
Red Hat Single Sign-On 7.6

Securing Applications and Services Guide

For Use with Red Hat Single Sign-On 7.6

Last Updated: 2024-02-15

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

For Use with Red Hat Single Sign-On 7.6

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide consists of information for securing applications and services using Red Hat Single Sign-
On 7.6

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. PLANNING FOR SECURING APPLICATIONS AND SERVICES
1.1. CLIENT ADAPTERS
1.2. SUPPORTED PLATFORMS

1.2.1. OpenID Connect
1.2.1.1. Java
1.2.1.2. JavaScript (client-side)
1.2.1.3. Node.js (server-side)

1.2.2. SAML
1.2.2.1. Java
1.2.2.2. Apache HTTP Server

1.3. SUPPORTED PROTOCOLS
1.3.1. OpenID Connect
1.3.2. SAML 2.0
1.3.3. OpenID Connect vs. SAML

1.4. TERMINOLOGY
1.5. BASIC STEPS TO SECURE APPLICATIONS AND SERVICES

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES
2.1. JAVA ADAPTERS

2.1.1. Java adapter configuration
2.1.2. JBoss EAP adapter
2.1.3. Installing JBOSS EAP adapters from a ZIP file

2.1.3.1. JBoss SSO
2.1.3.2. Securing a WAR
2.1.3.3. Securing WARs via adapter subsystem
2.1.3.4. Security domain

2.1.4. Installing JBoss EAP 7 adapters from an RPM
2.1.5. Installing JBoss EAP 6 adapters from an RPM
2.1.6. JBoss Fuse 6 adapter

2.1.6.1. Securing your web applications inside Fuse 6
2.1.6.2. Installing the Keycloak feature

2.1.6.2.1. Installing from the Maven repository
2.1.6.2.2. Installing from the ZIP bundle

2.1.6.3. Securing a Classic WAR application
2.1.6.3.1. Configuring the External Adapter

2.1.6.4. Securing a servlet deployed as an OSGI Service
2.1.6.5. Securing an Apache Camel application
2.1.6.6. Camel RestDSL
2.1.6.7. Securing an Apache CXF endpoint on a separate Jetty engine
2.1.6.8. Securing an Apache CXF endpoint on the default Jetty Engine
2.1.6.9. Securing Fuse Administration Services

2.1.6.9.1. Using SSH Authentication to Fuse Terminal
2.1.6.9.2. Using JMX authentication

2.1.6.10. Securing the Hawtio Administration Console
2.1.6.10.1. Securing Hawtio on JBoss EAP 6.4

2.1.7. JBoss Fuse 7 Adapter
2.1.7.1. Securing your web applications inside Fuse 7
2.1.7.2. Installing the Keycloak feature

2.1.7.2.1. Installing from the Maven repository

7

8
8
8
8
8
8
8
8
8
8
9
9
9
9

10
10

12
12
12
16
17
18
18
19

20
20
21
22
23
23
23
23
24
25
26
27
29
30
32
34
34
35
35
37
38
39
39
39

Table of Contents

1

2.1.7.2.2. Installing from the ZIP bundle
2.1.7.3. Securing a Classic WAR application

2.1.7.3.1. Configuration resolvers
2.1.7.4. Securing a servlet deployed as an OSGI Service
2.1.7.5. Securing an Apache Camel application
2.1.7.6. Camel RestDSL
2.1.7.7. Securing an Apache CXF endpoint on a separate Undertow Engine
2.1.7.8. Securing an Apache CXF endpoint on the default Undertow Engine
2.1.7.9. Securing Fuse Administration Services

2.1.7.9.1. Using SSH Authentication to Fuse Terminal
2.1.7.9.2. Using JMX authentication

2.1.7.10. Securing the Hawtio Administration Console
2.1.8. Spring Boot adapter

2.1.8.1. Installing the Spring Boot adapter
2.1.8.2. Configuring the Spring Boot Adapter

2.1.9. Java servlet filter adapter
2.1.10. Security Context
2.1.11. Error handling
2.1.12. Logout
2.1.13. Parameters forwarding
2.1.14. Client authentication

2.1.14.1. Client ID and Client Secret
2.1.14.2. Client authentication with Signed JWT

2.1.15. Multi Tenancy
2.1.16. Application clustering

2.1.16.1. Stateless token store
2.1.16.2. Relative URI optimization
2.1.16.3. Admin URL configuration
2.1.16.4. Registration of application nodes
2.1.16.5. Refresh token in each request

2.2. JAVASCRIPT ADAPTER
2.2.1. Session Status iframe
2.2.2. Implicit and hybrid flow
2.2.3. Hybrid Apps with Cordova
2.2.4. Custom Adapters
2.2.5. Earlier Browsers
2.2.6. Modern Browsers with Tracking Protection

2.2.6.1. Browsers with "SameSite=Lax by Default" Policy
2.2.6.2. Browsers with Blocked Third-Party Cookies

2.2.7. JavaScript Adapter Reference
2.2.7.1. Constructor
2.2.7.2. Properties
2.2.7.3. Methods
2.2.7.4. Callback Events

2.3. NODE.JS ADAPTER
2.3.1. Installation
2.3.2. Usage
2.3.3. Installing middleware
2.3.4. Configuration for proxies
2.3.5. Checking authentication
2.3.6. Protecting resources
2.3.7. Additional URLs
2.3.8. Complete example

39
40
41

42
43
44
45
46
48
48
49
49
51
51
52
53
54
54
55
55
56
57
57
58
59
59
60
60
60
61
61

64
65
66
67
68
68
68
68
69
69
69
70
73
74
74
74
76
76
77
77
79
80

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

2

. .

2.4. OTHER OPENID CONNECT LIBRARIES
2.4.1. Endpoints

2.4.1.1. Authorization endpoint
2.4.1.2. Token endpoint
2.4.1.3. Userinfo endpoint
2.4.1.4. Logout endpoint
2.4.1.5. Certificate endpoint
2.4.1.6. Introspection endpoint
2.4.1.7. Dynamic Client Registration endpoint
2.4.1.8. Token Revocation endpoint
2.4.1.9. Device Authorization endpoint
2.4.1.10. Backchannel Authentication endpoint

2.4.2. Validating access tokens
2.4.3. Flows

2.4.3.1. Authorization code
2.4.3.2. Implicit
2.4.3.3. Resource Owner Password Credentials

2.4.3.3.1. Example using CURL
2.4.3.4. Client credentials
2.4.3.5. Device Authorization Grant
2.4.3.6. Client Initiated Backchannel Authentication Grant

2.4.4. Redirect URIs
2.5. FINANCIAL-GRADE API (FAPI) SUPPORT

2.5.1. FAPI client profiles
2.5.2. Open Banking Brasil Financial-grade API Security Profile
2.5.3. TLS considerations

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES
3.1. JAVA ADAPTERS

3.1.1. General Adapter Config
3.1.1.1. SP element
3.1.1.2. Service Provider keys and key elements

3.1.1.2.1. KeyStore element
3.1.1.2.2. Key PEMS

3.1.1.3. SP PrincipalNameMapping element
3.1.1.4. RoleIdentifiers element
3.1.1.5. RoleMappingsProvider element

3.1.1.5.1. Properties Based role mappings provider
3.1.1.5.2. Adding your own role mappings provider

3.1.1.6. IDP Element
3.1.1.7. IDP AllowedClockSkew sub element
3.1.1.8. IDP SingleSignOnService sub element
3.1.1.9. IDP SingleLogoutService sub element
3.1.1.10. IDP Keys sub element
3.1.1.11. IDP HttpClient sub element

3.1.2. JBoss EAP adapter
3.1.3. Installing adapters from a ZIP file

3.1.3.1. JBoss SSO
3.1.3.2. Setting SameSite value for JSESSIONID cookie

3.1.4. Installing JBoss EAP 7 Adapters from an RPM
3.1.5. Installing JBoss EAP 6 Adapters from an RPM

3.1.5.1. Securing a WAR
3.1.5.2. Securing WARs using the Red Hat Single Sign-On SAML Subsystem

80
80
80
80
81
81
81
81
81
81

82
82
82
82
82
83
83
83
84
84
84
85
85
85
86
86

87
87
87
88
89
89
90
90
91
91

92
93
93
93
94
94
95
96
97
97
99
99
99
101
101
102

Table of Contents

3

. .

. .

. .

3.1.6. Java Servlet filter adapter
3.1.7. Registering with an Identity Provider
3.1.8. Logout

3.1.8.1. Logout in clustered environment
3.1.8.2. Logout in cross-site scenario

3.1.9. Obtaining assertion attributes
3.1.10. Error Handling
3.1.11. Troubleshooting
3.1.12. Multi Tenancy

3.2. MOD_AUTH_MELLON APACHE HTTPD MODULE
3.2.1. Configuring mod_auth_mellon with Red Hat Single Sign-On

3.2.1.1. Installing the packages
3.2.1.2. Creating a configuration directory for Apache SAML
3.2.1.3. Configuring the Mellon Service Provider

3.2.2. Setting the SameSite value for the cookie used by mod_auth_mellon
3.2.2.1. Creating the Service Provider metadata
3.2.2.2. Adding the Mellon Service Provider to the Red Hat Single Sign-On Identity Provider

3.2.2.2.1. Adding the Mellon Service Provider as a client of the realm
3.2.2.2.2. Adding the Mellon SP client
3.2.2.2.3. Editing the Mellon SP client
3.2.2.2.4. Retrieving the Identity Provider metadata

CHAPTER 4. CONFIGURING A DOCKER REGISTRY TO USE RED HAT SINGLE SIGN-ON
4.1. DOCKER REGISTRY CONFIGURATION FILE INSTALLATION
4.2. DOCKER REGISTRY ENVIRONMENT VARIABLE OVERRIDE INSTALLATION
4.3. DOCKER COMPOSE YAML FILE

CHAPTER 5. USING THE CLIENT REGISTRATION SERVICE
5.1. AUTHENTICATION

5.1.1. Bearer token
5.1.2. Initial Access Token
5.1.3. Registration Access Token

5.2. RED HAT SINGLE SIGN-ON REPRESENTATIONS
5.3. RED HAT SINGLE SIGN-ON ADAPTER CONFIGURATION
5.4. OPENID CONNECT DYNAMIC CLIENT REGISTRATION
5.5. SAML ENTITY DESCRIPTORS
5.6. EXAMPLE USING CURL
5.7. EXAMPLE USING JAVA CLIENT REGISTRATION API
5.8. CLIENT REGISTRATION POLICIES

CHAPTER 6. AUTOMATING CLIENT REGISTRATION WITH THE CLI
6.1. CONFIGURING A NEW REGULAR USER FOR USE WITH CLIENT REGISTRATION CLI
6.2. CONFIGURING A CLIENT FOR USE WITH THE CLIENT REGISTRATION CLI
6.3. INSTALLING THE CLIENT REGISTRATION CLI
6.4. USING THE CLIENT REGISTRATION CLI

6.4.1. Logging in
6.4.2. Working with alternative configurations
6.4.3. Initial Access and Registration Access Tokens
6.4.4. Creating a client configuration
6.4.5. Retrieving a client configuration
6.4.6. Modifying a client configuration
6.4.7. Deleting a client configuration
6.4.8. Refreshing invalid Registration Access Tokens

6.5. TROUBLESHOOTING

104
105
105
106
106
107
109
109
109

111
111
111

112
112
113
113
114
114
114
115
115

117
117
117
118

119
119
119
119

120
120
120
121
121
121
121
122

124
124
124
125
126
127
127
127
128
129
129
130
131
131

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

4

. .CHAPTER 7. USING TOKEN EXCHANGE
7.1. HOW TOKEN EXCHANGE WORKS

7.1.1. Form parameters
7.1.2. Responses from a token exchange request

7.2. INTERNAL TOKEN TO INTERNAL TOKEN EXCHANGE
7.2.1. Granting permission for the exchange
7.2.2. Making the request

7.3. INTERNAL TOKEN TO EXTERNAL TOKEN EXCHANGE
7.3.1. Granting permission for the exchange
7.3.2. Making the request

7.4. EXTERNAL TOKEN TO INTERNAL TOKEN EXCHANGE
7.4.1. Granting permission for the exchange
7.4.2. Making the request

7.5. IMPERSONATION
7.5.1. Granting permission for the exchange
7.5.2. Making the request

7.6. DIRECT NAKED IMPERSONATION
7.6.1. Granting permission for the exchange
7.6.2. Making the request

7.7. EXPAND PERMISSION MODEL WITH SERVICE ACCOUNTS
7.8. EXCHANGE VULNERABILITIES

132
132
132
133
134
134
137
138
138
140
141

142
142
143
143
143
143
143
146
146
146

Table of Contents

5

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

6

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

7

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. PLANNING FOR SECURING APPLICATIONS AND
SERVICES

Red Hat Single Sign-On supports both OpenID Connect (an extension to OAuth 2.0) and SAML 2.0.
When securing clients and services the first thing you need to decide is which of the two you are going to
use. If you want you can also choose to secure some with OpenID Connect and others with SAML.

To secure clients and services you are also going to need an adapter or library for the protocol you’ve
selected. Red Hat Single Sign-On comes with its own adapters for selected platforms, but it is also
possible to use generic OpenID Connect Relying Party and SAML Service Provider libraries.

1.1. CLIENT ADAPTERS

Red Hat Single Sign-On client adapters are libraries that make it very easy to secure applications and
services with Red Hat Single Sign-On. We call them adapters rather than libraries as they provide a tight
integration to the underlying platform and framework. This makes our adapters easy to use and they
require less boilerplate code than what is typically required by a library.

1.2. SUPPORTED PLATFORMS

Red Hat Single Sign-On enables you to protect applications running on different platforms and using
different technology stacks using OpenID Connect and SAML protocols.

1.2.1. OpenID Connect

1.2.1.1. Java

JBoss EAP

Servlet Filter

Spring Boot

1.2.1.2. JavaScript (client-side)

JavaScript

1.2.1.3. Node.js (server-side)

Node.js

1.2.2. SAML

1.2.2.1. Java

JBoss EAP

Servlet filter

1.2.2.2. Apache HTTP Server

mod_auth_mellon

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

8

1.3. SUPPORTED PROTOCOLS

Red Hat Single Sign-On supports both OpenID Connect and SAML protocols.

1.3.1. OpenID Connect

OpenID Connect (OIDC) is an authentication protocol that is an extension of OAuth 2.0. While OAuth
2.0 is only a framework for building authorization protocols and is mainly incomplete, OIDC is a full-
fledged authentication and authorization protocol. OIDC also makes heavy use of the Json Web Token
(JWT) set of standards. These standards define an identity token JSON format and ways to digitally
sign and encrypt that data in a compact and web-friendly way.

There are really two types of use cases when using OIDC. The first is an application that asks the Red
Hat Single Sign-On server to authenticate a user for them. After a successful login, the application will
receive an identity token and an access token. The identity token contains information about the user
such as username, email, and other profile information. The access token is digitally signed by the realm
and contains access information (like user role mappings) that the application can use to determine
what resources the user is allowed to access on the application.

The second type of use cases is that of a client that wants to gain access to remote services. In this case,
the client asks Red Hat Single Sign-On to obtain an access token it can use to invoke on other remote
services on behalf of the user. Red Hat Single Sign-On authenticates the user then asks the user for
consent to grant access to the client requesting it. The client then receives the access token. This access
token is digitally signed by the realm. The client can make REST invocations on remote services using
this access token. The REST service extracts the access token, verifies the signature of the token, then
decides based on access information within the token whether or not to process the request.

1.3.2. SAML 2.0

SAML 2.0 is a similar specification to OIDC but a lot older and more mature. It has its roots in SOAP and
the plethora of WS-* specifications so it tends to be a bit more verbose than OIDC. SAML 2.0 is
primarily an authentication protocol that works by exchanging XML documents between the
authentication server and the application. XML signatures and encryption are used to verify requests
and responses.

In Red Hat Single Sign-On SAML serves two types of use cases: browser applications and REST
invocations.

There are really two types of use cases when using SAML. The first is an application that asks the Red
Hat Single Sign-On server to authenticate a user for them. After a successful login, the application will
receive an XML document that contains something called a SAML assertion that specifies various
attributes about the user. This XML document is digitally signed by the realm and contains access
information (like user role mappings) that the application can use to determine what resources the user
is allowed to access on the application.

The second type of use cases is that of a client that wants to gain access to remote services. In this case,
the client asks Red Hat Single Sign-On to obtain a SAML assertion it can use to invoke on other remote
services on behalf of the user.

1.3.3. OpenID Connect vs. SAML

Choosing between OpenID Connect and SAML is not just a matter of using a newer protocol (OIDC)
instead of the older more mature protocol (SAML).

In most cases Red Hat Single Sign-On recommends using OIDC.

CHAPTER 1. PLANNING FOR SECURING APPLICATIONS AND SERVICES

9

https://openid.net/connect/
https://datatracker.ietf.org/doc/html/rfc6749
https://jwt.io
http://saml.xml.org/saml-specifications

SAML tends to be a bit more verbose than OIDC.

Beyond verbosity of exchanged data, if you compare the specifications you’ll find that OIDC was
designed to work with the web while SAML was retrofitted to work on top of the web. For example,
OIDC is also more suited for HTML5/JavaScript applications because it is easier to implement on the
client side than SAML. As tokens are in the JSON format, they are easier to consume by JavaScript. You
will also find several nice features that make implementing security in your web applications easier. For
example, check out the iframe trick that the specification uses to easily determine if a user is still logged
in or not.

SAML has its uses though. As you see the OIDC specifications evolve you see they implement more and
more features that SAML has had for years. What we often see is that people pick SAML over OIDC
because of the perception that it is more mature and also because they already have existing
applications that are secured with it.

1.4. TERMINOLOGY

These terms are used in this guide:

Clients are entities that interact with Red Hat Single Sign-On to authenticate users and obtain
tokens. Most often, clients are applications and services acting on behalf of users that provide a
single sign-on experience to their users and access other services using the tokens issued by the
server. Clients can also be entities only interested in obtaining tokens and acting on their own
behalf for accessing other services.

Applications include a wide range of applications that work for specific platforms for each
protocol

Client adapters are libraries that make it easy to secure applications and services with Red Hat
Single Sign-On. They provide a tight integration to the underlying platform and framework.

Creating a client and registering a client are the same action. Creating a Client is the term
used to create a client by using the Admin Console. Registering a client is the term used to
register a client by using the Red Hat Single Sign-On Client Registration Service.

A service account is a type of client that is able to obtain tokens on its own behalf.

1.5. BASIC STEPS TO SECURE APPLICATIONS AND SERVICES

These are the basic steps for securing an application or a service in Red Hat Single Sign-On.

1. Configure a client using one of these options:

A Red Hat Single Sign-On adapter

A generic OpenID connect or SAML library

2. Register a client using one of these options:

The Red Hat Single Sign-On Admin Console

The client registration service

The CLI

Additional resources

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

10

https://openid.net/specs/openid-connect-session-1_0.html#ChangeNotification

This guide provides the detailed instructions for these steps. Related information exists in the
Server Administration Guide. That guide provides instructions for using Admin Console to create
a client. Creating a client is the same task as registering a client using the Red Hat Single Sign-
On Client Registration Service.

CHAPTER 1. PLANNING FOR SECURING APPLICATIONS AND SERVICES

11

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/

CHAPTER 2. USING OPENID CONNECT TO SECURE
APPLICATIONS AND SERVICES

This section describes how you can secure applications and services with OpenID Connect using either
Red Hat Single Sign-On adapters or generic OpenID Connect Relying Party libraries.

2.1. JAVA ADAPTERS

Red Hat Single Sign-On comes with a range of different adapters for Java application. Selecting the
correct adapter depends on the target platform.

All Java adapters share a set of common configuration options described in the Java Adapters Config
chapter.

2.1.1. Java adapter configuration

Each Java adapter supported by Red Hat Single Sign-On can be configured by a simple JSON file. This
is what one might look like:

{
 "realm" : "demo",
 "resource" : "customer-portal",
 "realm-public-key" : "MIGfMA0GCSqGSIb3D...31LwIDAQAB",
 "auth-server-url" : "https://localhost:8443/auth",
 "ssl-required" : "external",
 "use-resource-role-mappings" : false,
 "enable-cors" : true,
 "cors-max-age" : 1000,
 "cors-allowed-methods" : "POST, PUT, DELETE, GET",
 "cors-exposed-headers" : "WWW-Authenticate, My-custom-exposed-Header",
 "bearer-only" : false,
 "enable-basic-auth" : false,
 "expose-token" : true,
 "verify-token-audience" : true,
 "credentials" : {
 "secret" : "234234-234234-234234"
 },

 "connection-pool-size" : 20,
 "socket-timeout-millis" : 5000,
 "connection-timeout-millis" : 6000,
 "connection-ttl-millis" : 500,
 "disable-trust-manager" : false,
 "allow-any-hostname" : false,
 "truststore" : "path/to/truststore.jks",
 "truststore-password" : "geheim",
 "client-keystore" : "path/to/client-keystore.jks",
 "client-keystore-password" : "geheim",
 "client-key-password" : "geheim",
 "token-minimum-time-to-live" : 10,
 "min-time-between-jwks-requests" : 10,
 "public-key-cache-ttl" : 86400,
 "redirect-rewrite-rules" : {

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

12

You can use ${… } enclosure for system property replacement. For example ${jboss.server.config.dir}
would be replaced by /path/to/Red Hat Single Sign-On. Replacement of environment variables is also
supported via the env prefix, for example ${env.MY_ENVIRONMENT_VARIABLE}.

The initial config file can be obtained from the admin console. This can be done by opening the admin
console, select Clients from the menu and clicking on the corresponding client. Once the page for the
client is opened click on the Installation tab and select Keycloak OIDC JSON.

Here is a description of each configuration option:

realm

Name of the realm. This is REQUIRED.

resource

The client-id of the application. Each application has a client-id that is used to identify the
application. This is REQUIRED.

realm-public-key

PEM format of the realm public key. You can obtain this from the Admin Console. This is OPTIONAL
and it’s not recommended to set it. If not set, the adapter will download this from Red Hat Single
Sign-On and it will always re-download it when needed (eg. Red Hat Single Sign-On rotates its keys).
However if realm-public-key is set, then adapter will never download new keys from Red Hat Single
Sign-On, so when Red Hat Single Sign-On rotate it’s keys, adapter will break.

auth-server-url

The base URL of the Red Hat Single Sign-On server. All other Red Hat Single Sign-On pages and
REST service endpoints are derived from this. It is usually of the form https://host:port/auth. This is
REQUIRED.

ssl-required

Ensures that all communication to and from the Red Hat Single Sign-On server is over HTTPS. In
production this should be set to all. This is OPTIONAL. The default value is external meaning that
HTTPS is required by default for external requests. Valid values are 'all', 'external' and 'none'.

confidential-port

The confidential port used by the Red Hat Single Sign-On server for secure connections over
SSL/TLS. This is OPTIONAL. The default value is 8443.

use-resource-role-mappings

If set to true, the adapter will look inside the token for application level role mappings for the user. If
false, it will look at the realm level for user role mappings. This is OPTIONAL. The default value is
false.

public-client

If set to true, the adapter will not send credentials for the client to Red Hat Single Sign-On. This is
OPTIONAL. The default value is false.

enable-cors

This enables CORS support. It will handle CORS preflight requests. It will also look into the access
token to determine valid origins. This is OPTIONAL. The default value is false.

cors-max-age

If CORS is enabled, this sets the value of the Access-Control-Max-Age header. This is OPTIONAL. If
not set, this header is not returned in CORS responses.

 "^/wsmaster/api/(.*)$" : "/api/$1"
 }
}

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

13

cors-allowed-methods

If CORS is enabled, this sets the value of the Access-Control-Allow-Methods header. This should
be a comma-separated string. This is OPTIONAL. If not set, this header is not returned in CORS
responses.

cors-allowed-headers

If CORS is enabled, this sets the value of the Access-Control-Allow-Headers header. This should be
a comma-separated string. This is OPTIONAL. If not set, this header is not returned in CORS
responses.

cors-exposed-headers

If CORS is enabled, this sets the value of the Access-Control-Expose-Headers header. This should
be a comma-separated string. This is OPTIONAL. If not set, this header is not returned in CORS
responses.

bearer-only

This should be set to true for services. If enabled the adapter will not attempt to authenticate users,
but only verify bearer tokens. This is OPTIONAL. The default value is false.

autodetect-bearer-only

This should be set to true if your application serves both a web application and web services (for
example SOAP or REST). It allows you to redirect unauthenticated users of the web application to
the Red Hat Single Sign-On login page, but send an HTTP 401 status code to unauthenticated SOAP
or REST clients instead as they would not understand a redirect to the login page. Red Hat Single
Sign-On auto-detects SOAP or REST clients based on typical headers like X-Requested-With,
SOAPAction or Accept. The default value is false.

enable-basic-auth

This tells the adapter to also support basic authentication. If this option is enabled, then secret must
also be provided. This is OPTIONAL. The default value is false.

expose-token

If true, an authenticated browser client (via a JavaScript HTTP invocation) can obtain the signed
access token via the URL root/k_query_bearer_token. This is OPTIONAL. The default value is false.

credentials

Specify the credentials of the application. This is an object notation where the key is the credential
type and the value is the value of the credential type. Currently password and jwt is supported. This is
REQUIRED only for clients with 'Confidential' access type.

connection-pool-size

This config option defines how many connections to the Red Hat Single Sign-On server should be
pooled. This is OPTIONAL. The default value is 20.

socket-timeout-millis

Timeout for socket waiting for data after establishing the connection in milliseconds. Maximum time
of inactivity between two data packets. A timeout value of zero is interpreted as an infinite timeout. A
negative value is interpreted as undefined (system default if applicable). The default value is -1. This
is OPTIONAL.

connection-timeout-millis

Timeout for establishing the connection with the remote host in milliseconds. A timeout value of zero
is interpreted as an infinite timeout. A negative value is interpreted as undefined (system default if
applicable). The default value is -1. This is OPTIONAL.

connection-ttl-millis

Connection time-to-live for client in milliseconds. A value less than or equal to zero is interpreted as
an infinite value. The default value is -1. This is OPTIONAL.

disable-trust-manager

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

14

If the Red Hat Single Sign-On server requires HTTPS and this config option is set to true you do not
have to specify a truststore. This setting should only be used during development and never in
production as it will disable verification of SSL certificates. This is OPTIONAL. The default value is
false.

allow-any-hostname

If the Red Hat Single Sign-On server requires HTTPS and this config option is set to true the Red
Hat Single Sign-On server’s certificate is validated via the truststore, but host name validation is not
done. This setting should only be used during development and never in production as it will disable
verification of SSL certificates. This seting may be useful in test environments This is OPTIONAL.
The default value is false.

proxy-url

The URL for the HTTP proxy if one is used.

truststore

The value is the file path to a truststore file. If you prefix the path with classpath:, then the truststore
will be obtained from the deployment’s classpath instead. Used for outgoing HTTPS communications
to the Red Hat Single Sign-On server. Client making HTTPS requests need a way to verify the host of
the server they are talking to. This is what the trustore does. The keystore contains one or more
trusted host certificates or certificate authorities. You can create this truststore by extracting the
public certificate of the Red Hat Single Sign-On server’s SSL keystore. This is REQUIRED unless ssl-
required is none or disable-trust-manager is true.

truststore-password

Password for the truststore. This is REQUIRED if truststore is set and the truststore requires a
password.

client-keystore

This is the file path to a keystore file. This keystore contains client certificate for two-way SSL when
the adapter makes HTTPS requests to the Red Hat Single Sign-On server. This is OPTIONAL.

client-keystore-password

Password for the client keystore. This is REQUIRED if client-keystore is set.

client-key-password

Password for the client’s key. This is REQUIRED if client-keystore is set.

always-refresh-token

If true, the adapter will refresh token in every request. Warning - when enabled this will result in a
request to Red Hat Single Sign-On for every request to your application.

register-node-at-startup

If true, then adapter will send registration request to Red Hat Single Sign-On. It’s false by default and
useful only when application is clustered. See Application Clustering for details

register-node-period

Period for re-registration adapter to Red Hat Single Sign-On. Useful when application is clustered.
See Application Clustering for details

token-store

Possible values are session and cookie. Default is session, which means that adapter stores account
info in HTTP Session. Alternative cookie means storage of info in cookie. See Application Clustering
for details

token-cookie-path

When using a cookie store, this option sets the path of the cookie used to store account info. If it’s a
relative path, then it is assumed that the application is running in a context root, and is interpreted
relative to that context root. If it’s an absolute path, then the absolute path is used to set the cookie
path. Defaults to use paths relative to the context root.

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

15

principal-attribute

OpenID Connect ID Token attribute to populate the UserPrincipal name with. If token attribute is
null, defaults to sub. Possible values are sub, preferred_username, email, name, nickname,
given_name, family_name.

turn-off-change-session-id-on-login

The session id is changed by default on a successful login on some platforms to plug a security attack
vector. Change this to true if you want to turn this off This is OPTIONAL. The default value is false.

token-minimum-time-to-live

Amount of time, in seconds, to preemptively refresh an active access token with the Red Hat Single
Sign-On server before it expires. This is especially useful when the access token is sent to another
REST client where it could expire before being evaluated. This value should never exceed the realm’s
access token lifespan. This is OPTIONAL. The default value is 0 seconds, so adapter will refresh
access token just if it’s expired.

min-time-between-jwks-requests

Amount of time, in seconds, specifying minimum interval between two requests to Red Hat Single
Sign-On to retrieve new public keys. It is 10 seconds by default. Adapter will always try to download
new public key when it recognize token with unknown kid . However it won’t try it more than once per
10 seconds (by default). This is to avoid DoS when attacker sends lots of tokens with bad kid forcing
adapter to send lots of requests to Red Hat Single Sign-On.

public-key-cache-ttl

Amount of time, in seconds, specifying maximum interval between two requests to Red Hat Single
Sign-On to retrieve new public keys. It is 86400 seconds (1 day) by default. Adapter will always try to
download new public key when it recognize token with unknown kid . If it recognize token with known
kid, it will just use the public key downloaded previously. However at least once per this configured
interval (1 day by default) will be new public key always downloaded even if the kid of token is already
known.

ignore-oauth-query-parameter

Defaults to false, if set to true will turn off processing of the access_token query parameter for
bearer token processing. Users will not be able to authenticate if they only pass in an access_token

redirect-rewrite-rules

If needed, specify the Redirect URI rewrite rule. This is an object notation where the key is the regular
expression to which the Redirect URI is to be matched and the value is the replacement String. $
character can be used for backreferences in the replacement String.

verify-token-audience

If set to true, then during authentication with the bearer token, the adapter will verify whether the
token contains this client name (resource) as an audience. The option is especially useful for services,
which primarily serve requests authenticated by the bearer token. This is set to false by default,
however for improved security, it is recommended to enable this. See Audience Support for more
details about audience support.

2.1.2. JBoss EAP adapter

You can install this adapter from a ZIP file or from an RPM.

Installing JBOSS EAP adapters from a ZIP file

Installing JBoss EAP 7 Adapters from an RPM

Installing JBoss EAP 6 Adapters from an RPM

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

16

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#audience-support

2.1.3. Installing JBOSS EAP adapters from a ZIP file

To be able to secure WAR apps deployed on JBoss EAP, you must install and configure the Red Hat
Single Sign-On adapter subsystem. You then have two options to secure your WARs.

You can provide an adapter config file in your WAR and change the auth-method to
KEYCLOAK within web.xml.

Alternatively, you do not have to modify your WAR at all and you can secure it via the Red Hat
Single Sign-On adapter subsystem configuration in the configuration file, such as
standalone.xml.

Both methods are described in this section.

Adapters are available as a separate archive depending on what server version you are using.

Procedure

1. Install the adapter that applies to your application server from the Sotware Downloads site.

Install on JBoss EAP 7:

$ cd $EAP_HOME
$ unzip rh-sso-7.6.7-eap7-adapter.zip

This ZIP archive contains JBoss Modules specific to the Red Hat Single Sign-On adapter. It
also contains JBoss CLI scripts to configure the adapter subsystem.

2. To configure the adapter subsystem, execute the appropriate command.

Install on JBoss EAP 7.1 or newer if the server is not running.

$./bin/jboss-cli.sh --file=bin/adapter-elytron-install-offline.cli

NOTE

The offline script is not available for JBoss EAP 6.4

Install on JBoss EAP 7.1 or newer if the server is running.

$./bin/jboss-cli.sh -c --file=bin/adapter-elytron-install.cli

NOTE

It is possible to use the legacy non-Elytron adapter on JBoss EAP 7.1 or
newer as well, meaning you can use adapter-install-offline.cli

NOTE

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

17

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=core.service.rhsso

NOTE

EAP supports OpenJDK 17 and Oracle JDK 17 since 7.4.CP7 and 7.4.CP8
respectively. Note that the new java version makes the elytron variant
compulsory, so do not use the legacy adapter with JDK 17. Also, after running
the adapter CLI file, execute the enable-elytron-se17.cli script provided by
EAP. Both scripts are necessary to configure the elytron adapter and remove
the incompatible EAP subsystems. For more details, see this Security
Configuration Changes article.

Install on JBoss EAP 6.4

$./bin/jboss-cli.sh -c --file=bin/adapter-install.cli

2.1.3.1. JBoss SSO

JBoss EAP has built-in support for single sign-on for web applications deployed to the same JBoss EAP
instance. This should not be enabled when using Red Hat Single Sign-On.

2.1.3.2. Securing a WAR

This section describes how to secure a WAR directly by adding configuration and editing files within your
WAR package.

Procedure

1. Create a keycloak.json adapter configuration file within the WEB-INF directory of your WAR.
The format of this configuration file is described in the Java adapter configuration section.

2. Set the auth-method to KEYCLOAK in web.xml.

3. Use standard servlet security to specify role-base constraints on your URLs.
Here’s an example:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

 <module-name>application</module-name>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Admins</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

18

https://access.redhat.com/articles/2026253#EAP_74
https://access.redhat.com/articles/6956863

2.1.3.3. Securing WARs via adapter subsystem

You do not have to modify your WAR to secure it with Red Hat Single Sign-On. Instead you can
externally secure it via the Red Hat Single Sign-On Adapter Subsystem. While you don’t have to specify
KEYCLOAK as an auth-method, you still have to define the security-constraints in web.xml. You do
not, however, have to create a WEB-INF/keycloak.json file. The metadata is instead defined within
server configuration (standalone.xml) in the Red Hat Single Sign-On subsystem definition.

The secure-deployment name attribute identifies the WAR you want to secure. Its value is the module-
name defined in web.xml with .war appended. The rest of the configuration corresponds pretty much
one to one with the keycloak.json configuration options defined in Java adapter configuration .

The exception is the credential element.

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Customers</web-resource-name>
 <url-pattern>/customers/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>

 <login-config>
 <auth-method>KEYCLOAK</auth-method>
 <realm-name>this is ignored currently</realm-name>
 </login-config>

 <security-role>
 <role-name>admin</role-name>
 </security-role>
 <security-role>
 <role-name>user</role-name>
 </security-role>
</web-app>

<extensions>
 <extension module="org.keycloak.keycloak-adapter-subsystem"/>
</extensions>

<profile>
 <subsystem xmlns="urn:jboss:domain:keycloak:1.1">
 <secure-deployment name="WAR MODULE NAME.war">
 <realm>demo</realm>
 <auth-server-url>http://localhost:8081/auth</auth-server-url>
 <ssl-required>external</ssl-required>
 <resource>customer-portal</resource>
 <credential name="secret">password</credential>
 </secure-deployment>
 </subsystem>
</profile>

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

19

To make it easier for you, you can go to the Red Hat Single Sign-On Admin Console and go to the
Client/Installation tab of the application this WAR is aligned with. It provides an example XML file you
can cut and paste.

