
JBoss Enterprise Application Platform
5

Messaging User Guide

for use with JBoss Enterprise Application Platform 5
Edition 5.2.0

Last Updated: 2017-10-13

JBoss Enterprise Application Platform 5 Messaging User Guide

for use with JBoss Enterprise Application Platform 5
Edition 5.2.0

Andy Taylor

Clebert Suconic

Jeff Mesnil

Tim Fox

Howard Gao

Edited by

Eva Kopalova

Jared Morgan

Laura Bailey

Petr Penicka

Russell Dickenson

Scott Mumford

Legal Notice

Copyright © 2012 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

A guide to using JBoss Messaging 1.4 with the JBoss Enterprise Application Platform 5 and its
patch releases.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. ABOUT JBOSS MESSAGING 1.4

CHAPTER 2. INTRODUCTION
2.1. JBOSS MESSAGING FEATURES
2.2. COMPATIBILITY WITH JBOSS MQ
2.3. SYSTEM PROPERTIES USED BY JBOSS MESSAGING

2.3.1. support.bytesId
2.3.2. retain.oldxabehaviour

CHAPTER 3. JBOSS MESSAGING INSTALLATION

CHAPTER 4. EXAMPLES

CHAPTER 5. CONFIGURATION
5.1. CONFIGURING THE SERVERPEER
5.2. SERVERPEER ATTRIBUTES
5.3. SERVERPEER METHODS
5.4. CHANGING THE DATABASE
5.5. CONFIGURING THE POST OFFICE

5.5.1. MessagingPostOffice Attributes
5.6. CONFIGURE THE MESSAGINGCLUSTERHEALTHMBEAN
5.7. CONFIGURING THE PERSISTENCE MANAGER

5.7.1. JDBCPersistenceManager MBean Attributes
5.8. CONFIGURING THE JMS USER MANAGER

5.8.1. JMSUserManager MBean Attributes
5.9. CONFIGURING DESTINATIONS

5.9.1. Pre-configured destinations
5.9.2. Configuring Queues

5.9.2.1. Queue MBean Attributes
5.9.2.1.1. Destination Security Configuration
5.9.2.1.2. Destination paging parameters
5.9.2.1.3. Queue Managed Bean Operations

5.9.3. Configuring Topics
5.9.3.1. Topic Managed Bean Attributes

5.9.3.1.1. Destination Security Configuration
5.9.3.1.2. Destination paging parameters

5.9.3.2. Topic Managed Bean Operations
5.10. CONFIGURING CONNECTION FACTORIES

5.10.1. ConnectionFactory Managed Bean Attributes
5.11. CONFIGURING THE REMOTING CONNECTOR
5.12. SERVICEBINDINGMANAGER
5.13. MESSAGE DRIVEN BEANS

CHAPTER 6. CLUSTERING NOTES
6.1. UNIQUE SERVER PEER ID
6.2. CLUSTERED DESTINATIONS
6.3. CLUSTERED DURABLE SUBSCRIPTIONS
6.4. CLUSTERED TEMPORARY DESTINATIONS
6.5. NON-CLUSTERED SERVERS
6.6. MESSAGE ORDERING IN THE CLUSTER
6.7. IDEMPOTENT OPERATIONS
6.8. CLUSTERED CONNECTION FACTORIES

4

5
5
6
7
7
7

8

9

12
12
14
17
19
21
24
27
29
30
33
34
35
35
35
35
37
38
38
39
39
41
42
42
43
45
47
51
51

56
56
56
56
56
56
57
57
57

Table of Contents

1

. .

. .

. .

. .

. .

CHAPTER 7. JBOSS MESSAGING XA RECOVERY CONFIGURATION

CHAPTER 8. JBOSS MESSAGING MESSAGE BRIDGE CONFIGURATION
8.1. MESSAGE BRIDGE OVERVIEW
8.2. BRIDGE DEPLOYMENT
8.3. BRIDGE CONFIGURATION

CHAPTER 9. ENABLING JBOSS MESSAGING ORDERING GROUP
9.1. ACKNOWLEDGE MECHANISM
9.2. HOW TO ENABLE MESSAGE ORDERING GROUP

9.2.1. Enabling Ordering Group on Producer
9.2.2. Enabling Ordering Group on Connection Factory

9.3. NOTES AND LIMITATIONS

CHAPTER 10. SECURITY CONFIGURATION

APPENDIX A. REVISION HISTORY

58

60
60
61
61

66
66
66
67
67
68

69

71

Messaging User Guide

2

Table of Contents

3

CHAPTER 1. ABOUT JBOSS MESSAGING 1.4
JBoss Messaging is an enterprise messaging system from JBoss. It is a complete rewrite of JBossMQ,
the legacy JBoss Java Message Service (JMS) provider.

JBoss Messaging is the default JMS provider in JBoss Enterprise Application Platform 4.3 and 5.

JBoss Messaging is integral to Red Hat's messaging strategy. It offers improvements to performance in
both single node and clustered environments, and features a modular architecture so that we can easily
add more features in the future.

This guide shows you how to install, set up, and configure JBoss Messaging for JBoss Enterprise
Application Platform.

Messaging User Guide

4

CHAPTER 2. INTRODUCTION
JBoss Messaging provides an open-source and standards-based messaging platform to bring
enterprise-class messaging to the mass market.

JBoss Messaging implements a robust, high-performance messaging core designed to support Service-
Oriented Architectures (SOAs), Enterprise Service Buses (ESBs), and other integration requirements
regardless of the level of demand.

JBoss Messaging lets you distribute application load evenly across your cluster. It balances each node's
CPU cycles with no single point of failure, providing a highly scalable and performant clustering
implementation.

JBoss Messaging includes a Java Messaging Service (JMS) front-end so that messages are delivered in
a standards-based format, and to enable support for other messaging protocols in the future.

2.1. JBOSS MESSAGING FEATURES

JBoss Messaging provides the following features:

A strong focus on performance, reliability and scalability with high throughput and low latency.

A foundation for JBoss ESB for SOA initiatives. (JBoss ESB uses JBoss Messaging as its
default JMS provider.)

JBoss Messaging also includes:

publish-subscribe and point-to-point messaging models;

persistent and non-persistent messages;

guaranteed message delivery that ensures messages arrive once and only once where required;

a transactional and reliable interface that supports ACID semantics;

a customizable JAAS-based security framework;

complete integration with JBoss Transactions (previously Arjuna JTA) to support full transaction
recovery;

an extensive JMX management interface;

support for most major databases, including Oracle, DB2, Sybase, Microsoft SQL Server,
PostgreSQL and MySQL;

HTTP transport, for use with firewalls that allow only HTTP traffic;

servlet transport to allow messaging through a dedicated servlet;

SSL transport;

configurable Dead Letter Queues (DLQs) and Expiry Queues;

message statistics; which provide a rolling historical view of the messages delivered to queues
and subscriptions;

CHAPTER 2. INTRODUCTION

5

the automatic paging of messages to storage, which lets you use very large queues that would
be too large to fit entirely within system memory; and

strict message ordering which results in messages belonging to a particular message group
being delivered according to the order of their arrival at the target queue.

JBoss Messaging also includes the following clustering features:

Fully-clustered queues and topics

Logical queues and topics are distributed across the cluster. You can send or receive a queue or
topic to or from any node on the cluster.

Fully-clustered durable subscriptions

A particular durable subscription can be accessed from any node of the cluster, letting you
spread processing load from that subscription across the entire cluster.

Fully-clustered temporary queues

If a sent message includes the replyTo of a temporary queue, it can be returned on any node
of the cluster.

Intelligent message redistribution

Messages are automatically moved between nodes of the cluster to take advantage of different
consumer speeds on different nodes. This helps to prevent starvation or build-up of messages
on a particular node.

Message order protection

Enable this to ensure that the order of messages produced by a producer is identical to the order
of messages consumed by a consumer. This works even if message redistribution is active.

Completely transparent failover

When a server fails, your sessions continue exception-free on a new node. This is also
completely configurable: if you do not want to implement this failover behavior, you can disable it
and fall back to exceptions being thrown and manually recreating connections on a new node.

High availability and seamless failover

If the node fails, you will automatically failover to a different node without losing any persistent
messages and can seamlessly continue your session. Once and only once delivery of persistent
messages is respected at all times.

Message bridge

JBoss Messaging contains a message bridge component, which lets you bridge messages
between any two JMS 1.1 destinations. This lets you connect geographically separate clusters
and form large, globally-distributed logical queues and topics.

2.2. COMPATIBILITY WITH JBOSS MQ

JBoss MQ was the JMS implementation shipped with Enterprise Application Platform 4.2. Since JBoss
Messaging is compatible with both JMS 1.1 and JMS 1.0.2b, the JMS code written against JBoss MQ will
run with JBoss Messaging without any further changes.

JBoss Messaging has no wire format compatibility with JBoss MQ. It is therefore necessary to upgrade
JBoss MQ clients with JBoss Messaging client JARs.

Messaging User Guide

6

IMPORTANT

Although JBoss Messaging deployment descriptors are similar to JBoss MQ deployment
descriptors, they are not identical, and will require some simple adjustments before they
will work with JBoss Messaging. The database data model is completely different, so
JBoss Messaging should not be used with a JBoss MQ data schema, or vice-versa.

2.3. SYSTEM PROPERTIES USED BY JBOSS MESSAGING

2.3.1. support.bytesId

This system property controls the default behavior when constructing a JBossMessage object from a
foreign message object. Set this property when starting the server via the command line by using the -D
option.

If this property is set to true, the JBossMessage constructor will try to extract the native byte[]
correlation ID from the foreign message headers. If set to false, it will use the normal string type
JMSCorrelationID. This property will default to true if not set or when set to something other than
true or false.

2.3.2. retain.oldxabehaviour

This system property controls the type of exception thrown by a JMS XAResource in the event that the
prepare() method is called after the connection is broken. Set this property when starting the server
via the command line by using the -D option.

If this property is not defined, an XAException with an XA_RBCOMMFAIL error code will be thrown.
Otherwise an XAException with an XA_RETRY error code will be thrown. It should be noted that JBoss
Messaging does not define this property by default.

CHAPTER 2. INTRODUCTION

7

CHAPTER 3. JBOSS MESSAGING INSTALLATION
JBoss Enterprise Application Platform (EAP) comes with JBoss Messaging pre-installed as the default
JMS provider. If you are using EAP version 4.3 or higher, there is no need to manually install JBoss
Messaging.

Messaging User Guide

8

CHAPTER 4. EXAMPLES
JBoss Messaging has a number of examples that are available for download. Download the examples
archive file from https://access.redhat.com

Task: Download JBoss Messaging Examples Zip

Follow this task to download the JBoss Messaging Example Zip bundle. The examples are contained
within the documentation bundle for the platform.

Prerequisites

You have the correct entitlements for JBoss Enterprise Application Platform on
access.redhat.com

1. Log in to the Red Hat Customer Portal.

2. Select Downloads → JBoss Enterprise Middleware → Downloads

3. On the Software Downloads page, select Application Platform from the Product drop-down
menu.

The Version drop-down menu defaults to the latest release.

4. Locate the Application Platform [version] Documentation entry, and click Download.

5. The documentation bundle begins to download.

Related Information

Task: Unpack and Deploy Examples

Task: Unpack and Deploy Examples

Complete this task to unpack the JBoss Messaging examples from the platform documentation bundle,
and meet all basic configuration requirements to run the examples.

Task: Download JBoss Messaging Examples Zip

A running JBoss Enterprise Application Server instance with default settings.

1. Open the zip archive using an archive utility appropriate for your operating system.

2. In the zip archive manager, navigate to jboss-eap-5.1 → doc.

3. Extract the examples directory to $JBOSS_HOME/docs/examples.

4. Open $JBOSS_HOME/docs/examples/jboss-messaging-examples/destinations/ in
a file browser.

5. Copy jbm-examples-destinations-service.xml to
$JBOSS_HOME/server/default/deploy to deploy the destinations configuration directives
required by the examples.

Related Information

CHAPTER 4. EXAMPLES

9

https://access.redhat.com
https://access.redhat.com/

Unclustered Examples

Clustered Examples

Unclustered Examples

IMPORTANT

You must run the Unclustered examples on JBoss Enterprise Application Platform non-
clustered profiles: the All and Production profiles are not supported.

The readme.html for each example provides the setup details, expected output, and
simple troubleshooting.

queue

This example shows a simple send and receive to a remote queue using a JMS client

topic

This example shows a simple send and receive to a remote topic using a JMS client

mdb

This example demonstrates usage of an EJB2.1 MDB with JBoss Messaging

ejb3mdb

This example demonstrates usage of an EJB3 MDB with JBoss Messaging

stateless

This example demonstrates an EJB2.1 stateless session bean interacting with JBoss Messaging

mdb-failure

This example demonstrates rollback and redelivery occurring with an EJB2.1 MDB

secure-socket

This example demonstrates a JMS client interacting with a JBoss Messaging server using SSL
encrypted transport

http

This example demonstrates a JMS client interacting with a JBoss Messaging server tunneling traffic
over the HTTP protocol

web-service

This example demonstrates JBoss web-service interacting with JBoss Messaging

stateless-clustered

This example demonstrates a JMS client interacting with clustered EJB2.1 stateless session bean,
which in turn interacts with JBoss Messaging. The example uses HAJNDI to look up the connection
factory

Messaging User Guide

10

bridge

This example demonstrates using a message bridge. It deploys a message bridge in EAP which then
proceeds to move messages from a source to a target queue

servlet

This example demonstrates how to use servlet transport with JBoss Messaging. It deploys a servlet
and a ConnectionFactory that uses the servlet transport.

ordering-group

This example demonstrates using strict message ordering with JBoss Messaging. It uses JBoss
Messaging ordering group API to deliver strictly ordered messages, regardless of their priorities.

Clustered Examples

IMPORTANT

The clustered examples require two running JBoss Application Server instances with port
settings set to ports-01 and ports-02.

The examples are supported for use on the Enterprise Application Platform All and
Production server profiles.

The readme.html for each example provides the setup details, expected output, and
simple troubleshooting.

distributed-topic

This example demonstrates a JMS client interacting with a JBoss Messaging distributed topic - it
requires two EAP instances to be running

distributed-queue

This example demonstrates a JMS client interacting with a JBoss Messaging distributed queue - it
requires two EAP instances to be running

queue-failover

This example demonstrates the transparent failover of a JMS consumer.

CHAPTER 4. EXAMPLES

11

CHAPTER 5. CONFIGURATION
The Java Message Service (JMS) API specifies how a messaging client interacts with a messaging
server. How messaging services such as message destinations and connection factories are defined
and implemented depends on the JMS provider. JBoss Messaging has its own files for service
configuration.

This chapter shows you how to configure various services available in JBoss Messaging that work
together to provide JMS API-level services to client applications.

JBoss Messaging configuration is divided between several configuration files. Depending on the type of
service provided, configuration information is divided between messaging-service.xml, remoting-
bisocket-service.xml, <your database type>-persistence-service.xml, connection-
factories-service.xml and destinations-service.xml. These files can all be found in the
$JBOSS_HOME/server/$PROFILE/deploy/messaging directory.

