
Red Hat Single Sign-On Continuous
Delivery 7

Server Developer Guide

For Use with Red Hat Single Sign-On Continuous Delivery 7

Last Updated: 2019-08-16

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

For Use with Red Hat Single Sign-On Continuous Delivery 7

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guides consist of information for developers to customize Red Hat Single Sign-On Continuous
Delivery 7

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. PREFACE

CHAPTER 2. ADMIN REST API
2.1. EXAMPLE USING CURL

CHAPTER 3. THEMES
3.1. THEME TYPES
3.2. CONFIGURE THEME
3.3. DEFAULT THEMES
3.4. CREATING A THEME

3.4.1. Theme Properties
3.4.2. Stylesheets
3.4.3. Scripts
3.4.4. Images
3.4.5. Messages
3.4.6. Internationalization
3.4.7. HTML Templates
3.4.8. Emails

3.5. DEPLOYING THEMES
3.6. THEME SELECTOR
3.7. THEME RESOURCES
3.8. LOCALE SELECTOR

CHAPTER 4. CUSTOM USER ATTRIBUTES
4.1. REGISTRATION PAGE
4.2. ACCOUNT MANAGEMENT CONSOLE

CHAPTER 5. IDENTITY BROKERING APIS
5.1. RETRIEVING EXTERNAL IDP TOKENS
5.2. CLIENT INITIATED ACCOUNT LINKING

5.2.1. Refreshing External Tokens

CHAPTER 6. SERVICE PROVIDER INTERFACES (SPI)
6.1. IMPLEMENTING AN SPI

6.1.1. Show info from your SPI implementation in admin console
6.2. REGISTERING PROVIDER IMPLEMENTATIONS

6.2.1. Using the Red Hat Single Sign-On Deployer
6.2.2. Register a provider using Modules
6.2.3. Disabling a provider

6.3. LEVERAGING JAVA EE
6.4. AVAILABLE SPIS

CHAPTER 7. USER STORAGE SPI
7.1. PROVIDER INTERFACES
7.2. PROVIDER CAPABILITY INTERFACES
7.3. MODEL INTERFACES

7.3.1. Storage Ids
7.4. PACKAGING AND DEPLOYMENT
7.5. SIMPLE READ-ONLY, LOOKUP EXAMPLE

7.5.1. Provider Class
7.5.1.1. UserLookupProvider Implementation
7.5.1.2. CredentialInputValidator Implementation
7.5.1.3. CredentialInputUpdater Implementation

4

5
5

6
6
6
7
7
8
8
9
9
9

10
11
11
11

12
12
12

14
14
14

15
15
15
17

18
18

20
20
20
21
21
21
23

24
24
26
27
27
28
28
28
29
30
31

Table of Contents

1

7.5.2. Provider Factory Implementation
7.5.2.1. Initialization
7.5.2.2. Create Method

7.5.3. Packaging and Deployment
7.5.4. Enabling the Provider in the Administration Console

7.6. CONFIGURATION TECHNIQUES
7.6.1. Configuration Example
7.6.2. Configuring the Provider in the Administration Console

7.7. ADD/REMOVE USER AND QUERY CAPABILITY INTERFACES
7.7.1. Implementing UserRegistrationProvider
7.7.2. Implementing UserQueryProvider

7.8. AUGMENTING EXTERNAL STORAGE
7.8.1. Augmentation Example

7.9. IMPORT IMPLEMENTATION STRATEGY
7.9.1. ImportedUserValidation Interface
7.9.2. ImportSynchronization Interface

7.10. USER CACHES
7.10.1. Managing the user cache
7.10.2. OnUserCache Callback Interface
7.10.3. Cache Policies

7.11. LEVERAGING JAVA EE
7.12. REST MANAGEMENT API
7.13. MIGRATING FROM AN EARLIER USER FEDERATION SPI

7.13.1. Import vs. Non-Import
7.13.2. UserFederationProvider vs. UserStorageProvider
7.13.3. UserFederationProviderFactory vs. UserStorageProviderFactory
7.13.4. Upgrading to a New Model

31
32
33
33
33
34
34
36
36
36
38
40
41
41

43
43
44
44
44
45
46
47
49
49
50
50
51

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

2

Table of Contents

3

CHAPTER 1. PREFACE
In some of the example listings, what is meant to be displayed on one line does not fit inside the available
page width. These lines have been broken up. A '\' at the end of a line means that a break has been
introduced to fit in the page, with the following lines indented. So:

Let's pretend to have an extremely \
long line that \
does not fit
This one is short

Is really:

Let's pretend to have an extremely long line that does not fit
This one is short

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

4

CHAPTER 2. ADMIN REST API
Red Hat Single Sign-On comes with a fully functional Admin REST API with all features provided by the
Admin Console.

To invoke the API you need to obtain an access token with the appropriate permissions. The required
permissions are described in Server Administration Guide.

A token can be obtained by enabling authenticating to your application with Red Hat Single Sign-On; see
the Securing Applications and Services Guide. You can also use direct access grant to obtain an access
token.

For complete documentation see API Documentation.

2.1. EXAMPLE USING CURL

Obtain access token for user in the realm master with username admin and password password:

NOTE

By default this token expires in 1 minute

The result will be a JSON document. To invoke the API you need to extract the value of the
access_token property. You can then invoke the API by including the value in the Authorization header
of requests to the API.

The following example shows how to get the details of the master realm:

curl \
 -d "client_id=admin-cli" \
 -d "username=admin" \
 -d "password=password" \
 -d "grant_type=password" \
 "http://localhost:8080/auth/realms/master/protocol/openid-connect/token"

curl \
 -H "Authorization: bearer eyJhbGciOiJSUz..." \
 "http://localhost:8080/auth/admin/realms/master"

CHAPTER 2. ADMIN REST API

5

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on_continuous_delivery/7/html-single/server_administration_guide/
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on_continuous_delivery/7/html-single/securing_applications_and_services_guide/
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on_continuous_delivery/7/html-single/api_documentation/

CHAPTER 3. THEMES
Red Hat Single Sign-On provides theme support for web pages and emails. This allows customizing the
look and feel of end-user facing pages so they can be integrated with your applications.

Figure 3.1. Login page with sunrise example theme

3.1. THEME TYPES

A theme can provide one or more types to customize different aspects of Red Hat Single Sign-On. The
types available are:

Account - Account management

Admin - Admin console

Email - Emails

Login - Login forms

Welcome - Welcome page

3.2. CONFIGURE THEME

All theme types, except welcome, are configured through the Admin Console. To change the theme
used for a realm open the Admin Console, select your realm from the drop-down box in the top left
corner. Under Realm Settings click Themes.

NOTE

To set the theme for the master admin console you need to set the admin console
theme for the master realm. To see the changes to the admin console refresh the page.

To change the welcome theme you need to edit standalone.xml, standalone-ha.xml, or domain.xml.

Add welcomeTheme to the theme element, for example:

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

6

If the server is running you need to restart the server for the changes to the welcome theme to take
effect.

3.3. DEFAULT THEMES

Red Hat Single Sign-On comes bundled with default themes in the server’s root themes directory. To
simplify upgrading you should not edit the bundled themes directly. Instead create your own theme that
extends one of the bundled themes.

3.4. CREATING A THEME

A theme consists of:

HTML templates (Freemarker Templates)

Images

Message bundles

Stylesheets

Scripts

Theme properties

Unless you plan to replace every single page you should extend another theme. Most likely you will want
to extend the Red Hat Single Sign-On theme, but you could also consider extending the base theme if
you are significantly changing the look and feel of the pages. The base theme primarily consists of
HTML templates and message bundles, while the Red Hat Single Sign-On theme primarily contains
images and stylesheets.

When extending a theme you can override individual resources (templates, stylesheets, etc.). If you
decide to override HTML templates bear in mind that you may need to update your custom template
when upgrading to a new release.

While creating a theme it’s a good idea to disable caching as this makes it possible to edit theme
resources directly from the themes directory without restarting Red Hat Single Sign-On. To do this edit
standalone.xml. For theme set staticMaxAge to -1 and both cacheTemplates and cacheThemes to
false:

Remember to re-enable caching in production as it will significantly impact performance.

<theme>
 ...
 <welcomeTheme>custom-theme</welcomeTheme>
 ...
</theme>

<theme>
 <staticMaxAge>-1</staticMaxAge>
 <cacheThemes>false</cacheThemes>
 <cacheTemplates>false</cacheTemplates>
 ...
</theme>

CHAPTER 3. THEMES

7

https://freemarker.apache.org/

To create a new theme start by creating a new directory in the themes directory. The name of the
directory becomes the name of the theme. For example to create a theme called mytheme create the
directory themes/mytheme.

Inside the theme directory create a directory for each of the types your theme is going to provide. For
example to add the login type to the mytheme theme create the directory themes/mytheme/login.

For each type create a file theme.properties which allows setting some configuration for the theme. For
example to configure the theme themes/mytheme/login that we just created to extend the base theme
and import some common resources create the file themes/mytheme/login/theme.properties with
following contents:

parent=base
import=common/keycloak

You have now created a theme with support for the login type. To check that it works open the admin
console. Select your realm and click on Themes. For Login Theme select mytheme and click Save.
Then open the login page for the realm.

You can do this either by login through your application or by opening the Account Management console
(/realms/{realm name}/account).

To see the effect of changing the parent theme, set parent=keycloak in theme.properties and refresh
the login page.

3.4.1. Theme Properties

Theme properties are set in the file <THEME TYPE>/theme.properties in the theme directory.

parent - Parent theme to extend

import - Import resources from another theme

styles - Space-separated list of styles to include

locales - Comma-separated list of supported locales

There are a list of properties that can be used to change the css class used for certain element types.
For a list of these properties look at the theme.properties file in the corresponding type of the keycloak
theme (themes/keycloak/<THEME TYPE>/theme.properties).

You can also add your own custom properties and use them from custom templates.

3.4.2. Stylesheets

A theme can have one or more stylesheets. To add a stylesheet create a file in the <THEME
TYPE>/resources/css directory of your theme. Then add it to the styles property in theme.properties.

For example to add styles.css to the mytheme create
themes/mytheme/login/resources/css/styles.css with the following content:

.login-pf body {
 background: DimGrey none;
}

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

8

Then edit themes/mytheme/login/theme.properties and add:

styles=css/styles.css

To see the changes open the login page for your realm. You will notice that the only styles being applied
are those from your custom stylesheet. To include the styles from the parent theme you need to load
the styles from that theme as well. Do this by editing themes/mytheme/login/theme.properties and
changing styles to:

styles=node_modules/patternfly/dist/css/patternfly.css node_modules/patternfly/dist/css/patternfly-
additions.css lib/zocial/zocial.css css/login.css css/styles.css

NOTE

To override styles from the parent stylesheets it’s important that your stylesheet is listed
last.

3.4.3. Scripts

A theme can have one or more scripts, to add a script create a file in the <THEME TYPE>/resources/js
directory of your theme. Then add it to the scripts property in theme.properties.

For example to add script.js to the mytheme create themes/mytheme/login/resources/js/script.js
with the following content:

Then edit themes/mytheme/login/theme.properties and add:

scripts=js/script.js

3.4.4. Images

To make images available to the theme add them to the <THEME TYPE>/resources/img directory of
your theme. These can be used from within stylesheets or directly in HTML templates.

For example to add an image to the mytheme copy an image to
themes/mytheme/login/resources/img/image.jpg.

