
OpenShift Container Platform 3.10

Upgrading Clusters

OpenShift Container Platform 3.10 Upgrading Clusters

Last Updated: 2019-11-05

OpenShift Container Platform 3.10 Upgrading Clusters

OpenShift Container Platform 3.10 Upgrading Clusters

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Upgrade your OpenShift Container Platform 3.10 cluster with this guide

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. UPGRADE METHODS AND STRATEGIES
1.1. INTRODUCTION TO UPGRADING CLUSTERS
1.2. UPGRADE STRATEGIES

1.2.1. In-place Upgrades
1.2.2. Blue-green Deployments

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES
2.1. ABOUT THIS UPGRADE

2.1.1. Defining Node Groups and Host Mappings
2.1.2. Updating Host Name Parameters

Node ConfigMaps
Node Group Definitions

2.1.3. Upgrade Workflow
2.2. PREPARING FOR AN AUTOMATED UPGRADE

2.2.1. Updating Policy Definitions
2.2.2. Upgrading the Control Plane and Nodes in Separate Phases
2.2.3. Customizing Node Upgrades
2.2.4. Customizing Upgrades With Ansible Hooks

2.2.4.1. Limitations
2.2.4.2. Using Hooks
2.2.4.3. Available Upgrade Hooks

2.3. UPGRADING TO THE LATEST OPENSHIFT CONTAINER PLATFORM 3.10 RELEASE
2.4. UPGRADING THE EFK LOGGING STACK
2.5. UPGRADING CLUSTER METRICS
2.6. SPECIAL CONSIDERATIONS FOR LARGE-SCALE UPGRADES
2.7. SPECIAL CONSIDERATIONS FOR MIXED ENVIRONMENTS
2.8. SPECIAL CONSIDERATIONS WHEN USING CONTAINERIZED GLUSTERFS
2.9. SPECIAL CONSIDERATIONS WHEN USING GCEPD
2.10. VERIFYING THE UPGRADE

CHAPTER 3. BLUE-GREEN DEPLOYMENTS
3.1. OVERVIEW
3.2. PREPARING FOR A BLUE-GREEN UPGRADE

3.2.1. Sharing Software Entitlements
3.2.2. Labeling Blue Nodes
3.2.3. Creating and Labeling Green Nodes
3.2.4. Verifying Green Nodes

3.3. PREPARING THE GREEN NODES
3.4. EVACUATING AND DECOMMISSIONING BLUE NODES

CHAPTER 4. UPDATING OPERATING SYSTEMS
4.1. UPDATING THE OPERATING SYSTEM ON A HOST

4.1.1. Upgrading Nodes Running OpenShift Container Storage

CHAPTER 5. DOWNGRADING OPENSHIFT
5.1. OVERVIEW
5.2. VERIFYING BACKUPS
5.3. SHUTTING DOWN THE CLUSTER
5.4. REMOVING RPMS AND STATIC PODS
5.5. DOWNGRADING DOCKER
5.6. REINSTALLING RPMS
5.7. RESTORING ETCD

4
4
4
4
4

5
5
5
5
5
6
7
8
11

12
13
14
14
14
15
16
17
18
18
19
19

20
20

22
22
23
23
23
24
25
26
27

28
28
28

30
30
30
30
31
31
31
32

Table of Contents

1

5.7.1. Restoring etcd v3 snapshot
Procedure

5.7.2. Restoring etcd on a static pod
5.7.3. Adding etcd nodes after restoring

Procedure
5.8. BRINGING OPENSHIFT CONTAINER PLATFORM SERVICES BACK ONLINE

Procedure
5.9. VERIFYING THE DOWNGRADE

32
32
33
34
34
35
35
36

OpenShift Container Platform 3.10 Upgrading Clusters

2

Table of Contents

3

CHAPTER 1. UPGRADE METHODS AND STRATEGIES

1.1. INTRODUCTION TO UPGRADING CLUSTERS

When new versions of OpenShift Container Platform are released, you can upgrade your existing cluster
to apply the latest enhancements and bug fixes. This includes upgrading from previous minor versions,
such as release 3.7 to 3.9, and applying asynchronous errata updates within a minor version (3.9.z
releases). See the OpenShift Container Platform 3.10 Release Notes to review the latest changes.

NOTE

Due to the core architectural changes between the major versions, OpenShift Enterprise
2 environments cannot be upgraded to OpenShift Container Platform 3 and require a
fresh installation.

The OpenShift Container Platform upgrade process uses Ansible playbooks to automate the tasks
needed to upgrade your cluster. You must use the inventory file that you used during initial installation
or during the last time that the upgrade was successful to run the upgrade playbook. Using this method
allows you to choose between either upgrade strategy: in-place upgrades or blue-green deployments.

Unless noted otherwise, node and masters within a major version are forward and backward compatible
across one minor version , so upgrading your cluster should go smoothly. However, you should not run
mismatched versions longer than necessary to upgrade the entire cluster.

Before upgrading, ensure that all OpenShift Container Platform services are running well. In the event
of a control plane upgrade failure, check the versions of your masters to ensure that all versions are the
same. If your masters are all the same version, re-run the upgrade. If they differ, downgrade the masters
to match the lower versioned master, then re-run the upgrade.

1.2. UPGRADE STRATEGIES

There are two strategies you can take for performing the OpenShift Container Platform cluster
upgrade: in-place upgrades or blue-green deployments.

1.2.1. In-place Upgrades

With in-place upgrades, the cluster upgrade is performed on all hosts in a single, running cluster: first
masters and then nodes. Pods are evacuated off of nodes and recreated on other running nodes before
a node upgrade begins; this helps reduce downtime of user applications.

1.2.2. Blue-green Deployments

The blue-green deployment upgrade method follows a similar flow to the in-place method: masters and
etcd servers are still upgraded first, however a parallel environment is created for new nodes instead of
upgrading them in-place.

This method allows administrators to switch traffic from the old set of nodes (e.g., the "blue"
deployment) to the new set (e.g., the "green" deployment) after the new deployment has been verified.
If a problem is detected, it is also then easy to rollback to the old deployment quickly.

OpenShift Container Platform 3.10 Upgrading Clusters

4

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/release_notes/#release-notes-ocp-3-10-release-notes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/release_notes/#release-notes-v2-vs-v3
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#configuring-ansible

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER
UPGRADES

2.1. ABOUT THIS UPGRADE

If you installed using the standard cluster installation process, and the inventory file that was used is
available, you can use upgrade playbooks to automate the OpenShift cluster upgrade process.

OpenShift Container Platform 3.10 involves significant changes to the architecture of the cluster, which
are discussed further in the OpenShift Container Platform 3.10 Release Notes . The following sections
detail how these notable technical changes affect the upgrade process from OpenShift Container
Platform 3.9.

IMPORTANT

Running Ansible playbooks with the --tags or --check options is not supported by Red
Hat.

2.1.1. Defining Node Groups and Host Mappings

Starting in OpenShift Container Platform 3.10, node configurations are now bootstrapped from the
master. When node services are started, the node checks if a kubeconfig and other node configuration
files exist before joining the cluster. If they do not, the node pulls the configuration from the master,
then joins the cluster.

This process replaces administrators having to manually maintain the node configuration uniquely on
each node host. Instead, the contents of a node host’s /etc/origin/node/node-config.yaml file are
now provided by ConfigMaps sourced from the master.

To map which ConfigMap to use for which node host, node groups must be defined and then set for
each host in the inventory file. These procedures are handled during the Preparing for an Automated
Upgrade section.

2.1.2. Updating Host Name Parameters

In OpenShift Container Platform version 3.10, the openshift_hostname parameter was removed. If you
used the openshift_hostname parameter in your inventory file in OpenShift Container Platform version
3.9, you must remove that parameter from your inventory file. Before you upgrade, you must set the
openshift_kubelet_name_override parameter to the openshift_hostname that you used in previous
versions.

IMPORTANT

You must not remove the openshift_kubelet_name_override parameter from your
inventory file after you upgrade.

Node ConfigMaps
The Configmaps for defining the node configurations must be available in the openshift-node project.
ConfigMaps are also now the authoritative definition for node labels; the old openshift_node_labels
value is effectively ignored.

The installer provides a playbook for creating the following default ConfigMaps:

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

5

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#instal-planning
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/release_notes/#ocp-310-notable-technical-changes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#node-bootstrapping

1

2

3

node-config-master

node-config-infra

node-config-compute

The following ConfigMaps are also created, which label nodes into multiple roles:

node-config-all-in-one

node-config-master-infra

IMPORTANT

Changes should not be made to a node host’s /etc/origin/node/node-config.yaml file.
They will be overwritten by the configuration defined in the ConfigMap used by the node.