AOP interceptor stacks can be configured in aop-messaging-client.xml (for client-side behavior)
and aop-messaging-server.xml (for server-side behavior). There is usually no need to change
these files, but some interceptors can be removed to improve performance if they are not required.
Ensure that you have considered the security implications before removing the security interceptor.

5.1. CONFIGURING THE SERVERPEER

The ServerPeer is the heart of the JBoss Messaging JMS facade. You can configure its behavior by
altering $JBOSS_HOME/server/$PROFILE/deploy/messaging/messaging-service.xml.

All JBoss Messaging services are based in the ServerPeer.

An example of a Server Peer configuration is presented below. Note that not all values for the server
peer's attributes are specified in the example

<!-- ServerPeer MBean configuration
 ============================== -->

<mbean code="org.jboss.jms.server.ServerPeer"
 name="jboss.messaging:service=ServerPeer"
 xmbean-dd="xmdesc/ServerPeer-xmbean.xml">

 <!--The unique id of the server peer - in a cluster each node
 MUST have a unique value - must be an integer-->

 <attribute name="ServerPeerID">
 ${jboss.messaging.ServerPeerID:0}
 </attribute>

 <!--The default JNDI context to use for queues when they are
 deployed without specifying one-->

 <attribute name="DefaultQueueJNDIContext">/queue</attribute>

 <!--The default JNDI context to use for topics when they are
 deployed without specifying one -->

 <attribute name="DefaultTopicJNDIContext">/topic</attribute>

Messaging User Guide

12

 <attribute name="PostOffice">
 jboss.messaging:service=PostOffice
 </attribute>

 <!-- The default Dead Letter Queue (DLQ) to use for destinations.
 This can be overridden on a per destinatin basis -->

 <attribute name="DefaultDLQ">
 jboss.messaging.destination:service=Queue,name=DLQ
 </attribute>

 <!--The default maximum number of times to attempt delivery of a
 message before sending to the DLQ (if configured).
 This can be overridden on a per destination basis-->

 <attribute name="DefaultMaxDeliveryAttempts">10</attribute>

 <!--The default Expiry Queue to use for destinations. This can
 be overridden on a per destinatin basis-->

 <attribute name="DefaultExpiryQueue">
 jboss.messaging.destination:service=Queue,name=ExpiryQueue
 </attribute>

 <!--The default redelivery delay to impose. This can be overridden
 on a per destination basis -->

 <attribute name="DefaultRedeliveryDelay">0</attribute>

 <!--The periodicity of the message counter manager enquiring on
 queues for statistics-->

 <attribute name="MessageCounterSamplePeriod">5000</attribute>

 <!--The maximum amount of time for a client to wait for failover
 to start on the server side after it has detected failure-->

 <attribute name="FailoverStartTimeout">60000</attribute>

 <!--The maximum amount of time for a client to wait for failover
 to complete on the server side after it has detected failure-->

 <attribute name="FailoverCompleteTimeout">300000</attribute>

 <attribute name="StrictTck">false</attribute>

 <!--The maximum number of days results to maintain in the message
 counter history-->

 <attribute name="DefaultMessageCounterHistoryDayLimit">-1</attribute>

 <!--The name of the connection factory to use for creating
 connections between nodes to pull messages-->

 <attribute name="ClusterPullConnectionFactoryName">
 jboss.messaging.connectionfactory:service=ClusterPullConnectionFactory

CHAPTER 5. CONFIGURATION

13

5.2. SERVERPEER ATTRIBUTES

This section discusses the ServerPeer managed bean attributes.

StopServerPeerOnDBFailure

When set to true, the server will stop if a database error occurs - e.g. database connection is lost -
allowing other nodes to continue work. The default value is false.

 </attribute>

 <!--When redistributing messages in the cluster. Do we need to
 preserve the order of messages received
 by a particular consumer from a particular producer? -->

 <attribute name="DefaultPreserveOrdering">false</attribute>

 <!-- Max. time to hold previously delivered messages back waiting for
 clients to reconnect after failover -->

 <attribute name="RecoverDeliveriesTimeout">300000</attribute>

 <!-- Set to true to enable message counters that can be viewed via JMX -
->

 <attribute name="EnableMessageCounters">false</attribute>

 <!-- The password used by the message sucker connections to create
connections.
 THIS SHOULD ALWAYS BE CHANGED AT INSTALL TIME TO SECURE SYSTEM
 <attribute name="SuckerPassword"></attribute>
 -->

 <!-- The name of the server aspects configuration resource
 <attribute name="ServerAopConfig">aop/jboss-aop-messaging-
server.xml</attribute>
 -->
 <!-- The name of the client aspects configuration resource
 <attribute name="ClientAopConfig">aop/jboss-aop-messaging-
client.xml</attribute>
 -->

 <depends optional-attribute-name="PersistenceManager">
 jboss.messaging:service=PersistenceManager
 </depends>

 <depends optional-attribute-name="JMSUserManager">
 jboss.messaging:service=JMSUserManager
 </depends>

 <depends>jboss.messaging:service=Connector,transport=bisocket</depends>
 <depends optional-attribute-name="SecurityStore"
 proxy-type="org.jboss.jms.server.SecurityStore">
 jboss.messaging:service=SecurityStore
 </depends>
</mbean>

Messaging User Guide

14

ServerPeerID

The unique identifier of the ServerPeer. Each node deployed must have a unique identifier,
whether the nodes form a cluster or are linked by a message bridge. The identifier must be a valid
integer.

DefaultQueueJNDIContext

The default JNDI context to be used when binding queues. The default value is /queue.

DefaultTopicJNDIContext

The default JNDI context to be used when binding topics. The default value is /topic.

PostOffice

The post office used by the ServerPeer. You will not normally need to edit this attribute. The post
office routes messages to queues and maintains the mapping between queues and addresses.

DefaultDLQ

The default DLQ (Dead Letter Queue) that the server uses for destinations. You can override the
DLQ on a per-destination basis. For more information about destinations, refer to Section 5.9,
“Configuring Destinations”. A DLQ is a destination for messages that the server has failed to deliver
more than a certain number of times. If the DLQ is not specified, the message will be removed after
the maximum number of delivery attempts. You can specify a global default for the maximum number
of delivery attempts with the DefaultMaxDeliveryAttempts attribute, or set the maximum
individually on a per-destination basis.

DefaultMaxDeliveryAttempts

The global default for the maximum number of times delivery will be attempted for a message before
the message is removed or sent to the DLQ, if configured. The default value is 10. You can override
this value on a per-destination basis.

DefaultExpiryQueue

The default expiry queue that the ServerPeer will use for destinations. You can override this value
on a per-destination basis, as seen in the section on destination managed bean configuration. An
expiry queue holds messages that have expired. Message expiry is determined by the value of
Message::getJMSExpiration(). If the expiry queue is not specified, the message will be deleted
when it expires.

DefaultRedeliveryDelay

This attribute lets you delay a redelivery attempt, which helps to prevent thrashing delivery-failure.
The default value is 0 (that is, no delay). You can override this value on a per-destination basis.

MessageCounterSamplePeriod

This attribute defines the period of time between the server's queries to the queue for queue
statistics. The default value is 5000 milliseconds.

FailoverStartTimeout

The longest period (in milliseconds) that the client will wait for failover to begin on the server side
when a problem is detected. The default value is 60000 (one minute).

FailoverCompleteTimeout

CHAPTER 5. CONFIGURATION

15

The longest period (in milliseconds) that the client will wait for failover to complete on the server side
once failover has been initiated. The default value is 300000 (five minutes).

DefaultMessageCounterHistoryDayLimit

JBoss Messaging provides a message counter history, which shows the number of messages arriving
on each queue over a certain number of days. This attribute represents the maximum number of days
for which to store message counter history. You can override this value on a per-destination.

ClusterPullConnectionFactoryName

The connection factory used to pull, or suck, messages between queues. You can omit this attribute
to disable message sucking while retaining failover.

DefaultPreserveOrdering

When true, JMS ordering is preserved in the cluster. See Chapter 6, Clustering Notes for more
detail. The default value is false.

RecoverDeliveriesTimeout

When failover occurs, messages that have been delivered will be stored while the clients reconnect. If
the clients do not reconnect (for example, if the client is dead), these messages will eventually time
out and be added to the queue. This attribute sets the period before timeout in milliseconds. The
default value is 300000 (five minutes).

EnableMessageCounters

When set to true, enables message counters upon server start.

SuckerPassword

JBoss Messaging internally creates connections between nodes to redistribute messages between
clustered destinations. These connections are created with a special, reserved username. This
attribute defines the password to use when creating these connections.

For versions of JBoss Messaging later than 1.4.1.GA, you must define the SuckerPassword on the
SecurityMetadataStore.

WARNING

The SuckerPassword must be changed at install time, or the default password
will be used, giving any user who knows the default password access to any
destination on the server.

SuckerConnectionRetryTimes

This is the maximum number of times a sucker's connection is permitted to retry in the event of a
failure. The default value is -1 which represents "retry indefinitely".

SuckerConnectionRetryInterval



Messaging User Guide

16

This is the interval in milliseconds between each retry of the failed sucker's connection. The default
value is 5000.

StrictTck

To enable strict JMS Technology Compatibility Kit (TCK) semantics, set this attribute to true.

Destinations

Returns a list of the destinations (queues and topics) currently deployed.

MessageCounters

A message counter for a particular queue.

MessageStatistics

Statistics about each message counter for each queue.

SupportsFailover

When this attribute is false, server-side failover does not occur when a node crashes in a cluster.

PersistenceManager

The persistence manager used by the ServerPeer. (You will not normally need to change this
attribute.)

JMSUserManager

The JMS user manager used by the ServerPeer. (You will not normally need to change this
attribute.)

SecurityStore

The pluggable SecurityStore. If you redefine this attribute, remember that you will need to
authenticate the MessageSucker user (JBM.SUCKER) with all special permissions required by
clustering.

SupportsTxAge

Specifies whether the transaction creation time is stored in the transaction record. If set to true, the
transaction record is stored. The default is false.

5.3. SERVERPEER METHODS

The following methods are available for the ServerPeer managed bean:

deployQueue

Used to programmatically deploy a queue. If the queue exists but is undeployed, it will be deployed.
Otherwise, it is created and deployed.

The name parameter matches a destination to deploy.

The optional jndiName parameter represents the full JNDI name of the location to which a
destination will be bound. If this is not specified, the destination will be bound in
<DefaultQueueJNDIContext>/<name>.

CHAPTER 5. CONFIGURATION

17

There are two overloaded versions of this operation. The first deploys the destination with default
paging parameters. The second deploys the destination with the paging parameters specified. For
more information about paging parameters, refer to Section 5.9, “Configuring Destinations”.

undeployQueue

Used to programmatically undeploy a queue. Queues are not removed from persistent storage. This
operation returns true if the queue is successfully undeployed. Otherwise, it returns false.

destroyQueue

Used to programmatically destroy a queue. Queues are undeployed and all of their data is removed
from the database and destroyed.

WARNING

Exercise caution when using this method, since it will delete all data for the
queue.

This operation returns true if the queue was destroyed successfully. Otherwise, it returns false.

deployTopic

Used to programmatically deploy a topic. There are two overloaded versions of this operation. The
first deploys already existing topics with the default paging parameters. The second creates and
deploys topics with specified paging parameters. For more information about destinations, refer to
Section 5.9, “Configuring Destinations”.

The name parameter represents the name of the destination to deploy.

The jndiName represents the full JNDI name of the location to which the destination will be bound. If
this is not specified, the destination will be bound in <DefaultTopicJNDIContext>/<name>.

undeployTopic

Used to programmatically undeploy a topic. Topics are undeployed, but not removed from persistent
storage. This operation returns true if the topic is undeployed successfully. Otherwise, false is
returned.

destroyTopic

Used to programmatically destroy a topic. Topics are undeployed and all data is removed from the
database and destroyed. This operation returns true if the topic is successfully destroyed.
Otherwise, it returns false.



Messaging User Guide

18

WARNING

Exercise caution when using this method: it will delete all data for the topic.

listMessageCountersHTML

Returns message counters in a simply-displayed HTML format.

resetAllMesageCounters

Resets all message counters to zero.

enableMessageCounters

Enables all message counters for all destinations. Message counters are disabled by default.

disableMessageCounters

Disables all message counters for all destinations. Message counters are disabled by default.

retrievePreparedTransactions

Retrieves a list of the XIDs for all transactions currently in a prepared state on the node.

showPreparedTransactions

Retrieves a list of the XIDs for all transactions currently in a prepared state on the node in an easily-
displayed HTML format.

listAllPreparedTransactions

Displays the details of all prepared transactions.

listPreparedTransactions

Displays the details of all prepared transactions where the transaction ages are equal to or older than
a specified time.

showMessageDetails

Displays the details of a message. The message ID is used to specify the message to display.

commitPreparedTransaction

Manually commit a prepared transaction. The transaction ID is used to specify the transaction to
commit.

rollbackPreparedTransaction

Manually roll-back a prepared transaction. The transaction ID is used to specify the transaction to roll-
back.

5.4. CHANGING THE DATABASE



CHAPTER 5. CONFIGURATION

19

JMS uses the database defined in jboss-
as/server/$PROFILE/deploy/messaging/<DATABASE_TYPE>-persistence-service.xml
as a persistence storage. The default persistence storage type is Hypersonic (HSQLDB) defined in
hsqldb-persistence-service.xml. Note that the configuration is defined for a clustered
environment (<attribute name="Clustered">true</attribute>).

WARNING

Although Hypersonic configuration is used as the default persistence configuration,
Hypersonic is not suitable or supported in production due to the following known
issues:

no transaction isolation

thread and socket leaks (connection.close() does not tidy up
resources)

persistence quality (logs commonly become corrupted after a failure,
preventing automatic recovery)

database corruption

stability under load (database processes cease when dealing with too much
data)

not viable in clustered environments

The Hypersonic database is intended for developing and testing purposes and
should not be used in a production environment. For more information about
recommended databases, refer to the Using Other Databases chapter in the Getting
Started Guide.

The Persistence Manager, Post Office and JMS User Manager all interact with persistent storage. The
Persistence Manager handles message-related persistence. The Post Office handles binding related
persistence. The JMS User Manager handles user-related persistence. All configuration for these
managed beans is handled in the <your database type>-persistence-service.xml file.

Example configuration files for MySQL, Oracle, PostgreSQL, Microsoft SQL Server or Sybase
databases are available in the $JBOSS_HOME/docs/examples/jms directory of the release bundle.

To enable your database, replace the default
$JBOSS_HOME/server/$PROFILE/deploy/messaging/hsqldb-persistence-service.xml
configuration file with the configuration file for your database type. Restart the server to apply the new
persistence configuration.

Apart from the unsupported Hypersonic configuration, the example configurations are by default set for
non-clustered environments. To allow clustered environments for your database configuration, set the
Clustered attribute to true in <your database type>-persistence-service.xml (the default
setting is <attribute name="Clustered">false</attribute>).



Messaging User Guide

20

NOTE

The structure of the persistence configuration file changed in JBoss Enterprise Application
Platform 5.1.0 so it's necessary to again copy an example configuration file for your
database configuration and edit it to suit your environment. Failure to do so will cause
deployment/startup problems.