You can then use this image from within a custom stylesheet with:

Or to use directly in HTML templates add the following to a custom HTML template:

3.4.5. Messages

alert('Hello');

body {
 background-image: url('../img/image.jpg');
 background-size: cover;
}

CHAPTER 3. THEMES

9

Text in the templates is loaded from message bundles. A theme that extends another theme will inherit
all messages from the parent’s message bundle and you can override individual messages by adding
<THEME TYPE>/messages/messages_en.properties to your theme.

For example to replace Username on the login form with Your Username for the mytheme create the
file themes/mytheme/login/messages/messages_en.properties with the following content:

usernameOrEmail=Your Username

Within a message values like {0} and {1} are replaced with arguments when the message is used. For
example {0} in Log in to {0} is replaced with the name of the realm.

3.4.6. Internationalization

Red Hat Single Sign-On supports internationalization. To enable internationalization for a realm see
Server Administration Guide. This section describes how you can add your own language.

To add a new language create the file <THEME TYPE>/messages/messages_<LOCALE>.properties
in the directory of your theme. Then add it to the locales property in <THEME
TYPE>/theme.properties. For a language to be available to users the realms login, account and email
theme has to support the language, so you need to add your language for those theme types.

For example, to add Norwegian translations to the mytheme theme create the file
themes/mytheme/login/messages/messages_no.properties with the following content:

usernameOrEmail=Brukernavn
password=Passord

All messages you don’t provide a translation for will use the default English translation.

Then edit themes/mytheme/login/theme.properties and add:

locales=en,no

You also need to do the same for the account and email theme types. To do this create
themes/mytheme/account/messages/messages_no.properties and
themes/mytheme/email/messages/messages_no.properties. Leaving these files empty will result in
the English messages being used. Then copy themes/mytheme/login/theme.properties to
themes/mytheme/account/theme.properties and themes/mytheme/email/theme.properties.

Finally you need to add a translation for the language selector. This is done by adding a message to the
English translation. To do this add the following to
themes/mytheme/account/messages/messages_en.properties and
themes/mytheme/login/messages/messages_en.properties:

locale_no=Norsk

By default message properties files should be encoded using ISO-8859-1. It’s also possible to specify
the encoding using a special header. For example to use UTF-8 encoding:

encoding: UTF-8
usernameOrEmail=....

See Locale Selector on details on how the current locale is selected.

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

10

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on_continuous_delivery/7/html-single/server_administration_guide/

3.4.7. HTML Templates

Red Hat Single Sign-On uses Freemarker Templates in order to generate HTML. You can override
individual templates in your own theme by creating <THEME TYPE>/<TEMPLATE>.ftl. For a list of
templates used see themes/base/<THEME TYPE>.

When creating a custom template it is a good idea to copy the template from the base theme to your
own theme, then applying the modifications you need. Bear in mind when upgrading to a new version of
Red Hat Single Sign-On you may need to update your custom templates to apply changes to the original
template if applicable.

For example to create a custom login form for the mytheme theme copy themes/base/login/login.ftl to
themes/mytheme/login and open it in an editor. After the first line (<#import …​>) add <h1>HELLO
WORLD!</h1> like so:

Check out the FreeMarker Manual for more details on how to edit templates.

3.4.8. Emails

To edit the subject and contents for emails, for example password recovery email, add a message bundle
to the email type of your theme. There are three messages for each email. One for the subject, one for
the plain text body and one for the html body.

To see all emails available take a look at themes/base/email/messages/messages_en.properties.

For example to change the password recovery email for the mytheme theme create
themes/mytheme/email/messages/messages_en.properties with the following content:

passwordResetSubject=My password recovery
passwordResetBody=Reset password link: {0}
passwordResetBodyHtml=Reset password

3.5. DEPLOYING THEMES

Themes can be deployed to Red Hat Single Sign-On by copying the theme directory to themes or it can
be deployed as an archive. During development you can copy the theme to the themes directory, but in
production you may want to consider using an archive. An archive makes it simpler to have a versioned
copy of the theme, especially when you have multiple instances of Red Hat Single Sign-On for example
with clustering.

To deploy a theme as an archive you need to create a JAR archive with the theme resources. You also
need to add a file META-INF/keycloak-themes.json to the archive that lists the available themes in the
archive as well as what types each theme provides.

For example for the mytheme theme create mytheme.jar with the contents:

META-INF/keycloak-themes.json

theme/mytheme/login/theme.properties

theme/mytheme/login/login.ftl

<#import "template.ftl" as layout>
<h1>HELLO WORLD!</h1>
...

CHAPTER 3. THEMES

11

https://freemarker.apache.org/
https://freemarker.apache.org/docs/index.html

theme/mytheme/login/resources/css/styles.css

theme/mytheme/login/resources/img/image.png

theme/mytheme/login/messages/messages_en.properties

theme/mytheme/email/messages/messages_en.properties

The contents of META-INF/keycloak-themes.json in this case would be:

A single archive can contain multiple themes and each theme can support one or more types.

To deploy the archive to Red Hat Single Sign-On simply drop it into the standalone/deployments/
directory of Red Hat Single Sign-On and it will be automatically loaded.

3.6. THEME SELECTOR

By default the theme configured for the realm is used, with the exception of clients being able to
override the login theme. This behavior can be changed through the Theme Selector SPI.

This could be used to select different themes for desktop and mobile devices by looking at the user
agent header, for example.

To create a custom theme selector you need to implement ThemeSelectorProviderFactory and
ThemeSelectorProvider.

Follow the steps in Service Provider Interfaces for more details on how to create and deploy a custom
provider.

3.7. THEME RESOURCES

When implementing custom providers in Red Hat Single Sign-On there may often be a need to add
additional templates and resources.

The easiest way to load additional theme resources is to create a JAR with templates in theme-
resources/templates and resources in theme-resources/resources and drop it into the
standalone/deployments/ directory of Red Hat Single Sign-On.

If you want a more flexible way to load templates and resources that can be achieved through the
ThemeResourceSPI. By implementing ThemeResourceProviderFactory and
ThemeResourceProvider you can decide exactly how to load templates and resources.

Follow the steps in Service Provider Interfaces for more details on how to create and deploy a custom
provider.

3.8. LOCALE SELECTOR

By default, the locale is selected using the DefaultLocaleSelectorProvider which implements the

{
 "themes": [{
 "name" : "mytheme",
 "types": ["login", "email"]
 }]
}

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

12

By default, the locale is selected using the DefaultLocaleSelectorProvider which implements the
LocaleSelectorProvider interface. English is the default language when internationalization is disabled.
With internationalization enabled, the locale is resolved in the following priority:

1. kc_locale query parameter

2. KEYCLOAK_LOCALE cookie value

3. User’s preferred locale if a user instance is available

4. ui_locales query parameter

5. Accept-Language request header

6. Realm’s default language

This behaviour can be changed through the LocaleSelectorSPI by implementing the
LocaleSelectorProvider and LocaleSelectorProviderFactory.

The LocaleSelectorProvider interface has a single method, resolveLocale, which must return a locale
given a RealmModel and a nullable UserModel. The actual request is available from the
KeycloakSession#getContext method.

Custom implementations can extend the DefaultLocaleSelectorProvider in order to reuse parts of the
default behaviour. For example to ignore the Accept-Language request header, a custom
implementation could extend the default provider, override it’s getAcceptLanguageHeaderLocale, and
return a null value. As a result the locale selection will fall back on the realms’s default language.

Follow the steps in Service Provider Interfaces for more details on how to create and deploy a custom
provider.

CHAPTER 3. THEMES

13

CHAPTER 4. CUSTOM USER ATTRIBUTES
You can add custom user attributes to the registration page and account management console with a
custom theme. This chapter describes how to add attributes to a custom theme, but you should refer to
the Themes chapter on how to create a custom theme.

4.1. REGISTRATION PAGE

To be able to enter custom attributes in the registration page copy the template
themes/base/login/register.ftl to the login type of your custom theme. Then open the copy in an editor.

As an example to add a mobile number to the registration page add the following snippet to the form:

Ensure the name of the input html element starts with user.attributes.. In the example above, the
attribute will be stored by Keycloak with the name mobile.

To see the changes make sure your realm is using your custom theme for the login theme and open the
registration page.

4.2. ACCOUNT MANAGEMENT CONSOLE

To be able to manage custom attributes in the user profile page in the account management console
copy the template themes/base/account/account.ftl to the account type of your custom theme. Then
open the copy in an editor.

As an example to add a mobile number to the account page add the following snippet to the form:

Ensure the name of the input html element starts with user.attributes..

To see the changes make sure your realm is using your custom theme for the account theme and open
the user profile page in the account management console.

<div class="form-group">
 <div class="${properties.kcLabelWrapperClass!}">
 <label for="user.attributes.mobile" class="${properties.kcLabelClass!}">Mobile number</label>
 </div>

 <div class="${properties.kcInputWrapperClass!}">
 <input type="text" class="${properties.kcInputClass!}" id="user.attributes.mobile"
name="user.attributes.mobile"/>
 </div>
</div>

<div class="form-group">
 <div class="col-sm-2 col-md-2">
 <label for="user.attributes.mobile" class="control-label">Mobile number</label>
 </div>

 <div class="col-sm-10 col-md-10">
 <input type="text" class="form-control" id="user.attributes.mobile" name="user.attributes.mobile"
value="${(account.attributes.mobile!'')}"/>
 </div>
</div>

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

14

CHAPTER 5. IDENTITY BROKERING APIS
Red Hat Single Sign-On can delegate authentication to a parent IDP for login. A typical example of this
is the case where you want users to be able to login through a social provider like Facebook or Google.
Red Hat Single Sign-On also allows you to link existing accounts to a brokered IDP. This section talks
about some APIs that your applications can use as it pertains to identity brokering.

5.1. RETRIEVING EXTERNAL IDP TOKENS

Red Hat Single Sign-On allows you to store tokens and responses from the authentication process with
the external IDP. For that, you can use the Store Token configuration option on the IDP’s settings page.

Application code can retrieve these tokens and responses to pull in extra user information, or to securely
invoke requests on the external IDP. For example, an application might want to use the Google token to
invoke on other Google services and REST APIs. To retrieve a token for a particular identity provider you
need to send a request as follows:

GET /auth/realms/{realm}/broker/{provider_alias}/token HTTP/1.1
Host: localhost:8080
Authorization: Bearer <KEYCLOAK ACCESS TOKEN>

An application must have authenticated with Red Hat Single Sign-On and have received an access
token. This access token will need to have the broker client-level role read-token set. This means that
the user must have a role mapping for this role and the client application must have that role within its
scope. In this case, given that you are accessing a protected service in Red Hat Single Sign-On, you need
to send the access token issued by Red Hat Single Sign-On during the user authentication. In the broker
configuration page you can automatically assign this role to newly imported users by turning on the
Stored Tokens Readable switch.

These external tokens can be re-established by either logging in again through the provider, or using the
client initiated account linking API.

5.2. CLIENT INITIATED ACCOUNT LINKING

Some applications want to integrate with social providers like Facebook, but do not want to provide an
option to login via these social providers. Red Hat Single Sign-On offers a browser-based API that
applications can use to link an existing user account to a specific external IDP. This is called client-
initiated account linking. Account linking can only be initiated by OIDC applications.

