
Red Hat OpenStack Platform 17.1

Creating and managing images

Create and manage images in Red Hat OpenStack Platform by using the Image
service (glance)

Last Updated: 2024-02-29

Red Hat OpenStack Platform 17.1 Creating and managing images

Create and manage images in Red Hat OpenStack Platform by using the Image service (glance)

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides procedures for creating and managing images, and procedures for configuring
the Image service (glance).

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. THE IMAGE SERVICE (GLANCE)
1.1. VIRTUAL MACHINE IMAGE FORMATS
1.2. SUPPORTED IMAGE SERVICE BACK ENDS
1.3. IMAGE SIGNING AND VERIFICATION
1.4. IMAGE FORMAT CONVERSION
1.5. IMPROVING SCALABILITY WITH IMAGE SERVICE CACHING
1.6. IMAGE PRE-CACHING

1.6.1. Configuring the default interval for periodic image pre-caching
1.6.2. Preparing to use a periodic job to pre-cache an image
1.6.3. Using a periodic job to pre-cache an image
1.6.4. Image caching command options

1.7. USING THE IMAGE SERVICE API TO ENABLE SPARSE IMAGE UPLOAD
1.8. SECURE METADEF APIS
1.9. ENABLING METADEF API ACCESS FOR CLOUD USERS

CHAPTER 2. CREATING RHEL KVM OR RHOSP-COMPATIBLE IMAGES
2.1. CREATING RHEL KVM IMAGES

2.1.1. Using a RHEL KVM instance image with Red Hat OpenStack Platform
2.1.2. Creating a RHEL-based root partition image for bare-metal instances
2.1.3. Creating a RHEL-based whole-disk user image for bare-metal instances

2.2. CREATING INSTANCE IMAGES WITH RHEL OR WINDOWS ISO FILES
2.2.1. Prerequisites
2.2.2. Creating a Red Hat Enterprise Linux 9 image
2.2.3. Creating a Red Hat Enterprise Linux 8 image
2.2.4. Creating a Windows image

2.3. CREATING AN IMAGE FOR UEFI SECURE BOOT
2.4. METADATA PROPERTIES FOR VIRTUAL HARDWARE

CHAPTER 3. MANAGING IMAGES, IMAGE PROPERTIES, AND IMAGE FORMATS
3.1. UPLOADING IMAGES TO THE IMAGE SERVICE
3.2. IMAGE SERVICE IMAGE IMPORT METHODS

3.2.1. Importing an image from a remote URI
3.2.2. Importing an image from a local volume

3.3. UPDATING IMAGE PROPERTIES
3.4. ENABLING IMAGE CONVERSION

3.4.1. Converting an image to RAW format
3.4.2. Configuring disk formats with the GlanceDiskFormats parameter
3.4.3. Storing an image in RAW format

3.5. HIDING OR UNHIDING IMAGES
3.6. DELETING IMAGES FROM THE IMAGE SERVICE

CHAPTER 4. CONFIGURING THE IMAGE SERVICE IMAGE IMPORT METHOD
4.1. CONFIGURING THE GLANCE-DIRECT IMAGE IMPORT METHOD
4.2. CONTROLLING IMAGE WEB-IMPORT SOURCES

4.2.1. Image import allowlist example
4.2.2. Default image import blocklist and allowlist settings

4.3. INJECTING METADATA ON IMAGE IMPORT TO CONTROL WHERE INSTANCES LAUNCH

CHAPTER 5. IMAGE SERVICE WITH MULTIPLE STORES

4

5

6
6
7
8
8
9
9
9

10
12
12
13
15
15

17
17
17
17
19

20
20
20
23
26
27
28

29
29
29
30
30
31
32
32
33
34
34
35

36
36
37
38
38
39

40

Table of Contents

1

. .

. .

5.1. IMAGE COPIES ON MULTIPLE STORES
5.2. REQUIREMENTS OF STORAGE EDGE ARCHITECTURE
5.3. IMPORTING AN IMAGE TO MULTIPLE STORES

5.3.1. Managing image import failures
5.3.2. Importing image data to multiple stores
5.3.3. Importing image data to multiple stores without failure
5.3.4. Importing image data to a single store