By default, the messaging services rely on a data store reference java:/DefaultDS for the data
source. To deploy a data source with a different JNDI name, you must update all DataSource attributes
in the persistence configuration file. Example data source configurations are included in the distribution.

5.5. CONFIGURING THE POST OFFICE

The post office routes messages to their destination or destinations. It maintains the mappings between
the addresses to which a message can be sent, and the final queue. For example, when sending a
message with an address that represents a JMS queue, the post office routes the message to that JMS
queue. When sending a message with an address that represents a JMS topic, the post office routes the
message to a set of queues — one for each JMS subscription.

The post office also handles the persistence for address mapping.

JBoss Messaging post offices are cluster-aware. In a cluster, they automatically route (push) and pull
messages between nodes in order to provide fully-distributed JMS queues and topics.

Configure the post office in the <database type>-persistence-service.xml file. For example:

<mbean code="org.jboss.messaging.core.jmx.MessagingPostOfficeService"
 name="jboss.messaging:service=PostOffice"
 xmbean-dd="xmdesc/MessagingPostOffice-xmbean.xml">

 <depends optional-attribute-name="ServerPeer">
 jboss.messaging:service=ServerPeer
 </depends>

 <depends>
 jboss.jca:service=DataSourceBinding,name=DefaultDS
 </depends>

 <depends optional-attribute-name="TransactionManager">
 jboss:service=TransactionManager
 </depends>

 <!-- The name of the post office -->

 <attribute name="PostOfficeName">JMS post office</attribute>

 <!-- The datasource used by the post office to access it's
 binding information -->

 <attribute name="DataSource">java:/DefaultDS</attribute>

 <!-- If true will attempt to create tables and indexes on
 every start-up -->

 <attribute name="CreateTablesOnStartup">true</attribute>

CHAPTER 5. CONFIGURATION

21

 <!-- If true then we will automatically detect and reject
 duplicate messages sent during failover -->

 <attribute name="DetectDuplicates">true</attribute>

 <!-- The size of the id cache to use when detecting duplicate
 messages -->

 <attribute name="IDCacheSize">500</attribute>

 <attribute name="SqlProperties">
 CREATE_POSTOFFICE_TABLE=CREATE TABLE JBM_POSTOFFICE
 (POSTOFFICE_NAME VARCHAR(255),
 NODE_ID INTEGER, QUEUE_NAME VARCHAR(255), COND VARCHAR(1023),
 SELECTOR VARCHAR(1023), CHANNEL_ID BIGINT, CLUSTERED CHAR(1),
 ALL_NODES CHAR(1),
 PRIMARY KEY(POSTOFFICE_NAME, NODE_ID, QUEUE_NAME)) ENGINE = INNODB

 INSERT_BINDING=INSERT INTO JBM_POSTOFFICE
 (POSTOFFICE_NAME, NODE_ID, QUEUE_NAME, COND, SELECTOR,
 CHANNEL_ID, CLUSTERED, ALL_NODES)
 VALUES (?, ?, ?, ?, ?, ?, ?, ?)

 DELETE_BINDING=DELETE FROM JBM_POSTOFFICE WHERE
 POSTOFFICE_NAME=? AND NODE_ID=? AND QUEUE_NAME=?

 LOAD_BINDINGS=SELECT QUEUE_NAME, COND, SELECTOR,
 CHANNEL_ID, CLUSTERED, ALL_NODES FROM
 JBM_POSTOFFICE WHERE POSTOFFICE_NAME=? AND NODE_ID=?
 </attribute>

 <!-- This post office is clustered. If you do not want a clustered post
 office then set to false -->

 <attribute name="Clustered">true</attribute>

 <!-- All the remaining properties only have to be specified if the post
 office is clustered. You can safely comment them out if your post
 office is non clustered -->

 <!-- The JGroups group name that the post office will use -->

 <attribute name="GroupName">
 ${jboss.messaging.groupname:MessagingPostOffice}
 </attribute>

 <!-- Max time to wait for state to arrive when the post office
 joins the cluster -->

 <attribute name="StateTimeout">5000</attribute>

 <!-- Max time to wait for a synchronous call to node members using
 the MessageDispatcher -->

 <attribute name="CastTimeout">50000</attribute>

Messaging User Guide

22

 <!-- Set this to true if you want failover of connections to occur
 when a node is shut down -->

 <attribute name="FailoverOnNodeLeave">false</attribute>

 <!-- JGroups stack configuration for the data channel - used for sending
 data across the cluster -->

 <!-- By default we use the TCP stack for data -->
 <attribute name="DataChannelConfig">
 <config>
 <TCP start_port="7900"
 loopback="true"
 recv_buf_size="20000000"
 send_buf_size="640000"
 discard_incompatible_packets="true"
 max_bundle_size="64000"
 max_bundle_timeout="30"
 use_incoming_packet_handler="true"
 use_outgoing_packet_handler="false"
 down_thread="false" up_thread="false"
 enable_bundling="false"
 use_send_queues="false"
 sock_conn_timeout="300"
 skip_suspected_members="true"/>
 <MPING timeout="4000"
 bind_to_all_interfaces="true"
 mcast_addr="${jboss.messaging.datachanneludpaddress:228.6.6.6}"
 mcast_port="${jboss.messaging.datachanneludpport:45567}"
 ip_ttl="8"
 num_initial_members="2"
 num_ping_requests="1"/>
 <MERGE2 max_interval="100000"
 down_thread="false" up_thread="false" min_interval="20000"/>
 <FD_SOCK down_thread="false" up_thread="false"/>
 <VERIFY_SUSPECT timeout="1500" down_thread="false"
 up_thread="false"/>
 <pbcast.NAKACK max_xmit_size="60000"
 use_mcast_xmit="false" gc_lag="0"
 retransmit_timeout="300,600,1200,2400,4800"
 down_thread="false" up_thread="false"
 discard_delivered_msgs="true"/>
 <pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"
 down_thread="false" up_thread="false"
 max_bytes="400000"/>
 <pbcast.GMS print_local_addr="true" join_timeout="3000"
 down_thread="false" up_thread="false"
 join_retry_timeout="2000" shun="false"
 view_bundling="true"/>
 </config>
 </attribute>

 <!-- JGroups stack configuration to use for
 the control channel - used for control messages -->

CHAPTER 5. CONFIGURATION

23

5.5.1. MessagingPostOffice Attributes

 <!-- We use udp stack for the control channel -->
 <attribute name="ControlChannelConfig">
 <config>
 <UDP
 mcast_addr="${jboss.messaging.controlchanneludpaddress:228.7.7.7}"
 mcast_port="${jboss.messaging.controlchanneludpport:45568}"
 tos="8"
 ucast_recv_buf_size="20000000"
 ucast_send_buf_size="640000"
 mcast_recv_buf_size="25000000"
 mcast_send_buf_size="640000"
 loopback="false"
 discard_incompatible_packets="true"
 max_bundle_size="64000"
 max_bundle_timeout="30"
 use_incoming_packet_handler="true"
 use_outgoing_packet_handler="false"
 ip_ttl="2"
 down_thread="false" up_thread="false"
 enable_bundling="false"/>
 <PING timeout="2000"
 down_thread="false" up_thread="false" num_initial_members="3"/>
 <MERGE2 max_interval="100000"
 down_thread="false" up_thread="false" min_interval="20000"/>
 <FD_SOCK down_thread="false" up_thread="false"/>
 <FD timeout="10000" max_tries="5" down_thread="false"
 up_thread="false" shun="true"/>
 <VERIFY_SUSPECT timeout="1500" down_thread="false"
 up_thread="false"/>
 <pbcast.NAKACK max_xmit_size="60000"
 use_mcast_xmit="false" gc_lag="0"
 retransmit_timeout="300,600,1200,2400,4800"
 down_thread="false" up_thread="false"
 discard_delivered_msgs="true"/>
 <UNICAST timeout="300,600,1200,2400,3600"
 down_thread="false" up_thread="false"/>
 <pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"
 down_thread="false" up_thread="false"
 max_bytes="400000"/>
 <pbcast.GMS print_local_addr="true" join_timeout="3000"
 use_flush="true" flush_timeout="3000"
 down_thread="false" up_thread="false"
 join_retry_timeout="2000" shun="false"
 view_bundling="true"/>
 <FRAG2 frag_size="60000" down_thread="false" up_thread="false"/>
 <pbcast.STATE_TRANSFER down_thread="false" up_thread="false"
 use_flush="true" flush_timeout="3000"/>
 <pbcast.FLUSH down_thread="false" up_thread="false" timeout="20000"
 auto_flush_conf="false"/>
 </config>
 </attribute>

</mbean>

Messaging User Guide

24

MessagingPostOffice Service Attributes are described in the following list.

DataSource

The datasource the postoffice should use for persisting its mapping data.

SQLProperties

This is where the DDL and DML for the particular database is specified. If a particular DDL or DML
statement is not overridden, the default Hypersonic configuration will be used for that statement.

CreateTablesOnStartup

Set this to true if you wish the post office to attempt to create the tables (and indexes) when it starts.
If the tables (or indexes) already exist a SQLException will be thrown by the JDBC driver and
ignored by the Persistence Manager, allowing it to continue.

By default the value of CreateTablesOnStartup attribute is set to true

DetectDuplicates

Set this to true if you wish the post office detect duplicate messages that may sent when a send is
retried on a different node after server failure.

By default the value of DetectDuplicates attribute is set to true

IDCacheSize

If duplicate detection is enabled. (See DetectDuplicates), then the server will remember the last
n message ids sent, to prevent duplicate messages sent after failover has occurred. The value of n is
determined by this attribute.

By default the value of IDCacheSize attribute is set to 500

PostOfficeName

The name of the post office.

NodeIDView

This returns set containing the node ids of all the nodes in the cluster.

GroupName

All post offices in the cluster with the same group name will form a cluster together. Make sure the
group name matches with all the nodes in the cluster you want to form a cluster with.

Clustered

If true the post office will take part in a cluster to form distributed queues and topics. If false then it will
not participate in the cluster. If false, then all the cluster related attributes will be ignored.

StateTimeout

The maximum time to wait when waiting for the group state to arrive when a node joins a pre-existing
cluster.

The default value is 5000 milliseconds.

CHAPTER 5. CONFIGURATION

25

CastTimeout

The maximum time to wait for a reply casting message synchronously.

The default value is 5000 milliseconds.

FailoverOnNodeLeave

Specifies how messages stored on a node are redistributed when a node is cleanly shutdown. The
default value is false. If true, when a server node is shut down cleanly (using Ctrl+C in the
terminal) all messages stored on the node are moved to another node in the cluster.

IMPORTANT

Clients originally connected to the cleanly shutdown node are not automatically
reconnected to the failover node in the cluster. Clients return an exception upon
message failover.

MaxConcurrentReplications

The maximum number of concurrent replication requests to make before blocking for replies to come
back. This prevents us overwhelming JGroups. This is rarely a good reason to change this.

The default value is 50

ControlChannelConfig

JBoss Messaging uses JGroups for all group management. This contains the JGroups stack
configuration for the control channel.

The control channel is used for sending request/receiving responses from other nodes in the cluster

The details of the JGroups configuration will not be discussed here since it is standard JGroups
configuration. Detailed information on JGroups can be found in JGroups release documentation or
on-line at http://www.jgroups.org or http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups.

DataChannelConfig

JBoss Messaging uses JGroups for all group management. This contains the JGroups stack
configuration for the data channel.

The data channel is used for sending sending/receiving messages from other nodes in the cluster
and for replicating session data.

The details of the JGroups configuration will not be discussed here since it is standard JGroups
configuration. Detailed information on JGroups can be found in JGroups release documentation or
on-line at http://www.jgroups.org or http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups.

Database Connection Retry Parameters control whether a connection should be re-established when a
connection failure is detected, how many attempts to reconnect should be made, and at what interval
each attempt should be made.

RetryOnConnectionFailure

Specifies whether the MBean should attempt to reconnect to the database. The default is false.

MaxRetry

Messaging User Guide

26

http://www.jgroups.org
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups
http://www.jgroups.org
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups

Specifies the maximum limit for DataSource connection failures. The default is 25. Set the parameter
to -1 to activate "retry forever" mode. This parameter is valid when RetryOnConnectionFailure
is set to true.

IMPORTANT

Clients that consume messages from a clustered destination can become
unresponsive when closed. This happens if the node has the value MaxRetry set to -
1, and loses the connection to the database. To avoid the problem, set the node
parameter MaxRetry to a value greater than -1. You can set the attribute value in the
MBeans PersistenceManager, PostOffice, and JMSUserManager in the file
[database]-persistence-service.xml

RetryInterval

Specifies the retry interval between two consecutive retries. The default is 1000 (milliseconds). This
parameter is valid when RetryOnConnectionFailure is set to true.

If a node becomes unresponsive for a few seconds while still being stable (for example during a minor
network malfunction), past failover behavior reported the node had left the cluster. This scenario can be
avoided by specifying the following parameters in the MessagePostOffice bean. The following
parameters provide the MessagePostOffice access to the cluster timestamp table, which is used to more
accurately determine the state of a node.

IMPORTANT

The timestamp table parameters should be used in conjunction with the
MessagingClusterHealthMBean MBean. You deploy this MBean in the ServerPeer
MBean. Refer to Section 5.1, “Configuring the ServerPeer” for a full overview of the
supported parameters and operations.

KeepOldFailoverMode

Specifies whether the timestamp table failover mode should be used. The default is true (disable
new failover behavior).

NodeStateRefreshInterval

Specifies the maximum duration (in milliseconds) a cluster will wait for a node to refresh its timestamp
before the cluster marks the node as disabled. The default is 30000 (30 seconds).

5.6. CONFIGURE THE MESSAGINGCLUSTERHEALTHMBEAN

The MessagingPostOffice uses the KeepOldFailoverMode and NodeStateRefreshInterval
parameters to control the interval during which a node must update timestamps to remain part of a
cluster. These parameters do not control how a node responds to losing connection to the database.

If a node loses connection to the database, it can not update the timestamp information available to the
MessagePostOffice. Even though the node may still be healthy, the cluster has no way of determining
the actual state of the node. As a result, the cluster assumes the node has failed and duplicate message
delivery can occur.

CHAPTER 5. CONFIGURATION

27

The MessagingClusterHealthMBean MBean is responsible for monitoring the node state, and
stopping and starting a node when it loses connection to the database. When a node is shunned from the
cluster and subsequently loses database connectivity, the MBean shuts down the node immediately. The
MBean monitors the JGroups status and database status while the node is unavailable, and will restart
the node when it detects JGroups and the database connection is restored to normal operation.

To enable this functionality, declare the MessagingClusterHealthMBean MBean in the ServerPeer
MBean as an optional-attribute-name attribute of the <depends> directive.

After declaring the MessagingClusterHealthMBean MBean in the ServerPeer MBean, you need to
add the MessagingClusterHealthMBean MBean's configuration.