The way it works is that the application forwards the user’s browser to a URL on the Red Hat Single
Sign-On server requesting that it wants to link the user’s account to a specific external provider (i.e.
Facebook). The server initiates a login with the external provider. The browser logs in at the external
provider and is redirected back to the server. The server establishes the link and redirects back to the
application with a confirmation.

There are some preconditions that must be met by the client application before it can initiate this
protocol:

The desired identity provider must be configured and enabled for the user’s realm in the admin
console.

The user account must already be logged in as an existing user via the OIDC protocol

The user must have an account.manage-account or account.manage-account-links role
mapping.

CHAPTER 5. IDENTITY BROKERING APIS

15

The application must be granted the scope for those roles within its access token

The application must have access to its access token as it needs information within it to
generate the redirect URL.

To initiate the login, the application must fabricate a URL and redirect the user’s browser to this URL.
The URL looks like this:

/{auth-server-root}/auth/realms/{realm}/broker/{provider}/link?client_id={id}&redirect_uri={uri}&nonce=
{nonce}&hash={hash}

Here’s a description of each path and query param:

provider

This is the provider alias of the external IDP that you defined in the Identity Provider section of the
admin console.

client_id

This is the OIDC client id of your application. When you registered the application as a client in the
admin console, you had to specify this client id.

redirect_uri

This is the application callback URL you want to redirect to after the account link is established. It
must be a valid client redirect URI pattern. In other words, it must match one of the valid URL patterns
you defined when you registered the client in the admin console.

nonce

This is a random string that your application must generate

hash

This is a Base64 URL encoded hash. This hash is generated by Base64 URL encoding a SHA_256
hash of nonce + token.getSessionState() + token.getIssuedFor() + provider. The token variable
are obtained from the OIDC access token. Basically you are hashing the random nonce, the user
session id, the client id, and the identity provider alias you want to access.

Here’s an example of Java Servlet code that generates the URL to establish the account link.

 KeycloakSecurityContext session = (KeycloakSecurityContext)
httpServletRequest.getAttribute(KeycloakSecurityContext.class.getName());
 AccessToken token = session.getToken();
 String clientId = token.getIssuedFor();
 String nonce = UUID.randomUUID().toString();
 MessageDigest md = null;
 try {
 md = MessageDigest.getInstance("SHA-256");
 } catch (NoSuchAlgorithmException e) {
 throw new RuntimeException(e);
 }
 String input = nonce + token.getSessionState() + clientId + provider;
 byte[] check = md.digest(input.getBytes(StandardCharsets.UTF_8));
 String hash = Base64Url.encode(check);
 request.getSession().setAttribute("hash", hash);
 String redirectUri = ...;
 String accountLinkUrl = KeycloakUriBuilder.fromUri(authServerRootUrl)
 .path("/auth/realms/{realm}/broker/{provider}/link")
 .queryParam("nonce", nonce)

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

16

Why is this hash included? We do this so that the auth server is guaranteed to know that the client
application initiated the request and no other rogue app just randomly asked for a user account to be
linked to a specific provider. The auth server will first check to see if the user is logged in by checking the
SSO cookie set at login. It will then try to regenerate the hash based on the current login and match it up
to the hash sent by the application.

After the account has been linked, the auth server will redirect back to the redirect_uri. If there is a
problem servicing the link request, the auth server may or may not redirect back to the redirect_uri. The
browser may just end up at an error page instead of being redirected back to the application. If there is
an error condition and the auth server deems it safe enough to redirect back to the client app, an
additional error query parameter will be appended to the redirect_uri.

WARNING

While this API guarantees that the application initiated the request, it does not
completely prevent CSRF attacks for this operation. The application is still
responsible for guarding against CSRF attacks target at itself.

5.2.1. Refreshing External Tokens

If you are using the external token generated by logging into the provider (i.e. a Facebook or GitHub
token), you can refresh this token by re-initiating the account linking API.

 .queryParam("hash", hash)
 .queryParam("client_id", clientId)
 .queryParam("redirect_uri", redirectUri).build(realm, provider).toString();



CHAPTER 5. IDENTITY BROKERING APIS

17

CHAPTER 6. SERVICE PROVIDER INTERFACES (SPI)
Red Hat Single Sign-On is designed to cover most use-cases without requiring custom code, but we also
want it to be customizable. To achieve this Red Hat Single Sign-On has a number of Service Provider
Interfaces (SPI) for which you can implement your own providers.

6.1. IMPLEMENTING AN SPI

To implement an SPI you need to implement its ProviderFactory and Provider interfaces. You also need
to create a service configuration file.

For example, to implement the Theme Selector SPI you need to implement
ThemeSelectorProviderFactory and ThemeSelectorProvider and also provide the file META-
INF/services/org.keycloak.theme.ThemeSelectorProviderFactory.

Example ThemeSelectorProviderFactory:

NOTE

Keycloak creates a single instance of provider factories which makes it possible to store
state for multiple requests. Provider instances are created by calling create on the
factory for each request so these should be light-weight object.

Example ThemeSelectorProvider:

package org.acme.provider;

import ...

public class MyThemeSelectorProviderFactory implements ThemeSelectorProviderFactory {

 @Override
 public ThemeSelectorProvider create(KeycloakSession session) {
 return new MyThemeSelectorProvider(session);
 }

 @Override
 public void init(Config.Scope config) {
 }

 @Override
 public void postInit(KeycloakSessionFactory factory) {
 }

 @Override
 public void close() {
 }

 @Override
 public String getId() {
 return "myThemeSelector";
 }
}

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

18

Example service configuration file (META-
INF/services/org.keycloak.theme.ThemeSelectorProviderFactory):

org.acme.provider.MyThemeSelectorProviderFactory

You can configure your provider through standalone.xml, standalone-ha.xml, or domain.xml.

For example by adding the following to standalone.xml:

Then you can retrieve the config in the ProviderFactory init method:

Your provider can also lookup other providers if needed. For example:

package org.acme.provider;

import ...

public class MyThemeSelectorProvider implements ThemeSelectorProvider {

 public MyThemeSelectorProvider(KeycloakSession session) {
 }

 @Override
 public String getThemeName(Theme.Type type) {
 return "my-theme";
 }

 @Override
 public void close() {
 }
}

<spi name="themeSelector">
 <provider name="myThemeSelector" enabled="true">
 <properties>
 <property name="theme" value="my-theme"/>
 </properties>
 </provider>
</spi>

public void init(Config.Scope config) {
 String themeName = config.get("theme");
}

public class MyThemeSelectorProvider implements ThemeSelectorProvider {

 private KeycloakSession session;

 public MyThemeSelectorProvider(KeycloakSession session) {
 this.session = session;
 }

 @Override

CHAPTER 6. SERVICE PROVIDER INTERFACES (SPI)

19

6.1.1. Show info from your SPI implementation in admin console

Sometimes it is useful to show additional info about your Provider to a Red Hat Single Sign-On
administrator. You can show provider build time information (eg. version of custom provider currently
installed), current configuration of the provider (eg. url of remote system your provider talks to) or
some operational info (average time of response from remote system your provider talks to). Red Hat
Single Sign-On admin console provides Server Info page to show this kind of information.

To show info from your provider it is enough to implement
org.keycloak.provider.ServerInfoAwareProviderFactory interface in your ProviderFactory.

Example implementation for MyThemeSelectorProviderFactory from previous example:

6.2. REGISTERING PROVIDER IMPLEMENTATIONS

There are two ways to register provider implementations. In most cases the simplest way is to use the
Red Hat Single Sign-On deployer approach as this handles a number of dependencies automatically for
you. It also supports hot deployment as well as re-deployment.

The alternative approach is to deploy as a module.

If you are creating a custom SPI you will need to deploy it as a module, otherwise we recommend using
the Red Hat Single Sign-On deployer approach.

6.2.1. Using the Red Hat Single Sign-On Deployer

If you copy your provider jar to the Red Hat Single Sign-On standalone/deployments/ directory, your
provider will automatically be deployed. Hot deployment works too. Additionally, your provider jar works
similarly to other components deployed in a JBoss EAP environment in that they can use facilities like
the jboss-deployment-structure.xml file. This file allows you to set up dependencies on other
components and load third-party jars and modules.

Provider jars can also be contained within other deployable units like EARs and WARs. Deploying with a

 public String getThemeName(Theme.Type type) {
 return session.getContext().getRealm().getLoginTheme();
 }
}

package org.acme.provider;

import ...

public class MyThemeSelectorProviderFactory implements ThemeSelectorProviderFactory,
ServerInfoAwareProviderFactory {
 ...

 @Override
 public Map<String, String> getOperationalInfo() {
 Map<String, String> ret = new LinkedHashMap<>();
 ret.put("theme-name", "my-theme");
 return ret;
 }
}

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

20

Provider jars can also be contained within other deployable units like EARs and WARs. Deploying with a
EAR actually makes it really easy to use third party jars as you can just put these libraries in the EAR’s lib/
directory.

6.2.2. Register a provider using Modules

To register a provider using Modules first create a module. To do this you can either use the jboss-cli
script or manually create a folder inside KEYCLOAK_HOME/modules and add your jar and a
module.xml. For example to add the event listener sysout example provider using the jboss-cli script
execute:

KEYCLOAK_HOME/bin/jboss-cli.sh --command="module add --name=org.acme.provider --
resources=target/provider.jar --dependencies=org.keycloak.keycloak-core,org.keycloak.keycloak-
server-spi"

Or to manually create it start by creating the folder
KEYCLOAK_HOME/modules/org/acme/provider/main. Then copy provider.jar to this folder and
create module.xml with the following content:

Once you’ve created the module you need to register this module with Red Hat Single Sign-On. This is
done by editing the keycloak-server subsystem section of standalone.xml, standalone-ha.xml, or
domain.xml, and adding it to the providers:

6.2.3. Disabling a provider

You can disable a provider by setting the enabled attribute for the provider to false in standalone.xml,
standalone-ha.xml, or domain.xml. For example to disable the Infinispan user cache provider add:

6.3. LEVERAGING JAVA EE

The service providers can be packaged within any Java EE component so long as you set up the META-

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.3" name="org.acme.provider">
 <resources>
 <resource-root path="provider.jar"/>
 </resources>
 <dependencies>
 <module name="org.keycloak.keycloak-core"/>
 <module name="org.keycloak.keycloak-server-spi"/>
 </dependencies>
</module>

<subsystem xmlns="urn:jboss:domain:keycloak-server:1.1">
 <web-context>auth</web-context>
 <providers>
 <provider>module:org.keycloak.examples.event-sysout</provider>
 </providers>
 ...

<spi name="userCache">
 <provider name="infinispan" enabled="false"/>
</spi>

CHAPTER 6. SERVICE PROVIDER INTERFACES (SPI)

21

INF/services file correctly to point to your providers. For example, if your provider needs to use third
party libraries, you can package up your provider within an ear and store these third party libraries in the
ear’s lib/ directory. Also note that provider jars can make use of the jboss-deployment-structure.xml
file that EJBs, WARS, and EARs can use in a JBoss EAP environment. See the JBoss EAP
documentation for more details on this file. It allows you to pull in external dependencies among other
fine grain actions.

ProviderFactory implementations are required to be plain java objects. But, we also currently support
implementing provider classes as Stateful EJBs. This is how you would do it:

You have to define the @Local annotation and specify your provider class there. If you don’t do this,
EJB will not proxy the provider instance correctly and your provider won’t work.

You must put the @Remove annotation on the close() method of your provider. If you don’t, the
stateful bean will never be cleaned up and you may eventually see error messages.