5.4. CHECKING THE PROGRESS OF THE IMAGE IMPORT OPERATION
5.5. COPYING AN EXISTING IMAGE TO MULTIPLE STORES

5.5.1. Copying an image to all stores
5.5.2. Copying an image to specific stores

5.6. DELETING AN IMAGE FROM A SPECIFIC STORE
5.7. LISTING IMAGE LOCATIONS AND LOCATION PROPERTIES

APPENDIX A. IMAGE SERVICE COMMAND OPTIONS

APPENDIX B. IMAGE CONFIGURATION PARAMETERS

40
40
40
41
41

42
42
43
44
45
45
45
46

48

50

Red Hat OpenStack Platform 17.1 Creating and managing images

2

Table of Contents

3

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat OpenStack Platform 17.1 Creating and managing images

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in
the Red Hat OpenStack Platform Jira project, where you can track the progress of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click the following link to open a the Create Issue page: Create Issue

3. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

4. Click Create.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

5

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. THE IMAGE SERVICE (GLANCE)
The Image service (glance) provides discovery, registration, and delivery services for disk and server
images. It provides the ability to copy or snapshot a server image, and immediately store it. You can use
stored images as templates to commission new servers quickly and more consistently than installing a
server operating system and individually configuring services.

1.1. VIRTUAL MACHINE IMAGE FORMATS

A virtual machine (VM) image is a file that contains a virtual disk with a bootable OS installed. Red Hat
OpenStack Platform (RHOSP) supports VM images in different formats.

The disk format of a VM image is the format of the underlying disk image. The container format
indicates if the VM image is in a file format that also contains metadata about the VM.

When you add an image to the Image service (glance), you can set the disk or container format for your
image to any of the values in the following tables by using the --disk-format and --container-format
command options with the glance image-create, glance image-create-via-import, and glance image-
update commands. If you are not sure of the container format of your VM image, you can set it to bare.

Table 1.1. Disk image formats

Format Description

aki Indicates an Amazon kernel image that is stored in the Image service.

ami Indicates an Amazon machine image that is stored in the Image service.

ari Indicates an Amazon ramdisk image that is stored in the Image service.

iso Sector-by-sector copy of the data on a disk, stored in a binary file. Although an
ISO file is not normally considered a VM image format, these files contain
bootable file systems with an installed operating system, and you use them in the
same way as other VM image files.

ploop A disk format supported and used by Virtuozzo to run OS containers.

qcow2 Supported by QEMU emulator. This format includes QCOW2v3 (sometimes
referred to as QCOW3), which requires QEMU 1.1 or higher.

raw Unstructured disk image format.

vdi Supported by VirtualBox VM monitor and QEMU emulator.

vhd Virtual Hard Disk. Used by VM monitors from VMware, VirtualBox, and others.

vhdx Virtual Hard Disk v2. Disk image format with a larger storage capacity than VHD.

vmdk Virtual Machine Disk. Disk image format that allows incremental backups of data
changes from the time of the last backup.

Red Hat OpenStack Platform 17.1 Creating and managing images

6

Table 1.2. Container image formats

Format Description

aki Indicates an Amazon kernel image that is stored in the Image service.

ami Indicates an Amazon machine image that is stored in the Image service.

ari Indicates an Amazon ramdisk image that is stored in the Image service.

bare Indicates there is no container or metadata envelope for the image.

docker Indicates a TAR archive of the file system of a Docker container that is stored in
the Image service.

ova Indicates an Open Virtual Appliance (OVA) TAR archive file that is stored in the
Image service. This file is stored in the Open Virtualization Format (OVF)
container file.

ovf OVF container file format. Open standard for packaging and distributing virtual
appliances or software to be run on virtual machines.

1.2. SUPPORTED IMAGE SERVICE BACK ENDS

The following Image service (glance) back-end scenarios are supported:

RADOS Block Device (RBD) is the default back end when you use Ceph.

RBD multi-store.

Object Storage (swift). The Image service uses the Object Storage type and back end as the
default.

Block Storage (cinder).

NFS

Important

Although NFS is a supported Image service deployment option, more robust options are
available.
NFS is not native to the Image service. When you mount an NFS share on the Image service,
the Image service does not manage the operation. The Image service writes data to the file
system but is unaware that the back end is an NFS share.

In this type of deployment, the Image service cannot retry a request if the share fails. This
means that when a failure occurs on the back end, the store might enter read-only mode, or
it might continue to write data to the local file system, in which case you risk data loss. To
recover from this situation, you must ensure that the share is mounted and in sync, and then
restart the Image service. For these reasons, Red Hat does not recommend NFS as an Image
service back end.

