
the name of the user in the
OpenShift Container Platform
Group record. mail or
sAMAccountName are preferred
choices in most installations.

string array

tolerateMemberNotFoundE
rrors

Determines the behavior of the
LDAP sync job when missing user
entries are encountered. If true,
an LDAP query for users that does
not find any will be tolerated and
an only and error will be logged. If
false, the LDAP sync job will
fail if a query for users doesn’t find
any. The default value is 'false'.
Misconfigured LDAP sync jobs
with this flag set to 'true' can
cause group membership to be
removed, so it is recommended to
use this flag with caution.

boolean

tolerateMemberOutOfScop
eErrors

Determines the behavior of the
LDAP sync job when out-of-scope
user entries are encountered. If
true, an LDAP query for a user
that falls outside of the base DN
given for the all user query will be
tolerated and only an error will be
logged. If false, the LDAP sync
job will fail if a user query would
search outside of the base DN
specified by the all user query.
Misconfigured LDAP sync jobs
with this flag set to true can
result in groups missing users, so
it is recommended to use this flag
with caution.

boolean

Name Description Schema

12.7.5. v1.ActiveDirectoryConfig

CHAPTER 12. SYNCING GROUPS WITH LDAP

333

ActiveDirectoryConfig holds the necessary configuration options to define how an LDAP group
sync interacts with an LDAP server using the Active Directory schema.

Name Description Schema

usersQuery Holds the template for an LDAP
query that returns user entries.

v1.LDAPQuery

userNameAttributes Defines which attributes on an
LDAP user entry will be
interpreted as its OpenShift
Container Platform user name.
The attribute to use as the name
of the user in the OpenShift
Container Platform Group record.
mail or sAMAccountName are
preferred choices in most
installations.

string array

groupMembershipAttribut
es

Defines which attributes on an
LDAP user entry will be
interpreted as the groups it is a
member of.

string array

12.7.6. v1.AugmentedActiveDirectoryConfig

AugmentedActiveDirectoryConfig holds the necessary configuration options to define how an
LDAP group sync interacts with an LDAP server using the augmented Active Directory schema.

Name Description Schema

usersQuery Holds the template for an LDAP
query that returns user entries.

v1.LDAPQuery

userNameAttributes Defines which attributes on an
LDAP user entry will be
interpreted as its OpenShift
Container Platform user name.
The attribute to use as the name
of the user in the OpenShift
Container Platform Group record.
mail or sAMAccountName are
preferred choices in most
installations.

string array

groupMembershipAttribut
es

Defines which attributes on an
LDAP user entry will be
interpreted as the groups it is a
member of.

string array

OpenShift Container Platform 3.7 Installation and Configuration

334

groupsQuery Holds the template for an LDAP
query that returns group entries.

v1.LDAPQuery

groupUIDAttribute Defines which attribute on an
LDAP group entry will be
interpreted as its unique identifier.
(ldapGroupUID)

string

groupNameAttributes Defines which attributes on an
LDAP group entry will be
interpreted as its name to use for
an OpenShift Container Platform
group.

string array

Name Description Schema

CHAPTER 12. SYNCING GROUPS WITH LDAP

335

CHAPTER 13. CONFIGURING LDAP FAILOVER
OpenShift Container Platform provides an authentication provider for use with Lightweight Directory
Access Protocol (LDAP) setups, but it can connect to only a single LDAP server. During OpenShift
Container Platform installation, you can configure the System Security Services Daemon (SSSD) for
LDAP failover to ensure access to your cluster if one LDAP server fails.

The setup for this configuration is advanced and requires a separate authentication server, also called
an remote basic authentication server, for OpenShift Container Platform to communicate with. You
configure this server to pass extra attributes, such as email addresses, to OpenShift Container Platform
so it can display them in the web console.

This topic describes how to complete this set up on a dedicated physical or virtual machine (VM), but
you can also configure SSSD in containers.

IMPORTANT

You must complete all sections of this topic.

13.1. PREREQUISITES FOR CONFIGURING BASIC REMOTE
AUTHENTICATION

Before starting setup, you need to know the following information about your LDAP server:

Whether the directory server is powered by FreeIPA, Active Directory, or another LDAP
solution.

The Uniform Resource Identifier (URI) for the LDAP server, for example,
ldap.example.com.

The location of the CA certificate for the LDAP server.

Whether the LDAP server corresponds to RFC 2307 or RFC2307bis for user groups.

Prepare the servers:

remote-basic.example.com: A VM to use as the remote basic authentication server.

Select an operating system that includes SSSD version 1.12.0 for this server such as
Red Hat Enterprise Linux 7.0 or later.

openshift.example.com: A new installation of OpenShift Container Platform.

You must not have an authentication method configured for this cluster.

Do not start OpenShift Container Platform on this cluster.

13.2. GENERATING AND SHARING CERTIFICATES WITH THE REMOTE
BASIC AUTHENTICATION SERVER

Complete the following steps on the first master host listed in the Ansible host inventory file, by default
/etc/ansible/hosts.

OpenShift Container Platform 3.7 Installation and Configuration

336

http://www.freeipa.org/page/Main_Page

1

1. To ensure that communication between the remote basic authentication server and OpenShift
Container Platform is trustworthy, create a set of Transport Layer Security (TLS) certificates to
use during the other phases of this set up. Run the following command:

openshift start \
 --public-master=https://openshift.example.com:8443 \
 --write-config=/etc/origin/

The output inclues the /etc/origin/master/ca.crt and /etc/origin/master/ca.key signing
certificates.

2. Use the signing certificate to generate keys to use on the remote basic authentication server:

mkdir -p /etc/origin/remote-basic/
oc adm ca create-server-cert \
 --cert='/etc/origin/remote-basic/remote-basic.example.com.crt' \
 --key='/etc/origin/remote-basic/remote-basic.example.com.key' \

 --hostnames=remote-basic.example.com \ 1
 --signer-cert='/etc/origin/master/ca.crt' \
 --signer-key='/etc/origin/master/ca.key' \
 --signer-serial='/etc/origin/master/ca.serial.txt'

A comma-separated list of all the host names and interface IP addresses that need to
access the remote basic authentication server.

NOTE

The certificate files that you generate are valid for two years. You can alter this
period by changing the --expire-days and --signer-expire-days values,
but for security reasons, do not make them greater than 730.

IMPORTANT

If you do not list all host names and interface IP addresses that need to access
the remote basic authentication server, the HTTPS connection will fail.

3. Copy the necessary certificates and key to the remote basic authentication server:

scp /etc/origin/master/ca.crt \
 root@remote-basic.example.com:/etc/pki/CA/certs/

scp /etc/origin/remote-basic/remote-basic.example.com.crt \
 root@remote-basic.example.com:/etc/pki/tls/certs/

scp /etc/origin/remote-basic/remote-basic.example.com.key \
 root@remote-basic.example.com:/etc/pki/tls/private/

13.3. CONFIGURING SSSD FOR LDAP FAILOVER

Complete these steps on the remote basic authentication server.

CHAPTER 13. CONFIGURING LDAP FAILOVER

337

1

You can configure the SSSD to retrieve attributes, such as email addresses and display names, and
pass them to OpenShift Container Platform to display in the web interface. In the following steps, you
configure the SSSD to provide email addresses to OpenShift Container Platform:

1. Install the required SSSD and the web server components:

yum install -y sssd \
 sssd-dbus \
 realmd \
 httpd \
 mod_session \
 mod_ssl \
 mod_lookup_identity \
 mod_authnz_pam \
 php \
 mod_php

2. Set up SSSD to authenticate this VM against the LDAP server. If the LDAP server is a FreeIPA
or Active Directory environment, then use realmd to join this machine to the domain.

realm join ldap.example.com

For more advanced cases, see the System-Level Authentication Guide

3. To use SSSD to manage failover situations for LDAP, add more entries to the
/etc/sssd/sssd.conf file on the ldap_uri line. Systems that are enrolled with FreeIPA can
automatically handle failover by using DNS SRV records.

4. Modify the [domain/DOMAINNAME] section of the /etc/sssd/sssd.conf file and add this
attribute:

[domain/example.com]
...

ldap_user_extra_attrs = mail 1

Specify the correct attribute to retrieve email addresses for your LDAP solution. For IPA,
specify mail. Other LDAP solutions might use another attribute, such as email.

5. Confirm that the domain parameter in the /etc/sssd/sssd.conf file contains only the domain
name listed in the [domain/DOMAINNAME] section.

domains = example.com

6. Grant Apache permission to retrieve the email attribute. Add the following lines to the [ifp]
section of the /etc/sssd/sssd.conf file:

[ifp]
user_attributes = +mail
allowed_uids = apache, root

7. To ensure that all of the changes are applied properly, restart SSSD:

$ systemctl restart sssd.service

OpenShift Container Platform 3.7 Installation and Configuration

338

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System-Level_Authentication_Guide/authconfig-ldap.html

1

2

8. Test that the user information can be retrieved properly:

$ getent passwd <username>
username:*:12345:12345:Example User:/home/username:/usr/bin/bash

9. Confirm that the mail attribute you specified returns an email address from your domain:

dbus-send --print-reply --system --
dest=org.freedesktop.sssd.infopipe \
 /org/freedesktop/sssd/infopipe
org.freedesktop.sssd.infopipe.GetUserAttr \

 string:username \ 1

 array:string:mail 2

method return time=1528091855.672691 sender=:1.2787 ->
destination=:1.2795 serial=13 reply_serial=2
 array [
 dict entry(
 string "mail"
 variant array [
 string "username@example.com"
]
)
]

Provide a user name in your LDAP solution.

Specify the attribute that you configured.

10. Attempt to log into the VM as an LDAP user and confirm that you can log in using LDAP
credentials. You can use either the local console or a remote service like SSH to log in.

IMPORTANT

By default, all users can log into the remote basic authentication server by using their
LDAP credentials. You can change this behavior:

If you use IPA joined systems, configure host-based access control.

If you use Active Directory joined systems, use a group policy object.

For other cases, see the SSSD configuration documentation.

13.4. CONFIGURING APACHE TO USE SSSD

1. Create a /etc/pam.d/openshift file that contains the following contents:

auth required pam_sss.so
account required pam_sss.so

This configuration enables PAM, the pluggable authentication module, to use pam_sss.so to
determine authentication and access control when an authentication request is issued for the
openshift stack.

CHAPTER 13. CONFIGURING LDAP FAILOVER

339

https://www.freeipa.org/page/Howto/HBAC_and_allow_all
https://docs.pagure.org/SSSD.sssd/design_pages/active_directory_gpo_integration.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/sssd

2. Edit the /etc/httpd/conf.modules.d/55-authnz_pam.conf file and uncomment the following line:

LoadModule authnz_pam_module modules/mod_authnz_pam.so

3. To configure the Apache httpd.conf file for remote basic authentication, create the openshift-
remote-basic-auth.conf file in the /etc/httpd/conf.d directory. Use the following template to
provide your required settings and values:

IMPORTANT

Carefully review the template and customize its contents to fit your environment.

LoadModule request_module modules/mod_request.so
LoadModule php7_module modules/libphp7.so

Nothing needs to be served over HTTP. This virtual host simply
redirects to
HTTPS.
<VirtualHost *:80>
 DocumentRoot /var/www/html
 RewriteEngine On
 RewriteRule ^(.*)$ https://%{HTTP_HOST}$1 [R,L]
</VirtualHost>

<VirtualHost *:443>
 # This needs to match the certificates you generated. See the CN
and X509v3
 # Subject Alternative Name in the output of:
 # openssl x509 -text -in /etc/pki/tls/certs/remote-
basic.example.com.crt
 ServerName remote-basic.example.com

 DocumentRoot /var/www/html

 # Secure all connections with TLS
 SSLEngine on
 SSLCertificateFile /etc/pki/tls/certs/remote-basic.example.com.crt
 SSLCertificateKeyFile /etc/pki/tls/private/remote-
basic.example.com.key
 SSLCACertificateFile /etc/pki/CA/certs/ca.crt

 # Require that TLS clients provide a valid certificate
 SSLVerifyClient require
 SSLVerifyDepth 10

 # Other SSL options that may be useful
 # SSLCertificateChainFile ...
 # SSLCARevocationFile ...

 # Send logs to a specific location to make them easier to find
 ErrorLog logs/remote_basic_error_log
 TransferLog logs/remote_basic_access_log
 LogLevel warn

 # PHP script that turns the Apache REMOTE_USER env var

OpenShift Container Platform 3.7 Installation and Configuration

340

 # into a JSON formatted response that OpenShift understands
 <Location /check_user.php>
 # all requests not using SSL are denied
 SSLRequireSSL
 # denies access when SSLRequireSSL is applied
 SSLOptions +StrictRequire
 # Require both a valid basic auth user (so REMOTE_USER is always
set)
 # and that the CN of the TLS client matches that of the
OpenShift master
 <RequireAll>
 Require valid-user
 Require expr %{SSL_CLIENT_S_DN_CN} == 'system:openshift-
master'
 </RequireAll>
 # Use basic auth since OpenShift will call this endpoint with a
basic challenge
 AuthType Basic
 AuthName openshift
 AuthBasicProvider PAM
 AuthPAMService openshift

 # Store attributes in environment variables. Specify the email
attribute that
 # you confirmed.
 LookupOutput Env
 LookupUserAttr mail REMOTE_USER_MAIL
 LookupUserGECOS REMOTE_USER_DISPLAY_NAME

 # Other options that might be useful

 # While REMOTE_USER is used as the sub field and serves as the
immutable ID,
 # REMOTE_USER_PREFERRED_USERNAME could be used to have a
different username
 # LookupUserAttr <attr_name> REMOTE_USER_PREFERRED_USERNAME

 # Group support may be added in a future release
 # LookupUserGroupsIter REMOTE_USER_GROUP
 </Location>

 # Deny everything else
 <Location ~ "^((?!\/check_user\.php).)*$">
 Deny from all
 </Location>
</VirtualHost>

4. Create the check_user.php script in the /var/www/html directory. Include the following code:

<?php
// Get the user based on the Apache var, this should always be
// set because we 'Require valid-user' in the configuration
$user = apache_getenv('REMOTE_USER');

// However, we assume it may not be set and
// build an error response by default

CHAPTER 13. CONFIGURING LDAP FAILOVER

341

$data = array(
 'error' => 'remote PAM authentication failed'
);

// Build a success response if we have a user
if (!empty($user)) {
 $data = array(
 'sub' => $user
);
 // Map of optional environment variables to optional JSON fields
 $env_map = array(
 'REMOTE_USER_MAIL' => 'email',
 'REMOTE_USER_DISPLAY_NAME' => 'name',
 'REMOTE_USER_PREFERRED_USERNAME' => 'preferred_username'
);

 // Add all non-empty environment variables to JSON data
 foreach ($env_map as $env_name => $json_name) {
 $env_data = apache_getenv($env_name);
 if (!empty($env_data)) {
 $data[$json_name] = $env_data;
 }
 }
}

// We always output JSON from this script
header('Content-Type: application/json', true);

// Write the response as JSON
echo json_encode($data);
?>

5. Enable Apache to load the module. Modify the /etc/httpd/conf.modules.d/55-
lookup_identity.conf file and uncomment the following line:

LoadModule lookup_identity_module modules/mod_lookup_identity.so

6. Set an SELinux boolean so that SElinux allows Apache to connect to SSSD over D-BUS:

setsebool -P httpd_dbus_sssd on

7. Set a boolean to tell SELinux that it is acceptable for Apache to contact the PAM subsystem:

setsebool -P allow_httpd_mod_auth_pam on

8. Start Apache:

systemctl start httpd.service

13.5. CONFIGURING OPENSHIFT CONTAINER PLATFORM TO USE
SSSD AS THE BASIC REMOTE AUTHENTICATION SERVER

OpenShift Container Platform 3.7 Installation and Configuration

342

Modify the default configuration of your cluster to use the new identity provider that you created.
Complete the following steps on the first master host listed in the Ansible host inventory file.

1. Open the /etc/origin/master/master-config.yaml file.

2. Locate the identityProviders section and replace it with the following code:

 identityProviders:
 - name: sssd
 challenge: true
 login: true
 mappingMethod: claim
 provider:
 apiVersion: v1
 kind: BasicAuthPasswordIdentityProvider
 url: https://remote-basic.example.com/check_user.php
 ca: /etc/origin/master/ca.crt
 certFile: /etc/origin/master/openshift-master.crt
 keyFile: /etc/origin/master/openshift-master.key

3. Restart OpenShift Container Platform with the updated configuration:

systemctl restart atomic-openshift-master-api

systemctl restart atomic-openshift-master-controllers

4. Test a login by using the oc CLI:

$ oc login https://openshift.example.com:8443

You can log in only with valid LDAP credentials.

5. List the identities and confirm that an email address is displayed for each user name. Run the
following command:

$ oc get identity -o yaml

CHAPTER 13. CONFIGURING LDAP FAILOVER

343

CHAPTER 14. CONFIGURING THE SDN

14.1. OVERVIEW

The OpenShift SDN enables communication between pods across the OpenShift Container Platform
cluster, establishing a pod network. Three SDN plug-ins are currently available (ovs-subnet, ovs-
multitenant, and ovs-networkpolicy), which provide different methods for configuring the pod network.

14.2. AVAILABLE SDN PROVIDERS

The upstream Kubernetes project does not come with a default network solution. Instead, Kubernetes
has developed a Container Network Interface (CNI) to allow network providers for integration with their
own SDN solutions.

There are several OpenShift SDN plugins available out of the box from Red Hat, as well as third-party
plug-ins.

Red Hat has worked with a number of SDN providers to certify their SDN network solution on OpenShift
Container Platform via the Kubernetes CNI interface, including a support process for their SDN plug-in
through their product’s entitlement process. Should you open a support case with OpenShift, Red Hat
can facilitate an exchange process so that both companies are involved in meeting your needs.

The following SDN solutions are validated and supported on OpenShift Container Platform directly by the
3rd party vendor:

Cisco Contiv (™)

Juniper Contrail (™)

Nokia Nuage (™)

Tigera Calico (™)

VMware NSX-T (™)

Installing VMware NSX-T (™) on OpenShift Container Platform
VMware NSX-T (™) provides an SDN and security infrastructure to build cloud-native application
environments. In addition to vSphere hypervisors (ESX), these environments include KVM and native
public clouds.

The current integration requires a new install of both NSX-T and OpenShift Container Platform.
Currently, NSX-T version 2.1 is supported, and only supports the use of ESX and KVM hypervisors at
this time.

See the NSX-T Container Plug-in for OpenShift - Installation and Administration Guide for more
information.

14.3. CONFIGURING THE POD NETWORK WITH ANSIBLE

For initial advanced installations, the ovs-subnet plug-in is installed and configured by default, though it
can be overridden during installation using the os_sdn_network_plugin_name parameter, which is
configurable in the Ansible inventory file.

Example 14.1. Example SDN Configuration with Ansible

OpenShift Container Platform 3.7 Installation and Configuration

344

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-sdn
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-sdn
https://docs.vmware.com/en/VMware-NSX-T/2.1/nsxt_21_ncp_openshift.pdf

Configure the multi-tenant SDN plugin (default is 'redhat/openshift-
ovs-subnet')
os_sdn_network_plugin_name='redhat/openshift-ovs-multitenant'

Configure the NetworkPolicy SDN plugin
os_sdn_network_plugin_name='redhat/openshift-ovs-networkpolicy'

Disable the OpenShift SDN plugin
openshift_use_openshift_sdn=False

Configure SDN cluster network CIDR block. This network block should
be a private block and should not conflict with existing network
blocks in your infrastructure that pods may require access to.
Can not be changed after deployment.
#osm_cluster_network_cidr=10.1.0.0/16

default subdomain to use for exposed routes
#openshift_master_default_subdomain=apps.test.example.com

Configure SDN cluster network and kubernetes service CIDR blocks.
These
network blocks should be private and should not conflict with network
blocks
in your infrastructure that pods may require access to. Can not be
changed
after deployment.
#osm_cluster_network_cidr=10.1.0.0/16
#openshift_portal_net=172.30.0.0/16

Configure number of bits to allocate to each host’s subnet e.g. 8
would mean a /24 network on the host.
#osm_host_subnet_length=8

This variable specifies the service proxy implementation to use:
either iptables for the pure-iptables version (the default),
or userspace for the userspace proxy.
#openshift_node_proxy_mode=iptables

For initial quick installations, the ovs-subnet plug-in is installed and configured by default as well, and
can be reconfigured post-installation using the networkConfig stanza of the master-config.yaml file.

14.4. CONFIGURING THE POD NETWORK ON MASTERS

The cluster administrators can control pod network settings on master hosts by modifying parameters in
the networkConfig section of the master configuration file (located at /etc/origin/master/master-
config.yaml by default):

Configuring a pod network for a single CIDR

networkConfig:
 clusterNetworks:

 - cidr: 10.128.0.0/14 1

CHAPTER 14. CONFIGURING THE SDN

345

1

2

3

4

1

2

3

Cluster network for node IP allocation

Number of bits for pod IP allocation within a node

Set to redhat/openshift-ovs-subnet for the ovs-subnet plug-in, redhat/openshift-
ovs-multitenant for the ovs-multitenant plug-in, or redhat/openshift-ovs-
networkpolicy for the ovs-networkpolicy plug-in

Service IP allocation for the cluster

Alternatively, you can create a pod network with multiple CIDR ranges by adding separate ranges into
the clusterNetworks field with the range and the hostSubnetLength.

Multiple ranges can be used at once, and the range can be expanded or contracted. Nodes can be
moved from one range to another by evacuating a node, then deleting and re-creating the node. See the
Managing Nodes section for more information. Node allocations occur in the order listed, then when the
range is full, move to the next on the list.

Configuring a pod network for multiple CIDRs

Cluster network for node IP allocation.

Number of bits for pod IP allocation within a node.

Set to redhat/openshift-ovs-subnet for the ovs-subnet plug-in, redhat/openshift-
ovs-multitenant for the ovs-multitenant plug-in, or redhat/openshift-ovs-
networkpolicy for the ovs-networkpolicy plug-in.

You can add elements to the clusterNetworks value, or remove them if no node is using that CIDR
range, but be sure to restart the atomic-openshift-master-api and atomic-openshift-
master-controllers services for any changes to take effect.

 hostSubnetLength: 9 2

 networkPluginName: "redhat/openshift-ovs-subnet" 3

 serviceNetworkCIDR: 172.30.0.0/16 4

networkConfig:
 clusterNetworks:

 - cidr: 10.128.0.0/14 1

 hostSubnetLength: 9 2
 - cidr: 10.132.0.0/14
 hostSubnetLength: 9
 externalIPNetworkCIDRs: null
 hostSubnetLength: 9
 ingressIPNetworkCIDR: 172.29.0.0/16

 networkPluginName: redhat/openshift-ovs-multitenant 3
 serviceNetworkCIDR: 172.30.0.0/16

OpenShift Container Platform 3.7 Installation and Configuration

346

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-manage-nodes

1

2

IMPORTANT

The hostSubnetLength value cannot be changed after the cluster is first created, A
cidr field can only be changed to be a larger network that still contains the original
network if nodes are allocated within it’s range , and serviceNetworkCIDR can only be
expanded. For example, given the default value of 10.128.0.0/14, you could change cidr
to 10.128.0.0/9 (i.e., the entire upper half of net 10) but not to 10.64.0.0/16, because that
does not overlap the original value.

You can change serviceNetworkCIDR from 172.30.0.0/16 to 172.30.0.0/15, but not to
172.28.0.0/14, because even though the original range is entirely inside the new range,
the original range must be at the start of the CIDR.

14.5. CONFIGURING THE POD NETWORK ON NODES

The cluster administrators can control pod network settings on nodes by modifying parameters in the
networkConfig section of the node configuration file (located at /etc/origin/node/node-config.yaml
by default):

Maximum transmission unit (MTU) for the pod overlay network

Set to redhat/openshift-ovs-subnet for the ovs-subnet plug-in, redhat/openshift-ovs-
multitenant for the ovs-multitenant plug-in, or redhat/openshift-ovs-networkpolicy for the ovs-
networkpolicy plug-in

NOTE

You must change the MTU size on all masters and nodes that are part of the OpenShift
Container Platform SDN. Also, the MTU size of the tun0 interface must be the same
across all nodes that are part of the cluster.

14.6. MIGRATING BETWEEN SDN PLUG-INS

If you are already using one SDN plug-in and want to switch to another:

1. Change the networkPluginName parameter on all masters and nodes in their configuration
files.

2. Restart the atomic-openshift-master-api and atomic-openshift-master-controller on masters
and the atomic-openshift-node service on nodes.

3. If you are switching from an OpenShift SDN plug-in to a third-party plug-in, then clean up
OpenShift SDN-specific artifacts:

$ oc delete clusternetwork --all
$ oc delete hostsubnets --all
$ oc delete netnamespaces --all

networkConfig:

 mtu: 1450 1

 networkPluginName: "redhat/openshift-ovs-subnet" 2

CHAPTER 14. CONFIGURING THE SDN

347

When switching from the ovs-subnet to the ovs-multitenant OpenShift SDN plug-in, all the existing
projects in the cluster will be fully isolated (assigned unique VNIDs). The cluster administrators can
choose to modify the project networks using the administrator CLI.

Check VNIDs by running:

$ oc get netnamespace

14.6.1. Migrating from ovs-multitenant to ovs-networkpolicy

NOTE

The v1 NetworkPolicy features are available only in OpenShift Container Platform. This
means that egress policy types, IPBlock, and combining podSelector and
namespaceSelector are not available in OpenShift Container Platform.

NOTE

Do not apply NetworkPolicy features on default OpenShift Container Platform projects,
because they can disrupt communication with the cluster.

In addition to the generic plug-in migration steps above in the Migrating between SDN plug-ins section,
there is one additional step when migrating from the ovs-multitenant plug-in to the ovs-networkpolicy
plug-in; you must ensure that every namespace has a unique NetID. This means that if you have
previously joined projects together or made projects global, you will need to undo that before switching to
the ovs-networkpolicy plug-in, or the NetworkPolicy objects may not function correctly.

A helper script is available that fixes NetID’s, creates NetworkPolicy objects to isolate previously-
isolated namespaces, and enables connections between previously-joined namespaces.

Use the following steps to migrate to the ovs-networkpolicy plugin, by using this helper script, while still
running the ovs-multitenant plugin:

1. Download the script and add the execution file permission:

2. Run the script (requires the cluster administrator role).

After running this script, every namespace is fully isolated from every other namespace, therefore
connection attempts between pods in different namespaces will fail until you complete the migration to
the ovs-networkpolicy plugin.

If you want newly-created namespaces to also have the same policies by default, you can set default
NetworkPolicy objects to be created matching the default-deny and allow-from-global-
namespaces policies created by the migration script.

$ curl -O
https://raw.githubusercontent.com/openshift/origin/master/contrib/mi
gration/migrate-network-policy.sh
$ chmod a+x migrate-network-policy.sh

$./migrate-network-policy.sh

OpenShift Container Platform 3.7 Installation and Configuration

348

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-pod-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#joining-project-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#making-project-networks-global
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-networking-networkpolicy-setting-default

NOTE

In case of script failures or other errors, or if you later decide you want to revert back to
the ovs-multitenant plugin, you can use the un-migration script. This script undoes the
changes made by the migration script and re-joins previously-joined namespaces.

14.7. EXTERNAL ACCESS TO THE CLUSTER NETWORK

If a host that is external to OpenShift Container Platform requires access to the cluster network, you
have two options:

1. Configure the host as an OpenShift Container Platform node but mark it unschedulable so that
the master does not schedule containers on it.

2. Create a tunnel between your host and a host that is on the cluster network.

Both options are presented as part of a practical use-case in the documentation for configuring routing
from an edge load-balancer to containers within OpenShift SDN.

14.8. USING FLANNEL

As an alternate to the default SDN, OpenShift Container Platform also provides Ansible playbooks for
installing flannel-based networking. This is useful if running OpenShift Container Platform within a cloud
provider platform that also relies on SDN, such as Red Hat OpenStack Platform, and you want to avoid
encapsulating packets twice through both platforms.

Flannel uses a single IP network space for all of the containers allocating a contiguous subset of the
space to each instance. Consequently, nothing prevents a container from attempting to contact any IP
address in the same network space. This hinders multi-tenancy because the network cannot be used to
isolate containers in one application from another.

Depending on whether you prefer mutli-tenancy isolation or performance, you should determine the
appropriate choice when deciding between OpenShift SDN (multi-tenancy) and flannel (performance) for
internal networks.

IMPORTANT

Flannel is only supported for OpenShift Container Platform on Red Hat OpenStack
Platform.

IMPORTANT

The current version of Neutron enforces port security on ports by default. This prevents
the port from sending or receiving packets with a MAC address different from that on the
port itself. Flannel creates virtual MACs and IP addresses and must send and receive
packets on the port, so port security must be disabled on the ports that carry flannel traffic.

To enable flannel within your OpenShift Container Platform cluster:

1. Neutron port security controls must be configured to be compatible with Flannel. The default
configuration of Red Hat OpenStack Platform disables user control of port_security.
Configure Neutron to allow users to control the port_security setting on individual ports.

a. On the Neutron servers, add the following to the /etc/neutron/plugins/ml2/ml2_conf.ini file:

CHAPTER 14. CONFIGURING THE SDN

349

https://raw.githubusercontent.com/openshift/origin/master/contrib/migration/unmigrate-network-policy.sh
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#marking-nodes-as-unschedulable-or-schedulable

1

2

[ml2]
...
extension_drivers = port_security

b. Then, restart the Neutron services:

service neutron-dhcp-agent restart
service neutron-ovs-cleanup restart
service neutron-metadata-agentrestart
service neutron-l3-agent restart
service neutron-plugin-openvswitch-agent restart
service neutron-vpn-agent restart
service neutron-server restart

2. When creating the OpenShift Container Platform instances on Red Hat OpenStack Platform,
disable both port security and security groups in the ports where the container network flannel
interface will be:

neutron port-update $port --no-security-groups --port-security-
enabled=False

NOTE

Flannel gather information from etcd to configure and assign the subnets in the
nodes. Therefore, the security group attached to the etcd hosts should allow
access from nodes to port 2379/tcp, and nodes security group should allow
egress communication to that port on the etcd hosts.

a. Set the following variables in your Ansible inventory file before running the installation:

openshift_use_openshift_sdn=false 1

openshift_use_flannel=true 2
flannel_interface=eth0

Set openshift_use_openshift_sdn to false to disable the default SDN.

Set openshift_use_flannel to true to enable flannel in place.

b. Optionally, you can specify the interface to use for inter-host communication using the
flannel_interface variable. Without this variable, the OpenShift Container Platform
installation uses the default interface.

NOTE

Custom networking CIDR for pods and services using flannel will be
supported in a future release. BZ#1473858

3. After the OpenShift Container Platform installation, add a set of iptables rules on every
OpenShift Container Platform node:

iptables -A DOCKER -p all -j ACCEPT
iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE

OpenShift Container Platform 3.7 Installation and Configuration

350

https://bugzilla.redhat.com/show_bug.cgi?id=1473858

To persist those changes in the /etc/sysconfig/iptables use the following command on every
node:

cp /etc/sysconfig/iptables{,.orig}
sh -c "tac /etc/sysconfig/iptables.orig | sed -e '0,/:DOCKER -/
s/:DOCKER -/:DOCKER ACCEPT/' | awk '"\!"p && /POSTROUTING/{print \"-
A POSTROUTING -o eth1 -j MASQUERADE\"; p=1} 1' | tac >
/etc/sysconfig/iptables"

NOTE

The iptables-save command saves all the current in memory iptables rules.
However, because Docker, Kubernetes and OpenShift Container Platform create
a high number of iptables rules (services, etc.) not designed to be persisted,
saving these rules can become problematic.

To isolate container traffic from the rest of the OpenShift Container Platform traffic, Red Hat
recommends creating an isolated tenant network and attaching all the nodes to it. If you are using a
different network interface (eth1), remember to configure the interface to start at boot time through the
/etc/sysconfig/network-scripts/ifcfg-eth1 file:

DEVICE=eth1
TYPE=Ethernet
BOOTPROTO=dhcp
ONBOOT=yes
DEFTROUTE=no
PEERDNS=no

CHAPTER 14. CONFIGURING THE SDN

351

CHAPTER 15. CONFIGURING NUAGE SDN

15.1. NUAGE SDN AND OPENSHIFT CONTAINER PLATFORM

Nuage Networks Virtualized Services Platform (VSP) provides virtual networking and software-defined
networking (SDN) infrastructure to Docker container environments that simplifies IT operations and
expands OpenShift Container Platform’s native networking capabilities.

Nuage Networks VSP supports Docker-based applications running on OpenShift Container Platform to
accelerate the provisioning of virtual networks between pods and traditional workloads, and to enable
security policies across the entire cloud infrastructure. VSP allows for the automation of security
appliances to include granular security and microsegmentation policies for container applications.

Integrating VSP with the OpenShift Container Platform application workflow allows business applications
to be quickly turned up and updated by removing the network lag faced by DevOps teams. VSP supports
different workflows with OpenShift Container Platform in order to accommodate scenarios where users
can choose ease-of-use or complete control using policy-based automation.

See Networking for more information on how VSP is integrated with OpenShift Container Platform.

15.2. DEVELOPER WORKFLOW

This workflow is used in developer environments and requires little input from the developer in setting up
the networking. In this workflow, nuage-openshift-monitor is responsible for creating the VSP
constructs (Zone, Subnets, etc.) needed to provide appropriate policies and networking for pods created
in an OpenShift Container Platform project. When a project is created, a default zone and default subnet
for that project are created by nuage-openshift-monitor. When the default subnet created for a given
project gets depleted, nuage-openshift-monitor dynamically creates additional subnets.

NOTE

A separate VSP Zone is created for each OpenShift Container Platform project ensuring
isolation amongst the projects.

15.3. OPERATIONS WORKFLOW

This workflow is used by operations teams rolling out applications. In this workflow, the network and
security policies are first configured on the VSD in accordance with the rules set by the organization to
deploy applications. Administrative users can potentially create multiple zones and subnets and map
them to the same project using labels. While spinning up the pods, the user can use the Nuage Labels to
specify what network a pod needs to attach to and what network policies need to be applied to it. This
allows for deployments where inter- and intra-project traffic can be controlled in a fine-grained manner.
For example, inter-project communication is enabled on a project by project basis. This may be used to
connect projects to common services that are deployed in a shared project.

15.4. INSTALLATION

The VSP integration with OpenShift Container Platform works for both virtual machines (VMs) and bare
metal OpenShift Container Platform installations.

An environment with High Availability (HA) can be configured with multiple masters and multiple nodes.

Nuage VSP integration in multi-master mode only supports the native HA configuration method

OpenShift Container Platform 3.7 Installation and Configuration

352

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#nuage-sdn

described in this section. This can be combined with any load balancing solution, the default being
HAProxy. The inventory file contains three master hosts, the nodes, an etcd server, and a host that
functions as the HAProxy to balance the master API on all master hosts. The HAProxy host is defined in
the [lb] section of the inventory file enabling Ansible to automatically install and configure HAProxy as the
load balancing solution.

In the Ansible nodes file, the following parameters need to be specified in order to setup Nuage VSP as
the network plug-in:

 # Create and OSEv3 group that contains masters, nodes, load-balancers,
and etcd hosts
 masters
 nodes
 etcd
 lb

 # Nuage specific parameters
 openshift_use_openshift_sdn=False
 openshift_use_nuage=True
 os_sdn_network_plugin_name='nuage/vsp-openshift'
 openshift_node_proxy_mode='userspace'

 # VSP related parameters
 vsd_api_url=https://192.168.103.200:8443
 vsp_version=v4_0
 enterprise=nuage
 domain=openshift
 vsc_active_ip=192.168.103.201
 vsc_standby_ip=192.168.103.202
 uplink_interface=eth0

 # rpm locations
 nuage_openshift_rpm=http://location_of_rpm_server/openshift/RPMS/x86_64/n
uage-openshift-monitor-4.0.X.1830.el7.centos.x86_64.rpm
 vrs_rpm=http://location_of_rpm_server/openshift/RPMS/x86_64/nuage-
openvswitch-4.0.X.225.el7.x86_64.rpm
 plugin_rpm=http://location_of_rpm_server/openshift/RPMS/x86_64/vsp-
openshift-4.0.X1830.el7.centos.x86_64.rpm

 # Required for Nuage Monitor REST server and HA
 openshift_master_cluster_method=native
 openshift_master_cluster_hostname=lb.nuageopenshift.com
 openshift_master_cluster_public_hostname=lb.nuageopenshift.com
 nuage_openshift_monitor_rest_server_port=9443

 # Optional parameters
 nuage_interface_mtu=1460
 nuage_master_adminusername='admin's user-name'
 nuage_master_adminuserpasswd='admin's password'
 nuage_master_cspadminpasswd='csp admin password'
 nuage_openshift_monitor_log_dir=/var/log/nuage-openshift-monitor

 # Required for brownfield install (where a {product-title} cluster exists
without Nuage as the networking plugin)
 nuage_dockker_bridge=lbr0

CHAPTER 15. CONFIGURING NUAGE SDN

353

 # Specify master hosts
 [masters]
 fqdn_of_master_1
 fqdn_of_master_2
 fqdn_of_master_3

 # Specify load balancer host
 [lb]
 fqdn_of_load_balancer

OpenShift Container Platform 3.7 Installation and Configuration

354

CHAPTER 16. CONFIGURING FOR AMAZON WEB SERVICES
(AWS)

16.1. OVERVIEW

OpenShift Container Platform can be configured to access an AWS EC2 infrastructure, including using
AWS volumes as persistent storage for application data. After you configure AWS, some additional
configurations must be completed on the OpenShift Container Platform hosts.

16.2. PERMISSIONS

Configuring AWS for OpenShift Container Platform requires the following permissions:

Table 16.1. Master Permissions

Elastic Compute Cloud(EC2) ec2:DescribeVolume, ec2:CreateVolume,
ec2:CreateTags, ec2:DescribeInstance,
ec2:AttachVolume, ec2:DetachVolume,
ec2:DeleteVolume, ec2:DescribeSubnets,
ec2:CreateSecurityGroup,
ec2:DescribeSecurityGroups,
ec2:DescribeRouteTables,
ec2:AuthorizeSecurityGroupIngress,
ec2:RevokeSecurityGroupIngress,
ec2:DeleteSecurityGroup

Elastic Load Balancing elasticloadbalancing:DescribeTags,
elasticloadbalancing:CreateLoadBalancerListeners,
elasticloadbalancing:ConfigureHealthCheck,
elasticloadbalancing:DeleteLoadBalancerListeners,
elasticloadbalancing:RegisterInstancesWithLoadBal
ancer, elasticloadbalancing:DescribeLoadBalancers,
elasticloadbalancing:CreateLoadBalancer,
elasticloadbalancing:DeleteLoadBalancer,
elasticloadbalancing:ModifyLoadBalancerAttributes
,
elasticloadbalancing:DescribeLoadBalancerAttribut
es

Table 16.2. Node Permissions

Elastic Compute Cloud(EC2) ec2:DescribeInstance*

CHAPTER 16. CONFIGURING FOR AMAZON WEB SERVICES (AWS)

355

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

IMPORTANT

Every master host, node host, and subnet must have the
kubernetes.io/cluster/<clusterid>,Value=(owned|shared) tag.

One security group, preferably the one linked to the nodes, must have the
kubernetes.io/cluster/<clusterid>,Value=(owned|shared) tag.

Do not tag all security groups with the
kubernetes.io/cluster/<clusterid>,Value=(owned|shared) tag
or the Elastic Load Balancing (ELB) will not be able to create a load balancer.

16.3. CONFIGURING A SECURITY GROUP

When installing OpenShift Container Platform on AWS, ensure that you set up the appropriate security
groups.

These are some ports that you must have in your security groups, without which the installation fails.
You may need more depending on the cluster configuration you want to install. For more information and
to adjust your security groups accordingly, see Required Ports for more information.

All OpenShift Container
Platform Hosts tcp/22 from host running the installer/Ansible

etcd Security Group
tcp/2379 from masters

tcp/2380 from etcd hosts

Master Security Group
tcp/8443 from 0.0.0.0/0

tcp/53 from all OpenShift Container Platform hosts for
environments installed prior to or upgraded to 3.2

udp/53 from all OpenShift Container Platform hosts for
environments installed prior to or upgraded to 3.2

tcp/8053 from all OpenShift Container Platform hosts for new
environments installed with 3.2

udp/8053 from all OpenShift Container Platform hosts for new
environments installed with 3.2

Node Security Group
tcp/10250 from masters

udp/4789 from nodes

Infrastructure Nodes (ones that
can host the OpenShift
Container Platform router)

tcp/443 from 0.0.0.0/0

tcp/80 from 0.0.0.0/0

OpenShift Container Platform 3.7 Installation and Configuration

356

If configuring external load-balancers (ELBs) for load balancing the masters and/or routers, you also
need to configure Ingress and Egress security groups for the ELBs appropriately.

16.3.1. Overriding Detected IP Addresses and Host Names

In AWS, situations that require overriding the variables include:

Variable Usage

hostname The user is installing in a VPC that is not configured for both DNS
hostnames and DNS resolution.

ip You have multiple network interfaces configured and want to use one
other than the default. You must also set the
openshift_set_node_ip parameter to True, or the SDN attempts
to use the hostname setting or tries to resolve the host name for the IP
address.

public_hostname
A master instance where the VPC subnet is not configured for
Auto-assign Public IP. For external access to this
master, you need to have an ELB or other load balancer
configured that would provide the external access needed, or
you need to connect over a VPN connection to the internal
name of the host.

A master instance where metadata is disabled.

This value is not actually used by the nodes.

public_ip
A master instance where the VPC subnet is not configured for
Auto-assign Public IP.

A master instance where metadata is disabled.

This value is not actually used by the nodes.

WARNING

If openshift_hostname is set to a value other than the metadata-provided
private-dns-name value, the native cloud integration for those providers will no
longer work.

For EC2 hosts in particular, they must be deployed in a VPC that has both DNS host names and DNS
resolution enabled, and openshift_hostname should not be overridden.

16.4. CONFIGURING AWS VARIABLES



CHAPTER 16. CONFIGURING FOR AMAZON WEB SERVICES (AWS)

357

1

To set the required AWS variables, create a /etc/origin/cloudprovider/aws.conf file with the following
contents on all of your OpenShift Container Platform hosts, both masters and nodes:

[Global]

Zone = us-east-1c 1

This is the Availability Zone of your AWS Instance and where your EBS Volume resides; this
information is obtained from the AWS Management Console.

16.5. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR AWS

You can set the AWS configuration on OpenShift Container Platform in two ways:

using Ansible or

manually, by modifying the master-config.yaml, node-config.yaml, and related
/etc/sysconfig/ files.

16.5.1. Configuring OpenShift Container Platform for AWS with Ansible

During advanced installations, AWS can be configured using the
openshift_cloudprovider_aws_access_key,
openshift_cloudprovider_aws_secret_key, openshift_cloudprovider_kind,
openshift_clusterid parameters, which are configurable in the inventory file.

Example AWS Configuration with Ansible

Cloud Provider Configuration
#
Note: You may make use of environment variables rather than store
sensitive configuration within the ansible inventory.
For example:
#openshift_cloudprovider_aws_access_key="{{
lookup('env','AWS_ACCESS_KEY_ID') }}"
#openshift_cloudprovider_aws_secret_key="{{
lookup('env','AWS_SECRET_ACCESS_KEY') }}"
#
#openshift_clusterid=unique_identifier_per_availablility_zone
#
AWS (Using API Credentials)
#openshift_cloudprovider_kind=aws
#openshift_cloudprovider_aws_access_key=aws_access_key_id
#openshift_cloudprovider_aws_secret_key=aws_secret_access_key
#
AWS (Using IAM Profiles)
#openshift_cloudprovider_kind=aws
Note: IAM roles must exist before launching the instances.

OpenShift Container Platform 3.7 Installation and Configuration

358

NOTE

When Ansible configures AWS, it automatically makes the necessary changes to the
following files:

/etc/origin/cloudprovider/aws.conf

/etc/origin/master/master-config.yaml

/etc/origin/node/node-config.yaml

/etc/sysconfig/atomic-openshift-master-api

/etc/sysconfig/atomic-openshift-master-controllers

/etc/sysconfig/atomic-openshift-node

16.5.2. Manually Configuring OpenShift Container Platform Masters for AWS

Edit or create the master configuration file on all masters (/etc/origin/master/master-config.yaml by
default) and update the contents of the apiServerArguments and controllerArguments sections:

Currently, the nodeName must match the instance name in AWS in order for the cloud provider
integration to work properly. The name must also be RFC1123 compliant.

IMPORTANT

When triggering a containerized installation, only the directories of /etc/origin and
/var/lib/origin are mounted to the master and node container. Therefore, aws.conf
should be in /etc/origin/ instead of /etc/.

16.5.3. Manually Configuring OpenShift Container Platform Nodes for AWS

Edit or create the node configuration file on all nodes (/etc/origin/node/node-config.yaml by default)
and update the contents of the kubeletArguments section:

kubernetesMasterConfig:
 ...
 apiServerArguments:
 cloud-provider:
 - "aws"
 cloud-config:
 - "/etc/origin/cloudprovider/aws.conf"
 controllerArguments:
 cloud-provider:
 - "aws"
 cloud-config:
 - "/etc/origin/cloudprovider/aws.conf"

kubeletArguments:
 cloud-provider:
 - "aws"
 cloud-config:
 - "/etc/origin/cloudprovider/aws.conf"

CHAPTER 16. CONFIGURING FOR AMAZON WEB SERVICES (AWS)

359

IMPORTANT

When triggering a containerized installation, only the directories of /etc/origin and
/var/lib/origin are mounted to the master and node container. Therefore, aws.conf
should be in /etc/origin/ instead of /etc/.

16.5.4. Manually Setting Key-Value Access Pairs

Make sure the following environment variables are set in the /etc/sysconfig/atomic-openshift-master-
api file and /etc/sysconfig/atomic-openshift-master-controllers file on masters and the
/etc/sysconfig/atomic-openshift-node file on nodes:

AWS_ACCESS_KEY_ID=<key_ID>
AWS_SECRET_ACCESS_KEY=<secret_key>

NOTE

Access keys are obtained when setting up your AWS IAM user.

16.6. APPLYING CONFIGURATION CHANGES

Start or restart OpenShift Container Platform services on all master and node hosts to apply your
configuration changes, see Restarting OpenShift Container Platform services:

systemctl restart atomic-openshift-master-api atomic-openshift-master-
controllers
systemctl restart atomic-openshift-node

Switching from not using a cloud provider to using a cloud provider produces an error message. Adding
the cloud provider tries to delete the node because the node switches from using the hostname as the
externalID (which would have been the case when no cloud provider was being used) to using the
cloud provider’s instance-id (which is what the cloud provider specifies). To resolve this issue:

1. Log in to the CLI as a cluster administrator.

2. Check and back up existing node labels:

3. Delete the nodes:

4. On each node host, restart the OpenShift Container Platform service.

systemctl restart atomic-openshift-node

5. Add back any labels on each node that you previously had.

16.7. LABELING CLUSTERS FOR AWS

$ oc describe node <node_name> | grep -Poz '(?s)Labels.*\n.*(?
=Taints)'

$ oc delete node <node_name>

OpenShift Container Platform 3.7 Installation and Configuration

360

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#updating-labels-on-nodes

Starting with OpenShift Container Platform version 3.7 of the atomic-openshift-installer, if you
configured AWS provider credentials, you must also ensure that all hosts are labeled.

To correctly identify which resources are associated with a cluster, tag resources with the key
kubernetes.io/cluster/<clusterid>, where:

<clusterid> is a unique name for the cluster.

Set the corresponding value to owned if the node belongs exclusively to the cluster or to shared if it is a
resource shared with other systems.

Tagging all resources with the kubernetes.io/cluster/<clusterid>,Value=(owned|shared)
tag avoids potential issues with multiple zones or multiple clusters.

NOTE

In versions prior to OpenShift Container Platform version 3.6, this was
Key=KubernetesCluster,Value=clusterid.

See Pods and Services to learn more about labeling and tagging in OpenShift Container Platform.

16.7.1. Resources That Need Tags

There are four types of resources that need to be tagged:

Instances

Security Groups

Load Balancers

EBS Volumes

16.7.2. Tagging an Existing Cluster

A cluster uses the value of the kubernetes.io/cluster/<clusterid>,Value=(owned|shared)
tag to determine which resources belong to the AWS cluster. This means that all relevant resources must
be labeled with the kubernetes.io/cluster/<clusterid>,Value=(owned|shared) tag using
the same values for that key. These resources include:

All hosts.

All relevant load balancers to be used in the AWS instances.

All EBS volumes. The EBS Volumes that need to be tagged can found with:

All relevant security groups to be used with the AWS instances.

$ oc get pv -o json|jq '.items[].spec.awsElasticBlockStore.volumeID'

CHAPTER 16. CONFIGURING FOR AMAZON WEB SERVICES (AWS)

361

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#labels

NOTE

Do not tag all existing security groups with the
kubernetes.io/cluster/<name>,Value=<clusterid> tag, or the Elastic
Load Balancing (ELB) will not be able to create a load balancer.

After tagging any resources, restart the master services on the master and the node service on all nodes.
See the Applying Configuration Section.

OpenShift Container Platform 3.7 Installation and Configuration

362

CHAPTER 17. CONFIGURING FOR OPENSTACK

17.1. OVERVIEW

When deployed on OpenStack, OpenShift Container Platform can be configured to access OpenStack
infrastructure, including using OpenStack Cinder volumes as persistent storage for application data.

17.2. PERMISSIONS

Configuring OpenStack for OpenShift Container Platform requires the following role:

member For creating assets(instances, networking ports, floating ips, volumes, and so on.)
you need the member role for the tenant.

17.3. CONFIGURING A SECURITY GROUP

When installing OpenShift Container Platform on OpenStack, ensure that you set up the appropriate
security groups.

These are some ports that you must have in your security groups, without which the installation fails.
You may need more depending on the cluster configuration you want to install. For more information and
to adjust your security groups accordingly, see Required Ports for more information.

All OpenShift Container
Platform Hosts tcp/22 from host running the installer/Ansible

etcd Security Group
tcp/2379 from masters

tcp/2380 from etcd hosts

Master Security Group
tcp/8443 from 0.0.0.0/0

tcp/53 from all OpenShift Container Platform hosts for
environments installed prior to or upgraded to 3.2

udp/53 from all OpenShift Container Platform hosts for
environments installed prior to or upgraded to 3.2

tcp/8053 from all OpenShift Container Platform hosts for new
environments installed with 3.2

udp/8053 from all OpenShift Container Platform hosts for new
environments installed with 3.2

Node Security Group
tcp/10250 from masters

udp/4789 from nodes

CHAPTER 17. CONFIGURING FOR OPENSTACK

363

https://www.openstack.org/

Infrastructure Nodes (ones that
can host the OpenShift
Container Platform router)

tcp/443 from 0.0.0.0/0

tcp/80 from 0.0.0.0/0

If configuring external load-balancers (ELBs) for load balancing the masters and/or routers, you also
need to configure Ingress and Egress security groups for the ELBs appropriately.

17.4. CONFIGURING OPENSTACK VARIABLES

To set the required OpenStack variables, create a /etc/cloud.conf file with the following contents on all
of your OpenShift Container Platform hosts, both masters and nodes:

[Global]
auth-url = <OS_AUTH_URL>
username = <OS_USERNAME>
password = <password>
domain-id = <OS_USER_DOMAIN_ID>
tenant-id = <OS_TENANT_ID>
region = <OS_REGION_NAME>

[LoadBalancer]
subnet-id = <UUID of the load balancer subnet>
[BlockStorage]
bs-version=v2

Consult your OpenStack administrators for values of the OS_ variables, which are commonly used in
OpenStack configuration.

Currently OpenStack Cinder V3 API is not supported. To resolve this issue or disable auto Cinder API
version detection, you must force Cinder V2 API by specifying bs-version=v2.

17.5. CONFIGURING OPENSHIFT CONTAINER PLATFORM MASTERS
FOR OPENSTACK

You can set an OpenStack configuration on your OpenShift Container Platform master and node hosts in
two different ways:

Using Ansible and the advanced installation tool

Manually, by modifying the master-config.yaml and node-config.yaml files.

17.5.1. Configuring OpenShift Container Platform for OpenStack with Ansible

During advanced installations, OpenStack can be configured using the following parameters, which are
configurable in the inventory file:

openshift_cloudprovider_kind

openshift_cloudprovider_openstack_auth_url

openshift_cloudprovider_openstack_username

OpenShift Container Platform 3.7 Installation and Configuration

364

openshift_cloudprovider_openstack_password

openshift_cloudprovider_openstack_domain_id

openshift_cloudprovider_openstack_domain_name

openshift_cloudprovider_openstack_tenant_id

openshift_cloudprovider_openstack_tenant_name

openshift_cloudprovider_openstack_region

openshift_cloudprovider_openstack_lb_subnet_id

IMPORTANT

If a parameter value in the Ansible inventory file contains special characters, such as #, {
or }, you must double-escape the value (that is enclose the value in both single and
double quotation marks). For example, to use mypasswordwith###hashsigns as a
value for the variable openshift_cloudprovider_openstack_password, declare it
as
openshift_cloudprovider_openstack_password='"mypasswordwith###hash
signs"' in the Ansible host inventory file.

Example 17.1. Example OpenStack Configuration with Ansible

Cloud Provider Configuration
#
Note: You may make use of environment variables rather than store
sensitive configuration within the ansible inventory.
For example:
#openshift_cloudprovider_openstack_username="{{ lookup('env','USERNAME')
}}"
#openshift_cloudprovider_openstack_password="{{ lookup('env','PASSWORD')
}}"
#
Openstack
#openshift_cloudprovider_kind=openstack
#openshift_cloudprovider_openstack_auth_url=http://openstack.example.com
:35357/v2.0/
#openshift_cloudprovider_openstack_username=username
#openshift_cloudprovider_openstack_password=password
#openshift_cloudprovider_openstack_domain_id=domain_id
#openshift_cloudprovider_openstack_domain_name=domain_name
#openshift_cloudprovider_openstack_tenant_id=tenant_id
#openshift_cloudprovider_openstack_tenant_name=tenant_name
#openshift_cloudprovider_openstack_region=region
#openshift_cloudprovider_openstack_lb_subnet_id=subnet_id

17.5.2. Manually Configuring OpenShift Container Platform Masters for OpenStack

CHAPTER 17. CONFIGURING FOR OPENSTACK

365

1

Edit or create the master configuration file on all masters (/etc/origin/master/master-config.yaml by
default) and update the contents of the apiServerArguments and controllerArguments sections:

IMPORTANT

When triggering a containerized installation, only the directories of /etc/origin and
/var/lib/origin are mounted to the master and node container. Therefore, cloud.conf
should be in /etc/origin/ instead of /etc/.

17.5.3. Manually Configuring OpenShift Container Platform Nodes for OpenStack

Edit or create the node configuration file on all nodes (/etc/origin/node/node-config.yaml by default)
and update the contents of the kubeletArguments and nodeName sections:

Name of the OpenStack instance where the node runs (i.e., name of the virtual machine)

Currently, the nodeName must match the instance name in Openstack in order for the cloud provider
integration to work properly. The name must also be RFC1123 compliant.

IMPORTANT

When triggering a containerized installation, only the directories of /etc/origin and
/var/lib/origin are mounted to the master and node container. Therefore, cloud.conf
should be in /etc/origin/ instead of /etc/.

17.6. APPLYING CONFIGURATION CHANGES

Start or restart OpenShift Container Platform services on all master and node hosts to apply your
configuration changes, see Restarting OpenShift Container Platform services:

kubernetesMasterConfig:
 ...
 apiServerArguments:
 cloud-provider:
 - "openstack"
 cloud-config:
 - "/etc/cloud.conf"
 controllerArguments:
 cloud-provider:
 - "openstack"
 cloud-config:
 - "/etc/cloud.conf"

nodeName:

 <instance_name> 1

kubeletArguments:
 cloud-provider:
 - "openstack"
 cloud-config:
 - "/etc/cloud.conf"

OpenShift Container Platform 3.7 Installation and Configuration

366

systemctl restart atomic-openshift-master-api atomic-openshift-master-
controllers
systemctl restart atomic-openshift-node

Switching from not using a cloud provider to using a cloud provider produces an error message. Adding
the cloud provider tries to delete the node because the node switches from using the hostname as the
externalID (which would have been the case when no cloud provider was being used) to using the
cloud provider’s instance-id (which is what the cloud provider specifies). To resolve this issue:

1. Log in to the CLI as a cluster administrator.

2. Check and back up existing node labels:

3. Delete the nodes:

4. On each node host, restart the OpenShift Container Platform service.

systemctl restart atomic-openshift-node

5. Add back any labels on each node that you previously had.

$ oc describe node <node_name> | grep -Poz '(?s)Labels.*\n.*(?
=Taints)'

$ oc delete node <node_name>

CHAPTER 17. CONFIGURING FOR OPENSTACK

367

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#updating-labels-on-nodes

CHAPTER 18. CONFIGURING FOR GCE

18.1. OVERVIEW

OpenShift Container Platform can be configured to access a Google Compute Engine (GCE)
infrastructure, including using GCE volumes as persistent storage for application data. After GCE is
configured properly, some additional configurations will need to be completed on the OpenShift
Container Platform hosts.

18.2. PERMISSIONS

Configuring GCE for OpenShift Container Platform requires the following role:

roles/owner To create service accounts, cloud storage, instances, images, templates, Cloud
DNS entries, and deploy load balancers and health checks. It is helpful to also
have delete permissions to be able to redeploy the environment while testing.

18.3. CONFIGURING MASTERS

You can set the GCE configuration on your OpenShift Container Platform master hosts in two ways:

Using Ansible and the advanced installation tool.

Manually by modifying the master-config.yaml file.

18.3.1. Configuring OpenShift Container Platform Masters for GCE with Ansible

During advanced installations, GCE can be configured using the openshift_cloudprovider_kind
parameter, which is configurable in the inventory file.

Example GCE Configuration with Ansible

Cloud Provider Configuration
openshift_cloudprovider_kind=gce

NOTE

When Ansible configures GCE, the following files are created for you:

/etc/origin/cloudprovider/gce.conf

/etc/origin/master/master-config.yaml

/etc/origin/node/node-config.yaml

The advanced installation configures single-zone support by default. If you want multizone support, edit
the /etc/origin/cloudprovider/gce.conf as shown in Configuring Multizone Support in a GCE
Deployment.

18.3.2. Manually Configuring OpenShift Container Platform Masters for GCE

OpenShift Container Platform 3.7 Installation and Configuration

368

https://cloud.google.com/compute/docs/disks/

To configure the OpenShift Container Platform masters for GCE:

1. Edit or create the master configuration file (/etc/origin/master/master-config.yaml by default)
on all masters and update the contents of the apiServerArguments and
controllerArguments sections:

IMPORTANT

When triggering a containerized installation, only the directories of /etc/origin and
/var/lib/origin are mounted to the master and node container. Therefore, master-
config.yaml should be in /etc/origin/master instead of /etc/.

2. Start or restart the OpenShift Container Platform services:

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

18.4. CONFIGURING NODES

To configure the OpenShift Container Platform nodes for GCE:

1. Edit or create the node configuration file (/etc/origin/node/node-config.yaml by default) on all
nodes and update the contents of the kubeletArguments section:

Currently, the nodeName must match the instance name in GCE in order for the cloud provider
integration to work properly. The name must also be RFC1123 compliant.

IMPORTANT

When triggering a containerized installation, only the directories of /etc/origin and
/var/lib/origin are mounted to the master and node container. Therefore, node-
config.yaml should be in /etc/origin/node instead of /etc/.

kubernetesMasterConfig:
 ...
 apiServerArguments:
 cloud-provider:
 - "gce"
 cloud-config:
 - "/etc/origin/cloudprovider/gce.conf"
 controllerArguments:
 cloud-provider:
 - "gce"
 cloud-config:
 - "/etc/origin/cloudprovider/gce.conf"

kubeletArguments:
 cloud-provider:
 - "gce"
 cloud-config:
 - "/etc/origin/cloudprovider/gce.conf"

CHAPTER 18. CONFIGURING FOR GCE

369

1. Start or restart the OpenShift Container Platform services all nodes.

systemctl restart atomic-openshift-node

18.5. CONFIGURING MULTIZONE SUPPORT IN A GCE DEPLOYMENT

If manually congifuring GCE, multizone support is not configured by default.

NOTE

The advanced installation configures single-zone support by default.

If you want multizone support:

1. Edit or create a /etc/origin/cloudprovider/gce.conf file on all of your OpenShift Container
Platform hosts, both masters and nodes.

2. Add the following contents:

[Global]
multizone = true

To return to single-zone support, set the multizone value to false.

18.6. APPLYING CONFIGURATION CHANGES

Start or restart OpenShift Container Platform services on all master and node hosts to apply your
configuration changes, see Restarting OpenShift Container Platform services:

systemctl restart atomic-openshift-master-api atomic-openshift-master-
controllers
systemctl restart atomic-openshift-node

Switching from not using a cloud provider to using a cloud provider produces an error message. Adding
the cloud provider tries to delete the node because the node switches from using the hostname as the
externalID (which would have been the case when no cloud provider was being used) to using the
cloud provider’s instance-id (which is what the cloud provider specifies). To resolve this issue:

1. Log in to the CLI as a cluster administrator.

2. Check and back up existing node labels:

3. Delete the nodes:

4. On each node host, restart the OpenShift Container Platform service.

systemctl restart atomic-openshift-node

$ oc describe node <node_name> | grep -Poz '(?s)Labels.*\n.*(?
=Taints)'

$ oc delete node <node_name>

OpenShift Container Platform 3.7 Installation and Configuration

370

5. Add back any labels on each node that you previously had.

CHAPTER 18. CONFIGURING FOR GCE

371

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#updating-labels-on-nodes

CHAPTER 19. CONFIGURING FOR AZURE

19.1. OVERVIEW

OpenShift Container Platform can be configured to access a Microsoft Azure infrastructure, including
using Azure disk as persistent storage for application data. After Microsoft Azure is configured properly,
some additional configurations need to be completed on the OpenShift Container Platform hosts.

19.2. PERMISSIONS

Configuring Microsoft Azure for OpenShift Container Platform requires the following role:

Contributor To create and manage all types of Microsoft Azure resources.

For more information about adding administrator roles, see Add or change Azure subscription
administrators.

19.3. PREREQUISITES

If you are using Microsoft Azure Disk as a persistent volume on the OpenShift Container
Platform version 3.5 or later, you must enable Azure Cloud Provider.

All OpenShift Container Platform node virtual machines (VMs) running in Microsoft Azure must
belong to a single resource group.

Microsoft Azure VMs must be named the same as OpenShift Container Platform nodes and this
cannot include capital letters.

If you plan to use Azure Managed Disks:

OpenShift Container Platform version 3.7 or later is required.

You must create VMs with Azure Managed Disks.

If you plan to use unmanaged disks:

You must create VMs with unmanaged disks.

If you are using a custom DNS configuration for your OpenShift Container Platform cluster or
your cluster nodes are in different Microsoft Azure Virtual Networks (VNet), you must configure
DNS so that each node in the cluster can resolve IP addresses for other nodes.

19.4. THE AZURE CONFIGURATION FILE

Configuring OpenShift Container Platform for Azure requires the /etc/azure/azure.conf file, on each
node host.

If the file does not exist, create it, and add the following:

tenantId: <> 1

subscriptionId: <> 2

aadClientId: <> 3

OpenShift Container Platform 3.7 Installation and Configuration

372

https://azure.microsoft.com/en-us/services/storage/disks/
https://docs.microsoft.com/en-us/azure/billing/billing-add-change-azure-subscription-administrator

1

2

3

4

5

6

7

aadClientSecret: <> 4

aadTenantId: <> 5

resourceGroup: <> 6

location: <> 7

The AAD tenant ID for the subscription that the cluster is deployed in.

The Azure subscription ID that the cluster is deployed in.

The client ID for an AAD application with RBAC access to talk to Azure RM APIs.

The client secret for an AAD application with RBAC access to talk to Azure RM APIs.

Ensure this is the same as tenant ID (optional).

The Azure Resource Group name that Azure VM belongs to.

The compact style Azure region, for example southeastasia (optional).

19.5. CONFIGURING MASTERS

Edit or create the master configuration file on all masters (/etc/origin/master/master-config.yaml by
default) and update the contents of the apiServerArguments and controllerArguments sections:

IMPORTANT

When triggering a containerized installation, only the /etc/origin and /var/lib/origin
directories are mounted to the master and node container. Therefore, master-
config.yaml should be in /etc/origin/master instead of /etc/.

19.6. CONFIGURING NODES

1. Edit or create the node configuration file on all nodes (/etc/origin/node/node-config.yaml by
default) and update the contents of the kubeletArguments section:

kubernetesMasterConfig:
 ...
 apiServerArguments:
 cloud-provider:
 - "azure"
 cloud-config:
 - "/etc/azure/azure.conf"
 controllerArguments:
 cloud-provider:
 - "azure"
 cloud-config:
 - "/etc/azure/azure.conf"

kubeletArguments:
 cloud-provider:
 - "azure"
 cloud-config:
 - "/etc/azure/azure.conf"

CHAPTER 19. CONFIGURING FOR AZURE

373

IMPORTANT

When triggering a containerized installation, only the /etc/origin and
/var/lib/origin directories are mounted to the master and node container.
Therefore, node-config.yaml should be in /etc/origin/node instead of /etc/.

19.7. APPLYING CONFIGURATION CHANGES

Start or restart OpenShift Container Platform services on all master and node hosts to apply your
configuration changes, see Restarting OpenShift Container Platform services:

systemctl restart atomic-openshift-master-api atomic-openshift-master-
controllers
systemctl restart atomic-openshift-node

Switching from not using a cloud provider to using a cloud provider produces an error message. Adding
the cloud provider tries to delete the node because the node switches from using the hostname as the
externalID (which would have been the case when no cloud provider was being used) to using the
cloud provider’s instance-id (which is what the cloud provider specifies). To resolve this issue:

1. Log in to the CLI as a cluster administrator.

2. Check and back up existing node labels:

3. Delete the nodes:

4. On each node host, restart the OpenShift Container Platform service.

systemctl restart atomic-openshift-node

5. Add back any labels on each node that you previously had.

$ oc describe node <node_name> | grep -Poz '(?s)Labels.*\n.*(?
=Taints)'

$ oc delete node <node_name>

OpenShift Container Platform 3.7 Installation and Configuration

374

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#updating-labels-on-nodes

CHAPTER 20. CONFIGURING FOR VMWARE VSPHERE

20.1. OVERVIEW

OpenShift Container Platform can be configured to access VMware vSphere VMDK Volumes, including
using VMware vSphere VMDK Volumes as persistent storage for application data.