If you have multiple deployments secured by the same realm you can share the realm configuration in a
separate element. For example:

2.1.3.4. Security domain

The security context is propagated to the EJB tier automatically.

2.1.4. Installing JBoss EAP 7 adapters from an RPM

NOTE

With Red Hat Enterprise Linux 7, the term channel was replaced with the term repository.
In these instructions only the term repository is used.

Prerequisites

You must subscribe to the JBoss EAP 7.4 repository before you can install the JBoss EAP 7 adapters
from an RPM.

Ensure that your Red Hat Enterprise Linux system is registered to your account using Red Hat
Subscription Manager. For more information see the Red Hat Subscription Management
documentation.

If you are already subscribed to another JBoss EAP repository, you must unsubscribe from that
repository first.
For Red Hat Enterprise Linux 6, 7: Using Red Hat Subscription Manager, subscribe to the JBoss
EAP 7.4 repository using the following command. Replace <RHEL_VERSION> with either 6 or 7
depending on your Red Hat Enterprise Linux version.

<subsystem xmlns="urn:jboss:domain:keycloak:1.1">
 <realm name="demo">
 <auth-server-url>http://localhost:8080/auth</auth-server-url>
 <ssl-required>external</ssl-required>
 </realm>
 <secure-deployment name="customer-portal.war">
 <realm>demo</realm>
 <resource>customer-portal</resource>
 <credential name="secret">password</credential>
 </secure-deployment>
 <secure-deployment name="product-portal.war">
 <realm>demo</realm>
 <resource>product-portal</resource>
 <credential name="secret">password</credential>
 </secure-deployment>
 <secure-deployment name="database.war">
 <realm>demo</realm>
 <resource>database-service</resource>
 <bearer-only>true</bearer-only>
 </secure-deployment>
</subsystem>

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

20

https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html-single/quick_registration_for_rhel/index

For Red Hat Enterprise Linux 8: Using Red Hat Subscription Manager, subscribe to the JBoss
EAP 7.4 repository using the following command:

Procedure

1. Install the JBoss EAP 7 adapters for OIDC based on your version of Red Hat Enterprise Linux.

Install on Red Hat Enterprise Linux 6, 7:

Install on Red Hat Enterprise Linux 8:

NOTE

The default EAP_HOME path for the RPM installation is
/opt/rh/eap7/root/usr/share/wildfly.

2. Run the installation script for the OIDC module.

Your installation is complete.

2.1.5. Installing JBoss EAP 6 adapters from an RPM

NOTE

With Red Hat Enterprise Linux 7, the term channel was replaced with the term repository.
In these instructions only the term repository is used.

You must subscribe to the JBoss EAP 6 repository before you can install the EAP 6 adapters from an
RPM.

Prerequisites

Ensure that your Red Hat Enterprise Linux system is registered to your account using Red Hat
Subscription Manager. For more information see the Red Hat Subscription Management
documentation.

If you are already subscribed to another JBoss EAP repository, you must unsubscribe from that
repository first.

Using Red Hat Subscription Manager, subscribe to the JBoss EAP 6 repository using the

$ sudo subscription-manager repos --enable=jb-eap-7-for-rhel-<RHEL_VERSION>-server-
rpms

$ sudo subscription-manager repos --enable=jb-eap-7.4-for-rhel-8-x86_64-rpms --
enable=rhel-8-for-x86_64-baseos-rpms --enable=rhel-8-for-x86_64-appstream-rpms

$ sudo yum install eap7-keycloak-adapter-sso7_6

$ sudo dnf install eap7-keycloak-adapter-sso7_6

$ $EAP_HOME/bin/jboss-cli.sh -c --file=$EAP_HOME/bin/adapter-install.cli

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

21

https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html-single/quick_registration_for_rhel/index

Using Red Hat Subscription Manager, subscribe to the JBoss EAP 6 repository using the
following command. Replace <RHEL_VERSION> with either 6 or 7 depending on your Red Hat
Enterprise Linux version.

Procedure

1. Install the EAP 6 adapters for OIDC using the following command:

NOTE

The default EAP_HOME path for the RPM installation is
/opt/rh/eap6/root/usr/share/wildfly.

2. Run the installation script for the OIDC module.

Your installation is complete.

2.1.6. JBoss Fuse 6 adapter

Red Hat Single Sign-On supports securing your web applications running inside JBoss Fuse 6.

WARNING

The only supported version of Fuse 6 is the latest release. If you use earlier versions
of Fuse 6, it is possible that some functions will not work correctly. In particular, the
Hawtio integration will not work with earlier versions of Fuse 6.

Security for the following items is supported for Fuse:

Classic WAR applications deployed on Fuse with Pax Web War Extender

Servlets deployed on Fuse as OSGI services with Pax Web Whiteboard Extender

Apache Camel Jetty endpoints running with the Camel Jetty component

Apache CXF endpoints running on their own separate Jetty engine

Apache CXF endpoints running on the default engine provided by the CXF servlet

SSH and JMX admin access

Hawtio administration console

$ sudo subscription-manager repos --enable=jb-eap-6-for-rhel-<RHEL_VERSION>-server-
rpms

$ sudo yum install keycloak-adapter-sso7_6-eap6

$ $EAP_HOME/bin/jboss-cli.sh -c --file=$EAP_HOME/bin/adapter-install.cli

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

22

https://developers.redhat.com/products/fuse/overview
https://hawt.io/
https://camel.apache.org/
https://camel.apache.org/components/next/jetty-component.html
https://cxf.apache.org/
https://cxf.apache.org/docs/jetty-configuration.html
https://cxf.apache.org/
https://hawt.io/

2.1.6.1. Securing your web applications inside Fuse 6

You must first install the Red Hat Single Sign-On Karaf feature. Next you will need to perform the steps
according to the type of application you want to secure. All referenced web applications require injecting
the Red Hat Single Sign-On Jetty authenticator into the underlying Jetty server. The steps to achieve
this depend on the application type. The details are described below.

2.1.6.2. Installing the Keycloak feature

You must first install the keycloak feature in the JBoss Fuse environment. The keycloak feature
includes the Fuse adapter and all third-party dependencies. You can install it either from the Maven
repository or from an archive.

2.1.6.2.1. Installing from the Maven repository

Prerequisites

You must be online and have access to the Maven repository.

For Red Hat Single Sign-On, configure a proper Maven repository, so you can install the
artifacts. For more information see the JBoss Enterprise Maven repository page.
Assuming the Maven repository is https://maven.repository.redhat.com/ga/, add the following
to the $FUSE_HOME/etc/org.ops4j.pax.url.mvn.cfg file and add the repository to the list of
supported repositories. For example:

 org.ops4j.pax.url.mvn.repositories= \
 https://maven.repository.redhat.com/ga/@id=redhat.product.repo
 http://repo1.maven.org/maven2@id=maven.central.repo, \
 ...

Procedure

1. Start JBoss Fuse 6.3.0 Rollup 12

2. In the Karaf terminal type:

features:addurl mvn:org.keycloak/keycloak-osgi-features/18.0.12.redhat-00001/xml/features
features:install keycloak

3. You might also need to install the Jetty 9 feature:

features:install keycloak-jetty9-adapter

4. Ensure that the features were installed:

features:list | grep keycloak

2.1.6.2.2. Installing from the ZIP bundle

This installation option is useful if you are offline or do not want to use Maven to obtain the JAR files and
other artifacts.

Procedure

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

23

https://access.redhat.com/maven-repository
https://maven.repository.redhat.com/ga/

1. Download the Red Hat Single Sign-On Fuse adapter ZIP archive from the Sotware Downloads
site.

2. Unzip it into the root directory of JBoss Fuse. The dependencies are then installed under the
system directory. You can overwrite all existing jar files.
Use this for JBoss Fuse 6.3.0 Rollup 12:

cd /path-to-fuse/jboss-fuse-6.3.0.redhat-254
unzip -q /path-to-adapter-zip/rh-sso-7.6.7-fuse-adapter.zip

3. Start Fuse and run these commands in the fuse/karaf terminal:

features:addurl mvn:org.keycloak/keycloak-osgi-features/18.0.12.redhat-00001/xml/features
features:install keycloak

4. Install the corresponding Jetty adapter. Since the artifacts are available directly in the JBoss
Fuse system directory, you do not need to use the Maven repository.

2.1.6.3. Securing a Classic WAR application

Procedure

1. In the /WEB-INF/web.xml file, declare the necessary:

security constraints in the <security-constraint> element

login configuration in the <login-config> element

security roles in the <security-role> element.
For example:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

 <module-name>customer-portal</module-name>

 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Customers</web-resource-name>
 <url-pattern>/customers/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
 </security-constraint>

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

24

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=core.service.rhsso

2. Add the jetty-web.xml file with the authenticator to the /WEB-INF/jetty-web.xml file.
For example:

3. Within the /WEB-INF/ directory of your WAR, create a new file, keycloak.json. The format of this
configuration file is described in the Java Adapters Config section. It is also possible to make
this file available externally as described in Configuring the External Adapter .

4. Ensure your WAR application imports org.keycloak.adapters.jetty and maybe some more
packages in the META-INF/MANIFEST.MF file, under the Import-Package header. Using
maven-bundle-plugin in your project properly generates OSGI headers in manifest. Note that
"*" resolution for the package does not import the org.keycloak.adapters.jetty package, since
it is not used by the application or the Blueprint or Spring descriptor, but is rather used in the
jetty-web.xml file.
The list of the packages to import might look like this:

org.keycloak.adapters.jetty;version="18.0.12.redhat-00001",
org.keycloak.adapters;version="18.0.12.redhat-00001",
org.keycloak.constants;version="18.0.12.redhat-00001",
org.keycloak.util;version="18.0.12.redhat-00001",
org.keycloak.*;version="18.0.12.redhat-00001",
*;resolution:=optional

2.1.6.3.1. Configuring the External Adapter

If you do not want the keycloak.json adapter configuration file to be bundled inside your WAR
application, but instead made available externally and loaded based on naming conventions, use this
configuration method.

To enable the functionality, add this section to your /WEB_INF/web.xml file:

 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>does-not-matter</realm-name>
 </login-config>

 <security-role>
 <role-name>admin</role-name>
 </security-role>
 <security-role>
 <role-name>user</role-name>
 </security-role>
</web-app>

<?xml version="1.0"?>
<!DOCTYPE Configure PUBLIC "-//Mort Bay Consulting//DTD Configure//EN"
 "http://www.eclipse.org/jetty/configure_9_0.dtd">
<Configure class="org.eclipse.jetty.webapp.WebAppContext">
 <Get name="securityHandler">
 <Set name="authenticator">
 <New class="org.keycloak.adapters.jetty.KeycloakJettyAuthenticator">
 </New>
 </Set>
 </Get>
</Configure>

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

25

That component uses keycloak.config or karaf.etc java properties to search for a base folder to locate
the configuration. Then inside one of those folders it searches for a file called <your_web_context>-
keycloak.json.

So, for example, if your web application has context my-portal, then your adapter configuration is
loaded from the $FUSE_HOME/etc/my-portal-keycloak.json file.

2.1.6.4. Securing a servlet deployed as an OSGI Service

You can use this method if you have a servlet class inside your OSGI bundled project that is not
deployed as a classic WAR application. Fuse uses Pax Web Whiteboard Extender to deploy such servlets
as web applications.

Procedure

1. Red Hat Single Sign-On provides
org.keycloak.adapters.osgi.undertow.PaxWebIntegrationService, which allows injecting
jetty-web.xml and configuring security constraints for your application. You need to declare
such services in the OSGI-INF/blueprint/blueprint.xml file inside your application. Note that
your servlet needs to depend on it. An example configuration:

<context-param>
 <param-name>keycloak.config.resolver</param-name>
 <param-value>org.keycloak.adapters.osgi.PathBasedKeycloakConfigResolver</param-value>
</context-param>

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
 http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

 <!-- Using jetty bean just for the compatibility with other fuse services -->
 <bean id="servletConstraintMapping" class="org.eclipse.jetty.security.ConstraintMapping">
 <property name="constraint">
 <bean class="org.eclipse.jetty.util.security.Constraint">
 <property name="name" value="cst1"/>
 <property name="roles">
 <list>
 <value>user</value>
 </list>
 </property>
 <property name="authenticate" value="true"/>
 <property name="dataConstraint" value="0"/>
 </bean>
 </property>
 <property name="pathSpec" value="/product-portal/*"/>
 </bean>

 <bean id="keycloakPaxWebIntegration"
class="org.keycloak.adapters.osgi.PaxWebIntegrationService"
 init-method="start" destroy-method="stop">
 <property name="jettyWebXmlLocation" value="/WEB-INF/jetty-web.xml" />
 <property name="bundleContext" ref="blueprintBundleContext" />
 <property name="constraintMappings">

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

26

You might need to have the WEB-INF directory inside your project (even if your project is
not a web application) and create the /WEB-INF/jetty-web.xml and /WEB-
INF/keycloak.json files as in the Classic WAR application section. Note you don’t need the
web.xml file as the security-constraints are declared in the blueprint configuration file.

2. The Import-Package in META-INF/MANIFEST.MF must contain at least these imports:

org.keycloak.adapters.jetty;version="18.0.12.redhat-00001",
org.keycloak.adapters;version="18.0.12.redhat-00001",
org.keycloak.constants;version="18.0.12.redhat-00001",
org.keycloak.util;version="18.0.12.redhat-00001",
org.keycloak.*;version="18.0.12.redhat-00001",
*;resolution:=optional

2.1.6.5. Securing an Apache Camel application

You can secure Apache Camel endpoints implemented with the camel-jetty component by adding the
securityHandler with KeycloakJettyAuthenticator and the proper security constraints injected. You can
add the OSGI-INF/blueprint/blueprint.xml file to your Camel application with a similar configuration as
below. The roles, security constraint mappings, and Red Hat Single Sign-On adapter configuration might
differ slightly depending on your environment and needs.

For example:

 <list>
 <ref component-id="servletConstraintMapping" />
 </list>
 </property>
 </bean>

 <bean id="productServlet" class="org.keycloak.example.ProductPortalServlet" depends-
on="keycloakPaxWebIntegration">
 </bean>

 <service ref="productServlet" interface="javax.servlet.Servlet">
 <service-properties>
 <entry key="alias" value="/product-portal" />
 <entry key="servlet-name" value="ProductServlet" />
 <entry key="keycloak.config.file" value="/keycloak.json" />
 </service-properties>
 </service>

</blueprint>

<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:camel="http://camel.apache.org/schema/blueprint"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint http://camel.apache.org/schema/blueprint/camel-
blueprint.xsd">

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

27

https://camel.apache.org/components/next/jetty-component.html

 <bean id="kcAdapterConfig" class="org.keycloak.representations.adapters.config.AdapterConfig">
 <property name="realm" value="demo"/>
 <property name="resource" value="admin-camel-endpoint"/>
 <property name="bearerOnly" value="true"/>
 <property name="authServerUrl" value="http://localhost:8080/auth" />
 <property name="sslRequired" value="EXTERNAL"/>
 </bean>

 <bean id="keycloakAuthenticator" class="org.keycloak.adapters.jetty.KeycloakJettyAuthenticator">
 <property name="adapterConfig" ref="kcAdapterConfig"/>
 </bean>

 <bean id="constraint" class="org.eclipse.jetty.util.security.Constraint">
 <property name="name" value="Customers"/>
 <property name="roles">
 <list>
 <value>admin</value>
 </list>
 </property>
 <property name="authenticate" value="true"/>
 <property name="dataConstraint" value="0"/>
 </bean>

 <bean id="constraintMapping" class="org.eclipse.jetty.security.ConstraintMapping">
 <property name="constraint" ref="constraint"/>
 <property name="pathSpec" value="/*"/>
 </bean>

 <bean id="securityHandler" class="org.eclipse.jetty.security.ConstraintSecurityHandler">
 <property name="authenticator" ref="keycloakAuthenticator" />
 <property name="constraintMappings">
 <list>
 <ref component-id="constraintMapping" />
 </list>
 </property>
 <property name="authMethod" value="BASIC"/>
 <property name="realmName" value="does-not-matter"/>
 </bean>

 <bean id="sessionHandler" class="org.keycloak.adapters.jetty.spi.WrappingSessionHandler">
 <property name="handler" ref="securityHandler" />
 </bean>

 <bean id="helloProcessor" class="org.keycloak.example.CamelHelloProcessor" />

 <camelContext id="blueprintContext"
 trace="false"
 xmlns="http://camel.apache.org/schema/blueprint">
 <route id="httpBridge">
 <from uri="jetty:http://0.0.0.0:8383/admin-camel-endpoint?
handlers=sessionHandler&matchOnUriPrefix=true" />
 <process ref="helloProcessor" />
 <log message="The message from camel endpoint contains ${body}"/>
 </route>

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

28

The Import-Package in META-INF/MANIFEST.MF needs to contain these imports:

javax.servlet;version="[3,4)",
javax.servlet.http;version="[3,4)",
org.apache.camel.*,
org.apache.camel;version="[2.13,3)",
org.eclipse.jetty.security;version="[9,10)",
org.eclipse.jetty.server.nio;version="[9,10)",
org.eclipse.jetty.util.security;version="[9,10)",
org.keycloak.*;version="18.0.12.redhat-00001",
org.osgi.service.blueprint,
org.osgi.service.blueprint.container,
org.osgi.service.event,

2.1.6.6. Camel RestDSL

Camel RestDSL is a Camel feature used to define your REST endpoints in a fluent way. But you must still
use specific implementation classes and provide instructions on how to integrate with Red Hat Single
Sign-On.

The way to configure the integration mechanism depends on the Camel component for which you
configure your RestDSL-defined routes.

The following example shows how to configure integration using the Jetty component, with references
to some of the beans defined in previous Blueprint example.

 </camelContext>

</blueprint>

<bean id="securityHandlerRest" class="org.eclipse.jetty.security.ConstraintSecurityHandler">
 <property name="authenticator" ref="keycloakAuthenticator" />
 <property name="constraintMappings">
 <list>
 <ref component-id="constraintMapping" />
 </list>
 </property>
 <property name="authMethod" value="BASIC"/>
 <property name="realmName" value="does-not-matter"/>
</bean>

<bean id="sessionHandlerRest" class="org.keycloak.adapters.jetty.spi.WrappingSessionHandler">
 <property name="handler" ref="securityHandlerRest" />
</bean>

<camelContext id="blueprintContext"
 trace="false"
 xmlns="http://camel.apache.org/schema/blueprint">

 <restConfiguration component="jetty" contextPath="/restdsl"
 port="8484">
 <!--the link with Keycloak security handlers happens here-->
 <endpointProperty key="handlers" value="sessionHandlerRest"></endpointProperty>
 <endpointProperty key="matchOnUriPrefix" value="true"></endpointProperty>

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

29

2.1.6.7. Securing an Apache CXF endpoint on a separate Jetty engine

Procedure

To run your CXF endpoints secured by Red Hat Single Sign-On on separate Jetty engines, perform the
following procedure.

1. Add META-INF/spring/beans.xml to your application, and in it, declare httpj:engine-factory
with Jetty SecurityHandler with injected KeycloakJettyAuthenticator. The configuration for a
CFX JAX-WS application might resemble this one:

 </restConfiguration>

 <rest path="/hello" >
 <description>Hello rest service</description>
 <get uri="/{id}" outType="java.lang.String">
 <description>Just an helllo</description>
 <to uri="direct:justDirect" />
 </get>

 </rest>

 <route id="justDirect">
 <from uri="direct:justDirect"/>
 <process ref="helloProcessor" />
 <log message="RestDSL correctly invoked ${body}"/>
 <setBody>
 <constant>(__This second sentence is returned from a Camel RestDSL
endpoint__)</constant>
 </setBody>
 </route>

</camelContext>

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:httpj="http://cxf.apache.org/transports/http-jetty/configuration"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/schemas/configuration/http-jetty.xsd">

 <import resource="classpath:META-INF/cxf/cxf.xml" />

 <bean id="kcAdapterConfig"
class="org.keycloak.representations.adapters.config.AdapterConfig">
 <property name="realm" value="demo"/>
 <property name="resource" value="custom-cxf-endpoint"/>
 <property name="bearerOnly" value="true"/>

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

30

For the CXF JAX-RS application, the only difference might be in the configuration of the
endpoint dependent on engine-factory:

 <property name="authServerUrl" value="http://localhost:8080/auth" />
 <property name="sslRequired" value="EXTERNAL"/>
 </bean>

 <bean id="keycloakAuthenticator"
class="org.keycloak.adapters.jetty.KeycloakJettyAuthenticator">
 <property name="adapterConfig">
 <ref local="kcAdapterConfig" />
 </property>
 </bean>

 <bean id="constraint" class="org.eclipse.jetty.util.security.Constraint">
 <property name="name" value="Customers"/>
 <property name="roles">
 <list>
 <value>user</value>
 </list>
 </property>
 <property name="authenticate" value="true"/>
 <property name="dataConstraint" value="0"/>
 </bean>

 <bean id="constraintMapping" class="org.eclipse.jetty.security.ConstraintMapping">
 <property name="constraint" ref="constraint"/>
 <property name="pathSpec" value="/*"/>
 </bean>

 <bean id="securityHandler" class="org.eclipse.jetty.security.ConstraintSecurityHandler">
 <property name="authenticator" ref="keycloakAuthenticator" />
 <property name="constraintMappings">
 <list>
 <ref local="constraintMapping" />
 </list>
 </property>
 <property name="authMethod" value="BASIC"/>
 <property name="realmName" value="does-not-matter"/>
 </bean>

 <httpj:engine-factory bus="cxf" id="kc-cxf-endpoint">
 <httpj:engine port="8282">
 <httpj:handlers>
 <ref local="securityHandler" />
 </httpj:handlers>
 <httpj:sessionSupport>true</httpj:sessionSupport>
 </httpj:engine>
 </httpj:engine-factory>

 <jaxws:endpoint
 implementor="org.keycloak.example.ws.ProductImpl"
 address="http://localhost:8282/ProductServiceCF" depends-on="kc-cxf-endpoint"
/>

</beans>

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

31

2. The Import-Package in META-INF/MANIFEST.MF must contain those imports:

META-INF.cxf;version="[2.7,3.2)",
META-INF.cxf.osgi;version="[2.7,3.2)";resolution:=optional,
org.apache.cxf.bus;version="[2.7,3.2)",
org.apache.cxf.bus.spring;version="[2.7,3.2)",
org.apache.cxf.bus.resource;version="[2.7,3.2)",
org.apache.cxf.transport.http;version="[2.7,3.2)",
org.apache.cxf.*;version="[2.7,3.2)",
org.springframework.beans.factory.config,
org.eclipse.jetty.security;version="[9,10)",
org.eclipse.jetty.util.security;version="[9,10)",
org.keycloak.*;version="18.0.12.redhat-00001"

2.1.6.8. Securing an Apache CXF endpoint on the default Jetty Engine

Some services automatically come with deployed servlets on startup. One such service is the CXF
servlet running in the http://localhost:8181/cxf context. Securing such endpoints can be complicated.
One approach, which Red Hat Single Sign-On is currently using, is ServletReregistrationService, which
undeploys a built-in servlet at startup, enabling you to redeploy it on a context secured by Red Hat
Single Sign-On.

The configuration file OSGI-INF/blueprint/blueprint.xml inside your application might resemble the one
below. Note that it adds the JAX-RS customerservice endpoint, which is endpoint-specific to your
application, but more importantly, secures the entire /cxf context.

<jaxrs:server serviceClass="org.keycloak.example.rs.CustomerService"
address="http://localhost:8282/rest"
 depends-on="kc-cxf-endpoint">
 <jaxrs:providers>
 <bean class="com.fasterxml.jackson.jaxrs.json.JacksonJsonProvider" />
 </jaxrs:providers>
</jaxrs:server>

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/blueprint/jaxrs"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://cxf.apache.org/blueprint/jaxrs http://cxf.apache.org/schemas/blueprint/jaxrs.xsd">

 <!-- JAXRS Application -->

 <bean id="customerBean" class="org.keycloak.example.rs.CxfCustomerService" />

 <jaxrs:server id="cxfJaxrsServer" address="/customerservice">
 <jaxrs:providers>
 <bean class="com.fasterxml.jackson.jaxrs.json.JacksonJsonProvider" />
 </jaxrs:providers>
 <jaxrs:serviceBeans>
 <ref component-id="customerBean" />
 </jaxrs:serviceBeans>
 </jaxrs:server>

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

32

As a result, all other CXF services running on the default CXF HTTP destination are also secured.
Similarly, when the application is undeployed, the entire /cxf context becomes unsecured as well. For this
reason, using your own Jetty engine for your applications as described in Secure CXF Application on
separate Jetty Engine then gives you more control over security for each individual application.

The WEB-INF directory might need to be inside your project (even if your project is not a web
application). You might also need to edit the /WEB-INF/jetty-web.xml and /WEB-
INF/keycloak.json files in a similar way as in Classic WAR application. Note that you do not need
the web.xml file as the security constraints are declared in the blueprint configuration file.

 <!-- Securing of whole /cxf context by unregister default cxf servlet from paxweb and re-register
with applied security constraints -->

 <bean id="cxfConstraintMapping" class="org.eclipse.jetty.security.ConstraintMapping">
 <property name="constraint">
 <bean class="org.eclipse.jetty.util.security.Constraint">
 <property name="name" value="cst1"/>
 <property name="roles">
 <list>
 <value>user</value>
 </list>
 </property>
 <property name="authenticate" value="true"/>
 <property name="dataConstraint" value="0"/>
 </bean>
 </property>
 <property name="pathSpec" value="/cxf/*"/>
 </bean>

 <bean id="cxfKeycloakPaxWebIntegration"
class="org.keycloak.adapters.osgi.PaxWebIntegrationService"
 init-method="start" destroy-method="stop">
 <property name="bundleContext" ref="blueprintBundleContext" />
 <property name="jettyWebXmlLocation" value="/WEB-INF/jetty-web.xml" />
 <property name="constraintMappings">
 <list>
 <ref component-id="cxfConstraintMapping" />
 </list>
 </property>
 </bean>

 <bean id="defaultCxfReregistration"
class="org.keycloak.adapters.osgi.ServletReregistrationService" depends-
on="cxfKeycloakPaxWebIntegration"
 init-method="start" destroy-method="stop">
 <property name="bundleContext" ref="blueprintBundleContext" />
 <property name="managedServiceReference">
 <reference interface="org.osgi.service.cm.ManagedService" filter="
(service.pid=org.apache.cxf.osgi)" timeout="5000" />
 </property>
 </bean>

</blueprint>

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

33

The Import-Package in META-INF/MANIFEST.MF must contain these imports:

META-INF.cxf;version="[2.7,3.2)",
META-INF.cxf.osgi;version="[2.7,3.2)";resolution:=optional,
org.apache.cxf.transport.http;version="[2.7,3.2)",
org.apache.cxf.*;version="[2.7,3.2)",
com.fasterxml.jackson.jaxrs.json;version="[2.5,3)",
org.eclipse.jetty.security;version="[9,10)",
org.eclipse.jetty.util.security;version="[9,10)",
org.keycloak.*;version="18.0.12.redhat-00001",
org.keycloak.adapters.jetty;version="18.0.12.redhat-00001",
*;resolution:=optional

2.1.6.9. Securing Fuse Administration Services

2.1.6.9.1. Using SSH Authentication to Fuse Terminal

Red Hat Single Sign-On mainly addresses use cases for authentication of web applications; however, if
your other web services and applications are protected with Red Hat Single Sign-On, protecting non-
web administration services such as SSH with Red Hat Single Sign-On credentials is a best pracrice. You
can do this using the JAAS login module, which allows remote connection to Red Hat Single Sign-On
and verifies credentials based on Resource Owner Password Credentials.

To enable SSH authentication, perform the following procedure.

Procedure

1. In Red Hat Single Sign-On create a client (for example, ssh-jmx-admin-client), which will be
used for SSH authentication. This client needs to have Direct Access Grants Enabled selected
to On.

2. In the $FUSE_HOME/etc/org.apache.karaf.shell.cfg file, update or specify this property:

sshRealm=keycloak

3. Add the $FUSE_HOME/etc/keycloak-direct-access.json file with content similar to the
following (based on your environment and Red Hat Single Sign-On client settings):

This file specifies the client application configuration, which is used by JAAS
DirectAccessGrantsLoginModule from the keycloak JAAS realm for SSH authentication.

4. Start Fuse and install the keycloak JAAS realm. The easiest way is to install the keycloak-jaas
feature, which has the JAAS realm predefined. You can override the feature’s predefined realm
by using your own keycloak JAAS realm with higher ranking. For details see the JBoss Fuse

{
 "realm": "demo",
 "resource": "ssh-jmx-admin-client",
 "ssl-required" : "external",
 "auth-server-url" : "http://localhost:8080/auth",
 "credentials": {
 "secret": "password"
 }
}

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

34

https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse/6.3/html-single/security_guide/#ESBSecureContainer

documentation.
Use these commands in the Fuse terminal:

features:addurl mvn:org.keycloak/keycloak-osgi-features/18.0.12.redhat-00001/xml/features
features:install keycloak-jaas

5. Log in using SSH as admin user by typing the following in the terminal:

ssh -o PubkeyAuthentication=no -p 8101 admin@localhost

6. Log in with password password.

NOTE

On some later operating systems, you might also need to use the SSH command’s -o
option -o HostKeyAlgorithms=+ssh-dss because later SSH clients do not allow use of
the ssh-dss algorithm, by default. However, by default, it is currently used in JBoss Fuse
6.3.0 Rollup 12.

Note that the user needs to have realm role admin to perform all operations or another role to perform
a subset of operations (for example, the viewer role that restricts the user to run only read-only Karaf
commands). The available roles are configured in $FUSE_HOME/etc/org.apache.karaf.shell.cfg or
$FUSE_HOME/etc/system.properties.

2.1.6.9.2. Using JMX authentication

JMX authentication might be necessary if you want to use jconsole or another external tool to remotely
connect to JMX through RMI. Otherwise it might be better to use hawt.io/jolokia, since the jolokia agent
is installed in hawt.io by default. For more details see Hawtio Admin Console.

Procedure

1. In the $FUSE_HOME/etc/org.apache.karaf.management.cfg file, change the jmxRealm
property to:

jmxRealm=keycloak

2. Install the keycloak-jaas feature and configure the $FUSE_HOME/etc/keycloak-direct-
access.json file as described in the SSH section above.

3. In jconsole you can use a URL such as:

service:jmx:rmi://localhost:44444/jndi/rmi://localhost:1099/karaf-root

and credentials: admin/password (based on the user with admin privileges according to your
environment).

2.1.6.10. Securing the Hawtio Administration Console

To secure the Hawtio Administration Console with Red Hat Single Sign-On, perform the following
procedure.

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

35

Procedure

1. Add these properties to the $FUSE_HOME/etc/system.properties file:

hawtio.keycloakEnabled=true
hawtio.realm=keycloak
hawtio.keycloakClientConfig=file://${karaf.base}/etc/keycloak-hawtio-client.json
hawtio.rolePrincipalClasses=org.keycloak.adapters.jaas.RolePrincipal,org.apache.karaf.jaas.boo
t.principal.RolePrincipal

2. Create a client in the Red Hat Single Sign-On Admin Console in your realm. For example, in the
Red Hat Single Sign-On demo realm, create a client hawtio-client, specify public as the Access
Type, and specify a redirect URI pointing to Hawtio: http://localhost:8181/hawtio/*. You must
also have a corresponding Web Origin configured (in this case, http://localhost:8181).

3. Create the keycloak-hawtio-client.json file in the $FUSE_HOME/etc directory using content
similar to that shown in the example below. Change the realm, resource, and auth-server-url
properties according to your Red Hat Single Sign-On environment. The resource property must
point to the client created in the previous step. This file is used by the client (Hawtio JavaScript
application) side.

1. Create the keycloak-hawtio.json file in the $FUSE_HOME/etc dicrectory using content similar
to that shown in the example below. Change the realm and auth-server-url properties
according to your Red Hat Single Sign-On environment. This file is used by the adapters on the
server (JAAS Login module) side.

2. Start JBoss Fuse 6.3.0 Rollup 12 and install the keycloak feature if you have not already done so.
The commands in Karaf terminal are similar to this example:

features:addurl mvn:org.keycloak/keycloak-osgi-features/18.0.12.redhat-00001/xml/features
features:install keycloak

3. Go to http://localhost:8181/hawtio and log in as a user from your Red Hat Single Sign-On realm.
Note that the user needs to have the proper realm role to successfully authenticate to Hawtio.
The available roles are configured in the $FUSE_HOME/etc/system.properties file in
hawtio.roles.

{
 "realm" : "demo",
 "resource" : "hawtio-client",
 "auth-server-url" : "http://localhost:8080/auth",
 "ssl-required" : "external",
 "public-client" : true
}

{
 "realm" : "demo",
 "resource" : "jaas",
 "bearer-only" : true,
 "auth-server-url" : "http://localhost:8080/auth",
 "ssl-required" : "external",
 "use-resource-role-mappings": false,
 "principal-attribute": "preferred_username"
}

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

36

http://localhost:8181/hawtio

2.1.6.10.1. Securing Hawtio on JBoss EAP 6.4

Prerequisites

Set up Red Hat Single Sign-On as described in Securing the Hawtio Administration Console. It is
assumed that:

you have a Red Hat Single Sign-On realm demo and client hawtio-client

your Red Hat Single Sign-On is running on localhost:8080

the JBoss EAP 6.4 server with deployed Hawtio will be running on localhost:8181. The
directory with this server is referred in next steps as $EAP_HOME.

Procedure

1. Copy the hawtio-wildfly-1.4.0.redhat-630396.war archive to the
$EAP_HOME/standalone/configuration directory. For more details about deploying Hawtio
see the Fuse Hawtio documentation.

2. Copy the keycloak-hawtio.json and keycloak-hawtio-client.json files with the above content
to the $EAP_HOME/standalone/configuration directory.

3. Install the Red Hat Single Sign-On adapter subsystem to your JBoss EAP 6.4 server as
described in the JBoss adapter documentation .

4. In the $EAP_HOME/standalone/configuration/standalone.xml file configure the system
properties as in this example:

5. Add the Hawtio realm to the same file in the security-domains section:

<extensions>
...
</extensions>

<system-properties>
 <property name="hawtio.authenticationEnabled" value="true" />
 <property name="hawtio.realm" value="hawtio" />
 <property name="hawtio.roles" value="admin,viewer" />
 <property name="hawtio.rolePrincipalClasses"
value="org.keycloak.adapters.jaas.RolePrincipal" />
 <property name="hawtio.keycloakEnabled" value="true" />
 <property name="hawtio.keycloakClientConfig" value="${jboss.server.config.dir}/keycloak-
hawtio-client.json" />
 <property name="hawtio.keycloakServerConfig" value="${jboss.server.config.dir}/keycloak-
hawtio.json" />
</system-properties>

<security-domain name="hawtio" cache-type="default">
 <authentication>
 <login-module code="org.keycloak.adapters.jaas.BearerTokenLoginModule"
flag="required">
 <module-option name="keycloak-config-file"
value="${hawtio.keycloakServerConfig}"/>

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

37

https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse/6.3/html-single/deploying_into_a_web_server/

6. Add the secure-deployment section hawtio to the adapter subsystem. This ensures that the
Hawtio WAR is able to find the JAAS login module classes.

