& RedHat

Red Hat Quay 3.3

Manage Red Hat Quay

Manage Red Hat Quay

Last Updated: 2021-01-15

Red Hat Quay 3.3 Manage Red Hat Quay

Manage Red Hat Quay

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Manage Red Hat Quay

Table of Contents

Table of Contents

PREF ACE . i i i e e e e e e 4
CHAPTER 1. GETTING RED HAT QUAY RELEASE NOTIFICATIONS ... e 5
CHAPTER 2. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY it 6

2.1. CREATE A CA AND SIGN A CERTIFICATE 6
2.2. CONFIGURE RED HAT QUAY TO USE THE NEW CERTIFICATE 7
2.2.1. Configure SSL from the Red Hat Quay Setup screen 7
2.2.2. Configure with the command line 8
2.2.3. Test the secure connection 9

2.3. CONFIGURING DOCKER TO TRUST A CERTIFICATE AUTHORITY 10
CHAPTER 3. ADDING TLS CERTIFICATES TO THE RED HAT QUAY CONTAINERciiiiiiiin... 12
3.1. ADD TLS CERTIFICATES TO RED HAT QUAY 12
3.2. ADD CERTS WHEN DEPLOYED ON KUBERNETES 12
CHAPTER 4. CONFIGURING ACTION LOG STORAGE FORELASTICSEARCHcciiiiiiiiiinnn.. 14
CHAPTER 5. RED HAT QUAY SECURITY SCANNING WITH CLAIR ... ittt iiiiiee e, 16
51.SET UP CLAIRIN THE RED HAT QUAY CONFIG TOOL 16
5.1.1. Enabling Clair on a Red Hat Quay OpenShift deployment 16
5.1.2. Enabling Clair on a Red Hat Quay Basic or HA deployment 16
CHAPTER 6. SETTING UP CLAIRSECURITY SCANNING ittt iiiieee e iiinneenaennnns 18
6.1. RUN CLAIR ON A RED HAT QUAY OPENSHIFT DEPLOYMENT 18
6.2. RUN CLAIR ON A RED HAT QUAY BASIC OR HA DEPLOYMENT 18
6.2.1. Get Postgres and Clair 18
6.2.2. Configure Clair 19
6.2.2.1. Clair configuration: High availability 19
6.2.2.2. Clair configuration: Single instance 20

6.2.3. Configuring Clair for TLS 22
6.2.3.1. Using certificates from a public CA 22
6.2.3.2. Configuring trust of self-signed SSL 22

6.2.4. Using Clair data sources 23
6.2.5. Run Clair 24
CHAPTER 7. USING CLAIR V4 SECURITY SCANNING ...ttt i itttieeeeennnaeeeannnn, 26
7.1. WHAT IS CLAIR V4? 26
7.2. CONFIGURING CLAIR V4 26
7.3. USING CLAIR V4 31
CHAPTER 8. SCAN POD IMAGES WITH THE CONTAINER SECURITY OPERATORciiiiiiiiinnn, 32
8.1. RUN THE CSO IN OPENSHIFT 32
8.2. QUERY IMAGE VULNERABILITIES FROM THE CLI 34
CHAPTER 9. INTEGRATE RED HAT QUAY INTO OPENSHIFT WITH THE BRIDGE OPERATOR 35
9.1. RUNNING THE QUAY BRIDGE OPERATOR 35
9.1.1. Prerequisites 35
9.1.2. Setting up and configuring OpenShift and Red Hat Quay 35
9.1.2.1. Red Hat Quay setup 36
9.1.2.2. OpenShift Setup 36
CHAPTER 10. REPOSITORY MIRRORING IN RED HAT QUAY . ittt it iiite e einnnaaaeennnns 40
10.1. OVERVIEW OF REPOSITORY MIRRORING 40

Red Hat Quay 3.3 Manage Red Hat Quay

10.2. PREREQUISITES
10.3. CREATE A MIRRORED REPOSITORY

10.4. WORKING WITH MIRRORED REPOSITORIES

10.5. TAG PATTERNS

CHAPTER 11. LDAP AUTHENTICATION SETUP FORRED HAT QUAY ... e

1.1. SET UP LDAP CONFIGURATION
1.1.1. Full LDAP URI
11.1.2. Team Synchronization

11.1.3. Base and Relative Distinguished Names

11.1.4. Additional User Filters
11.1.5. Administrator DN
11.1.6. UID and Mail attributes
11.1.7. Validation

11.2. COMMON ISSUES

11.3. CONFIGURE AN LDAP USER AS SUPERUSER

CHAPTER 12. PROMETHEUS AND GRAFANA METRICS UNDER RED HAT QUAY ...t iiiiiiienannn,
12.1. EXPOSING THE PROMETHEUS ENDPOINT
12.1.1. Setting up Prometheus to consume metrics

12.1.2. DNS configuration under Kubernetes

12.1.3. DNS configuration for a manual cluster

CHAPTER 13. GEOREPLICATION OF STORAGE INRED HAT QUAY ... i,

13.1. PREREQUISITES
13.2. VISIT THE CONFIG TOOL
13.3. ENABLE STORAGE REPLICATION

13.4. RUN RED HAT QUAY WITH STORAGE PREFERENCES

CHAPTER 14. RED HAT QUAY TROUBLESHOOTING ... i i

CHAPTER 15. SCHEMA FOR RED HAT QUAY
ADDITIONAL RESOURCES

41

41
44
46

48
48
48
49
50
50

51

51

51
52

53
53
53
53
53

54
54
54
54
54

56

57
67

Table of Contents

Red Hat Quay 3.3 Manage Red Hat Quay

PREFACE

Once you have deployed a Red Hat Quay registry, there are many ways you can further configure and
manage that deployment. Topics covered here include:

® Setting notifications to alert you of a new Red Hat Quay release
® Securing connections with SSL and TLS certificates

® Directing action logs storage to Elasticsearch

e Configuring image security scanning with Clair

® Scan pod images with the Container Security Operator

® |ntegrate Red Hat Quay into OpenShift with the Quay Bridge Operator
® Mirroring images with repository mirroring

® Sharing Quay images with a BitTorrent service

® Authenticating users with LDAP

® Enabling Quay for Prometheus and Grafana metrics

® Setting up geo-replication

® Troubleshooting Quay

CHAPTER 1. GETTING RED HAT QUAY RELEASE NOTIFICATIONS

CHAPTER 1. GETTING RED HAT QUAY RELEASE
NOTIFICATIONS

To keep up with the latest Red Hat Quay releases and other changes related to Red Hat Quay, you can
sign up for update notifications on the Red Hat Customer Portal . After signing up for notifications, you
will receive notifications letting you know when there is new a Red Hat Quay version, updated
documentation, or other Red Hat Quay news.

1. Loginto the Red Hat Customer Portal with your Red Hat customer account credentials.

2. Select your user name (upper-right corner) to see Red Hat Account and Customer Portal
selections:

@ ﬁ https://access.redhat.com

SUBSCRIPTIONS DOWNLOADS CONTAINERS SUPPORT CASES p @ e

Christopher Jones

Christopher Jones For your security, if you're on a public computer and have

Red Hat Account Number: 5405401 finished using your Red Hat services, please be sure to log
out.

Red Hat Account Customer Portal

Account Details My Profile

User Management Notifications

Account Maintenance Help

Account Team

GET STARTED

3. Select Notifications. Your profile activity page appears.

4. Select the Notifications tab.

5. Select Manage Notifications.

6. Select Follow, then choose Products from the drop-down box.

7. From the drop-down box next to the Products, search for and select Red Hat Quay:

My Activity Motifications (active tab) Scheduled Locked documents

Overview Manage Notifications

Pages/Threads

Users Add Notification:

Manage Notifications

(active tab) Follow Products* -« Add another option
Current Natifications | auay Q

Red Hat Quay

8. Select the SAVE NOTIFICATION button. Going forward, you will receive notifications when
there are changes to the Red Hat Quay product, such as a new release.

https://access.redhat.com
https://access.redhat.com

Red Hat Quay 3.3 Manage Red Hat Quay

CHAPTER 2. USING SSL TO PROTECT CONNECTIONS TO RED
HAT QUAY

This document assumes you have deployed Red Hat Quay in a single-node or highly available
deployment.

To configure Red Hat Quay with a self-signed certificate, you need to create a Certificate Authority
(CA), then generate the required key and certificate files. You then enter those files using the Red Hat
Quay Config Tool or command line.

2.1. CREATE A CA AND SIGN A CERTIFICATE

1. Create aroot CA.

$ openssl genrsa -out rootCA.key 2048
$ openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.pem

The result are rootCA.key and rootCA.pem files in the current directory.

2. Create certificate and private key If you are having Red Hat Quay handle TLS, you need to
create a certificate and private key to provide during configuration. You can get those files from
a certificate signing authority. Here we show how to create those files using the self-signed
certificate authority you just created.
In this example, you create device.crt and device.key files, which will be uploaded to Red Hat
Quay and renamed ssl.cert and ssl.key, respectively.

Because OpenShift creates long fully qualified domain names, consider using a wildcard to
identify the larger domain, instead of the specific route to the Red Hat Quay application. For

example, use something like *.apps.openshift.example.com when prompted for the server’s
hostname:

I Common Name (eg, your name or your server's hostname) []:*apps.openshift.example.com

$ openssl genrsa -out device.key 2048
$ openssl req -new -key device.key -out device.csr

Then sign the certificate with the root CA created earlier:

$ openssl x509 -req -in device.csr -CA rootCA.pem \
-CAkey rootCA.key -CAcreateserial -out device.crt -days 500 -sha256

https://access.redhat.com/documentation/en-us/red_hat_quay/3.3/html-single/getting_started_with_red_hat_quay/
https://access.redhat.com/documentation/en-us/red_hat_quay/3.3/html-single/deploy_red_hat_quay_-_high_availability
https://en.wikipedia.org/wiki/Self-signed_certificate

CHAPTER 2. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY

NOTE

Instead generating the *.key and *.crt files as just shown, you could create an openssl.cnf
file. This lets you add more information to the resulting certificate than you can get by just
responding to the prompts in the command for generating the certificate request. In this
example of an openssl.cnf file, replace DNS.1 and IP.1 with the hostname and IP

address of the Red Hat Quay server:

openssl.cnf

[req]

reg_extensions = v3_req

distinguished_name = req_distinguished_name
[req_distinguished_name]

[v3_req]

basicConstraints = CA:FALSE

keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]

DNS.1 = reg.example.com

IP.1=12.345.678.9

You could then generate the key as follows:

$ openssl x509 -req -in ssl.csr -CA rootCA.pem \
-CAkey rootCA.key -CAcreateserial -out ssl.cert \
-days 356 -extensions v3_req -extfile openssl.cnf

2.2. CONFIGURE RED HAT QUAY TO USE THE NEW CERTIFICATE

The next step can be accomplished either in the Red Hat Quay screen or from the terminal.

2.2.1. Configure SSL from the Red Hat Quay Setup screen

Start the quay container in config mode, as described in each deployment guide. In the server
Configuration section, enable SSL as follows:

Red Hat Quay 3.3 Manage Red Hat Quay

1. Set the Server Hostname to the appropriate value and check the Enable SSL box, then upload
the ssl.key and ssl.cert files (in our example, named device.key and device.crt, respectively):

& Server Configuration

Server reg.example.com
Hostname:
S5 Ld Enable S5L

Enabling SSL also enables HTTP Strict Transport Security.
This prevents downgrade attacks and cookie theft, but browsers will reject all future insecure
connections on this hostname.

Certificate! /conf/stack/ssl.cert Select a replacement file:

Choose File | ssl.cert

Private Jeconf/stack/ssl. key Select a replacement file:
key: Choose File |ssl.key

2. Save the configuration. Red Hat Quay will automatically validate the SSL certificate:

Checking your settings

REDIS

REGISTRY STORAGE

SSL CERTIFICATE AND KEY

v Configuration Validated . Save Configuration

3. Restart the container

Container restart required!
Configuration changes have been made but the container hasn't been restarted yet.

2.2.2. Configure with the command line

By not using the web interface the configuration checking mechanism built into Red Hat Quay is
unavailable. It is suggested to use the web interface if possible. For non-OpenShift installations, you can
configure SSL from the command-line interface as follows:

1. Copy the ssl.key and ssl.certinto the specified config directory. In this example, the config
directory for Red Hat Quay is on a host named reg.example.com in a directory named

/mnt/quay/config.

CHAPTER 2. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY

NOTE
The certificate/key files must be named ssl.key and ssl.cert.

$ls

ssl.cert ssl.key

$ scp ssl.* root@reg.example.com:/mnt/quay/config/
[root@reg.example.com ~]$ Is /mnt/quay/config/
config.yaml ssl.cert ssl.key

2. Modify the PREFERRED_URL_SCHEME: parameter in config.yaml from http to https

I PREFERRED_URL_SCHEME: https

3. Restart the Red Hat Quay container:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

eaf45ad4aal2d ...redhat.com/rhscl/redis "/usr/bin/redis-serve" 22 hours ago Up 22 hours
0.0.0.0:6379->6379/tcp dreamy...

cbe7b0fa39d8 quay.io/redhat/quay "/sbin/my_init" 22 hours ago Up one hour
80/tcp,443/tcp,443/tcp ferv...

705fe7311940 mysql:5.7 "/entrypoint.sh mysqgl" 23 hours ago Up 22 hours
0.0.0.0:3306->3306/tcp mysq|

$ docker restart cbe7b0fa39d8

2.2.3. Test the secure connection

Confirm the configuration by visiting the URL from a browser https://reg.example.com/

https://reg.example.com/

Red Hat Quay 3.3 Manage Red Hat Quay

Insecure Connection — Mozilla Firefox X

/% Insecure Connection X | 4

(- | (i) | https://reg.example.com c ||Q. Search | v B ¥+ =» =

% Your connection is not secure

The owner of reg.example.com has configured their website improperly. To
protect your information from being stolen, Firefox has not connected to this
website.

Learn more...

Report errors like this to help Mozilla identify misconfigured sites

"Your Connection is not secure” means the CA is untrusted but confirms that SSL is functioning
properly. To avoid these messages, you need to get a certificate from a trusted certificate authority.

2.3. CONFIGURING DOCKER TO TRUST A CERTIFICATE AUTHORITY

Docker requires that custom certs be installed to /etc/docker/certs.d/ under a directory with the same
name as the hostname private registry. It is also required for the cert to be called ca.crt. Here is how to
do that:

1. Copy the rootCA file.

I $ cp tmp/rootCA.pem /etc/docker/certs.d/reg.example.com/ca.crt

2. After you have copied the rootCA.pem file, docker login should authenticate successfully and
pushing to the repository should succeed.

