
OpenShift Container Platform 3.10

Architecture

OpenShift Container Platform 3.10 Architecture Information

Last Updated: 2019-08-20





OpenShift Container Platform 3.10 Architecture

OpenShift Container Platform 3.10 Architecture Information



Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn the architecture of OpenShift Container Platform 3.10 including the infrastructure and core
components. These topics also cover authentication, networking and source code management.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

CHAPTER 1. OVERVIEW
1.1. WHAT ARE THE LAYERS?
1.2. WHAT IS THE OPENSHIFT CONTAINER PLATFORM ARCHITECTURE?
1.3. HOW IS OPENSHIFT CONTAINER PLATFORM SECURED?

1.3.1. TLS Support

CHAPTER 2. INFRASTRUCTURE COMPONENTS
2.1. KUBERNETES INFRASTRUCTURE

2.1.1. Overview
2.1.2. Masters

2.1.2.1. Control Plane Static Pods
Mirror Pods
Restarting Master Services
Viewing Master Service Logs

2.1.2.2. High Availability Masters
2.1.3. Nodes

2.1.3.1. Kubelet
2.1.3.2. Service Proxy
2.1.3.3. Node Object Definition
2.1.3.4. Node Bootstrapping

Node Bootstrap Workflow
Node Configuration Workflow
Modifying Node Configurations

2.2. CONTAINER REGISTRY
2.2.1. Overview
2.2.2. Integrated OpenShift Container Registry
2.2.3. Third Party Registries

2.2.3.1. Authentication
2.3. WEB CONSOLE

2.3.1. Overview
2.3.2. CLI Downloads
2.3.3. Browser Requirements
2.3.4. Project Overviews
2.3.5. JVM Console
2.3.6. StatefulSets

CHAPTER 3. CORE CONCEPTS
3.1. OVERVIEW
3.2. CONTAINERS AND IMAGES

3.2.1. Containers
3.2.1.1. Init Containers

3.2.2. Images
Image Version Tag Policy

3.2.3. Container Registries
3.3. PODS AND SERVICES

3.3.1. Pods
3.3.1.1. Pod Restart Policy
3.3.1.2. Injecting Information into Pods Using Pod Presets

3.3.2. Init Containers
3.3.3. Services

3.3.3.1. Service externalIPs

8
8
9

10
10

13
13
13
13
13
14
15
15
16
17
17
17
17
18
19
21
21
21
21
22
22
22
22
22
23
24
24
26
27

29
29
29
29
29
30
30
31
31
31

34
35
35
36
37

Table of Contents

1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3.3.2. Service ingressIPs
3.3.3.3. Service NodePort
3.3.3.4. Service Proxy Mode
3.3.3.5. Headless services

3.3.3.5.1. Creating a headless service
3.3.3.5.2. Endpoint discovery by using a headless service

3.3.4. Labels
3.3.5. Endpoints

3.4. PROJECTS AND USERS
3.4.1. Users
3.4.2. Namespaces
3.4.3. Projects

3.4.3.1. Projects provided at installation
3.5. BUILDS AND IMAGE STREAMS

3.5.1. Builds
3.5.1.1. Docker Build
3.5.1.2. Source-to-Image (S2I) Build
3.5.1.3. Custom Build
3.5.1.4. Pipeline Build

3.5.2. Image Streams
3.5.2.1. Important terms
3.5.2.2. Configuring Image Streams
3.5.2.3. Image Stream Images
3.5.2.4. Image Stream Tags
3.5.2.5. Image Stream Change Triggers
3.5.2.6. Image Stream Mappings
3.5.2.7. Working with Image Streams

3.5.2.7.1. Getting Information about Image Streams
3.5.2.7.2. Adding Additional Tags to an Image Stream
3.5.2.7.3. Adding Tags for an External Image
3.5.2.7.4. Updating an Image Stream Tag
3.5.2.7.5. Removing Image Stream Tags from an Image Stream
3.5.2.7.6. Configuring Periodic Importing of Tags

3.6. DEPLOYMENTS
3.6.1. Replication controllers
3.6.2. Replica set
3.6.3. Jobs
3.6.4. Deployments and Deployment Configurations

3.7. TEMPLATES
3.7.1. Overview

CHAPTER 4. ADDITIONAL CONCEPTS
4.1. AUTHENTICATION

4.1.1. Overview
4.1.2. Users and Groups
4.1.3. API Authentication

4.1.3.1. Impersonation
4.1.4. OAuth

4.1.4.1. OAuth Clients
4.1.4.2. Service Accounts as OAuth Clients
4.1.4.3. Redirect URIs for Service Accounts as OAuth Clients

4.1.4.3.1. API Events for OAuth
4.1.4.3.1.1. Sample API Event Caused by a Possible Misconfiguration

38
38
39
39
39
40
41
41

42
42
42
43
43
44
44
44
44
45
45
46
48
49
50
50
51
52
55
55
56
57
57
57
57
58
58
59
60
60
61
61

63
63
63
63
63
64
64
65
65
66
68
69

OpenShift Container Platform 3.10 Architecture

2



4.1.4.4. Integrations
4.1.4.5. OAuth Server Metadata
4.1.4.6. Obtaining OAuth Tokens
4.1.4.7. Authentication Metrics for Prometheus

4.2. AUTHORIZATION
4.2.1. Overview
4.2.2. Evaluating Authorization
4.2.3. Cluster and Local RBAC
4.2.4. Cluster Roles and Local Roles

4.2.4.1. Updating Cluster Roles
4.2.4.2. Applying Custom Roles and Permissions
4.2.4.3. Cluster Role Aggregation

4.2.5. Security Context Constraints
4.2.5.1. SCC Strategies

4.2.5.1.1. RunAsUser
4.2.5.1.2. SELinuxContext
4.2.5.1.3. SupplementalGroups
4.2.5.1.4. FSGroup

4.2.5.2. Controlling Volumes
4.2.5.3. Restricting Access to FlexVolumes
4.2.5.4. Seccomp
4.2.5.5. Admission

4.2.5.5.1. SCC Prioritization
4.2.5.5.2. Understanding Pre-allocated Values and Security Context Constraints

4.2.6. Determining What You Can Do as an Authenticated User
4.3. PERSISTENT STORAGE

4.3.1. Overview
4.3.2. Lifecycle of a volume and claim

4.3.2.1. Provision storage
4.3.2.2. Bind claims
4.3.2.3. Use pods and claimed PVs
4.3.2.4. PVC protection
4.3.2.5. Release volumes
4.3.2.6. Reclaim volumes

4.3.2.6.1. Recycle volumes
4.3.3. Persistent volumes

4.3.3.1. Types of PVs
4.3.3.2. Capacity
4.3.3.3. Access modes
4.3.3.4. Reclaim policy
4.3.3.5. Phase
4.3.3.6. Mount options

4.3.4. Persistent volume claims
4.3.4.1. Storage classes
4.3.4.2. Access modes
4.3.4.3. Resources
4.3.4.4. Claims as volumes

4.3.5. Block volume support
4.4. EPHEMERAL LOCAL STORAGE

4.4.1. Overview
4.4.2. Types of ephemeral storage

4.4.2.1. Root
4.4.2.2. Runtime

72
72
73
76
76
76
81

82
82
83
83
83
84
87
87
87
88
88
88
89
90
90
91
91

92
92
92
93
93
93
94
94
94
94
94
95
96
96
96
98
99
99

100
100
101
101
101
101

104
104
105
105
105

Table of Contents

3



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.5. SOURCE CONTROL MANAGEMENT
4.6. ADMISSION CONTROLLERS

4.6.1. Overview
4.6.2. General Admission Rules
4.6.3. Customizable Admission Plug-ins
4.6.4. Admission Controllers Using Containers

4.7. CUSTOM ADMISSION CONTROLLERS
4.7.1. Overview
4.7.2. Admission Webhooks

4.7.2.1. Types of Admission Webhooks
4.7.2.2. Create the Admission Webhook
4.7.2.3. Admission Webhook Example

4.8. OTHER API OBJECTS
4.8.1. LimitRange
4.8.2. ResourceQuota
4.8.3. Resource
4.8.4. Secret
4.8.5. PersistentVolume
4.8.6. PersistentVolumeClaim

4.8.6.1. Custom Resources
4.8.7. OAuth Objects

4.8.7.1. OAuthClient
4.8.7.2. OAuthClientAuthorization
4.8.7.3. OAuthAuthorizeToken
4.8.7.4. OAuthAccessToken

4.8.8. User Objects
4.8.8.1. Identity
4.8.8.2. User
4.8.8.3. UserIdentityMapping
4.8.8.4. Group

CHAPTER 5. NETWORKING
5.1. NETWORKING

5.1.1. Overview
5.1.2. OpenShift Container Platform DNS

5.2. OPENSHIFT SDN
5.2.1. Overview
5.2.2. Design on Masters
5.2.3. Design on Nodes
5.2.4. Packet Flow
5.2.5. Network Isolation

5.3. AVAILABLE SDN PLUG-INS
5.3.1. OpenShift SDN
5.3.2. Third-Party SDN plug-ins

5.3.2.1. Flannel SDN
5.3.2.2. Nuage SDN

5.3.3. Kuryr SDN for OpenShift Container Platform
5.3.3.1. OpenStack Deployment Requirements
5.3.3.2. kuryr-controller
5.3.3.3. kuryr-cni

5.4. AVAILABLE ROUTER PLUG-INS
5.4.1. The HAProxy Template Router
5.4.2. F5 BIG-IP® Router plug-in

105
105
106
106
107
107
107
107
107
109

111
113
114
114
114
114
114
114
114
115
115
115
116
116
117
118
118
119
119

120

121
121
121
121
122
122
122
123
124
124
125
125
125
125
126
129
130
130
130
130
130
134

OpenShift Container Platform 3.10 Architecture

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4.2.1. Routing Traffic to Pods Through the SDN
5.4.2.2. F5 Integration Details
5.4.2.3. F5 Router Plug-in

Connection
Data Flow: Packets to Pods
Data Flow from the F5 Host
Data Flow: Return Traffic to the F5 Host

5.5. PORT FORWARDING
5.5.1. Overview
5.5.2. Server Operation

5.6. REMOTE COMMANDS
5.6.1. Overview
5.6.2. Server Operation

5.7. ROUTES
5.7.1. Overview
5.7.2. Routers

5.7.2.1. Template Routers
5.7.3. Available Router Plug-ins
5.7.4. Sticky Sessions
5.7.5. Router Environment Variables
5.7.6. Load-balancing Strategy
5.7.7. HAProxy Strict SNI
5.7.8. Router Cipher Suite
5.7.9. Route Host Names
5.7.10. Route Types

5.7.10.1. Path Based Routes
5.7.10.2. Secured Routes

5.7.11. Router Sharding
5.7.12. Alternate Backends and Weights
5.7.13. Route-specific Annotations
5.7.14. Route-specific IP Whitelists
5.7.15. Creating Routes Specifying a Wildcard Subdomain Policy
5.7.16. Route Status
5.7.17. Denying or Allowing Certain Domains in Routes
5.7.18. Support for Kubernetes ingress objects
5.7.19. Disabling the Namespace Ownership Check

CHAPTER 6. SERVICE CATALOG COMPONENTS
6.1. SERVICE CATALOG

6.1.1. Overview
6.1.2. Design

6.1.2.1. Deleting Resources
6.1.3. Concepts and Terminology
6.1.4. Provided Cluster Service Brokers

6.2. SERVICE CATALOG COMMAND-LINE INTERFACE (CLI)
6.2.1. Overview
6.2.2. Installing svcat

6.2.2.1. Considerations for cloud providers
6.2.3. Using svcat

6.2.3.1. Get broker details
6.2.3.1.1. Find brokers
6.2.3.1.2. Sync broker catalog
6.2.3.1.3. View broker details

135
135
136
136
136
137
138
138
138
138
138
138
139
139
139
139
140
141
141

142
147
148
148
149
150
150
151
155
156
157
159
160
160
160
162
163

165
165
165
165
166
166
169
169
169
169
169
170
170
170
170
170

Table of Contents

5



6.2.3.2. View service classes and service plans
6.2.3.2.1. View service classes
6.2.3.2.2. View service plans

6.2.3.3. Provision services
6.2.3.3.1. Create ServiceInstance

6.2.3.3.1.1. View service instance details
6.2.3.3.2. Create ServiceBinding

6.2.3.3.2.1. View service binding details
6.2.4. Deleting resources

6.2.4.1. Deleting service bindings
6.2.4.2. Deleting service instances
6.2.4.3. Deleting service brokers

6.3. TEMPLATE SERVICE BROKER
6.4. OPENSHIFT ANSIBLE BROKER

6.4.1. Overview
6.4.2. Ansible Playbook Bundles

170
170
171

173
173
173
174
174
175
175
175
176
176
176
176
177

OpenShift Container Platform 3.10 Architecture

6



Table of Contents

7



CHAPTER 1. OVERVIEW
OpenShift v3 is a layered system designed to expose underlying Docker-formatted container image and
Kubernetes concepts as accurately as possible, with a focus on easy composition of applications by a
developer. For example, install Ruby, push code, and add MySQL.

Unlike OpenShift v2, more flexibility of configuration is exposed after creation in all aspects of the
model. The concept of an application as a separate object is removed in favor of more flexible
composition of "services", allowing two web containers to reuse a database or expose a database
directly to the edge of the network.

1.1. WHAT ARE THE LAYERS?

The Docker service provides the abstraction for packaging and creating Linux-based, lightweight
container images. Kubernetes provides the cluster management and orchestrates containers on
multiple hosts.

OpenShift Container Platform adds:

Source code management, builds, and deployments for developers

Managing and promoting images at scale as they flow through your system

Application management at scale

Team and user tracking for organizing a large developer organization

Networking infrastructure that supports the cluster

Figure 1.1. OpenShift Container Platform Architecture Overview

OpenShift Container Platform 3.10 Architecture

8



Figure 1.1. OpenShift Container Platform Architecture Overview

For more information on the node types in the architecture overview, see Kubernetes Infrastructure.

1.2. WHAT IS THE OPENSHIFT CONTAINER PLATFORM
ARCHITECTURE?

OpenShift Container Platform has a microservices-based architecture of smaller, decoupled units that
work together. It runs on top of a Kubernetes cluster, with data about the objects stored in etcd, a
reliable clustered key-value store. Those services are broken down by function:

REST APIs, which expose each of the core objects.

Controllers, which read those APIs, apply changes to other objects, and report status or write
back to the object.

Users make calls to the REST API to change the state of the system. Controllers use the REST API to
read the user’s desired state, and then try to bring the other parts of the system into sync. For example,
when a user requests a build they create a "build" object. The build controller sees that a new build has
been created, and runs a process on the cluster to perform that build. When the build completes, the
controller updates the build object via the REST API and the user sees that their build is complete.

The controller pattern means that much of the functionality in OpenShift Container Platform is
extensible. The way that builds are run and launched can be customized independently of how images
are managed, or how deployments happen. The controllers are performing the "business logic" of the

CHAPTER 1. OVERVIEW

9

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/rest_api_reference/#rest-api-index


system, taking user actions and transforming them into reality. By customizing those controllers or
replacing them with your own logic, different behaviors can be implemented. From a system
administration perspective, this also means the API can be used to script common administrative actions
on a repeating schedule. Those scripts are also controllers that watch for changes and take action.
OpenShift Container Platform makes the ability to customize the cluster in this way a first-class
behavior.

To make this possible, controllers leverage a reliable stream of changes to the system to sync their view
of the system with what users are doing. This event stream pushes changes from etcd to the REST API
and then to the controllers as soon as changes occur, so changes can ripple out through the system very
quickly and efficiently. However, since failures can occur at any time, the controllers must also be able to
get the latest state of the system at startup, and confirm that everything is in the right state. This
resynchronization is important, because it means that even if something goes wrong, then the operator
can restart the affected components, and the system double checks everything before continuing. The
system should eventually converge to the user’s intent, since the controllers can always bring the
system into sync.

1.3. HOW IS OPENSHIFT CONTAINER PLATFORM SECURED?

The OpenShift Container Platform and Kubernetes APIs authenticate users who present credentials,
and then authorize them based on their role. Both developers and administrators can be authenticated
via a number of means, primarily OAuth tokens and X.509 client certificates. OAuth tokens are signed
with JSON Web Algorithm RS256, which is RSA signature algorithm PKCS#1 v1.5 with SHA-256.

Developers (clients of the system) typically make REST API calls from a client program like oc or to the
web console via their browser, and use OAuth bearer tokens for most communications. Infrastructure
components (like nodes) use client certificates generated by the system that contain their identities.
Infrastructure components that run in containers use a token associated with their service account  to
connect to the API.

Authorization is handled in the OpenShift Container Platform policy engine, which defines actions like
"create pod" or "list services" and groups them into roles in a policy document. Roles are bound to users
or groups by the user or group identifier. When a user or service account attempts an action, the policy
engine checks for one or more of the roles assigned to the user (e.g., cluster administrator or
administrator of the current project) before allowing it to continue.

Since every container that runs on the cluster is associated with a service account, it is also possible to
associate secrets to those service accounts and have them automatically delivered into the container.
This enables the infrastructure to manage secrets for pulling and pushing images, builds, and the
deployment components, and also allows application code to easily leverage those secrets.

1.3.1. TLS Support

All communication channels with the REST API, as well as between master components such as etcd and
the API server, are secured with TLS. TLS provides strong encryption, data integrity, and authentication
of servers with X.509 server certificates and public key infrastructure. By default, a new internal PKI is
created for each deployment of OpenShift Container Platform. The internal PKI uses 2048 bit RSA keys
and SHA-256 signatures. Custom certificates for public hosts are supported as well.

OpenShift Container Platform uses Golang’s standard library implementation of crypto/tls and does
not depend on any external crypto and TLS libraries. Additionally, the client depends on external libraries
for GSSAPI authentication and OpenPGP signatures. GSSAPI is typically provided by either MIT
Kerberos or Heimdal Kerberos, which both use OpenSSL’s libcrypto. OpenPGP signature verification is
handled by libgpgme and GnuPG.

The insecure versions SSL 2.0 and SSL 3.0 are unsupported and not available. The OpenShift Container

OpenShift Container Platform 3.10 Architecture

10

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-secrets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-certificate-customization
https://golang.org/pkg/crypto/tls/


Platform server and oc client only provide TLS 1.2 by default. TLS 1.0 and TLS 1.1 can be enabled in the
server configuration. Both server and client prefer modern cipher suites with authenticated encryption
algorithms and perfect forward secrecy. Cipher suites with deprecated and insecure algorithms such as
RC4, 3DES, and MD5 are disabled. Some internal clients (for example, LDAP authentication) have less
restrict settings with TLS 1.0 to 1.2 and more cipher suites enabled.

Table 1.1. Supported TLS Versions

TLS Version OpenShift Container
Platform Server

oc Client Other Clients

SSL 2.0 Unsupported Unsupported Unsupported

SSL 3.0 Unsupported Unsupported Unsupported

TLS 1.0 No [a] No [a] Maybe [b]

TLS 1.1 No [a] No [a] Maybe [b]

TLS 1.2 Yes Yes Yes

TLS 1.3 N/A [c] N/A [c] N/A [c]

[a] Disabled by default, but can be enabled in the server configuration.

[b] Some internal clients, such as the LDAP client.

[c] TLS 1.3 is still under development.

The following list of enabled cipher suites of OpenShift Container Platform’s server and oc client are
sorted in preferred order:

TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

CHAPTER 1. OVERVIEW

11



TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_AES_128_GCM_SHA256

TLS_RSA_WITH_AES_256_GCM_SHA384

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

OpenShift Container Platform 3.10 Architecture

12



CHAPTER 2. INFRASTRUCTURE COMPONENTS

2.1. KUBERNETES INFRASTRUCTURE

2.1.1. Overview

Within OpenShift Container Platform, Kubernetes manages containerized applications across a set of
containers or hosts and provides mechanisms for deployment, maintenance, and application-scaling.
The container runtime packages, instantiates, and runs containerized applications. A Kubernetes cluster
consists of one or more masters and a set of nodes.

You can optionally configure your masters for high availability (HA) to ensure that the cluster has no
single point of failure.

NOTE

OpenShift Container Platform uses Kubernetes 1.10 and Docker 1.13.

2.1.2. Masters

The master is the host or hosts that contain the control plane components, including the API server,
controller manager server, and etcd. The master manages nodes in its Kubernetes cluster and schedules
pods to run on those nodes.

Table 2.1. Master Components

Component Description

API Server The Kubernetes API server validates and configures the data for pods, services, and
replication controllers. It also assigns pods to nodes and synchronizes pod information
with service configuration.

etcd etcd stores the persistent master state while other components watch etcd for changes
to bring themselves into the desired state. etcd can be optionally configured for high
availability, typically deployed with 2n+1 peer services.

Controller
Manager Server

The controller manager server watches etcd for changes to replication controller
objects and then uses the API to enforce the desired state. Several such processes
create a cluster with one active leader at a time.

HAProxy Optional, used when configuring highly-available masters with the native method to
balance load between API master endpoints. The cluster installation process can
configure HAProxy for you with the native method. Alternatively, you can use the 
native method but pre-configure your own load balancer of choice.

2.1.2.1. Control Plane Static Pods

Starting in OpenShift Container Platform 3.10, the deployment model for installing and operating the
core control plane components changed. Prior to 3.10, the API server and the controller manager
components ran as stand-alone host processes operated by systemd. In 3.10, these two components are
moved to static pods  operated by the kubelet.

CHAPTER 2. INFRASTRUCTURE COMPONENTS

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#install-planning
https://kubernetes.io/docs/tasks/administer-cluster/static-pod/


For masters that have etcd co-located on the same host, etcd is also moved to static pods. RPM-based
etcd is still supported on etcd hosts that are not also masters.

In addition, the node components openshift-sdn and openvswitch are now run using a DaemonSet
instead of a systemd service.

Figure 2.1. Control plane host architecture changes

Even with control plane components running as static pods, master hosts still source their configuration
from the /etc/origin/master/master-config.yaml  file, as described in the Master and Node
Configuration topic.

Mirror Pods
The kubelet on master nodes automatically creates mirror pods on the API server for each of the control
plane static pods so that they are visible in the cluster in the kube-system project. Manifests for these
static pods are installed by default by the openshift-ansible installer, located in the
/etc/origin/node/pods directory on the master host.

These pods have the following hostPath volumes defined:

/etc/origin/
master

Contains all certificates, configuration files, and the admin.kubeconfig file.

/var/lib/origi
n

Contains volumes and potential core dumps of the binary.

OpenShift Container Platform 3.10 Architecture

14

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-master-node-configuration


/etc/origin/
cloudprovide
r

Contains cloud provider specific configuration (AWS, Azure, etc.).

/usr/libexec
/kubernetes
/kubelet-
plugins

Contains additional third party volume plug-ins.

/etc/origin/
kubelet-
plugins

Contains additional third party volume plug-ins for system containers.

The set of operations you can do on the static pods is limited. For example:

$ oc logs master-api-<hostname> -n kube-system

returns the standard output from the API server. However:

$ oc delete pod master-api-<hostname> -n kube-system

will not actually delete the pod.

As another example, a cluster administrator may want to perform a common operation, such as
increasing the loglevel of the API server to provide more verbose data if a problem occurs. In OpenShift
Container Platform 3.10, you must edit the /etc/origin/master/master.env file, where the --loglevel
parameter in the OPTIONS variable can be modified, as this is passed to the process running inside the
container. Changes require a restart of the process running inside the container.

Restarting Master Services
To restart control plane services running in control plane static pods, use the master-restart command
on the master host.

To restart the master API:

# master-restart api

To restart the controllers:

# master-restart controllers

To restart etcd:

# master-restart etcd

Viewing Master Service Logs
To view logs for control plane services running in control plane static pods, use the master-logs
command for the respective component:

# master-logs api api
# master-logs controllers controllers
# master-logs etcd etcd

CHAPTER 2. INFRASTRUCTURE COMPONENTS

15



2.1.2.2. High Availability Masters

You can optionally configure your masters for high availability (HA) to ensure that the cluster has no
single point of failure.

To mitigate concerns about availability of the master, two activities are recommended:

1. A runbook entry should be created for reconstructing the master. A runbook entry is a
necessary backstop for any highly-available service. Additional solutions merely control the
frequency that the runbook must be consulted. For example, a cold standby of the master host
can adequately fulfill SLAs that require no more than minutes of downtime for creation of new
applications or recovery of failed application components.

2. Use a high availability solution to configure your masters and ensure that the cluster has no
single point of failure. The cluster installation documentation provides specific examples using
the native HA method and configuring HAProxy. You can also take the concepts and apply
them towards your existing HA solutions using the native method instead of HAProxy.

NOTE

In production OpenShift Container Platform clusters, you must maintain high availability
of the API Server load balancer. If the API Server load balancer is not available, nodes
cannot report their status, all their pods are marked dead, and the pods' endpoints are
removed from the service.

In addition to configuring HA for OpenShift Container Platform, you must separately
configure HA for the API Server load balancer. To configure HA, it is much preferred to
integrate an enterprise load balancer (LB) such as an F5 Big-IP™ or a Citrix Netscaler™
appliance. If such solutions are not available, it is possible to run multiple HAProxy load
balancers and use Keepalived to provide a floating virtual IP address for HA. However,
this solution is not recommended for production instances.

When using the native HA method with HAProxy, master components have the following availability:

Table 2.2. Availability Matrix with HAProxy

Role Style Notes

etcd Active-active Fully redundant deployment with load balancing. Can be
installed on separate hosts or collocated on master hosts.

API Server Active-active Managed by HAProxy.

Controller
Manager Server

Active-passive One instance is elected as a cluster leader at a time.

HAProxy Active-passive Balances load between API master endpoints.

While clustered etcd requires an odd number of hosts for quorum, the master services have no quorum
or requirement that they have an odd number of hosts. However, since you need at least two master
services for HA, it is common to maintain a uniform odd number of hosts when collocating master
services and etcd.

OpenShift Container Platform 3.10 Architecture

16

https://en.wikipedia.org/wiki/Runbook
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#multiple-masters


2.1.3. Nodes

A node provides the runtime environments for containers. Each node in a Kubernetes cluster has the
required services to be managed by the master. Nodes also have the required services to run pods,
including the container runtime, a kubelet, and a service proxy.

OpenShift Container Platform creates nodes from a cloud provider, physical systems, or virtual systems.
Kubernetes interacts with node objects that are a representation of those nodes. The master uses the
information from node objects to validate nodes with health checks. A node is ignored until it passes the
health checks, and the master continues checking nodes until they are valid. The Kubernetes
documentation has more information on node statuses and management.

Administrators can manage nodes in an OpenShift Container Platform instance using the CLI. To define
full configuration and security options when launching node servers, use dedicated node configuration
files.

IMPORTANT

See the cluster limits section for the recommended maximum number of nodes.

2.1.3.1. Kubelet

Each node has a kubelet that updates the node as specified by a container manifest, which is a YAML file
that describes a pod. The kubelet uses a set of manifests to ensure that its containers are started and
that they continue to run.

A container manifest can be provided to a kubelet by:

A file path on the command line that is checked every 20 seconds.

An HTTP endpoint passed on the command line that is checked every 20 seconds.

The kubelet watching an etcd server, such as /registry/hosts/$(hostname -f), and acting on
any changes.

The kubelet listening for HTTP and responding to a simple API to submit a new manifest.

2.1.3.2. Service Proxy

Each node also runs a simple network proxy that reflects the services defined in the API on that node.
This allows the node to do simple TCP and UDP stream forwarding across a set of back ends.

2.1.3.3. Node Object Definition

The following is an example node object definition in Kubernetes:

apiVersion: v1 1
kind: Node 2
metadata:
  creationTimestamp: null
  labels: 3
    kubernetes.io/hostname: node1.example.com
  name: node1.example.com 4
spec:
  externalID: node1.example.com 5

CHAPTER 2. INFRASTRUCTURE COMPONENTS

17

https://kubernetes.io/docs/concepts/architecture/nodes/#management
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#admin-guide-manage-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-master-node-configuration
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/scaling_and_performance_guide/#scaling-performance-cluster-limits


1

2

3

4

5

apiVersion defines the API version to use.

kind set to Node identifies this as a definition for a node object.

metadata.labels lists any labels that have been added to the node.

metadata.name is a required value that defines the name of the node object. This value is shown in
the NAME column when running the oc get nodes command.

spec.externalID defines the fully-qualified domain name where the node can be reached. Defaults
to the metadata.name value when empty.

2.1.3.4. Node Bootstrapping

Starting in OpenShift Container Platform 3.10, a node’s configuration is bootstrapped from the master,
which means nodes pull their pre-defined configuration and client and server certificates from the
master. This allows faster node start-up by reducing the differences between nodes, as well as
centralizing more configuration and letting the cluster converge on the desired state. Certificate
rotation and centralized certificate management are enabled by default.

Figure 2.2. Node bootstrapping workflow overview

When node services are started, the node checks if the /etc/origin/node/node.kubeconfig file and
other node configuration files exist before joining the cluster. If they do not, the node pulls the
configuration from the master, then joins the cluster.

ConfigMaps are used to store the node configuration in the cluster, which populates the configuration

status:
  nodeInfo:
    bootID: ""
    containerRuntimeVersion: ""
    kernelVersion: ""
    kubeProxyVersion: ""
    kubeletVersion: ""
    machineID: ""
    osImage: ""
    systemUUID: ""

OpenShift Container Platform 3.10 Architecture

18



ConfigMaps are used to store the node configuration in the cluster, which populates the configuration
file on the node host at /etc/origin/node/node-config.yaml . For definitions of the set of default node
groups and their ConfigMaps, see Defining Node Groups and Host Mappings  in Installing Clusters.

Node Bootstrap Workflow
The process for automatic node bootstrapping uses the following workflow:

1. By default during cluster installation, a set of clusterrole, clusterrolebinding and 
serviceaccount objects are created for use in node bootstrapping:

The system:node-bootstrapper  cluster role is used for creating certificate signing
requests (CSRs) during node bootstrapping:

# oc describe clusterrole.authorization.openshift.io/system:node-bootstrapper

Name:   system:node-bootstrapper
Created:  17 hours ago
Labels:   kubernetes.io/bootstrapping=rbac-defaults
Annotations:  authorization.openshift.io/system-only=true
   openshift.io/reconcile-protect=false
Verbs   Non-Resource URLs Resource Names API Groups  Resources
[create get list watch] []   []  [certificates.k8s.io] [certificatesigningrequests]

The following node-bootstrapper service account is created in the openshift-infra
project:

# oc describe sa node-bootstrapper -n openshift-infra

Name:                node-bootstrapper
Namespace:           openshift-infra
Labels:              <none>
Annotations:         <none>
Image pull secrets:  node-bootstrapper-dockercfg-f2n8r
Mountable secrets:   node-bootstrapper-token-79htp
                     node-bootstrapper-dockercfg-f2n8r
Tokens:              node-bootstrapper-token-79htp
                     node-bootstrapper-token-mqn2q
Events:              <none>

The following system:node-bootstrapper  cluster role binding is for the node bootstrapper
cluster role and service account:

# oc describe clusterrolebindings system:node-bootstrapper

Name:   system:node-bootstrapper
Created:  17 hours ago
Labels:   <none>
Annotations:  openshift.io/reconcile-protect=false
Role:   /system:node-bootstrapper
Users:   <none>
Groups:   <none>
ServiceAccounts: openshift-infra/node-bootstrapper
Subjects:  <none>
Verbs   Non-Resource URLs Resource Names API Groups  Resources
[create get list watch] []   []  [certificates.k8s.io] [certificatesigningrequests]

CHAPTER 2. INFRASTRUCTURE COMPONENTS

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-configmaps
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#configuring-inventory-defining-node-group-and-host-mappings


2. Also by default during cluster installation, the openshift-ansible installer creates a OpenShift
Container Platform certificate authority and various other certificates, keys, and kubeconfig
files in the /etc/origin/master directory. Two files of note are:

/etc/origin
/master/ad
min.kubeco
nfig

Uses the system:admin user.

/etc/origin
/master/bo
otstrap.kub
econfig

Used for node bootstrapping nodes other than masters.

a. The /etc/origin/master/bootstrap.kubeconfig is created when the installer uses the
node-bootstrapper service account as follows:

$ oc --config=/etc/origin/master/admin.kubeconfig \
    serviceaccounts create-kubeconfig node-bootstrapper \
    -n openshift-infra

b. On master nodes, the /etc/origin/master/admin.kubeconfig is used as a bootstrapping file
and is copied to /etc/origin/node/boostrap.kubeconfig. On other, non-master nodes, the
/etc/origin/master/bootstrap.kubeconfig file is copied to all other nodes in at
/etc/origin/node/boostrap.kubeconfig on each node host.

c. The /etc/origin/master/bootstrap.kubeconfig is then passed to kubelet using the flag --
bootstrap-kubeconfig as follows:

--bootstrap-kubeconfig=/etc/origin/node/bootstrap.kubeconfig

3. The kubelet is first started with the supplied /etc/origin/node/bootstrap.kubeconfig file. After
initial connection internally, the kubelet creates certificate signing requests (CSRs) and sends
them to the master.

4. The CSRs are verified and approved via the controller manager (specifically the certificate
signing controller). If approved, the kubelet client and server certificates are created in the
/etc/origin/node/ceritificates directory. For example:

# ls -al /etc/origin/node/certificates/
total 12
drwxr-xr-x. 2 root root  212 Jun 18 21:56 .
drwx------. 4 root root  213 Jun 19 15:18 ..
-rw-------. 1 root root 2826 Jun 18 21:53 kubelet-client-2018-06-18-21-53-15.pem
-rw-------. 1 root root 1167 Jun 18 21:53 kubelet-client-2018-06-18-21-53-45.pem
lrwxrwxrwx. 1 root root   68 Jun 18 21:53 kubelet-client-current.pem -> 
/etc/origin/node/certificates/kubelet-client-2018-06-18-21-53-45.pem
-rw-------. 1 root root 1447 Jun 18 21:56 kubelet-server-2018-06-18-21-56-52.pem
lrwxrwxrwx. 1 root root   68 Jun 18 21:56 kubelet-server-current.pem -> 
/etc/origin/node/certificates/kubelet-server-2018-06-18-21-56-52.pem

5. After the CSR approval, the node.kubeconfig file is created at
/etc/origin/node/node.kubeconfig.

OpenShift Container Platform 3.10 Architecture

20



6. The kubelet is restarted with the /etc/origin/node/node.kubeconfig file and the certificates in
the /etc/origin/node/certificates/ directory, after which point it is ready to join the cluster.

Node Configuration Workflow
Sourcing a node’s configuration uses the following workflow:

1. Initially the node’s kubelet is started with the bootstrap configuration file, bootstrap-node-
config.yaml in the /etc/origin/node/ directory, created at the time of node provisioning.

2. On each node, the node service file uses the local script openshift-node in the /usr/local/bin/
directory to start the kubelet with the supplied bootstrap-node-config.yaml.

3. On each master, the directory /etc/origin/node/pods contains pod manifests for apiserver,
controller and etcd which are created as static pods on masters.

4. During cluster installation, a sync DaemonSet is created which creates a sync pod on each node.
The sync pod monitors changes in the file /etc/sysconfig/atomic-openshift-node. It
specifically watches for BOOTSTRAP_CONFIG_NAME to be set. 
BOOTSTRAP_CONFIG_NAME is set by the openshift-ansible installer and is the name of the
ConfigMap based on the node configuration group the node belongs to.
By default, the installer creates the following node configuration groups:

node-config-master

node-config-infra

node-config-compute

node-config-all-in-one

node-config-master-infra

A ConfigMap for each group is created in the openshift-node project.

5. The sync pod extracts the appropriate ConfigMap based on the value set in 
BOOTSTRAP_CONFIG_NAME.

6. The sync pod converts the ConfigMap data into kubelet configurations and creates a
/etc/origin/node/node-config.yaml  for that node host. If a change is made to this file (or it is
the file’s initial creation), the kubelet is restarted.

Modifying Node Configurations
A node’s configuration is modified by editing the appropriate ConfigMap in the openshift-node project.
The /etc/origin/node/node-config.yaml  must not be modified directly.

For example, for a node that is in the node-config-compute group, edit the ConfigMap using:

$ oc edit cm node-config-compute -n openshift-node

2.2. CONTAINER REGISTRY

2.2.1. Overview

OpenShift Container Platform can utilize any server implementing the Docker registry API as a source of

CHAPTER 2. INFRASTRUCTURE COMPONENTS

21



OpenShift Container Platform can utilize any server implementing the Docker registry API as a source of
images, including the Docker Hub, private registries run by third parties, and the integrated OpenShift
Container Platform registry.

2.2.2. Integrated OpenShift Container Registry

OpenShift Container Platform provides an integrated container registry called OpenShift Container
Registry (OCR) that adds the ability to automatically provision new image repositories on demand. This
provides users with a built-in location for their application builds to push the resulting images.

Whenever a new image is pushed to OCR, the registry notifies OpenShift Container Platform about the
new image, passing along all the information about it, such as the namespace, name, and image
metadata. Different pieces of OpenShift Container Platform react to new images, creating new builds
and deployments.

OCR can also be deployed as a stand-alone component that acts solely as a container registry, without
the build and deployment integration. See Installing a Stand-alone Deployment of OpenShift Container
Registry for details.

2.2.3. Third Party Registries

OpenShift Container Platform can create containers using images from third party registries, but it is
unlikely that these registries offer the same image notification support as the integrated OpenShift
Container Platform registry. In this situation OpenShift Container Platform will fetch tags from the
remote registry upon imagestream creation. Refreshing the fetched tags is as simple as running oc 
import-image <stream>. When new images are detected, the previously-described build and
deployment reactions occur.

2.2.3.1. Authentication

OpenShift Container Platform can communicate with registries to access private image repositories
using credentials supplied by the user. This allows OpenShift to push and pull images to and from
private repositories. The Authentication topic has more information.

2.3. WEB CONSOLE

2.3.1. Overview

The OpenShift Container Platform web console is a user interface accessible from a web browser.
Developers can use the web console to visualize, browse, and manage the contents of projects.

NOTE

JavaScript must be enabled to use the web console. For the best experience, use a web
browser that supports WebSockets.

The web console runs as a pod on the master. The static assets required to run the web console are
served by the pod. Administrators can also customize the web console using extensions, which let you
run scripts and load custom stylesheets when the web console loads.

When you access the web console from a browser, it first loads all required static assets. It then makes
requests to the OpenShift Container Platform APIs using the values defined from the openshift start
option --public-master, or from the related parameter masterPublicURL in the webconsole-config

OpenShift Container Platform 3.10 Architecture

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#install-config-installing-stand-alone-registry
http://caniuse.com/#feat=websockets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-web-console-customization


config map defined in the openshift-web-console namespace. The web console uses WebSockets to
maintain a persistent connection with the API server and receive updated information as soon as it is
available.

Figure 2.3. Web Console Request Architecture

The configured host names and IP addresses for the web console are whitelisted to access the API
server safely even when the browser would consider the requests to be cross-origin. To access the API
server from a web application using a different host name, you must whitelist that host name by
specifying the --cors-allowed-origins option on openshift start or from the related master
configuration file parameter corsAllowedOrigins.

The corsAllowedOrigins parameter is controlled by the configuration field. No pinning or escaping is
done to the value. The following is an example of how you can pin a host name and escape dots:

corsAllowedOrigins:
- (?i)//my\.subdomain\.domain\.com(:|\z)

The (?i) makes it case-insensitive.

The // pins to the beginning of the domain (and matches the double slash following http: or 
https:).

The \. escapes dots in the domain name.

The (:|\z) matches the end of the domain name (\z) or a port separator (:).

2.3.2. CLI Downloads

You can access CLI downloads from the Help icon in the web console:

Cluster administrators can customize these links further.

CHAPTER 2. INFRASTRUCTURE COMPONENTS

23

http://www.w3.org/TR/cors/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#master-configuration-files
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#adding-or-changing-links-to-download-the-cli


2.3.3. Browser Requirements

Review the tested integrations for OpenShift Container Platform.