7. Restart the JBoss EAP 6.4 server with Hawtio:

8. Access Hawtio at http://localhost:8181/hawtio. It is secured by Red Hat Single Sign-On.

2.1.7. JBoss Fuse 7 Adapter

Red Hat Single Sign-On supports securing your web applications running inside JBoss Fuse 7.

JBoss Fuse 7 leverages Undertow adapter which is essentially the same as JBoss EAP 7 Adapter as
JBoss Fuse 7.4.0 is bundled with the Undertow HTTP engine under the covers and Undertow is used for
running various kinds of web applications.

WARNING

The only supported version of Fuse 7 is the latest release. If you use earlier versions
of Fuse 7, it is possible that some functions will not work correctly. In particular,
integration will not work at all for versions of Fuse 7 lower than 7.12.0.

Security for the following items is supported for Fuse:

Classic WAR applications deployed on Fuse with Pax Web War Extender

Servlets deployed on Fuse as OSGI services with Pax Web Whiteboard Extender and
additionally servlets registered through org.osgi.service.http.HttpService#registerServlet()
which is standard OSGi Enterprise HTTP Service

Apache Camel Undertow endpoints running with the Camel Undertow component

Apache CXF endpoints running on their own separate Undertow engine

Apache CXF endpoints running on the default engine provided by the CXF servlet

SSH and JMX admin access

Hawtio administration console

 </login-module>
 </authentication>
</security-domain>

<subsystem xmlns="urn:jboss:domain:keycloak:1.1">
 <secure-deployment name="hawtio-wildfly-1.4.0.redhat-630396.war" />
</subsystem>

cd $EAP_HOME/bin
./standalone.sh -Djboss.socket.binding.port-offset=101

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

38

http://localhost:8181/hawtio
https://developers.redhat.com/products/fuse/overview
https://camel.apache.org/
https://camel.apache.org/components/next/undertow-component.html
https://cxf.apache.org/
https://cxf.apache.org/
https://hawt.io/

2.1.7.1. Securing your web applications inside Fuse 7

You must first install the Red Hat Single Sign-On Karaf feature. Next you will need to perform the steps
according to the type of application you want to secure. All referenced web applications require injecting
the Red Hat Single Sign-On Undertow authentication mechanism into the underlying web server. The
steps to achieve this depend on the application type. The details are described below.

2.1.7.2. Installing the Keycloak feature

You must first install the keycloak-pax-http-undertow and keycloak-jaas features in the JBoss Fuse
environment. The keycloak-pax-http-undertow feature includes the Fuse adapter and all third-party
dependencies. The keycloak-jaas contains JAAS module used in realm for SSH and JMX
authentication. You can install it either from the Maven repository or from an archive.

2.1.7.2.1. Installing from the Maven repository

Prerequisites

You must be online and have access to the Maven repository.

For Red Hat Single Sign-On, configure a proper Maven repository, so you can install the
artifacts. For more information see the JBoss Enterprise Maven repository page.

Assuming the Maven repository is https://maven.repository.redhat.com/ga/, add the following
to the $FUSE_HOME/etc/org.ops4j.pax.url.mvn.cfg file and add the repository to the list of
supported repositories. For example:

config:edit org.ops4j.pax.url.mvn
config:property-append org.ops4j.pax.url.mvn.repositories
,https://maven.repository.redhat.com/ga/@id=redhat.product.repo
config:update

feature:repo-refresh

Procedure

1. Start JBoss Fuse 7.4.0

2. In the Karaf terminal, type:

feature:repo-add mvn:org.keycloak/keycloak-osgi-features/18.0.12.redhat-00001/xml/features
feature:install keycloak-pax-http-undertow keycloak-jaas

3. You might also need to install the Undertow feature:

feature:install pax-web-http-undertow

4. Ensure that the features were installed:

feature:list | grep keycloak

2.1.7.2.2. Installing from the ZIP bundle

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

39

https://access.redhat.com/maven-repository
https://maven.repository.redhat.com/ga/

This is useful if you are offline or do not want to use Maven to obtain the JAR files and other artifacts.

Procedure

1. Download the Red Hat Single Sign-On Fuse adapter ZIP archive from the Sotware Downloads
site.

2. Unzip it into the root directory of JBoss Fuse. The dependencies are then installed under the
system directory. You can overwrite all existing jar files.
Use this for JBoss Fuse 7.4.0:

cd /path-to-fuse/fuse-karaf-7.z
unzip -q /path-to-adapter-zip/rh-sso-7.6.7-fuse-adapter.zip

3. Start Fuse and run these commands in the fuse/karaf terminal:

feature:repo-add mvn:org.keycloak/keycloak-osgi-features/18.0.12.redhat-00001/xml/features
feature:install keycloak-pax-http-undertow keycloak-jaas

4. Install the corresponding Undertow adapter. Since the artifacts are available directly in the
JBoss Fuse system directory, you do not need to use the Maven repository.

2.1.7.3. Securing a Classic WAR application

Procedure

1. In the /WEB-INF/web.xml file, declare the necessary:

security constraints in the <security-constraint> element

login configuration in the <login-config> element. Make sure that the <auth-method> is
KEYCLOAK.

security roles in the <security-role> element
For example:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

 <module-name>customer-portal</module-name>

 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Customers</web-resource-name>
 <url-pattern>/customers/*</url-pattern>
 </web-resource-collection>

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

40

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=core.service.rhsso

2. Within the /WEB-INF/ directory of your WAR, create a new file, keycloak.json. The format of this
configuration file is described in the Java Adapters Config section. It is also possible to make
this file available externally as described in Configuring the External Adapter .
For example:

3. Contrary to the Fuse 6 adapter, there are no special OSGi imports needed in MANIFEST.MF.

2.1.7.3.1. Configuration resolvers

The keycloak.json adapter configuration file can be stored inside a bundle, which is default behaviour,
or in a directory on a filesystem. To specify the actual source of the configuration file, set the
keycloak.config.resolver deployment parameter to the desired configuration resolver class. For
example, in a classic WAR application, set the keycloak.config.resolver context parameter in web.xml
file like this:

The following resolvers are available for keycloak.config.resolver:

org.keycloak.adapters.osgi.BundleBasedKeycloakConfigResolver

This is the default resolver. The configuration file is expected inside the OSGi bundle that is being
secured. By default, it loads file named WEB-INF/keycloak.json but this file name can be configured
via configLocation property.

 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>KEYCLOAK</auth-method>
 <realm-name>does-not-matter</realm-name>
 </login-config>

 <security-role>
 <role-name>admin</role-name>
 </security-role>
 <security-role>
 <role-name>user</role-name>
 </security-role>
</web-app>

{
 "realm": "demo",
 "resource": "customer-portal",
 "auth-server-url": "http://localhost:8080/auth",
 "ssl-required" : "external",
 "credentials": {
 "secret": "password"
 }
}

<context-param>
 <param-name>keycloak.config.resolver</param-name>
 <param-value>org.keycloak.adapters.osgi.PathBasedKeycloakConfigResolver</param-value>
</context-param>

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

41

org.keycloak.adapters.osgi.PathBasedKeycloakConfigResolver

This resolver searches for a file called <your_web_context>-keycloak.json inside a folder that is
specified by keycloak.config system property. If keycloak.config is not set, karaf.etc system
property is used instead.
For example, if your web application is deployed into context my-portal, then your adapter
configuration would be loaded either from the ${keycloak.config}/my-portal-keycloak.json file, or
from ${karaf.etc}/my-portal-keycloak.json.

org.keycloak.adapters.osgi.HierarchicalPathBasedKeycloakConfigResolver

This resolver is similar to PathBasedKeycloakConfigResolver above, where for given URI path,
configuration locations are checked from most to least specific.
For example, for /my/web-app/context URI, the following configuration locations are searched for
existence until the first one exists:

${karaf.etc}/my-web-app-context-keycloak.json

${karaf.etc}/my-web-app-keycloak.json

${karaf.etc}/my-keycloak.json

${karaf.etc}/keycloak.json

2.1.7.4. Securing a servlet deployed as an OSGI Service

You can use this method if you have a servlet class inside your OSGI bundled project that is not
deployed as a classic WAR application. Fuse uses Pax Web Whiteboard Extender to deploy such servlets
as web applications.

Procedure

1. Red Hat Single Sign-On provides
org.keycloak.adapters.osgi.undertow.PaxWebIntegrationService, which allows configuring
authentication method and security constraints for your application. You need to declare such
services in the OSGI-INF/blueprint/blueprint.xml file inside your application. Note that your
servlet needs to depend on it. An example configuration:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

 <bean id="servletConstraintMapping"
class="org.keycloak.adapters.osgi.PaxWebSecurityConstraintMapping">
 <property name="roles">
 <list>
 <value>user</value>
 </list>
 </property>
 <property name="authentication" value="true"/>
 <property name="url" value="/product-portal/*"/>
 </bean>

 <!-- This handles the integration and setting the login-config and security-constraints

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

42

You might need to have the WEB-INF directory inside your project (even if your project is not a
web application) and create the /WEB-INF/keycloak.json file as described in the Classic WAR
application section. Note you don’t need the web.xml file as the security-constraints are
declared in the blueprint configuration file.

2. Contrary to the Fuse 6 adapter, there are no special OSGi imports needed in MANIFEST.MF.

2.1.7.5. Securing an Apache Camel application

You can secure Apache Camel endpoints implemented with the camel-undertow component by
injecting the proper security constraints via blueprint and updating the used component to undertow-
keycloak. You have to add the OSGI-INF/blueprint/blueprint.xml file to your Camel application with a
similar configuration as below. The roles, security constraint mappings, and adapter configuration might
differ slightly depending on your environment and needs.

Compared to the standard undertow component, undertow-keycloak component adds two new
properties:

configResolver is a resolver bean that supplies Red Hat Single Sign-On adapter configuration.
Available resolvers are listed in Configuration Resolvers section.

allowedRoles is a comma-separated list of roles. User accessing the service has to have at least
one role to be permitted the access.

For example:

parameters -->
 <bean id="keycloakPaxWebIntegration"
class="org.keycloak.adapters.osgi.undertow.PaxWebIntegrationService"
 init-method="start" destroy-method="stop">
 <property name="bundleContext" ref="blueprintBundleContext" />
 <property name="constraintMappings">
 <list>
 <ref component-id="servletConstraintMapping" />
 </list>
 </property>
 </bean>

 <bean id="productServlet" class="org.keycloak.example.ProductPortalServlet" depends-
on="keycloakPaxWebIntegration" />

 <service ref="productServlet" interface="javax.servlet.Servlet">
 <service-properties>
 <entry key="alias" value="/product-portal" />
 <entry key="servlet-name" value="ProductServlet" />
 <entry key="keycloak.config.file" value="/keycloak.json" />
 </service-properties>
 </service>
</blueprint>

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:camel="http://camel.apache.org/schema/blueprint"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

43

https://camel.apache.org/components/next/undertow-component.html

The Import-Package in META-INF/MANIFEST.MF needs to contain these imports:

javax.servlet;version="[3,4)",
javax.servlet.http;version="[3,4)",
javax.net.ssl,
org.apache.camel.*,
org.apache.camel;version="[2.13,3)",
io.undertow.*,
org.keycloak.*;version="18.0.12.redhat-00001",
org.osgi.service.blueprint,
org.osgi.service.blueprint.container

2.1.7.6. Camel RestDSL

Camel RestDSL is a Camel feature used to define your REST endpoints in a fluent way. But you must still
use specific implementation classes and provide instructions on how to integrate with Red Hat Single
Sign-On.

The way to configure the integration mechanism depends on the Camel component for which you
configure your RestDSL-defined routes.

The following example shows how to configure integration using the undertow-keycloak component,
with references to some of the beans defined in previous Blueprint example.

http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint http://camel.apache.org/schema/blueprint/camel-
blueprint-2.17.1.xsd">

 <bean id="keycloakConfigResolver"
class="org.keycloak.adapters.osgi.BundleBasedKeycloakConfigResolver" >
 <property name="bundleContext" ref="blueprintBundleContext" />
 </bean>

 <bean id="helloProcessor" class="org.keycloak.example.CamelHelloProcessor" />

 <camelContext id="blueprintContext"
 trace="false"
 xmlns="http://camel.apache.org/schema/blueprint">

 <route id="httpBridge">
 <from uri="undertow-keycloak:http://0.0.0.0:8383/admin-camel-endpoint?
matchOnUriPrefix=true&configResolver=#keycloakConfigResolver&allowedRoles=admin"
/>
 <process ref="helloProcessor" />
 <log message="The message from camel endpoint contains ${body}"/>
 </route>

 </camelContext>

</blueprint>

<camelContext id="blueprintContext"
 trace="false"
 xmlns="http://camel.apache.org/schema/blueprint">

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

44

2.1.7.7. Securing an Apache CXF endpoint on a separate Undertow Engine

To run your CXF endpoints secured by Red Hat Single Sign-On on a separate Undertow engine, perform
the following procedure.

Procedure

1. Add OSGI-INF/blueprint/blueprint.xml to your application, and in it, add the proper
configuration resolver bean similarly to Camel configuration . In the httpu:engine-factory
declare org.keycloak.adapters.osgi.undertow.CxfKeycloakAuthHandler handler using that
camel configuration. The configuration for a CFX JAX-WS application might resemble this one:

 <!--the link with Keycloak security handlers happens by using undertow-keycloak component -->
 <restConfiguration apiComponent="undertow-keycloak" contextPath="/restdsl" port="8484">
 <endpointProperty key="configResolver" value="#keycloakConfigResolver" />
 <endpointProperty key="allowedRoles" value="admin,superadmin" />
 </restConfiguration>

 <rest path="/hello" >
 <description>Hello rest service</description>
 <get uri="/{id}" outType="java.lang.String">
 <description>Just a hello</description>
 <to uri="direct:justDirect" />
 </get>

 </rest>

 <route id="justDirect">
 <from uri="direct:justDirect"/>
 <process ref="helloProcessor" />
 <log message="RestDSL correctly invoked ${body}"/>
 <setBody>
 <constant>(__This second sentence is returned from a Camel RestDSL
endpoint__)</constant>
 </setBody>
 </route>

</camelContext>

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/blueprint/jaxws"
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 xmlns:httpu="http://cxf.apache.org/transports/http-undertow/configuration".
 xsi:schemaLocation="
 http://cxf.apache.org/transports/http-undertow/configuration
http://cxf.apache.org/schemas/configuration/http-undertow.xsd
 http://cxf.apache.org/blueprint/core http://cxf.apache.org/schemas/blueprint/core.xsd
 http://cxf.apache.org/blueprint/jaxws http://cxf.apache.org/schemas/blueprint/jaxws.xsd">

 <bean id="keycloakConfigResolver"
class="org.keycloak.adapters.osgi.BundleBasedKeycloakConfigResolver" >
 <property name="bundleContext" ref="blueprintBundleContext" />
 </bean>

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

45

For the CXF JAX-RS application, the only difference might be in the configuration of the
endpoint dependent on engine-factory:

2. The Import-Package in META-INF/MANIFEST.MF must contain those imports:

META-INF.cxf;version="[2.7,3.3)",
META-INF.cxf.osgi;version="[2.7,3.3)";resolution:=optional,
org.apache.cxf.bus;version="[2.7,3.3)",
org.apache.cxf.bus.spring;version="[2.7,3.3)",
org.apache.cxf.bus.resource;version="[2.7,3.3)",
org.apache.cxf.transport.http;version="[2.7,3.3)",
org.apache.cxf.*;version="[2.7,3.3)",
org.springframework.beans.factory.config,
org.keycloak.*;version="18.0.12.redhat-00001"

2.1.7.8. Securing an Apache CXF endpoint on the default Undertow Engine

Some services automatically come with deployed servlets on startup. One such service is the CXF
servlet running in the http://localhost:8181/cxf context. Fuse’s Pax Web supports altering existing
contexts via configuration admin. This can be used to secure endpoints by Red Hat Single Sign-On.

The configuration file OSGI-INF/blueprint/blueprint.xml inside your application might resemble the one
below. Note that it adds the JAX-RS customerservice endpoint, which is endpoint-specific to your
application.

 <httpu:engine-factory bus="cxf" id="kc-cxf-endpoint">
 <httpu:engine port="8282">
 <httpu:handlers>
 <bean class="org.keycloak.adapters.osgi.undertow.CxfKeycloakAuthHandler">
 <property name="configResolver" ref="keycloakConfigResolver" />
 </bean>
 </httpu:handlers>
 </httpu:engine>
 </httpu:engine-factory>

 <jaxws:endpoint implementor="org.keycloak.example.ws.ProductImpl"
 address="http://localhost:8282/ProductServiceCF" depends-on="kc-cxf-
endpoint"/>

</blueprint>

<jaxrs:server serviceClass="org.keycloak.example.rs.CustomerService"
address="http://localhost:8282/rest"
 depends-on="kc-cxf-endpoint">
 <jaxrs:providers>
 <bean class="com.fasterxml.jackson.jaxrs.json.JacksonJsonProvider" />
 </jaxrs:providers>
</jaxrs:server>

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/blueprint/jaxrs"

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

46

Furthermore, you have to create ${karaf.etc}/org.ops4j.pax.web.context-anyName.cfg file. It will be
treated as factory PID configuration that is tracked by pax-web-runtime bundle. Such configuration
may contain the following properties that correspond to some of the properties of standard web.xml:

bundle.symbolicName = org.apache.cxf.cxf-rt-transports-http
context.id = default

context.param.keycloak.config.resolver =
org.keycloak.adapters.osgi.HierarchicalPathBasedKeycloakConfigResolver

login.config.authMethod = KEYCLOAK

security.cxf.url = /cxf/customerservice/*
security.cxf.roles = admin, user

For full description of available properties in configuration admin file, please refer to Fuse
documentation. The properties above have the following meaning:

bundle.symbolicName and context.id

Identification of the bundle and its deployment context within
org.ops4j.pax.web.service.WebContainer.

context.param.keycloak.config.resolver

Provides value of keycloak.config.resolver context parameter to the bundle just the same as in
web.xml for classic WARs. Available resolvers are described in Configuration Resolvers section.

login.config.authMethod

Authentication method. Must be KEYCLOAK.

security.anyName.url and security.anyName.roles

Values of properties of individual security constraints just as they would be set in security-
constraint/web-resource-collection/url-pattern and security-constraint/auth-constraint/role-
name in web.xml, respectively. Roles are separated by comma and whitespace around it. The
anyName identifier can be arbitrary but must match for individual properties of the same security
constraint.

NOTE

 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://cxf.apache.org/blueprint/jaxrs http://cxf.apache.org/schemas/blueprint/jaxrs.xsd">

 <!-- JAXRS Application -->
 <bean id="customerBean" class="org.keycloak.example.rs.CxfCustomerService" />

 <jaxrs:server id="cxfJaxrsServer" address="/customerservice">
 <jaxrs:providers>
 <bean class="com.fasterxml.jackson.jaxrs.json.JacksonJsonProvider" />
 </jaxrs:providers>
 <jaxrs:serviceBeans>
 <ref component-id="customerBean" />
 </jaxrs:serviceBeans>
 </jaxrs:server>
</blueprint>

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

47

NOTE

Some Fuse versions contain a bug that requires roles to be separated by ", " (comma
and single space). Make sure you use precisely this notation for separating the roles.

The Import-Package in META-INF/MANIFEST.MF must contain at least these imports:

javax.ws.rs;version="[2,3)",
META-INF.cxf;version="[2.7,3.3)",
META-INF.cxf.osgi;version="[2.7,3.3)";resolution:=optional,
org.apache.cxf.transport.http;version="[2.7,3.3)",
org.apache.cxf.*;version="[2.7,3.3)",
com.fasterxml.jackson.jaxrs.json;version="${jackson.version}"

2.1.7.9. Securing Fuse Administration Services

2.1.7.9.1. Using SSH Authentication to Fuse Terminal

Red Hat Single Sign-On mainly addresses use cases for authentication of web applications; however, if
your other web services and applications are protected with Red Hat Single Sign-On, protecting non-
web administration services such as SSH with Red Hat Single Sign-On credentials is a best pracrice. You
can do this using the JAAS login module, which allows remote connection to Red Hat Single Sign-On
and verifies credentials based on Resource Owner Password Credentials.

To enable SSH authentication, perform the following procedure.

Procedure

1. In Red Hat Single Sign-On create a client (for example, ssh-jmx-admin-client), which will be
used for SSH authentication. This client needs to have Direct Access Grants Enabled selected
to On.

2. In the $FUSE_HOME/etc/org.apache.karaf.shell.cfg file, update or specify this property:

sshRealm=keycloak

3. Add the $FUSE_HOME/etc/keycloak-direct-access.json file with content similar to the
following (based on your environment and Red Hat Single Sign-On client settings):

This file specifies the client application configuration, which is used by JAAS
DirectAccessGrantsLoginModule from the keycloak JAAS realm for SSH authentication.

4. Start Fuse and install the keycloak JAAS realm. The easiest way is to install the keycloak-jaas

{
 "realm": "demo",
 "resource": "ssh-jmx-admin-client",
 "ssl-required" : "external",
 "auth-server-url" : "http://localhost:8080/auth",
 "credentials": {
 "secret": "password"
 }
}

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

48

feature, which has the JAAS realm predefined. You can override the feature’s predefined realm
by using your own keycloak JAAS realm with higher ranking. For details see the JBoss Fuse
documentation.
Use these commands in the Fuse terminal:

features:addurl mvn:org.keycloak/keycloak-osgi-features/18.0.12.redhat-00001/xml/features
features:install keycloak-jaas

5. Log in using SSH as admin user by typing the following in the terminal:

ssh -o PubkeyAuthentication=no -p 8101 admin@localhost

6. Log in with password password.

NOTE

On some later operating systems, you might also need to use the SSH command’s -o
option -o HostKeyAlgorithms=+ssh-dss because later SSH clients do not allow use of
the ssh-dss algorithm, by default. However, by default, it is currently used in JBoss Fuse
7.4.0.

Note that the user needs to have realm role admin to perform all operations or another role to perform
a subset of operations (for example, the viewer role that restricts the user to run only read-only Karaf
commands). The available roles are configured in $FUSE_HOME/etc/org.apache.karaf.shell.cfg or
$FUSE_HOME/etc/system.properties.

2.1.7.9.2. Using JMX authentication

JMX authentication might be necessary if you want to use jconsole or another external tool to remotely
connect to JMX through RMI. Otherwise it might be better to use hawt.io/jolokia, since the jolokia agent
is installed in hawt.io by default. For more details see Hawtio Admin Console.

To use JMX authentication, perform the following procedure.

Procedure

1. In the $FUSE_HOME/etc/org.apache.karaf.management.cfg file, change the jmxRealm
property to:

jmxRealm=keycloak

2. Install the keycloak-jaas feature and configure the $FUSE_HOME/etc/keycloak-direct-
access.json file as described in the SSH section above.

3. In jconsole you can use a URL such as:

service:jmx:rmi://localhost:44444/jndi/rmi://localhost:1099/karaf-root

and credentials: admin/password (based on the user with admin privileges according to your
environment).

2.1.7.10. Securing the Hawtio Administration Console

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

49

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/apache_karaf_security_guide/index#ESBSecureContainer

To secure the Hawtio Administration Console with Red Hat Single Sign-On, perform the following
procedure.

Procedure

1. Create a client in the Red Hat Single Sign-On Admin Console in your realm. For example, in the
Red Hat Single Sign-On demo realm, create a client hawtio-client, specify public as the Access
Type, and specify a redirect URI pointing to Hawtio: http://localhost:8181/hawtio/*. Configure
corresponding Web Origin (in this case, http://localhost:8181). Setup client scope mapping to
include view-profile client role of account client in Scope tab in hawtio-client client detail.

2. Create the keycloak-hawtio-client.json file in the $FUSE_HOME/etc directory using content
similar to that shown in the example below. Change the realm, resource, and auth-server-url
properties according to your Red Hat Single Sign-On environment. The resource property must
point to the client created in the previous step. This file is used by the client (Hawtio JavaScript
application) side.

3. Create the keycloak-direct-access.json file in the $FUSE_HOME/etc directory using content
similar to that shown in the example below. Change the realm and url properties according to
your Red Hat Single Sign-On environment. This file is used by JavaScript client.

4. Create the keycloak-hawtio.json file in the $FUSE_HOME/etc dicrectory using content similar
to that shown in the example below. Change the realm and auth-server-url properties
according to your Red Hat Single Sign-On environment. This file is used by the adapters on the
server (JAAS Login module) side.

5. Start JBoss Fuse 7.4.0, install the Keycloak feature. Then type in the Karaf terminal:

{
 "realm" : "demo",
 "clientId" : "hawtio-client",
 "url" : "http://localhost:8080/auth",
 "ssl-required" : "external",
 "public-client" : true
}

{
 "realm" : "demo",
 "resource" : "ssh-jmx-admin-client",
 "auth-server-url" : "http://localhost:8080/auth",
 "ssl-required" : "external",
 "credentials": {
 "secret": "password"
 }
}

{
 "realm" : "demo",
 "resource" : "jaas",
 "bearer-only" : true,
 "auth-server-url" : "http://localhost:8080/auth",
 "ssl-required" : "external",
 "use-resource-role-mappings": false,
 "principal-attribute": "preferred_username"
}

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

50

system:property -p hawtio.keycloakEnabled true
system:property -p hawtio.realm keycloak
system:property -p hawtio.keycloakClientConfig file://\${karaf.base}/etc/keycloak-hawtio-
client.json
system:property -p hawtio.rolePrincipalClasses
org.keycloak.adapters.jaas.RolePrincipal,org.apache.karaf.jaas.boot.principal.RolePrincipal
restart io.hawt.hawtio-war

6. Go to http://localhost:8181/hawtio and log in as a user from your Red Hat Single Sign-On realm.
Note that the user needs to have the proper realm role to successfully authenticate to Hawtio.
The available roles are configured in the $FUSE_HOME/etc/system.properties file in
hawtio.roles.

2.1.8. Spring Boot adapter

NOTE

The Spring Boot Adapter is deprecated and will not be included in the 8.0 and higher
versions of RH-SSO. This adapter will be maintained during the lifecycle of RH-SSO 7.x.
Users are urged to migrate to Spring Security to integrate their Spring Boot applications
with RH-SSO.

2.1.8.1. Installing the Spring Boot adapter

To be able to secure Spring Boot apps you must add the Keycloak Spring Boot adapter JAR to your app.
You then have to provide some extra configuration via normal Spring Boot configuration
(application.properties).

The Keycloak Spring Boot adapter takes advantage of Spring Boot’s autoconfiguration so all you need
to do is add this adapter Keycloak Spring Boot starter to your project.

Procedure

1. To add the starter to your project using Maven, add the following to your dependencies:

2. Add the Adapter BOM dependency:

<dependency>
 <groupId>org.keycloak</groupId>
 <artifactId>keycloak-spring-boot-starter</artifactId>
</dependency>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.keycloak.bom</groupId>
 <artifactId>keycloak-adapter-bom</artifactId>
 <version>18.0.12.redhat-00001</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

51

http://localhost:8181/hawtio

Currently the following embedded containers are supported and do not require any extra dependencies
if using the Starter:

Tomcat

Undertow

Jetty

2.1.8.2. Configuring the Spring Boot Adapter

Use the procedure to configure your Spring Boot app to use Red Hat Single Sign-On.

Procedure

1. Instead of a keycloak.json file, you configure the realm for the Spring Boot adapter via the
normal Spring Boot configuration. For example:

keycloak.realm = demorealm
keycloak.auth-server-url = http://127.0.0.1:8080/auth
keycloak.ssl-required = external
keycloak.resource = demoapp
keycloak.credentials.secret = 11111111-1111-1111-1111-111111111111
keycloak.use-resource-role-mappings = true

You can disable the Keycloak Spring Boot Adapter (for example in tests) by setting
keycloak.enabled = false.

2. To configure a Policy Enforcer, unlike keycloak.json, use policy-enforcer-config instead of just
policy-enforcer.

3. Specify the Jakarta EE security config that would normally go in the web.xml.
The Spring Boot Adapter will set the login-method to KEYCLOAK and configure the security-
constraints at startup time. Here’s an example configuration:

keycloak.securityConstraints[0].authRoles[0] = admin
keycloak.securityConstraints[0].authRoles[1] = user
keycloak.securityConstraints[0].securityCollections[0].name = insecure stuff
keycloak.securityConstraints[0].securityCollections[0].patterns[0] = /insecure

keycloak.securityConstraints[1].authRoles[0] = admin
keycloak.securityConstraints[1].securityCollections[0].name = admin stuff
keycloak.securityConstraints[1].securityCollections[0].patterns[0] = /admin

WARNING

If you plan to deploy your Spring Application as a WAR then you should not use the
Spring Boot Adapter and use the dedicated adapter for the application server or
servlet container you are using. Your Spring Boot should also contain a web.xml file.

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

52

2.1.9. Java servlet filter adapter

If you are deploying your Java Servlet application on a platform where there is no Red Hat Single Sign-
On adapter you opt to use the servlet filter adapter. This adapter works a bit differently than the other
adapters. You do not define security constraints in web.xml. Instead you define a filter mapping using the
Red Hat Single Sign-On servlet filter adapter to secure the url patterns you want to secure.

WARNING

Backchannel logout works a bit differently than the standard adapters. Instead of
invalidating the HTTP session it marks the session id as logged out. There’s no
standard way to invalidate an HTTP session based on a session id.

In the snippet above there are two url-patterns. /protected/* are the files we want protected, while the
/keycloak/* url-pattern handles callbacks from the Red Hat Single Sign-On server.

If you need to exclude some paths beneath the configured url-patterns you can use the Filter init-
param keycloak.config.skipPattern to configure a regular expression that describes a path-pattern for
which the keycloak filter should immediately delegate to the filter-chain. By default no skipPattern is
configured.

Patterns are matched against the requestURI without the context-path. Given the context-path
/myapp a request for /myapp/index.html will be matched with /index.html against the skip pattern.

Note that you should configure your client in the Red Hat Single Sign-On Admin Console with an Admin
URL that points to a secured section covered by the filter’s url-pattern.

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-
app_3_0.xsd"
 version="3.0">

 <module-name>application</module-name>

 <filter>
 <filter-name>Keycloak Filter</filter-name>
 <filter-class>org.keycloak.adapters.servlet.KeycloakOIDCFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>Keycloak Filter</filter-name>
 <url-pattern>/keycloak/*</url-pattern>
 <url-pattern>/protected/*</url-pattern>
 </filter-mapping>
</web-app>

<init-param>
 <param-name>keycloak.config.skipPattern</param-name>
 <param-value>^/(path1|path2|path3).*</param-value>
</init-param>

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

53

The Admin URL will make callbacks to the Admin URL to do things like backchannel logout. So, the
Admin URL in this example should be http[s]://hostname/{context-root}/keycloak.

If you need to customize the session ID mapper, you can configure the fully qualified name of the class in
the Filter init-param keycloak.config.idMapper. Session ID mapper is a mapper that is used to map user
IDs and session IDs. By default org.keycloak.adapters.spi.InMemorySessionIdMapper is configured.

The Red Hat Single Sign-On filter has the same configuration parameters as the other adapters except
you must define them as filter init params instead of context params.

To use this filter, include this maven artifact in your WAR poms:

2.1.10. Security Context

The KeycloakSecurityContext interface is available if you need to access to the tokens directly. This
could be useful if you want to retrieve additional details from the token (such as user profile
information) or you want to invoke a RESTful service that is protected by Red Hat Single Sign-On.

In servlet environments it is available in secured invocations as an attribute in HttpServletRequest:

Or, it is available in insecured requests in the HttpSession:

2.1.11. Error handling

Red Hat Single Sign-On has some error handling facilities for servlet based client adapters. When an
error is encountered in authentication, Red Hat Single Sign-On will call
HttpServletResponse.sendError(). You can set up an error-page within your web.xml file to handle the
error however you want. Red Hat Single Sign-On can throw 400, 401, 403, and 500 errors.

Red Hat Single Sign-On also sets a HttpServletRequest attribute that you can retrieve. The attribute

<init-param>
 <param-name>keycloak.config.idMapper</param-name>
 <param-value>org.keycloak.adapters.spi.InMemorySessionIdMapper</param-value>
</init-param>

<dependency>
 <groupId>org.keycloak</groupId>
 <artifactId>keycloak-servlet-filter-adapter</artifactId>
 <version>18.0.12.redhat-00001</version>
</dependency>

httpServletRequest
 .getAttribute(KeycloakSecurityContext.class.getName());

httpServletRequest.getSession()
 .getAttribute(KeycloakSecurityContext.class.getName());

<error-page>
 <error-code>403</error-code>
 <location>/ErrorHandler</location>
</error-page>

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

54

Red Hat Single Sign-On also sets a HttpServletRequest attribute that you can retrieve. The attribute
name is org.keycloak.adapters.spi.AuthenticationError, which should be casted to
org.keycloak.adapters.OIDCAuthenticationError.

For example:

2.1.12. Logout

You can log out of a web application in multiple ways. For Jakarta EE servlet containers, you can call
HttpServletRequest.logout(). For other browser applications, you can redirect the browser to
http://auth-server/auth/realms/{realm-name}/protocol/openid-connect/logout, which logs the user
out if that user has an SSO session with his browser. The actual logout is done once the user confirms
the logout. You can optionally include parameters such as id_token_hint, post_logout_redirect_uri,
client_id and others as described in the OpenID Connect RP-Initiated Logout. As a result, that logout
does not need to be explicitly confirmed by the user if you include the id_token_hint parameter. After
logout, the user will be automatically redirected to the specified post_logout_redirect_uri as long as it
is provided. Note that you need to include either the client_id or id_token_hint parameter in case that
post_logout_redirect_uri is included.

If you want to avoid logging out of an external identity provider as part of the logout process, you can
supply the parameter initiating_idp, with the value being the identity (alias) of the identity provider in
question. This parameter is useful when the logout endpoint is invoked as part of single logout initiated
by the external identity provider. The parameter initiating_idp is the supported parameter of the Red
Hat Single Sign-On logout endpoint in addition to the parameters described in the RP-Initiated Logout
specification.

When using the HttpServletRequest.logout() option the adapter executes a back-channel POST call
against the Red Hat Single Sign-On server passing the refresh token. If the method is executed from an
unprotected page (a page that does not check for a valid token) the refresh token can be unavailable
and, in that case, the adapter skips the call. For this reason, using a protected page to execute
HttpServletRequest.logout() is recommended so that current tokens are always taken into account and
an interaction with the Red Hat Single Sign-On server is performed if needed.

2.1.13. Parameters forwarding

The Red Hat Single Sign-On initial authorization endpoint request has support for various parameters.
Most of the parameters are described in OIDC specification. Some parameters are added automatically
by the adapter based on the adapter configuration. However, there are also a few parameters that can
be added on a per-invocation basis. When you open the secured application URI, the particular
parameter will be forwarded to the Red Hat Single Sign-On authorization endpoint.

For example, if you request an offline token, then you can open the secured application URI with the
scope parameter like:

http://myappserver/mysecuredapp?scope=offline_access

import org.keycloak.adapters.OIDCAuthenticationError;
import org.keycloak.adapters.OIDCAuthenticationError.Reason;
...