$ sudo docker push reg.example.com/kbrwn/hello
The push refers to a repository [reg.example.com/kbrwn/hello]
5f70bf18a086: Layer already exists
e493e9cb9dac: Pushed

1770dbc4af14: Pushed

a7bb4eb71da7: Pushed

9fad7adcbd46: Pushed

2cec07a74a9f: Pushed

f342e0a3e445: Pushed

b12f995330bb: Pushed

2016366cdd69: Pushed

10

CHAPTER 2. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY

a930437ab3ab: Pushed

15eb0f73cd14: Pushed

latest: digest:
sha256:c24be6d92b0ade2bb8a8cc7c9bd044278d6abdf31534729b1660a485b1cd315¢ size:
7864

1

Red Hat Quay 3.3 Manage Red Hat Quay

CHAPTER 3. ADDING TLS CERTIFICATES TO THE RED HAT
QUAY CONTAINER

To add custom TLS certificates to Red Hat Quay, create a new directory named extra_ca_certs/
beneath the Red Hat Quay config directory. Copy any required site-specific TLS certificates to this new
directory.

3.1. ADD TLS CERTIFICATES TO RED HAT QUAY

1. View certificate to be added to the container

$ cat storage.crt

MIIDTTCCAjWgAwIBAglJAMVr9ngjJhzbMAOGCSqGSIb3DQEBCWUAMDOXCzAJBGNV
[..]

2. Create certs directory and copy certificate there

$ mkdir -p quay/config/extra_ca_certs

$ cp storage.crt quay/config/extra_ca_certs/
$ tree quay/config/

—— config.yaml

—— extra_ca_certs

| |— storage.crt

3. Obtain the quay container's CONTAINER ID with docker ps:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS

5a3e82c4a75f <registry>/<repo>/quay:v3.3.4 "/sbin/my_init" 24 hours ago Up
18 hours 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp, 443/tcp grave_keller

4. Restart the container with that ID:

I $ docker restart 5a3e82c4a75f

5. Examine the certificate copied into the container namespace:

$ docker exec -it 5a3e82c4a75f cat /etc/ssl/certs/storage.pem

MIIDTTCCAjWgAwIBAgIJAMVr9ngjJhzbMAOGCSqGSIb3DQEBCWUAMDOXCzAJBGNV

3.2. ADD CERTS WHEN DEPLOYED ON KUBERNETES

When deployed on Kubernetes, Red Hat Quay mounts in a secret as a volume to store config assets.
Unfortunately, this currently breaks the upload certificate function of the superuser panel.

To get around this error, a base64 encoded certificate can be added to the secret after Red Hat Quay
has been deployed. Here's how:

12

CHAPTER 3. ADDING TLS CERTIFICATES TO THE RED HAT QUAY CONTAINEF

1. Begin by base64 encoding the contents of the certificate:

$ cat ca.crt

MIIDIJCCAn6gAwWIBAgIBATANBgkghkiGOWOBAQsFADASMRcwFQYDVQQKDASMQUIu
TEICQO09SRS5TTzEeMBWGA1UEAwWwWVQ2VydGimaWNhdGUgQXV0aG9yaXRSMB4XDTE2
MDEXMjA2NTkxMFoXDTM2MDEXMjA2NTkxMFowOTEXMBUGA1UECgwWOTEFCLkxJQKNP
UkUuUO08xHjAcBgNVBAMMFUNIcnRpZmljYXRIIEF1dGhveml0e TCCASIwDQYJKoZI

[..]

$ cat ca.crt | base64 -w 0

[..]
c1psWGpgeGIPQMNEWkJPMjJ5d0pDemVnR2QNCnRsbW9JAEF4YnFSdVA3PTOKLSOtLS 1F
TkQgQOVSVEIGSUNBVEULLSOtLQo=

2. Use the kubectl tool to edit the quay-enterprise-config-secret.

I $ kubectl --namespace quay-enterprise edit secret/quay-enterprise-config-secret

3. Add an entry for the cert and paste the full base64 encoded string under the entry:

custom-cert.crt:
c1psWGpaeGIPQMNEWKJPM]J5d0pDemVnR2QNCnRsbW9JdEF4YnFSAVA3PTOKLSOILS1F
TkQgQOVSVEIGSUNBVEULLSOtLQo=

4. Finally, recycle all Red Hat Quay pods. Use kubectl delete to remove all Red Hat Quay pods.
The Red Hat Quay Deployment will automatically schedule replacement pods with the new
certificate data.

13

Red Hat Quay 3.3 Manage Red Hat Quay

CHAPTER 4. CONFIGURING ACTION LOG STORAGE FOR
ELASTICSEARCH

By default, the past three months of usage logs are stored in the Red Hat Quay database and exposed
via the web Ul on organization and repository levels. Appropriate administrative privileges are required
to see log entries. For deployments with a large amount of logged operations, you can now store the
usage logs in Elasticsearch instead of the Red Hat Quay database backend. To do this, you need to
provide your own Elasticsearch stack, as it is not included with Red Hat Quay as a customizable
component.

Enabling Elasticsearch logging can be done during Red Hat Quay deployment or post-deployment using
the Red Hat Quay Config Tool. The resulting configuration is stored in the config.yaml file. Once
configured, usage log access continues to be provided the same way, via the web Ul for repositories and
organizations.

Here's how to configure action log storage to change it from the default Red Hat Quay database to use
Elasticsearch:

1. Obtain an Elasticsearch account.
2. Open the Red Hat Quay Config Tool (either during or after Red Hat Quay deployment).

3. Scroll to the Action Log Storage Configuration setting and select Elasticsearch instead of
Database. The following figure shows the Elasticsearch settings that appear:

& Action Log Storage Configuration

Action logs can be stored in the database or Elasticsearch. In the latter case, the actions logs can (optionally) be sent to a data stream first.
Action Logs Storage: Elasticsearch j
Elasticsearch hostname: The Elasticsearch server hostname

Elasticsearch port: 9200

Elasticsearch access key: The Elasticsearch access key

Elasticsearch secret key: The Elasticsearch secret key

AWS region: The AWS region

Index prefix: logentry_

Logs Producer: j

4. Fillin the following information for your Elasticsearch instance:

® Elasticsearch hostname: The hostname or IP address of the system providing the
Elasticsearch service.

® Elasticsearch port The port number providing the Elasticsearch service on the host you just

entered. Note that the port must be accessible from all systems running the Red Hat Quay
registry. The default is TCP port 9200.

14

CHAPTER 4. CONFIGURING ACTION LOG STORAGE FOR ELASTICSEARCH

® Elasticsearch access key. The access key needed to gain access to the Elastic search
service, if required.

® Elasticsearch secret key. The secret key needed to gain access to the Elastic search
service, if required.

® AWS region: If you are running on AWS, set the AWS region (otherwise, leave it blank).

® Index prefix Choose a prefix to attach to log entries.

® | ogs Producer: Choose either Elasticsearch (default) or Kinesis to direct logs to an
intermediate Kinesis stream on AWS. You need to set up your own pipeline to send logs

from Kinesis to Elasticsearch (for example, Logstash). The following figure shows additional
fields you would need to fill in for Kinesis:

AWS region: The AWS region

Index prefix: logentry_

Logs Producer: Kinesis j
Stream name: The Kinesis stream name

AWS access key: The AWS access key

AWS secret key: The AWS secret key

AWS region: The AWS region

5. If you chose Elasticsearch as the Logs Producer, no further configuration is needed. If you chose
Kinesis, fill in the following:

® Stream name: The name of the Kinesis stream.

® AWS access key. The name of the AWS access key needed to gain access to the Kinesis
stream, if required.

® AWS secret key. The name of the AWS secret key needed to gain access to the Kinesis
stream, if required.

® AWS region: The AWS region.

6. When you are done, save the configuration. The Config Tool checks your settings. If there is a
problem connecting to the Elasticsearch or Kinesis services, you will see an error and have the
opportunity to continue editing. Otherwise, logging will begin to be directed to your
Elasticsearch configuration after the cluster restarts with the new configuration.

15

Red Hat Quay 3.3 Manage Red Hat Quay

CHAPTER 5. RED HAT QUAY SECURITY SCANNING WITH
CLAIR

Red Hat Quay supports scanning container images for known vulnerabilities with a scanning engine such
as Clair. This document explains how to configure Clair with Red Hat Quay.

5.1. SET UP CLAIRIN THE RED HAT QUAY CONFIG TOOL

Enabling Clair in Red Hat Quay consists of:

® Starting the Red Hat Quay config tool. See the Red Hat Quay deployment guide for the type of
deployment you are doing (OpenShift, Basic, or HA) for how to start the config tool for that
environment.

® Enabling security scanning, then generating a private key and PEM file in the config tool
® Including the key and PEM file in the Clair config file
® Start the Clair container

The procedure varies, based on whether you are running Red Hat Quay on OpenShift or directly on a
host.

5.1.1. Enabling Clair on a Red Hat Quay OpenShift deployment

To set up Clair on Red Hat Quay in OpenShift, see Add Clair image scanning to Red Hat Quay .

5.1.2. Enabling Clair on a Red Hat Quay Basic or HA deployment

To set up Clair on a Red Hat Quay deployment where the container is running directly on the host
system, do the following:

1. Restart the Red Hat Quay config toolRun the quay container again in config mode, open the
configuration Ul in a browser, then select Modify an existing configuration. When prompted,
upload the quay-config.tar.gz file that was originally created for the deployment.

2. Enable Security Scanning Scroll to the Security Scanner section and select the "Enable
Security Scanning" checkbox. From the fields that appear you need to create an authentication
key and enter the security scanner endpoint. Here's how:

® Generate key: Click Create Key, then from the pop-up window type a name for the Clair
private key and an optional expiration date (if blank, the key never expires). Then select
Generate Key.

® Copy the Clair key and PEM file Save the Key ID (to a notepad or similar) and download a
copy of the Private Key PEM file (named security _scanner.pem) by selecting "Download
Private Key" (if you lose the key, you need to generate a new one). You will need the key and
PEM file when you start the Clair container later.

Close the pop-up when you are done. Here is an example of a completed Security Scanner
config:

16

https://github.com/coreos/clair/
https://access.redhat.com/documentation/en-us/red_hat_quay/3.3/html-single/deploy_red_hat_quay_on_openshift/index#add-clair-scanner

CHAPTER 5. RED HAT QUAY SECURITY SCANNING WITH CLAIR

3 Security Scanner

If enabled, all images pushed to Red Hat Quay will be scanned via the external security scanning service, with vulnerability information available in the Ul and API, aswell as async
notification support.

4 Enable Security Scanning

A scanner compliant with the Quay Security Scanning APl must be running to use this feature. Documentation on running Clair can be found at Running Clair Security Scanner.

Authentication Key: " Vvalid key for service security_scanner exists Assign New Key
Security Scanner http://clair-service:6060
Endpoint:

3. Save the configuration: Click Save Configuration Changes and then select Download
Configuration to save it to your local system.

4. Deploy the configuration To pick up the changes enabling scanning, as well as other changes

you may have made to the configuration, unpack the quay-config.tar.gz and copy the resulting
files to the config directory. For example:

$ tar xvf quay-config.tar.gz
config.yaml ssl.cert ssl.key
$ cp config.yaml ssI* /mnt/quay/config

Next, start the Clair container and associated database, as described in the following sections.

17

Red Hat Quay 3.3 Manage Red Hat Quay

CHAPTER 6. SETTING UP CLAIR SECURITY SCANNING

Once you have created the necessary key and pem files from the Red Hat Quay config Ul, you are ready
to start up the Clair container and associated database. Once that is done, you an restart your Red Hat
Quay cluster to have those changes take effect.

Procedures for running the Clair container and associated database are different on OpenShift than
they are for running those containers directly on a host.

6.1. RUN CLAIR ON A RED HAT QUAY OPENSHIFT DEPLOYMENT

To run the Clair image scanning container and its associated database on an OpenShift environment
with your Red Hat Quay cluster, see Add Clair image scanning to Red Hat Quay .

6.2. RUN CLAIR ON A RED HAT QUAY BASIC OR HA DEPLOYMENT

To run Clair and its associated database on non-OpenShift environments (directly on a host), you need
to:

® Start up a database

e Configure and start Clair

6.2.1. Get Postgres and Clair

In order to run Clair, a database is required. For production deployments, MySQL is not supported. For
production, we recommend you use PostgreSQL or other supported database:

® Running on machines other than those running Red Hat Quay
® |deally with automatic replication and failover
For testing purposes, a single PostgreSQL instance can be started locally:

1. To start Postgres locally, do the following:

docker run --name postgres -p 5432:5432 -d postgres

sleep 5

docker run --rm --link postgres:postgres postgres \
sh -c 'echo "create database clairtest” | psql -h \
"$POSTGRES_PORT_5432_TCP_ADDR" -p \
"$POSTGRES_PORT_5432_TCP_PORT" -U postgres'

The configuration string for this test database is:

I postgresql://postgres@{DOCKER HOST GOES HERE}:5432/clairtest?sslmode=disable
2. Pull the security-enabled Clair image:

I docker pull quay.io/redhat/clair-jwt:v3.3.4

3. Make a configuration directory for Clair

18

https://access.redhat.com/documentation/en-us/red_hat_quay/3.3/html-single/deploy_red_hat_quay_on_openshift/index#add_clair_scanner

CHAPTER 6. SETTING UP CLAIR SECURITY SCANNING

mkdir clair-config
cd clair-config

6.2.2. Configure Clair

Clair can run either as a single instance or in high-availability mode. It is recommended to run more than
a single instance of Clair, ideally in an auto-scaling group with automatic healing.

1. Create a config.yaml file to be used in the Clair config directory (/clair/config) from one of the
two Clair configuration files shown here.

2. If you are doing a high-availability installation, go through the procedure in Authentication for
high-availability scanners to create a Key ID and Private Key (PEM).

3. Save the Private Key (PEM) to a file (such as, $HOME/config/security_scanner.pem).

4. Replace the value of key_id (CLAIR_SERVICE_KEY_ID) with the Key ID you generated and the
value of private_key_path with the location of the PEM file (for example,
/config/security_scanner.pem).