However, if you do choose to use NFS as an Image service back end, some of the following

CHAPTER 1. THE IMAGE SERVICE (GLANCE)

7

However, if you do choose to use NFS as an Image service back end, some of the following
best practices can help to mitigate risks:

Use a reliable production-grade NFS back end.

Ensure that you have a strong and reliable connection between Controller nodes and the
NFS back end: Layer 2 (L2) network connectivity is recommended.

Include monitoring and alerts for the mounted share.

Set underlying file system permissions. Write permissions must be present in the shared
file system that you use as a store.

Ensure that the user and the group that the glance-api process runs on do not have
write permissions on the mount point at the local file system. This means that the
process can detect possible mount failure and put the store into read-only mode during
a write attempt.

1.3. IMAGE SIGNING AND VERIFICATION

Image signing and verification protects image integrity and authenticity by enabling deployers to sign
images and save the signatures and public key certificates as image properties.

NOTE

Image signing and verification is not supported if Nova is using RADOS Block Device
(RBD) to store virtual machines disks.

For information on image signing and verification, see Validating Image service (glance) images in the
Managing secrets with the Key Manager service guide.

1.4. IMAGE FORMAT CONVERSION

You can convert images to a different format by activating the image conversion plugin when you import
images to the Image service (glance).

You can activate or deactivate the image conversion plugin based on your Red Hat OpenStack Platform
(RHOSP) deployment configuration. The deployer configures the preferred format of images for the
deployment.

Internally, the Image service receives the bits of the image in a particular format and stores the bits in a
temporary location. The Image service triggers the plugin to convert the image to the target format and
move the image to a final destination. When the task is finished, the Image service deletes the
temporary location. The Image service does not retain the format that was uploaded initially.

You can trigger image conversion only when importing an image. It does not run when uploading an
image.

Use the Image service command-line client for image management.

For example:

$ glance image-create-via-import \
 --disk-format qcow2 \

Red Hat OpenStack Platform 17.1 Creating and managing images

8

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/managing_secrets_with_the_key_manager_service/assembly-encrypting-validating-openstack-services_rhosp#proc-validating-image-service-images_key-manager-services

 --container-format bare \
 --name <name> \
 --visibility public \
 --import-method web-download \
 --uri http://server/image.qcow2

Replace <name> with the name of your image.

1.5. IMPROVING SCALABILITY WITH IMAGE SERVICE CACHING

Use the Image service (glance) API caching mechanism to store copies of images on Image service API
servers and retrieve them automatically to improve scalability. With Image service caching, you can run
glance-api on multiple hosts. This means that it does not need to retrieve the same image from back-
end storage multiple times. Image service caching does not affect any Image service operations.

Configure Image service caching with the Red Hat OpenStack Platform director (tripleo) heat
templates:

Procedure

1. In an environment file, set the value of the GlanceCacheEnabled parameter to true, which
automatically sets the flavor value to keystone+cachemanagement in the glance-api.conf
heat template:

parameter_defaults:
 GlanceCacheEnabled: true

2. Include the environment file in the openstack overcloud deploy command when you redeploy
the overcloud.

3. Optional: Tune the glance_cache_pruner to an alternative frequency when you redeploy the
overcloud. The following example shows a frequency of 5 minutes:

parameter_defaults:
 ControllerExtraConfig:
 glance::cache::pruner::minute: '*/5'

Adjust the frequency according to your needs to avoid file system full scenarios. Include the
following elements when you choose an alternative frequency:

The size of the files that you want to cache in your environment.

The amount of available file system space.

The frequency at which the environment caches images.

1.6. IMAGE PRE-CACHING

You can use Red Hat OpenStack Platform (RHOSP) director to pre-cache images as part of the
glance-api service.

Use the Image service (glance) command-line client for image management.

1.6.1. Configuring the default interval for periodic image pre-caching

CHAPTER 1. THE IMAGE SERVICE (GLANCE)

9

The Image service (glance) pre-caching periodic job runs every 300 seconds (5 minutes default time)
on each controller node where the glance-api service is running. To change the default time, you can
set the cache_prefetcher_interval parameter under the Default section in the glance-api.conf
environment file.

Procedure

1. Add a new interval with the ExtraConfig parameter in an environment file on the undercloud
according to your requirements:

parameter_defaults:
 ControllerExtraConfig:
 glance::config::glance_api_config:
 DEFAULT/cache_prefetcher_interval:
 value: '<300>'

Replace <300> with the number of seconds that you want as an interval to pre-cache
images.