Node Group Definitions
After updating the openshift-ansible package, you can view what the default set of node group
definitions looks like in YAML format in the /usr/share/ansible/openshift-
ansible/roles/openshift_facts/defaults/main.yml file:

openshift_node_groups:
 - name: node-config-master 1
 labels:
 - 'node-role.kubernetes.io/master=true' 2
 edits: [] 3
 - name: node-config-infra
 labels:
 - 'node-role.kubernetes.io/infra=true'
 edits: []
 - name: node-config-compute
 labels:
 - 'node-role.kubernetes.io/compute=true'
 edits: []
 - name: node-config-master-infra
 labels:
 - 'node-role.kubernetes.io/infra=true,node-role.kubernetes.io/master=true'
 edits: []
 - name: node-config-all-in-one
 labels:
 - 'node-role.kubernetes.io/infra=true,node-role.kubernetes.io/master=true,node-
role.kubernetes.io/compute=true'
 edits: []

Node group name.

List of node labels associated with the node group.

Any edits to the node group’s configuration.

If you do not set the openshift_node_groups variable in your inventory file’s [OSEv3:vars] group, the
defaults defined above will be used. However, if you want to deviate from these defaults, you must
define the entire openshift_node_groups structure (including all desired node groups) in your

OpenShift Container Platform 3.10 Upgrading Clusters

6

inventory file.

The openshift_node_groups value is not merged with the defaults, and the YAML definition must first
be translated into a Python dictionary. You can then use the edits field to modify any node
configuration variables as desired by specifying the key-value pairs.

NOTE

See Master and Node Configuration Files for reference on configurable node variables.

For example, the following entry in an inventory file defines groups named node-config-master, node-
config-infra, and node-config-compute, and edits the ConfigMap for node-config-compute to set
kubeletArguments.pods-per-core to 20:

openshift_node_groups=[{'name': 'node-config-master', 'labels': ['node-
role.kubernetes.io/master=true']}, {'name': 'node-config-infra', 'labels': ['node-
role.kubernetes.io/infra=true',]}, {'name': 'node-config-compute', 'labels': ['node-
role.kubernetes.io/compute=true'], 'edits': [{ 'key': 'kubeletArguments.pods-per-core','value': ['20']}]}]

Whenever the openshift_node_group.yml playbook is run, the changes defined in the edits field will
update the related ConfigMap (node-config-compute in this example), which will ultimately affect the
node’s configuration file on the host.

2.1.3. Upgrade Workflow

The 3.9 to 3.10 control plane upgrade performs the following steps for you:

A backup of all etcd data is taken for recovery purposes.

The API and controllers are updated from 3.9 to 3.10.

Internal data structures are updated to 3.10.

The default router, if one exists, is updated from 3.9 to 3.10.

The default registry, if one exists, is updated from 3.9 to 3.10.

The default image streams and InstantApp templates are updated.

The 3.9 to 3.10 node upgrade performs a rolling update of nodes, which:

Marks a subset of nodes unschedulable and drains them of pods.

Updates node components from 3.9 to 3.10.

Converts from local configuration to bootstrapped TLS and Config.

Converts SDN components from systemd services to DaemonSets.

Returns those nodes to service.

IMPORTANT

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

7

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#node-configuration-files

IMPORTANT

Ensure that you have met all prerequisites before proceeding with an upgrade.
Failure to do so can result in a failed upgrade.

If you are using GlusterFS, see Special Considerations When Using Containerized
GlusterFS before proceeding.

If you are using GCE Persistent Disk (gcePD), see Special Considerations When
Using gcePD before proceeding.

The day before the upgrade, validate OpenShift Container Platform storage
migration to ensure potential issues are resolved prior to the outage window:

$ oc adm migrate storage --include=* --loglevel=2 --confirm --config
/etc/origin/master/admin.kubeconfig

Automated upgrade playbooks are run via Ansible directly using the ansible-playbook command with
an inventory file, similar to the advanced installation method. The same v3_10 upgrade playbooks can be
used for either of the following scenarios:

Upgrading existing OpenShift Container Platform 3.9 clusters to 3.10

Upgrading existing OpenShift Container Platform 3.10 clusters to the latest asynchronous
errata updates

2.2. PREPARING FOR AN AUTOMATED UPGRADE

IMPORTANT

Before upgrading your cluster to OpenShift Container Platform 3.10, the cluster must be
already upgraded to the latest asynchronous release of version 3.9 . If your cluster is at a
version earlier than 3.9, you must first upgrade incrementally. For example, upgrade from
3.6 to 3.7, then 3.7 to 3.9 (the 3.8 version was skipped).

NOTE

Before attempting the upgrade, follow the guidance in Environment health checks to
verify the cluster’s health. This will confirm that nodes are in the Ready state, running the
expected starting version, and will ensure that there are no diagnostic errors or warnings.

If you are completing a large-scale upgrade, which involves at least 10 worker nodes and thousands of
projects and pods, review Special considerations for large-scale upgrades to prevent upgrade failures.

To prepare for an automated upgrade:

1. Pull the latest subscription data from RHSM:

subscription-manager refresh

2. If you are upgrading from OpenShift Container Platform 3.9 to 3.10:

a. Back up the following files that would be required should you later need to downgrade back
to OpenShift Container Platform 3.9:

i. On master hosts, back up the following files:

OpenShift Container Platform 3.10 Upgrading Clusters

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#install-config-install-prerequisites
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/release_notes/#ocp-310-asynchronous-errata-updates
https://docs.openshift.com/container-platform/3.9/release_notes/ocp_3_9_release_notes.html#ocp-37-asynchronous-errata-updates
https://docs.openshift.com/container-platform/3.9/release_notes/ocp_3_9_release_notes.html#ocp-39-about-this-release
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/day_two_operations_guide/#day-two-environment-health-checks

i. On master hosts, back up the following files:

/usr/lib/systemd/system/atomic-openshift-master-api.service
/usr/lib/systemd/system/atomic-openshift-master-controllers.service
/etc/sysconfig/atomic-openshift-master-api
/etc/sysconfig/atomic-openshift-master-controllers
/etc/origin/master/master-config.yaml
/etc/origin/master/scheduler.json

The systemd files are removed during the upgrade due to the changes to the control
plane static pod architecture.

ii. On node hosts (including masters, which have the node component on them), back up
the following files:

/usr/lib/systemd/system/atomic-openshift-*.service
/etc/origin/node/node-config.yaml

iii. On etcd hosts (including masters that have etcd co-located on them), back up the
following files:

/etc/etcd/etcd.conf

b. The upgrade process will create a backup of all etcd data for recovery purposes, but ensure
that you have a recent etcd backup at /backup/etcd-xxxxxx/backup.db before continuing.
Manual etcd backup steps are described in the Day Two Operations Guide .

NOTE

When you upgrade OpenShift Container Platform, your etcd configuration
does not change. Whether you run etcd as static pods on master hosts or as
a separate service on master hosts or separate hosts does not change after
you upgrade.

c. Manually disable the 3.9 repository and enable the 3.10 repository on each master and node
host. You must also enable the rhel-7-server-ansible-2.4-rpms repository, if it is not
already:

subscription-manager repos --disable="rhel-7-server-ose-3.9-rpms" \
 --enable="rhel-7-server-ose-3.10-rpms" \
 --enable="rhel-7-server-rpms" \
 --enable="rhel-7-server-extras-rpms" \
 --enable="rhel-7-server-ansible-2.4-rpms" \
yum clean all

d. Ensure that you have the latest version of the openshift-ansible package on the host you
run the upgrade playbooks on:

yum update -y openshift-ansible

NOTE

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

9

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/day_two_operations_guide/#etcd-backup_environment-backup

NOTE

In previous OpenShift Container Platform releases, the atomic-openshift-
utils package was installed for this step. However, starting with OpenShift
Container Platform 3.10, that package is removed, and the openshift-
ansible package provides all requirements.

e. If you do not set the openshift_node_groups variable in the inventory file’s [OSEv3:vars]
group, the default set of node groups and ConfigMaps will be created when the
openshift_node_group.yml playbook is run. If you want to deviate from the defaults, define
the entire node group set using a Python dictionary format as outlined in Defining Node
Groups and Host Mappings, specifying their name, labels, and any edits to modify the
ConfigMaps. For example:

[OSEv3:vars]

openshift_node_groups=[{'name': 'node-config-master', 'labels': ['node-
role.kubernetes.io/master=true']}, {'name': 'node-config-infra', 'labels': ['node-
role.kubernetes.io/infra=true',]}, {'name': 'node-config-compute', 'labels': ['node-
role.kubernetes.io/compute=true'], 'edits': [{ 'key': 'kubeletArguments.pods-per-
core','value': ['20']}]}]

f. In order to convert a OpenShift Container Platform 3.9 cluster to using the new node group
definitions and mappings, all hosts previously defined in the [nodes] inventory group must
be assigned an openshift_node_group_name. This value is used to select the ConfigMap
that configures each node.
For example:

[nodes]
master[1:3].example.com openshift_node_group_name='node-config-master'
infra-node1.example.com openshift_node_group_name='node-config-infra'
infra-node2.example.com openshift_node_group_name='node-config-infra'
node1.example.com openshift_node_group_name='node-config-compute'
node2.example.com openshift_node_group_name='node-config-compute'

In addition, remove the openshift_node_labels setting from any existing host entries
[nodes] group if they are set. Node labels should now be defined in the ConfigMap
associated with the host’s openshift_node_group_name instead.

g. The upgrade process will be blocked until you have the newly required ConfigMaps for
bootstrapping nodes in the openshift-node project. Run the following playbook to have
the defaults created (or if you defined the openshift_node_groups structure in the
previous step, your custom sets will be created):

ansible-playbook -i </path/to/inventory/file> \
 /usr/share/ansible/openshift-ansible/playbooks/openshift-
master/openshift_node_group.yml

h. Carefully verify that each ConfigMap has created and defined as expected. Get your list of
all ConfigMaps in the openshift-node project:

$ oc get configmaps -n openshift-node

Then use oc describe to inspect them individually:

OpenShift Container Platform 3.10 Upgrading Clusters

10

$ oc describe configmaps -n openshift-node <configmap_name>

3. If you have applied manual configuration changes to your master or node configuration files
since your last Ansible playbook run (whether that was initial installation or your most recent
cluster upgrade), and you have not yet made the equivalent changes to your inventory file,
review Configuring Your Inventory File. For any variables that are relevant to the manual
changes you made, apply the equivalent appropriate changes to your inventory files before
running the upgrade. Otherwise, your manual changes may be overwritten by default values
during the upgrade, which could cause pods to not run properly or other cluster stability issues.
Additionally, verify the following settings:

a. If you made any changes to admissionConfig settings in your master configuration files,
review the openshift_master_admission_plugin_config variable in Configuring Your
Inventory File. Failure to do so could cause pods to get stuck in Pending state if you had
ClusterResourceOverride settings manually configured previously (as described in
Configuring Masters for Overcommitment).

b. If you manually manage the cluster’s /etc/origin/master/htpasswd file, add
openshift_master_manage_htpasswd=false to your inventory file to prevent the upgrade
process from overwriting the htpasswd file.

After satisfying these steps, you can review the following sections for more information on how the
upgrade process works and make decisions on additional upgrade customization options if you so
choose. When you are prepared to run the upgrade, you can continue to Upgrading to the Latest
OpenShift Container Platform 3.10 Release.

2.2.1. Updating Policy Definitions

During a cluster upgrade, and on every restart of any master, the default cluster roles are automatically
reconciled to restore any missing permissions.

1. If you customized default cluster roles and want to ensure a role reconciliation does not modify
them, protect each role from reconciliation:

$ oc annotate clusterrole.rbac <role_name> --overwrite
rbac.authorization.kubernetes.io/autoupdate=false

WARNING

You must manually update the roles that contain this setting to include any
new or required permissions after upgrading.

2. Generate a default bootstrap policy template file:

$ oc adm create-bootstrap-policy-file --filename=policy.json

NOTE

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#configuring-ansible
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#configuring-ansible
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#configuring-masters-for-overcommitment
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#roles

NOTE

The contents of the file vary based on the OpenShift Container Platform version,
but the file contains only the default policies.

3. Update the policy.json file to include any cluster role customizations.

4. Use the policy file to automatically reconcile roles and role bindings that are not reconcile
protected:

$ oc auth reconcile -f policy.json

5. Reconcile security context constraints:

oc adm policy reconcile-sccs \
 --additive-only=true \
 --confirm

2.2.2. Upgrading the Control Plane and Nodes in Separate Phases

An OpenShift Container Platform cluster can be upgraded in one or more phases. You can choose
whether to upgrade all hosts in one phase by running a single Ansible playbook, or upgrade the control
plane (master components) and nodes in multiple phases using separate playbooks.

Instructions on the full upgrade process and when to call these playbooks are described in Upgrading to
the Latest OpenShift Container Platform 3.10 Release.

NOTE

If your OpenShift Container Platform cluster uses GlusterFS pods, you must perform the
upgrade in multiple phases. See Special Considerations When Using Containerized
GlusterFS for details on how to upgrade with GlusterFS.

When upgrading in separate phases, the control plane phase includes upgrading:

master components

node services running on masters

Docker or CRI-O running on masters

Docker or CRI-O running on any stand-alone etcd hosts

When upgrading only the nodes, the control plane must already be upgraded. The node phase includes
upgrading:

node services running on stand-alone nodes

Docker or CRI-O running on stand-alone nodes

NOTE

OpenShift Container Platform 3.10 Upgrading Clusters

12

NOTE

Nodes running master components are not included during the node upgrade phase,
even though they have node services and Docker running on them. Instead, they are
upgraded as part of the control plane upgrade phase. This ensures node services and
Docker on masters are not upgraded twice (once during the control plane phase and
again during the node phase).

2.2.3. Customizing Node Upgrades

Whether upgrading in a single or multiple phases, you can customize how the node portion of the
upgrade progresses by passing certain Ansible variables to an upgrade playbook using the -e option.

NOTE

Instructions on the full upgrade process and when to call these playbooks are described in
Upgrading to the Latest OpenShift Container Platform 3.10 Release .

The openshift_upgrade_nodes_serial variable can be set to an integer or percentage to control how
many node hosts are upgraded at the same time. The default is 1, upgrading nodes one at a time.

For example, to upgrade 20 percent of the total number of detected nodes at a time:

$ ansible-playbook -i <path/to/inventory/file> \
 </path/to/upgrade/playbook> \
 -e openshift_upgrade_nodes_serial="20%"

The openshift_upgrade_nodes_label variable allows you to specify that only nodes with a certain label
are upgraded. This can also be combined with the openshift_upgrade_nodes_serial variable.

For example, to only upgrade nodes in the group1 region, two at a time:

$ ansible-playbook -i <path/to/inventory/file> \
 </path/to/upgrade/playbook> \
 -e openshift_upgrade_nodes_serial="2" \
 -e openshift_upgrade_nodes_label="region=group1"

NOTE

See Managing Nodes for more on node labels.

The openshift_upgrade_nodes_max_fail_percentage variable allows you to specify how many nodes
may fail in each batch. The percentage of failure must exceed your value before the playbook aborts the
upgrade.

The openshift_upgrade_nodes_drain_timeout variable allows you to specify the length of time to wait
before giving up.

In this example, 10 nodes are upgraded at a time, the upgrade will abort if more than 20 percent of the
nodes fail, and there is a 600-second wait to drain the node:

$ ansible-playbook -i <path/to/inventory/file> \
 </path/to/upgrade/playbook> \

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#updating-labels-on-nodes

 -e openshift_upgrade_nodes_serial=10 \
 -e openshift_upgrade_nodes_max_fail_percentage=20 \
 -e openshift_upgrade_nodes_drain_timeout=600

2.2.4. Customizing Upgrades With Ansible Hooks

When upgrading OpenShift Container Platform, you can execute custom tasks during specific
operations through a system called hooks. Hooks allow cluster administrators to provide files defining
tasks to execute before and/or after specific areas during upgrades. This can be very helpful to validate
or modify custom infrastructure when upgrading OpenShift Container Platform.

It is important to remember that when a hook fails, the operation fails. This means a good hook can run
multiple times and provide the same results. A great hook is idempotent.

2.2.4.1. Limitations

Hooks have no defined or versioned interface. They can use internal openshift-ansible
variables, but there is no guarantee these will remain in future releases. In the future, hooks may
be versioned, giving you advance warning that your hook needs to be updated to work with the
latest openshift-ansible.

Hooks have no error handling, so an error in a hook will halt the upgrade process. The problem
will need to be addressed and the upgrade re-run.

2.2.4.2. Using Hooks

Hooks are defined in the hosts inventory file under the OSEv3:vars section.

Each hook must point to a YAML file which defines Ansible tasks. This file will be used as an include,
meaning that the file cannot be a playbook, but a set of tasks. Best practice suggests using absolute
paths to the hook file to avoid any ambiguity.