Implementations of ProviderFactory are required to be plain java objects. Your factory class would
perform a JNDI lookup of the Stateful EJB in its create() method.

@Stateful
@Local(EjbExampleUserStorageProvider.class)
public class EjbExampleUserStorageProvider implements UserStorageProvider,
 UserLookupProvider,
 UserRegistrationProvider,
 UserQueryProvider,
 CredentialInputUpdater,
 CredentialInputValidator,
 OnUserCache
{
 @PersistenceContext
 protected EntityManager em;

 protected ComponentModel model;
 protected KeycloakSession session;

 public void setModel(ComponentModel model) {
 this.model = model;
 }

 public void setSession(KeycloakSession session) {
 this.session = session;
 }

 @Remove
 @Override
 public void close() {
 }
...
}

public class EjbExampleUserStorageProviderFactory
 implements UserStorageProviderFactory<EjbExampleUserStorageProvider> {

 @Override
 public EjbExampleUserStorageProvider create(KeycloakSession session, ComponentModel

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

22

6.4. AVAILABLE SPIS

If you want to see list of all available SPIs at runtime, you can check Server Info page in admin console
as described in Admin Console section.

model) {
 try {
 InitialContext ctx = new InitialContext();
 EjbExampleUserStorageProvider provider = (EjbExampleUserStorageProvider)ctx.lookup(
 "java:global/user-storage-jpa-example/" +
EjbExampleUserStorageProvider.class.getSimpleName());
 provider.setModel(model);
 provider.setSession(session);
 return provider;
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

CHAPTER 6. SERVICE PROVIDER INTERFACES (SPI)

23

CHAPTER 7. USER STORAGE SPI
You can use the User Storage SPI to write extensions to Red Hat Single Sign-On to connect to external
user databases and credential stores. The built-in LDAP and ActiveDirectory support is an
implementation of this SPI in action. Out of the box, Red Hat Single Sign-On uses its local database to
create, update, and look up users and validate credentials. Often though, organizations have existing
external proprietary user databases that they cannot migrate to Red Hat Single Sign-On’s data model.
For those situations, application developers can write implementations of the User Storage SPI to bridge
the external user store and the internal user object model that Red Hat Single Sign-On uses to log in
users and manage them.

When the Red Hat Single Sign-On runtime needs to look up a user, such as when a user is logging in, it
performs a number of steps to locate the user. It first looks to see if the user is in the user cache; if the
user is found it uses that in-memory representation. Then it looks for the user within the Red Hat Single
Sign-On local database. If the user is not found, it then loops through User Storage SPI provider
implementations to perform the user query until one of them returns the user the runtime is looking for.
The provider queries the external user store for the user and maps the external data representation of
the user to Red Hat Single Sign-On’s user metamodel.

User Storage SPI provider implementations can also perform complex criteria queries, perform CRUD
operations on users, validate and manage credentials, or perform bulk updates of many users at once. It
depends on the capabilities of the external store.

User Storage SPI provider implementations are packaged and deployed similarly to (and often are) Java
EE components. They are not enabled by default, but instead must be enabled and configured per realm
under the User Federation tab in the administration console.

7.1. PROVIDER INTERFACES

When building an implementation of the User Storage SPI you have to define a provider class and a
provider factory. Provider class instances are created per transaction by provider factories. Provider
classes do all the heavy lifting of user lookup and other user operations. They must implement the
org.keycloak.storage.UserStorageProvider interface.

package org.keycloak.storage;

public interface UserStorageProvider extends Provider {

 /**
 * Callback when a realm is removed. Implement this if, for example, you want to do some
 * cleanup in your user storage when a realm is removed
 *
 * @param realm
 */
 default
 void preRemove(RealmModel realm) {

 }

 /**
 * Callback when a group is removed. Allows you to do things like remove a user
 * group mapping in your external store if appropriate
 *
 * @param realm

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

24

You may be thinking that the UserStorageProvider interface is pretty sparse? You’ll see later in this
chapter that there are other mix-in interfaces your provider class may implement to support the meat of
user integration.

UserStorageProvider instances are created once per transaction. When the transaction is complete,
the UserStorageProvider.close() method is invoked and the instance is then garbage collected.
Instances are created by provider factories. Provider factories implement the
org.keycloak.storage.UserStorageProviderFactory interface.

 * @param group
 */
 default
 void preRemove(RealmModel realm, GroupModel group) {

 }

 /**
 * Callback when a role is removed. Allows you to do things like remove a user
 * role mapping in your external store if appropriate

 * @param realm
 * @param role
 */
 default
 void preRemove(RealmModel realm, RoleModel role) {

 }

}

package org.keycloak.storage;

/**
 * @author Bill Burke
 * @version $Revision: 1 $
 */
public interface UserStorageProviderFactory<T extends UserStorageProvider> extends
ComponentFactory<T, UserStorageProvider> {

 /**
 * This is the name of the provider and will be shown in the admin console as an option.
 *
 * @return
 */
 @Override
 String getId();

 /**
 * called per Keycloak transaction.
 *
 * @param session
 * @param model
 * @return
 */

CHAPTER 7. USER STORAGE SPI

25

Provider factory classses must specify the concrete provider class as a template parameter when
implementing the UserStorageProviderFactory. This is a must as the runtime will introspect this class
to scan for its capabilities (the other interfaces it implements). So for example, if your provider class is
named FileProvider, then the factory class should look like this:

The getId() method returns the name of the User Storage provider. This id will be displayed in the admin
console’s User Federation page when you want to enable the provider for a specific realm.

The create() method is responsible for allocating an instance of the provider class. It takes a
org.keycloak.models.KeycloakSession parameter. This object can be used to look up other
information and metadata as well as provide access to various other components within the runtime.
The ComponentModel parameter represents how the provider was enabled and configured within a
specific realm. It contains the instance id of the enabled provider as well as any configuration you may
have specified for it when you enabled through the admin console.

The UserStorageProviderFactory has other capabilities as well which we will go over later in this
chapter.

7.2. PROVIDER CAPABILITY INTERFACES

If you have examined the UserStorageProvider interface closely you might notice that it does not
define any methods for locating or managing users. These methods are actually defined in other
capability interfaces depending on what scope of capabilities your external user store can provide and
execute on. For example, some external stores are read-only and can only do simple queries and
credential validation. You will only be required to implement the capability interfaces for the features
you are able to. You can implement these interfaces:

SPI Description

org.keycloak.storage.user.UserLookupProvi
der

This interface is required if you want to be able to log
in with users from this external store. Most (all?)
providers implement this interface.

org.keycloak.storage.user.UserQueryProvide
r

Defines complex queries that are used to locate one
or more users. You must implement this interface if
you want to view and manage users from the
administration console.

org.keycloak.storage.user.UserRegistrationP
rovider

Implement this interface if your provider supports
adding and removing users.

 T create(KeycloakSession session, ComponentModel model);
...
}

public class FileProviderFactory implements UserStorageProviderFactory<FileProvider> {

 public String getId() { return "file-provider"; }

 public FileProvider create(KeycloakSession session, ComponentModel model) {
 ...
 }

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

26

org.keycloak.storage.user.UserBulkUpdatePr
ovider

Implement this interface if your provider supports
bulk update of a set of users.

org.keycloak.credential.CredentialInputValid
ator

Implement this interface if your provider can validate
one or more different credential types (for example,
if your provider can validate a password).

org.keycloak.credential.CredentialInputUpdat
er

Implement this interface if your provider supports
updating one or more different credential types.

SPI Description

7.3. MODEL INTERFACES

Most of the methods defined in the capability interfaces either return or are passed in representations of
a user. These representations are defined by the org.keycloak.models.UserModel interface. App
developers are required to implement this interface. It provides a mapping between the external user
store and the user metamodel that Red Hat Single Sign-On uses.

UserModel implementations provide access to read and update metadata about the user including
things like username, name, email, role and group mappings, as well as other arbitrary attributes.

There are other model classes within the org.keycloak.models package that represent other parts of
the Red Hat Single Sign-On metamodel: RealmModel, RoleModel, GroupModel, and ClientModel.

7.3.1. Storage Ids

One important method of UserModel is the getId() method. When implementing UserModel
developers must be aware of the user id format. The format must be:

"f:" + component id + ":" + external id

The Red Hat Single Sign-On runtime often has to look up users by their user id. The user id contains

package org.keycloak.models;

public interface UserModel extends RoleMapperModel {
 String getId();

 String getUsername();
 void setUsername(String username);

 String getFirstName();
 void setFirstName(String firstName);

 String getLastName();
 void setLastName(String lastName);

 String getEmail();
 void setEmail(String email);
...
}

CHAPTER 7. USER STORAGE SPI

27

The Red Hat Single Sign-On runtime often has to look up users by their user id. The user id contains
enough information so that the runtime does not have to query every single UserStorageProvider in
the system to find the user.

The component id is the id returned from ComponentModel.getId(). The ComponentModel is passed
in as a parameter when creating the provider class so you can get it from there. The external id is
information your provider class needs to find the user in the external store. This is often a username or a
uid. For example, it might look something like this:

f:332a234e31234:wburke

When the runtime does a lookup by id, the id is parsed to obtain the component id. The component id is
used to locate the UserStorageProvider that was originally used to load the user. That provider is then
passed the id. The provider again parses the id to obtain the external id and it will use to locate the user
in external user storage.

7.4. PACKAGING AND DEPLOYMENT

User Storage providers are packaged in a JAR and deployed or undeployed to the Red Hat Single Sign-
On runtime in the same way you would deploy something in the JBoss EAP application server. You can
either copy the JAR directly to the standalone/deployments/ directory of the server, or use the JBoss
CLI to execute the deployment.

In order for Red Hat Single Sign-On to recognize the provider, you need to add a file to the JAR: META-
INF/services/org.keycloak.storage.UserStorageProviderFactory. This file must contain a line-
separated list of fully qualified classnames of the UserStorageProviderFactory implementations:

org.keycloak.examples.federation.properties.ClasspathPropertiesStorageFactory
org.keycloak.examples.federation.properties.FilePropertiesStorageFactory

Red Hat Single Sign-On supports hot deployment of these provider JARs. You’ll also see later in this
chapter that you can package it within and as Java EE components.

7.5. SIMPLE READ-ONLY, LOOKUP EXAMPLE

To illustrate the basics of implementing the User Storage SPI let’s walk through a simple example. In this
chapter you’ll see the implementation of a simple UserStorageProvider that looks up users in a simple
property file. The property file contains username and password definitions and is hardcoded to a
specific location on the classpath. The provider will be able to look up the user by ID and username and
also be able to validate passwords. Users that originate from this provider will be read-only.

7.5.1. Provider Class

The first thing we will walk through is the UserStorageProvider class.

Our provider class, PropertyFileUserStorageProvider, implements many interfaces. It implements the

public class PropertyFileUserStorageProvider implements
 UserStorageProvider,
 UserLookupProvider,
 CredentialInputValidator,
 CredentialInputUpdater
{
...
}

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

28

Our provider class, PropertyFileUserStorageProvider, implements many interfaces. It implements the
UserStorageProvider as that is a base requirement of the SPI. It implements the UserLookupProvider
interface because we want to be able to log in with users stored by this provider. It implements the
CredentialInputValidator interface because we want to be able to validate passwords entered in using
the login screen. Our property file is read-only. We implement the CredentialInputUpdater because we
want to post an error condition when the user attempts to update his password.