<!-- ServerPeer MBean configuration -->
<mbean code="org.jboss.jms.server.ServerPeer"
name="jboss.messaging:service=ServerPeer" xmbean-dd="xmdesc/ServerPeer-
xmbean.xml">

<!-- Unique integer ID of the server peer - each cluster node MUST have a
unique value -->

 <attribute name="ServerPeerID">0</attribute>

<!-- The default JNDI context that queues use when deployed without
specifying one -->

 <attribute name="DefaultQueueJNDIContext">/queue</attribute>

<!-- The default JNDI context that topics use when deployed without
specifying one -->

 <attribute name="DefaultTopicJNDIContext">/topic</attribute>

<!-- XML CONFIG REMOVED FOR READABILITY -->

 <depends optional-attribute-name="PersistenceManager">
 jboss.messaging:service=PersistenceManager
 </depends>

<!-- XML CONFIG REMOVED FOR READABILITY -->

 <depends optional-attribute-name="MessagingClusterHealthMBean">
 jboss.messaging:service=MessagingClusterHealthMBean
 </depends>

</mbean>

<!-- MessagingClusterHealthMBean MBean configuration -->
<mbean code="org.jboss.jms.server.MessagingClusterHealthMBean"
name="jboss.messaging:service=MessagingClusterHealthMBean" xmbean-
dd="xmdesc/MessagingClusterHealthMBean-xmbean.xml">

<!-- The service name of Server Peer -->
 <attribute
name="ServerPeer">jboss.messaging:service=ServerPeer</attribute>

Messaging User Guide

28

5.7. CONFIGURING THE PERSISTENCE MANAGER

JBoss Messaging ships with a JDBC Persistence Manager, which handles message data persistence in
a relational database accessed via JDBC. The Persistence Manager can be plugged into the Messaging
server, which allows additional implementations to persist message data in non-relational stores, and file
stores.

Persistent service configuration details are grouped in <database type>-persistence-
service.xml. JBoss Messaging ships with the hsqldb-persistence-service.xml file by default,
which configures the Messaging server to use the Hypersonic database instance included by default with
any JBoss Enterprise Application Server instance.

WARNING

Hypersonic is not supported for use in a production environment.

JBoss Messaging also ships with Persistence Manager configurations for MySQL, Oracle, PostgreSQL,
Sybase, Microsoft SQL Server, and DB2. The example configuration files (such as mysql-
persistence-service.xml and ndb-persistence-service.xml) are available from the jboss-
as/docs/examples/jms directory of the release bundle.

The JDBC Persistence Manager uses standard SQL as its Data Manipulation Language (DML), so
writing a Persistence Manager configuration for another database type is a matter of changing the
configuration's Data Definition Language (DDL), which usually differs on a per-database basis.

JBoss Messaging also ships with a Null Persistence Manager configuration option, which can be used
when persistence is not required.

The following code is the default Hypersonic persistence manager configuration:

<!-- The service name of Post Office -->
 <attribute
name="PostOffice">jboss.messaging:service=PostOffice</attribute>

<!-- The service name of Persistence Manager -->
 <attribute
name="PersistenceManager">jboss.messaging:service=PersistenceManager</attr
ibute>

</mbean>



<mbean code="org.jboss.messaging.core.jmx.JDBCPersistenceManagerService"
 name="jboss.messaging:service=PersistenceManager"
 xmbean-dd="xmdesc/JDBCPersistenceManager-xmbean.xml">

 <depends>jboss.jca:service=DataSourceBinding,name=DefaultDS</depends>

 <depends optional-attribute-name="TransactionManager">
 jboss:service=TransactionManager
 </depends>

CHAPTER 5. CONFIGURATION

29

IMPORTANT

The maximum size of Sybase database text and image data types is set to 2
kilobytes by default. Any message that exceeds this limit is truncated, without any
information or warning. Set the @@TEXTSIZE database parameter to a higher value to
prevent potential truncation.

Truncation may also occur in the Microsoft SQL Server if @@TEXTSIZE value is set to a
lesser value than the default value. For further information, refer to
https://issues.jboss.org/browse/SOA-554, and the Special Notes on Sybase section in the
Administration and Configuration Guide.

IMPORTANT

Microsoft SQL Server does not automatically unallocate hard drive space when data is
deleted from a database. When the hard drive database space is used as a data store for
a service that temporarily stores many records (such as a messaging service), the disk
space will quickly become much greater than the amount of data actually being stored.

Database administrators must implement database maintenance plans to ensure that the
unused space is reclaimed. Refer to your Microsoft SQL Server documentation for the
DBCC commands ShrinkDatabase and UpdateUsage for guidance reclaiming the
unused space. For further information about this issue, refer to
https://issues.jboss.org/browse/SOA-629

5.7.1. JDBCPersistenceManager MBean Attributes

The JDBCPersistenceManager attributes are described in the following list.

CreateTablesOnStartup

Set this to true if you wish the Persistence Manager to attempt to create the tables (and indexes)
when it starts. If the tables (or indexes) already exist a SQLException will be thrown by the JDBC
driver and ignored by the Persistence Manager, allowing it to continue.

 <!-- The datasource to use for the persistence manager -->

 <attribute name="DataSource">java:/DefaultDS</attribute>

 <!-- If true will attempt to create tables and indexes on every start-up
-->

 <attribute name="CreateTablesOnStartup">true</attribute>

 <!-- If true then will use JDBC batch updates -->

 <attribute name="UsingBatchUpdates">false</attribute>

 <!-- The maximum number of parameters to include in a prepared statement
-->

 <attribute name="MaxParams">500</attribute>
</mbean>

Messaging User Guide

30

https://issues.jboss.org/browse/SOA-554
https://issues.jboss.org/browse/SOA-629

By default the value of CreateTablesOnStartup attribute is set to true.

UsingBatchUpdates

Set this to true if the database supports JDBC batch updates. The JDBC Persistence Manager will
then group multiple database updates in batches to aid performance.

By default the value of UsingBatchUpdates attribute is set to false

UsingBinaryStream

Set this to true if you want messages to be store and read using a JDBC binary stream rather than
using getBytes(), setBytes(). Some database has limits on the maximum number of bytes that can be
get/set using getBytes()/setBytes().

By default the value of UsingBinaryStream attribute is set to true

UsingTrailingByte

Certain version of Sybase are known to truncate blobs if they have trailing zeros. To prevent this if
this attribute is set to true then a trailing non zero byte will be added and removed to each blob
before and after persistence to prevent the database from truncating it. Currently this is only known to
be necessary for Sybase.

By default the value of UsingTrailingByte attribute is set to false

SupportsBlobOnSelect

Oracle (and possibly other databases) is known to not allow BLOBs to be inserted using a INSERT
INTO ... SELECT FROM statement, and requires a two stage conditional insert of messages. If this
value is false then such a two stage insert will be used.

By default the value of SupportsBlobOnSelect attribute is set to true

SQLProperties

This is where the DDL and DML for the particular database is specified. If a particular DDL or DML
statement is not overridden, the default Hypersonic configuration will be used for that statement.

MaxParams

When loading messages the persistence manager will generate prepared statements with many
parameters. This value tells the persistence manager what the absolute maximum number of
parameters are allowable per prepared statement.

By default the value of MaxParams attribute is set to 100

UseNDBFailoverStrategy

When running in a clustered database environment it is possible that some databases, MySQL for
instance, can fail during the commit of a database transaction. This can happen if the database node
dies whilst committing meaning that the final state of the transaction is unknown. If this attribute is set
to true and the above happens then the SQL statement will be re-executed, however if there is a
further error an assumption is made that this is because the previous transaction committed
successfully and the error is ignored.

By default the value of UseNDBFailoverStrategy attribute is set to false

CHAPTER 5. CONFIGURATION

31

Database Connection Retry Parameters control whether a connection should be re-established when a
connection failure is detected, how many attempts to reconnect should be made, and at what interval
each attempt should be made.

RetryOnConnectionFailure

Specifies whether the MBean should attempt to reconnect to the database. The default is false.

MaxRetry

Specifies the maximum limit for DataSource connection failures. The default is 25. Set the parameter
to -1 to activate "retry forever" mode. This parameter is valid when RetryOnConnectionFailure
is set to true.

IMPORTANT

Clients that consume messages from a clustered destination can become
unresponsive when closed. This happens if the node has the value MaxRetry set to -
1, and loses the connection to the database. To avoid the problem, set the node
parameter MaxRetry to a value greater than -1. You can set the attribute value in the
MBeans PersistenceManager, PostOffice, and JMSUserManager in the file
[database]-persistence-service.xml

RetryInterval

Specifies the retry interval between two consecutive retries. The default is 1000 (milliseconds). This
parameter is valid when RetryOnConnectionFailure is set to true.

CreateTablesOnStartup

Specifies whether tables and index creation is attempted when the Persistence Manager is started.
When set to true (default), the persistence manager will attempt to create tables (and indexes) on
start up. If tables or indexes already exist, a SQLException will be thrown by the JDBC driver and
ignored by the persistence manager, allowing it to continue unhindered.

UsingBatchUpdates

Specifies whether multiple database updates are grouped in batches to improve performance. Set
this value to true if your database supports JDBC batch updates.. The default value is false.

UsingBinaryStream

Specifies whether messages are stored and read with a JDBC binary stream, instead of via
getBytes() and setBytes(). Set this value to false if your database must use getBytes()
and setBytes(). The default value is true.

UsingTrailingByte

Specifies how Sybase database BLOBs containing trailing zeroes are handled. When set to true , a
trailing non-zero byte is added to each BLOB before persistence, and removed from the BLOB
following persistence, preventing truncation by the database. The default value is false

NOTE

Certain versions of Sybase truncate a BLOB with trailing zeros. This attribute is only
required if you are running a Sybase database.

Messaging User Guide

32

SupportsBlobOnSelect

Specifies how BLOBs are inserted into certain database types. When set to false, two-stage
insertion will be used. The default value is true.

NOTE

Certain databases, specifically Oracle, do not allow BLOB insertion via an INSERT
INTO ... SELECT FROM statement, and require two-stage conditional message
insertion. Set this attribute to false if you are running an Oracle database, or other
database with this requirement.

SQLProperties

Specifies the DDL and DML for a particular database. If a particular DDL or DML statement is not
overridden, the default Hypersonic configuration will be used for that statement.

UseNDBFailoverStrategy

Specifies whether a SQL statement is re-executed in the event a database transaction commit fails in
a clustered environment. If set to true, the SQL statement is re-executed in the event that the
commit fails. If a further error occurs, the persistence manager assumes the error is due to the
previous transaction having committed successfully, and ignores the error. By default, this attribute is
set to false.

NOTE

When some databases, such as MySQL, run in clustered environments, they can fail
during database transaction commits. If this occurs, the final transaction state is
unknown.

MaxParams

Specifies the maximum number of parameters allowed per prepared statement while loading
messages. The default value is 500.

5.8. CONFIGURING THE JMS USER MANAGER

The JMS User Manager maps pre-configured client IDs to users. It also manages user and role tables,
depending on the configured login module.

The following is an example JMSUserManager configuration:

<mbean code="org.jboss.jms.server.plugin.JDBCJMSUserManagerService"
 name="jboss.messaging:service=JMSUserManager"
 xmbean-dd="xmdesc/JMSUserManager-xmbean.xml">
 <depends>jboss.jca:service=DataSourceBinding,name=DefaultDS</depends>
 <depends optional-attribute-name="TransactionManager">
 jboss:service=TransactionManager
 </depends>
 <attribute name="DataSource">java:/DefaultDS</attribute>
 <attribute name="CreateTablesOnStartup">true</attribute>
 <attribute name="SqlProperties">
 CREATE_USER_TABLE=CREATE TABLE JBM_USER (USER_ID VARCHAR(32) NOT NULL,

CHAPTER 5. CONFIGURATION

33

5.8.1. JMSUserManager MBean Attributes

CreateTablesOnStartup

Set this to true if you wish the JMS user manager to attempt to create the tables (and indexes) when
it starts. If the tables (or indexes) already exist a SQLException will be thrown by the JDBC driver
and ignored by the Persistence Manager, allowing it to continue.

By default the value of CreateTablesOnStartup attribute is set to true

UsingBatchUpdates

Set this to true if the database supports JDBC batch updates. The JDBC Persistence Manager will
then group multiple database updates in batches to aid performance.

By default the value of UsingBatchUpdates attribute is set to false

SQLProperties

This is where the DDL and DML for the particular database is specified. If a particular DDL or DML
statement is not overridden, the default Hypersonic configuration will be used for that statement.

Default user and role data can also be specified here. Any data to be inserted must be specified with
property names starting with POPULATE.TABLES as in the above example.

Database Connection Retry Parameters control whether a connection should be re-established when a
connection failure is detected, how many attempts to reconnect should be made, and at what interval
each attempt should be made.

RetryOnConnectionFailure

Specifies whether the MBean should attempt to reconnect to the database. The default is false.

MaxRetry

Specifies the maximum limit for DataSource connection failures. The default is 25. Set the parameter
to -1 to activate "retry forever" mode. This parameter is valid when RetryOnConnectionFailure
is set to true.

 PASSWD VARCHAR(32) NOT NULL, CLIENTID VARCHAR(128),
 PRIMARY KEY(USER_ID)) ENGINE = INNODB

 CREATE_ROLE_TABLE=CREATE TABLE JBM_ROLE (ROLE_ID VARCHAR(32) NOT NULL,
 USER_ID VARCHAR(32) NOT NULL, PRIMARY KEY(USER_ID, ROLE_ID))
 ENGINE = INNODB

 SELECT_PRECONF_CLIENTID=SELECT CLIENTID FROM JBM_USER WHERE USER_ID=?

 POPULATE.TABLES.1=INSERT INTO JBM_USER (USER_ID,PASSWD,CLIENTID)
 VALUES ('jdoe','jdoepw','jdoe-id')
 </attribute>
</mbean>

Messaging User Guide

34

IMPORTANT

Clients that consume messages from a clustered destination can become
unresponsive when closed. This happens if the node has the value MaxRetry set to -
1, and loses the connection to the database. To avoid the problem, set the node
parameter MaxRetry to a value greater than -1. You can set the attribute value in the
MBeans PersistenceManager, PostOffice, and JMSUserManager in the file
[database]-persistence-service.xml

RetryInterval

Specifies the retry interval between two consecutive retries. The default is 1000 (milliseconds). This
parameter is valid when RetryOnConnectionFailure is set to true.

5.9. CONFIGURING DESTINATIONS

5.9.1. Pre-configured destinations

JBoss Messaging ships with a default set of preconfigured destinations that are deployed at server start-
up. The configuration information for these destinations can be found in the following section of
destinations-service.xml:

5.9.2. Configuring Queues

5.9.2.1. Queue MBean Attributes

Name

Defines the queue name.

JNDIName

<!-- The Default Dead Letter Queue. This destination is a dependency of an
EJB MDB container. -->

 <mbean code="org.jboss.jms.server.destination.QueueService"
 name="jboss.messaging.destination:service=Queue,name=DLQ"
 xmbean-dd="xmdesc/Queue-xmbean.xml">
 <depends optional-attribute-
name="ServerPeer">jboss.messaging:service=ServerPeer</depends>
 <depends>jboss.messaging:service=PostOffice</depends>
 </mbean>

 <!-- The Default Expiry Queue -->

 <mbean code="org.jboss.jms.server.destination.QueueService"
 name="jboss.messaging.destination:service=Queue,name=ExpiryQueue"
 xmbean-dd="xmdesc/Queue-xmbean.xml">
 <depends optional-attribute-
name="ServerPeer">jboss.messaging:service=ServerPeer</depends>
 <depends>jboss.messaging:service=PostOffice</depends>
</mbean>

CHAPTER 5. CONFIGURATION

35

Defines the JNDI name that binds the queue.