Example Hook Definitions in an Inventory File

[OSEv3:vars]
openshift_master_upgrade_pre_hook=/usr/share/custom/pre_master.yml
openshift_master_upgrade_hook=/usr/share/custom/master.yml
openshift_master_upgrade_post_hook=/usr/share/custom/post_master.yml

openshift_node_upgrade_pre_hook=/usr/share/custom/pre_node.yml
openshift_node_upgrade_hook=/usr/share/custom/node.yml
openshift_node_upgrade_post_hook=/usr/share/custom/post_node.yml

Example pre_master.yml Task

Trivial example forcing an operator to ack the start of an upgrade
file=/usr/share/custom/pre_master.yml

- name: note the start of a master upgrade
 debug:
 msg: "Master upgrade of {{ inventory_hostname }} is about to start"

OpenShift Container Platform 3.10 Upgrading Clusters

14

- name: require an operator agree to start an upgrade
 pause:
 prompt: "Hit enter to start the master upgrade"

2.2.4.3. Available Upgrade Hooks

Table 2.1. Master Upgrade Hooks

Hook Name Description

openshift_master_upgrade_pre_hook
Runs before each master is upgraded.

This hook runs against each master in serial.

If a task must run against a different host,
said task must use delegate_to or
local_action.

openshift_master_upgrade_hook
Runs after each master is upgraded, but
before its service or system restart.

This hook runs against each master in serial.

If a task must run against a different host,
said task must use delegate_to or
local_action.

openshift_master_upgrade_post_hook
Runs after each master is upgraded and has
had its service or system restart.

This hook runs against each master in serial.

If a task must run against a different host,
said task must use delegate_to or
local_action.

Table 2.2. Node Upgrade Hooks

Hook Name Description

openshift_node_upgrade_pre_hook
Runs before each node is upgraded.

This hook runs against each node in serial.

If a task must run against a different host,
said task must use delegate_to or
local_action.

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

15

http://docs.ansible.com/ansible/playbooks_delegation.html#delegation
http://docs.ansible.com/ansible/playbooks_delegation.html#delegation
http://docs.ansible.com/ansible/playbooks_delegation.html#delegation
http://docs.ansible.com/ansible/playbooks_delegation.html#delegation

openshift_node_upgrade_hook
Runs after each node is upgraded, but
before it’s marked schedulable again.

This hook runs against each node in serial.

If a task must run against a different host,
said task must use delegate_to or
local_action.

openshift_node_upgrade_post_hook
Runs after each node is upgraded; it’s the
last node upgrade action.

This hook runs against each node in serial.

If a task must run against a different host,
said task must use delegate_to or
local_action.

Hook Name Description

2.3. UPGRADING TO THE LATEST OPENSHIFT CONTAINER
PLATFORM 3.10 RELEASE

To upgrade an existing OpenShift Container Platform 3.9 or 3.10 cluster to the latest 3.10 release:

1. Satisfy the steps in Preparing for an Automated Upgrade to ensure you are using the latest
upgrade playbooks.

2. Ensure the openshift_deployment_type parameter in your inventory file is set to openshift-
enterprise.

3. If you want to enable rolling, full system restarts of the hosts, you can set the
openshift_rolling_restart_mode parameter in your inventory file to system. Otherwise, the
default value services performs rolling service restarts on HA masters, but does not reboot the
systems. See Configuring Cluster Variables for details.

4. At this point, you can choose to run the upgrade in a single or multiple phases. See Upgrading
the Control Plane and Nodes in Separate Phases for more details which components are
upgraded in each phase.
If your inventory file is located somewhere other than the default /etc/ansible/hosts, add the -i
flag to specify its location. If you previously used the atomic-openshift-installer command to
run your installation, you can check ~/.config/openshift/hosts for the last inventory file that
was used, if needed.

Option A) Upgrade control plane and nodes in a single phase.
Run the upgrade.yml playbook to upgrade the cluster in a single phase using one playbook;
the control plane is still upgraded first, then nodes in-place:

ansible-playbook -i </path/to/inventory/file> \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/upgrades/v3_10/upgrade.yml

Option B) Upgrade the control plane and nodes in separate phases.

OpenShift Container Platform 3.10 Upgrading Clusters

16

http://docs.ansible.com/ansible/playbooks_delegation.html#delegation
http://docs.ansible.com/ansible/playbooks_delegation.html#delegation
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#configuring-cluster-variables

1

1

a. To upgrade only the control plane, run the upgrade_control_plane.yaml playbook:

ansible-playbook -i </path/to/inventory/file> \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/upgrades/v3_10/upgrade_control_plane.yml

b. To upgrade only the nodes, run the upgrade_nodes.yaml playbook:

ansible-playbook -i </path/to/inventory/file> \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/upgrades/v3_10/upgrade_nodes.yml \
 [-e <customized_node_upgrade_variables>] 1

See Customizing Node Upgrades for any desired
<customized_node_upgrade_variables>.

If you are upgrading the nodes in groups as described in Customizing Node Upgrades,
continue invoking the upgrade_nodes.yml playbook until all nodes have been
successfully upgraded.

5. After all master and node upgrades have completed, reboot all hosts. After rebooting, if there
are no additional features enabled, you can verify the upgrade. Otherwise, the next step
depends on what additional features you have previously enabled.

Feature Next Step

Aggregated
Logging

Upgrade the EFK logging stack.

Cluster Metrics Upgrade cluster metrics.

2.4. UPGRADING THE EFK LOGGING STACK

To upgrade an existing EFK logging stack deployment, you must use the provided
/usr/share/ansible/openshift-ansible/playbooks/openshift-logging/config.yml Ansible playbook.
This is the playbook to use if you were deploying logging for the first time on an existing cluster, but is
also used to upgrade existing logging deployments.

1. If you have not already done so, see Specifying Logging Ansible Variables in the Aggregating
Container Logs topic and update your Ansible inventory file to at least set the following
required variable within the [OSEv3:vars] section:

[OSEv3:vars]

openshift_logging_install_logging=true 1

Enables the ability to upgrade the logging stack.

2. Add any other openshift_logging_* variables that you want to specify to override the defaults,
as described in Specifying Logging Ansible Variables .

3. When you have finished updating your inventory file, follow the instructions in Deploying the

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#aggregate-logging-ansible-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-aggregate-logging
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#aggregate-logging-ansible-variables

1

2

3

3. When you have finished updating your inventory file, follow the instructions in Deploying the
EFK Stack to run the openshift-logging/config.yml playbook and complete the logging
deployment upgrade.

NOTE

If your Fluentd DeploymentConfig and DaemonSet for the EFK components are already
set with:

 image: <image_name>:<vX.Y>
 imagePullPolicy: IfNotPresent

The latest version <image_name> might not be pulled if there is already one with the
same <image_name:vX.Y> stored locally on the node where the pod is being re-
deployed. If so, manually change the DeploymentConfig and DaemonSet to
imagePullPolicy: Always to make sure it is re-pulled.

2.5. UPGRADING CLUSTER METRICS

To upgrade an existing cluster metrics deployment, you must use the provided
/usr/share/ansible/openshift-ansible/playbooks/openshift-metrics/config.yml Ansible playbook.
This is the playbook to use if you were deploying metrics for the first time on an existing cluster, but is
also used to upgrade existing metrics deployments.

1. If you have not already done so, see Specifying Metrics Ansible Variables in the Enabling Cluster
Metrics topic and update your Ansible inventory file to at least set the following required
variables within the [OSEv3:vars] section:

[OSEv3:vars]

openshift_metrics_install_metrics=true 1
openshift_metrics_hawkular_hostname=<fqdn> 2
openshift_metrics_cassandra_storage_type=(emptydir|pv|dynamic) 3

Enables the ability to upgrade the metrics deployment.

Used for the Hawkular Metrics route. Specify a fully qualified domain name.

Choose the same type as the previous deployment.

2. Add any other openshift_metrics_* variables that you want to specify to override the defaults,
as described in Specifying Metrics Ansible Variables .

3. When you have finished updating your inventory file, follow the instructions in Deploying the
Metrics Deployment to run the openshift-metrics/config.yml playbook and complete the
metrics deployment upgrade.

2.6. SPECIAL CONSIDERATIONS FOR LARGE-SCALE UPGRADES

For large-scale cluster upgrades, which involve at least 10 worker nodes and thousands of projects and
pods, the API object storage migration should be performed prior to running the upgrade playbooks,
and then again after the upgrade has successfully completed. Otherwise, the upgrade process will fail.

Refer to the Running the pre- and post- API server model object migration outside of the upgrade

OpenShift Container Platform 3.10 Upgrading Clusters

18

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#deploying-the-efk-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#metrics-ansible-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-cluster-metrics
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#metrics-ansible-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#deploying-the-metrics-components

Refer to the Running the pre- and post- API server model object migration outside of the upgrade
window section of the Recommendations for large-scale OpenShift upgrades for further guidance.

2.7. SPECIAL CONSIDERATIONS FOR MIXED ENVIRONMENTS

If your OpenShift Container Platform cluster uses a mixed environment or gcePD storage, you need to
take more steps before you upgrade it.