2.3.4. Project Overviews

After logging in , the web console provides developers with an overview for the currently selected
project:

Figure 2.4. Web Console Project Overview

OpenShift Container Platform 3.10 Architecture

24

https://access.redhat.com/articles/2176281
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-projects


Figure 2.4. Web Console Project Overview

The project selector allows you to switch between projects  you have access to.

To quickly find services from within project view, type in your search criteria

Create new applications using a source repository  or service from the service catalog.

Notifications related to your project.

The Overview tab (currently selected) visualizes the contents of your project with a high-level
view of each component.

Applications tab: Browse and perform actions on your deployments, pods, services, and routes.

Builds tab: Browse and perform actions on your builds and image streams.

Resources tab: View your current quota consumption and other resources.

Storage tab: View persistent volume claims and request storage for your applications.

Monitoring tab: View logs for builds, pods, and deployments, as well as event notifications for all
objects in your project.

Catalog tab: Quickly get to the catalog from within a project.

CHAPTER 2. INFRASTRUCTURE COMPONENTS

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#view-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#using-the-web-console-na


NOTE

Cockpit is automatically installed and enabled in OpenShift Container Platform 3.1 and
later to help you monitor your development environment. Red Hat Enterprise Linux
Atomic Host: Getting Started with Cockpit provides more information on using Cockpit.

2.3.5. JVM Console

For pods based on Java images, the web console also exposes access to a hawt.io-based JVM console
for viewing and managing any relevant integration components. A Connect link is displayed in the pod’s
details on the Browse → Pods page, provided the container has a port named jolokia.

Figure 2.5. Pod with a Link to the JVM Console

After connecting to the JVM console, different pages are displayed depending on which components
are relevant to the connected pod.

Figure 2.6. JVM Console

OpenShift Container Platform 3.10 Architecture

26

http://cockpit-project.org
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-cockpit/
http://hawt.io/


Figure 2.6. JVM Console

The following pages are available:

Page Description

JMX View and manage JMX domains and mbeans.

Threads View and monitor the state of threads.

ActiveMQ View and manage Apache ActiveMQ brokers.

Camel View and manage Apache Camel routes and dependencies.

OSGi View and manage the JBoss Fuse OSGi environment.

2.3.6. StatefulSets

A StatefulSet controller provides a unique identity to its pods and determines the order of deployments
and scaling. StatefulSet is useful for unique network identifiers, persistent storage, graceful deployment
and scaling, and graceful deletion and termination.

Figure 2.7. StatefulSet in OpenShift Container Platform

CHAPTER 2. INFRASTRUCTURE COMPONENTS

27



Figure 2.7. StatefulSet in OpenShift Container Platform

OpenShift Container Platform 3.10 Architecture

28



CHAPTER 3. CORE CONCEPTS

3.1. OVERVIEW

The following topics provide high-level, architectural information on core concepts and objects you will
encounter when using OpenShift Container Platform. Many of these objects come from Kubernetes,
which is extended by OpenShift Container Platform to provide a more feature-rich development
lifecycle platform.

Containers and images are the building blocks for deploying your applications.

Pods and services  allow for containers to communicate with each other and proxy connections.

Projects and users provide the space and means for communities to organize and manage their
content together.

Builds and image streams  allow you to build working images and react to new images.

Deployments add expanded support for the software development and deployment lifecycle.

Routes announce your service to the world.

Templates allow for many objects to be created at once based on customized parameters.

3.2. CONTAINERS AND IMAGES

3.2.1. Containers

The basic units of OpenShift Container Platform applications are called containers. Linux container
technologies are lightweight mechanisms for isolating running processes so that they are limited to
interacting with only their designated resources.

Many application instances can be running in containers on a single host without visibility into each
others' processes, files, network, and so on. Typically, each container provides a single service (often
called a "micro-service"), such as a web server or a database, though containers can be used for arbitrary
workloads.

The Linux kernel has been incorporating capabilities for container technologies for years. More recently
the Docker project has developed a convenient management interface for Linux containers on a host.
OpenShift Container Platform and Kubernetes add the ability to orchestrate Docker-formatted
containers across multi-host installations.

Though you do not directly interact with the Docker CLI or service when using OpenShift Container
Platform, understanding their capabilities and terminology is important for understanding their role in
OpenShift Container Platform and how your applications function inside of containers. The docker RPM
is available as part of RHEL 7, as well as CentOS and Fedora, so you can experiment with it separately
from OpenShift Container Platform. Refer to the article Get Started with Docker Formatted Container
Images on Red Hat Systems for a guided introduction.

3.2.1.1. Init Containers

A pod can have init containers in addition to application containers. Init containers allow you to
reorganize setup scripts and binding code. An init container differs from a regular container in that it
always runs to completion. Each init container must complete successfully before the next one is

CHAPTER 3. CORE CONCEPTS

29

https://access.redhat.com/articles/1353593
https://access.redhat.com/articles/881893


started.

For more information, see Pods and Services.

3.2.2. Images

Containers in OpenShift Container Platform are based on Docker-formatted container images. An
image is a binary that includes all of the requirements for running a single container, as well as metadata
describing its needs and capabilities.

You can think of it as a packaging technology. Containers only have access to resources defined in the
image unless you give the container additional access when creating it. By deploying the same image in
multiple containers across multiple hosts and load balancing between them, OpenShift Container
Platform can provide redundancy and horizontal scaling for a service packaged into an image.

You can use the Docker CLI directly to build images, but OpenShift Container Platform also supplies
builder images that assist with creating new images by adding your code or configuration to existing
images.

Because applications develop over time, a single image name can actually refer to many different
versions of the "same" image. Each different image is referred to uniquely by its hash (a long
hexadecimal number e.g. fd44297e2ddb050ec4f… ) which is usually shortened to 12 characters (e.g. 
fd44297e2ddb).

Image Version Tag Policy
Rather than version numbers, the Docker service allows applying tags (such as v1, v2.1, GA, or the
default latest) in addition to the image name to further specify the image desired, so you may see the
same image referred to as centos (implying the latest tag), centos:centos7, or fd44297e2ddb.

WARNING

Do not use the latest tag for any official OpenShift Container Platform images.
These are images that start with openshift3/. latest can refer to a number of
versions, such as 3.4, or 3.5.

How you tag the images dictates the updating policy. The more specific you are, the less frequently the
image will be updated. Use the following to determine your chosen OpenShift Container Platform
images policy:

vX.Y

The vX.Y tag points to X.Y.Z-<number>. For example, if the registry-console image is updated to
v3.4, it points to the newest 3.4.Z-<number> tag, such as 3.4.1-8.

X.Y.Z

Similar to the vX.Y example above, the X.Y.Z tag points to the latest X.Y.Z-<number>. For example,
3.4.1 would point to 3.4.1-8

X.Y.Z-<number>

The tag is unique and does not change. When using this tag, the image does not update if an image is
updated. For example, the 3.4.1-8 will always point to 3.4.1-8, even if an image is updated.



OpenShift Container Platform 3.10 Architecture

30



3.2.3. Container Registries

A container registry is a service for storing and retrieving Docker-formatted container images. A registry
contains a collection of one or more image repositories. Each image repository contains one or more
tagged images. Docker provides its own registry, the Docker Hub, and you can also use private or third-
party registries. Red Hat provides a registry at registry.access.redhat.com for subscribers. OpenShift
Container Platform can also supply its own internal registry for managing custom container images.

The relationship between containers, images, and registries is depicted in the following diagram:

3.3. PODS AND SERVICES

3.3.1. Pods

OpenShift Container Platform leverages the Kubernetes concept of a pod, which is one or more
containers deployed together on one host, and the smallest compute unit that can be defined,
deployed, and managed.

Pods are the rough equivalent of a machine instance (physical or virtual) to a container. Each pod is
allocated its own internal IP address, therefore owning its entire port space, and containers within pods
can share their local storage and networking.

Pods have a lifecycle; they are defined, then they are assigned to run on a node, then they run until their
container(s) exit or they are removed for some other reason. Pods, depending on policy and exit code,
may be removed after exiting, or may be retained in order to enable access to the logs of their
containers.

OpenShift Container Platform treats pods as largely immutable; changes cannot be made to a pod
definition while it is running. OpenShift Container Platform implements changes by terminating an
existing pod and recreating it with modified configuration, base image(s), or both. Pods are also treated

CHAPTER 3. CORE CONCEPTS

31

https://registry.hub.docker.com/


as expendable, and do not maintain state when recreated. Therefore pods should usually be managed by
higher-level controllers, rather than directly by users.

NOTE

For the maximum number of pods per OpenShift Container Platform node host, see the
Cluster Limits.

WARNING

Bare pods that are not managed by a replication controller will be not rescheduled
upon node disruption.

Below is an example definition of a pod that provides a long-running service, which is actually a part of
the OpenShift Container Platform infrastructure: the integrated container registry. It demonstrates
many features of pods, most of which are discussed in other topics and thus only briefly mentioned here:

Example 3.1. Pod Object Definition (YAML)



apiVersion: v1
kind: Pod
metadata:
  annotations: { ... }
  labels:                                1
    deployment: docker-registry-1
    deploymentconfig: docker-registry
    docker-registry: default
  generateName: docker-registry-1-       2
spec:
  containers:                            3
  - env:                                 4
    - name: OPENSHIFT_CA_DATA
      value: ...
    - name: OPENSHIFT_CERT_DATA
      value: ...
    - name: OPENSHIFT_INSECURE
      value: "false"
    - name: OPENSHIFT_KEY_DATA
      value: ...
    - name: OPENSHIFT_MASTER
      value: https://master.example.com:8443
    image: openshift/origin-docker-registry:v0.6.2 5
    imagePullPolicy: IfNotPresent
    name: registry
    ports:                              6
    - containerPort: 5000
      protocol: TCP
    resources: {}
    securityContext: { ... }            7

OpenShift Container Platform 3.10 Architecture

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/scaling_and_performance_guide/#scaling-performance-current-cluster-limits


1

2

3

4

5

6

7

8

9

10

11

Pods can be "tagged" with one or more labels, which can then be used to select and manage
groups of pods in a single operation. The labels are stored in key/value format in the metadata
hash. One label in this example is docker-registry=default.

Pods must have a unique name within their namespace. A pod definition may specify the basis of a
name with the generateName attribute, and random characters will be added automatically to
generate a unique name.

containers specifies an array of container definitions; in this case (as with most), just one.

Environment variables can be specified to pass necessary values to each container.

Each container in the pod is instantiated from its own Docker-formatted container image.

The container can bind to ports which will be made available on the pod’s IP.

OpenShift Container Platform defines a security context for containers which specifies whether
they are allowed to run as privileged containers, run as a user of their choice, and more. The default
context is very restrictive but administrators can modify this as needed.

The container specifies where external storage volumes should be mounted within the container. In
this case, there is a volume for storing the registry’s data, and one for access to credentials the
registry needs for making requests against the OpenShift Container Platform API.

The pod restart policy with possible values Always, OnFailure, and Never. The default value is 
Always.

Pods making requests against the OpenShift Container Platform API is a common enough pattern
that there is a serviceAccount field for specifying which service account  user the pod should
authenticate as when making the requests. This enables fine-grained access control for custom
infrastructure components.

The pod defines storage volumes that are available to its container(s) to use. In this case, it
provides an ephemeral volume for the registry storage and a secret volume containing the service
account credentials.

NOTE

    volumeMounts:                       8
    - mountPath: /registry
      name: registry-storage
    - mountPath: /var/run/secrets/kubernetes.io/serviceaccount
      name: default-token-br6yz
      readOnly: true
  dnsPolicy: ClusterFirst
  imagePullSecrets:
  - name: default-dockercfg-at06w
  restartPolicy: Always                 9
  serviceAccount: default               10
  volumes:                              11
  - emptyDir: {}
    name: registry-storage
  - name: default-token-br6yz
    secret:
      secretName: default-token-br6yz

CHAPTER 3. CORE CONCEPTS

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-service-accounts


NOTE

This pod definition does not include attributes that are filled by OpenShift Container
Platform automatically after the pod is created and its lifecycle begins. The Kubernetes
pod documentation has details about the functionality and purpose of pods.

3.3.1.1. Pod Restart Policy

A pod restart policy determines how OpenShift Container Platform responds when containers in that
pod exit. The policy applies to all containers in that pod.

The possible values are:

Always - Tries restarting a successfully exited container on the pod continuously, with an
exponential back-off delay (10s, 20s, 40s) until the pod is restarted. The default is Always.

OnFailure - Tries restarting a failed container on the pod with an exponential back-off delay
(10s, 20s, 40s) capped at 5 minutes.

Never - Does not try to restart exited or failed containers on the pod. Pods immediately fail and
exit.

Once bound to a node, a pod will never be bound to another node. This means that a controller is
necessary in order for a pod to survive node failure:

Condition Controller Type Restart Policy

Pods that are expected to
terminate (such as batch
computations)

Job OnFailure or Never

Pods that are expected to not
terminate (such as web servers)

Replication Controller Always.

Pods that need to run one-per-
machine

Daemonset Any

If a container on a pod fails and the restart policy is set to OnFailure, the pod stays on the node and the
container is restarted. If you do not want the container to restart, use a restart policy of Never.

If an entire pod fails, OpenShift Container Platform starts a new pod. Developers need to address the
possibility that applications might be restarted in a new pod. In particular, applications need to handle
temporary files, locks, incomplete output, and so forth caused by previous runs.

NOTE

Kubernetes architecture expects reliable endpoints from cloud providers. When a cloud
provider is down, the kubelet prevents OpenShift Container Platform from restarting.

If the underlying cloud provider endpoints are not reliable, do not install a cluster using
cloud provider integration. Install the cluster as if it was in a no-cloud environment. It is
not recommended to toggle cloud provider integration on or off in an installed cluster.

OpenShift Container Platform 3.10 Architecture

34

https://kubernetes.io/docs/concepts/workloads/pods/pod/


For details on how OpenShift Container Platform uses restart policy with failed containers, see the
Example States in the Kubernetes documentation.

3.3.1.2. Injecting Information into Pods Using Pod Presets

A pod preset is an object that injects user-specified information into pods as they are created.

IMPORTANT

As of OpenShift Container Platform 3.7, pod presets are no longer supported.

Using pod preset objects you can inject:

secret objects

ConfigMap objects

storage volumes

container volume mounts

environment variables

Developers need to ensure the pod labels match the label selector on the PodPreset in order to add all
that information to the pod. The label on a pod associates the pod with one or more pod preset objects
that have a matching label selectors.

Using pod presets, a developer can provision pods without needing to know the details about the
services the pod will consume. An administrator can keep configuration items of a service invisible from
a developer without preventing the developer from deploying pods.

NOTE

The Pod Preset feature is available only if the Service Catalog has been installed.

You can exclude specific pods from being injected using the 
podpreset.admission.kubernetes.io/exclude: "true" parameter in the pod specification. See the
example pod specification.

For more information, see Injecting Information into Pods Using Pod Presets .

3.3.2. Init Containers

An init container is a container in a pod that is started before the pod app containers are started. Init
containers can share volumes, perform network operations, and perform computations before the
remaining containers start. Init containers can also block or delay the startup of application containers
until some precondition is met.

When a pod starts, after the network and volumes are initialized, the init containers are started in order.
Each init container must exit successfully before the next is invoked. If an init container fails to start (due
to the runtime) or exits with failure, it is retried according to the pod restart policy.

A pod cannot be ready until all init containers have succeeded.

See the Kubernetes documentation for some init container usage examples.

CHAPTER 3. CORE CONCEPTS

35

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#example-states
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-secrets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#consuming-configmap-in-pods
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#sample-pod-spec-exclude-preset
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-pod-presets
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/#examples


1

2

The following example outlines a simple pod which has two init containers. The first init container waits
for myservice and the second waits for mydb. Once both containers succeed, the Pod starts.

Example 3.2. Sample Init Container Pod Object Definition (YAML)

Specifies the myservice container.

Specifies the mydb container.

Each init container has all of the fields of an app container except for readinessProbe. Init containers
must exit for pod startup to continue and cannot define readiness other than completion.

Init containers can include activeDeadlineSeconds on the pod and livenessProbe on the container to
prevent init containers from failing forever. The active deadline includes init containers.

3.3.3. Services

A Kubernetes service serves as an internal load balancer. It identifies a set of replicated pods in order to
proxy the connections it receives to them. Backing pods can be added to or removed from a service
arbitrarily while the service remains consistently available, enabling anything that depends on the service
to refer to it at a consistent address. The default service clusterIP addresses are from the OpenShift
Container Platform internal network and they are used to permit pods to access each other.

To permit external access to the service, additional externalIP and ingressIP addresses that are
external to the cluster can be assigned to the service. These externalIP addresses can also be virtual IP
addresses that provide highly available access to the service.

Services are assigned an IP address and port pair that, when accessed, proxy to an appropriate backing
pod. A service uses a label selector to find all the containers running that provide a certain network
service on a certain port.

Like pods, services are REST objects. The following example shows the definition of a service for the
pod defined above:

apiVersion: v1
kind: Pod
metadata:
  name: myapp-pod
  labels:
    app: myapp
spec:
  containers:
  - name: myapp-container
    image: busybox
    command: ['sh', '-c', 'echo The app is running! && sleep 3600']
  initContainers:
  - name: init-myservice 1
    image: busybox
    command: ['sh', '-c', 'until nslookup myservice; do echo waiting for myservice; sleep 2; done;']
  - name: init-mydb 2
    image: busybox
    command: ['sh', '-c', 'until nslookup mydb; do echo waiting for mydb; sleep 2; done;']

OpenShift Container Platform 3.10 Architecture

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#container-health-checks-using-probes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#jobs-setting-maximum-duration
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#container-health-checks-using-probes
http://kubernetes.io/docs/user-guide/services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#getting-traffic-into-cluster-ip
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#admin-guide-high-availability


1

2

3

4

5

Example 3.3. Service Object Definition (YAML)

The service name docker-registry is also used to construct an environment variable with the
service IP that is inserted into other pods in the same namespace. The maximum name length is
63 characters.

The label selector identifies all pods with the docker-registry=default label attached as its
backing pods.

Virtual IP of the service, allocated automatically at creation from a pool of internal IPs.

Port the service listens on.

Port on the backing pods to which the service forwards connections.

The Kubernetes documentation has more information on services.

3.3.3.1. Service externalIPs

In addition to the cluster’s internal IP addresses, the user can configure IP addresses that are external to
the cluster. The administrator is responsible for ensuring that traffic arrives at a node with this IP.

The externalIPs must be selected by the cluster adminitrators from the externalIPNetworkCIDRs range
configured in master-config.yaml file. When master-config.yaml is changed, the master services must
be restarted.

Example 3.4. Sample externalIPNetworkCIDR /etc/origin/master/master-config.yaml

networkConfig:
  externalIPNetworkCIDRs:
  - 192.0.1.0.0/24

Example 3.5. Service externalIPs Definition (JSON)

apiVersion: v1
kind: Service
metadata:
  name: docker-registry      1
spec:
  selector:                  2
    docker-registry: default
  clusterIP: 172.30.136.123   3
  ports:
  - nodePort: 0
    port: 5000               4
    protocol: TCP
    targetPort: 5000         5

{
    "kind": "Service",

CHAPTER 3. CORE CONCEPTS

37

http://kubernetes.io/docs/user-guide/services/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#unique-external-ips-ingress-traffic-configure-cluster


1 List of external IP addresses on which the port is exposed. This list is in addition to the internal
IP address list.

3.3.3.2. Service ingressIPs

In non-cloud clusters, externalIP addresses can be automatically assigned from a pool of addresses. This
eliminates the need for the administrator manually assigning them.

The pool is configured in /etc/origin/master/master-config.yaml  file. After changing this file, restart
the master service.

The ingressIPNetworkCIDR is set to 172.29.0.0/16 by default. If the cluster environment is not already
using this private range, use the default range or set a custom range.

NOTE

If you are using high availability, then this range must be less than 256 addresses.

Example 3.6. Sample ingressIPNetworkCIDR /etc/origin/master/master-config.yaml

networkConfig:
  ingressIPNetworkCIDR: 172.29.0.0/16

3.3.3.3. Service NodePort

Setting the service type=NodePort will allocate a port from a flag-configured range (default: 30000-
32767), and each node will proxy that port (the same port number on every node) into your service.

    "apiVersion": "v1",
    "metadata": {
        "name": "my-service"
    },
    "spec": {
        "selector": {
            "app": "MyApp"
        },
        "ports": [
            {
                "name": "http",
                "protocol": "TCP",
                "port": 80,
                "targetPort": 9376
            }
        ],
        "externalIPs" : [
            "192.0.1.1"         1
        ]
    }
}

OpenShift Container Platform 3.10 Architecture

38

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#admin-guide-high-availability


The selected port will be reported in the service configuration, under spec.ports[*].nodePort.

To specify a custom port just place the port number in the nodePort field. The custom port number must
be in the configured range for nodePorts. When 'master-config.yaml' is changed the master services
must be restarted.

Example 3.7. Sample servicesNodePortRange /etc/origin/master/master-config.yaml

kubernetesMasterConfig:
  servicesNodePortRange: ""

The service will be visible as both the <NodeIP>:spec.ports[].nodePort and 
spec.clusterIp:spec.ports[].port

NOTE

Setting a nodePort is a privileged operation.

3.3.3.4. Service Proxy Mode

OpenShift Container Platform has two different implementations of the service-routing infrastructure.
The default implementation is entirely iptables-based, and uses probabilistic iptables rewriting rules to
distribute incoming service connections between the endpoint pods. The older implementation uses a
user space process to accept incoming connections and then proxy traffic between the client and one of
the endpoint pods.

The iptables-based implementation is much more efficient, but it requires that all endpoints are always
able to accept connections; the user space implementation is slower, but can try multiple endpoints in
turn until it finds one that works. If you have good readiness checks (or generally reliable nodes and
pods), then the iptables-based service proxy is the best choice. Otherwise, you can enable the user
space-based proxy when installing, or after deploying the cluster by editing the node configuration file.

3.3.3.5. Headless services

If your application does not need load balancing or single-service IP addresses, you can create a
headless service. When you create a headless service, no load-balancing or proxying is done and no
cluster IP is allocated for this service. For such services, DNS is automatically configured depending on
whether the service has selectors defined or not.

Services with selectors: For headless services that define selectors, the endpoints controller creates 
Endpoints records in the API and modifies the DNS configuration to return A records (addresses) that
point directly to the pods backing the service.

Services without selectors: For headless services that do not define selectors, the endpoints controller
does not create Endpoints records. However, the DNS system looks for and configures the following
records:

For ExternalName type services, CNAME records.

For all other service types, A records for any endpoints that share a name with the service.

3.3.3.5.1. Creating a headless service

Creating a headless service is similar to creating a standard service, but you do not declare the ClusterIP

CHAPTER 3. CORE CONCEPTS

39

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-application-health


1

2

3

Creating a headless service is similar to creating a standard service, but you do not declare the ClusterIP
address. To create a headless service, add the clusterIP: None parameter value to the service YAML
definition.

For example, for a group of pods that you want to be a part of the same cluster or service.

List of pods

You can define the headless service as:

Headless service definition

Name of the headless service.

Setting clusterIP variable to None declares a headless service.

Selects all pods that have frontend label.

Also, headless service does not have any IP address of its own.

3.3.3.5.2. Endpoint discovery by using a headless service

The benefit of using a headless service is that you can discover a pod’s IP address directly. Standard

$ oc get pods -o wide
NAME               READY  STATUS    RESTARTS   AGE    IP            NODE
frontend-1-287hw   1/1    Running   0          7m     172.17.0.3    node_1
frontend-1-68km5   1/1    Running   0          7m     172.17.0.6    node_1

apiVersion: v1
kind: Service
metadata:
  labels:
    app: ruby-helloworld-sample
    template: application-template-stibuild
  name: frontend-headless 1
spec:
  clusterIP: None 2
  ports:
  - name: web
    port: 5432
    protocol: TCP
    targetPort: 8080
  selector:
    name: frontend 3
  sessionAffinity: None
  type: ClusterIP
status:
  loadBalancer: {}

$ oc get svc
NAME                TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)    AGE
frontend            ClusterIP   172.30.232.77    <none>        5432/TCP   12m
frontend-headless   ClusterIP   None             <none>        5432/TCP   10m

OpenShift Container Platform 3.10 Architecture

40



The benefit of using a headless service is that you can discover a pod’s IP address directly. Standard
services act as load balancer or proxy and give access to the workload object by using the service name.
With headless services, the service name resolves to the set of IP addresses of the pods that are
grouped by the service.

When you look up the DNS A record for a standard service, you get the loadbalanced IP of the service.

But for a headless service, you get the list of IPs of individual pods.

NOTE

For using a headless service with a StatefulSet and related use cases where you need to
resolve DNS for the pod during initialization and termination, set 
publishNotReadyAddresses to true (the default value is false). When 
publishNotReadyAddresses is set to true, it indicates that DNS implementations must
publish the notReadyAddresses of subsets for the Endpoints associated with the
Service.

3.3.4. Labels

Labels are used to organize, group, or select API objects. For example, pods are "tagged" with labels,
and then services use label selectors to identify the pods they proxy to. This makes it possible for
services to reference groups of pods, even treating pods with potentially different containers as related
entities.

Most objects can include labels in their metadata. So labels can be used to group arbitrarily-related
objects; for example, all of the pods, services, replication controllers, and deployment configurations of
a particular application can be grouped.

Labels are simple key/value pairs, as in the following example:

Consider:

A pod consisting of an nginx container, with the label role=webserver.

A pod consisting of an Apache httpd container, with the same label role=webserver.

A service or replication controller that is defined to use pods with the role=webserver label treats both
of these pods as part of the same group.

The Kubernetes documentation has more information on labels.

3.3.5. Endpoints

$ dig frontend.test A +search +short
172.30.232.77

$ dig frontend-headless.test A +search +short
172.17.0.3
172.17.0.6

labels:
  key1: value1
  key2: value2

CHAPTER 3. CORE CONCEPTS

41

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels


The servers that back a service are called its endpoints, and are specified by an object of type Endpoints
with the same name as the service. When a service is backed by pods, those pods are normally specified
by a label selector in the service specification, and OpenShift Container Platform automatically creates
the Endpoints object pointing to those pods.

In some cases, you may want to create a service but have it be backed by external hosts rather than by
pods in the OpenShift Container Platform cluster. In this case, you can leave out the selector field in the
service, and create the Endpoints object manually .

Note that OpenShift Container Platform will not let most users manually create an Endpoints object
that points to an IP address in the network blocks reserved for pod and service IPs. Only cluster admins
or other users with permission to create resources under endpoints/restricted can create such
Endpoint objects.

3.4. PROJECTS AND USERS

3.4.1. Users

Interaction with OpenShift Container Platform is associated with a user. An OpenShift Container
Platform user object represents an actor which may be granted permissions in the system by adding
roles to them or to their groups.

Several types of users can exist:

Regular users This is the way most interactive OpenShift Container Platform users will be
represented. Regular users are created automatically in the system upon first login, or
can be created via the API. Regular users are represented with the User object.
Examples: joe alice

System users Many of these are created automatically when the infrastructure is defined, mainly for
the purpose of enabling the infrastructure to interact with the API securely. They
include a cluster administrator (with access to everything), a per-node user, users for
use by routers and registries, and various others. Finally, there is an anonymous
system user that is used by default for unauthenticated requests. Examples: 
system:admin system:openshift-registry system:node:node1.example.com

Service accounts These are special system users associated with projects; some are created
automatically when the project is first created, while project administrators can create
more for the purpose of defining access to the contents of each project. Service
accounts are represented with the ServiceAccount object. Examples: 
system:serviceaccount:default:deployer 
system:serviceaccount:foo:builder

Every user must authenticate in some way in order to access OpenShift Container Platform. API
requests with no authentication or invalid authentication are authenticated as requests by the 
anonymous system user. Once authenticated, policy determines what the user is authorized to do.

3.4.2. Namespaces

A Kubernetes namespace provides a mechanism to scope resources in a cluster. In OpenShift Container
Platform, a project is a Kubernetes namespace with additional annotations.

Namespaces provide a unique scope for:

OpenShift Container Platform 3.10 Architecture

42

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-integrating-external-services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#managing-role-bindings


Named resources to avoid basic naming collisions.

Delegated management authority to trusted users.

The ability to limit community resource consumption.

Most objects in the system are scoped by namespace, but some are excepted and have no namespace,
including nodes and users.

The Kubernetes documentation has more information on namespaces.

3.4.3. Projects

A project is a Kubernetes namespace with additional annotations, and is the central vehicle by which
access to resources for regular users is managed. A project allows a community of users to organize and
manage their content in isolation from other communities. Users must be given access to projects by
administrators, or if allowed to create projects, automatically have access to their own projects.

Projects can have a separate name, displayName, and description.

The mandatory name is a unique identifier for the project and is most visible when using the CLI
tools or API. The maximum name length is 63 characters.

The optional displayName is how the project is displayed in the web console (defaults to 
name).

The optional description can be a more detailed description of the project and is also visible in
the web console.

Each project scopes its own set of:

Objects Pods, services, replication controllers, etc.

Policies Rules for which users can or cannot perform actions on objects.

Constraints Quotas for each kind of object that can be limited.

Service accounts Service accounts act automatically with designated access to objects in the project.

Cluster administrators can create projects and delegate administrative rights  for the project to any
member of the user community. Cluster administrators can also allow developers to create their own
projects.

Developers and administrators can interact with projects using the CLI or the web console.

3.4.3.1. Projects provided at installation

OpenShift Container Platform comes with a number of projects out of the box, and projects starting
with openshift- are the most essential to users:

Starting from 3.10 and above, we have a number of projects starting with openshift- to host our master
components running as pods and other infrastructure components. The pods created in these
namespaces when having a critical pod annotation, would be considered critical and they would have

CHAPTER 3. CORE CONCEPTS

43

https://kubernetes.io/docs/tasks/administer-cluster/namespaces/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#managing-role-bindings
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#selfprovisioning-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cli_reference/#cli-reference-index
https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/#rescheduler-guaranteed-scheduling-of-critical-add-ons


guaranteed admission by kubelet. Pods created for master components in these namespaces are
already marked critical.

3.5. BUILDS AND IMAGE STREAMS

3.5.1. Builds

A build is the process of transforming input parameters into a resulting object. Most often, the process
is used to transform input parameters or source code into a runnable image. A BuildConfig object is the
definition of the entire build process.

OpenShift Container Platform leverages Kubernetes by creating Docker-formatted containers from
build images and pushing them to a container registry.

Build objects share common characteristics: inputs for a build, the need to complete a build process,
logging the build process, publishing resources from successful builds, and publishing the final status of
the build. Builds take advantage of resource restrictions, specifying limitations on resources such as
CPU usage, memory usage, and build or pod execution time.

The OpenShift Container Platform build system provides extensible support for build strategies that are
based on selectable types specified in the build API. There are three primary build strategies available:

Docker build

Source-to-Image (S2I) build

Custom build

By default, Docker builds and S2I builds are supported.

The resulting object of a build depends on the builder used to create it. For Docker and S2I builds, the
resulting objects are runnable images. For Custom builds, the resulting objects are whatever the builder
image author has specified.

Additionally, the Pipeline build strategy can be used to implement sophisticated workflows:

continuous integration

continuous deployment

For a list of build commands, see the Developer’s Guide.

For more information on how OpenShift Container Platform leverages Docker for builds, see the
upstream documentation.

3.5.1.1. Docker Build

The Docker build strategy invokes the docker build command, and it therefore expects a repository with
a Dockerfile and all required artifacts in it to produce a runnable image.

3.5.1.2. Source-to-Image (S2I) Build

Source-to-Image (S2I) is a tool for building reproducible, Docker-formatted container images. It
produces ready-to-run images by injecting application source into a container image and assembling a
new image. The new image incorporates the base image (the builder) and built source and is ready to

OpenShift Container Platform 3.10 Architecture

44

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#defining-a-buildconfig
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-how-builds-work
https://github.com/openshift/origin/blob/master/docs/builds.md#how-it-works
https://docs.docker.com/engine/reference/commandline/build/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/creating_images/#creating-images-s2i


use with the docker run command. S2I supports incremental builds, which re-use previously
downloaded dependencies, previously built artifacts, etc.

The advantages of S2I include the following:

Image
flexibility

S2I scripts can be written to inject application code into almost any existing Docker-
formatted container image, taking advantage of the existing ecosystem. Note that, currently,
S2I relies on tar to inject application source, so the image needs to be able to process tarred
content.

Speed With S2I, the assemble process can perform a large number of complex operations without
creating a new layer at each step, resulting in a fast process. In addition, S2I scripts can be
written to re-use artifacts stored in a previous version of the application image, rather than
having to download or build them each time the build is run.

Patchability S2I allows you to rebuild the application consistently if an underlying image needs a patch
due to a security issue.

Operational
efficiency

By restricting build operations instead of allowing arbitrary actions, as a Dockerfile would
allow, the PaaS operator can avoid accidental or intentional abuses of the build system.

Operational
security

Building an arbitrary Dockerfile exposes the host system to root privilege escalation. This can
be exploited by a malicious user because the entire Docker build process is run as a user with
Docker privileges. S2I restricts the operations performed as a root user and can run the
scripts as a non-root user.

User
efficiency

S2I prevents developers from performing arbitrary yum install type operations, which could
slow down development iteration, during their application build.

Ecosystem S2I encourages a shared ecosystem of images where you can leverage best practices for
your applications.

Reproducibili
ty

Produced images can include all inputs including specific versions of build tools and
dependencies. This ensures that the image can be reproduced precisely.

3.5.1.3. Custom Build

The Custom build strategy allows developers to define a specific builder image responsible for the entire
build process. Using your own builder image allows you to customize your build process.

A Custom builder image  is a plain Docker-formatted container image embedded with build process
logic, for example for building RPMs or base images. The openshift/origin-custom-docker-builder
image is available on the Docker Hub registry as an example implementation of a Custom builder image.

3.5.1.4. Pipeline Build

The Pipeline build strategy allows developers to define a Jenkins pipeline  for execution by the Jenkins
pipeline plugin. The build can be started, monitored, and managed by OpenShift Container Platform in
the same way as any other build type.

Pipeline workflows are defined in a Jenkinsfile, either embedded directly in the build configuration, or
supplied in a Git repository and referenced by the build configuration.

CHAPTER 3. CORE CONCEPTS

45

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/creating_images/#creating-images-custom
https://hub.docker.com/r/openshift/origin-custom-docker-builder


The first time a project defines a build configuration using a Pipeline strategy, OpenShift Container
Platform instantiates a Jenkins server to execute the pipeline. Subsequent Pipeline build configurations
in the project share this Jenkins server.

For more details on how the Jenkins server is deployed and how to configure or disable the
autoprovisioning behavior, see Configuring Pipeline Execution.

NOTE

The Jenkins server is not automatically removed, even if all Pipeline build configurations
are deleted. It must be manually deleted by the user.

For more information about Jenkins Pipelines, see the Jenkins documentation.

3.5.2. Image Streams

An image stream and its associated tags provide an abstraction for referencing Docker images from
within OpenShift Container Platform. The image stream and its tags allow you to see what images are
available and ensure that you are using the specific image you need even if the image in the repository
changes.

Image streams do not contain actual image data, but present a single virtual view of related images,
similar to an image repository.

You can configure Builds and Deployments to watch an image stream for notifications when new
images are added and react by performing a Build or Deployment, respectively.

For example, if a Deployment is using a certain image and a new version of that image is created, a
Deployment could be automatically performed to pick up the new version of the image.

However, if the image stream tag used by the Deployment or Build is not updated, then even if the
Docker image in the Docker registry is updated, the Build or Deployment will continue using the previous
(presumably known good) image.

The source images can be stored in any of the following:

OpenShift Container Platform’s integrated registry

An external registry, for example registry.access.redhat.com or hub.docker.com

Other image streams in the OpenShift Container Platform cluster

When you define an object that references an image stream tag (such as a Build or Deployment
configuration), you point to an image stream tag, not the Docker repository. When you Build or Deploy
your application, OpenShift Container Platform queries the Docker repository using the image stream
tag to locate the associated ID of the image and uses that exact image.

The image stream metadata is stored in the etcd instance along with other cluster information.

The following image stream contains two tags: 34 which points to a Python v3.4 image and 35 which
points to a Python v3.5 image:

oc describe is python
Name:   python
Namespace:  imagestream
Created:  25 hours ago

OpenShift Container Platform 3.10 Architecture

46

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-configuring-pipeline-execution
https://jenkins.io/doc/pipeline/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#image-change-triggers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#image-change-trigger


Labels:   app=python
Annotations:  openshift.io/generated-by=OpenShiftWebConsole
   openshift.io/image.dockerRepositoryCheck=2017-10-03T19:48:00Z
Docker Pull Spec: docker-registry.default.svc:5000/imagestream/python
Image Lookup:  local=false
Unique Images:  2
Tags:   2

34
  tagged from centos/python-34-centos7

  * centos/python-34-
centos7@sha256:28178e2352d31f240de1af1370be855db33ae9782de737bb005247d8791a54d0
      14 seconds ago

35
  tagged from centos/python-35-centos7

  * centos/python-35-
centos7@sha256:2efb79ca3ac9c9145a63675fb0c09220ab3b8d4005d35e0644417ee552548b10
      7 seconds ago

Using image streams has several significant benefits:

You can tag, rollback a tag, and quickly deal with images, without having to re-push using the
command line.

You can trigger Builds and Deployments when a new image is pushed to the registry. Also,
OpenShift Container Platform has generic triggers for other resources (such as Kubernetes
objects).

You can mark a tag for periodic re-import . If the source image has changed, that change is
picked up and reflected in the image stream, which triggers the Build and/or Deployment flow,
depending upon the Build or Deployment configuration.

You can share images using fine-grained access control and quickly distribute images across
your teams.

If the source image changes, the image stream tag will still point to a known-good version of
the image, ensuring that your application will not break unexpectedly.

You can configure security around who can view and use the images through permissions on the
image stream objects.

Users that lack permission to read or list images on the cluster level can still retrieve the images
tagged in a project using image streams.

For a curated set of image streams, see the OpenShift Image Streams and Templates library .

When using image streams, it is important to understand what the image stream tag is pointing to and
how changes to tags and images can affect you. For example:

If your image stream tag points to a Docker image tag, you need to understand how that Docker
image tag is updated. For example, a Docker image tag docker.io/ruby:2.5 points to a v2.5 ruby
image, but a Docker image tag docker.io/ruby:latest changes with major versions. So, the
Docker image tag that a image stream tag points to can tell you how stable the image stream
tag is.

CHAPTER 3. CORE CONCEPTS

47

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#importing-tag-and-image-metadata
https://github.com/openshift/library


If your image stream tag follows another image stream tag instead of pointing directly to a
Docker image tag, it is possible that the image stream tag might be updated to follow a
different image stream tag in the future. This change might result in picking up an incompatible
version change.

3.5.2.1. Important terms

Docker repository

A collection of related docker images and tags identifying them. For example, the OpenShift Jenkins
images are in a Docker repository:

docker.io/openshift/jenkins-2-centos7

Docker registry

A content server that can store and service images from Docker repositories. For example:

registry.access.redhat.com

Docker image

A specific set of content that can be run as a container. Usually associated with a particular tag within
a Docker repository.

Docker image tag

A label applied to a Docker image in a repository that distinguishes a specific image. For example,
here 3.6.0 is a tag:

docker.io/openshift/jenkins-2-centos7:3.6.0

NOTE

A Docker image tag can be updated to point to new Docker image content at any time.

Docker image ID

A SHA (Secure Hash Algorithm) code that can be used to pull an image. For example:

docker.io/openshift/jenkins-2-centos7@sha256:ab312bda324

NOTE

A SHA image ID cannot change. A specific SHA identifier always references the exact
same docker image content.

Image stream

An OpenShift Container Platform object that contains pointers to any number of Docker-formatted
container images identified by tags. You can think of an image stream as equivalent to a Docker
repository.

Image stream tag

A named pointer to an image in an image stream. An image stream tag is similar to a Docker image
tag. See Image Stream Tag below.

OpenShift Container Platform 3.10 Architecture

48



1

Image stream image

An image that allows you to retrieve a specific Docker image from a particular image stream where it
is tagged. An image stream image is an API resource object that pulls together some metadata
about a particular image SHA identifier. See Image Stream Images below.