For example, those two value might now appear as:

key_id: { 4fb9063a7cac00b567ee921065ed16fed7227afd806b4d67cc82de67d8c781b1 }
private_key_path: /clair/config/security_scanner.pem

5. Change other values in the configuration file as needed.

6.2.2.1. Clair configuration: High availability

clair:
database:
type: pgsql
options:
A PostgreSQL Connection string pointing to the Clair Postgres database.
Documentation on the format can be found at: http://www.postgresql.org/docs/9.4/static/libpg-
connect.html
source: { POSTGRES_CONNECTION_STRING }
cachesize: 16384
api:
The port at which Clair will report its health status. For example, if Clair is running at
https://clair.mycompany.com, the health will be reported at
http://clair.mycompany.com:6061/health.
healthport: 6061

port: 6062
timeout: 900s

paginationkey can be any random set of characters. *Must be the same across all Clair
instances™.
paginationkey: "XxoPtCUzrUv4JV5dS+yQ+MdW7yLEJnRMwigVY/bpgtQ="

updater:
interval defines how often Clair will check for updates from its upstream vulnerability databases.
interval: 6h

notifier:

19

https://access.redhat.com/documentation/en-us/red_hat_quay/3.3/html-single/manage_red_hat_quay/#authentication-for-high-availability-scanners

Red Hat Quay 3.3 Manage Red Hat Quay

attempts: 3
renotifyinterval: 1h
http:
QUAY_ENDPOINT defines the endpoint at which Quay is running.
For example: https://myregistry.mycompany.com
endpoint: { QUAY_ENDPOINT }/secscan/notify
proxy: http://localhost:6063

jwtproxy:
signer_proxy:
enabled: true
listen_addr: :6063
ca_key_file: /certificates/mitm.key # Generated internally, do not change.
ca_crt_file: /certificates/mitm.crt # Generated internally, do not change.
signer:
issuer: security_scanner
expiration_time: 5m
max_skew: 1Tm
nonce_length: 32
private_key:
type: preshared
options:
The ID of the service key generated for Clair. The ID is returned when setting up
the key in [Quay Setup](security-scanning.md)
key_id: { CLAIR_SERVICE_KEY_ID }
private_key_path: /clair/config/security_scanner.pem

verifier_proxies:

- enabled: true
The port at which Clair will listen.
listen_addr: :6060

If Clair is to be served via TLS, uncomment these lines. See the "Running Clair under TLS"
section below for more information.

key_file: /clair/config/clair.key

crt_file: /clair/config/clair.crt

verifier:
CLAIR_ENDPOINT is the endpoint at which this Clair will be accessible. Note that the port
specified here must match the listen_addr port a few lines above this.
Example: https://myclair.mycompany.com:6060
audience: { CLAIR_ENDPOINT }

upstream: http://localhost:6062
key_server:
type: keyregistry
options:
QUAY_ENDPOINT defines the endpoint at which Quay is running.
Example: https://myregistry.mycompany.com
registry: { QUAY_ENDPOINT }/keys/

6.2.2.2. Clair configuration: Single instance

clair:
database:

20

CHAPTER 6. SETTING UP CLAIR SECURITY SCANNING

type: pgsql
options:
A PostgreSQL Connection string pointing to the Clair Postgres database.
Documentation on the format can be found at: http://www.postgresql.org/docs/9.4/static/libpg-
connect.html
source: { POSTGRES_CONNECTION_STRING }
cachesize: 16384
api:
The port at which Clair will report its health status. For example, if Clair is running at
https://clair.mycompany.com, the health will be reported at
http://clair.mycompany.com:6061/health.
healthport: 6061

port: 6062
timeout: 900s

paginationkey can be any random set of characters. *Must be the same across all Clair
instances™.
paginationkey:

updater:
interval defines how often Clair will check for updates from its upstream vulnerability databases.
interval: 6h
notifier:
attempts: 3
renotifyinterval: 1h
http:
QUAY_ENDPOINT defines the endpoint at which Quay is running.
For example: https://myregistry.mycompany.com
endpoint: { QUAY_ENDPOINT }/secscan/notify
proxy: http://localhost:6063

jwtproxy:
signer_proxy:
enabled: true
listen_addr: :6063
ca_key_file: /certificates/mitm.key # Generated internally, do not change.
ca_crt_file: /certificates/mitm.crt # Generated internally, do not change.
signer:
issuer: security_scanner
expiration_time: 5m
max_skew: 1Tm
nonce_length: 32
private_key:
type: autogenerated
options:
rotate_every: 12h
key_folder: /clair/config/
key_server:
type: keyregistry
options:
QUAY_ENDPOINT defines the endpoint at which Quay is running.
For example: https://myregistry.mycompany.com
registry: { QUAY_ENDPOINT }/keys/

21

Red Hat Quay 3.3 Manage Red Hat Quay

verifier_proxies:

- enabled: true
The port at which Clair will listen.
listen_addr: :6060

If Clair is to be served via TLS, uncomment these lines. See the "Running Clair under TLS"
section below for more information.

key_file: /clair/config/clair.key

crt_file: /clair/config/clair.crt

verifier:
CLAIR_ENDPOINT is the endpoint at which this Clair will be accessible. Note that the port
specified here must match the listen_addr port a few lines above this.
Example: https://myclair.mycompany.com:6060
audience: { CLAIR_ENDPOINT }

upstream: http://localhost:6062
key_server:
type: keyregistry
options:
QUAY_ENDPOINT defines the endpoint at which Quay is running.
Example: https://myregistry.mycompany.com
registry: { QUAY_ENDPOINT }/keys/

6.2.3. Configuring Clair for TLS

To configure Clair to run with TLS, a few additional steps are required.

6.2.3.1. Using certificates from a public CA

For certificates that come from a public certificate authority, follow these steps:
1. Generate a TLS certificate and key pair for the DNS name at which Clair will be accessed
2. Place these files as clair.crt and clair.key in your Clair configuration directory
3. Uncomment the key_file and crt_file lines under verifier_proxies in your Clair config.yaml

If your certificates use a public CA, you are now ready to run Clair. If you are using your own certificate
authority, configure Clair to trust it below.

6.2.3.2. Configuring trust of self-signed SSL

Similar to the process for setting up Docker to trust your self-signed certificates, Clair must also be
configured to trust your certificates. Using the same CA certificate bundle used to configure Docker,
complete the following steps:

1. Rename the same CA certificate bundle used to set up Quay Registry to ca.crt

2. Make sure the ca.crt file is mounted inside the Clair container under /etc/pki/ca-
trust/source/anchors/ as in the example below:

docker run --restart=always -p 6060:6060 -p 6061:6061 \

-v /path/to/clair/config/directory:/clair/config \
-v /path/to/quay/cert/ca.crt:/etc/pki/ca-trust/source/anchors/ca.crt \

22

https://access.redhat.com/documentation/en-us/red_hat_quay/3.3/html-single/manage_red_hat_quay/#configuring-docker-to-trust-a-certificate-authority

CHAPTER 6. SETTING UP CLAIR SECURITY SCANNING

I quay.io/redhat/clair-jwt:v3.3.4

Now Clair will be able to trust the source of your TLS certificates and use them to secure
communication between Clair and Quay.

6.2.4. Using Clair data sources

Before scanning container images, Clair tries to figure out the operating system on which the container
was built. It does this by looking for specific filenames inside that image (see Table 1). Once Clair knows
the operating system, it uses specific security databases to check for vulnerabilities (see Table 2).

Table 6.1. Container files that identify its operating system

Operating system Files identifying OS type

Redhat/CentOS/Oracle etc/oracle-release
etc/centos-release
etc/redhat-release

etc/system-release
Alpine etc/alpine-release

Debian/Ubuntu: etc/os-release
usr/lib/os-release

etc/apt/sources.list

Ubuntu etc/Isb-release

The data sources that Clair uses to scan containers are shown in Table 2.

NOTE
You must be sure that Clair has access to all listed data sources by whitelisting access to

each data source’s location. You might need to add a wild-card character (*) at the end
of some URLS that may not be fully complete because they are dynamically built by code.

Table 6.2. Clair data sources and data collected

Data source Data collected Whitelist links Format License
Debian Security Debian 6,7, 8, https://security- dpkg Debian
Bug Tracker unstable tracker.debian.org
namespaces /tracker/data/json
https://security-
tracker.debian.org
/tracker

23

https://security-tracker.debian.org/tracker
https://security-tracker.debian.org/tracker/data/json
https://security-tracker.debian.org/tracker
https://en.wikipedia.org/wiki/Dpkg
https://www.debian.org/license

Red Hat Quay 3.3 Manage Red Hat Quay

Data source Data collected Whitelist links
Ubuntu CVE Ubuntu 12.04, https://git.launchp
Tracker 12.10,13.04,14.04, ad.net/ubuntu-

14.10, 15.04, 15.10, cve-tracker

16.04 namespaces
http://people.ubu

ntu.com/~ubuntu-
security/cve/%s

Red Hat Security CentOS5, 6,7 https://www.redha
Data namespace t.com/security/dat
a/oval/
Oracle Linux Oracle Linux 5, 6, https://linux.oracle
Security Data 7 namespaces .com/oval/
Alpine SecDB Alpine 3.3,3.4,3.5 https://github.com
namespaces /alpinelinux/alpine
-secdb

https://cve.mitre.o
rg/cgi-
bin/cvename.cgi?
name=

NIST NVD Generic https://nvd.nist.go
vulnerability v/feeds/xml/cve/2
metadata .0/nvdcve-2.0-

%s.xml.gz

https://nvd.nist.go

v/feeds/xml/cve/2
.0/nvdcve-2.0-
%s.meta
Amazon Linux Amazon Linux Amazonaws.com
Security Advisories ~ 2018.03, 2 mirror list

namespaces
Amazon.com

mirror list

6.2.5. Run Clair

Execute the following command to run Clair:

docker run --restart=always -p 6060:6060 -p 6061:6061 \
-v /path/to/clair/config/directory:/clair/config \
quay.io/redhat/clair-jwt:v3.3.4

Output similar to the following will be seen on success:

24

Format

dpkg

rom

ropm

apk

N/A

rom

License

GPLv2

CVRF

CVRF

MIT

Public domain

MIT-0O

https://launchpad.net/ubuntu-cve-tracker
https://git.launchpad.net/ubuntu-cve-tracker
http://people.ubuntu.com/~ubuntu-security/cve/%s
https://en.wikipedia.org/wiki/Dpkg
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.redhat.com/security/data/metrics
https://www.redhat.com/security/data/oval/
http://www.rpm.org/
http://www.icasi.org/cvrf-licensing/
https://linux.oracle.com/security/
https://linux.oracle.com/oval/
http://www.rpm.org/
http://www.icasi.org/cvrf-licensing/
http://git.alpinelinux.org/cgit/alpine-secdb/
https://github.com/alpinelinux/alpine-secdb
https://cve.mitre.org/cgi-bin/cvename.cgi?name=
http://git.alpinelinux.org/cgit/apk-tools/
https://gist.github.com/jzelinskie/6da1e2da728424d88518be2adbd76979
https://nvd.nist.gov/
https://nvd.nist.gov/feeds/xml/cve/2.0/nvdcve-2.0-%s.xml.gz
https://nvd.nist.gov/feeds/xml/cve/2.0/nvdcve-2.0-%s.meta
https://nvd.nist.gov/faq
https://alas.aws.amazon.com/
http://repo.us-west-2.amazonaws.com/2018.03/updates/x86_64/mirror.list
https://cdn.amazonlinux.com/2/core/latest/x86_64/mirror.list
http://www.rpm.org/
https://spdx.org/licenses/MIT-0.html

CHAPTER 6. SETTING UP CLAIR SECURITY SCANNING

2016-05-04 20:01:05,658 CRIT Supervisor running as root (no user in config file)

2016-05-04 20:01:05,662 INFO supervisord started with pid 1

2016-05-04 20:01:06,664 INFO spawned: 'jwtproxy' with pid 8

2016-05-04 20:01:06,666 INFO spawned: 'clair' with pid 9

2016-05-04 20:01:06,669 INFO spawned: 'generate_mitm_ca' with pid 10
time="2016-05-04T20:01:06Z" level=info msg="No claims verifiers specified, upstream should be
configured to verify authorization"

time="2016-05-04T20:01:06Z" level=info msg="Starting reverse proxy (Listening on :6060")"
2016-05-04 20:01:06.715037 | | pgsql: running database migrations
time="2016-05-04T20:01:06Z" level=error msg="Failed to create forward proxy: open
/certificates/mitm.crt: no such file or directory”

goose: no migrations to run. current version: 20151222113213

2016-05-04 20:01:06.730291 | | pgsql: database migration ran successfully

2016-05-04 20:01:06.730657 | | notifier: notifier service is disabled

2016-05-04 20:01:06.731110 | | api: starting main APl on port 6062.

2016-05-04 20:01:06.736558 | | api: starting health API on port 6061.

2016-05-04 20:01:06.736649 | | updater: updater service is disabled.

2016-05-04 20:01:06,740 INFO exited: jwtproxy (exit status 0; not expected)

2016-05-04 20:01:08,004 INFO spawned: 'jwtproxy' with pid 1278

2016-05-04 20:01:08,004 INFO success: clair entered RUNNING state, process has stayed up for >
than 1 seconds (startsecs)

2016-05-04 20:01:08,004 INFO success: generate_mitm_ca entered RUNNING state, process has
stayed up for > than 1 seconds (startsecs)

time="2016-05-04T20:01:08Z" level=info msg="No claims verifiers specified, upstream should be
configured to verify authorization"

time="2016-05-04T20:01:08Z" level=info msg="Starting reverse proxy (Listening on :6060")"
time="2016-05-04T20:01:08Z" level=info msg="Starting forward proxy (Listening on :6063")"
2016-05-04 20:01:08,541 INFO exited: generate_mitm_ca (exit status 0; expected)

2016-05-04 20:01:09,543 INFO success: jwtproxy entered RUNNING state, process has stayed up for
> than 1 seconds (startsecs)

To verify Clair is running, execute the following command:

I curl -X GET -I http://path/to/clair/here:6061/health

If a 200 OK code is returned, Clair is running:

HTTP/1.1 200 OK

Server: clair

Date: Wed, 04 May 2016 20:02:16 GMT
Content-Length: 0

Content-Type: text/plain; charset=utf-8

Once Clair and its associated database are running, you man need to restart your quay application for
the changes to take effect.

25

Red Hat Quay 3.3 Manage Red Hat Quay

CHAPTER 7. USING CLAIR V4 SECURITY SCANNING

Clair v4 is the next generation of Clair image scanning available with Red Hat Quay. Clair v4 is currently
released as Technology Preview, which means that it is not supported for production use. However, you
are encouraged to test Clair v4 as it represents the direction of Clair image scanning development.

To align with the Red Hat Quay release, the current Clair v4 release image is clairiv3.3.4.

7.1. WHAT IS CLAIR V4?

Technically, Clair v4 is a set of micro services that can be used with Red Hat Quay to perform
vulnerability scanning of container images associated with a set of Linux operating systems. The micro
services design of Clair v4 makes it appropriate to run in a highly scalable configuration, where

components can be scaled separately as appropriate for enterprise environments.

For the purposes of trying out Clair v4, we recommend running it in combo mode (see clair-
combo.yaml) This mode, described here, brings all the microservices together as one process.

All supported security databases for Clair v4 are turned on. These databases include:
® Alpine SecDB database
e AWS Updatelnfo
® Debian Oval database
® Oracle Oval database
® RHEL Oval database
® SUSE Oval database
® Ubuntu Oval database

For information on how Clair does security mapping with the different databases, see ClairCore Severity
Mapping.

' WARNING
A Because Clair v4 is Technology Preview, don't expect 100% accurate reporting.

Expect that the presentation of vulnerability results will look different going forward
than they did with v2. Over time, Clair v4 will produce more results.