The vSphere Cloud Provider allows using vSphere managed storage within OpenShift Container
Platform and supports:

Volumes,

Persistent Volumes, and

Storage Classes and provisioning of volumes.

20.2. ENABLING VMWARE VSPHERE CLOUD PROVIDER

IMPORTANT

Enabling VMware vSphere requires installing the VMware Tools on each Node VM. See
Installing VMware tools for more information.

To enable VMware vSphere cloud provider for OpenShift Container Platform:

1. Create a VM folder and move OpenShift Container Platform Node VMs to this folder.

2. Verify that the Node VM names complies with the regex [a-z](()?[0-9a-z])?(\.[a-z0-
9](([-0-9a-z])?[0-9a-z])?)*.

IMPORTANT

VM Names can not:

begin with numbers.

have any capital letters.

have any special characters except -.

be shorter than three characters and longer than 63 characters.

3. Set the disk.EnableUUID parameter to TRUE for each Node VM. This ensures that the VMDK
always presents a consistent UUID to the VM, allowing the disk to be mounted properly. For
every virtual machine node that will be participating in the cluster, follow the steps below using
the GOVC tool:

a. Set up the GOVC environment:

export GOVC_URL='vCenter IP OR FQDN'
export GOVC_USERNAME='vCenter User'
export GOVC_PASSWORD='vCenter Password'
export GOVC_INSECURE=1

CHAPTER 20. CONFIGURING FOR VMWARE VSPHERE

375

https://www.vmware.com/au/products/vsphere.html
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.html.hostclient.doc/GUID-ED3ECA21-5763-4919-8947-A819A17980FB.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.vcenterhost.doc/GUID-031BDB12-D3B2-4E2D-80E6-604F304B4D0C.html
https://github.com/vmware/govmomi/tree/master/govc

b. Find the Node VM paths:

c. Set disk.EnableUUID to true for all VMs:

NOTE

If OpenShift Container Platform node VMs are created from a template VM,
then disk.EnableUUID=1 can be set on the template VM. VMs cloned from
this template, inherit this property.

4. Create and assign roles to the vSphere Cloud Provider user and vSphere entities. vSphere
Cloud Provider requires the following privileges to interact with vCenter. See the vSphere
Documentation Center for steps to create a custom role, user and role assignment.

Roles Privileges Entities Propagate to
Children

manage-k8s-node-
vms

Resource.AssignVMT
oPool
System.Anonymous
System.Read
System.View
VirtualMachine.Config.
AddExistingDisk
VirtualMachine.Config.
AddNewDisk
VirtualMachine.Config.
AddRemoveDevice
VirtualMachine.Config.
RemoveDisk
VirtualMachine.Invent
ory.Create
VirtualMachine.Invent
ory.Delete

Cluster, Hosts, VM
Folder

Yes

manage-k8s-volumes Datastore.AllocateSpa
ce
Datastore.FileManage
ment
System.Anonymous
System.Read
System.View

Datastore No

k8s-system-read-and-
spbm-profile-view

StorageProfile.View
System.Anonymous
System.Read
System.View

vCenter No

govc ls /datacenter/vm/<vm-folder-name>

govc vm.change -e="disk.enableUUID=1" -vm='VM Path'

OpenShift Container Platform 3.7 Installation and Configuration

376

https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.security.doc/GUID-18071E9A-EED1-4968-8D51-E0B4F526FDA3.html

ReadOnly System.Anonymous
System.Read
System.View

Datacenter, Datastore
Cluster, Datastore
Storage Folder

No

Roles Privileges Entities Propagate to
Children

NOTE

After enabling the vSphere Cloud Provider, Node names are set to the VM names from
the vCenter Inventory.

WARNING

The openshift_hostname variable must match the virtual machine name and its
host name. The openshift_hostname variable defines the nodeName value in
the node-config.yaml file. This value is compared to the nodeName value
determined by using the command uname -n. In case of a mismatch, the native
cloud integration for those providers will not work.

20.3. THE VMWARE VSPHERE CONFIGURATION FILE

Configuring OpenShift Container Platform for VMware vSphere requires the
/etc/origin/cloudprovider/vsphere.conf file, on each node host.

IMPORTANT

If you are upgrading from OpenShift Container Platform version 3.6 to a newer version,
place the vSphere Configuration (vsphere.conf) file in both /etc/vsphere/ and the
/etc/origin/cloudprovider/ directories.

If the file does not exist, create it, and add the following:

[Global]

 user = "username" 1

 password = "password" 2

 server = "10.10.0.2" 3

 port = "443" 4

 insecure-flag = "1" 5

 datacenter = "datacenter-name" 6

 datastore = "datastore-name" 7

 working-dir = "vm-folder-path" 8



CHAPTER 20. CONFIGURING FOR VMWARE VSPHERE

377

1

2

3

4

5

6

7

8

9

 vm-uuid = "vm-uuid" 9
[Disk]
 scsicontrollertype = pvscsi

vCenter username for the vSphere cloud provider.

vCenter password for the specified user.

IP Address or FQDN for the vCenter server.

(Optional) Port number for the vCenter server. Defaults to port 443.

Set to 1 if the vCenter uses a self-signed cert.

Name of the data center on which Node VMs are deployed.

Name of the datastore to use for provisioning volumes using the storage classes or dynamic
provisioning. If datastore is located in a storage folder or datastore is a member of datastore
cluster, specify the full datastore path. Verify that vSphere Cloud Provider user has the read
privilege set on the datastore cluster or storage folder to be able to find datastore.

(Optional) The vCenter VM folder path in which the node VMs are located. It can be set to an empty
path(working-dir = ""), if Node VMs are located in the root VM folder.

(Optional) VM Instance UUID of the Node VM. It can be set to empty (vm-uuid = ""). If this is set
to empty, this is retrieved from /sys/class/dmi/id/product_serial file on virtual machine (requires
root access).

20.4. CONFIGURING MASTERS

Edit or create the master configuration file on all masters (/etc/origin/master/master-config.yaml by
default) and update the contents of the apiServerArguments and controllerArguments sections
with the following:

IMPORTANT

When triggering a containerized installation, only the /etc/origin and /var/lib/origin
directories are mounted to the master and node container. Therefore, master-
config.yaml must be in /etc/origin/master rather than /etc/.

kubernetesMasterConfig:
 admissionConfig:
 pluginConfig:
 {}
 apiServerArguments:
 cloud-provider:
 - "vsphere"
 cloud-config:
 - "/etc/origin/cloudprovider/vsphere.conf"
 controllerArguments:
 cloud-provider:
 - "vsphere"
 cloud-config:
 - "/etc/origin/cloudprovider/vsphere.conf"

OpenShift Container Platform 3.7 Installation and Configuration

378

20.5. CONFIGURING NODES

1. Edit or create the node configuration file on all nodes (/etc/origin/node/node-config.yaml by
default) and update the contents of the kubeletArguments section:

IMPORTANT

When triggering a containerized installation, only the /etc/origin and
/var/lib/origin directories are mounted to the master and node container.
Therefore, node-config.yaml must be in /etc/origin/node rather than /etc/.

20.6. APPLYING CONFIGURATION CHANGES

Start or restart OpenShift Container Platform services on all master and node hosts to apply your
configuration changes, see Restarting OpenShift Container Platform services:

systemctl restart atomic-openshift-master-api atomic-openshift-master-
controllers
systemctl restart atomic-openshift-node

Switching from not using a cloud provider to using a cloud provider produces an error message. Adding
the cloud provider tries to delete the node because the node switches from using the hostname as the
externalID (which would have been the case when no cloud provider was being used) to using the
cloud provider’s instance-id (which is what the cloud provider specifies). To resolve this issue:

1. Log in to the CLI as a cluster administrator.

2. Check and back up existing node labels:

3. Delete the nodes:

4. On each node host, restart the OpenShift Container Platform service.

systemctl restart atomic-openshift-node

5. Add back any labels on each node that you previously had.

20.7. BACKUP OF PERSISTENT VOLUMES

kubeletArguments:
 cloud-provider:
 - "vsphere"
 cloud-config:
 - "/etc/origin/cloudprovider/vsphere.conf"

$ oc describe node <node_name> | grep -Poz '(?s)Labels.*\n.*(?
=Taints)'

$ oc delete node <node_name>

CHAPTER 20. CONFIGURING FOR VMWARE VSPHERE

379

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#updating-labels-on-nodes

OpenShift Container Platform provisions new volumes as independent persistent disks to freely attach
and detach the volume on any node in the cluster. As a consequence, it is not possible to back up
volumes that use snapshots.

To create a backup of PVs:

1. Stop the application using the PV.

2. Clone the persistent disk.

3. Restart the application.

4. Create a backup of the cloned disk.

5. Delete the cloned disk.

OpenShift Container Platform 3.7 Installation and Configuration

380

https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.vm_admin.doc/GUID-53F65726-A23B-4CF0-A7D5-48E584B88613.html

CHAPTER 21. CONFIGURING FOR LOCAL VOLUME

21.1. OVERVIEW

OpenShift Container Platform can be configured to access local volumes for application data.

Local volumes are persistent volumes (PV) representing locally-mounted file systems. In the future, they
may be extended to raw block devices.

Local volumes are different from a hostPath. They have a special annotation that makes any pod that
uses the PV to be scheduled on the same node where the local volume is mounted.

In addition, local volume includes a provisioner that automatically creates PVs for locally mounted
devices. This provisioner is currently limited and it only scans pre-configured directories. It cannot
dynamically provision volumes, which may be implemented in a future release.

The local volume provisioner allows using local storage within OpenShift Container Platform and
supports:

Volumes

PVs

NOTE

Local volumes is an alpha feature and may change in a future release of OpenShift
Container Platform.

21.2. ENABLING LOCAL VOLUMES

Enable the PersistentLocalVolumes feature gate on all masters and nodes:

1. Edit or create the master configuration file on all masters (/etc/origin/master/master-
config.yaml by default) and add PersistentLocalVolumes=true under the
apiServerArguments and controllerArguments sections:

2. On all nodes, edit or create the node configuration file (/etc/origin/node/node-config.yaml by
default) and add PersistentLocalVolumes=true feature gate under kubeletArguments:

apiServerArguments:
 feature-gates:
 - PersistentLocalVolumes=true
...

controllerArguments:
 feature-gates:
 - PersistentLocalVolumes=true
...

kubeletArguments:
 feature-gates:
 - PersistentLocalVolumes=true

CHAPTER 21. CONFIGURING FOR LOCAL VOLUME

381

21.3. MOUNTING LOCAL VOLUMES

All local volumes must be manually mounted before they can be consumed by OpenShift Container
Platform as PVs.

1. Mount all volumes into the /mnt/local-storage/<storage-class-name>/<volume> path.
Administrators are required to create the local devices as needed (by using any method such as
a disk partition or an LVM), create suitable file systems on these devices, and mount them using
a script or /etc/fstab entries.

Example /etc/fstab entries

device name # mount point # FS # options #
extra
/dev/sdb1 /mnt/local-storage/ssd/disk1 ext4 defaults 1 2
/dev/sdb2 /mnt/local-storage/ssd/disk2 ext4 defaults 1 2
/dev/sdb3 /mnt/local-storage/ssd/disk3 ext4 defaults 1 2
/dev/sdc1 /mnt/local-storage/hdd/disk1 ext4 defaults 1 2
/dev/sdc2 /mnt/local-storage/hdd/disk2 ext4 defaults 1 2

2. Change the labels of mounted filesystems so that all volumes are accessible to processes that
run within Docker containers:

21.4. CONFIGURING THE LOCAL PROVISIONER

OpenShift Container Platform depends on an external provisioner to create PVs for local devices and to
clean them up when they are not needed (to enable reuse).

NOTE

The local volume provisioner is different from most provisioners and does not
support dynamic provisioning.

The local volume provisioner requires that the administrators preconfigure the
local volumes on each node and mount them under discovery directories. The
provisioner then manages the volumes by creating and cleaning up PVs for each
volume.

This external provisioner should be configured using a ConfigMap to relate directories with
StorageClasses. This configuration must be created before the provisioner is deployed.

NOTE

(Optional) Create a standalone namespace for local volume provisioner and its
configuration, for example: oc new-project local-storage

$ chcon -R unconfined_u:object_r:svirt_sandbox_file_t:s0 /mnt/local-
storage/

apiVersion: v1

OpenShift Container Platform 3.7 Installation and Configuration

382

1

2

3

Name of the StorageClass.

Path to the directory on the host. It must be a subdirectory of /mnt/local-storage.

Path to the directory in the provisioner pod. We recommend using the same directory structure as
used on the host.

With this configuration, the provisioner creates:

One PV with StorageClass local-ssd for every subdirectory in /mnt/local-storage/ssd.

One PV with StorageClass local-hdd for every subdirectory in /mnt/local-storage/hdd.

21.5. DEPLOYING THE LOCAL PROVISIONER

NOTE

Before starting the provisioner, mount all local devices and create a ConfigMap with
storage classes and their directories.

1. Install the local provisioner from the local-storage-provisioner-template.yaml file.

2. Create a service account that allows running pods as a root user and use HostPath volumes:

NOTE

Root privileges are required for the provisioner pod to delete content on local
volumes. hostPath is required to access the /mnt/local-storage path on the host.

3. Install the template:

kind: ConfigMap
metadata:
 name: local-volume-config
data:

 "local-ssd": | 1
 {

 "hostDir": "/mnt/local-storage/ssd", 2

 "mountDir": "/mnt/local-storage/ssd" 3
 }
 "local-hdd": |
 {
 "hostDir": "/mnt/local-storage/hdd",
 "mountDir": "/mnt/local-storage/hdd"
 }

$ oc create serviceaccount local-storage-admin
$ oc adm policy add-scc-to-user privileged -z local-storage-admin

$ oc create -f
https://raw.githubusercontent.com/openshift/origin/master/examples/s
torage-examples/local-examples/local-storage-provisioner-

CHAPTER 21. CONFIGURING FOR LOCAL VOLUME

383

https://raw.githubusercontent.com/openshift/origin/master/examples/storage-examples/local-examples/local-storage-provisioner-template.yaml

4. Instantiate the template by specifying values for configmap and account parameters:

5. Create the SSD and HDD files:

storage-class-hdd.yaml example

6. Add the necessary storage classes:

See the template for other configurable options. This template creates a DaemonSet that runs a pod on
every node. The pod watches directories specified in the ConfigMap and creates PVs for them
automatically.

The provisioner runs as root to be able to clean up the directories when a PV is released and all data
needs to be removed.

21.6. ADDING NEW DEVICES

To add a new device:

1. Stop DaemonSet with the provisioner.

2. Create a subdirectory in the right directory on the node with the new device and mount it there.

3. Start the DaemonSet with the provisioner.

IMPORTANT

Omitting any of these steps may result in the wrong PV being created.

template.yaml

$ oc new-app -p CONFIGMAP=local-volume-config \
 -p SERVICE_ACCOUNT=local-storage-admin \
 -p NAMESPACE=local-storage local-storage-provisioner

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: local-ssd
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: local-hdd
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer

oc create -f ./storage-class-ssd.yaml
oc create -f ./storage-class-hdd.yaml

OpenShift Container Platform 3.7 Installation and Configuration

384

https://raw.githubusercontent.com/openshift/origin/master/examples/storage-examples/local-examples/local-storage-provisioner-template.yaml

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

22.1. OVERVIEW

The Kubernetes persistent volume framework allows you to provision an OpenShift Container Platform
cluster with persistent storage using networked storage available in your environment. This can be done
after completing the initial OpenShift Container Platform installation depending on your application
needs, giving users a way to request those resources without having any knowledge of the underlying
infrastructure.

These topics show how to configure persistent volumes in OpenShift Container Platform using the
following supported volume plug-ins:

NFS

GlusterFS

OpenStack Cinder

Ceph RBD

AWS Elastic Block Store (EBS)

GCE Persistent Disk

iSCSI

Fibre Channel

Azure Disk

Azure File

FlexVolume

VMWare vSphere

Dynamic Provisioning and Creating Storage Classes

Volume Security

Selector-Label Volume Binding

22.2. PERSISTENT STORAGE USING NFS

22.2.1. Overview

OpenShift Container Platform clusters can be provisioned with persistent storage using NFS. Persistent
volumes (PVs) and persistent volume claims (PVCs) provide a convenient method for sharing a volume
across a project. While the NFS-specific information contained in a PV definition could also be defined
directly in a pod definition, doing so does not create the volume as a distinct cluster resource, making the
volume more susceptible to conflicts.

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

385

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

1

2

3

4

5

6

7

This topic covers the specifics of using the NFS persistent storage type. Some familiarity with OpenShift
Container Platform and NFS is beneficial. See the Persistent Storage concept topic for details on the
OpenShift Container Platform persistent volume (PV) framework in general.

22.2.2. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. To provision NFS volumes, a list of NFS servers and export paths are all that is
required.

You must first create an object definition for the PV:

Example 22.1. PV Object Definition Using NFS

The name of the volume. This is the PV identity in various oc <command> pod commands.

The amount of storage allocated to this volume.

Though this appears to be related to controlling access to the volume, it is actually used similarly
to labels and used to match a PVC to a PV. Currently, no access rules are enforced based on
the accessModes.

The volume type being used, in this case the nfs plug-in.

The path that is exported by the NFS server.

The host name or IP address of the NFS server.

The reclaim policy for the PV. This defines what happens to a volume when released from its
claim. Valid options are Retain (default) and Recycle. See Reclaiming Resources.

NOTE

Each NFS volume must be mountable by all schedulable nodes in the cluster.

Save the definition to a file, for example nfs-pv.yaml, and create the PV:

apiVersion: v1
kind: PersistentVolume
metadata:

 name: pv0001 1
spec:
 capacity:

 storage: 5Gi 2
 accessModes:

 - ReadWriteOnce 3

 nfs: 4

 path: /tmp 5

 server: 172.17.0.2 6

 persistentVolumeReclaimPolicy: Recycle 7

OpenShift Container Platform 3.7 Installation and Configuration

386

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-nfs.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

1

2

$ oc create -f nfs-pv.yaml
persistentvolume "pv0001" created

Verify that the PV was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS
CLAIM REASON AGE
pv0001 <none> 5368709120 RWO Available
31s

The next step can be to create a PVC, which binds to the new PV:

Example 22.2. PVC Object Definition

As mentioned above for PVs, the accessModes do not enforce security, but rather act as labels
to match a PV to a PVC.

This claim looks for PVs offering 1Gi or greater capacity.

Save the definition to a file, for example nfs-claim.yaml, and create the PVC:

oc create -f nfs-claim.yaml

22.2.3. Enforcing Disk Quotas

You can use disk partitions to enforce disk quotas and size constraints. Each partition can be its own
export. Each export is one PV. OpenShift Container Platform enforces unique names for PVs, but the
uniqueness of the NFS volume’s server and path is up to the administrator.

Enforcing quotas in this way allows the developer to request persistent storage by a specific amount (for
example, 10Gi) and be matched with a corresponding volume of equal or greater capacity.

22.2.4. NFS Volume Security

This section covers NFS volume security, including matching permissions and SELinux considerations.
The user is expected to understand the basics of POSIX permissions, process UIDs, supplemental
groups, and SELinux.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: nfs-claim1
spec:
 accessModes:

 - ReadWriteOnce 1
 resources:
 requests:

 storage: 1Gi 2

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

387

NOTE

See the full Volume Security topic before implementing NFS volumes.

Developers request NFS storage by referencing, in the volumes section of their pod definition, either a
PVC by name or the NFS volume plug-in directly.

The /etc/exports file on the NFS server contains the accessible NFS directories. The target NFS
directory has POSIX owner and group IDs. The OpenShift Container Platform NFS plug-in mounts the
container’s NFS directory with the same POSIX ownership and permissions found on the exported NFS
directory. However, the container is not run with its effective UID equal to the owner of the NFS mount,
which is the desired behavior.

As an example, if the target NFS directory appears on the NFS server as:

ls -lZ /opt/nfs -d
drwxrws---. nfsnobody 5555 unconfined_u:object_r:usr_t:s0 /opt/nfs

id nfsnobody
uid=65534(nfsnobody) gid=65534(nfsnobody) groups=65534(nfsnobody)

Then the container must match SELinux labels, and either run with a UID of 65534 (nfsnobody owner)
or with 5555 in its supplemental groups in order to access the directory.

NOTE

The owner ID of 65534 is used as an example. Even though NFS’s root_squash maps
root (0) to nfsnobody (65534), NFS exports can have arbitrary owner IDs. Owner 65534
is not required for NFS exports.

22.2.4.1. Group IDs

The recommended way to handle NFS access (assuming it is not an option to change permissions on
the NFS export) is to use supplemental groups. Supplemental groups in OpenShift Container Platform
are used for shared storage, of which NFS is an example. In contrast, block storage, such as Ceph RBD
or iSCSI, use the fsGroup SCC strategy and the fsGroup value in the pod’s securityContext.

NOTE

It is generally preferable to use supplemental group IDs to gain access to persistent
storage versus using user IDs. Supplemental groups are covered further in the full
Volume Security topic.

Because the group ID on the example target NFS directory shown above is 5555, the pod can define that
group ID using supplementalGroups under the pod-level securityContext definition. For
example:

spec:
 containers:
 - name:
 ...

 securityContext: 1

 supplementalGroups: [5555] 2

OpenShift Container Platform 3.7 Installation and Configuration

388

1

2

1

2

securityContext must be defined at the pod level, not under a specific container.

An array of GIDs defined for the pod. In this case, there is one element in the array; additional GIDs
would be comma-separated.

Assuming there are no custom SCCs that might satisfy the pod’s requirements, the pod likely matches
the restricted SCC. This SCC has the supplementalGroups strategy set to RunAsAny, meaning that
any supplied group ID is accepted without range checking.

As a result, the above pod passes admissions and is launched. However, if group ID range checking is
desired, a custom SCC, as described in pod security and custom SCCs, is the preferred solution. A
custom SCC can be created such that minimum and maximum group IDs are defined, group ID range
checking is enforced, and a group ID of 5555 is allowed.

NOTE

To use a custom SCC, you must first add it to the appropriate service account. For
example, use the default service account in the given project unless another has been
specified on the pod specification. See Add an SCC to a User, Group, or Project for
details.

22.2.4.2. User IDs

User IDs can be defined in the container image or in the pod definition. The full Volume Security topic
covers controlling storage access based on user IDs, and should be read prior to setting up NFS
persistent storage.

NOTE

It is generally preferable to use supplemental group IDs to gain access to persistent
storage versus using user IDs.

In the example target NFS directory shown above, the container needs its UID set to 65534 (ignoring
group IDs for the moment), so the following can be added to the pod definition:

Pods contain a securityContext specific to each container (shown here) and a pod-level
securityContext which applies to all containers defined in the pod.

65534 is the nfsnobody user.

Assuming the default project and the restricted SCC, the pod’s requested user ID of 65534 is not
allowed, and therefore the pod fails. The pod fails for the following reasons:

It requests 65534 as its user ID.

spec:

 containers: 1
 - name:
 ...
 securityContext:

 runAsUser: 65534 2

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

389

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#add-scc-to-user-group-project

All SCCs available to the pod are examined to see which SCC allows a user ID of 65534
(actually, all policies of the SCCs are checked but the focus here is on user ID).

Because all available SCCs use MustRunAsRange for their runAsUser strategy, UID range
checking is required.

65534 is not included in the SCC or project’s user ID range.

It is generally considered a good practice not to modify the predefined SCCs. The preferred way to fix
this situation is to create a custom SCC, as described in the full Volume Security topic. A custom SCC
can be created such that minimum and maximum user IDs are defined, UID range checking is still
enforced, and the UID of 65534 is allowed.

NOTE

To use a custom SCC, you must first add it to the appropriate service account. For
example, use the default service account in the given project unless another has been
specified on the pod specification. See Add an SCC to a User, Group, or Project for
details.

22.2.4.3. SELinux

NOTE

See the full Volume Security topic for information on controlling storage access in
conjunction with using SELinux.

By default, SELinux does not allow writing from a pod to a remote NFS server. The NFS volume mounts
correctly, but is read-only.

To enable writing to NFS volumes with SELinux enforcing on each node, run:

setsebool -P virt_use_nfs 1

The -P option above makes the bool persistent between reboots.

The virt_use_nfs boolean is defined by the docker-selinux package. If an error is seen indicating that
this bool is not defined, ensure this package has been installed.

22.2.4.4. Export Settings

In order to enable arbitrary container users to read and write the volume, each exported volume on the
NFS server should conform to the following conditions:

Each export must be:

/<example_fs> *(rw,root_squash)

The firewall must be configured to allow traffic to the mount point.

For NFSv4, configure the default port 2049 (nfs) and port 111 (portmapper).

NFSv4

OpenShift Container Platform 3.7 Installation and Configuration

390

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#add-scc-to-user-group-project

iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT
iptables -I INPUT 1 -p tcp --dport 111 -j ACCEPT

For NFSv3, there are three ports to configure: 2049 (nfs), 20048 (mountd), and 111
(portmapper).

NFSv3

iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT
iptables -I INPUT 1 -p tcp --dport 20048 -j ACCEPT
iptables -I INPUT 1 -p tcp --dport 111 -j ACCEPT

The NFS export and directory must be set up so that it is accessible by the target pods. Either
set the export to be owned by the container’s primary UID, or supply the pod group access using
supplementalGroups, as shown in Group IDs above. See the full Volume Security topic for
additional pod security information as well.

22.2.5. Reclaiming Resources

NFS implements the OpenShift Container Platform Recyclable plug-in interface. Automatic processes
handle reclamation tasks based on policies set on each persistent volume.

By default, PVs are set to Retain. NFS volumes which are set to Recycle are scrubbed (i.e., rm -rf is
run on the volume) after being released from their claim (i.e, after the user’s PersistentVolumeClaim
bound to the volume is deleted). Once recycled, the NFS volume can be bound to a new claim.

Once claim to a PV is released (that is, the PVC is deleted), the PV object should not be re-used.
Instead, a new PV should be created with the same basic volume details as the original.

For example, the administrator creates a PV named nfs1:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs1
spec:
 capacity:
 storage: 1Mi
 accessModes:
 - ReadWriteMany
 nfs:
 server: 192.168.1.1
 path: "/"

The user creates PVC1, which binds to nfs1. The user then deletes PVC1, releasing claim to nfs1,
which causes nfs1 to be Released. If the administrator wishes to make the same NFS share available,
they should create a new PV with the same NFS server details, but a different PV name:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs2
spec:
 capacity:

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

391

 storage: 1Mi
 accessModes:
 - ReadWriteMany
 nfs:
 server: 192.168.1.1
 path: "/"

Deleting the original PV and re-creating it with the same name is discouraged. Attempting to manually
change the status of a PV from Released to Available causes errors and potential data loss.

NOTE

A PV with retention policy of Recycle scrubs (rm -rf) the data and marks it as
Available for claim. The Recycle retention policy is deprecated starting in OpenShift
Container Platform 3.6 and should be avoided. Anyone using recycler should use dynamic
provision and volume deletion instead.

22.2.6. Automation

Clusters can be provisioned with persistent storage using NFS in the following ways:

Enforce storage quotas using disk partitions.

Enforce security by restricting volumes to the project that has a claim to them.

Configure reclamation of discarded resources for each PV.

They are many ways that you can use scripts to automate the above tasks. You can use an example
Ansible playbook to help you get started.

22.2.7. Additional Configuration and Troubleshooting

Depending on what version of NFS is being used and how it is configured, there may be additional
configuration steps needed for proper export and security mapping. The following are some that may
apply:

NFSv4 mount incorrectly shows
all files with ownership of
nobody:nobody

Could be attributed to the ID mapping settings
(/etc/idmapd.conf) on your NFS

See this Red Hat Solution .

Disabling ID mapping on NFSv4
On both the NFS client and server, run:

echo 'Y' >
/sys/module/nfsd/parameters/nfs4_disable
_idmapping

22.3. PERSISTENT STORAGE USING GLUSTERFS

OpenShift Container Platform 3.7 Installation and Configuration

392

https://github.com/openshift/openshift-ansible/tree/master/roles/openshift_node_certificates
https://access.redhat.com/solutions/33455

22.3.1. Overview

You can configure your OpenShift Container Platform cluster to use Red Hat Gluster Storage as
persistent storage for containerized applications. There are two deployment solutions available when
using Red Hat Gluster Storage, using either a containerized or dedicated storage cluster. This topic
focuses mainly on the the persistent volume plug-in solution using a dedicated Red Hat Gluster Storage
cluster.

22.3.1.1. Containerized Red Hat Gluster Storage

Starting with the Red Hat Gluster Storage 3.1 update 3 release, you can deploy containerized Red Hat
Gluster Storage directly on OpenShift Container Platform. Containerized Red Hat Gluster Storage
converged with OpenShift Container Platform addresses the use case where containerized applications
require both shared file storage and the flexibility of a converged infrastructure with compute and storage
instances being scheduled and run from the same set of hardware.

Figure 22.1. Architecture - Red Hat Gluster Storage Container Converged with OpenShift

Step-by-step instructions for this containerized solution are provided separately in the following Red Hat
Gluster Storage documentation:

Container-Native Storage for OpenShift Container Platform

22.3.1.2. Container Native Storage Recommendations

OpenShift Container Platform offers container native storage (CNS) storage, which makes it easier for
OpenShift Container Platform users to fulfill their storage needs. With CNS, solution users and

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

393

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html/container-native_storage_for_openshift_container_platform/

administrators are empowered to have storage and application pods running together on the same
infrastructure and sharing the same resources.

See Container-Native Storage for OpenShift Container Platform for configuring CNS as part of an
OpenShift Container Platform cluster.

22.3.1.2.1. Creation Time of Volumes with Container Native Storage

Building environment storage can influence the time it takes for an application to start. For example, if
the application pod requires a persistent volume claim (PVC), then extra time might have to be
considered for CNS to be created and bound to the corresponding PVC. This effects the build time for an
application pod to start.

Creation time of CNS volumes scales linearly up to 100 volumes. In the latest tests, each volume took
approximately 6 seconds to be created, allocated, and bound to a pod.

All tests were performed on one trusted storage pool (TSP), using hardware configuration for CNS per
the Container-Native Storage for OpenShift Container Platform guidelines.

Dynamic storage provisioning and storage classes were also configured and used when provisioning the
PVC.

22.3.1.2.2. Deletion Time of Volumes with Container Native Storage

When you delete a PVC that is used by an application pod, then that action will trigger the deletion of the
CNS volume that was used by the PVC.

PVCs will disappear immediately from the oc get pvc output. However, the time to delete and recycle
CNS volumes depends on the number of CNS volumes. In the latest tests, the deletion time of CNS
volumes proved to scale linearly up to 100 volumes.

NOTE

Deletion time does not affect application users. CNS deletion behavior serves as
orientation for CNS storage administrators to be able to estimate how long it will
approximately take for CNS volumes to be removed from a CNS cluster.

22.3.1.2.3. Recommended Memory Requirements for Container Native Storage

The recommended memory requirements are 32 GB per OpenShift Container Platform node hosting
CNS pods.

IMPORTANT

Follow the planning guidelines when planning hardware for a CNS storage environment to
ensure that you have enough memory.

22.3.1.3. Dedicated Storage Cluster

If you have a dedicated Red Hat Gluster Storage cluster available in your environment, you can
configure OpenShift Container Platform’s Gluster volume plug-in. The dedicated storage cluster delivers
persistent Red Hat Gluster Storage file storage for containerized applications over the network. The
applications access storage served out from the storage clusters through common storage protocols.

OpenShift Container Platform 3.7 Installation and Configuration

394

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html/container-native_storage_for_openshift_container_platform/
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html/container-native_storage_for_openshift_container_platform/
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html/container-native_storage_for_openshift_container_platform/ch05s02#Planning_Guidelines

Figure 22.2. Architecture - Dedicated Red Hat Gluster Storage Cluster Using the OpenShift
Container Platform Volume Plug-in

You can also dynamically provision volumes in a dedicated Red Hat Gluster Storage cluster that are
enabled by Heketi. See Managing Volumes Using Heketi in the Red Hat Gluster Storage 3.3
Administration Guide for more information.

This solution is a conventional deployment where containerized compute applications run on an
OpenShift Container Platform cluster. The remaining sections in this topic provide the step-by-step
instructions for the dedicated Red Hat Gluster Storage solution.

This topic presumes some familiarity with OpenShift Container Platform and GlusterFS:

See the Persistent Storage topic for details on the OpenShift Container Platform PV framework
in general.

See the Red Hat Gluster Storage 3.3 Administration Guide for more on GlusterFS.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

22.3.2. Support Requirements

The following requirements must be met to create a supported integration of Red Hat Gluster Storage
and OpenShift Container Platform.

22.3.2.1. Supported Operating Systems

The following table lists the supported versions of OpenShift Container Platform with Red Hat Gluster
Storage Server.

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

395

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html/administration_guide/ch05s02
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html/administration_guide/

Red Hat Gluster Storage OpenShift Container Platform

3.1.3 3.1 or later

22.3.2.2. Environment Requirements

The environment requirements for OpenShift Container Platform and Red Hat Gluster Storage are
described in this section.

Red Hat Gluster Storage

All installations of Red Hat Gluster Storage must have valid subscriptions to Red Hat Network
channels and Subscription Management repositories.

Red Hat Gluster Storage installations must adhere to the requirements laid out in the Red Hat
Gluster Storage 3.3 Installation Guide.

Red Hat Gluster Storage installations must be completely up to date with the latest patches and
upgrades. Refer to the Red Hat Gluster Storage 3.3 Installation Guide to upgrade to the latest
version.

The versions of OpenShift Container Platform and Red Hat Gluster Storage integrated must be
compatible, according to the information in Supported Operating Systems.

A fully-qualified domain name (FQDN) must be set for each hypervisor and Red Hat Gluster
Storage server node. Ensure that correct DNS records exist, and that the FQDN is resolvable via
both forward and reverse DNS lookup.

Red Hat OpenShift Container Platform

All installations of OpenShift Container Platform must have valid subscriptions to Red Hat
Network channels and Subscription Management repositories.

OpenShift Container Platform installations must adhere to the requirements laid out in the
Installation and Configuration documentation.

The OpenShift Container Platform cluster must be up and running.

A user with cluster-admin permissions must be created.

All OpenShift Container Platform nodes on RHEL systems must have the glusterfs-fuse RPM
installed, which should match the version of Red Hat Gluster Storage server running in the
containers. For more information on installing glusterfs-fuse, see Native Client in the Red Hat
Gluster 3.3 Storage Administration Guide.

22.3.3. Provisioning

To provision GlusterFS volumes using the dedicated storage cluster solution, the following are required:

An existing storage device in your underlying infrastructure.

A distinct list of servers (IP addresses) in the Gluster cluster, to be defined as endpoints.

A service, to persist the endpoints (optional).

OpenShift Container Platform 3.7 Installation and Configuration

396

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html/installation_guide/chap-planning_red_hat_storage_installation
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html/administration_guide/chap-accessing_data_-_setting_up_clients#sect-Native_Client

1

An existing Gluster volume to be referenced in the persistent volume object.

glusterfs-fuse installed on each schedulable OpenShift Container Platform node in your cluster:

NOTE

Persistent volumes (PVs) and persistent volume claims (PVCs) can share volumes across
a single project. While the GlusterFS-specific information contained in a PV definition
could also be defined directly in a pod definition, doing so does not create the volume as a
distinct cluster resource, making the volume more susceptible to conflicts.

22.3.3.1. Creating Gluster Endpoints

An endpoints definition defines the GlusterFS cluster as EndPoints and includes the IP addresses of
your Gluster servers. The port value can be any numeric value within the accepted range of ports.
Optionally, you can create a service that persists the endpoints.

1. Define the following service:

This name must be defined in the endpoints definition. If using a service, then the
endpoints name must match the service name.

2. Save the service definition to a file, for example gluster-service.yaml, then create the service:

3. Verify that the service was created:

4. Define the Gluster endpoints:

$ yum install glusterfs-fuse

apiVersion: v1
kind: Service
metadata:

 name: glusterfs-cluster 1
spec:
 ports:
 - port: 1

$ oc create -f gluster-service.yaml

$ oc get services
NAME CLUSTER_IP EXTERNAL_IP PORT(S)
SELECTOR AGE
glusterfs-cluster 172.30.205.34 <none> 1/TCP
<none> 44s

apiVersion: v1
kind: Endpoints
metadata:

 name: glusterfs-cluster 1
subsets:
 - addresses:

 - ip: 192.168.122.221 2

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

397

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#services

1

2 3

4

This name must match the service name from step 1.

The ip values must be the actual IP addresses of a Gluster server, not fully-qualified host
names.

The port number is ignored.

5. Save the endpoints definition to a file, for example gluster-endpoints.yaml, then create the
endpoints:

6. Verify that the endpoints were created:

22.3.3.2. Creating the Persistent Volume

NOTE

GlusterFS does not support the 'Recycle' reclaim policy.

1. Next, define the PV in an object definition before creating it in OpenShift Container Platform:

 ports:
 - port: 1
 - addresses:

 - ip: 192.168.122.222 3
 ports:

 - port: 1 4

$ oc create -f gluster-endpoints.yaml
endpoints "glusterfs-cluster" created

$ oc get endpoints
NAME ENDPOINTS AGE
docker-registry 10.1.0.3:5000 4h
glusterfs-cluster 192.168.122.221:1,192.168.122.222:1 11s
kubernetes 172.16.35.3:8443 4d

apiVersion: v1
kind: PersistentVolume
metadata:

 name: gluster-default-volume 1
spec:
 capacity:

 storage: 2Gi 2

 accessModes: 3
 - ReadWriteMany

 glusterfs: 4

 endpoints: glusterfs-cluster 5

 path: myVol1 6
 readOnly: false

 persistentVolumeReclaimPolicy: Retain 7

OpenShift Container Platform 3.7 Installation and Configuration

398

1

2

3

4

5

6

7

The name of the volume. This is how it is identified via persistent volume claims or from
pods.

The amount of storage allocated to this volume.

accessModes are used as labels to match a PV and a PVC. They currently do not define
any form of access control.

The volume type being used, in this case the glusterfs plug-in.

The endpoints name that defines the Gluster cluster created in Creating Gluster Endpoints.

The Gluster volume that will be accessed, as shown in the gluster volume status
command.

The volume reclaim policy Retain indicates that the volume will be preserved after the
pods accessing it terminates. For GlusterFS, the accepted values include Retain, and
Delete.

NOTE

Endpoints are name-spaced. Each project accessing the Gluster volume needs its own
endpoints.

1. Save the definition to a file, for example gluster-pv.yaml, and create the persistent volume:

2. Verify that the persistent volume was created:

22.3.3.3. Creating the Persistent Volume Claim

Developers request GlusterFS storage by referencing either a PVC or the Gluster volume plug-in directly
in the volumes section of a pod spec. A PVC exists only in the user’s project and can only be referenced
by pods within that project. Any attempt to access a PV across a project causes the pod to fail.

1. Create a PVC that will bind to the new PV:

$ oc create -f gluster-pv.yaml

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES
STATUS CLAIM REASON AGE
gluster-default-volume <none> 2147483648 RWX
Available 2s

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: gluster-claim
spec:
 accessModes:

 - ReadWriteMany 1

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

399

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

1

2

accessModes do not enforce security, but rather act as labels to match a PV to a PVC.

This claim will look for PVs offering 1Gi or greater capacity.

2. Save the definition to a file, for example gluster-claim.yaml, and create the PVC:

NOTE

PVs and PVCs make sharing a volume across a project simpler. The gluster-
specific information contained in the PV definition can also be defined directly in a
pod specification.

22.3.4. Gluster Volume Security

This section covers Gluster volume security, including matching permissions and SELinux
considerations. Understanding the basics of POSIX permissions, process UIDs, supplemental groups,
and SELinux is presumed.

NOTE

See the full Volume Security topic before implementing Gluster volumes.

As an example, assume that the target Gluster volume, HadoopVol is mounted under /mnt/glusterfs/,
with the following POSIX permissions and SELinux labels:

In order to access the HadoopVol volume, containers must match the SELinux label, and run with a UID
of 592 or 590 in their supplemental groups. The OpenShift Container Platform GlusterFS plug-in mounts
the volume in the container with the same POSIX ownership and permissions found on the target gluster
mount, namely the owner will be 592 and group ID will be 590. However, the container is not run with its
effective UID equal to 592, nor with its GID equal to 590, which is the desired behavior. Instead, a
container’s UID and supplemental groups are determined by Security Context Constraints (SCCs) and
the project defaults.

22.3.4.1. Group IDs

Configure Gluster volume access by using supplemental groups, assuming it is not an option to change
permissions on the Gluster mount. Supplemental groups in OpenShift Container Platform are used for
shared storage, such as GlusterFS. In contrast, block storage, such as Ceph RBD or iSCSI, use the
fsGroup SCC strategy and the fsGroup value in the pod’s securityContext.

 resources:
 requests:

 storage: 1Gi 2

$ oc create -f gluster-claim.yaml

$ ls -lZ /mnt/glusterfs/
drwxrwx---. yarn hadoop system_u:object_r:fusefs_t:s0 HadoopVol

$ id yarn
uid=592(yarn) gid=590(hadoop) groups=590(hadoop)

OpenShift Container Platform 3.7 Installation and Configuration

400

1

2

1

2

NOTE

Use supplemental group IDs instead of user IDs to gain access to persistent storage.
Supplemental groups are covered further in the full Volume Security topic.

The group ID on the target Gluster mount example above is 590. Therefore, a pod can define that group
ID using supplementalGroups under the pod-level securityContext definition. For example:

securityContext must be defined at the pod level, not under a specific container.

An array of GIDs defined at the pod level.

Assuming there are no custom SCCs that satisfy the pod’s requirements, the pod matches the restricted
SCC. This SCC has the supplementalGroups strategy set to RunAsAny, meaning that any supplied
group IDs are accepted without range checking.

As a result, the above pod will pass admissions and can be launched. However, if group ID range
checking is desired, use a custom SCC, as described in pod security and custom SCCs. A custom SCC
can be created to define minimum and maximum group IDs, enforce group ID range checking, and allow
a group ID of 590.

22.3.4.2. User IDs

User IDs can be defined in the container image or in the pod definition. The full Volume Security topic
covers controlling storage access based on user IDs, and should be read prior to setting up NFS
persistent storage.

NOTE

Use supplemental group IDs instead of user IDs to gain access to persistent storage.

In the target Gluster mount example above, the container needs a UID set to 592, so the following can
be added to the pod definition:

Pods contain a securtityContext specific to each container and a pod-level
securityContext, which applies to all containers defined in the pod.

The UID defined on the Gluster mount.

spec:
 containers:
 - name:
 ...

 securityContext: 1

 supplementalGroups: [590] 2

spec:

 containers: 1
 - name:
 ...
 securityContext:

 runAsUser: 592 2

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

401

With the default project and the restricted SCC, a pod’s requested user ID of 592 will not be allowed,
and the pod will fail. This is because:

The pod requests 592 as its user ID.

All SCCs available to the pod are examined to see which SCC will allow a user ID of 592.

Because all available SCCs use MustRunAsRange for their runAsUser strategy, UID range
checking is required.

592 is not included in the SCC or project’s user ID range.

Do not modify the predefined SCCs. Insead, create a custom SCC so that minimum and maximum user
IDs are defined, UID range checking is still enforced, and the UID of 592 will be allowed.

22.3.4.3. SELinux

NOTE

See the full Volume Security topic for information on controlling storage access in
conjunction with using SELinux.

By default, SELinux does not allow writing from a pod to a remote Gluster server.

To enable writing to GlusterFS volumes with SELinux enforcing on each node, run:

NOTE

The virt_sandbox_use_fusefs boolean is defined by the docker-selinux package. If
you get an error saying it is not defined, ensure that this package is installed.

The -P option makes the bool persistent between reboots.

22.4. PERSISTENT STORAGE USING OPENSTACK CINDER

22.4.1. Overview

You can provision your OpenShift Container Platform cluster with persistent storage using OpenStack
Cinder. Some familiarity with Kubernetes and OpenStack is assumed.

IMPORTANT

Before you create persistent volumes (PVs) using Cinder, configured OpenShift Container
Platform for OpenStack.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. You can provision OpenStack Cinder volumes dynamically.

$ sudo setsebool -P virt_sandbox_use_fusefs on

OpenShift Container Platform 3.7 Installation and Configuration

402

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-openstack-platform/version-7/red-hat-enterprise-linux-openstack-platform-7-architecture-guide/chapter-1-components#comp-cinder
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

1

2

3

4

5

Persistent volumes are not bound to a single project or namespace; they can be shared across the
OpenShift Container Platform cluster. Persistent volume claims, however, are specific to a project or
namespace and can be requested by users.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

22.4.2. Provisioning Cinder PVs

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. After ensuring that OpenShift Container Platform is configured for OpenStack, all
that is required for Cinder is a Cinder volume ID and the PersistentVolume API.

22.4.2.1. Creating the Persistent Volume

NOTE

Cinder does not support the 'Recycle' reclaim policy.

You must define your PV in an object definition before creating it in OpenShift Container Platform:

1. Save your object definition to a file, for example cinder-pv.yaml:

The name of the volume that is used by persistent volume claims or pods.

The amount of storage allocated to this volume.

The volume type, in this case cinder.

File system type to mount.

The Cinder volume to use.

IMPORTANT

Do not change the fstype parameter value after the volume is formatted and
provisioned. Changing this value can result in data loss and pod failure.

apiVersion: "v1"
kind: "PersistentVolume"
metadata:

 name: "pv0001" 1
spec:
 capacity:

 storage: "5Gi" 2
 accessModes:
 - "ReadWriteOnce"

 cinder: 3

 fsType: "ext3" 4

 volumeID: "f37a03aa-6212-4c62-a805-9ce139fab180" 5

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

403

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

2. Create the persistent volume:

oc create -f cinder-pv.yaml

persistentvolume "pv0001" created

3. Verify that the persistent volume exists:

oc get pv

NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE
pv0001 <none> 5Gi RWO Available
2s

Users can then request storage using persistent volume claims, which can now utilize your new
persistent volume.

IMPORTANT

Persistent volume claims exist only in the user’s namespace and can be referenced by a
pod within that same namespace. Any attempt to access a persistent volume from a
different namespace causes the pod to fail.

22.4.2.2. Cinder PV format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it
contains a file system as specified by the fsType parameter in the persistent volume definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This allows using unformatted Cinder volumes as persistent volumes, because OpenShift Container
Platform formats them before the first use.

22.4.2.3. Cinder volume security

If you use Cinder PVs in your application, configure security for their deployment configurations.

NOTE

Review the Volume Security information before implementing Cinder volumes.

1. Create an SCC that uses the appropriate fsGroup strategy.

2. Create a service account and add it to the SCC:

[source,bash]
$ oc create serviceaccount <service_account>
$ oc adm policy add-scc-to-user <new_scc> -z <service_account> -n
<project>

3. In your application’s deployment configuration, provide the service account name and
securityContext:

OpenShift Container Platform 3.7 Installation and Configuration

404

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#creating-new-security-context-constraints

1

2

3

4

5

6

7

The number of copies of the pod to run.

The label selector of the pod to run.

A template for the pod the controller creates.

The labels on the pod must include labels from the label selector.

The maximum name length after expanding any parameters is 63 characters.

Specify the service account you created.

Specify an fsGroup for the pods.

22.5. PERSISTENT STORAGE USING CEPH RADOS BLOCK DEVICE
(RBD)

22.5.1. Overview

OpenShift Container Platform clusters can be provisioned with persistent storage using Ceph RBD.

Persistent volumes (PVs) and persistent volume claims (PVCs) can share volumes across a single
project. While the Ceph RBD-specific information contained in a PV definition could also be defined
directly in a pod definition, doing so does not create the volume as a distinct cluster resource, making the
volume more susceptible to conflicts.

This topic presumes some familiarity with OpenShift Container Platform and Ceph RBD. See the
Persistent Storage concept topic for details on the OpenShift Container Platform persistent volume (PV)
framework in general.

apiVersion: v1
kind: ReplicationController
metadata:
 name: frontend-1
spec:

 replicas: 1 1

 selector: 2
 name: frontend

 template: 3
 metadata:

 labels: 4

 name: frontend 5
 spec:
 containers:
 - image: openshift/hello-openshift
 name: helloworld
 ports:
 - containerPort: 8080
 protocol: TCP
 restartPolicy: Always

 serviceAccountName: <service_account> 6
 securityContext:

 fsGroup: 7777 7

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

405

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/products/red-hat-ceph-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

NOTE

Project and namespace are used interchangeably throughout this document. See
Projects and Users for details on the relationship.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

22.5.2. Provisioning

To provision Ceph volumes, the following are required:

An existing storage device in your underlying infrastructure.

The Ceph key to be used in an OpenShift Container Platform secret object.

The Ceph image name.

The file system type on top of the block storage (e.g., ext4).

ceph-common installed on each schedulable OpenShift Container Platform node in your
cluster:

yum install ceph-common

22.5.2.1. Creating the Ceph Secret

Define the authorization key in a secret configuration, which is then converted to base64 for use by
OpenShift Container Platform.

NOTE

In order to use Ceph storage to back a persistent volume, the secret must be created in
the same project as the PVC and pod. The secret cannot simply be in the default project.

1. Run ceph auth get-key on a Ceph MON node to display the key value for the
client.admin user:

2. Save the secret definition to a file, for example ceph-secret.yaml, then create the secret:

$ oc create -f ceph-secret.yaml

3. Verify that the secret was created:

oc get secret ceph-secret
NAME TYPE DATA AGE

apiVersion: v1
kind: Secret
metadata:
 name: ceph-secret
data:
 key: QVFBOFF2SlZheUJQRVJBQWgvS2cwT1laQUhPQno3akZwekxxdGc9PQ==

OpenShift Container Platform 3.7 Installation and Configuration

406

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#namespaces

1

2

3

4

5

6

NAME TYPE DATA AGE
ceph-secret Opaque 1 23d

22.5.2.2. Creating the Persistent Volume

NOTE

Ceph RBD does not support the 'Recycle' reclaim policy.

Developers request Ceph RBD storage by referencing either a PVC, or the Gluster volume plug-in
directly in the volumes section of a pod specification. A PVC exists only in the user’s namespace and
can be referenced only by pods within that same namespace. Any attempt to access a PV from a
different namespace causes the pod to fail.

1. Define the PV in an object definition before creating it in OpenShift Container Platform:

Example 22.3. Persistent Volume Object Definition Using Ceph RBD

The name of the PV that is referenced in pod definitions or displayed in various oc
volume commands.

The amount of storage allocated to this volume.

accessModes are used as labels to match a PV and a PVC. They currently do not
define any form of access control. All block storage is defined to be single user (non-
shared storage).

The volume type being used, in this case the rbd plug-in.

An array of Ceph monitor IP addresses and ports.

The Ceph secret used to create a secure connection from OpenShift Container Platform
to the Ceph server.

apiVersion: v1
kind: PersistentVolume
metadata:

 name: ceph-pv 1
spec:
 capacity:

 storage: 2Gi 2
 accessModes:

 - ReadWriteOnce 3

 rbd: 4

 monitors: 5
 - 192.168.122.133:6789
 pool: rbd
 image: ceph-image
 user: admin
 secretRef:

 name: ceph-secret 6

 fsType: ext4 7
 readOnly: false
 persistentVolumeReclaimPolicy: Retain

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

407

7

1

2

The file system type mounted on the Ceph RBD block device.

IMPORTANT

Changing the value of the fstype parameter after the volume has been
formatted and provisioned can result in data loss and pod failure.

2. Save your definition to a file, for example ceph-pv.yaml, and create the PV:

oc create -f ceph-pv.yaml

3. Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES
STATUS CLAIM REASON AGE
ceph-pv <none> 2147483648 RWO
Available 2s

4. Create a PVC that will bind to the new PV:

Example 22.4. PVC Object Definition

The accessModes do not enforce access right, but instead act as labels to match a PV
to a PVC.

This claim looks for PVs offering 2Gi or greater capacity.

5. Save the definition to a file, for example ceph-claim.yaml, and create the PVC:

oc create -f ceph-claim.yaml

22.5.3. Ceph Volume Security

NOTE

See the full Volume Security topic before implementing Ceph RBD volumes.

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: ceph-claim
spec:

 accessModes: 1
 - ReadWriteOnce
 resources:
 requests:

 storage: 2Gi 2

OpenShift Container Platform 3.7 Installation and Configuration

408

1

2

A significant difference between shared volumes (NFS and GlusterFS) and block volumes (Ceph RBD,
iSCSI, and most cloud storage), is that the user and group IDs defined in the pod definition or container
image are applied to the target physical storage. This is referred to as managing ownership of the block
device. For example, if the Ceph RBD mount has its owner set to 123 and its group ID set to 567, and if
the pod defines its runAsUser set to 222 and its fsGroup to be 7777, then the Ceph RBD physical
mount’s ownership will be changed to 222:7777.

NOTE

Even if the user and group IDs are not defined in the pod specification, the resulting pod
may have defaults defined for these IDs based on its matching SCC, or its project. See
the full Volume Security topic which covers storage aspects of SCCs and defaults in
greater detail.

A pod defines the group ownership of a Ceph RBD volume using the fsGroup stanza under the pod’s
securityContext definition:

The securityContext must be defined at the pod level, not under a specific container.

All containers in the pod will have the same fsGroup ID.

22.6. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE

22.6.1. Overview

OpenShift Container Platform supports AWS Elastic Block Store volumes (EBS). You can provision your
OpenShift Container Platform cluster with persistent storage using AWS EC2. Some familiarity with
Kubernetes and AWS is assumed.

IMPORTANT

Before creating persistent volumes using AWS, OpenShift Container Platform must first
be properly configured for AWS ElasticBlockStore.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. AWS Elastic Block Store volumes can be provisioned dynamically. Persistent
volumes are not bound to a single project or namespace; they can be shared across the OpenShift
Container Platform cluster. Persistent volume claims, however, are specific to a project or namespace
and can be requested by users.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

spec:
 containers:
 - name:
 ...

 securityContext: 1

 fsGroup: 7777 2

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

409

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#persistent-volume-claims

1

2

3

4

5

22.6.2. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. After ensuring OpenShift is configured for AWS Elastic Block Store, all that is
required for OpenShift and AWS is an AWS EBS volume ID and the PersistentVolume API.

22.6.2.1. Creating the Persistent Volume

NOTE

AWS does not support the 'Recycle' reclaim policy.

You must define your persistent volume in an object definition before creating it in OpenShift Container
Platform:

Example 22.5. Persistent Volume Object Definition Using AWS

The name of the volume. This will be how it is identified via persistent volume claims or from
pods.

The amount of storage allocated to this volume.

This defines the volume type being used, in this case the awsElasticBlockStore plug-in.

File system type to mount.

This is the AWS volume that will be used.

IMPORTANT

Changing the value of the fstype parameter after the volume has been formatted and
provisioned can result in data loss and pod failure.

Save your definition to a file, for example aws-pv.yaml, and create the persistent volume:

oc create -f aws-pv.yaml
persistentvolume "pv0001" created

apiVersion: "v1"
kind: "PersistentVolume"
metadata:

 name: "pv0001" 1
spec:
 capacity:

 storage: "5Gi" 2
 accessModes:
 - "ReadWriteOnce"

 awsElasticBlockStore: 3

 fsType: "ext4" 4

 volumeID: "vol-f37a03aa" 5

OpenShift Container Platform 3.7 Installation and Configuration

410

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON
AGE
pv0001 <none> 5Gi RWO Available
2s

Users can then request storage using persistent volume claims, which can now utilize your new
persistent volume.

IMPORTANT

Persistent volume claims only exist in the user’s namespace and can only be referenced
by a pod within that same namespace. Any attempt to access a persistent volume from a
different namespace causes the pod to fail.

22.6.2.2. Volume Format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it
contains a file system as specified by the fsType parameter in the persistent volume definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This allows using unformatted AWS volumes as persistent volumes, because OpenShift Container
Platform formats them before the first use.

22.6.2.3. Maximum Number of EBS Volumes on a Node

By default, OpenShift Container Platform supports a maximum of 39 EBS volumes attached to one node.
This limit is consistent with the AWS Volume Limits.

OpenShift Container Platform can be configured to have a higher limit by setting the environment
variable KUBE_MAX_PD_VOLS. However, AWS requires a particular naming scheme (AWS Device
Naming) for attached devices, which only supports a maximum of 52 volumes. This limits the number of
volumes that can be attached to a node via OpenShift Container Platform to 52.

22.7. PERSISTENT STORAGE USING GCE PERSISTENT DISK

22.7.1. Overview

OpenShift Container Platform supports GCE Persistent Disk volumes (gcePD). You can provision your
OpenShift Container Platform cluster with persistent storage using GCE. Some familiarity with
Kubernetes and GCE is assumed.

IMPORTANT

Before creating persistent volumes using GCE, OpenShift Container Platform must first
be properly configured for GCE Persistent Disk.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. GCE Persistent Disk volumes can be provisioned dynamically. Persistent

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

411

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-persistent-volumes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_limits.html#linux-specific-volume-limits
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/device_naming.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage
https://cloud.google.com/compute/docs/disks/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

1

2

3

4

5

volumes are not bound to a single project or namespace; they can be shared across the OpenShift
Container Platform cluster. Persistent volume claims, however, are specific to a project or namespace
and can be requested by users.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

22.7.2. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. After ensuring OpenShift Container Platform is configured for GCE PersistentDisk,
all that is required for OpenShift Container Platform and GCE is an GCE Persistent Disk volume ID and
the PersistentVolume API.

22.7.2.1. Creating the Persistent Volume

NOTE

GCE does not support the 'Recycle' reclaim policy.

You must define your persistent volume in an object definition before creating it in OpenShift Container
Platform:

Example 22.6. Persistent Volume Object Definition Using GCE

The name of the volume. This will be how it is identified via persistent volume claims or from
pods.

The amount of storage allocated to this volume.

This defines the volume type being used, in this case the gcePersistentDisk plug-in.

File system type to mount.

This is the GCE Persistent Disk volume that will be used.

apiVersion: "v1"
kind: "PersistentVolume"
metadata:

 name: "pv0001" 1
spec:
 capacity:

 storage: "5Gi" 2
 accessModes:
 - "ReadWriteOnce"

 gcePersistentDisk: 3

 fsType: "ext4" 4

 pdName: "pd-disk-1" 5

OpenShift Container Platform 3.7 Installation and Configuration

412

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

IMPORTANT

Changing the value of the fstype parameter after the volume has been formatted and
provisioned can result in data loss and pod failure.

Save your definition to a file, for example gce-pv.yaml, and create the persistent volume:

oc create -f gce-pv.yaml
persistentvolume "pv0001" created

Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON
AGE
pv0001 <none> 5Gi RWO Available
2s

Users can then request storage using persistent volume claims, which can now utilize your new
persistent volume.

IMPORTANT

Persistent volume claims only exist in the user’s namespace and can only be referenced
by a pod within that same namespace. Any attempt to access a persistent volume from a
different namespace causes the pod to fail.

22.7.2.2. Volume Format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it
contains a file system as specified by the fsType parameter in the persistent volume definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This allows using unformatted GCE volumes as persistent volumes, because OpenShift Container
Platform formats them before the first use.

22.8. PERSISTENT STORAGE USING ISCSI

22.8.1. Overview

You can provision your OpenShift Container Platform cluster with persistent storage using iSCSI. Some
familiarity with Kubernetes and iSCSI is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

413

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-iscsi.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-persistent-volumes

22.8.2. Provisioning

Verify that the storage exists in the underlying infrastructure before mounting it as a volume in OpenShift
Container Platform. All that is required for the iSCSI is the iSCSI target portal, a valid iSCSI Qualified
Name (IQN), a valid LUN number, the filesystem type, and the PersistentVolume API.

Optionally, multipath portals and Challenge Handshake Authentication Protocol (CHAP) configuration
can be provided.

NOTE

iSCSI does not support the 'Recycle' reclaim policy.

Example 22.7. Persistent Volume Object Definition

22.8.2.1. Enforcing Disk Quotas

Use LUN partitions to enforce disk quotas and size constraints. Each LUN is one persistent volume.
Kubernetes enforces unique names for persistent volumes.

Enforcing quotas in this way allows the end user to request persistent storage by a specific amount (e.g,
10Gi) and be matched with a corresponding volume of equal or greater capacity.

22.8.2.2. iSCSI Volume Security

Users request storage with a PersistentVolumeClaim. This claim only lives in the user’s namespace
and can only be referenced by a pod within that same namespace. Any attempt to access a persistent
volume across a namespace causes the pod to fail.

Each iSCSI LUN must be accessible by all nodes in the cluster.

apiVersion: v1
kind: PersistentVolume
metadata:
 name: iscsi-pv
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 iscsi:
 targetPortal: 10.16.154.81:3260
 portals: ['10.16.154.82:3260', '10.16.154.83:3260']
 iqn: iqn.2014-12.example.server:storage.target00
 lun: 0
 fsType: 'ext4'
 readOnly: false
 chapAuthDiscovery: true
 chapAuthSession: true
 secretRef:
 name: chap-secret

OpenShift Container Platform 3.7 Installation and Configuration

414

1

22.8.2.3. iSCSI Multipathing

For iSCSI-based storage, you can configure multiple paths by using the same IQN for more than one
target portal IP address. Multipathing ensures access to the persistent volume when one or more of the
components in a path fail.

To specify multi-paths in pod specification use the portals field. For example:

Add additional target portals using the portals field.

22.9. PERSISTENT STORAGE USING FIBRE CHANNEL

22.9.1. Overview

You can provision your OpenShift Container Platform cluster with persistent storage using Fibre
Channel. Some familiarity with Kubernetes and Fibre Channel is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

22.9.2. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. All that is required for Fibre Channel persistent storage is the targetWWNs (array of
Fibre Channel target’s World Wide Names), a valid LUN number, filesystem type, and the
PersistentVolume API. Persistent volume and a LUN have one-to-one mapping between them.

NOTE

Fibre Channel does not support the 'Recycle' reclaim policy.

apiVersion: v1
kind: PersistentVolume
metadata:
 name: iscsi_pv
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 iscsi:
 targetPortal: 10.0.0.1:3260

 portals: ['10.0.2.16:3260', '10.0.2.17:3260', '10.0.2.18:3260'] 1
 iqn: iqn.2016-04.test.com:storage.target00
 lun: 0
 fsType: ext4
 readOnly: false

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

415

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-fibrechanel.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-persistent-volumes

1

Persistent Volumes Object Definition

Fibre Channel WWNs are identified as /dev/disk/by-path/pci-<IDENTIFIER>-fc-
0x<WWN>-lun-<LUN#>, but you do not need to provide any part of the path leading up to the WWN,
including the 0x, and anything after, including the - (hyphen).

IMPORTANT

Changing the value of the fstype parameter after the volume has been formatted and
provisioned can result in data loss and pod failure.

22.9.2.1. Enforcing Disk Quotas

Use LUN partitions to enforce disk quotas and size constraints. Each LUN is one persistent volume.
Kubernetes enforces unique names for persistent volumes.

Enforcing quotas in this way allows the end user to request persistent storage by a specific amount (e.g,
10Gi) and be matched with a corresponding volume of equal or greater capacity.

22.9.2.2. Fibre Channel Volume Security

Users request storage with a PersistentVolumeClaim. This claim only lives in the user’s namespace
and can only be referenced by a pod within that same namespace. Any attempt to access a persistent
volume across a namespace causes the pod to fail.

Each Fibre Channel LUN must be accessible by all nodes in the cluster.

22.10. PERSISTENT STORAGE USING AZURE DISK

22.10.1. Overview

OpenShift Container Platform supports Microsoft Azure Disk volumes. You can provision your OpenShift
Container Platform cluster with persistent storage using Azure. Some familiarity with Kubernetes and
Azure is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 fc:

 targetWWNs: ['500a0981891b8dc5', '500a0981991b8dc5'] 1
 lun: 2
 fsType: ext4

OpenShift Container Platform 3.7 Installation and Configuration

416

https://azure.microsoft.com/en-us/services/storage/disks/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

Azure Disk volumes can be provisioned dynamically. Persistent volumes are not bound to a single
project or namespace; they can be shared across the OpenShift Container Platform cluster. Persistent
volume claims, however, are specific to a project or namespace and can be requested by users.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

22.10.2. Prerequisites

Before creating persistent volumes using Azure, ensure your OpenShift Container Platform cluster meets
the following requirements:

OpenShift Container Platform must first be configured for Azure Disk.

Each node host in the infrastructure must match the Azure virtual machine name.

Each node host must be in the same resource group.

22.10.3. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. After ensuring OpenShift Container Platform is configured for Azure Disk, all that is
required for OpenShift Container Platform and Azure is an Azure Disk Name and Disk URI and the
PersistentVolume API.

22.10.4. Configuring Azure Disk for regional cloud

Azure has multiple regions on which to deploy an instance. To specify a desired region, add the following
to the azure.conf file:

cloud: <region>

The region can be any of the following:

German cloud: AZUREGERMANCLOUD

China cloud: AZURECHINACLOUD

Public cloud: AZUREPUBLICCLOUD

US cloud: AZUREUSGOVERNMENTCLOUD

22.10.4.1. Creating the Persistent Volume

NOTE

Azure does not support the Recycle reclaim policy.

You must define your persistent volume in an object definition before creating it in OpenShift Container
Platform:

Example 22.8. Persistent Volume Object Definition Using Azure

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

417

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#persistent-volume-claims

1

2

3

4

5

6

7

8

The name of the volume. This will be how it is identified via persistent volume claims or from
pods.

The amount of storage allocated to this volume.

This defines the volume type being used (azureDisk plug-in, in this example).

The name of the data disk in the blob storage.

The URI the the data disk in the blob storage.

Host caching mode: None, ReadOnly, or ReadWrite.

File system type to mount (for example, ext4, xfs, and so on).

Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in
VolumeMounts.

IMPORTANT

Changing the value of the fsType parameter after the volume is formatted and
provisioned can result in data loss and pod failure.

1. Save your definition to a file, for example azure-pv.yaml, and create the persistent volume:

oc create -f azure-pv.yaml
persistentvolume "pv0001" created

2. Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE
pv0001 <none> 5Gi RWO Available
2s

apiVersion: "v1"
kind: "PersistentVolume"
metadata:

 name: "pv0001" 1
spec:
 capacity:

 storage: "5Gi" 2
 accessModes:
 - "ReadWriteOnce"

 azureDisk: 3

 diskName: test2.vhd 4

 diskURI: https://someacount.blob.core.windows.net/vhds/test2.vhd 5

 cachingMode: ReadWrite 6

 fsType: ext4 7

 readOnly: false 8

OpenShift Container Platform 3.7 Installation and Configuration

418

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

Now you can request storage using persistent volume claims, which can now use your new persistent
volume.