Before you upgrade a mixed environment, such as one with Red Hat Enterprise Linux (RHEL) and RHEL
Atomic Host, set values in the inventory file for both the openshift_pkg_version and
openshift_image_tag parameters. Setting these values ensures that all nodes in your cluster run the
same version of OpenShift Container Platform. While this is a best practice for major updates, such as
from OpenShift Container Platform 2 to OpenShift Container Platform 3, setting these values are
mandatory for minor version upgrades.

For example, to upgrade from OpenShift Container Platform 3.9 to OpenShift Container Platform 3.10,
set the following parameters and values:

openshift_pkg_version=-3.10.16
openshift_image_tag=v3.10.16

NOTE

These parameters can also be present in other, non-mixed, environments.

2.8. SPECIAL CONSIDERATIONS WHEN USING CONTAINERIZED
GLUSTERFS

When upgrading OpenShift Container Platform, you must upgrade the set of nodes where GlusterFS
pods are running.

Special consideration must be taken when upgrading these nodes, as drain and unschedule will not
terminate and evacuate the GlusterFS pods because they are running as part of a daemonset.

There is also the potential for someone to run an upgrade on multiple nodes at the same time, which
would lead to data availability issues if more than one was hosting GlusterFS pods.

Even if a serial upgrade is running, there is no guarantee sufficient time will be given for GlusterFS to
complete all of its healing operations before GlusterFS on the next node is terminated. This could leave
the cluster in a bad or unknown state. Therefore, the following procedure is recommended.

1. Upgrade the control plane (the master nodes and etcd nodes).

2. Upgrade standard infra nodes (router, registry, logging, and metrics).

NOTE

If any of the nodes in those groups are running GlusterFS, perform step 4 of this
procedure at the same time. GlusterFS nodes must be upgraded along with
other nodes in their class (app versus infra), one at a time.

3. Upgrade standard nodes running application containers.

NOTE

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

19

https://access.redhat.com/articles/3208381

NOTE

If any of the nodes in those groups are running GlusterFS, perform step 4 of this
procedure at the same time. GlusterFS nodes must be upgraded along with
other nodes in their class (app versus infra), one at a time.

4. Upgrade the OpenShift Container Platform nodes running GlusterFS one at a time.

a. Add a label to the node you want to upgrade:

$ oc label node <node_name> type=upgrade

b. To run the upgrade playbook on a single node, use -e
openshift_upgrade_nodes_label="type=upgrade".

c. Wait for the GlusterFS pod to respawn and appear.

d. oc rsh into the pod and verify all volumes are healed:

$ oc rsh <GlusterFS_pod_name>
$ for vol in `gluster volume list`; do gluster volume heal $vol info; done

Ensure all of the volumes are healed and there are no outstanding tasks. The heal info
command lists all pending entries for a given volume’s heal process. A volume is considered
healed when Number of entries for that volume is 0.

e. Remove the upgrade label and go to the next GlusterFS node.

$ oc label node <node_name> type-

2.9. SPECIAL CONSIDERATIONS WHEN USING GCEPD

Because the default gcePD storage provider uses an RWO (Read-Write Only) access mode, you cannot
perform a rolling upgrade on the registry or scale the registry to multiple pods. Therefore, when
upgrading OpenShift Container Platform, you must specify the following environment variables in your
Ansible inventory file:

[OSEv3:vars]

openshift_hosted_registry_storage_provider=gcs
openshift_hosted_registry_storage_gcs_bucket=bucket01
openshift_hosted_registry_storage_gcs_keyfile=test.key
openshift_hosted_registry_storage_gcs_rootdirectory=/registry

2.10. VERIFYING THE UPGRADE

Ensure that the:

cluster is healthy,

master, node, and etcd services or static pods are running well,

the OpenShift Container Platform, docker-registry, and router versions are correct,

OpenShift Container Platform 3.10 Upgrading Clusters

20

the original applications are still available and the new application can be created, and

running oc adm diagnostics produces no errors.

To verify the upgrade:

1. Check that all nodes are marked as Ready:

oc get nodes
NAME STATUS ROLES AGE VERSION
master1.example.com Ready master 47d v1.10.0+b81c8f8
master2.example.com Ready master 47d v1.10.0+b81c8f8
master3.example.com Ready master 47d v1.10.0+b81c8f8
infra-node1.example.com Ready infra 47d v1.10.0+b81c8f8
infra-node2.example.com Ready infra 47d v1.10.0+b81c8f8
node1.example.com Ready compute 47d v1.10.0+b81c8f8
node2.example.com Ready compute 47d v1.10.0+b81c8f8

2. Verify the static pods for the control plane are running:

oc get pods -n kube-system
NAME READY STATUS RESTARTS AGE
master-api-master1.example.com 1/1 Running 4 1h
master-controllers-master1.example.com 1/1 Running 3 1h
master-etcd-master1.example.com 1/1 Running 6 5d
[...]

3. Verify that you are running the expected versions of the docker-registry and router images, if
deployed.

oc get -n default dc/docker-registry -o json | grep \"image\"
 "image": "openshift3/ose-docker-registry:v3.10",
oc get -n default dc/router -o json | grep \"image\"
 "image": "openshift3/ose-haproxy-router:v3.10",

4. Use the diagnostics tool on the master to look for common issues:

oc adm diagnostics
...
[Note] Summary of diagnostics execution:
[Note] Completed with no errors or warnings seen.

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

21

CHAPTER 3. BLUE-GREEN DEPLOYMENTS

3.1. OVERVIEW

NOTE

This topic serves as an alternative approach for node host upgrades to the in-place
upgrade method.

The blue-green deployment upgrade method follows a similar flow to the in-place method: masters and
etcd servers are still upgraded first, however a parallel environment is created for new node hosts
instead of upgrading them in-place.

This method allows administrators to switch traffic from the old set of node hosts (e.g., the blue
deployment) to the new set (e.g., the green deployment) after the new deployment has been verified. If
a problem is detected, it is also then easy to rollback to the old deployment quickly.

While blue-green is a proven and valid strategy for deploying just about any software, there are always
trade-offs. Not all environments have the same uptime requirements or the resources to properly
perform blue-green deployments.

In an OpenShift Container Platform environment, the most suitable candidate for blue-green
deployments are the node hosts. All user processes run on these systems and even critical pieces of
OpenShift Container Platform infrastructure are self-hosted on these resources. Uptime is most
important for these workloads and the additional complexity of blue-green deployments can be
justified.

The exact implementation of this approach varies based on your requirements. Often the main
challenge is having the excess capacity to facilitate such an approach.

Figure 3.1. Blue-Green Deployment

OpenShift Container Platform 3.10 Upgrading Clusters

22

Figure 3.1. Blue-Green Deployment

3.2. PREPARING FOR A BLUE-GREEN UPGRADE

After you have upgraded your master and etcd hosts using method described for In-place Upgrades, use
the following sections to prepare your environment for a blue-green upgrade of the remaining node
hosts.

3.2.1. Sharing Software Entitlements

Administrators must temporarily share the Red Hat software entitlements between the blue-green
deployments or provide access to the installation content by means of a system such as Red Hat
Satellite. This can be accomplished by sharing the consumer ID from the previous node host:

1. On each old node host that will be upgraded, note its system identity value, which is the
consumer ID:

subscription-manager identity | grep system
system identity: 6699375b-06db-48c4-941e-689efd6ce3aa

2. On each new RHEL 7 or RHEL Atomic Host 7 system that will replace an old node host, register
using the respective consumer ID from the previous step:

subscription-manager register --consumerid=6699375b-06db-48c4-941e-689efd6ce3aa

3.2.2. Labeling Blue Nodes

You must ensure that your current node hosts in production are labeled either blue or green. In this
example, the current production environment is blue, and the new environment is green.

CHAPTER 3. BLUE-GREEN DEPLOYMENTS

23

1. Get the current list of node names known to the cluster:

$ oc get nodes

2. Label all non-master node hosts (compute nodes) and dedicated infrastructure nodes in your
current production environment with color=blue:

$ oc label node --selector=node-role.kubernetes.io/compute=true color=blue

$ oc label node --selector=node-role.kubernetes.io/infra=true color=blue

In the previous command, the --selector flag is used to match a subset of the cluster using the
relevant node labels, and all matches are labeled with color=blue.

3.2.3. Creating and Labeling Green Nodes

Create the green environment by adding an equal number of new node hosts to the existing cluster:

1. Add the new node hosts using the procedure as described in Adding Hosts to an Existing
Cluster. When updating your inventory file with the [new_nodes] group in that procedure,
ensure these variables are set:

In order to delay workload scheduling until the nodes are deemed healthy, which you verify
in later steps, set the openshift_schedulable=false variable for each new node host to
ensure they are unschedulable initially.

Because the new hosts run OpenShift Container Platform version 3.10, they must now use
the openshift_node_group_name variable to set a node group per host entry. See
Defining Node Groups and Host Mappings for details.