Image stream trigger

A trigger that causes a specific action when an image stream tag changes. For example, importing
can cause the value of the tag to change, which causes a trigger to fire when there are Deployments,
Builds, or other resources listening for those. See Image Stream Triggers below.

3.5.2.2. Configuring Image Streams

An image stream object file contains the following elements.

NOTE

See the Developer Guide for details on managing images and image streams.

Image Stream Object Definition

The name of the image stream.

apiVersion: v1
kind: ImageStream
metadata:
  annotations:
    openshift.io/generated-by: OpenShiftNewApp
  creationTimestamp: 2017-09-29T13:33:49Z
  generation: 1
  labels:
    app: ruby-sample-build
    template: application-template-stibuild
  name: origin-ruby-sample 1
  namespace: test
  resourceVersion: "633"
  selflink: /oapi/v1/namespaces/test/imagestreams/origin-ruby-sample
  uid: ee2b9405-c68c-11e5-8a99-525400f25e34
spec: {}
status:
  dockerImageRepository: 172.30.56.218:5000/test/origin-ruby-sample 2
  tags:
  - items:
    - created: 2017-09-02T10:15:09Z
      dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d 3
      generation: 2
      image: sha256:909de62d1f609a717ec433cc25ca5cf00941545c83a01fb31527771e1fab3fc5 4
    - created: 2017-09-29T13:40:11Z
      dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:909de62d1f609a717ec433cc25ca5cf00941545c83a01fb31527771e1fab3fc5
      generation: 1
      image: sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d
    tag: latest 5

CHAPTER 3. CORE CONCEPTS

49

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-managing-images


2

3

4

5

Docker repository path where new images can be pushed to add/update them in this image stream.

The SHA identifier that this image stream tag currently references. Resources that reference this
image stream tag use this identifier.

The SHA identifier that this image stream tag previously referenced. Can be used to rollback to an
older image.

The image stream tag name.

For a sample build configuration that references an image stream, see What Is a BuildConfig?  in the 
Strategy stanza of the configuration.

For a sample deployment configuration that references an image stream, see Creating a Deployment
Configuration in the Strategy stanza of the configuration.

3.5.2.3. Image Stream Images

An image stream image points from within an image stream to a particular image ID.

Image stream images allow you to retrieve metadata about an image from a particular image stream
where it is tagged.

Image stream image objects are automatically created in OpenShift Container Platform whenever you
import or tag an image into the image stream. You should never have to explicitly define an image
stream image object in any image stream definition that you use to create image streams.

The image stream image consists of the image stream name and image ID from the repository,
delimited by an @ sign:

<image-stream-name>@<image-id>

To refer to the image in the image stream object example above , the image stream image looks like:

origin-ruby-
sample@sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d

3.5.2.4. Image Stream Tags

An image stream tag is a named pointer to an image in an image stream. It is often abbreviated as istag.
An image stream tag is used to reference or retrieve an image for a given image stream and tag.

Image stream tags can reference any local or externally managed image. It contains a history of images
represented as a stack of all images the tag ever pointed to. Whenever a new or existing image is tagged
under particular image stream tag, it is placed at the first position in the history stack. The image
previously occupying the top position will be available at the second position, and so forth. This allows
for easy rollbacks to make tags point to historical images again.

The following image stream tag is from the image stream object example above :

Image Stream Tag with Two Images in its History

  tags:
  - items:

OpenShift Container Platform 3.10 Architecture

50

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#defining-a-buildconfig
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#creating-a-deployment-configuration


Image stream tags can be permanent tags or tracking tags.

Permanent tags  are version-specific tags that point to a particular version of an image, such as
Python 3.5.

Tracking tags are reference tags that follow another image stream tag and could be updated in
the future to change which image they follow, much like a symlink. Note that these new levels
are not guaranteed to be backwards-compatible.
For example, the latest image stream tags that ship with OpenShift Container Platform are
tracking tags. This means consumers of the latest image stream tag will be updated to the
newest level of the framework provided by the image when a new level becomes available. A 
latest image stream tag to v3.6 could be changed to v3.7 at any time. It is important to be
aware that these latest image stream tags behave differently than the Docker latest tag. The 
latest image stream tag, in this case, does not point to the latest image in the Docker repository.
It points to another image stream tag, which might not be the latest version of an image. For
example, if the latest image stream tag points to v3.2 of an image, when the 3.3 version is
released, the latest tag is not automatically updated to v3.3, and remains at v3.2 until it is
manually updated to point to a v3.3 image stream tag.

NOTE

Tracking tags are limited to a single image stream and cannot reference other
image streams.

You can create your own image stream tags for your own needs. See the Recommended Tagging
Conventions.

The image stream tag is composed of the name of the image stream and a tag, separated by a colon:

<image stream name>:<tag>

For example, to refer to the 
sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d image in the
image stream object example above , the image stream tag would be:

origin-ruby-sample:latest

3.5.2.5. Image Stream Change Triggers

Image stream triggers allow your Builds and Deployments to be automatically invoked when a new
version of an upstream image is available.

For example, Builds and Deployments can be automatically started when an image stream tag is

    - created: 2017-09-02T10:15:09Z
      dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d
      generation: 2
      image: sha256:909de62d1f609a717ec433cc25ca5cf00941545c83a01fb31527771e1fab3fc5
    - created: 2017-09-29T13:40:11Z
      dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:909de62d1f609a717ec433cc25ca5cf00941545c83a01fb31527771e1fab3fc5
      generation: 1
      image: sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d
    tag: latest

CHAPTER 3. CORE CONCEPTS

51

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#tag-naming


1

For example, Builds and Deployments can be automatically started when an image stream tag is
modified. This is achieved by monitoring that particular image stream tag and notifying the Build or
Deployment when a change is detected.

The ImageChange trigger results in a new replication controller whenever the content of an image
stream tag changes (when a new version of the image is pushed).

Example 3.8. An ImageChange Trigger

If the imageChangeParams.automatic field is set to false, the trigger is disabled.

With the above example, when the latest tag value of the origin-ruby-sample image stream changes
and the new image value differs from the current image specified in the deployment configuration’s
helloworld container, a new replication controller is created using the new image for the helloworld
container.

NOTE

If an ImageChange trigger is defined on a deployment configuration (with a 
ConfigChange trigger and automatic=false, or with automatic=true) and the 
ImageStreamTag pointed by the ImageChange trigger does not exist yet, then the
initial deployment process will automatically start as soon as an image is imported or
pushed by a build to the ImageStreamTag.

3.5.2.6. Image Stream Mappings

When the integrated registry receives a new image, it creates and sends an image stream mapping to
OpenShift Container Platform, providing the image’s project, name, tag, and image metadata.

NOTE

Configuring image stream mappings is an advanced feature.

This information is used to create a new image (if it does not already exist) and to tag the image into the
image stream. OpenShift Container Platform stores complete metadata about each image, such as
commands, entry point, and environment variables. Images in OpenShift Container Platform are
immutable and the maximum name length is 63 characters.

NOTE

See the Developer Guide for details on manually tagging images.

triggers:
  - type: "ImageChange"
    imageChangeParams:
      automatic: true 1
      from:
        kind: "ImageStreamTag"
        name: "origin-ruby-sample:latest"
        namespace: "myproject"
      containerNames:
        - "helloworld"

OpenShift Container Platform 3.10 Architecture

52

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-managing-images


The following image stream mapping example results in an image being tagged as test/origin-ruby-
sample:latest:

Image Stream Mapping Object Definition

apiVersion: v1
kind: ImageStreamMapping
metadata:
  creationTimestamp: null
  name: origin-ruby-sample
  namespace: test
tag: latest
image:
  dockerImageLayers:
  - name: sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef
    size: 0
  - name: sha256:ee1dd2cb6df21971f4af6de0f1d7782b81fb63156801cfde2bb47b4247c23c29
    size: 196634330
  - name: sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef
    size: 0
  - name: sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef
    size: 0
  - name: sha256:ca062656bff07f18bff46be00f40cfbb069687ec124ac0aa038fd676cfaea092
    size: 177723024
  - name: sha256:63d529c59c92843c395befd065de516ee9ed4995549f8218eac6ff088bfa6b6e
    size: 55679776
  - name: sha256:92114219a04977b5563d7dff71ec4caa3a37a15b266ce42ee8f43dba9798c966
    size: 11939149
  dockerImageMetadata:
    Architecture: amd64
    Config:
      Cmd:
      - /usr/libexec/s2i/run
      Entrypoint:
      - container-entrypoint
      Env:
      - RACK_ENV=production
      - OPENSHIFT_BUILD_NAMESPACE=test
      - OPENSHIFT_BUILD_SOURCE=https://github.com/openshift/ruby-hello-world.git
      - EXAMPLE=sample-app
      - OPENSHIFT_BUILD_NAME=ruby-sample-build-1
      - PATH=/opt/app-root/src/bin:/opt/app-
root/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
      - STI_SCRIPTS_URL=image:///usr/libexec/s2i
      - STI_SCRIPTS_PATH=/usr/libexec/s2i
      - HOME=/opt/app-root/src
      - BASH_ENV=/opt/app-root/etc/scl_enable
      - ENV=/opt/app-root/etc/scl_enable
      - PROMPT_COMMAND=. /opt/app-root/etc/scl_enable
      - RUBY_VERSION=2.2
      ExposedPorts:
        8080/tcp: {}
      Labels:
        build-date: 2015-12-23
        io.k8s.description: Platform for building and running Ruby 2.2 applications
        io.k8s.display-name: 172.30.56.218:5000/test/origin-ruby-sample:latest

CHAPTER 3. CORE CONCEPTS

53



        io.openshift.build.commit.author: Ben Parees <bparees@users.noreply.github.com>
        io.openshift.build.commit.date: Wed Jan 20 10:14:27 2016 -0500
        io.openshift.build.commit.id: 00cadc392d39d5ef9117cbc8a31db0889eedd442
        io.openshift.build.commit.message: 'Merge pull request #51 from php-coder/fix_url_and_sti'
        io.openshift.build.commit.ref: master
        io.openshift.build.image: centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8986b28e
        io.openshift.build.source-location: https://github.com/openshift/ruby-hello-world.git
        io.openshift.builder-base-version: 8d95148
        io.openshift.builder-version: 8847438ba06307f86ac877465eadc835201241df
        io.openshift.s2i.scripts-url: image:///usr/libexec/s2i
        io.openshift.tags: builder,ruby,ruby22
        io.s2i.scripts-url: image:///usr/libexec/s2i
        license: GPLv2
        name: CentOS Base Image
        vendor: CentOS
      User: "1001"
      WorkingDir: /opt/app-root/src
    Container: 86e9a4a3c760271671ab913616c51c9f3cea846ca524bf07c04a6f6c9e103a76
    ContainerConfig:
      AttachStdout: true
      Cmd:
      - /bin/sh
      - -c
      - tar -C /tmp -xf - && /usr/libexec/s2i/assemble
      Entrypoint:
      - container-entrypoint
      Env:
      - RACK_ENV=production
      - OPENSHIFT_BUILD_NAME=ruby-sample-build-1
      - OPENSHIFT_BUILD_NAMESPACE=test
      - OPENSHIFT_BUILD_SOURCE=https://github.com/openshift/ruby-hello-world.git
      - EXAMPLE=sample-app
      - PATH=/opt/app-root/src/bin:/opt/app-
root/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
      - STI_SCRIPTS_URL=image:///usr/libexec/s2i
      - STI_SCRIPTS_PATH=/usr/libexec/s2i
      - HOME=/opt/app-root/src
      - BASH_ENV=/opt/app-root/etc/scl_enable
      - ENV=/opt/app-root/etc/scl_enable
      - PROMPT_COMMAND=. /opt/app-root/etc/scl_enable
      - RUBY_VERSION=2.2
      ExposedPorts:
        8080/tcp: {}
      Hostname: ruby-sample-build-1-build
      Image: centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8986b28e
      OpenStdin: true
      StdinOnce: true
      User: "1001"
      WorkingDir: /opt/app-root/src
    Created: 2016-01-29T13:40:00Z
    DockerVersion: 1.8.2.fc21
    Id: 9d7fd5e2d15495802028c569d544329f4286dcd1c9c085ff5699218dbaa69b43
    Parent: 57b08d979c86f4500dc8cad639c9518744c8dd39447c055a3517dc9c18d6fccd
    Size: 441976279

OpenShift Container Platform 3.10 Architecture

54



3.5.2.7. Working with Image Streams

The following sections describe how to use image streams and image stream tags. For more information
on working with image streams, see Managing Images.

3.5.2.7.1. Getting Information about Image Streams

To get general information about the image stream and detailed information about all the tags it is
pointing to, use the following command:

oc describe is/<image-name>

For example:

oc describe is/python

Name:   python
Namespace:  default
Created:  About a minute ago
Labels:   <none>
Annotations:  openshift.io/image.dockerRepositoryCheck=2017-10-02T17:05:11Z
Docker Pull Spec: docker-registry.default.svc:5000/default/python
Image Lookup:  local=false
Unique Images:  1
Tags:   1

3.5
  tagged from centos/python-35-centos7

  * centos/python-35-centos7@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
      About a minute ago

To get all the information available about particular image stream tag:

oc describe istag/<image-stream>:<tag-name>

For example:

oc describe istag/python:latest

Image Name: sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
Docker Image: centos/python-35-
centos7@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
Name:  sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
Created: 2 minutes ago
Image Size: 251.2 MB (first layer 2.898 MB, last binary layer 72.26 MB)
Image Created: 2 weeks ago
Author:  <none>

    apiVersion: "1.0"
    kind: DockerImage
  dockerImageMetadataVersion: "1.0"
  dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d

CHAPTER 3. CORE CONCEPTS

55

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-managing-images


Arch:  amd64
Entrypoint: container-entrypoint
Command: /bin/sh -c $STI_SCRIPTS_PATH/usage
Working Dir: /opt/app-root/src
User:  1001
Exposes Ports: 8080/tcp
Docker Labels: build-date=20170801

NOTE

More information is output than shown.

3.5.2.7.2. Adding Additional Tags to an Image Stream

To add a tag that points to one of the existing tags, you can use the oc tag command:

oc tag <image-name:tag> <image-name:tag>

For example:

oc tag python:3.5 python:latest

Tag python:latest set to 
python@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25.

Use the oc describe command to confirm the image stream has two tags, one ( 3.5) pointing at the
external Docker image and another tag (latest) pointing to the same image because it was created
based on the first tag.

oc describe is/python

Name:   python
Namespace:  default
Created:  5 minutes ago
Labels:   <none>
Annotations:  openshift.io/image.dockerRepositoryCheck=2017-10-02T17:05:11Z
Docker Pull Spec: docker-registry.default.svc:5000/default/python
Image Lookup:  local=false
Unique Images:  1
Tags:   2

latest
  tagged from python@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25

  * centos/python-35-centos7@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
      About a minute ago

3.5
  tagged from centos/python-35-centos7

  * centos/python-35-centos7@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
      5 minutes ago

OpenShift Container Platform 3.10 Architecture

56



3.5.2.7.3. Adding Tags for an External Image

Use the oc tag command for all tag-related operations, such as adding tags pointing to internal or
external images:

oc tag <repositiory/image> <image-name:tag>

For example, this command maps the docker.io/python:3.6.0 image to the 3.6 tag in the python image
stream.

oc tag docker.io/python:3.6.0 python:3.6
Tag python:3.6 set to docker.io/python:3.6.0.

If the external image is secured, you will need to create a secret with credentials for accessing that
registry. See Importing Images from Private Registries  for more details.

3.5.2.7.4. Updating an Image Stream Tag

To update a tag to reflect another tag in an image stream:

oc tag <image-name:tag> <image-name:latest>

For example, the following updates the latest tag to reflect the 3.6 tag in an image stream:

oc tag python:3.6 python:latest
Tag python:latest set to 
python@sha256:438208801c4806548460b27bd1fbcb7bb188273d13871ab43f.

3.5.2.7.5. Removing Image Stream Tags from an Image Stream

To remove old tags from an image stream:

oc tag -d <image-name:tag>

For example:

oc tag -d python:3.5

Deleted tag default/python:3.5.

3.5.2.7.6. Configuring Periodic Importing of Tags

When working with an external Docker registry, to periodically re-import an image (such as, to get latest
security updates), use the --scheduled flag:

oc tag <repositiory/image> <image-name:tag> --scheduled

For example:

oc tag docker.io/python:3.6.0 python:3.6 --scheduled

Tag python:3.6 set to import docker.io/python:3.6.0 periodically.

CHAPTER 3. CORE CONCEPTS

57

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#private-registries


This command causes OpenShift Container Platform to periodically update this particular image stream
tag. This period is a cluster-wide setting set to 15 minutes by default.

To remove the periodic check, re-run above command but omit the --scheduled flag. This will reset its
behavior to default.

oc tag <repositiory/image> <image-name:tag>

3.6. DEPLOYMENTS

3.6.1. Replication controllers

A replication controller ensures that a specified number of replicas of a pod are running at all times. If
pods exit or are deleted, the replication controller acts to instantiate more up to the defined number.
Likewise, if there are more running than desired, it deletes as many as necessary to match the defined
amount.

A replication controller configuration consists of:

1. The number of replicas desired (which can be adjusted at runtime).

2. A pod definition to use when creating a replicated pod.

3. A selector for identifying managed pods.

A selector is a set of labels assigned to the pods that are managed by the replication controller. These
labels are included in the pod definition that the replication controller instantiates. The replication
controller uses the selector to determine how many instances of the pod are already running in order to
adjust as needed.

The replication controller does not perform auto-scaling based on load or traffic, as it does not track
either. Rather, this would require its replica count to be adjusted by an external auto-scaler.

A replication controller is a core Kubernetes object called ReplicationController.

The following is an example ReplicationController definition:

apiVersion: v1
kind: ReplicationController
metadata:
  name: frontend-1
spec:
  replicas: 1  1
  selector:    2
    name: frontend
  template:    3
    metadata:
      labels:  4
        name: frontend 5
    spec:
      containers:
      - image: openshift/hello-openshift
        name: helloworld
        ports:

OpenShift Container Platform 3.10 Architecture

58

https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/


1

2

3

4

5

The number of copies of the pod to run.

The label selector of the pod to run.

A template for the pod the controller creates.

Labels on the pod should include those from the label selector.

The maximum name length after expanding any parameters is 63 characters.

3.6.2. Replica set

Similar to a replication controller, a replica set ensures that a specified number of pod replicas are
running at any given time. The difference between a replica set and a replication controller is that a
replica set supports set-based selector requirements whereas a replication controller only supports
equality-based selector requirements.

NOTE

Only use replica sets if you require custom update orchestration or do not require updates
at all, otherwise, use Deployments. Replica sets can be used independently, but are used
by deployments to orchestrate pod creation, deletion, and updates. Deployments
manage their replica sets automatically, provide declarative updates to pods, and do not
have to manually manage the replica sets that they create.

A replica set is a core Kubernetes object called ReplicaSet.

The following is an example ReplicaSet definition:

        - containerPort: 8080
          protocol: TCP
      restartPolicy: Always

apiVersion: apps/v1
kind: ReplicaSet
metadata:
  name: frontend-1
  labels:
    tier: frontend
spec:
  replicas: 3
  selector: 1
    matchLabels: 2
      tier: frontend
    matchExpressions: 3
      - {key: tier, operator: In, values: [frontend]}
  template:
    metadata:
      labels:
        tier: frontend
    spec:
      containers:
      - image: openshift/hello-openshift
        name: helloworld

CHAPTER 3. CORE CONCEPTS

59



1

2

3

A label query over a set of resources. The result of matchLabels and matchExpressions are
logically conjoined.

Equality-based selector to specify resources with labels that match the selector.

Set-based selector to filter keys. This selects all resources with key equal to tier and value equal to 
frontend.

3.6.3. Jobs

A job is similar to a replication controller, in that its purpose is to create pods for specified reasons. The
difference is that replication controllers are designed for pods that will be continuously running, whereas
jobs are for one-time pods. A job tracks any successful completions and when the specified amount of
completions have been reached, the job itself is completed.

The following example computes π to 2000 places, prints it out, then completes:

See the Jobs topic for more information on how to use jobs.

3.6.4. Deployments and Deployment Configurations

Building on replication controllers, OpenShift Container Platform adds expanded support for the
software development and deployment lifecycle with the concept of deployments. In the simplest case,
a deployment just creates a new replication controller and lets it start up pods. However, OpenShift
Container Platform deployments also provide the ability to transition from an existing deployment of an
image to a new one and also define hooks to be run before or after creating the replication controller.

The OpenShift Container Platform DeploymentConfig object defines the following details of a
deployment:

        ports:
        - containerPort: 8080
          protocol: TCP
      restartPolicy: Always

apiVersion: extensions/v1
kind: Job
metadata:
  name: pi
spec:
  selector:
    matchLabels:
      app: pi
  template:
    metadata:
      name: pi
      labels:
        app: pi
    spec:
      containers:
      - name: pi
        image: perl
        command: ["perl",  "-Mbignum=bpi", "-wle", "print bpi(2000)"]
      restartPolicy: Never

OpenShift Container Platform 3.10 Architecture

60

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-jobs


1

2

3

1. The elements of a ReplicationController definition.

2. Triggers for creating a new deployment automatically.

3. The strategy for transitioning between deployments.

4. Life cycle hooks.

Each time a deployment is triggered, whether manually or automatically, a deployer pod manages the
deployment (including scaling down the old replication controller, scaling up the new one, and running
hooks). The deployment pod remains for an indefinite amount of time after it completes the
deployment in order to retain its logs of the deployment. When a deployment is superseded by another,
the previous replication controller is retained to enable easy rollback if needed.

For detailed instructions on how to create and interact with deployments, refer to Deployments.

Here is an example DeploymentConfig definition with some omissions and callouts:

A ConfigChange trigger causes a new deployment to be created any time the replication
controller template changes.

An ImageChange trigger causes a new deployment to be created each time a new version of the
backing image is available in the named image stream.

The default Rolling strategy makes a downtime-free transition between deployments.

3.7. TEMPLATES

3.7.1. Overview

A template describes a set of objects that can be parameterized and processed to produce a list of
objects for creation by OpenShift Container Platform. The objects to create can include anything that

apiVersion: v1
kind: DeploymentConfig
metadata:
  name: frontend
spec:
  replicas: 5
  selector:
    name: frontend
  template: { ... }
  triggers:
  - type: ConfigChange 1
  - imageChangeParams:
      automatic: true
      containerNames:
      - helloworld
      from:
        kind: ImageStreamTag
        name: hello-openshift:latest
    type: ImageChange  2
  strategy:
    type: Rolling      3

CHAPTER 3. CORE CONCEPTS

61

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-basic-deployment-operations


users have permission to create within a project, for example services, build configurations, and
deployment configurations. A template may also define a set of labels to apply to every object defined
in the template.

See the template guide for details about creating and using templates.

OpenShift Container Platform 3.10 Architecture

62

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-templates


CHAPTER 4. ADDITIONAL CONCEPTS

4.1. AUTHENTICATION

4.1.1. Overview

The authentication layer identifies the user associated with requests to the OpenShift Container
Platform API. The authorization layer then uses information about the requesting user to determine if
the request should be allowed.

As an administrator, you can configure authentication using a master configuration file.

4.1.2. Users and Groups

A user in OpenShift Container Platform is an entity that can make requests to the OpenShift Container
Platform API. Typically, this represents the account of a developer or administrator that is interacting
with OpenShift Container Platform.

A user can be assigned to one or more groups, each of which represent a certain set of users. Groups are
useful when managing authorization policies  to grant permissions to multiple users at once, for example
allowing access to objects within a project, versus granting them to users individually.

In addition to explicitly defined groups, there are also system groups, or virtual groups, that are
automatically provisioned by OpenShift. These can be seen when viewing cluster bindings.

In the default set of virtual groups, note the following in particular:

Virtual Group Description

system:authenticated Automatically associated with all authenticated users.

system:authenticated:oaut
h

Automatically associated with all users authenticated with an OAuth access
token.

system:unauthenticated Automatically associated with all unauthenticated users.

4.1.3. API Authentication

Requests to the OpenShift Container Platform API are authenticated using the following methods:

OAuth Access Tokens

Obtained from the OpenShift Container Platform OAuth server using the 
<master>/oauth/authorize and <master>/oauth/token endpoints.

Sent as an Authorization: Bearer…  header

Sent as an access_token=…  query parameter for websocket requests prior to OpenShift
Container Platform server version 3.6.

Sent as a websocket subprotocol header in the form 

CHAPTER 4. ADDITIONAL CONCEPTS

63

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-configuring-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-master-node-configuration
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#admin-guide-manage-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#viewing-cluster-bindings


Sent as a websocket subprotocol header in the form 
base64url.bearer.authorization.k8s.io.<base64url-encoded-token> for websocket
requests in OpenShift Container Platform server version 3.6 and later.

X.509 Client Certificates

Requires a HTTPS connection to the API server.

Verified by the API server against a trusted certificate authority bundle.

The API server creates and distributes certificates to controllers to authenticate themselves.

Any request with an invalid access token or an invalid certificate is rejected by the authentication layer
with a 401 error.

If no access token or certificate is presented, the authentication layer assigns the system:anonymous
virtual user and the system:unauthenticated virtual group to the request. This allows the authorization
layer to determine which requests, if any, an anonymous user is allowed to make.

4.1.3.1. Impersonation

A request to the OpenShift Container Platform API can include an Impersonate-User header, which
indicates that the requester wants to have the request handled as though it came from the specified
user. You impersonate a user by adding the --as=<user> flag to requests.

Before User A can impersonate User B, User A is authenticated. Then, an authorization check occurs to
ensure that User A is allowed to impersonate the user named User B. If User A is requesting to
impersonate a service account, system:serviceaccount:namespace:name, OpenShift Container
Platform confirms that User A can impersonate the serviceaccount named name in namespace. If the
check fails, the request fails with a 403 (Forbidden) error code.

By default, project administrators and editors can impersonate service accounts in their namespace. The
sudoers role allows a user to impersonate system:admin, which in turn has cluster administrator
permissions. The ability to impersonate system:admin grants some protection against typos, but not
security, for someone administering the cluster. For example, running oc delete nodes --all fails, but
running oc delete nodes --all --as=system:admin succeeds. You can grant a user that permission by
running this command:

$ oc create clusterrolebinding <any_valid_name> --clusterrole=sudoer --user=<username>

If you need to create a project request on behalf of a user, include the --as=<user> --as-group=
<group1> --as-group=<group2> flags in your command. Because system:authenticated:oauth is the
only bootstrap group that can create project requests, you must impersonate that group, as shown in
the following example:

$ oc new-project <project> --as=<user> \
--as-group=system:authenticated --as-group=system:authenticated:oauth

4.1.4. OAuth

The OpenShift Container Platform master includes a built-in OAuth server. Users obtain OAuth access
tokens to authenticate themselves to the API.

When a person requests a new OAuth token, the OAuth server uses the configured identity provider to

OpenShift Container Platform 3.10 Architecture

64



1

2

3

4

When a person requests a new OAuth token, the OAuth server uses the configured identity provider to
determine the identity of the person making the request.

It then determines what user that identity maps to, creates an access token for that user, and returns
the token for use.

4.1.4.1. OAuth Clients

Every request for an OAuth token must specify the OAuth client that will receive and use the token. The
following OAuth clients are automatically created when starting the OpenShift Container Platform API:

OAuth Client Usage

openshift-web-console Requests tokens for the web console.

openshift-browser-client Requests tokens at 
<master>/oauth/token/request with a user-
agent that can handle interactive logins.

openshift-challenging-client Requests tokens with a user-agent that can handle 
WWW-Authenticate challenges.

To register additional clients:

$ oc create -f <(echo '
kind: OAuthClient
apiVersion: oauth.openshift.io/v1
metadata:
 name: demo 1
secret: "..." 2
redirectURIs:
 - "http://www.example.com/" 3
grantMethod: prompt 4
')

The name of the OAuth client is used as the client_id parameter when making requests to 
<master>/oauth/authorize and <master>/oauth/token.

The secret is used as the client_secret parameter when making requests to 
<master>/oauth/token.

The redirect_uri parameter specified in requests to <master>/oauth/authorize and 
<master>/oauth/token must be equal to (or prefixed by) one of the URIs in redirectURIs.

The grantMethod is used to determine what action to take when this client requests tokens and
has not yet been granted access by the user. Uses the same values seen in Grant Options.

4.1.4.2. Service Accounts as OAuth Clients

A service account can be used as a constrained form of OAuth client. Service accounts can only request

CHAPTER 4. ADDITIONAL CONCEPTS

65

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-configuring-authentication


A service account can be used as a constrained form of OAuth client. Service accounts can only request
a subset of scopes that allow access to some basic user information and role-based power inside of the
service account’s own namespace:

user:info

user:check-access

role:<any_role>:<serviceaccount_namespace>

role:<any_role>:<serviceaccount_namespace>:!

When using a service account as an OAuth client:

client_id is system:serviceaccount:<serviceaccount_namespace>:
<serviceaccount_name>.

client_secret can be any of the API tokens for that service account. For example:

$ oc sa get-token <serviceaccount_name>

To get WWW-Authenticate challenges, set an serviceaccounts.openshift.io/oauth-want-
challenges annotation on the service account to true.

redirect_uri must match an annotation on the service account. Redirect URIs for Service
Accounts as OAuth Clients provides more information.

4.1.4.3. Redirect URIs for Service Accounts as OAuth Clients

Annotation keys must have the prefix serviceaccounts.openshift.io/oauth-redirecturi. or 
serviceaccounts.openshift.io/oauth-redirectreference. such as:

serviceaccounts.openshift.io/oauth-redirecturi.<name>

In its simplest form, the annotation can be used to directly specify valid redirect URIs. For example:

"serviceaccounts.openshift.io/oauth-redirecturi.first":  "https://example.com"
"serviceaccounts.openshift.io/oauth-redirecturi.second": "https://other.com"

The first and second postfixes in the above example are used to separate the two valid redirect URIs.

In more complex configurations, static redirect URIs may not be enough. For example, perhaps you want
all ingresses for a route to be considered valid. This is where dynamic redirect URIs via the 
serviceaccounts.openshift.io/oauth-redirectreference. prefix come into play.

For example:

"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

Since the value for this annotation contains serialized JSON data, it is easier to see in an expanded
format:

{

OpenShift Container Platform 3.10 Architecture

66



1

2

3

  "kind": "OAuthRedirectReference",
  "apiVersion": "v1",
  "reference": {
    "kind": "Route",
    "name": "jenkins"
  }
}

Now you can see that an OAuthRedirectReference allows us to reference the route named jenkins.
Thus, all ingresses for that route will now be considered valid. The full specification for an 
OAuthRedirectReference is:

{
  "kind": "OAuthRedirectReference",
  "apiVersion": "v1",
  "reference": {
    "kind": ..., 1
    "name": ..., 2
    "group": ... 3
  }
}

kind refers to the type of the object being referenced. Currently, only route is supported.

name refers to the name of the object. The object must be in the same namespace as the service
account.

group refers to the group of the object. Leave this blank, as the group for a route is the empty
string.

Both annotation prefixes can be combined to override the data provided by the reference object. For
example:

"serviceaccounts.openshift.io/oauth-redirecturi.first":  "custompath"
"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

The first postfix is used to tie the annotations together. Assuming that the jenkins route had an ingress
of https://example.com, now https://example.com/custompath is considered valid, but
https://example.com is not. The format for partially supplying override data is as follows:

Type Syntax

Scheme "https://"

Hostname "//website.com"

Port "//:8000"

Path "examplepath"

CHAPTER 4. ADDITIONAL CONCEPTS

67



NOTE

Specifying a host name override will replace the host name data from the referenced
object, which is not likely to be desired behavior.

Any combination of the above syntax can be combined using the following format:

<scheme:>//<hostname><:port>/<path>

The same object can be referenced more than once for more flexibility:

"serviceaccounts.openshift.io/oauth-redirecturi.first":  "custompath"
"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"
"serviceaccounts.openshift.io/oauth-redirecturi.second":  "//:8000"
"serviceaccounts.openshift.io/oauth-redirectreference.second": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

Assuming that the route named jenkins has an ingress of https://example.com, then both
https://example.com:8000 and https://example.com/custompath are considered valid.

Static and dynamic annotations can be used at the same time to achieve the desired behavior:

"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"
"serviceaccounts.openshift.io/oauth-redirecturi.second": "https://other.com"

4.1.4.3.1. API Events for OAuth

In some cases the API server returns an unexpected condition error message that is difficult to debug
without direct access to the API master log. The underlying reason for the error is purposely obscured in
order to avoid providing an unauthenticated user with information about the server’s state.

A subset of these errors is related to service account OAuth configuration issues. These issues are
captured in events that can be viewed by non-administrator users. When encountering an unexpected
condition server error during OAuth, run oc get events to view these events under ServiceAccount.

The following example warns of a service account that is missing a proper OAuth redirect URI:

$ oc get events | grep ServiceAccount
1m         1m          1         proxy                    ServiceAccount                                  Warning   
NoSAOAuthRedirectURIs   service-account-oauth-client-getter   
system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-
redirecturi.<some-value>=<redirect> or create a dynamic URI using 
serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>

Running oc describe sa/<service-account-name> reports any OAuth events associated with the given
service account name.

$ oc describe sa/proxy | grep -A5 Events
Events:

OpenShift Container Platform 3.10 Architecture

68



  FirstSeen     LastSeen        Count   From                                    SubObjectPath   Type            Reason                  
Message
  ---------     --------        -----   ----                                    -------------   --------        ------                  -------
  3m            3m              1       service-account-oauth-client-getter                     Warning         
NoSAOAuthRedirectURIs   system:serviceaccount:myproject:proxy has no redirectURIs; set 
serviceaccounts.openshift.io/oauth-redirecturi.<some-value>=<redirect> or create a dynamic URI 
using serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>

The following is a list of the possible event errors:

No redirect URI annotations or an invalid URI is specified

Reason                  Message
NoSAOAuthRedirectURIs   system:serviceaccount:myproject:proxy has no redirectURIs; set 
serviceaccounts.openshift.io/oauth-redirecturi.<some-value>=<redirect> or create a dynamic URI 
using serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>

Invalid route specified

Reason                  Message
NoSAOAuthRedirectURIs   [routes.route.openshift.io "<name>" not found, 
system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-
redirecturi.<some-value>=<redirect> or create a dynamic URI using 
serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>]

Invalid reference type specified

Reason                  Message
NoSAOAuthRedirectURIs   [no kind "<name>" is registered for version "v1", 
system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-
redirecturi.<some-value>=<redirect> or create a dynamic URI using 
serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>]

Missing SA tokens

Reason                  Message
NoSAOAuthTokens         system:serviceaccount:myproject:proxy has no tokens

4.1.4.3.1.1. Sample API Event Caused by a Possible Misconfiguration

The following steps represent one way a user could get into a broken state and how to debug or fix the
issue:

1. Create a project utilizing a service account as an OAuth client.

a. Create YAML for a proxy service account object and ensure it uses the route proxy:

vi serviceaccount.yaml

Add the following sample code:

apiVersion: v1
kind: ServiceAccount
metadata:

CHAPTER 4. ADDITIONAL CONCEPTS

69



  name: proxy
  annotations:
    serviceaccounts.openshift.io/oauth-redirectreference.primary: 
'{"kind":"OAuthRedirectReference","apiVersion":"v1","reference":
{"kind":"Route","name":"proxy"}}'

b. Create YAML for a route object to create a secure connection to the proxy:

vi route.yaml

Add the following sample code:

apiVersion: route.openshift.io/v1
kind: Route
metadata:
  name: proxy
spec:
  to:
    name: proxy
  tls:
    termination: Reencrypt
apiVersion: v1
kind: Service
metadata:
  name: proxy
  annotations:
    service.alpha.openshift.io/serving-cert-secret-name: proxy-tls
spec:
  ports:
  - name: proxy
    port: 443
    targetPort: 8443
  selector:
    app: proxy

c. Create a YAML for a deployment configuration to launch a proxy as a sidecar:

vi proxysidecar.yaml

Add the following sample code:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: proxy
spec:
  replicas: 1
  selector:
    matchLabels:
      app: proxy
  template:
    metadata:
      labels:
        app: proxy

OpenShift Container Platform 3.10 Architecture

70



    spec:
      serviceAccountName: proxy
      containers:
      - name: oauth-proxy
        image: openshift3/oauth-proxy
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 8443
          name: public
        args:
        - --https-address=:8443
        - --provider=openshift
        - --openshift-service-account=proxy
        - --upstream=http://localhost:8080
        - --tls-cert=/etc/tls/private/tls.crt
        - --tls-key=/etc/tls/private/tls.key
        - --cookie-secret=SECRET
        volumeMounts:
        - mountPath: /etc/tls/private
          name: proxy-tls

      - name: app
        image: openshift/hello-openshift:latest
      volumes:
      - name: proxy-tls
        secret:
          secretName: proxy-tls

d. Create the objects

oc create -f serviceaccount.yaml
oc create -f route.yaml
oc create -f proxysidecar.yaml

2. Run oc edit sa/proxy to edit the service account and change the 
serviceaccounts.openshift.io/oauth-redirectreference annotation to point to a Route that
does not exist.

apiVersion: v1
imagePullSecrets:
- name: proxy-dockercfg-08d5n
kind: ServiceAccount
metadata:
  annotations:
    serviceaccounts.openshift.io/oauth-redirectreference.primary: 
'{"kind":"OAuthRedirectReference","apiVersion":"v1","reference":
{"kind":"Route","name":"notexist"}}'
...

3. Review the OAuth log for the service to locate the server error:

The authorization server encountered an unexpected condition that prevented it from fulfilling 
the request.

4. Run oc get events to view the ServiceAccount event:

CHAPTER 4. ADDITIONAL CONCEPTS

71



oc get events | grep ServiceAccount

23m        23m         1         proxy                    ServiceAccount                                  Warning   
NoSAOAuthRedirectURIs   service-account-oauth-client-getter   [routes.route.openshift.io 
"notexist" not found, system:serviceaccount:myproject:proxy has no redirectURIs; set 
serviceaccounts.openshift.io/oauth-redirecturi.<some-value>=<redirect> or create a dynamic 
URI using serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>]

4.1.4.4. Integrations

All requests for OAuth tokens involve a request to <master>/oauth/authorize. Most authentication
integrations place an authenticating proxy in front of this endpoint, or configure OpenShift Container
Platform to validate credentials against a backing identity provider. Requests to 
<master>/oauth/authorize can come from user-agents that cannot display interactive login pages, such
as the CLI. Therefore, OpenShift Container Platform supports authenticating using a WWW-
Authenticate challenge in addition to interactive login flows.

If an authenticating proxy is placed in front of the <master>/oauth/authorize endpoint, it should send
unauthenticated, non-browser user-agents WWW-Authenticate challenges, rather than displaying an
interactive login page or redirecting to an interactive login flow.

NOTE

To prevent cross-site request forgery (CSRF) attacks against browser clients, Basic
authentication challenges should only be sent if a X-CSRF-Token header is present on
the request. Clients that expect to receive Basic WWW-Authenticate challenges should
set this header to a non-empty value.

If the authenticating proxy cannot support WWW-Authenticate challenges, or if
OpenShift Container Platform is configured to use an identity provider that does not
support WWW-Authenticate challenges, users can visit <master>/oauth/token/request
using a browser to obtain an access token manually.

4.1.4.5. OAuth Server Metadata

Applications running in OpenShift Container Platform may need to discover information about the built-
in OAuth server. For example, they may need to discover what the address of the <master> server is
without manual configuration. To aid in this, OpenShift Container Platform implements the IETF OAuth
2.0 Authorization Server Metadata draft specification.