IMPORTANT

For a pod that has a mounted volume through an Azure disk PVC, scheduling the pod to a
new node takes a few minutes. Wait for two to three minutes to complete the Disk Detach
operation, and then start a new deployment. If a new pod creation request is started
before completing the Disk Detach operation, the Disk Attach operation initiated by the
pod creation fails, resulting in pod creation failure.

IMPORTANT

Persistent volume claims only exist in the user’s namespace and can only be referenced
by a pod within that same namespace. Any attempt to access a persistent volume from a
different namespace causes the pod to fail.

22.10.4.2. Volume Format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it
contains a file system as specified by the fsType parameter in the persistent volume definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This allows unformatted Azure volumes to be used as persistent volumes because OpenShift Container
Platform formats them before the first use.

22.11. PERSISTENT STORAGE USING AZURE FILE

22.11.1. Overview

OpenShift Container Platform supports Microsoft Azure File volumes. You can provision your OpenShift
Container Platform cluster with persistent storage using Azure. Some familiarity with Kubernetes and
Azure is assumed.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

22.11.2. Before you begin

1. Install samba-client, samba-common, and cifs-utils on all nodes:

2. Enable SELinux booleans on all nodes:

$ sudo yum install samba-client samba-common cifs-utils

$ /usr/sbin/setsebool -P virt_use_samba on
$ /usr/sbin/setsebool -P virt_sandbox_use_samba on

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

419

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-persistent-volumes
https://azure.microsoft.com/en-us/services/storage/files/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

NOTE

Mount options are not available in OpenShift Container Platform 3.7.43. You cannot use
Azure File in OpenShift Container Platform 3.7.43. To use Azure file, upgrade to
OpenShift Container Platform 3.7.46.

22.11.3. Configuring Azure File for regional cloud

While Azure Disk is compatible with multiple regional clouds, Azure File supports only the Azure public
cloud, because the endpoint is hard-coded.

22.11.4. Creating the PV

NOTE

Azure File does not support the Recycle reclaim policy.

22.11.5. Creating the Azure Storage Account secret

Define the Azure Storage Account name and key in a secret configuration, which is then converted to
base64 for use by OpenShift Container Platform.

1. Obtain an Azure Storage Account name and key and encode to base64:

2. Save the secret definition to a file, for example azure-secret.yaml, then create the secret:

3. Verify that the secret was created:

4. Define the PV in an object definition before creating it in OpenShift Container Platform:

PV object definition using Azure File example

apiVersion: v1
kind: Secret
metadata:
 name: azure-secret
type: Opaque
data:
 azurestorageaccountname: azhzdGVzdA==
 azurestorageaccountkey:
eElGMXpKYm5ub2pGTE1Ta0JwNTBteDAyckhzTUsyc2pVN21GdDRMMTNob0I3ZHJBYUo4
akQ2K0E0NDNqSm9nVjd5MkZVT2hRQ1dQbU02WWFOSHk3cWc9PQ==

$ oc create -f azure-secret.yaml

$ oc get secret azure-secret
NAME TYPE DATA AGE
azure-secret Opaque 1 23d

apiVersion: "v1"
kind: "PersistentVolume"
metadata:

 name: "pv0001" 1

OpenShift Container Platform 3.7 Installation and Configuration

420

1

2

3

4

5

6

The name of the volume. This is how it is identified via PV claims or from pods.

The amount of storage allocated to this volume.

This defines the volume type being used: azureFile plug-in.

The name of the secret used.

The name of the file share.

Defaults to false (read/write). ReadOnly here forces the ReadOnly setting in
VolumeMounts.

5. Save the definition to a file, for example azure-file-pv.yaml, and create the PV:

6. Verify that the PV was created:

Now you can request storage using PV claims, which can now use your new PV.

IMPORTANT

PV claims only exist in the user’s namespace and can only be referenced by a pod within
that same namespace. Any attempt to access a PV from a different namespace causes
the pod to fail.

22.12. PERSISTENT STORAGE USING FLEXVOLUME PLUG-INS

22.12.1. Overview

OpenShift Container Platform has built-in volume plug-ins to use different storage technologies. To
consume storage from a back-end that does not have a built-in plug-in, you can extend OpenShift
Container Platform via FlexVolume drivers and provide persistent storage to applications.

spec:
 capacity:

 storage: "5Gi" 2
 accessModes:
 - "ReadWriteMany"

 azureFile: 3

 secretName: azure-secret 4

 shareName: example 5

 readOnly: false 6

$ oc create -f azure-file-pv.yaml
persistentvolume "pv0001" created

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE
pv0001 <none> 5Gi RWM Available
2s

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

421

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

1

2

3

4

5

6

A FlexVolume driver is an executable file (typically a shell script), deployed to all machines in the cluster
(both masters and nodes) as part of the installation.

22.12.2. Installing FlexVolume Drivers

To install the FlexVolume driver, place the executable file at the volume plug-in path:
/usr/libexec/kubernetes/kubelet-plugins/volume/exec/<vendor>~<driver>/<driver>. For example, to
install the FlexVolume driver for the storage foo, place the executable file at:
/usr/libexec/kubernetes/kubelet-plugins/volume/exec/openshift.com~foo/foo.

IMPORTANT

Ensure that this file exists on all masters and nodes in the cluster.

22.12.3. Consuming Storage using FlexVolume

Use the PersistentVolume object to reference the installed storage. Each PersistentVolume
object in OpenShift Container Platform represents one storage asset, typically a volume, in the storage
back-end.

Persistent Volume Object Definition Using FlexVolume

The name of the volume. This is how it is identified via persistent volume claims or from pods. This
name can be different from the name of the volume on back-end storage.

The amount of storage allocated to this volume.

Name of the driver. This field is mandatory.

Optional file system that is present on the volume.

Optional reference to a secret. Keys and values from this secret are provided to the FlexVolume
driver on invocation.

Optional read-only flag.

apiVersion: v1
kind: PersistentVolume
metadata:

 name: pv0001 1
spec:
 capacity:

 storage: 1Gi 2
 accessModes:
 - ReadWriteOnce
 flexVolume:

 driver: openshift.com/foo 3

 fsType: "ext4" 4

 secretRef: foo-secret 5

 readOnly: true 6

 options: 7
 fooServer: 192.168.0.1:1234
 fooVolumeName: bar

OpenShift Container Platform 3.7 Installation and Configuration

422

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

7

1

2

3

4

Additional options for the FlexVolume driver. This is a free-form dictionary of parameters provided
to the FlexVolume driver. Typically, it includes details like the name of the volume that this
PersistentVolume represents and addresses of the storage server(s).

22.12.4. FlexVolume Drivers

A FlexVolume driver is an executable file that resides in a well-defined directory on all machines in the
cluster, both masters and nodes. OpenShift Container Platform calls it whenever it needs to attach,
detach, mount, or unmount a volume represented by a PersistentVolume with flexVolume as
source.

The first command-line argument of the driver is always an operation name. Other parameters are
specific to each operation. Most of the operations takes a JSON(JavaScript Object Notation) string as a
parameter. This parameter is a complete JSON string, and not the name of a file with the JSON data.

It contains:

All flexVolume.options.

Some options from flexVolume prefixed by kubernetes.io/, such as fsType and
readwrite.

Content of the referenced secret (if specified) prefixed by kubernetes.io/secret/.

Example FlexVolume Driver JSON input

All options from flexVolume.options.

Value of flexVolume.fsType.

ro/rw based on flexVolume.readOnly.

All keys and their values from the secret referenced by flexVolume.secretRef.

OpenShift Container Platform expects JSON data on standard output of the driver. When not specified,
the output describes the result of the operation.

FlexVolume Driver Default Output

{

 "fooServer": "192.168.0.1:1234", 1
 "fooVolumeName": "bar",

 "kubernetes.io/fsType": "ext4", 2

 "kubernetes.io/readwrite": "ro", 3

 "kubernetes.io/secret/<key name>": "<key value>", 4
 "kubernetes.io/secret/<another key name>": "<another key value>",
}

{
 "status": "<Success/Failure/Not supported>",
 "message": "<Reason for success/failure>"
}

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

423

1

Exit code of the driver should be 0 for success and 1 for error.

Operations should be idempotent, which means that the attachment of an already attached volume or the
mounting of an already mounted volume should result in a successful operation.

The FlexVolume driver can work in two modes:

with the master-initated attach/detach operation, or

without the master-initated attach/detach operation.

The attach/detach operation is used by the OpenShift Container Platform master to attach a volume
to a node and to detach it from a node. This is useful when a node becomes unresponsive from any
reason. Then, the master can kill all pods on the node, detach all volumes from it, and attach the
volumes to other nodes to resume the applications while the original node is still not reachable.

IMPORTANT

Not all storage back-end supports master-initiated detachment of a volume from another
machine.

22.12.4.1. FlexVolume Drivers with Master-initiated Attach/Detach

A FlexVolume driver that supports master-controlled attach/detach must implement the following
operations:

init

Initializes the driver. It is called during initialization of masters and nodes.

Arguments: none

Executed on: master, node

Expected output: default JSON

getvolumename

Returns the unique name of the volume. This name must be consistent among all masters and
nodes, because it is used in subsequent detach call as <volume-name>. Any / characters in the
<volume-name> are automatically replaced by ~.

Arguments: <json>

Executed on: master, node

Expected output: default JSON + volumeName:

The unique name of the volume in storage back-end foo.

{
 "status": "Success",
 "message": "",

 "volumeName": "foo-volume-bar" 1
}

OpenShift Container Platform 3.7 Installation and Configuration

424

1

1

attach

Attaches a volume represented by the JSON to a given node. This operation should return the name
of the device on the node if it is known (i.e. it has been assigned by the storage back-end before it
runs). If the device is not known, the device must be found on the node by the subsequent
waitforattach operation.

Arguments: <json> <node-name>

Executed on: master

Expected output: default JSON + device (if known):

Name of the device on the node (if known).

waitforattach

Waits until a volume is fully attached to a node and its device emerges. If the previous attach
operation has returned <device-name>, it is provided as an input parameter. Otherwise, <device-
name> is empty and the operation must find the device on the node.

Arguments: <device-name> <json>

Executed on: node

Expected output: default JSON + device

Name of the device on the node.

detach

Detaches the given volume from a node. <volume-name> is the name of the device returned by the
getvolumename operation. Any / characters in the <volume-name> are automatically replaced by
~.

Arguments: <volume-name> <node-name>

Executed on: master

Expected output: default JSON

isattached

{
 "status": "Success",
 "message": "",

 "device": "/dev/xvda" 1
}

{
 "status": "Success",
 "message": "",

 "device": "/dev/xvda" 1
}

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

425

1

Checks that a volume is attached to a node.

Arguments: <json> <node-name>

Executed on: master

Expected output: default JSON + attached

Status of attachment of the volume to the node.

mountdevice

Mounts a volume’s device to a directory. <device-name> is name of the device as returned by the
previous waitforattach operation.

Arguments: <mount-dir> <device-name> <json>

Executed on: node

Expected output: default JSON

unmountdevice

Unmounts a volume’s device from a directory.

Arguments: <mount-dir>

Executed on: node

All other operations should return JSON with {"status": "Not supported"} and exit code 1.

NOTE

Master-initiated attach/detach operations are enabled by default in OpenShift Container
Platform 3.6. They may work in older versions, but must be explicitly enabled. See
Enabling Controller-managed Attachment and Detachment. When not enabled, the
attach/detach operations are initiated by a node where the volume should be attached to
or detached from. Syntax and all parameters of FlexVolume driver invocations are the
same in both cases.

22.12.4.2. FlexVolume Drivers Without Master-initiated Attach/Detach

FlexVolume drivers that do not support master-controlled attach/detach are executed only on the node
and must implement these operations:

init

Initializes the driver. It is called during initialization of all nodes.

Arguments: none

{
 "status": "Success",
 "message": "",

 "attached": true 1
}

OpenShift Container Platform 3.7 Installation and Configuration

426

Arguments: none

Executed on: node

Expected output: default JSON

mount

Mounts a volume to directory. This can include anything that is necessary to mount the volume,
including attaching the volume to the node, finding the its device, and then mounting the device.

Arguments: <mount-dir> <json>

Executed on: node

Expected output: default JSON

unmount

Unmounts a volume from a directory. This can include anything that is necessary to clean up the
volume after unmounting, such as detaching the volume from the node.

Arguments: <mount-dir>

Executed on: node

Expected output: default JSON

All other operations should return JSON with {"status": "Not supported"} and exit code 1.

22.13. USING VMWARE VSPHERE VOLUMES FOR PERSISTENT
STORAGE

22.13.1. Overview

OpenShift Container Platform supports VMware vSphere’s Virtual Machine Disk (VMDK) volumes. You
can provision your OpenShift Container Platform cluster with persistent storage using VMware vSphere.
Some familiarity with Kubernetes and VMware vSphere is assumed.

The OpenShift Container Platform persistent volume (PV) framework allows administrators to provision a
cluster with persistent storage and gives users a way to request those resources without having any
knowledge of the underlying infrastructure. vSphere VMDK volumes can be provisioned dynamically.

PVs are not bound to a single project or namespace; they can be shared across the OpenShift Container
Platform cluster. PV claims, however, are specific to a project or namespace and can be requested by
users.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

Prerequisites
Before creating PVs using vSphere, ensure your OpenShift Container Platform cluster meets the
following requirements:

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

427

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage
https://www.vmware.com/au/products/vsphere.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#persistent-volume-claims

1

2

OpenShift Container Platform must first be configured for vSphere.

Each node host in the infrastructure must match the vSphere VM name.

Each node host must be in the same resource group.

IMPORTANT

Create VMDK using one of the following methods before using them.

Create using vmkfstools:
Access ESX through Secure Shell (SSH) and then use following command to
create a VMDK volume:

Create using vmware-vdiskmanager:

22.13.2. Provisioning VMware vSphere volumes

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. After ensuring OpenShift Container Platform is configured for vSphere, all that is
required for OpenShift Container Platform and vSphere is a VM folder path, file system type, and the
PersistentVolume API.

22.13.2.1. Creating persistent volumes

You must define your PV in an object definition before creating it in OpenShift Container Platform:

PV object definition using VMware vSphere example

The name of the volume. This must be how it is identified by PV claims or from pods.

The amount of storage allocated to this volume.

vmkfstools -c 2G
/vmfs/volumes/DatastoreName/volumes/myDisk.vmdk

shell vmware-vdiskmanager -c -t 0 -s 40GB -a lsilogic
myDisk.vmdk

apiVersion: v1
kind: PersistentVolume
metadata:

 name: pv0001 1
spec:
 capacity:

 storage: 2Gi 2
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Retain

 vsphereVolume: 3

 volumePath: "[datastore1] volumes/myDisk" 4

 fsType: ext4 5

OpenShift Container Platform 3.7 Installation and Configuration

428

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

3

4

5

This defines the volume type being used (vsphereVolume plug-in, in this example). The
vsphereVolume label is used to mount a vSphere VMDK volume into pods. The contents of a
volume are preserved when it is unmounted. The volume type supports VMFS and VSAN
datastore.

This VMDK volume must exist.

The file system type to mount (for example, ext4, xfs, and other file-systems).

IMPORTANT

Changing the value of the fsType parameter after the volume is formatted and
provisioned can result in data loss and pod failure.

1. Save your definition to a file, for example vsphere-pv.yaml, and create the PV:

2. Verify that the PV was created:

Now you can request storage using PV claims, which can now use your PV.

IMPORTANT

PV claims only exist in the user’s namespace and can only be referenced by a pod within
that same namespace. Any attempt to access a PV from a different namespace causes
the pod to fail.

22.13.2.2. Formatting VMware vSphere volumes

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that the
volume contains a file system as specified by the fsType parameter in the PV definition. If the device is
not formatted with the file system, all data from the device is erased and the device is automatically
formatted with the given file system.

This allows unformatted vSphere volumes to be used as PVs, because OpenShift Container Platform
formats them before the first use.

22.14. PERSISTENT STORAGE USING LOCAL VOLUME

22.14.1. Overview

OpenShift Container Platform clusters can be provisioned with persistent storage by using local
volumes. Local persistent volume allows you to access local storage devices such as a disk, partition or
directory by using the standard PVC interface.

$ oc create -f vsphere-pv.yaml
 persistentvolume "pv0001" created

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON
AGE
pv0001 <none> 2Gi RWO Available
2s

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

429

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

1

2

Local volumes can be used without manually scheduling pods to nodes, because the system is aware of
the volume’s node constraints. However, local volumes are still subject to the availability of the
underlying node and are not suitable for all applications.

NOTE

Local volumes is an alpha feature and may change in a future release of OpenShift
Container Platform. See Feature Status(Local Volume) section for details on known
issues and workarounds.

WARNING

Local volumes can only be used as a statically created Persistent Volume.

22.14.2. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. Ensure that OpenShift Container Platform is configured for Local Volumes, before
using the PersistentVolume API.

22.14.3. Creating Local Persistent Volume Claim

Define the persistent volume claim in an object definition.

The required size of storage volume.

The name of storage class, which is used for local PVs.

22.14.4. Feature Status

What Works:

Creating a PV by specifying a directory with node affinity.

A Pod using the PVC that is bound to the previously mentioned PV always get scheduled to that
node.



kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: example-local-claim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:

 storage: 5Gi 1

 storageClassName: local-storage 2

OpenShift Container Platform 3.7 Installation and Configuration

430

External static provisioner daemonset that discovers local directories, creates, cleans up and
deletes PVs.

What does not work:

Multiple local PVCs in a single pod.

PVC binding does not consider pod scheduling requirements and may make sub-optimal or
incorrect decisions.

Workarounds:

Run those pods first, which requires local volume.

Give the pods high priority.

Run a workaround controller that unbinds PVCs for pods that are stuck pending.

If mounts are added after the external provisioner is started, then external provisioner cannot
detect the correct capcity of mounts.

Workarounds:

Before adding any new mount points, first stop the daemonset, add the new mount
points, and then start the daemonset.

fsgroup conflict occurs if multiple pods using the same PVC specify different fsgroup 's.

22.15. DYNAMIC PROVISIONING AND CREATING STORAGE CLASSES

22.15.1. Overview

The StorageClass resource object describes and classifies storage that can be requested, as well as
provides a means for passing parameters for dynamically provisioned storage on demand.
StorageClass objects can also serve as a management mechanism for controlling different levels of
storage and access to the storage. Cluster Administrators (cluster-admin) or Storage Administrators
(storage-admin) define and create the StorageClass objects that users can request without needing
any intimate knowledge about the underlying storage volume sources.

The OpenShift Container Platform persistent volume framework enables this functionality and allows
administrators to provision a cluster with persistent storage. The framework also gives users a way to
request those resources without having any knowledge of the underlying infrastructure.

Many storage types are available for use as persistent volumes in OpenShift Container Platform. While
all of them can be statically provisioned by an administrator, some types of storage are created
dynamically using the built-in provider and plug-in APIs.

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

431

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

NOTE

To enable dynamic provisioning, add the
openshift_master_dynamic_provisioning_enabled variable to the
[OSEv3:vars] section of the Ansible inventory file and set its value to True.

[OSEv3:vars]

openshift_master_dynamic_provisioning_enabled=True

22.15.2. Available dynamically provisioned plug-ins

OpenShift Container Platform provides the following provisioner plug-ins, which have generic
implementations for dynamic provisioning that use the cluster’s configured provider’s API to create new
storage resources:

Storage Type Provisioner Plug-in
Name

Required Configuration Notes

OpenStack Cinder kubernetes.io/ci
nder

Configuring for
OpenStack

AWS Elastic Block Store
(EBS)

kubernetes.io/aw
s-ebs

Configuring for AWS For dynamic
provisioning when using
multiple clusters in
different zones, tag each
node with
Key=kubernetes.i
o/cluster/xxxx,V
alue=clusterid
where xxxx and
clusterid are unique
per cluster. In versions
prior to 3.6, this was
Key=KubernetesCl
uster,Value=clus
terid.

GCE Persistent Disk
(gcePD)

kubernetes.io/gc
e-pd

Configuring for GCE In multi-zone
configurations, it is
advisable to run one
Openshift cluster per
GCE project to avoid
PVs from getting created
in zones where no node
from current cluster
exists.

GlusterFS kubernetes.io/gl
usterfs

Container Native
Storage with GlusterFS

Container Native
Storage (CNS) utilizes
Heketi to manage
Gluster Storage.

OpenShift Container Platform 3.7 Installation and Configuration

432

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/
https://github.com/heketi/heketi

Ceph RBD kubernetes.io/rb
d

Configuring Ceph RBD

Trident from NetApp netapp.io/triden
t

Configuring for Trident Storage orchestrator for
NetApp ONTAP,
SolidFire, and E-Series
storage.

VMWare vSphere kubernetes.io/vs
phere-volume

Getting Started with
vSphere and Kubernetes

Azure Disk kubernetes.io/az
ure-disk

Configuring for Azure

Storage Type Provisioner Plug-in
Name

Required Configuration Notes

IMPORTANT

Any chosen provisioner plug-in also requires configuration for the relevant cloud, host, or
third-party provider as per the relevant documentation.

22.15.3. Defining a StorageClass

StorageClass objects are currently a globally scoped object and need to be created by cluster-admin
or storage-admin users.

NOTE

For GCE and AWS, a default StorageClass is created during OpenShift Container
Platform installation. You can change the default StorageClass or delete it.

There are currently six plug-ins that are supported. The following sections describe the basic object
definition for a StorageClass and specific examples for each of the supported plug-in types.

22.15.3.1. Basic StorageClass object definition

StorageClass Basic object definition

kind: StorageClass 1

apiVersion: storage.k8s.io/v1 2
metadata:

 name: foo 3

 annotations: 4
 ...

provisioner: kubernetes.io/plug-in-type 5

parameters: 6
 param1: value
 ...
 paramN: value

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

433

https://github.com/NetApp/trident
https://www.vmware.com/support/vsphere.html
http://kubernetes.io/docs/getting-started-guides/vsphere/

1

2

3

4

5

6

1

2

3

(required) The API object type.

(required) The current apiVersion.

(required) The name of the StorageClass.

(optional) Annotations for the StorageClass

(required) The type of provisioner associated with this storage class.

(optional) The parameters required for the specific provisioner, this will change from plug-in to plug-
in.

22.15.3.2. StorageClass annotations

To set a StorageClass as the cluster-wide default:

 storageclass.kubernetes.io/is-default-class: "true"

This enables any Persistent Volume Claim (PVC) that does not specify a specific volume to automatically
be provisioned through the default StorageClass

NOTE

Beta annotation storageclass.beta.kubernetes.io/is-default-class is still
working. However it will be removed in a future release.

To set a StorageClass description:

 kubernetes.io/description: My StorageClass Description

22.15.3.3. OpenStack Cinder object definition

cinder-storageclass.yaml

Volume type created in Cinder. Default is empty.

Availability Zone. If not specified, volumes are generally round-robined across all active zones
where the OpenShift Container Platform cluster has a node.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: gold
provisioner: kubernetes.io/cinder
parameters:

 type: fast 1

 availability: nova 2

 fsType: ext4 3

OpenShift Container Platform 3.7 Installation and Configuration

434

1

2

3

4

5

6

File system that is created on dynamically provisioned volumes. This value is copied to the fsType
field of dynamically provisioned persistent volumes and the file system is created when the volume

22.15.3.4. AWS ElasticBlockStore (EBS) object definition

aws-ebs-storageclass.yaml

Select from io1, gp2, sc1, st1. The default is gp2. See AWS documentation for valid Amazon
Resource Name (ARN) values.

AWS zone. If no zone is specified, volumes are generally round-robined across all active zones
where the OpenShift Container Platform cluster has a node. Zone and zones parameters must not
be used at the same time.

Only for io1 volumes. I/O operations per second per GiB. The AWS volume plug-in multiplies this
with the size of the requested volume to compute IOPS of the volume. The value cap is 20,000
IOPS, which is the maximum supported by AWS. See AWS documentation for further details.

Denotes whether to encrypt the EBS volume. Valid values are true or false.

Optional. The full ARN of the key to use when encrypting the volume. If none is supplied, but
encypted is set to true, then AWS generates a key. See AWS documentation for a valid ARN
value.

File system that is created on dynamically provisioned volumes. This value is copied to the fsType
field of dynamically provisioned persistent volumes and the file system is created when the volume
is mounted for the first time. The default value is ext4.

22.15.3.5. GCE PersistentDisk (gcePD) object definition

gce-pd-storageclass.yaml

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: slow
provisioner: kubernetes.io/aws-ebs
parameters:

 type: io1 1

 zone: us-east-1d 2

 iopsPerGB: "10" 3

 encrypted: "true" 4

 kmsKeyId: keyvalue 5

 fsType: ext4 6

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: slow
provisioner: kubernetes.io/gce-pd
parameters:

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

435

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

1

2

3

4

1

2

3

4

Select either pd-standard or pd-ssd. The default is pd-ssd.

GCE zone. If no zone is specified, volumes are generally round-robined across all active zones
where the OpenShift Container Platform cluster has a node. Zone and zones parameters must not
be used at the same time.

A comma-separated list of GCE zone(s). If no zone is specified, volumes are generally round-
robined across all active zones where the OpenShift Container Platform cluster has a node. Zone
and zones parameters must not be used at the same time.

File system that is created on dynamically provisioned volumes. This value is copied to the fsType
field of dynamically provisioned persistent volumes and the file system is created when the volume
is mounted for the first time. The default value is ext4.

22.15.3.6. GlusterFS object definition

glusterfs-storageclass.yaml

Gluster REST service/Heketi service URL that provisions Gluster volumes on demand. The general
format should be {http/https}://{IPaddress}:{Port}. This is a mandatory parameter for
the GlusterFS dynamic provisioner. If the Heketi service is exposed as a routable service in the
OpenShift Container Platform, it will have a resolvable fully qualified domain name and Heketi
service URL. For additional information and configuration, See Container-Native Storage for
OpenShift Container Platform.

Gluster REST service/Heketi user who has access to create volumes in the Gluster Trusted Pool.

Identification of a Secret instance that contains a user password to use when talking to the Gluster
REST service. Optional; an empty password will be used when both secretNamespace and
secretName are omitted. The provided secret must be of type "kubernetes.io/glusterfs".

The namespace of mentioned secretName. Optional; an empty password will be used when both
secretNamespace and secretName are omitted. The provided secret must be of type
"kubernetes.io/glusterfs".

 type: pd-standard 1

 zone: us-central1-a 2

 zones: us-central1-a, us-central1-b, us-east1-b 3

 fsType: ext4 4

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: slow
provisioner: kubernetes.io/glusterfs
parameters:

 resturl: "http://127.0.0.1:8081" 1

 restuser: "admin" 2

 secretName: "heketi-secret" 3

 secretNamespace: "default" 4

 gidMin: "40000" 5

 gidMax: "50000" 6

OpenShift Container Platform 3.7 Installation and Configuration

436

https://access.redhat.com/documentation/en/red-hat-gluster-storage/3.3/single/container-native-storage-for-openshift-container-platform/

5

6

1

2

3

Optional. The minimum value of GID range for the storage class.

Optional. The maximum value of GID range for the storage class.

When the gidMin and gidMax values are not specified, the volume is provisioned with a value between
2000 and 2147483647, which are defaults for gidMin and gidMax respectively. If specified, a unique
value (GID) in this range (gidMin-gidMax) is used for dynamically provisioned volumes. The GID of
the provisioned volume will be set to this value. It is required to run Heketi version 3 or later to make use
of this feature. This GID is released from the pool when the subjected volume is deleted. The GID pool is
per storage class, if 2 or more storage classes have GID ranges that overlap there will be duplicate GIDs
dispatched by the provisioner.

When the persistent volumes are dynamically provisioned, the Gluster plug-in automatically creates an
endpoint and a headless service of the name gluster-dynamic-<claimname>. When the persistent
volume claim is deleted, this dynamic endpoint and service is deleted automatically.

Example of a Secret

22.15.3.7. Ceph RBD object definition

ceph-storageclass.yaml

Ceph monitors, comma-delimited. It is required.

Ceph client ID that is capable of creating images in the pool. Default is "admin".

Secret Name for adminId. It is required. The provided secret must have type "kubernetes.io/rbd".

apiVersion: v1
kind: Secret
metadata:
 name: heketi-secret
 namespace: default
data:
 # base64 encoded password. E.g.: echo -n "mypassword" | base64
 key: bXlwYXNzd29yZA==
type: kubernetes.io/glusterfs

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: fast
provisioner: kubernetes.io/rbd
parameters:

 monitors: 10.16.153.105:6789 1

 adminId: admin 2

 adminSecretName: ceph-secret 3

 adminSecretNamespace: kube-system 4

 pool: kube 5

 userId: kube 6

 userSecretName: ceph-secret-user 7

 fsType: ext4 8

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

437

4

5

6

7

8

1

2

1

2

The namespace for adminSecret. Default is "default".

Ceph RBD pool. Default is "rbd".

Ceph client ID that is used to map the Ceph RBD image. Default is the same as adminId.

The name of Ceph Secret for userId to map Ceph RBD image. It must exist in the same
namespace as PVCs. It is required.

File system that is created on dynamically provisioned volumes. This value is copied to the fsType
field of dynamically provisioned persistent volumes and the file system is created when the volume
is mounted for the first time. The default value is ext4.

22.15.3.8. Trident object definition

trident.yaml

Trident uses the parameters as selection criteria for the different pools of storage that are registered with
it. Trident itself is configured separately.

For more information about installing Trident with OpenShift Container Platform, see the Trident
documentation.

For more information about supported parameters, see the storage attributes section of the Trident
documentation.

22.15.3.9. VMware vSphere object definition

vsphere-storageclass.yaml

For more information about using VMWare vSphere with OpenShift Container Platform, see the
VMWare vSphere documentation.

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: gold

provisioner: netapp.io/trident 1

parameters: 2
 media: "ssd"
 provisioningType: "thin"
 snapshots: "true"

kind: StorageClass
apiVersion: storage.k8s.io/v1beta1
metadata:
 name: slow

provisioner: kubernetes.io/vsphere-volume 1
parameters:

 diskformat: thin 2

OpenShift Container Platform 3.7 Installation and Configuration

438

https://github.com/NetApp/trident
https://github.com/NetApp/trident#storage-attributes
https://vmware.github.io/vsphere-storage-for-kubernetes/documentation/index.html

1

2

3

diskformat: thin, zeroedthick and eagerzeroedthick. See vSphere docs for details.
Default: thin

22.15.3.10. Azure Disk object definition

azure-advanced-disk-storageclass.yaml

Azure storage account name. This must reside in the same resource group as the cluster. If a
storage account is specified, the location is ignored. If a storage account is not specified, a new
storage account gets created in the same resource group as the cluster. If you are specifying a
storageAccount, the value for kind must be Dedicated.

Azure storage account SKU tier. Default is empty. Note: Premium VM can attach both
Standard_LRS and Premium_LRS disks, Standard VM can only attach Standard_LRS disks,
Managed VM can only attach managed disks, and unmanaged VM can only attach unmanaged
disks.

Possible values are Shared (default), Dedicated, and Managed.

a. If kind is set to Shared, Azure creates all unmanaged disks in a few shared storage
accounts in the same resource group as the cluster.

b. If kind is set to Managed, Azure creates new managed disks.

c. If kind is set to Dedicated and a storageAccount is specified, Azure uses the
specified storage account for the new unmanaged disk in the same resource group as the
cluster. For this to work:

The specified storage account must be in the same region.

Azure Cloud Provider must have a write access to the storage account.

d. If kind is set to Dedicated and a storageAccount is not specified, Azure creates a new
dedicated storage account for the new unmanaged disk in the same resource group as the
cluster.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: slow
provisioner: kubernetes.io/azure-disk
parameters:

 storageAccount: azure_storage_account_name 1

 storageaccounttype: Standard_LRS 2

 kind: Dedicated 3

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

439

1

IMPORTANT

Azure StorageClass is revised in OpenShift Container Platform version 3.7. If you
upgraded from a previous version, either:

specify the property kind: dedicated to continue using the Azure
StorageClass created before the upgrade. Or,

add the location parameter (for example, "location": "southcentralus",)
in the azure.conf file to use the default property kind: shared. Doing this
creates new storage accounts for future use.

22.15.4. Changing the default StorageClass

If you are using GCE and AWS, use the following process to change the default StorageClass:

1. List the StorageClass:

(default) denotes the default StorageClass.

2. Change the value of the annotation storageclass.kubernetes.io/is-default-class to
false for the default StorageClass:

3. Make another StorageClass the default by adding or modifying the annotation as
storageclass.kubernetes.io/is-default-class=true.

4. Verify the changes:

22.15.5. Additional information and examples

Examples and uses of StorageClasses for Dynamic Provisioning

Examples and uses of StorageClasses without Dynamic Provisioning

$ oc get storageclass

NAME TYPE

gp2 (default) kubernetes.io/aws-ebs 1
standard kubernetes.io/gce-pd

$ oc patch storageclass gp2 -p '{"metadata": {"annotations": \
 {"storageclass.kubernetes.io/is-default-class": "false"}}}'

$ oc patch storageclass standard -p '{"metadata": {"annotations": \
 {"storageclass.kubernetes.io/is-default-class": "true"}}}'

$ oc get storageclass

NAME TYPE
gp2 kubernetes.io/aws-ebs
standard (default) kubernetes.io/gce-pd

OpenShift Container Platform 3.7 Installation and Configuration

440

22.16. VOLUME SECURITY

22.16.1. Overview

This topic provides a general guide on pod security as it relates to volume security. For information on
pod-level security in general, see Managing Security Context Constraints (SCC) and the Security
Context Constraint concept topic. For information on the OpenShift Container Platform persistent volume
(PV) framework in general, see the Persistent Storage concept topic.

Accessing persistent storage requires coordination between the cluster and/or storage administrator and
the end developer. The cluster administrator creates PVs, which abstract the underlying physical
storage. The developer creates pods and, optionally, PVCs, which bind to PVs, based on matching
criteria, such as capacity.

Multiple persistent volume claims (PVCs) within the same project can bind to the same PV. However,
once a PVC binds to a PV, that PV cannot be bound by a claim outside of the first claim’s project. If the
underlying storage needs to be accessed by multiple projects, then each project needs its own PV,
which can point to the same physical storage. In this sense, a bound PV is tied to a project. For a
detailed PV and PVC example, see the guide for WordPress and MySQL using NFS.

For the cluster administrator, granting pods access to PVs involves:

knowing the group ID and/or user ID assigned to the actual storage,

understanding SELinux considerations, and

ensuring that these IDs are allowed in the range of legal IDs defined for the project and/or the
SCC that matches the requirements of the pod.

Group IDs, the user ID, and SELinux values are defined in the SecurityContext section in a pod
definition. Group IDs are global to the pod and apply to all containers defined in the pod. User IDs can
also be global, or specific to each container. Four sections control access to volumes:

supplementalGroups

fsGroup

runAsUser

seLinuxOptions

22.16.2. SCCs, Defaults, and Allowed Ranges

SCCs influence whether or not a pod is given a default user ID, fsGroup ID, supplemental group ID, and
SELinux label. They also influence whether or not IDs supplied in the pod definition (or in the image) will
be validated against a range of allowable IDs. If validation is required and fails, then the pod will also fail.

SCCs define strategies, such as runAsUser, supplementalGroups, and fsGroup. These strategies
help decide whether the pod is authorized. Strategy values set to RunAsAny are essentially stating that
the pod can do what it wants regarding that strategy. Authorization is skipped for that strategy and no
OpenShift Container Platform default is produced based on that strategy. Therefore, IDs and SELinux
labels in the resulting container are based on container defaults instead of OpenShift Container Platform
policies.

For a quick summary of RunAsAny:

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

441

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-manage-scc
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#security-context-constraints
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage
https://github.com/openshift/origin/tree/master/examples/wordpress

1

2

3

Any ID defined in the pod definition (or image) is allowed.

Absence of an ID in the pod definition (and in the image) results in the container assigning an ID,
which is root (0) for Docker.

No SELinux labels are defined, so Docker will assign a unique label.

For these reasons, SCCs with RunAsAny for ID-related strategies should be protected so that ordinary
developers do not have access to the SCC. On the other hand, SCC strategies set to MustRunAs or
MustRunAsRange trigger ID validation (for ID-related strategies), and cause default values to be
supplied by OpenShift Container Platform to the container when those values are not supplied directly in
the pod definition or image.

CAUTION

Allowing access to SCCs with a RunAsAny FSGroup strategy can also prevent users from accessing
their block devices. Pods need to specify an fsGroup in order to take over their block devices. Normally,
this is done when the SCC FSGroup strategy is set to MustRunAs. If a user’s pod is assigned an SCC
with a RunAsAny FSGroup strategy, then the user may face permission denied errors until they
discover that they need to specify an fsGroup themselves.

SCCs may define the range of allowed IDs (user or groups). If range checking is required (for example,
using MustRunAs) and the allowable range is not defined in the SCC, then the project determines the ID
range. Therefore, projects support ranges of allowable ID. However, unlike SCCs, projects do not define
strategies, such as runAsUser.

Allowable ranges are helpful not only because they define the boundaries for container IDs, but also
because the minimum value in the range becomes the default value for the ID in question. For example,
if the SCC ID strategy value is MustRunAs, the minimum value of an ID range is 100, and the ID is
absent from the pod definition, then 100 is provided as the default for this ID.

As part of pod admission, the SCCs available to a pod are examined (roughly, in priority order followed
by most restrictive) to best match the requests of the pod. Setting a SCC’s strategy type to RunAsAny is
less restrictive, whereas a type of MustRunAs is more restrictive. All of these strategies are evaluated.
To see which SCC was assigned to a pod, use the oc get pod command:

oc get pod <pod_name> -o yaml
...
metadata:
 annotations:

 openshift.io/scc: nfs-scc 1

 name: nfs-pod1 2

 namespace: default 3
...

Name of the SCC that the pod used (in this case, a custom SCC).

Name of the pod.

Name of the project. "Namespace" is interchangeable with "project" in OpenShift Container
Platform. See Projects and Users for details.

It may not be immediately obvious which SCC was matched by a pod, so the command above can be
very useful in understanding the UID, supplemental groups, and SELinux relabeling in a live container.

OpenShift Container Platform 3.7 Installation and Configuration

442

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#namespaces

Any SCC with a strategy set to RunAsAny allows specific values for that strategy to be defined in the
pod definition (and/or image). When this applies to the user ID (runAsUser) it is prudent to restrict
access to the SCC to prevent a container from being able to run as root.

Because pods often match the restricted SCC, it is worth knowing the security this entails. The
restricted SCC has the following characteristics:

User IDs are constrained due to the runAsUser strategy being set to MustRunAsRange. This
forces user ID validation.

Because a range of allowable user IDs is not defined in the SCC (see oc export scc
restricted for more details), the project’s openshift.io/sa.scc.uid-range range will
be used for range checking and for a default ID, if needed.

A default user ID is produced when a user ID is not specified in the pod definition and the
matching SCC’s runAsUser is set to MustRunAsRange.

An SELinux label is required (seLinuxContext set to MustRunAs), which uses the project’s
default MCS label.

fsGroup IDs are constrained to a single value due to the FSGroup strategy being set to
MustRunAs, which dictates that the value to use is the minimum value of the first range
specified.

Because a range of allowable fsGroup IDs is not defined in the SCC, the minimum value of the
project’s openshift.io/sa.scc.supplemental-groups range (or the same range used
for user IDs) will be used for validation and for a default ID, if needed.

A default fsGroup ID is produced when a fsGroup ID is not specified in the pod and the
matching SCC’s FSGroup is set to MustRunAs.

Arbitrary supplemental group IDs are allowed because no range checking is required. This is a
result of the supplementalGroups strategy being set to RunAsAny.

Default supplemental groups are not produced for the running pod due to RunAsAny for the two
group strategies above. Therefore, if no groups are defined in the pod definition (or in the
image), the container(s) will have no supplemental groups predefined.

The following shows the default project and a custom SCC (my-custom-scc), which summarizes the
interactions of the SCC and the project:

$ oc get project default -o yaml 1
...
metadata:

 annotations: 2

 openshift.io/sa.scc.mcs: s0:c1,c0 3

 openshift.io/sa.scc.supplemental-groups: 1000000000/10000 4

 openshift.io/sa.scc.uid-range: 1000000000/10000 5

$ oc get scc my-custom-scc -o yaml
...
fsGroup:

 type: MustRunAs 6
 ranges:
 - min: 5000

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

443

1

2

3

4

5

6 10

7

8

9

 max: 6000
runAsUser:

 type: MustRunAsRange 7
 uidRangeMin: 1000100000
 uidRangeMax: 1000100999

seLinuxContext: 8
 type: MustRunAs

 SELinuxOptions: 9
 user: <selinux-user-name>
 role: ...
 type: ...
 level: ...
supplementalGroups:

 type: MustRunAs 10
 ranges:
 - min: 5000
 max: 6000

default is the name of the project.

Default values are only produced when the corresponding SCC strategy is not RunAsAny.

SELinux default when not defined in the pod definition or in the SCC.

Range of allowable group IDs. ID validation only occurs when the SCC strategy is RunAsAny.
There can be more than one range specified, separated by commas. See below for supported
formats.

Same as <4> but for user IDs. Also, only a single range of user IDs is supported.

MustRunAs enforces group ID range checking and provides the container’s groups default. Based
on this SCC definition, the default is 5000 (the minimum ID value). If the range was omitted from
the SCC, then the default would be 1000000000 (derived from the project). The other supported
type, RunAsAny, does not perform range checking, thus allowing any group ID, and produces no
default groups.

MustRunAsRange enforces user ID range checking and provides a UID default. Based on this
SCC, the default UID is 1000100000 (the minimum value). If the minimum and maximum range
were omitted from the SCC, the default user ID would be 1000000000 (derived from the project).
MustRunAsNonRoot and RunAsAny are the other supported types. The range of allowed IDs can
be defined to include any user IDs required for the target storage.

When set to MustRunAs, the container is created with the SCC’s SELinux options, or the MCS
default defined in the project. A type of RunAsAny indicates that SELinux context is not required,
and, if not defined in the pod, is not set in the container.

The SELinux user name, role name, type, and labels can be defined here.

Two formats are supported for allowed ranges:

1. M/N, where M is the starting ID and N is the count, so the range becomes M through (and
including) M+N-1.

OpenShift Container Platform 3.7 Installation and Configuration

444

2. M-N, where M is again the starting ID and N is the ending ID. The default group ID is the starting
ID in the first range, which is 1000000000 in this project. If the SCC did not define a minimum
group ID, then the project’s default ID is applied.

22.16.3. Supplemental Groups

NOTE

Read SCCs, Defaults, and Allowed Ranges before working with supplemental groups.

TIP

It is generally preferable to use group IDs (supplemental or fsGroup) to gain access to persistent storage
versus using user IDs.

Supplemental groups are regular Linux groups. When a process runs in Linux, it has a UID, a GID, and
one or more supplemental groups. These attributes can be set for a container’s main process. The
supplementalGroups IDs are typically used for controlling access to shared storage, such as NFS
and GlusterFS, whereas fsGroup is used for controlling access to block storage, such as Ceph RBD and
iSCSI.

The OpenShift Container Platform shared storage plug-ins mount volumes such that the POSIX
permissions on the mount match the permissions on the target storage. For example, if the target
storage’s owner ID is 1234 and its group ID is 5678, then the mount on the host node and in the
container will have those same IDs. Therefore, the container’s main process must match one or both of
those IDs in order to access the volume.

For example, consider the following NFS export.

On an OpenShift Container Platform node:

NOTE

showmount requires access to the ports used by rpcbind and rpc.mount on the NFS
server

showmount -e <nfs-server-ip-or-hostname>
Export list for f21-nfs.vm:
/opt/nfs *

On the NFS server:

cat /etc/exports
/opt/nfs *(rw,sync,root_squash)
...

ls -lZ /opt/nfs -d
drwx------. 1000100001 5555 unconfined_u:object_r:usr_t:s0 /opt/nfs

The /opt/nfs/ export is accessible by UID 1000100001 and the group 5555. In general, containers should
not run as root. So, in this NFS example, containers which are not run as UID 1000100001 and are not
members the group 5555 will not have access to the NFS export.

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

445

1

2

3

4

5

6

Often, the SCC matching the pod does not allow a specific user ID to be specified, thus using
supplemental groups is a more flexible way to grant storage access to a pod. For example, to grant NFS
access to the export above, the group 5555 can be defined in the pod definition:

Name of the volume mount. Must match the name in the volumes section.

NFS export path as seen in the container.

Pod global security context. Applies to all containers inside the pod. Each container can also define
its securityContext, however group IDs are global to the pod and cannot be defined for
individual containers.

Supplemental groups, which is an array of IDs, is set to 5555. This grants group access to the
export.

Name of the volume. Must match the name in the volumeMounts section.

Actual NFS export path on the NFS server.

All containers in the above pod (assuming the matching SCC or project allows the group 5555) will be
members of the group 5555 and have access to the volume, regardless of the container’s user ID.
However, the assumption above is critical. Sometimes, the SCC does not define a range of allowable
group IDs but instead requires group ID validation (a result of supplementalGroups set to
MustRunAs). Note that this is not the case for the restricted SCC. The project will not likely allow a
group ID of 5555, unless the project has been customized to access this NFS export. So, in this
scenario, the above pod will fail because its group ID of 5555 is not within the SCC’s or the project’s
range of allowed group IDs.

Supplemental Groups and Custom SCCs

To remedy the situation in the previous example, a custom SCC can be created such that:

a minimum and max group ID are defined,

ID range checking is enforced, and

the group ID of 5555 is allowed.

apiVersion: v1
kind: Pod
...
spec:
 containers:
 - name: ...
 volumeMounts:

 - name: nfs 1

 mountPath: /usr/share/... 2

 securityContext: 3

 supplementalGroups: [5555] 4
 volumes:

 - name: nfs 5
 nfs:
 server: <nfs_server_ip_or_host>

 path: /opt/nfs 6

OpenShift Container Platform 3.7 Installation and Configuration

446

1

2

3

4

5

It is often better to create a new SCC rather than modifying a predefined SCC, or changing the range of
allowed IDs in the predefined projects.

The easiest way to create a new SCC is to export an existing SCC and customize the YAML file to meet
the requirements of the new SCC. For example:

1. Use the restricted SCC as a template for the new SCC:

$ oc export scc restricted > new-scc.yaml

2. Edit the new-scc.yaml file to your desired specifications.

3. Create the new SCC:

$ oc create -f new-scc.yaml

NOTE

The oc edit scc command can be used to modify an instantiated SCC.

Here is a fragment of a new SCC named nfs-scc:

$ oc export scc nfs-scc

allowHostDirVolumePlugin: false 1
...
kind: SecurityContextConstraints
metadata:
 ...

 name: nfs-scc 2

priority: 9 3
...
supplementalGroups:

 type: MustRunAs 4
 ranges:

 - min: 5000 5
 max: 6000
...

The allow booleans are the same as for the restricted SCC.

Name of the new SCC.

Numerically larger numbers have greater priority. Nil or omitted is the lowest priority. Higher priority
SCCs sort before lower priority SCCs and thus have a better chance of matching a new pod.

supplementalGroups is a strategy and it is set to MustRunAs, which means group ID checking
is required.

Multiple ranges are supported. The allowed group ID range here is 5000 through 5999, with the
default supplemental group being 5000.

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

447

1

2

When the same pod shown earlier runs against this new SCC (assuming, of course, the pod matches the
new SCC), it will start because the group 5555, supplied in the pod definition, is now allowed by the
custom SCC.

22.16.4. fsGroup

NOTE

Read SCCs, Defaults, and Allowed Ranges before working with supplemental groups.

TIP

It is generally preferable to use group IDs (supplemental or fsGroup) to gain access to persistent
storage versus using user IDs.

fsGroup defines a pod’s "file system group" ID, which is added to the container’s supplemental groups.
The supplementalGroups ID applies to shared storage, whereas the fsGroup ID is used for block
storage.

Block storage, such as Ceph RBD, iSCSI, and various cloud storage, is typically dedicated to a single
pod which has requested the block storage volume, either directly or using a PVC. Unlike shared
storage, block storage is taken over by a pod, meaning that user and group IDs supplied in the pod
definition (or image) are applied to the actual, physical block device. Typically, block storage is not
shared.

A fsGroup definition is shown below in the following pod definition fragment:

As with supplementalGroups, fsGroup must be defined globally to the pod, not per container.

5555 will become the group ID for the volume’s group permissions and for all new files created in
the volume.

As with supplementalGroups, all containers in the above pod (assuming the matching SCC or project
allows the group 5555) will be members of the group 5555, and will have access to the block volume,
regardless of the container’s user ID. If the pod matches the restricted SCC, whose fsGroup strategy is
MustRunAs, then the pod will fail to run. However, if the SCC has its fsGroup strategy set to
RunAsAny, then any fsGroup ID (including 5555) will be accepted. Note that if the SCC has its
fsGroup strategy set to RunAsAny and no fsGroup ID is specified, the "taking over" of the block
storage does not occur and permissions may be denied to the pod.

fsGroups and Custom SCCs

To remedy the situation in the previous example, a custom SCC can be created such that:

kind: Pod
...
spec:
 containers:
 - name: ...

 securityContext: 1

 fsGroup: 5555 2
 ...

OpenShift Container Platform 3.7 Installation and Configuration

448

1

2

3

a minimum and maximum group ID are defined,

ID range checking is enforced, and

the group ID of 5555 is allowed.

It is better to create new SCCs versus modifying a predefined SCC, or changing the range of allowed IDs
in the predefined projects.

Consider the following fragment of a new SCC definition:

oc export scc new-scc
...
kind: SecurityContextConstraints
...
fsGroup:

 type: MustRunAs 1

 ranges: 2
 - max: 6000

 min: 5000 3
...

MustRunAs triggers group ID range checking, whereas RunAsAny does not require range
checking.

The range of allowed group IDs is 5000 through, and including, 5999. Multiple ranges are supported
but not used. The allowed group ID range here is 5000 through 5999, with the default fsGroup
being 5000.

The minimum value (or the entire range) can be omitted from the SCC, and thus range checking
and generating a default value will defer to the project’s
openshift.io/sa.scc.supplemental-groups range. fsGroup and supplementalGroups
use the same group field in the project; there is not a separate range for fsGroup.

When the pod shown above runs against this new SCC (assuming, of course, the pod matches the new
SCC), it will start because the group 5555, supplied in the pod definition, is allowed by the custom SCC.
Additionally, the pod will "take over" the block device, so when the block storage is viewed by a process
outside of the pod, it will actually have 5555 as its group ID.

A list of volumes supporting block ownership include:

AWS Elastic Block Store

OpenStack Cinder

Ceph RBD

GCE Persistent Disk

iSCSI

emptyDir

gitRepo

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

449

NOTE

This list is potentially incomplete.

22.16.5. User IDs

NOTE

Read SCCs, Defaults, and Allowed Ranges before working with supplemental groups.

TIP

It is generally preferable to use group IDs (supplemental or fsGroup) to gain access to persistent storage
versus using user IDs.

User IDs can be defined in the container image or in the pod definition. In the pod definition, a single user
ID can be defined globally to all containers, or specific to individual containers (or both). A user ID is
supplied as shown in the pod definition fragment below:

ID 1000100001 in the above is container-specific and matches the owner ID on the export. If the NFS
export’s owner ID was 54321, then that number would be used in the pod definition. Specifying
securityContext outside of the container definition makes the ID global to all containers in the pod.

Similar to group IDs, user IDs may be validated according to policies set in the SCC and/or project. If the
SCC’s runAsUser strategy is set to RunAsAny, then any user ID defined in the pod definition or in the
image is allowed.

WARNING

This means even a UID of 0 (root) is allowed.

If, instead, the runAsUser strategy is set to MustRunAsRange, then a supplied user ID will be
validated against a range of allowed IDs. If the pod supplies no user ID, then the default ID is set to the
minimum value of the range of allowable user IDs.

Returning to the earlier NFS example, the container needs its UID set to 1000100001, which is shown in
the pod fragment above. Assuming the default project and the restricted SCC, the pod’s requested user
ID of 1000100001 will not be allowed, and therefore the pod will fail. The pod fails because:

it requests 1000100001 as its user ID,

all available SCCs use MustRunAsRange for their runAsUser strategy, so UID range checking
is required, and

spec:
 containers:
 - name: ...
 securityContext:
 runAsUser: 1000100001



OpenShift Container Platform 3.7 Installation and Configuration

450

1

2

3

1000100001 is not included in the SCC or in the project’s user ID range.

To remedy this situation, a new SCC can be created with the appropriate user ID range. A new project
could also be created with the appropriate user ID range defined. There are also other, less-preferred
options:

The restricted SCC could be modified to include 1000100001 within its minimum and maximum
user ID range. This is not recommended as you should avoid modifying the predefined SCCs if
possible.

The restricted SCC could be modified to use RunAsAny for the runAsUser value, thus
eliminating ID range checking. This is strongly not recommended, as containers could run as
root.

The default project’s UID range could be changed to allow a user ID of 1000100001. This is not
generally advisable because only a single range of user IDs can be specified, and thus other
pods may not run if the range is altered.

User IDs and Custom SCCs

It is good practice to avoid modifying the predefined SCCs if possible. The preferred approach is to
create a custom SCC that better fits an organization’s security needs, or create a new project that
supports the desired user IDs.

To remedy the situation in the previous example, a custom SCC can be created such that:

a minimum and maximum user ID is defined,

UID range checking is still enforced, and

the UID of 1000100001 is allowed.

For example:

$ oc export scc nfs-scc

allowHostDirVolumePlugin: false 1
...
kind: SecurityContextConstraints
metadata:
 ...

 name: nfs-scc 2

priority: 9 3
requiredDropCapabilities: null
runAsUser:

 type: MustRunAsRange 4

 uidRangeMax: 1000100001 5
 uidRangeMin: 1000100001
...

The allowXX bools are the same as for the restricted SCC.

The name of this new SCC is nfs-scc.

Numerically larger numbers have greater priority. Nil or omitted is the lowest priority. Higher priority
SCCs sort before lower priority SCCs, and thus have a better chance of matching a new pod.

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

451

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#create-a-project

4

5

1

2

1

2

The runAsUser strategy is set to MustRunAsRange, which means UID range checking is
enforced.

The UID range is 1000100001 through 1000100001 (a range of one value).

Now, with runAsUser: 1000100001 shown in the previous pod definition fragment, the pod matches
the new nfs-scc and is able to run with a UID of 1000100001.

22.16.6. SELinux Options

All predefined SCCs, except for the privileged SCC, set the seLinuxContext to MustRunAs. So the
SCCs most likely to match a pod’s requirements will force the pod to use an SELinux policy. The SELinux
policy used by the pod can be defined in the pod itself, in the image, in the SCC, or in the project (which
provides the default).

SELinux labels can be defined in a pod’s securityContext.seLinuxOptions section, and supports
user, role, type, and level:

NOTE

Level and MCS label are used interchangeably in this topic.

...

 securityContext: 1
 seLinuxOptions:

 level: "s0:c123,c456" 2
...

level can be defined globally for the entire pod, or individually for each container.

SELinux level label.

Here are fragments from an SCC and from the default project:

$ oc export scc scc-name
...
seLinuxContext:

 type: MustRunAs 1

oc export project default
...
metadata:
 annotations:

 openshift.io/sa.scc.mcs: s0:c1,c0 2
...

MustRunAs causes volume relabeling.

If the label is not provided in the pod or in the SCC, then the default comes from the project.

OpenShift Container Platform 3.7 Installation and Configuration

452

All predefined SCCs, except for the privileged SCC, set the seLinuxContext to MustRunAs. This
forces pods to use MCS labels, which can be defined in the pod definition, the image, or provided as a
default.

The SCC determines whether or not to require an SELinux label and can provide a default label. If the
seLinuxContext strategy is set to MustRunAs and the pod (or image) does not define a label,
OpenShift Container Platform defaults to a label chosen from the SCC itself or from the project.

If seLinuxContext is set to RunAsAny, then no default labels are provided, and the container
determines the final label. In the case of Docker, the container will use a unique MCS label, which will not
likely match the labeling on existing storage mounts. Volumes which support SELinux management will
be relabeled so that they are accessible by the specified label and, depending on how exclusionary the
label is, only that label.

This means two things for unprivileged containers:

The volume is given a type that is accessible by unprivileged containers. This type is usually
container_file_t in Red Hat Enterprise Linux (RHEL) version 7.5 and later. This type treats
volumes as container content. In previous RHEL versions, RHEL 7.4, 7.3, and so forth, the
volume is given the svirt_sandbox_file_t type.

If a level is specified, the volume is labeled with the given MCS label.

For a volume to be accessible by a pod, the pod must have both categories of the volume. So a pod with
s0:c1,c2 will be able to access a volume with s0:c1,c2. A volume with s0 will be accessible by all pods.

If pods fail authorization, or if the storage mount is failing due to permissions errors, then there is a
possibility that SELinux enforcement is interfering. One way to check for this is to run:

ausearch -m avc --start recent

This examines the log file for AVC (Access Vector Cache) errors.

22.17. SELECTOR-LABEL VOLUME BINDING

22.17.1. Overview

This guide provides the steps necessary to enable binding of persistent volume claims (PVCs) to
persistent volumes (PVs) via selector and label attributes. By implementing selectors and labels, regular
users are able to target provisioned storage by identifiers defined by a cluster administrator.

22.17.2. Motivation

In cases of statically provisioned storage, developers seeking persistent storage are required to know a
handful identifying attributes of a PV in order to deploy and bind a PVC. This creates several problematic
situations. Regular users might have to contact a cluster administrator to either deploy the PVC or
provide the PV values. PV attributes alone do not convey the intended use of the storage volumes, nor
do they provide methods by which volumes can be grouped.

Selector and label attributes can be used to abstract away PV details from the user while providing
cluster administrators a way of identifying volumes by a descriptive and customizable tag. Through the
selector-label method of binding, users are only required to know which labels are defined by the
administrator.

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

453

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

1

NOTE

The selector-label feature is currently only available for statically provisioned storage and
is currently not implemented for storage provisioned dynamically.

22.17.3. Deployment

This section reviews how to define and deploy PVCs.

22.17.3.1. Prerequisites

1. A running OpenShift Container Platform 3.3+ cluster

2. A volume provided by a supported storage provider

3. A user with a cluster-admin role binding

22.17.3.2. Define the Persistent Volume and Claim

1. As the cluser-admin user, define the PV. For this example, we will be using a GlusterFS
volume. See the appropriate storage provider for your provider’s configuration.

Example 22.9. Persistent Volume with Labels

apiVersion: v1
kind: PersistentVolume
metadata:
 name: gluster-volume

 labels: 1
 volume-type: ssd
 aws-availability-zone: us-east-1
spec:
 capacity:
 storage: 2Gi
 accessModes:
 - ReadWriteMany
 glusterfs:
 endpoints: glusterfs-cluster
 path: myVol1
 readOnly: false
 persistentVolumeReclaimPolicy: Recycle

A PVC whose selectors match all of a PV’s labels will be bound, assuming a PV is
available.

2. Define the PVC:

Example 22.10. Persistent Volume Claim with Selectors

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: gluster-claim
spec:

OpenShift Container Platform 3.7 Installation and Configuration

454

1

2

 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi

 selector: 1

 matchLabels: 2
 volume-type: ssd
 aws-availability-zone: us-east-1

Begin selectors section.

List all labels by which the user is requesting storage. Must match all labels of targeted
PV.

22.17.3.3. Deploy the Persistent Volume and Claim

As the cluster-admin user, create the persistent volume:

Example 22.11. Create the Persistent Volume

oc create -f gluster-pv.yaml
persistentVolume "gluster-volume" created

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS
CLAIM REASON AGE
gluster-volume map[] 2147483648 RWX
Available 2s

Once the PV is created, any user whose selectors match all its labels can create their PVC.

Example 22.12. Create the Persistent Volume Claim

oc create -f gluster-pvc.yaml
persistentVolumeClaim "gluster-claim" created
oc get pvc
NAME LABELS STATUS VOLUME
gluster-claim Bound gluster-volume

22.18. ENABLING CONTROLLER-MANAGED ATTACHMENT AND
DETACHMENT

22.18.1. Overview

As of OpenShift Container Platform 3.4, administrators can enable the controller running on the cluster’s
master to manage volume attach and detach operations on behalf of a set of nodes, as opposed to
letting them manage their own volume attach and detach operations.

CHAPTER 22. CONFIGURING PERSISTENT STORAGE

455

Enabling controller-managed attachment and detachment has the following benefits:

If a node is lost, volumes that were attached to it can be detached by the controller and
reattached elsewhere.

Credentials for attaching and detaching do not need to be made present on every node,
improving security.

As of OpenShift Container Platform 3.6, controller-managed attachment and detachment is the default
setting.

22.18.2. Determining What Is Managing Attachment and Detachment

If a node has set the annotation volumes.kubernetes.io/controller-managed-attach-
detach on itself, then its attach and detach operations are being managed by the controller. The
controller will automatically inspect all nodes for this annotation and act according to whether it is present
or not. Therefore, you may inspect the node for this annotation to determine if it has enabled controller-
managed attach and detach.

To further ensure that the node is opting for controller-managed attachment and detachment, its logs can
be searched for the following line:

Setting node annotation to enable volume controller attach/detach

If the above line is not found, the logs should instead contain:

Controller attach/detach is disabled for this node; Kubelet will attach
and detach volumes

To check from the controller’s end that it is managing a particular node’s attach and detach operations,
the logging level must first be set to at least 4. Then, the following line should be found:

processVolumesInUse for node <node_hostname>

For information on how to view logs and configure logging levels, see Configuring Logging Levels.

22.18.3. Configuring Nodes to Enable Controller-managed Attachment and
Detachment

Enabling controller-managed attachment and detachment is done by configuring individual nodes to opt
in and disable their own node-level attachment and detachment management. See Node Configuration
Files for information on what node configuration file to edit and add the following:

Once a node is configured, it must be restarted for the setting to take effect.

kubeletArguments:
 enable-controller-attach-detach:
 - "true"

OpenShift Container Platform 3.7 Installation and Configuration

456

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

23.1. OVERVIEW

The following sections provide detailed, comprehensive instructions on setting up and configuring
common storage use cases. These examples cover both the administration of persistent volumes and
their security, and how to claim against the volumes as a user of the system.

Sharing an NFS PV Across Two Pods

Ceph-RBD Block Storage Volume

Shared Storage Using a GlusterFS Volume

Dynamic Provisioning Storage Using GlusterFS

Mounting a PV to Privileged Pods

Backing Docker Registry with GlusterFS Storage

Binding Persistent Volumes by Labels

Using StorageClasses for Dynamic Provisioning

Using StorageClasses for Existing Legacy Storage

Configuring Azure Blob Storage for Integrated Docker Registry

23.2. SHARING AN NFS MOUNT ACROSS TWO PERSISTENT VOLUME
CLAIMS

23.2.1. Overview

The following use case describes how a cluster administrator wanting to leverage shared storage for use
by two separate containers would configure the solution. This example highlights the use of NFS, but
can easily be adapted to other shared storage types, such as GlusterFS. In addition, this example will
show configuration of pod security as it relates to shared storage.

Persistent Storage Using NFS provides an explanation of persistent volumes (PVs), persistent volume
claims (PVCs), and using NFS as persistent storage. This topic shows and end-to-end example of using
an existing NFS cluster and OpenShift Container Platform persistent store, and assumes an existing
NFS server and exports exist in your OpenShift Container Platform infrastructure.

NOTE

All oc commands are executed on the OpenShift Container Platform master host.

23.2.2. Creating the Persistent Volume

Before creating the PV object in OpenShift Container Platform, the persistent volume (PV) file is defined:

Example 23.1. Persistent Volume Object Definition Using NFS

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

457

1

2

3

4

5

6

7

The name of the PV, which is referenced in pod definitions or displayed in various oc volume
commands.

The amount of storage allocated to this volume.

accessModes are used as labels to match a PV and a PVC. They currently do not define any
form of access control.

The volume reclaim policy Retain indicates that the volume will be preserved after the pods
accessing it terminates.

This defines the volume type being used, in this case the NFS plug-in.

This is the NFS mount path.

This is the NFS server. This can also be specified by IP address.

Save the PV definition to a file, for example nfs-pv.yaml, and create the persistent volume:

oc create -f nfs-pv.yaml
persistentvolume "nfs-pv" created

Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE
nfs-pv <none> 1Gi RWX Available
37s

23.2.3. Creating the Persistent Volume Claim

A persistent volume claim (PVC) specifies the desired access mode and storage capacity. Currently,
based on only these two attributes, a PVC is bound to a single PV. Once a PV is bound to a PVC, that
PV is essentially tied to the PVC’s project and cannot be bound to by another PVC. There is a one-to-

apiVersion: v1
kind: PersistentVolume
metadata:

 name: nfs-pv 1
spec:
 capacity:

 storage: 1Gi 2
 accessModes:

 - ReadWriteMany 3

 persistentVolumeReclaimPolicy: Retain 4

 nfs: 5

 path: /opt/nfs 6

 server: nfs.f22 7
 readOnly: false

OpenShift Container Platform 3.7 Installation and Configuration

458

1

2

3

1

one mapping of PVs and PVCs. However, multiple pods in the same project can use the same PVC. This
is the use case we are highlighting in this example.

Example 23.2. PVC Object Definition

The claim name is referenced by the pod under its volumes section.

As mentioned above for PVs, the accessModes do not enforce access right, but rather act as
labels to match a PV to a PVC.

This claim will look for PVs offering 1Gi or greater capacity.

Save the PVC definition to a file, for example nfs-pvc.yaml, and create the PVC:

oc create -f nfs-pvc.yaml
persistentvolumeclaim "nfs-pvc" created

Verify that the PVC was created and bound to the expected PV:

oc get pvc
NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES
AGE
nfs-pvc <none> Bound nfs-pv 1Gi RWX
24s

 1

The claim, nfs-pvc, was bound to the nfs-pv PV.

23.2.4. Ensuring NFS Volume Access

Access is necessary to a node in the NFS server. On this node, examine the NFS export mount:

[root@nfs nfs]# ls -lZ /opt/nfs/
total 8
-rw-r--r--. 1 root 100003 system_u:object_r:usr_t:s0 10 Oct 12 23:27
test2b

 1

 2

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

 name: nfs-pvc 1
spec:
 accessModes:

 - ReadWriteMany 2
 resources:
 requests:

 storage: 1Gi 3

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

459

1

2

1

2

3

4

the owner has ID 0.

the group has ID 100003.