The new node host group resembles the following example:

Example [new_nodes] Host Group

[new_nodes]
node4.example.com openshift_node_group_name='node-config-compute'
openshift_schedulable=false
node5.example.com openshift_node_group_name='node-config-compute'
openshift_schedulable=false
node6.example.com openshift_node_group_name='node-config-compute'
openshift_schedulable=false
infra-node3.example.com openshift_node_group_name='node-config-infra'
openshift_schedulable=false
infra-node4.example.com openshift_node_group_name='node-config-infra'
openshift_schedulable=false

NOTE

Do not remove or modify your existing node groups.

2. After the new nodes deploy, apply the color=green label to each new node:

$ oc label node <node_name> color=green

OpenShift Container Platform 3.10 Upgrading Clusters

24

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#adding-cluster-hosts_adding-hosts-to-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#node

3.2.4. Verifying Green Nodes

Verify that your new green nodes are in a healthy state:

1. Verify that new nodes are detected in the cluster and are in Ready,SchedulingDisabled state:

$ oc get nodes

NAME STATUS ROLES AGE
node4.example.com Ready,SchedulingDisabled compute 1d

2. Verify that the green nodes have proper labels:

$ oc get nodes --show-labels

NAME STATUS ROLES AGE LABELS
node4.example.com Ready,SchedulingDisabled compute 1d
beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,color=green,kubernetes.io/hostna
me=m01.example.com,node-role.kubernetes.io/compute=true

3. Perform a diagnostic check for the cluster:

$ oc adm diagnostics

[Note] Determining if client configuration exists for client/cluster diagnostics
Info: Successfully read a client config file at '/root/.kube/config'
Info: Using context for cluster-admin access: 'default/m01-example-com:8443/system:admin'
[Note] Performing systemd discovery

[Note] Running diagnostic: ConfigContexts[default/m01-example-com:8443/system:admin]
 Description: Validate client config context is complete and has connectivity
...
 [Note] Running diagnostic: CheckExternalNetwork
 Description: Check that external network is accessible within a pod

 [Note] Running diagnostic: CheckNodeNetwork
 Description: Check that pods in the cluster can access its own node.

 [Note] Running diagnostic: CheckPodNetwork
 Description: Check pod to pod communication in the cluster. In case of ovs-subnet
network plugin, all pods
should be able to communicate with each other and in case of multitenant network plugin,
pods in non-global projects
should be isolated and pods in global projects should be able to access any pod in the cluster
and vice versa.

 [Note] Running diagnostic: CheckServiceNetwork
 Description: Check pod to service communication in the cluster. In case of ovs-
subnet network plugin, all
pods should be able to communicate with all services and in case of multitenant network
plugin, services in non-global
projects should be isolated and pods in global projects should be able to access any service
in the cluster.
...

CHAPTER 3. BLUE-GREEN DEPLOYMENTS

25

3.3. PREPARING THE GREEN NODES

To migrate pods from the blue environment to the green, you must pull the required container images.

Network latency and load on the registry can cause delays if the environment does not have sufficient
capacity. You can minimize impact to the running system by importing new image streams to trigger
new pod deployments to the new nodes.

Major releases of OpenShift Container Platform, and sometimes asynchronous errata updates,
introduce new image streams for builder images for users of Source-to-Image (S2I). Upon import, any
builds or deployments configured with image change triggers are automatically created.

Another benefit of triggering the builds is that it fetches the majority of the ancillary images to all node
hosts, such as the various builder images, the pod infrastructure image, and deployers. The green nodes
are then prepared for the expected load increase, and the remaining images more quickly migrated
during node evacuation.

When you are ready to continue with the upgrade process, follow these steps to warm the green nodes:

1. Set the green nodes to schedulable so that new pods are deployed to them:

$ oc adm manage-node --schedulable=true --selector=color=green

2. Set the blue nodes to unschedulable so that no new pods run on them:

$ oc adm manage-node --schedulable=false --selector=color=blue

3. Update the node selectors for the registry and router deployment configurations to use the
node-role.kubernetes.io/infra=true label. This change starts new deployments that place the
registry and router pods on your new infrastructure nodes.

a. Edit the docker-registry deployment configuration:

$ oc edit -n default dc/docker-registry

b. Update the nodeSelector parameter to use the following value, with "true" in quotation
marks, and save your changes:

 nodeSelector:
 node-role.kubernetes.io/infra: "true"

c. Edit the router deployment configuration:

$ oc edit -n default dc/router

d. Update the nodeSelector parameter to use the following value, with "true" in quotation
marks, and save your changes:

 nodeSelector:
 node-role.kubernetes.io/infra: "true"

e. Verify that the docker-registry and router pods are running and in ready state on the new
infrastructure nodes:

OpenShift Container Platform 3.10 Upgrading Clusters

26

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#image-change-triggers

$ oc get pods -n default -o wide

NAME READY STATUS RESTARTS AGE IP NODE
docker-registry-2-b7xbn 1/1 Running 0 18m 10.128.0.188 infra-
node3.example.com
router-2-mvq6p 1/1 Running 0 6m 192.168.122.184 infra-
node4.example.com

4. Update the default image streams and templates.

5. Import the latest images. This process can trigger a large number of builds, but the builds are
performed on the green nodes and, therefore, do not impact any traffic on the blue
deployment.

6. To monitor build progress across all namespaces (projects) in the cluster:

$ oc get events -w --all-namespaces

In large environments, builds rarely completely stop. However, you should see a large increase
and decrease caused by the administrative image import.

3.4. EVACUATING AND DECOMMISSIONING BLUE NODES

For larger deployments, it is possible to have other labels that help determine how evacuation can be
coordinated. The most conservative approach for avoiding downtime is to evacuate one node host at a
time.

If services are composed of pods using zone anti-affinity, you can evacuate an entire zone at one time.
You must ensure that the storage volumes used are available in the new zone. Follow the directions in
your cloud provider’s documentation.

In OpenShift Container Platform 3.2 and later, a node host evacuation is triggered whenever the node
service is stopped. Node labeling is very important and can cause issues if nodes are mislabled or
commands are run on nodes with generalized labels. Exercise caution if master hosts are also labeled
with color=blue.

When you are ready to continue with the upgrade process, follow these steps.

1. Evacuate and delete all blue nodes with the following commands:

$ oc adm manage-node --selector=color=blue --evacuate
$ oc delete node --selector=color=blue

2. After the blue node hosts no longer contain pods and have been removed from OpenShift
Container Platform, they are safe to power off. As a safety precaution, confirm that there are no
issues with the upgrade before you power off the hosts.

a. Unregister each old host:

subscription-manager clean

b. Back up any useful scripts or required files that are stored on the hosts.

c. After you are comfortable that the upgrade succeeded, remove these hosts.

CHAPTER 3. BLUE-GREEN DEPLOYMENTS

27

CHAPTER 4. UPDATING OPERATING SYSTEMS
Updating the operating system (OS) on a host, by either upgrading across major releases or updating
the system software for a minor release, can impact the OpenShift Container Platform software running
on those machines. In particular, these updates can affect the iptables rules or ovs flows that OpenShift
Container Platform requires to operate.

4.1. UPDATING THE OPERATING SYSTEM ON A HOST

To safely upgrade the OS on a host:

1. Drain the node in preparation for maintenance:

$ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets

2. In order to protect sensitive packages that do not need to be updated, apply the exclude rules
to the host:

atomic-openshift-docker-excluder exclude
atomic-openshift-excluder exclude

3. Update the host packages and reboot the host. A reboot ensures that the host is running the
newest versions and means that the docker and OpenShift Container Platform processes have
been restarted, which forces them to check that all of the rules in other services are correct.

 # yum update
 # reboot

However, instead of rebooting a node host, you can restart the services that are affected or
preserve the iptables state. Both processes are described in the OpenShift Container Platform
iptables topic. The ovs flow rules do not need to be saved, but restarting the OpenShift
Container Platform node software fixes the flow rules.

4. Configure the host to be schedulable again:

$ oc adm uncordon <node_name>

4.1.1. Upgrading Nodes Running OpenShift Container Storage

If using OpenShift Container Storage, upgrade the OpenShift Container Platform nodes running
OpenShift Container Storage one at a time.

1. Run oc get daemonset -n <project_name> to verify the label found under NODE-SELECTOR.
The default value is glusterfs=storage-host. To determine what the pod is, run oc get pods -n
<project_name> --selectors=glusterfs=.

2. Remove the daemonset label from the node:

$ oc label node <node_name> <daemonset_label> -n <project_name>

This will cause the OpenShift Container Storage pod to terminate on that node. To overwrite
the existing label, use the --overwrite flag.

3. To run the upgrade playbook on the single node where you terminated OpenShift Container

OpenShift Container Platform 3.10 Upgrading Clusters

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#admin-guide-iptables

3. To run the upgrade playbook on the single node where you terminated OpenShift Container
Storage , use -e openshift_upgrade_nodes_label="type=upgrade".