DLQ

Defines the DLQ (Dead Letter Queue) for this queue and overrides any value set in the Server Peer
configuration file.

ExpiryQueue

Defines the expiry queue and overrides any value set in the Server Peer configuration file.

RedeliveryDelay

Defines the redelivery delay to be applied to this queue and overrides any value set in the Server
Peer configuration file.

MaxDeliveryAttempts

Defines the maximum number of times message delivery is attempted before the message is sent to
the DLQ, if configured. The default value, -1, means that the value from the Server Peer
configuration file is used. Any other setting will override the value set in the Server Peer configuration
file.

CreatedProgrammatically

Returns true if the queue was created programmatically.

MessageCount

Returns the total number of messages in the queue. That is, the number of messages being
scheduled plus the number being delivered, plus the number not being delivered.

ScheduledMessageCount

Returns the number of scheduled messages in the queue. This is the number of messages scheduled
to be delivered at a later date.

Scheduled delivery lets you specify the earliest time at which a particular message will be delivered.
For example, you can send a message now, and specify that it will not be delivered for two hours. To
do so, set the following in the message header:

MaxSize

Specifies the maximum number of messages that can be held in a queue. Any excess messages will
be dropped. The default value is -1, which is unbounded.

Clustered

This attribute must be set to true if the destination is clustered.

long now = System.currentTimeMillis();

Message msg = sess.createMessage();

msg.setLongProperty(JBossMessage.JMS_JBOSS_SCHEDULED_DELIVERY_PROP_NAME,
 now + 1000 * 60 * 60 * 2);

prod.send(msg);

Messaging User Guide

36

MessageCounter

Each queue maintains a message counter.

MessageCounterStatistics

The statistics for the message counter.

MessageCounterHistoryDayLimit

The maximum number of days for which to hold message counter history. Overrides any value set in
the Server Peer configuration file.

ConsumerCount

The number of consumers currently consuming from the queue.

DropOldMessageOnRedeploy

Specifies how queue services with clustered attributes that differ from previously deployed attributes
are handled. If set to true, all remaining messages in the queue are deleted after the queue service
re-deployment if the queue service attribute contains a different clustered attribute. If set to false
(default), all messages are reserved.

WARNING

When you re-deploy a destination, you must shut down all the nodes in the cluster,
make proper configuration changes, and then restart the nodes.

Redeploying from a non-clustered to a clustered queue requires you set the
clustered attribute to true, and add the queue service configuration to each node.

Redeploying from a clustered to a non-clustered queue requires you set the
clustered attribute to false in one of the queue configurations and delete all other
queues in the cluster.

5.9.2.1.1. Destination Security Configuration

<SecurityConfig> determines which roles can read, write and create upon the destination. It uses the
same syntax and semantics as JBossMQ destination security configuration.

The <SecurityConfig> element must contain one <security> element, which can contain multiple <role>
elements. A <role> element defines the access type for that particular role using the following attributes:

read



<SecurityConfig>
 <security>
 <role read="true" write="true" create="true"/>
 </security>
<SecurityConfig>

CHAPTER 5. CONFIGURATION

37

Specifies the role can create consumers, receive messages, and browse the destination.

write

Specifies the role can create producers, or send messages to the destination.

create

Specifies the role can create durable subscriptions on this destination.

NOTE

Configuring security for a destination is optional. If a SecurityConfig element is not
specified, then the default security configuration from the Server Peer will be used instead.

5.9.2.1.2. Destination paging parameters

Pageable Channels is a JBoss Messaging feature that lets you specify a maximum number of messages
to be stored in memory at one time, on a queue-by-queue or topic-by-topic basis. JBoss Messaging then
pages messages to and from storage transparently in blocks. This allows queues and subscriptions to
grow to very large sizes without any degradation in performance as channel size increases.

The individual parameters associated with pageable channels are as follows:

FullSize

Specifies the maximum number of messages held by the queue or topic subscription in memory at
any one time. The actual queue can hold more messages, but these are paged to and from storage
as messages are added or consumed. If no value is specified, the default is 75000.

PageSize

Specifies the maximum number of messages that are pre-loaded per operation when loading
messages from the queue or subscription. If no value is specified, the default is 2000.

DownCacheSize

Specifies the maximum number of messages the Down Cache holds before the messages are
flushed to storage. The default value is 2000 messages.

When messages are paged to storage from the queue, they enter a Down Cache before being written
to storage. This enables the write to occur as a single operation, which aids performance.

NOTE

Paging parameters for temporary queues must be specified on the appropriate
connection factory. Refer to Section 5.10, “Configuring Connection Factories” for
detailed information about the different connection factories available.

5.9.2.1.3. Queue Managed Bean Operations

RemoveAllMessages

Removes (and deletes) all messages from the queue.

Messaging User Guide

38

IMPORTANT

This will permanently delete all messages from the queue; use this operation with
caution.

ListAllMessages

Lists all messages currently in the queue. Using a JMS selector as an argument in this operation lets
you retrieve a subset of the messages in the queue that match the given criteria.

ListDurableMessages

Lists all durable messages in the queue. Using a JMS selector as an argument in this operation lets
you retrieve a subset of messages in the queue that match the given criteria.

ListNonDurableMessages

Lists all non-durable messages in a queue. Using a JMS selector as an argument in this operation
lets you retrieve a subset of messages in the queue that match the given criteria.

ResetMessageCounter

Resets the message counter to zero.

ResetMessageCounterHistory

Resets the message counter history.

ListMessageCounterAsHTML

Lists the message counter in HTML format.

ListMessageCounterHistoryAsHTML

Lists the message counter history in HTML format.

5.9.3. Configuring Topics

5.9.3.1. Topic Managed Bean Attributes

Name

Defines the name of the topic.

JNDIName

Defines the JNDI location where the topic is bound.

DLQ

Defines the Dead Letter Queue (DLQ) used for this topic and overrides any value set in the Server
Peer configuration file.

ExpiryQueue

Defines the expiry queue used for this topic and overrides any value set in the Server Peer
configuration file.

CHAPTER 5. CONFIGURATION

39

RedeliveryDelay

Defines the delay period between redelivery attempts for this topic and overrides any value set in the
Server Peer configuration file.

MaxDeliveryAttempts

Defines the maximum number of times message delivery will be attempted before the message is
sent to the DLQ, if configured. The default value is -1, which specifies that the value from the Server
Peer configuration file be used. Any other setting overrides the Server Peer value.

CreatedProgrammatically

Returns true if the topic was created programmatically.

MaxSize

Specifies the maximum number of messages that can be held in a topic subscription. Any excess
messages will be dropped from the topic. The default value is -1, which applies no size restriction.

Clustered

Set this to true if your destination is clustered.

MessageCounterHistoryDayLimit

Defines the maximum number of days to retain message counter history, and overrides any value set
in the Server Peer configuration file.

MessageCounters

Returns a list of message counters for the topic's subscriptions.

AllMessageCount

Returns the total number of messages in all subscriptions belonging to the topic.

DurableMessageCount

Returns the total number of durable messages in all subscriptions belonging to this topic.

NonDurableMessageCount

Returns the total number of non-durable messages in all subscriptions belonging to this topic.

DropOldMessageOnRedeploy

Specifies how queue services with clustered attributes that differ from previously deployed attributes
are handled. If set to true, all remaining messages in the queue are deleted after the queue service
re-deployment if the queue service attribute contains a different clustered attribute. If set to false
(default), all messages are reserved.

Messaging User Guide

40

WARNING

When you re-deploy a destination, you must shut down all the nodes in the
cluster, make proper configuration changes, and then restart the nodes.

Redeploying from a non-clustered to a clustered queue requires you set the
clustered attribute to true, and add the queue service configuration to each
node.

Redeploying from a clustered to a non-clustered queue requires you set the
clustered attribute to false in one of the queue configurations and delete all
other queues in the cluster.

AllSubscriptionsCount

Returns a count of all subscriptions belonging to this topic.

DurableSubscriptionsCount

Returns a count of all durable subscriptions belonging to this topic.

NonDurableSubscriptionsCount

Returns a count of all non-durable subscriptions belonging to this topic.

5.9.3.1.1. Destination Security Configuration

<SecurityConfig> determines which roles can read, write and create upon the destination. It uses the
same syntax and semantics as JBossMQ destination security configuration.

The <SecurityConfig> element must contain one <security> element, which can contain multiple <role>
elements. A <role> element defines the access type for that particular role using the following attributes:

read

Specifies the role can create consumers, receive messages, and browse the destination.

write

Specifies the role can create producers, or send messages to the destination.

create

Specifies the role can create durable subscriptions on this destination.

NOTE

Configuring security for a destination is optional. If a SecurityConfig element is not
specified, then the default security configuration from the Server Peer will be used instead.



CHAPTER 5. CONFIGURATION

41

5.9.3.1.2. Destination paging parameters

Previously, for an application to support a queue or subscription, the queue needed to be stored entirely
in memory. This was not always possible for very large queues or subscriptions.

Pageable Channels is a new JBoss Messaging feature that lets you specify a maximum number of
messages to be stored in memory at one time, on a queue-by-queue or topic-by-topic basis. JBoss
Messaging then pages messages to and from storage transparently in blocks. This allows queues and
subscriptions to grow to very large sizes without any degradation in performance as channel size
increases. It has been tested with queues in excess of ten million 2 kilobyte messages on very basic
hardware, and has the potential to scale to much greater message numbers.

The individual parameters associated with pageable channels are as follows:

FullSize

Specifies the maximum number of messages held by the queue or topic subscription in memory at
any one time. The actual queue can hold more messages, but these are paged to and from storage
as messages are added or consumed. If no value is specified, the default is 75000.

PageSize

Specifies the maximum number of messages that are pre-loaded per operation when loading
messages from the queue or subscription. If no value is specified, the default is 2000.

DownCacheSize

Specifies the maximum number of messages the Down Cache holds before the messages are
flushed to storage. The default value is 2000 messages.

When messages are paged to storage from the queue, they enter a Down Cache before being written
to storage. This enables the write to occur as a single operation, which aids performance.

NOTE

Paging parameters for temporary queues must be specified on the appropriate
connection factory. See the section on Connection Factory Configuration for details.

5.9.3.2. Topic Managed Bean Operations

RemoveAllMessages

Removes (and deletes) all messages from subscriptions that belong to this topic.

IMPORTANT

This will permanently delete all messages from the topic; use this operation with
caution.

ListAllMessages

Lists all messages belonging to a specified subscription. Using a JMS selector as an argument in this
operation lets you retrieve a subset of messages in the queue that match the given criteria.

ListDurableMessages

Messaging User Guide

42

Lists all durable messages belonging to the specified subscription. Using a JMS selector as an
argument in this operation lets you retrieve a subset of messages in the queue that match the given
criteria.

ResetMessageCounter

Resets the message counter to zero.

ResetMessageCounterHistory

Resets the message counter history.

ListAllSubscriptionsAsHTML

Lists all subscriptions belonging to this topic in HTML format.

ListDurableSubscriptionsAsHTML

Lists all durable subscriptions belonging to this topic in HTML format.

ListNonDurableSubscriptions

Lists all non-durable messages belonging to the specified subscription. Using a JMS selector as an
argument in this operation lets you retrieve a subset of messages in the queue that match the given
criteria.

ListNonDurableSubscriptionsAsHTML

Lists all non-durable subscriptions belonging to this topic in HTML format.

5.10. CONFIGURING CONNECTION FACTORIES

JBoss Messaging is configured by default to bind two connection factories in JNDI upon start up.

The first connection factory is the default, non-clustered connection factory. This connection factory is
provided to maintain compatibility with applications originally written against JBossMQ, which does not
include automatic failover or load balancing. If you do not require client-side automatic failover or load
balancing, then you should use this first connection factory.

The first connection factory is bound into the following JNDI contexts:

/ConnectionFactory

/XAConnectionFactory

java:/ConnectionFactory

java:/XAConnectionFactory.

The second connection factory is the default clustered connection factory, which is bound into the
following JNDI contexts:

/ClusteredConnectionFactory

/ClusteredXAConnectionFactory

java:/ClusteredConnectionFactory

CHAPTER 5. CONFIGURATION

43

java:/ClusteredXAConnectionFactory

If you want to provide a default client ID for a connection factory, or bind a connection factory to a
different JNDI locationConsider, then configure and deploy additional connection factories. To deploy a
new connection factory, configure a new ConnectionFactory managed bean in connection-
factories-service.xml.

You can also create a new service deployment descriptor, <name>-service.xml, and deploy it in
$JBOSS_HOME/server/messaging/deploy.

Enable support for automatic failover or load balancing by setting the relevant attributes in your
connection factory:

Example 5.1. Connection Factory

This example connection factory creates a connection factory with the preconfigured client ID
myClientID, which is bound to two locations in the JNDI tree: /MyConnectionFactory and
/factories/cf.

The example overrides the following default values:

PreFetchSize

DefaultTempQueueFullSize

DefaultTempQueuePageSize

DefaultTempQueueDownCacheSize

DupsOKBatchSize

SupportsFailover

SupportsLoadBalancing

LoadBalancingFactory

The connection factory uses the default remoting connector. To use a different remoting connector
with the connection factory, change the Connector attribute to specify the service name of the
connector you wish to use.

<mbean code="org.jboss.jms.server.connectionfactory.ConnectionFactory"
name="jboss.messaging.connectionfactory:service=MyConnectionFactory"
xmbean-dd="xmdesc/ConnectionFactory-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">
 jboss.messaging:service=ServerPeer
 </depends>
 <depends optional-attribute-name="Connector">
 jboss.messaging:service=Connector,transport=bisocket
 </depends>
 <depends>jboss.messaging:service=PostOffice</depends>

 <attribute name="JNDIBindings">
 <bindings>
 <binding>/MyConnectionFactory</binding>
 <binding>/factories/cf</binding>

Messaging User Guide

44

5.10.1. ConnectionFactory Managed Bean Attributes

ClientID

You can preconfigure a connection factory with a client ID. Any connection created via this
connection factory will obtain this client ID.

JNDIBindings

Lists available JNDI bindings for this connection factory.

PrefetchSize

Specifies how many messages the window holds at once, for consumer flow control. The window
size determines the number of messages a server can send to a consumer without blocking. Each
consumer maintains a buffer of messages from which it consumes.

Transmission Control Protocol (TCP) implements its own additional flow control. Message
consumption can also be blocked if the TCP window size is smaller than the PrefetchSize
parameter.