Thus, any application running inside the cluster can issue a GET request to
https://openshift.default.svc/.well-known/oauth-authorization-server to fetch the following
information:

{
  "issuer": "https://<master>", 1
  "authorization_endpoint": "https://<master>/oauth/authorize", 2
  "token_endpoint": "https://<master>/oauth/token", 3
  "scopes_supported": [ 4
    "user:full",
    "user:info",
    "user:check-access",
    "user:list-scoped-projects",
    "user:list-projects"

OpenShift Container Platform 3.10 Architecture

72

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-configuring-authentication
https://tools.ietf.org/html/draft-ietf-oauth-discovery-10


1

2

3

4

5

6

7

  ],
  "response_types_supported": [ 5
    "code",
    "token"
  ],
  "grant_types_supported": [ 6
    "authorization_code",
    "implicit"
  ],
  "code_challenge_methods_supported": [ 7
    "plain",
    "S256"
  ]
}

The authorization server’s issuer identifier, which is a URL that uses the https scheme and has no
query or fragment components. This is the location where .well-known RFC 5785 resources
containing information about the authorization server are published.

URL of the authorization server’s authorization endpoint. See RFC 6749.

URL of the authorization server’s token endpoint. See RFC 6749.

JSON array containing a list of the OAuth 2.0 RFC 6749 scope values that this authorization server
supports. Note that not all supported scope values are advertised.

JSON array containing a list of the OAuth 2.0 response_type values that this authorization server
supports. The array values used are the same as those used with the response_types parameter
defined by "OAuth 2.0 Dynamic Client Registration Protocol" in RFC 7591 .

JSON array containing a list of the OAuth 2.0 grant type values that this authorization server
supports. The array values used are the same as those used with the grant_types parameter
defined by OAuth 2.0 Dynamic Client Registration Protocol in RFC 7591 .

JSON array containing a list of PKCE RFC 7636 code challenge methods supported by this
authorization server. Code challenge method values are used in the code_challenge_method
parameter defined in Section 4.3 of RFC 7636 . The valid code challenge method values are those
registered in the IANA PKCE Code Challenge Methods registry. See IANA OAuth Parameters.

4.1.4.6. Obtaining OAuth Tokens

The OAuth server supports standard authorization code grant  and the implicit grant OAuth
authorization flows.

Run the following command to request an OAuth token by using the authorization code grant method:

When requesting an OAuth token using the implicit grant flow (response_type=token) with a client_id

$ curl -H "X-Remote-User: <username>" \
     --cacert /etc/origin/master/ca.crt \
     --cert /etc/origin/master/admin.crt \
     --key /etc/origin/master/admin.key \
     -I https://<master-address>/oauth/authorize?response_type=token\&client_id=openshift-
challenging-client | grep -oP "access_token=\K[^&]*"

CHAPTER 4. ADDITIONAL CONCEPTS

73

https://tools.ietf.org/html/rfc5785
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636#section-4.3
http://www.iana.org/assignments/oauth-parameters
https://tools.ietf.org/html/rfc6749#section-4.1
https://tools.ietf.org/html/rfc6749#section-4.2


When requesting an OAuth token using the implicit grant flow (response_type=token) with a client_id
configured to request WWW-Authenticate challenges (like openshift-challenging-client), these are
the possible server responses from /oauth/authorize, and how they should be handled:

Status Content Client response

302 Location header containing an 
access_token parameter in the URL
fragment (RFC 4.2.2)

Use the access_token value as the OAuth
token

302 Location header containing an error query
parameter (RFC 4.1.2.1)

Fail, optionally surfacing the error (and
optional error_description) query values to
the user

302 Other Location header Follow the redirect, and process the result
using these rules

401 WWW-Authenticate header present Respond to challenge if type is recognized
(e.g. Basic, Negotiate, etc), resubmit
request, and process the result using these
rules

401 WWW-Authenticate header missing No challenge authentication is possible. Fail
and show response body (which might contain
links or details on alternate methods to obtain
an OAuth token)

Other Other Fail, optionally surfacing response body to the
user

To request an OAuth token using the implicit grant flow:

$ curl -u <username>:<password>
'https://<master-address>:8443/oauth/authorize?client_id=openshift-challenging-
client&response_type=token' -skv / 1
/ -H "X-CSRF-Token: xxx" 2
*   Trying 10.64.33.43...
* Connected to 10.64.33.43 (10.64.33.43) port 8443 (#0)
* found 148 certificates in /etc/ssl/certs/ca-certificates.crt
* found 592 certificates in /etc/ssl/certs
* ALPN, offering http/1.1
* SSL connection using TLS1.2 / ECDHE_RSA_AES_128_GCM_SHA256
*        server certificate verification SKIPPED
*        server certificate status verification SKIPPED
*        common name: 10.64.33.43 (matched)
*        server certificate expiration date OK
*        server certificate activation date OK
*        certificate public key: RSA
*        certificate version: #3
*        subject: CN=10.64.33.43
*        start date: Thu, 09 Aug 2018 04:00:39 GMT

OpenShift Container Platform 3.10 Architecture

74

https://tools.ietf.org/html/rfc6749#section-4.2.2
https://tools.ietf.org/html/rfc6749#section-4.1.2.1


1

2

3

1

2

client-id is set to openshift-challenging-client and response-type is set to token.

Set X-CSRF-Token header to a non-empty value.

The token is returned in the Location header of the 302 response as 
access_token=gzTwOq_mVJ7ovHliHBTgRQEEXa1aCZD9lnj7lSw3ekQ.

To view only the OAuth token value, run the following command:

client-id is set to openshift-challenging-client and response-type is set to token.

Set X-CSRF-Token header to a non-empty value.

You can also use the Code Grant method to request a token

*        expire date: Sat, 08 Aug 2020 04:00:40 GMT
*        issuer: CN=openshift-signer@1531109367
*        compression: NULL
* ALPN, server accepted to use http/1.1
* Server auth using Basic with user 'developer'
> GET /oauth/authorize?client_id=openshift-challenging-client&response_type=token HTTP/1.1
> Host: 10.64.33.43:8443
> Authorization: Basic ZGV2ZWxvcGVyOmRzc2Zkcw==
> User-Agent: curl/7.47.0
> Accept: */*
> X-CSRF-Token: xxx
>
< HTTP/1.1 302 Found
< Cache-Control: no-cache, no-store, max-age=0, must-revalidate
< Expires: Fri, 01 Jan 1990 00:00:00 GMT
< Location:
https://10.64.33.43:8443/oauth/token/implicit#access_token=gzTwOq_mVJ7ovHliHBTgRQEEXa1aCZ
D9lnj7lSw3ekQ&expires_in=86400&scope=user%3Afull&token_type=Bearer 3
< Pragma: no-cache
< Set-Cookie: 
ssn=MTUzNTk0OTc1MnxIckVfNW5vNFlLSlF5MF9GWEF6Zm55Vl95bi1ZNE41S1NCbFJMYnN1TWV
wR1hwZmlLMzFQRklzVXRkc0RnUGEzdnBEa0NZZndXV2ZUVzN1dmFPM2dHSUlzUmVXakQ3Q09rV
XpxNlRoVmVkQU5DYmdLTE9SUWlyNkJJTm1mSDQ0N2pCV09La3gzMkMzckwxc1V1QXpybFlXT2ZY
SmI2R2FTVEZsdDBzRjJ8vk6zrQPjQUmoJCqb8Dt5j5s0b4wZlITgKlho9wlKAZI=; Path=/; HttpOnly; 
Secure
< Date: Mon, 03 Sep 2018 04:42:32 GMT
< Content-Length: 0
< Content-Type: text/plain; charset=utf-8
<
* Connection #0 to host 10.64.33.43 left intact

$ curl -u <username>:<password>
'https://<master-address>:8443/oauth/authorize?client_id=openshift-challenging-
client&response_type=token' 1
-skv -H "X-CSRF-Token: xxx" --stderr - |  grep -oP "access_token=\K[^&]*" 2

hvqxe5aMlAzvbqfM2WWw3D6tR0R2jCQGKx0viZBxwmc

CHAPTER 4. ADDITIONAL CONCEPTS

75



4.1.4.7. Authentication Metrics for Prometheus

OpenShift Container Platform captures the following Prometheus system metrics during authentication
attempts:

openshift_auth_basic_password_count counts the number of oc login user name and
password attempts.

openshift_auth_basic_password_count_result counts the number of oc login user name
and password attempts by result (success or error).

openshift_auth_form_password_count counts the number of web console login attempts.

openshift_auth_form_password_count_result counts the number of web console login
attempts by result (success or error).

openshift_auth_password_total counts the total number of oc login and web console login
attempts.

4.2. AUTHORIZATION

4.2.1. Overview

Role-based Access Control (RBAC) objects determine whether a user is allowed to perform a given
action within a project.

This allows platform administrators to use the cluster roles and bindings to control who has various
access levels to the OpenShift Container Platform platform itself and all projects.

It allows developers to use local roles and bindings  to control who has access to their projects. Note that
authorization is a separate step from authentication, which is more about determining the identity of
who is taking the action.

Authorization is managed using:

Rules Sets of permitted verbs on a set of objects. For example, whether something can create pods.

Roles Collections of rules. Users and groups can be associated with, or bound to, multiple roles at the
same time.

Bindings Associations between users and/or groups with a role.

Cluster administrators can visualize rules, roles, and bindings using the CLI.

For example, consider the following excerpt that shows the rule sets for the admin and basic-user
default cluster roles:

$ oc describe clusterrole.rbac admin basic-user

Name:  admin
Labels:  <none>
Annotations: openshift.io/description=A user that has edit rights within the project and can change the 
project's membership.

OpenShift Container Platform 3.10 Architecture

76

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#viewing-roles-and-bindings


  rbac.authorization.kubernetes.io/autoupdate=true
PolicyRule:
  Resources       Non-Resource URLs Resource Names Verbs
  ---------       ----------------- -------------- -----
  appliedclusterresourcequotas     []   []  [get list watch]
  appliedclusterresourcequotas.quota.openshift.io  []   []  [get list watch]
  bindings       []   []  [get list watch]
  buildconfigs       []   []  [create delete deletecollection get list patch update watch]
  buildconfigs.build.openshift.io    []   []  [create delete deletecollection get list patch update watch]
  buildconfigs/instantiate     []   []  [create]
  buildconfigs.build.openshift.io/instantiate   []   []  [create]
  buildconfigs/instantiatebinary    []   []  [create]
  buildconfigs.build.openshift.io/instantiatebinary  []   []  [create]
  buildconfigs/webhooks      []   []  [create delete deletecollection get list patch update watch]
  buildconfigs.build.openshift.io/webhooks   []   []  [create delete deletecollection get list patch update 
watch]
  buildlogs       []   []  [create delete deletecollection get list patch update watch]
  buildlogs.build.openshift.io     []   []  [create delete deletecollection get list patch update watch]
  builds       []   []  [create delete deletecollection get list patch update watch]
  builds.build.openshift.io     []   []  [create delete deletecollection get list patch update watch]
  builds/clone       []   []  [create]
  builds.build.openshift.io/clone    []   []  [create]
  builds/details      []   []  [update]
  builds.build.openshift.io/details    []   []  [update]
  builds/log       []   []  [get list watch]
  builds.build.openshift.io/log     []   []  [get list watch]
  configmaps       []   []  [create delete deletecollection get list patch update watch]
  cronjobs.batch      []   []  [create delete deletecollection get list patch update watch]
  daemonsets.extensions      []   []  [get list watch]
  deploymentconfigrollbacks     []   []  [create]
  deploymentconfigrollbacks.apps.openshift.io   []   []  [create]
  deploymentconfigs      []   []  [create delete deletecollection get list patch update watch]
  deploymentconfigs.apps.openshift.io    []   []  [create delete deletecollection get list patch update 
watch]
  deploymentconfigs/instantiate     []   []  [create]
  deploymentconfigs.apps.openshift.io/instantiate  []   []  [create]
  deploymentconfigs/log      []   []  [get list watch]
  deploymentconfigs.apps.openshift.io/log   []   []  [get list watch]
  deploymentconfigs/rollback     []   []  [create]
  deploymentconfigs.apps.openshift.io/rollback   []   []  [create]
  deploymentconfigs/scale     []   []  [create delete deletecollection get list patch update watch]
  deploymentconfigs.apps.openshift.io/scale   []   []  [create delete deletecollection get list patch 
update watch]
  deploymentconfigs/status     []   []  [get list watch]
  deploymentconfigs.apps.openshift.io/status   []   []  [get list watch]
  deployments.apps      []   []  [create delete deletecollection get list patch update watch]
  deployments.extensions     []   []  [create delete deletecollection get list patch update watch]
  deployments.extensions/rollback    []   []  [create delete deletecollection get list patch update watch]
  deployments.apps/scale     []   []  [create delete deletecollection get list patch update watch]
  deployments.extensions/scale     []   []  [create delete deletecollection get list patch update watch]
  deployments.apps/status     []   []  [create delete deletecollection get list patch update watch]
  endpoints       []   []  [create delete deletecollection get list patch update watch]
  events       []   []  [get list watch]
  horizontalpodautoscalers.autoscaling    []   []  [create delete deletecollection get list patch update 
watch]
  horizontalpodautoscalers.extensions    []   []  [create delete deletecollection get list patch update 

CHAPTER 4. ADDITIONAL CONCEPTS

77



watch]
  imagestreamimages      []   []  [create delete deletecollection get list patch update watch]
  imagestreamimages.image.openshift.io    []   []  [create delete deletecollection get list patch update 
watch]
  imagestreamimports      []   []  [create]
  imagestreamimports.image.openshift.io    []   []  [create]
  imagestreammappings      []   []  [create delete deletecollection get list patch update watch]
  imagestreammappings.image.openshift.io   []   []  [create delete deletecollection get list patch update 
watch]
  imagestreams       []   []  [create delete deletecollection get list patch update watch]
  imagestreams.image.openshift.io    []   []  [create delete deletecollection get list patch update watch]
  imagestreams/layers      []   []  [get update]
  imagestreams.image.openshift.io/layers   []   []  [get update]
  imagestreams/secrets      []   []  [create delete deletecollection get list patch update watch]
  imagestreams.image.openshift.io/secrets   []   []  [create delete deletecollection get list patch update 
watch]
  imagestreams/status      []   []  [get list watch]
  imagestreams.image.openshift.io/status   []   []  [get list watch]
  imagestreamtags      []   []  [create delete deletecollection get list patch update watch]
  imagestreamtags.image.openshift.io    []   []  [create delete deletecollection get list patch update 
watch]
  jenkins.build.openshift.io     []   []  [admin edit view]
  jobs.batch       []   []  [create delete deletecollection get list patch update watch]
  limitranges       []   []  [get list watch]
  localresourceaccessreviews     []   []  [create]
  localresourceaccessreviews.authorization.openshift.io  []   []  [create]
  localsubjectaccessreviews     []   []  [create]
  localsubjectaccessreviews.authorization.k8s.io  []   []  [create]
  localsubjectaccessreviews.authorization.openshift.io  []   []  [create]
  namespaces       []   []  [get list watch]
  namespaces/status      []   []  [get list watch]
  networkpolicies.extensions     []   []  [create delete deletecollection get list patch update watch]
  persistentvolumeclaims     []   []  [create delete deletecollection get list patch update watch]
  pods        []   []  [create delete deletecollection get list patch update watch]
  pods/attach       []   []  [create delete deletecollection get list patch update watch]
  pods/exec       []   []  [create delete deletecollection get list patch update watch]
  pods/log       []   []  [get list watch]
  pods/portforward      []   []  [create delete deletecollection get list patch update watch]
  pods/proxy       []   []  [create delete deletecollection get list patch update watch]
  pods/status       []   []  [get list watch]
  podsecuritypolicyreviews     []   []  [create]
  podsecuritypolicyreviews.security.openshift.io  []   []  [create]
  podsecuritypolicyselfsubjectreviews    []   []  [create]
  podsecuritypolicyselfsubjectreviews.security.openshift.io []   []  [create]
  podsecuritypolicysubjectreviews    []   []  [create]
  podsecuritypolicysubjectreviews.security.openshift.io  []   []  [create]
  processedtemplates      []   []  [create delete deletecollection get list patch update watch]
  processedtemplates.template.openshift.io   []   []  [create delete deletecollection get list patch update 
watch]
  projects       []   []  [delete get patch update]
  projects.project.openshift.io     []   []  [delete get patch update]
  replicasets.extensions     []   []  [create delete deletecollection get list patch update watch]
  replicasets.extensions/scale     []   []  [create delete deletecollection get list patch update watch]
  replicationcontrollers     []   []  [create delete deletecollection get list patch update watch]
  replicationcontrollers/scale     []   []  [create delete deletecollection get list patch update watch]
  replicationcontrollers.extensions/scale   []   []  [create delete deletecollection get list patch update 

OpenShift Container Platform 3.10 Architecture

78



watch]
  replicationcontrollers/status     []   []  [get list watch]
  resourceaccessreviews      []   []  [create]
  resourceaccessreviews.authorization.openshift.io  []   []  [create]
  resourcequotas      []   []  [get list watch]
  resourcequotas/status      []   []  [get list watch]
  resourcequotausages      []   []  [get list watch]
  rolebindingrestrictions     []   []  [get list watch]
  rolebindingrestrictions.authorization.openshift.io  []   []  [get list watch]
  rolebindings       []   []  [create delete deletecollection get list patch update watch]
  rolebindings.authorization.openshift.io   []   []  [create delete deletecollection get list patch update 
watch]
  rolebindings.rbac.authorization.k8s.io   []   []  [create delete deletecollection get list patch update 
watch]
  roles        []   []  [create delete deletecollection get list patch update watch]
  roles.authorization.openshift.io    []   []  [create delete deletecollection get list patch update watch]
  roles.rbac.authorization.k8s.io    []   []  [create delete deletecollection get list patch update watch]
  routes       []   []  [create delete deletecollection get list patch update watch]
  routes.route.openshift.io     []   []  [create delete deletecollection get list patch update watch]
  routes/custom-host      []   []  [create]
  routes.route.openshift.io/custom-host    []   []  [create]
  routes/status       []   []  [get list watch update]
  routes.route.openshift.io/status    []   []  [get list watch update]
  scheduledjobs.batch      []   []  [create delete deletecollection get list patch update watch]
  secrets       []   []  [create delete deletecollection get list patch update watch]
  serviceaccounts      []   []  [create delete deletecollection get list patch update watch impersonate]
  services       []   []  [create delete deletecollection get list patch update watch]
  services/proxy      []   []  [create delete deletecollection get list patch update watch]
  statefulsets.apps      []   []  [create delete deletecollection get list patch update watch]
  subjectaccessreviews      []   []  [create]
  subjectaccessreviews.authorization.openshift.io  []   []  [create]
  subjectrulesreviews      []   []  [create]
  subjectrulesreviews.authorization.openshift.io  []   []  [create]
  templateconfigs      []   []  [create delete deletecollection get list patch update watch]
  templateconfigs.template.openshift.io    []   []  [create delete deletecollection get list patch update 
watch]
  templateinstances      []   []  [create delete deletecollection get list patch update watch]
  templateinstances.template.openshift.io   []   []  [create delete deletecollection get list patch update 
watch]
  templates       []   []  [create delete deletecollection get list patch update watch]
  templates.template.openshift.io    []   []  [create delete deletecollection get list patch update watch]

Name:  basic-user
Labels:  <none>
Annotations: openshift.io/description=A user that can get basic information about projects.
  rbac.authorization.kubernetes.io/autoupdate=true
PolicyRule:
  Resources      Non-Resource URLs Resource Names Verbs
  ---------      ----------------- -------------- -----
  clusterroles      []   []  [get list]
  clusterroles.authorization.openshift.io  []   []  [get list]
  clusterroles.rbac.authorization.k8s.io  []   []  [get list watch]
  projectrequests     []   []  [list]
  projectrequests.project.openshift.io   []   []  [list]
  projects      []   []  [list watch]

CHAPTER 4. ADDITIONAL CONCEPTS

79



  projects.project.openshift.io    []   []  [list watch]
  selfsubjectaccessreviews.authorization.k8s.io  []   []  [create]
  selfsubjectrulesreviews    []   []  [create]
  selfsubjectrulesreviews.authorization.openshift.io []   []  [create]
  storageclasses.storage.k8s.io    []   []  [get list]
  users       []   [~]  [get]
  users.user.openshift.io    []   [~]  [get]

The following excerpt from viewing local role bindings shows the above roles bound to various users and
groups:

oc describe rolebinding.rbac admin basic-user -n alice-project

Name:  admin
Labels:  <none>
Annotations: <none>
Role:
  Kind: ClusterRole
  Name: admin
Subjects:
  Kind Name  Namespace
  ---- ----  ---------
  User system:admin
  User alice

Name:  basic-user
Labels:  <none>
Annotations: <none>
Role:
  Kind: ClusterRole
  Name: basic-user
Subjects:
  Kind Name Namespace
  ---- ---- ---------
  User joe
  Group devel

The relationships between cluster roles, local roles, cluster role bindings, local role bindings, users,
groups and service accounts are illustrated below.

OpenShift Container Platform 3.10 Architecture

80



4.2.2. Evaluating Authorization

Several factors are combined to make the decision when OpenShift Container Platform evaluates
authorization:

Identity In the context of authorization, both the user name and list of groups the user belongs to.

Action The action being performed. In most cases, this consists of:

Project The project being accessed.

Verb Can be get, list, create, update, delete, deletecollection or watch.

Resource
Name

The API endpoint being accessed.

Bindings The full list of bindings.

OpenShift Container Platform evaluates authorizations using the following steps:

1. The identity and the project-scoped action is used to find all bindings that apply to the user or
their groups.

CHAPTER 4. ADDITIONAL CONCEPTS

81



2. Bindings are used to locate all the roles that apply.

3. Roles are used to find all the rules that apply.

4. The action is checked against each rule to find a match.

5. If no matching rule is found, the action is then denied by default.

4.2.3. Cluster and Local RBAC

There are two levels of RBAC roles and bindings that control authorization:

Cluster RBAC Roles and bindings that are applicable across all projects. Roles that exist cluster-wide
are considered cluster roles. Cluster role bindings can only reference cluster roles.

Local RBAC Roles and bindings that are scoped to a given project. Roles that exist only in a project
are considered local roles. Local role bindings can reference both cluster and local roles.

This two-level hierarchy allows re-usability over multiple projects through the cluster roles while allowing
customization inside of individual projects through local roles.

During evaluation, both the cluster role bindings and the local role bindings are used. For example:

1. Cluster-wide "allow" rules are checked.

2. Locally-bound "allow" rules are checked.

3. Deny by default.

4.2.4. Cluster Roles and Local Roles

Roles are collections of policy rules, which are sets of permitted verbs that can be performed on a set of
resources. OpenShift Container Platform includes a set of default cluster roles that can be bound to
users and groups cluster wide or locally.

Default Cluster
Role

Description

admin A project manager. If used in a local binding, an admin user will have rights to view any
resource in the project and modify any resource in the project except for quota.

basic-user A user that can get basic information about projects and users.

cluster-admin A super-user that can perform any action in any project. When bound to a user with a
local binding, they have full control over quota and every action on every resource in the
project.

cluster-status A user that can get basic cluster status information.

edit A user that can modify most objects in a project, but does not have the power to view or
modify roles or bindings.

OpenShift Container Platform 3.10 Architecture

82

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#cluster-and-local-role-bindings


self-provisioner A user that can create their own projects.

view A user who cannot make any modifications, but can see most objects in a project. They
cannot view or modify roles or bindings.

Default Cluster
Role

Description

TIP

Remember that users and groups can be associated with, or bound to, multiple roles at the same time.

Project administrators can visualize roles, including a matrix of the verbs and resources each are
associated using the CLI to view local roles and bindings .

IMPORTANT

The cluster role bound to the project administrator is limited in a project via a local
binding. It is not bound cluster-wide like the cluster roles granted to the cluster-admin or
system:admin.

Cluster roles are roles defined at the cluster level, but can be bound either at the cluster
level or at the project level.

Learn how to create a local role for a project .

4.2.4.1. Updating Cluster Roles

After any OpenShift Container Platform cluster upgrade , the default roles are updated and
automatically reconciled when the server is started. During reconciliation, any permissions that are
missing from the default roles are added. If you added more permissions to the role, they are not
removed.

If you customized the default roles and configured them to prevent automatic role reconciliation, you
must manually update policy definitions  when you upgrade OpenShift Container Platform.

4.2.4.2. Applying Custom Roles and Permissions

To add or update custom roles and permissions, it is strongly recommended to use the following
command:

# oc auth reconcile -f FILE

This command ensures that new permissions are applied properly in a way that will not break other
clients. This is done internally by computing logical covers operations between rule sets, which is
something you cannot do via a JSON merge on RBAC resources.

4.2.4.3. Cluster Role Aggregation

The default admin, edit, and view cluster roles support cluster role aggregation, where the cluster rules

CHAPTER 4. ADDITIONAL CONCEPTS

83

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#viewing-local-roles-and-bindings
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#cluster-and-local-role-bindings
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#cluster-and-local-role-bindings
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#creating-local-role
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/upgrading_clusters/#install-config-upgrading-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#updating-policy-definitions


The default admin, edit, and view cluster roles support cluster role aggregation, where the cluster rules
for each role are dynamically updated as new rules are created. This feature is relevant only if you extend
the Kubernetes API by creating custom resources.

Learn how to use cluster role aggregation .

4.2.5. Security Context Constraints

In addition to the RBAC resources that control what a user can do, OpenShift Container Platform
provides security context constraints (SCC) that control the actions that a pod can perform and what it
has the ability to access. Administrators can manage SCCs using the CLI.

SCCs are also very useful for managing access to persistent storage.

SCCs are objects that define a set of conditions that a pod must run with in order to be accepted into
the system. They allow an administrator to control the following:

1. Running of privileged containers.

2. Capabilities a container can request to be added.

3. Use of host directories as volumes.

4. The SELinux context of the container.

5. The user ID.

6. The use of host namespaces and networking.

7. Allocating an FSGroup that owns the pod’s volumes

8. Configuring allowable supplemental groups

9. Requiring the use of a read only root file system

10. Controlling the usage of volume types

11. Configuring allowable seccomp profiles

Seven SCCs are added to the cluster by default, and are viewable by cluster administrators using the
CLI:

$ oc get scc
NAME               PRIV      CAPS      SELINUX     RUNASUSER          FSGROUP     SUPGROUP    
PRIORITY   READONLYROOTFS   VOLUMES
anyuid             false     []        MustRunAs   RunAsAny           RunAsAny    RunAsAny    10         false            
[configMap downwardAPI emptyDir persistentVolumeClaim secret]
hostaccess         false     []        MustRunAs   MustRunAsRange     MustRunAs   RunAsAny    <none>     
false            [configMap downwardAPI emptyDir hostPath persistentVolumeClaim secret]
hostmount-anyuid   false     []        MustRunAs   RunAsAny           RunAsAny    RunAsAny    <none>     
false            [configMap downwardAPI emptyDir hostPath nfs persistentVolumeClaim secret]
hostnetwork        false     []        MustRunAs   MustRunAsRange     MustRunAs   MustRunAs   <none>     
false            [configMap downwardAPI emptyDir persistentVolumeClaim secret]
nonroot            false     []        MustRunAs   MustRunAsNonRoot   RunAsAny    RunAsAny    <none>     
false            [configMap downwardAPI emptyDir persistentVolumeClaim secret]
privileged         true      [*]       RunAsAny    RunAsAny           RunAsAny    RunAsAny    <none>     

OpenShift Container Platform 3.10 Architecture

84

https://kubernetes.io/docs/admin/authorization/rbac/#aggregated-clusterroles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#admin-guide-custom-resources
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#creating-aggregated-cluster-role-crd_admin-guide-custom-resources
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#admin-guide-manage-scc
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#security-warning


false            [*]
restricted         false     []        MustRunAs   MustRunAsRange     MustRunAs   RunAsAny    <none>     
false            [configMap downwardAPI emptyDir persistentVolumeClaim secret]

IMPORTANT

Do not modify the default SCCs. Customizing the default SCCs can lead to issues when
OpenShift Container Platform is upgraded. Instead, create new SCCs .

The definition for each SCC is also viewable by cluster administrators using the CLI. For example, for the
privileged SCC:

# oc get -o yaml --export scc/privileged
allowHostDirVolumePlugin: true
allowHostIPC: true
allowHostNetwork: true
allowHostPID: true
allowHostPorts: true
allowPrivilegedContainer: true
allowedCapabilities: 1
- '*'
apiVersion: v1
defaultAddCapabilities: [] 2
fsGroup: 3
  type: RunAsAny
groups: 4
- system:cluster-admins
- system:nodes
kind: SecurityContextConstraints
metadata:
  annotations:
    kubernetes.io/description: 'privileged allows access to all privileged and host
      features and the ability to run as any user, any group, any fsGroup, and with
      any SELinux context.  WARNING: this is the most relaxed SCC and should be used
      only for cluster administration. Grant with caution.'
  creationTimestamp: null
  name: privileged
priority: null
readOnlyRootFilesystem: false
requiredDropCapabilities: [] 5
runAsUser: 6
  type: RunAsAny
seLinuxContext: 7
  type: RunAsAny
seccompProfiles:
- '*'
supplementalGroups: 8
  type: RunAsAny
users: 9
- system:serviceaccount:default:registry
- system:serviceaccount:default:router

CHAPTER 4. ADDITIONAL CONCEPTS

85

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#creating-new-security-context-constraints


1

2

3

4

5

6

7

8

9

- system:serviceaccount:openshift-infra:build-controller
volumes:
- '*'

A list of capabilities that can be requested by a pod. An empty list means that none of capabilities
can be requested while the special symbol * allows any capabilities.

A list of additional capabilities that will be added to any pod.

The FSGroup strategy which dictates the allowable values for the Security Context.

The groups that have access to this SCC.

A list of capabilities that will be dropped from a pod.

The run as user strategy type which dictates the allowable values for the Security Context.

The SELinux context strategy type which dictates the allowable values for the Security Context.

The supplemental groups strategy which dictates the allowable supplemental groups for the
Security Context.

The users who have access to this SCC.

The users and groups fields on the SCC control which SCCs can be used. By default, cluster
administrators, nodes, and the build controller are granted access to the privileged SCC. All
authenticated users are granted access to the restricted SCC.

Docker has a default list of capabilities that are allowed for each container of a pod. The containers use
the capabilities from this default list, but pod manifest authors can alter it by requesting additional
capabilities or dropping some of defaulting. The allowedCapabilities, defaultAddCapabilities, and 
requiredDropCapabilities fields are used to control such requests from the pods, and to dictate which
capabilities can be requested, which ones must be added to each container, and which ones must be
forbidden.

The privileged SCC:

allows privileged pods.

allows host directories to be mounted as volumes.

allows a pod to run as any user.

allows a pod to run with any MCS label.

allows a pod to use the host’s IPC namespace.

allows a pod to use the host’s PID namespace.

allows a pod to use any FSGroup.

allows a pod to use any supplemental group.

allows a pod to use any seccomp profiles.

allows a pod to request any capabilities.

OpenShift Container Platform 3.10 Architecture

86

https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities


The restricted SCC:

ensures pods cannot run as privileged.

ensures pods cannot use host directory volumes.

requires that a pod run as a user in a pre-allocated range of UIDs.

requires that a pod run with a pre-allocated MCS label.

allows a pod to use any FSGroup.

allows a pod to use any supplemental group.

NOTE

For more information about each SCC, see the kubernetes.io/description annotation
available on the SCC.

SCCs are comprised of settings and strategies that control the security features a pod has access to.
These settings fall into three categories:

Controlled by a
boolean

Fields of this type default to the most restrictive value. For example, 
AllowPrivilegedContainer is always set to false if unspecified.

Controlled by an
allowable set

Fields of this type are checked against the set to ensure their value is allowed.

Controlled by a
strategy

Items that have a strategy to generate a value provide:

A mechanism to generate the value, and

A mechanism to ensure that a specified value falls into the set of allowable
values.

4.2.5.1. SCC Strategies

4.2.5.1.1. RunAsUser

1. MustRunAs - Requires a runAsUser to be configured. Uses the configured runAsUser as the
default. Validates against the configured runAsUser.

2. MustRunAsRange - Requires minimum and maximum values to be defined if not using pre-
allocated values. Uses the minimum as the default. Validates against the entire allowable range.

3. MustRunAsNonRoot - Requires that the pod be submitted with a non-zero runAsUser or have
the USER directive defined in the image. No default provided.

4. RunAsAny - No default provided. Allows any runAsUser to be specified.

4.2.5.1.2. SELinuxContext

1. MustRunAs - Requires seLinuxOptions to be configured if not using pre-allocated values.

CHAPTER 4. ADDITIONAL CONCEPTS

87



1. MustRunAs - Requires seLinuxOptions to be configured if not using pre-allocated values.
Uses seLinuxOptions as the default. Validates against seLinuxOptions.

2. RunAsAny - No default provided. Allows any seLinuxOptions to be specified.

4.2.5.1.3. SupplementalGroups

1. MustRunAs - Requires at least one range to be specified if not using pre-allocated values. Uses
the minimum value of the first range as the default. Validates against all ranges.

2. RunAsAny - No default provided. Allows any supplementalGroups to be specified.

4.2.5.1.4. FSGroup

1. MustRunAs - Requires at least one range to be specified if not using pre-allocated values. Uses
the minimum value of the first range as the default. Validates against the first ID in the first
range.

2. RunAsAny - No default provided. Allows any fsGroup ID to be specified.

4.2.5.2. Controlling Volumes

The usage of specific volume types can be controlled by setting the volumes field of the SCC. The
allowable values of this field correspond to the volume sources that are defined when creating a volume:

azureFile

azureDisk

flocker

flexVolume

hostPath

emptyDir

gcePersistentDisk

awsElasticBlockStore

gitRepo

secret

nfs

iscsi

glusterfs

persistentVolumeClaim

rbd

cinder

OpenShift Container Platform 3.10 Architecture

88

https://kubernetes.io/docs/concepts/storage/volumes/#azurefilevolume
https://kubernetes.io/docs/concepts/storage/volumes/#azurediskvolume
https://kubernetes.io/docs/concepts/storage/volumes/#flocker
https://kubernetes.io/docs/concepts/storage/volumes/#flexvolume
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#gcepersistentdisk
https://kubernetes.io/docs/concepts/storage/volumes/#awselasticblockstore
https://kubernetes.io/docs/concepts/storage/volumes/#gitrepo
https://kubernetes.io/docs/concepts/storage/volumes/#secret
https://kubernetes.io/docs/concepts/storage/volumes/#nfs
https://kubernetes.io/docs/concepts/storage/volumes/#iscsi
https://kubernetes.io/docs/concepts/storage/volumes/#glusterfs
https://kubernetes.io/docs/concepts/storage/volumes/#persistentvolumeclaim
https://kubernetes.io/docs/concepts/storage/volumes/#rbd


cephFS

downwardAPI

fc

configMap

vsphereVolume

quobyte

photonPersistentDisk

projected

portworxVolume

scaleIO

storageos

* (a special value to allow the use of all volume types)

none (a special value to disallow the use of all volumes types. Exist only for backwards
compatibility)

The recommended minimum set of allowed volumes for new SCCs are configMap, downwardAPI,
emptyDir, persistentVolumeClaim, secret, and projected.

NOTE

The list of allowable volume types is not exhaustive because new types are added with
each release of OpenShift Container Platform.

NOTE

For backwards compatibility, the usage of allowHostDirVolumePlugin overrides settings
in the volumes field. For example, if allowHostDirVolumePlugin is set to false but
allowed in the volumes field, then the hostPath value will be removed from volumes.

4.2.5.3. Restricting Access to FlexVolumes

OpenShift Container Platform provides additional control of FlexVolumes based on their driver. When
SCC allows the usage of FlexVolumes, pods can request any FlexVolumes. However, when the cluster
administrator specifies driver names in the AllowedFlexVolumes field, pods must only use
FlexVolumes with these drivers.

Example of Limiting Access to Only Two FlexVolumes

volumes:
- flexVolume
allowedFlexVolumes:
- driver: example/lvm
- driver: example/cifs

CHAPTER 4. ADDITIONAL CONCEPTS

89

https://kubernetes.io/docs/concepts/storage/volumes/#cephfs
https://kubernetes.io/docs/concepts/storage/volumes/#downwardapi
https://kubernetes.io/docs/concepts/storage/volumes/#fc-fibre-channel
https://kubernetes.io/docs/concepts/storage/volumes/#vspherevolume
https://kubernetes.io/docs/concepts/storage/volumes/#quobyte
https://kubernetes.io/docs/concepts/storage/volumes/#projected
https://kubernetes.io/docs/concepts/storage/volumes/#portworxvolume
https://kubernetes.io/docs/concepts/storage/volumes/#scaleio
https://kubernetes.io/docs/concepts/storage/volumes/#storageos


4.2.5.4. Seccomp

SeccompProfiles lists the allowed profiles that can be set for the pod or container’s seccomp
annotations. An unset (nil) or empty value means that no profiles are specified by the pod or container.
Use the wildcard * to allow all profiles. When used to generate a value for a pod, the first non-wildcard
profile is used as the default.

Refer to the seccomp documentation for more information about configuring and using custom profiles.

4.2.5.5. Admission

Admission control with SCCs allows for control over the creation of resources based on the capabilities
granted to a user.

In terms of the SCCs, this means that an admission controller can inspect the user information made
available in the context to retrieve an appropriate set of SCCs. Doing so ensures the pod is authorized
to make requests about its operating environment or to generate a set of constraints to apply to the
pod.

The set of SCCs that admission uses to authorize a pod are determined by the user identity and groups
that the user belongs to. Additionally, if the pod specifies a service account, the set of allowable SCCs
includes any constraints accessible to the service account.

Admission uses the following approach to create the final security context for the pod:

1. Retrieve all SCCs available for use.

2. Generate field values for security context settings that were not specified on the request.

3. Validate the final settings against the available constraints.

If a matching set of constraints is found, then the pod is accepted. If the request cannot be matched to
an SCC, the pod is rejected.

A pod must validate every field against the SCC. The following are examples for just two of the fields
that must be validated:

NOTE

These examples are in the context of a strategy using the preallocated values.

A FSGroup SCC Strategy of MustRunAs

If the pod defines a fsGroup ID, then that ID must equal the default fsGroup ID. Otherwise, the pod is
not validated by that SCC and the next SCC is evaluated.

If the SecurityContextConstraints.fsGroup field has value RunAsAny and the pod specification omits
the Pod.spec.securityContext.fsGroup, then this field is considered valid. Note that it is possible that
during validation, other SCC settings will reject other pod fields and thus cause the pod to fail.

A SupplementalGroups SCC Strategy of MustRunAs

If the pod specification defines one or more supplementalGroups IDs, then the pod’s IDs must equal
one of the IDs in the namespace’s openshift.io/sa.scc.supplemental-groups annotation. Otherwise,
the pod is not validated by that SCC and the next SCC is evaluated.

If the SecurityContextConstraints.supplementalGroups field has value RunAsAny and the pod

OpenShift Container Platform 3.10 Architecture

90

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#admin-guide-seccomp


If the SecurityContextConstraints.supplementalGroups field has value RunAsAny and the pod
specification omits the Pod.spec.securityContext.supplementalGroups, then this field is considered
valid. Note that it is possible that during validation, other SCC settings will reject other pod fields and
thus cause the pod to fail.

4.2.5.5.1. SCC Prioritization

SCCs have a priority field that affects the ordering when attempting to validate a request by the
admission controller. A higher priority SCC is moved to the front of the set when sorting. When the
complete set of available SCCs are determined they are ordered by:

1. Highest priority first, nil is considered a 0 priority

2. If priorities are equal, the SCCs will be sorted from most restrictive to least restrictive

3. If both priorities and restrictions are equal the SCCs will be sorted by name

By default, the anyuid SCC granted to cluster administrators is given priority in their SCC set. This allows
cluster administrators to run pods as any user by without specifying a RunAsUser on the pod’s 
SecurityContext. The administrator may still specify a RunAsUser if they wish.

4.2.5.5.2. Understanding Pre-allocated Values and Security Context Constraints

The admission controller is aware of certain conditions in the security context constraints that trigger it
to look up pre-allocated values from a namespace and populate the security context constraint before
processing the pod. Each SCC strategy is evaluated independently of other strategies, with the pre-
allocated values (where allowed) for each policy aggregated with pod specification values to make the
final values for the various IDs defined in the running pod.

The following SCCs cause the admission controller to look for pre-allocated values when no ranges are
defined in the pod specification:

1. A RunAsUser strategy of MustRunAsRange with no minimum or maximum set. Admission
looks for the openshift.io/sa.scc.uid-range annotation to populate range fields.