OIDCAuthenticationError error = (OIDCAuthenticationError) httpServletRequest
 .getAttribute('org.keycloak.adapters.spi.AuthenticationError');

Reason reason = error.getReason();
System.out.println(reason.name());

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

55

https://openid.net/specs/openid-connect-rpinitiated-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html#AuthorizationEndpoint

and the parameter scope=offline_access will be automatically forwarded to the Red Hat Single Sign-
On authorization endpoint.

The supported parameters are:

scope - Use a space-delimited list of scopes. A space-delimited list typically references Client
scopes defined on particular client. Note that the scope openid will be always be added to the
list of scopes by the adapter. For example, if you enter the scope options address phone, then
the request to Red Hat Single Sign-On will contain the scope parameter scope=openid
address phone.

prompt - Red Hat Single Sign-On supports these settings:

login - SSO will be ignored and the Red Hat Single Sign-On login page will be always shown,
even if the user is already authenticated

consent - Applicable only for the clients with Consent Required. If it is used, the Consent
page will always be displayed, even if the user previously granted consent to this client.

none - The login page will never be shown; instead the user will be redirected to the
application, with an error if the user is not yet authenticated. This setting allows you to
create a filter/interceptor on the application side and show a custom error page to the user.
See more details in the specification.

max_age - Used only if a user is already authenticated. Specifies maximum permitted time for
the authentication to persist, measured from when the user authenticated. If user is
authenticated longer than maxAge, the SSO is ignored and he must re-authenticate.

login_hint - Used to pre-fill the username/email field on the login form.

kc_idp_hint - Used to tell Red Hat Single Sign-On to skip showing login page and automatically
redirect to specified identity provider instead. More info in the Identity Provider documentation .

Most of the parameters are described in the OIDC specification. The only exception is parameter
kc_idp_hint, which is specific to Red Hat Single Sign-On and contains the name of the identity provider
to automatically use. For more information see the Identity Brokering section in the Server
Administration Guide.

WARNING

If you open the URL using the attached parameters, the adapter will not redirect
you to Red Hat Single Sign-On if you are already authenticated in the application.
For example, opening http://myappserver/mysecuredapp?prompt=login will not
automatically redirect you to the Red Hat Single Sign-On login page if you are
already authenticated to the application mysecuredapp . This behavior may be
changed in the future.

2.1.14. Client authentication

When a confidential OIDC client needs to send a backchannel request (for example, to exchange code
for the token, or to refresh the token) it needs to authenticate against the Red Hat Single Sign-On
server. By default, there are three ways to authenticate the client: client ID and client secret, client

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

56

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#_client_scopes
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#_client_suggested_idp
https://openid.net/specs/openid-connect-core-1_0.html#AuthorizationEndpoint
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/

authentication with signed JWT, or client authentication with signed JWT using client secret.

2.1.14.1. Client ID and Client Secret

This is the traditional method described in the OAuth2 specification. The client has a secret, which needs
to be known to both the adapter (application) and the Red Hat Single Sign-On server. You can generate
the secret for a particular client in the Red Hat Single Sign-On Admin Console, and then paste this
secret into the keycloak.json file on the application side:

2.1.14.2. Client authentication with Signed JWT

This is based on the RFC7523 specification. It works this way:

The client must have the private key and certificate. For Red Hat Single Sign-On this is available
through the traditional keystore file, which is either available on the client application’s
classpath or somewhere on the file system.

Once the client application is started, it allows to download its public key in JWKS format using a
URL such as http://myhost.com/myapp/k_jwks, assuming that http://myhost.com/myapp is the
base URL of your client application. This URL can be used by Red Hat Single Sign-On (see
below).

During authentication, the client generates a JWT token and signs it with its private key and
sends it to Red Hat Single Sign-On in the particular backchannel request (for example, code-to-
token request) in the client_assertion parameter.

Red Hat Single Sign-On must have the public key or certificate of the client so that it can verify
the signature on JWT. In Red Hat Single Sign-On you need to configure client credentials for
your client. First you need to choose Signed JWT as the method of authenticating your client in
the tab Credentials in the Admin Console. Then you can choose to either in the tab Keys:

Configure the JWKS URL where Red Hat Single Sign-On can download the client’s public
keys. This can be a URL such as http://myhost.com/myapp/k_jwks (see details above). This
option is the most flexible, since the client can rotate its keys anytime and Red Hat Single
Sign-On then always downloads new keys when needed without needing to change the
configuration. More accurately, Red Hat Single Sign-On downloads new keys when it sees
the token signed by an unknown kid (Key ID).

Upload the client’s public key or certificate, either in PEM format, in JWK format, or from
the keystore. With this option, the public key is hardcoded and must be changed when the
client generates a new key pair. You can even generate your own keystore from the Red Hat
Single Sign-On Admin Console if you don’t have your own available. For more details on
how to set up the Red Hat Single Sign-On Admin Console, see the Server Administration
Guide.

For set up on the adapter side you need to have something like this in your keycloak.json file:

"credentials": {
 "secret": "19666a4f-32dd-4049-b082-684c74115f28"
}

"credentials": {
 "jwt": {
 "client-keystore-file": "classpath:keystore-client.jks",
 "client-keystore-type": "JKS",

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

57

https://datatracker.ietf.org/doc/html/rfc7523
https://self-issued.info/docs/draft-ietf-jose-json-web-key.html
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/

With this configuration, the keystore file keystore-client.jks must be available on classpath in your
WAR. If you do not use the prefix classpath: you can point to any file on the file system where the client
application is running.

The algorithm field specifies the algorithm used for the Signed JWT and it defaults to RS256. This field
should be in sync with the key pair. For example, the RS256 algorithm needs a RSA key pair while the
ES256 algorithm requires an EC key pair. Please refer to Cryptographic Algorithms for Digital Signatures
and MACs for more information.

2.1.15. Multi Tenancy

Multi Tenancy, in our context, means that a single target application (WAR) can be secured with multiple
Red Hat Single Sign-On realms. The realms can be located on the same Red Hat Single Sign-On
instance or on different instances.

In practice, this means that the application needs to have multiple keycloak.json adapter configuration
files.

You could have multiple instances of your WAR with different adapter configuration files deployed to
different context-paths. However, this may be inconvenient and you may also want to select the realm
based on something else than context-path.

Red Hat Single Sign-On makes it possible to have a custom config resolver so you can choose what
adapter config is used for each request.

To achieve this first you need to create an implementation of
org.keycloak.adapters.KeycloakConfigResolver. For example:

 "client-keystore-password": "storepass",
 "client-key-password": "keypass",
 "client-key-alias": "clientkey",
 "algorithm": "RS256",
 "token-expiration": 10
 }
}

package example;

import org.keycloak.adapters.KeycloakConfigResolver;
import org.keycloak.adapters.KeycloakDeployment;
import org.keycloak.adapters.KeycloakDeploymentBuilder;

public class PathBasedKeycloakConfigResolver implements KeycloakConfigResolver {

 @Override
 public KeycloakDeployment resolve(OIDCHttpFacade.Request request) {
 if (path.startsWith("alternative")) {
 KeycloakDeployment deployment = cache.get(realm);
 if (null == deployment) {
 InputStream is = getClass().getResourceAsStream("/tenant1-keycloak.json");
 return KeycloakDeploymentBuilder.build(is);
 }
 } else {
 InputStream is = getClass().getResourceAsStream("/default-keycloak.json");
 return KeycloakDeploymentBuilder.build(is);
 }

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

58

https://datatracker.ietf.org/doc/html/rfc7518#section-3

You also need to configure which KeycloakConfigResolver implementation to use with the
keycloak.config.resolver context-param in your web.xml:

2.1.16. Application clustering

This chapter is related to supporting clustered applications deployed to JBoss EAP.

There are a few options available depending on whether your application is:

Stateless or stateful

Distributable (replicated http session) or non-distributable

Relying on sticky sessions provided by load balancer

Hosted on same domain as Red Hat Single Sign-On

Dealing with clustering is not quite as simple as for a regular application. Mainly due to the fact that both
the browser and the server-side application sends requests to Red Hat Single Sign-On, so it’s not as
simple as enabling sticky sessions on your load balancer.

2.1.16.1. Stateless token store

By default, the web application secured by Red Hat Single Sign-On uses the HTTP session to store
security context. This means that you either have to enable sticky sessions or replicate the HTTP
session.

As an alternative to storing the security context in the HTTP session the adapter can be configured to
store this in a cookie instead. This is useful if you want to make your application stateless or if you don’t
want to store the security context in the HTTP session.

To use the cookie store for saving the security context, edit your applications WEB-INF/keycloak.json
and add:

NOTE

The default value for token-store is session, which stores the security context in the
HTTP session.

One limitation of using the cookie store is that the whole security context is passed in the cookie for

 }

}

<web-app>
 ...
 <context-param>
 <param-name>keycloak.config.resolver</param-name>
 <param-value>example.PathBasedKeycloakConfigResolver</param-value>
 </context-param>
</web-app>

"token-store": "cookie"

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

59

One limitation of using the cookie store is that the whole security context is passed in the cookie for
every HTTP request. This may impact performance.

Another small limitation is limited support for Single-Sign Out. It works without issues if you init servlet
logout (HttpServletRequest.logout) from the application itself as the adapter will delete the
KEYCLOAK_ADAPTER_STATE cookie. However, back-channel logout initialized from a different
application isn’t propagated by Red Hat Single Sign-On to applications using cookie store. Hence it’s
recommended to use a short value for the access token timeout (for example 1 minute).

NOTE

Some load balancers do not allow any configuration of the sticky session cookie name or
contents, such as Amazon ALB. For these, it is recommended to set the
shouldAttachRoute option to false.

2.1.16.2. Relative URI optimization

In deployment scenarios where Red Hat Single Sign-On and the application is hosted on the same
domain (through a reverse proxy or load balancer) it can be convenient to use relative URI options in
your client configuration.

With relative URIs the URI is resolved as relative to the URL used to access Red Hat Single Sign-On.

For example if the URL to your application is https://acme.org/myapp and the URL to Red Hat Single
Sign-On is https://acme.org/auth, then you can use the redirect-uri /myapp instead of
https://acme.org/myapp.

2.1.16.3. Admin URL configuration

Admin URL for a particular client can be configured in the Red Hat Single Sign-On Admin Console. It’s
used by the Red Hat Single Sign-On server to send backend requests to the application for various
tasks, like logout users or push revocation policies.

For example the way backchannel logout works is:

1. User sends logout request from one application

2. The application sends logout request to Red Hat Single Sign-On

3. The Red Hat Single Sign-On server invalidates the user session

4. The Red Hat Single Sign-On server then sends a backchannel request to application with an
admin url that are associated with the session

5. When an application receives the logout request it invalidates the corresponding HTTP session

If admin URL contains ${application.session.host} it will be replaced with the URL to the node
associated with the HTTP session.

2.1.16.4. Registration of application nodes

The previous section describes how Red Hat Single Sign-On can send logout request to node associated
with a specific HTTP session. However, in some cases admin may want to propagate admin tasks to all
registered cluster nodes, not just one of them. For example to push a new not before policy to the
application or to logout all users from the application.

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

60

In this case Red Hat Single Sign-On needs to be aware of all application cluster nodes, so it can send the
event to all of them. To achieve this, we support auto-discovery mechanism:

1. When a new application node joins the cluster, it sends a registration request to the Red Hat
Single Sign-On server

2. The request may be re-sent to Red Hat Single Sign-On in configured periodic intervals

3. If the Red Hat Single Sign-On server doesn’t receive a re-registration request within a specified
timeout then it automatically unregisters the specific node

4. The node is also unregistered in Red Hat Single Sign-On when it sends an unregistration
request, which is usually during node shutdown or application undeployment. This may not work
properly for forced shutdown when undeployment listeners are not invoked, which results in the
need for automatic unregistration

Sending startup registrations and periodic re-registration is disabled by default as it’s only required for
some clustered applications.

To enable the feature edit the WEB-INF/keycloak.json file for your application and add:

This means the adapter will send the registration request on startup and re-register every 10 minutes.

In the Red Hat Single Sign-On Admin Console you can specify the maximum node re-registration
timeout (should be larger than register-node-period from the adapter configuration). You can also
manually add and remove cluster nodes in through the Admin Console, which is useful if you don’t want
to rely on the automatic registration feature or if you want to remove stale application nodes in the
event your not using the automatic unregistration feature.

2.1.16.5. Refresh token in each request

By default the application adapter will only refresh the access token when it’s expired. However, you can
also configure the adapter to refresh the token on every request. This may have a performance impact
as your application will send more requests to the Red Hat Single Sign-On server.

To enable the feature edit the WEB-INF/keycloak.json file for your application and add:

NOTE

This may have a significant impact on performance. Only enable this feature if you can’t
rely on backchannel messages to propagate logout and not before policies. Another thing
to consider is that by default access tokens has a short expiration so even if logout is not
propagated the token will expire within minutes of the logout.

2.2. JAVASCRIPT ADAPTER

Red Hat Single Sign-On comes with a client-side JavaScript library that can be used to secure
HTML5/JavaScript applications. The JavaScript adapter has built-in support for Cordova applications.

A good practice is to include the JavaScript adapter in your application using a package manager like

"register-node-at-startup": true,
"register-node-period": 600,

"always-refresh-token": true

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

61

A good practice is to include the JavaScript adapter in your application using a package manager like
NPM or Yarn. The keycloak-js package is available on the following locations:

NPM: https://www.npmjs.com/package/keycloak-js

Yarn: https://yarnpkg.com/package/keycloak-js

Alternatively, the library can be retrieved directly from the Red Hat Single Sign-On server at
/auth/js/keycloak.js and is also distributed as a ZIP archive.

One important thing to note about using client-side applications is that the client has to be a public client
as there is no secure way to store client credentials in a client-side application. This makes it very
important to make sure the redirect URIs you have configured for the client are correct and as specific
as possible.

To use the JavaScript adapter you must first create a client for your application in the Red Hat Single
Sign-On Admin Console. Make sure public is selected for Access Type. You achieve this in Capability
config by turning OFF client authentication toggle.

You also need to configure Valid Redirect URIs and Web Origins. Be as specific as possible as failing
to do so may result in a security vulnerability.

Once the client is created click on the Action tab in the upper right corner and select Download
adapter config. Select Keycloak OIDC JSON for Format Option then click Download. The
downloaded keycloak.json file should be hosted on your web server at the same location as your HTML
pages.

Alternatively, you can skip the configuration file and manually configure the adapter.

The following example shows how to initialize the JavaScript adapter:

If the keycloak.json file is in a different location you can specify it:

<html>
<head>
 <script src="keycloak.js"></script>
 <script>
 function initKeycloak() {
 const options = {};
 const keycloak = new Keycloak();
 keycloak.init(options)
 .then(function(authenticated) {
 console.log('keycloak:' + (authenticated ? 'authenticated' : 'not authenticated'));
 }).catch(function(error) {
 for (const property in error) {
 console.error(`${property}: ${error[property]}`);
 }
 });
 }
 </script>
</head>
<body onload="initKeycloak()">
 <!-- your page content goes here -->
</body>
</html>

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

62

https://www.npmjs.com/package/keycloak-js
https://yarnpkg.com/package/keycloak-js

Alternatively, you can pass in a JavaScript object with the required configuration instead:

By default to authenticate you need to call the login function. However, there are two options available
to make the adapter automatically authenticate. You can pass login-required or check-sso to the init
function. login-required will authenticate the client if the user is logged-in to Red Hat Single Sign-On
or display the login page if not. check-sso will only authenticate the client if the user is already logged-
in, if the user is not logged-in the browser will be redirected back to the application and remain
unauthenticated.

You can configure a silent check-sso option. With this feature enabled, your browser won’t do a full
redirect to the Red Hat Single Sign-On server and back to your application, but this action will be
performed in a hidden iframe, so your application resources only need to be loaded and parsed once by
the browser when the app is initialized and not again after the redirect back from Red Hat Single Sign-
On to your app. This is particularly useful in case of SPAs (Single Page Applications).

To enable the silent check-sso, you have to provide a silentCheckSsoRedirectUri attribute in the init
method. This URI needs to be a valid endpoint in the application (and of course it must be configured as
a valid redirect for the client in the Red Hat Single Sign-On Admin Console):

The page at the silent check-sso redirect uri is loaded in the iframe after successfully checking your
authentication state and retrieving the tokens from the Red Hat Single Sign-On server. It has no other
task than sending the received tokens to the main application and should only look like this:

Please keep in mind that this page at the specified location must be provided by the application itself
and is not part of the JavaScript adapter!

const keycloak = new Keycloak('http://localhost:8080/myapp/keycloak.json');

const keycloak = new Keycloak({
 url: 'http://keycloak-server$/auth',
 realm: 'myrealm',
 clientId: 'myapp'
});

keycloak.init({
 onLoad: 'check-sso',
 silentCheckSsoRedirectUri: window.location.origin + '/silent-check-sso.html'
})

<html>
<body>
 <script>
 parent.postMessage(location.href, location.origin)
 </script>
</body>
</html>

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

63

WARNING

Silent check-sso functionality is limited in some modern browsers. Please see the
Modern Browsers with Tracking Protection Section.

To enable login-required set onLoad to login-required and pass to the init method:

After the user is authenticated the application can make requests to RESTful services secured by Red
Hat Single Sign-On by including the bearer token in the Authorization header. For example:

One thing to keep in mind is that the access token by default has a short life expiration so you may need
to refresh the access token prior to sending the request. You can do this by the updateToken method.
The updateToken method returns a promise which makes it easy to invoke the service only if the token
was successfully refreshed and display an error to the user if it wasn’t. For example:

2.2.1. Session Status iframe

keycloak.init({
 onLoad: 'login-required'
})

const loadData = function () {
 document.getElementById('username').innerText = keycloak.subject;

 const url = 'http://localhost:8080/restful-service';

 const req = new XMLHttpRequest();
 req.open('GET', url, true);
 req.setRequestHeader('Accept', 'application/json');
 req.setRequestHeader('Authorization', 'Bearer ' + keycloak.token);

 req.onreadystatechange = function () {
 if (req.readyState == 4) {
 if (req.status == 200) {
 alert('Success');
 } else if (req.status == 403) {
 alert('Forbidden');
 }
 }
 }

 req.send();
};

keycloak.updateToken(30).then(function() {
 loadData();
}).catch(function() {
 alert('Failed to refresh token');
});

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

64

By default, the JavaScript adapter creates a hidden iframe that is used to detect if a Single-Sign Out
has occurred. This does not require any network traffic, instead the status is retrieved by looking at a
special status cookie. This feature can be disabled by setting checkLoginIframe: false in the options
passed to the init method.

You should not rely on looking at this cookie directly. Its format can change and it’s also associated with
the URL of the Red Hat Single Sign-On server, not your application.

WARNING

Session Status iframe functionality is limited in some modern browsers. Please see
Modern Browsers with Tracking Protection Section.

2.2.2. Implicit and hybrid flow

By default, the JavaScript adapter uses the Authorization Code flow.

With this flow the Red Hat Single Sign-On server returns an authorization code, not an authentication
token, to the application. The JavaScript adapter exchanges the code for an access token and a refresh
token after the browser is redirected back to the application.

Red Hat Single Sign-On also supports the Implicit flow where an access token is sent immediately after
successful authentication with Red Hat Single Sign-On. This may have better performance than
standard flow, as there is no additional request to exchange the code for tokens, but it has implications
when the access token expires.

However, sending the access token in the URL fragment can be a security vulnerability. For example the
token could be leaked through web server logs and or browser history.

To enable implicit flow, you need to enable the Implicit Flow Enabled flag for the client in the Red Hat
Single Sign-On Admin Console. You also need to pass the parameter flow with value implicit to init
method:

One thing to note is that only an access token is provided and there is no refresh token. This means that
once the access token has expired the application has to do the redirect to the Red Hat Single Sign-On
again to obtain a new access token.

Red Hat Single Sign-On also supports the Hybrid flow.

This requires the client to have both the Standard Flow Enabled and Implicit Flow Enabled flags
enabled in the admin console. The Red Hat Single Sign-On server will then send both the code and
tokens to your application. The access token can be used immediately while the code can be exchanged
for access and refresh tokens. Similar to the implicit flow, the hybrid flow is good for performance
because the access token is available immediately. But, the token is still sent in the URL, and the
security vulnerability mentioned earlier may still apply.

One advantage in the Hybrid flow is that the refresh token is made available to the application.

keycloak.init({
 flow: 'implicit'
})

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

65

https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://openid.net/specs/openid-connect-core-1_0.html#ImplicitFlowAuth
https://openid.net/specs/openid-connect-core-1_0.html#HybridFlowAuth

For the Hybrid flow, you need to pass the parameter flow with value hybrid to the init method:

2.2.3. Hybrid Apps with Cordova

Keycloak support hybrid mobile apps developed with Apache Cordova. The JavaScript adapter has two
modes for this: cordova and cordova-native:

The default is cordova, which the adapter will automatically select if no adapter type has been
configured and window.cordova is present. When logging in, it will open an InApp Browser that lets the
user interact with Red Hat Single Sign-On and afterwards returns to the app by redirecting to
http://localhost. Because of this, you must whitelist this URL as a valid redirect-uri in the client
configuration section of the Admin Console.

While this mode is easy to set up, it also has some disadvantages:

The InApp-Browser is a browser embedded in the app and is not the phone’s default browser.
Therefore it will have different settings and stored credentials will not be available.

The InApp-Browser might also be slower, especially when rendering more complex themes.

There are security concerns to consider, before using this mode, such as that it is possible for
the app to gain access to the credentials of the user, as it has full control of the browser
rendering the login page, so do not allow its use in apps you do not trust.

Use this example app to help you get started:
https://github.com/keycloak/keycloak/tree/master/examples/cordova

The alternative mode cordova-native takes a different approach. It opens the login page using the
system’s browser. After the user has authenticated, the browser redirects back into the app using a
special URL. From there, the Red Hat Single Sign-On adapter can finish the login by reading the code or
token from the URL.

You can activate the native mode by passing the adapter type cordova-native to the init method:

This adapter required two additional plugins:

cordova-plugin-browsertab: allows the app to open webpages in the system’s browser

cordova-plugin-deeplinks: allow the browser to redirect back to your app by special URLs

The technical details for linking to an app differ on each platform and special setup is needed. Please
refer to the Android and iOS sections of the deeplinks plugin documentation for further instructions.

There are different kinds of links for opening apps: custom schemes (i.e. myapp://login or android-
app://com.example.myapp/https/example.com/login) and Universal Links (iOS)) / Deep Links
(Android). While the former are easier to set up and tend to work more reliably, the later offer extra

keycloak.init({
 flow: 'hybrid'
})

keycloak.init({
 adapter: 'cordova-native'
})

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

66

https://cordova.apache.org/
https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-inappbrowser/
http://localhost
https://github.com/keycloak/keycloak/tree/master/examples/cordova
https://github.com/google/cordova-plugin-browsertab
https://github.com/e-imaxina/cordova-plugin-deeplinks
https://github.com/e-imaxina/cordova-plugin-deeplinks/blob/master/README.md
https://developer.apple.com/ios/universal-links/
https://developer.android.com/training/app-links/deep-linking

security as they are unique and only the owner of a domain can register them. Custom-URLs are
deprecated on iOS. We recommend that you use universal links, combined with a fallback site with a
custom-url link on it for best reliability.

Furthermore, we recommend the following steps to improve compatibility with the Keycloak Adapter:

Universal Links on iOS seem to work more reliably with response-mode set to query

To prevent Android from opening a new instance of your app on redirect add the following
snippet to config.xml:

There is an example app that shows how to use the native-mode:
https://github.com/keycloak/keycloak/tree/master/examples/cordova-native

2.2.4. Custom Adapters

Sometimes it’s necessary to run the JavaScript client in environments that are not supported by default
(such as Capacitor). To make it possible to use the JavasScript client in these kind of unknown
environments is possible to pass a custom adapter. For example a 3rd party library could provide such an
adapter to make it possible to run the JavaScript client without issues:

This specific package does not exist, but it gives a pretty good example of how such an adapter could be
passed into the client.

It’s also possible to make your own adapter, to do so you will have to implement the methods described
in the KeycloakAdapter interface. For example the following TypeScript code ensures that all the
methods are properly implemented:

<preference name="AndroidLaunchMode" value="singleTask" />

import Keycloak from 'keycloak-js';
import KeycloakCapacitorAdapter from 'keycloak-capacitor-adapter';

const keycloak = new Keycloak();

keycloak.init({
 adapter: KeycloakCapacitorAdapter,
});

import Keycloak, { KeycloakAdapter } from 'keycloak-js';

// Implement the 'KeycloakAdapter' interface so that all required methods are guaranteed to be
present.
const MyCustomAdapter: KeycloakAdapter = {
 login(options) {
 // Write your own implementation here.
 }

 // The other methods go here...
};

const keycloak = new Keycloak();

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

67

https://github.com/keycloak/keycloak/tree/master/examples/cordova-native

Naturally you can also do this without TypeScript by omitting the type information, but ensuring
implementing the interface properly will then be left entirely up to you.

2.2.5. Earlier Browsers

The JavaScript adapter depends on Base64 (window.btoa and window.atob), HTML5 History API and
optionally the Promise API. If you need to support browsers that do not have these available (for
example, IE9) you need to add polyfillers.

Example polyfill libraries:

Base64 - https://github.com/davidchambers/Base64.js

HTML5 History - https://github.com/devote/HTML5-History-API

Promise - https://github.com/stefanpenner/es6-promise

2.2.6. Modern Browsers with Tracking Protection

In the latest versions of some browsers various cookies policies are applied to prevent tracking of the
users by third-parties, like SameSite in Chrome or completely blocked third-party cookies. It is expected
that those policies will become even more restrictive and adopted by other browsers over time,
eventually leading to cookies in third-party contexts to be completely unsupported and blocked by the
browsers. The adapter features affected by this might get deprecated in the future.

Javascript adapter relies on third-party cookies for Session Status iframe, silent check-sso and partially
also for regular (non-silent) check-sso. Those features have limited functionality or are completely
disabled based on how the browser is restrictive regarding cookies. The adapter tries to detect this
setting and reacts accordingly.

2.2.6.1. Browsers with "SameSite=Lax by Default" Policy

All features are supported if SSL / TLS connection is configured on the Red Hat Single Sign-On side as
well as on the application side. Affected is for example Chrome starting with version 84.

2.2.6.2. Browsers with Blocked Third-Party Cookies

Session Status iframe is not supported and is automatically disabled if such browser behavior is
detected by the JS adapter. This means the adapter cannot use session cookie for Single Sign-Out
detection and have to rely purely on tokens. This implies that when user logs out in another window, the
application using JavaScript adapter won’t be logged out until it tries to refresh the Access Token.
Therefore, it is recommended to set Access Token Lifespan to relatively short time, so that the logout is
detected rather sooner than later. Please see Session and Token Timeouts .

Silent check-sso is not supported and falls back to regular (non-silent) check-sso by default. This
behaviour can be changed by setting silentCheckSsoFallback: false in the options passed to the init
method. In this case, check-sso will be completely disabled if restrictive browser behavior is detected.

Regular check-sso is affected as well. Since Session Status iframe is unsupported, an additional
redirect to Red Hat Single Sign-On has to be made when the adapter is initialized to check user’s login
status. This is different from standard behavior when the iframe is used to tell whether the user is

keycloak.init({
 adapter: MyCustomAdapter,
});

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

68

https://github.com/davidchambers/Base64.js
https://github.com/devote/HTML5-History-API
https://github.com/stefanpenner/es6-promise
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#_timeouts

logged in, and the redirect is performed only when logged out.

An affected browser is for example Safari starting with version 13.1.

2.2.7. JavaScript Adapter Reference

2.2.7.1. Constructor

2.2.7.2. Properties

authenticated

Is true if the user is authenticated, false otherwise.

token

The base64 encoded token that can be sent in the Authorization header in requests to services.

tokenParsed

The parsed token as a JavaScript object.

subject

The user id.

idToken

The base64 encoded ID token.

idTokenParsed

The parsed id token as a JavaScript object.

realmAccess

The realm roles associated with the token.

resourceAccess

The resource roles associated with the token.

refreshToken

The base64 encoded refresh token that can be used to retrieve a new token.

refreshTokenParsed

The parsed refresh token as a JavaScript object.

timeSkew

The estimated time difference between the browser time and the Red Hat Single Sign-On server in
seconds. This value is just an estimation, but is accurate enough when determining if a token is
expired or not.

responseMode

Response mode passed in init (default value is fragment).

flow

Flow passed in init.

adapter

Allows you to override the way that redirects and other browser-related functions will be handled by
the library. Available options:

"default" - the library uses the browser api for redirects (this is the default)

new Keycloak();
new Keycloak('http://localhost/keycloak.json');
new Keycloak({ url: 'http://localhost/auth', realm: 'myrealm', clientId: 'myApp' });

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

69

"default" - the library uses the browser api for redirects (this is the default)

"cordova" - the library will try to use the InAppBrowser cordova plugin to load keycloak
login/registration pages (this is used automatically when the library is working in a cordova
ecosystem)

"cordova-native" - the library tries to open the login and registration page using the phone’s
system browser using the BrowserTabs cordova plugin. This requires extra setup for
redirecting back to the app (see Section 2.2.3, “Hybrid Apps with Cordova”).

"custom" - allows you to implement a custom adapter (only for advanced use cases)

responseType

Response type sent to Red Hat Single Sign-On with login requests. This is determined based on the
flow value used during initialization, but can be overridden by setting this value.

2.2.7.3. Methods

init(options)

Called to initialize the adapter.

Options is an Object, where:

useNonce - Adds a cryptographic nonce to verify that the authentication response matches the
request (default is true).

onLoad - Specifies an action to do on load. Supported values are login-required or check-sso.

silentCheckSsoRedirectUri - Set the redirect uri for silent authentication check if onLoad is set
to 'check-sso'.

silentCheckSsoFallback - Enables fall back to regular check-sso when silent check-sso is not
supported by the browser (default is true).

token - Set an initial value for the token.

refreshToken - Set an initial value for the refresh token.

idToken - Set an initial value for the id token (only together with token or refreshToken).

scope - Set the default scope parameter to the Red Hat Single Sign-On login endpoint. Use a
space-delimited list of scopes. Those typically reference Client scopes defined on a particular
client. Note that the scope openid will always be added to the list of scopes by the adapter. For
example, if you enter the scope options address phone, then the request to Red Hat Single
Sign-On will contain the scope parameter scope=openid address phone. Note that the
default scope specified here is overwritten if the login() options specify scope explicitly.

timeSkew - Set an initial value for skew between local time and Red Hat Single Sign-On server
in seconds (only together with token or refreshToken).

checkLoginIframe - Set to enable/disable monitoring login state (default is true).

checkLoginIframeInterval - Set the interval to check login state (default is 5 seconds).

responseMode - Set the OpenID Connect response mode send to Red Hat Single Sign-On

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

70

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#_client_scopes

server at login request. Valid values are query or fragment. Default value is fragment, which
means that after successful authentication will Red Hat Single Sign-On redirect to JavaScript
application with OpenID Connect parameters added in URL fragment. This is generally safer
and recommended over query.

flow - Set the OpenID Connect flow. Valid values are standard, implicit or hybrid.

enableLogging - Enables logging messages from Keycloak to the console (default is false).

pkceMethod - The method for Proof Key Code Exchange (PKCE) to use. Configuring this value
enables the PKCE mechanism. Available options:

"S256" - The SHA256 based PKCE method

messageReceiveTimeout - Set a timeout in milliseconds for waiting for message responses
from the Keycloak server. This is used, for example, when waiting for a message during 3rd party
cookies check. The default value is 10000.

Returns a promise that resolves when initialization completes.

login(options)

Redirects to login form.

Options is an optional Object, where:

redirectUri - Specifies the uri to redirect to after login.

prompt - This parameter allows to slightly customize the login flow on the Red Hat Single Sign-
On server side. For example enforce displaying the login screen in case of value login. See
Parameters Forwarding Section for the details and all the possible values of the prompt
parameter.

maxAge - Used just if user is already authenticated. Specifies maximum time since the
authentication of user happened. If user is already authenticated for longer time than maxAge,
the SSO is ignored and he will need to re-authenticate again.

loginHint - Used to pre-fill the username/email field on the login form.

scope - Override the scope configured in init with a different value for this specific login.

idpHint - Used to tell Red Hat Single Sign-On to skip showing the login page and automatically
redirect to the specified identity provider instead. More info in the Identity Provider
documentation.

acr - Contains the information about acr claim, which will be sent inside claims parameter to the
Red Hat Single Sign-On server. Typical usage is for step-up authentication. Example of use {
values: ["silver", "gold"], essential: true }. See OpenID Connect specification and Step-up
authentication documentation for more details.

action - If value is register then user is redirected to registration page, if the value is
UPDATE_PASSWORD then the user will be redirected to the reset password page (if not
authenticated will send user to login page first and redirect after authenticated), otherwise to
login page.

locale - Sets the 'ui_locales' query param in compliance with section 3.1.2.1 of the OIDC 1.0
specification.

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

71

https://datatracker.ietf.org/doc/html/rfc7636
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/securing_applications_and_services_guide/#_params_forwarding
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#_client_suggested_idp
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#_step-up-flow
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest

cordovaOptions - Specifies the arguments that are passed to the Cordova in-app-browser (if
applicable). Options hidden and location are not affected by these arguments. All available
options are defined at https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-
inappbrowser/. Example of use: { zoom: "no", hardwareback: "yes" };

createLoginUrl(options)

Returns the URL to login form.

Options is an optional Object, which supports same options as the function login .

logout(options)

Redirects to logout.

Options is an Object, where:

redirectUri - Specifies the uri to redirect to after logout.

createLogoutUrl(options)

Returns the URL to log out the user.

Options is an Object, where:

redirectUri - Specifies the uri to redirect to after logout.

register(options)

Redirects to registration form. Shortcut for login with option action = 'register'

Options are same as for the login method but 'action' is set to 'register'

createRegisterUrl(options)

Returns the url to registration page. Shortcut for createLoginUrl with option action = 'register'

Options are same as for the createLoginUrl method but 'action' is set to 'register'

accountManagement()

Redirects to the Account Management Console.

createAccountUrl(options)

Returns the URL to the Account Management Console.

Options is an Object, where:

redirectUri - Specifies the uri to redirect to when redirecting back to the application.

hasRealmRole(role)

Returns true if the token has the given realm role.

hasResourceRole(role, resource)

Returns true if the token has the given role for the resource (resource is optional, if not specified clientId

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

72

https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-inappbrowser/

Returns true if the token has the given role for the resource (resource is optional, if not specified clientId
is used).

loadUserProfile()

Loads the users profile.

Returns a promise that resolves with the profile.

For example:

isTokenExpired(minValidity)

Returns true if the token has less than minValidity seconds left before it expires (minValidity is optional,
if not specified 0 is used).

updateToken(minValidity)

If the token expires within minValidity seconds (minValidity is optional, if not specified 5 is used) the
token is refreshed. If -1 is passed as the minValidity, the token will be forcibly refreshed. If the session
status iframe is enabled, the session status is also checked.

Returns a promise that resolves with a boolean indicating whether or not the token has been refreshed.

For example:

clearToken()

Clear authentication state, including tokens. This can be useful if application has detected the session
was expired, for example if updating token fails.

Invoking this results in onAuthLogout callback listener being invoked.