The steps for using Clair v4 alongside an existing Red Hat Quay + Clair v2 environment are described
next.

7.2. CONFIGURING CLAIR V4

26

https://access.redhat.com/support/offerings/techpreview
https://github.com/quay/openshift-demo/blob/master/clairv4/clair-combo.yaml
https://quay.github.io/claircore/v0.0.19/severity_mapping.html

CHAPTER 7. USING CLAIR V4 SECURITY SCANNING

To try out Clair v4, stand up a Red Hat Quay cluster with a running Clair v2 instance. Then use the
following procedure to run Clair v4 along side it. Here is how to do that on an OpenShift v4.2 or later
cluster on an AWS cloud.

1. Set your current project to the name of the project in which Red Hat Quay is running. For
example:

I $ oc project quay-enterprise
2. Create a Postgres deployment file for Clair v4 (for example, clairv4-postgres.yaml) as follows.

clairv4-postgres.yaml

apiVersion: apps/vi
kind: Deployment
metadata:
name: clairv4-postgres
namespace: quay-enterprise
labels:
quay-component: clairv4-postgres
spec:
replicas: 1
selector:
matchLabels:
quay-component: clairv4-postgres
template:
metadata:
labels:
quay-component: clairv4-postgres
spec:
volumes:
- name: postgres-data
persistentVolumeClaim:
claimName: clairv4-postgres
containers:
- name: postgres
image: postgres:11.5
imagePullPolicy: "IfNotPresent”
ports:
- containerPort: 5432
env:
- name: POSTGRES_USER
value: "postgres"
- name: POSTGRES_DB
value: "clair"
- name: POSTGRES_PASSWORD
value: "postgres"
- name: PGDATA
value: "/etc/postgres/data”
volumeMounts:
- name: postgres-data
mountPath: "/etc/postgres”
apiVersion: vi
kind: PersistentVolumeClaim

27

Red Hat Quay 3.3 Manage Red Hat Quay

metadata:
name: clairv4-postgres
labels:
quay-component: clairv4-postgres
spec:
accessModes:
- "ReadWriteOnce"
resources:
requests:
storage: "5Gi"
volumeName: "clairv4-postgres”
apiVersion: vi
kind: Service
metadata:
name: clairv4-postgres
labels:
quay-component: clairv4-postgres
spec:
type: ClusterlP
ports:
- port: 5432
protocol: TCP
name: postgres
targetPort: 5432
selector:
quay-component: clairv4-postgres

3. Deploy the postgres database as follows:
I $ oc create -f ./clairv4-postgres.yaml

4. Create a Clair config.yaml file to use for Clair v4. For example:

config.yaml

introspection_addr: :8089
http_listen_addr: :8080
log_level: debug
indexer:
connstring: host=clairv4-postgres port=5432 dbname=clair user=postgres
password=postgres ssimode=disable
scanlock_retry: 10
layer_scan_concurrency: 5
migrations: true
matcher:
connstring: host=clairv4-postgres port=5432 dbname=clair user=postgres
password=postgres ssimode=disable
max_conn_pool: 100
run: "
migrations: true
indexer_addr: clair-indexer
tracing and metrics
trace:
name: "jaeger"

28

probability: 1
jaeger:
agent_endpoint: "localhost:6831"
service_name: "clair"
metrics:
name: "prometheus”

. Create a secret from the Clair config.yaml:

CHAPTER 7. USING CLAIR V4 SECURITY SCANNING

I $ oc create secret generic clairv4-config-secret --from-file=./config.yaml

. Create the Clair v4 deployment file (for example, clair-combo.yaml) and modify it as

necessary:

clair-combo.yaml

apiVersion: extensions/vibetal
kind: Deployment
metadata:
labels:
quay-component: clair-combo
name: clair-combo
spec:
replicas: 1
selector:
matchLabels:
quay-component: clair-combo
template:
metadata:
labels:
quay-component: clair-combo
spec:
containers:

- image: quay.io/redhat/clair:v3.3.4 ﬂ
imagePullPolicy: IfNotPresent
name: clair-combo
env:

- name: CLAIR_CONF
value: /clair/config.yaml

- name: CLAIR_MODE
value: combo

ports:

- containerPort: 8080
name: clair-http
protocol: TCP

- containerPort: 8089
name: clair-intro
protocol: TCP

volumeMounts:

- mountPath: /clair/
name: config

imagePullSecrets:

- name: redhat-pull-secret

restartPolicy: Always

29

Red Hat Quay 3.3 Manage Red Hat Quay

volumes:
- name: config
secret:
secretName: clairv4-config-secret
apiVersion: vi
kind: Service
metadata:
name: clairv4 g
labels:
quay-component: clair-combo
spec:
ports:
- name: clair-http
port: 80
protocol: TCP
targetPort: 8080
- name: clair-introspection
port: 8089
protocol: TCP
targetPort: 8089
selector:
quay-component: clair-combo
type: ClusterIP

ﬂ Change image to latest clair image name and version.

With the Service set to clairv4, the scanner endpoint for Clair v4 is entered later into the
Red Hat Quay config.yamlin the SECURITY_SCANNER_V4_ENDPOINT as http://clairv4.

7. Create the Clair v4 deployment as follows:

I $ oc create -f ./clair-combo.yaml

8. Modify the config.yaml file for your Red Hat Quay deployment to add the following entries at
the end:

FEATURE_SECURITY_SCANNER: true
SECURITY_SCANNER_V4_ENDPOINT: http://clairv4 ﬂ
SECURITY_SCANNER_V4_NAMESPACE_WHITELIST: 9
- "clairv4-org"
- "foo-org"

ﬂ Identify the Clair v4 service endpoint

Replace clair4-org and foo-org with namespaces (organizations and users) in your Red
Hat Quay cluster you want to use Clair v4 scanning

9. Redeploy the modified config.yaml to the secret containing that file (for example, quay-
enterprise-config-secret:

30

http://clairv4

CHAPTER 7. USING CLAIR V4 SECURITY SCANNING

$ oc delete secret quay-enterprise-config-secret

$ oc create secret generic

quay-enterprise-config-secret --from-file=./config.yaml

10. For the new config.yaml to take effect, you need to restart the Red Hat Quay pods. Simply
deleting the quay-app pods causes pods with the updated configuration to be deployed.

At this point, images in any of the organizations identified in the namespace whitelist will be scanned by

Clair v4.

7.3. USING CLAIR V4

The user interface for viewing vulnerability information gathered by Clair v4 is essentially the same as it

was for Clair v2.

1. Login to your Red Hat Quay cluster and select an organization for which you have configured

Clair v4 scanning.

2. Select a repository from that

organization that holds some images and select Tags from the left

navigation. The following figure shows an example of a repository with two images that have

been scanned:

€ Repositories
0 Repository Tags
W
D 1804

12.04

B8 clairv4-org /ubuntu ¥

Compact [SSeEhlel]

1-20f2 Filt:
LAST MODIFIED
1
9 days ago ™ 6 High . 82 fixable 255 MB SHA256 bSBT46cBagsy & £F
10 days ago o Passed 26.4 MB SHA2se G18a4cebldds & £F

3. If vulnerabilities are found, select to under the Security Scan column for the image to see either
all vulnerabilities or those that are fixable. The following figure shows information on all

vulnerabilities found:

€ B clairv4-org/ubuntu

i

L
g

Vulnerabilities

SEVERITY |

CVE-2019-3462 % A High
CVE-2019-3462 % A High
CVE-2018-16864 % A Hig

I bss746c8a899

Quay Security Scanner has detected 146 vulnerabilities.

Patches are available for 82 vulnerabilities.

Iy 6 High-level vulnerabilities.
45 Medium-level vulnerabilities.
57 Low-level vulnerabilities.

A 38 Negligible-level vulnerabilities.

Filt bilit [only show fixable

apt 1612 © 1.7.0ubuntuo. file: c3e6bb316dfabbBlddd478aaa3104f532883..
libapt-pkg5.0 1612 © 1.7.0ubuntun FELN file:c3e6bb316dfa6h8ldda478aaa310df532883.
libudevl 237-3ubuntuln39 © 239-7ubuntul0G file:c3e6bb316dfachBlddad782aa31007532883..

31

Red Hat Quay 3.3 Manage Red Hat Quay

CHAPTER 8. SCAN POD IMAGES WITH THE CONTAINER

SECURITY OPERATOR

Using the Container Security Operator, (CSO) you can scan container images associated with active
pods, running on OpenShift (4.2 or later) and other Kubernetes platforms, for known vulnerabilities. The

CSO:

Watches containers associated with pods on all or specified namespaces
Queries the container registry where the containers came from for vulnerability information
provided an image’s registry supports image scanning (such as a Quay registry with Clair

scanning)

Exposes vulnerabilities via the ImageManifestVuln object in the Kubernetes API

Using the instructions here, the CSO is installed in the marketplace-operators namespace, so it is
available to all namespaces on your OpenShift cluster.

NOTE

To see instructions on installing the CSO on Kubernetes, select the Install button from
the Container Security OperatorHub.io page.

8.1. RUN THE CSO IN OPENSHIFT

To start using the CSO in OpenShift, do the following:

1.

32

Go to Operators = OperatorHub (select Security) to see the available Container Security
Operator.

Select the Container Security Operator, then select Install to go to the Create Operator
Subscription page.

Check the settings (all namespaces and automatic approval strategy, by default), and select
Subscribe. The Container Security appears after a few moments on the Installed Operators
screen.

Optionally, you can add custom certificates to the CSO. In this example, create a certificate
named quay.crt in the current directory. Then run the following command to add the cert to the
CSO (restart the Operator pod for the new certs to take effect):

$ oc create secret generic container-security-operator-extra-certs --from-file=quay.crt -n
openshift-operators

Open the OpenShift Dashboard (Home — Dashboards). A link to Image Security appears under
the status section, with a listing of the number of vulnerabilities found so far. Select the link to
see a Security breakdown, as shown in the following figure:

https://operatorhub.io/operator/container-security-operator
https://operatorhub.io/operator/container-security-operator

CHAPTER 8. SCAN POD IMAGES WITH THE CONTAINER SECURITY OPERATOF

Dashboards
Quay Image Security *
Overview
breakdown
Container images from Quay are analyzed
Details View settings. Status to identify vulnerabilities. Images from other
registries are not scanned
Cluster AP Address Quay Image Severity Fixable
& Cluster

https://api.ci-In-fin8t8k-d5d6b.origin-ci-int-
aws.devrhcloud.com:6443

Cluster ID
3ffl67bb-9187-40a7-9a46-6cc764a38a03

@ Control Plane 0 security

abilities

7 minutes ago

1High 19

1total

sing act

edmac
Openshift Cluster Manager Aclient in the cluster is using deprecated extensions/vibetal APl that will be remaved
Fixable Vulnerabilities edmac
Provider o ‘ ;
nss-tools namespaces
AWS i edmac
OpenShift Version Cluster Utilization _ ed mac
4.3.0-0.nightly-2019-12-19-105827
1035 (@ Updated mac
[TISAPA— Dacriirra leana 100 1075 1020 1035

6. You can do one of two things at this point to follow up on any detected vulnerabilities:

® Select the link to the vulnerability. You are taken to the container registry, Red Hat Quay or
other registry where the container came from, where you can see information about the
vulnerability. The following figure shows an example of detected vulnerabilities from a
Quay.io registry:

(D RED HAT Quayio EXPLORE

APPLICATIONS REPOSITORIES TUTORIAL

+ o [@

Iy ro4fd70e06e7

Quay Security Scanner has detected 6 vulnerabilities.

Patches are available for 6 vulnerabilities.

A 6 High-level vulnerabilities.

&

Vulnerabilities Filter Vulnerabilities [J Only show fixable

CVE SEVERITY | PACKAGE CURRENT VERSIOR FIXED IN VERSION

RHSA-2019:4190 A High nss-util 3.44.0-3.el7 © 0:3.44.0-4.el7_7

® Select the namespaces link to go to the ImageManifestVuln screen, where you can see the
name of the selected image and all namespaces where that image is running. The following
figure indicates that a particular vulnerable image is running in two namespaces:

Project: all projects =

ImageManifestVuln

Create ImageManifestVuln

Filter by name...

Name T Namespace Created

VOB sha256 fo4fd/0e06e745c2d8406
53b8b%0ac79b55d55e7a25bcd4
b83d5512a846575a2

@ quay-enterprise 9 minutes ago

At this point, you know what images are vulnerable, what you need to do to fix those vulnerabilities, and
every namespace that the image was run in. So you can:

33

Red Hat Quay 3.3 Manage Red Hat Quay

® Alert anyone running the image that they need to correct the vulnerability

® Stop the images from running (by deleting the deployment or other object that started the pod
the imageis in)

Note that if you do delete the pod, it may take a few minutes for the vulnerability to reset on the
dashboard.

8.2. QUERY IMAGE VULNERABILITIES FROM THE CLI

You can query information on security from the command line. To query for detected vulnerabilities,
type:

$ oc get vuln --all-namespaces
NAMESPACE NAME AGE
default sha256.ca90... 6m56s
skynet sha256.ca90... 9m37s

To display details for a particular vulnerability, identify one of the vulnerabilities, along with its
namespace and the describe option. This example shows an active container whose image includes an
RPM package with a vulnerability:

34

$ oc describe vuln --namespace mynamespace sha256.ac50e3752...
Name: sha256.ac50e3752...
Namespace: quay-enterprise

Spec:
Features:
Name: nss-util
Namespace Name: centos:7
Version: 3.44.0-3.el7
Versionformat: rpm
Vulnerabilities:
Description: Network Security Services (NSS) is a set of libraries...

CHAPTER 9. INTEGRATE RED HAT QUAY INTO OPENSHIFT WITH THE BRIDGE OPERATOF

CHAPTER 9. INTEGRATE RED HAT QUAY INTO OPENSHIFT
WITH THE BRIDGE OPERATOR

Using the Quay Bridge Operator, you can replace the integrated container registry in OpenShift with a
Red Hat Quay registry. By doing this, your integrated OpenShift registry becomes a highly available,
enterprise-grade Red Hat Quay registry with enhanced role based access control (RBAC) features.

The primary goals of the Bridge Operator is to duplicate the features of the integrated OpenShift
registry in the new Red Hat Quay registry. The features enabled with this Operator include:

® Synchronizing OpenShift namespaces as Red Hat Quay organizations.

o Creating Robot accounts for each default namespace service account

o Creating Secrets for each created Robot Account (associating each Robot Secret to a
Service Account as Mountable and Image Pull Secret)

o Synchronizing OpenShift ImageStreams as Quay Repositories
® Automatically rewriting new Builds making use of ImageStreams to output to Red Hat Quay
® Automatically importing an ImageStream tag once a build completes

Using this procedure with the Quay Bridge Operator, you enable bi-directional communication between
your Red Hat Quay and OpenShift clusters.