SlowConsumers

Specifies whether the allowable buffer size for slow consumers is reduced. Reducing the buffer size
for slow consumers results in minimized to increase the potential for messages to be consumed by
faster consumers. It is not possible to totally disable buffering, however, setting the SlowConsumers

 </bindings>
 </attribute>

 <attribute name="ClientID">myClientID</attribute>

 <attribute name="SupportsFailover">true</attribute>

 <attribute name="SupportsLoadBalancing">false</attribute>

 <attribute name="LoadBalancingFactory">
 org.acme.MyLoadBalancingFactory
 </attribute>

 <attribute name="PrefetchSize">1000</attribute>

 <attribute name="SlowConsumers">false</attribute>

 <attribute name="StrictTck">true</attribute>

 <attribute name="SendAcksAsync">false</attribute>

 <attribute name="DefaultTempQueueFullSize">50000</attribute>

 <attribute name="DefaultTempQueuePageSize">1000</attribute>

 <attribute name="DefaultTempQueueDownCacheSize">1000</attribute>

 <attribute name="DupsOKBatchSize">10000</attribute>
</mbean>

CHAPTER 5. CONFIGURATION

45

attribute to true will reduce the buffer size. Setting this attribute to true is equivalent to setting
PrefetchSize to 1 which is the lowest possible value available.

StrictTck

Enables strict JMS behavior if the attribute is set to true. Strict JMS behavior is required by the
Technology Compatibility Kit (TCK).

SendAcksAsync

Specifies acknowledgments are sent asynchronously if the attribute is set to true. This can improve
performance, particularly if auto_acknowledge mode is active.

DefaultTempQueueFullSize

Optional attribute that specifies the paging parameters for temporary full size queue destinations,
which are scoped to connections created with this connection factory. The default value is 200000.
For more information about these attributes, refer to Section 5.9.3.1.2, “Destination paging
parameters”.

DefaultTempQueuePageSize

Optional attribute that specifies the paging parameters for temporary page size destinations, which
are scoped to connections created with this connection factory. The default value is 2000. For more
information about these attributes, refer to Section 5.9.3.1.2, “Destination paging parameters”.

DefaultTempQueueDownCacheSize

Optional attribute that specifies the paging parameters for temporary down cache size destinations,
which are scoped to connections created with this connection factory. The default value is 2000. For
more information about these attributes, refer to Section 5.9.3.1.2, “Destination paging parameters”.

DupsOKBatchSize

Specifies the number of DUPS_OK_ACKNOWLEDGE acknowledgments that are buffered locally before
they are sent. The default value is 2000.

SupportsLoadBalancing

Specifies whether client-side load balancing is enabled for the connection factory on clustered
installations. If load balancing is enabled, any connection created by that connection factory will be
load-balanced across the nodes of a cluster. A connection created on a particular node remains on
that node. The default value is false.

SupportsFailover

Specifies whether client-side automatic failover is enabled for the connection factory on clustered
installations. If automatic failover is enabled, JBoss Messaging will automatically and transparently
failover to another node in the cluster when a connection problem is detected. The default value is
false.

NOTE

When automatic failover is disabled, the user code is responsible for catching
connection exceptions in synchronous JMS operations, and a JMS
ExceptionListener must be installed to catch exceptions asynchronously. When
an exception is caught, the client-side code must look up a new connection factory via
HAJNDI and recreate the connection.

Messaging User Guide

46

DisableRemotingChecks

Specifies whether the connection factory checks that the corresponding JBoss Remoting Connector
uses sensible values. JBoss Messaging is very sensitive to these values, and there is rarely any need
to change them. To disable this sanity checking, set DisableRemotingChecks to false. The
default value is true.

WARNING

Do not disable the remoting checks; system instability.

LoadBalancingFactory

Specifies the client-side load balancing factory implementation used by the connection factory. The
value must correspond to the name of a class that implements the interface
org.jboss.jms.client.plugin.LoadBalancingFactory.

The default value is org.jboss.jms.client.plugin.RoundRobinLoadBalancingFactory,
which load-balances connections across the cluster in a round-robin fashion.

Connector

Specifies the remoting connector used by the connection factory. Different connection factories can
use different connectors, so you can deploy one connection factory that uses the HTTP transport to
communicate with the server, and another that uses the bisocket transport to communicate.

EnableOrderingGroup

Specifies whether strict message ordering is enabled on the ConnectionFactory. If set to true,
any messages sent from producers which are created from the enabled connection factory become
ordering group messages. The default value for this parameter is false.

DefaultOrderingGroupName

Specifies the default name for the message ordering group. The specified name will take effect once
the EnableOrderingGroup parameter is set to true . If this attribute is missing, the group name
will be generated automatically.

5.11. CONFIGURING THE REMOTING CONNECTOR

JBoss Messaging uses JBoss Remoting for all communication between the client and the server.

For more information about JBoss Remoting configuration and capabilities, refer to the Remoting chapter
in the Administration and Configuration Guide.

The default configuration includes one remoting connector, which is used by the single default
connection factory. Each connection factory can be configured to use a different connector.

The default connector is configured to use the remoting bisocket transport, a TCP socket-based transport
that listens and accepts connections only on the server side. That is, connections are always initiated
from the client side. This connector is ideal for typical firewall scenarios, where only inbound connections



CHAPTER 5. CONFIGURATION

47

are allowed on the server, or where only outbound connections are allowed from the client.

The bisocket transport can be configured to use SSL when a higher level of security is required.

The other supported transport is the HTTP transport, which uses the Hypertext Transfer Protocol to
communicate between client and server. The client periodically polls the server for messages to receive
data. This transport is ideal when a firewall between server and client allows only incoming HTTP traffic
on the server. Because of its polling behavior and the limitations of HTTP, this transport does not perform
as well as the bisocket transport. It is not designed to handle high-load situations.

No other remoting transports are currently supported by JBoss Messaging.

Remoting configuration details can be seen in
$JBOSS_HOME/server/$SERVER/deploy/messaging/remoting-bisocket-service.xml. The
following code is an example of a bisocket remoting configuration:

Example 5.2. Bisocket Remoting Configuration

<?xml version="1.0" encoding="UTF-8"?>

<!-- Standard bisocket-based Remoting service deployment descriptor.
$Id:
 remoting-bisocket-service.xml 3981 2008-03-28 18:00:41Z timfox $ -->

<server>
 <!-- Standard bisocket connector - the bisocket transport only opens
connection
 from client->server so can be used with firewalls where only outgoing
connections
 are allowed. For examples of HTTP and SSL transports see docs/examples
-->
 <mbean code="org.jboss.remoting.transport.Connector"
 name="jboss.messaging:service=Connector,transport=bisocket"
 display-name="Bisocket Transport Connector">
 <attribute name="Configuration">
 <config>
 <invoker transport="bisocket">

 <!-- There should be no reason to change these parameters -
warning!
 Changing them may stop JBoss Messaging working correctly -->
 <attribute name="marshaller"
isParam="true">org.jboss.jms.wireformat.JMSWireFormat
 </attribute>
 <attribute name="unmarshaller"
isParam="true">org.jboss.jms.wireformat.JMSWireFormat
 </attribute>
 <attribute name="dataType" isParam="true">jms</attribute>
 <attribute name="socket.check_connection"
isParam="true">false</attribute>
 <attribute
name="serverBindAddress">${jboss.bind.address}</attribute>
 <attribute
name="serverBindPort">${jboss.messaging.connector.bisocket.port:4457}
 </attribute>
 <attribute name="clientSocketClass" isParam="true">

Messaging User Guide

48

 org.jboss.jms.client.remoting.ClientSocketWrapper
 </attribute>
 <attribute
name="serverSocketClass">org.jboss.jms.server.remoting.ServerSocketWrapp
er
 </attribute>
 <attribute
name="onewayThreadPool">org.jboss.jms.server.remoting.DirectThreadPool
 </attribute>

 <!-- the following parameters are useful when there is a firewall
between
 client and server. Uncomment them if so. -->
 <!-- <attribute name="numberOfCallRetries"
isParam="true">1</attribute>
 <attribute name="pingFrequency"
isParam="true">214748364</attribute>
 <attribute name="pingWindowFactor" isParam="true">10</attribute>
 <attribute name="generalizeSocketException"
isParam="true">true</attribute> -->

 <!-- Now remoting supports socket write timeout configuration.
Uncomment
 this if you need it. -->
 <!-- <attribute name="writeTimeout"
isParam="true">30000</attribute> -->

 <!-- End immutable parameters -->

 <attribute name="stopLeaseOnFailure"
isParam="true">true</attribute>

 <!-- Periodicity of client pings. Server window by default is
twice
 this figure -->
 <attribute name="clientLeasePeriod"
isParam="true">10000</attribute>
 <attribute name="validatorPingPeriod"
isParam="true">10000</attribute>
 <attribute name="validatorPingTimeout"
isParam="true">5000</attribute>

 <attribute name="failureDisconnectTimeout"
isParam="true">0</attribute>
 <attribute name="callbackErrorsAllowed">1</attribute>
 <attribute name="registerCallbackListener">false</attribute>
 <attribute name="useClientConnectionIdentity"
isParam="true">true</attribute>

 <attribute name="timeout" isParam="true">0</attribute>

 <!-- Max Number of connections in client pool. This should be
significantly
 higher than the max number of sessions/consumers you expect -->
 <attribute name="JBM_clientMaxPoolSize"
isParam="true">200</attribute>

CHAPTER 5. CONFIGURATION

49

There are restricted attributes that should not be changed unless you are absolutely confident you
understand the impact of the changes. The following attributes are safe to change and configure to the
requirements of your project:

clientLeasePeriod

Clients periodically return heartbeats to the server to confirm that they are still active. If the server
does not receive a heartbeat after a certain period of time, it will close down the connection and
remove all resources that correspond to the client's session. The clientLeasePeriod determines
the period of time between heartbeats, in milliseconds. The default value is 10000.

By default, the server closes a client if it does not receive a heartbeat within double the
clientLeasePeriod. In reality, the period is automatically resized according to system load.

numberOfRetries

The number of seconds JBoss Remoting blocks on the client pool while waiting for a connection to
become available. If you have a very large number of sessions concurrently accessing the server
from a client and cannot obtain connections from the pool, you may want to increase this value.

clientMaxPoolSize

JBoss Remoting maintains a client-side pool of TCP connections on which to service requests. If you
have a large number of sessions concurrently accessing the server from a client and cannot obtain
connections from the pool, you may want to increase this value.

secondaryBindPort

The bisocket transport uses control connections to pass control messages between server and client.
This attribute defines the address to which the secondary ServerSocket is bound. Its value is
random by default. To work behind a firewall, you need to set it to a particular value and create a rule
for it in the firewall configuration. The recommended value is 4458 because the primary port is 4457.

 <!-- The maximum time to wait before timing out on trying to write
a
 message to socket for delivery -->
 <attribute name="callbackTimeout">10000</attribute>

 <!-- Use these parameters to specify values for binding and
connecting
 control connections to work with your firewall/NAT configuration
 <attribute name="secondaryBindPort">xyz</attribute>
 <attribute name="secondaryConnectPort">abc</attribute> -->

 </invoker>
 <handlers>
 <handler
subsystem="JMS">org.jboss.jms.server.remoting.JMSServerInvocationHandler
 </handler>
 </handlers>
 </config>
 </attribute>
 </mbean>
</server>

Messaging User Guide

50

secondaryConnectPort

The port that the client uses to connect. Specify this to let your client work with NAT routers.

maxPoolSize

The number of threads used on the server side to service requests.

By default, JBoss Messaging binds to ${jboss.bind.address}, which can be defined by running the
./run.sh -c [yourconfig] -b [yourIP] command.

If necessary, you can change remoting-bisocket-service.xml to use a different communication
port.

WARNING

Do not change values in the connector configuration other than those listed above.
Changing other values can cause JBoss Messaging to stop functioning correctly.

5.12. SERVICEBINDINGMANAGER

The SeviceBindingManager provides multiple application server instances running on the same IP
using different port ranges, which is useful during development. There are other ways to do this, but the
ServiceBindingManager removes much hassle.

5.13. MESSAGE DRIVEN BEANS

A message-driven bean is an enterprise bean that allows J2EE applications to process messages
asynchronously. It acts as a JMS message listener, which is similar to an event listener except that it
receives messages instead of events. The messages may be sent by any J2EE component--an
application client, another enterprise bean, or a Web component--or by a JMS application or system that
does not use J2EE technology. This definition is from http://java.sun.com/j2ee/tutorial/1_3-
fcs/doc/EJBConcepts5.html , and you can read more about message driven beans (MDB) from there.

You can specify MDBs in a deployment descriptor or using annotations.

Using a descriptor

Using an annotation



<enterprise-beans>
 <message-driven>
 <ejb-name>MDBExample</ejb-name>
 <destination-jndi-name>queue/@QUEUE_NAME@</destination-jndi-name>
 </message-driven>
</enterprise-beans>

@MessageDriven(mappedName="jms/Queue")
public class SimpleMessageBean implements MessageListener {

CHAPTER 5. CONFIGURATION

51

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/EJBConcepts5.html

You configure MDBs using properties divided into those specified by the JCA specification, and those
available as JBoss extensions.

IMPORTANT

MDB properties listed in Table 5.1, “MDB Properties Provided by the JCA Specification”
are not mandatory, unless explicitly called out in the Remarks column.

Table 5.1. MDB Properties Provided by the JCA Specification

Name Type Default value Remarks

destination java.lang.String none This property is
Mandatory

The JNDI name of the
Queue or Topic.

destinationType java.lang.String none The type of destination
valid values are
javax.jms.Queue or
javax.jms.Topic

messageSelector java.lang.String none The message selector of
the subscription

acknowledgeMode int AUTO_
ACKNOWLEDGE

The type of
acknowledgement when
not using transacted jms
- valid values AUTO_
ACKNOWLEDGE or
DUPS_OK_
ACKNOWLEDGE

clientID java.lang.String The client id of the
connection

subscriptionDurability String NonDurable Whether topic
subscriptions are
durable. Valid values are
Durable or NonDurable

subscriptionName String none The subscription name
of the topic subscription

IMPORTANT

MDB properties listed in Table 5.2, “MDB Properties Provided as JBoss Extensions” are
not mandatory, unless explicitly called out in the Remarks column.

 @Resource
 private MessageDrivenContext mdc;
 ...

Messaging User Guide

52

Table 5.2. MDB Properties Provided as JBoss Extensions

Name Type Default value Remarks

isTopic boolean false Sets the destinationType

providerAdapterJNDI java.lang.String DefaultJMSProvider The JNDI name of the
JMS provider.

user java.lang.String none The user ID used to
connect to the JMS
server

pass java.lang.String none The password of the
user

maxMessages int 1 Read this number of
messages before
delivering messages to
the MDB.