2. An SELinuxContext strategy of MustRunAs with no level set. Admission looks for the
openshift.io/sa.scc.mcs annotation to populate the level.

3. A FSGroup strategy of MustRunAs. Admission looks for the
openshift.io/sa.scc.supplemental-groups annotation.

4. A SupplementalGroups strategy of MustRunAs. Admission looks for the
openshift.io/sa.scc.supplemental-groups annotation.

During the generation phase, the security context provider will default any values that are not
specifically set in the pod. Defaulting is based on the strategy being used:

1. RunAsAny and MustRunAsNonRoot strategies do not provide default values. Thus, if the pod
needs a field defined (for example, a group ID), this field must be defined inside the pod
specification.

2. MustRunAs (single value) strategies provide a default value which is always used. As an
example, for group IDs: even if the pod specification defines its own ID value, the namespace’s
default field will also appear in the pod’s groups.

3. MustRunAsRange and MustRunAs (range-based) strategies provide the minimum value of
the range. As with a single value MustRunAs strategy, the namespace’s default value will

CHAPTER 4. ADDITIONAL CONCEPTS

91



appear in the running pod. If a range-based strategy is configurable with multiple ranges, it will
provide the minimum value of the first configured range.

NOTE

FSGroup and SupplementalGroups strategies fall back to the openshift.io/sa.scc.uid-
range annotation if the openshift.io/sa.scc.supplemental-groups annotation does not
exist on the namespace. If neither exist, the SCC will fail to create.

NOTE

By default, the annotation-based FSGroup strategy configures itself with a single range
based on the minimum value for the annotation. For example, if your annotation reads
1/3, the FSGroup strategy will configure itself with a minimum and maximum of 1. If you
want to allow more groups to be accepted for the FSGroup field, you can configure a
custom SCC that does not use the annotation.

NOTE

The openshift.io/sa.scc.supplemental-groups annotation accepts a comma delimited
list of blocks in the format of <start>/<length or <start>-<end>. The
openshift.io/sa.scc.uid-range annotation accepts only a single block.

4.2.6. Determining What You Can Do as an Authenticated User

From within your OpenShift Container Platform project, you can determine what verbs you can perform
against all namespace-scoped resources (including third-party resources). Run:

$ oc policy can-i --list --loglevel=8

The output will help you to determine what API request to make to gather the information.

To receive information back in a user-readable format, run:

$ oc policy can-i --list

The output will provide a full list.

To determine if you can perform specific verbs, run:

$ oc policy can-i <verb> <resource>

User scopes can provide more information about a given scope. For example:

$ oc policy can-i <verb> <resource> --scopes=user:info

4.3. PERSISTENT STORAGE

4.3.1. Overview

Managing storage is a distinct problem from managing compute resources. OpenShift Container
Platform uses the Kubernetes persistent volume (PV) framework to allow cluster administrators to

OpenShift Container Platform 3.10 Architecture

92

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#admin-guide-scoped-tokens-user-scopes


provision persistent storage for a cluster. Developers can use persistent volume claims (PVCs) to
request PV resources without having specific knowledge of the underlying storage infrastructure.

PVCs are specific to a project and are created and used by developers as a means to use a PV. PV
resources on their own are not scoped to any single project; they can be shared across the entire
OpenShift Container Platform cluster and claimed from any project. After a PV is bound to a PVC,
however, that PV cannot then be bound to additional PVCs. This has the effect of scoping a bound PV
to a single namespace (that of the binding project).

PVs are defined by a PersistentVolume API object, which represents a piece of existing, networked
storage in the cluster that was provisioned by the cluster administrator. It is a resource in the cluster just
like a node is a cluster resource. PVs are volume plug-ins like Volumes but have a lifecycle that is
independent of any individual pod that uses the PV. PV objects capture the details of the
implementation of the storage, be that NFS, iSCSI, or a cloud-provider-specific storage system.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

PVCs are defined by a PersistentVolumeClaim API object, which represents a request for storage by a
developer. It is similar to a pod in that pods consume node resources and PVCs consume PV resources.
For example, pods can request specific levels of resources (e.g., CPU and memory), while PVCs can
request specific storage capacity and access modes (e.g, they can be mounted once read/write or many
times read-only).

4.3.2. Lifecycle of a volume and claim

PVs are resources in the cluster. PVCs are requests for those resources and also act as claim checks to
the resource. The interaction between PVs and PVCs have the following lifecycle.

4.3.2.1. Provision storage

In response to requests from a developer defined in a PVC, a cluster administrator configures one or
more dynamic provisioners that provision storage and a matching PV.

Alternatively, a cluster administrator can create a number of PVs in advance that carry the details of the
real storage that is available for use. PVs exist in the API and are available for use.

4.3.2.2. Bind claims

When you create a PVC, you request a specific amount of storage, specify the required access mode,
and create a storage class to describe and classify the storage. The control loop in the master watches
for new PVCs and binds the new PVC to an appropriate PV. If an appropriate PV does not exist, a
provisioner for the storage class creates one.

The PV volume might exceed your requested volume. This is especially true with manually provisioned
PVs. To minimize the excess, OpenShift Container Platform binds to the smallest PV that matches all
other criteria.

Claims remain unbound indefinitely if a matching volume does not exist or cannot be created with any
available provisioner servicing a storage class. Claims are bound as matching volumes become available.
For example, a cluster with many manually provisioned 50Gi volumes would not match a PVC requesting
100Gi. The PVC can be bound when a 100Gi PV is added to the cluster.

CHAPTER 4. ADDITIONAL CONCEPTS

93



4.3.2.3. Use pods and claimed PVs

Pods use claims as volumes. The cluster inspects the claim to find the bound volume and mounts that
volume for a pod. For those volumes that support multiple access modes, you must specify which mode
applies when you use the claim as a volume in a pod.

After you have a claim and that claim is bound, the bound PV belongs to you for as long as you need it.
You can schedule pods and access claimed PVs by including persistentVolumeClaim in the pod’s
volumes block. See below for syntax details.

4.3.2.4. PVC protection

PVC protection is enabled by default.

4.3.2.5. Release volumes

When you are finished with a volume, you can delete the PVC object from the API, which allows
reclamation of the resource. The volume is considered "released" when the claim is deleted, but it is not
yet available for another claim. The previous claimant’s data remains on the volume and must be
handled according to policy.

4.3.2.6. Reclaim volumes

The reclaim policy of a PersistentVolume tells the cluster what to do with the volume after it is
released. Volumes reclaim policy can either be Retain, Recycle, or Delete.

Retain reclaim policy allows manual reclamation of the resource for those volume plug-ins that support
it. Delete reclaim policy deletes both the PersistentVolume object from OpenShift Container Platform
and the associated storage asset in external infrastructure, such as AWS EBS, GCE PD, or Cinder
volume.

NOTE

Dynamically provisioned volumes have a default ReclaimPolicy value of Delete. Manually
provisioned volumes have a default ReclaimPolicy value of Retain.

4.3.2.6.1. Recycle volumes

If supported by appropriate volume plug-in, recycling performs a basic scrub (rm -rf /thevolume/*) on
the volume and makes it available again for a claim.

WARNING

The recycle reclaim policy was deprecated and removed in favor of dynamic
provisioning starting in OpenShift Container Platform 3.6.

You can configure a custom recycler pod template by using the controller manager command line
arguments as described in the ControllerArguments section. The custom recycler pod template must
contain a volumes specification, for example:



OpenShift Container Platform 3.10 Architecture

94

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#master-config-admission-control-config


1

2

3 4

Custom recycler pod template example

Namespace where the recycler pod runs. openshift-infra is the recommended namespace, as it
already has a pv-recycler-controller service account that can recycle volumes.

Name of service account that is allowed to mount NFS volumes. It must exist in the specified
namespace. A pv-recycler-controller account is recommended, as it is automatically created in 
openshift-infra namespace and has all the required permissions.

The particular server and path values specified in the custom recycler pod template in the 
volumes part is replaced with the particular corresponding values from the PV that is being
recycled.

4.3.3. Persistent volumes

Each PV contains a spec and status, which is the specification and status of the volume, for example:

PV object definition example

apiVersion: v1
kind: Pod
metadata:
  name: pv-recycler-
  namespace: openshift-infra 1
spec:
  restartPolicy: Never
  serviceAccount: pv-recycler-controller 2
  volumes:
  - name: nfsvol
    nfs:
      server: any-server-it-will-be-replaced 3
      path: any-path-it-will-be-replaced 4
  containers:
  - name: pv-recycler
    image: "gcr.io/google_containers/busybox"
    command: ["/bin/sh", "-c", "test -e /scrub && rm -rf /scrub/..?* /scrub/.[!.]* /scrub/*  && test -z \"$(ls -
A /scrub)\" || exit 1"]
    volumeMounts:
    - name: nfsvol
      mountPath: /scrub

  apiVersion: v1
  kind: PersistentVolume
  metadata:
    name: pv0003
  spec:
    capacity:
      storage: 5Gi
    accessModes:
      - ReadWriteOnce
    persistentVolumeReclaimPolicy: Recycle

CHAPTER 4. ADDITIONAL CONCEPTS

95



4.3.3.1. Types of PVs

OpenShift Container Platform supports the following PersistentVolume plug-ins:

NFS

HostPath

GlusterFS

Ceph RBD

OpenStack Cinder

AWS Elastic Block Store (EBS)

GCE Persistent Disk

iSCSI

Fibre Channel

Azure Disk

Azure File

VMWare vSphere

Local

4.3.3.2. Capacity

Generally, a PV has a specific storage capacity. This is set by using the PV’s capacity attribute.

Currently, storage capacity is the only resource that can be set or requested. Future attributes may
include IOPS, throughput, and so on.

4.3.3.3. Access modes

A PersistentVolume can be mounted on a host in any way supported by the resource provider.
Providers will have different capabilities and each PV’s access modes are set to the specific modes
supported by that particular volume. For example, NFS can support multiple read/write clients, but a
specific NFS PV might be exported on the server as read-only. Each PV gets its own set of access
modes describing that specific PV’s capabilities.

Claims are matched to volumes with similar access modes. The only two matching criteria are access
modes and size. A claim’s access modes represent a request. Therefore, you might be granted more, but
never less. For example, if a claim requests RWO, but the only volume available is an NFS PV
(RWO+ROX+RWX), the claim would then match NFS because it supports RWO.

Direct matches are always attempted first. The volume’s modes must match or contain more modes
than you requested. The size must be greater than or equal to what is expected. If two types of volumes

    nfs:
      path: /tmp
      server: 172.17.0.2

OpenShift Container Platform 3.10 Architecture

96

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-nfs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-glusterfs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-ceph-rbd
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-cinder
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-aws
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-gce
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-iscsi
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-fibre-channel
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-azure
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-azure-file
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-vsphere
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-local


(NFS and iSCSI, for example) have the same set of access modes, either of them can match a claim with
those modes. There is no ordering between types of volumes and no way to choose one type over
another.

All volumes with the same modes are grouped, and then sorted by size (smallest to largest). The binder
gets the group with matching modes and iterates over each (in size order) until one size matches.

The following table lists the access modes:

Table 4.1. Access modes

Access Mode CLI abbreviation Description

ReadWriteOnce RWO The volume can be mounted as read-write by a single node.

ReadOnlyMany ROX The volume can be mounted read-only by many nodes.

ReadWriteMany RWX The volume can be mounted as read-write by many nodes.

IMPORTANT

A volume’s AccessModes are descriptors of the volume’s capabilities. They are not
enforced constraints. The storage provider is responsible for runtime errors resulting
from invalid use of the resource.

For example, Ceph offers ReadWriteOnce access mode. You must mark the claims as 
read-only if you want to use the volume’s ROX capability. Errors in the provider show up
at runtime as mount errors.

iSCSI and Fibre Channel volumes do not currently have any fencing mechanisms. You
must ensure the volumes are only used by one node at a time. In certain situations, such
as draining a node, the volumes can be used simultaneously by two nodes. Before draining
the node, first ensure the pods that use these volumes are deleted.

The following table lists the access modes supported by different PVs:

Table 4.2. Supported access modes for PVs

Volume Plug-in ReadWriteOnce ReadOnlyMany ReadWriteMany

AWS EBS � - -

Azure File � � �

Azure Disk � - -

Ceph RBD � � -

CHAPTER 4. ADDITIONAL CONCEPTS

97



Fibre Channel � � -

GCE Persistent Disk � - -

GlusterFS � � �

HostPath � - -

iSCSI � � -

NFS � � �

Openstack Cinder � - -

VMWare vSphere � - -

Local � - -

Volume Plug-in ReadWriteOnce ReadOnlyMany ReadWriteMany

NOTE

Use a recreate deployment strategy  for pods that rely on AWS EBS, GCE Persistent
Disks, or Openstack Cinder PVs.

4.3.3.4. Reclaim policy

The following table lists current reclaim policies:

Table 4.3. Current reclaim policies

Reclaim policy Description

Retain Manual reclamation

Recycle Basic scrub (e.g, rm -rf /<volume>/*)

NOTE

Currently, only NFS and HostPath support the 'Recycle' reclaim policy.

OpenShift Container Platform 3.10 Architecture

98

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#recreate-strategy


WARNING

The recycle reclaim policy was deprecated and removed in favor of dynamic
provisioning starting in OpenShift Container Platform 3.6.

4.3.3.5. Phase

Volumes can be found in one of the following phases:

Table 4.4. Volume phases

Phase Description

Available A free resource not yet bound to a claim.

Bound The volume is bound to a claim.

Released The claim was deleted, but the resource is not yet reclaimed by the
cluster.

Failed The volume has failed its automatic reclamation.

The CLI shows the name of the PVC bound to the PV.

4.3.3.6. Mount options

You can specify mount options while mounting a persistent volume by using the annotation 
volume.beta.kubernetes.io/mount-options.

For example:

Mount options example



apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv0001
  annotations:
    volume.beta.kubernetes.io/mount-options: rw,nfsvers=4,noexec 1
spec:
  capacity:
    storage: 1Gi
  accessModes:
  - ReadWriteOnce
  nfs:
    path: /tmp
    server: 172.17.0.2
  persistentVolumeReclaimPolicy: Recycle

CHAPTER 4. ADDITIONAL CONCEPTS

99



1 Specified mount options are used while mounting the PV to the disk.

The following persistent volume types support mount options:

NFS

GlusterFS

Ceph RBD

OpenStack Cinder

AWS Elastic Block Store (EBS)

GCE Persistent Disk

iSCSI

Azure Disk

Azure File

VMWare vSphere

NOTE

Fibre Channel and HostPath persistent volumes do not support mount options.

4.3.4. Persistent volume claims

Each PVC contains a spec and status, which is the specification and status of the claim, for example:

PVC object definition example

4.3.4.1. Storage classes

Claims can optionally request a specific storage class by specifying the storage class’s name in the 
storageClassName attribute. Only PVs of the requested class, ones with the same storageClassName

  claimRef:
    name: claim1
    namespace: default

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: myclaim
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 8Gi
  storageClassName: gold

OpenShift Container Platform 3.10 Architecture

100



as the PVC, can be bound to the PVC. The cluster administrator can configure dynamic provisioners to
service one or more storage classes. The cluster administrator can create a PV on demand that matches
the specifications in the PVC.

The cluster administrator can also set a default storage class for all PVCs. When a default storage class
is configured, the PVC must explicitly ask for StorageClass or storageClassName annotations set to 
"" to be bound to a PV without a storage class.

4.3.4.2. Access modes

Claims use the same conventions as volumes when requesting storage with specific access modes.

4.3.4.3. Resources

Claims, such as pods, can request specific quantities of a resource. In this case, the request is for storage.
The same resource model applies to volumes and claims.

4.3.4.4. Claims as volumes

Pods access storage by using the claim as a volume. Claims must exist in the same namespace as the
pod by using the claim. The cluster finds the claim in the pod’s namespace and uses it to get the 
PersistentVolume backing the claim. The volume is mounted to the host and into the pod, for example:

Mount volume to the host and into the pod example

4.3.5. Block volume support

IMPORTANT

kind: Pod
apiVersion: v1
metadata:
  name: mypod
spec:
  containers:
    - name: myfrontend
      image: dockerfile/nginx
      volumeMounts:
      - mountPath: "/var/www/html"
        name: mypd
  volumes:
    - name: mypd
      persistentVolumeClaim:
        claimName: myclaim

CHAPTER 4. ADDITIONAL CONCEPTS

101



1

IMPORTANT

Block volume support is a Technology Preview feature and it is only available for manually
provisioned PVs.

Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

You can statically provision raw block volumes by including API fields in your PV and PVC specifications.

To use block volume, you must first enable the BlockVolume feature gate. To enable the feature gates
for master(s), add feature-gates to apiServerArguments and controllerArguments. To enable the
feature gates for node(s), add feature-gates to kubeletArguments. For example:

kubeletArguments:
   feature-gates:
     - BlockVolume=true

PV example

volumeMode field indicating that this PV is a raw block volume.

PVC example

apiVersion: v1
kind: PersistentVolume
metadata:
  name: block-pv
spec:
  capacity:
    storage: 10Gi
  accessModes:
    - ReadWriteOnce
  volumeMode: Block 1
  persistentVolumeReclaimPolicy: Retain
  fc:
    targetWWNs: ["50060e801049cfd1"]
    lun: 0
    readOnly: false

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: block-pvc
spec:
  accessModes:
    - ReadWriteOnce

OpenShift Container Platform 3.10 Architecture

102

https://access.redhat.com/support/offerings/techpreview/


1

1

2

3

volumeMode field indicating that a raw block persistent volume is requested.

Pod specification example

volumeDevices (similar to volumeMounts) is used for block devices and can only be used with 
PersistentVolumeClaim sources.

devicePath (similar to mountPath) represents the path to the physical device.

The volume source must be of type persistentVolumeClaim and must match the name of the
PVC as expected.

Table 4.5. Accepted values for VolumeMode

Value Default

Filesystem Yes

Block No

Table 4.6. Binding scenarios for block volumes

PV
VolumeMode

PVC VolumeMode Binding Result

Filesystem Filesystem Bind

  volumeMode: Block 1
  resources:
    requests:
      storage: 10Gi

apiVersion: v1
kind: Pod
metadata:
  name: pod-with-block-volume
spec:
  containers:
    - name: fc-container
      image: fedora:26
      command: ["/bin/sh", "-c"]
      args: [ "tail -f /dev/null" ]
      volumeDevices:  1
        - name: data
          devicePath: /dev/xvda 2
  volumes:
    - name: data
      persistentVolumeClaim:
        claimName: block-pvc 3

CHAPTER 4. ADDITIONAL CONCEPTS

103



Unspecified Unspecified Bind

Filesystem Unspecified Bind

Unspecified Filesystem Bind

Block Block Bind

Unspecified Block No Bind

Block Unspecified No Bind

Filesystem Block No Bind

Block Filesystem No Bind

PV
VolumeMode

PVC VolumeMode Binding Result

IMPORTANT

Unspecified values result in the default value of Filesystem.

4.4. EPHEMERAL LOCAL STORAGE

4.4.1. Overview

NOTE

This topic applies only if the ephemeral storage technology preview is enabled in
OpenShift Container Platform 3.10. This feature is disabled by default. If enabled, the
OpenShift Container Platform cluster uses ephemeral storage to store information that
does not need to persist after the cluster is destroyed. To enable this feature, see
configuring for ephemeral storage .

In addition to persistent storage, pods and containers may require ephemeral or transient local storage
for their operation. The lifetime of this ephemeral storage does not extend beyond the life of the
individual pod, and this ephemeral storage cannot be shared across pods.

Prior to OpenShift Container Platform 3.10, ephemeral local storage was exposed to pods using the
container’s writable layer, logs directory, and EmptyDir volumes. Pods use ephemeral local storage for
scratch space, caching, and logs. Issues related to the lack of local storage accounting and isolation
include the following:

Pods do not know how much local storage is available to them.

Pods cannot request guaranteed local storage.

Local storage is a best effort resource.

OpenShift Container Platform 3.10 Architecture

104

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-configuring-ephemeral-storage


Pods can be evicted due to other pods filling the local storage, after which new pods are not
admitted until sufficient storage has been reclaimed.

Unlike persistent volumes, ephemeral storage is unstructured and shared, the space, not the actual data,
between all pods running on a node, in addition to other uses by the system, the container runtime, and
OpenShift Container Platform. The ephemeral storage framework allows pods to specify their transient
local storage needs, and OpenShift Container Platform to schedule pods where appropriate and protect
the node against excessive use of local storage.

While the ephemeral storage framework allows administrators and developers to better manage this
local storage, it does not provide any promises related to I/O throughput and latency.

4.4.2. Types of ephemeral storage

Ephemeral local storage is always made available in the primary partition. There are two basic ways of
creating the primary partition, root and runtime.

4.4.2.1. Root

This partition holds the kubelet’s root directory, /var/lib/origin/ by default, and /var/log/ directory. This
partition may be shared between user pods, OS, and Kubernetes system daemons. This partition can be
consumed by pods via EmptyDir volumes, container logs, image layers, and container writable layers.
Kubelet manages shared access and isolation of this partition. This partition is ephemeral, and
applications cannot expect any performance SLAs, disk IOPS for example, from this partition.

4.4.2.2. Runtime

This is an optional partition that runtimes can use for overlay file systems. OpenShift Container Platform
attempts to identify and provide shared access along with isolation to this partition. Container image
layers and writable layers are stored here. If the runtime partition exists, the root partition does not hold
any image layer or other writable storage.

NOTE

When you use DeviceMapper to provide runtime storage, a containers' copy-on-write
layer is not accounted for in ephemeral storage management. Use overlay storage to
monitor this ephemeral storage.

4.5. SOURCE CONTROL MANAGEMENT

OpenShift Container Platform takes advantage of preexisting source control management (SCM)
systems hosted either internally (such as an in-house Git server) or externally (for example, on GitHub,
Bitbucket, etc.). Currently, OpenShift Container Platform only supports Git solutions.

SCM integration is tightly coupled with builds, the two points being:

Creating a BuildConfig using a repository, which allows building your application inside of
OpenShift Container Platform. You can create a BuildConfigmanually or let OpenShift
Container Platform create it automatically by inspecting your repository.

Triggering a build  upon repository changes.

4.6. ADMISSION CONTROLLERS

CHAPTER 4. ADDITIONAL CONCEPTS

105

https://github.com/
https://bitbucket.org/
https://git-scm.com/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#defining-a-buildconfig
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-new-app
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#webhook-triggers


1

4.6.1. Overview

Admission control plug-ins intercept requests to the master API prior to persistence of a resource, but
after the request is authenticated and authorized.

Each admission control plug-in is run in sequence before a request is accepted into the cluster. If any
plug-in in the sequence rejects the request, the entire request is rejected immediately, and an error is
returned to the end-user.

Admission control plug-ins may modify the incoming object in some cases to apply system configured
defaults. In addition, admission control plug-ins may modify related resources as part of request
processing to do things such as incrementing quota usage.

WARNING

The OpenShift Container Platform master has a default list of plug-ins that are
enabled by default for each type of resource (Kubernetes and OpenShift Container
Platform). These are required for the proper functioning of the master. Modifying
these lists is not recommended unless you strictly know what you are doing. Future
versions of the product may use a different set of plug-ins and may change their
ordering. If you do override the default list of plug-ins in the master configuration
file, you are responsible for updating it to reflect requirements of newer versions of
the OpenShift Container Platform master.

4.6.2. General Admission Rules

Starting in 3.3, OpenShift Container Platform uses a single admission chain for Kubernetes and
OpenShift Container Platform resources. This changed from 3.2, and before where we had separate
admission chains. This means that the top-level admissionConfig.pluginConfig element can now
contain the admission plug-in configuration, which used to be contained in 
kubernetesMasterConfig.admissionConfig.pluginConfig.

The kubernetesMasterConfig.admissionConfig.pluginConfig should be moved and merged into 
admissionConfig.pluginConfig.

Also, starting in 3.3, all the supported admission plug-ins are ordered in the single chain for you. You
should no longer set admissionConfig.pluginOrderOverride or the 
kubernetesMasterConfig.admissionConfig.pluginOrderOverride. Instead, you should enable plug-ins
that are off by default by either adding their plug-in-specific configuration, or adding a 
DefaultAdmissionConfig stanza like this:

Admission plug-in name.



admissionConfig:
  pluginConfig:
    AlwaysPullImages: 1
      configuration:
        kind: DefaultAdmissionConfig
        apiVersion: v1
        disable: false 2

OpenShift Container Platform 3.10 Architecture

106



2 Indicates that a plug-in should be enabled. It is optional and shown here only for reference.

Setting disable to true will disable an admission plug-in that defaults to on.

WARNING

Admission plug-ins are commonly used to help enforce security on the API server.
Be careful when disabling them.

NOTE

If you were previously using admissionConfig elements that cannot be safely combined
into a single admission chain, you will get a warning in your API server logs and your API
server will start with two separate admission chains for legacy compatibility. Update your 
admissionConfig to resolve the warning.

4.6.3. Customizable Admission Plug-ins

Cluster administrators can configure some admission control plug-ins to control certain behavior, such
as:

Limiting Number of Self-Provisioned Projects Per User

Configuring Global Build Defaults and Overrides

Controlling Pod Placement

Managing Role Bindings

4.6.4. Admission Controllers Using Containers

Admission controllers using containers also support init containers.

4.7. CUSTOM ADMISSION CONTROLLERS

4.7.1. Overview

In addition to the default admission controllers, you can use admission webhooks as part of the
admission chain.

Admission webhooks call webhook servers to either mutate pods upon creation, such as to inject labels,
or to validate specific aspects of the pod configuration during the admission process.

Admission webhooks intercept requests to the master API prior to the persistence of a resource, but
after the request is authenticated and authorized.

4.7.2. Admission Webhooks

In OpenShift Container Platform you can use admission webhook objects that call webhook servers



CHAPTER 4. ADDITIONAL CONCEPTS

107

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#limit-projects-per-user
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-build-defaults-overrides
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#controlling-pod-placement
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#managing-role-bindings


In OpenShift Container Platform you can use admission webhook objects that call webhook servers
during the API admission chain.

There are two types of admission webhook objects you can configure:

Mutating admission webhooks  allow for the use of mutating webhooks to modify resource
content before it is persisted.

Validating admission webhooks allow for the use of validating webhooks to enforce custom
admission policies.

Configuring the webhooks and external webhook servers is beyond the scope of this document.
However, the webhooks must adhere to an interface in order to work properly with OpenShift Container
Platform.

IMPORTANT

Admission webhooks is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs), might not
be functionally complete, and Red Hat does not recommend to use them for production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information on Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

When an object is instantiated, OpenShift Container Platform makes an API call to admit the object.
During the admission process, a mutating admission controller can invoke webhooks to perform tasks,
such as injecting affinity labels. At the end of the admissions process, a validating admission controller
can invoke webhooks to make sure the object is configured properly, such as verifying affinity labels. If
the validation passes, OpenShift Container Platform schedules the object as configured.

When the API request comes in, the mutating or validating admission controller uses the list of external
webhooks in the configuration and calls them in parallel:

If all of the webhooks approve the request, the admission chain continues.

If any of the webhooks deny the request, the admission request is denied, and the reason for
doing so is based on the first webhook denial reason.
If more than one webhook denies the admission request, only the first will be returned to the
user.

If there is an error encountered when calling a webhook, that request is either denied or the
webhook is ignored.

The communication between the admission controller and the webhook server needs to be secured
using TLS. Generate a CA certificate and use the certificate to sign the server certificate used by your
webhook server. The PEM-formatted CA certificate is supplied to the admission controller using a
mechanism, such as Service Serving Certificate Secrets .

The following diagram illustrates this process with two admission webhooks that call multiple webhooks.

OpenShift Container Platform 3.10 Architecture

108

https://github.com/kubernetes/kubernetes/blob/v1.10.0-beta.1/staging/src/k8s.io/api/admission/v1beta1/types.go#L28
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#service-serving-certificate-secrets


A simple example use case for admission webhooks is syntactical validation of resources. For example,
you have an infrastructure that requires all pods to have a common set of labels, and you do not want
any pod to be persisted if the pod does not have those labels. You could write a webhook to inject these
labels and another webhook to verify that the labels are present. The OpenShift Container Platform will
then schedule pod that have the labels and pass validation and reject pods that do not pass due to
missing labels.

Some common use-cases include:

Mutating resources to inject side-car containers into pods.

Restricting projects to block some resources from a project.

Custom resource validation to perform complex validation on dependent fields.

4.7.2.1. Types of Admission Webhooks

Cluster administrators can include mutating admission webhooks or validating admission webhooks in the
admission chain of the API server.

Mutating admission webhooks are invoked during the mutation phase of the admission process, which
allows modification of the resource content before it is persisted. One example of a mutating admission
webhook is the Pod Node Selector  feature, which uses an annotation on a namespace to find a label
selector and add it to the pod specification.

Sample mutating admission webhook configuration:

apiVersion: admissionregistration.k8s.io/v1beta1
  kind: MutatingWebhookConfiguration 1
  metadata:
    name: <controller_name> 2
  webhooks:
  - name: <webhook_name> 3
    clientConfig: 4
      service:
        namespace:  5
        name: 6
       path: <webhook_url> 7
      caBundle: <cert> 8

CHAPTER 4. ADDITIONAL CONCEPTS

109

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#constraining-pod-placement-nodeselector


1

2

3

4

5

6

7

8

9

10

11

Specifies a mutating admission webhook configuration.

The name for the admission webhook object.

The name of the webhook to call.

Information about how to connect to, trust, and send data to the webhook server.

The project where the front-end service is created.

The name of the front-end service.

The webhook URL used for admission requests.

A PEM-encoded CA certificate that signs the server certificate used by the webhook server.

Rules that define when the API server should use this controller.

The operation(s) that triggers the API server to call this controller:

create

update

delete

connect

Specifies how the policy should proceed if the webhook admission server is unavailable. Either 
Ignore (allow/fail open) or Fail (block/fail closed).

Validating admission webhooks are invoked during the validation phase of the admission process. This
phase allows the enforcement of invariants on particular API resources to ensure that the resource does
not change again. The Pod Node Selector is also an example of a validation admission, by ensuring that
all nodeSelector fields are constrained by the node selector restrictions on the project.

Sample validating admission webhook configuration:

    rules: 9
    - operations: 10
      - <operation>
      apiGroups:
      - ""
      apiVersions:
      - "*"
      resources:
      - <resource>
    failurePolicy: <policy> 11

apiVersion: admissionregistration.k8s.io/v1beta1
  kind: ValidatingWebhookConfiguration 1
  metadata:
    name: <controller_name> 2
  webhooks:
  - name: <webhook_name> 3

OpenShift Container Platform 3.10 Architecture

110



1

2

3

4

5

6

7

8

9

10

11

Specifies a validating admission webhook configuration.

The name for the webhook admission object.

The name of the webhook to call.

Information about how to connect to, trust, and send data to the webhook server.

The project where the front-end service is created.

The name of the front-end service.

The webhook URL used for admission requests.

A PEM-encoded CA certificate that signs the server certificate used by the webhook server.

Rules that define when the API server should use this controller.

The operation that triggers the API server to call this controller.

create

update

delete

connect

Specifies how the policy should proceed if the webhook admission server is unavailable. Either 
Ignore (allow/fail open) or Fail (block/fail closed).

NOTE

Fail open can result in unpredictable behavior for all clients.

4.7.2.2. Create the Admission Webhook

    clientConfig: 4
      service:
        namespace: default  5
        name: kubernetes 6
       path: <webhook_url> 7
      caBundle: <cert> 8
    rules: 9
    - operations: 10
      - <operation>
      apiGroups:
      - ""
      apiVersions:
      - "*"
      resources:
      - <resource>
    failurePolicy: <policy> 11

CHAPTER 4. ADDITIONAL CONCEPTS

111



1 2

1

First deploy the external webhook server and ensure it is working properly. Otherwise, depending
whether the webhook is configured as fail open or fail closed, operations will be unconditionally
accepted or rejected.

1. Configure a mutating or validating admission webhook object in a YAML file.

2. Run the following command to create the object:

oc create -f <file-name>.yaml

After you create the admission webhook object, OpenShift Container Platform takes a few
seconds to honor the new configuration.

3. Create a front-end service for the admission webhook:

Free-form label to trigger the webhook.

4. Run the following command to create the object:

oc create -f <file-name>.yaml

5. Add the admission webhook name to pods you want controlled by the webhook:

Label to trigger the webhook.

NOTE

apiVersion: v1
kind: Service
metadata:
  labels:
    role: webhook 1
  name: <name>
spec:
  selector:
   role: webhook 2

apiVersion: v1
kind: Pod
metadata:
  labels:
    role: webhook 1
  name: <name>
spec:
  containers:
    - name: <name>
      image: myrepo/myimage:latest
      imagePullPolicy: <policy>
      ports:
       - containerPort: 8000

OpenShift Container Platform 3.10 Architecture

112



NOTE

See the kubernetes-namespace-reservation projects for an end-to-end example of how
to build your own secure and portable webhook admission server and generic-admission-
apiserver for the library.

4.7.2.3. Admission Webhook Example

The following is an example admission webhook that will not allow namespace creation if the namespace
is reserved:

The following is an example pod that will be evaluated by the admission webhook named webhook:

The following is the front-end service for the webhook:

apiVersion: admissionregistration.k8s.io/v1beta1
  kind: ValidatingWebhookConfiguration
  metadata:
    name: namespacereservations.admission.online.openshift.io
  webhooks:
  - name: namespacereservations.admission.online.openshift.io
    clientConfig:
      service:
        namespace: default
        name: webhooks
       path: /apis/admission.online.openshift.io/v1beta1/namespacereservations
      caBundle: KUBE_CA_HERE
    rules:
    - operations:
      - CREATE
      apiGroups:
      - ""
      apiVersions:
      - "b1"
      resources:
      - namespaces
    failurePolicy: Ignore

apiVersion: v1
kind: Pod
metadata:
  labels:
    role: webhook
  name: webhook
spec:
  containers:
    - name: webhook
      image: myrepo/myimage:latest
      imagePullPolicy: IfNotPresent
      ports:
- containerPort: 8000

apiVersion: v1
kind: Service
metadata:

CHAPTER 4. ADDITIONAL CONCEPTS

113

https://github.com/openshift/kubernetes-namespace-reservation
https://github.com/openshift/generic-admission-server
https://github.com/openshift/kubernetes-namespace-reservation


4.8. OTHER API OBJECTS

4.8.1. LimitRange

A limit range provides a mechanism to enforce min/max limits placed on resources in a Kubernetes
namespace.

By adding a limit range to your namespace, you can enforce the minimum and maximum amount of CPU
and Memory consumed by an individual pod or container.

For CPU and Memory limits, if you specify a max value, but do not specify a min limit in the LimitRange
object, the resource can consume CPU/memory resources greater than max value`.

4.8.2. ResourceQuota

Kubernetes can limit both the number of objects created in a namespace, and the total amount of
resources requested across objects in a namespace. This facilitates sharing of a single Kubernetes
cluster by several teams, each in a namespace, as a mechanism of preventing one team from starving
another team of cluster resources.

See Cluster Administrationfor more information on ResourceQuota.

4.8.3. Resource

A Kubernetes Resource is something that can be requested by, allocated to, or consumed by a pod or
container. Examples include memory (RAM), CPU, disk-time, and network bandwidth.

See the Developer Guidefor more information.

4.8.4. Secret

Secrets are storage for sensitive information, such as keys, passwords, and certificates. They are
accessible by the intended pod(s), but held separately from their definitions.

4.8.5. PersistentVolume

A persistent volume is an object (PersistentVolume) in the infrastructure provisioned by the cluster
administrator. Persistent volumes provide durable storage for stateful applications.

4.8.6. PersistentVolumeClaim

A PersistentVolumeClaim object is a request for storage by a pod author . Kubernetes matches the

  labels:
    role: webhook
  name: webhook
spec:
  ports:
    - port: 443
      targetPort: 8000
  selector:
role: webhook

OpenShift Container Platform 3.10 Architecture

114

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#admin-guide-quota
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-compute-resources
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-secrets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-persistent-volumes


1

2

A PersistentVolumeClaim object is a request for storage by a pod author . Kubernetes matches the
claim against the pool of available volumes and binds them together. The claim is then used as a volume
by a pod. Kubernetes makes sure the volume is available on the same node as the pod that requires it.

4.8.6.1. Custom Resources

A custom resource is an extension of the Kubernetes API that extends the API or allows you to introduce
your own API into a project or a cluster.

See link:https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-
single/cluster_administration/#admin-guide-custom-resources[Extend the Kubernetes API with 
Custom Resources].

4.8.7. OAuth Objects

4.8.7.1. OAuthClient

An OAuthClient represents an OAuth client, as described in RFC 6749, section 2 .

The following OAuthClient objects are automatically created:

openshift-
web-
console

Client used to request tokens for the web console

openshift-
browser-
client

Client used to request tokens at /oauth/token/request with a user-agent that can handle
interactive logins

openshift-
challengin
g-client

Client used to request tokens with a user-agent that can handle WWW-Authenticate
challenges

OAuthClient Object Definition

The lifetime of access tokens in seconds (see the description below).

The name is used as the client_id parameter in OAuth requests.

kind: "OAuthClient"
accessTokenMaxAgeSeconds: null 1
apiVersion: "oauth.openshift.io/v1"
metadata:
  name: "openshift-web-console" 2
  selflink: "/oapi/v1/oAuthClients/openshift-web-console"
  resourceVersion: "1"
  creationTimestamp: "2015-01-01T01:01:01Z"
respondWithChallenges: false 3
secret: "45e27750-a8aa-11e4-b2ea-3c970e4b7ffe" 4
redirectURIs:
  - "https://localhost:8443" 5

CHAPTER 4. ADDITIONAL CONCEPTS

115

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-persistent-volumes
https://tools.ietf.org/html/rfc6749#section-2


3

4

5

When respondWithChallenges is set to true, unauthenticated requests to /oauth/authorize will
result in WWW-Authenticate challenges, if supported by the configured authentication methods.

The value in the secret parameter is used as the client_secret parameter in an authorization code
flow.

One or more absolute URIs can be placed in the redirectURIs section. The redirect_uri parameter
sent with authorization requests must be prefixed by one of the specified redirectURIs.

The accessTokenMaxAgeSeconds value overrides the default accessTokenMaxAgeSeconds value
in the master configuration file for individual OAuth clients. Setting this value for a client allows long-
lived access tokens for that client without affecting the lifetime of other clients.

If null, the default value in the master configuration file is used.

If set to 0, the token will not expire.

If set to a value greater than 0, tokens issued for that client are given the specified expiration
time. For example, accessTokenMaxAgeSeconds: 172800 would cause the token to expire 48
hours after being issued.

4.8.7.2. OAuthClientAuthorization

An OAuthClientAuthorization represents an approval by a User for a particular OAuthClient to be
given an OAuthAccessToken with particular scopes.

Creation of OAuthClientAuthorization objects is done during an authorization request to the OAuth
server.

OAuthClientAuthorization Object Definition

4.8.7.3. OAuthAuthorizeToken

An OAuthAuthorizeToken represents an OAuth authorization code, as described in RFC 6749, section
1.3.1.

An OAuthAuthorizeToken is created by a request to the /oauth/authorize endpoint, as described in
RFC 6749, section 4.1.1 .

An OAuthAuthorizeToken can then be used to obtain an OAuthAccessToken with a request to the
/oauth/token endpoint, as described in RFC 6749, section 4.1.3 .

OAuthAuthorizeToken Object Definition

kind: "OAuthClientAuthorization"
apiVersion: "oauth.openshift.io/v1"
metadata:
  name: "bob:openshift-web-console"
  resourceVersion: "1"
  creationTimestamp: "2015-01-01T01:01:01-00:00"
clientName: "openshift-web-console"
userName: "bob"
userUID: "9311ac33-0fde-11e5-97a1-3c970e4b7ffe"
scopes: []

OpenShift Container Platform 3.10 Architecture

116

https://tools.ietf.org/html/rfc6749#section-1.3.1
https://tools.ietf.org/html/rfc6749#section-4.1.1
https://tools.ietf.org/html/rfc6749#section-4.1.3


1

2

3

4

5

6

name represents the token name, used as an authorization code to exchange for an
OAuthAccessToken.