' WARNING
A You cannot have more than one OpenShift Container Platform cluster pointing to

the same Red Hat Quay instance from a Quay Bridge Operator. If you did, it would
prevent you from creating namespaces of the same name on the two clusters.

9.1. RUNNING THE QUAY BRIDGE OPERATOR

9.1.1. Prerequisites

Before setting up the Bridge Operator, have the following in place:
® An existing Red Hat Quay environment for which you have superuser permissions

® A Red Hat OpenShift Container Platform environment (4.2 or later is recommended) for which
you have cluster administrator permissions

® An OpenShift command line tool (o¢ command)

9.1.2. Setting up and configuring OpenShift and Red Hat Quay

Both Red Hat Quay and OpenShift configuration is required:

35

Red Hat Quay 3.3 Manage Red Hat Quay

9.1.2.1. Red Hat Quay setup

Create a dedicated Red Hat Quay organization, and from a new application you create within that
organization, generate an OAuth token to be used with the Quay Bridge Operator in OpenShift

1.

Login to Red Hat Quay as a user with superuser access and select the organization for which
the external application will be configured.

In the left navigation, select Applications.

Select Create New Application and entering a name for the new application (for example,
openshift).

With the new application displayed, select it.

In the left navigation, select Generate Token to create a new OAuth2 token.

Select all checkboxes to grant the access needed for the integration.

Review the assigned permissions and then select Authorize Application, then confirm it.

Copy and save the generated Access Token that appears to use in the next section.

9.1.2.2. OpenShift Setup

Setting up OpenShift for the Quay Bridge Operator requires several steps, including:

Creating an OpenShift secret Using the OAuth token created earlier in Quay, create an
OpenShift secret.

Adding MutatingWebhookConfiguration support: To support Red Hat Quay integration with
OpenShift, any new Build requests should be intercepted so that the output can be modified to
target Red Hat Quay instead of OpenShift's integrated registry.

Support for dynamic interception of APl requests that are performed as part of OpenShift’s typical build
process is facilitated through a MutatingWebhookConfiguration. A MutatingWebhookConfiguration
allows for invoking an API running within a project on OpenShift when certain APl requests are received.

Kubernetes requires that the webhook endpoint is secured via SSL using a certificate that makes use of
the certificate authority for the cluster. Fortunately, OpenShift provides support for generating a
certificate signed by the cluster.

36

1.

2.

3.

Using the OpenShift oc command line tool, log in to OpenShift as a cluster administrator.
Choose an OpenShift namespace to use, such as openshift-operators or create a new one.
Create an OpenShift secret, replacing <access_token> with the Access Token obtained earlier

from Red Hat Quay. For example, this creates a secret with your <access_token> called quay-
integration with a key called token:

I $ oc create secret generic quay-integration --from-literal=token=<access_token>
The result places the newly created private key and certificate within a secret specified. The

secret will be mounted into the appropriate located within the operator as declared in the
Deployment of the Operator.

Create a Service for the Operator’s webhook endpoint:

ul

CHAPTER 9. INTEGRATE RED HAT QUAY INTO OPENSHIFT WITH THE BRIDGE OPERATOF

quay-webhook.yaml

apiVersion: vi
kind: Service
metadata:
labels:
name: quay-bridge-operator
name: quay-bridge-operator
namespace: openshift-operators
spec:
ports:
- name: https
port: 443
protocol: TCP
targetPort: 8443
selector:
name: quay-bridge-operator
sessionAffinity: None
type: ClusterIP

. Create the webhook service as follows:

I $ oc create -f quay-webhook.yaml

. Download the webhook-create-signed-cert.sh script, so you can use it to generate a certificate
signed by a Kubernetes certificate authority.

N

Execute the following command to request the certificate:

$./webhook-create-signed-cert.sh --namespace openshift-operators \
--secret quay-bridge-operator-webhook-certs \
--service quay-bridge-operator

. Execute the following command to retrieve the CA and format the result as a single line so that
it can be entered into the MutatingWebhookConfiguration resource:

$ oc get configmap -n kube-system \
extension-apiserver-authentication \
-o=jsonpath="{.data.client-ca-file}' | base64 | tr -d "\n'

. Replace the ${CA_BUNDLE} variable in the following MutatingWebhookConfiguration YAML:

quay-mutating-webhook.yaml

apiVersion: admissionregistration.k8s.io/vibetai
kind: MutatingWebhookConfiguration
metadata:
name: quay-bridge-operator
webhooks:
- name: quayintegration.redhatcop.redhat.io
clientConfig:
service:
namespace: openshift-operators
name: quay-bridge-operator

37

https://github.com/redhat-cop/quay-openshift-registry-operator/blob/master/hack/webhook-create-signed-cert.sh

Red Hat Quay 3.3 Manage Red Hat Quay

path: "/admissionwebhook"
caBundle: "${CA_BUNDLE}" @)
rules:

- operations: ["CREATE"]
apiGroups: ["build.openshift.io"]
apiVersions: ["v1"]
resources: ["builds"]

failurePolicy: Fail

Replace ${CA_BUNDLE} with the output of the previous step. It will appear as one long
line that you copy and paste to replace ${CA_BUNDLE}.

10. Create the MutatingWebhookConfiguration as follows:
I $ oc create -f quay-mutating-webhook.yaml

Until the operator is running, new requests for builds will fail since the webserver the
MutatingWebhookConfiguration invokes is not available and a proper is response is required in
order for the object to be persisted in etcd.

1. Go to the OpenShift console and install the Quay Bridge Operator as follows:
® Select OperatorHub and search for Quay Bridge Operator.

® Select Install

® Choose Installation Mode (all namespaces), Update Channel, and Approval Strategy
(Automatic or Manual).

® Select Subscribe

12. Create the custom resource (CR) called Quaylntegration. For example:

quay-integration.yaml

apiVersion: redhatcop.redhat.io/vialphat
kind: QuaylIntegration
metadata:

name: example-quayintegration
spec:
clusterID: openshift ﬂ
credentialsSecretName: openshift-operators/quay-integration 9
quayHostname: https://<QUAY_URL> 6
whitelistNamespaces:
- default
insecureRegistry: false 9

ﬂ The clusterID value should be unique across the entire ecosystem. This value is optional
and defaults to openshift.

9 For credentialsSecretName, replace openshift-operators/quay-integration with the
name of the namespace and the secret containing the token you created earlier.

9 Replace QUAY_URL with the hostname of your Red Hat Quay instance.

38

CHAPTER 9. INTEGRATE RED HAT QUAY INTO OPENSHIFT WITH THE BRIDGE OPERATOF

Q The whitelistNamespaces is optional. If not used, the Bridge Operator will sync all
namespaces to Red Hat Quay except the openshift prefixed project. In this example, the

white listed namespace (default) will now have an associated Red Hat Quay organization.
Use any namespace you like here.

6 If Quay is using self signed certificates, set the property insecureRegistry: true.

The result is that organizations within Red Hat Quay should be created for the related
namespaces in OpenShift.

13. Create the Quaylntegration as follows:

I $ oc create -f quay-integration.yaml

At this point a Quay integration resource is created, linking the OpenShift cluster to the Red Hat Quay
instance.

The whitelisted namespace you created should now have a Red Hat Quay organization. If you were to

use a command such as oc hew-app to create a new application in that namespace, you would see a new
Red Hat Quay repository created for it instead of using the internal registry.

39

Red Hat Quay 3.3 Manage Red Hat Quay

CHAPTER 10. REPOSITORY MIRRORING IN RED HAT QUAY

Red Hat Quay repository mirroring lets you mirror images from external container registries (or the local
registry) into your local Red Hat Quay cluster. Using repository mirroring you can synchronize images to
Red Hat Quay based on repository names and tags.

10.1. OVERVIEW OF REPOSITORY MIRRORING
From your Red Hat Quay cluster with repository mirroring enabled, you can:

® Choose a repository from an external registry to mirror

® Add credentials to access the external registry

® Setintervals at which a repository is synced

e |dentify specific container image repository names and tags to sync

® Check the current state of synchronization
With repository mirroring, you mirror a specific subset of content, between two or more distinct
registries, to selected datacenters, clusters, or regions. By contrast, Georeplication provides a single,
globally distributed Red Hat Quay to serve container images from localized storage. The two

approaches to sharing content differ in the following ways:

Table 10.1. Red Hat Quay Repository Mirroring vs. Georeplication

Feature / Capability Georeplication Repository Mirroring

What is the feature designed to A shared, global registry Distinct, different registries
do?

What happens if replication or The remote copy is used (slower) No image is served
mirroring hasn't been completed

yet?

Is access to all storage backends Yes (all Red Hat Quay nodes) No (distinct storage)

in both regions required?

Can users push images from both Yes No
sites to the same repository?

Is all registry content and Yes No
configuration identical across all
regions (shared database)

Can users select individual No,by default Yes
namespaces or repositories to be

mirrored?

Can users apply filters to No Yes

synchronization rules?

40

CHAPTER 10. REPOSITORY MIRRORING IN RED HAT QUAY

Here are a few tips for using Red Hat Quay repository mirroring:
® With repository mirroring, you can mirror an entire repository or selectively limit which images
are synced based on a comma-separated list of tags, a range of tags, or other means of
identifying tags through regular expressions and globs.
® Once set as a mirrored repository, you cannot manually add other images to that repository.
® Because the mirrored repository is based on the repository and tags you set, it will hold only the
content represented by the repo/tag pair. In other words, if you change the tag so that some

images in the repository don't match any more, those images will be deleted.

® Only the designated robot can push images to a mirrored repository, superseding any role-
based access control permissions set on the repository.

e With a mirrored repository, a user can pull images (given read permission) from the repository
but not push images to the repository.

® Changing setting on your mirrored repository is done from a Mirrors tab on the Repositories
page for the mirrored repository you create.

® |mages are synced at set intervals, but can also be synced on demand.

10.2. PREREQUISITES
Before you can use repository mirroring, you must enable repository mirroring from the Red Hat Quay
configuration screen and start the repository mirroring worker. Ways of starting up this service are
described in the Red Hat Quay deployment guides:

® Deploy Red Hat Quay - Basic

® Deploy Red Hat Quay - High Availability

® Deploy Red Hat Quay on OpenShift

The steps shown in the following section assumes you already have the repository mirroring service
running and that you have enabled repository mirroring on your Red Hat Quay cluster.

10.3. CREATE A MIRRORED REPOSITORY
To mirror an external repository from an external container registry, do the following:
1. Loginto your Red Hat Quay registry.

2. Create arobot account to pull images for the mirrored repository:

® Select Account Settings from the drop-down in the upper right corner.

® Select the Robot Accounts button in the left column.

® Select Create Robot Account.

® Add the name and description of the robot account and select Create robot account.

® Select Close, since the mirrored repository you are adding does not exist yet.

41

https://access.redhat.com/documentation/en-us/red_hat_quay/3.3/html-single/deploy_red_hat_quay_-_basic/index
https://access.redhat.com/documentation/en-us/red_hat_quay/3.3/html-single/deploy_red_hat_quay_-_high_availability/index
https://access.redhat.com/documentation/en-us/red_hat_quay/3.3/html-single/deploy_red_hat_quay_on_openshift/index

Red Hat Quay 3.3 Manage Red Hat Quay

42

Select the ROBOT ACCOUNT NAME from the listing.

When prompted, add the credentials needed by the robot to access the external registry of
the repository you want to mirror, then close the Credentials window.

. Select REPOSITORIES.

. Select Create New Repository and give it a name.

. Fillin a repository name, select Public or Private, and select Create Repository.
. Select the Settings button and change the repository state to MIRROR.

. Open the new repository and select the Mirroring button in the left column.

. Fillin the fields to identify the repository you are mirroring in your new repository:

Registry URL: Location of the container registry you want to mirror from.
User or Organization: Typically, the account name associated with the content you are
mirroring. For example, with the image registry.example.com/jsmith/myimage:latest, jsmith

would be entered here.

Repository Name: The name identifying the name of the set of images. For example, with
the image registry.example.com/jsmith/myimage:latest, myimage would be entered here.

Sync Interval: Defaults to syncing every 24 hours. You can change that based on hours or
days.

Robot User: Select the robot account you created earlier to do the mirroring.

Username: The username for logging into the external registry holding the repository you
are mirroring.

Password: The password associated with the Username. Note that the password cannot
include characters that require an escape character (\).

Start Date: The date on which mirroring begins. The current date and time used by default.
Verify TLS: Check this box if you want to verify the authenticity of the external registry.
Uncheck this box if, for example, you set up Red Hat Quay for testing with a self-signed
certificate or no certificate.

HTTP Proxy: Identify the proxy server needed to access the remote site, if one is required.

Tags: This field is required. You may enter a comma-separated list of individual tags or tag
patterns. (See Tag Patterns section for details.)

NOTE

At least one Tag must be explicitly entered (ie. not a tag pattern) or the tag
"latest” must exist in the remote repository. This is required for Quay to get
the list of tags in the remote repository to compare to the specified list to
mirror.

Here is an example of a completed Repository Mirroring screen:

4 Repositories

o
W

9. Select the Enable Mirror button. Here's the resulting Repository Mirroring page:

Repository Mirroring

This feature will convert johnjones/ubi7repo into a mirror. Changes to the external repository will be

CHAPTER 10. REPOSITORY MIRRORING IN RED HAT QUAY

& johnjones/ubi7repo ¢

duplicated here. While enablad, users will be unable to push images ta this repasitory

Registry URL

User or Organization

Repository Name

Sync Interval

Robot User

Required if the extemal repasitory is private.

Username

Password

Start Date

Verify LS

Require HTTPS and verify
certificates when taking to the
external registry.

HTTP Proxy

Tags

Comma-separated list of tag
pattems to synchronize.

External Repository
registry. access.redhat.com
ubi?

ubi-minimal

*jo hnjonestmirrorrobo

Credentials

Advanced Settings

August 28, 2019 9:51AM

None

labest

Haours j

43

Red Hat Quay 3.3 Manage Red Hat Quay

(i)
W

& Repositories

Repository Mirroring

& johnjones/ubi7repo ¥

This repository isconfigured as a mirror. While enabled, Quay will periodically replicate any matching

images on the external registry. Users cannot manually push to this repository.

Enabled

External Repository

Credentials

Verify TLS

Require HTTPS and verify
certificates when talking to the
extemnal registry.

HTTP Proxy

Sync Interval

Mext Sync Date

Tags

Robot User

State

Timeout

Retries Remaining

Configuration

(w1

registry.access. redhat. com/ubi7 /ubi-minimal

None

Y]

MNone
Every 1 days

Aug 28,2019 2:51 AM

latest

#johnjoneﬂmilrormbo

Status

Scheduled

3/3

You can return to this page later to change any of those settings.

10.4. WORKING WITH MIRRORED REPOSITORIES

Once you have created a mirrored repository, there are several ways you can work with that repository.
Select your mirrored repository from the Repositories page and do any of the following:

44

Enable/disable the repository. Select the Mirroring button in the left column, then toggle the
Enabled check box to enable or disable the repository temporarily.