Each message is
delivered individually on
the same thread in an
attempt to avoid context
excessive context
switching

minSession int 1 The minimum number of
JMS sessions that are
available to concurrently
deliver messages to this
mdb

maxSession int 15 The maximum number
of JMS sessions that are
available to concurrently
deliver messages to this
mdb

reconnectInterval long 10 seconds The length of time in
seconds between
attempts to (re-)connect
to the JMS provider

keepAlive long 60 seconds The length of time in
milliseconds that
sessions over the
minimum are kept alive

sessionTransacted boolean true Whether the sessions
are transacted

CHAPTER 5. CONFIGURATION

53

useDLQ boolean true Whether to use a Dead
Letter Queue (DLQ)
handler.

dLQJNDIName java.lang.String queue/DLQ The JNDI name of the
DLQ

dLQHandler java.lang.String org.jboss.resource.
adapter.jms.inflow.dlq.
GenericDLQHandler

The org.jboss.resource.
adapter.jms.inflow.
DLQHandler
implementation class
name.

dLQUser java.lang.String none The user id used to
make the dlq connection
to the JMS server

dLQPassword java.lang.String none The password of the
dLQUser

dLQClientID java.lang.String none The client id of the DLQ
connection

dLQMaxResent int 5 The maximum number
of times a message is
redelivered before it is
sent to the DLQ.

redeliverUnspecified boolean true Whether to attempt to
redeliver a message in
an unspecified
transaction context

transactionTimeout int Default is the timeout set
for the resource
manager

Time in seconds for the
transaction timeout

Name Type Default value Remarks

Messaging User Guide

54

DeliveryActive boolean true Whether the MDB
should make the
subscription at initial
deployment or wait for
start() or stopDelivery()
on the corresponding
MBean. You can set this
to false if you want to
prevent messages from
being delivered to the
MDB (which is still
starting) during server
start up.

Name Type Default value Remarks

Configuring default MDB properties

You can configure MDBs to have default properties using the
@org.jboss.ejb3.annotation.DefaultActivationSpecs annotations.

CHAPTER 5. CONFIGURATION

55

CHAPTER 6. CLUSTERING NOTES
To help locate clustering-related information, a summary of each consideration is provided in this part of
the guide with links to the related components of JBoss Messaging.

6.1. UNIQUE SERVER PEER ID

In most cases, JBoss Messaging works in a clustered environment with minimal configuration changes.
One crucial change that must be made is that every node is assigned a unique server ID.

Every deployed node must have a unique ID, including nodes that form a LAN cluster and nodes linked
by message bridges.

The ServerPeerID attribute is used to set this information. Refer to Section 5.2, “ServerPeer attributes”
for further information.

6.2. CLUSTERED DESTINATIONS

JBoss Messaging clusters Java Message Service (JMS) queues and topics transparently across the
cluster. Messages sent to a distributed queue or topic on one node are consumable on other nodes. To
make a particular destination clustered, the clustered attribute is used to set this functionality. Refer to
Section 5.5.1, “MessagingPostOffice Attributes” for further information.

JBoss Messaging balances messages between nodes and caters for consumers of varying speeds so
processing load can be efficiently distributed across the cluster.

To disable message redistribution between nodes while retaining other characteristics of clustered
destinations, do not specify the ClusterPullConnectionFactoryName attribute on the Server Peer.
Refer to Section 5.2, “ServerPeer attributes” for full details about this attribute.

6.3. CLUSTERED DURABLE SUBSCRIPTIONS

JBoss Messaging durable subscriptions can be clustered in a way that allows multiple subscribers on
multiple nodes to consume from one durable subscription. A durable subscription is clustered
automatically, providing its topic is clustered.

For more information about configuring clustered topics and queues, refer to the Clustered attribute in
Section 5.5.1, “MessagingPostOffice Attributes”

6.4. CLUSTERED TEMPORARY DESTINATIONS

JBoss Messaging supports clustering of temporary topics and queues. All temporary topics and queues
will be clustered if the Post Office is clustered.

For more information about configuring clustered topics and queues, refer to the Clustered attribute in
Section 5.5.1, “MessagingPostOffice Attributes”.

6.5. NON-CLUSTERED SERVERS

Set the PostOffice clustered attribute to false if you do not want all nodes to participate in a cluster,
or if you do not want the server to be clustered.

Messaging User Guide

56

For more information about configuring non-clustered server, refer to the various attributes in
Section 5.5.1, “MessagingPostOffice Attributes”.

6.6. MESSAGE ORDERING IN THE CLUSTER

To ensure messages are consumed in the same order they were produced, set strict JMS ordering by
setting the DefaultPreserveOrdering Server Peer attribute to true. While set to true, messages
cannot be distributed as freely around the cluster. The default value is false.

6.7. IDEMPOTENT OPERATIONS

A message is guaranteed to be persisted when the message sent to a persistent destination returns with
no exception.

An exception does not guarantee the message was not persisted, because failure may have occurred
between the message being persisted and a response being returned to the caller.

Applications must therefore be coded so that operations are idempotent — that is, operations can be
repeated without causing the system to become inconsistent.

You can implement this behavior on the application level by checking for duplicate messages and
discarding them if the original message has been sent successfully. This duplicate checking is a powerful
technique that can remove the need for XA transactions.

JBoss Messaging is configured by default to perform duplicate checking in a clustered environment.

Persistence considerations are located in Section 5.3, “ServerPeer methods”, Section 5.4, “Changing the
Database”, Section 5.7, “Configuring the Persistence Manager”, and Section 8.1, “Message Bridge
Overview”.

6.8. CLUSTERED CONNECTION FACTORIES

When supportsLoadBalancing is set to true in the connection factory, consecutive attempts to
create connections will round-robin between available servers. The first node is chosen randomly.

When supportsFailover is set to true, failover will occur transparently and automatically whenever
any connection error is detected.

For more information about configuring connection factories, refer to Section 5.10.1, “ConnectionFactory
Managed Bean Attributes”.

CHAPTER 6. CLUSTERING NOTES

57

CHAPTER 7. JBOSS MESSAGING XA RECOVERY
CONFIGURATION
This section describes how to configure JBoss Transactions to handle XA recovery for JBoss Messaging
resources in JBoss Enterprise Application Platform.

The JBoss Transactions Recovery Manager can be configured to continually poll for and recover JBoss
Messaging XA resources. This provides a high level of transaction durability.

To enable JBoss Transactions Recovery Manager, add a line to
$JBOSS_HOME/server/$PROFILE/conf/jbossts-properties.xml. The following code snippet
includes the line required:

Here, the Recovery Manager attempts to recover JMS resources via the JMS Provider Loader,
DefaultJMSProvider.

DefaultJMSProvider ships with JBoss Enterprise Application Platform. It is defined in
$JBOSS_HOME/server/$PROFILE/conf/jms-ds.xml (or, in a clustered environment, hajndi-
jms-ds.xml). To perform recovery with a different JMS provider loader (for example, one that
corresponds with a remote JMS Provider), add another line to the properties file and specify your remote
provider instead of DefaultJMSProvider. Your provider's name should be listed in its managed bean
configuration file.

Each provider requires a unique name, for example,
com.arjuna.ats.jta.recovery.XAResourceRecovery.JBMESSAGING1,
com.arjuna.ats.jta.recovery.XAResourceRecovery.JBMESSAGING2, etc.

Recovery should work with any JMS provider that implements recoverable XAResources (that is, it
properly implements XAResource.recover()).

<properties depends="arjuna" name="jta">
 <!--
 Support subtransactions in the JTA layer?
 Default is NO.
 -->
 <property name="com.arjuna.ats.jta.supportSubtransactions" value="NO"/>
 <property name="com.arjuna.ats.jta.jtaTMImplementation"

value="com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManag
erImple"/>
 <property name="com.arjuna.ats.jta.jtaUTImplementation"

value="com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionI
mple"/>
 <!--
 *** Add this line to enable recovery for JMS resources using
DefaultJMSProvider ***
 -->
 <property
name="com.arjuna.ats.jta.recovery.XAResourceRecovery.JBMESSAGING1"

value="org.jboss.jms.server.recovery.MessagingXAResourceRecovery;java:/Def
aultJMSProvider"/>

</properties>

Messaging User Guide

58

For the Recovery Manager to recover from any node of the cluster, you must add a line in hajndi-jms-
ds.xml for every node of the cluster.

CHAPTER 7. JBOSS MESSAGING XA RECOVERY CONFIGURATION

59

CHAPTER 8. JBOSS MESSAGING MESSAGE BRIDGE
CONFIGURATION

8.1. MESSAGE BRIDGE OVERVIEW

JBoss Messaging includes a fully functional message bridge.

The bridge consumes messages from a source queue or topic and sends them to a target queue or
topic, typically on a different server. The source and target servers do not need to be in the same cluster,
so bridging is a reliable method of sending messages from one cluster to another (across a WAN, for
example) and where the connection may be unreliable.

A bridge is deployed as a managed bean within any JBoss Enterprise Application Platform instance. To
deploy, add the managed bean descriptor into the deploy directory of an Enterprise Application Platform
configuration that contains JBoss Messaging.

The example in $JBOSS_HOME/docs/examples/jboss-messaging-examples/bridge/
demonstrates a simple bridge deployed in JBoss Enterprise Application Platform and moving messages
from the source to the target destination.

The bridge can also be used to retrieve messages from other non-JBoss Messaging JMS servers as
long as they are JMS 1.1 compliant.

The bridge has built-in failure recovery; if the source or target server connection is lost, the bridge will
attempt to reconnect to the source or target until it comes back online, at which point normal operation
will resume.

The bridge can be configured to consume messages matching a particular JMS selector.

It can be configured to consume from a queue or a topic. When the bridge consumes from a topic, it can
be configured to consume with a non-durable or a durable subscription.

The bridge can be configured to handle messages with one of three quality of service (QoS) levels:

Bridge QoS Levels

QOS_AT_MOST_ONCE

This mode specifies that messages will arrive at the destination once at the most. Messages are
consumed from the source and acknowledged before they are sent to the destination. Messages can
be lost if failure occurs between the message leaving the source and arriving at the destination.
Messages will therefore be delivered once at most.

This mode is available for both persistent and non-persistent messages.

QOS_DUPLICATES_OK

This mode specifies that messages are consumed from the source and acknowledged after they
have been successfully sent to the destination. If failure occurs between a message arriving, and
being acknowledged by the destination, that message is sent a second time when the system
recovers.

This mode is available for both persistent and non-persistent messages.

QOS_ONCE_AND_ONLY_ONCE

Messaging User Guide

60

This mode specifies that messages will arrive exactly once. When the message source and
destination are on the same JBoss Messaging server instance, the message can be sent and
received in the same local transaction.

If the source and destination are on different servers, you can implement message high durability by
using a JTA transaction controlled by JBoss Transactions JTA implementation. If JTA is required,
both connection factories must be XAConnectionFactory implementations.

This mode is only available for persistent messages.

This mode requires logging on both the transaction manager and the resource side to support
recovery. If you require this level of QOS, you must enable XA Recovery with JBoss Transactions.

NOTE

You may be able to apply once and only once semantics to a specific application, without
setting QOS_ONCE_AND_ONLY_ONCE. Set QOS_DUPLICATES_OK mode, and then check
for and discard duplicate messages at the destination.

You can implement QOS_ONCE_AND_ONLY_ONCE behavior at the application level by
maintaining a cache of received message IDs on disk and comparing received messages
to this cache. Because the cache would only be valid for a certain period of time, this
approach is not infallible, but can be a useful alternative depending on your application.

8.2. BRIDGE DEPLOYMENT

You can deploy a message bridge by adding a managed bean descriptor into the deploy directory of
the JBoss Enterprise Application Platform installation that contains JBoss Messaging.

8.3. BRIDGE CONFIGURATION

The following code is an example configuration of the message bridge, showing all attributes. Some
attributes have been commented out for this configuration, since not all attributes should be specified at
once.

Example 8.1. Message Bridge Configuration

<mbean code="org.jboss.jms.server.bridge.BridgeService"
 name="jboss.messaging:service=Bridge,name=TestBridge"
 xmbean-dd="xmdesc/Bridge-xmbean.xml">

 <!-- The JMS provider loader that is used to lookup the source
 destination
 -->
 <depends optional-attribute-name="SourceProviderLoader">
 jboss.messaging:service=JMSProviderLoader,name=JMSProvider</depends>

 <!-- The JMS provider loader that is used to lookup the target
 destination
 -->
 <depends optional-attribute-name="TargetProviderLoader">
 jboss.messaging:service=JMSProviderLoader,name=JMSProvider</depends>

CHAPTER 8. JBOSS MESSAGING MESSAGE BRIDGE CONFIGURATION

61

 <!-- The JNDI lookup for the source destination -->
 <attribute name="SourceDestinationLookup">/queue/A</attribute>

 <!-- The JNDI lookup for the target destination -->
 <attribute name="TargetDestinationLookup">/queue/B</attribute>

 <!-- The username to use for the source connection
 <attribute name="SourceUsername">bob</attribute>
 -->

 <!-- The password to use for the source connection
 <attribute name="SourcePassword">BobSecur3</attribute>
 -->

 <!-- The username to use for the target connection
 <attribute name="TargetUsername">mary</attribute>
 -->

 <!-- The password to use for the target connection
 <attribute name="TargetPassword">MaryS3cur3</attribute>
 -->

 <!-- Optional: The Quality Of Service mode to use, one of:
 QOS_AT_MOST_ONCE = 0;
 QOS_DUPLICATES_OK = 1;
 QOS_ONCE_AND_ONLY_ONCE = 2;
 -->
 <attribute name="QualityOfServiceMode">0</attribute>

 <!-- JMS selector to use for consuming messages from the source
 <attribute name="Selector">specify jms selector here</attribute>
 -->

 <!-- The maximum number of messages to consume from the source
 before sending to the target
 -->
 <attribute name="MaxBatchSize">5</attribute>

 <!-- The maximum time to wait (in ms) before sending a batch to the
 target even if MaxBatchSize is not exceeded. -1 means wait
forever
 -->
 <attribute name="MaxBatchTime">-1</attribute>

 <!-- If consuming from a durable subscription this is the subscription
 name
 <attribute name="SubName">mysub</attribute>
 -->

 <!-- If consuming from a durable subscription this is the client ID to
 use
 <attribute name="ClientID">myClientID</attribute>
 -->

 <!-- The number of ms to wait between connection retrues in the event
 connections to source or target fail

Messaging User Guide

62

Message Bridge Configuration Attributes

SourceProviderLoader, TargetProvider Loader

The JMSProviderLoader managed bean is used by the bridge to look up the source connection
factory and source destination. By default, JBoss Enterprise Application Platform ships with one
JMSProviderLoader, which is deployed in the
$JBOSS_HOME/server/$PROFILE/deploy/messaging/jms-ds.xml file, and serves as the
default local JMSProviderLoader. For a clustered configuration, hajndi-jms-ds.xml performs
the same role.

If your source or target destination is on a different server, or corresponds to a non-JBoss JMS
Provider, you can deploy another JMSProviderLoader managed bean instance that the bridge can
use to contact the destination on the remote JMS Provider.

To use QOS_ONCE_AND_ONLY_ONCE delivery with a remote non-JBoss Messaging source or target,
the remote JMS Provider must provide a fully-functional JMS XA resource implementation that works
remotely from the server.

SourceDestinationLookup

The full JNDI lookup for the source destination, via the SourceProviderLoader, such as
/queue/mySourceQueue.

TargetDestinationLookup

The full JNDI lookup for the target destination, via the TargetProviderLocator, such as
/topic/myTargetTopic.

SourceUsername

An optional attribute that specifies the username used when creating the source connection.

SourcePassword

An optional attribute that specifies the password used when creating the source connection.