2.2.7.4. Callback Events

The adapter supports setting callback listeners for certain events. Keep in mind that these have to be
set before the call to the init function.

keycloak.loadUserProfile()
 .then(function(profile) {
 alert(JSON.stringify(profile, null, " "))
 }).catch(function() {
 alert('Failed to load user profile');
 });

keycloak.updateToken(5)
 .then(function(refreshed) {
 if (refreshed) {
 alert('Token was successfully refreshed');
 } else {
 alert('Token is still valid');
 }
 }).catch(function() {
 alert('Failed to refresh the token, or the session has expired');
 });

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

73

For example:

The available events are:

onReady(authenticated) - Called when the adapter is initialized.

onAuthSuccess - Called when a user is successfully authenticated.

onAuthError - Called if there was an error during authentication.

onAuthRefreshSuccess - Called when the token is refreshed.

onAuthRefreshError - Called if there was an error while trying to refresh the token.

onAuthLogout - Called if the user is logged out (will only be called if the session status iframe
is enabled, or in Cordova mode).

onTokenExpired - Called when the access token is expired. If a refresh token is available the
token can be refreshed with updateToken, or in cases where it is not (that is, with implicit flow)
you can redirect to the login screen to obtain a new access token.

2.3. NODE.JS ADAPTER

Red Hat Single Sign-On provides a Node.js adapter built on top of Connect to protect server-side
JavaScript apps - the goal was to be flexible enough to integrate with frameworks like Express.js.

To use the Node.js adapter, first you must create a client for your application in the Red Hat Single Sign-
On Admin Console. The adapter supports public, confidential, and bearer-only access type. Which one
to choose depends on the use-case scenario.

Once the client is created click the Installation tab, select Red Hat Single Sign-On OIDC JSON for
Format Option, and then click Download. The downloaded keycloak.json file should be at the root
folder of your project.

2.3.1. Installation

Assuming you’ve already installed Node.js, create a folder for your application:

mkdir myapp && cd myapp

Use npm init command to create a package.json for your application. Now add the Red Hat Single
Sign-On connect adapter in the dependencies list:

2.3.2. Usage

Instantiate a Keycloak class

The Keycloak class provides a central point for configuration and integration with your application.
The simplest creation involves no arguments.

keycloak.onAuthSuccess = function() { alert('authenticated'); }

 "dependencies": {
 "keycloak-connect": "file:keycloak-connect-18.0.6-redhat-00001.tgz"
 }

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

74

https://github.com/senchalabs/connect
https://expressjs.com/
https://nodejs.org

In the root directory of your project create a file called server.js and add the following code:

Install the express-session dependency:

 npm install express-session

To start the server.js script, add the following command in the 'scripts' section of the package.json:

 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "start" "node server.js"
 },

Now we have the ability to run our server with following command:

 npm run start

By default, this will locate a file named keycloak.json alongside the main executable of your application,
in our case on the root folder, to initialize keycloak-specific settings such as public key, realm name,
various URLs.

In that case a Keycloak deployment is necessary to access Keycloak admin console.

Please visit links on how to deploy a Keycloak admin console with Podman or Docker

Now we are ready to obtain the keycloak.json file by visiting the Red Hat Single Sign-On Admin
Console → clients (left sidebar) → choose your client → Installation → Format Option → Keycloak OIDC
JSON → Download

Paste the downloaded file on the root folder of our project.

Instantiation with this method results in all of the reasonable defaults being used. As alternative, it’s also
possible to provide a configuration object, rather than the keycloak.json file:

Applications can also redirect users to their preferred identity provider by using:

 const session = require('express-session');
 const Keycloak = require('keycloak-connect');

 const memoryStore = new session.MemoryStore();
 const keycloak = new Keycloak({ store: memoryStore });

 const kcConfig = {
 clientId: 'myclient',
 bearerOnly: true,
 serverUrl: 'http://localhost:8080/auth',
 realm: 'myrealm',
 realmPublicKey: 'MIIBIjANB...'
 };

 const keycloak = new Keycloak({ store: memoryStore }, kcConfig);

 const keycloak = new Keycloak({ store: memoryStore, idpHint: myIdP }, kcConfig);

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

75

https://www.keycloak.org/getting-started/getting-started-podman
https://www.keycloak.org/getting-started/getting-started-docker

Configuring a web session store

If you want to use web sessions to manage server-side state for authentication, you need to initialize
the Keycloak(…) with at least a store parameter, passing in the actual session store that express-
session is using.

Passing a custom scope value

By default, the scope value openid is passed as a query parameter to Red Hat Single Sign-On’s login
URL, but you can add an additional custom value:

2.3.3. Installing middleware

Once instantiated, install the middleware into your connect-capable app:

In order to do so, first we have to install Express:

 npm install express

then require Express in our project as outlined below:

and configure Keycloak middleware in Express, by adding at the code below:

Last but not least, let’s set up our server to listen for HTTP requests on port 3000 by adding the
following code to main.js:

2.3.4. Configuration for proxies

 const session = require('express-session');
 const memoryStore = new session.MemoryStore();

 // Configure session
 app.use(
 session({
 secret: 'mySecret',
 resave: false,
 saveUninitialized: true,
 store: memoryStore,
 })
);

 const keycloak = new Keycloak({ store: memoryStore });

 const keycloak = new Keycloak({ scope: 'offline_access' });

 const express = require('express');
 const app = express();

 app.use(keycloak.middleware());

 app.listen(3000, function () {
 console.log('App listening on port 3000');
 });

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

76

If the application is running behind a proxy that terminates an SSL connection Express must be
configured per the express behind proxies guide. Using an incorrect proxy configuration can result in
invalid redirect URIs being generated.

Example configuration:

2.3.5. Checking authentication

To check that a user is authenticated before accessing a resource, simply use keycloak.checkSso(). It
will only authenticate if the user is already logged-in. If the user is not logged-in, the browser will be
redirected back to the originally-requested URL and remain unauthenticated:

2.3.6. Protecting resources

Simple authentication

To enforce that a user must be authenticated before accessing a resource, simply use a no-
argument version of keycloak.protect():

Role-based authorization

To secure a resource with an application role for the current app:

To secure a resource with an application role for a different app:

To secure a resource with a realm role:

Resource-Based Authorization

Resource-Based Authorization allows you to protect resources, and their specific methods/actions,**
based on a set of policies defined in Keycloak, thus externalizing authorization from your application.
This is achieved by exposing a keycloak.enforcer method which you can use to protect resources.*

The keycloak-enforcer method operates in two modes, depending on the value of the response_mode
configuration option.

 const app = express();

 app.set('trust proxy', true);

 app.use(keycloak.middleware());

 app.get('/check-sso', keycloak.checkSso(), checkSsoHandler);

 app.get('/complain', keycloak.protect(), complaintHandler);

 app.get('/special', keycloak.protect('special'), specialHandler);

 app.get('/extra-special', keycloak.protect('other-app:special'), extraSpecialHandler);

 app.get('/admin', keycloak.protect('realm:admin'), adminHandler);

 app.get('/apis/me', keycloak.enforcer('user:profile'), userProfileHandler);

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

77

https://expressjs.com/en/guide/behind-proxies.html

If response_mode is set to token, permissions are obtained from the server on behalf of the subject
represented by the bearer token that was sent to your application. In this case, a new access token is
issued by Keycloak with the permissions granted by the server. If the server did not respond with a token
with the expected permissions, the request is denied. When using this mode, you should be able to
obtain the token from the request as follows:

Prefer this mode when your application is using sessions and you want to cache previous decisions from
the server, as well automatically handle refresh tokens. This mode is especially useful for applications
acting as a client and resource server.

If response_mode is set to permissions (default mode), the server only returns the list of granted
permissions, without issuing a new access token. In addition to not issuing a new token, this method
exposes the permissions granted by the server through the request as follows:

Regardless of the response_mode in use, the keycloak.enforcer method will first try to check the
permissions within the bearer token that was sent to your application. If the bearer token already carries
the expected permissions, there is no need to interact with the server to obtain a decision. This is
specially useful when your clients are capable of obtaining access tokens from the server with the
expected permissions before accessing a protected resource, so they can use some capabilities
provided by Keycloak Authorization Services such as incremental authorization and avoid additional
requests to the server when keycloak.enforcer is enforcing access to the resource.

By default, the policy enforcer will use the client_id defined to the application (for instance, via
keycloak.json) to reference a client in Keycloak that supports Keycloak Authorization Services. In this
case, the client can not be public given that it is actually a resource server.

If your application is acting as both a public client(frontend) and resource server(backend), you can use
the following configuration to reference a different client in Keycloak with the policies that you want to
enforce:

It is recommended to use distinct clients in Keycloak to represent your frontend and backend.

If the application you are protecting is enabled with Keycloak authorization services and you have
defined client credentials in keycloak.json, you can push additional claims to the server and make them
available to your policies in order to make decisions. For that, you can define a claims configuration
option which expects a function that returns a JSON with the claims you want to push:

 app.get('/apis/me', keycloak.enforcer('user:profile', {response_mode: 'token'}), userProfileHandler);

 app.get('/apis/me', keycloak.enforcer('user:profile', {response_mode: 'token'}), function (req, res) {
 const token = req.kauth.grant.access_token.content;
 const permissions = token.authorization ? token.authorization.permissions : undefined;

 // show user profile
 });

 app.get('/apis/me', keycloak.enforcer('user:profile', {response_mode: 'permissions'}), function (req,
res) {
 const permissions = req.permissions;

 // show user profile
 });

 keycloak.enforcer('user:profile', {resource_server_id: 'my-apiserver'})

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

78

For more details about how to configure Keycloak to protected your application resources, please take a
look at the Authorization Services Guide.

Advanced authorization

To secure resources based on parts of the URL itself, assuming a role exists for each section:

Advanced Login Configuration:

By default, all unauthorized requests will be redirected to the Red Hat Single Sign-On login page unless
your client is bearer-only. However, a confidential or public client may host both browsable and API
endpoints. To prevent redirects on unauthenticated API requests and instead return an HTTP 401, you
can override the redirectToLogin function.

For example, this override checks if the URL contains /api/ and disables login redirects:

2.3.7. Additional URLs

Explicit user-triggered logout

By default, the middleware catches calls to /logout to send the user through a Red Hat Single Sign-
On-centric logout workflow. This can be changed by specifying a logout configuration parameter to
the middleware() call:

When the user-triggered logout is invoked a query parameter redirect_url can be passed:

https://example.com/logoff?
redirect_url=https%3A%2F%2Fexample.com%3A3000%2Flogged%2Fout

This parameter is then used as the redirect url of the OIDC logout endpoint and the user will be
redirected to https://example.com/logged/out.

 app.get('/protected/resource', keycloak.enforcer(['resource:view', 'resource:write'], {
 claims: function(request) {
 return {
 "http.uri": ["/protected/resource"],
 "user.agent": // get user agent from request
 }
 }
 }), function (req, res) {
 // access granted

 function protectBySection(token, request) {
 return token.hasRole(request.params.section);
 }

 app.get('/:section/:page', keycloak.protect(protectBySection), sectionHandler);

 Keycloak.prototype.redirectToLogin = function(req) {
 const apiReqMatcher = /\/api\//i;
 return !apiReqMatcher.test(req.originalUrl || req.url);
 };

 app.use(keycloak.middleware({ logout: '/logoff' }));

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

79

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/authorization_services_guide/

Red Hat Single Sign-On Admin Callbacks

Also, the middleware supports callbacks from the Red Hat Single Sign-On console to log out a single
session or all sessions. By default, these type of admin callbacks occur relative to the root URL of /
but can be changed by providing an admin parameter to the middleware() call:

2.3.8. Complete example

A complete example using the Node.js adapter usage can be found in Keycloak quickstarts for Node.js

2.4. OTHER OPENID CONNECT LIBRARIES

Red Hat Single Sign-On can be secured by supplied adapters that are usually easier to use and provide
better integration with Red Hat Single Sign-On. However, if an adapter is not available for your
programming language, framework, or platform you might opt to use a generic OpenID Connect Relying
Party (RP) library instead. This chapter describes details specific to Red Hat Single Sign-On and does
not contain specific protocol details. For more information see the OpenID Connect specifications and
OAuth2 specification.

2.4.1. Endpoints

The most important endpoint to understand is the well-known configuration endpoint. It lists endpoints
and other configuration options relevant to the OpenID Connect implementation in Red Hat Single
Sign-On. The endpoint is:

/realms/{realm-name}/.well-known/openid-configuration

To obtain the full URL, add the base URL for Red Hat Single Sign-On and replace {realm-name} with
the name of your realm. For example:

http://localhost:8080/auth/realms/master/.well-known/openid-configuration

Some RP libraries retrieve all required endpoints from this endpoint, but for others you might need to
list the endpoints individually.

2.4.1.1. Authorization endpoint

/realms/{realm-name}/protocol/openid-connect/auth

The authorization endpoint performs authentication of the end-user. This is done by redirecting the
user agent to this endpoint.

For more details see the Authorization Endpoint section in the OpenID Connect specification.

2.4.1.2. Token endpoint

/realms/{realm-name}/protocol/openid-connect/token

The token endpoint is used to obtain tokens. Tokens can either be obtained by exchanging an
authorization code or by supplying credentials directly depending on what flow is used. The token
endpoint is also used to obtain new access tokens when they expire.

 app.use(keycloak.middleware({ admin: '/callbacks' });

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

80

https://github.com/keycloak/keycloak-quickstarts/tree/latest/service-nodejs/
https://openid.net/connect/
https://datatracker.ietf.org/doc/html/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html#AuthorizationEndpoint

For more details see the Token Endpoint section in the OpenID Connect specification.

2.4.1.3. Userinfo endpoint

/realms/{realm-name}/protocol/openid-connect/userinfo

The userinfo endpoint returns standard claims about the authenticated user, and is protected by a
bearer token.

For more details see the Userinfo Endpoint section in the OpenID Connect specification.

2.4.1.4. Logout endpoint

/realms/{realm-name}/protocol/openid-connect/logout

The logout endpoint logs out the authenticated user.

The user agent can be redirected to the endpoint, in which case the active user session is logged out.
Afterward the user agent is redirected back to the application.

The endpoint can also be invoked directly by the application. To invoke this endpoint directly the refresh
token needs to be included as well as the credentials required to authenticate the client.

2.4.1.5. Certificate endpoint

/realms/{realm-name}/protocol/openid-connect/certs

The certificate endpoint returns the public keys enabled by the realm, encoded as a JSON Web Key
(JWK). Depending on the realm settings there can be one or more keys enabled for verifying tokens.
For more information see the Server Administration Guide and the JSON Web Key specification.

2.4.1.6. Introspection endpoint

/realms/{realm-name}/protocol/openid-connect/token/introspect

The introspection endpoint is used to retrieve the active state of a token. In other words, you can use it
to validate an access or refresh token. It can only be invoked by confidential clients.

For more details on how to invoke on this endpoint, see OAuth 2.0 Token Introspection specification.

2.4.1.7. Dynamic Client Registration endpoint

/realms/{realm-name}/clients-registrations/openid-connect

The dynamic client registration endpoint is used to dynamically register clients.

For more details see the Client Registration chapter and the OpenID Connect Dynamic Client
Registration specification.

2.4.1.8. Token Revocation endpoint

/realms/{realm-name}/protocol/openid-connect/revoke

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

81

https://openid.net/specs/openid-connect-core-1_0.html#TokenEndpoint
https://openid.net/specs/openid-connect-core-1_0.html#UserInfo
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7662
https://openid.net/specs/openid-connect-registration-1_0.html

The token revocation endpoint is used to revoke tokens. Both refresh tokens and access tokens are
supported by this endpoint.

For more details on how to invoke on this endpoint, see OAuth 2.0 Token Revocation specification .

2.4.1.9. Device Authorization endpoint

/realms/{realm-name}/protocol/openid-connect/auth/device

The device authorization endpoint is used to obtain a device code and a user code. It can be invoked by
confidential or public clients.

For more details on how to invoke on this endpoint, see OAuth 2.0 Device Authorization Grant
specification.

2.4.1.10. Backchannel Authentication endpoint

/realms/{realm-name}/protocol/openid-connect/ext/ciba/auth

The backchannel authentication endpoint is used to obtain an auth_req_id that identifies the
authentication request made by the client. It can only be invoked by confidential clients.

For more details on how to invoke on this endpoint, see OpenID Connect Client Initiated Backchannel
Authentication Flow specification.

Also please refer to other places of Red Hat Single Sign-On documentation like Client Initiated
Backchannel Authentication Grant section of this guide and Client Initiated Backchannel Authentication
Grant section of Server Administration Guide.

2.4.2. Validating access tokens

If you need to manually validate access tokens issued by Red Hat Single Sign-On you can invoke the
Introspection Endpoint. The downside to this approach is that you have to make a network invocation to
the Red Hat Single Sign-On server. This can be slow and possibly overload the server if you have too
many validation requests going on at the same time. Red Hat Single Sign-On issued access tokens are
JSON Web Tokens (JWT) digitally signed and encoded using JSON Web Signature (JWS). Because
they are encoded in this way, this allows you to locally validate access tokens using the public key of the
issuing realm. You can either hard code the realm’s public key in your validation code, or lookup and
cache the public key using the certificate endpoint with the Key ID (KID) embedded within the JWS.
Depending what language you code in, there are a multitude of third party libraries out there that can
help you with JWS validation.

2.4.3. Flows

2.4.3.1. Authorization code

The Authorization Code flow redirects the user agent to Red Hat Single Sign-On. Once the user has
successfully authenticated with Red Hat Single Sign-On an Authorization Code is created and the user
agent is redirected back to the application. The application then uses the authorization code along with
its credentials to obtain an Access Token, Refresh Token and ID Token from Red Hat Single Sign-On.

The flow is targeted towards web applications, but is also recommended for native applications,
including mobile applications, where it is possible to embed a user agent.

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

82

https://datatracker.ietf.org/doc/html/rfc7009
https://datatracker.ietf.org/doc/html/rfc8628
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#_client_initiated_backchannel_authentication_grant
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7515

For more details refer to the Authorization Code Flow in the OpenID Connect specification.

2.4.3.2. Implicit

The Implicit flow redirects works similarly to the Authorization Code flow, but instead of returning an
Authorization Code the Access Token and ID Token is returned. This reduces the need for the extra
invocation to exchange the Authorization Code for an Access Token. However, it does not include a
Refresh Token. This results in the need to either permit Access Tokens with a long expiration, which is
problematic as it’s very hard to invalidate these. Or requires a new redirect to obtain new Access Token
once the initial Access Token has expired. The Implicit flow is useful if the application only wants to
authenticate the user and deals with logout itself.

There’s also a Hybrid flow where both the Access Token and an Authorization Code is returned.

One thing to note is that both the Implicit flow and Hybrid flow has potential security risks as the Access
Token may be leaked through web server logs and browser history. This is somewhat mitigated by using
short expiration for Access Tokens.

For more details refer to the Implicit Flow in the OpenID Connect specification.

2.4.3.3. Resource Owner Password Credentials

Resource Owner Password Credentials, referred to as Direct Grant in Red Hat Single Sign-On, allows
exchanging user credentials for tokens. It’s not recommended to use this flow unless you absolutely
need to. Examples where this could be useful are legacy applications and command-line interfaces.

There are a number of limitations of using this flow, including:

User credentials are exposed to the application

Applications need login pages

Application needs to be aware of the authentication scheme

Changes to authentication flow requires changes to application

No support for identity brokering or social login

Flows are not supported (user self-registration, required actions, etc.)

For a client to be permitted to use the Resource Owner Password Credentials grant the client has to
have the Direct Access Grants Enabled option enabled.

This flow is not included in OpenID Connect, but is a part of the OAuth 2.0 specification.

For more details refer to the Resource Owner Password Credentials Grant chapter in the OAuth 2.0
specification.

2.4.3.3.1. Example using CURL

The following example shows how to obtain an access token for a user in the realm master with
username user and password password. The example is using the confidential client myclient:

curl \
 -d "client_id=myclient" \
 -d "client_secret=40cc097b-2a57-4c17-b36a-8fdf3fc2d578" \

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

83

https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://openid.net/specs/openid-connect-core-1_0.html#ImplicitFlowAuth
https://datatracker.ietf.org/doc/html/rfc6749#section-4.3

2.4.3.4. Client credentials

Client Credentials is used when clients (applications and services) wants to obtain access on behalf of
themselves rather than on behalf of a user. This can for example be useful for background services that
applies changes to the system in general rather than for a specific user.

Red Hat Single Sign-On provides support for clients to authenticate either with a secret or with
public/private keys.

This flow is not included in OpenID Connect, but is a part of the OAuth 2.0 specification.

For more details refer to the Client Credentials Grant chapter in the OAuth 2.0 specification.

2.4.3.5. Device Authorization Grant

Device Authorization Grant is used by clients running on internet-connected devices that have limited
input capabilities or lack a suitable browser. The application requests Red Hat Single Sign-On a device
code and a user code. Red Hat Single Sign-On creates a device code and a user code. Red Hat Single
Sign-On returns a response including the device code and the user code to the application. Then the
application provides the user with the user code and the verification URI. The user accesses a
verification URI to be authenticated by using another browser. The application repeatedly polls Red Hat
Single Sign-On until Red Hat Single Sign-On completes the user authorization. If user authentication is
complete, the application obtains the device code. Then the application uses the device code along with
its credentials to obtain an Access Token, Refresh Token and ID Token from Red Hat Single Sign-On.

For more details refer to the OAuth 2.0 Device Authorization Grant specification .

2.4.3.6. Client Initiated Backchannel Authentication Grant

Client Initiated Backchannel Authentication Grant is used by clients who want to initiate the
authentication flow by communicating with the OpenID Provider directly without redirect through the
user’s browser like OAuth 2.0’s authorization code grant.

The client requests Red Hat Single Sign-On an auth_req_id that identifies the authentication request
made by the client. Red Hat Single Sign-On creates the auth_req_id.

After receiving this auth_req_id, this client repeatedly needs to poll Red Hat Single Sign-On to obtain an
Access Token, Refresh Token and ID Token from Red Hat Single Sign-On in return for the auth_req_id
until the user is authenticated.

In case that client uses ping mode, it does not need to repeatedly poll the token endpoint, but it can wait
for the notification sent by Red Hat Single Sign-On to the specified Client Notification Endpoint. The
Client Notification Endpoint can be configured in the Red Hat Single Sign-On Admin Console. The
details of the contract for Client Notification Endpoint are described in the CIBA specification.

For more details refer to OpenID Connect Client Initiated Backchannel Authentication Flow
specification.

Also please refer to other places of Red Hat Single Sign-On documentation like Backchannel
Authentication Endpoint of this guide and Client Initiated Backchannel Authentication Grant section of
Server Administration Guide. For the details about FAPI CIBA compliance, please refer to the FAPI

 -d "username=user" \
 -d "password=password" \
 -d "grant_type=password" \
 "http://localhost:8080/auth/realms/master/protocol/openid-connect/token"

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

84

https://datatracker.ietf.org/doc/html/rfc6749#section-4.4
https://datatracker.ietf.org/doc/html/rfc8628
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#_client_initiated_backchannel_authentication_grant

section of this guide.

2.4.4. Redirect URIs

When using the redirect based flows it’s important to use valid redirect uris for your clients. The redirect
uris should be as specific as possible. This especially applies to client-side (public clients) applications.
Failing to do so could result in:

Open redirects - this can allow attackers to create spoof links that looks like they are coming
from your domain

Unauthorized entry - when users are already authenticated with Red Hat Single Sign-On an
attacker can use a public client where redirect uris have not be configured correctly to gain
access by redirecting the user without the users knowledge

In production for web applications always use https for all redirect URIs. Do not allow redirects to http.

There’s also a few special redirect URIs:

http://localhost

This redirect URI is useful for native applications and allows the native application to create a web
server on a random port that can be used to obtain the authorization code. This redirect uri allows any
port.

urn:ietf:wg:oauth:2.0:oob

If its not possible to start a web server in the client (or a browser is not available) it is possible to use
the special urn:ietf:wg:oauth:2.0:oob redirect uri. When this redirect uri is used Red Hat Single
Sign-On displays a page with the code in the title and in a box on the page. The application can either
detect that the browser title has changed, or the user can copy/paste the code manually to the
application. With this redirect uri it is also possible for a user to use a different device to obtain a
code to paste back to the application.

2.5. FINANCIAL-GRADE API (FAPI) SUPPORT

Red Hat Single Sign-On makes it easier for administrators to make sure that their clients are compliant
with these specifications:

Financial-grade API Security Profile 1.0 - Part 1: Baseline

Financial-grade API Security Profile 1.0 - Part 2: Advanced

Financial-grade API: Client Initiated Backchannel Authentication Profile (FAPI CIBA)

This compliance means that the Red Hat Single Sign-On server will verify the requirements for the
authorization server, which are mentioned in the specifications. Red Hat Single Sign-On adapters do not
have any specific support for the FAPI, hence the required validations on the client (application) side
may need to be still done manually or through some other third-party solutions.

2.5.1. FAPI client profiles

To make sure that your clients are FAPI compliant, you can configure Client Policies in your realm as
described in the Server Administration Guide and link them to the global client profiles for FAPI support,
which are automatically available in each realm. You can use either fapi-1-baseline or fapi-1-advanced
profile based on which FAPI profile you need your clients to conform with.

In case you want to use Pushed Authorization Request (PAR), it is recommended that your client use

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

85

https://openid.net/specs/openid-financial-api-part-1-1_0.html
https://openid.net/specs/openid-financial-api-part-2-1_0.html
https://openid.net/specs/openid-financial-api-ciba-ID1.html
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#_client_policies

In case you want to use Pushed Authorization Request (PAR), it is recommended that your client use
both the fapi-1-baseline profile and fapi-1-advanced for PAR requests. Specifically, the fapi-1-
baseline profile contains pkce-enforcer executor, which makes sure that client use PKCE with secured
S256 algorithm. This is not required for FAPI Advanced clients unless they use PAR requests.

In case you want to use CIBA in a FAPI compliant way, make sure that your clients use both fapi-1-
advanced and fapi-ciba client profiles. There is a need to use the fapi-1-advanced profile, or other
client profile containing the requested executors, as the fapi-ciba profile contains just CIBA-specific
executors. When enforcing the requirements of the FAPI CIBA specification, there is a need for more
requirements, such as enforcement of confidential clients or certificate-bound access tokens.

2.5.2. Open Banking Brasil Financial-grade API Security Profile

Red Hat Single Sign-On is compliant with the Open Banking Brasil Financial-grade API Security Profile
1.0 Implementers Draft 2. This one is more strict in some requirements than the FAPI 1 Advanced
specification and hence it may be needed to configure Client Policies in the more strict way to enforce
some of the requirements. Especially:

If your client does not use PAR, make sure that it uses encrypted OIDC request objects. This can
be achieved by using a client profile with the secure-request-object executor configured with
Encryption Required enabled.

Make sure that for JWS, the client uses the PS256 algorithm. For JWE, the client should use the
RSA-OAEP with A256GCM. This may need to be set in all the Client Settings where these
algorithms are applicable.

2.5.3. TLS considerations

As confidential information is being exchanged, all interactions shall be encrypted with TLS (HTTPS).
Moreover, there are some requirements in the FAPI specification for the cipher suites and TLS protocol
versions used. To match these requirements, you can consider configure allowed ciphers. This
configuration can be done in the KEYCLOAK_HOME/standalone/configuration/standalone-*.xml file
in the Elytron subsystem. For example this element can be added under tls → server-ssl-contexts

The references to kcKeyManager and kcTrustManager refers to the corresponding Keystore and
Truststore. See the documentation of Wildfly Elytron subsystem for more details and also other parts of
Red Hat Single Sign-On documentation such as Network Setup Section or X.509 Authentication
Section.

<server-ssl-context name="kcSSLContext" want-client-auth="true" protocols="TLSv1.2" \
key-manager="kcKeyManager" trust-manager="kcTrustManager" \
cipher-suite-
filter="TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_128_GC
M_SHA256,TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,TLS_DHE_RSA_WITH_AES_256_GC
M_SHA384" protocols="TLSv1.2" />

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

86

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#_oidc_clients
https://openbanking-brasil.github.io/specs-seguranca/open-banking-brasil-dynamic-client-registration-1_ID2-ptbr.html
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#_client_policies
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#_oidc_clients
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_installation_and_configuration_guide/#_network
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#_x509

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND
SERVICES

This section describes how you can secure applications and services with SAML using either Red Hat
Single Sign-On client adapters or generic SAML provider libraries.

3.1. JAVA ADAPTERS

Red Hat Single Sign-On comes with a range of different adapters for Java application. Selecting the
correct adapter depends on the target platform.

3.1.1. General Adapter Config

Each SAML client adapter supported by Red Hat Single Sign-On can be configured by a simple XML text
file. This is what one might look like:

<keycloak-saml-adapter xmlns="urn:keycloak:saml:adapter"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:keycloak:saml:adapter
https://www.keycloak.org/schema/keycloak_saml_adapter_1_10.xsd">
 <SP entityID="http://localhost:8081/sales-post-sig/"
 sslPolicy="EXTERNAL"
 nameIDPolicyFormat="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified"
 logoutPage="/logout.jsp"
 forceAuthentication="false"
 isPassive="false"
 turnOffChangeSessionIdOnLogin="false"
 autodetectBearerOnly="false">
 <Keys>
 <Key signing="true" >
 <KeyStore resource="/WEB-INF/keystore.jks" password="store123">
 <PrivateKey alias="http://localhost:8080/sales-post-sig/" password="test123"/>
 <Certificate alias="http://localhost:8080/sales-post-sig/"/>
 </KeyStore>
 </Key>
 </Keys>
 <PrincipalNameMapping policy="FROM_NAME_ID"/>
 <RoleIdentifiers>
 <Attribute name="Role"/>
 </RoleIdentifiers>
 <RoleMappingsProvider id="properties-based-role-mapper">
 <Property name="properties.resource.location" value="/WEB-INF/role-mappings.properties"/>
 </RoleMappingsProvider>
 <IDP entityID="idp"
 signaturesRequired="true">
 <SingleSignOnService requestBinding="POST"
 bindingUrl="http://localhost:8081/auth/realms/demo/protocol/saml"
 />

 <SingleLogoutService
 requestBinding="POST"
 responseBinding="POST"
 postBindingUrl="http://localhost:8081/auth/realms/demo/protocol/saml"
 redirectBindingUrl="http://localhost:8081/auth/realms/demo/protocol/saml"

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES

87

Some of these configuration switches may be adapter specific and some are common across all
adapters. For Java adapters you can use ${… } enclosure as System property replacement. For example
${jboss.server.config.dir}.

3.1.1.1. SP element

Here is the explanation of the SP element attributes:

entityID

This is the identifier for this client. The IdP needs this value to determine who the client is that is
communicating with it. This setting is REQUIRED.

sslPolicy

This is the SSL policy the adapter will enforce. Valid values are: ALL, EXTERNAL, and NONE. For
ALL, all requests must come in via HTTPS. For EXTERNAL, only non-private IP addresses must
come over the wire via HTTPS. For NONE, no requests are required to come over via HTTPS. This
setting is OPTIONAL. Default value is EXTERNAL.

nameIDPolicyFormat

SAML clients can request a specific NameID Subject format. Fill in this value if you want a specific
format. It must be a standard SAML format identifier: urn:oasis:names:tc:SAML:2.0:nameid-
format:transient. This setting is OPTIONAL. By default, no special format is requested.

forceAuthentication

SAML clients can request that a user is re-authenticated even if they are already logged in at the IdP.
Set this to true to enable. This setting is OPTIONAL. Default value is false.

isPassive

SAML clients can request that a user is never asked to authenticate even if they are not logged in at
the IdP. Set this to true if you want this. Do not use together with forceAuthentication as they are
opposite. This setting is OPTIONAL. Default value is false.

turnOffChangeSessionIdOnLogin

The session ID is changed by default on a successful login on some platforms to plug a security attack

 />
 <Keys>
 <Key signing="true">
 <KeyStore resource="/WEB-INF/keystore.jks" password="store123">
 <Certificate alias="demo"/>
 </KeyStore>
 </Key>
 </Keys>
 </IDP>
 </SP>
</keycloak-saml-adapter>

<SP entityID="sp"
 sslPolicy="ssl"
 nameIDPolicyFormat="format"
 forceAuthentication="true"
 isPassive="false"
 keepDOMAssertion="true"
 autodetectBearerOnly="false">
...
</SP>

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

88

The session ID is changed by default on a successful login on some platforms to plug a security attack
vector. Change this to true to disable this. It is recommended you do not turn it off. Default value is
false.

autodetectBearerOnly

This should be set to true if your application serves both a web application and web services (for
example SOAP or REST). It allows you to redirect unauthenticated users of the web application to
the Red Hat Single Sign-On login page, but send an HTTP 401 status code to unauthenticated SOAP
or REST clients instead as they would not understand a redirect to the login page. Red Hat Single
Sign-On auto-detects SOAP or REST clients based on typical headers like X-Requested-With,
SOAPAction or Accept. The default value is false.

logoutPage

This sets the page to display after logout. If the page is a full URL, such as
http://web.example.com/logout.html, the user is redirected after logout to that page using the
HTTP 302 status code. If a link without scheme part is specified, such as /logout.jsp, the page is
displayed after logout, regardless of whether it lies in a protected area according to security-
constraint declarations in web.xml , and the page is resolved relative to the deployment context root.

keepDOMAssertion

This attribute should be set to true to make the adapter store the DOM representation of the
assertion in its original form inside the SamlPrincipal associated to the request. The assertion
document can be retrieved using the method getAssertionDocument inside the principal. This is
specially useful when re-playing a signed assertion. The returned document is the one that was
generated parsing the SAML response received by the Red Hat Single Sign-On server. This setting is
OPTIONAL and its default value is false (the document is not saved inside the principal).

3.1.1.2. Service Provider keys and key elements

If the IdP requires that the client application (or SP) sign all of its requests and/or if the IdP will encrypt
assertions, you must define the keys used to do this. For client-signed documents you must define both
the private and public key or certificate that is used to sign documents. For encryption, you only have to
define the private key that is used to decrypt it.

There are two ways to describe your keys. They can be stored within a Java KeyStore or you can
copy/paste the keys directly within keycloak-saml.xml in the PEM format.

The Key element has two optional attributes signing and encryption. When set to true these tell the
adapter what the key will be used for. If both attributes are set to true, then the key will be used for both
signing documents and decrypting encrypted assertions. You must set at least one of these attributes
to true.

3.1.1.2.1. KeyStore element

Within the Key element you can load your keys and certificates from a Java Keystore. This is declared
within a KeyStore element.

 <Keys>
 <Key signing="true" >
 ...
 </Key>
 </Keys>

 <Keys>
 <Key signing="true" >
 <KeyStore resource="/WEB-INF/keystore.jks" password="store123">

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES

89

http://web.example.com/logout.html

Here are the XML config attributes that are defined with the KeyStore element.

file

File path to the key store. This option is OPTIONAL. The file or resource attribute must be set.

resource

WAR resource path to the KeyStore. This is a path used in method call to
ServletContext.getResourceAsStream(). This option is OPTIONAL. The file or resource attribute
must be set.

password

The password of the KeyStore. This option is REQUIRED.

If you are defining keys that the SP will use to sign document, you must also specify references to your
private keys and certificates within the Java KeyStore. The PrivateKey and Certificate elements in the
above example define an alias that points to the key or cert within the keystore. Keystores require an
additional password to access private keys. In the PrivateKey element you must define this password
within a password attribute.