The clientName value is the OAuthClient that requested this token.

The expiresIn value is the expiration in seconds from the creationTimestamp.

The redirectURI value is the location where the user was redirected to during the authorization
flow that resulted in this token.

userName represents the name of the User this token allows obtaining an OAuthAccessToken for.

userUID represents the UID of the User this token allows obtaining an OAuthAccessToken for.

4.8.7.4. OAuthAccessToken

An OAuthAccessToken represents an OAuth access token, as described in RFC 6749, section 1.4 .

An OAuthAccessToken is created by a request to the /oauth/token endpoint, as described in RFC
6749, section 4.1.3.

Access tokens are used as bearer tokens to authenticate to the API.

OAuthAccessToken Object Definition

kind: "OAuthAuthorizeToken"
apiVersion: "oauth.openshift.io/v1"
metadata:
  name: "MDAwYjM5YjMtMzM1MC00NDY4LTkxODItOTA2OTE2YzE0M2Fj" 1
  resourceVersion: "1"
  creationTimestamp: "2015-01-01T01:01:01-00:00"
clientName: "openshift-web-console" 2
expiresIn: 300 3
scopes: []
redirectURI: "https://localhost:8443/console/oauth" 4
userName: "bob" 5
userUID: "9311ac33-0fde-11e5-97a1-3c970e4b7ffe" 6

kind: "OAuthAccessToken"
apiVersion: "oauth.openshift.io/v1"
metadata:
  name: "ODliOGE5ZmMtYzczYi00Nzk1LTg4MGEtNzQyZmUxZmUwY2Vh" 1
  resourceVersion: "1"
  creationTimestamp: "2015-01-01T01:01:02-00:00"
clientName: "openshift-web-console" 2
expiresIn: 86400 3
scopes: []
redirectURI: "https://localhost:8443/console/oauth" 4
userName: "bob" 5
userUID: "9311ac33-0fde-11e5-97a1-3c970e4b7ffe" 6
authorizeToken: "MDAwYjM5YjMtMzM1MC00NDY4LTkxODItOTA2OTE2YzE0M2Fj" 7

CHAPTER 4. ADDITIONAL CONCEPTS

117

https://tools.ietf.org/html/rfc6749#section-1.4
https://tools.ietf.org/html/rfc6749#section-4.1.3


1

2

3

4

5

6

7

name is the token name, which is used as a bearer token to authenticate to the API.

The clientName value is the OAuthClient that requested this token.

The expiresIn value is the expiration in seconds from the creationTimestamp.

The redirectURI is where the user was redirected to during the authorization flow that resulted in
this token.

userName represents the User this token allows authentication as.

userUID represents the User this token allows authentication as.

authorizeToken is the name of the OAuthAuthorizationToken used to obtain this token, if any.

4.8.8. User Objects

4.8.8.1. Identity

When a user logs into OpenShift Container Platform, they do so using a configured identity provider.
This determines the user’s identity, and provides that information to OpenShift Container Platform.

OpenShift Container Platform then looks for a UserIdentityMapping for that Identity:

NOTE

If the identity provider is configured with the lookup mapping method, for example, if you
are using an external LDAP system, this automatic mapping is not performed. You must
create the mapping manually. For more information, see Lookup Mapping Method.

If the Identity already exists, but is not mapped to a User, login fails.

If the Identity already exists, and is mapped to a User, the user is given an OAuthAccessToken
for the mapped User.

If the Identity does not exist, an Identity, User, and UserIdentityMapping are created, and the
user is given an OAuthAccessToken for the mapped User.

Identity Object Definition

kind: "Identity"
apiVersion: "user.openshift.io/v1"
metadata:
  name: "anypassword:bob" 1
  uid: "9316ebad-0fde-11e5-97a1-3c970e4b7ffe"
  resourceVersion: "1"
  creationTimestamp: "2015-01-01T01:01:01-00:00"
providerName: "anypassword" 2
providerUserName: "bob" 3
user:
  name: "bob" 4
  uid: "9311ac33-0fde-11e5-97a1-3c970e4b7ffe" 5

OpenShift Container Platform 3.10 Architecture

118

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#identity-providers_parameters
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#LookupMappingMethod


1

2

3

4

5

1

2

3

The identity name must be in the form providerName:providerUserName.

providerName is the name of the identity provider.

providerUserName is the name that uniquely represents this identity in the scope of the identity
provider.

The name in the user parameter is the name of the user this identity maps to.

The uid represents the UID of the user this identity maps to.

4.8.8.2. User

A User represents an actor in the system. Users are granted permissions by adding roles to users or to
their groups.

User objects are created automatically on first login, or can be created via the API.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

User Object Definition

name is the user name used when adding roles to a user.

The values in identities are Identity objects that map to this user. May be null or empty for users
that cannot log in.

The fullName value is an optional display name of user.

4.8.8.3. UserIdentityMapping

A UserIdentityMapping maps an Identity to a User.

Creating, updating, or deleting a UserIdentityMapping modifies the corresponding fields in the Identity
and User objects.

An Identity can only map to a single User, so logging in as a particular identity unambiguously
determines the User.

A User can have multiple identities mapped to it. This allows multiple login methods to identify the same

kind: "User"
apiVersion: "user.openshift.io/v1"
metadata:
  name: "bob" 1
  uid: "9311ac33-0fde-11e5-97a1-3c970e4b7ffe"
  resourceVersion: "1"
  creationTimestamp: "2015-01-01T01:01:01-00:00"
identities:
  - "anypassword:bob" 2
fullName: "Bob User" 3

CHAPTER 4. ADDITIONAL CONCEPTS

119

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#managing-role-bindings


1

1

2

A User can have multiple identities mapped to it. This allows multiple login methods to identify the same
User.

UserIdentityMapping Object Definition

UserIdentityMapping name matches the mapped Identity name

4.8.8.4. Group

A Group represents a list of users in the system. Groups are granted permissions by adding roles to
users or to their groups.

Group Object Definition

name is the group name used when adding roles to a group.

The values in users are the names of User objects that are members of this group.

kind: "UserIdentityMapping"
apiVersion: "user.openshift.io/v1"
metadata:
  name: "anypassword:bob" 1
  uid: "9316ebad-0fde-11e5-97a1-3c970e4b7ffe"
  resourceVersion: "1"
identity:
  name: "anypassword:bob"
  uid: "9316ebad-0fde-11e5-97a1-3c970e4b7ffe"
user:
  name: "bob"
  uid: "9311ac33-0fde-11e5-97a1-3c970e4b7ffe"

kind: "Group"
apiVersion: "user.openshift.io/v1"
metadata:
  name: "developers" 1
  creationTimestamp: "2015-01-01T01:01:01-00:00"
users:
  - "bob" 2

OpenShift Container Platform 3.10 Architecture

120

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#managing-role-bindings


CHAPTER 5. NETWORKING

5.1. NETWORKING

5.1.1. Overview

Kubernetes ensures that pods are able to network with each other, and allocates each pod an IP address
from an internal network. This ensures all containers within the pod behave as if they were on the same
host. Giving each pod its own IP address means that pods can be treated like physical hosts or virtual
machines in terms of port allocation, networking, naming, service discovery, load balancing, application
configuration, and migration.

Creating links between pods is unnecessary, and it is not recommended that your pods talk to one
another directly using the IP address. Instead, it is recommended that you create a service, then interact
with the service.

5.1.2. OpenShift Container Platform DNS

If you are running multiple services, such as frontend and backend services for use with multiple pods, in
order for the frontend pods to communicate with the backend services, environment variables are
created for user names, service IPs, and more. If the service is deleted and recreated, a new IP address
can be assigned to the service, and requires the frontend pods to be recreated in order to pick up the
updated values for the service IP environment variable. Additionally, the backend service has to be
created before any of the frontend pods to ensure that the service IP is generated properly, and that it
can be provided to the frontend pods as an environment variable.

For this reason, OpenShift Container Platform has a built-in DNS so that the services can be reached by
the service DNS as well as the service IP/port. OpenShift Container Platform supports split DNS by
running SkyDNS on the master that answers DNS queries for services. The master listens to port 53 by
default.

When the node starts, the following message indicates the Kubelet is correctly resolved to the master:

0308 19:51:03.118430    4484 node.go:197] Started Kubelet for node
openshiftdev.local, server at 0.0.0.0:10250
I0308 19:51:03.118459    4484 node.go:199]   Kubelet is setting 10.0.2.15 as a
DNS nameserver for domain "local"

If the second message does not appear, the Kubernetes service may not be available.

On a node host, each container’s nameserver has the master name added to the front, and the default
search domain for the container will be .<pod_namespace>.cluster.local. The container will then direct
any nameserver queries to the master before any other nameservers on the node, which is the default
behavior for Docker-formatted containers. The master will answer queries on the .cluster.local domain
that have the following form:

Table 5.1. DNS Example Names

Object Type Example

Default <pod_namespace>.cluster.local

CHAPTER 5. NETWORKING

121

https://github.com/skynetservices/skydns


Services <service>.<pod_namespace>.svc.cluster.local

Endpoints <name>.<namespace>.endpoints.cluster.local

Object Type Example

This prevents having to restart frontend pods in order to pick up new services, which would create a new
IP for the service. This also removes the need to use environment variables, because pods can use the
service DNS. Also, as the DNS does not change, you can reference database services as db.local in
configuration files. Wildcard lookups are also supported, because any lookups resolve to the service IP,
and removes the need to create the backend service before any of the frontend pods, since the service
name (and hence DNS) is established upfront.

This DNS structure also covers headless services, where a portal IP is not assigned to the service and the
kube-proxy does not load-balance or provide routing for its endpoints. Service DNS can still be used
and responds with multiple A records, one for each pod of the service, allowing the client to round-robin
between each pod.

5.2. OPENSHIFT SDN

5.2.1. Overview

OpenShift Container Platform uses a software-defined networking (SDN) approach to provide a unified
cluster network that enables communication between pods across the OpenShift Container Platform
cluster. This pod network is established and maintained by the OpenShift SDN, which configures an
overlay network using Open vSwitch (OVS).

OpenShift SDN provides three SDN plug-ins for configuring the pod network:

The ovs-subnet plug-in is the original plug-in, which provides a "flat" pod network where every
pod can communicate with every other pod and service.

The ovs-multitenant plug-in provides project-level isolation for pods and services. Each
project receives a unique Virtual Network ID (VNID) that identifies traffic from pods assigned to
the project. Pods from different projects cannot send packets to or receive packets from pods
and services of a different project.
However, projects that receive VNID 0 are more privileged in that they are allowed to
communicate with all other pods, and all other pods can communicate with them. In OpenShift
Container Platform clusters, the default project has VNID 0. This facilitates certain services,
such as the load balancer, to communicate with all other pods in the cluster and vice versa.

The ovs-networkpolicy plug-in allows project administrators to configure their own isolation
policies using NetworkPolicy objects.

NOTE

Information on configuring the SDN on masters and nodes is available in Configuring the
SDN.

5.2.2. Design on Masters

On an OpenShift Container Platform master, OpenShift SDN maintains a registry of nodes, stored in

OpenShift Container Platform 3.10 Architecture

122

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-configuring-sdn


etcd. When the system administrator registers a node, OpenShift SDN allocates an unused subnet from
the cluster network and stores this subnet in the registry. When a node is deleted, OpenShift SDN
deletes the subnet from the registry and considers the subnet available to be allocated again.

In the default configuration, the cluster network is the 10.128.0.0/14 network (i.e. 10.128.0.0 -
10.131.255.255), and nodes are allocated /23 subnets (i.e., 10.128.0.0/23, 10.128.2.0/23, 10.128.4.0/23,
and so on). This means that the cluster network has 512 subnets available to assign to nodes, and a given
node is allocated 510 addresses that it can assign to the containers running on it. The size and address
range of the cluster network are configurable, as is the host subnet size.

NOTE

If the subnet extends into the next higher octet, it is rotated so that the subnet bits with
0s in the shared octet are allocated first. For example, if the network is 10.1.0.0/16, with 
hostsubnetlength=6, then the subnet of 10.1.0.0/26 and 10.1.1.0/26, through to
10.1.255.0/26 are allocated before 10.1.0.64/26, 10.1.1.64/26 are filled. This ensures that
the subnet is easier to follow.

Note that the OpenShift SDN on a master does not configure the local (master) host to have access to
any cluster network. Consequently, a master host does not have access to pods via the cluster network,
unless it is also running as a node.

When using the ovs-multitenant plug-in, the OpenShift SDN master also watches for the creation and
deletion of projects, and assigns VXLAN VNIDs to them, which are later used by the nodes to isolate
traffic correctly.

5.2.3. Design on Nodes

On a node, OpenShift SDN first registers the local host with the SDN master in the aforementioned
registry so that the master allocates a subnet to the node.

Next, OpenShift SDN creates and configures three network devices:

br0: the OVS bridge device that pod containers will be attached to. OpenShift SDN also
configures a set of non-subnet-specific flow rules on this bridge.

tun0: an OVS internal port (port 2 on br0). This gets assigned the cluster subnet gateway
address, and is used for external network access. OpenShift SDN configures netfilter and
routing rules to enable access from the cluster subnet to the external network via NAT.

vxlan_sys_4789: The OVS VXLAN device (port 1 on br0), which provides access to containers
on remote nodes. Referred to as vxlan0 in the OVS rules.

Each time a pod is started on the host, OpenShift SDN:

1. assigns the pod a free IP address from the node’s cluster subnet.

2. attaches the host side of the pod’s veth interface pair to the OVS bridge br0.

3. adds OpenFlow rules to the OVS database to route traffic addressed to the new pod to the
correct OVS port.

4. in the case of the ovs-multitenant plug-in, adds OpenFlow rules to tag traffic coming from the
pod with the pod’s VNID, and to allow traffic into the pod if the traffic’s VNID matches the pod’s
VNID (or is the privileged VNID 0). Non-matching traffic is filtered out by a generic rule.

CHAPTER 5. NETWORKING

123



OpenShift SDN nodes also watch for subnet updates from the SDN master. When a new subnet is
added, the node adds OpenFlow rules on br0 so that packets with a destination IP address in the
remote subnet go to vxlan0 (port 1 on br0) and thus out onto the network. The ovs-subnet plug-in
sends all packets across the VXLAN with VNID 0, but the ovs-multitenant plug-in uses the appropriate
VNID for the source container.

5.2.4. Packet Flow

Suppose you have two containers, A and B, where the peer virtual Ethernet device for container A’s
eth0 is named vethA and the peer for container B’s eth0 is named vethB.

NOTE

If the Docker service’s use of peer virtual Ethernet devices is not already familiar to you,
see Docker’s advanced networking documentation .

Now suppose first that container A is on the local host and container B is also on the local host. Then the
flow of packets from container A to container B is as follows:

eth0 (in A’s netns) → vethA → br0 → vethB → eth0 (in B’s netns)

Next, suppose instead that container A is on the local host and container B is on a remote host on the
cluster network. Then the flow of packets from container A to container B is as follows:

eth0 (in A’s netns) → vethA → br0 → vxlan0 → network [1] → vxlan0 → br0 → vethB → eth0 (in B’s
netns)

Finally, if container A connects to an external host, the traffic looks like:

eth0 (in A’s netns) → vethA → br0 → tun0 → (NAT) → eth0 (physical device) → Internet

Almost all packet delivery decisions are performed with OpenFlow rules in the OVS bridge br0, which
simplifies the plug-in network architecture and provides flexible routing. In the case of the ovs-
multitenant plug-in, this also provides enforceable network isolation.

5.2.5. Network Isolation

You can use the ovs-multitenant plug-in to achieve network isolation. When a packet exits a pod
assigned to a non-default project, the OVS bridge br0 tags that packet with the project’s assigned
VNID. If the packet is directed to another IP address in the node’s cluster subnet, the OVS bridge only
allows the packet to be delivered to the destination pod if the VNIDs match.

If a packet is received from another node via the VXLAN tunnel, the Tunnel ID is used as the VNID, and
the OVS bridge only allows the packet to be delivered to a local pod if the tunnel ID matches the
destination pod’s VNID.

Packets destined for other cluster subnets are tagged with their VNID and delivered to the VXLAN
tunnel with a tunnel destination address of the node owning the cluster subnet.

As described before, VNID 0 is privileged in that traffic with any VNID is allowed to enter any pod
assigned VNID 0, and traffic with VNID 0 is allowed to enter any pod. Only the default OpenShift
Container Platform project is assigned VNID 0; all other projects are assigned unique, isolation-enabled
VNIDs. Cluster administrators can optionally control the pod network  for the project using the
administrator CLI.

OpenShift Container Platform 3.10 Architecture

124

https://docs.docker.com/engine/userguide/networking/dockernetworks/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#admin-guide-pod-network


5.3. AVAILABLE SDN PLUG-INS

OpenShift Container Platform supports the Kubernetes Container Network Interface (CNI)  as the
interface between the OpenShift Container Platform and Kubernetes. Software defined network (SDN)
plug-ins match network capabilities to your networking needs. Additional plug-ins that support the CNI
interface can be added as needed.

5.3.1. OpenShift SDN

OpenShift SDN is installed and configured by default as part of the Ansible-based installation
procedure. See the OpenShift SDN section for more information.

5.3.2. Third-Party SDN plug-ins

5.3.2.1. Flannel SDN

flannel is a virtual networking layer designed specifically for containers. OpenShift Container Platform
can use it for networking containers instead of the default software-defined networking (SDN)
components. This is useful if running OpenShift Container Platform within a cloud provider platform that
also relies on SDN, such as OpenStack, and you want to avoid encapsulating packets twice through both
platforms.

Architecture

OpenShift Container Platform runs flannel in host-gw mode, which maps routes from container to
container. Each host within the network runs an agent called flanneld, which is responsible for:

Managing a unique subnet on each host

Distributing IP addresses to each container on its host

Mapping routes from one container to another, even if on different hosts

Each flanneld agent provides this information to a centralized etcd store so other agents on hosts can
route packets to other containers within the flannel network.

The following diagram illustrates the architecture and data flow from one container to another using a
flannel network:

CHAPTER 5. NETWORKING

125

https://kubernetes.io/docs/admin/network-plugins/#cni


Node 1 would contain the following routes:

default via 192.168.0.100 dev eth0 proto static metric 100
10.1.15.0/24 dev docker0 proto kernel scope link src 10.1.15.1
10.1.20.0/24 via 192.168.0.200 dev eth0

Node 2 would contain the following routes:

default via 192.168.0.200 dev eth0 proto static metric 100
10.1.20.0/24 dev docker0 proto kernel scope link src 10.1.20.1
10.1.15.0/24 via 192.168.0.100 dev eth0

5.3.2.2. Nuage SDN

Nuage Networks' SDN solution delivers highly scalable, policy-based overlay networking for pods in an
OpenShift Container Platform cluster. Nuage SDN can be installed and configured as a part of the
Ansible-based installation procedure. See the Advanced Installation section for information on how to
install and deploy OpenShift Container Platform with Nuage SDN.

Nuage Networks provides a highly scalable, policy-based SDN platform called Virtualized Services
Platform (VSP). Nuage VSP uses an SDN Controller, along with the open source Open vSwitch for the
data plane.

Nuage uses overlays to provide policy-based networking between OpenShift Container Platform and
other environments consisting of VMs and bare metal servers. The platform’s real-time analytics engine
enables visibility and security monitoring for OpenShift Container Platform applications.

Nuage VSP integrates with OpenShift Container Platform to allows business applications to be quickly
turned up and updated by removing the network lag faced by DevOps teams.

Figure 5.1. Nuage VSP Integration with OpenShift Container Platform

OpenShift Container Platform 3.10 Architecture

126

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-configuring-nuage-sdn
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-configuring-nuage-sdn
http://www.nuagenetworks.net


Figure 5.1. Nuage VSP Integration with OpenShift Container Platform

There are two specific components responsible for the integration.

1. The nuage-openshift-monitor  service, which runs as a separate service on the OpenShift
Container Platform master node.

2. The vsp-openshift plug-in, which is invoked by the OpenShift Container Platform runtime on
each of the nodes of the cluster.

Nuage Virtual Routing and Switching software (VRS) is based on open source Open vSwitch and is
responsible for the datapath forwarding. The VRS runs on each node and gets policy configuration from
the controller.

Nuage VSP Terminology

Figure 5.2. Nuage VSP Building Blocks

1. Domains: An organization contains one or more domains. A domain is a single "Layer 3" space. In
standard networking terminology, a domain maps to a VRF instance.

2. Zones: Zones are defined under a domain. A zone does not map to anything on the network
directly, but instead acts as an object with which policies are associated such that all endpoints in
the zone adhere to the same set of policies.

3. Subnets: Subnets are defined under a zone. A subnet is a specific Layer 2 subnet within the
domain instance. A subnet is unique and distinct within a domain, that is, subnets within a
Domain are not allowed to overlap or to contain other subnets in accordance with the standard

CHAPTER 5. NETWORKING

127



IP subnet definitions.

4. VPorts: A VPort is a new level in the domain hierarchy, intended to provide more granular
configuration. In addition to containers and VMs, VPorts are also used to attach Host and Bridge
Interfaces, which provide connectivity to Bare Metal servers, Appliances, and Legacy VLANs.

5. Policy Group: Policy Groups are collections of VPorts.

Mapping of Constructs

Many OpenShift Container Platform concepts have a direct mapping to Nuage VSP constructs:

Figure 5.3. Nuage VSP and OpenShift Container Platform mapping

A Nuage subnet is not mapped to an OpenShift Container Platform node, but a subnet for a particular
project can span multiple nodes in OpenShift Container Platform.

A pod spawning in OpenShift Container Platform translates to a virtual port being created in VSP. The
vsp-openshift plug-in interacts with the VRS and gets a policy for that virtual port from the VSD via the
VSC. Policy Groups are supported to group multiple pods together that must have the same set of
policies applied to them. Currently, pods can only be assigned to policy groups using the operations
workflow where a policy group is created by the administrative user in VSD. The pod being a part of the
policy group is specified by means of nuage.io/policy-group label in the specification of the pod.

Integration Components

Nuage VSP integrates with OpenShift Container Platform using two main components:

1. nuage-openshift-monitor

2. vsp-openshift plugin

nuage-openshift-monitor

nuage-openshift-monitor  is a service that monitors the OpenShift Container Platform API server for
creation of projects, services, users, user-groups, etc.

OpenShift Container Platform 3.10 Architecture

128

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#nuage-sdn-and-openshift


NOTE

In case of a Highly Available (HA) OpenShift Container Platform cluster with multiple
masters, nuage-openshift-monitor  process runs on all the masters independently
without any change in functionality.

For the developer workflow, nuage-openshift-monitor  also auto-creates VSD objects by exercising
the VSD REST API to map OpenShift Container Platform constructs to VSP constructs. Each cluster
instance maps to a single domain in Nuage VSP. This allows a given enterprise to potentially have
multiple cluster installations - one per domain instance for that Enterprise in Nuage. Each OpenShift
Container Platform project is mapped to a zone in the domain of the cluster on the Nuage VSP.
Whenever nuage-openshift-monitor  sees an addition or deletion of the project, it instantiates a zone
using the VSDK APIs corresponding to that project and allocates a block of subnet for that zone.
Additionally, the nuage-openshift-monitor  also creates a network macro group for this project.
Likewise, whenever nuage-openshift-monitor  sees an addition ordeletion of a service, it creates a
network macro corresponding to the service IP and assigns that network macro to the network macro
group for that project (user provided network macro group using labels is also supported) to enable
communication to that service.

For the developer workflow, all pods that are created within the zone get IPs from that subnet pool. The
subnet pool allocation and management is done by nuage-openshift-monitor  based on a couple of
plug-in specific parameters in the master-config file. However the actual IP address resolution and vport
policy resolution is still done by VSD based on the domain/zone that gets instantiated when the project
is created. If the initial subnet pool is exhausted, nuage-openshift-monitor  carves out an additional
subnet from the cluster CIDR to assign to a given project.

For the operations workflow, the users specify Nuage recognized labels on their application or pod
specification to resolve the pods into specific user-defined zones and subnets. However, this cannot be
used to resolve pods in the zones or subnets created via the developer workflow by nuage-openshift-
monitor.

NOTE

In the operations workflow, the administrator is responsible for pre-creating the VSD
constructs to map the pods into a specific zone/subnet as well as allow communication
between OpenShift entities (ACL rules, policy groups, network macros, and network
macro groups). Detailed description of how to use Nuage labels is provided in the Nuage
VSP Openshift Integration Guide.

vsp-openshift Plug-in

The vsp-openshift networking plug-in is called by the OpenShift Container Platform runtime on each
OpenShift Container Platform node. It implements the network plug-in init and pod setup, teardown,
and status hooks. The vsp-openshift plug-in is also responsible for allocating the IP address for the
pods. In particular, it communicates with the VRS (the forwarding engine) and configures the IP
information onto the pod.

5.3.3. Kuryr SDN for OpenShift Container Platform

Kuryr (or more specifically Kuryr-Kubernetes) is an SDN solution built using CNI and OpenStack
Neutron. Its advantages include being able to use a wide range of Neutron SDN backends and providing
interconnectivity between Kubernetes pods and OpenStack virtual machines (VMs).

Kuryr-Kubernetes and OpenShift Container Platform integration is primarily designed for OpenShift
Container Platform clusters running on OpenStack VMs.

CHAPTER 5. NETWORKING

129

http://support.alcatel-lucent.com
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-configuring-kuryr-sdn
https://github.com/containernetworking/cni
https://docs.openstack.org/neutron/latest/


5.3.3.1. OpenStack Deployment Requirements

Kuryr SDN has some requirements regarding configuration of OpenStack it will be using. In particular:

Minimal service set is Keystone and Neutron.

It works with Octavia.

Trunk ports extension must be enabled.

Neutron must use the Open vSwitch firewall driver.

5.3.3.2. kuryr-controller

kuryr-controller is a service responsible for watching OpenShift Container Platform API for new pods
being spawned and creating Neutron resources for them. For example, when a pod gets created, kuryr-
controller will notice that and call OpenStack Neutron to create a new port. Then, information about that
port (or VIF) is saved into the pod’s annotations. kuryr-controller is also able to use precreated port
pools for faster pod creation.

Currently, kuryr-controller must be run as a single service instance, so it is modeled in OpenShift
Container Platform as Deployment with replicas=1. It requires access to the underlying OpenStack
service APIs.

5.3.3.3. kuryr-cni

kuryr-cni container serves two roles in Kuryr-Kubernetes deployment. It is responsible for installing and
configuring Kuryr CNI script on OpenShift Container Platform nodes and running kuryr-daemon service
that is networking the Pods on the host. This means that kuryr-cni container needs to run on every
OpenShift Container Platform node, so it is modeled as DaemonSet.

OpenShift Container Platform CNI will call the Kuryr CNI script every time a new pod is spawned on or
deleted from an OpenShift Container Platform host. The script fetches the container ID of the local
kuryr-cni from Docker API and executes Kuryr CNI plug-in binary through docker exec passing all the
CNI call arguments. The plug-in then calls kuryr-daemon over local HTTP socket, again passing all the
parameters.

kuryr-daemon service is responsible for watching for Pod’s annotations about Neutron VIFs created for
them. When CNI request for given Pod is received daemon either has VIF information in memory already
or waits for the annotation to appear on Pod definition. Once VIF info in known all the networking
operations happen.

5.4. AVAILABLE ROUTER PLUG-INS

A router can be assigned to a node to control traffic in an OpenShift Container Platform cluster.
OpenShift Container Platform uses HAProxy as the default router, but options are available.

5.4.1. The HAProxy Template Router

The HAProxy template router implementation is the reference implementation for a template router
plug-in. It uses the openshift3/ose-haproxy-router repository to run an HAProxy instance alongside
the template router plug-in.

The template router has two components:

OpenShift Container Platform 3.10 Architecture

130

https://docs.openstack.org/octavia/latest/


A wrapper that watches endpoints and routes and causes a HAProxy reload based on changes

A controller that builds the HAProxy configuration file based on routes and endpoints

NOTE

The HAProxy router uses version 1.8.1.

The controller and HAProxy are housed inside a pod, which is managed by a deployment configuration.
The process of setting up the router is automated by the oc adm router command.

The controller watches the routes and endpoints for changes, as well as HAProxy’s health. When a
change is detected, it builds a new haproxy-config file and restarts HAProxy. The haproxy-config file is
constructed based on the router’s template file and information from OpenShift Container Platform.

The HAProxy template file can be customized as needed to support features that are not currently
supported by OpenShift Container Platform. The HAProxy manual describes all of the features
supported by HAProxy.

The following diagram illustrates how data flows from the master through the plug-in and finally into an
HAProxy configuration:

Figure 5.4. HAProxy Router Data Flow

HAProxy Template Router Metrics

The HAProxy router exposes or publishes metrics in Prometheus format for consumption by external

CHAPTER 5. NETWORKING

131

https://cbonte.github.io/haproxy-dconv/1.8/configuration.html
https://cbonte.github.io/haproxy-dconv/1.5/configuration.html


The HAProxy router exposes or publishes metrics in Prometheus format for consumption by external
metrics collection and aggregation systems (e.g. Prometheus, statsd). The router can be configured to
provide HAProxy CSV format  metrics, or provide no router metrics at all.

The metrics are collected from both the router controller and from HAProxy every five seconds. The
router metrics counters start at zero when the router is deployed and increase over time. The HAProxy
metrics counters are reset to zero every time haproxy is reloaded. The router collects HAProxy statistics
for each frontend, back end, and server. To reduce resource usage when there are more than 500
servers, the back ends are reported instead of the servers because a back end can have multiple servers.

The statistics are a subset of the available HAProxy statistics .

The following HAProxy metrics are collected on a periodic basis and converted to Prometheus format.
For every front end the "F" counters are collected. When the counters are collected for each back end
and the "S" server counters are collected for each server. Otherwise, the "B" counters are collected for
each back end and no server counters are collected.

See router environment variables for more information.

In the following table:

Column 1 - Index from HAProxy CSV statistics

Column 2

F Front end metrics

b Back end metrics when not showing Server metrics
due to the Server Threshold,

B Back end metrics when showing Server metrics

S Server metrics.

Column 3 - The counter

Column 4 - Counter description

Index Usage Counter Description

2 bBS current_queue Current number of
queued requests not
assigned to any server.

4 FbS current_sessions Current number of
active sessions.

5 FbS max_sessions Maximum observed
number of active
sessions.

OpenShift Container Platform 3.10 Architecture

132

https://prometheus.io/docs/concepts/data_model/
https://cbonte.github.io/haproxy-dconv/1.5/configuration.html#9
https://cbonte.github.io/haproxy-dconv/1.5/configuration.html#9.1


7 FbBS connections_total Total number of
connections.

8 FbS bytes_in_total Current total of
incoming bytes.

9 FbS bytes_out_total Current total of
outgoing bytes.

13 bS connection_errors_total Total of connection
errors.

14 bS response_errors_total Total of response errors.

17 bBS up Current health status of
the back end (1 = UP, 0 =
DOWN).

21 S check_failures_total Total number of failed
health checks.

24 S downtime_seconds_tota
l

Total downtime in
seconds.", nil),

33 FbS current_session_rate Current number of
sessions per second
over last elapsed
second.

35 FbS max_session_rate Maximum observed
number of sessions per
second.

40 FbS http_responses_total Total of HTTP
responses, code 2xx

43 FbS http_responses_total Total of HTTP
responses, code 5xx

60 bS http_average_response_
latency_milliseconds

of the last 1024 requests
in milliseconds.

The router controller scrapes the following items. These are only available with Prometheus format
metrics.

Name Description

template_router_reload_seconds Measures the time spent reloading the router in
seconds.

CHAPTER 5. NETWORKING

133



template_router_write_config_seconds Measures the time spent writing out the router
configuration to disk in seconds.

haproxy_exporter_up Was the last scrape of haproxy successful.

haproxy_exporter_csv_parse_failures Number of errors while parsing CSV.

haproxy_exporter_scrape_interval The time in seconds before another scrape is allowed,
proportional to size of data.

haproxy_exporter_server_threshold Number of servers tracked and the current threshold
value.

haproxy_exporter_total_scrapes Current total HAProxy scrapes.

http_request_duration_microseconds The HTTP request latencies in microseconds.

http_request_size_bytes The HTTP request sizes in bytes.

http_response_size_bytes The HTTP response sizes in bytes.

openshift_build_info A metric with a constant '1' value labeled by major,
minor, git commit & git version from which OpenShift
was built.

ssh_tunnel_open_count Counter of SSH tunnel total open attempts

ssh_tunnel_open_fail_count Counter of SSH tunnel failed open attempts

5.4.2. F5 BIG-IP® Router plug-in

The F5 BIG-IP Router plug-in is one of the available router plugins.

NOTE

The F5 router plug-in is available starting in OpenShift Enterprise 3.0.2.

The F5 router plug-in integrates with an existing F5 BIG-IP system in your environment. F5 BIG-IP
version 11.4 or newer is required in order to have the F5 iControl REST API. The F5 router supports
unsecured, edge terminated, re-encryption terminated, and passthrough terminated routes matching on
HTTP vhost and request path.

The F5 router plug-in has feature parity with the HAProxy template router. The F5 router plug-in
additionally supports:

path-based routing (using policy rules),

re-encryption (implemented using client and server SSL profiles)

passthrough of encrypted connections (implemented using an iRule that parses the SNI

OpenShift Container Platform 3.10 Architecture

134



passthrough of encrypted connections (implemented using an iRule that parses the SNI
protocol and uses a data group that is maintained by the F5 router for the servername lookup).

NOTE

Passthrough routes are a special case: path-based routing is technically impossible with
passthrough routes because F5 BIG-IP itself does not see the HTTP request, so it
cannot examine the path. The same restriction applies to the template router; it is a
technical limitation of passthrough encryption, not a technical limitation of OpenShift
Container Platform.

5.4.2.1. Routing Traffic to Pods Through the SDN

Because F5 BIG-IP is external to the OpenShift SDN, a cluster administrator must create a peer-to-
peer tunnel between F5 BIG-IP and a host that is on the SDN, typically an OpenShift Container
Platform node host. This ramp node can be configured as unschedulable for pods so that it will not be
doing anything except act as a gateway for the F5 BIG-IP host. You can also configure multiple such
hosts and use the OpenShift Container Platform ipfailover feature for redundancy; the F5 BIG-IP host
would then need to be configured to use the ipfailover VIP for its tunnel’s remote endpoint.

5.4.2.2. F5 Integration Details

The operation of the F5 router plug-in is similar to that of the OpenShift Container Platform routing-
daemon used in earlier versions. Both use REST API calls to:

create and delete pools,

add endpoints to and delete them from those pools, and

configure policy rules to route to pools based on vhost.

Both also use scp and ssh commands to upload custom TLS/SSL certificates to F5 BIG-IP.

The F5 router plug-in configures pools and policy rules on virtual servers as follows:

When a user creates or deletes a route on OpenShift Container Platform, the router creates a
pool to F5 BIG-IP for the route (if no pool already exists) and adds a rule to, or deletes a rule
from, the policy of the appropriate vserver: the HTTP vserver for non-TLS routes, or the HTTPS
vserver for edge or re-encrypt routes. In the case of edge and re-encrypt routes, the router
also uploads and configures the TLS certificate and key. The router supports host- and path-
based routes.

NOTE

Passthrough routes are a special case: to support those, it is necessary to write an
iRule that parses the SNI ClientHello handshake record and looks up the
servername in an F5 data-group. The router creates this iRule, associates the
iRule with the vserver, and updates the F5 data-group as passthrough routes are
created and deleted. Other than this implementation detail, passthrough routes
work the same way as other routes.

When a user creates a service on OpenShift Container Platform, the router adds a pool to F5
BIG-IP (if no pool already exists). As endpoints on that service are created and deleted, the
router adds and removes corresponding pool members.

CHAPTER 5. NETWORKING

135

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#establishing-a-tunnel-using-a-ramp-node
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#marking-nodes-as-unschedulable-or-schedulable


When a user deletes the route and all endpoints associated with a particular pool, the router
deletes that pool.

5.4.2.3. F5 Router Plug-in

With native integration of the F5 BIG-IP with OpenShift Container Platform , you do not need to
configure a ramp node for the F5 BIG-IP to be able to reach the pods on the overlay network as created
by OpenShift SDN.

Also, only F5 BIG-IP appliance version 12.x and above works with the F5 router plug-in presented in this
section. You also need sdn-services add-on license for the integration to work properly. For version 11.x,
set up a ramp node.

Connection
The F5 appliance can connect to the OpenShift Container Platform cluster via an L3 connection. An L2
switch connectivity is not required between OpenShift Container Platform nodes. On the appliance, you
can use multiple interfaces to manage the integration:

Management interface - Reaches the web console of the F5 appliance.

External interface - Configures the virtual servers for inbound web traffic.

Internal interface - Programs the appliance and reaches out to the pods.

An F5 controller pod has admin access to the appliance. The F5 image is launched within the OpenShift
Container Platform cluster (scheduled on any node) that uses iControl REST APIs to program the
virtual servers with policies, and configure the VxLAN device.

Data Flow: Packets to Pods

NOTE

This section explains how the packets reach the pods, and vice versa. These actions are
performed by the F5 router plug-in pod and the F5 appliance, not the user.

When natively integrated, The F5 appliance reaches out to the pods directly using VxLAN encapsulation.
This integration works only when OpenShift Container Platform is using openshift-sdn as the network
plug-in. The openshift-sdn plug-in employs VxLAN encapsulation for the overlay network that it
creates.

OpenShift Container Platform 3.10 Architecture

136

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#setting-up-f5-native-integration-with-openshift
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#establishing-a-tunnel-using-a-ramp-node


To make a successful data path between a pod and the F5 appliance:

1. F5 needs to encapsulate the VxLAN packet meant for the pods. This requires the sdn-services
license add-on. A VxLAN device needs to be created and the pod overlay network needs to be
routed through this device.

2. F5 needs to know the VTEP IP address of the pod, which is the IP address of the node where
the pod is located.

3. F5 needs to know which source-ip to use for the overlay network when encapsulating the
packets meant for the pods. This is known as the gateway address .

4. OpenShift Container Platform nodes need to know where the F5 gateway address is (the VTEP
address for the return traffic). This needs to be the internal interface’s address. All nodes of the
cluster must learn this automatically.

5. Since the overlay network is multi-tenant aware, F5 must use a VxLAN ID that is representative
of an admin domain, ensuring that all tenants are reachable by the F5. Ensure that F5
encapsulates all packets with a vnid of 0 (the default vnid for the admin namespace in
OpenShift Container Platform) by putting an annotation on the manually created hostsubnet - 
pod.network.openshift.io/fixed-vnid-host: 0.

A ghost hostsubnet is manually created as part of the setup, which fulfills the third and forth listed
requirements. When the F5 router plug-in pod is launched, this new ghost hostsubnet is provided so
that the F5 appliance can be programmed suitably.

NOTE

The term ghost hostsubnet is used because it suggests that a subnet has been given to a
node of the cluster. However, in reality, it is not a real node of the cluster. It is hijacked by
an external appliance.

The first requirement is fulfilled by the F5 router plug-in pod once it is launched. The second
requirement is also fulfilled by the F5 plug-in pod, but it is an ongoing process. For each new node that is
added to the cluster, the controller pod creates an entry in the VxLAN device’s VTEP FDB. The
controller pod needs access to the nodes resource in the cluster, which you can accomplish by giving
the service account appropriate privileges. Use the following command:

$ oc adm policy add-cluster-role-to-user system:sdn-reader system:serviceaccount:default:router

Data Flow from the F5 Host

NOTE

These actions are performed by the F5 router plug-in pod and the F5 appliance, not the
user.

1. The destination pod is identified by the F5 virtual server for a packet.

2. VxLAN dynamic FDB is looked up with pod’s IP address. If a MAC address is found, go to step 5.

3. Flood all entries in the VTEP FDB with ARP requests seeking the pod’s MAC address. An entry is
made into the VxLAN dynamic FDB with the pod’s MAC address and the VTEP to be used as
the value.