The constructor for this provider class is going to store the reference to the KeycloakSession,
ComponentModel, and property file. We’ll use all of these later. Also notice that there is a map of
loaded users. Whenever we find a user we will store it in this map so that we avoid re-creating it again
within the same transaction. This is a good practice to follow as many providers will need to do this (that
is, any provider that integrates with JPA). Remember also that provider class instances are created
once per transaction and are closed after the transaction completes.

7.5.1.1. UserLookupProvider Implementation

 protected KeycloakSession session;
 protected Properties properties;
 protected ComponentModel model;
 // map of loaded users in this transaction
 protected Map<String, UserModel> loadedUsers = new HashMap<>();

 public PropertyFileUserStorageProvider(KeycloakSession session, ComponentModel model,
Properties properties) {
 this.session = session;
 this.model = model;
 this.properties = properties;
 }

 @Override
 public UserModel getUserByUsername(String username, RealmModel realm) {
 UserModel adapter = loadedUsers.get(username);
 if (adapter == null) {
 String password = properties.getProperty(username);
 if (password != null) {
 adapter = createAdapter(realm, username);
 loadedUsers.put(username, adapter);
 }
 }
 return adapter;
 }

 protected UserModel createAdapter(RealmModel realm, String username) {
 return new AbstractUserAdapter(session, realm, model) {
 @Override
 public String getUsername() {
 return username;
 }
 };
 }

 @Override
 public UserModel getUserById(String id, RealmModel realm) {
 StorageId storageId = new StorageId(id);
 String username = storageId.getExternalId();

CHAPTER 7. USER STORAGE SPI

29

The getUserByUsername() method is invoked by the Red Hat Single Sign-On login page when a user
logs in. In our implementation we first check the loadedUsers map to see if the user has already been
loaded within this transaction. If it hasn’t been loaded we look in the property file for the username. If it
exists we create an implementation of UserModel, store it in loadedUsers for future reference, and
return this instance.

The createAdapter() method uses the helper class
org.keycloak.storage.adapter.AbstractUserAdapter. This provides a base implementation for
UserModel. It automatically generates a user id based on the required storage id format using the
username of the user as the external id.

"f:" + component id + ":" + username

Every get method of AbstractUserAdapter either returns null or empty collections. However, methods
that return role and group mappings will return the default roles and groups configured for the realm for
every user. Every set method of AbstractUserAdapter will throw a
org.keycloak.storage.ReadOnlyException. So if you attempt to modify the user in the admininstration
console, you will get an error.

The getUserById() method parses the id parameter using the org.keycloak.storage.StorageId helper
class. The StorageId.getExternalId() method is invoked to obtain the username embeded in the id
parameter. The method then delegates to getUserByUsername().

Emails are not stored, so the getUserByEmail() method returns null.

7.5.1.2. CredentialInputValidator Implementation

Next let’s look at the method implementations for CredentialInputValidator.

 return getUserByUsername(username, realm);
 }

 @Override
 public UserModel getUserByEmail(String email, RealmModel realm) {
 return null;
 }

 @Override
 public boolean isConfiguredFor(RealmModel realm, UserModel user, String credentialType) {
 String password = properties.getProperty(user.getUsername());
 return credentialType.equals(CredentialModel.PASSWORD) && password != null;
 }

 @Override
 public boolean supportsCredentialType(String credentialType) {
 return credentialType.equals(CredentialModel.PASSWORD);
 }

 @Override
 public boolean isValid(RealmModel realm, UserModel user, CredentialInput input) {
 if (!supportsCredentialType(input.getType()) || !(input instanceof UserCredentialModel)) return
false;

 UserCredentialModel cred = (UserCredentialModel)input;
 String password = properties.getProperty(user.getUsername());

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

30

The isConfiguredFor() method is called by the runtime to determine if a specific credential type is
configured for the user. This method checks to see that the password is set for the user.

The supportsCredentialType() method returns whether validation is supported for a specific credential
type. We check to see if the credential type is password.

The isValid() method is responsible for validating passwords. The CredentialInput parameter is really
just an abstract interface for all credential types. We make sure that we support the credential type and
also that it is an instance of UserCredentialModel. When a user logs in through the login page, the plain
text of the password input is put into an instance of UserCredentialModel. The isValid() method
checks this value against the plain text password stored in the properties file. A return value of true
means the password is valid.

7.5.1.3. CredentialInputUpdater Implementation

As noted before, the only reason we implement the CredentialInputUpdater interface in this example is
to forbid modifications of user passwords. The reason we have to do this is because otherwise the
runtime would allow the password to be overridden in Red Hat Single Sign-On local storage. We’ll talk
more about this later in this chapter.

The updateCredential() method just checks to see if the credential type is password. If it is, a
ReadOnlyException is thrown.

7.5.2. Provider Factory Implementation

Now that the provider class is complete, we now turn our attention to the provider factory class.

 if (password == null) return false;
 return password.equals(cred.getValue());
 }

 @Override
 public boolean updateCredential(RealmModel realm, UserModel user, CredentialInput input) {
 if (input.getType().equals(CredentialModel.PASSWORD)) throw new ReadOnlyException("user
is read only for this update");

 return false;
 }

 @Override
 public void disableCredentialType(RealmModel realm, UserModel user, String credentialType) {

 }

 @Override
 public Set<String> getDisableableCredentialTypes(RealmModel realm, UserModel user) {
 return Collections.EMPTY_SET;
 }

public class PropertyFileUserStorageProviderFactory
 implements UserStorageProviderFactory<PropertyFileUserStorageProvider> {

 public static final String PROVIDER_NAME = "readonly-property-file";

 @Override

CHAPTER 7. USER STORAGE SPI

31

First thing to notice is that when implementing the UserStorageProviderFactory class, you must pass
in the concrete provider class implementation as a template parameter. Here we specify the provider
class we defined before: PropertyFileUserStorageProvider.

WARNING

If you do not specify the template parameter, your provider will not function. The
runtime does class introspection to determine the capability interfaces that the
provider implements.

The getId() method identifies the factory in the runtime and will also be the string shown in the admin
console when you want to enable a user storage provider for the realm.

7.5.2.1. Initialization

The UserStorageProviderFactory interface has an optional init() method you can implement. When
Red Hat Single Sign-On boots up, only one instance of each provider factory is created. Also at boot
time, the init() method is called on each of these factory instances. There’s also a postInit() method you
can implement as well. After each factory’s init() method is invoked, their postInit() methods are called.

In our init() method implementation, we find the property file containing our user declarations from the

 public String getId() {
 return PROVIDER_NAME;
 }



 private static final Logger logger =
Logger.getLogger(PropertyFileUserStorageProviderFactory.class);
 protected Properties properties = new Properties();

 @Override
 public void init(Config.Scope config) {
 InputStream is = getClass().getClassLoader().getResourceAsStream("/users.properties");

 if (is == null) {
 logger.warn("Could not find users.properties in classpath");
 } else {
 try {
 properties.load(is);
 } catch (IOException ex) {
 logger.error("Failed to load users.properties file", ex);
 }
 }
 }

 @Override
 public PropertyFileUserStorageProvider create(KeycloakSession session, ComponentModel
model) {
 return new PropertyFileUserStorageProvider(session, model, properties);
 }

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

32

In our init() method implementation, we find the property file containing our user declarations from the
classpath. We then load the properties field with the username and password combinations stored
there.

The Config.Scope parameter is factory configuration that can be set up within standalone.xml,
standalone-ha.xml, or domain.xml.

For example, by adding the following to standalone.xml:

We can specify the classpath of the user property file instead of hardcoding it. Then you can retrieve
the configuration in the PropertyFileUserStorageProviderFactory.init():

7.5.2.2. Create Method

Our last step in creating the provider factory is the create() method.

We simply allocate the PropertyFileUserStorageProvider class. This create method will be called once
per transaction.

7.5.3. Packaging and Deployment

The class files for our provider implementation should be placed in a jar. You also have to declare the
provider factory class within the META-
INF/services/org.keycloak.storage.UserStorageProviderFactory file.

org.keycloak.examples.federation.properties.FilePropertiesStorageFactory

Once you create the jar you can deploy it using regular JBoss EAP means: copy the jar into the
standalone/deployments/ directory or using the JBoss CLI.

7.5.4. Enabling the Provider in the Administration Console

You enable user storage providers per realm within the User Federation page in the administration

<spi name="storage">
 <provider name="readonly-property-file" enabled="true">
 <properties>
 <property name="path" value="/other-users.properties"/>
 </properties>
 </provider>
</spi>

public void init(Config.Scope config) {
 String path = config.get("path");
 InputStream is = getClass().getClassLoader().getResourceAsStream(path);

 ...
}

 @Override
 public PropertyFileUserStorageProvider create(KeycloakSession session, ComponentModel
model) {
 return new PropertyFileUserStorageProvider(session, model, properties);
 }

CHAPTER 7. USER STORAGE SPI

33

You enable user storage providers per realm within the User Federation page in the administration
console.

Select the provider we just created from the list: readonly-property-file. It brings you to the
configuration page for our provider. We do not have anything to configure, so click Save.

When you go back to the main User Federation page, you now see your provider listed.

You will now be able to log in with a user declared in the users.properties file. This user will only be able
to view the account page after logging in.

7.6. CONFIGURATION TECHNIQUES

Our PropertyFileUserStorageProvider example is bit contrived. It is hardcoded to a property file that is
embedded in the jar of the provider, which is not terribly useful. We might want to make the location of
this file configurable per instance of the provider. In other words, we might want to reuse this provider
mulitple times in multiple different realms and point to completely different user property files. We’ll
also want to perform this configuration within the administration console UI.

The UserStorageProviderFactory has additional methods you can implement that handle provider
configuration. You describe the variables you want to configure per provider and the administration
console automatically renders a generic input page to gather this configuration. When implemented,
callback methods also validate the configuration before it is saved, when a provider is created for the
first time, and when it is updated. UserStorageProviderFactory inherits these methods from the
org.keycloak.component.ComponentFactory interface.

The ComponentFactory.getConfigProperties() method returns a list of
org.keycloak.provider.ProviderConfigProperty instances. These instances declare metadata that is
needed to render and store each configuration variable of the provider.

7.6.1. Configuration Example

Let’s expand our PropertyFileUserStorageProviderFactory example to allow you to point a provider
instance to a specific file on disk.

 List<ProviderConfigProperty> getConfigProperties();

 default
 void validateConfiguration(KeycloakSession session, RealmModel realm, ComponentModel
model)
 throws ComponentValidationException
 {

 }

 default
 void onCreate(KeycloakSession session, RealmModel realm, ComponentModel model) {

 }

 default
 void onUpdate(KeycloakSession session, RealmModel realm, ComponentModel model) {

 }

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

34

PropertyFileUserStorageProviderFactory

The ProviderConfigurationBuilder class is a great helper class to create a list of configuration
properties. Here we specify a variable named path that is a String type. On the administration console
configuration page for this provider, this configuration variable is labeled as Path and has a default value
of ${jboss.server.config.dir}/example-users.properties. When you hover over the tooltip of this
configuration option, it displays the help text, File path to properties file.

The next thing we want to do is to verify that this file exists on disk. We do not want to enable an
instance of this provider in the realm unless it points to a valid user property file. To do this, we
implement the validateConfiguration() method.