 -->
 <attribute name="FailureRetryInterval">5000</attribute>

 <!-- The maximum number of connection retries to make in case of
failure,
 before giving up -1 means try forever
 -->
 <attribute name="MaxRetries">-1</attribute>

 <!-- If true then the message ID of the message before bridging will
be
 added as a header to the message so it is available to the
 receiver. Can then be sent as correlation ID to correlate in a
 distributed request-response
 -->
 <attribute name="AddMessageIDInHeader">false</attribute>

 </mbean>

CHAPTER 8. JBOSS MESSAGING MESSAGE BRIDGE CONFIGURATION

63

TargetUsername

An optional attribute that specifies the username used when creating the target connection.

TargetPassword

An optional attribute that specifies the password used when creating the target connection.

QualityOfServiceMode

An integer representing the desired quality of service mode. The possible values are:

0 to represent QOS_AT_MOST_ONCE

1 to represent QOS_DUPLICATES_OK

2 to represent QOS_ONCE_AND_ONLY_ONCE

See Section 8.1, “Message Bridge Overview” for a complete explanation of these modes.

Selector

An optional attribute that lets you provide a JMS selector expression when consuming messages from
a source destination. Only messages that match the selector expression are bridged from the source
to the target destination. The selector expression must follow the JMS selector syntax, specified here:
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html.

For optimal performance, apply source topic subscription selectors to source queue consumers.

MaxBatchSize

Specifies the maximum number of messages to consume from the source destination before sending
a message batch to the target destination. Its value must be greater than or equal to 1.

MaxBatchTime

Specifies the longest period (in milliseconds) to wait before sending a message batch to the target,
even if the MaxBatchSize has not been reached. Its value must be either -1 (wait forever) or
greater than or equal to 1 to specify a time.

SubName

Represents the name of the durable subscription that will consume from the source destination topic.

ClientID

Represents the JMS client ID to use when creating or looking up the durable subscription that will
consume from the source destination topic.

FailureRetryInterval

The period of time (in milliseconds) to wait between attempting to recreate the connection to the
source or target server after failure is detected.

MaxRetries

The number of times to attempt to recreate the connection to the source or target server after failure
is detected. The bridge will then stop attempting to recreate the connection. A value of -1 means that
the bridge will continue to attempt to reconnect forever.

Messaging User Guide

64

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

AddMessageIDInHeader

When true, the original message ID is added to the
JBossMessage.JBOSS_MESSAGING_BRIDGE_MESSAGE_ID_LIST header of the message being
sent to the destination. If the message is bridged multiple times, each message ID is added to the
header. This enables a distributed request-response pattern.

CHAPTER 8. JBOSS MESSAGING MESSAGE BRIDGE CONFIGURATION

65

CHAPTER 9. ENABLING JBOSS MESSAGING ORDERING
GROUP
This section describes how to use the JBoss Messaging ordering group feature to achieve strict
message ordering.

Message ordering groups is the JBoss Messaging implementation of strict message ordering. When the
ordering group feature is enabled, message priorities no longer have an influence on the order that the
messages are delivered. Messages of a particular ordering group are delivered in the exact order that
they arrive at the target queue (FIFO).

The next message of an ordering group is delivered only after the delivery of the previous messages has
been accomplished. To signalize a successful message delivery, the acknowledge mechanism is used
(refer to Section 9.1, “Acknowledge Mechanism”).

Transactional Receipt

In the case of the transactional receipt of messages, the next message is not delivered until the
transaction has been committed which includes the acknowledgment of the receipt of the current
message. If the transaction is rolled back, the message is canceled, sent back to the JMS server, and
made available for the next delivery.

9.1. ACKNOWLEDGE MECHANISM

The messages that form a part of an ordering group are delivered one at a time. The next message is
delivered only after the delivery of a previous message was completed. Message delivery completion is
signaled by various means, depending on the acknowledge mode settings:

In the CLIENT_ACKNOWLEDGE mode, the completion state is signalized by the
Message.acknowledge() method.

In the AUTO_ACKNOWLEDGE and DUPS_OK_ACKNOWLEDGE modes, the completion is signalized
by either of the following:

a successful return from one of the MessageConsumer.receive() methods, or

a successful return from the onMessage() call of the MessageListener().

NOTE

If the message consumer is closed, the message being processed at the time of its
closure is deemed as completed and that regardless of whether *_ACKNOWLEDGE was
called prior to the closure of the consumer.

9.2. HOW TO ENABLE MESSAGE ORDERING GROUP

You can enable an ordering group either on a connection factory or on a producer:

If you define the ordering group on a connection factory, all producers on the connection factory
use the same ordering group (refer to Section 9.2.1, “Enabling Ordering Group on Producer”).

If you define the ordering group on a producer (note that the producer is defined on a connection
factory), the producer uses the defined ordering group. If the connection factory of the producer
defines an ordering group as well, the producer ordering group overrides the setting and uses its

Messaging User Guide

66

own ordering group (refer to Section 9.2.2, “Enabling Ordering Group on Connection Factory”).

9.2.1. Enabling Ordering Group on Producer

To enable the ordering group feature on producer, do the following:

1. Add a JBossMessageProducer to your session:

2. Add the enableOrderingGroup method to set an ordering group:

The method creates an ordering group; when the method is called, JBossMessageProducer
sends messages on behalf of the ordering group. If you provide null as the method parameter,
the ordering group is generated automatically. A new call to this method overrides the previous
call.

3. Optionally, you can add the disableOrderingGroup() method to disable the ordering group:

When the method is called, JBossMessageProducer stops sending ordering group messages
and resumes its default behavior.

An example is available in $EAPHOME/doc/examples/jboss-messaging-examples/ordering-
group/ in the class OrderingGroupExample.java
(src/org/jboss/example/jms/ordering/OrderingGroupExample.java). Note that the
example is delivered as part of the jboss-eap-docs archive.

9.2.2. Enabling Ordering Group on Connection Factory

To enable the ordering group feature on a connection factory, add the following attributes to the factory
service configuration file:

EnableOrderingGroup

enables the ordering group feature if set to true (the default value is false).

DefaultOrderingGroupName

sets the default name of the message ordering group. The group name is generated automatically if
the attribute is not defined.

NOTE

Once configured to enable the ordering group feature on a connection factory, all
messages that are sent from any producers created from the connection factory become
ordering group messages.

JBossMessageProducer producer=
(JBossMessageProducer)session.createProducer(queue);

producer.enableOrderingGroup(String ogrpName) throws JMSException

public void disableOrderingGroup() throws JMSException

CHAPTER 9. ENABLING JBOSS MESSAGING ORDERING GROUP

67

The following factory service configuration file sample demonstrates how to enable the ordering group
feature:

The advantage of enabling the ordering group feature by making configuration changes is the ease with
which message ordering functionality can be achieved without the need for code changes.

9.3. NOTES AND LIMITATIONS

The following points should be noted in regard to ordering group functionality:

Queues must be used with the ordering group feature. The feature will not work with topics.

The ordering group feature should not be used in conjunction with message selectors and
scheduled delivery.

A message is considered completed, and the next message will be available for delivery, if the
original message is dead or has expired. A dead message is moved to the DLQ whereas an
expired message is moved to the ExpiryQueue.

When using a ConnectionConsumer, the ordering of the messages will be observed. However,
the ConnectionConsumer does not control which session will receive the next message.

The ordering group feature does not work with clustered queues. However, if the user deploys
the clustered queue as HASingleton, which means at a time only one queue of a clustered
queue is active, ordering groups work as expected.

<mbean code="org.jboss.jms.server.connectionfactory.ConnectionFactory";
 name="jboss.messaging.connectionfactory:service=ConnectionFactory";
 xmbean-dd="xmdesc/ConnectionFactory-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">
 jboss.messaging:service=ServerPeer
 </depends>
 <depends optional-attribute-name="Connector">
 jboss.messaging:service=Connector,transport=bisocket
 </depends>
 <depends>
 jboss.messaging:service=PostOffice
 </depends>

 <attribute name="JNDIBindings">
 <bindings>
 <binding>/MyConnectionFactory</binding>
 <binding>/XAConnectionFactory</binding>
 <binding>java:/MyConnectionFactory</binding>
 <binding>java:/XAConnectionFactory</binding>
 </bindings>
 </attribute>

 <!-- The two OrderingGroup properties -->
 <attribute name="EnableOrderingGroup">true</attribute>
 <attribute name="DefaultOrderingGroupName">MyOrderingGroup</attribute>
</mbean>

Messaging User Guide

68

CHAPTER 10. SECURITY CONFIGURATION
JBoss Messaging makes internal connections between nodes in order to redistribute messages between
clustered destinations. These connections are made with the user name of a special reserved user
whose password is specified in the property suckerPassword in the messaging and server
configuration files.

The suckerPassword used by JBoss Messaging in a clustered environment is contained in the jboss-
as/server/$PROFILE/deploy/messaging/messaging-jboss-beans.xml file and the
messaging-service.xml file. These files contain directives that specify the encrypted
suckerPassword.

Changing the Password in messaging-jboss-beans.xml

Complete this task to change the distribution placeholder password in messaging-jboss-beans.xml.

Procedure 10.1. Setting suckerPassword for JBoss Messaging

1. Navigate to the <JBOSS_HOME>/server/<PROFILE>/deploy/messaging/ directory.

2. Open the messaging-jboss-beans.xml file in your preferred text editor.

3. Change the suckerPassword placeholder value from "CHANGE ME!!" to a plain text
password:

Make note of the new password; it will be used in the next task.

4. Save the file.

Creating the encrypted JBoss Messaging suckerPassword

Complete this task to create an encrypted suckerPassword using the JBoss Messaging SecurityUtil tool.

1. In a terminal, change to <JBOSS_HOME>/server/<PROFILE>/deploy/messaging/.

2. Run the following command:

3. PLAIN_TEXT_PASSWORD is the password you set in messaging-jboss-beans.xml in the
previous task.

As an example:

Example 10.1. Test Encrypted Password

Running the following command (from the JBOSS_HOME/jboss-
as/server/$PROFILE/deploy/messaging/ directory) ...

<property name="suckerPassword">CHANGE ME!!</property>

/path/to/java/executable -cp JBOSS_HOME/client/jboss-messaging-
client.jar org.jboss.messaging.util.SecurityUtil PLAIN_TEXT_PASSWORD

CHAPTER 10. SECURITY CONFIGURATION

69

...produced the following encrypted password:

key len: 14 length max: 2147483647
Encoded password: 5e2c1ae5a618317

4. Make note of the encrypted password output; it will be used in the next task.

Specifying an encrypted suckerPassword for JBoss Messaging

Complete this task to add an encrypted suckerPassword value to JBoss Messaging configuration files.

Prerequisites

Creating the encrypted JBoss Messaging suckerPassword

You have a terminal open at the <JBOSS_HOME>/server/<PROFILE>/deploy/messaging/
directory.

1. In a text editor, open the messaging-service.xml file.

2. Paste the encrypted password from the previous procedure into the SuckerPassword attribute:

3. Save the messaging-service.xml file.

/usr/bin/java -cp ../../../../client/jboss-messaging-client.jar
org.jboss.messaging.util.SecurityUtil test

<attribute name="SuckerPassword">ENCRYPTED_PASSWORD</attribute>

Messaging User Guide

70

APPENDIX A. REVISION HISTORY

Revision 5.2.0-100.400 2013-10-31 Rüdiger Landmann
Rebuild with publican 4.0.0

Revision 5.2.0-100 Wed 23 Jan 2013 Russell Dickenson
Incorporated changes for JBoss Enterprise Application Platform 5.2.0 GA. For information about documentation changes to this

guide, refer to Release Notes 5.2.0.

Revision 5.1.2-100 Thu 8 December 2011 Russell Dickenson
Incorporated changes for JBoss Enterprise Application Platform 5.1.2 GA. For information about documentation changes to this

guide, refer to Release Notes 5.1.2.

APPENDIX A. REVISION HISTORY

71

	Table of Contents
	CHAPTER 1. ABOUT JBOSS MESSAGING 1.4
	CHAPTER 2. INTRODUCTION
	2.1. JBOSS MESSAGING FEATURES
	2.2. COMPATIBILITY WITH JBOSS MQ
	2.3. SYSTEM PROPERTIES USED BY JBOSS MESSAGING
	2.3.1. support.bytesId
	2.3.2. retain.oldxabehaviour

	CHAPTER 3. JBOSS MESSAGING INSTALLATION
	CHAPTER 4. EXAMPLES
	CHAPTER 5. CONFIGURATION
	5.1. CONFIGURING THE SERVERPEER
	5.2. SERVERPEER ATTRIBUTES
	5.3. SERVERPEER METHODS
	5.4. CHANGING THE DATABASE
	5.5. CONFIGURING THE POST OFFICE
	5.5.1. MessagingPostOffice Attributes

	5.6. CONFIGURE THE MESSAGINGCLUSTERHEALTHMBEAN
	5.7. CONFIGURING THE PERSISTENCE MANAGER
	5.7.1. JDBCPersistenceManager MBean Attributes

	5.8. CONFIGURING THE JMS USER MANAGER
	5.8.1. JMSUserManager MBean Attributes

	5.9. CONFIGURING DESTINATIONS
	5.9.1. Pre-configured destinations
	5.9.2. Configuring Queues
	5.9.2.1. Queue MBean Attributes

	5.9.3. Configuring Topics
	5.9.3.1. Topic Managed Bean Attributes
	5.9.3.2. Topic Managed Bean Operations

	5.10. CONFIGURING CONNECTION FACTORIES
	5.10.1. ConnectionFactory Managed Bean Attributes

	5.11. CONFIGURING THE REMOTING CONNECTOR
	5.12. SERVICEBINDINGMANAGER
	5.13. MESSAGE DRIVEN BEANS

	CHAPTER 6. CLUSTERING NOTES
	6.1. UNIQUE SERVER PEER ID
	6.2. CLUSTERED DESTINATIONS
	6.3. CLUSTERED DURABLE SUBSCRIPTIONS
	6.4. CLUSTERED TEMPORARY DESTINATIONS
	6.5. NON-CLUSTERED SERVERS
	6.6. MESSAGE ORDERING IN THE CLUSTER
	6.7. IDEMPOTENT OPERATIONS
	6.8. CLUSTERED CONNECTION FACTORIES

	CHAPTER 7. JBOSS MESSAGING XA RECOVERY CONFIGURATION
	CHAPTER 8. JBOSS MESSAGING MESSAGE BRIDGE CONFIGURATION
	8.1. MESSAGE BRIDGE OVERVIEW
	8.2. BRIDGE DEPLOYMENT
	8.3. BRIDGE CONFIGURATION

	CHAPTER 9. ENABLING JBOSS MESSAGING ORDERING GROUP
	9.1. ACKNOWLEDGE MECHANISM
	9.2. HOW TO ENABLE MESSAGE ORDERING GROUP
	9.2.1. Enabling Ordering Group on Producer
	9.2.2. Enabling Ordering Group on Connection Factory

	9.3. NOTES AND LIMITATIONS

	CHAPTER 10. SECURITY CONFIGURATION
	APPENDIX A. REVISION HISTORY