4. When the upgrade completes, relabel the node with the daemonset label:

$ oc label node <node_name> <daemonset_label> -n <project_name>

5. Wait for the OpenShift Container Storage pod to respawn and appear.

6. oc rsh into the gluster pod to check the volume heal:

$ oc rsh <pod_name>
$ for vol in `gluster volume list`; do gluster volume heal $vol info; done
$ exit

Ensure all of the volumes are healed and there are no outstanding tasks. The heal info
command lists all pending entries for a given volume’s heal process. A volume is considered
healed when Number of entries for that volume is 0. Use gluster volume status
<volume_name> for additional details about the volume. The Online state should be marked Y
for all bricks.

CHAPTER 4. UPDATING OPERATING SYSTEMS

29

CHAPTER 5. DOWNGRADING OPENSHIFT

5.1. OVERVIEW

Following an OpenShift Container Platform upgrade, it may be desirable in extreme cases to downgrade
your cluster to a previous version. The following sections outline the required steps for each system in a
cluster to perform such a downgrade for the OpenShift Container Platform 3.10 to 3.9 downgrade path.

IMPORTANT

These steps are currently only supported for RPM-based installations of OpenShift
Container Platform and assumes downtime of the entire cluster.

5.2. VERIFYING BACKUPS

1. The Ansible playbook used during the upgrade process should have created a backup of the
master-config.yaml file. Ensure this and the scheduler.json file exist on your masters:

/etc/origin/master/master-config.yaml.<timestamp>
/etc/origin/master/scheduler.json

2. The procedure in Preparing for an Automated Upgrade instructed you to back up the following
files before proceeding with an upgrade from OpenShift Container Platform 3.9 to 3.10; ensure
that you still have these files available.
On master hosts:

/usr/lib/systemd/system/atomic-openshift-master-api.service
/usr/lib/systemd/system/atomic-openshift-master-controllers.service
/etc/sysconfig/atomic-openshift-master-api
/etc/sysconfig/atomic-openshift-master-controllers

On node and master hosts:

/usr/lib/systemd/system/atomic-openshift-*.service
/etc/origin/node/node-config.yaml

On etcd hosts, including masters that have etcd co-located on them:

/etc/etcd/etcd.conf
/backup/etcd-xxxxxx/backup.db

5.3. SHUTTING DOWN THE CLUSTER

1. On all master and node hosts, stop the master and node services by removing the pod
definition and rebooting the host:

mkdir -p /etc/origin/node/pods-stopped
mv /etc/origin/node/pods/* /etc/origin/node/pods-stopped/
reboot

OpenShift Container Platform 3.10 Upgrading Clusters

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#planning-installation-types

5.4. REMOVING RPMS AND STATIC PODS

The *-excluder packages add entries to the exclude directive in the host’s /etc/yum.conf file when
installed.

1. On all masters, nodes, and etcd members (if using a dedicated etcd cluster), remove the
following packages:

yum remove atomic-openshift \
 atomic-openshift-clients \
 atomic-openshift-node \
 atomic-openshift-master \
 atomic-openshift-sdn-ovs \
 atomic-openshift-excluder \
 atomic-openshift-docker-excluder \
 atomic-openshift-hyperkube

2. Verify the packages were removed successfully:

rpm -qa | grep atomic-openshift

3. On control plane hosts (master and etcd hosts), move the static pod definitions:

mkdir /etc/origin/node/pods-backup
mv /etc/origin/node/pods/* /etc/origin/node/pods-backup/

4. Reboot each host:

reboot

5.5. DOWNGRADING DOCKER

Both OpenShift Container Platform 3.9 and 3.10 require Docker 1.13, so Docker does not need to be
downgraded.

5.6. REINSTALLING RPMS

1. Disable the OpenShift Container Platform 3.10 repositories, and re-enable the 3.9 repositories:

subscription-manager repos \
 --disable=rhel-7-server-ose-3.10-rpms \
 --enable=rhel-7-server-ose-3.9-rpms

2. On each master, install the following packages:

yum install atomic-openshift \
 atomic-openshift-clients \
 atomic-openshift-node \
 atomic-openshift-master \
 openvswitch \
 atomic-openshift-sdn-ovs \

CHAPTER 5. DOWNGRADING OPENSHIFT

31

 tuned-profiles-atomic-openshift-node \
 atomic-openshift-excluder \
 atomic-openshift-docker-excluder

3. On each node, install the following packages:

yum install atomic-openshift \
 atomic-openshift-node \
 openvswitch \
 atomic-openshift-sdn-ovs \
 tuned-profiles-atomic-openshift-node \
 atomic-openshift-excluder \
 atomic-openshift-docker-excluder

4. On each host, verify the packages were installed successfully:

rpm -qa | grep atomic-openshift
rpm -q openvswitch

5.7. RESTORING ETCD

The restore procedure for etcd configuration files replaces the appropriate files, then restarts the
service or static pod.

If an etcd host has become corrupted and the /etc/etcd/etcd.conf file is lost, restore it using:

$ ssh master-0
cp /backup/yesterday/master-0-files/etcd.conf /etc/etcd/etcd.conf
restorecon -Rv /etc/etcd/etcd.conf

In this example, the backup file is stored in the /backup/yesterday/master-0-files/etcd.conf path where
it can be used as an external NFS share, S3 bucket, or other storage solution.

NOTE

If you run etcd as a static pod, follow only the steps in that section. If you run etcd as a
separate service on either master or standalone nodes, follow the steps to restore v2 or
v3 data as required.

5.7.1. Restoring etcd v3 snapshot

Snapshot integrity may be optionally verified at restore time. If the snapshot is taken with etcdctl
snapshot save, it will have an integrity hash that is checked by etcdctl snapshot restore. If the
snapshot is copied from the data directory, there is no integrity hash and it will only restore by using --
skip-hash-check.

IMPORTANT

The procedure to restore the data must be performed on a single etcd host. You can then
add the rest of the nodes to the cluster.

Procedure

1. Unmask the etcd service:

OpenShift Container Platform 3.10 Upgrading Clusters

32

1. Unmask the etcd service:

systemctl unmask etcd

2. Stop all etcd services by removing the etcd pod definition and rebooting the host:

mkdir -p /etc/origin/node/pods-stopped
mv /etc/origin/node/pods/* /etc/origin/node/pods-stopped/
reboot

3. Clear all old data, because etcdctl recreates it in the node where the restore procedure is going
to be performed:

rm -Rf /var/lib/etcd

4. Run the snapshot restore command, substituting the values from the /etc/etcd/etcd.conf file:

etcdctl3 snapshot restore /backup/etcd-xxxxxx/backup.db \
 --data-dir /var/lib/etcd \
 --name master-0.example.com \
 --initial-cluster "master-0.example.com=https://192.168.55.8:2380" \
 --initial-cluster-token "etcd-cluster-1" \
 --initial-advertise-peer-urls https://192.168.55.8:2380 \
 --skip-hash-check=true

2017-10-03 08:55:32.440779 I | mvcc: restore compact to 1041269
2017-10-03 08:55:32.468244 I | etcdserver/membership: added member 40bef1f6c79b3163
[https://192.168.55.8:2380] to cluster 26841ebcf610583c

5. Restore permissions and selinux context to the restored files:

restorecon -Rv /var/lib/etcd

6. Start the etcd service:

systemctl start etcd

7. Check for any error messages:

journalctl -fu etcd.service

5.7.2. Restoring etcd on a static pod

Before restoring etcd on a static pod:

etcdctl binaries must be available or, in containerized installations, the rhel7/etcd container
must be available.
You can obtain etcd by running the following commands:

$ git clone https://github.com/coreos/etcd.git
$ cd etcd
$./build

CHAPTER 5. DOWNGRADING OPENSHIFT

33

To restore etcd on a static pod:

1. If the pod is running, stop the etcd pod by moving the pod manifest YAML file to another
directory:

$ mv /etc/origin/node/pods/etcd.yaml .

2. Clear all old data:

$ rm -rf /var/lib/etcd

You use the etcdctl to recreate the data in the node where you restore the pod.

3. Restore the etcd snapshot to the mount path for the etcd pod:

$ export ETCDCTL_API=3
$ etcdctl snapshot restore /etc/etcd/backup/etcd/snapshot.db
 --data-dir /var/lib/etcd/
 --name ip-172-18-3-48.ec2.internal
 --initial-cluster "ip-172-18-3-48.ec2.internal=https://172.18.3.48:2380"
 --initial-cluster-token "etcd-cluster-1"
 --initial-advertise-peer-urls https://172.18.3.48:2380
 --skip-hash-check=true

Obtain the values for your cluster from the $/backup_files/etcd.conf file.