In the validateConfiguration() method we get the configuration variable from the ComponentModel
and we check to see if that file exists on disk. Notice that we use the
org.keycloak.common.util.EnvUtil.replace() method. With this method any string that has ${} within it
will replace that with a system property value. The ${jboss.server.config.dir} string corresponds to the
configuration/ directory of our server and is really useful for this example.

Next thing we have to do is remove the old init() method. We do this because user property files are
going to be unique per provider instance. We move this logic to the create() method.

public class PropertyFileUserStorageProviderFactory
 implements UserStorageProviderFactory<PropertyFileUserStorageProvider> {

 protected static final List<ProviderConfigProperty> configMetadata;

 static {
 configMetadata = ProviderConfigurationBuilder.create()
 .property().name("path")
 .type(ProviderConfigProperty.STRING_TYPE)
 .label("Path")
 .defaultValue("${jboss.server.config.dir}/example-users.properties")
 .helpText("File path to properties file")
 .add().build();
 }

 @Override
 public List<ProviderConfigProperty> getConfigProperties() {
 return configMetadata;
 }

 @Override
 public void validateConfiguration(KeycloakSession session, RealmModel realm, ComponentModel
config)
 throws ComponentValidationException {
 String fp = config.getConfig().getFirst("path");
 if (fp == null) throw new ComponentValidationException("user property file does not exist");
 fp = EnvUtil.replace(fp);
 File file = new File(fp);
 if (!file.exists()) {
 throw new ComponentValidationException("user property file does not exist");
 }
 }

 @Override

CHAPTER 7. USER STORAGE SPI

35

This logic is, of course, inefficient as every transaction reads the entire user property file from disk, but
hopefully this illustrates, in a simple way, how to hook in configuration variables.

7.6.2. Configuring the Provider in the Administration Console

Now that the configuration is enabled, you can set the path variable when you configure the provider in
the administration console.

7.7. ADD/REMOVE USER AND QUERY CAPABILITY INTERFACES

One thing we have not done with our example is allow it to add and remove users or change passwords.
Users defined in our example are also not queryable or viewable in the administration console. To add
these enhancements, our example provider must implement the UserQueryProvider and
UserRegistrationProvider interfaces.

7.7.1. Implementing UserRegistrationProvider

To implement adding and removing users from this particular store, we first have to be able to save our
properties file to disk.

PropertyFileUserStorageProvider

Then, the implementation of the addUser() and removeUser() methods becomes simple.

PropertyFileUserStorageProvider

 public PropertyFileUserStorageProvider create(KeycloakSession session, ComponentModel
model) {
 String path = model.getConfig().getFirst("path");

 Properties props = new Properties();
 try {
 InputStream is = new FileInputStream(path);
 props.load(is);
 is.close();
 } catch (IOException e) {
 throw new RuntimeException(e);
 }

 return new PropertyFileUserStorageProvider(session, model, props);
 }

 public void save() {
 String path = model.getConfig().getFirst("path");
 path = EnvUtil.replace(path);
 try {
 FileOutputStream fos = new FileOutputStream(path);
 properties.store(fos, "");
 fos.close();
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

36

Notice that when adding a user we set the password value of the property map to be
UNSET_PASSWORD. We do this as we can’t have null values for a property in the property value. We
also have to modify the CredentialInputValidator methods to reflect this.

The addUser() method will be called if the provider implements the UserRegistrationProvider
interface. If your provider has a configuration switch to turn off adding a user, returning null from this
method will skip the provider and call the next one.

PropertyFileUserStorageProvider

Since we can now save our property file, it also makes sense to allow password updates.

PropertyFileUserStorageProvider

 public static final String UNSET_PASSWORD="#$!-UNSET-PASSWORD";

 @Override
 public UserModel addUser(RealmModel realm, String username) {
 synchronized (properties) {
 properties.setProperty(username, UNSET_PASSWORD);
 save();
 }
 return createAdapter(realm, username);
 }

 @Override
 public boolean removeUser(RealmModel realm, UserModel user) {
 synchronized (properties) {
 if (properties.remove(user.getUsername()) == null) return false;
 save();
 return true;
 }
 }

 @Override
 public boolean isValid(RealmModel realm, UserModel user, CredentialInput input) {
 if (!supportsCredentialType(input.getType()) || !(input instanceof UserCredentialModel)) return
false;

 UserCredentialModel cred = (UserCredentialModel)input;
 String password = properties.getProperty(user.getUsername());
 if (password == null || UNSET_PASSWORD.equals(password)) return false;
 return password.equals(cred.getValue());
 }

 @Override
 public boolean updateCredential(RealmModel realm, UserModel user, CredentialInput input) {
 if (!(input instanceof UserCredentialModel)) return false;
 if (!input.getType().equals(CredentialModel.PASSWORD)) return false;
 UserCredentialModel cred = (UserCredentialModel)input;
 synchronized (properties) {
 properties.setProperty(user.getUsername(), cred.getValue());
 save();

CHAPTER 7. USER STORAGE SPI

37

We can now also implement disabling a password.

PropertyFileUserStorageProvider

With these methods implemented, you’ll now be able to change and disable the password for the user in
the administration console.

7.7.2. Implementing UserQueryProvider

Without implementing UserQueryProvider the administration console would not be able to view and
manage users that were loaded by our example provider. Let’s look at implementing this interface.

PropertyFileUserStorageProvider

 }
 return true;
 }

 @Override
 public void disableCredentialType(RealmModel realm, UserModel user, String credentialType) {
 if (!credentialType.equals(CredentialModel.PASSWORD)) return;
 synchronized (properties) {
 properties.setProperty(user.getUsername(), UNSET_PASSWORD);
 save();
 }

 }

 private static final Set<String> disableableTypes = new HashSet<>();

 static {
 disableableTypes.add(CredentialModel.PASSWORD);
 }

 @Override
 public Set<String> getDisableableCredentialTypes(RealmModel realm, UserModel user) {

 return disableableTypes;
 }

 @Override
 public int getUsersCount(RealmModel realm) {
 return properties.size();
 }

 @Override
 public List<UserModel> getUsers(RealmModel realm) {
 return getUsers(realm, 0, Integer.MAX_VALUE);
 }

 @Override
 public List<UserModel> getUsers(RealmModel realm, int firstResult, int maxResults) {
 List<UserModel> users = new LinkedList<>();
 int i = 0;
 for (Object obj : properties.keySet()) {

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

38

The getUsers() method iterates over the key set of the property file, delegating to
getUserByUsername() to load a user. Notice that we are indexing this call based on the firstResult and
maxResults parameter. If your external store does not support pagination, you will have to do similar
logic.

PropertyFileUserStorageProvider

The first declaration of searchForUser() takes a String parameter. This is supposed to be a string that
you use to search username and email attributes to find the user. This string can be a substring, which is
why we use the String.contains() method when doing our search.

PropertyFileUserStorageProvider

 if (i++ < firstResult) continue;
 String username = (String)obj;
 UserModel user = getUserByUsername(username, realm);
 users.add(user);
 if (users.size() >= maxResults) break;
 }
 return users;
 }

 @Override
 public List<UserModel> searchForUser(String search, RealmModel realm) {
 return searchForUser(search, realm, 0, Integer.MAX_VALUE);
 }

 @Override
 public List<UserModel> searchForUser(String search, RealmModel realm, int firstResult, int
maxResults) {
 List<UserModel> users = new LinkedList<>();
 int i = 0;
 for (Object obj : properties.keySet()) {
 String username = (String)obj;
 if (!username.contains(search)) continue;
 if (i++ < firstResult) continue;
 UserModel user = getUserByUsername(username, realm);
 users.add(user);
 if (users.size() >= maxResults) break;
 }
 return users;
 }

 @Override
 public List<UserModel> searchForUser(Map<String, String> params, RealmModel realm) {
 return searchForUser(params, realm, 0, Integer.MAX_VALUE);
 }

 @Override
 public List<UserModel> searchForUser(Map<String, String> params, RealmModel realm, int
firstResult, int maxResults) {
 // only support searching by username
 String usernameSearchString = params.get("username");

CHAPTER 7. USER STORAGE SPI

39

The searchForUser() method that takes a Map parameter can search for a user based on first, last
name, username, and email. We only store usernames, so we only search based on usernames. We
delegate to searchForUser() for this.

PropertyFileUserStorageProvider

We do not store groups or attributes, so the other methods return an empty list.

7.8. AUGMENTING EXTERNAL STORAGE

The PropertyFileUserStorageProvider example is really limited. While we will be able to login with users
stored in a property file, we won’t be able to do much else. If users loaded by this provider need special
role or group mappings to fully access particular applications there is no way for us to add additional role
mappings to these users. You also can’t modify or add additional important attributes like email, first
and last name.

For these types of situations, Red Hat Single Sign-On allows you to augment your external store by
storing extra information in Red Hat Single Sign-On’s database. This is called federated user storage
and is encapsulated within the org.keycloak.storage.federated.UserFederatedStorageProvider class.

UserFederatedStorageProvider

The UserFederatedStorageProvider instance is available on the

 if (usernameSearchString == null) return Collections.EMPTY_LIST;
 return searchForUser(usernameSearchString, realm, firstResult, maxResults);
 }

 @Override
 public List<UserModel> getGroupMembers(RealmModel realm, GroupModel group, int firstResult,
int maxResults) {
 return Collections.EMPTY_LIST;
 }

 @Override
 public List<UserModel> getGroupMembers(RealmModel realm, GroupModel group) {
 return Collections.EMPTY_LIST;
 }

 @Override
 public List<UserModel> searchForUserByUserAttribute(String attrName, String attrValue,
RealmModel realm) {
 return Collections.EMPTY_LIST;
 }

package org.keycloak.storage.federated;

public interface UserFederatedStorageProvider extends Provider {

 Set<GroupModel> getGroups(RealmModel realm, String userId);
 void joinGroup(RealmModel realm, String userId, GroupModel group);
 void leaveGroup(RealmModel realm, String userId, GroupModel group);
 List<String> getMembership(RealmModel realm, GroupModel group, int firstResult, int max);

...

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

40

The UserFederatedStorageProvider instance is available on the
KeycloakSession.userFederatedStorage() method. It has all different kinds of methods for storing
attributes, group and role mappings, different credential types, and required actions. If your external
store’s datamodel cannot support the full Red Hat Single Sign-On feature set, then this service can fill in
the gaps.

Red Hat Single Sign-On comes with a helper class
org.keycloak.storage.adapter.AbstractUserAdapterFederatedStorage that will delegate every single
UserModel method except get/set of username to user federated storage. Override the methods you
need to override to delegate to your external storage representations. It is strongly suggested you read
the javadoc of this class as it has smaller protected methods you may want to override. Specifically
surrounding group membership and role mappings.

7.8.1. Augmentation Example

In our PropertyFileUserStorageProvider example, we just need a simple change to our provider to use
the AbstractUserAdapterFederatedStorage.

PropertyFileUserStorageProvider

We instead define an anonymous class implementation of AbstractUserAdapterFederatedStorage.
The setUsername() method makes changes to the properties file and saves it.

7.9. IMPORT IMPLEMENTATION STRATEGY

When implementing a user storage provider, there’s another strategy you can take. Instead of using user
federated storage, you can create a user locally in the Red Hat Single Sign-On built-in user database
and copy attributes from your external store into this local copy. There are many advantages to this
approach.

Red Hat Single Sign-On basically becomes a persistence user cache for your external store.
Once the user is imported you’ll no longer hit the external store thus taking load off of it.