In order to access the NFS mount, the container must match the SELinux label, and either run with a UID
of 0, or with 100003 in its supplemental groups range. Gain access to the volume by matching the NFS
mount’s groups, which will be defined in the pod definition below.

By default, SELinux does not allow writing from a pod to a remote NFS server. To enable writing to NFS
volumes with SELinux enforcing on each node, run:

setsebool -P virt_use_nfs on

23.2.5. Creating the Pod

A pod definition file or a template file can be used to define a pod. Below is a pod specification that
creates a single container and mounts the NFS volume for read-write access:

Example 23.3. Pod Object Definition

The name of this pod as displayed by oc get pod.

The image run by this pod.

The name of the volume. This name must be the same in both the containers and volumes
sections.

The mount path as seen in the container.

apiVersion: v1
kind: Pod
metadata:

 name: hello-openshift-nfs-pod 1
 labels:
 name: hello-openshift-nfs-pod
spec:
 containers:
 - name: hello-openshift-nfs-pod

 image: openshift/hello-openshift 2
 ports:
 - name: web
 containerPort: 80
 volumeMounts:

 - name: nfsvol 3

 mountPath: /usr/share/nginx/html 4
 securityContext:

 supplementalGroups: [100003] 5
 privileged: false
 volumes:
 - name: nfsvol
 persistentVolumeClaim:

 claimName: nfs-pvc 6

OpenShift Container Platform 3.7 Installation and Configuration

460

5

6

The group ID to be assigned to the container.

The PVC that was created in the previous step.

Save the pod definition to a file, for example nfs.yaml, and create the pod:

oc create -f nfs.yaml
pod "hello-openshift-nfs-pod" created

Verify that the pod was created:

oc get pods
NAME READY STATUS RESTARTS AGE
hello-openshift-nfs-pod 1/1 Running 0 4s

More details are shown in the oc describe pod command:

[root@ose70 nfs]# oc describe pod hello-openshift-nfs-pod
Name: hello-openshift-nfs-pod

Namespace: default 1
Image(s): fedora/S3

Node: ose70.rh7/192.168.234.148 2
Start Time: Mon, 21 Mar 2016 09:59:47 -0400
Labels: name=hello-openshift-nfs-pod
Status: Running
Reason:
Message:
IP: 10.1.0.4
Replication Controllers: <none>
Containers:
 hello-openshift-nfs-pod:
 Container ID:
docker://a3292104d6c28d9cf49f440b2967a0fc5583540fc3b062db598557b93893bc6f
 Image: fedora/S3
 Image ID:
docker://403d268c640894cbd76d84a1de3995d2549a93af51c8e16e89842e4c3ed6a00a
 QoS Tier:
 cpu: BestEffort
 memory: BestEffort
 State: Running
 Started: Mon, 21 Mar 2016 09:59:49 -0400
 Ready: True
 Restart Count: 0
 Environment Variables:
Conditions:
 Type Status
 Ready True
Volumes:
 nfsvol:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in
the same namespace)

 ClaimName: nfs-pvc 3

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

461

1

2

3

4

 ReadOnly: false
 default-token-a06zb:
 Type: Secret (a secret that should populate this volume)
 SecretName: default-token-a06zb

Events: 4
 FirstSeen LastSeen Count From SubobjectPath
Reason Message
 ───────── ──────── ───── ──── ─────────────
────── ───────
 4m 4m 1 {scheduler }
Scheduled Successfully assigned hello-openshift-nfs-pod to ose70.rh7
 4m 4m 1 {kubelet ose70.rh7} implicitly required container POD
Pulled Container image "openshift3/ose-pod:v3.1.0.4" already present on
machine
 4m 4m 1 {kubelet ose70.rh7} implicitly required container POD
Created Created with docker id 866a37108041
 4m 4m 1 {kubelet ose70.rh7} implicitly required container POD
Started Started with docker id 866a37108041
 4m 4m 1 {kubelet ose70.rh7} spec.containers{hello-openshift-nfs-pod}
Pulled Container image "fedora/S3" already present on machine
 4m 4m 1 {kubelet ose70.rh7} spec.containers{hello-openshift-nfs-pod}
Created Created with docker id a3292104d6c2
 4m 4m 1 {kubelet ose70.rh7} spec.containers{hello-openshift-nfs-pod}
Started Started with docker id a3292104d6c2

The project (namespace) name.

The IP address of the OpenShift Container Platform node running the pod.

The PVC name used by the pod.

The list of events resulting in the pod being launched and the NFS volume being mounted. The
container will not start correctly if the volume cannot mount.

There is more internal information, including the SCC used to authorize the pod, the pod’s user and group
IDs, the SELinux label, and more, shown in the oc get pod <name> -o yaml command:

[root@ose70 nfs]# oc get pod hello-openshift-nfs-pod -o yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:

 openshift.io/scc: restricted 1
 creationTimestamp: 2016-03-21T13:59:47Z
 labels:
 name: hello-openshift-nfs-pod
 name: hello-openshift-nfs-pod

 namespace: default 2
 resourceVersion: "2814411"
 selflink: /api/v1/namespaces/default/pods/hello-openshift-nfs-pod
 uid: 2c22d2ea-ef6d-11e5-adc7-000c2900f1e3
spec:
 containers:
 - image: fedora/S3
 imagePullPolicy: IfNotPresent

OpenShift Container Platform 3.7 Installation and Configuration

462

 name: hello-openshift-nfs-pod
 ports:
 - containerPort: 80
 name: web
 protocol: TCP
 resources: {}
 securityContext:
 privileged: false
 terminationMessagePath: /dev/termination-log
 volumeMounts:
 - mountPath: /usr/share/S3/html
 name: nfsvol
 - mountPath: /var/run/secrets/kubernetes.io/serviceaccount
 name: default-token-a06zb
 readOnly: true
 dnsPolicy: ClusterFirst
 host: ose70.rh7
 imagePullSecrets:
 - name: default-dockercfg-xvdew
 nodeName: ose70.rh7
 restartPolicy: Always
 securityContext:
 supplementalGroups:

 - 100003 3
 serviceAccount: default
 serviceAccountName: default
 terminationGracePeriodSeconds: 30
 volumes:
 - name: nfsvol
 persistentVolumeClaim:

 claimName: nfs-pvc 4
 - name: default-token-a06zb
 secret:
 secretName: default-token-a06zb
status:
 conditions:
 - lastProbeTime: null
 lastTransitionTime: 2016-03-21T13:59:49Z
 status: "True"
 type: Ready
 containerStatuses:
 - containerID:
docker://a3292104d6c28d9cf49f440b2967a0fc5583540fc3b062db598557b93893bc6f
 image: fedora/S3
 imageID:
docker://403d268c640894cbd76d84a1de3995d2549a93af51c8e16e89842e4c3ed6a00a
 lastState: {}
 name: hello-openshift-nfs-pod
 ready: true
 restartCount: 0
 state:
 running:
 startedAt: 2016-03-21T13:59:49Z
 hostIP: 192.168.234.148

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

463

1

2

3

4

1

2

3

4

5

6

 phase: Running
 podIP: 10.1.0.4
 startTime: 2016-03-21T13:59:47Z

The SCC used by the pod.

The project (namespace) name.

The supplemental group ID for the pod (all containers).

The PVC name used by the pod.

23.2.6. Creating an Additional Pod to Reference the Same PVC

This pod definition, created in the same namespace, uses a different container. However, we can use
the same backing storage by specifying the claim name in the volumes section below:

Example 23.4. Pod Object Definition

The name of this pod as displayed by oc get pod.

The image run by this pod.

The name of the volume. This name must be the same in both the containers and volumes
sections.

The mount path as seen in the container.

The group ID to be assigned to the container.

The PVC that was created earlier and is also being used by a different container.

apiVersion: v1
kind: Pod
metadata:

 name: busybox-nfs-pod 1
 labels:
 name: busybox-nfs-pod
spec:
 containers:
 - name: busybox-nfs-pod

 image: busybox 2
 command: ["sleep", "60000"]
 volumeMounts:

 - name: nfsvol-2 3

 mountPath: /usr/share/busybox 4
 readOnly: false
 securityContext:

 supplementalGroups: [100003] 5
 privileged: false
 volumes:
 - name: nfsvol-2
 persistentVolumeClaim:

 claimName: nfs-pvc 6

OpenShift Container Platform 3.7 Installation and Configuration

464

Save the pod definition to a file, for example nfs-2.yaml, and create the pod:

oc create -f nfs-2.yaml
pod "busybox-nfs-pod" created

Verify that the pod was created:

oc get pods
NAME READY STATUS RESTARTS AGE
busybox-nfs-pod 1/1 Running 0 3s

More details are shown in the oc describe pod command:

[root@ose70 nfs]# oc describe pod busybox-nfs-pod
Name: busybox-nfs-pod
Namespace: default
Image(s): busybox
Node: ose70.rh7/192.168.234.148
Start Time: Mon, 21 Mar 2016 10:19:46 -0400
Labels: name=busybox-nfs-pod
Status: Running
Reason:
Message:
IP: 10.1.0.5
Replication Controllers: <none>
Containers:
 busybox-nfs-pod:
 Container ID:
docker://346d432e5a4824ebf5a47fceb4247e0568ecc64eadcc160e9bab481aecfb0594
 Image: busybox
 Image ID:
docker://17583c7dd0dae6244203b8029733bdb7d17fccbb2b5d93e2b24cf48b8bfd06e2
 QoS Tier:
 cpu: BestEffort
 memory: BestEffort
 State: Running
 Started: Mon, 21 Mar 2016 10:19:48 -0400
 Ready: True
 Restart Count: 0
 Environment Variables:
Conditions:
 Type Status
 Ready True
Volumes:
 nfsvol-2:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in
the same namespace)
 ClaimName: nfs-pvc
 ReadOnly: false
 default-token-32d2z:
 Type: Secret (a secret that should populate this volume)
 SecretName: default-token-32d2z
Events:

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

465

 FirstSeen LastSeen Count From SubobjectPath Reason Message
 ───────── ──────── ───── ──── ───────────── ────── ───────
 4m 4m 1 {scheduler } Scheduled Successfully assigned busybox-
nfs-pod to ose70.rh7
 4m 4m 1 {kubelet ose70.rh7} implicitly required container POD Pulled
Container image "openshift3/ose-pod:v3.1.0.4" already present on machine
 4m 4m 1 {kubelet ose70.rh7} implicitly required container POD Created
Created with docker id 249b7d7519b1
 4m 4m 1 {kubelet ose70.rh7} implicitly required container POD Started
Started with docker id 249b7d7519b1
 4m 4m 1 {kubelet ose70.rh7} spec.containers{busybox-nfs-pod} Pulled
Container image "busybox" already present on machine
 4m 4m 1 {kubelet ose70.rh7} spec.containers{busybox-nfs-pod} Created
Created with docker id 346d432e5a48
 4m 4m 1 {kubelet ose70.rh7} spec.containers{busybox-nfs-pod} Started
Started with docker id 346d432e5a48

As you can see, both containers are using the same storage claim that is attached to the same NFS
mount on the back end.

23.3. COMPLETE EXAMPLE USING CEPH RBD

23.3.1. Overview

This topic provides an end-to-end example of using an existing Ceph cluster as an OpenShift Container
Platform persistent store. It is assumed that a working Ceph cluster is already set up. If not, consult the
Overview of Red Hat Ceph Storage.

Persistent Storage Using Ceph Rados Block Device provides an explanation of persistent volumes
(PVs), persistent volume claims (PVCs), and using Ceph RBD as persistent storage.

NOTE

All oc … ​ commands are executed on the OpenShift Container Platform master host.

23.3.2. Installing the ceph-common Package

The ceph-common library must be installed on all schedulable OpenShift Container Platform nodes:

NOTE

The OpenShift Container Platform all-in-one host is not often used to run pod workloads
and, thus, is not included as a schedulable node.

yum install -y ceph-common

23.3.3. Creating the Ceph Secret

The ceph auth get-key command is run on a Ceph MON node to display the key value for the
client.admin user:

Example 23.5. Ceph Secret Definition

OpenShift Container Platform 3.7 Installation and Configuration

466

https://access.redhat.com/products/red-hat-ceph-storage

1 This base64 key is generated on one of the Ceph MON nodes using the ceph auth get-key
client.admin | base64 command, then copying the output and pasting it as the secret
key’s value.

Save the secret definition to a file, for example ceph-secret.yaml, then create the secret:

$ oc create -f ceph-secret.yaml
secret "ceph-secret" created

Verify that the secret was created:

oc get secret ceph-secret
NAME TYPE DATA AGE
ceph-secret Opaque 1 23d

23.3.4. Creating the Persistent Volume

Next, before creating the PV object in OpenShift Container Platform, define the persistent volume file:

Example 23.6. Persistent Volume Object Definition Using Ceph RBD

apiVersion: v1
kind: Secret
metadata:
 name: ceph-secret
data:

 key: QVFBOFF2SlZheUJQRVJBQWgvS2cwT1laQUhPQno3akZwekxxdGc9PQ== 1

apiVersion: v1
kind: PersistentVolume
metadata:

 name: ceph-pv 1
spec:
 capacity:

 storage: 2Gi 2
 accessModes:

 - ReadWriteOnce 3

 rbd: 4

 monitors: 5
 - 192.168.122.133:6789
 pool: rbd
 image: ceph-image
 user: admin
 secretRef:

 name: ceph-secret 6

 fsType: ext4 7
 readOnly: false
 persistentVolumeReclaimPolicy: Recycle

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

467

1

2

3

4

5

6

7

1

The name of the PV, which is referenced in pod definitions or displayed in various oc volume
commands.

The amount of storage allocated to this volume.

accessModes are used as labels to match a PV and a PVC. They currently do not define any
form of access control. All block storage is defined to be single user (non-shared storage).

This defines the volume type being used. In this case, the rbd plug-in is defined.

This is an array of Ceph monitor IP addresses and ports.

This is the Ceph secret, defined above. It is used to create a secure connection from OpenShift
Container Platform to the Ceph server.

This is the file system type mounted on the Ceph RBD block device.

Save the PV definition to a file, for example ceph-pv.yaml, and create the persistent volume:

oc create -f ceph-pv.yaml
persistentvolume "ceph-pv" created

Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS
CLAIM REASON AGE
ceph-pv <none> 2147483648 RWO Available
2s

23.3.5. Creating the Persistent Volume Claim

A persistent volume claim (PVC) specifies the desired access mode and storage capacity. Currently,
based on only these two attributes, a PVC is bound to a single PV. Once a PV is bound to a PVC, that
PV is essentially tied to the PVC’s project and cannot be bound to by another PVC. There is a one-to-
one mapping of PVs and PVCs. However, multiple pods in the same project can use the same PVC.

Example 23.7. PVC Object Definition

As mentioned above for PVs, the accessModes do not enforce access right, but rather act as
labels to match a PV to a PVC.

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: ceph-claim
spec:

 accessModes: 1
 - ReadWriteOnce
 resources:
 requests:

 storage: 2Gi 2

OpenShift Container Platform 3.7 Installation and Configuration

468

2

1

1

2

3 5

4

6

This claim will look for PVs offering 2Gi or greater capacity.

Save the PVC definition to a file, for example ceph-claim.yaml, and create the PVC:

oc create -f ceph-claim.yaml
persistentvolumeclaim "ceph-claim" created

#and verify the PVC was created and bound to the expected PV:
oc get pvc
NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES AGE
ceph-claim <none> Bound ceph-pv 1Gi RWX 21s

 1

the claim was bound to the ceph-pv PV.

23.3.6. Creating the Pod

A pod definition file or a template file can be used to define a pod. Below is a pod specification that
creates a single container and mounts the Ceph RBD volume for read-write access:

Example 23.8. Pod Object Definition

The name of this pod as displayed by oc get pod.

The image run by this pod. In this case, we are telling busybox to sleep.

The name of the volume. This name must be the same in both the containers and volumes
sections.

The mount path as seen in the container.

The PVC that is bound to the Ceph RBD cluster.

apiVersion: v1
kind: Pod
metadata:

 name: ceph-pod1 1
spec:
 containers:
 - name: ceph-busybox

 image: busybox 2
 command: ["sleep", "60000"]
 volumeMounts:

 - name: ceph-vol1 3

 mountPath: /usr/share/busybox 4
 readOnly: false
 volumes:

 - name: ceph-vol1 5
 persistentVolumeClaim:

 claimName: ceph-claim 6

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

469

1

1

2

Save the pod definition to a file, for example ceph-pod1.yaml, and create the pod:

oc create -f ceph-pod1.yaml
pod "ceph-pod1" created

#verify pod was created
oc get pod
NAME READY STATUS RESTARTS AGE
ceph-pod1 1/1 Running 0 2m

 1

After a minute or so, the pod will be in the Running state.

23.3.7. Defining Group and Owner IDs (Optional)

When using block storage, such as Ceph RBD, the physical block storage is managed by the pod. The
group ID defined in the pod becomes the group ID of both the Ceph RBD mount inside the container,
and the group ID of the actual storage itself. Thus, it is usually unnecessary to define a group ID in the
pod specifiation. However, if a group ID is desired, it can be defined using fsGroup, as shown in the
following pod definition fragment:

Example 23.9. Group ID Pod Definition

securityContext must be defined at the pod level, not under a specific container.

All containers in the pod will have the same fsGroup ID.

23.3.8. Setting ceph-user-secret as Default for Projects

If you would like to make the persistent storage available to every project you have to modify the default
project template. You can read more on modifying the default project template. Read more on modifying
the default project template. Adding this to your default project template allows every user who has
access to create a project access to the Ceph cluster.

Example 23.10. Default Project Example

...
spec:
 containers:
 - name:
 ...

 securityContext: 1

 fsGroup: 7777 2
...

...
apiVersion: v1
kind: Template
metadata:

OpenShift Container Platform 3.7 Installation and Configuration

470

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#selfprovisioning-projects

1 Place your super secret Ceph user key here in base64 format. See Creating the Ceph Secret.

23.4. USING CEPH RBD FOR DYNAMIC PROVISIONING

23.4.1. Overview

This topic provides a complete example of using an existing Ceph cluster for OpenShift Container
Platform persistent storage. It is assumed that a working Ceph cluster is already set up. If not, consult
the Overview of Red Hat Ceph Storage.

Persistent Storage Using Ceph Rados Block Device provides an explanation of persistent volumes
(PVs), persistent volume claims (PVCs), and how to use Ceph Rados Block Device (RBD) as persistent
storage.

NOTE

Run all oc commands on the OpenShift Container Platform master host.

The OpenShift Container Platform all-in-one host is not often used to run pod
workloads and, thus, is not included as a schedulable node.

23.4.2. Creating a pool for dynamic volumes

1. Install the latest ceph-common package:

 creationTimestamp: null
 name: project-request
objects:
- apiVersion: v1
 kind: Project
 metadata:
 annotations:
 openshift.io/description: ${PROJECT_DESCRIPTION}
 openshift.io/display-name: ${PROJECT_DISPLAYNAME}
 openshift.io/requester: ${PROJECT_REQUESTING_USER}
 creationTimestamp: null
 name: ${PROJECT_NAME}
 spec: {}
 status: {}
- apiVersion: v1
 kind: Secret
 metadata:
 name: ceph-user-secret
 data:

 key: yoursupersecretbase64keygoeshere 1
 type:
 kubernetes.io/rbd
...

yum install -y ceph-common

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

471

https://access.redhat.com/products/red-hat-ceph-storage

1

2

NOTE

The ceph-common library must be installed on all schedulable OpenShift
Container Platform nodes.

2. From an administrator or MON node, create a new pool for dynamic volumes, for example:

NOTE

Using the default pool of RBD is an option, but not recommended.

23.4.3. Using an existing Ceph cluster for dynamic persistent storage

To use an existing Ceph cluster for dynamic persistent storage:

1. Generate the client.admin base64-encoded key:

Ceph secret definition example

This base64 key is generated on one of the Ceph MON nodes using the ceph auth get-
key client.admin | base64 command, then copying the output and pasting it as the
secret key’s value.

This value is required for Ceph RBD to work with dynamic provisioning.

2. Create the Ceph secret for the client.admin:

3. Verify that the secret was created:

$ ceph osd pool create kube 1024
$ ceph auth get-or-create client.kube mon 'allow r' osd 'allow
class-read object_prefix rbd_children, allow rwx pool=kube' -o
ceph.client.kube.keyring

$ ceph auth get client.admin

apiVersion: v1
kind: Secret
metadata:
 name: ceph-secret
 namespace: kube-system
data:

 key: QVFBOFF2SlZheUJQRVJBQWgvS2cwT1laQUhPQno3akZwekxxdGc9PQ== 1

type: kubernetes.io/rbd 2

$ oc create -f ceph-secret.yaml
secret "ceph-secret" created

$ oc get secret ceph-secret
NAME TYPE DATA AGE
ceph-secret kubernetes.io/rbd 1 5d

OpenShift Container Platform 3.7 Installation and Configuration

472

1

2

3

4

5

6

7

4. Create the storage class:

Ceph storage class example

A comma-delimited list of IP addresses Ceph monitors. This value is required.

The Ceph client ID that is capable of creating images in the pool. The default is admin.

The secret name for adminId. This value is required. The secret that you provide must
have kubernetes.io/rbd.

The namespace for adminSecret. The default is default.

The Ceph RBD pool. The default is rbd, but this value is not recommended.

The Ceph client ID used to map the Ceph RBD image. The default is the same as the
secret name for adminId.

The name of the Ceph secret for userId to map the Ceph RBD image. It must exist in the
same namespace as the PVCs. Unless you set the Ceph secret as the default in new
projects, you must provide this parameter value.

5. Verify that the storage class was created:

6. Create the PVC object definition:

PVC object definition example

$ oc create -f ceph-storageclass.yaml
storageclass "dynamic" created

apiVersion: storage.k8s.io/v1beta1
kind: StorageClass
metadata:
 name: dynamic
 annotations:
 storageclass.beta.kubernetes.io/is-default-class: "true"
provisioner: kubernetes.io/rbd
parameters:

 monitors: 192.168.1.11:6789,192.168.1.12:6789,192.168.1.13:6789 1

 adminId: admin 2

 adminSecretName: ceph-secret 3

 adminSecretNamespace: kube-system 4

 pool: kube 5

 userId: kube 6

 userSecretName: ceph-user-secret 7

$ oc get storageclasses
NAME TYPE
dynamic (default) kubernetes.io/rbd

kind: PersistentVolumeClaim
apiVersion: v1

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

473

1

2

1

2

The accessModes do not enforce access rights but instead act as labels to match a PV to
a PVC.

This claim looks for PVs that offer 2Gi or greater capacity.

7. Create the PVC:

8. Verify that the PVC was created and bound to the expected PV:

9. Create the pod object definition:

Pod object definition example

The name of this pod as displayed by oc get pod.

The image run by this pod. In this case, busybox is set to sleep.

metadata:
 name: ceph-claim-dynamic
spec:

 accessModes: 1
 - ReadWriteOnce
 resources:
 requests:

 storage: 2Gi 2

$ oc create -f ceph-pvc.yaml
persistentvolumeclaim "ceph-claim-dynamic" created

$ oc get pvc
NAME STATUS VOLUME
CAPACITY ACCESSMODES AGE
ceph-claim Bound pvc-f548d663-3cac-11e7-9937-0024e8650c7a 2Gi
RWO 1m

apiVersion: v1
kind: Pod
metadata:

 name: ceph-pod1 1
spec:
 containers:
 - name: ceph-busybox

 image: busybox 2
 command: ["sleep", "60000"]
 volumeMounts:

 - name: ceph-vol1 3

 mountPath: /usr/share/busybox 4
 readOnly: false
 volumes:
 - name: ceph-vol1
 persistentVolumeClaim:

 claimName: ceph-claim 5

OpenShift Container Platform 3.7 Installation and Configuration

474

3

4

5

The name of the volume. This name must be the same in both the containers and
volumes sections.

The mount path in the container.

The PVC that is bound to the Ceph RBD cluster.

10. Create the pod:

11. Verify that the pod was created:

After a minute or so, the pod status changes to Running.

23.4.4. Setting ceph-user-secret as the default for projects

To make persistent storage available to every project, you must modify the default project template.
Adding this to your default project template allows every user who has access to create a project access
to the Ceph cluster. See modifying the default project template for more information.

Default project example

$ oc create -f ceph-pod1.yaml
pod "ceph-pod1" created

$ oc get pod
NAME READY STATUS RESTARTS AGE
ceph-pod1 1/1 Running 0 2m

...
apiVersion: v1
kind: Template
metadata:
 creationTimestamp: null
 name: project-request
objects:
- apiVersion: v1
 kind: Project
 metadata:
 annotations:
 openshift.io/description: ${PROJECT_DESCRIPTION}
 openshift.io/display-name: ${PROJECT_DISPLAYNAME}
 openshift.io/requester: ${PROJECT_REQUESTING_USER}
 creationTimestamp: null
 name: ${PROJECT_NAME}
 spec: {}
 status: {}
- apiVersion: v1
 kind: Secret
 metadata:
 name: ceph-user-secret
 data:

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

475

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#selfprovisioning-projects

1 Place your Ceph user key here in base64 format.

23.5. COMPLETE EXAMPLE USING GLUSTERFS

23.5.1. Overview

This topic provides an end-to-end example of how to use an existing Gluster cluster as an OpenShift
Container Platform persistent store. It is assumed that a working Gluster cluster is already set up. If not,
consult the Red Hat Gluster Storage Administration Guide.

Persistent Storage Using GlusterFS provides an explanation of persistent volumes (PVs), persistent
volume claims (PVCs), and using GlusterFS as persistent storage.

For an end-to-end example of how to dynamically provision GlusterFS volumes, see Complete Example
of Dynamic Provisioning Using GlusterFS. The persistent volume (PV) and endpoints are both created
dynamically by GlusterFS.

NOTE

All oc … ​ commands are executed on the OpenShift Container Platform master host.

23.5.2. Installing the glusterfs-fuse Package

The glusterfs-fuse library must be installed on all schedulable OpenShift Container Platform nodes:

yum install -y glusterfs-fuse

NOTE

The OpenShift Container Platform all-in-one host is often not used to run pod workloads
and, thus, is not included as a schedulable node.

23.5.3. Creating the Gluster Endpoints and Gluster Service for Persistence

The named endpoints define each node in the Gluster-trusted storage pool:

Example 23.11. GlusterFS Endpoint Definition

 key: QVFCbEV4OVpmaGJtQ0JBQW55d2Z0NHZtcS96cE42SW1JVUQvekE9PQ== 1
 type:
 kubernetes.io/rbd
...

apiVersion: v1
kind: Endpoints
metadata:

 name: gluster-cluster 1
subsets:

- addresses: 2
 - ip: 192.168.122.21

 ports: 3

OpenShift Container Platform 3.7 Installation and Configuration

476

https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.1/html/Administration_Guide/index.html

1

2

3

1

2

The endpoints name. If using a service, then the endpoints name must match the service name.

An array of IP addresses for each node in the Gluster pool. Currently, host names are not
supported.

The port numbers are ignored, but must be legal port numbers. The value 1 is commonly used.

Save the endpoints definition to a file, for example gluster-endpoints.yaml, then create the endpoints
object:

oc create -f gluster-endpoints.yaml
endpoints "gluster-cluster" created

Verify that the endpoints were created:

oc get endpoints gluster-cluster
NAME ENDPOINTS AGE
gluster-cluster 192.168.122.21:1,192.168.122.22:1 1m

NOTE

To persist the Gluster endpoints, you also need to create a service.

NOTE

Endpoints are name-spaced. Each project accessing the Gluster volume needs its own
endpoints.

Example 23.12. GlusterFS Service Definition

The name of the service. If using a service, then the endpoints name must match the service
name.

The port should match the same port used in the endpoints.

 - port: 1
 protocol: TCP
- addresses:
 - ip: 192.168.122.22
 ports:
 - port: 1
 protocol: TCP

apiVersion: v1
kind: Service
metadata:

 name: gluster-cluster 1
spec:
 ports:

 - port: 1 2

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

477

1

2

3

4

5

6

7

Save the service definition to a file, for example gluster-service.yaml, then create the endpoints object:

oc create -f gluster-service.yaml
endpoints "gluster-cluster" created

Verify that the service was created:

oc get service gluster-cluster
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
gluster-cluster 10.0.0.130 <none> 1/TCP 9s

23.5.4. Creating the Persistent Volume

Next, before creating the PV object, define the persistent volume in OpenShift Container Platform:

Persistent Volume Object Definition Using GlusterFS

The name of the PV, which is referenced in pod definitions or displayed in various oc volume
commands.

The amount of storage allocated to this volume.

accessModes are used as labels to match a PV and a PVC. They currently do not define any form
of access control.

This defines the volume type being used. In this case, the glusterfs plug-in is defined.

This references the endpoints named above.

This is the Gluster volume name, preceded by /.

The volume reclaim policy Retain indicates that the volume will be preserved after the pods
accessing it terminates. For GlusterFS, the accepted values include Retain, and Delete.

Save the PV definition to a file, for example gluster-pv.yaml, and create the persistent volume:

apiVersion: v1
kind: PersistentVolume
metadata:

 name: gluster-pv 1
spec:
 capacity:

 storage: 1Gi 2
 accessModes:

 - ReadWriteMany 3

 glusterfs: 4

 endpoints: gluster-cluster 5

 path: /HadoopVol 6
 readOnly: false

 persistentVolumeReclaimPolicy: Retain 7

OpenShift Container Platform 3.7 Installation and Configuration

478

1

2

3

oc create -f gluster-pv.yaml
persistentvolume "gluster-pv" created

Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE
gluster-pv <none> 1Gi RWX Available
37s

23.5.5. Creating the Persistent Volume Claim

A persistent volume claim (PVC) specifies the desired access mode and storage capacity. Currently,
based on only these two attributes, a PVC is bound to a single PV. Once a PV is bound to a PVC, that
PV is essentially tied to the PVC’s project and cannot be bound to by another PVC. There is a one-to-
one mapping of PVs and PVCs. However, multiple pods in the same project can use the same PVC.

Example 23.13. PVC Object Definition

The claim name is referenced by the pod under its volumes section.

As mentioned above for PVs, the accessModes do not enforce access rights, but rather act as
labels to match a PV to a PVC.

This claim will look for PVs offering 1Gi or greater capacity.

Save the PVC definition to a file, for example gluster-claim.yaml, and create the PVC:

oc create -f gluster-claim.yaml
persistentvolumeclaim "gluster-claim" created

Verify the PVC was created and bound to the expected PV:

oc get pvc
NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES
AGE
gluster-claim <none> Bound gluster-pv 1Gi RWX
24s

 1

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

 name: gluster-claim 1
spec:
 accessModes:

 - ReadWriteMany 2
 resources:
 requests:

 storage: 1Gi 3

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

479

1

1

2

The claim was bound to the gluster-pv PV.

23.5.6. Defining GlusterFS Volume Access

Access is necessary to a node in the Gluster-trusted storage pool. On this node, examine the glusterfs-
fuse mount:

ls -lZ /mnt/glusterfs/
drwxrwx---. yarn hadoop system_u:object_r:fusefs_t:s0 HadoopVol

id yarn
uid=592(yarn) gid=590(hadoop) groups=590(hadoop)

 1

 2

The owner has ID 592.

The group has ID 590.

In order to access the HadoopVol volume, the container must match the SELinux label, and either run
with a UID of 592, or with 590 in its supplemental groups. It is recommended to gain access to the
volume by matching the Gluster mount’s groups, which is defined in the pod definition below.

By default, SELinux does not allow writing from a pod to a remote Gluster server. To enable writing to
GlusterFS volumes with SELinux enforcing on each node, run:

setsebool -P virt_sandbox_use_fusefs on

NOTE

The virt_sandbox_use_fusefs boolean is defined by the docker-selinux package. If
you get an error saying it is not defined, ensure that this package is installed.

23.5.7. Creating the Pod using NGINX Web Server image

A pod definition file or a template file can be used to define a pod. Below is a pod specification that
creates a single container and mounts the Gluster volume for read-write access:

NOTE

The NGINX image may require to run in privileged mode to create the mount and run
properly. An easy way to accomplish this is to simply add your user to the privileged
Security Context Constraint (SCC):

$ oc adm policy add-scc-to-user privileged myuser

Then, add the privileged: true to the containers securityContext: section of the
YAML file (as seen in the example below).

Managing Security Context Constraints provides additional information regarding SCCs.

OpenShift Container Platform 3.7 Installation and Configuration

480

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-manage-scc

1

2

3 6

4

5

7

Example 23.14. Pod Object Definition using NGINX image

The name of this pod as displayed by oc get pod.

The image run by this pod. In this case, we are using a standard NGINX image.

The name of the volume. This name must be the same in both the containers and volumes
sections.

The mount path as seen in the container.

The SupplementalGroup ID (Linux Groups) to be assigned at the pod level and as discussed
this should match the POSIX permissions on the Gluster volume.

The PVC that is bound to the Gluster cluster.

Save the pod definition to a file, for example gluster-pod1.yaml, and create the pod:

oc create -f gluster-pod1.yaml
pod "gluster-pod1" created

Verify the pod was created:

oc get pod
NAME READY STATUS RESTARTS AGE
gluster-pod1 1/1 Running 0 31s

apiVersion: v1
kind: Pod
metadata:
 name: gluster-pod1
 labels:

 name: gluster-pod1 1
spec:
 containers:
 - name: gluster-pod1

 image: nginx 2
 ports:
 - name: web
 containerPort: 80
 securityContext:
 privileged: true
 volumeMounts:

 - name: gluster-vol1 3

 mountPath: /usr/share/nginx/html 4
 readOnly: false
 securityContext:

 supplementalGroups: [590] 5
 volumes:

 - name: gluster-vol1 6
 persistentVolumeClaim:

 claimName: gluster-claim 7

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

481

1

 1

After a minute or so, the pod will be in the Running state.

More details are shown in the oc describe pod command:

oc describe pod gluster-pod1
Name: gluster-pod1

Namespace: default 1
Security Policy: privileged
Node: ose1.rhs/192.168.122.251
Start Time: Wed, 24 Aug 2016 12:37:45 -0400
Labels: name=gluster-pod1
Status: Running

IP: 172.17.0.2 2
Controllers: <none>
Containers:
 gluster-pod1:
 Container ID:
docker://e67ed01729e1dc7369c5112d07531a27a7a02a7eb942f17d1c5fce32d8c31a2d
 Image: nginx
 Image ID:
docker://sha256:4efb2fcdb1ab05fb03c9435234343c1cc65289eeb016be86193e88d3a5
d84f6b
 Port: 80/TCP
 State: Running
 Started: Wed, 24 Aug 2016 12:37:52 -0400
 Ready: True
 Restart Count: 0
 Volume Mounts:
 /usr/share/nginx/html/test from glustervol (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-
1n70u (ro)
 Environment Variables: <none>
Conditions:
 Type Status
 Initialized True
 Ready True
 PodScheduled True
Volumes:
 glustervol:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in
the same namespace)

 ClaimName: gluster-claim 3
 ReadOnly: false
 default-token-1n70u:
 Type: Secret (a volume populated by a Secret)
 SecretName: default-token-1n70u
QoS Tier: BestEffort

Events: 4
 FirstSeen LastSeen Count From SubobjectPath Type Reason Message
 --------- -------- ----- ---- ------------- -------- ------ ----

OpenShift Container Platform 3.7 Installation and Configuration

482

1

2

3

4

 10s 10s 1 {default-scheduler } Normal Scheduled Successfully
assigned gluster-pod1 to ose1.rhs
 9s 9s 1 {kubelet ose1.rhs} spec.containers{gluster-pod1} Normal
Pulling pulling image "nginx"
 4s 4s 1 {kubelet ose1.rhs} spec.containers{gluster-pod1} Normal
Pulled Successfully pulled image "nginx"
 3s 3s 1 {kubelet ose1.rhs} spec.containers{gluster-pod1} Normal
Created Created container with docker id e67ed01729e1
 3s 3s 1 {kubelet ose1.rhs} spec.containers{gluster-pod1} Normal
Started Started container with docker id e67ed01729e1

The project (namespace) name.

The IP address of the OpenShift Container Platform node running the pod.

The PVC name used by the pod.

The list of events resulting in the pod being launched and the Gluster volume being mounted.

There is more internal information, including the SCC used to authorize the pod, the pod’s user and group
IDs, the ⁠SELinux label, and more shown in the oc get pod <name> -o yaml command:

oc get pod gluster-pod1 -o yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:

 openshift.io/scc: privileged 1
 creationTimestamp: 2016-08-24T16:37:45Z
 labels:
 name: gluster-pod1
 name: gluster-pod1

 namespace: default 2
 resourceVersion: "482"
 selfLink: /api/v1/namespaces/default/pods/gluster-pod1
 uid: 15afda77-6a19-11e6-aadb-525400f7256d
spec:
 containers:
 - image: nginx
 imagePullPolicy: Always
 name: gluster-pod1
 ports:
 - containerPort: 80
 name: web
 protocol: TCP
 resources: {}
 securityContext:

 privileged: true 3
 terminationMessagePath: /dev/termination-log
 volumeMounts:
 - mountPath: /usr/share/nginx/html
 name: glustervol
 - mountPath: /var/run/secrets/kubernetes.io/serviceaccount
 name: default-token-1n70u
 readOnly: true

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

483

1

2

 dnsPolicy: ClusterFirst
 host: ose1.rhs
 imagePullSecrets:
 - name: default-dockercfg-20xg9
 nodeName: ose1.rhs
 restartPolicy: Always
 securityContext:
 supplementalGroups:

 - 590 4
 serviceAccount: default
 serviceAccountName: default
 terminationGracePeriodSeconds: 30
 volumes:
 - name: glustervol
 persistentVolumeClaim:

 claimName: gluster-claim 5
 - name: default-token-1n70u
 secret:
 secretName: default-token-1n70u
status:
 conditions:
 - lastProbeTime: null
 lastTransitionTime: 2016-08-24T16:37:45Z
 status: "True"
 type: Initialized
 - lastProbeTime: null
 lastTransitionTime: 2016-08-24T16:37:53Z
 status: "True"
 type: Ready
 - lastProbeTime: null
 lastTransitionTime: 2016-08-24T16:37:45Z
 status: "True"
 type: PodScheduled
 containerStatuses:
 - containerID:
docker://e67ed01729e1dc7369c5112d07531a27a7a02a7eb942f17d1c5fce32d8c31a2d
 image: nginx
 imageID:
docker://sha256:4efb2fcdb1ab05fb03c9435234343c1cc65289eeb016be86193e88d3a5
d84f6b
 lastState: {}
 name: gluster-pod1
 ready: true
 restartCount: 0
 state:
 running:
 startedAt: 2016-08-24T16:37:52Z
 hostIP: 192.168.122.251
 phase: Running
 podIP: 172.17.0.2
 startTime: 2016-08-24T16:37:45Z

The SCC used by the pod.

The project (namespace) name.

OpenShift Container Platform 3.7 Installation and Configuration

484

3

4

5

The security context level requested, in this case privileged

The supplemental group ID for the pod (all containers).

The PVC name used by the pod.

23.6. COMPLETE EXAMPLE OF DYNAMIC PROVISIONING USING
CONTAINERIZED GLUSTERFS

23.6.1. Overview

NOTE

This example assumes a functioning OpenShift Container Platform cluster along with
Heketi and GlusterFS. All oc commands are executed on the OpenShift Container
Platform master host.

This topic provides an end-to-end example of how to dynamically provision GlusterFS volumes. In this
example, a simple NGINX HelloWorld application is deployed using the Red Hat Container Native
Storage (CNS) solution. CNS hyper-converges GlusterFS storage by containerizing it into the OpenShift
Container Platform cluster.

The Red Hat Gluster Storage Administration Guide can also provide additional information about
GlusterFS.

To get started, follow the gluster-kubernetes quickstart guide for an easy Vagrant-based installation and
deployment of a working OpenShift Container Platform cluster with Heketi and GlusterFS containers.

23.6.2. Verify the Environment and Gather Needed Information

NOTE

At this point, there should be a working OpenShift Container Platform cluster deployed,
and a working Heketi server with GlusterFS.

1. Verify and view the cluster environment, including nodes and pods:

$ oc get nodes,pods
NAME STATUS AGE
master Ready 22h
node0 Ready 22h
node1 Ready 22h
node2 Ready 22h
NAME READY STATUS
RESTARTS AGE 1/1 Running 0
1d
glusterfs-node0-2509304327-vpce1 1/1 Running 0
1d 192.168.10.100 node0
glusterfs-node1-3290690057-hhq92 1/1 Running 0

1d 192.168.10.101 node1 1
glusterfs-node2-4072075787-okzjv 1/1 Running 0

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

485

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html/container-native_storage_for_openshift_container_platform/
https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3/html/Administration_Guide/index.html
https://github.com/gluster/gluster-kubernetes

1

2

1

1d 192.168.10.102 node2
heketi-3017632314-yyngh 1/1 Running 0

1d 10.42.0.0 node0 2

Example of GlusterFS storage pods running. There are three in this example.

Heketi server pod.

2. If not already set in the environment, export the HEKETI_CLI_SERVER:

$ export HEKETI_CLI_SERVER=$(oc describe svc/heketi | grep
"Endpoints:" | awk '{print "http://"$2}')

3. Identify the Heketi REST URL and server IP address:

$ echo $HEKETI_CLI_SERVER
http://10.42.0.0:8080

4. Identify the Gluster endpoints that are needed to pass in as a parameter into the storage class,
which is used in a later step (heketi-storage-endpoints).

$ oc get endpoints
NAME ENDPOINTS
AGE
heketi 10.42.0.0:8080
22h
heketi-storage-endpoints

192.168.10.100:1,192.168.10.101:1,192.168.10.102:1 22h 1
kubernetes 192.168.10.90:6443
23h

The defined GlusterFS endpoints. In this example, they are called heketi-storage-
endpoints.

NOTE

By default, user_authorization is disabled. If enabled, you may need to find the rest
user and rest user secret key. (This is not applicable for this example, as any values will
work).

23.6.3. Create a Storage Class for Your GlusterFS Dynamic Provisioner

Storage classes manage and enable persistent storage in OpenShift Container Platform. Below is an
example of a Storage class requesting 5GB of on-demand storage to be used with your HelloWorld
application.

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

 name: gluster-heketi 1

provisioner: kubernetes.io/glusterfs 2

OpenShift Container Platform 3.7 Installation and Configuration

486

1

2

3

4

5

6

1

2

 parameters:

 endpoint: "heketi-storage-endpoints" 3

 resturl: "http://10.42.0.0:8080" 4

 restuser: "joe" 5

 restuserkey: "My Secret Life" 6

Name of the storage class.

The provisioner.

The GlusterFS-defined endpoint (oc get endpoints).

Heketi REST URL, taken from Step 1 above (echo $HEKETI_CLI_SERVER).

Rest username. This can be any value since authorization is turned off.

Rest user key. This can be any value.

1. Create the Storage Class YAML file, save it, then submit it to OpenShift Container Platform:

$ oc create -f gluster-storage-class.yaml
storageclass "gluster-heketi" created

2. View the storage class:

$ oc get storageclass
NAME TYPE
gluster-heketi kubernetes.io/glusterfs

23.6.4. Create a PVC to Request Storage for Your Application

1. Create a persistent volume claim (PVC) requesting 5GB of storage.
During that time, the Dynamic Provisioning Framework and Heketi will automatically provision a
new GlusterFS volume and generate the persistent volume (PV) object:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: gluster1
spec:
 accessModes:
 - ReadWriteOnce

 storageClassName: gluster-heketi 1
 resources:
 requests:

 storage: 5Gi 2

The name of the storage class.

The amount of storage requested.

1. Create the PVC YAML file, save it, then submit it to OpenShift Container Platform:

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

487

1

$ oc create -f gluster-pvc.yaml
persistentvolumeclaim "gluster1" created

2. View the PVC:

$ oc get pvc
NAME STATUS VOLUME
CAPACITY ACCESSMODES AGE
gluster1 Bound pvc-7d37c7bd-bb5b-11e6-b81e-525400d87180 5Gi
RWO 14h

Notice that the PVC is bound to a dynamically created volume.

3. View the persistent volume (PV):

$ oc get pv
NAME CAPACITY ACCESSMODES
RECLAIMPOLICY STATUS CLAIM REASON AGE
pvc-7d37c7bd-bb5b-11e6-b81e-525400d87180 5Gi RWO
Delete Bound default/gluster1 14h

23.6.5. Create a NGINX Pod That Uses the PVC

At this point, you have a dynamically created GlusterFS volume, bound to a PVC. Now, you can use this
claim in a pod. Create a simple NGINX pod:

apiVersion: v1
kind: Pod
metadata:
 name: nginx-pod
 labels:
 name: nginx-pod
spec:
 containers:
 - name: nginx-pod
 image: gcr.io/google_containers/nginx-slim:0.8
 ports:
 - name: web
 containerPort: 80
 securityContext:
 privileged: true
 volumeMounts:
 - name: gluster-vol1
 mountPath: /usr/share/nginx/html
 volumes:
 - name: gluster-vol1
 persistentVolumeClaim:

 claimName: gluster1 1

The name of the PVC created in the previous step.

1. Create the Pod YAML file, save it, then submit it to OpenShift Container Platform:

OpenShift Container Platform 3.7 Installation and Configuration

488

$ oc create -f nginx-pod.yaml
pod "gluster-pod1" created

2. View the pod:

$ oc get pods -o wide
NAME READY STATUS RESTARTS
AGE IP NODE
nginx-pod 1/1 Running 0
9m 10.38.0.0 node1
glusterfs-node0-2509304327-vpce1 1/1 Running 0
1d 192.168.10.100 node0
glusterfs-node1-3290690057-hhq92 1/1 Running 0
1d 192.168.10.101 node1
glusterfs-node2-4072075787-okzjv 1/1 Running 0
1d 192.168.10.102 node2
heketi-3017632314-yyngh 1/1 Running 0
1d 10.42.0.0 node0

NOTE

This may take a few minutes, as the the pod may need to download the image if it
does not already exist.

3. oc exec into the container and create an index.html file in the mountPath definition of the
pod:

$ oc exec -ti nginx-pod /bin/sh
$ cd /usr/share/nginx/html
$ echo 'Hello World from GlusterFS!!!' > index.html
$ ls
index.html
$ exit

4. Using the curl command from the master node, curl the URL of the pod:

$ curl http://10.38.0.0
Hello World from GlusterFS!!!

5. Check your Gluster pod to ensure that the index.html file was written. Choose any of the Gluster
pods:

$ oc exec -ti glusterfs-node1-3290690057-hhq92 /bin/sh
$ mount | grep heketi
/dev/mapper/VolGroup00-LogVol00 on /var/lib/heketi type xfs
(rw,relatime,seclabel,attr2,inode64,noquota)
/dev/mapper/vg_f92e09091f6b20ab12b02a2513e4ed90-
brick_1e730a5462c352835055018e1874e578 on
/var/lib/heketi/mounts/vg_f92e09091f6b20ab12b02a2513e4ed90/brick_1e7
30a5462c352835055018e1874e578 type xfs
(rw,noatime,seclabel,nouuid,attr2,inode64,logbsize=256k,sunit=512,sw
idth=512,noquota)
/dev/mapper/vg_f92e09091f6b20ab12b02a2513e4ed90-

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

489

brick_d8c06e606ff4cc29ccb9d018c73ee292 on
/var/lib/heketi/mounts/vg_f92e09091f6b20ab12b02a2513e4ed90/brick_d8c
06e606ff4cc29ccb9d018c73ee292 type xfs
(rw,noatime,seclabel,nouuid,attr2,inode64,logbsize=256k,sunit=512,sw
idth=512,noquota)

$ cd
/var/lib/heketi/mounts/vg_f92e09091f6b20ab12b02a2513e4ed90/brick_d8c
06e606ff4cc29ccb9d018c73ee292/brick
$ ls
index.html
$ cat index.html
Hello World from GlusterFS!!!

23.7. COMPLETE EXAMPLE OF DYNAMIC PROVISIONING USING
DEDICATED GLUSTERFS

23.7.1. Overview

NOTE

This example assumes a functioning OpenShift Container Platform cluster along with
Heketi and GlusterFS. All oc commands are executed on the OpenShift Container
Platform master host.

Container Native Storage (CNS) using GlusterFS and Heketi is a great way to perform dynamic
provisioning for shared filesystems in a Kubernetes-based cluster like OpenShift Container Platform.
However, if an existing, dedicated Gluster cluster is available external to the OpenShift Container
Platform cluster, you can also provision storage from it rather than a containerized GlusterFS
implementation.

This example:

Shows how simple it is to install and configure a Heketi server to work with OpenShift Container
Platform to perform dynamic provisioning.

Assumes some familiarity with Kubernetes and the Kubernetes Persistent Storage model.

Assumes you have access to an existing, dedicated GlusterFS cluster that has raw devices
available for consumption and management by a Heketi server. If you do not have this, you can
create a three node cluster using your virtual machine solution of choice. Ensure sure you create
a few raw devices and give plenty of space (at least 100GB recommended). See Red Hat
Gluster Storage Installation Guide.

23.7.2. Environment and Prerequisites

This example uses the following environment and prerequisites:

GlusterFS cluster running Red Hat Gluster Storage (RHGS) 3.1. Three nodes, each with at least
two 100GB RAW devices:

gluster23.rhs (192.168.1.200)

gluster24.rhs (192.168.1.201)

OpenShift Container Platform 3.7 Installation and Configuration

490

http://kubernetes.io/docs/user-guide/persistent-volumes/
https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.1/html/Installation_Guide/

gluster25.rhs (192.168.1.202)

Heketi service/client node running Red Hat Enterprise Linux (RHEL) 7.x or RHGS 3.1. Heketi
can be installed on one of the Gluster nodes:

glusterclient2.rhs (192.168.1.203)

OpenShift Container Platform node. This example uses an all-in-one OpenShift Container
Platform cluster (master and node on a single host), though it can work using a standard, multi-
node cluster as well.

k8dev2.rhs (192.168.1.208)

23.7.3. Installing and Configuring Heketi

Heketi is used to manage the Gluster cluster storage (adding volumes, removing volumes, etc.). As
stated, this can be RHEL or RHGS, and can be installed on one of the existing Gluster storage nodes.
This example uses a stand-alone RHGS 3.1 node running Heketi.

The Red Hat Gluster Storage Administration Guide can be used a reference during this process.

1. Install Heketi and the Heketi client. From the host designated to run Heketi and the Heketi client,
run:

yum install heketi heketi-client -y

NOTE

The Heketi server can be any of the existing hosts, though typically this will be the
OpenShift Container Platform master host. This example, however, uses a
separate host not part of the GlusterFS or OpenShift Container Platform cluster.

2. Create and install Heketi private keys on each GlusterFS cluster node. From the host that is
running Heketi:

ssh-keygen -f /etc/heketi/heketi_key -t rsa -N ''
ssh-copy-id -i /etc/heketi/heketi_key.pub root@gluster23.rhs
ssh-copy-id -i /etc/heketi/heketi_key.pub root@gluster24.rhs
ssh-copy-id -i /etc/heketi/heketi_key.pub root@gluster25.rhs
chown heketi:heketi /etc/heketi/heketi_key*

3. Edit the /etc/heketi/heketi.json file to setup the SSH executor. Below is an excerpt from the
/etc/heketi/heketi.json file; the parts to configure are the executor and SSH sections:

 "executor": "ssh", 1

 "_sshexec_comment": "SSH username and private key file
information",
 "sshexec": {

 "keyfile": "/etc/heketi/heketi_key", 2

 "user": "root", 3

 "port": "22", 4

 "fstab": "/etc/fstab" 5
 },

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

491

https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.1/html/Administration_Guide/ch06s02.html

1

2

3

4

5

Change executor from mock to ssh.

Add in the public key directory specified in previous step.

Update user to a user that has sudo or root access.

Set port to 22 and remove all other text.

Set fstab to the default, /etc/fstab and remove all other text.

4. Restart and enable service:

systemctl restart heketi
systemctl enable heketi

5. Test the connection to Heketi:

curl http://glusterclient2.rhs:8080/hello
Hello from Heketi

6. Set an environment variable for the Heketi server:

export HEKETI_CLI_SERVER=http://glusterclient2.rhs:8080

23.7.4. Loading Topology

Topology is used to tell Heketi about the environment and what nodes and devices it will manage.

NOTE

Heketi is currently limited to managing raw devices only. If a device is already a Gluster
volume, it will be skipped and ignored.

1. Create and load the topology file. There is a sample file located in /usr/share/heketi/topology-
sample.json by default, or /etc/heketi depending on how it was installed.

{
 "clusters": [
 {
 "nodes": [
 {
 "node": {
 "hostnames": {
 "manage": [
 "gluster23.rhs"
],
 "storage": [
 "192.168.1.200"
]
 },
 "zone": 1
 },
 "devices": [

OpenShift Container Platform 3.7 Installation and Configuration

492

2. Using heketi-cli, run the following command to load the topology of your environment.

heketi-cli topology load --json=topology.json

 Found node gluster23.rhs on cluster
bdf9d8ca3fa269ff89854faf58f34b9a
 Adding device /dev/sde ... OK
 Adding device /dev/sdf ... OK
 Creating node gluster24.rhs ... ID:
8e677d8bebe13a3f6846e78a67f07f30
 Adding device /dev/sde ... OK

 "/dev/sde",
 "/dev/sdf"
]
 },
 {
 "node": {
 "hostnames": {
 "manage": [
 "gluster24.rhs"
],
 "storage": [
 "192.168.1.201"
]
 },
 "zone": 1
 },
 "devices": [
 "/dev/sde",
 "/dev/sdf"
]
 },
 {
 "node": {
 "hostnames": {
 "manage": [
 "gluster25.rhs"
],
 "storage": [
 "192.168.1.202"
]
 },
 "zone": 1
 },
 "devices": [
 "/dev/sde",
 "/dev/sdf"
]
 }
]
 }
]
}

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

493

1

1

2

 Adding device /dev/sdf ... OK
...
...

3. Create a Gluster volume to verify Heketi:

heketi-cli volume create --size=50

4. View the volume information from one of the the Gluster nodes:

gluster volume info

 Volume Name: vol_335d247ac57ecdf40ac616514cc6257f 1
 Type: Distributed-Replicate
 Volume ID: 75be7940-9b09-4e7f-bfb0-a7eb24b411e3
 Status: Started
...
...

Volume created by heketi-cli.

23.7.5. Dynamically Provision a Volume

1. Create a StorageClass object definition. The definition below is based on the minimum
requirements needed for this example to work with OpenShift Container Platform. See Dynamic
Provisioning and Creating Storage Classes for additional parameters and specification
definitions.

The Heketi server from the HEKETI_CLI_SERVER environment variable.

Since authentication is not turned on in this example, set to false.

2. From the OpenShift Container Platform master host, create the storage class:

oc create -f glusterfs-storageclass1.yaml
storageclass "gluster-dyn" created

3. Create a persistent volume claim (PVC), requesting the newly-created storage class. For
example:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: gluster-dyn
provisioner: kubernetes.io/glusterfs
parameters:

 resturl: "http://glusterclient2.rhs:8080" 1

 restauthenabled: "false" 2

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

OpenShift Container Platform 3.7 Installation and Configuration

494

1

2

4. From the OpenShift Container Platform master host, create the PVC:

oc create -f glusterfs-pvc-storageclass.yaml
persistentvolumeclaim "gluster-dyn-pvc" created

5. View the PVC to see that the volume was dynamically created and bound to the PVC:

oc get pvc
NAME STATUS VOLUME
CAPACITY ACCESSMODES STORAGECLASS AGE
gluster-dyn-pvc Bound pvc-78852230-d8e2-11e6-a3fa-0800279cf26f
30Gi RWX gluster-dyn 42s

6. Verify and view the new volume on one of the Gluster nodes:

gluster volume info

 Volume Name: vol_335d247ac57ecdf40ac616514cc6257f 1
 Type: Distributed-Replicate
 Volume ID: 75be7940-9b09-4e7f-bfb0-a7eb24b411e3
 Status: Started
 ...

 Volume Name: vol_f1404b619e6be6ef673e2b29d58633be 2
 Type: Distributed-Replicate
 Volume ID: 7dc234d0-462f-4c6c-add3-fb9bc7e8da5e
 Status: Started
 Number of Bricks: 2 x 2 = 4
 ...

Volume created by heketi-cli.

New dynamically created volume triggered by Kubernetes and the storage class.

23.7.6. Creating a NGINX Pod That Uses the PVC

At this point, you have a dynamically created GlusterFS volume bound to a PVC. You can now now
utilize this PVC in a pod. In this example, create a simple NGINX pod.

1. Create the pod object definition:

 name: gluster-dyn-pvc
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 30Gi
 storageClassName: gluster-dyn

apiVersion: v1
kind: Pod
metadata:
 name: gluster-pod1

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

495

1 The name of the PVC created in the previous step.

2. From the OpenShift Container Platform master host, create the pod:

oc create -f nginx-pod.yaml
pod "gluster-pod1" created

3. View the pod. Give it a few minutes, as it might need to download the image if it does not
already exist:

oc get pods -o wide
NAME READY STATUS RESTARTS
AGE IP NODE
gluster-pod1 1/1 Running 0
9m 10.38.0.0 node1

4. Now remote into the container with oc exec and create an index.html file:

oc exec -ti gluster-pod1 /bin/sh
$ cd /usr/share/nginx/html
$ echo 'Hello World from GlusterFS!!!' > index.html
$ ls
index.html
$ exit

5. Now curl the URL of the pod:

curl http://10.38.0.0
Hello World from GlusterFS!!!

23.8. EXAMPLE: CONTAINERIZED HEKETI FOR MANAGING
DEDICATED GLUSTERFS STORAGE

 labels:
 name: gluster-pod1
spec:
 containers:
 - name: gluster-pod1
 image: gcr.io/google_containers/nginx-slim:0.8
 ports:
 - name: web
 containerPort: 80
 securityContext:
 privileged: true
 volumeMounts:
 - name: gluster-vol1
 mountPath: /usr/share/nginx/html
 volumes:
 - name: gluster-vol1
 persistentVolumeClaim:

 claimName: gluster-dyn-pvc 1

OpenShift Container Platform 3.7 Installation and Configuration

496

23.8.1. Overview

This example provides information about the integration, deployment, and management of GlusterFS
containerized storage nodes by using Heketi running on OpenShift Container Platform.

This example:

Shows how to install and configure a Heketi server on OpenShift to perform dynamic
provisioning.

Assumes you have familiarity with Kubernetes and the Kubernetes Persistent Storage model.

Assumes you have access to an existing, dedicated GlusterFS cluster that has raw devices
available for consumption and management by a Heketi server. If you do not have this, you can
create a three node cluster using your virtual machine solution of choice. Ensure sure you create
a few raw devices and give plenty of space (at least 100GB recommended). See Red Hat
Gluster Storage Installation Guide.

23.8.2. Environment and Prerequisites

This example uses the following environment and prerequisites:

GlusterFS cluster running Red Hat Gluster Storage (RHGS) 3.1. Three nodes, each with at least
two 100GB RAW devices:

gluster23.rhs (192.168.1.200)

gluster24.rhs (192.168.1.201)

gluster25.rhs (192.168.1.202)

This example uses an all-in-one OpenShift Container Platform cluster (master and node on a
single host), though it can work using a standard, multi-node cluster as well.

k8dev2.rhs (192.168.1.208)

23.8.3. Installing and Configuring Heketi

Heketi is used to manage the Gluster cluster storage (adding volumes, removing volumes, etc.).
Download deploy-heketi-template to install Heketi on OpenShift.

NOTE

This template file places the database in an EmptyDir volume. Adjust the database
accordingly for a reliable persistent storage.

1. Create a new project:

2. Enable privileged containers in the new project:

3. Register the deploy-heketi template:

$ oc new-project <project-name>

$ oc adm policy add-scc-to-user privileged -z default

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

497

https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.1/html/Installation_Guide/
https://github.com/heketi/heketi/blob/master/extras/openshift/templates/deploy-heketi-template.json

4. Deploy the bootstrap Heketi container:

5. Wait until the deploy-heketi pod starts and all services are running. Then get Heketi service
details:

6. Check if Heketi services are running properly, it must return Hello from Heketi.

7. Set an environment variable for the Heketi server:

23.8.4. Loading Topology

Topology is used to tell Heketi about the environment and what nodes and devices it will manage.

NOTE

Heketi is currently limited to managing raw devices only. If a device is already a Gluster
volume, it is skipped and ignored.

1. Create and load the topology file. There is a sample file located in /usr/share/heketi/topology-
sample.json by default, or /etc/heketi depending on how it was installed.

NOTE

Depending upon your method of installation this file may not exist. If it is missing,
manually create the topology-sample.json file, as shown in the following
example.

$ oc create -f <template-path>/deploy-heketi-template

$ oc process deploy-heketi -v \
 HEKETI_KUBE_NAMESPACE=<project-name> \
 HEKETI_KUBE_APIHOST=<master-url-and-port> \
 HEKETI_KUBE_INSECURE=y \
 HEKETI_KUBE_USER=<cluster-admin-username> \
 HEKETI_KUBE_PASSWORD=<cluster-admin-password> | oc create -
f -

$ oc get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
deploy-heketi 172.30.96.173 <none> 8080/TCP 2m

$ curl http://<cluster-ip>:8080/hello
Hello from Heketi

$ export HEKETI_CLI_SERVER=http://<cluster-ip>:8080

{
 "clusters": [
 {
 "nodes": [
 {

OpenShift Container Platform 3.7 Installation and Configuration

498

2. Run the following command to load the topology of your environment.

 "node": {
 "hostnames": {
 "manage": [
 "gluster23.rhs"
],
 "storage": [
 "192.168.1.200"
]
 },
 "zone": 1
 },
 "devices": [
 "/dev/sde",
 "/dev/sdf"
]
 },
 {
 "node": {
 "hostnames": {
 "manage": [
 "gluster24.rhs"
],
 "storage": [
 "192.168.1.201"
]
 },
 "zone": 1
 },
 "devices": [
 "/dev/sde",
 "/dev/sdf"
]
 },
 {
 "node": {
 "hostnames": {
 "manage": [
 "gluster25.rhs"
],
 "storage": [
 "192.168.1.202"
]
 },
 "zone": 1
 },
 "devices": [
 "/dev/sde",
 "/dev/sdf"
]
 }
]
 }
]
}

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

499

1

3. Create a Gluster volume to verify Heketi:

4. View the volume information from one of the the Gluster nodes:

Volume created by heketi-cli.

23.8.5. Dynamically Provision a Volume

NOTE

If you installed OpenShift Container Platform by using the BYO (Bring your own)
OpenShift Ansible inventory configuration files for either native or external GlusterFS
instance, the GlusterFS StorageClass automatically get created during the installation.
For such cases you can skip the following storage class creation steps and directly
proceed with creating persistent volume claim instruction.

1. Create a StorageClass object definition. The following definition is based on the minimum
requirements needed for this example to work with OpenShift Container Platform. See Dynamic
Provisioning and Creating Storage Classes for additional parameters and specification
definitions.

$ heketi-cli topology load --json=topology-sample.json

 Found node gluster23.rhs on cluster
bdf9d8ca3fa269ff89854faf58f34b9a
 Adding device /dev/sde ... OK
 Adding device /dev/sdf ... OK
 Creating node gluster24.rhs ... ID:
8e677d8bebe13a3f6846e78a67f07f30
 Adding device /dev/sde ... OK
 Adding device /dev/sdf ... OK
...

$ heketi-cli volume create --size=50

$ gluster volume info

 Volume Name: vol_335d247ac57ecdf40ac616514cc6257f 1
 Type: Distributed-Replicate
 Volume ID: 75be7940-9b09-4e7f-bfb0-a7eb24b411e3
 Status: Started
...

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: gluster-dyn
provisioner: kubernetes.io/glusterfs
parameters:

 resturl: "http://glusterclient2.rhs:8080" 1

 restauthenabled: "false" 2

OpenShift Container Platform 3.7 Installation and Configuration

500

https://github.com/openshift/openshift-ansible/tree/master/inventory/byo
https://github.com/openshift/openshift-ansible/blob/master/inventory/byo/hosts.byo.glusterfs.native.example
https://github.com/openshift/openshift-ansible/blob/master/inventory/byo/hosts.byo.glusterfs.external.example

1

2

The Heketi server from the HEKETI_CLI_SERVER environment variable.

Since authentication is not turned on in this example, set to false.

2. From the OpenShift Container Platform master host, create the storage class:

3. Create a persistent volume claim (PVC), requesting the newly-created storage class. For
example:

4. From the OpenShift Container Platform master host, create the PVC:

5. View the PVC to see that the volume was dynamically created and bound to the PVC:

6. Verify and view the new volume on one of the Gluster nodes:

$ oc create -f glusterfs-storageclass1.yaml
storageclass "gluster-dyn" created

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: gluster-dyn-pvc
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 30Gi
 storageClassName: gluster-dyn

$ oc create -f glusterfs-pvc-storageclass.yaml
persistentvolumeclaim "gluster-dyn-pvc" created

$ oc get pvc
NAME STATUS VOLUME
CAPACITY ACCESSMODES STORAGECLASS AGE
gluster-dyn-pvc Bound pvc-78852230-d8e2-11e6-a3fa-0800279cf26f
30Gi RWX gluster-dyn 42s

$ gluster volume info

 Volume Name: vol_335d247ac57ecdf40ac616514cc6257f 1
 Type: Distributed-Replicate
 Volume ID: 75be7940-9b09-4e7f-bfb0-a7eb24b411e3
 Status: Started
 ...

 Volume Name: vol_f1404b619e6be6ef673e2b29d58633be 2
 Type: Distributed-Replicate
 Volume ID: 7dc234d0-462f-4c6c-add3-fb9bc7e8da5e
 Status: Started
 Number of Bricks: 2 x 2 = 4
 ...

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

501

1

2

1

Volume created by heketi-cli.

New dynamically created volume triggered by Kubernetes and the storage class.

23.8.6. Creating a NGINX Pod That Uses the PVC

At this point, you have a dynamically created GlusterFS volume bound to a PVC. You can now now
utilize this PVC in a pod. In this example, create a simple NGINX pod.

1. Create the pod object definition:

The name of the PVC created in the previous step.