Check mirror logs To make sure the mirrored repository is working properly, you can check the
mirror logs. To do that, select the Usage Logs button in the left column. Here's an example:

CHAPTER 10. REPOSITORY MIRRORING IN RED HAT QUAY

& Repositaries & johnjones/ubi7repo Yy
Usage Logs From 8/9/19 to 8/16/19 dil | & ExportLogs
‘5 @®Grouped O Stacked @ Changed Repositary Mirar Repositary Mirtor sync success @ Creats Repositary
Started Repository Miror
2
D :
2
1
il
1
7~ 1
oSy
1
o '
Q
Q
08i09 0810 0811 0812 0813 08/14 0815 08116
Showing & matchinglogs | Filter Log:

Mirror finished successfullyfor ' registry.access. redhat. com/ubi?/ubi-minimal' with tag pattern 'latest' Fri, Aug 16, 2017 10:4% AM (anonymous) (Mo data)

Mirror started for ' registry.access. redhat. com/ubi7/ubi-minimal' with tag pattern 'latest' Fri, Aug 16, 2019 10:4% AM (anonymous) (Mo data)

@ Immediate mirror scheduled Fri, Aug 16, 2019 10:48 AM quay (Mo data)

Mirror finished successfullyfor ' registry. access. redhat. com/ubi7/ubi-minimal' with tag pattern 'latest' Fri, Aug 16, 2019 10:18 AM (anonymaous) (Mo data)

Mirror started for ' registry.access. redhat. com/ubi7/ubi-minimal' with tag pattern 'latest' Fri, Aug 16, 2019 10: 18 AM (anonymous) (Mo data)

@ CreateRepository quay /& ubiZminimal Fri, Aug 16, 2019 10:01 AM quay (Mo data)

Load More Logs

Sync mirror now: To immediately sync the images in your repository, select the Sync Now
button.

Change credentials: To change the username and password, select DELETE from the
Credentials line. Then select None and add the username and password needed to log into the
external registry when prompted.

Cancel mirroring: To stop mirroring, which keeps the current images available but stops new
ones from being synced, select the CANCEL button.

Set robot permissions: Red Hat Quay robot accounts are named tokens that hold credentials
for accessing external repositories. By assigning credentials to a robot, that robot can be used
across multiple mirrored repositories that need to access the same external registry.

You can assign an existing robot to a repository by going to Account Settings, then selecting the
Robot Accounts icon in the left column. For the robot account, choose the link under the
REPOSITORIES column. From the pop-up window, you can:

o Check which repositories are assigned to that robot.

45

Red Hat Quay 3.3 Manage Red Hat Quay

o Assign read, write or Admin privileges to that robot from the PERMISSION field shown in
this figure:

Set permissions for ga johnjones+mirrorrobo

Select repositoriesin 2 johnjones:

v - REPOSITORY NAME

v & ubiTrepo

® Change robot credentials: Robots can hold credentials such as Kubernetes secrets, Docker

login information, and Mesos bundles. To change robot credentials, select the Options gear on
the robot’s account line on the Robot Accounts window and choose View Credentials. Add the
appropriate credentials for the external repository the robot needs to access.

Credentials for johnjones+mirrorrobo

Robot Token Username & Robot Token:

e — johnjones+mirrorrobo

~ ANRIHERYXUNLIOS0OWETEHMDREMES MPZUA0S3YFD2 1KO1MIDCDX02 3EQKTNS QXEK
rkt Configuration

Docker Login Regenerate Token:

Click the link below to regenerate the token for this robot. Note that all existing logins of this robot account will become invalid
Docker Configuration
Regenerate Token

2 ¢ ¢ 5 O ¢

Mesos Credentials

Check and change general setting Select the Settings button (gear icon) from the left column
on the mirrored repository page. On the resulting page, you can change settings associated
with the mirrored repository. In particular, you can change User and Robot Permissions, to
specify exactly which users and robots can read from or write to the repo.

10.5. TAG PATTERNS

As noted above, at least one Tag must be explicitly entered (ie. not a tag pattern) or the tag "latest”
must exist in the report repository. (The tag "latest” will not be synced unless specified in the tag list.).
This is required for Quay to get the list of tags in the remote repository to compare to the specified list
to mirror.

Pattern syntax

46

Pattern Description

Matches all characters

Matches any single character

[seq]

['seq]

Example tag patterns

Example Pattern

v3*

v3.*

v3.?

v3[12]

v3.[12]*

v3.[1]*

CHAPTER 10. REPOSITORY MIRRORING IN RED HAT QUAY

Matches any character in seq

Matches any character not in seq

Example Matches

v32,v3.1,v3.2,v3.2-4beta, v3.3

v3.1,v3.2, v3.2-4beta

v3.1,v3.2,v3.3

v3.1,v3.2

v3.1,v3.2, v3.2-4beta

v3.2,v3.2-4beta, v3.3

47

Red Hat Quay 3.3 Manage Red Hat Quay

CHAPTER 1. LDAP AUTHENTICATION SETUP FOR RED HAT
QUAY

The Lightweight Directory Access Protocol (LDAP) is an open, vendor-neutral, industry standard
application protocol for accessing and maintaining distributed directory information services over an
Internet Protocol (IP) network. Red Hat Quay supports using LDAP as an identity provider.

11.1. SET UP LDAP CONFIGURATION

In the config tool, locate the Authentication section and select “"LDAP” from the drop-down menu.
Update LDAP configuration fields as required.

28 Internal Authentication

Authentication for the registry can be handled by either the registry itself, LDAP, Keystone, or external JWT endpoint.

Additional external authentication providers (such as GitHub) can be used in addition for login into the UI.

It is highly recommended to require encrypted client passwords. External passwords used in the Docker client will be stored in plaintext! Enable this requirement now.

Authentication: LDAP v

® Hereis an example of the resulting entry in the config.yaml file:

I AUTHENTICATION_TYPE: LDAP

11.1.1. Full LDAP URI

LDAP URI: Idap://117.17.8.101

Custom TLS Please select a file to upload as Idap.crt: | Choose File | No file chosen
Certificate:

Allow insecure: Allow fallback to non-TLS connections

e The full LDAP URI, including the Idap;// or Idaps;// prefix.
e A URI beginning with /daps;// will make use of the provided SSL certificate(s) for TLS setup.

® Hereis an example of the resulting entry in the config.yaml file:

I LDAP_URI: Idaps://Idap.example.org

11.1.2. Team Synchronization

Team synchronization: Enable Team Synchronization Support

e |f enabled, organization administrators who are also superusers can set teams to have their
membership synchronized with a backing group in LDAP.

48

CHAPTER 1. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY

Team synchronization: ¥/ Enable Team Synchronization Support

Resynchronization duration: 60m

36m, 1h 1d

Self-service team syncing

setup: If enabled, this feature will allow *any organization administrator* to read the membership of any LDAP group.

Allow non-superusers to enable and manage team syncing

® The resynchronization duration is the period at which a team must be re-synchronized. Must be
expressed in a duration string form: 30m, 1h, 1d.

® Optionally allow non-superusers to enable and manage team syncing under organizations in
which they are administrators.

® Hereis an example of the resulting entries in the config.yaml file:

FEATURE_TEAM_SYNCING: true
TEAM_RESYNC_STALE_TIME: 60m
FEATURE_NONSUPERUSER_TEAM_SYNCING_SETUP: true

11.1.3. Base and Relative Distinguished Names

Base DN: dc=example,dc=org

User Relative DN: ou=NYC

Secondary User * O0U=SFO Remove

Relative DNs:
Add

® A Distinguished Name path which forms the base path for looking up all LDAP records. Example:
dc=my,dc=domain,dc=com

e Optional list of Distinguished Name path(s) which form the secondary base path(s) for looking
up all user LDAP records, relative to the Base DN defined above. These path(s) will be tried if
the user is not found via the primary relative DN.

® User Relative DN is relative to BaseDN. Example: ou=NYC not ou=NYC,dc=example,dc=org

® Multiple “Secondary User Relative DNs” may be entered if there are multiple Organizational
Units where User objects are located at. Simply type in the Organizational Units and click on Add
button to add multiple RDNs. Example: ou=Users,ou=NYC and ou=Users,ou=SFO

® The "User Relative DN" searches with subtree scope. For example, if your Organization has
Organizational Units NYC and SFO under the Users OU (ou=SFO,ou=Users and
ou=NYC,ou=Users), Red Hat Quay can authenticate users from both the NYC and SFO

Organizational Units if the User Relative DN is set to Users (ou=Users).

® Hereis an example of the resulting entries in the config.yaml file:

49

Red Hat Quay 3.3 Manage Red Hat Quay

LDAP_BASE_DN:

- dc=example

- dc=com

LDAP_USER_RDN:

- ou=users
LDAP_SECONDARY_USER_RDNS:
- ou=bots

- ou=external

11.1.4. Additional User Filters

Additional User Filter

NOTE: Thi is added d 1 looki be VERY ful with th ify.
Expression: is query is added unescaped to user lookups, so be careful wi e query you specify.

(memberof=cn=developers,ou=groups,dc=example,dc=org)

base_dn

e |f specified, the additional filter used for all user lookup queries. Note that all Distinguished
Names used in the filter must be full paths; the Base DN is not added automatically here. Must
be wrapped in parens. Example: (&(someFirstField=someValue)
(someOtherField=someOtherValue))

® Hereis an example of the resulting entry in the config.yaml file:

I LDAP_USER_FILTER: (memberof=cn=developers,ou=groups,dc=example,dc=com)

11.1.5. Administrator DN

Administrator DN: cn=quayenterprise,ou=svc,0u=NYC,dc=example,dc=org

Administrator DN

password: Mote: This will be stored in plaintext inside the config.yaml, so setting up a dedicated account or using a password hash is highly

recommended.

® The Distinguished Name and password for the administrator account. This account must be able
to login and view the records for all user accounts. Example:
uid=admin,ou=employees,dc=my,dc=domain,dc=com

® The password will be stored in plaintext inside the config.yaml, so setting up a dedicated
account or using a password hash is highly recommended.

® Hereis an example of the resulting entries in the config.yaml file:

LDAP_ADMIN_DN: cn=admin,dc=example,dc=com
LDAP_ADMIN_PASSWD: changeme

50

CHAPTER 1. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY

11.1.6. UID and Mail attributes

UID Attribute: uid

Mail Attribute: mail

e The UID attribute is the name of the property field in LDAP user record to use as the username.
Typically "uid".

® The Mail attribute is the name of the property field in LDAP user record that stores user e-mail
address(es). Typically "mail".

e Either of these may be used during login.
® The logged in username must exist in User Relative DN.
® sAMAccountName is the UID attribute for against Microsoft Active Directory setups.

® Hereis an example of the resulting entries in the config.yaml file:

LDAP_UID_ATTR: uid
LDAP_EMAIL_ATTR: malil

11.1.7. Validation

Once the configuration is completed, click on “Save Configuration Changes” button to validate the
configuration.

Checking your settings DH-8-@0-03)-0w

REDIS

REGISTRY STORAGE

TIME MACHINE

ACCESS SETTINGS

SSL CERTIFICATE AND KEY

LDAP AUTHENTICATION

QUAY SECURITY SCANNER

+ Configuration Validated Continue Editing

All validation must succeed before proceeding, or additional configuration may be performed by
selecting the "Continue Editing" button.

11.2. COMMON ISSUES

51

Red Hat Quay 3.3 Manage Red Hat Quay

Invalid credentials
Administrator DN or Administrator DN Password values are incorrect

Verification of superuser %USERNAME% failed: Username not found The user either does not exist in
the remote authentication system OR LDAP auth is misconfigured.

Red Hat Quay can connect to the LDAP server via Username/Password specified in the Administrator
DN fields however cannot find the current logged in user with the UID Attribute or Mail Attribute fields
in the User Relative DN Path. Either current logged in user does not exist in User Relative DN Path, or
Administrator DN user do not have rights to search/read this LDAP path.

11.3. CONFIGURE AN LDAP USER AS SUPERUSER

Once LDAP is configured, you can log in to your Red Hat Quay instance with a valid LDAP username and
password. You are prompted to confirm your Red Hat Quay username as shown in the following figure:

Confirm Username

The username testadmin was automatically generated to conform to the Docker CLI guidelines for use as a namespace in.
Please confirm the selected username or enter a different username below:

testadmin

To attach superuser privilege to an LDAP user, modify the config.yaml file with the username. For
example:

SUPER_USERS:
- testadmin

Restart the Red Hat Quay container with the updated config.yaml file. The next time you log in, the user
will have superuser privileges.

52

CHAPTER 12. PROMETHEUS AND GRAFANA METRICS UNDER RED HAT QUAY

CHAPTER 12. PROMETHEUS AND GRAFANA METRICS UNDER
RED HAT QUAY

Red Hat Quay exports a Prometheus- and Grafana-compatible endpoint on each instance to allow for
easy monitoring and alerting.

12.1. EXPOSING THE PROMETHEUS ENDPOINT

The Prometheus- and Grafana-compatible endpoint on the Red Hat Quay instance can be found at
port 9092. See Monitoring Quay with Prometheus and Grafana for details on configuring Prometheus
and Grafana to monitor Quay repository counts.

12.1.1. Setting up Prometheus to consume metrics

Prometheus needs a way to access all Red Hat Quay instances running in a cluster. In the typical setup,
this is done by listing all the Red Hat Quay instances in a single named DNS entry, which is then given to
Prometheus.

12.1.2. DNS configuration under Kubernetes

A simple Kubernetes service can be configured to provide the DNS entry for Prometheus. Details on
running Prometheus under Kubernetes can be found at Prometheus and Kubernetes and Monitoring
Kubernetes with Prometheus.

12.1.3. DNS configuration for a manual cluster

SkyDNS is a simple solution for managing this DNS record when not using Kubernetes. SkyDNS can run
on an etcd cluster. Entries for each Red Hat Quay instance in the cluster can be added and removed in
the etcd store. SkyDNS will regularly read them from there and update the list of Quay instances in the
DNS record accordingly.

53

https://prometheus.io/
https://access.redhat.com/solutions/3750281
http://kubernetes.io/docs/user-guide/services/
https://coreos.com/blog/prometheus-and-kubernetes-up-and-running.html
https://coreos.com/blog/monitoring-kubernetes-with-prometheus.html
https://github.com/skynetservices/skydns
https://github.com/coreos/etcd

Red Hat Quay 3.3 Manage Red Hat Quay

CHAPTER 13. GEOREPLICATION OF STORAGE IN RED HAT
QUAY

Georeplication allows for a single globally-distributed Red Hat Quay to serve container images from
localized storage.

When georeplication is configured, container image pushes will be written to the preferred storage
engine for that Red Hat Quay instance. After the initial push, image data will be replicated in the
background to other storage engines. The list of replication locations is configurable. An image pull will
always use the closest available storage engine, to maximize pull performance.