If you are moving to Red Hat Single Sign-On as your official user store and deprecating the old
external store, you can slowly migrate applications to use Red Hat Single Sign-On. When all
applications have been migrated, unlink the imported user, and retire the old legacy external
store.

 protected UserModel createAdapter(RealmModel realm, String username) {
 return new AbstractUserAdapterFederatedStorage(session, realm, model) {
 @Override
 public String getUsername() {
 return username;
 }

 @Override
 public void setUsername(String username) {
 String pw = (String)properties.remove(username);
 if (pw != null) {
 properties.put(username, pw);
 save();
 }
 }
 };
 }

CHAPTER 7. USER STORAGE SPI

41

There are some obvious disadvantages though to using an import strategy:

Looking up a user for the first time will require multiple updates to Red Hat Single Sign-On
database. This can be a big performance loss under load and put a lot of strain on the Red Hat
Single Sign-On database. The user federated storage approach will only store extra data as
needed and may never be used depending on the capabilities of your external store.

With the import approach, you have to keep local Red Hat Single Sign-On storage and external
storage in sync. The User Storage SPI has capability interfaces that you can implement to
support synchronization, but this can quickly become painful and messy.

To implement the import strategy you simply check to see first if the user has been imported locally. If
so return the local user, if not create the user locally and import data from the external store. You can
also proxy the local user so that most changes are automatically synchronized.

This will be a bit contrived, but we can extend our PropertyFileUserStorageProvider to take this
approach. We begin first by modifying the createAdapter() method.

PropertyFileUserStorageProvider

In this method we call the KeycloakSession.userLocalStorage() method to obtain a reference to local
Red Hat Single Sign-On user storage. We see if the user is stored locally, if not, we add it locally. Do not
set the id of the local user. Let Red Hat Single Sign-On automatically generate the id. Also note that we
call UserModel.setFederationLink() and pass in the ID of the ComponentModel of our provider. This
sets a link between the provider and the imported user.

NOTE

When a user storage provider is removed, any user imported by it will also be removed.
This is one of the purposes of calling UserModel.setFederationLink().

Another thing to note is that if a local user is linked, your storage provider will still be delegated to for
methods that it implements from the CredentialInputValidator and CredentialInputUpdater
interfaces. Returning false from a validation or update will just result in Red Hat Single Sign-On seeing if
it can validate or update using local storage.

 protected UserModel createAdapter(RealmModel realm, String username) {
 UserModel local = session.userLocalStorage().getUserByUsername(username, realm);
 if (local == null) {
 local = session.userLocalStorage().addUser(realm, username);
 local.setFederationLink(model.getId());
 }
 return new UserModelDelegate(local) {
 @Override
 public void setUsername(String username) {
 String pw = (String)properties.remove(username);
 if (pw != null) {
 properties.put(username, pw);
 save();
 }
 super.setUsername(username);
 }
 };
 }

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

42

Also notice that we are proxying the local user using the
org.keycloak.models.utils.UserModelDelegate class. This class is an implementation of UserModel.
Every method just delegates to the UserModel it was instantiated with. We override the setUsername()
method of this delegate class to synchronize automatically with the property file. For your providers, you
can use this to intercept other methods on the local UserModel to perform synchronization with your
external store. For example, get methods could make sure that the local store is in sync. Set methods
keep the external store in sync with the local one. One thing to note is that the getId() method should
always return the id that was auto generated when you created the user locally. You should not return a
federated id as shown in the other non-import examples.

NOTE

If your provider is implementing the UserRegistrationProvider interface, your
removeUser() method does not need to remove the user from local storage. The runtime
will automatically perform this operation. Also note that removeUser() will be invoked
before it is removed from local storage.

7.9.1. ImportedUserValidation Interface

If you remember earlier in this chapter, we discussed how querying for a user worked. Local storage is
queried first, if the user is found there, then the query ends. This is a problem for our above
implementation as we want to proxy the local UserModel so that we can keep usernames in sync. The
User Storage SPI has a callback for whenever a linked local user is loaded from the local database.

Whenever a linked local user is loaded, if the user storage provider class implements this interface, then
the validate() method is called. Here you can proxy the local user passed in as a parameter and return it.
That new UserModel will be used. You can also optionally do a check to see if the user still exists in the
external store. If validate() returns null, then the local user will be removed from the database.

7.9.2. ImportSynchronization Interface

With the import strategy you can see that it is possible for the local user copy to get out of sync with
external storage. For example, maybe a user has been removed from the external store. The User
Storage SPI has an additional interface you can implement to deal with this,
org.keycloak.storage.user.ImportSynchronization:

package org.keycloak.storage.user;
public interface ImportedUserValidation {
 /**
 * If this method returns null, then the user in local storage will be removed
 *
 * @param realm
 * @param user
 * @return null if user no longer valid
 */
 UserModel validate(RealmModel realm, UserModel user);
}

package org.keycloak.storage.user;

public interface ImportSynchronization {
 SynchronizationResult sync(KeycloakSessionFactory sessionFactory, String realmId,
UserStorageProviderModel model);

CHAPTER 7. USER STORAGE SPI

43

This interface is implemented by the provider factory. Once this interface is implemented by the
provider factory, the administration console management page for the provider shows additional
options. You can manually force a synchronization by clicking a button. This invokes the
ImportSynchronization.sync() method. Also, additional configuration options are displayed that allow
you to automatically schedule a synchronization. Automatic synchronizations invoke the syncSince()
method.

7.10. USER CACHES

When a user object is loaded by ID, username, or email queries it is cached. When a user object is being
cached, it iterates through the entire UserModel interface and pulls this information to a local in-
memory-only cache. In a cluster, this cache is still local, but it becomes an invalidation cache. When a user
object is modified, it is evicted. This eviction event is propagated to the entire cluster so that the other
nodes' user cache is also invalidated.

7.10.1. Managing the user cache

You can access the user cache by calling KeycloakSession.userCache().

There are methods for evicting specific users, users contained in a specific realm, or the entire cache.

7.10.2. OnUserCache Callback Interface

 SynchronizationResult syncSince(Date lastSync, KeycloakSessionFactory sessionFactory, String
realmId, UserStorageProviderModel model);
}

/**
 * All these methods effect an entire cluster of Keycloak instances.
 *
 * @author Bill Burke
 * @version $Revision: 1 $
 */
public interface UserCache extends UserProvider {
 /**
 * Evict user from cache.
 *
 * @param user
 */
 void evict(RealmModel realm, UserModel user);

 /**
 * Evict users of a specific realm
 *
 * @param realm
 */
 void evict(RealmModel realm);

 /**
 * Clear cache entirely.
 *
 */
 void clear();
}

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

44

You might want to cache additional information that is specific to your provider implementation. The
User Storage SPI has a callback whenever a user is cached:
org.keycloak.models.cache.OnUserCache.

Your provider class should implement this interface if it wants this callback. The UserModel delegate
parameter is the UserModel instance returned by your provider. The CachedUserModel is an expanded
UserModel interface. This is the instance that is cached locally in local storage.

This CachedUserModel interface allows you to evict the user from the cache and get the provider
UserModel instance. The getCachedWith() method returns a map that allows you to cache additional
information pertaining to the user. For example, credentials are not part of the UserModel interface. If
you wanted to cache credentials in memory, you would implement OnUserCache and cache your user’s
credentials using the getCachedWith() method.

7.10.3. Cache Policies

On the administration console management page for your user storage provider, you can specify a
unique cache policy.

public interface OnUserCache {
 void onCache(RealmModel realm, CachedUserModel user, UserModel delegate);
}

public interface CachedUserModel extends UserModel {

 /**
 * Invalidates the cache for this user and returns a delegate that represents the actual data provider
 *
 * @return
 */
 UserModel getDelegateForUpdate();

 boolean isMarkedForEviction();

 /**
 * Invalidate the cache for this model
 *
 */
 void invalidate();

 /**
 * When was the model was loaded from database.
 *
 * @return
 */
 long getCacheTimestamp();

 /**
 * Returns a map that contains custom things that are cached along with this model. You can write
to this map.
 *
 * @return
 */
 ConcurrentHashMap getCachedWith();
}

CHAPTER 7. USER STORAGE SPI

45

7.11. LEVERAGING JAVA EE

The user storage providers can be packaged within any Java EE component if you set up the META-
INF/services file correctly to point to your providers. For example, if your provider needs to use third-
party libraries, you can package up your provider within an EAR and store these third-party libraries in
the lib/ directory of the EAR. Also note that provider JARs can make use of the jboss-deployment-
structure.xml file that EJBs, WARS, and EARs can use in a JBoss EAP environment. For more details on
this file, see the JBoss EAP documentation. It allows you to pull in external dependencies among other
fine-grained actions.

Provider implementations are required to be plain java objects. But we also currently support
implementing UserStorageProvider classes as Stateful EJBs. This is especially useful if you want to use
JPA to connect to a relational store. This is how you would do it:

You have to define the @Local annotation and specify your provider class there. If you do not do this,
EJB will not proxy the user correctly and your provider won’t work.

You must put the @Remove annotation on the close() method of your provider. If you do not, the
stateful bean will never be cleaned up and you might eventually see error messages.

Implementations of UserStorageProvider are required to be plain Java objects. Your factory class
would perform a JNDI lookup of the Stateful EJB in its create() method.

@Stateful
@Local(EjbExampleUserStorageProvider.class)
public class EjbExampleUserStorageProvider implements UserStorageProvider,
 UserLookupProvider,
 UserRegistrationProvider,
 UserQueryProvider,
 CredentialInputUpdater,
 CredentialInputValidator,
 OnUserCache
{
 @PersistenceContext
 protected EntityManager em;

 protected ComponentModel model;
 protected KeycloakSession session;

 public void setModel(ComponentModel model) {
 this.model = model;
 }

 public void setSession(KeycloakSession session) {
 this.session = session;
 }

 @Remove
 @Override
 public void close() {
 }
...
}

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

46

This example also assumes that you have defined a JPA deployment in the same JAR as the provider.
This means a persistence.xml file as well as any JPA @Entity classes.

WARNING

When using JPA any additional datasource must be an XA datasource. The Red Hat
Single Sign-On datasource is not an XA datasource. If you interact with two or more
non-XA datasources in the same transaction, the server returns an error message.
Only one non-XA resource is permitted in a single transaction. See the JBoss EAP
manual for more details on deploying an XA datasource.

CDI is not supported.

7.12. REST MANAGEMENT API

You can create, remove, and update your user storage provider deployments through the administrator
REST API. The User Storage SPI is built on top of a generic component interface so you will be using
that generic API to manage your providers.

The REST Component API lives under your realm admin resource.

/admin/realms/{realm-name}/components

We will only show this REST API interaction with the Java client. Hopefully you can extract how to do
this from curl from this API.

public class EjbExampleUserStorageProviderFactory
 implements UserStorageProviderFactory<EjbExampleUserStorageProvider> {

 @Override
 public EjbExampleUserStorageProvider create(KeycloakSession session, ComponentModel
model) {
 try {
 InitialContext ctx = new InitialContext();
 EjbExampleUserStorageProvider provider = (EjbExampleUserStorageProvider)ctx.lookup(
 "java:global/user-storage-jpa-example/" +
EjbExampleUserStorageProvider.class.getSimpleName());
 provider.setModel(model);
 provider.setSession(session);
 return provider;
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }



public interface ComponentsResource {
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public List<ComponentRepresentation> query();

CHAPTER 7. USER STORAGE SPI

47

To create a user storage provider, you must specify the provider id, a provider type of the string
org.keycloak.storage.UserStorageProvider, as well as the configuration.