CHAPTER 5. NETWORKING

137



4. Encap an IP packet with VxLAN headers, where the MAC of the pod and the VTEP of the node
is given as values from the VxLAN dynamic FDB.

5. Calculate the VTEP’s MAC address by sending out an ARP or checking the host’s neighbor
cache.

6. Deliver the packet through the F5 host’s internal address.

Data Flow: Return Traffic to the F5 Host

NOTE

These actions are performed by the F5 router plug-in pod and the F5 appliance, not the
user.

1. The pod sends back a packet with the destination as the F5 host’s VxLAN gateway address.

2. The openvswitch at the node determines that the VTEP for this packet is the F5 host’s internal
interface address. This is learned from the ghost hostsubnet creation.

3. A VxLAN packet is sent out to the internal interface of the F5 host.

NOTE

During the entire data flow, the VNID is pre-fixed to be 0 to bypass multi-tenancy.

5.5. PORT FORWARDING

5.5.1. Overview

OpenShift Container Platform takes advantage of a feature built-in to Kubernetes to support port
forwarding to pods. This is implemented using HTTP along with a multiplexed streaming protocol such as
SPDY or HTTP/2.

Developers can use the CLI to port forward to a pod. The CLI listens on each local port specified by the
user, forwarding via the described protocol.

5.5.2. Server Operation

The Kubelet handles port forward requests from clients. Upon receiving a request, it upgrades the
response and waits for the client to create port forwarding streams. When it receives a new stream, it
copies data between the stream and the pod’s port.

Architecturally, there are options for forwarding to a pod’s port. The supported implementation currently
in OpenShift Container Platform invokes nsenter directly on the node host to enter the pod’s network
namespace, then invokes socat to copy data between the stream and the pod’s port. However, a
custom implementation could include running a "helper" pod that then runs nsenter and socat, so that
those binaries are not required to be installed on the host.

5.6. REMOTE COMMANDS

5.6.1. Overview

OpenShift Container Platform takes advantage of a feature built into Kubernetes to support executing

OpenShift Container Platform 3.10 Architecture

138

https://kubernetes.io/docs/user-guide/kubectl/kubectl_port-forward/#
http://www.chromium.org/spdy
https://http2.github.io/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-port-forwarding
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#protocol


OpenShift Container Platform takes advantage of a feature built into Kubernetes to support executing
commands in containers. This is implemented using HTTP along with a multiplexed streaming protocol
such as SPDY or HTTP/2.

Developers can use the CLI to execute remote commands in containers.

5.6.2. Server Operation

The Kubelet handles remote execution requests from clients. Upon receiving a request, it upgrades the
response, evaluates the request headers to determine what streams (stdin, stdout, and/or stderr) to
expect to receive, and waits for the client to create the streams.

After the Kubelet has received all the streams, it executes the command in the container, copying
between the streams and the command’s stdin, stdout, and stderr, as appropriate. When the command
terminates, the Kubelet closes the upgraded connection, as well as the underlying one.

Architecturally, there are options for running a command in a container. The supported implementation
currently in OpenShift Container Platform invokes nsenter directly on the node host to enter the
container’s namespaces prior to executing the command. However, custom implementations could
include using docker exec, or running a "helper" container that then runs nsenter so that nsenter is not
a required binary that must be installed on the host.

5.7. ROUTES

5.7.1. Overview

An OpenShift Container Platform route exposes a service at a host name, such as www.example.com, so
that external clients can reach it by name.

DNS resolution for a host name is handled separately from routing. Your administrator may have
configured a DNS wildcard entry  that will resolve to the OpenShift Container Platform node that is
running the OpenShift Container Platform router. If you are using a different host name you may need to
modify its DNS records independently to resolve to the node that is running the router.

Each route consists of a name (limited to 63 characters), a service selector, and an optional security
configuration.

5.7.2. Routers

An OpenShift Container Platform administrator can deploy routers to nodes in an OpenShift Container
Platform cluster, which enable routes created by developers to be used by external clients. The routing
layer in OpenShift Container Platform is pluggable, and several router plug-ins are provided and
supported by default.

NOTE

See the Configuring Clusters guide for information on configuring a router.

A router uses the service selector to find the service and the endpoints backing the service. When both
router and service provide load balancing, OpenShift Container Platform uses the router load balancing.
A router detects relevant changes in the IP addresses of its services and adapts its configuration
accordingly. This is useful for custom routers to communicate modifications of API objects to an
external routing solution.

The path of a request starts with the DNS resolution of a host name to one or more routers. The

CHAPTER 5. NETWORKING

139

http://www.chromium.org/spdy
https://http2.github.io/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-executing-remote-commands
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#prereq-dns
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#creating-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-router-overview


The path of a request starts with the DNS resolution of a host name to one or more routers. The
suggested method is to define a cloud domain with a wildcard DNS entry pointing to one or more virtual
IP (VIP) addresses backed by multiple router instances. Routes using names and addresses outside the
cloud domain require configuration of individual DNS entries.

When there are fewer VIP addresses than routers, the routers corresponding to the number of
addresses are active and the rest are passive. A passive router is also known as a hot-standby router. For
example, with two VIP addresses and three routers, you have an "active-active-passive" configuration.
See High Availability for more information on router VIP configuration.

Routes can be sharded among the set of routers. Administrators can set up sharding on a cluster-wide
basis and users can set up sharding for the namespace in their project. Sharding allows the operator to
define multiple router groups. Each router in the group serves only a subset of traffic.

OpenShift Container Platform routers provide external host name mapping and load balancing of
service end points over protocols that pass distinguishing information directly to the router; the host
name must be present in the protocol in order for the router to determine where to send it.

Router plug-ins assume they can bind to host ports 80 (HTTP) and 443 (HTTPS), by default. This
means that routers must be placed on nodes where those ports are not otherwise in use. Alternatively, a
router can be configured to listen on other ports by setting the ROUTER_SERVICE_HTTP_PORT and 
ROUTER_SERVICE_HTTPS_PORT environment variables.

Because a router binds to ports on the host node, only one router listening on those ports can be on
each node if the router uses host networking (the default). Cluster networking is configured such that all
routers can access all pods in the cluster.

Routers support the following protocols:

HTTP

HTTPS (with SNI)

WebSockets

TLS with SNI

NOTE

WebSocket traffic uses the same route conventions and supports the same TLS
termination types as other traffic.

For a secure connection to be established, a cipher common to the client and server must be negotiated.
As time goes on, new, more secure ciphers become available and are integrated into client software. As
older clients become obsolete, the older, less secure ciphers can be dropped. By default, the router
supports a broad range of commonly available clients. The router can be configured to use a selected
set of ciphers that support desired clients and do not include the less secure ciphers.

5.7.2.1. Template Routers

A template router  is a type of router that provides certain infrastructure information to the underlying
router implementation, such as:

A wrapper that watches endpoints and routes.

Endpoint and route data, which is saved into a consumable form.

OpenShift Container Platform 3.10 Architecture

140

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#configuring-a-highly-available-service


Passing the internal state to a configurable template and executing the template.

Calling a reload script.

5.7.3. Available Router Plug-ins

See the Available router plug-ins section for the verified available router plug-ins.

Instructions on deploying these routers are available in Deploying a Router .

5.7.4. Sticky Sessions

Implementing sticky sessions is up to the underlying router configuration. The template router plug-in
provides the service name and namespace to the underlying implementation. This can be used for more
advanced configuration, such as implementing stick-tables that synchronize between a set of peers.

Sticky sessions ensure that all traffic from a user’s session go to the same pod, creating a better user
experience. While satisfying the user’s requests, the pod caches data, which can be used in subsequent
requests. For example, for a cluster with five back-end pods and two load-balanced routers, you can
ensure that the same pod receives the web traffic from the same web browser regardless of the router
that handles it.

While returning routing traffic to the same pod is desired, it cannot be guaranteed. However, you can
use HTTP headers to set a cookie to determine the pod used in the last connection. When the user
sends another request to the application the browser re-sends the cookie and the router knows where
to send the traffic.

Cluster administrators can turn off stickiness for passthrough routes separately from other connections,
or turn off stickiness entirely.

By default, sticky sessions for passthrough routes are implemented using the source load-balancing
strategy. However, the roundrobin load-balancing strategy is the default when there are active services
with weights greater than 1. You can change the default for all passthrough routes by using the 
ROUTER_LOAD_BALANCE_ALGORITHM environment variable, and for individual routes by using the 
haproxy.router.openshift.io/balance route specific annotation .

Other types of routes use the leastconn load-balancing strategy by default, which can be changed by
using the ROUTER_LOAD_BALANCE_ALGORITHM environment variable. It can be changed for
individual routes by using the haproxy.router.openshift.io/balance route specific annotation .

NOTE

Cookies cannot be set on passthrough routes, because the HTTP traffic cannot be seen.
Instead, a number is calculated based on the source IP address, which determines the
back-end.

If back-ends change, the traffic could head to the wrong server, making it less sticky, and
if you are using a load-balancer (which hides the source IP) the same number is set for all
connections and traffic is sent to the same pod.

In addition, the template router plug-in provides the service name and namespace to the underlying
implementation. This can be used for more advanced configuration such as implementing stick-tables
that synchronize between a set of peers.

Specific configuration for this router implementation is stored in the haproxy-config.template file

CHAPTER 5. NETWORKING

141

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-router-overview


Specific configuration for this router implementation is stored in the haproxy-config.template file
located in the /var/lib/haproxy/conf directory of the router container. The file may be customized.

NOTE

The source load-balancing strategy does not distinguish between external client IP
addresses; because of the NAT configuration, the originating IP address (HAProxy
remote) is the same. Unless the HAProxy router is running with hostNetwork: true, all
external clients will be routed to a single pod.

5.7.5. Router Environment Variables

For all the items outlined in this section, you can set environment variables in the deployment config
for the router to alter its configuration, or use the oc set env command:

$ oc set env <object_type>/<object_name> KEY1=VALUE1 KEY2=VALUE2

For example:

$ oc set env dc/router ROUTER_SYSLOG_ADDRESS=127.0.0.1 ROUTER_LOG_LEVEL=debug

Table 5.2. Router Environment Variables

Variable Default Description

DEFAULT_CER
TIFICATE

 The contents of a default certificate to use for routes that don’t
expose a TLS server cert; in PEM format.

DEFAULT_CER
TIFICATE_DIR

 A path to a directory that contains a file named tls.crt. If tls.crt
is not a PEM file which also contains a private key, it is first
combined with a file named tls.key in the same directory. The
PEM-format contents are then used as the default certificate.
Only used if DEFAULT_CERTIFICATE or 
DEFAULT_CERTIFICATE_PATH are not specified.

DEFAULT_CER
TIFICATE_PATH

 A path to default certificate to use for routes that don’t expose
a TLS server cert; in PEM format. Only used if 
DEFAULT_CERTIFICATE is not specified.

EXTENDED_VA
LIDATION

true If true, the router confirms that the certificate is structurally
correct. It does not verify the certificate against any CA. Set 
false to turn off the tests.

NAMESPACE_L
ABELS

 A label selector to apply to namespaces to watch, empty means
all.

PROJECT_LAB
ELS

 A label selector to apply to projects to watch, emtpy means all.

RELOAD_SCRI
PT

 The path to the reload script to use to reload the router.

OpenShift Container Platform 3.10 Architecture

142

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-router-customized-haproxy


ROUTER_ALLO
WED_DOMAINS

 A comma-separated list of domains that the host name in a
route can only be part of. Any subdomain in the domain can be
used. Option ROUTER_DENIED_DOMAINS overrides any
values given in this option. If set, everything outside of the
allowed domains will be rejected.

ROUTER_BACK
END_PROCESS
_ENDPOINTS

 String to specify how the endpoints should be processed while
using the template function processEndpointsForAlias. Valid
values are ["shuffle", ""]. "shuffle" will randomize the elements
upon every call. Default behavior returns in pre-determined
order.

ROUTER_BIND_
PORTS_AFTER
_SYNC

false If set to true or TRUE, then the router does not bind to any
ports until it has completely synchronized state. If not set to
'true' or 'TRUE', the router will bind to ports and start processing
requests immediately, but there may be routes that are not
loaded.

ROUTER_COOK
IE_NAME

 Specifies cookie name to override the internally generated
default name. The name must consist of any combination of
upper and lower case letters, digits, "_", and "-". The default is the
hashed internal key name for the route.

ROUTER_COMP
RESSION_MIME

"text/html
text/plain
text/css"

A space separated list of mime types to compress.

ROUTER_DENI
ED_DOMAINS

 A comma-separated list of domains that the host name in a
route can not be part of. No subdomain in the domain can be
used either. Overrides option 
ROUTER_ALLOWED_DOMAINS.

ROUTER_ENAB
LE_COMPRESSI
ON

 If true or TRUE, compress responses when possible.

ROUTER_LISTE
N_ADDR

0.0.0.0:1936 Sets the listening address for router metrics.

ROUTER_LOG_
LEVEL

warning The log level to send to the syslog server.

ROUTER_MAX_
CONNECTIONS

20000 Maximum number of concurrent connections.

ROUTER_METR
ICS_HAPROXY_
SERVER_THRE
SHOLD

500  

Variable Default Description

CHAPTER 5. NETWORKING

143



ROUTER_METR
ICS_HAPROXY_
EXPORTED

 Metrics collected in CSV format. For example, 
defaultSelectedMetrics = []int{2, 4, 5, 7, 8, 9, 13, 14, 17, 21, 24,
33, 35, 40, 43, 60}

ROUTER_METR
ICS_HAPROXY_
BASE_SCRAPE
_INTERVAL

5s  

ROUTER_METR
ICS_HAPROXY_
TIMEOUT

5s  

ROUTER_METR
ICS_TYPE

haproxy Generate metrics for the HAProxy router. (haproxy is the only
supported value)

ROUTER_OVER
RIDE_DOMAINS

 A comma-separated list of domain names. If a route’s domain
name matches the host in a route, the host name is ignored and
the pattern defined in ROUTER_SUBDOMAIN is used.

ROUTER_OVER
RIDE_HOSTNA
ME

 If set true, override the spec.host value for a route with the
template in ROUTER_SUBDOMAIN.

ROUTER_SERVI
CE_HTTPS_PO
RT

443 Port to listen for HTTPS requests.

ROUTER_SERVI
CE_HTTP_POR
T

80 Port to listen for HTTP requests.

ROUTER_SERVI
CE_NAME

public The name that the router identifies itself in the in route status.

ROUTER_CANO
NICAL_HOSTN
AME

 The (optional) host name of the router shown in the in route
status.

ROUTER_SERVI
CE_NAMESPAC
E

 The namespace the router identifies itself in the in route status.
Required if ROUTER_SERVICE_NAME is used.

ROUTER_SERVI
CE_NO_SNI_PO
RT

10443 Internal port for some front-end to back-end communication
(see note below).

Variable Default Description

OpenShift Container Platform 3.10 Architecture

144



ROUTER_SERVI
CE_SNI_PORT

10444 Internal port for some front-end to back-end communication
(see note below).

ROUTER_SUBD
OMAIN

 The template that should be used to generate the host name for
a route without spec.host (e.g. ${name}-
${namespace}.myapps.mycompany.com).

ROUTER_SYSL
OG_ADDRESS

 Address to send log messages. Disabled if empty.

ROUTER_SYSL
OG_FORMAT

 If set, override the default log format used by underlying router
implementation. Its value should conform with underlying router
implementation’s specification.

ROUTER_TCP_
BALANCE_SCH
EME

source load balancing strategy. for multiple endpoints for pass-through
routes. Available options are source, roundrobin, or 
leastconn.

ROUTER_LOAD
_BALANCE_AL
GORITHM

leastconn load balancing strategy. for routes with multiple endpoints.
Available options are source, roundrobin, and leastconn.

ROUTE_LABEL
S

 A label selector to apply to the routes to watch, empty means all.

STATS_PASSW
ORD

 The password needed to access router stats (if the router
implementation supports it).

STATS_PORT  Port to expose statistics on (if the router implementation
supports it). If not set, stats are not exposed.

STATS_USERN
AME

 The user name needed to access router stats (if the router
implementation supports it).

TEMPLATE_FIL
E

/var/lib/haproxy/
conf/custom/ 
haproxy-config-
custom.templat
e

The path to the HAProxy template file (in the container image).

ROUTER_USE_
PROXY_PROTO
COL

 When set to true or TRUE, HAProxy expects incoming
connections to use the PROXY protocol on port 80 or port 443.
The source IP address can pass through a load balancer if the
load balancer supports the protocol, for example Amazon ELB.

ROUTER_ALLO
W_WILDCARD_
ROUTES

 When set to true or TRUE, any routes with a wildcard policy of 
Subdomain that pass the router admission checks will be
serviced by the HAProxy router.

Variable Default Description

CHAPTER 5. NETWORKING

145



ROUTER_DISA
BLE_NAMESPA
CE_OWNERSHI
P_CHECK

 Set to true to relax the namespace ownership policy.

ROUTER_STRIC
T_SNI

 strict-sni

ROUTER_CIPH
ERS

intermediate Specify the set of ciphers supported by bind.

Variable Default Description

NOTE

If you want to run multiple routers on the same machine, you must change the ports that
the router is listening on, ROUTER_SERVICE_SNI_PORT and 
ROUTER_SERVICE_NO_SNI_PORT. These ports can be anything you want as long as
they are unique on the machine. These ports will not be exposed externally.

Router timeout variables

TimeUnits are represented by a number followed by the unit: us *(microseconds), ms (milliseconds,
default), s (seconds), m (minutes), h *(hours), d (days).

The regular expression is: [1-9][0-9]*(us\|ms\|s\|m\|h\|d)

ROUTER_BACK
END_CHECK_IN
TERVAL

5000ms Length of time between subsequent liveness checks on
backends.

ROUTER_CLIEN
T_FIN_TIMEOU
T

1s Controls the TCP FIN timeout period for the client connecting to
the route. If the FIN sent to close the connection is not
answered within the given time, HAProxy will close the
connection. This is harmless if set to a low value and uses fewer
resources on the router.

ROUTER_DEFA
ULT_CLIENT_TI
MEOUT

30s Length of time that a client has to acknowledge or send data.

ROUTER_DEFA
ULT_CONNECT
_TIMEOUT

5s The maximum connect time.

ROUTER_DEFA
ULT_SERVER_F
IN_TIMEOUT

1s Controls the TCP FIN timeout from the router to the pod
backing the route.

OpenShift Container Platform 3.10 Architecture

146



ROUTER_DEFA
ULT_SERVER_T
IMEOUT

30s Length of time that a server has to acknowledge or send data.

ROUTER_DEFA
ULT_TUNNEL_T
IMEOUT

1h Length of time for TCP or WebSocket connections to remain
open. If you have websockets/tcp connections (and any time
HAProxy is reloaded), the old HAProxy processes will stay for
that period.

ROUTER_SLOW
LORIS_HTTP_K
EEPALIVE

300s Set the maximum time to wait for a new HTTP request to
appear. If this is set too low, it can cause problems with browsers
and applications not expecting a small keepalive value.
Additive. See note box below for more information.

ROUTER_SLOW
LORIS_TIMEOU
T

10s Length of time the transmission of an HTTP request can take.

RELOAD_INTER
VAL

5s The minimum frequency the router is allowed to reload to accept
new changes.

ROUTER_METR
ICS_HAPROXY_
TIMEOUT

5s Timeout for the gathering of HAProxy metrics.

NOTE

Some effective timeout values can be the sum of certain variables, rather than the
specific expected timeout.

For example: ROUTER_SLOWLORIS_HTTP_KEEPALIVE adjusts timeout http-keep-
alive, and is set to 300s by default, but haproxy also waits on tcp-request inspect-delay,
which is set to 5s. In this case, the overall timeout would be 300s plus 5s.

5.7.6. Load-balancing Strategy

When a route has multiple endpoints, HAProxy distributes requests to the route among the endpoints
based on the selected load-balancing strategy. This applies when no persistence information is available,
such as on the first request in a session.

The strategy can be one of the following:

roundrobin: Each endpoint is used in turn, according to its weight. This is the smoothest and
fairest algorithm when the server’s processing time remains equally distributed.

leastconn: The endpoint with the lowest number of connections receives the request. Round-
robin is performed when multiple endpoints have the same lowest number of connections. Use
this algorithm when very long sessions are expected, such as LDAP, SQL, TSE, or others. Not
intended to be used with protocols that typically use short sessions such as HTTP.

source: The source IP address is hashed and divided by the total weight of the running servers

CHAPTER 5. NETWORKING

147



source: The source IP address is hashed and divided by the total weight of the running servers
to designate which server will receive the request. This ensures that the same client IP address
will always reach the same server as long as no server goes down or up. If the hash result
changes due to the number of running servers changing, many clients will be directed to
different servers. This algorithm is generally used with passthrough routes.

The ROUTER_TCP_BALANCE_SCHEME environment variable sets the default strategy for
passthorugh routes. The ROUTER_LOAD_BALANCE_ALGORITHM environment variable sets the
default strategy for the router for the remaining routes. A route specific annotation , 
haproxy.router.openshift.io/balance, can be used to control specific routes.

5.7.7. HAProxy Strict SNI

By default, when a host does not resolve to a route in a HTTPS or TLS SNI request, the default
certificate is returned to the caller as part of the 503 response. This exposes the default certificate and
can pose security concerns because the wrong certificate is served for a site. The HAProxy strict-sni
option to bind suppresses use of the default certificate.

The ROUTER_STRICT_SNI environment variable controls bind processing. When set to true or TRUE, 
strict-sni is added to the HAProxy bind. The default setting is false.

The option can be set when the router is created or added later.

$ oc adm router --strict-sni

This sets ROUTER_STRICT_SNI=true.

5.7.8. Router Cipher Suite

Each client (for example, Chrome 30, or Java8) includes a suite of ciphers used to securely connect with
the router. The router must have at least one of the ciphers for the connection to be complete:

Table 5.3. Router Cipher Profiles

Profile Oldest compatible client

modern Firefox 27, Chrome 30, IE 11 on Windows 7, Edge, Opera 17, Safari 9, Android 5.0,
Java 8

intermediate Firefox 1, Chrome 1, IE 7, Opera 5, Safari 1, Windows XP IE8, Android 2.3, Java 7

old Windows XP IE6, Java 6

See the Security/Server Side TLS reference guide for more information.

The router defaults to the intermediate profile. You can select a different profile using the --ciphers
option when creating a route, or by changing the ROUTER_CIPHERS environment variable with the
values modern, intermediate, or old for an existing router. Alternatively, a set of ":" separated ciphers
can be provided. The ciphers must be from the set displayed by:

openssl ciphers

OpenShift Container Platform 3.10 Architecture

148

https://wiki.mozilla.org/Security/Server_Side_TLS


1

5.7.9. Route Host Names

In order for services to be exposed externally, an OpenShift Container Platform route allows you to
associate a service with an externally-reachable host name. This edge host name is then used to route
traffic to the service.

When multiple routes from different namespaces claim the same host, the oldest route wins and claims
it for the namespace. If additional routes with different path fields are defined in the same namespace,
those paths are added. If multiple routes with the same path are used, the oldest takes priority.

A consequence of this behavior is that if you have two routes for a host name: an older one and a newer
one. If someone else has a route for the same host name that they created between when you created
the other two routes, then if you delete your older route, your claim to the host name will no longer be in
effect. The other namespace now claims the host name and your claim is lost.

Example 5.1. A Route with a Specified Host:

Specifies the externally-reachable host name used to expose a service.

Example 5.2. A Route Without a Host:

If a host name is not provided as part of the route definition, then OpenShift Container Platform
automatically generates one for you. The generated host name is of the form:

<route-name>[-<namespace>].<suffix>

The following example shows the OpenShift Container Platform-generated host name for the above
configuration of a route without a host added to a namespace mynamespace:

Example 5.3. Generated Host Name

apiVersion: v1
kind: Route
metadata:
  name: host-route
spec:
  host: www.example.com  1
  to:
    kind: Service
    name: service-name

apiVersion: v1
kind: Route
metadata:
  name: no-route-hostname
spec:
  to:
    kind: Service
    name: service-name

CHAPTER 5. NETWORKING

149



1

no-route-hostname-mynamespace.router.default.svc.cluster.local 1

The generated host name suffix is the default routing subdomain
router.default.svc.cluster.local.

A cluster administrator can also customize the suffix used as the default routing subdomain  for their
environment.

5.7.10. Route Types

Routes can be either secured or unsecured. Secure routes provide the ability to use several types of
TLS termination to serve certificates to the client. Routers support edge, passthrough, and re-
encryption termination.

Example 5.4. Unsecured Route Object YAML Definition

Unsecured routes are simplest to configure, as they require no key or certificates, but secured routes
offer security for connections to remain private.

A secured route is one that specifies the TLS termination of the route. The available types of
termination are described below.

5.7.10.1. Path Based Routes

Path based routes specify a path component that can be compared against a URL (which requires that
the traffic for the route be HTTP based) such that multiple routes can be served using the same host
name, each with a different path. Routers should match routes based on the most specific path to the
least; however, this depends on the router implementation. The host name and path are passed through
to the backend server so it should be able to successfully answer requests for them. For example: a
request to http://example.com/foo/ that goes to the router will result in a pod seeing a request to
http://example.com/foo/.

The following table shows example routes and their accessibility:

Table 5.4. Route Availability

Route When Compared to Accessible

www.example.com/test www.example.com/test Yes

apiVersion: v1
kind: Route
metadata:
  name: route-unsecured
spec:
  host: www.example.com
  to:
    kind: Service
    name: service-name

OpenShift Container Platform 3.10 Architecture

150

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#customizing-the-default-routing-subdomain
http://example.com/foo/
http://example.com/foo/


1

www.example.com No

www.example.com/test and
www.example.com

www.example.com/test Yes

www.example.com Yes

www.example.com www.example.com/test Yes (Matched by the host, not the
route)

www.example.com Yes

Route When Compared to Accessible

Example 5.5. An Unsecured Route with a Path:

The path is the only added attribute for a path-based route.

NOTE

Path-based routing is not available when using passthrough TLS, as the router does not
terminate TLS in that case and cannot read the contents of the request.

5.7.10.2. Secured Routes

Secured routes specify the TLS termination of the route and, optionally, provide a key and certificate(s).

NOTE

TLS termination in OpenShift Container Platform relies on SNI for serving custom
certificates. Any non-SNI traffic received on port 443 is handled with TLS termination
and a default certificate (which may not match the requested host name, resulting in
validation errors).

Secured routes can use any of the following three types of secure TLS termination.

Edge Termination

With edge termination, TLS termination occurs at the router, prior to proxying traffic to its destination.

apiVersion: v1
kind: Route
metadata:
  name: route-unsecured
spec:
  host: www.example.com
  path: "/test"   1
  to:
    kind: Service
    name: service-name

CHAPTER 5. NETWORKING

151

https://en.wikipedia.org/wiki/Server_Name_Indication


1 2

3

4

5

6

With edge termination, TLS termination occurs at the router, prior to proxying traffic to its destination.
TLS certificates are served by the front end of the router, so they must be configured into the route,
otherwise the router’s default certificate will be used for TLS termination.

Example 5.6. A Secured Route Using Edge Termination

The name of the object, which is limited to 63 characters.

The termination field is edge for edge termination.

The key field is the contents of the PEM format key file.

The certificate field is the contents of the PEM format certificate file.

An optional CA certificate may be required to establish a certificate chain for validation.

Because TLS is terminated at the router, connections from the router to the endpoints over the internal
network are not encrypted.

Edge-terminated routes can specify an insecureEdgeTerminationPolicy that enables traffic on
insecure schemes (HTTP) to be disabled, allowed or redirected. The allowed values for 
insecureEdgeTerminationPolicy are: None or empty (for disabled), Allow or Redirect. The default 
insecureEdgeTerminationPolicy is to disable traffic on the insecure scheme. A common use case is to
allow content to be served via a secure scheme but serve the assets (example images, stylesheets and
javascript) via the insecure scheme.

Example 5.7. A Secured Route Using Edge Termination Allowing HTTP Traffic

apiVersion: v1
kind: Route
metadata:
  name: route-edge-secured 1
spec:
  host: www.example.com
  to:
    kind: Service
    name: service-name 2
  tls:
    termination: edge            3
    key: |-                      4
      -----BEGIN PRIVATE KEY-----
      [...]
      -----END PRIVATE KEY-----
    certificate: |-              5
      -----BEGIN CERTIFICATE-----
      [...]
      -----END CERTIFICATE-----
    caCertificate: |-            6
      -----BEGIN CERTIFICATE-----
      [...]
      -----END CERTIFICATE-----

apiVersion: v1

OpenShift Container Platform 3.10 Architecture

152

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#using-wildcard-certificates


1 2

3

4

1 2

3

4

The name of the object, which is limited to 63 characters.

The termination field is edge for edge termination.

The insecure policy to allow requests sent on an insecure scheme HTTP.

Example 5.8. A Secured Route Using Edge Termination Redirecting HTTP Traffic to HTTPS

The name of the object, which is limited to 63 characters.

The termination field is edge for edge termination.

The insecure policy to redirect requests sent on an insecure scheme HTTP to a secure scheme 
HTTPS.

Passthrough Termination

With passthrough termination, encrypted traffic is sent straight to the destination without the router
providing TLS termination. Therefore no key or certificate is required.

Example 5.9. A Secured Route Using Passthrough Termination

kind: Route
metadata:
  name: route-edge-secured-allow-insecure 1
spec:
  host: www.example.com
  to:
    kind: Service
    name: service-name 2
  tls:
    termination:                   edge   3
    insecureEdgeTerminationPolicy: Allow  4
    [ ... ]

apiVersion: v1
kind: Route
metadata:
  name: route-edge-secured-redirect-insecure 1
spec:
  host: www.example.com
  to:
    kind: Service
    name: service-name 2
  tls:
    termination:                   edge      3
    insecureEdgeTerminationPolicy: Redirect  4
    [ ... ]

apiVersion: v1

CHAPTER 5. NETWORKING

153



1 2

3

The name of the object, which is limited to 63 characters.

The termination field is set to passthrough. No other encryption fields are needed.

The destination pod is responsible for serving certificates for the traffic at the endpoint. This is
currently the only method that can support requiring client certificates (also known as two-way
authentication).

NOTE

Passthrough routes can also have an insecureEdgeTerminationPolicy. The only valid
values are None (or empty, for disabled) or Redirect.

Re-encryption Termination

Re-encryption is a variation on edge termination where the router terminates TLS with a certificate,
then re-encrypts its connection to the endpoint which may have a different certificate. Therefore the
full path of the connection is encrypted, even over the internal network. The router uses health checks to
determine the authenticity of the host.

Example 5.10. A Secured Route Using Re-Encrypt Termination

kind: Route
metadata:
  name: route-passthrough-secured 1
spec:
  host: www.example.com
  to:
    kind: Service
    name: service-name 2
  tls:
    termination: passthrough     3

apiVersion: v1
kind: Route
metadata:
  name: route-pt-secured 1
spec:
  host: www.example.com
  to:
    kind: Service
    name: service-name 2
  tls:
    termination: reencrypt        3
    key: [as in edge termination]
    certificate: [as in edge termination]
    caCertificate: [as in edge termination]
    destinationCACertificate: |-  4
      -----BEGIN CERTIFICATE-----
      [...]
      -----END CERTIFICATE-----

OpenShift Container Platform 3.10 Architecture

154



1 2

3

4

The name of the object, which is limited to 63 characters.

The termination field is set to reencrypt. Other fields are as in edge termination.

Required for re-encryption. destinationCACertificate specifies a CA certificate to validate the
endpoint certificate, securing the connection from the router to the destination pods. If the
service is using a service signing certificate, or the administrator has specified a default CA
certificate for the router and the service has a certificate signed by that CA, this field can be
omitted.

If the destinationCACertificate field is left empty, the router automatically leverages the certificate
authority that is generated for service serving certificates, and is injected into every pod as 
/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt. This allows new routes that leverage
end-to-end encryption without having to generate a certificate for the route. This is useful for custom
routers or the F5 router, which might not allow the destinationCACertificate unless the administrator
has allowed it.

NOTE

Re-encrypt routes can have an insecureEdgeTerminationPolicy with all of the same
values as edge-terminated routes.

5.7.11. Router Sharding

In OpenShift Container Platform, each route can have any number of labels in its metadata field. A
router uses selectors (also known as a selection expression) to select a subset of routes from the entire
pool of routes to serve. A selection expression can also involve labels on the route’s namespace. The
selected routes form a router shard . You can create and modify router shards independently from the
routes, themselves.

This design supports traditional sharding as well as overlapped sharding. In traditional sharding, the
selection results in no overlapping sets and a route belongs to exactly one shard. In overlapped sharding,
the selection results in overlapping sets and a route can belong to many different shards. For example, a
single route may belong to a SLA=high shard (but not SLA=medium or SLA=low shards), as well as a 
geo=west shard (but not a geo=east shard).

Another example of overlapped sharding is a set of routers that select based on namespace of the
route:

Router Selection Namespaces

router-1 A* — J* A*, B*, C*, D*, E*, F*, G*, H*, I*, J*

router-2 K* — T* K*, L*, M*, N*, O*, P*, Q*, R*, S*, T*

router-3 Q* — Z* Q*, R*, S*, T*, U*, V*, W*, X*, Y*, Z*

Both router-2 and router-3 serve routes that are in the namespaces Q*, R*, S*, T*. To change this
example from overlapped to traditional sharding, we could change the selection of router-2 to K* — P*,
which would eliminate the overlap.

CHAPTER 5. NETWORKING

155

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#creating-router-shards
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#modifying-router-shards


When routers are sharded, a given route is bound to zero or more routers in the group. The route binding
ensures uniqueness of the route across the shard. Uniqueness allows secure and non-secure versions of
the same route to exist within a single shard. This implies that routes now have a visible life cycle that
moves from created to bound to active.

In the sharded environment the first route to hit the shard reserves the right to exist there indefinitely,
even across restarts.

During a green/blue deployment a route may be selected in multiple routers. An OpenShift Container
Platform application administrator may wish to bleed traffic from one version of the application to
another and then turn off the old version.

Sharding can be done by the administrator at a cluster level and by the user at a project/namespace
level. When namespace labels are used, the service account for the router must have cluster-reader
permission to permit the router to access the labels in the namespace.

NOTE

For two or more routes that claim the same host name, the resolution order is based on
the age of the route and the oldest route would win the claim to that host. In the case of
sharded routers, routes are selected based on their labels matching the router’s selection
criteria. There is no consistent way to determine when labels are added to a route. So if an
older route claiming an existing host name is "re-labelled" to match the router’s selection
criteria, it will replace the existing route based on the above mentioned resolution order
(oldest route wins).

5.7.12. Alternate Backends and Weights

A route is usually associated with one service through the to: token with kind: Service. All of the
requests to the route are handled by endpoints in the service based on the load balancing strategy.

It is possible to have as many as four services supporting the route. The portion of requests that are
handled by each service is governed by the service weight.

The first service is entered using the to: token as before, and up to three additional services can be
entered using the alternateBackend: token. Each service must be kind: Service which is the default.

Each service has a weight associated with it. The portion of requests handled by the service is weight / 
sum_of_all_weights. When a service has more than one endpoint, the service’s weight is distributed
among the endpoints with each endpoint getting at least 1. If the service weight is 0 each of the
service’s endpoints will get 0.

The weight must be in the range 0-256. The default is 1. When the weight is 0 no requests are passed
to the service. If all services have weight 0, requests are returned with a 503 error. When a service has
no endpoints, the weight is effectively 0.

When using alternateBackends also use the roundrobin load balancing strategy to ensure requests are
distributed as expected to the services based on weight. roundrobin can be set for a route using a
route annotation, or for the router in general using an environment variable.

The following is an example route configuration using alternate backends for A/B deployments.

A Route with alternateBackends and weights:

apiVersion: v1
kind: Route

OpenShift Container Platform 3.10 Architecture

156

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#advanced-deployment-a-b-deployment


1

2

4 6

3 5 7

This route uses roundrobinload balancing strategy.

The first service name is service-name which may have 0 or more pods

The alternateBackend services may also have 0 or more pods

The total weight is 40. service-name will get 20/40 or 1/2 of the requests, service-name2
and service-name3 will each get 1/4 of the requests, assuming each service has 1 or more

endpoints.

5.7.13. Route-specific Annotations

Using environment variables, a router can set the default options for all the routes it exposes. An
individual route can override some of these defaults by providing specific configurations in its
annotations.

Route Annotations

For all the items outlined in this section, you can set annotations on the route definition for the route to
alter its configuration

Table 5.5. Route Annotations

Variable Description Environment Variable Used as
Default

haproxy.router.openshift.io/b
alance

Sets the load-balancing
algorithm. Available options are 
source, roundrobin, and 
leastconn.

ROUTER_TCP_BALANCE_S
CHEME for passthrough routes.
Otherwise, use 
ROUTER_LOAD_BALANCE_
ALGORITHM.

metadata:
  name: route-alternate-service
  annotations:
    haproxy.router.openshift.io/balance: roundrobin  1
spec:
  host: www.example.com
  to:
    kind: Service
    name: service-name  2
    weight: 20          3
  alternateBackends:
  - kind: Service
    name: service-name2 4
    weight: 10          5
  - kind: Service
    name: service-name3 6
    weight: 10          7

CHAPTER 5. NETWORKING

157



haproxy.router.openshift.io/d
isable_cookies

Disables the use of cookies to
track related connections. If set to
true or TRUE, the balance
algorithm is used to choose which
back-end serves connections for
each incoming HTTP request.

 

haproxy.router.openshift.io/c
ookie_name

Specifies an optional cookie to be
used for this route. The name
must consist of any combination
of upper and lower case letters,
digits, "_", and "-". The default is
the hashed internal key name for
the route.

 

haproxy.router.openshift.io/p
od-concurrent-connections

Sets the maximum number of
connections that are allowed to a
backing pod from a router. Note:
if there are multiple pods, each
can have this many connections.
But if you have multiple routers,
there is no coordination among
them, each may connect this
many times. If not set, or set to 0,
there is no limit.

 

haproxy.router.openshift.io/r
ate-limit-connections

Setting true or TRUE to enables
rate limiting functionality.

 

haproxy.router.openshift.io/r
ate-limit-
connections.concurrent-tcp

Limits the number of concurrent
TCP connections shared by an IP
address.

 

haproxy.router.openshift.io/r
ate-limit-connections.rate-
http

Limits the rate at which an IP
address can make HTTP requests.

 

haproxy.router.openshift.io/r
ate-limit-connections.rate-
tcp

Limits the rate at which an IP
address can make TCP
connections.

 

haproxy.router.openshift.io/ti
meout

Sets a server-side timeout for the
route. (TimeUnits)

ROUTER_DEFAULT_SERVE
R_TIMEOUT

router.openshift.io/haproxy.h
ealth.check.interval

Sets the interval for the back-end
health checks. (TimeUnits)

ROUTER_BACKEND_CHEC
K_INTERVAL

Variable Description Environment Variable Used as
Default

OpenShift Container Platform 3.10 Architecture

158



1

haproxy.router.openshift.io/i
p_whitelist

Sets a whitelist for the route.  

haproxy.router.openshift.io/h
sts_header

Sets a Strict-Transport-Security
header for the edge terminated or
re-encrypt route.

 

Variable Description Environment Variable Used as
Default

Example 5.11. A Route Setting Custom Timeout

Specifies the new timeout with HAProxy supported units (us, ms, s, m, h, d). If unit not provided,
ms is the default.

NOTE

Setting a server-side timeout value for passthrough routes too low can cause WebSocket
connections to timeout frequently on that route.

5.7.14. Route-specific IP Whitelists

You can restrict access to a route to a select set of IP addresses by adding the 
haproxy.router.openshift.io/ip_whitelist annotation on the route. The whitelist is a space-separated
list of IP addresses and/or CIDRs for the approved source addresses. Requests from IP addresses that
are not in the whitelist are dropped.

Some examples:

When editing a route, add the following annotation to define the desired source IP’s. Alternatively, use 
oc annotate route <name>.

Allow only one specific IP address:

metadata:
  annotations:
    haproxy.router.openshift.io/ip_whitelist: 192.168.1.10

Allow several IP addresses:

metadata:
  annotations:
    haproxy.router.openshift.io/ip_whitelist: 192.168.1.10 192.168.1.11 192.168.1.12

apiVersion: v1
kind: Route
metadata:
  annotations:
    haproxy.router.openshift.io/timeout: 5500ms 1
[...]