2. From the OpenShift Container Platform master host, create the pod:

3. View the pod. Give it a few minutes, as it might need to download the image if it does not
already exist:

4. Now remote into the container with oc exec and create an index.html file:

apiVersion: v1
kind: Pod
metadata:
 name: gluster-pod1
 labels:
 name: gluster-pod1
spec:
 containers:
 - name: gluster-pod1
 image: gcr.io/google_containers/nginx-slim:0.8
 ports:
 - name: web
 containerPort: 80
 securityContext:
 privileged: true
 volumeMounts:
 - name: gluster-vol1
 mountPath: /usr/share/nginx/html
 volumes:
 - name: gluster-vol1
 persistentVolumeClaim:

 claimName: gluster-dyn-pvc 1

$ oc create -f nginx-pod.yaml
pod "gluster-pod1" created

$ oc get pods -o wide
NAME READY STATUS RESTARTS
AGE IP NODE
gluster-pod1 1/1 Running 0
9m 10.38.0.0 node1

$ oc exec -ti gluster-pod1 /bin/sh

OpenShift Container Platform 3.7 Installation and Configuration

502

5. Now curl the URL of the pod:

23.9. MOUNTING VOLUMES ON PRIVILEGED PODS

23.9.1. Overview

Persistent volumes can be mounted to pods with the privileged security context constraint (SCC)
attached.

NOTE

While this topic uses GlusterFS as a sample use-case for mounting volumes onto
privileged pods, it can be adapted to use any supported storage plug-in.

23.9.2. Prerequisites

An existing Gluster volume.

glusterfs-fuse installed on all hosts.

Definitions for GlusterFS:

Endpoints and services: gluster-endpoints-service.yaml and gluster-endpoints.yaml

Persistent volumes: gluster-pv.yaml

Persistent volume claims: gluster-pvc.yaml

Privileged pods: gluster-S3-pod.yaml

A user with the cluster-admin role binding. For this guide, that user is called admin.

23.9.3. Creating the Persistent Volume

Creating the PersistentVolume makes the storage accessible to users, regardless of projects.

1. As the admin, create the service, endpoint object, and persistent volume:

$ oc create -f gluster-endpoints-service.yaml
$ oc create -f gluster-endpoints.yaml
$ oc create -f gluster-pv.yaml

2. Verify that the objects were created:

$ cd /usr/share/nginx/html
$ echo 'Hello World from GlusterFS!!!' > index.html
$ ls
index.html
$ exit

$ curl http://10.38.0.0
Hello World from GlusterFS!!!

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

503

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#managing-role-bindings

$ oc get svc
NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR
AGE
gluster-cluster 172.30.151.58 <none> 1/TCP <none>
24s

$ oc get ep
NAME ENDPOINTS AGE
gluster-cluster 192.168.59.102:1,192.168.59.103:1 2m

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS
CLAIM REASON AGE
gluster-default-volume <none> 2Gi RWX
Available 2d

23.9.4. Creating a Regular User

Adding a regular user to the privileged SCC (or to a group given access to the SCC) allows them to run
privileged pods:

1. As the admin, add a user to the SCC:

$ oc adm policy add-scc-to-user privileged <username>

2. Log in as the regular user:

$ oc login -u <username> -p <password>

3. Then, create a new project:

$ oc new-project <project_name>

23.9.5. Creating the Persistent Volume Claim

1. As a regular user, create the PersistentVolumeClaim to access the volume:

$ oc create -f gluster-pvc.yaml -n <project_name>

2. Define your pod to access the claim:

Example 23.15. Pod Definition

apiVersion: v1
id: gluster-S3-pvc
kind: Pod
metadata:
 name: gluster-nginx-priv
spec:
 containers:
 - name: gluster-nginx-priv
 image: fedora/nginx
 volumeMounts:

OpenShift Container Platform 3.7 Installation and Configuration

504

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#users

1

2

Volume mount within the pod.

The gluster-claim must reflect the name of the PersistentVolume.

3. Upon pod creation, the mount directory is created and the volume is attached to that mount
point.
As regular user, create a pod from the definition:

$ oc create -f gluster-S3-pod.yaml

4. Verify that the pod created successfully:

$ oc get pods
NAME READY STATUS RESTARTS AGE
gluster-S3-pod 1/1 Running 0 36m

It can take several minutes for the pod to create.

23.9.6. Verifying the Setup

23.9.6.1. Checking the Pod SCC

1. Export the pod configuration:

$ oc export pod <pod_name>

2. Examine the output. Check that openshift.io/scc has the value of privileged:

Example 23.16. Export Snippet

23.9.6.2. Verifying the Mount

1. Access the pod and check that the volume is mounted:

$ oc rsh <pod_name>
[root@gluster-S3-pvc /]# mount

 - mountPath: /mnt/gluster 1
 name: gluster-volume-claim
 securityContext:
 privileged: true
 volumes:
 - name: gluster-volume-claim
 persistentVolumeClaim:

 claimName: gluster-claim 2

metadata:
 annotations:
 openshift.io/scc: privileged

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

505

2. Examine the output for the Gluster volume:

Example 23.17. Volume Mount

192.168.59.102:gv0 on /mnt/gluster type fuse.gluster
(rw,relatime,user_id=0,group_id=0,default_permissions,allow_other,
max_read=131072)

23.10. BACKING DOCKER REGISTRY WITH GLUSTERFS STORAGE

23.10.1. Overview

This topic reviews how to attach a GlusterFS persistent volume to the Docker Registry.

It is assumed that the Docker registry service has already been started and the Gluster volume has been
created.

23.10.2. Prerequisites

The docker-registry was deployed without configuring storage.

A Gluster volume exists and glusterfs-fuse is installed on schedulable nodes.

Definitions written for GlusterFS endpoints and service, persistent volume (PV), and persistent
volume claim (PVC).

For this guide, these will be:

gluster-endpoints-service.yaml

gluster-endpoints.yaml

gluster-pv.yaml

gluster-pvc.yaml

A user with the cluster-admin role binding.

For this guide, that user is admin.

NOTE

All oc commands are executed on the master node as the admin user.

23.10.3. Create the Gluster Persistent Volume

First, make the Gluster volume available to the registry.

$ oc create -f gluster-endpoints-service.yaml
$ oc create -f gluster-endpoints.yaml
$ oc create -f gluster-pv.yaml
$ oc create -f gluster-pvc.yaml

OpenShift Container Platform 3.7 Installation and Configuration

506

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#managing-role-bindings

Check to make sure the PV and PVC were created and bound successfully. The expected output should
resemble the following. Note that the PVC status is Bound, indicating that it has bound to the PV.

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE
gluster-pv <none> 1Gi RWX Available
37s
$ oc get pvc
NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES
AGE
gluster-claim <none> Bound gluster-pv 1Gi RWX
24s

NOTE

If either the PVC or PV failed to create or the PVC failed to bind, refer back to the
GlusterFS Persistent Storage guide. Do not proceed until they initialize and the PVC
status is Bound.

23.10.4. Attach the PVC to the Docker Registry

Before moving forward, ensure that the docker-registry service is running.

$ oc get svc
NAME CLUSTER_IP EXTERNAL_IP PORT(S)
SELECTOR AGE
docker-registry 172.30.167.194 <none> 5000/TCP
docker-registry=default 18m

NOTE

If either the docker-registry service or its associated pod is not running, refer back to the
docker-registry setup instructions for troubleshooting before continuing.

Then, attach the PVC:

$ oc volume deploymentconfigs/docker-registry --add --name=registry-
storage -t pvc \
 --claim-name=gluster-claim --overwrite

Deploying a Docker Registry provides more information on using the Docker registry.

23.10.5. Known Issues

23.10.5.1. Pod Cannot Resolve the Volume Host

In non-production cases where the dnsmasq server is located on the same node as the OpenShift
Container Platform master service, pods might not resolve to the host machines when mounting the
volume, causing errors in the docker-registry-1-deploy pod. This can happen when dnsmasq.service
fails to start because of a collision with OpenShift Container Platform DNS on port 53. To run the DNS
server on the master host, some configurations needs to be changed.

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

507

1

2

In /etc/dnsmasq.conf, add:

Reverse DNS record for master
host-record=master.example.com,<master-IP>
Wildcard DNS for OpenShift Applications - Points to Router
address=/apps.example.com/<master-IP>
Forward .local queries to SkyDNS
server=/local/127.0.0.1#8053
Forward reverse queries for service network to SkyDNS.
This is for default OpenShift SDN - change as needed.
server=/17.30.172.in-addr.arpa/127.0.0.1#8053

With these settings, dnsmasq will pull from the /etc/hosts file on the master node.

Add the appropriate host names and IPs for all necessary hosts.

In master-config.yaml, change bindAddress to:

dnsConfig:
 bindAddress: 127.0.0.1:8053

When pods are created, they receive a copy of /etc/resolv.conf, which typically contains only the master
DNS server so they can resolve external DNS requests. To enable internal DNS resolution, insert the
dnsmasq server at the top of the server list. This way, dnsmasq will attempt to resolve requests
internally first.

In /etc/resolv.conf all scheduled nodes:

nameserver 192.168.1.100 1

nameserver 192.168.1.1 2

Add the internal DNS server.

Pre-existing external DNS server.

Once the configurations are changed, restart the OpenShift Container Platform master and dnsmasq
services.

$ systemctl restart atomic-openshift-master-api atomic-openshift-master-
controllers
$ systemctl restart dnsmasq

23.11. BINDING PERSISTENT VOLUMES BY LABELS

23.11.1. Overview

This topic provides an end-to-end example for binding persistent volume claims (PVCs) to persistent
volumes (PVs), by defining labels in the PV and matching selectors in the PVC. This feature is available
for all storage options. It is assumed that a OpenShift Container Platform cluster contains persistent
storage resources which are available for binding by PVCs.

A Note on Labels and Selectors

OpenShift Container Platform 3.7 Installation and Configuration

508

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#persistent-volumes

Labels are an OpenShift Container Platform feature that support user-defined tags (key-value pairs) as
part of an object’s specification. Their primary purpose is to enable the arbitrary grouping of objects by
defining identical labels among them. These labels can then be targeted by selectors to match all objects
with specified label values. It is this functionality we will take advantage of to enable our PVC to bind to
our PV. For a more in-depth look at labels, see Pods and Services.

NOTE

For this example, we will be using modified GlusterFS PV and PVC specifications.
However, implementation of selectors and labels is generic across for all storage options.
See the relevant storage option for your volume provider to learn more about its unique
configuration.

23.11.1.1. Assumptions

It is assumed that you have:

An existing OpenShift Container Platform cluster with at least one master and one node

At least one supported storage volume

A user with cluster-admin privileges

23.11.2. Defining Specifications

NOTE

These specifications are tailored to GlusterFS. Consult the relevant storage option for
your volume provider to learn more about its unique configuration.

23.11.2.1. Persistent Volume with Labels

Example 23.18. glusterfs-pv.yaml

apiVersion: v1
kind: PersistentVolume
metadata:
 name: gluster-volume

 labels: 1
 storage-tier: gold
 aws-availability-zone: us-east-1
spec:
 capacity:
 storage: 2Gi
 accessModes:
 - ReadWriteMany
 glusterfs:

 endpoints: glusterfs-cluster 2
 path: myVol1
 readOnly: false
 persistentVolumeReclaimPolicy: Retain

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

509

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#labels

1

2

1

Use labels to identify common attributes or characteristics shared among volumes. In this case,
we defined the Gluster volume to have a custom attribute (key) named storage-tier with a value
of gold assigned. A claim will be able to select a PV with storage-tier=gold to match this
PV.

Endpoints define the Gluster trusted pool and are discussed below.

23.11.2.2. Persistent Volume Claim with Selectors

A claim with a selector stanza (see example below) attempts to match existing, unclaimed, and non-
prebound PVs. The existence of a PVC selector ignores a PV’s capacity. However, accessModes are
still considered in the matching criteria.

It is important to note that a claim must match all of the key-value pairs included in its selector stanza. If
no PV matches the claim, then the PVC will remain unbound (Pending). A PV can subsequently be
created and the claim will automatically check for a label match.

Example 23.19. glusterfs-pvc.yaml

The selector stanza defines all labels necessary in a PV in order to match this claim.

23.11.2.3. Volume Endpoints

To attach the PV to the Gluster volume, endpoints should be configured before creating our objects.

Example 23.20. glusterfs-ep.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: gluster-claim
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi

 selector: 1
 matchLabels:
 storage-tier: gold
 aws-availability-zone: us-east-1

apiVersion: v1
kind: Endpoints
metadata:
 name: glusterfs-cluster
subsets:
 - addresses:
 - ip: 192.168.122.221
 ports:

OpenShift Container Platform 3.7 Installation and Configuration

510

23.11.2.4. Deploy the PV, PVC, and Endpoints

For this example, run the oc commands as a cluster-admin privileged user. In a production
environment, cluster clients might be expected to define and create the PVC.

oc create -f glusterfs-ep.yaml
endpoints "glusterfs-cluster" created
oc create -f glusterfs-pv.yaml
persistentvolume "gluster-volume" created
oc create -f glusterfs-pvc.yaml
persistentvolumeclaim "gluster-claim" created

Lastly, confirm that the PV and PVC bound successfully.

oc get pv,pvc
NAME CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE
gluster-volume 2Gi RWX Bound gfs-
trial/gluster-claim 7s
NAME STATUS VOLUME CAPACITY ACCESSMODES
AGE
gluster-claim Bound gluster-volume 2Gi RWX
7s

NOTE

PVCs are local to a project, whereas PVs are a cluster-wide, global resource. Developers
and non-administrator users may not have access to see all (or any) of the available PVs.

23.12. USING STORAGE CLASSES FOR DYNAMIC PROVISIONING

23.12.1. Overview

In these examples we will walk through a few scenarios of various configuratons of StorageClasses and
Dynamic Provisioning using Google Cloud Platform Compute Engine (GCE). These examples assume
some familiarity with Kubernetes, GCE and Persistent Disks and OpenShift Container Platform is
installed and properly configured to use GCE.

Basic Dynamic Provisioning

Defaulting Cluster Dynamic Provisioning Behavior

23.12.2. Scenario 1: Basic Dynamic Provisioning with Two Types of
StorageClasses

 - port: 1
 - addresses:
 - ip: 192.168.122.222
 ports:
 - port: 1

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

511

1

2

3

4

StorageClasses can be used to differentiate and delineate storage levels and usages. In this case, the
cluster-admin or storage-admin sets up two distinct classes of storage in GCE.

slow: Cheap, efficient, and optimized for sequential data operations (slower reading and writing)

fast: Optimized for higher rates of random IOPS and sustained throughput (faster reading and
writing)

By creating these StorageClasses, the cluster-admin or storage-admin allows users to create
claims requesting a particular level or service of StorageClass.

Example 23.21. StorageClass Slow Object Definitions

Name of the StorageClass.

The provisioner plug-in to be used. This is a required field for StorageClasses.

PD type. This example uses pd-standard, which has a slightly lower cost, rate of sustained
IOPS, and throughput versus pd-ssd, which carries more sustained IOPS and throughput.

The zone is required.

Example 23.22. StorageClass Fast Object Definition

As a cluster-admin or storage-admin, save both definitions as YAML files. For example, slow-
gce.yaml and fast-gce.yaml. Then create the StorageClasses.

oc create -f slow-gce.yaml
storageclass "slow" created

oc create -f fast-gce.yaml
storageclass "fast" created

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

 name: slow 1

provisioner: kubernetes.io/gce-pd 2
parameters:

 type: pd-standard 3

 zone: us-east1-d 4

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: fast
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-ssd
 zone: us-east1-d

OpenShift Container Platform 3.7 Installation and Configuration

512

oc get storageclass
NAME TYPE
fast kubernetes.io/gce-pd
slow kubernetes.io/gce-pd

IMPORTANT

cluster-admin or storage-admin users are responsible for relaying the correct
StorageClass name to the correct users, groups, and projects.

As a regular user, create a new project:

oc new-project rh-eng

Create the claim YAML definition, save it to a file (pvc-fast.yaml):

Add the claim with the oc create command:

oc create -f pvc-fast.yaml
persistentvolumeclaim "pvc-engineering" created

Check to see if your claim is bound:

oc get pvc
NAME STATUS VOLUME
CAPACITY ACCESSMODES AGE
pvc-engineering Bound pvc-e9b4fef7-8bf7-11e6-9962-42010af00004
10Gi RWX 2m

IMPORTANT

Since this claim was created and bound in the rh-eng project, it can be shared by any
user in the same project.

As a cluster-admin or storage-admin user, view the recent dynamically provisioned Persistent
Volume (PV).

oc get pv
NAME CAPACITY ACCESSMODES

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-engineering
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 10Gi
 storageClassName: fast

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

513

1

2

RECLAIMPOLICY STATUS CLAIM REASON AGE
pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 10Gi RWX
Delete Bound rh-eng/pvc-engineering 5m

IMPORTANT

Notice the RECLAIMPOLICY is Delete by default for all dynamically provisioned volumes.
This means the volume only lasts as long as the claim still exists in the system. If you
delete the claim, the volume is also deleted and all data on the volume is lost.

Finally, check the GCE console. The new disk has been created and is ready for use.

kubernetes-dynamic-pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 SSD
persistent disk 10 GB us-east1-d

Pods can now reference the persistent volume claim and start using the volume.

23.12.3. Scenario 2: How to enable Default StorageClass behavior for a Cluster

In this example, a cluster-admin or storage-admin enables a default storage class for all other
users and projects that do not implicitly specify a StorageClass in their claim. This is useful for a
cluster-admin or storage-admin to provide easy management of a storage volume without having
to set up or communicate specialized StorageClasses across the cluster.

This example builds upon Section 23.12.2, “Scenario 1: Basic Dynamic Provisioning with Two Types of
StorageClasses”. The cluster-admin or storage-admin will create another StorageClass for
designation as the defaultStorageClass.

Example 23.23. Default StorageClass Object Definition

Name of the StorageClass, which needs to be unique in the cluster.

Annotation that marks this StorageClass as the default class. You must use "true" quoted in
this version of the API. Without this annotation, OpenShift Container Platform considers this not
the default StorageClass.

As a cluster-admin or storage-admin save the definition to a YAML file (generic-gce.yaml),
then create the StorageClasses:

oc create -f generic-gce.yaml

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

 name: generic 1
 annotations:

 storageclass.kubernetes.io/is-default-class: "true" 2
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-standard
 zone: us-east1-d

OpenShift Container Platform 3.7 Installation and Configuration

514

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage

1

storageclass "generic" created

oc get storageclass
NAME TYPE
generic kubernetes.io/gce-pd
fast kubernetes.io/gce-pd
slow kubernetes.io/gce-pd

As a regular user, create a new claim definition without any StorageClass requirement and save it to a
file (generic-pvc.yaml).

Example 23.24. default Storage Claim Object Definition

Execute it and check the claim is bound:

oc create -f generic-pvc.yaml
persistentvolumeclaim "pvc-engineering2" created
 3s
oc get pvc
NAME STATUS VOLUME
CAPACITY ACCESSMODES AGE
pvc-engineering Bound pvc-e9b4fef7-8bf7-11e6-9962-42010af00004
10Gi RWX 41m
pvc-engineering2 Bound pvc-a9f70544-8bfd-11e6-9962-42010af00004

5Gi RWX 7s 1

pvc-engineering2 is bound to a dynamically provisioned Volume by default.

As a cluster-admin or storage-admin, view the Persistent Volumes defined so far:

oc get pv
NAME CAPACITY ACCESSMODES
RECLAIMPOLICY STATUS CLAIM REASON AGE
pvc-a9f70544-8bfd-11e6-9962-42010af00004 5Gi RWX

Delete Bound rh-eng/pvc-engineering2 5m 1
pvc-ba4612ce-8b4d-11e6-9962-42010af00004 5Gi RWO
Delete Bound mytest/gce-dyn-claim1 21h
pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 10Gi RWX

Delete Bound rh-eng/pvc-engineering 46m 2

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-engineering2
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 5Gi

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

515

1

2

This PV was bound to our default dynamic volume from the default StorageClass.

This PV was bound to our first PVC from Section 23.12.2, “Scenario 1: Basic Dynamic Provisioning
with Two Types of StorageClasses” with our fast StorageClass.

Create a manually provisioned disk using GCE (not dynamically provisioned). Then create a Persistent
Volume that connects to the new GCE disk (pv-manual-gce.yaml).

Example 23.25. Manual PV Object Defition

Execute the object definition file:

oc create -f pv-manual-gce.yaml

Now view the PVs again. Notice that a pv-manual-gce volume is Available.

oc get pv
NAME CAPACITY ACCESSMODES
RECLAIMPOLICY STATUS CLAIM REASON AGE
pv-manual-gce 35Gi RWX
Retain Available 4s
pvc-a9f70544-8bfd-11e6-9962-42010af00004 5Gi RWX
Delete Bound rh-eng/pvc-engineering2 12m
pvc-ba4612ce-8b4d-11e6-9962-42010af00004 5Gi RWO
Delete Bound mytest/gce-dyn-claim1 21h
pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 10Gi RWX
Delete Bound rh-eng/pvc-engineering 53m

Now create another claim identical to the generic-pvc.yaml PVC definition but change the name and
do not set a storage class name.

Example 23.26. Claim Object Definition

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv-manual-gce
spec:
 capacity:
 storage: 35Gi
 accessModes:
 - ReadWriteMany
 gcePersistentDisk:
 readOnly: false
 pdName: the-newly-created-gce-PD
 fsType: ext4

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-engineering3
spec:

OpenShift Container Platform 3.7 Installation and Configuration

516

https://cloud.google.com/compute/docs/disks/

1

Because default StorageClass is enabled in this instance, the manually created PV does not satisfy the
claim request. The user receives a new dynamically provisioned Persistent Volume.

oc get pvc
NAME STATUS VOLUME
CAPACITY ACCESSMODES AGE
pvc-engineering Bound pvc-e9b4fef7-8bf7-11e6-9962-42010af00004
10Gi RWX 1h
pvc-engineering2 Bound pvc-a9f70544-8bfd-11e6-9962-42010af00004
5Gi RWX 19m
pvc-engineering3 Bound pvc-6fa8e73b-8c00-11e6-9962-42010af00004
15Gi RWX 6s

IMPORTANT

Since the default StorageClass is enabled on this system, for the manually created
Persistent Volume to get bound by the above claim and not have a new dynamic
provisioned volume be bound, the PV would need to have been created in the default
StorageClass.

Since the default StorageClass is enabled on this system, you would need to create the PV in the default
StorageClass for the manually created Persistent Volume to get bound to the above claim and not have
a new dynamic provisioned volume bound to the claim.

To fix this, the cluster-admin or storage-admin user simply needs to create another GCE disk or
delete the first manual PV and use a PV object definition that assigns a StorageClass name (pv-
manual-gce2.yaml) if necessary:

Example 23.27. Manual PV Spec with default StorageClass name

The name for previously created generic StorageClass.

 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 15Gi

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv-manual-gce2
spec:
 capacity:
 storage: 35Gi
 accessModes:
 - ReadWriteMany
 gcePersistentDisk:
 readOnly: false
 pdName: the-newly-created-gce-PD
 fsType: ext4

 storageClassName: generic 1

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

517

1

2

Execute the object definition file:

oc create -f pv-manual-gce2.yaml

List the PVs:

oc get pv
NAME CAPACITY ACCESSMODES
RECLAIMPOLICY STATUS CLAIM REASON AGE
pv-manual-gce 35Gi RWX

Retain Available 4s 1
pv-manual-gce2 35Gi RWX

Retain Bound rh-eng/pvc-engineering3 4s 2
pvc-a9f70544-8bfd-11e6-9962-42010af00004 5Gi RWX
Delete Bound rh-eng/pvc-engineering2 12m
pvc-ba4612ce-8b4d-11e6-9962-42010af00004 5Gi RWO
Delete Bound mytest/gce-dyn-claim1 21h
pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 10Gi RWX
Delete Bound rh-eng/pvc-engineering 53m

The original manual PV, still unbound and Available. This is because it was not created in the
default StorageClass.

The second PVC (other than the name) is bound to the Available manually created PV pv-
manual-gce2.

IMPORTANT

Notice that all dynamically provisioned volumes by default have a RECLAIMPOLICY of
Delete. Once the PVC dynamically bound to the PV is deleted, the GCE volume is deleted
and all data is lost. However, the manually created PV has a default RECLAIMPOLICY of
Retain.

23.13. USING STORAGE CLASSES FOR EXISTING LEGACY STORAGE

23.13.1. Overview

In this example, a legacy data volume exists and a cluster-admin or storage-admin needs to
make it available for consumption in a particular project. Using StorageClasses decreases the likelihood
of other users and projects gaining access to this volume from a claim because the claim would have to
have an exact matching value for the StorageClass name. This example also disables dynamic
provisioning. This example assumes:

Some familiarity with OpenShift Container Platform, GCE, and Persistent Disks

OpenShift Container Platform is properly configured to use GCE.

23.13.1.1. Scenario 1: Link StorageClass to existing Persistent Volume with Legacy Data

OpenShift Container Platform 3.7 Installation and Configuration

518

1

2

3

As a cluster-admin or storage-admin, define and create the StorageClass for historical financial
data.

Example 23.28. StorageClass finance-history Object Definitions

Name of the StorageClass.

This is a required field, but since there is to be no dynamic provisioning, a value must be put
here as long as it is not an actual provisioner plug-in type.

Parameters can simply be left blank, since these are only used for the dynamic provisioner.

Save the definitions to a YAML file (finance-history-storageclass.yaml) and create the
StorageClass.

oc create -f finance-history-storageclass.yaml
storageclass "finance-history" created

oc get storageclass
NAME TYPE
finance-history no-provisioning

IMPORTANT

cluster-admin or storage-admin users are responsible for relaying the correct
StorageClass name to the correct users, groups, and projects.

The StorageClass exists. A cluster-admin or storage-admin can create the Persistent Volume
(PV) for use with the StorageClass. Create a manually provisioned disk using GCE (not dynamically
provisioned) and a Persistent Volume that connects to the new GCE disk (gce-pv.yaml).

Example 23.29. Finance History PV Object

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

 name: finance-history 1

provisioner: no-provisioning 2

parameters: 3

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv-finance-history
spec:
 capacity:
 storage: 35Gi
 accessModes:
 - ReadWriteMany
 gcePersistentDisk:

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

519

https://cloud.google.com/compute/docs/disks/

2

1

1

The StorageClass name, that must match exactly.

The name of the GCE disk that already exists and contains the legacy data.

As a cluster-admin or storage-admin, create and view the PV.

oc create -f gce-pv.yaml
persistentvolume "pv-finance-history" created

oc get pv
NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS
CLAIM REASON AGE
pv-finance-history 35Gi RWX Retain Available
2d

Notice you have a pv-finance-history Available and ready for consumption.

As a user, create a Persistent Volume Claim (PVC) as a YAML file and specify the correct StorageClass
name:

Example 23.30. Claim for finance-history Object Definition

The StorageClass name, that must match exactly or the claim will go unbound until it is deleted
or another StorageClass is created that matches the name.

Create and view the PVC and PV to see if it is bound.

oc create -f pvc-finance-history.yaml
persistentvolumeclaim "pvc-finance-history" created

oc get pvc
NAME STATUS VOLUME CAPACITY

 readOnly: false
 pdName: the-existing-PD-volume-name-that-contains-the-valuable-data

1
 fsType: ext4

 storageClassName: finance-history 2

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-finance-history
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 20Gi

 storageClassName: finance-history 1

OpenShift Container Platform 3.7 Installation and Configuration

520

ACCESSMODES AGE
pvc-finance-history Bound pv-finance-history 35Gi RWX
9m

oc get pv (cluster/storage-admin)
NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS
CLAIM REASON AGE
pv-finance-history 35Gi RWX Retain Bound
default/pvc-finance-history 5m

IMPORTANT

You can use StorageClasses in the same cluster for both legacy data (no dynamic
provisioning) and with dynamic provisioning.

23.14. CONFIGURING AZURE BLOB STORAGE FOR INTEGRATED
DOCKER REGISTRY

23.14.1. Overview

This topic reviews how to configure Microsoft Azure Blob Storage for OpenShift integrated Docker
registry.

23.14.2. Before You Begin

Create a storage container using Microsoft Azure Portal, Microsoft Azure CLI, or Microsoft
Azure Storage Explorer. Keep a note of the storage account name, storage account key and
container name.

Deploy the integrated Docker registry if it is not deployed.

23.14.3. Overriding Registry Configuration

To create a new registry pod and replace the old pod automatically:

1. Create a new registry configuration file called registryconfig.yaml and add the following
information:

version: 0.1
log:
 level: debug
http:
 addr: :5000
storage:
 cache:
 blobdescriptor: inmemory
 delete:
 enabled: true

 azure: 1
 accountname: azureblobacc
 accountkey: azureblobacckey
 container: azureblobname

CHAPTER 23. PERSISTENT STORAGE EXAMPLES

521

https://azure.microsoft.com/en-us/services/storage/blobs/

1

2

Replace the values for accountname, acountkey, and container with storage
account name, storage account key, and storage container name respectively.

If using Azure regional cloud, set to the desired realm. For example, core.cloudapi.de
for the Germany regional cloud.

2. Create a new registry configuration:

3. Add the secret:

4. Set the REGISTRY_CONFIGURATION_PATH environment variable:

5. If you already created a registry configuration:

a. Delete the secret:

b. Create a new registry configuration:

c. Update the configuration by starting a new rollout:

 realm: core.windows.net 2
auth:
 openshift:
 realm: openshift
middleware:
 registry:
 - name: openshift
 repository:
 - name: openshift
 options:
 acceptschema2: false
 pullthrough: true
 enforcequota: false
 projectcachettl: 1m
 blobrepositorycachettl: 10m
 storage:
 - name: openshift

$ oc secrets new registry-config config.yaml=registryconfig.yaml

$ oc volume dc/docker-registry --add --type=secret \
 --secret-name=registry-config -m /etc/docker/registry/

$ oc set env dc/docker-registry \
 REGISTRY_CONFIGURATION_PATH=/etc/docker/registry/config.yaml

$ oc delete secret registry-config

$ oc secrets new registry-config config.yaml=registryconfig.yaml

$ oc rollout latest docker-registry

OpenShift Container Platform 3.7 Installation and Configuration

522

CHAPTER 24. WORKING WITH HTTP PROXIES

24.1. OVERVIEW

Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS
proxy available. Configuring OpenShift Container Platform to use these proxies can be as simple as
setting standard environment variables in configuration or JSON files. This can be done during an
advanced installation or configured after installation.

The proxy configuration must be the same on each host in the cluster. Therefore, when setting up the
proxy or modifying it, you must update the files on each OpenShift Container Platform host to the same
values. Then, you must restart OpenShift Container Platform services on each host in the cluster.

The NO_PROXY, HTTP_PROXY, and HTTPS_PROXY environment variables are found in each host’s
/etc/sysconfig/atomic-openshift-master-api or /etc/sysconfig/atomic-openshift-master-controllers
files and /etc/sysconfig/atomic-openshift-node file.

24.2. CONFIGURING NO_PROXY

The NO_PROXY environment variable lists all of the OpenShift Container Platform components and all IP
addresses that are managed by OpenShift Container Platform.

On the OpenShift service accepting the CIDR, NO_PROXY accepts a comma-separated list of hosts, IP
addresses, or IP ranges in CIDR format:

For master hosts

Node host name

Master IP or host name

IP address of etcd hosts

For node hosts

Master IP or host name

For the Docker service

Registry service IP and host name

Registry service URL docker-registry.default.svc.cluster.local

Registry route host name (if created)

NOTE

When using Docker, Docker accepts a comma-separated list of hosts, domain extensions,
or IP addresses, but does not accept IP ranges in CIDR format, which are only accepted
by OpenShift services. The `no_proxy' variable should contain a comma-separated list of
domain extensions that the proxy should not be used for.

For example, if no_proxy is set to .school.edu, the proxy will not be used to retrieve
documents from the specific school.

CHAPTER 24. WORKING WITH HTTP PROXIES

523

1

NO_PROXY also includes the SDN network and service IP addresses as found in the master-
config.yaml file.

/etc/origin/master/master-config.yaml

networkConfig:
 clusterNetworks:
 - cidr: 10.1.0.0/16
 hostSubnetLength: 9
 serviceNetworkCIDR: 172.30.0.0/16

OpenShift Container Platform does not accept * as a wildcard attached to a domain suffix. For example,
the following would be accepted:

NO_PROXY=.example.com

However, the following would not be:

NO_PROXY=*.example.com

The only wildcard NO_PROXY accepts is a single * character, which matches all hosts, and effectively
disables the proxy.

Each name in this list is matched as either a domain which contains the host name as a suffix, or the
host name itself.

NOTE

When scaling up nodes, use a domain name rather than a list of hostnames.

For instance, example.com would match example.com, example.com:80, and www.example.com.

24.3. CONFIGURING HOSTS FOR PROXIES

1. Edit the proxy environment variables in the OpenShift Container Platform control files. Ensure all
of the files in the cluster are correct.

HTTP_PROXY=http://<user>:<password>@<ip_addr>:<port>/
HTTPS_PROXY=https://<user>:<password>@<ip_addr>:<port>/

NO_PROXY=master.hostname.example.com,10.1.0.0/16,172.30.0.0/16 1

Supports host names and CIDRs. Must include the SDN network and service IP ranges
10.1.0.0/16,172.30.0.0/16 by default.

2. Restart the master or node host as appropriate:

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers
systemctl restart atomic-openshift-node

For multi-master installations:

OpenShift Container Platform 3.7 Installation and Configuration

524

systemctl restart atomic-openshift-master-controllers
systemctl restart atomic-openshift-master-api

24.4. CONFIGURING HOSTS FOR PROXIES USING ANSIBLE

During advanced installations, the NO_PROXY, HTTP_PROXY, and HTTPS_PROXY environment variables
can be configured using the openshift_no_proxy, openshift_http_proxy, and
openshift_https_proxy parameters, which are configurable in the inventory file.

Example Proxy Configuration with Ansible

Global Proxy Configuration
These options configure HTTP_PROXY, HTTPS_PROXY, and NOPROXY environment
variables for docker and master services.
openshift_http_proxy=http://<user>:<password>@<ip_addr>:<port>
openshift_https_proxy=https://<user>:<password>@<ip_addr>:<port>
openshift_no_proxy='.hosts.example.com,some-host.com'
#
Most environments do not require a proxy between OpenShift masters,
nodes, and
etcd hosts. So automatically add those host names to the
openshift_no_proxy list.
If all of your hosts share a common domain you may wish to disable this
and
specify that domain above.
openshift_generate_no_proxy_hosts=True

NOTE

There are additional proxy settings that can be configured for builds using Ansible
parameters. For example:

The openshift_builddefaults_git_http_proxy and
openshift_builddefaults_git_https_proxy parameters allow you to use a proxy
for Git cloning

The openshift_builddefaults_http_proxy and
openshift_builddefaults_https_proxy parameters can make environment
variables available to the Docker build strategy and Custom build strategy processes.

24.5. PROXYING DOCKER PULL

OpenShift Container Platform node hosts need to perform push and pull operations to Docker registries.
If you have a registry that does not need a proxy for nodes to access, include the NO_PROXY parameter
with:

the registry’s host name,

the registry service’s IP address, and

the service name.

This blacklists that registry, leaving the external HTTP proxy as the only option.

CHAPTER 24. WORKING WITH HTTP PROXIES

525

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#using-a-proxy-for-git-cloning
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#docker-strategy-environment
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#custom-strategy-environment

1

1. Retrieve the registry service’s IP address docker_registy_ip by running:

$ oc describe svc/docker-registry -n default

Name: docker-registry
Namespace: default
Labels: docker-registry=default
Selector: docker-registry=default
Type: ClusterIP

IP: 172.30.163.183 1
Port: 5000-tcp 5000/TCP
Endpoints: 10.1.0.40:5000
Session Affinity: ClientIP
No events.

Registry service IP.

2. Edit the /etc/sysconfig/docker file and add the NO_PROXY variables in shell format, replacing
<docker_registry_ip> with the IP address from the previous step.

HTTP_PROXY=http://<user>:<password>@<ip_addr>:<port>/
HTTPS_PROXY=https://<user>:<password>@<ip_addr>:<port>/
NO_PROXY=master.hostname.example.com,<docker_registry_ip>,docker-
registry.default.svc.cluster.local

3. Restart the Docker service:

systemctl restart docker

24.6. USING MAVEN BEHIND A PROXY

Using Maven with proxies requires using the HTTP_PROXY_NONPROXYHOSTS variable.

See the Red Hat JBoss Enterprise Application Platform for OpenShift documentation for information
about configuring your OpenShift Container Platform environment for Red Hat JBoss Enterprise
Application Platform, including the step for setting up Maven behind a proxy.

24.7. CONFIGURING S2I BUILDS FOR PROXIES

S2I builds fetch dependencies from various locations. You can use a .s2i/environment file to specify
simple shell variables and OpenShift Container Platform will react accordingly when seeing build images.

The following are the supported proxy environment variables with example values:

HTTP_PROXY=http://USERNAME:PASSWORD@10.0.1.1:8080/
HTTPS_PROXY=https://USERNAME:PASSWORD@10.0.0.1:8080/
NO_PROXY=master.hostname.example.com

24.8. CONFIGURING DEFAULT TEMPLATES FOR PROXIES

OpenShift Container Platform 3.7 Installation and Configuration

526

https://access.redhat.com/documentation/en-us/red_hat_jboss_middleware_for_openshift/3/html-single/red_hat_jboss_enterprise_application_platform_for_openshift/#configuring_eap_for_openshift
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#environment-files

The example templates available in OpenShift Container Platform by default do not include settings for
HTTP proxies. For existing applications based on these templates, modify the source section of the
application’s build configuration and add proxy settings:

...
source:
 type: Git
 git:
 uri: https://github.com/openshift/ruby-hello-world
 httpProxy: http://proxy.example.com
 httpsProxy: https://proxy.example.com
 noProxy: somedomain.com, otherdomain.com
...

This is similar to the process for using proxies for Git cloning.

24.9. SETTING PROXY ENVIRONMENT VARIABLES IN PODS

You can set the NO_PROXY, HTTP_PROXY, and HTTPS_PROXY environment variables in the
templates.spec.containers stanza in a deployment configuration to pass proxy connection
information. The same can be done for configuring a Pod’s proxy at runtime:

...
containers:
- env:
 - name: "HTTP_PROXY"
 value: "http://<user>:<password>@<ip_addr>:<port>"
...

You can also use the oc set env command to update an existing deployment configuration with a new
environment variable:

$ oc set env dc/frontend HTTP_PROXY=http://<user>:<password>@<ip_addr>:
<port>

If you have a ConfigChange trigger set up in your OpenShift Container Platform instance, the changes
happen automatically. Otherwise, manually redeploy your application for the changes to take effect.

24.10. GIT REPOSITORY ACCESS

If your Git repository can only be accessed using a proxy, you can define the proxy to use in the source
section of the BuildConfig. You can configure both a HTTP and HTTPS proxy to use. Both fields are
optional. Domains for which no proxying should be performed can also be specified via the NoProxy
field.

NOTE

Your source URI must use the HTTP or HTTPS protocol for this to work.

source:
 git:
 uri: "https://github.com/openshift/ruby-hello-world"

CHAPTER 24. WORKING WITH HTTP PROXIES

527

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#triggers

 httpProxy: http://proxy.example.com
 httpsProxy: https://proxy.example.com
 noProxy: somedomain.com, otherdomain.com

OpenShift Container Platform 3.7 Installation and Configuration

528

CHAPTER 25. CONFIGURING GLOBAL BUILD DEFAULTS AND
OVERRIDES

25.1. OVERVIEW

Developers can define settings in specific build configurations within their projects, such as configuring a
proxy for Git cloning. Rather than requiring developers to define certain settings in each build
configuration, administrators can use admission control plug-ins to configure global build defaults and
overrides that automatically use these settings in any build.

The settings from these plug-ins are used only during the build process but are not set in the build
configurations or builds themselves. Configuring the settings through the plug-ins allows administrators
to change the global configuration at any time, and any builds that are re-run from existing build
configurations or builds are assigned the new settings.

The BuildDefaults admission control plug-in allows administrators to set global defaults for
settings such as the Git HTTP and HTTPS proxy, as well as default environment variables.
These defaults do not overwrite values that have been configured for a specific build. However,
if those values are not present on the build definition, they are set to the default value.

The BuildOverrides admission control plug-in allows administrators to override a setting in a
build, regardless of the value stored in the build. The plug-in currently supports overriding the
forcePull flag on a build strategy to force refreshing the local image from the registry during a
build. Refreshing ensures that users can build only with images that they are allowed to pull. The
plug-in can also be configured to apply a set of image labels to every built image.
For information on configuring the BuildOverrides admission control plug-in and the values
you can override, see Manually Setting Global Build Overrides.

The default node selectors and the BuildDefaults or BuildOverride admission plug-ins work
together as follows:

The default project node selector, defined in the projectConfig.defaultNodeSelector
field in the master configuration file, is applied to the pods created in all projects without a
specified nodeSelector value. These settings are applied to builds with
nodeSelector="null" on clusters where the BuildDefaults or BuildOverride
nodeselector is not set.

The cluster-wide default build node selector,
admissionConfig.pluginConfig.BuildDefaults.configuration.nodeSelector, is
applied only if the nodeSelector="null" parameter is set in the build configuration.
nodeSelector=null is the default setting.

With a default project or cluster-wide node selector, the default setting is added as an AND to
the build node selector, which is set by the BuildDefaults or BuildOverride admission
plug-ins. These settings mean that the build will be scheduled only to nodes that satisfy the
BuildOverrides node selector AND the project default node selector.

NOTE

You can define a hard limit on how long build pods can run by using the
RunOnceDuration plugin.

25.2. SETTING GLOBAL BUILD DEFAULTS

CHAPTER 25. CONFIGURING GLOBAL BUILD DEFAULTS AND OVERRIDES

529

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#using-a-proxy-for-git-cloning
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#manage-pods-limit-run-once-duration

You can set global build defaults two ways:

using Ansible and the advanced installation tool

manually by modifying the master-config.yaml file

25.2.1. Configuring Global Build Defaults with Ansible

During advanced installations, the BuildDefaults plug-in can be configured using the following
parameters, which are configurable in the inventory file:

openshift_builddefaults_http_proxy

openshift_builddefaults_https_proxy

openshift_builddefaults_no_proxy

openshift_builddefaults_git_http_proxy

openshift_builddefaults_git_https_proxy

openshift_builddefaults_git_no_proxy

openshift_builddefaults_image_labels

openshift_builddefaults_nodeselectors

openshift_builddefaults_annotations

openshift_builddefaults_resources_requests_cpu

openshift_builddefaults_resources_requests_memory

openshift_builddefaults_resources_limits_cpu

openshift_builddefaults_resources_limits_memory

Example 25.1. Example Build Defaults Configuration with Ansible

These options configure the BuildDefaults admission controller which
injects
configuration into Builds. Proxy related values will default to the
global proxy
config values. You only need to set these if they differ from the
global proxy settings.
openshift_builddefaults_http_proxy=http://USER:PASSWORD@HOST:PORT
openshift_builddefaults_https_proxy=https://USER:PASSWORD@HOST:PORT
openshift_builddefaults_no_proxy=mycorp.com
openshift_builddefaults_git_http_proxy=http://USER:PASSWORD@HOST:PORT
openshift_builddefaults_git_https_proxy=https://USER:PASSWORD@HOST:PORT
openshift_builddefaults_git_no_proxy=mycorp.com
openshift_builddefaults_image_labels=
[{'name':'imagelabelname1','value':'imagelabelvalue1'}]
openshift_builddefaults_nodeselectors={'nodelabel1':'nodelabelvalue1'}
openshift_builddefaults_annotations=
{'annotationkey1':'annotationvalue1'}

OpenShift Container Platform 3.7 Installation and Configuration

530

openshift_builddefaults_resources_requests_cpu=100m
openshift_builddefaults_resources_requests_memory=256Mi
openshift_builddefaults_resources_limits_cpu=1000m
openshift_builddefaults_resources_limits_memory=512Mi

Or you may optionally define your own build defaults configuration
serialized as json
#openshift_builddefaults_json='{"BuildDefaults":{"configuration":
{"apiVersion":"v1","env":
[{"name":"HTTP_PROXY","value":"http://proxy.example.com.redhat.com:3128"
},{"name":"NO_PROXY","value":"ose3-
master.example.com"}],"gitHTTPProxy":"http://proxy.example.com:3128","gi
tNoProxy":"ose3-master.example.com","kind":"BuildDefaultsConfig"}}}'

25.2.2. Manually Setting Global Build Defaults

To configure the BuildDefaults plug-in:

1. Add a configuration for it in the /etc/origin/master/master-config.yaml file on the master
nodes:

admissionConfig:
 pluginConfig:
 BuildDefaults:
 configuration:
 apiVersion: v1
 kind: BuildDefaultsConfig

 gitHTTPProxy: http://my.proxy:8080 1

 gitHTTPSProxy: https://my.proxy:8443 2

 gitNoProxy: somedomain.com, otherdomain.com 3
 env:

 - name: HTTP_PROXY 4
 value: http://my.proxy:8080

 - name: HTTPS_PROXY 5
 value: https://my.proxy:8443

 - name: BUILD_LOGLEVEL 6
 value: 4

 - name: CUSTOM_VAR 7
 value: custom_value
 imageLabels:

 - name: url 8
 value: https://containers.example.org
 - name: vendor
 value: ExampleCorp Ltd.

 nodeSelector: 9
 key1: value1
 key2: value2

 annotations: 10
 key1: value1
 key2: value2

 resources: 11
 requests:
 cpu: "100m"

CHAPTER 25. CONFIGURING GLOBAL BUILD DEFAULTS AND OVERRIDES

531

1

2

3

4

5

6

7

8

9

10

11

Sets the HTTP proxy to use when cloning source code from a Git repository.

Sets the HTTPS proxy to use when cloning source code from a Git repository.

Sets the list of domains for which proxying should not be performed.

Default environment variable that sets the HTTP proxy to use during the build. This can be
used for downloading dependencies during the assemble and build phases.

Default environment variable that sets the HTTPS proxy to use during the build. This can
be used for downloading dependencies during the assemble and build phases.

Default environment variable that sets the build log level during the build.

Additional default environment variable that will be added to every build.

Labels to be applied to every image built. Users can override these in their BuildConfig.

Build pods will only run on nodes with the key1=value2 and key2=value2 labels. Users
can define a different set of nodeSelectors for their builds in which case these values
will be ignored.

Build pods will have these annotations added to them.

Sets the default resources to the build pod if the BuildConfig does not have related
resource defined.

2. Restart the master services for the changes to take effect:

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

25.3. SETTING GLOBAL BUILD OVERRIDES

You can set global build overrides two ways:

using Ansible and the advanced installation tool

manually by modifying the master-config.yaml file

25.3.1. Configuring Global Build Overrides with Ansible

During advanced installations, the BuildOverrides plug-in can be configured using the following
parameters, which are configurable in the inventory file:

openshift_buildoverrides_force_pull

openshift_buildoverrides_image_labels

 memory: "256Mi"
 limits:
 cpu: "100m"
 memory: "256Mi"

OpenShift Container Platform 3.7 Installation and Configuration

532

1

2

3

openshift_buildoverrides_nodeselectors

openshift_buildoverrides_annotations

Example 25.2. Example Build Overrides Configuration with Ansible

These options configure the BuildOverrides admission controller which
injects
configuration into Builds.
openshift_buildoverrides_force_pull=true
openshift_buildoverrides_image_labels=
[{'name':'imagelabelname1','value':'imagelabelvalue1'}]
openshift_buildoverrides_nodeselectors={'nodelabel1':'nodelabelvalue1'}
openshift_buildoverrides_annotations=
{'annotationkey1':'annotationvalue1'}

Or you may optionally define your own build overrides configuration
serialized as json
#openshift_buildoverrides_json='{"BuildOverrides":{"configuration":
{"apiVersion":"v1","kind":"BuildDefaultsConfig","forcePull":"true"}}}'

25.3.2. Manually Setting Global Build Overrides

To configure the BuildOverrides plug-in:

1. Add a configuration for it in the /etc/origin/master/master-config.yaml file on masters:

Force all builds to pull their builder image and any source images before starting the build.

Additional labels to be applied to every image built. Labels defined here take precedence
over labels defined in BuildConfig.

Build pods will only run on nodes with the key1=value2 and key2=value2 labels. Users
can define additional key/value labels to further constrain the set of nodes a build runs on,
but the node must have at least these labels.

admissionConfig:
 pluginConfig:
 BuildOverrides:
 configuration:
 apiVersion: v1
 kind: BuildOverridesConfig

 forcePull: true 1
 imageLabels:

 - name: distribution-scope 2
 value: private

 nodeSelector: 3
 key1: value1
 key2: value2

 annotations: 4
 key1: value1
 key2: value2

CHAPTER 25. CONFIGURING GLOBAL BUILD DEFAULTS AND OVERRIDES

533

4 Build pods will have these annotations added to them.

2. Restart the master services for the changes to take effect:

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

OpenShift Container Platform 3.7 Installation and Configuration

534

1

2

3

4

5

CHAPTER 26. CONFIGURING PIPELINE EXECUTION

26.1. OVERVIEW

The first time a user creates a build configuration using the Pipeline build strategy, OpenShift Container
Platform looks for a template named jenkins-ephemeral in the openshift namespace and
instantiates it within the user’s project. The jenkins-ephemeral template that ships with OpenShift
Container Platform creates, upon instantiation:

a deployment configuration for Jenkins using the official OpenShift Container Platform Jenkins
image

a service and route for accessing the Jenkins deployment

a new Jenkins service account

rolebindings to grant the service account edit access to the project

Cluster administrators can control what is created by either modifying the content of the built-in template,
or by editing the cluster configuration to direct the cluster to a different template location.

To modify the content of the default template:

$ oc edit template jenkins-ephemeral -n openshift

To use a different template, such as the jenkins-persistent template which uses persistent storage
for Jenkins, add the following to your master configuration file:

Defaults to true if unspecified. If false, then no template will be instantiated.

Namespace containing the template to be instantiated.

Name of the template to be instantiated.

Name of the service to be created by the template upon instantiation.

Optional values to pass to the template during instantiation.

When a Pipeline build configuration is created, OpenShift Container Platform looks for a Service
matching serviceName. This means serviceName must be chosen such that it is unique in the
project. If no Service is found, OpenShift Container Platform instantiates the
jenkinsPipelineConfig template. If this is not desirable (if you would like to use a Jenkins server
external to OpenShift Container Platform, for example), there are a few things you can do, depending on
who you are.

jenkinsPipelineConfig:

 autoProvisionEnabled: true 1

 templateNamespace: openshift 2

 templateName: jenkins-persistent 3

 serviceName: jenkins-persistent-svc 4

 parameters: 5
 key1: value1
 key2: value2

CHAPTER 26. CONFIGURING PIPELINE EXECUTION

535

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#pipeline-build

If you are a cluster administrator, simply set autoProvisionEnabled to false. This will
disable autoprovisioning across the cluster.

If you are an unpriviledged user, a Service must be created for OpenShift Container Platform to
use. The service name must match the cluster configuration value of serviceName in the
jenkinsPipelineConfig. The default value is jenkins. If you are disabling autoprovisioning
because you are running a Jenkins server outside your project, it is recommended that you point
this new service to your existing Jenkins server. See: Integrating External Services

The latter option could also be used to disable autoprovisioning in select projects only.

26.2. OPENSHIFT JENKINS CLIENT PLUGIN

The OpenShift Jenkins Client Plugin is a Jenkins plugin which aims to provide a readable, concise,
comprehensive, and fluent Jenkins Pipeline syntax for rich interactions with an OpenShift API Server.
The plugin leverages the OpenShift command line tool (oc) which must be available on the nodes
executing the script.

For more information about installing and configuring the plugin, use the links provided below that
reference the official documentation.

Installing

Configuring an OpenShift Cluster

Setting up Credentials

Setting up Jenkins Nodes

NOTE

Are you a developer looking for information about using this plugin? If so, see OpenShift
Pipeline Overview.

26.3. OPENSHIFT JENKINS SYNC PLUGIN

This Jenkins plugin keeps OpenShift BuildConfig and Build objects in sync with Jenkins Jobs and Builds.

The OpenShift jenkins Sync Plugin provides the following:

Dynamic job/run creation in Jenkins.

Dynamic creation of slave pod templates from ImageStreams, ImageStreamTags, or
ConfigMaps.

Injecting of environment variables.

Pipeline visualization in the OpenShift web console.

Integration with the Jenkins git plugin, which passes commit information from OpenShift builds to
the Jenkins git plugin.

For more information about this plugin, see:

OpenShift Jenkins Sync Plug-in

OpenShift Container Platform 3.7 Installation and Configuration

536

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-integrating-external-services
https://github.com/openshift/jenkins-client-plugin/blob/master/README.md#installing
https://github.com/openshift/jenkins-client-plugin/blob/master/README.md#configuring-an-openshift-cluster
https://github.com/openshift/jenkins-client-plugin/blob/master/README.md#setting-up-credentials
https://github.com/openshift/jenkins-client-plugin/blob/master/README.md#setting-up-jenkins-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#pipeline-overview
https://github.com/openshift/jenkins-sync-plugin/blob/master/README.md

OpenShift Container Platform Sync Plug-in

CHAPTER 26. CONFIGURING PIPELINE EXECUTION

537

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/using_images/#sync-plug-in

CHAPTER 27. CONFIGURING ROUTE TIMEOUTS
After installing OpenShift Container Platform and deploying a router, you can configure the default
timeouts for an existing route when you have services in need of a low timeout, as required for Service
Level Availability (SLA) purposes, or a high timeout, for cases with a slow back end.

Using the oc annotate command, add the timeout to the route:

oc annotate route <route_name> \
 --overwrite haproxy.router.openshift.io/timeout=<timeout><time_unit>

For example, to set a route named myroute to a timeout of two seconds:

oc annotate route myroute --overwrite
haproxy.router.openshift.io/timeout=2s

Supported time units are microseconds (us), milliseconds (ms), seconds (s), minutes (m), hours (h), or
days (d).

OpenShift Container Platform 3.7 Installation and Configuration

538

CHAPTER 28. CONFIGURING NATIVE CONTAINER ROUTING

28.1. NETWORK OVERVIEW

The following describes a general network setup:

11.11.0.0/16 is the container network.

The 11.11.x.0/24 subnet is reserved for each node and assigned to the Docker Linux bridge.

Each node has a route to the router for reaching anything in the 11.11.0.0/16 range, except the
local subnet.

The router has routes for each node, so it can be directed to the right node.

Existing nodes do not need any changes when new nodes are added, unless the network
topology is modified.

IP forwarding is enabled on each node.

The following diagram shows the container networking setup described in this topic. It uses one Linux
node with two network interface cards serving as a router, two switches, and three nodes connected to
these switches.

28.2. CONFIGURE NATIVE CONTAINER ROUTING

You can set up container networking using existing switches and routers, and the kernel networking
stack in Linux.

As a network administrator, you must modify, or create a script to modify, the router or routers when new
nodes are added to the cluster.

You can adapt this process to use with any type of router.

CHAPTER 28. CONFIGURING NATIVE CONTAINER ROUTING

539

28.3. SETTING UP A NODE FOR CONTAINER NETWORKING

1. Assign an unused 11.11.x.0/24 subnet IP address to the Linux bridge on the node:

brctl addbr lbr0
ip addr add 11.11.1.1/24 dev lbr0
ip link set dev lbr0 up

2. Modify the Docker startup script to use the new bridge. By default, the startup script is the
/etc/sysconfig/docker file:

docker -d -b lbr0 --other-options

3. Add a route to the router for the 11.11.0.0/16 network:

ip route add 11.11.0.0/16 via 192.168.2.2 dev p3p1

4. Enable IP forwarding on the node:

sysctl -w net.ipv4.ip_forward=1

28.4. SETTING UP A ROUTER FOR CONTAINER NETWORKING

The following procedure assumes a Linux box with multiple NICs is used as a router. Modify the steps as
required to use the syntax for a particular router:

1. Enable IP forwarding on the router:

sysctl -w net.ipv4.ip_forward=1

2. Add a route for each node added to the cluster:

ip route add <node_subnet> via <node_ip_address> dev <interface
through which node is L2 accessible>
ip route add 11.11.1.0/24 via 192.168.2.1 dev p3p1
ip route add 11.11.2.0/24 via 192.168.3.3 dev p3p2
ip route add 11.11.3.0/24 via 192.168.3.4 dev p3p2

OpenShift Container Platform 3.7 Installation and Configuration

540

CHAPTER 29. ROUTING FROM EDGE LOAD BALANCERS

29.1. OVERVIEW

Pods inside of an OpenShift Container Platform cluster are only reachable via their IP addresses on the
cluster network. An edge load balancer can be used to accept traffic from outside networks and proxy the
traffic to pods inside the OpenShift Container Platform cluster. In cases where the load balancer is not
part of the cluster network, routing becomes a hurdle as the internal cluster network is not accessible to
the edge load balancer.

To solve this problem where the OpenShift Container Platform cluster is using OpenShift Container
Platform SDN as the cluster networking solution, there are two ways to achieve network access to the
pods.

29.2. INCLUDING THE LOAD BALANCER IN THE SDN

If possible, run an OpenShift Container Platform node instance on the load balancer itself that uses
OpenShift SDN as the networking plug-in. This way, the edge machine gets its own Open vSwitch bridge
that the SDN automatically configures to provide access to the pods and nodes that reside in the cluster.
The routing table is dynamically configured by the SDN as pods are created and deleted, and thus the
routing software is able to reach the pods.

Mark the load balancer machine as an unschedulable node so that no pods end up on the load balancer
itself:

$ oc adm manage-node <load_balancer_hostname> --schedulable=false

If the load balancer comes packaged as a container, then it is even easier to integrate with OpenShift
Container Platform: Simply run the load balancer as a pod with the host port exposed. The pre-
packaged HAProxy router in OpenShift Container Platform runs in precisely this fashion.

29.3. ESTABLISHING A TUNNEL USING A RAMP NODE

In some cases, the previous solution is not possible. For example, an F5 BIG-IP® host cannot run an
OpenShift Container Platform node instance or the OpenShift Container Platform SDN because F5®
uses a custom, incompatible Linux kernel and distribution.

Instead, to enable F5 BIG-IP® to reach pods, you can choose an existing node within the cluster network
as a ramp node and establish a tunnel between the F5 BIG-IP® host and the designated ramp node.
Because it is otherwise an ordinary OpenShift Container Platform node, the ramp node has the
necessary configuration to route traffic to any pod on any node in the cluster network. The ramp node
thus assumes the role of a gateway through which the F5 BIG-IP® host has access to the entire cluster
network.

Following is an example of establishing an ipip tunnel between an F5 BIG-IP® host and a designated
ramp node.

On the F5 BIG-IP® host:

1. Set the following variables:

F5_IP=10.3.89.66 1

RAMP_IP=10.3.89.89 2

CHAPTER 29. ROUTING FROM EDGE LOAD BALANCERS

541

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#pods
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#openshift-sdn
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#marking-nodes-as-unschedulable-or-schedulable
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#routers

1 2

3

4

1

2

TUNNEL_IP1=10.3.91.216 3

CLUSTER_NETWORK=10.128.0.0/14 4

The F5_IP and RAMP_IP variables refer to the F5 BIG-IP® host’s and the ramp node’s IP
addresses, respectively, on a shared, internal network.

An arbitrary, non-conflicting IP address for the F5® host’s end of the ipip tunnel.

The overlay network CIDR range that the OpenShift SDN uses to assign addresses to
pods.

2. Delete any old route, self, tunnel and SNAT pool:

tmsh delete net route $CLUSTER_NETWORK || true
tmsh delete net self SDN || true
tmsh delete net tunnels tunnel SDN || true
tmsh delete ltm snatpool SDN_snatpool || true

3. Create the new tunnel, self, route and SNAT pool and use the SNAT pool in the virtual servers:

tmsh create net tunnels tunnel SDN \
 \{ description "OpenShift SDN" local-address \
 $F5_IP profile ipip remote-address $RAMP_IP \}
tmsh create net self SDN \{ address \
 ${TUNNEL_IP1}/24 allow-service all vlan SDN \}
tmsh create net route $CLUSTER_NETWORK interface SDN
tmsh create ltm snatpool SDN_snatpool members add { $TUNNEL_IP1 }
tmsh modify ltm virtual ose-vserver source-address-translation {
type snat pool SDN_snatpool }
tmsh modify ltm virtual https-ose-vserver source-address-
translation { type snat pool SDN_snatpool }

On the ramp node:

NOTE

The following creates a configuration that is not persistent, meaning that when the ramp
node or the openvswitch service is restarted, the settings disappear.

1. Set the following variables:

F5_IP=10.3.89.66
TUNNEL_IP1=10.3.91.216

TUNNEL_IP2=10.3.91.217 1

CLUSTER_NETWORK=10.128.0.0/14 2

A second, arbitrary IP address for the ramp node’s end of the ipip tunnel.

The overlay network CIDR range that the OpenShift SDN uses to assign addresses to
pods.

2. Delete any old tunnel:

OpenShift Container Platform 3.7 Installation and Configuration

542

ip tunnel del tun1 || true

3. Create the ipip tunnel on the ramp node, using a suitable L2-connected interface (e.g., eth0):

ip tunnel add tun1 mode ipip \
 remote $F5_IP dev eth0
ip addr add $TUNNEL_IP2 dev tun1
ip link set tun1 up
ip route add $TUNNEL_IP1 dev tun1
ping -c 5 $TUNNEL_IP1

4. SNAT the tunnel IP with an unused IP from the SDN subnet:

source /run/openshift-sdn/config.env
tap1=$(ip -o -4 addr list tun0 | awk '{print $4}' | cut -d/ -f1 |
head -n 1)
subaddr=$(echo ${OPENSHIFT_SDN_TAP1_ADDR:-"$tap1"} | cut -d "." -f
1,2,3)
export RAMP_SDN_IP=${subaddr}.254

5. Assign this RAMP_SDN_IP as an additional address to tun0 (the local SDN’s gateway):

ip addr add ${RAMP_SDN_IP} dev tun0

6. Modify the OVS rules for SNAT:

ipflowopts="cookie=0x999,ip"
arpflowopts="cookie=0x999, table=0, arp"
#
ovs-ofctl -O OpenFlow13 add-flow br0 \

"${ipflowopts},nw_src=${TUNNEL_IP1},actions=mod_nw_src:${RAMP_SDN_IP
},resubmit(,0)"
ovs-ofctl -O OpenFlow13 add-flow br0 \

"${ipflowopts},nw_dst=${RAMP_SDN_IP},actions=mod_nw_dst:${TUNNEL_IP1
},resubmit(,0)"
ovs-ofctl -O OpenFlow13 add-flow br0 \
 "${arpflowopts}, arp_tpa=${RAMP_SDN_IP}, actions=output:2"
ovs-ofctl -O OpenFlow13 add-flow br0 \
 "${arpflowopts}, priority=200, in_port=2,
arp_spa=${RAMP_SDN_IP}, arp_tpa=${CLUSTER_NETWORK},
actions=goto_table:30"
ovs-ofctl -O OpenFlow13 add-flow br0 \
 "arp, table=5, priority=300, arp_tpa=${RAMP_SDN_IP},
actions=output:2"
ovs-ofctl -O OpenFlow13 add-flow br0 \
 "ip,table=5,priority=300,nw_dst=${RAMP_SDN_IP},actions=output:2"
ovs-ofctl -O OpenFlow13 add-flow br0
"${ipflowopts},nw_dst=${TUNNEL_IP1},actions=output:2"

7. Optionally, if you do not plan on configuring the ramp node to be highly available, mark the ramp
node as unschedulable. Skip this step if you do plan to follow the next section and plan on
creating a highly available ramp node.

CHAPTER 29. ROUTING FROM EDGE LOAD BALANCERS

543

1

$ oc adm manage-node <ramp_node_hostname> --schedulable=false

NOTE

The F5 router plug-in integrates with F5 BIG-IP®.

29.3.1. Configuring a Highly-Available Ramp Node

You can use OpenShift Container Platform’s ipfailover feature, which uses keepalived internally, to
make the ramp node highly available from F5 BIG-IP®'s point of view. To do so, first bring up two nodes,
for example called ramp-node-1 and ramp-node-2, on the same L2 subnet.

Then, choose some unassigned IP address from within the same subnet to use for your virtual IP, or VIP.
This will be set as the RAMP_IP variable with which you will configure your tunnel on F5 BIG-IP®.

For example, suppose you are using the 10.20.30.0/24 subnet for your ramp nodes, and you have
assigned 10.20.30.2 to ramp-node-1 and 10.20.30.3 to ramp-node-2. For your VIP, choose some
unassigned address from the same 10.20.30.0/24 subnet, for example 10.20.30.4. Then, to configure
ipfailover, mark both nodes with a label, such as f5rampnode:

$ oc label node ramp-node-1 f5rampnode=true
$ oc label node ramp-node-2 f5rampnode=true

Similar to instructions from the ipfailover documentation, you must now create a service account and
add it to the privileged SCC. First, create the f5ipfailover service account:

$ oc create serviceaccount f5ipfailover -n default

Next, you can add the f5ipfailover service to the privileged SCC. To add the f5ipfailover in the default
namespace to the privileged SCC, run:

$ oc adm policy add-scc-to-user privileged
system:serviceaccount:default:f5ipfailover

Finally, configure ipfailover using your chosen VIP (the RAMP_IP variable) and the f5ipfailover service
account, assigning the VIP to your two nodes using the f5rampnode label you set earlier:

RAMP_IP=10.20.30.4

IFNAME=eth0 1
oc adm ipfailover <name-tag> \
 --virtual-ips=$RAMP_IP \
 --interface=$IFNAME \
 --watch-port=0 \
 --replicas=2 \
 --service-account=f5ipfailover \
 --selector='f5rampnode=true'

The interface where RAMP_IP should be configured.

With the above setup, the VIP (the RAMP_IP variable) is automatically re-assigned when the ramp node
host that currently has it assigned fails.

OpenShift Container Platform 3.7 Installation and Configuration

544

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-high-availability

CHAPTER 30. AGGREGATING CONTAINER LOGS

30.1. OVERVIEW

As an OpenShift Container Platform cluster administrator, you can deploy the EFK stack to aggregate
logs for a range of OpenShift Container Platform services. Application developers can view the logs of
the projects for which they have view access. The EFK stack aggregates logs from hosts and
applications, whether coming from multiple containers or even deleted pods.

The EFK stack is a modified version of the ELK stack and is comprised of:

Elasticsearch (ES): An object store where all logs are stored.

Fluentd: Gathers logs from nodes and feeds them to Elasticsearch.