13.1. PREREQUISITES

Georeplication requires that there be a high availability storage engine (53, GCS, RADOS, Swift) in each
geographic region. Further, each region must be able to access every storage engine due to replication
requirements.

NOTE

Local disk storage is not compatible with georeplication at this time.

13.2. VISIT THE CONFIG TOOL

Open the Red Hat Quay Config Tool to configure storage for georeplication.

13.3. ENABLE STORAGE REPLICATION
1. Scroll down to the section entitled Registry Storage.
2. Click Enable Storage Replication.

3. Add each of the storage engines to which data will be replicated. All storage engines to be used
must be listed.

4. If complete replication of all images to all storage engines is required, under each storage
engine configuration click Replicate to storage engine by default. This will ensure that all
images are replicated to that storage engine. To instead enable per-namespace replication,
please contact support.

5. When you are done, click Save Configuration Changes. Configuration changes will take effect
the next time Red Hat Quay restarts.

6. After adding storage and enabling “Replicate to storage engine by default” for Georeplications,
you need to sync existing image data across all storage. To do this, you need to oc exec (or
docker/kubectl exec) into the container and run:

scl enable python27 bash
python -m util.backfillreplication

This is a one time operation to sync content after adding new storage.

13.4. RUN RED HAT QUAY WITH STORAGE PREFERENCES

54

CHAPTER 13. GEOREPLICATION OF STORAGE IN RED HAT QUAY

1. Copy the config.yaml to all machines running Red Hat Quay

2. For each machine in each region, add a QUAY_DISTRIBUTED STORAGE_PREFERENCE
environment variable with the preferred storage engine for the region in which the machine is
running.

For example, for a machine running in Europe with the config directory on the host available
from /mnt/quay/config:

docker login quay.io

Username: yourquayuser

Password: *****

docker run -d -p 443:8443 -p 8080:8080 -v /mnt/quay/config:/conf/stack:Z \
-e QUAY_DISTRIBUTED_STORAGE_PREFERENCE=europestorage \
quay.io/redhat/quay:v3.3.4

NOTE

The value of the environment variable specified must match the name of a
Location ID as defined in the config panel.

3. Restart all Red Hat Quay containers

55

Red Hat Quay 3.3 Manage Red Hat Quay

CHAPTER 14. RED HAT QUAY TROUBLESHOOTING

Common failure modes and best practices for recovery.

56

I'm receiving HTTP Status Code 429

I'm authorized but I'm still getting 403s

Base image pull in Dockerfile fails with 403

Cannot add a build trigger

Build logs are not loading

I'm receiving "Cannot locate specified Dockerfile" * Could not reach any registry endpoint
Cannot access private repositories using EC2 Container Service
Docker is returning ani/o timeout

Docker login is failing with an odd error

Pulls are failing with an odd error

| just pushed but the timestamp is wrong

Pulling Private Quay.io images with Marathon/Mesos fails

http://docs.quay.io/issues/429.html
http://docs.quay.io/issues/auth-failure.html
http://docs.quay.io/issues/base-pull-issue.html
http://docs.quay.io/issues/cannot-add-trigger.html
http://docs.quay.io/issues/cannot-load-build-logs.html
http://docs.quay.io/issues/cannot-locate-dockerfile.html
http://docs.quay.io/issues/could-not-reach-any-registry-endpoint.html
http://docs.quay.io/issues/ecs-auth-failure.html
http://docs.quay.io/issues/iotimeout.html
http://docs.quay.io/issues/odd-login-failure.html
http://docs.quay.io/issues/odd-pull-failure.html
http://docs.quay.io/issues/push-timestamp-wrong.html
http://docs.quay.io/issues/quay-mesos.html

CHAPTER 15. SCHEMA FOR RED HAT QUAY

CHAPTER 15. SCHEMA FOR RED HAT QUAY

NOTE

All fields are optional unless otherwise marked.

® AUTHENTICATION_TYPE [string] required: The authentication engine to use for credential
authentication.

o enum: Database, LDAP, JWT, Keystone, OIDC.
o Example: Database
® BUILDLOGS_REDIS [object] required: Connection information for Redis for build logs caching.
o HOST [string] required: The hostname at which Redis is accessible.
® Example: my.redis.cluster
o PASSWORD [string]: The password to connect to the Redis instance.
® Example: mypassword
o PORT [number]: The port at which Redis is accessible.

® Example: 1234

DB_URI [string] required: The URI at which to access the database, including any credentials.

o Reference: https://www.postgresql.org/docs/9.3/static/libpg-connect.htmI#AEN39495

o Example: mysql+pymysql://username:password@dns.of.database/quay

DEFAULT_TAG_EXPIRATION [string] required: The default, configurable tag expiration time
for time machine. Defaults to 2w.

o Pattern: A[0-9]+(w|m|d|h|s)$

DISTRIBUTED_STORAGE_CONFIG [object] required: Configuration for storage engine(s) to
use in Red Hat Quay. Each key is a unique ID for a storage engine, with the value being a tuple of
the type and configuration for that engine.

o Example: {"local_storage": ["LocalStorage", {"'storage_path": "some/path/"}]}

DISTRIBUTED_STORAGE_PREFERENCE [array] required: The preferred storage engine(s)
(by ID in DISTRIBUTED_STORAGE_CONFIG) to use. A preferred engine means it is first
checked for pulling and images are pushed to it.

o Min Items: None
B Example: [u’'s3_us_east', u’s3_us_west']
B array item [string]

o preferred_url_scheme [string] required: The URL scheme to use when hitting Red Hat
Quay. If Red Hat Quay is behind SSL at all, this must be https.

B enum: http, https

57

https://www.postgresql.org/docs/9.3/static/libpq-connect.html#AEN39495

Red Hat Quay 3.3 Manage Red Hat Quay

58

® Example: https

SERVER_HOSTNAME [string] required: The URL at which Red Hat Quay is accessible, without
the scheme.

o Example: quay.io

TAG_EXPIRATION_OPTIONS [array] required: The options that users can select for expiration
of tags in their namespace (if enabled).

o Min Items: None
o array item [string]
o Pattern: A[0-9]+(w|m|d|h|s)$

USER_EVENTS_REDIS [object] required: Connection information for Redis for user event
handling.

o HOST [string] required: The hostname at which Redis is accessible.

® Example: my.redis.cluster

o PASSWORD [string]: The password to connect to the Redis instance.

® Example: mypassword

o PORT [number]: The port at which Redis is accessible.

® Example: 1234

ACTION_LOG_ARCHIVE_LOCATION [string]: If action log archiving is enabled, the storage
engine in which to place the archived data.

o Example: s3_us_east

ACTION_LOG_ARCHIVE_PATH' [string]: If action log archiving is enabled, the path in storage
in which to place the archived data.

o Example: archives/actionlogs

APP_SPECIFIC_TOKEN_EXPIRATION [string, null]: The expiration for external app tokens.
Defaults to None.

o Pattern: A[0-9]+(w|m|d|h|s)$

ALLOW_PULLS_WITHOUT_STRICT_LOGGING [boolean]: If true, pulls in which the pull audit
log entry cannot be written will still succeed. Useful if the database can fallback into a read-only
state and it is desired for pulls to continue during that time. Defaults to False.

o Example: True

AVATAR_KIND [string]: The types of avatars to display, either generated inline (local) or
Gravatar (gravatar)

o enum: local, gravatar

BITBUCKET_TRIGGER_CONFIG ['object’, 'null']: Configuration for using BitBucket for build
triggers.

CHAPTER 15. SCHEMA FOR RED HAT QUAY
consumer_key [string] required: The registered consumer key(client ID) for this Red Hat

Quay instance.

® Example: 0e8dbe15c4c7630b6780

CONSUMER_SECRET [string] required: The registered consumer secret(client secret) for
this Red Hat Quay instance

® Example: e4a58ddd3d7408b7aecl09e85564a0d153d3e846

BROWSER_API_CALLS_XHR_ONLY [boolean]: If enabled, only API calls marked as being
made by an XHR will be allowed from browsers. Defaults to True.

(o}

Example: False

CONTACT_INFO [array]: If specified, contact information to display on the contact page. If only
a single piece of contact information is specified, the contact footer will link directly.

(o}

Min Items: 1

Unique Items: True

B array item O[string]: Adds a link to send an e-mail

® Pattern: mailto:(.)+$

® Example: mailto:support@quay.io

array item 1[string]: Adds a link to visit an IRC chat room
®m Pattern: Airc://(.)+$

® Example: irc://chat.freenode.net:6665/quay

array item 2[string]: Adds a link to call a phone number
m Pattern: Mel:(.)+$
® Example: tel:+1-888-930-3475

array item 3 [string]: Adds a link to a defined URL
®m Pattern: Ahttp(s)?://(.)+$

® Example: https://twitter.com/quayio

BLACKLIST_V2_SPEC [string]: The Docker CLI versions to which Red Hat Quay will respond
that V2 is unsupported. Defaults to <1.6.0.

(o}

(o}

Reference:
http://pythonhosted.org/semantic_version/reference.html#semantic_version.Spec

Example: <1.8.0

DB_CONNECTION_ARGS [object]: If specified, connection arguments for the database such
as timeouts and SSL.

(o}

threadlocals [boolean] required: Whether to use thread-local connections. Should
ALWAYS be true

59

irc://chat.freenode.net:6665/quay
https://twitter.com/quayio
http://pythonhosted.org/semantic_version/reference.html#semantic_version.Spec

Red Hat Quay 3.3 Manage Red Hat Quay

60

o autorollback[boolean] required: Whether to use auto-rollback connections. Should
ALWAYS be true

o ssl[object]: SSL connection configuration

B ca [string] required: Absolute container path to the CA certificate to use for SSL
connections.

m Example: conf/stack/ssl-ca-cert.pem

DEFAULT_NAMESPACE_MAXIMUM_BUILD_COUNT [number, null]: If not None, the default
maximum number of builds that can be queued in a namespace.

o Example: 20

DIRECT_OAUTH_CLIENTID_WHITELIST [array]: A list of client IDs of Red Hat Quay-
managed applications that are allowed to perform direct OAuth approval without user approval.

o Min Items: None
o Unique Items: True

o Reference: https://coreos.com/quay-enterprise/docs/latest/direct-oauth.html

® array item [string]

DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS [array]: The list of storage engine(s) (by
ID in DISTRIBUTED_STORAGE_CONFIG) whose images should be fully replicated, by default,
to all other storage engines.

o Min Items: None
o Example: s3_us_east, s3_us_west

B array item [string]

EXTERNAL_TLS_TERMINATION [boolean]: If TLS is supported, but terminated at a layer
before Red Hat Quay, must be true.

o Example: True

ENABLE_HEALTH_DEBUG_SECRET [string, null]: If specified, a secret that can be given to
health endpoints to see full debug info when not authenticated as a superuser.

o Example: somesecrethere

EXPIRED_APP_SPECIFIC_TOKEN_GC [string, null]: Duration of time expired external app
tokens will remain before being garbage collected. Defaults to 1d.

o pattern: A[0-9]+(w|m|d|h|s)$

FEATURE_ACI_CONVERSION [boolean]: Whether to enable conversion to ACls. Defaults to
False.

o Example: False

FEATURE_ACTION_LOG_ROTATION [boolean]: Whether or not to rotate old action logs to
storage. Defaults to False.

o Example: False

https://coreos.com/quay-enterprise/docs/latest/direct-oauth.html

CHAPTER 15. SCHEMA FOR RED HAT QUAY

FEATURE_ADVERTISE_V2 [boolean]: Whether the v2/ endpoint is visible. Defaults to True.

o Example: True

FEATURE_ANONYMOUS_ACCESS [boolean]: Whether to allow anonymous users to browse
and pull public repositories. Defaults to True.

o Example: True

FEATURE_APP_REGISTRY [boolean]: Whether to enable support for App repositories.
Defaults to False.

o Example: False

FEATURE_APP_SPECIFIC_TOKENS [boolean]: If enabled, users can create tokens for use by
the Docker CLI. Defaults to True.

o Example: False

FEATURE_BITBUCKET_BUILD [boolean]: Whether to support Bitbucket build triggers.
Defaults to False.

o Example: False
FEATURE_BUILD_SUPPORT [boolean]: Whether to support Dockerfile build. Defaults to True.

o Example: True

FEATURE_CHANGE_TAG_EXPIRARTION [boolean]: Whether users and organizations are
allowed to change the tag expiration for tags in their namespace. Defaults to True.

o Example: False

FEATURE_DIRECT_LOGIN [boolean]: Whether users can directly login to the Ul. Defaults to
True.

o Example: True

FEATURE_GITHUB_BUILD [boolean]: Whether to support GitHub build triggers. Defaults to
False.

o Example: False
FEATURE_GITHUB_LOGIN [boolean]: Whether GitHub login is supported. Defaults to False.

o Example: False

FEATURE_GITLAB_BUILD[boolean]: Whether to support GitLab build triggers. Defaults to
False.

o Example: False
FEATURE_GOOGLE_LOGIN [boolean]: Whether Google login is supported. Defaults to False.

o Example: False

FEATURE_INVITE_ONLY_USER_CREATION [boolean]: Whether users being created must be
invited by another user. Defaults to False.