CHAPTER 5. NETWORKING

159



1

2

Allow an IP CIDR network:

metadata:
  annotations:
    haproxy.router.openshift.io/ip_whitelist: 192.168.1.0/24

Allow mixed IP addresses and IP CIDR networks:

metadata:
  annotations:
    haproxy.router.openshift.io/ip_whitelist: 180.5.61.153 192.168.1.0/24 10.0.0.0/8

5.7.15. Creating Routes Specifying a Wildcard Subdomain Policy

A wildcard policy allows a user to define a route that covers all hosts within a domain (when the router is
configured to allow it). A route can specify a wildcard policy as part of its configuration using the 
wildcardPolicy field. Any routers run with a policy allowing wildcard routes will expose the route
appropriately based on the wildcard policy.

Learn how to configure HAProxy routers to allow wildcard routes .

Example 5.12. A Route Specifying a Subdomain WildcardPolicy

Specifies the externally reachable host name used to expose a service.

Specifies that the externally reachable host name should allow all hosts in the subdomain 
example.com. *.example.com is the subdomain for host name wildcard.example.com to
reach the exposed service.

5.7.16. Route Status

The route status field is only set by routers. If changes are made to a route so that a router no longer
serves a specific route, the status becomes stale. The routers do not clear the route status field. To
remove the stale entries in the route status, use the clear-route-status script.

5.7.17. Denying or Allowing Certain Domains in Routes

A router can be configured to deny or allow a specific subset of domains from the host names in a route
using the ROUTER_DENIED_DOMAINS and ROUTER_ALLOWED_DOMAINS environment variables.

apiVersion: v1
kind: Route
spec:
  host: wildcard.example.com  1
  wildcardPolicy: Subdomain   2
  to:
    kind: Service
    name: service-name

OpenShift Container Platform 3.10 Architecture

160

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#using-wildcard-routes
https://github.com/openshift/origin/blob/master/images/router/clear-route-status.sh


ROUTER_DENIED_DOMAINS Domains listed are not allowed in any indicated
routes.

ROUTER_ALLOWED_DOMAINS Only the domains listed are allowed in any indicated
routes.

The domains in the list of denied domains take precedence over the list of allowed domains. Meaning
OpenShift Container Platform first checks the deny list (if applicable), and if the host name is not in the
list of denied domains, it then checks the list of allowed domains. However, the list of allowed domains is
more restrictive, and ensures that the router only admits routes with hosts that belong to that list.

For example, to deny the [*.]open.header.test, [*.]openshift.org and [*.]block.it routes for the 
myrouter route:

$ oc adm router myrouter ...
$ oc set env dc/myrouter ROUTER_DENIED_DOMAINS="open.header.test, openshift.org, block.it"

This means that myrouter will admit the following based on the route’s name:

$ oc expose service/<name> --hostname="foo.header.test"
$ oc expose service/<name> --hostname="www.allow.it"
$ oc expose service/<name> --hostname="www.openshift.test"

However, myrouter will deny the following:

$ oc expose service/<name> --hostname="open.header.test"
$ oc expose service/<name> --hostname="www.open.header.test"
$ oc expose service/<name> --hostname="block.it"
$ oc expose service/<name> --hostname="franco.baresi.block.it"
$ oc expose service/<name> --hostname="openshift.org"
$ oc expose service/<name> --hostname="api.openshift.org"

Alternatively, to block any routes where the host name is not set to [*.]stickshift.org or [*.]kates.net:

$ oc adm router myrouter ...
$ oc set env dc/myrouter ROUTER_ALLOWED_DOMAINS="stickshift.org, kates.net"

This means that the myrouter router will admit:

$ oc expose service/<name> --hostname="stickshift.org"
$ oc expose service/<name> --hostname="www.stickshift.org"
$ oc expose service/<name> --hostname="kates.net"
$ oc expose service/<name> --hostname="api.kates.net"
$ oc expose service/<name> --hostname="erno.r.kube.kates.net"

However, myrouter will deny the following:

$ oc expose service/<name> --hostname="www.open.header.test"
$ oc expose service/<name> --hostname="drive.ottomatic.org"
$ oc expose service/<name> --hostname="www.wayless.com"

CHAPTER 5. NETWORKING

161



$ oc expose service/<name> --hostname="www.deny.it"

To implement both scenarios, run:

$ oc adm router adrouter ...
$ oc env dc/adrouter ROUTER_ALLOWED_DOMAINS="openshift.org, kates.net" \
    ROUTER_DENIED_DOMAINS="ops.openshift.org, metrics.kates.net"

This will allow any routes where the host name is set to [*.]openshift.org or [*.]kates.net, and not allow
any routes where the host name is set to [*.]ops.openshift.org or [*.]metrics.kates.net.

Therefore, the following will be denied:

$ oc expose service/<name> --hostname="www.open.header.test"
$ oc expose service/<name> --hostname="ops.openshift.org"
$ oc expose service/<name> --hostname="log.ops.openshift.org"
$ oc expose service/<name> --hostname="www.block.it"
$ oc expose service/<name> --hostname="metrics.kates.net"
$ oc expose service/<name> --hostname="int.metrics.kates.net"

However, the following will be allowed:

$ oc expose service/<name> --hostname="openshift.org"
$ oc expose service/<name> --hostname="api.openshift.org"
$ oc expose service/<name> --hostname="m.api.openshift.org"
$ oc expose service/<name> --hostname="kates.net"
$ oc expose service/<name> --hostname="api.kates.net"

5.7.18. Support for Kubernetes ingress objects

The Kubernetes ingress object is a configuration object determining how inbound connections reach
internal services. OpenShift Container Platform has support for these objects, starting in OpenShift
Container Platform version 3.10, using a ingress controller configuration file.

This controller watches ingress objects and creates one or more routes to satisfy the conditions of the
ingress object. The controller is also responsible for keeping the ingress object and generated route
objects synchronized. This includes giving generated routes permissions on the secrets associated with
the ingress object.

For example, an ingress object configured as:

kind: Ingress
apiVersion: extensions/v1beta1
metadata:
  name: test
spec:
  rules:
  - host: test.com
    http:
     paths:
     - path: /test
       backend:
        serviceName: test-1
        servicePort: 80

OpenShift Container Platform 3.10 Architecture

162



1

generates the following route object:

The name is generated by the route objects, with the ingress name as a prefix.

NOTE

In order for a route to be created, an ingress object must have a host, service, and path.

5.7.19. Disabling the Namespace Ownership Check

Hosts and subdomains are owned by the namespace of the route that first makes the claim. Other
routes created in the namespace can make claims on the subdomain. All other namespaces are
prevented from making claims on the claimed hosts and subdomains. The namespace that owns the
host also owns all paths associated with the host, for example www.abc.xyz/path1.

For example, if the host www.abc.xyz is not claimed by any route. Creating route r1 with host 
www.abc.xyz in namespace ns1 makes namespace ns1 the owner of host www.abc.xyz and
subdomain abc.xyz for wildcard routes. If another namespace, ns2, tries to create a route with say a
different path www.abc.xyz/path1/path2, it would fail because a route in another namespace ( ns1 in
this case) owns that host.

With wildcard routes  the namespace that owns the subdomain owns all hosts in the subdomain. If a
namespace owns subdomain abc.xyz as in the above example, another namespace cannot claim 
z.abc.xyz.

By disabling the namespace ownership rules, you can disable these restrictions and allow hosts (and
subdomains) to be claimed across namespaces.

kind: Route
apiVersion: route.openshift.io/v1
metadata:
  name: test-a34th 1
  ownerReferences:
  - apiVersion: extensions/v1beta1
    kind: Ingress
    name: test
    controller: true
spec:
  host: test.com
  path: /test
  to:
    name: test-1
  port:
     targetPort: 80

CHAPTER 5. NETWORKING

163

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#using-wildcard-routes


WARNING

If you decide to disable the namespace ownership checks in your router, be aware
that this allows end users to claim ownership of hosts across namespaces. While this
change can be desirable in certain development environments, use this feature with
caution in production environments, and ensure that your cluster policy has locked
down untrusted end users from creating routes.

For example, with ROUTER_DISABLE_NAMESPACE_OWNERSHIP_CHECK=true, if namespace ns1
creates the oldest route r1 www.abc.xyz, it owns only the hostname (+ path). Another namespace can
create a wildcard route even though it does not have the oldest route in that subdomain (abc.xyz) and
we could potentially have other namespaces claiming other non-wildcard overlapping hosts (for
example, foo.abc.xyz, bar.abc.xyz, baz.abc.xyz) and their claims would be granted.

Any other namespace (for example, ns2) can now create a route r2 www.abc.xyz/p1/p2, and it would be
admitted. Similarly another namespace (ns3) can also create a route wildthing.abc.xyz with a
subdomain wildcard policy and it can own the wildcard.

As this example demonstrates, the policy 
ROUTER_DISABLE_NAMESPACE_OWNERSHIP_CHECK=true is more lax and allows claims across
namespaces. The only time the router would reject a route with the namespace ownership disabled is if
the host+path is already claimed.

For example, if a new route rx tries to claim www.abc.xyz/p1/p2, it would be rejected as route r2 owns
that host+path combination. This is true whether route rx is in the same namespace or other namespace
since the exact host+path is already claimed.

This feature can be set during router creation or by setting an environment variable in the router’s
deployment configuration.

$ oc adm router ... --disable-namespace-ownership-check=true

$ oc env dc/router ROUTER_DISABLE_NAMESPACE_OWNERSHIP_CHECK=true

[1] After this point, device names refer to devices on container B’s host.



OpenShift Container Platform 3.10 Architecture

164



CHAPTER 6. SERVICE CATALOG COMPONENTS

6.1. SERVICE CATALOG

6.1.1. Overview

When developing microservices-based applications to run on cloud native platforms, there are many
ways to provision different resources and share their coordinates, credentials, and configuration,
depending on the service provider and the platform.

To give developers a more seamless experience, OpenShift Container Platform includes a service
catalog, an implementation of the Open Service Broker API  (OSB API) for Kubernetes. This allows users
to connect any of their applications deployed in OpenShift Container Platform to a wide variety of
service brokers.

The service catalog allows cluster administrators to integrate multiple platforms using a single API
specification. The OpenShift Container Platform web console displays the cluster service classes
offered by service brokers in the service catalog, allowing users to discover and instantiate those
services for use with their applications.

As a result, service users benefit from ease and consistency of use across different types of services
from different providers, while service providers benefit from having one integration point that gives
them access to multiple platforms.

6.1.2. Design

The design of the service catalog follows this basic workflow:

NOTE

New terms in the following are defined further in Concepts and Terminology .

A cluster administrator registers one or more cluster service brokers  with their OpenShift Container

CHAPTER 6. SERVICE CATALOG COMPONENTS

165

https://openservicebrokerapi.org/


A cluster administrator registers one or more cluster service brokers  with their OpenShift Container
Platform cluster. This can be done automatically during installation for some default-provided
service brokers or manually.

Each service broker specifies a set of cluster service classes  and variations of those services
(service plans) to OpenShift Container Platform that should be made available to users.

Using the OpenShift Container Platform web console or CLI, users discover the services that are
available. For example, a cluster service class may be available that is a database-as-a-service
called BestDataBase.

A user chooses a cluster service class and requests a new instance of their own. For example, a
service instance may be a BestDataBase instance named my_db.

A user links, or binds, their service instance to a set of pods (their application). For example, the 
my_db service instance may be bound to the user’s application called my_app.

When a user makes a request to provision or deprovision a resource, the request is made to the service
catalog, which then sends a request to the appropriate cluster service broker. With some services, some
operations such as provision, deprovision, and update are expected to take some time to fulfill. If the
cluster service broker is unavailable, the service catalog will continue to retry the operation.

This infrastructure allows a loose coupling between applications running in OpenShift Container
Platform and the services they use. This allows the application that uses those services to focus on its
own business logic while leaving the management of these services to the provider.

6.1.2.1. Deleting Resources

When a user is done with a service (or perhaps no longer wishes to be billed), the service instance can be
deleted. In order to delete the service instance, the service bindings must be removed first. Deleting the
service bindings is known as unbinding. Part of the deletion process includes deleting the secret that
references the service binding being deleted.

Once all the service bindings are removed, the service instance may be deleted. Deleting the service
instance is known as deprovisioning.

If a project or namespace containing service bindings and service instances is deleted, the service
catalog must first request the cluster service broker to delete the associated instances and bindings.
This is expected to delay the actual deletion of the project or namespace since the service catalog must
communicate with cluster service brokers and wait for them to perform their deprovisioning work. In
normal circumstances, this may take several minutes or longer depending on the service.

NOTE

If you delete a service binding used by a deployment, you must also remove any
references to the binding secret from the deployment. Otherwise, the next rollout will fail.

6.1.3. Concepts and Terminology

Cluster Service Broker

A cluster service broker  is a server that conforms to the OSB API specification and manages a set of
one or more services. The software could be hosted within your own OpenShift Container Platform
cluster or elsewhere.
Cluster administrators can create ClusterServiceBroker API resources representing cluster service
brokers and register them with their OpenShift Container Platform cluster. This allows cluster

OpenShift Container Platform 3.10 Architecture

166



administrators to make new types of managed services using that cluster service broker available
within their cluster.

A ClusterServiceBroker resource specifies connection details for a cluster service broker and the
set of services (and variations of those services) to OpenShift Container Platform that should then
be made available to users. Of special note is the authInfo section, which contains the data used to
authenticate with the cluster service broker.

Example ClusterServiceBroker Resource

apiVersion: servicecatalog.k8s.io/v1beta1
kind: ClusterServiceBroker
metadata:
  name: BestCompanySaaS
spec:
  url: http://bestdatabase.example.com
  authInfo:
    basic:
      secretRef:
        namespace: test-ns
        name: secret-name

Cluster Service Class

Also synonymous with "service" in the context of the service catalog, a cluster service class  is a type
of managed service offered by a particular cluster service broker. Each time a new cluster service
broker resource is added to the cluster, the service catalog controller connects to the corresponding
cluster service broker to obtain a list of service offerings. A new ClusterServiceClass resource is
automatically created for each.

NOTE

OpenShift Container Platform also has a core concept called services, which are
separate Kubernetes resources related to internal load balancing. These resources are
not to be confused with how the term is used in the context of the service catalog and
OSB API.

Example ClusterServiceClass Resource

apiVersion: servicecatalog.k8s.io/v1beta1
kind: ClusterServiceClass
metadata:
  name: smallDB
  brokerName: BestDataBase
  plans: [...]

Cluster Service Plan

A cluster service plan  is represents tiers of a cluster service class. For example, a cluster service class
may expose a set of plans that offer varying degrees of quality-of-service (QoS), each with a
different cost associated with it.

Service Instance

A service instance is a provisioned instance of a cluster service class. When a user wants to use the
capability provided by a service class, they can create a new service instance.

CHAPTER 6. SERVICE CATALOG COMPONENTS

167



When a new ServiceInstance resource is created, the service catalog controller connects to the
appropriate cluster service broker and instructs it to provision the service instance.

Example ServiceInstance Resource

apiVersion: servicecatalog.k8s.io/v1beta1
kind: ServiceInstance
metadata:
  name: my_db
  namespace: test-ns
spec:
  externalClusterServiceClassName: smallDB
  externalClusterServicePlanName: default

Application

The term application refers to the OpenShift Container Platform deployment artifacts, for example
pods running in a user’s project, that will use a service instance.

Credentials

Credentials are information needed by an application to communicate with a service instance.

Service Binding

A service binding is a link between a service instance and an application. These are created by cluster
users who wish for their applications to reference and use a service instance.
Upon creation, the service catalog controller creates a Kubernetes secret containing connection
details and credentials for the service instance. Such secrets can be mounted into pods as usual.
There is also integration with PodPresets, which allow you to express how the secret should be
consumed, and in which pods.

Example ServiceBinding Resource

apiVersion: servicecatalog.k8s.io/v1beta1
kind: ServiceBinding
metadata:
  name: myBinding
  namespace: test-ns
spec:
  instanceRef:
    name: my_db
  parameters:
    securityLevel: confidential
  secretName: mySecret

Parameters

A parameter is a special field available to pass additional data to the cluster service broker when using
either service bindings or service instances. The only formatting requirement is for the parameters to
be valid YAML (or JSON). In the above example, a security level parameter is passed to the cluster
service broker in the service binding request. For parameters that need more security, place them in
a secret and reference them using parametersFrom.

Example Service Binding Resource Referencing a Secret

apiVersion: servicecatalog.k8s.io/v1beta1
kind: ServiceBinding

OpenShift Container Platform 3.10 Architecture

168



metadata:
  name: myBinding
  namespace: test-ns
spec:
  instanceRef:
    name: my_db
  parametersFrom:
    - secretKeyRef:
        name: securityLevel
        key: myKey
  secretName: mySecret

6.1.4. Provided Cluster Service Brokers

OpenShift Container Platform provides the following cluster service brokers for use with the service
catalog.

Template Service Broker

OpenShift Ansible Broker

6.2. SERVICE CATALOG COMMAND-LINE INTERFACE (CLI)

6.2.1. Overview

The basic workflow of interacting with the service catalog is that:

The cluster administrator installs and registers a broker server to make available its services.

The users use those services by instantiating them in an OpenShift project and linking those
service instances to their pods.

The Service Catalog command-line interface (CLI) utility called svcat is available to handle these user
related tasks. While oc commands can perform the same tasks, you can use svcat for easier interaction
with Service Catalog resources. svcat communicates with the Service Catalog API by using the
aggregated API endpoint on an OpenShift cluster.

6.2.2. Installing svcat

You can install svcat as an RPM by using Red Hat Subscription Management (RHSM) if you have an
active OpenShift Enterprise subscription on your Red Hat account:

# yum install atomic-enterprise-service-catalog-svcat

6.2.2.1. Considerations for cloud providers

Google Compute Engine For Google Cloud Platform, run the following command to setup firewall rules
to allow incoming traffic:

$ gcloud compute firewall-rules create allow-service-catalog-secure --allow tcp:30443 --description 
"Allow incoming traffic on 30443 port."

CHAPTER 6. SERVICE CATALOG COMPONENTS

169



6.2.3. Using svcat

This section includes common commands to handle the user associated tasks listed in the service
catalog workflow. Use the svcat --help command to get more information and view other available
command-line options. The sample output in this section assumes that the Ansible Service Broker is
already installed on the cluster.

6.2.3.1. Get broker details

You can view a list available brokers, sync the broker catalog, and get details about brokers deployed in
the service catalog.

6.2.3.1.1. Find brokers

To view all the brokers installed on the cluster:

6.2.3.1.2. Sync broker catalog

To refresh the catalog metadata from the broker:

6.2.3.1.3. View broker details

To view the details of the broker:

6.2.3.2. View service classes and service plans

When you create a ClusterServiceBroker resource, the service catalog controller queries the broker
server to find all services it offers and creates a service class (ClusterServiceClass) for each of those
services. Additionally, it also creates service plans (ClusterServicePlan) for each of the broker’s
services.

6.2.3.2.1. View service classes

To view the available ClusterServiceClass resources:

$ svcat get brokers
           NAME                                                        URL                                              STATUS
+-------------------------+-------------------------------------------------------------------------------------------+--
------+
  ansible-service-broker    https://asb.openshift-ansible-service-broker.svc:1338/ansible-service-broker                
Ready
  template-service-broker   https://apiserver.openshift-template-service-
broker.svc:443/brokers/template.openshift.io   Ready

$ svcat sync broker ansible-service-broker
Synchronization requested for broker: ansible-service-broker

$ svcat describe broker ansible-service-broker
  Name:     ansible-service-broker
  URL:      https://openshift-automation-service-broker.openshift-automation-service-
broker.svc:1338/openshift-automation-service-broker/
  Status:   Ready - Successfully fetched catalog entries from broker @ 2018-06-07 00:32:59 +0000 
UTC

OpenShift Container Platform 3.10 Architecture

170



To view details of a service class:

6.2.3.2.2. View service plans

To view the ClusterServicePlan resources available in the cluster:

$ svcat get classes
        NAME                   DESCRIPTION
+-------------------+--------------------------------+
  rh-mediawiki-apb    Mediawiki apb implementation

  ...

  rh-mariadb-apb      Mariadb apb implementation
  rh-mysql-apb        Software Collections MySQL APB
  rh-postgresql-apb   SCL PostgreSQL apb
                      implementation

$ svcat describe class rh-postgresql-apb
  Name:          rh-postgresql-apb
  Description:   SCL PostgreSQL apb implementation
  UUID:          d5915e05b253df421efe6e41fb6a66ba
  Status:        Active
  Tags:          database, postgresql
  Broker:        ansible-service-broker

Plans:
  NAME            DESCRIPTION
+------+--------------------------------+
  prod   A single DB server with
         persistent storage
  dev    A single DB server with no
         storage

$ svcat get plans
   NAME           CLASS                  DESCRIPTION
+---------+-------------------+--------------------------------+
  default   rh-mediawiki-apb    An APB that deploys MediaWiki

  ...

  prod      rh-mariadb-apb      This plan deploys a single
                                MariaDB instance with 10 GiB
                                of persistent storage
  dev       rh-mariadb-apb      This plan deploys a single
                                MariaDB instance with
                                ephemeral storage
  prod      rh-mysql-apb        A MySQL server with persistent
                                storage
  dev       rh-mysql-apb        A MySQL server with ephemeral
                                storage
  prod      rh-postgresql-apb   A single DB server with
                                persistent storage
  dev       rh-postgresql-apb   A single DB server with no
                                storage

CHAPTER 6. SERVICE CATALOG COMPONENTS

171



View details of a plan:

$ svcat describe plan rh-postgresql-apb/dev
  Name:          dev
  Description:   A single DB server with no storage
  UUID:          9783fc2e859f9179833a7dd003baa841
  Status:        Active
  Free:          true
  Class:         rh-postgresql-apb

Instances:
No instances defined

Instance Create Parameter Schema:
  $schema: http://json-schema.org/draft-04/schema
  additionalProperties: false
  properties:
    postgresql_database:
      default: admin
      pattern: ^[a-zA-Z_][a-zA-Z0-9_]*$
      title: PostgreSQL Database Name
      type: string
    postgresql_password:
      pattern: ^[a-zA-Z0-9_~!@#$%^&*()-=<>,.?;:|]+$
      title: PostgreSQL Password
      type: string
    postgresql_user:
      default: admin
      maxLength: 63
      pattern: ^[a-zA-Z_][a-zA-Z0-9_]*$
      title: PostgreSQL User
      type: string
    postgresql_version:
      default: "9.6"
      enum:
      - "9.6"
      - "9.5"
      - "9.4"
      title: PostgreSQL Version
      type: string
  required:
  - postgresql_database
  - postgresql_user
  - postgresql_password
  - postgresql_version
  type: object

Instance Update Parameter Schema:
  $schema: http://json-schema.org/draft-04/schema
  additionalProperties: false
  properties:
    postgresql_version:
      default: "9.6"
      enum:
      - "9.6"

OpenShift Container Platform 3.10 Architecture

172



1

6.2.3.3. Provision services

Provisioning means to make the service available for consumption. To provision a service, you need to
create a service instance and then bind to it.

6.2.3.3.1. Create ServiceInstance

NOTE

Service instances must be created inside an OpenShift namespace.

1. Create a new project.

Replace <project-name> with the name of your project.

2. Create service instance using the command:

6.2.3.3.1.1. View service instance details

To view service instance details:

      - "9.5"
      - "9.4"
      title: PostgreSQL Version
      type: string
  required:
  - postgresql_version
  type: object

Binding Create Parameter Schema:
  $schema: http://json-schema.org/draft-04/schema
  additionalProperties: false
  type: object

$ oc new-project <project-name> 1

$ svcat provision postgresql-instance --class rh-postgresql-apb --plan dev --params-json  
'{"postgresql_database":"admin","postgresql_password":"admin","postgresql_user":"admin","po
stgresql_version":"9.6"}' -n szh-project
  Name:        postgresql-instance
  Namespace:   szh-project
  Status:
  Class:       rh-postgresql-apb
  Plan:        dev

Parameters:
  postgresql_database: admin
  postgresql_password: admin
  postgresql_user: admin
  postgresql_version: "9.6"

$ svcat get instance

CHAPTER 6. SERVICE CATALOG COMPONENTS

173



6.2.3.3.2. Create ServiceBinding

When you create a ServiceBinding resource:

1. The service catalog controller communicates with the broker server to initiate the binding.

2. The broker server create credentials and issue them to the service catalog controller.

3. The service catalog controller adds those credentials as secrets to the project.

Create the service binding using the command:

6.2.3.3.2.1. View service binding details

1. To view service binding details:

2. Verify the instance details after binding the service:

         NAME            NAMESPACE          CLASS         PLAN   STATUS
+---------------------+-------------+-------------------+------+--------+
  postgresql-instance   szh-project   rh-postgresql-apb   dev    Ready

$ svcat bind postgresql-instance --name mediawiki-postgresql-binding
  Name:        mediawiki-postgresql-binding
  Namespace:   szh-project
  Status:
  Instance:    postgresql-instance

Parameters:
  {}

$ svcat get bindings
              NAME                NAMESPACE         INSTANCE         STATUS
+------------------------------+-------------+---------------------+--------+
  mediawiki-postgresql-binding   szh-project   postgresql-instance   Ready

$ svcat describe instance postgresql-instance
  Name:        postgresql-instance
  Namespace:   szh-project
  Status:      Ready - The instance was provisioned successfully @ 2018-06-05 08:42:55 
+0000 UTC
  Class:       rh-postgresql-apb
  Plan:        dev

Parameters:
  postgresql_database: admin
  postgresql_password: admin
  postgresql_user: admin
  postgresql_version: "9.6"

Bindings:
              NAME               STATUS
+------------------------------+--------+
  mediawiki-postgresql-binding   Ready

OpenShift Container Platform 3.10 Architecture

174



1

2

6.2.4. Deleting resources

To delete service catalog related resources, you need to unbind service bindings and deprovision the
service instances.

6.2.4.1. Deleting service bindings

1. To delete all service bindings, associated with a service instance:

Name of the project that contains the service instance.

Name of the service instance associated with the binding.

For example:

NOTE

Running this command deletes all service bindings for the instance. For deleting
individual bindings from within an instance run the command svcat unbind -n 
<project-name> --name <binding-name>. For example, svcat unbind -n szh-
project --name mediawiki-postgresql-binding.

2. Verify that the associated secret is deleted.

6.2.4.2. Deleting service instances

Deprovision the service instance:

$ svcat unbind -n <project-name> 1
  \ <instance-name> 2

$ svcat unbind -n szh-project postgresql-instance
deleted mediawiki-postgresql-binding

$ svcat get bindings
  NAME   NAMESPACE   INSTANCE   STATUS
+------+-----------+----------+--------+

$ oc get secret -n szh-project
NAME                       TYPE                                  DATA      AGE
builder-dockercfg-jxk48    kubernetes.io/dockercfg               1         9m
builder-token-92jrf        kubernetes.io/service-account-token   4         9m
builder-token-b4sm6        kubernetes.io/service-account-token   4         9m
default-dockercfg-cggcr    kubernetes.io/dockercfg               1         9m
default-token-g4sg7        kubernetes.io/service-account-token   4         9m
default-token-hvdpq        kubernetes.io/service-account-token   4         9m
deployer-dockercfg-wm8th   kubernetes.io/dockercfg               1         9m
deployer-token-hnk5w       kubernetes.io/service-account-token   4         9m
deployer-token-xfr7c       kubernetes.io/service-account-token   4         9m

$ svcat deprovision postgresql-instance
deleted postgresql-instance

CHAPTER 6. SERVICE CATALOG COMPONENTS

175



6.2.4.3. Deleting service brokers

1. To remove broker services for the service catalog, delete the ClusterServiceBroker resource:

2. View the ClusterServiceClass resources for the broker, to verify that the broker is removed:

6.3. TEMPLATE SERVICE BROKER

 

The template service broker  (TSB) gives the service catalog visibility into the default Instant App and
Quickstart templates that have shipped with OpenShift Container Platform since its initial release. The
TSB can also make available as a service anything for which an OpenShift Container Platform template
has been written, whether provided by Red Hat, a cluster administrator or user, or a third party vendor.

By default, the TSB shows the objects that are globally available from the openshift project. It can also
be configured to watch any other project that a cluster administrator chooses.

6.4. OPENSHIFT ANSIBLE BROKER

6.4.1. Overview

The OpenShift Ansible broker (OAB) is an implementation of the Open Service Broker (OSB) API that
manages applications defined by Ansible playbook bundles (APBs) . APBs provide a new method for
defining and distributing container applications in OpenShift Container Platform, consisting of a bundle
of Ansible playbooks built into a container image with an Ansible runtime. APBs leverage Ansible to
create a standard mechanism for automating complex deployments.

The design of the OAB follows this basic workflow:

1. A user requests list of available applications from the service catalog using the OpenShift
Container Platform web console.

2. The service catalog requests the OAB for available applications.

$ svcat get instance
  NAME   NAMESPACE   CLASS   PLAN   STATUS
+------+-----------+-------+------+--------+

$ oc delete clusterservicebrokers template-service-broker
clusterservicebroker "template-service-broker" deleted

$ svcat get brokers
           NAME                                                        URL                                              STATUS
+-------------------------+-------------------------------------------------------------------------------------
------+--------+
  ansible-service-broker    https://asb.openshift-ansible-service-broker.svc:1338/ansible-
service-broker                Ready

$ svcat get classes
  NAME   DESCRIPTION
+------+-------------+

OpenShift Container Platform 3.10 Architecture

176

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#using-the-instantapp-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-templates


3. The OAB communicates with a defined container registry to learn which APBs are available.

4. The user issues a request to provision a specific APB.

5. The provision request makes its way to the OAB, which fulfills the user’s request by invoking the
provision method on the APB.

6.4.2. Ansible Playbook Bundles

An Ansible playbook bundle (APB) is a lightweight application definition that allows you to leverage
existing investment in Ansible roles and playbooks.

APBs use a simple directory with named playbooks to perform OSB API actions, such as provision and
bind. Metadata defined in apb.yml spec file contains a list of required and optional parameters for use
during deployment.

See the APB Development Guide  for details on the overall design and how APBs are written.

CHAPTER 6. SERVICE CATALOG COMPONENTS

177

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/ansible_playbook_bundle_development_guide/#apb-devel-intro-design

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. WHAT ARE THE LAYERS?
	1.2. WHAT IS THE OPENSHIFT CONTAINER PLATFORM ARCHITECTURE?
	1.3. HOW IS OPENSHIFT CONTAINER PLATFORM SECURED?
	1.3.1. TLS Support


	CHAPTER 2. INFRASTRUCTURE COMPONENTS
	2.1. KUBERNETES INFRASTRUCTURE
	2.1.1. Overview
	2.1.2. Masters
	2.1.2.1. Control Plane Static Pods
	2.1.2.2. High Availability Masters

	2.1.3. Nodes
	2.1.3.1. Kubelet
	2.1.3.2. Service Proxy
	2.1.3.3. Node Object Definition
	2.1.3.4. Node Bootstrapping


	2.2. CONTAINER REGISTRY
	2.2.1. Overview
	2.2.2. Integrated OpenShift Container Registry
	2.2.3. Third Party Registries
	2.2.3.1. Authentication


	2.3. WEB CONSOLE
	2.3.1. Overview
	2.3.2. CLI Downloads
	2.3.3. Browser Requirements
	2.3.4. Project Overviews
	2.3.5. JVM Console
	2.3.6. StatefulSets


	CHAPTER 3. CORE CONCEPTS
	3.1. OVERVIEW
	3.2. CONTAINERS AND IMAGES
	3.2.1. Containers
	3.2.1.1. Init Containers

	3.2.2. Images
	Image Version Tag Policy

	3.2.3. Container Registries

	3.3. PODS AND SERVICES
	3.3.1. Pods
	3.3.1.1. Pod Restart Policy
	3.3.1.2. Injecting Information into Pods Using Pod Presets

	3.3.2. Init Containers
	3.3.3. Services
	3.3.3.1. Service externalIPs
	3.3.3.2. Service ingressIPs
	3.3.3.3. Service NodePort
	3.3.3.4. Service Proxy Mode
	3.3.3.5. Headless services

	3.3.4. Labels
	3.3.5. Endpoints

	3.4. PROJECTS AND USERS
	3.4.1. Users
	3.4.2. Namespaces
	3.4.3. Projects
	3.4.3.1. Projects provided at installation


	3.5. BUILDS AND IMAGE STREAMS
	3.5.1. Builds
	3.5.1.1. Docker Build
	3.5.1.2. Source-to-Image (S2I) Build
	3.5.1.3. Custom Build
	3.5.1.4. Pipeline Build

	3.5.2. Image Streams
	3.5.2.1. Important terms
	3.5.2.2. Configuring Image Streams
	3.5.2.3. Image Stream Images
	3.5.2.4. Image Stream Tags
	3.5.2.5. Image Stream Change Triggers
	3.5.2.6. Image Stream Mappings
	3.5.2.7. Working with Image Streams


	3.6. DEPLOYMENTS
	3.6.1. Replication controllers
	3.6.2. Replica set
	3.6.3. Jobs
	3.6.4. Deployments and Deployment Configurations

	3.7. TEMPLATES
	3.7.1. Overview


	CHAPTER 4. ADDITIONAL CONCEPTS
	4.1. AUTHENTICATION
	4.1.1. Overview
	4.1.2. Users and Groups
	4.1.3. API Authentication
	4.1.3.1. Impersonation

	4.1.4. OAuth
	4.1.4.1. OAuth Clients
	4.1.4.2. Service Accounts as OAuth Clients
	4.1.4.3. Redirect URIs for Service Accounts as OAuth Clients
	4.1.4.4. Integrations
	4.1.4.5. OAuth Server Metadata
	4.1.4.6. Obtaining OAuth Tokens
	4.1.4.7. Authentication Metrics for Prometheus


	4.2. AUTHORIZATION
	4.2.1. Overview
	4.2.2. Evaluating Authorization
	4.2.3. Cluster and Local RBAC
	4.2.4. Cluster Roles and Local Roles
	4.2.4.1. Updating Cluster Roles
	4.2.4.2. Applying Custom Roles and Permissions
	4.2.4.3. Cluster Role Aggregation

	4.2.5. Security Context Constraints
	4.2.5.1. SCC Strategies
	4.2.5.2. Controlling Volumes
	4.2.5.3. Restricting Access to FlexVolumes
	4.2.5.4. Seccomp
	4.2.5.5. Admission

	4.2.6. Determining What You Can Do as an Authenticated User

	4.3. PERSISTENT STORAGE
	4.3.1. Overview
	4.3.2. Lifecycle of a volume and claim
	4.3.2.1. Provision storage
	4.3.2.2. Bind claims
	4.3.2.3. Use pods and claimed PVs
	4.3.2.4. PVC protection
	4.3.2.5. Release volumes
	4.3.2.6. Reclaim volumes

	4.3.3. Persistent volumes
	4.3.3.1. Types of PVs
	4.3.3.2. Capacity
	4.3.3.3. Access modes
	4.3.3.4. Reclaim policy
	4.3.3.5. Phase
	4.3.3.6. Mount options

	4.3.4. Persistent volume claims
	4.3.4.1. Storage classes
	4.3.4.2. Access modes
	4.3.4.3. Resources
	4.3.4.4. Claims as volumes

	4.3.5. Block volume support

	4.4. EPHEMERAL LOCAL STORAGE
	4.4.1. Overview
	4.4.2. Types of ephemeral storage
	4.4.2.1. Root
	4.4.2.2. Runtime


	4.5. SOURCE CONTROL MANAGEMENT
	4.6. ADMISSION CONTROLLERS
	4.6.1. Overview
	4.6.2. General Admission Rules
	4.6.3. Customizable Admission Plug-ins
	4.6.4. Admission Controllers Using Containers

	4.7. CUSTOM ADMISSION CONTROLLERS
	4.7.1. Overview
	4.7.2. Admission Webhooks
	4.7.2.1. Types of Admission Webhooks
	4.7.2.2. Create the Admission Webhook
	4.7.2.3. Admission Webhook Example


	4.8. OTHER API OBJECTS
	4.8.1. LimitRange
	4.8.2. ResourceQuota
	4.8.3. Resource
	4.8.4. Secret
	4.8.5. PersistentVolume
	4.8.6. PersistentVolumeClaim
	4.8.6.1. Custom Resources

	4.8.7. OAuth Objects
	4.8.7.1. OAuthClient
	4.8.7.2. OAuthClientAuthorization
	4.8.7.3. OAuthAuthorizeToken
	4.8.7.4. OAuthAccessToken

	4.8.8. User Objects
	4.8.8.1. Identity
	4.8.8.2. User
	4.8.8.3. UserIdentityMapping
	4.8.8.4. Group



	CHAPTER 5. NETWORKING
	5.1. NETWORKING
	5.1.1. Overview
	5.1.2. OpenShift Container Platform DNS

	5.2. OPENSHIFT SDN
	5.2.1. Overview
	5.2.2. Design on Masters
	5.2.3. Design on Nodes
	5.2.4. Packet Flow
	5.2.5. Network Isolation

	5.3. AVAILABLE SDN PLUG-INS
	5.3.1. OpenShift SDN
	5.3.2. Third-Party SDN plug-ins
	5.3.2.1. Flannel SDN
	5.3.2.2. Nuage SDN

	5.3.3. Kuryr SDN for OpenShift Container Platform
	5.3.3.1. OpenStack Deployment Requirements
	5.3.3.2. kuryr-controller
	5.3.3.3. kuryr-cni


	5.4. AVAILABLE ROUTER PLUG-INS
	5.4.1. The HAProxy Template Router
	5.4.2. F5 BIG-IP® Router plug-in
	5.4.2.1. Routing Traffic to Pods Through the SDN
	5.4.2.2. F5 Integration Details
	5.4.2.3. F5 Router Plug-in


	5.5. PORT FORWARDING
	5.5.1. Overview
	5.5.2. Server Operation

	5.6. REMOTE COMMANDS
	5.6.1. Overview
	5.6.2. Server Operation

	5.7. ROUTES
	5.7.1. Overview
	5.7.2. Routers
	5.7.2.1. Template Routers

	5.7.3. Available Router Plug-ins
	5.7.4. Sticky Sessions
	5.7.5. Router Environment Variables
	5.7.6. Load-balancing Strategy
	5.7.7. HAProxy Strict SNI
	5.7.8. Router Cipher Suite
	5.7.9. Route Host Names
	5.7.10. Route Types
	5.7.10.1. Path Based Routes
	5.7.10.2. Secured Routes

	5.7.11. Router Sharding
	5.7.12. Alternate Backends and Weights
	5.7.13. Route-specific Annotations
	5.7.14. Route-specific IP Whitelists
	5.7.15. Creating Routes Specifying a Wildcard Subdomain Policy
	5.7.16. Route Status
	5.7.17. Denying or Allowing Certain Domains in Routes
	5.7.18. Support for Kubernetes ingress objects
	5.7.19. Disabling the Namespace Ownership Check


	CHAPTER 6. SERVICE CATALOG COMPONENTS
	6.1. SERVICE CATALOG
	6.1.1. Overview
	6.1.2. Design
	6.1.2.1. Deleting Resources

	6.1.3. Concepts and Terminology
	6.1.4. Provided Cluster Service Brokers

	6.2. SERVICE CATALOG COMMAND-LINE INTERFACE (CLI)
	6.2.1. Overview
	6.2.2. Installing svcat
	6.2.2.1. Considerations for cloud providers

	6.2.3. Using svcat
	6.2.3.1. Get broker details
	6.2.3.2. View service classes and service plans
	6.2.3.3. Provision services

	6.2.4. Deleting resources
	6.2.4.1. Deleting service bindings
	6.2.4.2. Deleting service instances
	6.2.4.3. Deleting service brokers


	6.3. TEMPLATE SERVICE BROKER
	6.4. OPENSHIFT ANSIBLE BROKER
	6.4.1. Overview
	6.4.2. Ansible Playbook Bundles