Kibana: A web UI for Elasticsearch.

After deployment in a cluster, the stack aggregates logs from all nodes and projects into Elasticsearch,
and provides a Kibana UI to view any logs. Cluster administrators can view all logs, but application
developers can only view logs for projects they have permission to view. The stack components
communicate securely.

Aggregated logging is supported using the json-file or journald driver in Docker. The Docker log
driver is set to journald as the default for all nodes. See Updating Fluentd’s Log Source After a Docker
Log Driver Update for more information about switching between json-file and journald. Fluentd
automatically determines which log driver (journald or json-file) the container runtime is using.

When the log driver is set to journald, Fluentd reads journald logs. When set to json-file Fluentd
reads from /var/log/containers.

See Managing Docker Container Logs for information on json-file logging driver options to manage
container logs and prevent filling node disks.

IMPORTANT

If Docker log-driver is set to journald, there is no log rate throttling with the journald
driver. As a result, there is a risk of denial-of-service attacks from rogue containers.

30.2. PRE-DEPLOYMENT CONFIGURATION

1. An Ansible playbook is available to deploy and upgrade aggregated logging. You should
familiarize yourself with the advanced installation and configuration section. This provides
information for preparing to use Ansible and includes information about configuration.
Parameters are added to the Ansible inventory file to configure various areas of the EFK stack.

2. Review the sizing guidelines to determine how best to configure your deployment.

3. Ensure that you have deployed a router for the cluster.

4. Ensure that you have the necessary storage for Elasticsearch. Note that each Elasticsearch
replica requires its own storage volume. See Elasticsearch for more information.

5. Determine if you need highly-available Elasticsearch. A highly-available environment requires
multiple replicas of each shard. By default, OpenShift Container Platform creates one shard for

CHAPTER 30. AGGREGATING CONTAINER LOGS

545

https://www.elastic.co/videos/introduction-to-the-elk-stack
https://www.elastic.co/products/elasticsearch
http://www.fluentd.org/architecture
https://www.elastic.co/guide/en/kibana/current/introduction.html

each index and zero replicas of those shards. To create high availability, set the
openshift_logging_es_number_of_replicas Ansible variable to a value higher than 1.
High availability also requires at least three Elasticsearch nodes, each on a different host. See
Elasticsearch for more information.

6. Choose a project. Once deployed, the EFK stack collects logs for every project within your
OpenShift Container Platform cluster. The examples in this section use the default project
logging. The Ansible playbook creates the project for you if it does not already exist. You will
only need to create a project if you want to specify a node-selector on it. Otherwise, the
openshift-logging role will create a project.

$ oc adm new-project logging --node-selector=""
$ oc project logging

NOTE

Specifying an empty node selector on the project is recommended, as Fluentd
should be deployed throughout the cluster and any selector would restrict where it
is deployed. To control component placement, specify node selectors per
component to be applied to their deployment configurations.

30.3. SPECIFYING LOGGING ANSIBLE VARIABLES

Parameters for the EFK deployment may be specified to the inventory host file to override the default
parameter values. Read the Elasticsearch and the Fluentd sections before choosing parameters:

NOTE

By default the Elasticsearch service uses port 9300 for TCP communication between
nodes in a cluster.

Parameter Description

openshift_logging_im
age_prefix

The prefix for logging component images. For example, setting the prefix to
registry.access.redhat.com/openshift3/ creates
registry.access.redhat.com/openshift3/logging-fluentd:latest.

openshift_logging_im
age_version

The version for logging component images. For example, setting the version
to v3.7 creates registry.access.redhat.com/openshift3/logging-
fluentd:v3.7.

openshift_logging_us
e_ops

If set to true, configures a second Elasticsearch cluster and Kibana for
operations logs. Fluentd splits logs between the main cluster and a cluster
reserved for operations logs, which consists of the logs from the projects
default, openshift, and openshift-infra, as well as Docker, OpenShift, and
system logs from the journal. This means a second Elasticsearch cluster
and Kibana are deployed. The deployments are distinguishable by the -ops
suffix included in their names and have parallel deployment options listed
below and described in Creating the Curator Configuration.

OpenShift Container Platform 3.7 Installation and Configuration

546

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#using-node-selectors
https://github.com/openshift/openshift-ansible/blob/master/roles/openshift_logging/defaults/main.yml

openshift_logging_ma
ster_url

The URL for the Kubernetes master, this does not need to be public facing
but should be accessible from within the cluster. For example,
https://<PRIVATE-MASTER-URL>:8443.

openshift_logging_ma
ster_public_url

The public facing URL for the Kubernetes master. This is used for
Authentication redirection by the Kibana proxy. For example,
https://<CONSOLE-PUBLIC-URL-MASTER>:8443.

openshift_logging_na
mespace

The namespace where Aggregated Logging is deployed.

openshift_logging_in
stall_logging

Set to true to install logging. Set to false to uninstall logging.

openshift_logging_pu
rge_logging

The common uninstall keeps PVC to prevent unwanted data loss during
reinstalls. To ensure that the Ansible playbook completely and irreversibly
removes all logging persistent data including PVC, set
openshift_logging_install_logging to 'false' to trigger
uninstallation and openshift_logging_purge_logging to 'true'.
The default is set to 'false'.

openshift_logging_in
stall_eventrouter

Coupled with openshift_logging_install_logging. When both
are set to 'true', eventrouter will be installed. When both are 'false',
eventrouter will be uninstalled.

openshift_logging_ev
entrouter_image_pref
ix

The prefix for the eventrouter logging image. The default is set to
openshift_logging_image_prefix.

openshift_logging_ev
entrouter_image_vers
ion

The image version for the logging eventrouter. The default is set to 'latest'.

openshift_logging_ev
entrouter_sink

Select a sink for eventrouter, supported stdout and glog. The default is
set to stdout.

openshift_logging_ev
entrouter_nodeselect
or

A map of labels, such as "node":"infra","region":"west", to
select the nodes where the pod will land.

openshift_logging_ev
entrouter_replicas

The default is set to '1'.

openshift_logging_ev
entrouter_cpu_limit

The minimum amount of CPU to allocate to eventrouter. The default is set to
'100m'.

Parameter Description

CHAPTER 30. AGGREGATING CONTAINER LOGS

547

https://:8443
https://:8443

openshift_logging_ev
entrouter_memory_lim
it

The memory limit for eventrouter pods. The default is set to '128Mi'.

openshift_logging_ev
entrouter_namespace

The project where eventrouter is deployed. The default is set to 'default'.

IMPORTANT

Do not set the project to anything other than default or
openshift-*. If you specify a different project, event
information from the other project can leak into indices that
are not restricted to operations users. To use a non-default
project, create the project as usual using oc new-
project.

openshift_logging_im
age_pull_secret

Specify the name of an existing pull secret to be used for pulling component
images from an authenticated registry.

openshift_logging_cu
rator_default_days

The default minimum age (in days) Curator uses for deleting log records.

openshift_logging_cu
rator_run_hour

The hour of the day Curator will run.

openshift_logging_cu
rator_run_minute

The minute of the hour Curator will run.

openshift_logging_cu
rator_run_timezone

The timezone Curator uses for figuring out its run time. Provide a the
timezone as a string in the tzselect(8) or timedatectl(1) "Region/Locality"
format, for example America/New_York or UTC.

openshift_logging_cu
rator_script_log_lev
el

The script log level for Curator.

openshift_logging_cu
rator_log_level

The log level for the Curator process.

openshift_logging_cu
rator_cpu_limit

The amount of CPU to allocate to Curator.

openshift_logging_cu
rator_memory_limit

The amount of memory to allocate to Curator.

openshift_logging_cu
rator_nodeselector

A node selector that specifies which nodes are eligible targets for deploying
Curator instances.

Parameter Description

OpenShift Container Platform 3.7 Installation and Configuration

548

openshift_logging_cu
rator_ops_cpu_limit

Equivalent to openshift_logging_curator_cpu_limit for Ops
cluster when openshift_logging_use_ops is set to true.

openshift_logging_cu
rator_ops_memory_lim
it

Equivalent to openshift_logging_curator_memory_limit for
Ops cluster when openshift_logging_use_ops is set to true.

openshift_logging_ki
bana_hostname

The external host name for web clients to reach Kibana.

openshift_logging_ki
bana_cpu_limit

The amount of CPU to allocate to Kibana.

openshift_logging_ki
bana_memory_limit

The amount of memory to allocate to Kibana.

openshift_logging_ki
bana_proxy_debug

When true, set the Kibana Proxy log level to DEBUG.

openshift_logging_ki
bana_proxy_cpu_limit

The amount of CPU to allocate to Kibana proxy.

openshift_logging_ki
bana_proxy_memory_li
mit

The amount of memory to allocate to Kibana proxy.

openshift_logging_ki
bana_replica_count

The number of replicas to which Kibana should be scaled up.

openshift_logging_ki
bana_nodeselector

A node selector that specifies which nodes are eligible targets for deploying
Kibana instances.

openshift_logging_ki
bana_env_vars

A map of environment variables to add to the Kibana deployment
configuration. For example,
{"ELASTICSEARCH_REQUESTTIMEOUT":"30000"}.

openshift_logging_ki
bana_key

The public facing key to use when creating the Kibana route.

openshift_logging_ki
bana_cert

The cert that matches the key when creating the Kibana route.

openshift_logging_ki
bana_ca

Optional. The CA to goes with the key and cert used when creating the
Kibana route.

openshift_logging_ki
bana_ops_hostname

Equivalent to openshift_logging_kibana_hostname for Ops
cluster when openshift_logging_use_ops is set to true.

Parameter Description

CHAPTER 30. AGGREGATING CONTAINER LOGS

549

openshift_logging_ki
bana_ops_cpu_limit

Equivalent to openshift_logging_kibana_cpu_limit for Ops
cluster when openshift_logging_use_ops is set to true.

openshift_logging_ki
bana_ops_memory_limi
t

Equivalent to openshift_logging_kibana_memory_limit for
Ops cluster when openshift_logging_use_ops is set to true.

openshift_logging_ki
bana_ops_proxy_debug

Equivalent to openshift_logging_kibana_proxy_debug for Ops
cluster when openshift_logging_use_ops is set to true.

openshift_logging_ki
bana_ops_proxy_cpu_l
imit

Equivalent to openshift_logging_kibana_proxy_cpu_limit
for Ops cluster when openshift_logging_use_ops is set to true.

openshift_logging_ki
bana_ops_proxy_memor
y_limit

Equivalent to
openshift_logging_kibana_proxy_memory_limit for Ops
cluster when openshift_logging_use_ops is set to true.

openshift_logging_ki
bana_ops_replica_cou
nt

Equivalent to openshift_logging_kibana_replica_count for
Ops cluster when openshift_logging_use_ops is set to true.

openshift_logging_es
_allow_external

Set to true to expose Elasticsearch as a reencrypt route. Set to false by
default.

openshift_logging_es
_hostname

The external-facing hostname to use for the route and the TLS server
certificate. The default is set to es.

For example, if openshift_master_default_subdomain is set to
=example.test, then the default value of
openshift_logging_es_hostname will be es.example.test.

openshift_logging_es
_cert

The location of the certificate Elasticsearch uses for the external TLS server
cert. The default is a generated cert.

openshift_logging_es
_key

The location of the key Elasticsearch uses for the external TLS server cert.
The default is a generated key.

openshift_logging_es
_ca_ext

The location of the CA cert Elasticsearch uses for the external TLS server
cert. The default is the internal CA.

openshift_logging_es
_ops_allow_external

Set to true to expose Elasticsearch as a reencrypt route. Set to false by
defaut.

Parameter Description

OpenShift Container Platform 3.7 Installation and Configuration

550

openshift_logging_es
_ops_hostname

The external-facing hostname to use for the route and the TLS server
certificate. The default is set to es-ops.

For example, if openshift_master_default_subdomain is set to
=example.test, then the default value of
openshift_logging_es_ops_hostname will be es-
ops.example.test.

openshift_logging_es
_ops_cert

The location of the certificate Elasticsearch uses for the external TLS server
cert. The default is a generated cert.

openshift_logging_es
_ops_key

The location of the key Elasticsearch uses for the external TLS server cert.
The default is a generated key.

openshift_logging_es
_ops_ca_ext

The location of the CA cert Elasticsearch uses for the external TLS server
cert. The default is the internal CA.

openshift_logging_fl
uentd_nodeselector

A node selector that specifies which nodes are eligible targets for deploying
Fluentd instances. Any node where Fluentd should run (typically, all) must
have this label before Fluentd is able to run and collect logs.

When scaling up the Aggregated Logging cluster after installation, the
openshift_logging role labels nodes provided by
openshift_logging_fluentd_hosts with this node selector.

As part of the installation, it is recommended that you add the Fluentd node
selector label to the list of persisted node labels.

openshift_logging_fl
uentd_cpu_limit

The CPU limit for Fluentd pods.

openshift_logging_fl
uentd_memory_limit

The memory limit for Fluentd pods.

openshift_logging_fl
uentd_journal_read_f
rom_head

Set to true if Fluentd should read from the head of Journal when first
starting up, using this may cause a delay in Elasticsearch receiving current
log records.

openshift_logging_fl
uentd_hosts

List of nodes that should be labeled for Fluentd to be deployed. The default
is to label all nodes with ['--all']. The null value is
openshift_logging_fluentd_hosts={}. To spin up Fluentd pods
update the daemonset’s nodeSelector to a valid label. For example,
['host1.example.com', 'host2.example.com'].

Parameter Description

CHAPTER 30. AGGREGATING CONTAINER LOGS

551

openshift_logging_fl
uentd_audit_containe
r_engine

When
openshift_logging_fluentd_audit_container_engine is
set to true, the audit log of the container engine is collected and stored in
ES. Enabling this variable allows the EFK to watch the specified audit log
file or the default /var/log/audit.log file, collects audit information
for the container engine for the platform, then puts it into Kibana.

openshift_logging_fl
uentd_audit_file

Location of audit log file. The default is /var/log/audit/audit.log.
Enabling this variable allows the EFK to watch the specified audit log file or
the default /var/log/audit.log file, collects audit information for the
container engine for the platform, then puts it into Kibana.

openshift_logging_fl
uentd_audit_pos_file

Location of the Fluentd in_tail position file for the audit log file. The
default is /var/log/audit/audit.log.pos. Enabling this variable
allows the EFK to watch the specified audit log file or the default
/var/log/audit.log file, collects audit information for the container
engine for the platform, then puts it into Kibana.

openshift_logging_es
_host

The name of the Elasticsearch service where Fluentd should send logs.

openshift_logging_es
_port

The port for the Elasticsearch service where Fluentd should send logs.

openshift_logging_es
_ca

The location of the CA Fluentd uses to communicate with
openshift_logging_es_host.

openshift_logging_es
_client_cert

The location of the client certificate Fluentd uses for
openshift_logging_es_host.

openshift_logging_es
_client_key

The location of the client key Fluentd uses for
openshift_logging_es_host.

openshift_logging_es
_cluster_size

Elasticsearch nodes to deploy. High availability requires at least three or
more.

openshift_logging_es
_cpu_limit

The amount of CPU limit for the Elasticsearch cluster.

openshift_logging_es
_memory_limit

Amount of RAM to reserve per Elasticsearch instance. It must be at least
512M. Possible suffixes are G,g,M,m.

openshift_logging_es
_number_of_replicas

The number of replicas per primary shard for each new index. Defaults to '0'.
A minimum of 1 is advisable for production clusters. For a highly-available
environment, set this value to 2 or higher and have at least three
Elasticsearch nodes, each on a different host.

Parameter Description

OpenShift Container Platform 3.7 Installation and Configuration

552

openshift_logging_es
_number_of_shards

The number of primary shards for every new index created in ES. Defaults
to '1'.

openshift_logging_es
_pv_selector

A key/value map added to a PVC in order to select specific PVs.

openshift_logging_es
_pvc_dynamic

Set to true to have PVC claims annotated so that their backing storage is
dynamically provisioned. When set to true the storage class is ignored and
not set to the PVC.

openshift_logging_es
_pvc_storage_class_n
ame

To use a non-default storage class, set the variable with the storage class
name. For example, set to one of the following,
openshift_logging_es_pvc_storage_class_name=gluster
provisioner or
openshift_logging_es_pvc_storage_class_name=cephrbd
provisioner.

openshift_logging_es
_pvc_size

Size of the persistent volume claim to create per Elasticsearch instance. For
example, 100G. If omitted, no PVCs are created and ephemeral volumes are
used instead. If you set this parameter, the logging installer sets
openshift_logging_elasticsearch_storage_type to pvc.

openshift_logging_el
asticsearch_storage_
type

Sets the Elasticsearch storage type. If you are using Persistent
Elasticsearch Storage, the logging installer sets this to pvc.

openshift_logging_es
_pvc_prefix

Prefix for the names of persistent volume claims to be used as storage for
Elasticsearch nodes. A number is appended per node, such as logging-es-
1. If they do not already exist, they are created with size es-pvc-size.

When openshift_logging_es_pvc_prefix is set, and:

openshift_logging_es_pvc_dynamic=true, the value
for openshift_logging_es_pvc_size is optional.

openshift_logging_es_pvc_dynamic=false, the value
for openshift_logging_es_pvc_size must be set.

openshift_logging_es
_recover_after_time

The amount of time Elasticsearch will wait before it tries to recover.

openshift_logging_es
_storage_group

Number of a supplemental group ID for access to Elasticsearch storage
volumes. Backing volumes should allow access by this group ID.

Parameter Description

CHAPTER 30. AGGREGATING CONTAINER LOGS

553

openshift_logging_es
_nodeselector

A node selector specified as a map that determines which nodes are eligible
targets for deploying Elasticsearch nodes. Use this map to place these
instances on nodes that are reserved or optimized for running them. For
example, the selector could be {"node-
type":"infrastructure"}. At least one active node must have this
label before Elasticsearch will deploy.

openshift_logging_es
_ops_host

Equivalent to openshift_logging_es_host for Ops cluster when
openshift_logging_use_ops is set to true.

openshift_logging_es
_ops_port

Equivalent to openshift_logging_es_port for Ops cluster when
openshift_logging_use_ops is set to true.

openshift_logging_es
_ops_ca

Equivalent to openshift_logging_es_ca for Ops cluster when
openshift_logging_use_ops is set to true.

openshift_logging_es
_ops_client_cert

Equivalent to openshift_logging_es_client_cert for Ops
cluster when openshift_logging_use_ops is set to true.

openshift_logging_es
_ops_client_key

Equivalent to openshift_logging_es_client_key for Ops cluster
when openshift_logging_use_ops is set to true.

openshift_logging_es
_ops_cluster_size

Equivalent to openshift_logging_es_cluster_size for Ops
cluster when openshift_logging_use_ops is set to true.

openshift_logging_es
_ops_cpu_limit

Equivalent to openshift_logging_es_cpu_limit for Ops cluster
when openshift_logging_use_ops is set to true.

openshift_logging_es
_ops_memory_limit

Equivalent to openshift_logging_es_memory_limit for Ops
cluster when openshift_logging_use_ops is set to true.

openshift_logging_es
_ops_pv_selector

Equivalent to openshift_logging_es_pv_selector for Ops
cluster when openshift_logging_use_ops is set to true.

openshift_logging_es
_ops_pvc_dynamic

Equivalent to openshift_logging_es_pvc_dynamic for Ops
cluster when openshift_logging_use_ops is set to true.

openshift_logging_es
_ops_pvc_size

Equivalent to openshift_logging_es_pvc_size for Ops cluster
when openshift_logging_use_ops is set to true.

openshift_logging_es
_ops_pvc_prefix

Equivalent to openshift_logging_es_pvc_prefix for Ops cluster
when openshift_logging_use_ops is set to true.

openshift_logging_es
_ops_recover_after_t
ime

Equivalent to openshift_logging_es_recovery_after_time
for Ops cluster when openshift_logging_use_ops is set to true.

Parameter Description

OpenShift Container Platform 3.7 Installation and Configuration

554

openshift_logging_es
_ops_storage_group

Equivalent to openshift_logging_es_storage_group for Ops
cluster when openshift_logging_use_ops is set to true.

openshift_logging_es
_ops_nodeselector

A node selector that specifies which nodes are eligible targets for deploying
Elasticsearch nodes. This can be used to place these instances on nodes
reserved or optimized for running them. For example, the selector could be
node-type=infrastructure. At least one active node must have this
label before Elasticsearch will deploy.

openshift_logging_el
asticsearch_kibana_i
ndex_mode

The default value, unique, allows users to each have their own Kibana
index. In this mode, their saved queries, visualizations, and dashboards are
not shared.

You may also set the value shared_ops. In this mode, all operations
users share a Kibana index which allows each operations user to see the
the same queries, visualizations, and dashboards.

openshift_logging_ki
bana_ops_nodeselecto
r

A node selector that specifies which nodes are eligible targets for deploying
Kibana instances.

openshift_logging_cu
rator_ops_nodeselect
or

A node selector that specifies which nodes are eligible targets for deploying
Curator instances.

Parameter Description

Custom Certificates

You can specify custom certificates using the following inventory variables instead of relying on those
generated during the deployment process. These certificates are used to encrypt and secure
communication between a user’s browser and Kibana. The security-related files will be generated if they
are not supplied.

File Name Description

openshift_logging_ki
bana_cert

A browser-facing certificate for the Kibana server.

openshift_logging_ki
bana_key

A key to be used with the browser-facing Kibana certificate.

openshift_logging_ki
bana_ca

The absolute path on the control node to the CA file to use for the browser
facing Kibana certs.

openshift_logging_ki
bana_ops_cert

A browser-facing certificate for the Ops Kibana server.

openshift_logging_ki
bana_ops_key

A key to be used with the browser-facing Ops Kibana certificate.

CHAPTER 30. AGGREGATING CONTAINER LOGS

555

openshift_logging_ki
bana_ops_ca

The absolute path on the control node to the CA file to use for the browser
facing ops Kibana certs.

File Name Description

30.4. DEPLOYING THE EFK STACK

The EFK stack is deployed using an Ansible playbook to the EFK components. Run the playbook from
the default OpenShift Ansible location using the default inventory file.

$ ansible-playbook [-i </path/to/inventory>] \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/openshift-logging.yml

Running the playbook deploys all resources needed to support the stack; such as Secrets,
ServiceAccounts, and DeploymentConfigs. The playbook waits to deploy the component pods until the
stack is running. If the wait steps fail, the deployment could still be successful; it may be retrieving the
component images from the registry which can take up to a few minutes. You can watch the process
with:

$ oc get pods -w

They will eventually enter Running status. For additional details about the status of the pods during
deployment by retrieving associated events:

$ oc describe pods/<pod_name>

Check the logs if the pods do not run successfully:

$ oc logs -f <pod_name>

30.5. UNDERSTANDING AND ADJUSTING THE DEPLOYMENT

This section describes adjustments that you can make to deployed components.

30.5.1. Ops Cluster

NOTE

The logs for the default, openshift, and openshift-infra projects are automatically
aggregated and grouped into the .operations item in the Kibana interface.

The project where you have deployed the EFK stack (logging, as documented here) is
not aggregated into .operations and is found under its ID.

If you set openshift_logging_use_ops to true in your inventory file, Fluentd is configured to split
logs between the main Elasticsearch cluster and another cluster reserved for operations logs, which are
defined as node system logs and the projects default, openshift, and openshift-infra. Therefore, a
separate Elasticsearch cluster, a separate Kibana, and a separate Curator are deployed to index,

OpenShift Container Platform 3.7 Installation and Configuration

556

access, and manage operations logs. These deployments are set apart with names that include -ops.
Keep these separate deployments in mind if you enable this option. Most of the following discussion also
applies to the operations cluster if present, just with the names changed to include -ops.

30.5.2. Elasticsearch

Elasticsearch (ES) is an object store where all logs are stored.

Elasticsearch organizes the log data into datastores, each called an index. Elasticsearch subdivides
each index into multiple pieces called shards, which it spreads across a set of Elasticsearch nodes in
your cluster. You can configure Elasticsearch to make copies of the shards, called replicas. Elasticsearch
also spreads replicas across the Elactisearch nodes. The combination of shards and replicas is intended
to provide redundancy and resilience to failure. For example, if you configure three shards for the index
with one replica, Elasticsearch generates a total of six shards for that index: three primary shards and
three replicas as a backup.

The OpenShift Container Platform logging installer ensures each Elasticsearch node is deployed using a
unique deployment configuration that includes its own storage volume. You can create an additional
deployment configuration for each Elasticsearch node you add to the logging system. During installation,
you can use the openshift_logging_es_cluster_size Ansible variable to specify the number of
Elasticsearch nodes.

Alternatively, you can scale up your existing cluster by modifying the
openshift_logging_es_cluster_size in the inventory file and re-running the logging playbook.
Additional clustering parameters can be modified and are described in Specifying Logging Ansible
Variables.

Refer to Elastic’s documentation for considerations involved in choosing storage and network location as
directed below.

NOTE

A highly-available Elasticsearch environment requires at least three Elasticsearch nodes,
each on a different host, and setting the
openshift_logging_es_number_of_replicas Ansible variable to a value of 1 or
higher to create replicas.

Viewing all Elasticsearch Deployments

To view all current Elasticsearch deployments:

$ oc get dc --selector logging-infra=elasticsearch

Configuring Elasticsearch for High Availability

A highly-available Elasticsearch environment requires at least three Elasticsearch nodes, each on a
different host, and setting the openshift_logging_es_number_of_replicas Ansible variable to a
value of 1 or higher to create replicas.

Use the following scenarios as a guide for an OpenShift Container Platform cluster with three
Elasticsearch nodes:

CHAPTER 30. AGGREGATING CONTAINER LOGS

557

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html

If you can tolerate one Elasticsearch node going down, set
openshift_logging_es_number_of_replicas to 1. This ensures that two nodes have a
copy of all of the Elasticsearch data in the cluster.

If you must tolerate two Elasticsearch nodes going down, set
openshift_logging_es_number_of_replicas to 2. This ensures that every node has a
copy of all of the Elasticsearch data in the cluster.

Note that there is a trade-off between high availability and performance. For example, having
openshift_logging_es_number_of_replicas=2 and
openshift_logging_es_number_of_shards=3 requires Elasticsearch to spend significant
resources replicating the shard data among the nodes in the cluster. Also, using a higher number of
replicas requires doubling or tripling the data storage requirements on each node, so you must take that
into account when planning persistent storage for Elasticsearch.

Considerations when Configuring the Number of Shards

For the openshift_logging_es_number_of_shards parameter, consider:

For higher performance, increase the number of shards. For example, in a three node cluster,
set openshift_logging_es_number_of_shards=3. This will cause each index to be split
into three parts (shards), and the load for processing the index will be spread out over all 3
nodes.

If you have a large number of projects, you might see performance degradation if you have
more than a few thousand shards in the cluster. Either reduce the number of shards or reduce
the curation time.

If you have a small number of very large indices, you might want to configure
openshift_logging_es_number_of_shards=3 or higher. Elasticsearch recommends
using a maximum shard size of less than 50 GB.

Node Selector

Because Elasticsearch can use a lot of resources, all members of a cluster should have low latency
network connections to each other and to any remote storage. Ensure this by directing the instances to
dedicated nodes, or a dedicated region within your cluster, using a node selector.

To configure a node selector, specify the openshift_logging_es_nodeselector configuration
option in the inventory file. This applies to all Elasticsearch deployments; if you need to individualize the
node selectors, you must manually edit each deployment configuration after deployment. The node
selector is specified as a python compatible dict. For example, {"node-type":"infra",
"region":"east"}.

30.5.2.1. Persistent Elasticsearch Storage

By default, the openshift_logging Ansible role creates an ephemeral deployment in which all data in
a pod is lost upon pod restart.

For production environments, each Elasticsearch deployment configuration requires a persistent storage
volume. You can specify an existing persistent volume claim or allow OpenShift Container Platform to
create one.

Use existing PVCs. If you create your own PVCs for the deployment, OpenShift Container
Platform uses those PVCs.

OpenShift Container Platform 3.7 Installation and Configuration

558

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#using-node-selectors
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#persistent-volume-claims

Name the PVCs to match the openshift_logging_es_pvc_prefix setting, which defaults
to logging-es. Assign each PVC a name with a sequence number added to it: logging-es-
0, logging-es-1, logging-es-2, and so on.

Allow OpenShift Container Platform to create a PVC. If a PVC for Elsaticsearch does not
exist, OpenShift Container Platform creates the PVC based on parameters in the Ansible
inventory file.

Parameter Description

openshift_logging_
es_pvc_size

Specify the size of the PVC request.

openshift_logging_
elasticsearch_stor
age_type

Specify the storage type as pvc.

NOTE

This is an optional parameter. If you set the
openshift_logging_es_pvc_size
parameter to a value greater than 0, the logging
installer automatically sets this parameter to pvc by
default.

openshift_logging_
es_pvc_prefix

Optionally, specify a custom prefix for the PVC.

For example:

If using dynamically provisioned PVs, the OpenShift Container Platform logging installer creates PVCs
that use the default storage class or the PVC specified with the
openshift_logging_elasticsearch_pvc_storage_class_name parameter.

If using NFS storage, the OpenShift Container Platform installer creates the persistent volumes, based
on the openshift_logging_storage_* parameters and the OpenShift Container Platform logging
installer creates PVCs, using the openshift_logging_es_pvc_* paramters. Make sure you specify
the correct parameters in order to use persistent volumes with EFK. Also set the
openshift_enable_unsupported_configurations=true parameter in the Ansible inventory file,
as the logging installer blocks the installation of NFS with core infrastructure by default.

WARNING

Using NFS storage as a volume or a persistent volume, or using NAS such as
Gluster, is not supported for Elasticsearch storage, as Lucene relies on file system
behavior that NFS does not supply. Data corruption and other problems can occur.

openshift_logging_elasticsearch_storage_type=pvc
openshift_logging_es_pvc_size=104802308Ki
openshift_logging_es_pvc_prefix=es-logging



CHAPTER 30. AGGREGATING CONTAINER LOGS

559

If your environment requires NFS storage, use one of the following methods:

NFS as a persistent volume

NFS storage as local storage

30.5.2.1.1. Using NFS as a persistent volume

You can deploy NFS as an automatically provisioned persistent volume or using a predefined NFS
volume.

For more information, see Sharing an NFS mount across two persistent volume claims to leverage
shared storage for use by two separate containers.

Using automatically provisioned NFS

To use NFS as a persistent volume where NFS is automatically provisioned:

1. Add the following lines to the Ansible inventory file to create an NFS auto-provisioned storage
class and dynamically provision the backing storage:

openshift_logging_es_pvc_storage_class_name=$nfsclass
openshift_logging_es_pvc_dynamic=true

2. Use the following command to deploy the NFS volume using the logging playbook:

ansible-playbook /usr/share/ansible/openshift-
ansible/playbooks/openshift-logging/config.yml

3. Use the following steps to create a PVC:

a. Edit the Ansible inventory file to set the PVC size:

openshift_logging_es_pvc_size=50Gi

NOTE

The logging playbook selects a volume based on size and might use an
unexpected volume if any other persistent volume has same size.

b. Use the following command to rerun the Ansible deploy_cluster.yml playbook:

ansible-playbook /usr/share/ansible/openshift-
ansible/playbooks/deploy_cluster.yml

The installer playbook creates the NFS volume based on the
openshift_logging_storage variables.

Using a predefined NFS volume

To deploy logging alongside the OpenShift Container Platform cluster using an existing NFS volume:

1. Edit the Ansible inventory file to configure the NFS volume and set the PVC size:

OpenShift Container Platform 3.7 Installation and Configuration

560

1

openshift_logging_storage_kind=nfs
openshift_enable_unsupported_configurations=true
openshift_logging_storage_access_modes=["ReadWriteOnce"]
openshift_logging_storage_nfs_directory=/srv/nfs
openshift_logging_storage_nfs_options=*(rw,root_squash)
openshift_logging_storage_volume_name=logging
openshift_logging_storage_volume_size=100Gi
openshift_logging_storage_labels={:storage=>"logging"}
openshift_logging_install_logging=true

2. Use the following command to redeploy the EFK stack:

ansible-playbook /usr/share/ansible/openshift-
ansible/playbooks/deploy_cluster.yml

30.5.2.1.2. Using NFS as local storage

You can allocate a large file on an NFS server and mount the file to the nodes. You can then use the file
as a host path device.

$ mount -F nfs nfserver:/nfs/storage/elasticsearch-1 /usr/local/es-storage
$ chown 1000:1000 /usr/local/es-storage

Then, use /usr/local/es-storage as a host-mount as described below. Use a different backing file as
storage for each Elasticsearch replica.

This loopback must be maintained manually outside of OpenShift Container Platform, on the node. You
must not maintain it from inside a container.

It is possible to use a local disk volume (if available) on each node host as storage for an Elasticsearch
replica. Doing so requires some preparation as follows.

1. The relevant service account must be given the privilege to mount and edit a local volume:

$ oc adm policy add-scc-to-user privileged \
 system:serviceaccount:logging:aggregated-logging-

elasticsearch 1

Use the project you created earlier (for example, logging) when running the logging
playbook.

2. Each Elasticsearch replica definition must be patched to claim that privilege, for example
(change to --selector component=es-ops for Ops cluster):

$ for dc in $(oc get deploymentconfig --selector component=es -o
name); do
 oc scale $dc --replicas=0
 oc patch $dc \
 -p '{"spec":{"template":{"spec":{"containers":
[{"name":"elasticsearch","securityContext":{"privileged":
true}}]}}}}'
 done

CHAPTER 30. AGGREGATING CONTAINER LOGS

561

1

3. The Elasticsearch replicas must be located on the correct nodes to use the local storage, and
should not move around even if those nodes are taken down for a period of time. This requires
giving each Elasticsearch replica a node selector that is unique to a node where an administrator
has allocated storage for it. To configure a node selector, edit each Elasticsearch deployment
configuration and add or edit the nodeSelector section to specify a unique label that you have
applied for each desired node:

apiVersion: v1
kind: DeploymentConfig
spec:
 template:
 spec:
 nodeSelector:

 logging-es-node: "1" 1

This label should uniquely identify a replica with a single node that bears that label, in this
case logging-es-node=1. Use the oc label command to apply labels to nodes as
needed.

To automate applying the node selector you can instead use the oc patch command:

$ oc patch dc/logging-es-<suffix> \
 -p '{"spec":{"template":{"spec":{"nodeSelector":{"logging-es-
node":"1"}}}}}'

1. Once these steps are taken, a local host mount can be applied to each replica as in this
example (where we assume storage is mounted at the same path on each node) (change to --
selector component=es-ops for Ops cluster):

$ for dc in $(oc get deploymentconfig --selector component=es -o
name); do
 oc set volume $dc \
 --add --overwrite --name=elasticsearch-storage \
 --type=hostPath --path=/usr/local/es-storage
 oc rollout latest $dc
 oc scale $dc --replicas=1
 done

30.5.2.1.3. Changing the Scale of Elasticsearch

If you need to scale up the number of Elasticsearch nodes in your cluster, you can create a deployment
configuration for each Elasticsearch node you want to add.

Due to the nature of persistent volumes and how Elasticsearch is configured to store its data and recover
the cluster, you cannot simply increase the replicas in an Elasticsearch deployment configuration.

The simplest way to change the scale of Elasticsearch is to modify the inventory host file and re-run the
logging playbook as described previously. If you have supplied persistent storage for the deployment,
this should not be disruptive.

OpenShift Container Platform 3.7 Installation and Configuration

562

NOTE

Resizing an Elasticsearch cluster using the logging playbook is only possible when the
new openshift_logging_es_cluster_size value is higher than the current number
of Elasticsearch nodes (scaled up) in the cluster.

30.5.2.1.4. Expose Elasticsearch as a Route

By default, Elasticsearch deployed with OpenShift aggregated logging is not accessible from outside the
logging cluster. You can enable a route for external access to Elasticsearch for those tools that want to
access its data.

You have access to Elasticsearch using your OpenShift token, and you can provide the external
Elasticsearch and Elasticsearch Ops hostnames when creating the server certificate (similar to Kibana).

1. To access Elasticsearch as a reencrypt route, define the following variables:

openshift_logging_es_allow_external=True
openshift_logging_es_hostname=elasticsearch.example.com

2. Run the openshift-logging.yml Ansible playbook:

$ ansible-playbook [-i </path/to/inventory>] \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/openshift-logging.yml

3. To log in to Elasticsearch remotely, the request must contain three HTTP headers:

Authorization: Bearer $token
X-Proxy-Remote-User: $username
X-Forwarded-For: $ip_address

4. You must have access to the project in order to be able to access to the logs. For example:

$ oc login <user1>
$ oc new-project <user1project>
$ oc new-app <httpd-example>

5. You need to get the token of this ServiceAccount to be used in the request:

$ token=$(oc whoami -t)

6. Using the token previously configured, you should be able access Elasticsearch through the
exposed route:

$ curl -k -H "Authorization: Bearer $token" -H "X-Proxy-Remote-User:
$(oc whoami)" -H "X-Forwarded-For: 127.0.0.1"
https://es.example.test/_cat/indices

30.5.3. Fluentd

Fluentd is deployed as a DaemonSet that deploys replicas according to a node label selector, which you
can specify with the inventory parameter openshift_logging_fluentd_nodeselector and the

CHAPTER 30. AGGREGATING CONTAINER LOGS

563

default is logging-infra-fluentd. As part of the OpenShift cluster installation, it is recommended
that you add the Fluentd node selector to the list of persisted node labels.

Fluentd uses journald as the system log source. These are log messages from the operating system,
Docker, and OpenShift. For container logs, Fluentd determines which log driver Docker is using, json-
file or journald, and automatically reads the logs from that source.

NOTE

As of OpenShift Container Platform 3.3, Fluentd no longer reads historical log files when
using the JSON file log driver. In situations where clusters have a large number of log files
and are older than the EFK deployment, this avoids delays when pushing the most recent
logs into Elasticsearch. Curator deleting logs are migrated soon after they are added to
Elasticsearch.

NOTE

It may require several minutes, or hours, depending on the size of your journal, before any
new log entries are available in Elasticsearch, when using
openshift_logging_journal_read_from_head=true.

WARNING

It is highly recommended that you use the default value for use-journal. In
scenarios where upgrading OpenShift Container Platform changes the Docker log
driver, if use-journal=False is explicitly specified as part of installation, Fluentd
still expects to read logs generated using the json-file log driver. This results in
a lack of log ingestion. If this has happened within your logging cluster, troubleshoot
it.

See Updating Fluentd’s Log Source After a Docker Log Driver Update for more
information.

Configuring Fluentd to Send Logs to an External Log Aggregator

You can configure Fluentd to send a copy of its logs to an external log aggregator, and not the default
Elasticsearch, using the secure-forward plug-in. From there, you can further process log records
after the locally hosted Fluentd has processed them.

The logging deployment provides a secure-forward.conf section in the Fluentd configmap for
configuring the external aggregator:

<store>
@type secure_forward
self_hostname pod-${HOSTNAME}
shared_key thisisasharedkey
secure yes
enable_strict_verification yes
ca_cert_path /etc/fluent/keys/your_ca_cert
ca_private_key_path /etc/fluent/keys/your_private_key



OpenShift Container Platform 3.7 Installation and Configuration

564

ca_private_key_passphrase passphrase
<server>
 host ose1.example.com
 port 24284
</server>
<server>
 host ose2.example.com
 port 24284
 standby
</server>
<server>
 host ose3.example.com
 port 24284
 standby
</server>
</store>

This can be updated using the oc edit command:

$ oc edit configmap/logging-fluentd

Certificates to be used in secure-forward.conf can be added to the existing secret that is mounted
on the Fluentd pods. The your_ca_cert and your_private_key values must match what is
specified in secure-forward.conf in configmap/logging-fluentd:

$ oc patch secrets/logging-fluentd --type=json \
 --patch "[{'op':'add','path':'/data/your_ca_cert','value':'$(base64
/path/to/your_ca_cert.pem)'}]"
$ oc patch secrets/logging-fluentd --type=json \
 --patch "[{'op':'add','path':'/data/your_private_key','value':'$(base64
/path/to/your_private_key.pem)'}]"

NOTE

Replace your_private_key with a generic name. This is a link to the JSON path, not a
path on your host system

When configuring the external aggregator, it must be able to accept messages securely from Fluentd.

If the external aggregator is another Fluentd server, it must have the fluent-plugin-secure-
forward plug-in installed and make use of the input plug-in it provides:

<source>
 @type secure_forward

 self_hostname ${HOSTNAME}
 bind 0.0.0.0
 port 24284

 shared_key thisisasharedkey

 secure yes
 cert_path /path/for/certificate/cert.pem
 private_key_path /path/for/certificate/key.pem

CHAPTER 30. AGGREGATING CONTAINER LOGS

565

 private_key_passphrase secret_foo_bar_baz
</source>

Further explanation of how to set up the fluent-plugin-secure-forward plug-in can be found here.

Reducing the Number of Connections from Fluentd to the API Server

With mux, you can deploy N number of mux services, where N is fewer than the number of nodes. Each
Fluentd is configured with USE_MUX_CLIENT=1. This tells Fluentd to send the raw logs to mux with no
filtering and no Kubernetes metadata filtering, which involves connections to the API server. You can
perform all of the processing and Kubernetes metadata filtering with mux.

IMPORTANT

The mux is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs), might not be
functionally complete, and Red Hat does not recommend to use them for production.
These features provide early access to upcoming product features, enabling customers to
test functionality and provide feedback during the development process.

For more information on Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

Parameter Description

openshift_logging_us
e_mux

The default is set to False. If set to True, a service called mux is
deployed. This service acts as a Fluentd secure_forward aggregator for
the node agent Fluentd daemonsets running in the cluster. Use
openshift_logging_use_mux to reduce the number of connections
to the OpenShift API server, and configure each node in Fluentd to send raw
logs to mux and turn off the Kubernetes metadata plug-in.

openshift_logging_mu
x_allow_external

The default is set to False. If set to True, the mux service is deployed,
and it is configured to allow Fluentd clients running outside of the cluster to
send logs using secure_forward. This allows OpenShift logging to be
used as a central logging service for clients other than OpenShift, or other
OpenShift clusters.

openshift_logging_us
e_mux_client

The default is set to False. If set to True, the node agent Fluentd services
is configured to send logs to the mux service rather than directly to
Elasticsearch, and their Kubernetes metadata filters is disabled, reducing
the number of connections to the API server.

openshift_logging_mu
x_hostname

The default is mux plus openshift_master_default_subdomain.
This is the hostname external_clients will use to connect to mux,
and is used in the TLS server cert subject.

openshift_logging_mu
x_port

24284

OpenShift Container Platform 3.7 Installation and Configuration

566

https://github.com/tagomoris/fluent-plugin-secure-forward
https://access.redhat.com/support/offerings/techpreview/

openshift_logging_mu
x_cpu_limit

500M

openshift_logging_mu
x_memory_limit

1Gi

openshift_logging_mu
x_default_namespaces

The default is mux-undefined. The first value in the list is the
namespace to use for undefined projects, followed by any additional
namespaces to create by default. Usually, you do not need to set this value.

openshift_logging_mu
x_namespaces

The default value is empty, allowing for additional namespaces to create for
external mux clients to associate with their logs. You will need to set this
value.

Parameter Description

Throttling logs in Fluentd

For projects that are especially verbose, an administrator can throttle down the rate at which the logs are
read in by Fluentd before being processed.

WARNING

Throttling can contribute to log aggregation falling behind for the configured projects;
log entries can be lost if a pod is deleted before Fluentd catches up.

NOTE

Throttling does not work when using the systemd journal as the log source. The throttling
implementation depends on being able to throttle the reading of the individual log files for
each project. When reading from the journal, there is only a single log source, no log files,
so no file-based throttling is available. There is not a method of restricting the log entries
that are read into the Fluentd process.

To tell Fluentd which projects it should be restricting, edit the throttle configuration in its ConfigMap after
deployment:

$ oc edit configmap/logging-fluentd

The format of the throttle-config.yaml key is a YAML file that contains project names and the desired
rate at which logs are read in on each node. The default is 1000 lines at a time per node. For example:

logging:
 read_lines_limit: 500

test-project:



CHAPTER 30. AGGREGATING CONTAINER LOGS

567

 read_lines_limit: 10

.operations:
 read_lines_limit: 100

When you make changes to any part of the EFK stack, specifically Elasticsearch or Fluentd, you should
first scale Elasticsearch down to zero and scale Fluentd so it does not match any other nodes. Then,
make the changes and scale Elasticsearch and Fluentd back.

To scale Elasticsearch to zero:

$ oc scale --replicas=0 dc/<ELASTICSEARCH_DC>

Change nodeSelector in the daemonset configuration to match zero:

Get the fluentd node selector:

$ oc get ds logging-fluentd -o yaml |grep -A 1 Selector
 nodeSelector:
 logging-infra-fluentd: "true"

Use the oc patch command to modify the daemonset nodeSelector:

$ oc patch ds logging-fluentd -p '{"spec":{"template":{"spec":
{"nodeSelector":{"nonexistlabel":"true"}}}}}'

Get the fluentd node selector:

$ oc get ds logging-fluentd -o yaml |grep -A 1 Selector
 nodeSelector:
 "nonexistlabel: "true"

Scale Elasticsearch back up from zero:

$ oc scale --replicas=# dc/<ELASTICSEARCH_DC>

Change nodeSelector in the daemonset configuration back to logging-infra-fluentd: "true".

Use the oc patch command to modify the daemonset nodeSelector:

oc patch ds logging-fluentd -p '{"spec":{"template":{"spec":
{"nodeSelector":{"logging-infra-fluentd":"true"}}}}}'

30.5.4. Kibana

To access the Kibana console from the OpenShift Container Platform web console, add the
loggingPublicURL parameter in the /etc/origin/master/master-config.yaml file, with the URL of the
Kibana console (the kibana-hostname parameter). The value must be an HTTPS URL:

...
assetConfig:
 ...

OpenShift Container Platform 3.7 Installation and Configuration

568

 loggingPublicURL: "https://kibana.example.com"
...

Setting the loggingPublicURL parameter creates a View Archive button on the OpenShift Container
Platform web console under the Browse → Pods → <pod_name> → Logs tab. This links to the Kibana
console.

You can scale the Kibana deployment as usual for redundancy:

$ oc scale dc/logging-kibana --replicas=2

NOTE

To ensure the scale persists across multiple executions of the logging playbook, make
sure to update the openshift_logging_kibana_replica_count in the inventory
file.

You can see the user interface by visiting the site specified by the
openshift_logging_kibana_hostname variable.

See the Kibana documentation for more information on Kibana.

Kibana Visualize

Kibana Visualize enables you to create visualizations and dashboards for monitoring container and pod
logs allows administrator users (cluster-admin or cluster-reader) to view logs by deployment,
namespace, pod, and container.

Kibana Visualize exists inside the Elasticsearch and ES-OPS pod, and must be run inside those pods. To
load dashboards and other Kibana UI objects, you must first log into Kibana as the user you want to add
the dashboards to, then log out. This will create the necessary per-user configuration that the next step
relies on. Then, run:

$ oc exec <$espod> -- es_load_kibana_ui_objects <user-name>

Where $espod is the name of any one of your Elasticsearch pods.

30.5.5. Curator

Curator allows administrators to configure scheduled Elasticsearch maintenance operations to be
performed automatically on a per-project basis. It is scheduled to perform actions daily based on its
configuration. Only one Curator pod is recommended per Elasticsearch cluster. Curator is configured via
a YAML configuration file with the following structure:

$PROJECT_NAME:
 $ACTION:
 $UNIT: $VALUE

$PROJECT_NAME:
 $ACTION:
 $UNIT: $VALUE
 ...

CHAPTER 30. AGGREGATING CONTAINER LOGS

569

https://www.elastic.co/guide/en/kibana/4.5/discover.html

The available parameters are:

Variable Name Description

$PROJECT_NAME The actual name of a project, such as myapp-devel . For OpenShift
Container Platform operations logs, use the name .operations as the
project name.

$ACTION The action to take, currently only delete is allowed.

$UNIT One of days, weeks, or months.

$VALUE An integer for the number of units.

.defaults Use .defaults as the $PROJECT_NAME to set the defaults for projects
that are not specified.

runhour (Number) the hour of the day in 24-hour format at which to run the Curator
jobs. For use with .defaults.

runminute (Number) the minute of the hour at which to run the Curator jobs. For use
with .defaults.

For example, to configure Curator to:

delete indices in the myapp-dev project older than 1 day

delete indices in the myapp-qe project older than 1 week

delete operations logs older than 8 weeks

delete all other projects indices after they are 30 days old

run the Curator jobs at midnight every day

Use:

myapp-dev:
 delete:
 days: 1

myapp-qe:
 delete:
 weeks: 1

.operations:
 delete:
 weeks: 8

.defaults:
 delete:

OpenShift Container Platform 3.7 Installation and Configuration

570

 days: 30
 runhour: 0
 runminute: 0

IMPORTANT

When you use month as the $UNIT for an operation, Curator starts counting at the first
day of the current month, not the current day of the current month. For example, if today
is April 15, and you want to delete indices that are 2 months older than today (delete:
months: 2), Curator does not delete indices that are dated older than February 15; it
deletes indices older than February 1. That is, it goes back to the first day of the current
month, then goes back two whole months from that date. If you want to be exact with
Curator, it is best to use days (for example, delete: days: 30).

30.5.5.1. Creating the Curator Configuration

The openshift_logging Ansible role provides a ConfigMap from which Curator reads its
configuration. You may edit or replace this ConfigMap to reconfigure Curator. Currently the logging-
curator ConfigMap is used to configure both your ops and non-ops Curator instances. Any
.operations configurations are in the same location as your application logs configurations.

1. To edit the provided ConfigMap to configure your Curator instances:

$ oc edit configmap/logging-curator

2. To replace the provided ConfigMap instead:

$ create /path/to/mycuratorconfig.yaml
$ oc create configmap logging-curator -o yaml \
 --from-file=config.yaml=/path/to/mycuratorconfig.yaml | \
 oc replace -f -

3. After you make your changes, redeploy Curator:

$ oc rollout latest dc/logging-curator
$ oc rollout latest dc/logging-curator-ops

30.6. CLEANUP

Remove everything generated during the deployment.

$ ansible-playbook [-i </path/to/inventory>] \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/openshift-logging.yml \
 -e openshift_logging_install_logging=False

30.7. TROUBLESHOOTING KIBANA

Using the Kibana console with OpenShift Container Platform can cause problems that are easily solved,
but are not accompanied with useful error messages. Check the following troubleshooting sections if you
are experiencing any problems when deploying Kibana on OpenShift Container Platform:

CHAPTER 30. AGGREGATING CONTAINER LOGS

571

Login Loop

The OAuth2 proxy on the Kibana console must share a secret with the master host’s OAuth2 server. If
the secret is not identical on both servers, it can cause a login loop where you are continuously
redirected back to the Kibana login page.

To fix this issue, delete the current OAuthClient, and use openshift-ansible to re-run the
openshift_logging role:

$ oc delete oauthclient/kibana-proxy
$ ansible-playbook [-i </path/to/inventory>] \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/openshift-logging.yml

Cryptic Error When Viewing the Console

When attempting to visit the Kibana console, you may receive a browser error instead:

{"error":"invalid_request","error_description":"The request is missing a
required parameter,
 includes an invalid parameter value, includes a parameter more than once,
or is otherwise malformed."}

This can be caused by a mismatch between the OAuth2 client and server. The return address for the
client must be in a whitelist so the server can securely redirect back after logging in.

Fix this issue by replacing the OAuthClient entry:

$ oc delete oauthclient/kibana-proxy
$ ansible-playbook [-i </path/to/inventory>] \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/openshift-logging.yml

If the problem persists, check that you are accessing Kibana at a URL listed in the OAuth client. This
issue can be caused by accessing the URL at a forwarded port, such as 1443 instead of the standard
443 HTTPS port. You can adjust the server whitelist by editing the OAuth client:

$ oc edit oauthclient/kibana-proxy

503 Error When Viewing the Console

If you receive a proxy error when viewing the Kibana console, it could be caused by one of two issues.

First, Kibana may not be recognizing pods. If Elasticsearch is slow in starting up, Kibana may timeout
trying to reach it. Check whether the relevant service has any endpoints:

$ oc describe service logging-kibana
Name: logging-kibana
[...]
Endpoints: <none>

If any Kibana pods are live, endpoints are listed. If they are not, check the state of the Kibana pods and
deployment. You may need to scale the deployment down and back up again.

OpenShift Container Platform 3.7 Installation and Configuration

572

1

The second possible issue may be caused if the route for accessing the Kibana service is masked. This
can happen if you perform a test deployment in one project, then deploy in a different project without
completely removing the first deployment. When multiple routes are sent to the same destination, the
default router will only route to the first created. Check the problematic route to see if it is defined in
multiple places:

$ oc get route --all-namespaces --selector logging-infra=support

F-5 Load Balancer and X-Forwarded-For Enabled

If you are attempting to use a F-5 load balancer in front of Kibana with X-Forwarded-For enabled, this
can cause an issue in which the Elasticsearch Searchguard plug-in is unable to correctly accept
connections from Kibana.

Example Kibana Error Message

Kibana: Unknown error while connecting to Elasticsearch

Error: Unknown error while connecting to Elasticsearch
Error: UnknownHostException[No trusted proxies]

To configure Searchguard to ignore the extra header:

1. Scale down all Fluentd pods.

2. Scale down Elasticsearch after the Fluentd pods have terminated.

3. Add searchguard.http.xforwardedfor.header: DUMMY to the Elasticsearch
configuration section.

$ oc edit configmap/logging-elasticsearch 1

This approach requires that Elasticsearch’s configurations are within a ConfigMap.

4. Scale Elasticsearch back up.

5. Scale up all Fluentd pods.

30.8. SENDING LOGS TO AN EXTERNAL ELASTICSEARCH INSTANCE

Fluentd sends logs to the value of the ES_HOST, ES_PORT, OPS_HOST, and OPS_PORT environment
variables of the Elasticsearch deployment configuration. The application logs are directed to the
ES_HOST destination, and operations logs to OPS_HOST.

NOTE

Sending logs directly to an AWS Elasticsearch instance is not supported. Use Fluentd
Secure Forward to direct logs to an instance of Fluentd that you control and that is
configured with the fluent-plugin-aws-elasticsearch-service plug-in.

To direct logs to a specific Elasticsearch instance, edit the deployment configuration and replace the
value of the above variables with the desired instance:

CHAPTER 30. AGGREGATING CONTAINER LOGS

573

1

$ oc edit dc/<deployment_configuration>

For an external Elasticsearch instance to contain both application and operations logs, you can set
ES_HOST and OPS_HOST to the same destination, while ensuring that ES_PORT and OPS_PORT also
have the same value.

If your externally hosted Elasticsearch instance does not use TLS, update the _CLIENT_CERT,
_CLIENT_KEY, and _CA variables to be empty. If it does use TLS, but not mutual TLS, update the
_CLIENT_CERT and _CLIENT_KEY variables to be empty and patch or recreate the logging-fluentd
secret with the appropriate _CA value for communicating with your Elasticsearch instance. If it uses
Mutual TLS as the provided Elasticsearch instance does, patch or recreate the logging-fluentd secret
with your client key, client cert, and CA.

NOTE

If you are not using the provided Kibana and Elasticsearch images, you will not have the
same multi-tenant capabilities and your data will not be restricted by user access to a
particular project.

30.9. SENDING LOGS TO AN EXTERNAL SYSLOG SERVER

Use the fluent-plugin-remote-syslog plug-in on the host to send logs to an external syslog
server.

Set environment variables in the logging-fluentd or logging-mux deployment configurations:

The desired remote syslog host. Required for each host.

This will build two destinations. The syslog server on host1 will be receiving messages on the default
port of 514, while host2 will be receiving the same messages on port 5555.

Alternatively, you can configure your own custom fluent.conf in the logging-fluentd or logging-
mux ConfigMaps.

Fluentd Environment Variables

Parameter Description

USE_REMOTE_SYSLOG Defaults to false. Set to true to enable use of the fluent-plugin-
remote-syslog gem

REMOTE_SYSLOG_HOST (Required) Hostname or IP address of the remote syslog server.

REMOTE_SYSLOG_PORT Port number to connect on. Defaults to 514.

- name: REMOTE_SYSLOG_HOST 1
 value: host1
- name: REMOTE_SYSLOG_HOST_BACKUP
 value: host2
- name: REMOTE_SYSLOG_PORT_BACKUP
 value: 5555

OpenShift Container Platform 3.7 Installation and Configuration

574

REMOTE_SYSLOG_SEVERI
TY

Set the syslog severity level. Defaults to debug.

REMOTE_SYSLOG_FACILI
TY

Set the syslog facility. Defaults to local0.

REMOTE_SYSLOG_USE_RE
CORD

Defaults to false. Set to true to use the record’s severity and facility
fields to set on the syslog message.

REMOTE_SYSLOG_REMOVE
_TAG_PREFIX

Removes the prefix from the tag, defaults to '' (empty).

REMOTE_SYSLOG_TAG_KE
Y

If specified, uses this field as the key to look on the record, to set the tag on
the syslog message.

REMOTE_SYSLOG_PAYLOA
D_KEY

If specified, uses this field as the key to look on the record, to set the
payload on the syslog message.

Parameter Description

WARNING

This implementation is insecure, and should only be used in environments where
you can guarantee no snooping on the connection.

Fluentd Logging Ansible Variables

Parameter Description

openshift_logging_fl
uentd_remote_syslog

The default is set to false. Set to true to enable use of the fluent-plugin-
remote-syslog gem.

openshift_logging_fl
uentd_remote_syslog_
host

Hostname or IP address of the remote syslog server, this is mandatory.

openshift_logging_fl
uentd_remote_syslog_
port

Port number to connect on, defaults to 514.

openshift_logging_fl
uentd_remote_syslog_
severity

Set the syslog severity level, defaults to debug.



CHAPTER 30. AGGREGATING CONTAINER LOGS

575

openshift_logging_fl
uentd_remote_syslog_
facility

Set the syslog facility, defaults to local0.

openshift_logging_fl
uentd_remote_syslog_
use_record

The default is set to false. Set to true to use the record’s severity and
facility fields to set on the syslog message.

openshift_logging_fl
uentd_remote_syslog_
remove_tag_prefix

Removes the prefix from the tag, defaults to '' (empty).

openshift_logging_fl
uentd_remote_syslog_
tag_key

If string is specified, uses this field as the key to look on the record, to set
the tag on the syslog message.

openshift_logging_fl
uentd_remote_syslog_
payload_key

If string is specified, uses this field as the key to look on the record, to set
the payload on the syslog message.

Parameter Description

Mux Logging Ansible Variables

Parameter Description

openshift_logging_mu
x_remote_syslog

The default is set to false. Set to true to enable use of the fluent-plugin-
remote-syslog gem.

openshift_logging_mu
x_remote_syslog_host

Hostname or IP address of the remote syslog server, this is mandatory.

openshift_logging_mu
x_remote_syslog_port

Port number to connect on, defaults to 514.

openshift_logging_mu
x_remote_syslog_seve
rity

Set the syslog severity level, defaults to debug.

openshift_logging_mu
x_remote_syslog_faci
lity

Set the syslog facility, defaults to local0.

openshift_logging_mu
x_remote_syslog_use_
record

The default is set to false. Set to true to use the record’s severity and
facility fields to set on the syslog message.

OpenShift Container Platform 3.7 Installation and Configuration

576

openshift_logging_mu
x_remote_syslog_remo
ve_tag_prefix

Removes the prefix from the tag, defaults to '' (empty).

openshift_logging_mu
x_remote_syslog_tag_
key

If string is specified, uses this field as the key to look on the record, to set
the tag on the syslog message.

openshift_logging_mu
x_remote_syslog_payl
oad_key

If string is specified, uses this field as the key to look on the record, to set
the payload on the syslog message.

Parameter Description

30.10. PERFORMING ADMINISTRATIVE ELASTICSEARCH
OPERATIONS

As of logging version 3.2.0, an administrator certificate, key, and CA that can be used to communicate
with and perform administrative operations on Elasticsearch are provided within the logging-
elasticsearch secret.

NOTE

To confirm whether or not your EFK installation provides these, run:

$ oc describe secret logging-elasticsearch

If they are not available, refer to Manual Upgrades to ensure you are on the latest version first.

1. Connect to an Elasticsearch pod that is in the cluster on which you are attempting to perform
maintenance.

2. To find a pod in a cluster use either:

$ oc get pods -l component=es -o name | head -1
$ oc get pods -l component=es-ops -o name | head -1

3. Connect to a pod:

$ oc rsh <your_Elasticsearch_pod>

4. Once connected to an Elasticsearch container, you can use the certificates mounted from the
secret to communicate with Elasticsearch per its Indices APIs documentation.
Fluentd sends its logs to Elasticsearch using the index format project.{project_name}.
{project_uuid}.YYYY.MM.DD where YYYY.MM.DD is the date of the log record.

For example, to delete all logs for the logging project with uuid 3b3594fa-2ccd-11e6-acb7-
0eb6b35eaee3 from June 15, 2016, we can run:

CHAPTER 30. AGGREGATING CONTAINER LOGS

577

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/upgrading_clusters/#manual-upgrading-efk-logging-stack
https://www.elastic.co/guide/en/elasticsearch/reference/2.3/indices.html

$ curl --key /etc/elasticsearch/secret/admin-key \
 --cert /etc/elasticsearch/secret/admin-cert \
 --cacert /etc/elasticsearch/secret/admin-ca -XDELETE \
 "https://localhost:9200/project.logging.3b3594fa-2ccd-11e6-acb7-
0eb6b35eaee3.2016.06.15"

30.11. CHANGING THE AGGREGATED LOGGING DRIVER

By default, aggregated logging uses the journald log driver unless json-file was specified during
installation. You can change the log driver between journald and json-file as needed.

IMPORTANT

When using the json-file driver, ensure that your Docker version is Docker version
docker-1.12.6-55.gitc4618fb.el7_4 now or later.

Fluentd determines the driver Docker is using by checking the /etc/docker/daemon.json and
/etc/sysconfig/docker files.

You can determine which driver Docker is using with the docker info command:

docker info | grep Logging

Logging Driver: journald

To change between json-file and journald after installation:

1. Modify either the /etc/sysconfig/docker or /etc/docker/daemon.json files.
For example:

2. Restart the Docker service:

systemctl restart docker

3. Update the Fluentd log source.

30.12. UPDATING FLUENTD’S LOG SOURCE AFTER A DOCKER LOG
DRIVER UPDATE

cat /etc/sysconfig/docker
OPTIONS=' --selinux-enabled --log-driver=json-file --log-opt max-
size=1M --log-opt max-file=3 --signature-verification=False'

cat /etc/docker/daemon.json
{
"log-driver": "json-file",
"log-opts": {
"max-size": "1M",
"max-file": "1"
}
}

OpenShift Container Platform 3.7 Installation and Configuration

578

1

1

If the Docker log driver has changed from json-file to journald and Fluentd was previously
configured with USE_JOURNAL=False, then it will not be able to pick up any new logs that are created.
When the Fluentd daemonset is configured with the default value for USE_JOURNAL, then it will detect
the Docker log driver upon pod start-up, and configure itself to pull from the appropriate source.

To update Fluentd to detect the correct source upon start-up:

1. Remove the label from nodes where Fluentd is deployed:

$ oc label node --all logging-infra-fluentd- 1

This example assumes use of the default Fluentd node selector and it being deployed on
all nodes.

2. Update the daemonset/logging-fluentd USE_JOURNAL value to be empty:

$ oc patch daemonset/logging-fluentd \
 -p '{"spec":{"template":{"spec":{"containers":
[{"name":"fluentd-elasticsearch","env":[{"name": "USE_JOURNAL",
"value":""}]}]}}}}'

3. Relabel your nodes to schedule Fluentd deployments:

$ oc label node --all logging-infra-fluentd=true 1

This example assumes use of the default Fluentd node selector and it being deployed on
all nodes.

30.13. MANUAL ELASTICSEARCH ROLLOUTS

As of OpenShift Container Platform 3.7 the Aggregated Logging stack updated the Elasticsearch
Deployment Config object so that it no longer has a Config Change Trigger, meaning any changes to the
dc will not result in an automatic rollout. This was to prevent unintended restarts happening in the
Elasticsearch cluster, which could create excessive shard rebalancing as cluster members restart.

This section presents two restart procedures: rolling-restart and full-restart. Where a rolling restart
applies appropriate changes to the Elasticsearch cluster without down time (provided three masters are
configured) and a full restart safely applies major changes without risk to existing data.

30.13.1. Performing an Elasticsearch Rolling Cluster Restart

A rolling restart is recommended, when any of the following changes are made:

nodes on which Elasticsearch pods run require a reboot

logging-elasticsearch configmap

logging-es-* deployment configuration

new image deployment, or upgrade

This will be the recommended restart policy going forward.

CHAPTER 30. AGGREGATING CONTAINER LOGS

579

NOTE

Any action you do for an Elasticsearch cluster will need to be repeated for the ops cluster
if openshift_logging_use_ops was configured to be True.

1. Prevent shard balancing when purposely bringing down nodes:

$ oc exec -c elasticsearch <any_es_pod_in_the_cluster> -- \
 curl -s \
 --cacert /etc/elasticsearch/secret/admin-ca \
 --cert /etc/elasticsearch/secret/admin-cert \
 --key /etc/elasticsearch/secret/admin-key \
 -XPUT 'https://localhost:9200/_cluster/settings' \
 -d '{ "transient": { "cluster.routing.allocation.enable" :
"none" } }'

2. Once complete, for each dc you have for an Elasticsearch cluster, run oc rollout latest to
deploy the latest version of the dc object:

$ oc rollout latest <dc_name>

You will see a new pod deployed. Once the pod has two ready containers, you can move on to
the next dc.

3. Once all `dc`s for the cluster have been rolled out, re-enable shard balancing:

$ oc exec -c elasticsearch <any_es_pod_in_the_cluster> -- \
 curl -s \
 --cacert /etc/elasticsearch/secret/admin-ca \
 --cert /etc/elasticsearch/secret/admin-cert \
 --key /etc/elasticsearch/secret/admin-key \
 -XPUT 'https://localhost:9200/_cluster/settings' \
 -d '{ "transient": { "cluster.routing.allocation.enable" :
"all" } }'

30.13.2. Performing an Elasticsearch Full Cluster Restart

A full restart is recommended when changing major versions of Elasticsearch or other changes which
might put data integrity a risk during the change process.

NOTE

Any action you do for an Elasticsearch cluster will need to be repeated for the ops cluster
if openshift_logging_use_ops was configured to be True.