61

Red Hat Quay 3.3 Manage Red Hat Quay

62

o Example: Faise

FEATURE_LIBRARY_SUPPORT [boolean]: Whether to allow for "namespace-less” repositories
when pulling and pushing from Docker. Defaults to True.

o Example: True

FEATURE_MAILING [boolean]: Whether emails are enabled. Defaults to True.

o Example: True

FEATURE_NONSUPERUSER_TEAM_SYNCING_SETUP [boolean]: If enabled, non-superusers
can setup syncing on teams to backing LDAP or Keystone. Defaults To False.

o Example: True

FEATURE_PARTIAL_USER_AUTOCOMPLETE [boolean]: If set to true, autocompletion will
apply to partial usernames. Defaults to True.

o Example: True

FEATURE_PERMANENT_SESSIONS [boolean]: Whether sessions are permanent. Defaults to
True.

o Example: True

FEATURE_PROXY_STORAGE [boolean]: Whether to proxy all direct download URLs in storage
via the registry nginx. Defaults to False.

o Example: False

FEATURE_PUBLIC_CATALOG [boolean]: If set to true, the _catalog endpoint returns public
repositories. Otherwise, only private repositories can be returned. Defaults to False.

o Example: False

FEATURE_READER_BUILD_LOGS [boolean]: If set to true, build logs may be read by those
with read access to the repo, rather than only write access or admin access. Defaults to False.

o Example: False

FEATURE_RECAPTCHA [boolean]: Whether Recaptcha is necessary for user login and
recovery. Defaults to False.

o Example: False
o Reference: https:;//www.google.com/recaptcha/intro/

FEATURE_REQUIRE_ENCRYPTED_BASIC_AUTH [boolean]: Whether non-encrypted
passwords (as opposed to encrypted tokens) can be used for basic auth. Defaults to False.

o Example: False

FEATURE_REQUIRE_TEAM_INVITE [boolean]: Whether to require invitations when adding a
user to a team. Defaults to True.

o Example: True

FEATURE_SECURITY_NOTIFICATIONS [boolean]: If the security scanner is enabled, whether
to turn on/off security notifications. Defaults to False.

https://www.google.com/recaptcha/intro/

CHAPTER 15. SCHEMA FOR RED HAT QUAY

o Example: False

FEATURE_SECURITY_SCANNER [boolean]: Whether to turn on/off the security scanner.
Defaults to False.

o Reference: https://access.redhat.com/documentation/en-us/red_hat_quay/3.3/html-
single/manage_red_hat_quay/#clair-initial-setup

o Example: False

FEATURE_STORAGE_REPLICATION [boolean]: Whether to automatically replicate between
storage engines. Defaults to False.

o Example: False
FEATURE_SUPER_USERS [boolean]: Whether superusers are supported. Defaults to True.

o Example: True

FEATURE_TEAM_SYNCING [boolean]: Whether to allow for team membership to be synced
from a backing group in the authentication engine (LDAP or Keystone).

o Example: True

FEATURE_USER_CREATION [boolean] :Whether users can be created (by non-superusers).
Defaults to True.

o Example: True

FEATURE_USER_LOG_ACCESS [boolean]: If set to true, users will have access to audit logs
for their namespace. Defaults to False.

o Example: True

FEATURE_USER_METADATA [boolean]: Whether to collect and support user metadata.
Defaults to False.

o Example: False

FEATURE_USER_RENAME [boolean]: If set to true, users can rename their own namespace.
Defaults to False.

o Example: True

GITHUB_LOGIN_CONFIG [object, 'null']: Configuration for using GitHub (Enterprise) as an
external login provider.

o Reference: https://coreos.com/quay-enterprise/docs/latest/github-auth.html

o allowed_organizations [array]: The names of the GitHub (Enterprise) organizations
whitelisted to work with the ORG_RESTRICT option.

® Min Items: None

B Unique Items: True

® array item [string]

63

https://access.redhat.com/documentation/en-us/red_hat_quay/3.3/html-single/manage_red_hat_quay/#clair-initial-setup
https://coreos.com/quay-enterprise/docs/latest/github-auth.html

Red Hat Quay 3.3 Manage Red Hat Quay

(o}

API_ENDPOINT [string]: The endpoint of the GitHub (Enterprise) API to use. Must be
overridden for github.com.

® Example: https://api.github.com/

CLIENT_ID [string] required: The registered client ID for this Red Hat Quay instance;
cannot be shared with GITHUB_TRIGGER_CONFIG.

m Reference: https://coreos.com/quay-enterprise/docs/latest/github-app.html
® Example: 0e8dbe15c4c7630b6780

CLIENT_SECRET [string] required: The registered client secret for this Red Hat Quay
instance.

m Reference: https://coreos.com/quay-enterprise/docs/latest/github-app.html
® Example: e4a58ddd3d7408b7aec109e85564a0d153d3e846

GITHUB_ENDPOINT [string] required: The endpoint of the GitHub (Enterprise) being hit.

® Example: https:/github.com/

ORG_RESTRICT [boolean]: If true, only users within the organization whitelist can login
using this provider.

Example: True

e GITHUB_TRIGGER_CONFIG [object, null]: Configuration for using GitHub (Enterprise) for
build triggers.

(o}

Reference: https://coreos.com/quay-enterprise/docs/latest/github-build.html

API_ENDPOINT [string]: The endpoint of the GitHub (Enterprise) API to use. Must be
overridden for github.com.

® Example: https://api.github.com/

CLIENT_ID [string] required: The registered client ID for this Red Hat Quay instance;
cannot be shared with GITHUB_LOGIN_CONFIG.

m Reference: https://coreos.com/quay-enterprise/docs/latest/github-app.html
® Example: 0e8dbe15c4c7630b6780

CLIENT_SECRET [string] required: The registered client secret for this Red Hat Quay
instance.

m Reference: https://coreos.com/quay-enterprise/docs/latest/github-app.html
® Example: e4a58ddd3d7408b7aec109e85564a0d153d3e846

GITHUB_ENDPOINT [string] required: The endpoint of the GitHub (Enterprise) being hit.

® Example: https:/github.com/

e GITLAB_TRIGGER_CONFIG [object]: Configuration for using Gitlab (Enterprise) for external
authentication.

(o}

64

CLIENT_ID [string] required: The registered client ID for this Red Hat Quay instance.

https://api.github.com/
https://coreos.com/quay-enterprise/docs/latest/github-app.html
https://coreos.com/quay-enterprise/docs/latest/github-app.html
https://github.com/
https://coreos.com/quay-enterprise/docs/latest/github-build.html
https://api.github.com/
https://coreos.com/quay-enterprise/docs/latest/github-app.html
https://coreos.com/quay-enterprise/docs/latest/github-app.html
https://github.com/

CHAPTER 15. SCHEMA FOR RED HAT QUAY

® Example: 0e8dbe15c4c7630b6780

o CLIENT_SECRET [string] required: The registered client secret for this Red Hat Quay
instance.

® Example: e4a58ddd3d7408b7aec109e85564a0d153d3e846

m gitlab_endpoint [string] required: The endpoint at which Gitlab(Enterprise) is running.

o Example: hitps:/gitlab.com

® GOOGLE_LOGIN_CONFIG [object, null]: Configuration for using Google for external
authentication

o CLIENT_ID [string] required: The registered client ID for this Red Hat Quay instance.

® Example: 0e8dbe15c4c7630b6780

o CLIENT_SECRET [string] required: The registered client secret for this Red Hat Quay
instance.

® Example: e4a58ddd3d7408b7aecl09e85564a0d153d3e846

e HEALTH_CHECKER [string]: The configured health check.
o Example: 'RDSAwareHealthCheck’', {'access_key': 'foo’, 'secret_key': 'bar'})

® LOG_ARCHIVE_LOCATION [string]:If builds are enabled, the storage engine in which to place
the archived build logs.
o Example: s3_us_east

® LOG_ARCHIVE_PATH [string]: If builds are enabled, the path in storage in which to place the
archived build logs.
o Example: archives/buildlogs

e MAIL_DEFAULT_SENDER [string, null]: If specified, the e-mail address used as the from when
Red Hat Quay sends e-mails. If none, defaults to support@quay.io.
o Example: support@myco.com

® MAIL_PASSWORD [string, null]: The SMTP password to use when sending e-mails.
o Example: mypassword

® MAIL_PORT [number]: The SMTP port to use. If not specified, defaults to 587.
o Example: 588

® MAIL_SERVER [string]: The SMTP server to use for sending e-mails. Only required if
FEATURE_MAILING is set to true.
o Example: smtp.somedomain.com

® MAIL_USERNAME [string, 'null']: The SMTP username to use when sending e-mails.

o Example: myuser

65

https://gitlab.com

Red Hat Quay 3.3 Manage Red Hat Quay

® MAIL_USE_TLS [boolean]: If specified, whether to use TLS for sending e-mails.
o Example: True

e MAXIMUM_LAYER_SIZE [string]: Maximum allowed size of an image layer. Defaults to 20G.
o Pattern: A[0-9]+(G|M)$
o Example: 100G

e PUBLIC_NAMESPACES [array]: If a namespace is defined in the public namespace list, then it
will appear on all user’s repository list pages, regardless of whether that user is a member of the
namespace. Typically, this is used by an enterprise customer in configuring a set of "well-known"
namespaces.

o Min Items: None
o Unique Items: True

B array item [string]

e PROMETHEUS_NAMESPACE [string]: The prefix applied to all exposed Prometheus metrics.
Defaults to quay.

o Example: myregistry

e RECAPTCHA_SITE_KEY [string]: If recaptcha is enabled, the site key for the Recaptcha
service.

e RECAPTCHA_SECRET_KEY [string]: 'If recaptcha is enabled, the secret key for the Recaptcha
service.

® REGISTRY_TITLE [string]: If specified, the long-form title for the registry. Defaults to Quay
Enterprise.

o Example: Corp Container Service

e REGISTRY_TITLE_SHORT [string]: If specified, the short-form title for the registry. Defaults to
Quay Enterprise.

o Example: CCS

e SECURITY_SCANNER_ENDPOINT [string]: The endpoint for the security scanner.
o Pattern: Ahttp(s)?://(.)+$
o Example: http://192.168.99.101:6060

e SECURITY_SCANNER_INDEXING_INTERVAL [number]: The number of seconds between
indexing intervals in the security scanner. Defaults to 30.

o Example: 30

® SESSION_COOKIE_SECURE [boolean]: Whether the secure property should be set on session
cookies. Defaults to False. Recommended to be True for all installations using SSL.

o Example: True

o Reference: https://en.wikipedia.org/wiki/Secure_cookies

66

http://192.168.99.101:6060
https://en.wikipedia.org/wiki/Secure_cookies

CHAPTER 15. SCHEMA FOR RED HAT QUAY

® SSL_PROTOCOLS [array]: If specified, nginx is configured to enabled a list of SSL protocols
defined in the list. Removing an SSL protocol from the list disables the protocol during Red Hat
Quay startup.

o SSL_PROTOCOLS: ['TLSVI, TLSVL.T, TLSV1.2"]

e SUPER_USERS [array]: Red Hat Quay usernames of those users to be granted superuser
privileges.

o Min Items: None
o Unique Items: True
® array item [string]

e TEAM_RESYNC_STALE_TIME [string]: If team syncing is enabled for a team, how often to
check its membership and resync if necessary (Default: 30m).

o Pattern: A[0-9]+(w|m|d|h|s)$
o Example: 2h
e USERFILES_LOCATION [string]: ID of the storage engine in which to place user-uploaded files.
o Example: s3_us_east
e USERFILES_PATH [string]: Path under storage in which to place user-uploaded files.
o Example: userfiles

e USER_RECOVERY_TOKEN_LIFETIME [string]: The length of time a token for recovering a
user accounts is valid. Defaults to 30m.

o Example: 10m
o Pattern: A[0-9]+(w|m|d|h|s)$
o V2 PAGINATION_SIZE [number]: The number of results returned per page in V2 registry APIs.

o Example: 100

ADDITIONAL RESOURCES

67

	Table of Contents
	PREFACE
	CHAPTER 1. GETTING RED HAT QUAY RELEASE NOTIFICATIONS
	CHAPTER 2. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY
	2.1. CREATE A CA AND SIGN A CERTIFICATE
	2.2. CONFIGURE RED HAT QUAY TO USE THE NEW CERTIFICATE
	2.2.1. Configure SSL from the Red Hat Quay Setup screen
	2.2.2. Configure with the command line
	2.2.3. Test the secure connection

	2.3. CONFIGURING DOCKER TO TRUST A CERTIFICATE AUTHORITY

	CHAPTER 3. ADDING TLS CERTIFICATES TO THE RED HAT QUAY CONTAINER
	3.1. ADD TLS CERTIFICATES TO RED HAT QUAY
	3.2. ADD CERTS WHEN DEPLOYED ON KUBERNETES

	CHAPTER 4. CONFIGURING ACTION LOG STORAGE FOR ELASTICSEARCH
	CHAPTER 5. RED HAT QUAY SECURITY SCANNING WITH CLAIR
	5.1. SET UP CLAIR IN THE RED HAT QUAY CONFIG TOOL
	5.1.1. Enabling Clair on a Red Hat Quay OpenShift deployment
	5.1.2. Enabling Clair on a Red Hat Quay Basic or HA deployment

	CHAPTER 6. SETTING UP CLAIR SECURITY SCANNING
	6.1. RUN CLAIR ON A RED HAT QUAY OPENSHIFT DEPLOYMENT
	6.2. RUN CLAIR ON A RED HAT QUAY BASIC OR HA DEPLOYMENT
	6.2.1. Get Postgres and Clair
	6.2.2. Configure Clair
	6.2.2.1. Clair configuration: High availability
	6.2.2.2. Clair configuration: Single instance

	6.2.3. Configuring Clair for TLS
	6.2.3.1. Using certificates from a public CA
	6.2.3.2. Configuring trust of self-signed SSL

	6.2.4. Using Clair data sources
	6.2.5. Run Clair

	CHAPTER 7. USING CLAIR V4 SECURITY SCANNING
	7.1. WHAT IS CLAIR V4?
	7.2. CONFIGURING CLAIR V4
	7.3. USING CLAIR V4

	CHAPTER 8. SCAN POD IMAGES WITH THE CONTAINER SECURITY OPERATOR
	8.1. RUN THE CSO IN OPENSHIFT
	8.2. QUERY IMAGE VULNERABILITIES FROM THE CLI

	CHAPTER 9. INTEGRATE RED HAT QUAY INTO OPENSHIFT WITH THE BRIDGE OPERATOR
	9.1. RUNNING THE QUAY BRIDGE OPERATOR
	9.1.1. Prerequisites
	9.1.2. Setting up and configuring OpenShift and Red Hat Quay
	9.1.2.1. Red Hat Quay setup
	9.1.2.2. OpenShift Setup

	CHAPTER 10. REPOSITORY MIRRORING IN RED HAT QUAY
	10.1. OVERVIEW OF REPOSITORY MIRRORING
	10.2. PREREQUISITES
	10.3. CREATE A MIRRORED REPOSITORY
	10.4. WORKING WITH MIRRORED REPOSITORIES
	10.5. TAG PATTERNS

	CHAPTER 11. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY
	11.1. SET UP LDAP CONFIGURATION
	11.1.1. Full LDAP URI
	11.1.2. Team Synchronization
	11.1.3. Base and Relative Distinguished Names
	11.1.4. Additional User Filters
	11.1.5. Administrator DN
	11.1.6. UID and Mail attributes
	11.1.7. Validation

	11.2. COMMON ISSUES
	11.3. CONFIGURE AN LDAP USER AS SUPERUSER

	CHAPTER 12. PROMETHEUS AND GRAFANA METRICS UNDER RED HAT QUAY
	12.1. EXPOSING THE PROMETHEUS ENDPOINT
	12.1.1. Setting up Prometheus to consume metrics
	12.1.2. DNS configuration under Kubernetes
	12.1.3. DNS configuration for a manual cluster

	CHAPTER 13. GEOREPLICATION OF STORAGE IN RED HAT QUAY
	13.1. PREREQUISITES
	13.2. VISIT THE CONFIG TOOL
	13.3. ENABLE STORAGE REPLICATION
	13.4. RUN RED HAT QUAY WITH STORAGE PREFERENCES

	CHAPTER 14. RED HAT QUAY TROUBLESHOOTING
	CHAPTER 15. SCHEMA FOR RED HAT QUAY
	ADDITIONAL RESOURCES