4. Set required permissions and selinux context on the data directory:

$ restorecon -Rv /var/lib/etcd/

5. Restart the etcd pod by moving the pod manifest YAML file to the required directory:

$ mv etcd.yaml /etc/origin/node/pods/.

5.7.3. Adding etcd nodes after restoring

After the first instance is running, you can add multiple etcd servers to your cluster.

Procedure

1. Get the etcd name for the instance in the ETCD_NAME variable:

grep ETCD_NAME /etc/etcd/etcd.conf

2. Get the IP address where etcd listens for peer communication:

grep ETCD_INITIAL_ADVERTISE_PEER_URLS /etc/etcd/etcd.conf

3. If the node was previously part of a etcd cluster, delete the previous etcd data:

rm -Rf /var/lib/etcd/*

4. On the etcd host where etcd is properly running, add the new member:

OpenShift Container Platform 3.10 Upgrading Clusters

34

etcdctl3 member add *<name>* \
 --peer-urls="*<advertise_peer_urls>*"

The command outputs some variables. For example:

ETCD_NAME="master2"
ETCD_INITIAL_CLUSTER="master-0.example.com=https://192.168.55.8:2380"
ETCD_INITIAL_CLUSTER_STATE="existing"

5. Add the values from the previous command to the /etc/etcd/etcd.conf file of the new host:

vi /etc/etcd/etcd.conf

6. Start the etcd service in the node joining the cluster:

systemctl start etcd.service

7. Check for error messages:

journalctl -fu etcd.service

8. Repeat the previous steps for every etcd node to be added.

9. Once you add all the nodes, verify the cluster status and cluster health:

etcdctl3 endpoint health --
endpoints="https://<etcd_host1>:2379,https://<etcd_host2>:2379,https://<etcd_host3>:2379"
https://master-0.example.com:2379 is healthy: successfully committed proposal: took =
1.423459ms
https://master-1.example.com:2379 is healthy: successfully committed proposal: took =
1.767481ms
https://master-2.example.com:2379 is healthy: successfully committed proposal: took =
1.599694ms

etcdctl3 endpoint status --
endpoints="https://<etcd_host1>:2379,https://<etcd_host2>:2379,https://<etcd_host3>:2379"
https://master-0.example.com:2379, 40bef1f6c79b3163, 3.2.5, 28 MB, true, 9, 2878
https://master-1.example.com:2379, 1ea57201a3ff620a, 3.2.5, 28 MB, false, 9, 2878
https://master-2.example.com:2379, 59229711e4bc65c8, 3.2.5, 28 MB, false, 9, 2878

5.8. BRINGING OPENSHIFT CONTAINER PLATFORM SERVICES BACK
ONLINE

After you finish your changes, bring OpenShift Container Platform back online.

Procedure

1. On each OpenShift Container Platform master, restore your master and node configuration
from backup and enable and restart all relevant services:

cp ${MYBACKUPDIR}/etc/origin/node/pods/* /etc/origin/node/pods/
cp ${MYBACKUPDIR}/etc/origin/master/master.env /etc/origin/master/master.env
cp ${MYBACKUPDIR}/etc/origin/master/master-config.yaml.<timestamp>

CHAPTER 5. DOWNGRADING OPENSHIFT

35

/etc/origin/master/master-config.yaml
cp ${MYBACKUPDIR}/etc/origin/node/node-config.yaml.<timestamp>
/etc/origin/node/node-config.yaml
cp ${MYBACKUPDIR}/etc/origin/master/scheduler.json.<timestamp>
/etc/origin/master/scheduler.json
cp ${MYBACKUPDIR}/usr/lib/systemd/system/atomic-openshift-master-api.service
/usr/lib/systemd/system/atomic-openshift-master-api.service
cp ${MYBACKUPDIR}/usr/lib/systemd/system/atomic-openshift-master-controllers.service
/usr/lib/systemd/system/atomic-openshift-master-controllers.service
rm /etc/systemd/system/atomic-openshift-node.service
systemctl daemon-reload
master-restart api
master-restart controllers

2. On each OpenShift Container Platform node, update the node configuration maps as needed,
and enable and restart the atomic-openshift-node service:

cp /etc/origin/node/node-config.yaml.<timestamp> /etc/origin/node/node-config.yaml
rm /etc/systemd/system/atomic-openshift-node.service
systemctl daemon-reload
systemctl enable atomic-openshift-node
systemctl start atomic-openshift-node

5.9. VERIFYING THE DOWNGRADE

1. To verify the downgrade, first check that all nodes are marked as Ready:

oc get nodes
NAME STATUS AGE
master.example.com Ready,SchedulingDisabled 165d
node1.example.com Ready 165d
node2.example.com Ready 165d

2. Verify the successful downgrade of the registry and router, if deployed:

a. Verify you are running the v3.9 versions of the docker-registry and router images:

oc get -n default dc/docker-registry -o json | grep \"image\"
 "image": "openshift3/ose-docker-registry:v3.9",
oc get -n default dc/router -o json | grep \"image\"
 "image": "openshift3/ose-haproxy-router:v3.9",

b. Verify that docker-registry and router pods are running and in ready state:

oc get pods -n default

NAME READY STATUS RESTARTS AGE
docker-registry-2-b7xbn 1/1 Running 0 18m
router-2-mvq6p 1/1 Running 0 6m

3. Use the diagnostics tool on the master to look for common issues and provide suggestions:

oc adm diagnostics
...

OpenShift Container Platform 3.10 Upgrading Clusters

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#modifying-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#admin-guide-diagnostics-tool

[Note] Summary of diagnostics execution:
[Note] Completed with no errors or warnings seen.

CHAPTER 5. DOWNGRADING OPENSHIFT

37

	Table of Contents
	CHAPTER 1. UPGRADE METHODS AND STRATEGIES
	1.1. INTRODUCTION TO UPGRADING CLUSTERS
	1.2. UPGRADE STRATEGIES
	1.2.1. In-place Upgrades
	1.2.2. Blue-green Deployments

	CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES
	2.1. ABOUT THIS UPGRADE
	2.1.1. Defining Node Groups and Host Mappings
	2.1.2. Updating Host Name Parameters
	Node ConfigMaps
	Node Group Definitions

	2.1.3. Upgrade Workflow

	2.2. PREPARING FOR AN AUTOMATED UPGRADE
	2.2.1. Updating Policy Definitions
	2.2.2. Upgrading the Control Plane and Nodes in Separate Phases
	2.2.3. Customizing Node Upgrades
	2.2.4. Customizing Upgrades With Ansible Hooks
	2.2.4.1. Limitations
	2.2.4.2. Using Hooks
	2.2.4.3. Available Upgrade Hooks

	2.3. UPGRADING TO THE LATEST OPENSHIFT CONTAINER PLATFORM 3.10 RELEASE
	2.4. UPGRADING THE EFK LOGGING STACK
	2.5. UPGRADING CLUSTER METRICS
	2.6. SPECIAL CONSIDERATIONS FOR LARGE-SCALE UPGRADES
	2.7. SPECIAL CONSIDERATIONS FOR MIXED ENVIRONMENTS
	2.8. SPECIAL CONSIDERATIONS WHEN USING CONTAINERIZED GLUSTERFS
	2.9. SPECIAL CONSIDERATIONS WHEN USING GCEPD
	2.10. VERIFYING THE UPGRADE

	CHAPTER 3. BLUE-GREEN DEPLOYMENTS
	3.1. OVERVIEW
	3.2. PREPARING FOR A BLUE-GREEN UPGRADE
	3.2.1. Sharing Software Entitlements
	3.2.2. Labeling Blue Nodes
	3.2.3. Creating and Labeling Green Nodes
	3.2.4. Verifying Green Nodes

	3.3. PREPARING THE GREEN NODES
	3.4. EVACUATING AND DECOMMISSIONING BLUE NODES

	CHAPTER 4. UPDATING OPERATING SYSTEMS
	4.1. UPDATING THE OPERATING SYSTEM ON A HOST
	4.1.1. Upgrading Nodes Running OpenShift Container Storage

	CHAPTER 5. DOWNGRADING OPENSHIFT
	5.1. OVERVIEW
	5.2. VERIFYING BACKUPS
	5.3. SHUTTING DOWN THE CLUSTER
	5.4. REMOVING RPMS AND STATIC PODS
	5.5. DOWNGRADING DOCKER
	5.6. REINSTALLING RPMS
	5.7. RESTORING ETCD
	5.7.1. Restoring etcd v3 snapshot
	Procedure

	5.7.2. Restoring etcd on a static pod
	5.7.3. Adding etcd nodes after restoring
	Procedure

	5.8. BRINGING OPENSHIFT CONTAINER PLATFORM SERVICES BACK ONLINE
	Procedure

	5.9. VERIFYING THE DOWNGRADE