3.1.1.2.2. Key PEMS

Within the Key element you declare your keys and certificates directly using the sub elements
PrivateKeyPem, PublicKeyPem, and CertificatePem. The values contained in these elements must
conform to the PEM key format. You usually use this option if you are generating keys using openssl or
similar command line tool.

3.1.1.3. SP PrincipalNameMapping element

This element is optional. When creating a Java Principal object that you obtain from methods such as
HttpServletRequest.getUserPrincipal(), you can define what name is returned by the
Principal.getName() method.

 <PrivateKey alias="myPrivate" password="test123"/>
 <Certificate alias="myCertAlias"/>
 </KeyStore>
 </Key>
 </Keys>

<Keys>
 <Key signing="true">
 <PrivateKeyPem>
 2341251234AB31234==231BB998311222423522334
 </PrivateKeyPem>
 <CertificatePem>
 211111341251234AB31234==231BB998311222423522334
 </CertificatePem>
 </Key>
</Keys>

<SP ...>
 <PrincipalNameMapping policy="FROM_NAME_ID"/>
</SP>

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

90

The policy attribute defines the policy used to populate this value. The possible values for this attribute
are:

FROM_NAME_ID

This policy just uses whatever the SAML subject value is. This is the default setting

FROM_ATTRIBUTE

This will pull the value from one of the attributes declared in the SAML assertion received from the
server. You’ll need to specify the name of the SAML assertion attribute to use within the attribute
XML attribute.

3.1.1.4. RoleIdentifiers element

The RoleIdentifiers element defines what SAML attributes within the assertion received from the user
should be used as role identifiers within the Jakarta EE Security Context for the user.

By default Role attribute values are converted to Jakarta EE roles. Some IdPs send roles using a
member or memberOf attribute assertion. You can define one or more Attribute elements to specify
which SAML attributes must be converted into roles.

3.1.1.5. RoleMappingsProvider element

The RoleMappingsProvider is an optional element that allows for the specification of the id and
configuration of the org.keycloak.adapters.saml.RoleMappingsProvider SPI implementation that is
to be used by the SAML adapter.

When Red Hat Single Sign-On is used as the IDP, it is possible to use the built in role mappers to map
any roles before adding them to the SAML assertion. However, the SAML adapters can be used to send
SAML requests to third party IDPs and in this case it might be necessary to map the roles extracted from
the assertion into a different set of roles as required by the SP. The RoleMappingsProvider SPI allows
for the configuration of pluggable role mappers that can be used to perform the necessary mappings.

The configuration of the provider looks as follows:

<SP ...>
 <PrincipalNameMapping policy="FROM_ATTRIBUTE" attribute="email" />
</SP>

<RoleIdentifiers>
 <Attribute name="Role"/>
 <Attribute name="member"/>
 <Attribute name="memberOf"/>
</RoleIdentifiers>

...
<RoleIdentifiers>
 ...
</RoleIdentifiers>
<RoleMappingsProvider id="properties-based-role-mapper">
 <Property name="properties.resource.location" value="/WEB-INF/role-mappings.properties"/>
</RoleMappingsProvider>
<IDP>
 ...
</IDP>

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES

91

The id attribute identifies which of the installed providers is to be used. The Property sub-element can
be used multiple times to specify configuration properties for the provider.

3.1.1.5.1. Properties Based role mappings provider

Red Hat Single Sign-On includes a RoleMappingsProvider implementation that performs the role
mappings using a properties file. This provider is identified by the id properties-based-role-mapper
and is implemented by the org.keycloak.adapters.saml.PropertiesBasedRoleMapper class.

This provider relies on two configuration properties that can be used to specify the location of the
properties file that will be used. First, it checks if the properties.file.location property has been
specified, using the configured value to locate the properties file in the filesystem. If the configured file
is not located, the provider throws a RuntimeException. The following snippet shows an example of
provider using the properties.file.configuration option to load the roles.properties file from the
/opt/mappers/ directory in the filesystem:

If the properties.file.location configuration has not been set, the provider checks the
properties.resource.location property, using the configured value to load the properties file from the
WAR resource. If this configuration property is also not present, the provider attempts to load the file
from /WEB-INF/role-mappings.properties by default. Failure to load the file from the resource will
result in the provider throwing a RuntimeException. The following snippet shows an example of
provider using the properties.resource.location to load the roles.properties file from the application’s
/WEB-INF/conf/ directory:

The properties file can contain both roles and principals as keys, and a list of zero or more roles
separated by comma as values. When invoked, the implementation iterates through the set of roles that
were extracted from the assertion and checks, for each role, if a mapping exists. If the role maps to an
empty role, it is discarded. If it maps to a set of one ore more different roles, then these roles are set in
the result set. If no mapping is found for the role then it is included as is in the result set.

Once the roles have been processed, the implementation checks if the principal extracted from the
assertion contains an entry properties file. If a mapping for the principal exists, any roles listed as value
are added to the result set. This allows the assignment of extra roles to a principal.

As an example, let’s assume the provider has been configured with the following properties file:

roleA=roleX,roleY
roleB=

kc_user=roleZ

If the principal kc_user is extracted from the assertion with roles roleA, roleB and roleC, the final set of
roles assigned to the principal will be roleC, roleX, roleY and roleZ because roleA is being mapped into
both roleX and roleY, roleB was mapped into an empty role - thus being discarded, roleC is used as is
and finally an additional role was added to the kc_user principal (roleZ).

Note: to use spaces in role names for mappings, use unicode replacements for space. For example,

 <RoleMappingsProvider id="properties-based-role-mapper">
 <Property name="properties.file.location" value="/opt/mappers/roles.properties"/>
 </RoleMappingsProvider>

 <RoleMappingsProvider id="properties-based-role-mapper">
 <Property name="properties.resource.location" value="/WEB-INF/conf/roles.properties"/>
 </RoleMappingsProvider>

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

92

Note: to use spaces in role names for mappings, use unicode replacements for space. For example,
incoming 'role A' would appear as:

role\u0020A=roleX,roleY

3.1.1.5.2. Adding your own role mappings provider

To add a custom role mappings provider one simply needs to implement the
org.keycloak.adapters.saml.RoleMappingsProvider SPI. For more details see the SAML Role
Mappings SPI section in Server Developer Guide.

3.1.1.6. IDP Element

Everything in the IDP element describes the settings for the identity provider (authentication server)
the SP is communicating with.

Here are the attribute config options you can specify within the IDP element declaration.

entityID

This is the issuer ID of the IDP. This setting is REQUIRED.

signaturesRequired

If set to true, the client adapter will sign every document it sends to the IDP. Also, the client will
expect that the IDP will be signing any documents sent to it. This switch sets the default for all
request and response types, but you will see later that you have some fine grain control over this. This
setting is OPTIONAL and will default to false.

signatureAlgorithm

This is the signature algorithm that the IDP expects signed documents to use. Allowed values are:
RSA_SHA1, RSA_SHA256, RSA_SHA512, and DSA_SHA1. This setting is OPTIONAL and defaults
to RSA_SHA256.

signatureCanonicalizationMethod

This is the signature canonicalization method that the IDP expects signed documents to use. This
setting is OPTIONAL. The default value is http://www.w3.org/2001/10/xml-exc-c14n# and should be
good for most IDPs.

metadataUrl

The URL used to retrieve the IDP metadata, currently this is only used to pick up signing and
encryption keys periodically which allow cycling of these keys on the IDP without manual changes on
the SP side.

3.1.1.7. IDP AllowedClockSkew sub element

The AllowedClockSkew optional sub element defines the allowed clock skew between IDP and SP. The
default value is 0.

<IDP entityID="idp"
 signaturesRequired="true"
 signatureAlgorithm="RSA_SHA1"
 signatureCanonicalizationMethod="http://www.w3.org/2001/10/xml-exc-c14n#">
...
</IDP>

<AllowedClockSkew unit="MILLISECONDS">3500</AllowedClockSkew>

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES

93

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_developer_guide/

unit

It is possible to define the time unit attached to the value for this element. Allowed values are
MICROSECONDS, MILLISECONDS, MINUTES, NANOSECONDS and SECONDS. This is OPTIONAL.
The default value is SECONDS.

3.1.1.8. IDP SingleSignOnService sub element

The SingleSignOnService sub element defines the login SAML endpoint of the IDP. The client adapter
will send requests to the IDP formatted via the settings within this element when it wants to login.

Here are the config attributes you can define on this element:

signRequest

Should the client sign authn requests? This setting is OPTIONAL. Defaults to whatever the IDP
signaturesRequired element value is.

validateResponseSignature

Should the client expect the IDP to sign the assertion response document sent back from an auhtn
request? This setting OPTIONAL. Defaults to whatever the IDP signaturesRequired element value
is.

requestBinding

This is the SAML binding type used for communicating with the IDP. This setting is OPTIONAL. The
default value is POST, but you can set it to REDIRECT as well.

responseBinding

SAML allows the client to request what binding type it wants authn responses to use. The values of
this can be POST or REDIRECT. This setting is OPTIONAL. The default is that the client will not
request a specific binding type for responses.

assertionConsumerServiceUrl

URL of the assertion consumer service (ACS) where the IDP login service should send responses to.
This setting is OPTIONAL. By default it is unset, relying on the configuration in the IdP. When set, it
must end in /saml, for example http://sp.domain.com/my/endpoint/for/saml. The value of this
property is sent in AssertionConsumerServiceURL attribute of SAML AuthnRequest message.
This property is typically accompanied by the responseBinding attribute.

bindingUrl

This is the URL for the IDP login service that the client will send requests to. This setting is
REQUIRED.

3.1.1.9. IDP SingleLogoutService sub element

The SingleLogoutService sub element defines the logout SAML endpoint of the IDP. The client
adapter will send requests to the IDP formatted via the settings within this element when it wants to
logout.

<SingleSignOnService signRequest="true"
 validateResponseSignature="true"
 requestBinding="post"
 bindingUrl="url"/>

<SingleLogoutService validateRequestSignature="true"
 validateResponseSignature="true"
 signRequest="true"
 signResponse="true"

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

94

signRequest

Should the client sign logout requests it makes to the IDP? This setting is OPTIONAL. Defaults to
whatever the IDP signaturesRequired element value is.

signResponse

Should the client sign logout responses it sends to the IDP requests? This setting is OPTIONAL.
Defaults to whatever the IDP signaturesRequired element value is.

validateRequestSignature

Should the client expect signed logout request documents from the IDP? This setting is OPTIONAL.
Defaults to whatever the IDP signaturesRequired element value is.

validateResponseSignature

Should the client expect signed logout response documents from the IDP? This setting is OPTIONAL.
Defaults to whatever the IDP signaturesRequired element value is.

requestBinding

This is the SAML binding type used for communicating SAML requests to the IDP. This setting is
OPTIONAL. The default value is POST, but you can set it to REDIRECT as well.

responseBinding

This is the SAML binding type used for communicating SAML responses to the IDP. The values of
this can be POST or REDIRECT. This setting is OPTIONAL. The default value is POST, but you can
set it to REDIRECT as well.

postBindingUrl

This is the URL for the IDP’s logout service when using the POST binding. This setting is REQUIRED if
using the POST binding.

redirectBindingUrl

This is the URL for the IDP’s logout service when using the REDIRECT binding. This setting is
REQUIRED if using the REDIRECT binding.

3.1.1.10. IDP Keys sub element

The Keys sub element of IDP is only used to define the certificate or public key to use to verify
documents signed by the IDP. It is defined in the same way as the SP’s Keys element. But again, you only
have to define one certificate or public key reference. Note that, if both IDP and SP are realized by Red
Hat Single Sign-On server and adapter, respectively, there is no need to specify the keys for signature
validation, see below.

It is possible to configure SP to obtain public keys for IDP signature validation from published
certificates automatically, provided both SP and IDP are implemented by Red Hat Single Sign-On. This
is done by removing all declarations of signature validation keys in Keys sub element. If the Keys sub
element would then remain empty, it can be omitted completely. The keys are then automatically
obtained by SP from SAML descriptor, location of which is derived from SAML endpoint URL specified
in the IDP SingleSignOnService sub element. Settings of the HTTP client that is used for SAML
descriptor retrieval usually needs no additional configuration, however it can be configured in the IDP
HttpClient sub element.

It is also possible to specify multiple keys for signature verification. This is done by declaring multiple
Key elements within Keys sub element that have signing attribute set to true. This is useful for example
in situation when the IDP signing keys are rotated: There is usually a transition period when new SAML

 requestBinding="redirect"
 responseBinding="post"
 postBindingUrl="posturl"
 redirectBindingUrl="redirecturl">

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES

95

protocol messages and assertions are signed with the new key but those signed by previous key should
still be accepted.

It is not possible to configure Red Hat Single Sign-On to both obtain the keys for signature verification
automatically and define additional static signature verification keys.

3.1.1.11. IDP HttpClient sub element

The HttpClient optional sub element defines the properties of HTTP client used for automatic obtaining
of certificates containing public keys for IDP signature verification via SAML descriptor of the IDP when
enabled.

connectionPoolSize

This config option defines how many connections to the Red Hat Single Sign-On server should be
pooled. This is OPTIONAL. The default value is 10.

disableTrustManager

If the Red Hat Single Sign-On server requires HTTPS and this config option is set to true you do not
have to specify a truststore. This setting should only be used during development and never in
production as it will disable verification of SSL certificates. This is OPTIONAL. The default value is
false.

allowAnyHostname

If the Red Hat Single Sign-On server requires HTTPS and this config option is set to true the Red
Hat Single Sign-On server’s certificate is validated via the truststore, but host name validation is not
done. This setting should only be used during development and never in production as it will partly
disable verification of SSL certificates. This seting may be useful in test environments. This is
OPTIONAL. The default value is false.

truststore

The value is the file path to a truststore file. If you prefix the path with classpath:, then the truststore
will be obtained from the deployment’s classpath instead. Used for outgoing HTTPS communications

 <IDP entityID="idp">
 ...
 <Keys>
 <Key signing="true">
 <KeyStore resource="/WEB-INF/keystore.jks" password="store123">
 <Certificate alias="demo"/>
 </KeyStore>
 </Key>
 </Keys>
 </IDP>

<HttpClient connectionPoolSize="10"
 disableTrustManager="false"
 allowAnyHostname="false"
 clientKeystore="classpath:keystore.jks"
 clientKeystorePassword="pwd"
 truststore="classpath:truststore.jks"
 truststorePassword="pwd"
 proxyUrl="http://proxy/"
 socketTimeout="5000"
 connectionTimeout="6000"
 connectionTtl="500" />

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

96

to the Red Hat Single Sign-On server. Client making HTTPS requests need a way to verify the host of
the server they are talking to. This is what the trustore does. The keystore contains one or more
trusted host certificates or certificate authorities. You can create this truststore by extracting the
public certificate of the Red Hat Single Sign-On server’s SSL keystore. This is REQUIRED unless
disableTrustManager is true.

truststorePassword

Password for the truststore. This is REQUIRED if truststore is set and the truststore requires a
password.

clientKeystore

This is the file path to a keystore file. This keystore contains client certificate for two-way SSL when
the adapter makes HTTPS requests to the Red Hat Single Sign-On server. This is OPTIONAL.

clientKeystorePassword

Password for the client keystore and for the client’s key. This is REQUIRED if clientKeystore is set.

proxyUrl

URL to HTTP proxy to use for HTTP connections. This is OPTIONAL.

socketTimeout

Timeout for socket waiting for data after establishing the connection in milliseconds. Maximum time
of inactivity between two data packets. A timeout value of zero is interpreted as an infinite timeout. A
negative value is interpreted as undefined (system default if applicable). The default value is -1. This
is OPTIONAL.

connectionTimeout

Timeout for establishing the connection with the remote host in milliseconds. A timeout value of zero
is interpreted as an infinite timeout. A negative value is interpreted as undefined (system default if
applicable). The default value is -1. This is OPTIONAL.

connectionTtl

Connection time-to-live for client in milliseconds. A value less than or equal to zero is interpreted as
an infinite value. The default value is -1. This is OPTIONAL.

3.1.2. JBoss EAP adapter

To be able to secure WAR apps deployed on JBoss EAP, you must install and configure the Red Hat
Single Sign-On SAML Adapter Subsystem.

You then provide a keycloak config, /WEB-INF/keycloak-saml.xml file in your WAR and change the
auth-method to KEYCLOAK-SAML within web.xml.

You install the adapters by using a ZIP file or an RPM.

Installing adapters from a ZIP file

Installing JBoss EAP 7 Adapters from an RPM

Installing JBoss EAP 6 Adapters from an RPM

3.1.3. Installing adapters from a ZIP file

Each adapter is a separate download on the Red Hat Single Sign-On download site.

Procedure

1. Install the adapter that applies to your application server from the Downloads site.

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES

97

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=core.service.rhsso

Install on JBoss EAP 7.x:

$ cd $EAP_HOME
$ unzip rh-sso-saml-eap7-adapter.zip

Install on JBoss EAP 6.x:

$ cd $EAP_HOME
$ unzip rh-sso-saml-eap6-adapter.zip

These ZIP files create new JBoss Modules specific to the JBoss EAP SAML Adapter within
your JBoss EAP distribution.

2. Use a CLI script to enable the Red Hat Single Sign-On SAML Subsystem within your app
server’s server configuration: domain.xml or standalone.xml.
Start the server and run the script that applies to your application server.

Use this command for JBoss EAP 7.1 or newer

$ cd $JBOSS_HOME
$./bin/jboss-cli.sh -c --file=bin/adapter-elytron-install-saml.cli

NOTE

EAP supports OpenJDK 17 and Oracle JDK 17 since 7.4.CP7 and 7.4.CP8
respectively. Note that the new java version makes the elytron variant
compulsory, so do not use the legacy adapter with JDK 17. Also, after running
the adapter CLI file, execute the enable-elytron-se17.cli script provided by
EAP. Both scripts are necessary to configure the elytron adapter and remove
the incompatible EAP subsystems. For more details, see this Security
Configuration Changes article.

Use this command for JBoss EAP 7.0 and EAP 6.4

$ cd $JBOSS_HOME
$./bin/jboss-cli.sh -c --file=bin/adapter-install-saml.cli

NOTE

It is possible to use the legacy non-Elytron adapter on JBoss EAP 7.1 or
newer as well, meaning you can use adapter-install-saml.cli even on those
versions. However, we recommend to use the newer Elytron adapter.

The script will add the extension, subsystem, and optional security-domain as described
below.

<server xmlns="urn:jboss:domain:1.4">

 <extensions>
 <extension module="org.keycloak.keycloak-saml-adapter-subsystem"/>
 ...
 </extensions>

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

98

https://access.redhat.com/articles/2026253#EAP_74
https://access.redhat.com/articles/6956863

The keycloak security domain should be used with EJBs and other components when you need the
security context created in the secured web tier to be propagated to the EJBs (other EE component)
you are invoking. Otherwise this configuration is optional.

The security context is propagated to the EJB tier automatically.

3.1.3.1. JBoss SSO

JBoss EAP has built-in support for single sign-on for web applications deployed to the same JBoss EAP
instance. This should not be enabled when using Red Hat Single Sign-On.

3.1.3.2. Setting SameSite value for JSESSIONID cookie

Browsers are planning to set the default value for the SameSite attribute for cookies to Lax. This
setting means that cookies will be sent to applications only if the request originates in the same domain.
This behavior can affect the SAML POST binding which may become non-functional. To preserve full
functionality of the SAML adapter, we recommend setting the SameSite value to None for the
JSESSIONID cookie created by your container. Not doing so may result in resetting the container’s
session with each request to Red Hat Single Sign-On.

NOTE

To avoid setting the SameSite attribute to None, consider switching to the REDIRECT
binding if it is acceptable, or to OIDC protocol where this workaround is not necessary.

To set the SameSite value to None for the JSESSIONID cookie in Wildfly/EAP, add a file undertow-
handlers.conf with the following content to the WEB-INF directory of your application.

samesite-cookie(mode=None, cookie-pattern=JSESSIONID)

The support for this configuration is available in Wildfly from version 19.1.0.

3.1.4. Installing JBoss EAP 7 Adapters from an RPM

NOTE

 <profile>
 <subsystem xmlns="urn:jboss:domain:keycloak-saml:1.1"/>
 ...
 </profile>

<server xmlns="urn:jboss:domain:1.4">
 <subsystem xmlns="urn:jboss:domain:security:1.2">
 <security-domains>
...
 <security-domain name="keycloak">
 <authentication>
 <login-module code="org.keycloak.adapters.jboss.KeycloakLoginModule"
 flag="required"/>
 </authentication>
 </security-domain>
 </security-domains>

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES

99

NOTE

With Red Hat Enterprise Linux 7, the term channel was replaced with the term repository.
In these instructions only the term repository is used.

Prerequisites

You must subscribe to the JBoss EAP 7 repository before you can install the EAP 7 adapters from an
RPM.

Ensure that your Red Hat Enterprise Linux system is registered to your account using Red Hat
Subscription Manager. For more information see the Red Hat Subscription Management
documentation.

If you are already subscribed to another JBoss EAP repository, you must unsubscribe from that
repository first.
For Red Hat Enterprise Linux 6, 7: Using Red Hat Subscription Manager, subscribe to the JBoss
EAP 7.4 repository using the following command. Replace <RHEL_VERSION> with either 6 or 7
depending on your Red Hat Enterprise Linux version.

For Red Hat Enterprise Linux 8: Using Red Hat Subscription Manager, subscribe to the JBoss
EAP 7.4 repository using the following command:

Procedure

1. Install the EAP 7 adapters for SAML based on your version of Red Hat Enterprise Linux.

Install on Red Hat Linux 7:

Install on Red Hat Enterprise Linux 8:

NOTE

The default EAP_HOME path for the RPM installation is
/opt/rh/eap7/root/usr/share/wildfly.

2. Run the installation script for the SAML module:

Your installation is complete.

$ sudo subscription-manager repos --enable=jb-eap-7-for-rhel-<RHEL_VERSION>-server-
rpms

$ sudo subscription-manager repos --enable=jb-eap-7.4-for-rhel-8-x86_64-rpms --
enable=rhel-8-for-x86_64-baseos-rpms --enable=rhel-8-for-x86_64-appstream-rpms

$ sudo yum install eap7-keycloak-saml-adapter-sso7_6

$ sudo dnf install eap7-keycloak-adapter-sso7_6

$ $EAP_HOME/bin/jboss-cli.sh -c --file=$EAP_HOME/bin/adapter-install-saml.cli

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

100

https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html-single/quick_registration_for_rhel/index

3.1.5. Installing JBoss EAP 6 Adapters from an RPM

NOTE

With Red Hat Enterprise Linux 7, the term channel was replaced with the term repository.
In these instructions only the term repository is used.

Prerequisites

You must subscribe to the JBoss EAP 6 repository before you can install the EAP 6 adapters from an
RPM.

Ensure that your Red Hat Enterprise Linux system is registered to your account using Red Hat
Subscription Manager. For more information see the Red Hat Subscription Management
documentation.

If you are already subscribed to another JBoss EAP repository, you must unsubscribe from that
repository first.

Using Red Hat Subscription Manager, subscribe to the JBoss EAP 6 repository using the
following command. Replace <RHEL_VERSION> with either 6 or 7 depending on your Red Hat
Enterprise Linux version.

Procedure

1. Install the EAP 6 adapters for SAML using the following command:

NOTE

The default EAP_HOME path for the RPM installation is
/opt/rh/eap6/root/usr/share/wildfly.

2. Run the installation script for the SAML module:

Your installation is complete.

3.1.5.1. Securing a WAR

This section describes how to secure a WAR directly by adding config and editing files within your WAR
package.

The first thing you must do is create a keycloak-saml.xml adapter config file within the WEB-INF
directory of your WAR. The format of this config file is described in the General Adapter Config section.

Next you must set the auth-method to KEYCLOAK-SAML in web.xml. You also have to use standard
servlet security to specify role-base constraints on your URLs. Here’s an example web.xml file:

$ sudo subscription-manager repos --enable=jb-eap-6-for-rhel-<RHEL_VERSION>-server-
rpms

$ sudo yum install keycloak-saml-adapter-sso7_6-eap6

$ $EAP_HOME/bin/jboss-cli.sh -c --file=$EAP_HOME/bin/adapter-install-saml.cli

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES

101

https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html-single/quick_registration_for_rhel/index

All standard servlet settings except the auth-method setting.

3.1.5.2. Securing WARs using the Red Hat Single Sign-On SAML Subsystem

You do not have to open a WAR to secure it with Red Hat Single Sign-On. Alternatively, you can
externally secure it via the Red Hat Single Sign-On SAML Adapter Subsystem. While you don’t have to
specify KEYCLOAK-SAML as an auth-method, you still have to define the security-constraints in

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-
app_3_0.xsd"
 version="3.0">

 <module-name>customer-portal</module-name>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Admins</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Customers</web-resource-name>
 <url-pattern>/customers/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>

 <login-config>
 <auth-method>KEYCLOAK-SAML</auth-method>
 <realm-name>this is ignored currently</realm-name>
 </login-config>

 <security-role>
 <role-name>admin</role-name>
 </security-role>
 <security-role>
 <role-name>user</role-name>
 </security-role>
</web-app>

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

102

web.xml. You do not, however, have to create a WEB-INF/keycloak-saml.xml file. This metadata is
instead defined within the XML in your server’s domain.xml or standalone.xml subsystem
configuration section.

The secure-deployment name attribute identifies the WAR you want to secure. Its value is the module-
name defined in web.xml with .war appended. The rest of the configuration uses the same XML syntax
as keycloak-saml.xml configuration defined in General Adapter Config.

An example configuration:

<extensions>
 <extension module="org.keycloak.keycloak-saml-adapter-subsystem"/>
</extensions>

<profile>
 <subsystem xmlns="urn:jboss:domain:keycloak-saml:1.1">
 <secure-deployment name="WAR MODULE NAME.war">
 <SP entityID="APPLICATION URL">
 ...
 </SP>
 </secure-deployment>
 </subsystem>
</profile>

<subsystem xmlns="urn:jboss:domain:keycloak-saml:1.1">
 <secure-deployment name="saml-post-encryption.war">
 <SP entityID="http://localhost:8080/sales-post-enc/"
 sslPolicy="EXTERNAL"
 nameIDPolicyFormat="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified"
 logoutPage="/logout.jsp"
 forceAuthentication="false">
 <Keys>
 <Key signing="true" encryption="true">
 <KeyStore resource="/WEB-INF/keystore.jks" password="store123">
 <PrivateKey alias="http://localhost:8080/sales-post-enc/" password="test123"/>
 <Certificate alias="http://localhost:8080/sales-post-enc/"/>
 </KeyStore>
 </Key>
 </Keys>
 <PrincipalNameMapping policy="FROM_NAME_ID"/>
 <RoleIdentifiers>
 <Attribute name="Role"/>
 </RoleIdentifiers>
 <IDP entityID="idp">
 <SingleSignOnService signRequest="true"
 validateResponseSignature="true"
 requestBinding="POST"
 bindingUrl="http://localhost:8080/auth/realms/saml-demo/protocol/saml"/>

 <SingleLogoutService
 validateRequestSignature="true"
 validateResponseSignature="true"
 signRequest="true"
 signResponse="true"
 requestBinding="POST"

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES

103

3.1.6. Java Servlet filter adapter

If you want to use SAML with a Java servlet application that doesn’t have an adapter for that servlet
platform, you can opt to use the servlet filter adapter that Red Hat Single Sign-On has. This adapter
works a little differently than the other adapters. You still have to specify a /WEB-INF/keycloak-
saml.xml file as defined in the General Adapter Config section, but you do not define security
constraints in web.xml. Instead you define a filter mapping using the Red Hat Single Sign-On servlet
filter adapter to secure the url patterns you want to secure.

NOTE

Backchannel logout works a bit differently than the standard adapters. Instead of
invalidating the http session it instead marks the session ID as logged out. There’s just no
way of arbitrarily invalidating an http session based on a session ID.

WARNING

Backchannel logout does not currently work when you have a clustered application
that uses the SAML filter.

 responseBinding="POST"
 postBindingUrl="http://localhost:8080/auth/realms/saml-demo/protocol/saml"
 redirectBindingUrl="http://localhost:8080/auth/realms/saml-demo/protocol/saml"/>
 <Keys>
 <Key signing="true" >
 <KeyStore resource="/WEB-INF/keystore.jks" password="store123">
 <Certificate alias="saml-demo"/>
 </KeyStore>
 </Key>
 </Keys>
 </IDP>
 </SP>
 </secure-deployment>
</subsystem>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-
app_3_0.xsd"
 version="3.0">

 <module-name>customer-portal</module-name>

 <filter>
 <filter-name>Keycloak Filter</filter-name>
 <filter-class>org.keycloak.adapters.saml.servlet.SamlFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>Keycloak Filter</filter-name>

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

104

The Red Hat Single Sign-On filter has the same configuration parameters available as the other
adapters except you must define them as filter init params instead of context params.

You can define multiple filter mappings if you have various different secure and unsecure url patterns.

WARNING

You must have a filter mapping that covers /saml. This mapping covers all server
callbacks.

When registering SPs with an IdP, you must register http[s]://hostname/{context-root}/saml as your
Assert Consumer Service URL and Single Logout Service URL.

To use this filter, include this maven artifact in your WAR poms:

In order to use Multi Tenancy the keycloak.config.resolver parameter should be passed as a filter
parameter.

3.1.7. Registering with an Identity Provider

For each servlet-based adapter, the endpoint you register for the assert consumer service URL and
single logout service must be the base URL of your servlet application with /saml appended to it, that is,
https://example.com/contextPath/saml.

3.1.8. Logout

There are multiple ways you can logout from a web application. For Jakarta EE servlet containers, you
can call HttpServletRequest.logout(). For any other browser application, you can point the browser at
any url of your web application that has a security constraint and pass in a query parameter GLO, i.e.
http://myapp?GLO=true. This will log you out if you have an SSO session with your browser.

 <url-pattern>/*</url-pattern>
 </filter-mapping>
</web-app>

<dependency>
 <groupId>org.keycloak</groupId>
 <artifactId>keycloak-saml-servlet-filter-adapter</artifactId>
 <version>18.0.12.redhat-00001</version>
</dependency>

 <filter>
 <filter-name>Keycloak Filter</filter-name>
 <filter-class>org.keycloak.adapters.saml.servlet.SamlFilter</filter-class>
 <init-param>
 <param-name>keycloak.config.resolver</param-name>
 <param-value>example.SamlMultiTenantResolver</param-value>
 </init-param>
 </filter>

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES

105

3.1.8.1. Logout in clustered environment

Internally, the SAML adapter stores a mapping between the SAML session index, principal name (when
known), and HTTP session ID. This mapping can be maintained in JBoss application server family
(WildFly 10/11, EAP 6/7) across cluster for distributable applications. As a precondition, the HTTP
sessions need to be distributed across cluster (i.e. application is marked with <distributable/> tag in
application’s web.xml).

To enable the functionality, add the following section to your /WEB_INF/web.xml file:

For EAP 7, WildFly 10/11:

For EAP 6:

If the session cache of the deployment is named deployment-cache, the cache used for SAML mapping
will be named as deployment-cache.ssoCache. The name of the cache can be overridden by a context
parameter keycloak.sessionIdMapperUpdater.infinispan.cacheName. The cache container
containing the cache will be the same as the one containing the deployment session cache, but can be
overridden by a context parameter keycloak.sessionIdMapperUpdater.infinispan.containerName.

By default, the configuration of the SAML mapping cache will be derived from session cache. The
configuration can be manually overridden in cache configuration section of the server just the same as
other caches.

Currently, to provide reliable service, it is recommended to use replicated cache for the SAML session
cache. Using distributed cache may lead to results where the SAML logout request would land to a node
with no access to SAML session index to HTTP session mapping which would lead to unsuccessful
logout.

3.1.8.2. Logout in cross-site scenario

The cross-site scenario only applies to WildFly 10 and higher, and EAP 7 and higher.

Special handling is needed for handling sessions that span multiple data centers. Imagine the following
scenario:

1. Login requests are handled within cluster in data center 1.

2. Admin issues logout request for a particular SAML session, the request lands in data center 2.

The data center 2 has to log out all sessions that are present in data center 1 (and all other data centers
that share HTTP sessions).

<context-param>
 <param-name>keycloak.sessionIdMapperUpdater.classes</param-name>
 <param-
value>org.keycloak.adapters.saml.wildfly.infinispan.InfinispanSessionCacheIdMapperUpdater</para
m-value>
</context-param>

<context-param>
 <param-name>keycloak.sessionIdMapperUpdater.classes</param-name>
 <param-
value>org.keycloak.adapters.saml.jbossweb.infinispan.InfinispanSessionCacheIdMapperUpdater</pa
ram-value>
</context-param>

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

106

To cover this case, the SAML session cache described above needs to be replicated not only within
individual clusters but across all the data centers for example via standalone Infinispan/JDG server :

1. A cache has to be added to the standalone Infinispan/JDG server.

2. The cache from previous item has to be added as a remote store for the respective SAML
session cache.

Once remote store is found to be present on SAML session cache during deployment, it is watched for
changes and the local SAML session cache is updated accordingly.

3.1.9. Obtaining assertion attributes

After a successful SAML login, your application code may want to obtain attribute values passed with the
SAML assertion. HttpServletRequest.getUserPrincipal() returns a Principal object that you can
typecast into a Red Hat Single Sign-On specific class called
org.keycloak.adapters.saml.SamlPrincipal. This object allows you to look at the raw assertion and also
has convenience functions to look up attribute values.

package org.keycloak.adapters.saml;

public class SamlPrincipal implements Serializable, Principal {
 /**
 * Get full saml assertion
 *
 * @return
 */
 public AssertionType getAssertion() {
 ...
 }

 /**
 * Get SAML subject sent in assertion
 *
 * @return
 */
 public String getSamlSubject() {
 ...
 }

 /**
 * Subject nameID format
 *
 * @return
 */
 public String getNameIDFormat() {
 ...
 }

 @Override
 public String getName() {
 ...
 }

 /**
 * Convenience function that gets Attribute value by attribute name

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES

107

https://access.redhat.com/documentation/en-us/red_hat_data_grid/6.6/html/administration_and_configuration_guide/chap-externalize_sessions#Externalize_HTTP_Session_from_JBoss_EAP_6.x_to_JBoss_Data_Grid

 *
 * @param name
 * @return
 */
 public List<String> getAttributes(String name) {
 ...

 }

 /**
 * Convenience function that gets Attribute value by attribute friendly name
 *
 * @param friendlyName
 * @return
 */
 public List<String> getFriendlyAttributes(String friendlyName) {
 ...
 }

 /**
 * Convenience function that gets first value of an attribute by attribute name
 *
 * @param name
 * @return
 */
 public String getAttribute(String name) {
 ...
 }

 /**
 * Convenience function that gets first value of an attribute by attribute name
 *
 *
 * @param friendlyName
 * @return
 */
 public String getFriendlyAttribute(String friendlyName) {
 ...
 }

 /**
 * Get set of all assertion attribute names
 *
 * @return
 */
 public Set<String> getAttributeNames() {
 ...
 }

 /**
 * Get set of all assertion friendly attribute names
 *
 * @return
 */
 public Set<String> getFriendlyNames() {

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

108

3.1.10. Error Handling

Red Hat Single Sign-On has some error handling facilities for servlet based client adapters. When an
error is encountered in authentication, the client adapter will call HttpServletResponse.sendError().
You can set up an error-page within your web.xml file to handle the error however you want. The client
adapter can throw 400, 401, 403, and 500 errors.