NOTE

When making changes to the logging-es-ops service use components "es-ops-
blocked" and "es-ops" instead in the patch

1. Disable all external communications to the Elasticsearch cluster while it is down. Edit your non-
cluster logging service (for example, logging-es, logging-es-ops) to no longer match the
Elasticsearch pods running:

OpenShift Container Platform 3.7 Installation and Configuration

580

$ oc patch svc/logging-es -p '{"spec":{"selector":{"component":"es-
blocked","provider":"openshift"}}}'

2. Prevent shard balancing when purposely bringing down nodes:

$ oc exec -c elasticsearch <any_es_pod_in_the_cluster> -- \
 curl -s \
 --cacert /etc/elasticsearch/secret/admin-ca \
 --cert /etc/elasticsearch/secret/admin-cert \
 --key /etc/elasticsearch/secret/admin-key \
 -XPUT 'https://localhost:9200/_cluster/settings' \
 -d '{ "transient": { "cluster.routing.allocation.enable" :
"none" } }'

3. Perform a shard synced flush to ensure there are no pending operations waiting to be written to
disk prior to shutting down:

$ oc exec -c elasticsearch <any_es_pod_in_the_cluster> -- \
 curl -s \
 --cacert /etc/elasticsearch/secret/admin-ca \
 --cert /etc/elasticsearch/secret/admin-cert \
 --key /etc/elasticsearch/secret/admin-key \
 -XPUT 'https://localhost:9200/_flush/synced'

4. Once complete, for each dc you have for an ES cluster, run oc rollout latest to deploy
the latest version of the dc object:

$ oc rollout latest <dc_name>

You will see a new pod deployed. Once the pod has two ready containers, you can move on to
the next dc.

5. Once all DCs for the cluster have been rolled out, re-enable shard balancing:

$ oc exec -c elasticsearch <any_es_pod_in_the_cluster> --
 curl -s
 --cacert /etc/elasticsearch/secret/admin-ca \
 --cert /etc/elasticsearch/secret/admin-cert \
 --key /etc/elasticsearch/secret/admin-key \
 -XPUT 'https://localhost:9200/_cluster/settings' \
 -d '{ "transient": { "cluster.routing.allocation.enable" :
"all" } }'

6. Once the restart is complete, enable all external communications to the ES cluster. Edit your
non-cluster logging service (for example, logging-es, logging-es-ops) to match the
Elasticsearch pods running again:

$ oc patch svc/logging-es -p '{"spec":{"selector":
{"component":"es","provider":"openshift"}}}'

CHAPTER 30. AGGREGATING CONTAINER LOGS

581

CHAPTER 31. AGGREGATE LOGGING SIZING GUIDELINES

31.1. OVERVIEW

The Elasticsearch, Fluentd, and Kibana (EFK) stack aggregates logs from nodes and applications
running inside your OpenShift Container Platform installation. Once deployed it uses Fluentd to
aggregate event logs from all nodes, projects, and pods into Elasticsearch (ES). It also provides a
centralized Kibana web UI where users and administrators can create rich visualizations and dashboards
with the aggregated data.

Fluentd bulk uploads logs to an index, in JSON format, then Elasticsearch routes your search requests to
the appropriate shards.

31.2. INSTALLATION

The general procedure for installing an aggregate logging stack in OpenShift Container Platform is
described in Aggregating Container Logs. There are some important things to keep in mind while going
through the installation guide:

In order for the logging pods to spread evenly across your cluster, an empty node selector should be
used.

$ oc adm new-project logging --node-selector=""

In conjunction with node labeling, which is done later, this controls pod placement across the logging
project. You can now create the logging project.

$ oc project logging

Elasticsearch (ES) should be deployed with a cluster size of at least three for resiliency to node failures.
This is specified by setting the openshift_logging_es_cluster_size parameter in the inventory
host file.

Refer to Ansible Variables for a full list of parameters.

If you do not have an existing Kibana installation, you can use kibana.example.com as a value to
openshift_logging_kibana_hostname.

Installation can take some time depending on whether the images were already retrieved from the
registry or not, and on the size of your cluster.

Inside the logging namespace, you can check your deployment with oc get all.

$ oc get all

NAME REVISION REPLICAS
TRIGGERED BY
logging-curator 1 1
logging-es-6cvk237t 1 1
logging-es-e5x4t4ai 1 1
logging-es-xmwvnorv 1 1
logging-kibana 1 1
NAME DESIRED CURRENT
AGE

OpenShift Container Platform 3.7 Installation and Configuration

582

http://www.fluentd.org/architecture
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/guide/en/kibana/current/introduction.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#using-node-selectors

logging-curator-1 1 1 3d
logging-es-6cvk237t-1 1 1 3d
logging-es-e5x4t4ai-1 1 1 3d
logging-es-xmwvnorv-1 1 1 3d
logging-kibana-1 1 1 3d
NAME HOST/PORT PATH
SERVICE TERMINATION LABELS
logging-kibana kibana.example.com
logging-kibana reencrypt component=support,logging-
infra=support,provider=openshift
logging-kibana-ops kibana-ops.example.com
logging-kibana-ops reencrypt component=support,logging-
infra=support,provider=openshift
NAME CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
logging-es 172.24.155.177 <none>
9200/TCP 3d
logging-es-cluster None <none>
9300/TCP 3d
logging-es-ops 172.27.197.57 <none>
9200/TCP 3d
logging-es-ops-cluster None <none>
9300/TCP 3d
logging-kibana 172.27.224.55 <none>
443/TCP 3d
logging-kibana-ops 172.25.117.77 <none>
443/TCP 3d
NAME READY STATUS
RESTARTS AGE
logging-curator-1-6s7wy 1/1 Running 0
3d
logging-deployer-un6ut 0/1 Completed 0
3d
logging-es-6cvk237t-1-cnpw3 1/1 Running 0
3d
logging-es-e5x4t4ai-1-v933h 1/1 Running 0
3d
logging-es-xmwvnorv-1-adr5x 1/1 Running 0
3d
logging-fluentd-156xn 1/1 Running 0
3d
logging-fluentd-40biz 1/1 Running 0
3d
logging-fluentd-8k847 1/1 Running 0
3d

You should end up with a similar setup to the following.

$ oc get pods -o wide

NAME READY STATUS RESTARTS AGE
NODE
logging-curator-1-6s7wy 1/1 Running 0 3d
ip-172-31-24-239.us-west-2.compute.internal
logging-deployer-un6ut 0/1 Completed 0 3d
ip-172-31-6-152.us-west-2.compute.internal

CHAPTER 31. AGGREGATE LOGGING SIZING GUIDELINES

583

logging-es-6cvk237t-1-cnpw3 1/1 Running 0 3d
ip-172-31-24-238.us-west-2.compute.internal
logging-es-e5x4t4ai-1-v933h 1/1 Running 0 3d
ip-172-31-24-235.us-west-2.compute.internal
logging-es-xmwvnorv-1-adr5x 1/1 Running 0 3d
ip-172-31-24-233.us-west-2.compute.internal
logging-fluentd-156xn 1/1 Running 0 3d
ip-172-31-24-241.us-west-2.compute.internal
logging-fluentd-40biz 1/1 Running 0 3d
ip-172-31-24-236.us-west-2.compute.internal
logging-fluentd-8k847 1/1 Running 0 3d
ip-172-31-24-237.us-west-2.compute.internal
logging-fluentd-9a3qx 1/1 Running 0 3d
ip-172-31-24-231.us-west-2.compute.internal
logging-fluentd-abvgj 1/1 Running 0 3d
ip-172-31-24-228.us-west-2.compute.internal
logging-fluentd-bh74n 1/1 Running 0 3d
ip-172-31-24-238.us-west-2.compute.internal
...
...

By default the amount of RAM allocated to each ES instance is 8GB.
openshift_logging_es_memory_limit is the parameter used in the openshift-ansible host
inventory file. Keep in mind that half of this value will be passed to the individual elasticsearch pods java
processes heap size.

Learn more about installing EFK.

31.2.1. Large Clusters

At 100 nodes or more, it is recommended to first pre-pull the logging images from docker pull
registry.access.redhat.com/openshift3/logging-fluentd:v3.7. After deploying the
logging infrastructure pods (Elasticsearch, Kibana, and Curator), node labeling should be done in steps of
20 nodes at a time. For example:

Using a simple loop:

$ while read node; do oc label nodes $node logging-infra-fluentd=true;
done < 20_fluentd.lst

The following also works:

$ oc label nodes 10.10.0.{100..119} logging-infra-fluentd=true

Labeling nodes in groups paces the DaemonSets used by OpenShift logging, helping to avoid
contention on shared resources such as the image registry.

NOTE

Check for the occurence of any "CrashLoopBackOff | ImagePullFailed | Error" issues. oc
logs <pod>, oc describe pod <pod> and oc get event are helpful diagnostic
commands.

31.3. SYSTEMD-JOURNALD AND RSYSLOG

OpenShift Container Platform 3.7 Installation and Configuration

584

https://www.elastic.co/guide/en/elasticsearch/guide/current/heap-sizing.html#_give_half_your_memory_to_lucene

Rate-limiting

In Red Hat Enterprise Linux (RHEL) 7 the systemd-journald.socket unit creates /dev/log during the
boot process, and then passes input to systemd-journald.service. Every syslog() call goes to the
journal.

Rsyslog uses the imjournal module as a default input mode for journal files. Refer to Interaction of
rsyslog and journal for detailed information about this topic.

A simple test harness was developed, which uses logger across the cluster nodes to make entries of
different sizes at different rates in the system log. During testing simulations under a default Red Hat
Enterprise Linux (RHEL) 7 installation with systemd-219-19.el7.x86_64 at certain logging rates
(approximately 40 log lines per second), we encountered the default rate limit of rsyslogd. After
adjusting these limits, entries stopped being written to journald due to local journal file corruption. This
issue is resolved in later versions of systemd.

Scaling up

As you scale up your project, the default logging environment might need some adjustments. After
updating to systemd-219-22.el7.x86_64, we added:

$IMUXSockRateLimitInterval 0
$IMJournalRatelimitInterval 0

to /etc/rsyslog.conf and:

Disable rate limiting
RateLimitInterval=1s
RateLimitBurst=10000
Storage=volatile
Compress=no
MaxRetentionSec=30s

to /etc/systemd/journald.conf.

Now, restart the services.

$ systemctl restart systemd-journald.service
$ systemctl restart rsyslog.service

These settings account for the bursty nature of uploading in bulk.

After removing the rate limit, you may see increased CPU utilization on the system logging daemons as
it processes any messages that would have previously been throttled.

Rsyslog is configured (see ratelimit.interval, ratelimit.burst) to rate-limit entries read from the journal at
10,000 messages in 300 seconds. A good rule of thumb is to ensure that the rsyslog rate-limits account
for the systemd-journald rate-limits.

31.4. SCALING UP EFK LOGGING

If you do not indicate the desired scale at first deployment, the least disruptive way of adjusting your
cluster is by re-running the Ansible logging playbook after updating the inventory file with an updated
openshift_logging_es_cluster_size value. parameter. Refer to the Performing Administrative
Elasticsearch Operations section for more in-depth information.

CHAPTER 31. AGGREGATE LOGGING SIZING GUIDELINES

585

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/System_Administrators_Guide/index.html#s1-interaction_of_rsyslog_and_journal
http://linux.die.net/man/1/logger
https://rhn.redhat.com/errata/RHBA-2016-1026.html

NOTE

A highly-available Elasticsearch environment requires at least three Elasticsearch nodes,
each on a different host, and setting the
openshift_logging_es_number_of_replicas Ansible variable to a value of 1 or
higher to create replicas.

31.5. STORAGE CONSIDERATIONS

An Elasticsearch index is a collection of shards and their corresponding replicas. This is how ES
implements high availability internally, therefore there is little need to use hardware based mirroring
RAID variants. RAID 0 can still be used to increase overall disk performance.

Every search request needs to hit a copy of every shard in the index. Each ES instance requires its own
individual storage, but an OpenShift Container Platform deployment can only provide volumes shared by
all of its pods, which again means that Elasticsearch shouldn’t be implemented with a single node.

A persistent volume should be added to each Elasticsearch deployment configuration so that we have
one volume per replica shard. On OpenShift Container Platform this is often achieved through Persistent
Volume Claims

1 volume per shard

1 volume per replica shard

The PVCs must be named based on the openshift_logging_es_pvc_prefix setting. Refer to Persistent
Elasticsearch Storage for more details.

Below are capacity planning guidelines for OpenShift Container Platform aggregate logging. Example
scenario

Assumptions:

1. Which application: Apache

2. Bytes per line: 256

3. Lines per second load on application: 1

4. Raw text data → JSON

Baseline (256 characters per second → 15KB/min)

Logging Infra Pods Storage Throughput

3 es 1 kibana 1 curator 1 fluentd 6 pods total: 90000 x 1440 = 128,6 MB/day

3 es 1 kibana 1 curator 11 fluentd 16 pods total: 240000 x 1440 = 345,6 MB/day

3 es 1 kibana 1 curator 20 fluentd 25 pods total: 375000 x 1440 = 540 MB/day

Calculating total logging throughput and disk space required for your logging environment requires
knowledge of your application. For example, if one of your applications on average logs 10 lines-per-
second, each 256 bytes-per-line, calculate per-application throughput and disk space as follows:

OpenShift Container Platform 3.7 Installation and Configuration

586

https://www.elastic.co/guide/en/elasticsearch/guide/current/replica-shards.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#persistent-volume-claims

 (bytes-per-line * (lines-per-second) = 2560 bytes per app per second
 (2560) * (number-of-pods-per-node,100) = 256,000 bytes per second per node
 256k * (number-of-nodes) = total logging throughput per cluster

Fluentd ships any logs from systemd journal and /var/lib/docker/containers/ to Elasticsearch. Learn
more.

Local SSD drives are recommended in order to achieve the best performance. In Red Hat Enterprise
Linux (RHEL) 7, the deadline IO scheduler is the default for all block devices except SATA disks. For
SATA disks, the default IO scheduler is cfq.

Sizing storage for ES is greatly dependent on how you optimize your indices. Therefore, consider how
much data you need in advance and that you are aggregating application log data. Some Elasticsearch
users have found that it is necessary to keep absolute storage consumption around 50% and below 70%
at all times. This helps to avoid Elasticsearch becoming unresponsive during large merge operations.

CHAPTER 31. AGGREGATE LOGGING SIZING GUIDELINES

587

https://access.redhat.com/articles/425823
https://signalfx.com/blog/how-we-monitor-and-run-elasticsearch-at-scale/

CHAPTER 32. ENABLING CLUSTER METRICS

32.1. OVERVIEW

The kubelet exposes metrics that can be collected and stored in back-ends by Heapster.

As an OpenShift Container Platform administrator, you can view a cluster’s metrics from all containers
and components in one user interface. These metrics are also used by horizontal pod autoscalers in
order to determine when and how to scale.

This topic describes using Hawkular Metrics as a metrics engine which stores the data persistently in a
Cassandra database. When this is configured, CPU, memory and network-based metrics are viewable
from the OpenShift Container Platform web console and are available for use by horizontal pod
autoscalers.

Heapster retrieves a list of all nodes from the master server, then contacts each node individually
through the /stats endpoint. From there, Heapster scrapes the metrics for CPU, memory and network
usage, then exports them into Hawkular Metrics.

The storage volume metrics available on the kubelet are not available through the /stats endpoint, but
are available through the /metrics endpoint. See OpenShift Container Platform via Prometheus for
detailed information.

Browsing individual pods in the web console displays separate sparkline charts for memory and CPU.
The time range displayed is selectable, and these charts automatically update every 30 seconds. If there
are multiple containers on the pod, then you can select a specific container to display its metrics.

If resource limits are defined for your project, then you can also see a donut chart for each pod. The
donut chart displays usage against the resource limit. For example: 145 Available of 200 MiB,
with the donut chart showing 55 MiB Used.

32.2. BEFORE YOU BEGIN

An Ansible playbook is available to deploy and upgrade cluster metrics. You should familiarize yourself
with the Advanced Installation section. This provides information for preparing to use Ansible and
includes information about configuration. Parameters are added to the Ansible inventory file to configure
various areas of cluster metrics.

The following describe the various areas and the parameters that can be added to the Ansible inventory
file in order to modify the defaults:

Metrics Project

Metrics Data Storage

32.3. METRICS PROJECT

The components for cluster metrics must be deployed to the openshift-infra project in order for
autoscaling to work. Horizontal pod autoscalers specifically use this project to discover the Heapster
service and use it to retrieve metrics. The metrics project can be changed by adding
openshift_metrics_project to the inventory file.

32.4. METRICS DATA STORAGE

OpenShift Container Platform 3.7 Installation and Configuration

588

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#kubelet
https://github.com/kubernetes/heapster
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-pod-autoscaling
https://github.com/hawkular/hawkular-metrics
http://cassandra.apache.org/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-pod-autoscaling
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-limits
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-pod-autoscaling

You can store the metrics data to either persistent storage or to a temporary pod volume.

32.4.1. Persistent Storage

Running OpenShift Container Platform cluster metrics with persistent storage means that your metrics
are stored to a persistent volume and are able to survive a pod being restarted or recreated. This is ideal
if you require your metrics data to be guarded from data loss. For production environments it is highly
recommended to configure persistent storage for your metrics pods.

The size requirement of the Cassandra storage is dependent on the number of pods. It is the
administrator’s responsibility to ensure that the size requirements are sufficient for their setup and to
monitor usage to ensure that the disk does not become full. The size of the persisted volume claim is
specified with the openshift_metrics_cassandra_pvc_sizeansible variable which is set to 10 GB
by default.

If you would like to use dynamically provisioned persistent volumes set the
openshift_metrics_cassandra_storage_typevariable to dynamic in the inventory file.

32.4.2. Capacity Planning for Cluster Metrics

After running the openshift_metrics Ansible role, the output of oc get pods should resemble the
following:

 # oc get pods -n openshift-infra
 NAME READY STATUS
RESTARTS AGE
 hawkular-cassandra-1-l5y4g 1/1 Running 0
17h
 hawkular-metrics-1t9so 1/1 Running 0
17h
 heapster-febru 1/1 Running 0
17h

OpenShift Container Platform metrics are stored using the Cassandra database, which is deployed with
settings of openshift_metrics_cassandra_limits_memory: 2G; this value could be adjusted
further based upon the available memory as determined by the Cassandra start script. This value should
cover most OpenShift Container Platform metrics installations, but using environment variables you can
modify the MAX_HEAP_SIZE along with heap new generation size, HEAP_NEWSIZE, in the Cassandra
Dockerfile prior to deploying cluster metrics.

By default, metrics data is stored for seven days. After seven days, Cassandra begins to purge the oldest
metrics data. Metrics data for deleted pods and projects is not automatically purged; it is only removed
once the data is more than seven days old.

Example 32.1. Data Accumulated by 10 Nodes and 1000 Pods

In a test scenario including 10 nodes and 1000 pods, a 24 hour period accumulated 2.5 GB of metrics
data. Therefore, the capacity planning formula for metrics data in this scenario is:

(((2.5 × 109) ÷ 1000) ÷ 24) ÷ 106 = ~0.125 MB/hour per pod.

Example 32.2. Data Accumulated by 120 Nodes and 10000 Pods

CHAPTER 32. ENABLING CLUSTER METRICS

589

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#persistent-volumes

In a test scenario including 120 nodes and 10000 pods, a 24 hour period accumulated 25 GB of
metrics data. Therefore, the capacity planning formula for metrics data in this scenario is:

(((11.410 × 109) ÷ 1000) ÷ 24) ÷ 106 = 0.475 MB/hour

 1000 pods 10000 pods

Cassandra storage data
accumulated over 24 hours
(default metrics parameters)

2.5 GB 11.4 GB

If the default value of 7 days for openshift_metrics_duration and 30 seconds for
openshift_metrics_resolution are preserved, then weekly storage requirements for the
Cassandra pod would be:

 1000 pods 10000 pods

Cassandra storage data
accumulated over seven days
(default metrics parameters)

20 GB 90 GB

In the previous table, an additional 10 percent was added to the expected storage space as a buffer for
unexpected monitored pod usage.

WARNING

If the Cassandra persisted volume runs out of sufficient space, then data loss occurs.

For cluster metrics to work with persistent storage, ensure that the persistent volume has the
ReadWriteOnce access mode. If this mode is not active, then the persistent volume claim cannot locate
the persistent volume, and Cassandra fails to start.

To use persistent storage with the metric components, ensure that a persistent volume of sufficient size
is available. The creation of persistent volume claims is handled by the OpenShift Ansible
openshift_metrics role.

OpenShift Container Platform metrics also supports dynamically-provisioned persistent volumes. To use
this feature with OpenShift Container Platform metrics, it is necessary to set the value of
openshift_metrics_cassandra_storage_type to dynamic. You can use EBS, GCE, and Cinder
storage back-ends to dynamically provision persistent volumes.

For information on configuring the performance and scaling the cluster metrics pods, see the Scaling
Cluster Metrics topic.

Table 32.1. Cassandra Database storage requirements based on number of nodes/pods in the
cluster



OpenShift Container Platform 3.7 Installation and Configuration

590

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/scaling_and_performance_guide/#scaling-performance-cluster-metrics

Number of Nodes Number of Pods Cassandra
Storage growth
speed

Cassandra
storage growth
per day

Cassandra
storage growth
per week

210 10500 500 MB per hour 15 GB 75 GB

990 11000 1 GB per hour 30 GB 210 GB

In the above calculation, approximately 20 percent of the expected size was added as overhead to
ensure that the storage requirements do not exceed calculated value.

If the METRICS_DURATION and METRICS_RESOLUTION values are kept at the default (7 days and 30
seconds respectively), it is safe to plan Cassandra storage size requrements for week, as in the values
above.

WARNING

Because OpenShift Container Platform metrics uses the Cassandra database as a
datastore for metrics data, if USE_PERSISTANT_STORAGE=true is set during the
metrics set up process, PV will be on top in the network storage, with NFS as the
default. However, using network storage in combination with Cassandra is not
recommended, as per the Cassandra documentation.

Recommendations for OpenShift Container Platform Version 3.7

Run metrics pods on dedicated OpenShift Container Platform infrastructure nodes.

Use persistent storage when configuring metrics. Set USE_PERSISTENT_STORAGE=true.

Keep the METRICS_RESOLUTION=30 parameter in OpenShift Container Platform metrics
deployments. Using a value lower than the default value of 30 for METRICS_RESOLUTION is not
recommended. When using the Ansible metrics installation procedure, this is the
openshift_metrics_resolution parameter.

Closely monitor OpenShift Container Platform nodes with host metrics pods to detect early
capacity shortages (CPU and memory) on the host system. These capacity shortages can cause
problems for metrics pods.

In OpenShift Container Platform version 3.7 testing, test cases up to 25,000 pods were
monitored in a OpenShift Container Platform cluster.

Known Issues and Limitations
Testing found that the heapster metrics component is capable of handling up to 25,000 pods. If the
amount of pods exceed that number, Heapster begins to fall behind in metrics processing, resulting in
the possibility of metrics graphs no longer appearing. Work is ongoing to increase the number of pods
that Heapster can gather metrics on, as well as upstream development of alternate metrics-gathering
solutions.



CHAPTER 32. ENABLING CLUSTER METRICS

591

http://docs.datastax.com/en/landing_page/doc/landing_page/planning/planningAntiPatterns.html#planningAntiPatterns__AntiPatNAS
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#infrastructure-nodes

32.4.3. Non-Persistent Storage

Running OpenShift Container Platform cluster metrics with non-persistent storage means that any stored
metrics are deleted when the pod is deleted. While it is much easier to run cluster metrics with non-
persistent data, running with non-persistent data does come with the risk of permanent data loss.
However, metrics can still survive a container being restarted.

In order to use non-persistent storage, you must set the
openshift_metrics_cassandra_storage_typevariable to emptydir in the inventory file.

NOTE

When using non-persistent storage, metrics data is written to
/var/lib/origin/openshift.local.volumes/pods on the node where the Cassandra pod
runs Ensure /var has enough free space to accommodate metrics storage.

32.5. METRICS ANSIBLE ROLE

The OpenShift Container Platform Ansible openshift_metrics role configures and deploys all of the
metrics components using the variables from the Configuring Ansible inventory file.

32.5.1. Specifying Metrics Ansible Variables

The openshift_metrics role included with OpenShift Ansible defines the tasks to deploy cluster
metrics. The following is a list of role variables that can be added to your inventory file if it is necessary to
override them.

Table 32.2. Ansible Variables

Variable Description

openshift_metrics_install_metrics Deploy metrics if true. Otherwise, undeploy.

openshift_metrics_start_cluster Start the metrics cluster after deploying the
components.

openshift_metrics_image_prefix The prefix for the component images. With The prefix
for the component images. With
openshift3/ose-metrics-
cassandra:v3.7.9, set prefix
openshift/ose-.

openshift_metrics_image_version The version for the component images. For example,
with openshift3/ose-metrics-
cassandra:v3.7.9, set version as v3.7.9, or
to always get the latest 3.7 image, set v3.7.

openshift_metrics_startup_timeout The time, in seconds, to wait until Hawkular Metrics
and Heapster start up before attempting a restart.

openshift_metrics_duration The number of days to store metrics before they are
purged.

OpenShift Container Platform 3.7 Installation and Configuration

592

openshift_metrics_resolution The frequency that metrics are gathered. Defined as
a number and time identifier: seconds (s), minutes
(m), hours (h).

openshift_metrics_cassandra_pvc_pref
ix

The persistent volume claim prefix created for
Cassandra. A serial number is appended to the prefix
starting from 1.

openshift_metrics_cassandra_pvc_size The persistent volume claim size for each of the
Cassandra nodes.

openshift_metrics_cassandra_storage_
class_name

If you want to explicitly set the storage class, you
must not set
openshift_metrics_cassandra_storage_
type to emptydir or dynamic.

openshift_metrics_cassandra_storage_
type

Use emptydir for ephemeral storage (for testing);
pv for persistent volumes, which need to be created
before the installation; or dynamic for dynamic
persistent volumes.

openshift_metrics_cassandra_replicas The number of Cassandra nodes for the metrics
stack. This value dictates the number of Cassandra
replication controllers.

openshift_metrics_cassandra_limits_m
emory

The memory limit for the Cassandra pod. For
example, a value of 2Gi would limit Cassandra to 2
GB of memory. This value could be further adjusted
by the start script based on available memory of the
node on which it is scheduled.

openshift_metrics_cassandra_limits_c
pu

The CPU limit for the Cassandra pod. For example, a
value of 4000m (4000 millicores) would limit
Cassandra to 4 CPUs.

openshift_metrics_cassandra_requests
_memory

The amount of memory to request for Cassandra pod.
For example, a value of 2Gi would request 2 GB of
memory.

openshift_metrics_cassandra_requests
_cpu

The CPU request for the Cassandra pod. For
example, a value of 4000m (4000 millicores) would
request 4 CPUs.

openshift_metrics_cassandra_storage_
group

The supplemental storage group to use for
Cassandra.

Variable Description

CHAPTER 32. ENABLING CLUSTER METRICS

593

openshift_metrics_cassandra_nodesele
ctor

Set to the desired, existing node selector to ensure
that pods are placed onto nodes with specific labels.
For example, {"region":"infra"}.

openshift_metrics_hawkular_ca An optional certificate authority (CA) file used to sign
the Hawkular certificate.

openshift_metrics_hawkular_cert The certificate file used for re-encrypting the route to
Hawkular metrics. The certificate must contain the
host name used by the route. If unspecified, the
default router certificate is used.

openshift_metrics_hawkular_key The key file used with the Hawkular certificate.

openshift_metrics_hawkular_limits_me
mory

The amount of memory to limit the Hawkular pod. For
example, a value of 2Gi would limit the Hawkular
pod to 2 GB of memory. This value could be further
adjusted by the start script based on available
memory of the node on which it is scheduled.

openshift_metrics_hawkular_limits_cp
u

The CPU limit for the Hawkular pod. For example, a
value of 4000m (4000 millicores) would limit the
Hawkular pod to 4 CPUs.

openshift_metrics_hawkular_replicas The number of replicas for Hawkular metrics.

openshift_metrics_hawkular_requests_
memory

The amount of memory to request for the Hawkular
pod. For example, a value of 2Gi would request 2
GB of memory.

openshift_metrics_hawkular_requests_
cpu

The CPU request for the Hawkular pod. For example,
a value of 4000m (4000 millicores) would request 4
CPUs.

openshift_metrics_hawkular_nodeselec
tor

Set to the desired, existing node selector to ensure
that pods are placed onto nodes with specific labels.
For example, {"region":"infra"}.

openshift_metrics_heapster_allowed_u
sers

A comma-separated list of CN to accept. By default,
this is set to allow the OpenShift service proxy to
connect. Add system:master-proxy to the list
when overriding in order to allow horizontal pod
autoscaling to function properly.

openshift_metrics_heapster_limits_me
mory

The amount of memory to limit the Heapster pod. For
example, a value of 2Gi would limit the Heapster
pod to 2 GB of memory.

Variable Description

OpenShift Container Platform 3.7 Installation and Configuration

594

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-sched-selector
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-sched-selector
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-pod-autoscaling

openshift_metrics_heapster_limits_cp
u

The CPU limit for the Heapster pod. For example, a
value of 4000m (4000 millicores) would limit the
Heapster pod to 4 CPUs.

openshift_metrics_heapster_requests_
memory

The amount of memory to request for Heapster pod.
For example, a value of 2Gi would request 2 GB of
memory.

openshift_metrics_heapster_requests_
cpu

The CPU request for the Heapster pod. For example,
a value of 4000m (4000 millicores) would request 4
CPUs.

openshift_metrics_heapster_standalon
e

Deploy only Heapster, without the Hawkular Metrics
and Cassandra components.

openshift_metrics_heapster_nodeselec
tor

Set to the desired, existing node selector to ensure
that pods are placed onto nodes with specific labels.
For example, {"region":"infra"}.

openshift_metrics_install_hawkular_a
gent

Set to true to install the Hawkular OpenShift Agent
(HOSA). Set to false to remove the HOSA from an
installation. HOSA can be used to collect custom
metrics from your pods. This component is currently
in Technology Preview and is not installed by default.

openshift_metrics_hawkular_hostname Set when executing the openshift_metrics
Ansible role, since it uses the host name for the
Hawkular Metrics route. This value should
correspond to a fully qualified domain name.

Variable Description

NOTE

The Hawkular OpenShift Container Platform Agent on OpenShift Container Platform is a
Technology Preview feature only. Technology Preview features are not supported with
Red Hat production service level agreements (SLAs), might not be functionally complete,
and Red Hat does not recommend to use them for production. These features provide
early access to upcoming product features, enabling customers to test functionality and
provide feedback during the development process.

For more information on Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

See Compute Resources for further discussion on how to specify requests and limits.

If you are using persistent storage with Cassandra, it is the administrator’s responsibility to set a
sufficient disk size for the cluster using the openshift_metrics_cassandra_pvc_size variable. It
is also the administrator’s responsibility to monitor disk usage to make sure that it does not become full.

CHAPTER 32. ENABLING CLUSTER METRICS

595

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-sched-selector
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-compute-resources

WARNING

Data loss results if the Cassandra persisted volume runs out of sufficient space.

All of the other variables are optional and allow for greater customization. For instance, if you have a
custom install in which the Kubernetes master is not available under
https://kubernetes.default.svc:443 you can specify the value to use instead with the
openshift_metrics_master_url parameter. To deploy a specific version of the metrics
components, modify the openshift_metrics_image_version variable.

WARNING

It is highly recommended to not use latest for the
openshift_metrics_image_version. The latest version corresponds to the very
latest version available and can cause issues if it brings in a newer version not
meant to function on the version of OpenShift Container Platform you are currently
running.

32.5.2. Using Secrets

The OpenShift Container Platform Ansible openshift_metrics role auto-generates self-signed
certificates for use between its components and generates a re-encrypting route to expose the Hawkular
Metrics service. This route is what allows the web console to access the Hawkular Metrics service.

In order for the browser running the web console to trust the connection through this route, it must trust
the route’s certificate. This can be accomplished by providing your own certificates signed by a trusted
Certificate Authority. The openshift_metrics role allows you to specify your own certificates, which it
then uses when creating the route.

The router’s default certificate are used if you do not provide your own.

32.5.2.1. Providing Your Own Certificates

To provide your own certificate, which is used by the re-encrypting route, you can set the
openshift_metrics_hawkular_cert, openshift_metrics_hawkular_key, and
openshift_metrics_hawkular_cavariables in your inventory file.

The hawkular-metrics.pem value needs to contain the certificate in its .pem format. You may also
need to provide the certificate for the Certificate Authority which signed this pem file via the hawkular-
metrics-ca.cert secret.

For more information, see the re-encryption route documentation.

32.6. DEPLOYING THE METRIC COMPONENTS





OpenShift Container Platform 3.7 Installation and Configuration

596

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#secured-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#secured-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#secured-routes

Because deploying and configuring all the metric components is handled with OpenShift Container
Platform Ansible, you can deploy everything in one step.

The following examples show you how to deploy metrics with and without persistent storage using the
default parameters.

IMPORTANT

In accordance with upstream Kubernetes rules, metrics can be collected only on the
default interface of eth0.

Example 32.3. Deploying with Persistent Storage

The following command sets the Hawkular Metrics route to use hawkular-metrics.example.com and
is deployed using persistent storage.

You must have a persistent volume of sufficient size available.

$ ansible-playbook [-i </path/to/inventory>]
<OPENSHIFT_ANSIBLE_DIR>/byo/openshift-cluster/openshift-metrics.yml \
 -e openshift_metrics_install_metrics=True \
 -e openshift_metrics_hawkular_hostname=hawkular-metrics.example.com \
 -e openshift_metrics_cassandra_storage_type=pv

Example 32.4. Deploying without Persistent Storage

The following command sets the Hawkular Metrics route to use hawkular-metrics.example.com and
deploy without persistent storage.

$ ansible-playbook [-i </path/to/inventory>]
<OPENSHIFT_ANSIBLE_DIR>/byo/openshift-cluster/openshift-metrics.yml \
 -e openshift_metrics_install_metrics=True \
 -e openshift_metrics_hawkular_hostname=hawkular-metrics.example.com

WARNING

Because this is being deployed without persistent storage, metric data loss can
occur.

32.6.1. Metrics Diagnostics

The are some diagnostics for metrics to assist in evaluating the state of the metrics stack. To execute
diagnostics for metrics:

$ oc adm diagnostics MetricsApiProxy



CHAPTER 32. ENABLING CLUSTER METRICS

597

32.7. SETTING THE METRICS PUBLIC URL

The OpenShift Container Platform web console uses the data coming from the Hawkular Metrics service
to display its graphs. The URL for accessing the Hawkular Metrics service must be configured with the
metricsPublicURL option in the master configuration file (/etc/origin/master/master-config.yaml).
This URL corresponds to the route created with the openshift_metrics_hawkular_hostname
inventory variable used during the deployment of the metrics components.

NOTE

You must be able to resolve the openshift_metrics_hawkular_hostname from the
browser accessing the console.

For example, if your openshift_metrics_hawkular_hostname corresponds to hawkular-
metrics.example.com, then you must make the following change in the master-config.yaml file:

Once you have updated and saved the master-config.yaml file, you must restart your OpenShift
Container Platform instance.

When your OpenShift Container Platform server is back up and running, metrics are displayed on the
pod overview pages.

CAUTION

If you are using self-signed certificates, remember that the Hawkular Metrics service is hosted under a
different host name and uses different certificates than the console. You may need to explicitly open a
browser tab to the value specified in metricsPublicURL and accept that certificate.

To avoid this issue, use certificates which are configured to be acceptable by your browser.

32.8. ACCESSING HAWKULAR METRICS DIRECTLY

To access and manage metrics more directly, use the Hawkular Metrics API.

NOTE

When accessing Hawkular Metrics from the API, you are only able to perform reads.
Writing metrics is disabled by default. If you want individual users to also be able to write
metrics, you must set the
openshift_metrics_hawkular_user_write_accessvariable to true.

However, it is recommended to use the default configuration and only have metrics enter
the system via Heapster. If write access is enabled, any user can write metrics to the
system, which can affect performance and cause Cassandra disk usage to unpredictably
increase.

The Hawkular Metrics documentation covers how to use the API, but there are a few differences when
dealing with the version of Hawkular Metrics configured for use on OpenShift Container Platform:

assetConfig:
 ...
 metricsPublicURL: "https://hawkular-
metrics.example.com/hawkular/metrics"

OpenShift Container Platform 3.7 Installation and Configuration

598

https://github.com/openshift/origin-metrics/blob/master/docs/hawkular_metrics.adoc#accessing-metrics-using-hawkular-metrics
http://www.hawkular.org/docs/rest/rest-metrics.html

32.8.1. OpenShift Container Platform Projects and Hawkular Tenants

Hawkular Metrics is a multi-tenanted application. It is configured so that a project in OpenShift Container
Platform corresponds to a tenant in Hawkular Metrics.

As such, when accessing metrics for a project named MyProject you must set the Hawkular-Tenant
header to MyProject.

There is also a special tenant named _system which contains system level metrics. This requires either
a cluster-reader or cluster-admin level privileges to access.

32.8.2. Authorization

The Hawkular Metrics service authenticates the user against OpenShift Container Platform to determine
if the user has access to the project it is trying to access.

Hawkular Metrics accepts a bearer token from the client and verifies that token with the OpenShift
Container Platform server using a SubjectAccessReview. If the user has proper read privileges for the
project, they are allowed to read the metrics for that project. For the _system tenant, the user requesting
to read from this tenant must have cluster-reader permission.

When accessing the Hawkular Metrics API, you must pass a bearer token in the Authorization header.

32.9. SCALING OPENSHIFT CONTAINER PLATFORM CLUSTER
METRICS PODS

Information about scaling cluster metrics capabilities is available in the Scaling and Performance Guide.

32.10. INTEGRATION WITH AGGREGATED LOGGING

Hawkular Alerts must be connected to the Aggregated Logging’s Elasticsearch to react on log events. By
default, Hawkular tries to find Elasticsearch on its default place (namespace logging, pod logging-
es) at every boot. If Aggregated Logging is installed after Hawkular, the Hawkular Metrics pod might
need to be restarted in order to recognize the new Elasticsearch server. The Hawkular boot log provides
a clear indication if the integration could not be properly configured, with messages like:

Failed to import the logging certificate into the store. Continuing, but
the
logging integration might fail.

or

Could not get the logging secret! Status code: 000. The Hawkular Alerts
integration with Logging might not work properly.

This feature is available from version 3.7.0. You can confirm if logging is available by checking the log for
an entry like:

Retrieving the Logging's CA and adding to the trust store, if Logging is
available.

32.11. CLEANUP

CHAPTER 32. ENABLING CLUSTER METRICS

599

http://www.hawkular.org/docs/rest/rest-metrics.html#_tenant_header
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/scaling_and_performance_guide/#cluster-metrics-scaling-openshift-metrics-pods

You can remove everything deployed by the OpenShift Container Platform Ansible
openshift_metrics role by performing the following steps:

$ ansible-playbook [-i </path/to/inventory>]
<OPENSHIFT_ANSIBLE_DIR>/byo/openshift-cluster/openshift-metrics.yml \
 -e openshift_metrics_install_metrics=False

32.12. PROMETHEUS ON OPENSHIFT CONTAINER PLATFORM

Prometheus is a stand-alone, open source systems monitoring and alerting toolkit. You can use
Prometheus to visualize metrics and alerts for OpenShift Container Platform system resources.

IMPORTANT

Prometheus on OpenShift Container Platform is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during the
development process.

For more information on Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

32.12.1. Setting Prometheus Role Variables

The Prometheus role creates:

The openshift-metrics namespace.

Prometheus clusterrolebinding and service account.

Prometheus pod with Prometheus behind OAuth proxy, Alertmanager, and Alert Buffer as a
stateful set.

Prometheus and prometheus-alerts ConfigMaps.

Prometheus and Prometheus Alerts services and direct routes.

Prometheus deployment is disabled by default, enable it by setting
openshift_hosted_prometheus_deploy to true. For example:

openshift_hosted_prometheus_deploy=true

Set the following role variables to install and configure Prometheus.

Table 32.3. Prometheus Variables

Variable Description

OpenShift Container Platform 3.7 Installation and Configuration

600

https://access.redhat.com/support/offerings/techpreview/

openshift_prometheus_namespace Project namespace where the components are
deployed. Default set to openshift-metrics.
For example,
openshift_prometheus_namespace=${USE
R_PROJECT}.

openshift_prometheus_node_selector Selector for the nodes on which Prometheus is
deployed.

openshift_prometheus_storage_kind Set to create PV for Prometheus. For example,
openshift_prometheus_storage_kind=nf
s.

openshift_prometheus_alertmanager_st
orage_kind

Set to create PV for Alertmanager. For example,
openshift_prometheus_alertmanager_st
orage_kind=nfs.

openshift_prometheus_alertbuffer_sto
rage_kind

Set to create PV for Alert Buffer. For example,
openshift_prometheus_alertbuffer_sto
rage_kind=nfs.

openshift_prometheus_storage_type Set to create PVC for Prometheus. For example,
openshift_prometheus_storage_type=pv
c.

openshift_prometheus_alertmanager_st
orage_type

Set to create PVC for Alertmanager. For example,
openshift_prometheus_alertmanager_st
orage_type=pvc.

openshift_prometheus_alertbuffer_sto
rage_type

Set to create PVC for Alert Buffer. For example,
openshift_prometheus_alertbuffer_sto
rage_type=pvc.

openshift_prometheus_additional_rule
s_file

Additional Prometheus rules file. Set to null by
default.

Variable Description

32.12.2. Deploying Prometheus Using Ansible Installer

The Ansible Installer is the default method of deploying Prometheus.

Add label to your node:

Inventory file
openshift_prometheus_namespace=openshift-metrics

openshift_prometheus_node_selector={"region":"infra"}

CHAPTER 32. ENABLING CLUSTER METRICS

601

Run the playbook:

$ ansible-playbook -vvv -i ${INVENTORY_FILE} playbooks/byo/openshift-
cluster/openshift-prometheus.yml

32.12.2.1. Additional Methods for Deploying Prometheus

Deploy Using Node-Selector

Label the node on which you want to deploy Prometheus:

oc adm label node/$NODE ${KEY}=${VALUE}

Deploy Prometheus with Ansible and container resources:

Inventory file
openshift_prometheus_namespace=openshift-metrics

Set node selector for prometheus
openshift_prometheus_node_selector={"${KEY}":"${VALUE}"}

Run the playbook:

$ ansible-playbook -vvv -i ${INVENTORY_FILE} playbooks/byo/openshift-
cluster/openshift-prometheus.yml

Deploy Using a Non-default Namespace

Identify your namespace:

Inventory file
openshift_prometheus_node_selector={"region":"infra"}

Set non-default openshift_prometheus_namespace
openshift_prometheus_namespace=${USER_PROJECT}

Run the playbook:

$ ansible-playbook -vvv -i ${INVENTORY_FILE} playbooks/byo/openshift-
cluster/openshift-prometheus.yml

32.12.2.2. Accessing the Prometheus Web UI

The Prometheus server automatically exposes a Web UI at localhost:9090. You can access the
Prometheus Web UI with the view role.

32.12.2.3. Configuring Prometheus for OpenShift Container Platform

Prometheus Storage Related Variables

With each Prometheus component (including Prometheus, Alertmanager, Alert Buffer, and OAuth proxy)
you can set the PV claim by setting corresponding role variable, for example:

OpenShift Container Platform 3.7 Installation and Configuration

602

1

openshift_prometheus_storage_type: pvc
openshift_prometheus_alertmanager_pvc_name: alertmanager
openshift_prometheus_alertbuffer_pvc_size: 10G
openshift_prometheus_pvc_access_modes: [ReadWriteOnce]

Prometheus Alert Rules File Variable

You can add an external file with alert rules by setting the path to an additional rules variable:

openshift_prometheus_additional_rules_file: <PATH>

The file must follow the Prometheus Alert rules format. The following example sets a rule to send an alert
when one of the cluster nodes is down:

groups:
- name: example-rules
 interval: 30s # defaults to global interval
 rules:
 - alert: Node Down
 expr: up{job="kubernetes-nodes"} == 0

 for: 10m 1
 annotations:
 miqTarget: "ContainerNode"
 severity: "HIGH"
 message: "{{ '{{' }}{{ '$labels.instance' }}{{ '}}' }} is down"

The optional for value specifies the amount of time Prometheus waits before it sends an alert for
this element. For example, if you set 10m, Prometheus waits 10 minutes after it encounters this
issue before sending an alert.

Prometheus Variables to Control Resource Limits

With each Prometheus component (including Prometheus, Alertmanager, Alert Buffer, and OAuth proxy)
you can specify CPU, memory limits, and requests by setting the corresponding role variable, for
example:

openshift_prometheus_alertmanager_limits_memory: 1Gi
openshift_prometheus_oauth_proxy_cpu_requests: 100m

For more detailed information, see OpenShift Prometheus.

NOTE

Once openshift_metrics_project: openshift-infra is installed, metrics can be
gathered from the http://${POD_IP}:7575/metrics endpoint.

32.12.3. OpenShift Container Platform Metrics via Prometheus

The state of a system can be gauged by the metrics that it emits. This section describes current and
proposed metrics that identify the health of the storage subsystem and cluster.

32.12.3.1. Current Metrics

CHAPTER 32. ENABLING CLUSTER METRICS

603

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://github.com/openshift/openshift-ansible/tree/master/roles/openshift_prometheus#openshift-prometheus
http://:7575/metrics

This section describes the metrics currently emitted from Kubernetes’s storage subsystem.

Cloud Provider API Call Metrics

This metric reports the time and count of success and failures of all cloudprovider API calls. These
metrics include aws_attach_time and aws_detach_time. The type of emitted metrics is a
histogram, and hence, Prometheus also generates sum, count, and bucket metrics for these metrics.

Example summary of cloudprovider metrics from GCE:

cloudprovider_gce_api_request_duration_seconds { request =
"instance_list"}
cloudprovider_gce_api_request_duration_seconds { request = "disk_insert"}
cloudprovider_gce_api_request_duration_seconds { request = "disk_delete"}
cloudprovider_gce_api_request_duration_seconds { request = "attach_disk"}
cloudprovider_gce_api_request_duration_seconds { request = "detach_disk"}
cloudprovider_gce_api_request_duration_seconds { request = "list_disk"}

Example summary of cloudprovider metrics from AWS:

cloudprovider_aws_api_request_duration_seconds { request =
"attach_volume"}
cloudprovider_aws_api_request_duration_seconds { request =
"detach_volume"}
cloudprovider_aws_api_request_duration_seconds { request = "create_tags"}
cloudprovider_aws_api_request_duration_seconds { request =
"create_volume"}
cloudprovider_aws_api_request_duration_seconds { request =
"delete_volume"}
cloudprovider_aws_api_request_duration_seconds { request =
"describe_instance"}
cloudprovider_aws_api_request_duration_seconds { request =
"describe_volume"}

See Cloud Provider (specifically GCE and AWS) metrics for Storage API calls for more information.

Volume Operation Metrics

These metrics report time taken by a storage operation once started. These metrics keep track of
operation time at the plug-in level, but do not include time taken by goroutine to run or operation to be
picked up from the internal queue. These metrics are a type of histogram.

Example summary of available volume operation metrics

storage_operation_duration_seconds { volume_plugin = "aws-ebs",
operation_name = "volume_attach" }
storage_operation_duration_seconds { volume_plugin = "aws-ebs",
operation_name = "volume_detach" }
storage_operation_duration_seconds { volume_plugin = "glusterfs",
operation_name = "volume_provision" }
storage_operation_duration_seconds { volume_plugin = "gce-pd",
operation_name = "volume_delete" }
storage_operation_duration_seconds { volume_plugin = "vsphere",
operation_name = "volume_mount" }
storage_operation_duration_seconds { volume_plugin = "iscsi" ,

OpenShift Container Platform 3.7 Installation and Configuration

604

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/cloud-provider/cloudprovider-storage-metrics.md

operation_name = "volume_unmount" }
storage_operation_duration_seconds { volume_plugin = "aws-ebs",
operation_name = "unmount_device" }
storage_operation_duration_seconds { volume_plugin = "cinder" ,
operation_name = "verify_volumes_are_attached" }
storage_operation_duration_seconds { volume_plugin = "<n/a>" ,
operation_name = "verify_volumes_are_attached_per_node" }

See Volume operation metrics for more information.

Volume Stats Metrics

These metrics typically report usage stats of PVC (such as used space versus available space). The
type of metrics emitted is gauge.

Table 32.4. Volume Stats Metrics

Metric Type Labels/tags

volume_stats_capacityBytes Gauge namespace,persistentvolumeclai
m,persistentvolume=

volume_stats_usedBytes Gauge namespace=
<persistentvolumeclaim-
namespace>
persistentvolumeclaim=
<persistentvolumeclaim-name>
persistentvolume=
<persistentvolume-name>

volume_stats_availableBytes Gauge namespace=
<persistentvolumeclaim-
namespace>
persistentvolumeclaim=
<persistentvolumeclaim-name>
persistentvolume=

volume_stats_InodesFree Gauge namespace=
<persistentvolumeclaim-
namespace>
persistentvolumeclaim=
<persistentvolumeclaim-name>
persistentvolume=
<persistentvolume-name>

volume_stats_Inodes Gauge namespace=
<persistentvolumeclaim-
namespace>
persistentvolumeclaim=
<persistentvolumeclaim-name>
persistentvolume=
<persistentvolume-name>

CHAPTER 32. ENABLING CLUSTER METRICS

605

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/volume-metrics.md

volume_stats_InodesUsed Gauge namespace=
<persistentvolumeclaim-
namespace>
persistentvolumeclaim=
<persistentvolumeclaim-name>
persistentvolume=
<persistentvolume-name>

Metric Type Labels/tags

32.12.4. Undeploying Prometheus

To undeploy Prometheus, run:

$ ansible-playbook -vvv -i ${INVENTORY_FILE} playbooks/byo/openshift-
cluster/openshift-prometheus.yml -e openshift_prometheus_state=absent

OpenShift Container Platform 3.7 Installation and Configuration

606

CHAPTER 33. CUSTOMIZING THE WEB CONSOLE

33.1. OVERVIEW

Administrators can customize the web console using extensions, which let you run scripts and load
custom stylesheets when the web console loads. Extension scripts allow you to override the default
behavior of the web console and customize it for your needs.

For example, extension scripts can be used to add your own company’s branding or to add company-
specific capabilities. A common use case for this is rebranding or white-labelling for different
environments. You can use the same extension code, but provide settings that change the web console.
You can change the look and feel of nearly any aspect of the user interface in this way.

33.2. LOADING EXTENSION SCRIPTS AND STYLESHEETS

To add scripts and stylesheets, edit the master configuration file. The scripts and stylesheet files must
exist on the Asset Server and are added with the following options:

NOTE

Wrap extension scripts in an Immediately Invoked Function Expression (IIFE). This
ensures that you do not create global variables that conflict with the names used by the
web console or by other extensions. For example:

Relative paths are resolved relative to the master configuration file. To pick up configuration changes,
restart the server.

Custom scripts and stylesheets are read once at server start time. To make developing extensions
easier, you can reload scripts and stylesheets on every request by enabling development mode with the
following setting:

When set, the web console reloads any changes to existing extension script or stylesheet files when you
refresh the page in your browser. You still must restart the server when adding new extension

assetConfig:
 ...
 extensionScripts:
 - /path/to/script1.js
 - /path/to/script2.js
 - ...
 extensionStylesheets:
 - /path/to/stylesheet1.css
 - /path/to/stylesheet2.css
 - ...

(function() {
 // Put your extension code here...
}());

assetConfig:
 ...
 extensionDevelopment: true

CHAPTER 33. CUSTOMIZING THE WEB CONSOLE

607

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-infrastructure-components-web-console

stylesheets or scripts, however. This setting is only recommended for testing changes and not for
production.

The examples in the following sections show common ways you can customize the web console.

NOTE

Additional extension examples are available in the OpenShift Origin repository on GitHub.

33.2.1. Setting Extension Properties

If you have a specific extension, but want to use different text in it for each of the environments, you can
define the environment in the master-config.yaml file, and use the same extension script across
environments. Pass settings from the master-config.yaml file to be used by the extension using the
extensionProperties mechanism:

This results in a global variable that can be accessed by the extension, as if the following code was
executed:

33.3. EXTENSION OPTION FOR EXTERNAL LOGGING SOLUTIONS

As of OpenShift Container Platform 3.6, there is an extension option to link to external logging solutions
instead of using OpenShift Container Platform’s EFK logging stack:

'use strict';
angular.module("mylinkextensions", ['openshiftConsole'])
 .run(function(extensionRegistry) {
 extensionRegistry.add('log-links', _.spread(function(resource,
options) {
 return {
 type: 'dom',
 node: '<a href="https://extension-
point.example.com">' + resource.metadata.name + '<span class="action-
divider">|'
 };
 }));
 });
hawtioPluginLoader.addModule("mylinkextensions");

assetConfig:
 extensionDevelopment: true
 extensionProperties:
 doc_url: https://docs.openshift.com
 key1: value1
 key2: value2
 extensionScripts:

window.OPENSHIFT_EXTENSION_PROPERTIES = {
 doc_url: "https://docs.openshift.com",
 key1: "value1",
 key2: "value2",
}

OpenShift Container Platform 3.7 Installation and Configuration

608

https://github.com/openshift/origin-web-console/tree/master/extensions/examples

The URL to the logging stack you are wanting to accessAD master configuration file. Then, restart the
master host:

systemctl restart atomic-openshift-master-api atomic-openshift-master-
controllers

33.4. CUSTOMIZING AND DISABLING THE GUIDED TOUR

A guided tour will pop up the first time a user logs in on a particular browser. You can enable the
auto_launch for new users:

window.OPENSHIFT_CONSTANTS.GUIDED_TOURS.landing_page_tour.auto_launch =
true;

33.5. CUSTOMIZING DOCUMENTATION LINKS

Documentation links on the landing page are customizable.
window.OPENSHIFT_CONSTANTS.CATALOG_HELP_RESOURCES is an array of objects containing a title
and an href. These will be turned into links. You can completely override the array, push or pop
additional links, or modify the attributes of existing links.

Example Link

{
 title: 'Blog',
 href: 'https://blog.openshift.com'
}

33.6. CUSTOMIZING THE LOGO

The following style changes the logo in the web console header:

1. Replace the example.com URL with a URL to an actual image, and adjust the width and height.
The ideal height is 20px.

2. Save the style to a file (for example, logo.css) and add it to the master configuration file:

3. Restart the master host:

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

#header-logo {
 background-image: url("https://www.example.com/images/logo.png");
 width: 190px;
 height: 20px;
}

assetConfig:
 ...
 extensionStylesheets:
 - /path/to/logo.css

CHAPTER 33. CUSTOMIZING THE WEB CONSOLE

609

1

33.7. CHANGING LINKS TO DOCUMENTATION

Links to external documentation are shown in various sections of the web console. The following
example changes the URL for two given links to the documentation:

Alternatively, you can change the base URL for all documentation links.

This example would result in the default help URL
https://example.com/docs/welcome/index.html:

The path must end in a /.

Save this script to a file (for example, help-links.js) and add it to the master configuration file:

Restart the master host:

systemctl restart atomic-openshift-master-api atomic-openshift-master-
controllers

33.8. ADDING OR CHANGING LINKS TO DOWNLOAD THE CLI

The About page in the web console provides download links for the command line interface (CLI) tools.
These links can be configured by providing both the link text and URL, so that you can choose to point
them directly to file packages, or to an external page that points to the actual packages.

For example, to point directly to packages that can be downloaded, where the link text is the package
platform:

window.OPENSHIFT_CONSTANTS.HELP['get_started_cli'] =
"https://example.com/doc1.html";
window.OPENSHIFT_CONSTANTS.HELP['basic_cli_operations'] =
"https://example.com/doc2.html";

window.OPENSHIFT_CONSTANTS.HELP_BASE_URL = "https://example.com/docs/"; 1

assetConfig:
 ...
 extensionScripts:
 - /path/to/help-links.js

window.OPENSHIFT_CONSTANTS.CLI = {
 "Linux (32 bits)": "https://<cdn>/openshift-client-tools-linux-
32bit.tar.gz",
 "Linux (64 bits)": "https://<cdn>/openshift-client-tools-linux-
64bit.tar.gz",
 "Windows": "https://<cdn>/openshift-client-tools-windows.zip",
 "Mac OS X": "https://<cdn>/openshift-client-tools-mac.zip"
};

OpenShift Container Platform 3.7 Installation and Configuration

610

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cli_reference/#cli-reference-index

Alternatively, to point to a page that links the actual download packages, with the Latest Release link
text:

Save this script to a file (for example, cli-links.js) and add it to the master configuration file:

Restart the master host:

systemctl restart atomic-openshift-master-api atomic-openshift-master-
controllers

33.8.1. Customizing the About Page

To provide a custom About page for the web console:

1. Write an extension that looks like:

2. Save the script to a file (for example, about/about.js).

3. Write a customized template.

a. Start from the version of about.html from the OpenShift Container Platform release you are
using. Within the template, there are two angular scope variables available:
version.master.openshift and version.master.kubernetes.

b. Save the custom template to a file (for example, about/about.html).

c. Modify the master configuration file:

window.OPENSHIFT_CONSTANTS.CLI = {
 "Latest Release": "https://<cdn>/openshift-client-tools/latest.html"
};

assetConfig:
 ...
 extensionScripts:
 - /path/to/cli-links.js

angular
 .module('aboutPageExtension', ['openshiftConsole'])
 .config(function($routeProvider) {
 $routeProvider
 .when('/about', {
 templateUrl: 'extensions/about/about.html',
 controller: 'AboutController'
 });
 }
);

hawtioPluginLoader.addModule('aboutPageExtension');

assetConfig:
 ...
 extensionScripts:
 - about/about.js

CHAPTER 33. CUSTOMIZING THE WEB CONSOLE

611

https://github.com/openshift/origin-web-console/blob/master/app/views/about.html
https://github.com/openshift/origin-web-console/branches

d. Restart the master host:

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

33.9. CONFIGURING NAVIGATION MENUS

33.9.1. Top Navigation Dropdown Menus

The top navigation bar of the web console contains the help icon and the user dropdown menus. You can
add additional menu items to these using the angular-extension-registry.

The available extension points are:

nav-help-dropdown - the help icon dropdown menu, visible at desktop screen widths

nav-user-dropdown - the user dropdown menu, visible at desktop screen widths

nav-dropdown-mobile - the single menu for top navigation items at mobile screen widths

The following example extends the nav-help-dropdown menu, with a name of
<myExtensionModule>:

NOTE

<myExtensionModule> is a placeholder name. Each dropdown menu extension must
be unique enough so that it does not clash with any future angular modules.

 ...
 extensions:
 - name: about
 sourceDirectory: /path/to/about

angular
 .module('<myExtensionModule>', ['openshiftConsole'])
 .run([
 'extensionRegistry',
 function(extensionRegistry) {
 extensionRegistry
 .add('nav-help-dropdown', function() {
 return [
 {
 type: 'dom',
 node: '<a href="http://www.example.com/report"
target="_blank">Report a Bug'
 }, {
 type: 'dom',
 node: '<li class="divider">' // If you want a
horizontal divider to appear in the menu
 }, {
 type: 'dom',
 node: '<a href="http://www.example.com/status"
target="_blank">System Status'

OpenShift Container Platform 3.7 Installation and Configuration

612

https://github.com/openshift/angular-extension-registry

33.9.2. Application Launcher

The top navigation bar also contains an optional application launcher for linking to other web
applications. This dropdown menu is empty by default, but when links are added, appears to the left of
the help menu in the masthead.

1. Create the configuration scripts within a file (for example, applicationLauncher.js):

2. Save the file and add it to the master configuration at /etc/origin/master/master-config.yaml:

3. Restart the master host:

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

33.9.3. System Status Badge

The top navigation bar can also include an optional system status badge in order to notify users of
system-wide events such as maintenance windows. To make use of the existing styles using a yellow
warning icon for the badge, follow the example below.

1. Create the configuration scripts within a file (for example, systemStatusBadge.js):

 }
];
 });
 }
]);

hawtioPluginLoader.addModule('<myExtensionModule>');

// Add items to the application launcher dropdown menu.
window.OPENSHIFT_CONSTANTS.APP_LAUNCHER_NAVIGATION = [{
 title: "Dashboard", // The text label
 iconClass: "fa fa-dashboard", // The icon you want to
appear
 href: "http://example.com/dashboard", // Where to go when this
item is clicked
 tooltip: 'View dashboard' // Optional tooltip to
display on hover
}, {
 title: "Manage Account",
 iconClass: "pficon pficon-user",
 href: "http://example.com/account",
 tooltip: "Update email address or password."
}];

assetConfig:
 ...
 extensionScripts:
 - /path/to/applicationLauncher.js

'use strict';

CHAPTER 33. CUSTOMIZING THE WEB CONSOLE

613

2. Save the file and add it to the master configuration at /etc/origin/master/master-config.yaml:

3. Restart the master host:

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

33.9.4. Project Left Navigation

When navigating within a project, a menu appears on the left with primary and secondary navigation.
This menu structure is defined as a constant and can be overridden or modified.

NOTE

Significant customizations to the project navigation may affect the user experience and
should be done with careful consideration. You may need to update this customization in
future upgrades if you modify existing navigation items.

1. Create the configuration scripts within a file (for example, navigation.js):

angular
 .module('mysystemstatusbadgeextension', ['openshiftConsole'])
 .run([
 'extensionRegistry',
 function(extensionRegistry) {
 // Replace http://status.example.com/ with your domain
 var system_status_elem = $('<a
href="http://status.example.com/"' +
 'target="_blank" class="nav-item-iconic system-status"><span
title="' +
 'System Status" class="fa status-icon pficon-warning-triangle-
o">' +
 '');

 // Add the extension point to the registry so the badge
appears
 // To disable the badge, comment this block out
 extensionRegistry
 .add('nav-system-status', function() {
 return [{
 type: 'dom',
 node: system_status_elem
 }];
 });
 }
]);

hawtioPluginLoader.addModule('mysystemstatusbadgeextension');

assetConfig:
 ...
 extensionScripts:
 - /path/to/systemStatusBadge.js

OpenShift Container Platform 3.7 Installation and Configuration

614

// Append a new primary nav item. This is a simple direct
navigation item
// with no secondary menu.
window.OPENSHIFT_CONSTANTS.PROJECT_NAVIGATION.push({
 label: "Dashboard", // The text label
 iconClass: "fa fa-dashboard", // The icon you want to appear
 href: "/dashboard" // Where to go when this nav item
is clicked.
 // Relative URLs are pre-pended
with the path
 // '/project/<project-name>'
});

// Splice a primary nav item to a specific spot in the list. This
primary item has
// a secondary menu.
window.OPENSHIFT_CONSTANTS.PROJECT_NAVIGATION.splice(2, 0, { //
Insert at the third spot
 label: "Git",
 iconClass: "fa fa-code",
 secondaryNavSections: [// Instead of an href, a sub-menu
can be defined
 {
 items: [
 {
 label: "Branches",
 href: "/git/branches",
 prefixes: [
 "/git/branches/" // Defines prefix URL patterns
that will cause
 // this nav item to show the
active state, so
 // tertiary or lower pages show
the right context
]
 }
]
 },
 {
 header: "Collaboration", // Sections within a sub-menu can
have an optional header
 items: [
 {
 label: "Pull Requests",
 href: "/git/pull-requests",
 prefixes: [
 "/git/pull-requests/"
]
 }
]
 }
]
});

// Add a primary item to the top of the list. This primary item is
shown conditionally.

CHAPTER 33. CUSTOMIZING THE WEB CONSOLE

615

2. Save the file and add it to the master configuration at /etc/origin/master/master-config.yaml:

3. Restart the master host:

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

33.10. CONFIGURING FEATURED APPLICATIONS

The web console has an optional list of featured application links in its landing page catalog. These
appear near the top of the page and can have an icon, a title, a short description, and a link.

window.OPENSHIFT_CONSTANTS.PROJECT_NAVIGATION.unshift({
 label: "Getting Started",
 iconClass: "pficon pficon-screen",
 href: "/getting-started",
 prefixes: [// Primary nav items can also
specify prefixes to trigger
 "/getting-started/" // active state
],
 isValid: function() { // Primary or secondary items can
define an isValid
 return isNewUser; // function. If present it will be
called to test whether
 // the item should be shown, it
should return a boolean
 }
});

// Modify an existing menu item
var applicationsMenu =
_.find(window.OPENSHIFT_CONSTANTS.PROJECT_NAVIGATION, { label:
'Applications' });
applicationsMenu.secondaryNavSections.push({ // Add a new secondary
nav section to the Applications menu
 // my secondary nav section
});

assetConfig:
 ...
 extensionScripts:
 - /path/to/navigation.js

OpenShift Container Platform 3.7 Installation and Configuration

616

1. Create the following configuration scripts within a file (for example, featured-applications.js):

2. Save the file and add it to the master configuration at /etc/origin/master/master-config.yaml:

3. Restart the master host:

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

33.11. CONFIGURING CATALOG CATEGORIES

Catalog categories organize the display of items in the web console catalog landing page. Each category
has one or more subcategories. A builder image, template, or service is grouped in a subcategory if it
includes a tag listed in the matching subcategory tags, and an item can appear in more than one
subcategory. Categories and subcategories only display if they contain at least one item.

NOTE

Significant customizations to the catalog categories may affect the user experience and
should be done with careful consideration. You may need to update this customization in
future upgrades if you modify existing category items.