 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public List<ComponentRepresentation> query(@QueryParam("parent") String parent);

 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public List<ComponentRepresentation> query(@QueryParam("parent") String parent,
@QueryParam("type") String type);

 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public List<ComponentRepresentation> query(@QueryParam("parent") String parent,
 @QueryParam("type") String type,
 @QueryParam("name") String name);

 @POST
 @Consumes(MediaType.APPLICATION_JSON)
 Response add(ComponentRepresentation rep);

 @Path("{id}")
 ComponentResource component(@PathParam("id") String id);
}

public interface ComponentResource {
 @GET
 public ComponentRepresentation toRepresentation();

 @PUT
 @Consumes(MediaType.APPLICATION_JSON)
 public void update(ComponentRepresentation rep);

 @DELETE
 public void remove();
}

import org.keycloak.admin.client.Keycloak;
import org.keycloak.representations.idm.RealmRepresentation;
...

Keycloak keycloak = Keycloak.getInstance(
 "http://localhost:8080/auth",
 "master",
 "admin",
 "password",
 "admin-cli");
RealmResource realmResource = keycloak.realm("master");
RealmRepresentation realm = realmResource.toRepresentation();

ComponentRepresentation component = new ComponentRepresentation();
component.setName("home");
component.setProviderId("readonly-property-file");
component.setProviderType("org.keycloak.storage.UserStorageProvider");

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

48

7.13. MIGRATING FROM AN EARLIER USER FEDERATION SPI

NOTE

This chapter is only applicable if you have implemented a provider using the earlier (and
now removed) User Federation SPI.

In Keycloak version 2.4.0 and earlier there was a User Federation SPI. Red Hat Single Sign-On version
7.0, although unsupported, had this earlier SPI available as well. This earlier User Federation SPI has
been removed from Keycloak version 2.5.0 and Red Hat Single Sign-On version 7.1. However, if you have
written a provider with this earlier SPI, this chapter discusses some strategies you can use to port it.

7.13.1. Import vs. Non-Import

The earlier User Federation SPI required you to create a local copy of a user in the Red Hat Single Sign-
On’s database and import information from your external store to the local copy. However, this is no
longer a requirement. You can still port your earlier provider as-is, but you should consider whether a
non-import strategy might be a better approach.

Advantages of the import strategy:

Red Hat Single Sign-On basically becomes a persistence user cache for your external store.
Once the user is imported you’ll no longer hit the external store, thus taking load off of it.

If you are moving to Red Hat Single Sign-On as your official user store and deprecating the
earlier external store, you can slowly migrate applications to use Red Hat Single Sign-On. When
all applications have been migrated, unlink the imported user, and retire the earlier legacy
external store.

There are some obvious disadvantages though to using an import strategy:

Looking up a user for the first time will require multiple updates to Red Hat Single Sign-On

component.setParentId(realm.getId());
component.setConfig(new MultivaluedHashMap());
component.getConfig().putSingle("path", "~/users.properties");

realmResource.components().add(component);

// retrieve a component

List<ComponentRepresentation> components = realmResource.components().query(realm.getId(),
 "org.keycloak.storage.UserStorageProvider",
 "home");
component = components.get(0);

// Update a component

component.getConfig().putSingle("path", "~/my-users.properties");
realmResource.components().component(component.getId()).update(component);

// Remove a component

realmREsource.components().component(component.getId()).remove();

CHAPTER 7. USER STORAGE SPI

49

database. This can be a big performance loss under load and put a lot of strain on the Red Hat
Single Sign-On database. The user federated storage approach will only store extra data as
needed and might never be used depending on the capabilities of your external store.

With the import approach, you have to keep local Red Hat Single Sign-On storage and external
storage in sync. The User Storage SPI has capability interfaces that you can implement to
support synchronization, but this can quickly become painful and messy.

7.13.2. UserFederationProvider vs. UserStorageProvider

The first thing to notice is that UserFederationProvider was a complete interface. You implemented
every method in this interface. However, UserStorageProvider has instead broken up this interface into
multiple capability interfaces that you implement as needed.

UserFederationProvider.getUserByUsername() and getUserByEmail() have exact equivalents in the
new SPI. The difference between the two is how you import. If you are going to continue with an import
strategy, you no longer call KeycloakSession.userStorage().addUser() to create the user locally.
Instead you call KeycloakSession.userLocalStorage().addUser(). The userStorage() method no
longer exists.

The UserFederationProvider.validateAndProxy() method has been moved to an optional capability
interface, ImportedUserValidation. You want to implement this interface if you are porting your earlier
provider as-is. Also note that in the earlier SPI, this method was called every time the user was accessed,
even if the local user is in the cache. In the later SPI, this method is only called when the local user is
loaded from local storage. If the local user is cached, then the ImportedUserValidation.validate()
method is not called at all.

The UserFederationProvider.isValid() method no longer exists in the later SPI.

The UserFederationProvider methods synchronizeRegistrations(), registerUser(), and
removeUser() have been moved to the UserRegistrationProvider capability interface. This new
interface is optional to implement so if your provider does not support creating and removing users, you
don’t have to implement it. If your earlier provider had switch to toggle support for registering new users,
this is supported in the new SPI, returning null from UserRegistrationProvider.addUser() if the
provider doesn’t support adding users.

The earlier UserFederationProvider methods centered around credentials are now encapsulated in the
CredentialInputValidator and CredentialInputUpdater interfaces, which are also optional to implement
depending on if you support validating or updating credentials. Credential management used to exist in
UserModel methods. These also have been moved to the CredentialInputValidator and
CredentialInputUpdater interfaces. One thing to note that if you do not implement the
CredentialInputUpdater interface, then any credentials provided by your provider can be overridden
locally in Red Hat Single Sign-On storage. So if you want your credentials to be read-only, implement
the CredentialInputUpdater.updateCredential() method and return a ReadOnlyException.

The UserFederationProvider query methods such as searchByAttributes() and getGroupMembers()
are now encapsulated in an optional interface UserQueryProvider. If you do not implement this
interface, then users will not be viewable in the admin console. You’ll still be able to login though.

7.13.3. UserFederationProviderFactory vs. UserStorageProviderFactory

The synchronization methods in the earlier SPI are now encapsulated within an optional
ImportSynchronization interface. If you have implemented synchronization logic, then have your new
UserStorageProviderFactory implement the ImportSynchronization interface.

Red Hat Single Sign-On Continuous Delivery 7 Server Developer Guide

50

7.13.4. Upgrading to a New Model

The User Storage SPI instances are stored in a different set of relational tables. Red Hat Single Sign-On
automatically runs a migration script. If any earlier User Federation providers are deployed for a realm,
they are converted to the later storage model as is, including the id of the data. This migration will only
happen if a User Storage provider exists with the same provider ID (i.e., "ldap", "kerberos") as the earlier
User Federation provider.

So, knowing this there are different approaches you can take.

1. You can remove the earlier provider in your earlier Red Hat Single Sign-On deployment. This will
remove the local linked copies of all users you imported. Then, when you upgrade Red Hat Single
Sign-On, just deploy and configure your new provider for your realm.

2. The second option is to write your new provider making sure it has the same provider ID:
UserStorageProviderFactory.getId(). Make sure this provider is in the
standalone/deployments/ directory of the new Red Hat Single Sign-On installation. Boot the
server, and have the built-in migration script convert from the earlier data model to the later
data model. In this case all your earlier linked imported users will work and be the same.

If you have decided to get rid of the import strategy and rewrite your User Storage provider, we suggest
that you remove the earlier provider before upgrading Red Hat Single Sign-On. This will remove linked
local imported copies of any user you imported.

CHAPTER 7. USER STORAGE SPI

51

	Table of Contents
	CHAPTER 1. PREFACE
	CHAPTER 2. ADMIN REST API
	2.1. EXAMPLE USING CURL

	CHAPTER 3. THEMES
	3.1. THEME TYPES
	3.2. CONFIGURE THEME
	3.3. DEFAULT THEMES
	3.4. CREATING A THEME
	3.4.1. Theme Properties
	3.4.2. Stylesheets
	3.4.3. Scripts
	3.4.4. Images
	3.4.5. Messages
	3.4.6. Internationalization
	3.4.7. HTML Templates
	3.4.8. Emails

	3.5. DEPLOYING THEMES
	3.6. THEME SELECTOR
	3.7. THEME RESOURCES
	3.8. LOCALE SELECTOR

	CHAPTER 4. CUSTOM USER ATTRIBUTES
	4.1. REGISTRATION PAGE
	4.2. ACCOUNT MANAGEMENT CONSOLE

	CHAPTER 5. IDENTITY BROKERING APIS
	5.1. RETRIEVING EXTERNAL IDP TOKENS
	5.2. CLIENT INITIATED ACCOUNT LINKING
	5.2.1. Refreshing External Tokens

	CHAPTER 6. SERVICE PROVIDER INTERFACES (SPI)
	6.1. IMPLEMENTING AN SPI
	6.1.1. Show info from your SPI implementation in admin console

	6.2. REGISTERING PROVIDER IMPLEMENTATIONS
	6.2.1. Using the Red Hat Single Sign-On Deployer
	6.2.2. Register a provider using Modules
	6.2.3. Disabling a provider

	6.3. LEVERAGING JAVA EE
	6.4. AVAILABLE SPIS

	CHAPTER 7. USER STORAGE SPI
	7.1. PROVIDER INTERFACES
	7.2. PROVIDER CAPABILITY INTERFACES
	7.3. MODEL INTERFACES
	7.3.1. Storage Ids

	7.4. PACKAGING AND DEPLOYMENT
	7.5. SIMPLE READ-ONLY, LOOKUP EXAMPLE
	7.5.1. Provider Class
	7.5.1.1. UserLookupProvider Implementation
	7.5.1.2. CredentialInputValidator Implementation
	7.5.1.3. CredentialInputUpdater Implementation

	7.5.2. Provider Factory Implementation
	7.5.2.1. Initialization
	7.5.2.2. Create Method

	7.5.3. Packaging and Deployment
	7.5.4. Enabling the Provider in the Administration Console

	7.6. CONFIGURATION TECHNIQUES
	7.6.1. Configuration Example
	7.6.2. Configuring the Provider in the Administration Console

	7.7. ADD/REMOVE USER AND QUERY CAPABILITY INTERFACES
	7.7.1. Implementing UserRegistrationProvider
	7.7.2. Implementing UserQueryProvider

	7.8. AUGMENTING EXTERNAL STORAGE
	7.8.1. Augmentation Example

	7.9. IMPORT IMPLEMENTATION STRATEGY
	7.9.1. ImportedUserValidation Interface
	7.9.2. ImportSynchronization Interface

	7.10. USER CACHES
	7.10.1. Managing the user cache
	7.10.2. OnUserCache Callback Interface
	7.10.3. Cache Policies

	7.11. LEVERAGING JAVA EE
	7.12. REST MANAGEMENT API
	7.13. MIGRATING FROM AN EARLIER USER FEDERATION SPI
	7.13.1. Import vs. Non-Import
	7.13.2. UserFederationProvider vs. UserStorageProvider
	7.13.3. UserFederationProviderFactory vs. UserStorageProviderFactory
	7.13.4. Upgrading to a New Model