The client adapter also sets an HttpServletRequest attribute that you can retrieve. The attribute name
is org.keycloak.adapters.spi.AuthenticationError. Typecast this object to:
org.keycloak.adapters.saml.SamlAuthenticationError. This class can tell you exactly what happened.
If this attribute is not set, then the adapter was not responsible for the error code.

3.1.11. Troubleshooting

The best way to troubleshoot problems is to turn on debugging for SAML in both the client adapter and
Red Hat Single Sign-On Server. Using your logging framework, set the log level to DEBUG for the
org.keycloak.saml package. Turning this on allows you to see the SAML requests and response
documents being sent to and from the server.

3.1.12. Multi Tenancy

SAML offers the same functionality as OIDC for Multi Tenancy, meaning that a single target application
(WAR) can be secured with multiple Red Hat Single Sign-On realms. The realms can be located on the
same Red Hat Single Sign-On instance or on different instances.

To do this, the application must have multiple keycloak-saml.xml adapter configuration files.

While you could have multiple instances of your WAR with different adapter configuration files deployed
to different context-paths, this may be inconvenient and you may also want to select the realm based on
something other than context-path.

 ...
 }
}

<error-page>
 <error-code>403</error-code>
 <location>/ErrorHandler</location>
</error-page>

public class SamlAuthenticationError implements AuthenticationError {
 public static enum Reason {
 EXTRACTION_FAILURE,
 INVALID_SIGNATURE,
 ERROR_STATUS
 }

 public Reason getReason() {
 return reason;
 }
 public StatusResponseType getStatus() {
 return status;
 }
}

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES

109

Red Hat Single Sign-On makes it possible to have a custom config resolver, so you can choose which
adapter config is used for each request. In SAML, the configuration is only interesting in the login
processing; once the user is logged in, the session is authenticated and it does not matter if the
keycloak-saml.xml returned is different. For that reason, returning the same configuration for the
same session is the correct way to go.

To achieve this, create an implementation of org.keycloak.adapters.saml.SamlConfigResolver. The
following example uses the Host header to locate the proper configuration and load it and the
associated elements from the applications’s Java classpath:

You must also configure which SamlConfigResolver implementation to use with the
keycloak.config.resolver context-param in your web.xml:

package example;

import java.io.InputStream;
import org.keycloak.adapters.saml.SamlConfigResolver;
import org.keycloak.adapters.saml.SamlDeployment;
import org.keycloak.adapters.saml.config.parsers.DeploymentBuilder;
import org.keycloak.adapters.saml.config.parsers.ResourceLoader;
import org.keycloak.adapters.spi.HttpFacade;
import org.keycloak.saml.common.exceptions.ParsingException;

public class SamlMultiTenantResolver implements SamlConfigResolver {

 @Override
 public SamlDeployment resolve(HttpFacade.Request request) {
 String host = request.getHeader("Host");
 String realm = null;
 if (host.contains("tenant1")) {
 realm = "tenant1";
 } else if (host.contains("tenant2")) {
 realm = "tenant2";
 } else {
 throw new IllegalStateException("Not able to guess the keycloak-saml.xml to load");
 }

 InputStream is = getClass().getResourceAsStream("/" + realm + "-keycloak-saml.xml");
 if (is == null) {
 throw new IllegalStateException("Not able to find the file /" + realm + "-keycloak-saml.xml");
 }

 ResourceLoader loader = new ResourceLoader() {
 @Override
 public InputStream getResourceAsStream(String path) {
 return getClass().getResourceAsStream(path);
 }
 };

 try {
 return new DeploymentBuilder().build(is, loader);
 } catch (ParsingException e) {
 throw new IllegalStateException("Cannot load SAML deployment", e);
 }
 }
}

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

110

3.2. MOD_AUTH_MELLON APACHE HTTPD MODULE

The mod_auth_mellon module is an Apache HTTPD plugin for SAML. If your language/environment
supports using Apache HTTPD as a proxy, then you can use mod_auth_mellon to secure your web
application with SAML. For more details on this module see the mod_auth_mellon GitHub repo.

To configure mod_auth_mellon you need:

An Identity Provider (IdP) entity descriptor XML file, which describes the connection to Red Hat
Single Sign-On or another SAML IdP

An SP entity descriptor XML file, which describes the SAML connections and configuration for
the application you are securing.

A private key PEM file, which is a text file in the PEM format that defines the private key the
application uses to sign documents.

A certificate PEM file, which is a text file that defines the certificate for your application.

mod_auth_mellon-specific Apache HTTPD module configuration.

3.2.1. Configuring mod_auth_mellon with Red Hat Single Sign-On

There are two hosts involved:

The host on which Red Hat Single Sign-On is running, which will be referred to as $idp_host
because Red Hat Single Sign-On is a SAML identity provider (IdP).

The host on which the web application is running, which will be referred to as $sp_host. In SAML
an application using an IdP is called a service provider (SP).

All of the following steps need to performed on $sp_host with root privileges.

3.2.1.1. Installing the packages

To install the necessary packages, you will need:

Apache Web Server (httpd)

Mellon SAML SP add-on module for Apache

Tools to create X509 certificates

To install the necessary packages, run this command:

yum install httpd mod_auth_mellon mod_ssl openssl

<web-app>
 ...
 <context-param>
 <param-name>keycloak.config.resolver</param-name>
 <param-value>example.SamlMultiTenantResolver</param-value>
 </context-param>
</web-app>

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES

111

https://github.com/latchset/mod_auth_mellon

3.2.1.2. Creating a configuration directory for Apache SAML

It is advisable to keep configuration files related to Apache’s use of SAML in one location.

Create a new directory named saml2 located under the Apache configuration root /etc/httpd:

mkdir /etc/httpd/saml2

3.2.1.3. Configuring the Mellon Service Provider

Configuration files for Apache add-on modules are located in the /etc/httpd/conf.d directory and have
a file name extension of .conf. You need to create the /etc/httpd/conf.d/mellon.conf file and place
Mellon’s configuration directives in it.

Mellon’s configuration directives can roughly be broken down into two classes of information:

Which URLs to protect with SAML authentication

What SAML parameters will be used when a protected URL is referenced.

Apache configuration directives typically follow a hierarchical tree structure in the URL space, which are
known as locations. You need to specify one or more URL locations for Mellon to protect. You have
flexibility in how you add the configuration parameters that apply to each location. You can either add all
the necessary parameters to the location block or you can add Mellon parameters to a common location
high up in the URL location hierarchy that specific protected locations inherit (or some combination of
the two). Since it is common for an SP to operate in the same way no matter which location triggers
SAML actions, the example configuration used here places common Mellon configuration directives in
the root of the hierarchy and then specific locations to be protected by Mellon can be defined with
minimal directives. This strategy avoids duplicating the same parameters for each protected location.

This example has just one protected location: https://$sp_host/private.

To configure the Mellon service provider, perform the following procedure.

Procedure

1. Create the file /etc/httpd/conf.d/mellon.conf with this content:

NOTE

Some of the files referenced in the code above are created in later steps.

 <Location / >
 MellonEnable info
 MellonEndpointPath /mellon/
 MellonSPMetadataFile /etc/httpd/saml2/mellon_metadata.xml
 MellonSPPrivateKeyFile /etc/httpd/saml2/mellon.key
 MellonSPCertFile /etc/httpd/saml2/mellon.crt
 MellonIdPMetadataFile /etc/httpd/saml2/idp_metadata.xml
 </Location>
 <Location /private >
 AuthType Mellon
 MellonEnable auth
 Require valid-user
 </Location>

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

112

3.2.2. Setting the SameSite value for the cookie used by mod_auth_mellon

Browsers are planning to set the default value for the SameSite attribute for cookies to Lax. This
setting means that cookies will be sent to applications only if the request originates in the same domain.
This behavior can affect the SAML POST binding which may become non-functional. To preserve full
functionality of the mod_auth_mellon module, we recommend setting the SameSite value to None for
the cookie created by mod_auth_mellon. Not doing so may result in an inability to login using Red Hat
Single Sign-On.

To set the SameSite value to None, add the following configuration to <Location / > tag within your
mellon.conf file.

The support for this configuration is available in the mod_auth_mellon module from version 0.16.0.

3.2.2.1. Creating the Service Provider metadata

In SAML IdPs and SPs exchange SAML metadata, which is in XML format. The schema for the metadata
is a standard, thus assuring participating SAML entities can consume each other’s metadata. You need:

Metadata for the IdP that the SP utilizes

Metadata describing the SP provided to the IdP

One of the components of SAML metadata is X509 certificates. These certificates are used for two
purposes:

Sign SAML messages so the receiving end can prove the message originated from the
expected party.

Encrypt the message during transport (seldom used because SAML messages typically occur
on TLS-protected transports)

You can use your own certificates if you already have a Certificate Authority (CA) or you can generate a
self-signed certificate. For simplicity in this example a self-signed certificate is used.

Because Mellon’s SP metadata must reflect the capabilities of the installed version of mod_auth_mellon,
must be valid SP metadata XML, and must contain an X509 certificate (whose creation can be obtuse
unless you are familiar with X509 certificate generation) the most expedient way to produce the SP
metadata is to use a tool included in the mod_auth_mellon package (mellon_create_metadata.sh). The
generated metadata can always be edited later because it is a text file. The tool also creates your X509
key and certificate.

SAML IdPs and SPs identify themselves using a unique name known as an EntityID. To use the Mellon
metadata creation tool you need:

The EntityID, which is typically the URL of the SP, and often the URL of the SP where the SP
metadata can be retrieved

The URL where SAML messages for the SP will be consumed, which Mellon calls the
MellonEndPointPath.

To create the SP metadata, perform the following procedure.

Procedure

MellonSecureCookie On
MellonCookieSameSite none

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES

113

Procedure

1. Create a few helper shell variables:

fqdn=`hostname`
mellon_endpoint_url="https://${fqdn}/mellon"
mellon_entity_id="${mellon_endpoint_url}/metadata"
file_prefix="$(echo "$mellon_entity_id" | sed 's/[^A-Za-z.]/_/g' | sed 's/__*/_/g')"

2. Invoke the Mellon metadata creation tool by running this command:

/usr/libexec/mod_auth_mellon/mellon_create_metadata.sh $mellon_entity_id
$mellon_endpoint_url

3. Move the generated files to their destination (referenced in the /etc/httpd/conf.d/mellon.conf
file created above):

mv ${file_prefix}.cert /etc/httpd/saml2/mellon.crt
mv ${file_prefix}.key /etc/httpd/saml2/mellon.key
mv ${file_prefix}.xml /etc/httpd/saml2/mellon_metadata.xml

3.2.2.2. Adding the Mellon Service Provider to the Red Hat Single Sign-On Identity Provider

Assumption: The Red Hat Single Sign-On IdP has already been installed on the $idp_host.

Red Hat Single Sign-On supports multiple tenancy where all users, clients, and so on are grouped in
what is called a realm. Each realm is independent of other realms. You can use an existing realm in your
Red Hat Single Sign-On, but this example shows how to create a new realm called test_realm and use
that realm.

All these operations are performed using the Red Hat Single Sign-On Admin Console. You must have
the admin username and password for $idp_host to perform the following procedure.

Procedure

1. Open the Admin Console and log on by entering the admin username and password.
After logging into the Admin Console, there will be an existing realm. When Red Hat Single Sign-
On is first set up a root realm, master, is created by default. Any previously created realms are
listed in the upper left corner of the Admin Console in a drop-down list.

2. From the realm drop-down list select Add realm.

3. In the Name field type test_realm and click Create.

3.2.2.2.1. Adding the Mellon Service Provider as a client of the realm

In Red Hat Single Sign-On SAML SPs are known as clients. To add the SP we must be in the Clients
section of the realm.

1. Click the Clients menu item on the left and click Create in the upper right corner to create a new
client.

3.2.2.2.2. Adding the Mellon SP client

To add the Mellon SP client, perform the following procedure.

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

114

Procedure

1. Set the client protocol to SAML.

2. From the Client Protocol drop down list, select saml.

3. Provide the Mellon SP metadata file created above (/etc/httpd/saml2/mellon_metadata.xml).
Depending on where your browser is running you might have to copy the SP metadata from
$sp_host to the machine on which your browser is running so the browser can find the file.

4. Click Save.

3.2.2.2.3. Editing the Mellon SP client

Use this procedure to set important client configuration parameters.

Procedure

1. Ensure "Force POST Binding" is On.

2. Add paosResponse to the Valid Redirect URIs list:

3. Copy the postResponse URL in "Valid Redirect URIs" and paste it into the empty add text fields
just below the "+".

4. Change "postResponse" to "paosResponse". (The paosResponse URL is needed for SAML
ECP.)

5. Click Save at the bottom.

Many SAML SPs determine authorization based on a user’s membership in a group. The Red Hat Single
Sign-On IdP can manage user group information but it does not supply the user’s groups unless the IdP
is configured to supply it as a SAML attribute.

Perform the following procedure to configure the IdP to supply the user’s groups as as a SAML
attribute.

Procedure

1. Click the Mappers tab of the client.

2. In the upper right corner of the Mappers page, click Create.

3. From the Mapper Type drop-down list select Group list.

4. Set Name to "group list".

5. Set the SAML attribute name to "groups".

6. Click Save.

The remaining steps are performed on $sp_host.

3.2.2.2.4. Retrieving the Identity Provider metadata

Now that you have created the realm on the IdP you need to retrieve the IdP metadata associated with

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES

115

it so the Mellon SP recognizes it. In the /etc/httpd/conf.d/mellon.conf file created previously, the
MellonIdPMetadataFile is specified as /etc/httpd/saml2/idp_metadata.xml but until now that file has
not existed on $sp_host.

Use this procedure to retrieve that file from the IdP.

Procedure

1. Use this command, substituting with the correct value for $idp_host:

curl -k -o /etc/httpd/saml2/idp_metadata.xml \
https://$idp_host/auth/realms/test_realm/protocol/saml/descriptor

Mellon is now fully configured.

2. To run a syntax check for Apache configuration files, use this command:

apachectl configtest

NOTE

Configtest is equivalent to the -t argument to apachectl. If the configuration test
shows any errors, correct them before proceeding.

3. Restart the Apache server:

systemctl restart httpd.service

You have now set up both Red Hat Single Sign-On as a SAML IdP in the test_realm and
mod_auth_mellon as SAML SP protecting the URL $sp_host/protected (and everything beneath it) by
authenticating against the $idp_host IdP.

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

116

CHAPTER 4. CONFIGURING A DOCKER REGISTRY TO USE
RED HAT SINGLE SIGN-ON

NOTE

Docker authentication is disabled by default. To enable see Profiles.

This section describes how you can configure a Docker registry to use Red Hat Single Sign-On as its
authentication server.

For more information on how to set up and configure a Docker registry, see the Docker Registry
Configuration Guide.

4.1. DOCKER REGISTRY CONFIGURATION FILE INSTALLATION

For users with more advanced Docker registry configurations, it is generally recommended to provide
your own registry configuration file. The Red Hat Single Sign-On Docker provider supports this
mechanism via the Registry Config File Format Option. Choosing this option will generate output similar
to the following:

auth:
 token:
 realm: http://localhost:8080/auth/realms/master/protocol/docker-v2/auth
 service: docker-test
 issuer: http://localhost:8080/auth/realms/master

This output can then be copied into any existing registry config file. See the registry config file
specification for more information on how the file should be set up, or start with a basic example .

WARNING

Don’t forget to configure the rootcertbundle field with the location of the Red Hat
Single Sign-On realm’s public key. The auth configuration will not work without this
argument.

4.2. DOCKER REGISTRY ENVIRONMENT VARIABLE OVERRIDE
INSTALLATION

Often times it is appropriate to use a simple environment variable override for develop or POC Docker
registries. While this approach is usually not recommended for production use, it can be helpful when one
requires quick-and-dirty way to stand up a registry. Simply use the Variable Override Format Option
from the client installation tab, and an output should appear like the one below:

REGISTRY_AUTH_TOKEN_REALM: http://localhost:8080/auth/realms/master/protocol/docker-
v2/auth
REGISTRY_AUTH_TOKEN_SERVICE: docker-test
REGISTRY_AUTH_TOKEN_ISSUER: http://localhost:8080/auth/realms/master

CHAPTER 4. CONFIGURING A DOCKER REGISTRY TO USE RED HAT SINGLE SIGN-ON

117

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_installation_and_configuration_guide/#profiles
https://docs.docker.com/registry/configuration/
https://docs.docker.com/registry/configuration/
https://github.com/distribution/distribution/blob/main/cmd/registry/config-example.yml

WARNING

Don’t forget to configure the REGISTRY_AUTH_TOKEN_ROOTCERTBUNDLE
override with the location of the Red Hat Single Sign-On realm’s public key. The
auth configuration will not work without this argument.

4.3. DOCKER COMPOSE YAML FILE

WARNING

This installation method is meant to be an easy way to get a docker registry
authenticating against a Red Hat Single Sign-On server. It is intended for
development purposes only and should never be used in a production or
production-like environment.

The zip file installation mechanism provides a quickstart for developers who want to understand how the
Red Hat Single Sign-On server can interact with the Docker registry. In order to configure:

Procedure

1. From the desired realm, create a client configuration. At this point you won’t have a Docker
registry - the quickstart will take care of that part.

2. Choose the "Docker Compose YAML" option from the installation tab and download the .zip file

3. Unzip the archive to the desired location, and open the directory.

4. Start the Docker registry with docker-compose up

NOTE

it is recommended that you configure the Docker registry client in a realm other than
'master', since the HTTP Basic auth flow will not present forms.

Once the above configuration has taken place, and the keycloak server and Docker registry are running,
docker authentication should be successful:

[user ~]# docker login localhost:5000 -u $username
Password: *******
Login Succeeded

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

118

CHAPTER 5. USING THE CLIENT REGISTRATION SERVICE
In order for an application or service to utilize Red Hat Single Sign-On it has to register a client in Red
Hat Single Sign-On. An admin can do this through the admin console (or admin REST endpoints), but
clients can also register themselves through the Red Hat Single Sign-On client registration service.

The Client Registration Service provides built-in support for Red Hat Single Sign-On Client
Representations, OpenID Connect Client Meta Data and SAML Entity Descriptors. The Client
Registration Service endpoint is /auth/realms/<realm>/clients-registrations/<provider>.

The built-in supported providers are:

default - Red Hat Single Sign-On Client Representation (JSON)

install - Red Hat Single Sign-On Adapter Configuration (JSON)

openid-connect - OpenID Connect Client Metadata Description (JSON)

saml2-entity-descriptor - SAML Entity Descriptor (XML)

The following sections will describe how to use the different providers.

5.1. AUTHENTICATION

To invoke the Client Registration Services you usually need a token. The token can be a bearer token, an
initial access token or a registration access token. There is an alternative to register new client without
any token as well, but then you need to configure Client Registration Policies (see below).

5.1.1. Bearer token

The bearer token can be issued on behalf of a user or a Service Account. The following permissions are
required to invoke the endpoints (see Server Administration Guide for more details):

create-client or manage-client - To create clients

view-client or manage-client - To view clients

manage-client - To update or delete client

If you are using a bearer token to create clients it’s recommend to use a token from a Service Account
with only the create-client role (see Server Administration Guide for more details).

5.1.2. Initial Access Token

The recommended approach to registering new clients is by using initial access tokens. An initial access
token can only be used to create clients and has a configurable expiration as well as a configurable limit
on how many clients can be created.

An initial access token can be created through the admin console. To create a new initial access token
first select the realm in the admin console, then click on Realm Settings in the menu on the left,
followed by Client Registration in the tabs displayed in the page. Then finally click on Initial Access
Tokens sub-tab.

You will now be able to see any existing initial access tokens. If you have access you can delete tokens
that are no longer required. You can only retrieve the value of the token when you are creating it. To

CHAPTER 5. USING THE CLIENT REGISTRATION SERVICE

119

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/

create a new token click on Create. You can now optionally add how long the token should be valid, also
how many clients can be created using the token. After you click on Save the token value is displayed.

It is important that you copy/paste this token now as you won’t be able to retrieve it later. If you forget
to copy/paste it, then delete the token and create another one.

The token value is used as a standard bearer token when invoking the Client Registration Services, by
adding it to the Authorization header in the request. For example:

Authorization: bearer eyJhbGciOiJSUz...

5.1.3. Registration Access Token

When you create a client through the Client Registration Service the response will include a registration
access token. The registration access token provides access to retrieve the client configuration later,
but also to update or delete the client. The registration access token is included with the request in the
same way as a bearer token or initial access token. Registration access tokens are only valid once, when
it’s used the response will include a new token.

If a client was created outside of the Client Registration Service it won’t have a registration access token
associated with it. You can create one through the admin console. This can also be useful if you lose the
token for a particular client. To create a new token find the client in the admin console and click on
Credentials. Then click on Generate registration access token.

5.2. RED HAT SINGLE SIGN-ON REPRESENTATIONS

The default client registration provider can be used to create, retrieve, update and delete a client. It
uses Red Hat Single Sign-On Client Representation format which provides support for configuring
clients exactly as they can be configured through the admin console, including for example configuring
protocol mappers.

To create a client create a Client Representation (JSON) then perform an HTTP POST request to
/auth/realms/<realm>/clients-registrations/default.

It will return a Client Representation that also includes the registration access token. You should save
the registration access token somewhere if you want to retrieve the config, update or delete the client
later.

To retrieve the Client Representation perform an HTTP GET request to /auth/realms/<realm>/clients-
registrations/default/<client id>.

It will also return a new registration access token.

To update the Client Representation perform an HTTP PUT request with the updated Client
Representation to: /auth/realms/<realm>/clients-registrations/default/<client id>.

It will also return a new registration access token.

To delete the Client Representation perform an HTTP DELETE request to:
/auth/realms/<realm>/clients-registrations/default/<client id>

5.3. RED HAT SINGLE SIGN-ON ADAPTER CONFIGURATION

The installation client registration provider can be used to retrieve the adapter configuration for a

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

120

The installation client registration provider can be used to retrieve the adapter configuration for a
client. In addition to token authentication you can also authenticate with client credentials using HTTP
basic authentication. To do this include the following header in the request:

Authorization: basic BASE64(client-id + ':' + client-secret)

To retrieve the Adapter Configuration then perform an HTTP GET request to
/auth/realms/<realm>/clients-registrations/install/<client id>.

No authentication is required for public clients. This means that for the JavaScript adapter you can load
the client configuration directly from Red Hat Single Sign-On using the above URL.

5.4. OPENID CONNECT DYNAMIC CLIENT REGISTRATION

Red Hat Single Sign-On implements OpenID Connect Dynamic Client Registration , which extends
OAuth 2.0 Dynamic Client Registration Protocol and OAuth 2.0 Dynamic Client Registration
Management Protocol.

The endpoint to use these specifications to register clients in Red Hat Single Sign-On is
/auth/realms/<realm>/clients-registrations/openid-connect[/<client id>].

This endpoint can also be found in the OpenID Connect Discovery endpoint for the realm,
/auth/realms/<realm>/.well-known/openid-configuration.

5.5. SAML ENTITY DESCRIPTORS

The SAML Entity Descriptor endpoint only supports using SAML v2 Entity Descriptors to create clients.
It doesn’t support retrieving, updating or deleting clients. For those operations the Red Hat Single Sign-
On representation endpoints should be used. When creating a client a Red Hat Single Sign-On Client
Representation is returned with details about the created client, including a registration access token.

To create a client perform an HTTP POST request with the SAML Entity Descriptor to
/auth/realms/<realm>/clients-registrations/saml2-entity-descriptor.

5.6. EXAMPLE USING CURL

The following example creates a client with the clientId myclient using CURL. You need to replace
eyJhbGciOiJSUz… with a proper initial access token or bearer token.

5.7. EXAMPLE USING JAVA CLIENT REGISTRATION API

The Client Registration Java API makes it easy to use the Client Registration Service using Java. To use
include the dependency org.keycloak:keycloak-client-registration-api:>VERSION< from Maven.

For full instructions on using the Client Registration refer to the JavaDocs. Below is an example of
creating a client. You need to replace eyJhbGciOiJSUz… with a proper initial access token or bearer
token.

curl -X POST \
 -d '{ "clientId": "myclient" }' \
 -H "Content-Type:application/json" \
 -H "Authorization: bearer eyJhbGciOiJSUz..." \
 http://localhost:8080/auth/realms/master/clients-registrations/default

CHAPTER 5. USING THE CLIENT REGISTRATION SERVICE

121

https://openid.net/specs/openid-connect-registration-1_0.html
https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc7592

5.8. CLIENT REGISTRATION POLICIES

NOTE

The current plans are for the Client Registration Policies to be removed in favor of the
Client Policies described in the Server Administration Guide. Client Policies are more
flexible and support more use cases.

Red Hat Single Sign-On currently supports two ways how new clients can be registered through Client
Registration Service.

Authenticated requests - Request to register new client must contain either Initial Access
Token or Bearer Token as mentioned above.

Anonymous requests - Request to register new client doesn’t need to contain any token at all

Anonymous client registration requests are very interesting and powerful feature, however you usually
don’t want that anyone is able to register new client without any limitations. Hence we have Client
Registration Policy SPI, which provide a way to limit who can register new clients and under which
conditions.

In Red Hat Single Sign-On admin console, you can click to Client Registration tab and then Client
Registration Policies sub-tab. Here you will see what policies are configured by default for anonymous
requests and what policies are configured for authenticated requests.

NOTE

The anonymous requests (requests without any token) are allowed just for creating
(registration) of new clients. So when you register new client through anonymous request,
the response will contain Registration Access Token, which must be used for Read,
Update or Delete request of particular client. However using this Registration Access
Token from anonymous registration will be then subject to Anonymous Policy too! This
means that for example request for update client also needs to come from Trusted Host
if you have Trusted Hosts policy. Also for example it won’t be allowed to disable
Consent Required when updating client and when Consent Required policy is present
etc.

Currently we have these policy implementations:

String token = "eyJhbGciOiJSUz...";

ClientRepresentation client = new ClientRepresentation();
client.setClientId(CLIENT_ID);

ClientRegistration reg = ClientRegistration.create()
 .url("http://localhost:8080/auth", "myrealm")
 .build();

reg.auth(Auth.token(token));

client = reg.create(client);

String registrationAccessToken = client.getRegistrationAccessToken();

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

122

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#_client_policies

Trusted Hosts Policy - You can configure list of trusted hosts and trusted domains. Request to
Client Registration Service can be sent just from those hosts or domains. Request sent from
some untrusted IP will be rejected. URLs of newly registered client must also use just those
trusted hosts or domains. For example it won’t be allowed to set Redirect URI of client pointing
to some untrusted host. By default, there is not any whitelisted host, so anonymous client
registration is de-facto disabled.

Consent Required Policy - Newly registered clients will have Consent Allowed switch enabled.
So after successful authentication, user will always see consent screen when he needs to
approve permissions (client scopes). It means that client won’t have access to any personal info
or permission of user unless user approves it.

Protocol Mappers Policy - Allows to configure list of whitelisted protocol mapper
implementations. New client can’t be registered or updated if it contains some non-whitelisted
protocol mapper. Note that this policy is used for authenticated requests as well, so even for
authenticated request there are some limitations which protocol mappers can be used.

Client Scope Policy - Allow to whitelist Client Scopes, which can be used with newly registered
or updated clients. There are no whitelisted scopes by default; only the client scopes, which are
defined as Realm Default Client Scopes are whitelisted by default.

Full Scope Policy - Newly registered clients will have Full Scope Allowed switch disabled. This
means they won’t have any scoped realm roles or client roles of other clients.

Max Clients Policy - Rejects registration if current number of clients in the realm is same or
bigger than specified limit. It’s 200 by default for anonymous registrations.

Client Disabled Policy - Newly registered client will be disabled. This means that admin needs to
manually approve and enable all newly registered clients. This policy is not used by default even
for anonymous registration.

CHAPTER 5. USING THE CLIENT REGISTRATION SERVICE

123

CHAPTER 6. AUTOMATING CLIENT REGISTRATION WITH THE
CLI

The Client Registration CLI is a command-line interface (CLI) tool for application developers to
configure new clients in a self-service manner when integrating with Red Hat Single Sign-On. It is
specifically designed to interact with Red Hat Single Sign-On Client Registration REST endpoints.

It is necessary to create or obtain a client configuration for any application to be able to use Red Hat
Single Sign-On. You usually configure a new client for each new application hosted on a unique host
name. When an application interacts with Red Hat Single Sign-On, the application identifies itself with a
client ID so Red Hat Single Sign-On can provide a login page, single sign-on (SSO) session
management, and other services.

You can configure application clients from a command line with the Client Registration CLI, and you can
use it in shell scripts.

To allow a particular user to use Client Registration CLI the Red Hat Single Sign-On administrator
typically uses the Admin Console to configure a new user with proper roles or to configure a new client
and client secret to grant access to the Client Registration REST API.

6.1. CONFIGURING A NEW REGULAR USER FOR USE WITH CLIENT
REGISTRATION CLI

Procedure

1. Log in to the Admin Console (for example, http://localhost:8080/auth/admin) as admin.

2. Select a realm to administer.

3. If you want to use an existing user, select that user to edit; otherwise, create a new user.

4. Select Role Mappings > Client Roles > realm-management. If you are in the master realm,
select NAME-realm, where NAME is the name of the target realm. You can grant access to any
other realm to users in the master realm.

5. Select Available Roles > manage-client to grant a full set of client management permissions.
Another option is to choose view-clients for read-only or create-client to create new clients.

NOTE

These permissions grant the user the capability to perform operations without
the use of Initial Access Token or Registration Access Token .

It is possible to not assign any realm-management roles to a user. In that case, a user can still log in with
the Client Registration CLI but cannot use it without an Initial Access Token. Trying to perform any
operations without a token results in a 403 Forbidden error.

The Administrator can issue Initial Access Tokens from the Admin Console through the Realm Settings
> Client Registration > Initial Access Token menu.

6.2. CONFIGURING A CLIENT FOR USE WITH THE CLIENT
REGISTRATION CLI

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

124

http://localhost:8080/auth/admin

By default, the server recognizes the Client Registration CLI as the admin-cli client, which is configured
automatically for every new realm. No additional client configuration is necessary when logging in with a
user name.

Procedure

1. Create a client (for example, reg-cli) if you want to use a separate client configuration for the
Client Registration CLI.

2. Toggle the Standard Flow Enabled setting it to Off.

3. Strengthen the security by configuring the client Access Type as Confidential and selecting
Credentials > ClientId and Secret.

NOTE

You can configure either Client Id and Secret or Signed JWT under the
Credentials tab .

4. Enable service accounts if you want to use a service account associated with the client by
selecting a client to edit in the Clients section of the Admin Console.

a. Under Settings, change the Access Type to Confidential, toggle the Service Accounts
Enabled setting to On, and click Save.

b. Click Service Account Roles and select desired roles to configure the access for the
service account. For the details on what roles to select, see Section 6.1, “Configuring a new
regular user for use with Client Registration CLI”.

5. Toggle the Direct Access Grants Enabled setting it to On if you want to use a regular user
account instead of a service account.

6. If the client is configured as Confidential, provide the configured secret when running kcreg
config credentials by using the --secret option.

7. Specify which clientId to use (for example, --client reg-cli) when running kcreg config
credentials.

8. With the service account enabled, you can omit specifying the user when running kcreg config
credentials and only provide the client secret or keystore information.

6.3. INSTALLING THE CLIENT REGISTRATION CLI

The Client Registration CLI is packaged inside the Red Hat Single Sign-On Server distribution. You can
find execution scripts inside the bin directory. The Linux script is called kcreg.sh, and the Windows
script is called kcreg.bat.

Add the Red Hat Single Sign-On server directory to your PATH when setting up the client for use from
any location on the file system.

For example, on:

Linux:

CHAPTER 6. AUTOMATING CLIENT REGISTRATION WITH THE CLI

125

$ export PATH=$PATH:$KEYCLOAK_HOME/bin
$ kcreg.sh

Windows:

c:\> set PATH=%PATH%;%KEYCLOAK_HOME%\bin
c:\> kcreg

KEYCLOAK_HOME refers to a directory where the Red Hat Single Sign-On Server distribution was
unpacked.

6.4. USING THE CLIENT REGISTRATION CLI

Procedure

1. Start an authenticated session by logging in with your credentials.

2. Run commands on the Client Registration REST endpoint.
For example, on:

Linux:

$ kcreg.sh config credentials --server http://localhost:8080/auth --realm demo --user user
--client reg-cli
$ kcreg.sh create -s clientId=my_client -s 'redirectUris=["http://localhost:8980/myapp/*"]'
$ kcreg.sh get my_client

Windows:

c:\> kcreg config credentials --server http://localhost:8080/auth --realm demo --user user
--client reg-cli
c:\> kcreg create -s clientId=my_client -s "redirectUris=[\"http://localhost:8980/myapp/*\"]"
c:\> kcreg get my_client

NOTE

In a production environment, Red Hat Single Sign-On has to be accessed
with https: to avoid exposing tokens to network sniffers.

3. If a server’s certificate is not issued by one of the trusted certificate authorities (CAs) that are
included in Java’s default certificate truststore, prepare a truststore.jks file and instruct the
Client Registration CLI to use it.
For example, on:

Linux:

$ kcreg.sh config truststore --trustpass $PASSWORD ~/.keycloak/truststore.jks

Windows:

c:\> kcreg config truststore --trustpass %PASSWORD%
%HOMEPATH%\.keycloak\truststore.jks

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

126

6.4.1. Logging in

Procedure

1. Specify a server endpoint URL and a realm when you log in with the Client Registration CLI.

2. Specify a user name or a client id, which results in a special service account being used. When
using a user name, you must use a password for the specified user. When using a client ID, you
use a client secret or a Signed JWT instead of a password.

Regardless of the login method, the account that logs in needs proper permissions to be able to perform
client registration operations. Keep in mind that any account in a non-master realm can only have
permissions to manage clients within the same realm. If you need to manage different realms, you can
either configure multiple users in different realms, or you can create a single user in the master realm
and add roles for managing clients in different realms.

You cannot configure users with the Client Registration CLI. Use the Admin Console web interface or
the Admin Client CLI to configure users. See Server Administration Guide for more details.

When kcreg successfully logs in, it receives authorization tokens and saves them in a private
configuration file so the tokens can be used for subsequent invocations. See Section 6.4.2, “Working
with alternative configurations” for more information on configuration files.

See the built-in help for more information on using the Client Registration CLI.

For example, on:

Linux:

$ kcreg.sh help

Windows:

c:\> kcreg help

See kcreg config credentials --help for more information about starting an authenticated session.

6.4.2. Working with alternative configurations

By default, the Client Registration CLI automatically maintains a configuration file at a default location,
./.keycloak/kcreg.config, under the user’s home directory. You can use the --config option to point to a
different file or location to maintain multiple authenticated sessions in parallel. It is the safest way to
perform operations tied to a single configuration file from a single thread.

IMPORTANT

Do not make the configuration file visible to other users on the system. The configuration
file contains access tokens and secrets that should be kept private.

You might want to avoid storing secrets inside a configuration file by using the --no-config option with
all of your commands, even though it is less convenient and requires more token requests to do so.
Specify all authentication information with each kcreg invocation.