1. Create the following configuration scripts within a file (for example, catalog-categories.js):

// Add featured applications to the top of the catalog.
window.OPENSHIFT_CONSTANTS.SAAS_OFFERINGS = [{
 title: "Dashboard", // The text label
 icon: "fa fa-dashboard", // The icon you want
to appear
 url: "http://example.com/dashboard", // Where to go when
this item is clicked
 description: "Open application dashboard." // Short description
}, {
 title: "System Status",
 icon: "fa fa-heartbeat",
 url: "http://example.com/status",
 description: "View system alerts and outages."
}, {
 title: "Manage Account",
 icon: "pficon pficon-user",
 url: "http://example.com/account",
 description: "Update email address or password."
}];

assetConfig:
 ...
 extensionScripts:
 - /path/to/featured-applications.js

// Find the Languages category.
var category =
_.find(window.OPENSHIFT_CONSTANTS.SERVICE_CATALOG_CATEGORIES,
 { id: 'languages' });

CHAPTER 33. CUSTOMIZING THE WEB CONSOLE

617

2. Save the file and add it to the master configuration at /etc/origin/master/master-config.yaml:

// Add Go as a new subcategory under Languages.
category.subCategories.splice(2,0,{ // Insert at the third spot.
 // Required. Must be unique.
 id: "go",
 // Required.
 label: "Go",
 // Optional. If specified, defines a unique icon for this item.
 icon: "icon-go-gopher",
 // Required. Items matching any tag will appear in this
subcategory.
 tags: [
 "go",
 "golang"
]
});

// Add a Featured category as the first category tab.
window.OPENSHIFT_CONSTANTS.SERVICE_CATALOG_CATEGORIES.unshift({
 // Required. Must be unique.
 id: "featured",
 // Required
 label: "Featured",
 subCategories: [
 {
 // Required. Must be unique.
 id: "go",
 // Required.
 label: "Go",
 // Optional. If specified, defines a unique icon for this
item.
 icon: "icon-go-gopher",
 // Required. Items matching any tag will appear in this
subcategory.
 tags: [
 "go",
 "golang"
]
 },
 {
 // Required. Must be unique.
 id: "jenkins",
 // Required.
 label: "Jenkins",
 // Optional. If specified, defines a unique icon for this
item.
 icon: "icon-jenkins",
 // Required. Items matching any tag will appear in this
subcategory.
 tags: [
 "jenkins"
]
 }
]
});

OpenShift Container Platform 3.7 Installation and Configuration

618

3. Restart the master host:

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

33.12. CONFIGURING QUOTA NOTIFICATION MESSAGES

Whenever a user reaches a quota, a quota notification is put into the notification drawer. A custom quota
notification message, per quota resource type, can be added to the notification. For example: Your
project is over quota. It is using 200% of 2 cores CPU (Limit). Upgrade to <a
href='http://www.openshift.com' → OpenShift Pro</a → if you need additional resources. . The
"Upgrade to… ​" part of the notification is the custom message and may contain HTML such as links to
additional resources.

1. Create the following configuration scripts within a file (for example, quota-messages.js):

2. Save the file and add it to the master configuration at /etc/origin/master/master-config.yaml:

3. Restart the master host:

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

33.13. CONFIGURING THE CREATE FROM URL NAMESPACE
WHITELIST

Create from URL only works with image streams or templates from namespaces that have been
explicitly specified in OPENSHIFT_CONSTANTS.CREATE_FROM_URL_WHITELIST. To add namespaces
to the whitelist, follow these steps:

NOTE

openshift is included in the whitelist by default. Do not remove it.

assetConfig:
 ...
 extensionScripts:
 - /path/to/catalog-categories.js

// Set custom notification messages per quota type/key
window.OPENSHIFT_CONSTANTS.QUOTA_NOTIFICATION_MESSAGE = {
 "pods": 'Upgrade to OpenShift
Pro if you need additional resources.',
 "limits.memory": 'Upgrade to OpenShift Online Pro if you need
additional resources.'
}

assetConfig:
 ...
 extensionScripts:
 - /path/to/quota-messages.js

CHAPTER 33. CUSTOMIZING THE WEB CONSOLE

619

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-managed-by-quota
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-create-from-url

1. Create the following configuration scripts within a file (for example, create-from-url-
whitelist.js):

2. Save the file and add it to the master configuration file at /etc/origin/master/master-
config.yaml:

3. Restart the master host:

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

33.14. DISABLING THE COPY LOGIN COMMAND

The web console allows users to copy a login command, including the current access token, to the
clipboard from the user menu and the Command Line Tools page. This function can be changed so that
the user’s access token is not included in the copied command.

1. Create the following configuration scripts within a file (for example, disable-copy-login.js):

2. Save the file and add it to the master configuration file at /etc/origin/master/master-
config.yaml:

3. Restart the master host:

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

33.14.1. Enabling Wildcard Routes

If you enabled wildcard routes for a router, you can also enable wildcard routes in the web console. This
lets users enter hostnames starting with an asterisk like *.example.com when creating a route. To
enable wildcard routes:

1. Save this script to a file (for example, enable-wildcard-routes.js):

// Add a namespace containing the image streams and/or templates
window.OPENSHIFT_CONSTANTS.CREATE_FROM_URL_WHITELIST.push(
 'shared-stuff'
);

assetConfig:
 ...
 extensionScripts:
 - /path/to/create-from-url-whitelist.js

// Do not copy the user's access token in the copy login command.
window.OPENSHIFT_CONSTANTS.DISABLE_COPY_LOGIN_COMMAND = true;

assetConfig:
 ...
 extensionScripts:
 - /path/to/disable-copy-login.js

OpenShift Container Platform 3.7 Installation and Configuration

620

window.OPENSHIFT_CONSTANTS.DISABLE_WILDCARD_ROUTES = false;

2. Add it to the master configuration file:

assetConfig:
 ...
 extensionScripts:
 - /path/to/enable-wildcard-routes.js

Learn how to configure HAProxy routers to allow wildcard routes.

If you enabled wildcard routes for a router, you can also enable wildcard routes in the web console. This
lets users enter hostnames starting with an asterisk like *.example.com when creating a route. To
enable wildcard routes:

1. Save this script to a file (for example, enable-wildcard-routes.js):

2. Add it to the master configuration file:

3. Restart the master host:

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

Learn how to configure HAProxy routers to allow wildcard routes.

33.15. ENABLING FEATURES IN TECHNOLOGY PREVIEW

Sometimes features are available in Technology Preview. By default, these features are disabled and
hidden in the web console.

To enable a Technology Preview feature:

1. Save this script to a file (for example, tech-preview.js):

2. Add it to the master configuration file:

3. Restart the master host:

window.OPENSHIFT_CONSTANTS.DISABLE_WILDCARD_ROUTES = false;

assetConfig:
 ...
 extensionScripts:
 - /path/to/enable-wildcard-routes.js

window.OPENSHIFT_CONSTANTS.ENABLE_TECH_PREVIEW_FEATURE.
<feature_name> = true;

assetConfig:
 ...
 extensionScripts:
 - /path/to/tech-preview.js

CHAPTER 33. CUSTOMIZING THE WEB CONSOLE

621

systemctl restart origin-master-api origin-master-controllers
systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

33.16. SERVING STATIC FILES

You can serve other files from the Asset Server as well. For example, you might want to make the CLI
executable available for download from the web console or add images to use in a custom stylesheet.

Add the directory with the files you want using the following configuration option:

The files under the /path/to/my_images directory will be available under the URL
/<context>/extensions/images in the web console.

To reference these files from a stylesheet, you should generally use a relative path. For example:

33.16.1. Enabling HTML5 Mode

The web console has a special mode for supporting certain static web applications that use the HTML5
history API:

Setting html5Mode to true enables two behaviors:

1. Any request for a non-existent file under /<context>/extensions/my_extension/ instead serves
/path/to/myExtension/index.html rather than a "404 Not Found" page.

2. The element <base href="/"> will be rewritten in /path/to/myExtension/index.html to use
the actual base depending on the asset configuration; only this exact string is rewritten.

This is needed for JavaScript frameworks such as AngularJS that require base to be set in index.html.

33.17. CUSTOMIZING THE LOGIN PAGE

You can also change the login page, and the login provider selection page for the web console. Run the
following commands to create templates you can modify:

assetConfig:
 ...
 extensions:
 - name: images
 sourceDirectory: /path/to/my_images

#header-logo {
 background-image: url("../extensions/images/my-logo.png");
}

assetConfig:
 ...
 extensions:
 - name: my_extension
 sourceDirectory: /path/to/myExtension
 html5Mode: true

OpenShift Container Platform 3.7 Installation and Configuration

622

$ oc adm create-login-template > login-template.html
$ oc adm create-provider-selection-template > provider-selection-
template.html

Edit the file to change the styles or add content, but be careful not to remove any required parameters
inside the curly brackets.

To use your custom login page or provider selection page, set the following options in the master
configuration file:

Relative paths are resolved relative to the master configuration file. You must restart the server after
changing this configuration.

When there are multiple login providers configured or when the alwaysShowProviderSelection
option in the master-config.yaml file is set to true, each time a user’s token to OpenShift Container
Platform expires, the user is presented with this custom page before they can proceed with other tasks.

33.17.1. Example Usage

Custom login pages can be used to create Terms of Service information. They can also be helpful if you
use a third-party login provider, like GitHub or Google, to show users a branded page that they trust and
expect before being redirected to the authentication provider.

33.18. CUSTOMIZING THE OAUTH ERROR PAGE

When errors occur during authentication, you can change the page shown.

1. Run the following command to create a template you can modify:

$ oc adm create-error-template > error-template.html

2. Edit the file to change the styles or add content.
You can use the Error and ErrorCode variables in the template. To use your custom error
page, set the following option in the master configuration file:

Relative paths are resolved relative to the master configuration file.

3. You must restart the server after changing this configuration.

33.19. CHANGING THE LOGOUT URL

oauthConfig:
 ...
 templates:
 login: /path/to/login-template.html
 providerSelection: /path/to/provider-selection-template.html

oauthConfig:
 ...
 templates:
 error: /path/to/error-template.html

CHAPTER 33. CUSTOMIZING THE WEB CONSOLE

623

You can change the location a console user is sent to when logging out of the console by modifying the
logoutURL parameter in the /etc/origin/master/master-config.yaml file:

This can be useful when authenticating with Request Header and OAuth or OpenID identity providers,
which require visiting an external URL to destroy single sign-on sessions.

33.20. CONFIGURING WEB CONSOLE CUSTOMIZATIONS WITH
ANSIBLE

During advanced installations, many modifications to the web console can be configured using the
following parameters, which are configurable in the inventory file:

openshift_master_logout_url

openshift_master_extension_scripts

openshift_master_extension_stylesheets

openshift_master_extensions

openshift_master_oauth_template

openshift_master_metrics_public_url

openshift_master_logging_public_url

Example Web Console Customization with Ansible

...
assetConfig:
 logoutURL: "http://www.example.com"
...

Configure logoutURL in the master config for console customization
See:
https://docs.openshift.com/enterprise/latest/install_config/web_console_cu
stomization.html#changing-the-logout-url
#openshift_master_logout_url=http://example.com

Configure extensionScripts in the master config for console
customization
See:
https://docs.openshift.com/enterprise/latest/install_config/web_console_cu
stomization.html#loading-custom-scripts-and-stylesheets
#openshift_master_extension_scripts=
['/path/on/host/to/script1.js','/path/on/host/to/script2.js']

Configure extensionStylesheets in the master config for console
customization
See:
https://docs.openshift.com/enterprise/latest/install_config/web_console_cu
stomization.html#loading-custom-scripts-and-stylesheets
#openshift_master_extension_stylesheets=
['/path/on/host/to/stylesheet1.css','/path/on/host/to/stylesheet2.css']

OpenShift Container Platform 3.7 Installation and Configuration

624

Configure extensions in the master config for console customization
See:
https://docs.openshift.com/enterprise/latest/install_config/web_console_cu
stomization.html#serving-static-files
#openshift_master_extensions=[{'name': 'images', 'sourceDirectory':
'/path/to/my_images'}]

Configure extensions in the master config for console customization
See:
https://docs.openshift.com/enterprise/latest/install_config/web_console_cu
stomization.html#serving-static-files
#openshift_master_oauth_template=/path/on/host/to/login-template.html

Configure metricsPublicURL in the master config for cluster metrics.
Ansible is also able to configure metrics for you.
See:
https://docs.openshift.com/enterprise/latest/install_config/cluster_metric
s.html
#openshift_master_metrics_public_url=https://hawkular-
metrics.example.com/hawkular/metrics

Configure loggingPublicURL in the master config for aggregate logging.
Ansible is also able to install logging for you.
See:
https://docs.openshift.com/enterprise/latest/install_config/aggregate_logg
ing.html
#openshift_master_logging_public_url=https://kibana.example.com

CHAPTER 33. CUSTOMIZING THE WEB CONSOLE

625

CHAPTER 34. DEPLOYING EXTERNAL PERSISTENT VOLUME
PROVISIONERS

34.1. OVERVIEW

IMPORTANT

The external provisioner for AWS EFS on OpenShift Container Platform is a Technology
Preview feature. Technology Preview features are not supported with Red Hat production
service-level agreements (SLAs) and might not be functionally complete, and Red Hat
does not recommend using them for production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide feedback
during the development process. For more information, see Red Hat Technology Preview
Features Support Scope.

An external provisioner is an application that enables dynamic provisioning for a particular storage
provider. External provisioners can run alongside the provisioner plug-ins provided by OpenShift
Container Platform and are configured in a similar way as the StorageClass objects are configured, as
described in the Dynamic Provisioning and Creating Storage Classes section. Since these provisioners
are external, you can deploy and update them independently of OpenShift Container Platform.

34.2. BEFORE YOU BEGIN

NOTE

Before proceeding, familiarize yourself with the Configuring Cluster Metrics and the
Configuring Cluster Logging sections.

34.2.1. External Provisioners Ansible Role

The OpenShift Ansible openshift_provisioners role configures and deploys external provisioners
using the variables from the Ansible inventory file. You must specify which provisioners to install by
overriding their respective install variables to true.

34.2.2. External Provisioners Ansible Variables

Following is a list of role variables that apply to all provisioners for which the install variable is true.

Table 34.1. Ansible Variables

Variable Description

openshift_provisioners_install_provi
sioners

If true, deploy all provisioners that have their
respective install variables set as true,
otherwise, remove them.

openshift_provisioners_image_prefix The prefix for the component images. Defaults to
registry.access.redhat.com/openshift
3/, set it to a different value if you are using an
alternative registry.

OpenShift Container Platform 3.7 Installation and Configuration

626

https://access.redhat.com/support/offerings/techpreview/

openshift_provisioners_image_version The version for the component images. Defaults to
latest.

openshift_provisioners_project The project to deploy provisioners in. Defaults to
openshift-infra.

Variable Description

34.2.3. AWS EFS Provisioner Ansible Variables

The AWS EFS provisioner dynamically provisions NFS PVs backed by dynamically created directories in
a given EFS file system’s directory. You must satisfy the following requirements before the AWS EFS
Provisioner Ansible variables can be configured:

An IAM user assigned with the AmazonElasticFileSystemReadOnlyAccess policy (or better).

An EFS file system in your cluster’s region.

Mount targets and security groups such that any node (in any zone in the cluster’s region) can
mount the EFS file system by its File system DNS name.

Table 34.2. Required EFS Ansible Variables

Variable Description

openshift_provisioners_efs_fsid The File system ID of the EFS file system, for
example: fs-47a2c22e

openshift_provisioners_efs_region The Amazon EC2 region for the EFS file system.

openshift_provisioners_efs_aws_acces
s_key_id

The AWS access key of the IAM user (to check that
the specified EFS file system exists).

openshift_provisioners_efs_aws_secre
t_access_key

The AWS secret access key of the IAM user (to
check that the specified EFS file system exists).

Table 34.3. Optional EFS Ansible Variables

Variable Description

openshift_provisioners_efs If true, the AWS EFS provisioner is installed or
uninstalled according to whether
openshift_provisioners_install_provi
sioners is true or false, respectively. Defaults
to false.

CHAPTER 34. DEPLOYING EXTERNAL PERSISTENT VOLUME PROVISIONERS

627

http://docs.aws.amazon.com/efs/latest/ug/accessing-fs.html
http://docs.aws.amazon.com/efs/latest/ug/accessing-fs-create-security-groups.html
http://docs.aws.amazon.com/efs/latest/ug/mounting-fs-mount-cmd-dns-name.html
http://docs.aws.amazon.com/efs/latest/ug/gs-step-two-create-efs-resources.html

1

openshift_provisioners_efs_path The path of the directory in the EFS file system, in
which the EFS provisioner will create a directory to
back each PV it creates. It must exist and be
mountable by the EFS provisioner. Defaults to
/persistentvolumes.

openshift_provisioners_efs_name The provisioner name that StorageClasses
specify. Defaults to openshift.org/aws-efs.

openshift_provisioners_efs_nodeselec
tor

A map of labels to select the nodes where the pod
will land. For example:
{"node":"infra","region":"west"}.

openshift_provisioners_efs_supplemen
talgroup

The supplemental group to give the pod, in case it is
needed for permission to write to the EFS file system.
Defaults to 65534.

Variable Description

34.3. DEPLOYING THE PROVISIONERS

You can deploy all provisioners at once or one provisioner at a time according to the configuration
specified in the OpenShift Ansible variables. The following example shows you how to deploy a given
provisioner and then create and configure a corresponding StorageClass.

34.3.1. Deploying the AWS EFS Provisioner

The following command sets the directory in the EFS volume to /data/persistentvolumes. This
directory must exist in the file system and must be mountable and writeable by the provisioner pod.

$ ansible-playbook -v -i <inventory_file> \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/openshift-provisioners.yml \
 -e openshift_provisioners_install_provisioners=True \
 -e openshift_provisioners_efs=True \
 -e openshift_provisioners_efs_fsid=fs-47a2c22e \
 -e openshift_provisioners_efs_region=us-west-2 \
 -e openshift_provisioners_efs_aws_access_key_id=AKIAIOSFODNN7EXAMPLE \
 -e
openshift_provisioners_efs_aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPx
RfiCYEXAMPLEKEY \
 -e openshift_provisioners_efs_path=/data/persistentvolumes

 -e openshift_provisioners_image_version=<image_version> 1

Replace with the desired image version.

34.3.1.1. AWS EFS Object Definition

aws-efs-storageclass.yaml

OpenShift Container Platform 3.7 Installation and Configuration

628

1

2

3

1

Set this value same as the value of openshift_provisioners_efs_name variable, which
defaults to openshift.org/aws-efs.

The minimum value of GID range for the StorageClass. (Optional)

The maximum value of GID range for the StorageClass. (Optional)

Each dynamically provisioned volume’s corresponding NFS directory is assigned a unique GID owner
from the range gidMin-gidMax. If it is not specified, gidMin defaults to 2000 and gidMax defaults to
2147483647. Any pod that consumes a provisioned volume via a claim automatically runs with the
needed GID as a supplemental group and is able to read & write to the volume. Other mounters that do
not have the supplemental group (and are not running as root) will not be able to read or write to the
volume. For more information on using the supplemental groups to manage NFS access, see the Group
IDs section of NFS Volume Security topic.

34.4. CLEANUP

You can remove everything deployed by the OpenShift Ansible openshift_provisioners role by
running the following command:

$ ansible-playbook -v -i <inventory_file> \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/openshift-provisioners.yml \
 -e openshift_provisioners_install_provisioners=False

 -e openshift_provisioners_image_version=<image_version> 1

Replace with the desired (or up-to-date) image version.

kind: StorageClass
apiVersion: storage.k8s.io/v1beta1
metadata:
 name: slow

provisioner: openshift.org/aws-efs 1
parameters:

 gidMin: "40000" 2

 gidMax: "50000" 3

CHAPTER 34. DEPLOYING EXTERNAL PERSISTENT VOLUME PROVISIONERS

629

CHAPTER 35. REVISION HISTORY: INSTALLATION AND
CONFIGURATION

35.1. MON MAR 12 2018

Affected Topic Description of Change

Advanced Installation Updated recommended storage for logging and metrics to use dynamic
provisioning the Configuring Metrics Storage and Configuring Logging Storage
sections.

Aggregating Container
Logs

Updated the openshift_logging_es_pvc_dynamic variable in the
Specifying Logging Ansible Variables section.

35.2. WED MAR 07 2018

Affected Topic Description of Change

Aggregating Container
Logs

Added to instructions to scale EFK pods when changes are made in the
Understanding and Adjusting the Deployment section.

35.3. MON FEB 26 2018

Affected Topic Description of Change

Installation and
Configuration

Added information in multiple locations to use oc adm ca commands from the
first master only.

Getting Started → Install
OpenShift Container
Platform

Added information to use oc adm ca commands from the first master only to
Interact with OpenShift Container Platform section.

Getting Started →
Configure OpenShift
Container Platform

Added information to use oc adm ca commands from the first master only to
the Create User Accounts section.

Performing Manual In-
place Cluster Upgrades

Added information to use oc adm ca commands from the first master only to
the Updating the Default Image Streams and Templates section.

35.4. FRI FEB 23 2018

OpenShift Container Platform 3.7 Installation and Configuration

630

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/getting_started/#getting-started-install-openshift
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/getting_started/#interact-with-openshift
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/getting_started/#getting-started-configure-openshift
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/getting_started/#create-user-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/upgrading_clusters/#install-config-upgrading-manual-upgrades
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/upgrading_clusters/#updating-the-default-image-streams-and-templates

Affected Topic Description of Change

Aggregating Container
Logs

Added information on changing the Docker log driver .

35.5. MON FEB 19 2018

Affected Topic Description of Change

Aggregating Container
Logs

Added the Expose Elasticsearch as a Route section, and updated related
variables in the Specifying Logging Ansible Variables section.

35.6. FRI FEB 16 2018

Affected Topic Description of Change

Installing a Cluster →
Advanced Installation

Added information on using a Cockpit registry console image other than the
default.

Configuring Custom
Certificates

Clarified that, for the master API or web console, wildcard names are accepted.

35.7. TUE FEB 06 2018

Affected Topic Description of Change

Aggregating Container
Logs

Added the Manual Elasticsearch Rollouts section.

Installing a Cluster →
Advanced Installation

Added the Configuring the OpenShift Ansible Broker for Local APB Development
section.

Installing a Cluster →
Prerequisites

Added that setting NM_CONTROLLED is required for DNS to work properly.

Using the Default
HAProxy Router

Modified some information in the Router Environment Variables section.

Aggregating Container
Logs

Added URL examples to the variable descriptions for
openshift_logging_master_url and
openshift_logging_master_public_url in the Specifying Logging
Ansible Variables section.

Installation → Using the
F5 Router Plug-in

Added a note that the F5 user needs Advanced Shell permission to use the F5
Router Plug-in.

CHAPTER 35. REVISION HISTORY: INSTALLATION AND CONFIGURATION

631

OpenShift Ansible
Broker Configuration

New topic describing the OAB broker configuration file and how to update it.

Affected Topic Description of Change

35.8. THU JAN 25 2018

Affected Topic Description of Change

Installing a Cluster →
Disconnected Installation

Updated the example in the Editing the Image Stream Definitions section.

Customizing the Web
Console

Added a new section on System Status Badge, which can notify users of system-
wide events such as maintenance windows.

Customizing the Web
Console

Updated the Configuring Catalog Categories section to reflect the latest web
console categories.

Advanced Installation Corrected logging variable and updated default installation status in the
Configuring Cluster Logging section.

35.9. FRI DEC 22 2017

Affected Topic Description of Change

Installing a Cluster →
Advanced Installation

Added the openshift_master_admission_plugin_config parameter
to the Cluster Variables table.

Configuring the SDN Added section on configuring the SDN for multiple CIDR ranges to the Configuring
the Pod Network on Masters section.

Setting up the Registry
→ Securing and
Exposing the Registry

Added default registry to the example in the Manually Securing the Registry
section.

Configuring Global Build
Defaults and Overrides

Changed the units from m to Mi in the Example Build Defaults Configuration.

Installing a Cluster →
Prerequisites

Added more information about port 1936 to the Required Ports section.

35.10. MON DEC 11 2017

OpenShift Container Platform 3.7 Installation and Configuration

632

Affected Topic Description of Change

Configuring the SDN Fixed command error in the Migrating from ovs-multitenant to ovs-networkpolicy
section.

35.11. WED NOV 29 2017

OpenShift Container Platform 3.7 Initial Release

CHAPTER 35. REVISION HISTORY: INSTALLATION AND CONFIGURATION

633

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. INSTALLING A CLUSTER
	2.1. PLANNING
	2.1.1. Initial Planning
	2.1.2. Installation Methods
	2.1.3. Sizing Considerations
	2.1.4. Environment Scenarios
	2.1.4.1. Single Master and Node on One System
	2.1.4.2. Single Master and Multiple Nodes
	2.1.4.3. Single Master, Multiple etcd, and Multiple Nodes
	2.1.4.4. Multiple Masters Using Native HA
	2.1.4.5. Stand-alone Registry

	2.1.5. RPM Versus Containerized

	2.2. PREREQUISITES
	2.2.1. System Requirements
	2.2.1.1. Red Hat Subscriptions
	2.2.1.2. Minimum Hardware Requirements
	2.2.1.3. Production Level Hardware Requirements
	2.2.1.4. Storage management
	2.2.1.5. Configuring Core Usage
	2.2.1.6. SELinux
	2.2.1.7. Security Warning

	2.2.2. Environment Requirements
	2.2.2.1. DNS
	2.2.2.2. Network Access
	2.2.2.3. Persistent Storage
	2.2.2.4. Cloud Provider Considerations
	2.2.2.5. Containerized GlusterFS Considerations

	2.3. HOST PREPARATION
	2.3.1. Setting PATH
	2.3.2. Operating System Requirements
	2.3.3. Host Registration
	2.3.4. Installing Base Packages
	2.3.5. Installing Docker
	2.3.6. Configuring Docker Storage
	2.3.6.1. Configuring OverlayFS
	2.3.6.2. Configuring Thin Pool Storage
	2.3.6.3. Reconfiguring Docker Storage
	2.3.6.4. Enabling Image Signature Support
	2.3.6.5. Managing Container Logs
	2.3.6.6. Viewing Available Container Logs
	2.3.6.7. Blocking Local Volume Usage

	2.3.7. Ensuring Host Access
	2.3.8. Setting Proxy Overrides
	2.3.9. What’s Next?

	2.4. INSTALLING ON CONTAINERIZED HOSTS
	2.4.1. RPM Versus Containerized Installation
	2.4.2. Install Methods for Containerized Hosts
	2.4.3. Required Images
	2.4.4. Starting and Stopping Containers
	2.4.5. File Paths
	2.4.6. Storage Requirements
	2.4.7. Open vSwitch SDN Initialization

	2.5. QUICK INSTALLATION
	2.5.1. Overview
	2.5.2. Before You Begin
	2.5.3. Running an Interactive Installation
	2.5.4. Defining an Installation Configuration File
	2.5.5. Running an Unattended Installation
	2.5.6. Verifying the Installation
	2.5.7. Uninstalling OpenShift Container Platform
	2.5.8. What’s Next?

	2.6. ADVANCED INSTALLATION
	2.6.1. Overview
	2.6.2. Before You Begin
	2.6.3. Configuring Ansible Inventory Files
	Image Version Policy
	2.6.3.1. Configuring Cluster Variables
	2.6.3.2. Configuring Deployment Type
	2.6.3.3. Configuring Host Variables
	2.6.3.4. Configuring Master API and Console Ports
	2.6.3.5. Configuring Cluster Pre-install Checks
	2.6.3.6. Configuring System Containers
	2.6.3.7. Configuring a Registry Location
	2.6.3.8. Configuring a Registry Route
	2.6.3.9. Configuring the Registry Console
	2.6.3.10. Configuring Router Sharding
	2.6.3.11. Configuring GlusterFS Persistent Storage
	2.6.3.12. Configuring the OpenShift Container Registry
	2.6.3.13. Configuring Global Proxy Options
	2.6.3.14. Configuring the Firewall
	2.6.3.15. Configuring Schedulability on Masters
	2.6.3.16. Configuring Node Host Labels
	2.6.3.17. Configuring Session Options
	2.6.3.18. Configuring Custom Certificates
	2.6.3.19. Configuring Certificate Validity
	2.6.3.20. Configuring Cluster Metrics
	2.6.3.21. Configuring Cluster Logging
	2.6.3.22. Customizing Service Catalog Options
	2.6.3.23. Configuring Web Console Customization

	2.6.4. Example Inventory Files
	2.6.4.1. Single Master Examples
	2.6.4.2. Multiple Masters Examples

	2.6.5. Running the Advanced Installation
	2.6.5.1. Running the RPM-based Installer
	2.6.5.2. Running the Containerized Installer
	2.6.5.3. Running Individual Component Playbooks

	2.6.6. Verifying the Installation
	Verifying Multiple etcd Hosts
	Verifying Multiple Masters Using HAProxy

	2.6.7. Optionally Securing Builds
	2.6.8. Uninstalling OpenShift Container Platform
	2.6.8.1. Uninstalling Nodes

	2.6.9. Known Issues
	2.6.10. What’s Next?

	2.7. DISCONNECTED INSTALLATION
	2.7.1. Overview
	2.7.2. Prerequisites
	2.7.3. Required Software and Components
	2.7.3.1. Syncing Repositories
	2.7.3.2. Syncing Images
	2.7.3.3. Preparing Images for Export

	2.7.4. Repository Server
	2.7.4.1. Placing the Software

	2.7.5. OpenShift Container Platform Systems
	2.7.5.1. Building Your Hosts
	2.7.5.2. Connecting the Repositories
	2.7.5.3. Host Preparation

	2.7.6. Installing OpenShift Container Platform
	2.7.6.1. Importing OpenShift Container Platform Component Images
	2.7.6.2. Running the OpenShift Container Platform Installer
	2.7.6.3. Creating the Internal Docker Registry

	2.7.7. Post-Installation Changes
	2.7.7.1. Re-tagging S2I Builder Images
	2.7.7.2. Configuring a Registry Location
	2.7.7.3. Creating an Administrative User
	2.7.7.4. Modifying the Security Policies
	2.7.7.5. Editing the Image Stream Definitions
	2.7.7.6. Loading the Container Images

	2.7.8. Installing a Router

	2.8. INSTALLING A STAND-ALONE DEPLOYMENT OF OPENSHIFT CONTAINER REGISTRY
	2.8.1. About OpenShift Container Registry
	2.8.2. Minimum Hardware Requirements
	2.8.3. Supported System Topologies
	2.8.4. Host Preparation
	2.8.5. Installation Methods
	2.8.5.1. Quick Installation for Stand-alone OpenShift Container Registry
	2.8.5.2. Advanced Installation for Stand-alone OpenShift Container Registry

	CHAPTER 3. SETTING UP THE REGISTRY
	3.1. REGISTRY OVERVIEW
	3.1.1. About the Registry
	3.1.2. Integrated or Stand-alone Registries

	3.2. DEPLOYING A REGISTRY ON EXISTING CLUSTERS
	3.2.1. Overview
	3.2.2. Deploying the Registry
	3.2.3. Deploying the Registry as a DaemonSet
	3.2.4. Registry Compute Resources
	3.2.5. Storage for the Registry
	3.2.5.1. Production Use
	3.2.5.2. Non-Production Use

	3.2.6. Enabling the Registry Console
	3.2.6.1. Deploying the Registry Console
	3.2.6.2. Securing the Registry Console
	3.2.6.3. Troubleshooting the Registry Console

	3.3. ACCESSING THE REGISTRY
	3.3.1. Viewing Logs
	3.3.2. File Storage
	3.3.3. Accessing the Registry Directly
	3.3.3.1. User Prerequisites
	3.3.3.2. Logging in to the Registry
	3.3.3.3. Pushing and Pulling Images

	3.3.4. Accessing Registry Metrics

	3.4. SECURING AND EXPOSING THE REGISTRY
	3.4.1. Overview
	3.4.2. Manually Securing the Registry
	3.4.3. Manually Exposing a Secure Registry
	3.4.4. Manually Exposing a Non-Secure Registry

	3.5. EXTENDED REGISTRY CONFIGURATION
	3.5.1. Maintaining the Registry IP Address
	3.5.2. Whitelisting Docker Registries
	3.5.3. Setting the Registry Hostname
	3.5.4. Overriding the Registry Configuration
	3.5.5. Registry Configuration Reference
	3.5.5.1. Log
	3.5.5.2. Hooks
	3.5.5.3. Storage
	3.5.5.4. Auth
	3.5.5.5. Middleware
	3.5.5.6. OpenShift
	3.5.5.7. Reporting
	3.5.5.8. HTTP
	3.5.5.9. Notifications
	3.5.5.10. Redis
	3.5.5.11. Health
	3.5.5.12. Proxy

	3.6. KNOWN ISSUES
	3.6.1. Overview
	3.6.2. Image Push Errors with Scaled Registry Using Shared NFS Volume
	3.6.3. Pull of Internally Managed Image Fails with "not found" Error
	3.6.4. Image Push Fails with "500 Internal Server Error" on S3 Storage
	3.6.5. Image Pruning Fails

	CHAPTER 4. SETTING UP A ROUTER
	4.1. ROUTER OVERVIEW
	4.1.1. About Routers
	4.1.2. Router Service Account
	4.1.2.1. Permission to Access Labels

	4.2. USING THE DEFAULT HAPROXY ROUTER
	4.2.1. Overview
	4.2.2. Creating a Router
	4.2.3. Other Basic Router Commands
	4.2.4. Filtering Routes to Specific Routers
	4.2.5. HAProxy Strict SNI
	4.2.6. TLS Cipher Suites
	4.2.7. Highly-Available Routers
	4.2.8. Customizing the Router Service Ports
	4.2.9. Working With Multiple Routers
	4.2.10. Adding a Node Selector to a Deployment Configuration
	4.2.11. Using Router Shards
	4.2.11.1. Creating Router Shards
	4.2.11.2. Modifying Router Shards

	4.2.12. Finding the Host Name of the Router
	4.2.13. Customizing the Default Routing Subdomain
	4.2.14. Forcing Route Host Names to a Custom Routing Subdomain
	4.2.15. Using Wildcard Certificates
	4.2.16. Manually Redeploy Certificates
	4.2.17. Using Secured Routes
	4.2.18. Using Wildcard Routes (for a Subdomain)
	4.2.19. Using the Container Network Stack
	4.2.20. Exposing Router Metrics
	4.2.21. Preventing Connection Failures During Restarts
	4.2.22. ARP Cache Tuning for Large-scale Clusters
	4.2.23. Protecting Against DDoS Attacks

	4.3. DEPLOYING A CUSTOMIZED HAPROXY ROUTER
	4.3.1. Overview
	4.3.2. Obtaining the Router Configuration Template
	4.3.3. Modifying the Router Configuration Template
	4.3.3.1. Background
	4.3.3.2. Go Template Actions
	4.3.3.3. Router Provided Information
	4.3.3.4. Annotations
	4.3.3.5. Environment Variables
	4.3.3.6. Example Usage

	4.3.4. Using a ConfigMap to Replace the Router Configuration Template
	4.3.5. Using Stick Tables
	4.3.6. Rebuilding Your Router

	4.4. CONFIGURING THE HAPROXY ROUTER TO USE THE PROXY PROTOCOL
	4.4.1. Overview
	4.4.2. Why Use the PROXY Protocol?
	4.4.3. Using the PROXY Protocol

	4.5. USING THE F5 ROUTER PLUG-IN
	4.5.1. Overview
	4.5.2. Prerequisites and Supportability
	4.5.2.1. Configuring the Virtual Servers

	4.5.3. Deploying the F5 Router
	4.5.4. F5 Router Partition Paths
	4.5.5. Setting Up F5 Native Integration

	CHAPTER 5. MASTER AND NODE CONFIGURATION
	5.1. OVERVIEW
	5.2. MASTER CONFIGURATION FILES
	5.2.1. Admission Control Configuration
	5.2.2. Asset Configuration
	5.2.3. Authentication and Authorization Configuration
	5.2.4. Controller Configuration
	5.2.5. etcd Configuration
	5.2.6. Grant Configuration
	5.2.7. Image Configuration
	5.2.8. Image Policy Configuration
	5.2.9. Kubernetes Master Configuration
	5.2.10. Network Configuration
	5.2.11. OAuth Authentication Configuration
	5.2.12. Project Configuration
	5.2.13. Scheduler Configuration
	5.2.14. Security Allocator Configuration
	5.2.15. Service Account Configuration
	5.2.16. Serving Information Configuration
	5.2.17. Volume Configuration
	5.2.18. Audit Configuration
	5.2.19. Advanced Audit
	5.2.20. Specifying TLS ciphers for etcd

	5.3. NODE CONFIGURATION FILES
	5.3.1. Pod and Node Configuration
	5.3.2. Docker Configuration
	5.3.3. Parallel Image Pulls with Docker 1.9+

	5.4. PASSWORDS AND OTHER SENSITIVE DATA
	5.5. CREATING NEW CONFIGURATION FILES
	5.6. LAUNCHING SERVERS USING CONFIGURATION FILES
	5.7. CONFIGURING LOGGING LEVELS
	5.8. RESTARTING OPENSHIFT CONTAINER PLATFORM SERVICES

	CHAPTER 6. OPENSHIFT ANSIBLE BROKER CONFIGURATION
	6.1. OVERVIEW
	6.2. MODIFYING THE OPENSHIFT ANSIBLE BROKER CONFIGURATION
	6.3. REGISTRY CONFIGURATION
	6.3.1. Production or Development
	6.3.2. Storing Registry Credentials
	6.3.3. Mock Registry
	6.3.4. Dockerhub Registry
	6.3.5. APB Filtering
	6.3.6. Local OpenShift Container Registry
	6.3.7. Red Hat Container Catalog Registry
	6.3.8. ISV Registry
	6.3.9. Multiple Registries

	6.4. DAO CONFIGURATION
	6.5. LOG CONFIGURATION
	6.6. OPENSHIFT CONFIGURATION
	6.7. BROKER CONFIGURATION
	6.8. SECRETS CONFIGURATION

	CHAPTER 7. ADDING HOSTS TO AN EXISTING CLUSTER
	7.1. OVERVIEW
	7.2. ADDING HOSTS USING THE QUICK INSTALLER TOOL
	7.3. ADDING HOSTS
	Procedure

	7.4. ADDING ETCD HOSTS TO EXISTING CLUSTER
	7.5. REPLACING EXISTING MASTERS WITH ETCD COLOCATED
	7.6. MIGRATING THE NODES

	CHAPTER 8. LOADING THE DEFAULT IMAGE STREAMS AND TEMPLATES
	8.1. OVERVIEW
	8.2. OFFERINGS BY SUBSCRIPTION TYPE
	8.2.1. OpenShift Container Platform Subscription
	8.2.2. xPaaS Middleware Add-on Subscriptions

	8.3. BEFORE YOU BEGIN
	8.4. PREREQUISITES
	8.5. CREATING IMAGE STREAMS FOR OPENSHIFT CONTAINER PLATFORM IMAGES
	8.6. CREATING IMAGE STREAMS FOR XPAAS MIDDLEWARE IMAGES
	8.7. CREATING DATABASE SERVICE TEMPLATES
	8.8. CREATING INSTANT APP AND QUICKSTART TEMPLATES
	8.9. WHAT’S NEXT?

	CHAPTER 9. CONFIGURING CUSTOM CERTIFICATES
	9.1. OVERVIEW
	9.2. CONFIGURING CUSTOM CERTIFICATES DURING INSTALLATION
	9.3. CONFIGURING CUSTOM CERTIFICATES FOR THE WEB CONSOLE OR CLI
	9.4. CONFIGURING A CUSTOM MASTER HOST CERTIFICATE
	9.5. CONFIGURING A CUSTOM WILDCARD CERTIFICATE FOR THE DEFAULT ROUTER
	9.6. CONFIGURING A CUSTOM CERTIFICATE FOR THE IMAGE REGISTRY
	9.7. CONFIGURING A CUSTOM CERTIFICATE FOR A LOAD BALANCER
	9.8. RETROFIT CUSTOM CERTIFICATES INTO A CLUSTER
	9.8.1. Retrofit Custom Master Certificates into a Cluster
	9.8.2. Retrofit Custom Router Certificates into a Cluster

	9.9. USING CUSTOM CERTIFICATES WITH OTHER COMPONENTS

	CHAPTER 10. REDEPLOYING CERTIFICATES
	10.1. OVERVIEW
	10.2. CHECKING CERTIFICATE EXPIRATIONS
	10.2.1. Role Variables
	10.2.2. Running Certificate Expiration Playbooks
	Other Example Playbooks

	10.2.3. Output Formats
	HTML Report
	JSON Report

	10.3. REDEPLOYING CERTIFICATES
	10.3.1. Redeploying All Certificates Using the Current OpenShift Container Platform and etcd CA
	10.3.2. Redeploying a New or Custom OpenShift Container Platform CA
	10.3.3. Redeploying a New etcd CA
	10.3.4. Redeploying Master Certificates Only
	10.3.5. Redeploying etcd Certificates Only
	10.3.6. Redeploying Node Certificates Only
	10.3.7. Redeploying Registry or Router Certificates Only
	10.3.7.1. Redeploying Registry Certificates Only
	10.3.7.2. Redeploying Router Certificates Only

	10.3.8. Redeploying Custom Registry or Router Certificates
	10.3.8.1. Redeploying Registry Certificates Manually
	10.3.8.2. Redeploying Router Certificates Manually

	CHAPTER 11. CONFIGURING AUTHENTICATION AND USER AGENT
	11.1. OVERVIEW
	11.2. IDENTITY PROVIDER PARAMETERS
	11.3. CONFIGURING IDENTITY PROVIDERS
	11.3.1. Configuring identity providers with Ansible
	11.3.2. Configuring identity providers in the master configuration file
	11.3.3. Configuring an identity provider or method
	11.3.3.1. Manually provisioning a user when using the lookup mapping method

	11.3.4. Allow all
	11.3.5. Deny all
	11.3.6. HTPasswd
	11.3.7. Keystone
	11.3.8. LDAP authentication
	11.3.9. Basic authentication (remote)
	11.3.10. Request header
	11.3.11. GitHub
	11.3.12. GitLab
	11.3.13. Google
	11.3.14. OpenID connect

	11.4. TOKEN OPTIONS
	11.5. GRANT OPTIONS
	11.6. SESSION OPTIONS
	11.7. PREVENTING CLI VERSION MISMATCH WITH USER AGENT

	CHAPTER 12. SYNCING GROUPS WITH LDAP
	12.1. OVERVIEW
	12.2. CONFIGURING LDAP SYNC
	12.2.1. LDAP Client Configuration
	12.2.2. LDAP Query Definition
	12.2.3. User-Defined Name Mapping

	12.3. RUNNING LDAP SYNC
	12.4. RUNNING A GROUP PRUNING JOB
	12.5. SYNC EXAMPLES
	12.5.1. RFC 2307
	12.5.1.1. RFC2307 with User-Defined Name Mappings

	12.5.2. RFC 2307 with User-Defined Error Tolerances
	12.5.3. Active Directory
	12.5.4. Augmented Active Directory

	12.6. NESTED MEMBERSHIP SYNC EXAMPLE
	12.7. LDAP SYNC CONFIGURATION SPECIFICATION
	12.7.1. v1.LDAPSyncConfig
	12.7.2. v1.StringSource
	12.7.3. v1.LDAPQuery
	12.7.4. v1.RFC2307Config
	12.7.5. v1.ActiveDirectoryConfig
	12.7.6. v1.AugmentedActiveDirectoryConfig

	CHAPTER 13. CONFIGURING LDAP FAILOVER
	13.1. PREREQUISITES FOR CONFIGURING BASIC REMOTE AUTHENTICATION
	13.2. GENERATING AND SHARING CERTIFICATES WITH THE REMOTE BASIC AUTHENTICATION SERVER
	13.3. CONFIGURING SSSD FOR LDAP FAILOVER
	13.4. CONFIGURING APACHE TO USE SSSD
	13.5. CONFIGURING OPENSHIFT CONTAINER PLATFORM TO USE SSSD AS THE BASIC REMOTE AUTHENTICATION SERVER

	CHAPTER 14. CONFIGURING THE SDN
	14.1. OVERVIEW
	14.2. AVAILABLE SDN PROVIDERS
	Installing VMware NSX-T (™) on OpenShift Container Platform

	14.3. CONFIGURING THE POD NETWORK WITH ANSIBLE
	14.4. CONFIGURING THE POD NETWORK ON MASTERS
	14.5. CONFIGURING THE POD NETWORK ON NODES
	14.6. MIGRATING BETWEEN SDN PLUG-INS
	14.6.1. Migrating from ovs-multitenant to ovs-networkpolicy

	14.7. EXTERNAL ACCESS TO THE CLUSTER NETWORK
	14.8. USING FLANNEL

	CHAPTER 15. CONFIGURING NUAGE SDN
	15.1. NUAGE SDN AND OPENSHIFT CONTAINER PLATFORM
	15.2. DEVELOPER WORKFLOW
	15.3. OPERATIONS WORKFLOW
	15.4. INSTALLATION

	CHAPTER 16. CONFIGURING FOR AMAZON WEB SERVICES (AWS)
	16.1. OVERVIEW
	16.2. PERMISSIONS
	16.3. CONFIGURING A SECURITY GROUP
	16.3.1. Overriding Detected IP Addresses and Host Names

	16.4. CONFIGURING AWS VARIABLES
	16.5. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR AWS
	16.5.1. Configuring OpenShift Container Platform for AWS with Ansible
	16.5.2. Manually Configuring OpenShift Container Platform Masters for AWS
	16.5.3. Manually Configuring OpenShift Container Platform Nodes for AWS
	16.5.4. Manually Setting Key-Value Access Pairs

	16.6. APPLYING CONFIGURATION CHANGES
	16.7. LABELING CLUSTERS FOR AWS
	16.7.1. Resources That Need Tags
	16.7.2. Tagging an Existing Cluster

	CHAPTER 17. CONFIGURING FOR OPENSTACK
	17.1. OVERVIEW
	17.2. PERMISSIONS
	17.3. CONFIGURING A SECURITY GROUP
	17.4. CONFIGURING OPENSTACK VARIABLES
	17.5. CONFIGURING OPENSHIFT CONTAINER PLATFORM MASTERS FOR OPENSTACK
	17.5.1. Configuring OpenShift Container Platform for OpenStack with Ansible
	17.5.2. Manually Configuring OpenShift Container Platform Masters for OpenStack
	17.5.3. Manually Configuring OpenShift Container Platform Nodes for OpenStack

	17.6. APPLYING CONFIGURATION CHANGES

	CHAPTER 18. CONFIGURING FOR GCE
	18.1. OVERVIEW
	18.2. PERMISSIONS
	18.3. CONFIGURING MASTERS
	18.3.1. Configuring OpenShift Container Platform Masters for GCE with Ansible
	18.3.2. Manually Configuring OpenShift Container Platform Masters for GCE

	18.4. CONFIGURING NODES
	18.5. CONFIGURING MULTIZONE SUPPORT IN A GCE DEPLOYMENT
	18.6. APPLYING CONFIGURATION CHANGES

	CHAPTER 19. CONFIGURING FOR AZURE
	19.1. OVERVIEW
	19.2. PERMISSIONS
	19.3. PREREQUISITES
	19.4. THE AZURE CONFIGURATION FILE
	19.5. CONFIGURING MASTERS
	19.6. CONFIGURING NODES
	19.7. APPLYING CONFIGURATION CHANGES

	CHAPTER 20. CONFIGURING FOR VMWARE VSPHERE
	20.1. OVERVIEW
	20.2. ENABLING VMWARE VSPHERE CLOUD PROVIDER
	20.3. THE VMWARE VSPHERE CONFIGURATION FILE
	20.4. CONFIGURING MASTERS
	20.5. CONFIGURING NODES
	20.6. APPLYING CONFIGURATION CHANGES
	20.7. BACKUP OF PERSISTENT VOLUMES

	CHAPTER 21. CONFIGURING FOR LOCAL VOLUME
	21.1. OVERVIEW
	21.2. ENABLING LOCAL VOLUMES
	21.3. MOUNTING LOCAL VOLUMES
	21.4. CONFIGURING THE LOCAL PROVISIONER
	21.5. DEPLOYING THE LOCAL PROVISIONER
	21.6. ADDING NEW DEVICES

	CHAPTER 22. CONFIGURING PERSISTENT STORAGE
	22.1. OVERVIEW
	22.2. PERSISTENT STORAGE USING NFS
	22.2.1. Overview
	22.2.2. Provisioning
	22.2.3. Enforcing Disk Quotas
	22.2.4. NFS Volume Security
	22.2.4.1. Group IDs
	22.2.4.2. User IDs
	22.2.4.3. SELinux
	22.2.4.4. Export Settings

	22.2.5. Reclaiming Resources
	22.2.6. Automation
	22.2.7. Additional Configuration and Troubleshooting

	22.3. PERSISTENT STORAGE USING GLUSTERFS
	22.3.1. Overview
	22.3.1.1. Containerized Red Hat Gluster Storage
	22.3.1.2. Container Native Storage Recommendations
	22.3.1.3. Dedicated Storage Cluster

	22.3.2. Support Requirements
	22.3.2.1. Supported Operating Systems
	22.3.2.2. Environment Requirements

	22.3.3. Provisioning
	22.3.3.1. Creating Gluster Endpoints
	22.3.3.2. Creating the Persistent Volume
	22.3.3.3. Creating the Persistent Volume Claim

	22.3.4. Gluster Volume Security
	22.3.4.1. Group IDs
	22.3.4.2. User IDs
	22.3.4.3. SELinux

	22.4. PERSISTENT STORAGE USING OPENSTACK CINDER
	22.4.1. Overview
	22.4.2. Provisioning Cinder PVs
	22.4.2.1. Creating the Persistent Volume
	22.4.2.2. Cinder PV format
	22.4.2.3. Cinder volume security

	22.5. PERSISTENT STORAGE USING CEPH RADOS BLOCK DEVICE (RBD)
	22.5.1. Overview
	22.5.2. Provisioning
	22.5.2.1. Creating the Ceph Secret
	22.5.2.2. Creating the Persistent Volume

	22.5.3. Ceph Volume Security

	22.6. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE
	22.6.1. Overview
	22.6.2. Provisioning
	22.6.2.1. Creating the Persistent Volume
	22.6.2.2. Volume Format
	22.6.2.3. Maximum Number of EBS Volumes on a Node

	22.7. PERSISTENT STORAGE USING GCE PERSISTENT DISK
	22.7.1. Overview
	22.7.2. Provisioning
	22.7.2.1. Creating the Persistent Volume
	22.7.2.2. Volume Format

	22.8. PERSISTENT STORAGE USING ISCSI
	22.8.1. Overview
	22.8.2. Provisioning
	22.8.2.1. Enforcing Disk Quotas
	22.8.2.2. iSCSI Volume Security
	22.8.2.3. iSCSI Multipathing

	22.9. PERSISTENT STORAGE USING FIBRE CHANNEL
	22.9.1. Overview
	22.9.2. Provisioning
	22.9.2.1. Enforcing Disk Quotas
	22.9.2.2. Fibre Channel Volume Security

	22.10. PERSISTENT STORAGE USING AZURE DISK
	22.10.1. Overview
	22.10.2. Prerequisites
	22.10.3. Provisioning
	22.10.4. Configuring Azure Disk for regional cloud
	22.10.4.1. Creating the Persistent Volume
	22.10.4.2. Volume Format

	22.11. PERSISTENT STORAGE USING AZURE FILE
	22.11.1. Overview
	22.11.2. Before you begin
	22.11.3. Configuring Azure File for regional cloud
	22.11.4. Creating the PV
	22.11.5. Creating the Azure Storage Account secret

	22.12. PERSISTENT STORAGE USING FLEXVOLUME PLUG-INS
	22.12.1. Overview
	22.12.2. Installing FlexVolume Drivers
	22.12.3. Consuming Storage using FlexVolume
	22.12.4. FlexVolume Drivers
	22.12.4.1. FlexVolume Drivers with Master-initiated Attach/Detach
	22.12.4.2. FlexVolume Drivers Without Master-initiated Attach/Detach

	22.13. USING VMWARE VSPHERE VOLUMES FOR PERSISTENT STORAGE
	22.13.1. Overview
	Prerequisites

	22.13.2. Provisioning VMware vSphere volumes
	22.13.2.1. Creating persistent volumes
	22.13.2.2. Formatting VMware vSphere volumes

	22.14. PERSISTENT STORAGE USING LOCAL VOLUME
	22.14.1. Overview
	22.14.2. Provisioning
	22.14.3. Creating Local Persistent Volume Claim
	22.14.4. Feature Status

	22.15. DYNAMIC PROVISIONING AND CREATING STORAGE CLASSES
	22.15.1. Overview
	22.15.2. Available dynamically provisioned plug-ins
	22.15.3. Defining a StorageClass
	22.15.3.1. Basic StorageClass object definition
	22.15.3.2. StorageClass annotations
	22.15.3.3. OpenStack Cinder object definition
	22.15.3.4. AWS ElasticBlockStore (EBS) object definition
	22.15.3.5. GCE PersistentDisk (gcePD) object definition
	22.15.3.6. GlusterFS object definition
	22.15.3.7. Ceph RBD object definition
	22.15.3.8. Trident object definition
	22.15.3.9. VMware vSphere object definition
	22.15.3.10. Azure Disk object definition

	22.15.4. Changing the default StorageClass
	22.15.5. Additional information and examples

	22.16. VOLUME SECURITY
	22.16.1. Overview
	22.16.2. SCCs, Defaults, and Allowed Ranges
	22.16.3. Supplemental Groups
	22.16.4. fsGroup
	22.16.5. User IDs
	22.16.6. SELinux Options

	22.17. SELECTOR-LABEL VOLUME BINDING
	22.17.1. Overview
	22.17.2. Motivation
	22.17.3. Deployment
	22.17.3.1. Prerequisites
	22.17.3.2. Define the Persistent Volume and Claim
	22.17.3.3. Deploy the Persistent Volume and Claim

	22.18. ENABLING CONTROLLER-MANAGED ATTACHMENT AND DETACHMENT
	22.18.1. Overview
	22.18.2. Determining What Is Managing Attachment and Detachment
	22.18.3. Configuring Nodes to Enable Controller-managed Attachment and Detachment

	CHAPTER 23. PERSISTENT STORAGE EXAMPLES
	23.1. OVERVIEW
	23.2. SHARING AN NFS MOUNT ACROSS TWO PERSISTENT VOLUME CLAIMS
	23.2.1. Overview
	23.2.2. Creating the Persistent Volume
	23.2.3. Creating the Persistent Volume Claim
	23.2.4. Ensuring NFS Volume Access
	23.2.5. Creating the Pod
	23.2.6. Creating an Additional Pod to Reference the Same PVC

	23.3. COMPLETE EXAMPLE USING CEPH RBD
	23.3.1. Overview
	23.3.2. Installing the ceph-common Package
	23.3.3. Creating the Ceph Secret
	23.3.4. Creating the Persistent Volume
	23.3.5. Creating the Persistent Volume Claim
	23.3.6. Creating the Pod
	23.3.7. Defining Group and Owner IDs (Optional)
	23.3.8. Setting ceph-user-secret as Default for Projects

	23.4. USING CEPH RBD FOR DYNAMIC PROVISIONING
	23.4.1. Overview
	23.4.2. Creating a pool for dynamic volumes
	23.4.3. Using an existing Ceph cluster for dynamic persistent storage
	23.4.4. Setting ceph-user-secret as the default for projects

	23.5. COMPLETE EXAMPLE USING GLUSTERFS
	23.5.1. Overview
	23.5.2. Installing the glusterfs-fuse Package
	23.5.3. Creating the Gluster Endpoints and Gluster Service for Persistence
	23.5.4. Creating the Persistent Volume
	23.5.5. Creating the Persistent Volume Claim
	23.5.6. Defining GlusterFS Volume Access
	23.5.7. Creating the Pod using NGINX Web Server image

	23.6. COMPLETE EXAMPLE OF DYNAMIC PROVISIONING USING CONTAINERIZED GLUSTERFS
	23.6.1. Overview
	23.6.2. Verify the Environment and Gather Needed Information
	23.6.3. Create a Storage Class for Your GlusterFS Dynamic Provisioner
	23.6.4. Create a PVC to Request Storage for Your Application
	23.6.5. Create a NGINX Pod That Uses the PVC

	23.7. COMPLETE EXAMPLE OF DYNAMIC PROVISIONING USING DEDICATED GLUSTERFS
	23.7.1. Overview
	23.7.2. Environment and Prerequisites
	23.7.3. Installing and Configuring Heketi
	23.7.4. Loading Topology
	23.7.5. Dynamically Provision a Volume
	23.7.6. Creating a NGINX Pod That Uses the PVC

	23.8. EXAMPLE: CONTAINERIZED HEKETI FOR MANAGING DEDICATED GLUSTERFS STORAGE
	23.8.1. Overview
	23.8.2. Environment and Prerequisites
	23.8.3. Installing and Configuring Heketi
	23.8.4. Loading Topology
	23.8.5. Dynamically Provision a Volume
	23.8.6. Creating a NGINX Pod That Uses the PVC

	23.9. MOUNTING VOLUMES ON PRIVILEGED PODS
	23.9.1. Overview
	23.9.2. Prerequisites
	23.9.3. Creating the Persistent Volume
	23.9.4. Creating a Regular User
	23.9.5. Creating the Persistent Volume Claim
	23.9.6. Verifying the Setup
	23.9.6.1. Checking the Pod SCC
	23.9.6.2. Verifying the Mount

	23.10. BACKING DOCKER REGISTRY WITH GLUSTERFS STORAGE
	23.10.1. Overview
	23.10.2. Prerequisites
	23.10.3. Create the Gluster Persistent Volume
	23.10.4. Attach the PVC to the Docker Registry
	23.10.5. Known Issues
	23.10.5.1. Pod Cannot Resolve the Volume Host

	23.11. BINDING PERSISTENT VOLUMES BY LABELS
	23.11.1. Overview
	23.11.1.1. Assumptions

	23.11.2. Defining Specifications
	23.11.2.1. Persistent Volume with Labels
	23.11.2.2. Persistent Volume Claim with Selectors
	23.11.2.3. Volume Endpoints
	23.11.2.4. Deploy the PV, PVC, and Endpoints

	23.12. USING STORAGE CLASSES FOR DYNAMIC PROVISIONING
	23.12.1. Overview
	23.12.2. Scenario 1: Basic Dynamic Provisioning with Two Types of StorageClasses
	23.12.3. Scenario 2: How to enable Default StorageClass behavior for a Cluster

	23.13. USING STORAGE CLASSES FOR EXISTING LEGACY STORAGE
	23.13.1. Overview
	23.13.1.1. Scenario 1: Link StorageClass to existing Persistent Volume with Legacy Data

	23.14. CONFIGURING AZURE BLOB STORAGE FOR INTEGRATED DOCKER REGISTRY
	23.14.1. Overview
	23.14.2. Before You Begin
	23.14.3. Overriding Registry Configuration

	CHAPTER 24. WORKING WITH HTTP PROXIES
	24.1. OVERVIEW
	24.2. CONFIGURING NO_PROXY
	24.3. CONFIGURING HOSTS FOR PROXIES
	24.4. CONFIGURING HOSTS FOR PROXIES USING ANSIBLE
	24.5. PROXYING DOCKER PULL
	24.6. USING MAVEN BEHIND A PROXY
	24.7. CONFIGURING S2I BUILDS FOR PROXIES
	24.8. CONFIGURING DEFAULT TEMPLATES FOR PROXIES
	24.9. SETTING PROXY ENVIRONMENT VARIABLES IN PODS
	24.10. GIT REPOSITORY ACCESS

	CHAPTER 25. CONFIGURING GLOBAL BUILD DEFAULTS AND OVERRIDES
	25.1. OVERVIEW
	25.2. SETTING GLOBAL BUILD DEFAULTS
	25.2.1. Configuring Global Build Defaults with Ansible
	25.2.2. Manually Setting Global Build Defaults

	25.3. SETTING GLOBAL BUILD OVERRIDES
	25.3.1. Configuring Global Build Overrides with Ansible
	25.3.2. Manually Setting Global Build Overrides

	CHAPTER 26. CONFIGURING PIPELINE EXECUTION
	26.1. OVERVIEW
	26.2. OPENSHIFT JENKINS CLIENT PLUGIN
	26.3. OPENSHIFT JENKINS SYNC PLUGIN

	CHAPTER 27. CONFIGURING ROUTE TIMEOUTS
	CHAPTER 28. CONFIGURING NATIVE CONTAINER ROUTING
	28.1. NETWORK OVERVIEW
	28.2. CONFIGURE NATIVE CONTAINER ROUTING
	28.3. SETTING UP A NODE FOR CONTAINER NETWORKING
	28.4. SETTING UP A ROUTER FOR CONTAINER NETWORKING

	CHAPTER 29. ROUTING FROM EDGE LOAD BALANCERS
	29.1. OVERVIEW
	29.2. INCLUDING THE LOAD BALANCER IN THE SDN
	29.3. ESTABLISHING A TUNNEL USING A RAMP NODE
	29.3.1. Configuring a Highly-Available Ramp Node

	CHAPTER 30. AGGREGATING CONTAINER LOGS
	30.1. OVERVIEW
	30.2. PRE-DEPLOYMENT CONFIGURATION
	30.3. SPECIFYING LOGGING ANSIBLE VARIABLES
	30.4. DEPLOYING THE EFK STACK
	30.5. UNDERSTANDING AND ADJUSTING THE DEPLOYMENT
	30.5.1. Ops Cluster
	30.5.2. Elasticsearch
	30.5.2.1. Persistent Elasticsearch Storage

	30.5.3. Fluentd
	30.5.4. Kibana
	30.5.5. Curator
	30.5.5.1. Creating the Curator Configuration

	30.6. CLEANUP
	30.7. TROUBLESHOOTING KIBANA
	30.8. SENDING LOGS TO AN EXTERNAL ELASTICSEARCH INSTANCE
	30.9. SENDING LOGS TO AN EXTERNAL SYSLOG SERVER
	30.10. PERFORMING ADMINISTRATIVE ELASTICSEARCH OPERATIONS
	30.11. CHANGING THE AGGREGATED LOGGING DRIVER
	30.12. UPDATING FLUENTD’S LOG SOURCE AFTER A DOCKER LOG DRIVER UPDATE
	30.13. MANUAL ELASTICSEARCH ROLLOUTS
	30.13.1. Performing an Elasticsearch Rolling Cluster Restart
	30.13.2. Performing an Elasticsearch Full Cluster Restart

	CHAPTER 31. AGGREGATE LOGGING SIZING GUIDELINES
	31.1. OVERVIEW
	31.2. INSTALLATION
	31.2.1. Large Clusters

	31.3. SYSTEMD-JOURNALD AND RSYSLOG
	31.4. SCALING UP EFK LOGGING
	31.5. STORAGE CONSIDERATIONS

	CHAPTER 32. ENABLING CLUSTER METRICS
	32.1. OVERVIEW
	32.2. BEFORE YOU BEGIN
	32.3. METRICS PROJECT
	32.4. METRICS DATA STORAGE
	32.4.1. Persistent Storage
	32.4.2. Capacity Planning for Cluster Metrics
	Recommendations for OpenShift Container Platform Version 3.7
	Known Issues and Limitations

	32.4.3. Non-Persistent Storage

	32.5. METRICS ANSIBLE ROLE
	32.5.1. Specifying Metrics Ansible Variables
	32.5.2. Using Secrets
	32.5.2.1. Providing Your Own Certificates

	32.6. DEPLOYING THE METRIC COMPONENTS
	32.6.1. Metrics Diagnostics

	32.7. SETTING THE METRICS PUBLIC URL
	32.8. ACCESSING HAWKULAR METRICS DIRECTLY
	32.8.1. OpenShift Container Platform Projects and Hawkular Tenants
	32.8.2. Authorization

	32.9. SCALING OPENSHIFT CONTAINER PLATFORM CLUSTER METRICS PODS
	32.10. INTEGRATION WITH AGGREGATED LOGGING
	32.11. CLEANUP
	32.12. PROMETHEUS ON OPENSHIFT CONTAINER PLATFORM
	32.12.1. Setting Prometheus Role Variables
	32.12.2. Deploying Prometheus Using Ansible Installer
	32.12.2.1. Additional Methods for Deploying Prometheus
	32.12.2.2. Accessing the Prometheus Web UI
	32.12.2.3. Configuring Prometheus for OpenShift Container Platform

	32.12.3. OpenShift Container Platform Metrics via Prometheus
	32.12.3.1. Current Metrics

	32.12.4. Undeploying Prometheus

	CHAPTER 33. CUSTOMIZING THE WEB CONSOLE
	33.1. OVERVIEW
	33.2. LOADING EXTENSION SCRIPTS AND STYLESHEETS
	33.2.1. Setting Extension Properties

	33.3. EXTENSION OPTION FOR EXTERNAL LOGGING SOLUTIONS
	33.4. CUSTOMIZING AND DISABLING THE GUIDED TOUR
	33.5. CUSTOMIZING DOCUMENTATION LINKS
	33.6. CUSTOMIZING THE LOGO
	33.7. CHANGING LINKS TO DOCUMENTATION
	33.8. ADDING OR CHANGING LINKS TO DOWNLOAD THE CLI
	33.8.1. Customizing the About Page

	33.9. CONFIGURING NAVIGATION MENUS
	33.9.1. Top Navigation Dropdown Menus
	33.9.2. Application Launcher
	33.9.3. System Status Badge
	33.9.4. Project Left Navigation

	33.10. CONFIGURING FEATURED APPLICATIONS
	33.11. CONFIGURING CATALOG CATEGORIES
	33.12. CONFIGURING QUOTA NOTIFICATION MESSAGES
	33.13. CONFIGURING THE CREATE FROM URL NAMESPACE WHITELIST
	33.14. DISABLING THE COPY LOGIN COMMAND
	33.14.1. Enabling Wildcard Routes

	33.15. ENABLING FEATURES IN TECHNOLOGY PREVIEW
	33.16. SERVING STATIC FILES
	33.16.1. Enabling HTML5 Mode

	33.17. CUSTOMIZING THE LOGIN PAGE
	33.17.1. Example Usage

	33.18. CUSTOMIZING THE OAUTH ERROR PAGE
	33.19. CHANGING THE LOGOUT URL
	33.20. CONFIGURING WEB CONSOLE CUSTOMIZATIONS WITH ANSIBLE

	CHAPTER 34. DEPLOYING EXTERNAL PERSISTENT VOLUME PROVISIONERS
	34.1. OVERVIEW
	34.2. BEFORE YOU BEGIN
	34.2.1. External Provisioners Ansible Role
	34.2.2. External Provisioners Ansible Variables
	34.2.3. AWS EFS Provisioner Ansible Variables

	34.3. DEPLOYING THE PROVISIONERS
	34.3.1. Deploying the AWS EFS Provisioner
	34.3.1.1. AWS EFS Object Definition

	34.4. CLEANUP

	CHAPTER 35. REVISION HISTORY: INSTALLATION AND CONFIGURATION
	35.1. MON MAR 12 2018
	35.2. WED MAR 07 2018
	35.3. MON FEB 26 2018
	35.4. FRI FEB 23 2018
	35.5. MON FEB 19 2018
	35.6. FRI FEB 16 2018
	35.7. TUE FEB 06 2018
	35.8. THU JAN 25 2018
	35.9. FRI DEC 22 2017
	35.10. MON DEC 11 2017
	35.11. WED NOV 29 2017