6.4.3. Initial Access and Registration Access Tokens

CHAPTER 6. AUTOMATING CLIENT REGISTRATION WITH THE CLI

127

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/

Developers who do not have an account configured at the Red Hat Single Sign-On server they want to
use can use the Client Registration CLI. This is possible only when the realm administrator issues a
developer an Initial Access Token. It is up to the realm administrator to decide how and when to issue
and distribute these tokens. The realm administrator can limit the maximum age of the Initial Access
Token and the total number of clients that can be created with it.

Once a developer has an Initial Access Token, the developer can use it to create new clients without
authenticating with kcreg config credentials. The Initial Access Token can be stored in the
configuration file or specified as part of the kcreg create command.

For example, on:

Linux:

$ kcreg.sh config initial-token $TOKEN
$ kcreg.sh create -s clientId=myclient

or

$ kcreg.sh create -s clientId=myclient -t $TOKEN

Windows:

c:\> kcreg config initial-token %TOKEN%
c:\> kcreg create -s clientId=myclient

or

c:\> kcreg create -s clientId=myclient -t %TOKEN%

When using an Initial Access Token, the server response includes a newly issued Registration Access
Token. Any subsequent operation for that client needs to be performed by authenticating with that
token, which is only valid for that client.

The Client Registration CLI automatically uses its private configuration file to save and use this token
with its associated client. As long as the same configuration file is used for all client operations, the
developer does not need to authenticate to read, update, or delete a client that was created this way.

See Client Registration for more information about Initial Access and Registration Access Tokens.

Run the kcreg config initial-token --help and kcreg config registration-token --help commands for
more information on how to configure tokens with the Client Registration CLI.

6.4.4. Creating a client configuration

The first task after authenticating with credentials or configuring an Initial Access Token is usually to
create a new client. Often you might want to use a prepared JSON file as a template and set or override
some of the attributes.

The following example shows how to read a JSON file, override any client id it may contain, set any other
attributes, and print the configuration to a standard output after successful creation.

Linux:

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

128

$ kcreg.sh create -f client-template.json -s clientId=myclient -s baseUrl=/myclient -s 'redirectUris=
["/myclient/*"]' -o

Windows:

C:\> kcreg create -f client-template.json -s clientId=myclient -s baseUrl=/myclient -s "redirectUris=
[\"/myclient/*\"]" -o

Run the kcreg create --help for more information about the kcreg create command.

You can use kcreg attrs to list available attributes. Keep in mind that many configuration attributes are
not checked for validity or consistency. It is up to you to specify proper values. Remember that you
should not have any id fields in your template and should not specify them as arguments to the kcreg
create command.

6.4.5. Retrieving a client configuration

You can retrieve an existing client by using the kcreg get command.

For example, on:

Linux:

$ kcreg.sh get myclient

Windows:

C:\> kcreg get myclient

You can also retrieve the client configuration as an adapter configuration file, which you can package
with your web application.

For example, on:

Linux:

$ kcreg.sh get myclient -e install > keycloak.json

Windows:

C:\> kcreg get myclient -e install > keycloak.json

Run the kcreg get --help command for more information about the kcreg get command.

6.4.6. Modifying a client configuration

There are two methods for updating a client configuration.

One method is to submit a complete new state to the server after getting the current configuration,
saving it to a file, editing it, and posting it back to the server.

For example, on:

CHAPTER 6. AUTOMATING CLIENT REGISTRATION WITH THE CLI

129

Linux:

$ kcreg.sh get myclient > myclient.json
$ vi myclient.json
$ kcreg.sh update myclient -f myclient.json

Windows:

C:\> kcreg get myclient > myclient.json
C:\> notepad myclient.json
C:\> kcreg update myclient -f myclient.json

The second method fetches the current client, sets or deletes fields on it, and posts it back in one step.

For example, on:

Linux:

$ kcreg.sh update myclient -s enabled=false -d redirectUris

Windows:

C:\> kcreg update myclient -s enabled=false -d redirectUris

You can also use a file that contains only changes to be applied so you do not have to specify too many
values as arguments. In this case, specify --merge to tell the Client Registration CLI that rather than
treating the JSON file as a full, new configuration, it should treat it as a set of attributes to be applied
over the existing configuration.

For example, on:

Linux:

$ kcreg.sh update myclient --merge -d redirectUris -f mychanges.json

Windows:

C:\> kcreg update myclient --merge -d redirectUris -f mychanges.json

Run the kcreg update --help command for more information about the kcreg update command.

6.4.7. Deleting a client configuration

Use the following example to delete a client.

Linux:

$ kcreg.sh delete myclient

Windows:

C:\> kcreg delete myclient

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

130

Run the kcreg delete --help command for more information about the kcreg delete command.

6.4.8. Refreshing invalid Registration Access Tokens

When performing a create, read, update, and delete (CRUD) operation using the --no-config mode, the
Client Registration CLI cannot handle Registration Access Tokens for you. In that case, it is possible to
lose track of the most recently issued Registration Access Token for a client, which makes it impossible
to perform any further CRUD operations on that client without authenticating with an account that has
manage-clients permissions.

If you have permissions, you can issue a new Registration Access Token for the client and have it printed
to a standard output or saved to a configuration file of your choice. Otherwise, you have to ask the realm
administrator to issue a new Registration Access Token for your client and send it to you. You can then
pass it to any CRUD command via the --token option. You can also use the kcreg config registration-
token command to save the new token in a configuration file and have the Client Registration CLI
automatically handle it for you from that point on.

Run the kcreg update-token --help command for more information about the kcreg update-token
command.

6.5. TROUBLESHOOTING

Q: When logging in, I get an error: Parameter client_assertion_type is missing [invalid_client].
A: This error means your client is configured with Signed JWT token credentials, which means
you have to use the --keystore parameter when logging in.

CHAPTER 6. AUTOMATING CLIENT REGISTRATION WITH THE CLI

131

CHAPTER 7. USING TOKEN EXCHANGE

NOTE

Token Exchange is Technology Preview and is not fully supported. This feature is
disabled by default.

To enable start the server with -Dkeycloak.profile=preview or -
Dkeycloak.profile.feature.token_exchange=enabled . For more details see Profiles.

NOTE

In order to use token exchange you should also enable the token_exchange feature.
Please, take a look at Profiles.

7.1. HOW TOKEN EXCHANGE WORKS

In Red Hat Single Sign-On, token exchange is the process of using a set of credentials or token to
obtain an entirely different token. A client may want to invoke on a less trusted application so it may want
to downgrade the current token it has. A client may want to exchange a Red Hat Single Sign-On token
for a token stored for a linked social provider account. You may want to trust external tokens minted by
other Red Hat Single Sign-On realms or foreign IDPs. A client may have a need to impersonate a user.
Here’s a short summary of the current capabilities of Red Hat Single Sign-On around token exchange.

A client can exchange an existing Red Hat Single Sign-On token created for a specific client for
a new token targeted to a different client

A client can exchange an existing Red Hat Single Sign-On token for an external token, i.e. a
linked Facebook account

A client can exchange an external token for a Red Hat Single Sign-On token.

A client can impersonate a user

Token exchange in Red Hat Single Sign-On is a very loose implementation of the OAuth Token
Exchange specification at the IETF. We have extended it a little, ignored some of it, and loosely
interpreted other parts of the specification. It is a simple grant type invocation on a realm’s OpenID
Connect token endpoint.

/auth/realms/{realm}/protocol/openid-connect/token

It accepts form parameters (application/x-www-form-urlencoded) as input and the output depends on
the type of token you requested an exchange for. Token exchange is a client endpoint so requests must
provide authentication information for the calling client. Public clients specify their client identifier as a
form parameter. Confidential clients can also use form parameters to pass their client id and secret,
Basic Auth, or however your admin has configured the client authentication flow in your realm.

7.1.1. Form parameters

client_id

REQUIRED MAYBE. This parameter is required for clients using form parameters for authentication. If
you are using Basic Auth, a client JWT token, or client cert authentication, then do not specify this
parameter.

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

132

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_installation_and_configuration_guide/#profiles
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_installation_and_configuration_guide/#profiles
https://datatracker.ietf.org/doc/html/rfc8693

client_secret

REQUIRED MAYBE. This parameter is required for clients using form parameters for authentication
and using a client secret as a credential. Do not specify this parameter if client invocations in your
realm are authenticated by a different means.

grant_type

REQUIRED. The value of the parameter must be urn:ietf:params:oauth:grant-type:token-
exchange.

subject_token

OPTIONAL. A security token that represents the identity of the party on behalf of whom the request
is being made. It is required if you are exchanging an existing token for a new one.

subject_issuer

OPTIONAL. Identifies the issuer of the subject_token. It can be left blank if the token comes from
the current realm or if the issuer can be determined from the subject_token_type. Otherwise it is
required to be specified. Valid values are the alias of an Identity Provider configured for your realm.
Or an issuer claim identifier configured by a specific Identity Provider.

subject_token_type

OPTIONAL. This parameter is the type of the token passed with the subject_token parameter. This
defaults to urn:ietf:params:oauth:token-type:access_token if the subject_token comes from the
realm and is an access token. If it is an external token, this parameter may or may not have to be
specified depending on the requirements of the subject_issuer.

requested_token_type

OPTIONAL. This parameter represents the type of token the client wants to exchange for. Currently
only oauth and OpenID Connect token types are supported. The default value for this depends on
whether it is urn:ietf:params:oauth:token-type:refresh_token in which case you will be returned
both an access token and refresh token within the response. Other appropriate values are
urn:ietf:params:oauth:token-type:access_token and urn:ietf:params:oauth:token-
type:id_token

audience

OPTIONAL. This parameter specifies the target client you want the new token minted for.

requested_issuer

OPTIONAL. This parameter specifies that the client wants a token minted by an external provider. It
must be the alias of an Identity Provider configured within the realm.

requested_subject

OPTIONAL. This specifies a username or user id if your client wants to impersonate a different user.

scope

NOT IMPLEMENTED. This parameter represents the target set of OAuth and OpenID Connect
scopes the client is requesting. It is not implemented at this time but will be once Red Hat Single
Sign-On has better support for scopes in general.

NOTE

We currently only support OpenID Connect and OAuth exchanges. Support for SAML
based clients and identity providers may be added in the future depending on user
demand.

7.1.2. Responses from a token exchange request

A successful response from an exchange invocation will return the HTTP 200 response code with a
content type that depends on the requested-token-type and requested_issuer the client asks for.

CHAPTER 7. USING TOKEN EXCHANGE

133

OAuth requested token types will return a JSON document as described in the OAuth Token Exchange
specification.

Clients requesting a refresh token will get back both an access and refresh token in the response.
Clients requesting only access token type will only get an access token in the response. Expiration
information may or may not be included for clients requesting an external issuer through the
requested_issuer paramater.

Error responses generally fall under the 400 HTTP response code category, but other error status codes
may be returned depending on the severity of the error. Error responses may include content depending
on the requested_issuer. OAuth based exchanges may return a JSON document as follows:

Additional error claims may be returned depending on the exchange type. For example, OAuth Identity
Providers may include an additional account-link-url claim if the user does not have a link to an identity
provider. This link can be used for a client initiated link request.

NOTE

Token exchange setup requires knowledge of fine grain admin permissions (See the
Server Administration Guide for more information). You will need to grant clients
permission to exchange. This is discussed more later in this chapter.

The rest of this chapter discusses the setup requirements and provides examples for different exchange
scenarios. For simplicity’s sake, let’s call a token minted by the current realm as an internal token and a
token minted by an external realm or identity provider as an external token.

7.2. INTERNAL TOKEN TO INTERNAL TOKEN EXCHANGE

With an internal token to token exchange you have an existing token minted to a specific client and you
want to exchange this token for a new one minted for a different target client. Why would you want to do
this? This generally happens+ when a client has a token minted for itself, and needs to make additional
requests to other applications that require different claims and permissions within the access token.
Other reasons this type of exchange might be required is if you need to perform a "permission
downgrade" where your app needs to invoke on a less trusted app and you don’t want to propagate your
current access token.

7.2.1. Granting permission for the exchange

Clients that want to exchange tokens for a different client need to be authorized in the Admin Console.
You need to define a token-exchange fine grain permission in the target client you want permission to
exchange to.

Target Client Permission

{
 "access_token" : ".....",
 "refresh_token" : ".....",
 "expires_in" : "...."
 }

{
 "error" : "...."
 "error_description" : "...."
}

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

134

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-exchange-16
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/

Procedure

1. Toggle Permissions Enabled to ON.

Target Client Permission

That page displays a token-exchange link.

2. Click that link to start defining the permission.
This setup page displays.

Target Client Exchange Permission Setup

CHAPTER 7. USING TOKEN EXCHANGE

135

3. Define a policy for this permission by clicking the Authorization link

4. Click the Policies tab.

5. Create a Client Policy.

Client Policy Creation

6. Enter in the starting client that is the authenticated client that is requesting a token exchange.

7. After you create this policy, go back to the target client’s token-exchange permission and add
the client policy you just defined.

Apply Client Policy

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

136

Your client now has permission to invoke. If you do not do this correctly, you will get a 403 Forbidden
response if you try to make an exchange.

7.2.2. Making the request

When your client is exchanging an existing token for a token targeting another client, you use the
audience parameter. This parameter must be the client identifier for the target client that you
configured in the Admin Console.

The subject_token parameter must be an access token for the target realm. If your
requested_token_type parameter is a refresh token type, then the response will contain both an access
token, refresh token, and expiration. Here’s an example JSON response you get back from this call.

When the audience parameter is not set, the value of the parameter defaults to the client making the
token exchange request.

Unlike with confidential clients, public clients are not allowed to perform token exchanges using tokens
from other clients. If you are passing a subject_token, the (confidential) client that was issued the token
should either match the client making the request or, if issued to a different client, the client making the
request should be among the audiences set to the token.

If you are explicitly setting a target audience (with a client different from the client making the request),
you should also make sure that the token-exchange scope permission is configured for the client set to
the audience parameter to allow the client making the request to successfully complete the exchange.

curl -X POST \
 -d "client_id=starting-client" \
 -d "client_secret=the client secret" \
 --data-urlencode "grant_type=urn:ietf:params:oauth:grant-type:token-exchange" \
 -d "subject_token=...." \
 --data-urlencode "requested_token_type=urn:ietf:params:oauth:token-type:refresh_token" \
 -d "audience=target-client" \
 http://localhost:8080/auth/realms/myrealm/protocol/openid-connect/token

CHAPTER 7. USING TOKEN EXCHANGE

137

7.3. INTERNAL TOKEN TO EXTERNAL TOKEN EXCHANGE

You can exchange a realm token for an externl token minted by an external identity provider. This
external identity provider must be configured within the Identity Provider section of the Admin
Console. Currently only OAuth/OpenID Connect based external identity providers are supported, this
includes all social providers. Red Hat Single Sign-On does not perform a backchannel exchange to the
external provider. So if the account is not linked, you will not be able to get the external token. To be
able to obtain an external token one of these conditions must be met:

The user must have logged in with the external identity provider at least once

The user must have linked with the external identity provider through the User Account Service

The user account was linked through the external identity provider using Client Initiated
Account Linking API.

Finally, the external identity provider must have been configured to store tokens, or, one of the above
actions must have been performed with the same user session as the internal token you are exchanging.

If the account is not linked, the exchange response will contain a link you can use to establish it. This is
discussed more in the Making the Request section.

7.3.1. Granting permission for the exchange

Internal to external token exchange requests will be denied with a 403, Forbidden response until you
grant permission for the calling client to exchange tokens with the external identity provider. To grant
permission to the client, you go to the identity provider’s configuration page to the Permissions tab.

Identity Provider Permission

{
 "access_token" : "....",
 "refresh_token" : "....",
 "expires_in" : 3600
}

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

138

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_developer_guide/

Procedure

1. Toggle Permissions Enabled to ON.

Identity Provider Permission

The page displays token-exchange link.

2. Click the link to start defining the permission.
This setup page appears.

Identity Provider Exchange Permission Setup

CHAPTER 7. USING TOKEN EXCHANGE

139

3. Click the Authorization link and go to the Policies tab to create a client policy.

Client Policy Creation

4. Enter the starting client that is the authenticated client that is requesting a token exchange.

5. Return to the identity provider’s token-exchange permission and add the client policy you just
defined.

Apply Client Policy

Your client now has permission to invoke. If you do not do this correctly, you will get a 403 Forbidden
response if you try to make an exchange.

7.3.2. Making the request

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

140

When your client is exchanging an existing internal token to an external one, you provide the
requested_issuer parameter. The parameter must be the alias of a configured identity provider.

The subject_token parameter must be an access token for the target realm. The
requested_token_type parameter must be urn:ietf:params:oauth:token-type:access_token or left
blank. No other requested token type is supported at this time. Here’s an example successful JSON
response you get back from this call.

If the external identity provider is not linked for whatever reason, you will get an HTTP 400 response
code with this JSON document:

The error claim will be either token_expired or not_linked. The account-link-url claim is provided so
that the client can perform Client Initiated Account Linking. Most, if not all, providers require linking
through browser OAuth protocol. With the account-link-url just add a redirect_uri query parameter to
it and you can forward browsers to perform the link.

7.4. EXTERNAL TOKEN TO INTERNAL TOKEN EXCHANGE

You can trust and exchange external tokens minted by external identity providers for internal tokens.
This can be used to bridge between realms or just to trust tokens from your social provider. It works
similarly to an identity provider browser login in that a new user is imported into your realm if it doesn’t
exist.

NOTE

The current limitation on external token exchanges is that if the external token maps to
an existing user an exchange will not be allowed unless the existing user already has an
account link to the external identity provider.

When the exchange is complete, a user session will be created within the realm, and you will receive an
access and or refresh token depending on the requested_token_type parameter value. You should
note that this new user session will remain active until it times out or until you call the logout endpoint of

curl -X POST \
 -d "client_id=starting-client" \
 -d "client_secret=the client secret" \
 --data-urlencode "grant_type=urn:ietf:params:oauth:grant-type:token-exchange" \
 -d "subject_token=...." \
 --data-urlencode "requested_token_type=urn:ietf:params:oauth:token-type:access_token" \
 -d "requested_issuer=google" \
 http://localhost:8080/auth/realms/myrealm/protocol/openid-connect/token

{
 "access_token" : "....",
 "expires_in" : 3600
 "account-link-url" : "https://...."
}

{
 "error" : "....",
 "error_description" : "..."
 "account-link-url" : "https://...."
}

CHAPTER 7. USING TOKEN EXCHANGE

141

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_developer_guide/

the realm passing this new access token.

These types of changes required a configured identity provider in the Admin Console.

NOTE

SAML identity providers are not supported at this time. Twitter tokens cannot be
exchanged either.

7.4.1. Granting permission for the exchange

Before external token exchanges can be done, you grant permission for the calling client to make the
exchange. This permission is granted in the same manner as internal to external permission is granted .

If you also provide an audience parameter whose value points to a different client other than the calling
one, you must also grant the calling client permission to exchange to the target client specific in the
audience parameter. How to do this is discussed earlier in this section.

7.4.2. Making the request

The subject_token_type must either be urn:ietf:params:oauth:token-type:access_token or
urn:ietf:params:oauth:token-type:jwt. If the type is urn:ietf:params:oauth:token-
type:access_token you specify the subject_issuer parameter and it must be the alias of the
configured identity provider. If the type is urn:ietf:params:oauth:token-type:jwt, the provider will be
matched via the issuer claim within the JWT which must be the alias of the provider, or a registered
issuer within the providers configuration.

For validation, if the token is an access token, the provider’s user info service will be invoked to validate
the token. A successful call will mean that the access token is valid. If the subject token is a JWT and if
the provider has signature validation enabled, that will be attempted, otherwise, it will default to also
invoking on the user info service to validate the token.

By default, the internal token minted will use the calling client to determine what’s in the token using the
protocol mappers defined for the calling client. Alternatively, you can specify a different target client
using the audience parameter.

If your requested_token_type parameter is a refresh token type, then the response will contain both an
access token, refresh token, and expiration. Here’s an example JSON response you get back from this
call.

curl -X POST \
 -d "client_id=starting-client" \
 -d "client_secret=the client secret" \
 --data-urlencode "grant_type=urn:ietf:params:oauth:grant-type:token-exchange" \
 -d "subject_token=...." \
 -d "subject_issuer=myOidcProvider" \
 --data-urlencode "subject_token_type=urn:ietf:params:oauth:token-type:access_token" \
 -d "audience=target-client" \
 http://localhost:8080/auth/realms/myrealm/protocol/openid-connect/token

{
 "access_token" : "....",
 "refresh_token" : "....",
 "expires_in" : 3600
}

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

142

7.5. IMPERSONATION

For internal and external token exchanges, the client can request on behalf of a user to impersonate a
different user. For example, you may have an admin application that needs to impersonate a user so that
a support engineer can debug a problem.

7.5.1. Granting permission for the exchange

The user that the subject token represents must have permission to impersonate other users. See the
Server Administration Guide on how to enable this permission. It can be done through a role or through
fine grain admin permissions.

7.5.2. Making the request

Make the request as described in other chapters except additionally specify the requested_subject
parameter. The value of this parameter must be a username or user id.

7.6. DIRECT NAKED IMPERSONATION

You can make an internal token exchange request without providing a subject_token. This is called a
direct naked impersonation because it places a lot of trust in a client as that client can impersonate any
user in the realm. You might need this to bridge for applications where it is impossible to obtain a subject
token to exchange. For example, you may be integrating a legacy application that performs login directly
with LDAP. In that case, the legacy app is able to authenticate users itself, but not able to obtain a token.

WARNING

It is very risky to enable direct naked impersonation for a client. If the client’s
credentials are ever stolen, that client can impersonate any user in the system.

7.6.1. Granting permission for the exchange

If the audience parameter is provided, then the calling client must have permission to exchange to the
client. How to set this up is discussed earlier in this chapter.

Additionally, the calling client must be granted permission to impersonate users. In the Admin Console.

curl -X POST \
 -d "client_id=starting-client" \
 -d "client_secret=the client secret" \
 --data-urlencode "grant_type=urn:ietf:params:oauth:grant-type:token-exchange" \
 -d "subject_token=...." \
 --data-urlencode "requested_token_type=urn:ietf:params:oauth:token-type:access_token" \
 -d "audience=target-client" \
 -d "requested_subject=wburke" \
 http://localhost:8080/auth/realms/myrealm/protocol/openid-connect/token

CHAPTER 7. USING TOKEN EXCHANGE

143

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/

Procedure

1. Click Users in the menu.

2. Click the Permissions tab.

User Permissions

3. Toggle Permissions Enabled to true.

Identity Provider Permission

The page displays an impersonation link.

4. Click that link to start defining the permission.

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

144

This setup page displays.

Users Impersonation Permission Setup

5. Click the Authorization link

6. Go to the Policies tab and create a client policy.

Client Policy Creation

7. Enter the starting client that is the authenticated client that is requesting a token exchange.

8. Return to the users' impersonation permission and add the client policy you just defined.

Apply Client Policy

CHAPTER 7. USING TOKEN EXCHANGE

145

Your client now has permission to impersonate users. If you do not do this correctly, you will get a 403
Forbidden response if you try to make this type of exchange.

NOTE

Public clients are not allowed to do direct naked impersonations.

7.6.2. Making the request

To make the request, simply specify the requested_subject parameter. This must be the username or
user id of a valid user. You can also specify an audience parameter if you wish.

7.7. EXPAND PERMISSION MODEL WITH SERVICE ACCOUNTS

When granting clients permission to exchange, you don’t necessarily manually enable those permissions
for each and every client. If the client has a service account associated with it, you can use a role to
group permissions together and assign exchange permissions by assigning a role to the client’s service
account. For example, you might define a naked-exchange role and any service account that has that
role can do a naked exchange.

7.8. EXCHANGE VULNERABILITIES

When you start allowing token exchanges, there are various things you have to both be aware of and
careful of.

The first is public clients. Public clients do not have or require a client credential in order to perform an
exchange. Anybody that has a valid token will be able to impersonate the public client and perform the

curl -X POST \
 -d "client_id=starting-client" \
 -d "client_secret=the client secret" \
 --data-urlencode "grant_type=urn:ietf:params:oauth:grant-type:token-exchange" \
 -d "requested_subject=wburke" \
 http://localhost:8080/auth/realms/myrealm/protocol/openid-connect/token

Red Hat Single Sign-On 7.6 Securing Applications and Services Guide

146

exchanges that public client is allowed to perform. If there are any untrustworthy clients that are
managed by your realm, public clients may open up vulnerabilities in your permission models. This is why
direct naked exchanges do not allow public clients and will abort with an error if the calling client is
public.

It is possible to exchange social tokens provided by Facebook, Google, etc. for a realm token. Be careful
and vigilante on what the exchange token is allowed to do as its not hard to create fake accounts on
these social websites. Use default roles, groups, and identity provider mappers to control what attributes
and roles are assigned to the external social user.

Direct naked exchanges are quite dangerous. You are putting a lot of trust in the calling client that it will
never leak out its client credentials. If those credentials are leaked, then the thief can impersonate
anybody in your system. This is in direct contrast to confidential clients that have existing tokens. You
have two factors of authentication, the access token and the client credentials, and you’re only dealing
with one user. So use direct naked exchanges sparingly.

CHAPTER 7. USING TOKEN EXCHANGE

147

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. PLANNING FOR SECURING APPLICATIONS AND SERVICES
	1.1. CLIENT ADAPTERS
	1.2. SUPPORTED PLATFORMS
	1.2.1. OpenID Connect
	1.2.1.1. Java
	1.2.1.2. JavaScript (client-side)
	1.2.1.3. Node.js (server-side)

	1.2.2. SAML
	1.2.2.1. Java
	1.2.2.2. Apache HTTP Server

	1.3. SUPPORTED PROTOCOLS
	1.3.1. OpenID Connect
	1.3.2. SAML 2.0
	1.3.3. OpenID Connect vs. SAML

	1.4. TERMINOLOGY
	1.5. BASIC STEPS TO SECURE APPLICATIONS AND SERVICES

	CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES
	2.1. JAVA ADAPTERS
	2.1.1. Java adapter configuration
	2.1.2. JBoss EAP adapter
	2.1.3. Installing JBOSS EAP adapters from a ZIP file
	2.1.3.1. JBoss SSO
	2.1.3.2. Securing a WAR
	2.1.3.3. Securing WARs via adapter subsystem
	2.1.3.4. Security domain

	2.1.4. Installing JBoss EAP 7 adapters from an RPM
	2.1.5. Installing JBoss EAP 6 adapters from an RPM
	2.1.6. JBoss Fuse 6 adapter
	2.1.6.1. Securing your web applications inside Fuse 6
	2.1.6.2. Installing the Keycloak feature
	2.1.6.3. Securing a Classic WAR application
	2.1.6.4. Securing a servlet deployed as an OSGI Service
	2.1.6.5. Securing an Apache Camel application
	2.1.6.6. Camel RestDSL
	2.1.6.7. Securing an Apache CXF endpoint on a separate Jetty engine
	2.1.6.8. Securing an Apache CXF endpoint on the default Jetty Engine
	2.1.6.9. Securing Fuse Administration Services
	2.1.6.10. Securing the Hawtio Administration Console

	2.1.7. JBoss Fuse 7 Adapter
	2.1.7.1. Securing your web applications inside Fuse 7
	2.1.7.2. Installing the Keycloak feature
	2.1.7.3. Securing a Classic WAR application
	2.1.7.4. Securing a servlet deployed as an OSGI Service
	2.1.7.5. Securing an Apache Camel application
	2.1.7.6. Camel RestDSL
	2.1.7.7. Securing an Apache CXF endpoint on a separate Undertow Engine
	2.1.7.8. Securing an Apache CXF endpoint on the default Undertow Engine
	2.1.7.9. Securing Fuse Administration Services
	2.1.7.10. Securing the Hawtio Administration Console

	2.1.8. Spring Boot adapter
	2.1.8.1. Installing the Spring Boot adapter
	2.1.8.2. Configuring the Spring Boot Adapter

	2.1.9. Java servlet filter adapter
	2.1.10. Security Context
	2.1.11. Error handling
	2.1.12. Logout
	2.1.13. Parameters forwarding
	2.1.14. Client authentication
	2.1.14.1. Client ID and Client Secret
	2.1.14.2. Client authentication with Signed JWT

	2.1.15. Multi Tenancy
	2.1.16. Application clustering
	2.1.16.1. Stateless token store
	2.1.16.2. Relative URI optimization
	2.1.16.3. Admin URL configuration
	2.1.16.4. Registration of application nodes
	2.1.16.5. Refresh token in each request

	2.2. JAVASCRIPT ADAPTER
	2.2.1. Session Status iframe
	2.2.2. Implicit and hybrid flow
	2.2.3. Hybrid Apps with Cordova
	2.2.4. Custom Adapters
	2.2.5. Earlier Browsers
	2.2.6. Modern Browsers with Tracking Protection
	2.2.6.1. Browsers with "SameSite=Lax by Default" Policy
	2.2.6.2. Browsers with Blocked Third-Party Cookies

	2.2.7. JavaScript Adapter Reference
	2.2.7.1. Constructor
	2.2.7.2. Properties
	2.2.7.3. Methods
	2.2.7.4. Callback Events

	2.3. NODE.JS ADAPTER
	2.3.1. Installation
	2.3.2. Usage
	2.3.3. Installing middleware
	2.3.4. Configuration for proxies
	2.3.5. Checking authentication
	2.3.6. Protecting resources
	2.3.7. Additional URLs
	2.3.8. Complete example

	2.4. OTHER OPENID CONNECT LIBRARIES
	2.4.1. Endpoints
	2.4.1.1. Authorization endpoint
	2.4.1.2. Token endpoint
	2.4.1.3. Userinfo endpoint
	2.4.1.4. Logout endpoint
	2.4.1.5. Certificate endpoint
	2.4.1.6. Introspection endpoint
	2.4.1.7. Dynamic Client Registration endpoint
	2.4.1.8. Token Revocation endpoint
	2.4.1.9. Device Authorization endpoint
	2.4.1.10. Backchannel Authentication endpoint

	2.4.2. Validating access tokens
	2.4.3. Flows
	2.4.3.1. Authorization code
	2.4.3.2. Implicit
	2.4.3.3. Resource Owner Password Credentials
	2.4.3.4. Client credentials
	2.4.3.5. Device Authorization Grant
	2.4.3.6. Client Initiated Backchannel Authentication Grant

	2.4.4. Redirect URIs

	2.5. FINANCIAL-GRADE API (FAPI) SUPPORT
	2.5.1. FAPI client profiles
	2.5.2. Open Banking Brasil Financial-grade API Security Profile
	2.5.3. TLS considerations

	CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES
	3.1. JAVA ADAPTERS
	3.1.1. General Adapter Config
	3.1.1.1. SP element
	3.1.1.2. Service Provider keys and key elements
	3.1.1.3. SP PrincipalNameMapping element
	3.1.1.4. RoleIdentifiers element
	3.1.1.5. RoleMappingsProvider element
	3.1.1.6. IDP Element
	3.1.1.7. IDP AllowedClockSkew sub element
	3.1.1.8. IDP SingleSignOnService sub element
	3.1.1.9. IDP SingleLogoutService sub element
	3.1.1.10. IDP Keys sub element
	3.1.1.11. IDP HttpClient sub element

	3.1.2. JBoss EAP adapter
	3.1.3. Installing adapters from a ZIP file
	3.1.3.1. JBoss SSO
	3.1.3.2. Setting SameSite value for JSESSIONID cookie

	3.1.4. Installing JBoss EAP 7 Adapters from an RPM
	3.1.5. Installing JBoss EAP 6 Adapters from an RPM
	3.1.5.1. Securing a WAR
	3.1.5.2. Securing WARs using the Red Hat Single Sign-On SAML Subsystem

	3.1.6. Java Servlet filter adapter
	3.1.7. Registering with an Identity Provider
	3.1.8. Logout
	3.1.8.1. Logout in clustered environment
	3.1.8.2. Logout in cross-site scenario

	3.1.9. Obtaining assertion attributes
	3.1.10. Error Handling
	3.1.11. Troubleshooting
	3.1.12. Multi Tenancy

	3.2. MOD_AUTH_MELLON APACHE HTTPD MODULE
	3.2.1. Configuring mod_auth_mellon with Red Hat Single Sign-On
	3.2.1.1. Installing the packages
	3.2.1.2. Creating a configuration directory for Apache SAML
	3.2.1.3. Configuring the Mellon Service Provider

	3.2.2. Setting the SameSite value for the cookie used by mod_auth_mellon
	3.2.2.1. Creating the Service Provider metadata
	3.2.2.2. Adding the Mellon Service Provider to the Red Hat Single Sign-On Identity Provider

	CHAPTER 4. CONFIGURING A DOCKER REGISTRY TO USE RED HAT SINGLE SIGN-ON
	4.1. DOCKER REGISTRY CONFIGURATION FILE INSTALLATION
	4.2. DOCKER REGISTRY ENVIRONMENT VARIABLE OVERRIDE INSTALLATION
	4.3. DOCKER COMPOSE YAML FILE

	CHAPTER 5. USING THE CLIENT REGISTRATION SERVICE
	5.1. AUTHENTICATION
	5.1.1. Bearer token
	5.1.2. Initial Access Token
	5.1.3. Registration Access Token

	5.2. RED HAT SINGLE SIGN-ON REPRESENTATIONS
	5.3. RED HAT SINGLE SIGN-ON ADAPTER CONFIGURATION
	5.4. OPENID CONNECT DYNAMIC CLIENT REGISTRATION
	5.5. SAML ENTITY DESCRIPTORS
	5.6. EXAMPLE USING CURL
	5.7. EXAMPLE USING JAVA CLIENT REGISTRATION API
	5.8. CLIENT REGISTRATION POLICIES

	CHAPTER 6. AUTOMATING CLIENT REGISTRATION WITH THE CLI
	6.1. CONFIGURING A NEW REGULAR USER FOR USE WITH CLIENT REGISTRATION CLI
	6.2. CONFIGURING A CLIENT FOR USE WITH THE CLIENT REGISTRATION CLI
	6.3. INSTALLING THE CLIENT REGISTRATION CLI
	6.4. USING THE CLIENT REGISTRATION CLI
	6.4.1. Logging in
	6.4.2. Working with alternative configurations
	6.4.3. Initial Access and Registration Access Tokens
	6.4.4. Creating a client configuration
	6.4.5. Retrieving a client configuration
	6.4.6. Modifying a client configuration
	6.4.7. Deleting a client configuration
	6.4.8. Refreshing invalid Registration Access Tokens

	6.5. TROUBLESHOOTING

	CHAPTER 7. USING TOKEN EXCHANGE
	7.1. HOW TOKEN EXCHANGE WORKS
	7.1.1. Form parameters
	7.1.2. Responses from a token exchange request

	7.2. INTERNAL TOKEN TO INTERNAL TOKEN EXCHANGE
	7.2.1. Granting permission for the exchange
	7.2.2. Making the request

	7.3. INTERNAL TOKEN TO EXTERNAL TOKEN EXCHANGE
	7.3.1. Granting permission for the exchange
	7.3.2. Making the request

	7.4. EXTERNAL TOKEN TO INTERNAL TOKEN EXCHANGE
	7.4.1. Granting permission for the exchange
	7.4.2. Making the request

	7.5. IMPERSONATION
	7.5.1. Granting permission for the exchange
	7.5.2. Making the request

	7.6. DIRECT NAKED IMPERSONATION
	7.6.1. Granting permission for the exchange
	7.6.2. Making the request

	7.7. EXPAND PERMISSION MODEL WITH SERVICE ACCOUNTS
	7.8. EXCHANGE VULNERABILITIES