2. After you adjust the interval in the environment file in /home/stack/templates/, log in as the
stack user and deploy the configuration:

$ openstack overcloud deploy --templates \
-e /home/stack/templates/<env_file>.yaml

Replace <env_file> with the name of the environment file that contains the ExtraConfig
settings that you added.

IMPORTANT

If you passed any extra environment files when you created the overcloud,
pass them again here by using the -e option to avoid making undesired
changes to the overcloud.

Additional resources

For more information about the openstack overcloud deploy command, see Deployment command in
the Installing and managing Red Hat OpenStack Platform with director guide.

1.6.2. Preparing to use a periodic job to pre-cache an image

To use a periodic job to pre-cache an image, you must use the glance-cache-manage command
connected directly to the node where the glance_api service is running. Do not use a proxy, which hides
the node that answers a service request. Because the undercloud might not have access to the network
where the glance_api service is running, run commands on the first overcloud node, which is called
controller-0 by default.

Complete the following prerequisite procedure to ensure that you run commands from the correct host,
have the necessary credentials, and are also running the glance-cache-manage commands from inside
the glance-api container.

Procedure

1. Log in to the undercloud as the stack user and identify the provisioning IP address of

Red Hat OpenStack Platform 17.1 Creating and managing images

10

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#deployment-command

1. Log in to the undercloud as the stack user and identify the provisioning IP address of
controller-0:

(undercloud) [stack@site-undercloud-0 ~]$ openstack server list -f value -c Name -c
Networks | grep controller
overcloud-controller-1 ctlplane=192.168.24.40
overcloud-controller-2 ctlplane=192.168.24.13
overcloud-controller-0 ctlplane=192.168.24.71
(undercloud) [stack@site-undercloud-0 ~]$

2. To authenticate to the overcloud, copy the credentials that are stored in
/home/stack/overcloudrc, by default, to controller-0:

$ scp ~/overcloudrc tripleo-admin@192.168.24.71:/home/tripleo-admin/

3. Connect to controller-0:

$ ssh tripleo-admin@192.168.24.71

4. On controller-0 as the tripleo-admin user, identify the IP address of the glance_api service. In
the following example, the IP address is 172.25.1.105:

(overcloud) [root@controller-0 ~]# grep -A 10 '^listen glance_api' /var/lib/config-data/puppet-
generated/haproxy/etc/haproxy/haproxy.cfg
listen glance_api
 server central-controller0-0.internalapi.redhat.local 172.25.1.105:9292 check fall 5 inter 2000
rise 2

5. Because the glance-cache-manage command is only available in the glance_api container,
create a script to exec into that container where the environment variables to authenticate to
the overcloud are already set. Create a script called glance_pod.sh in /home/tripleo-admin on
controller-0 with the following contents:

sudo podman exec -ti \
 -e NOVA_VERSION=$NOVA_VERSION \
 -e COMPUTE_API_VERSION=$COMPUTE_API_VERSION \
 -e OS_USERNAME=$OS_USERNAME \
 -e OS_PROJECT_NAME=$OS_PROJECT_NAME \
 -e OS_USER_DOMAIN_NAME=$OS_USER_DOMAIN_NAME \
 -e OS_PROJECT_DOMAIN_NAME=$OS_PROJECT_DOMAIN_NAME \
 -e OS_NO_CACHE=$OS_NO_CACHE \
 -e OS_CLOUDNAME=$OS_CLOUDNAME \
 -e no_proxy=$no_proxy \
 -e OS_AUTH_TYPE=$OS_AUTH_TYPE \
 -e OS_PASSWORD=$OS_PASSWORD \
 -e OS_AUTH_URL=$OS_AUTH_URL \
 -e OS_IDENTITY_API_VERSION=$OS_IDENTITY_API_VERSION \
 -e OS_COMPUTE_API_VERSION=$OS_COMPUTE_API_VERSION \
 -e OS_IMAGE_API_VERSION=$OS_IMAGE_API_VERSION \
 -e OS_VOLUME_API_VERSION=$OS_VOLUME_API_VERSION \
 -e OS_REGION_NAME=$OS_REGION_NAME \
glance_api /bin/bash

6. Source the overcloudrc file and run the glance_pod.sh script to exec into the glance_api

CHAPTER 1. THE IMAGE SERVICE (GLANCE)

11

6. Source the overcloudrc file and run the glance_pod.sh script to exec into the glance_api
container with the necessary environment variables to authenticate to the overcloud Controller
node.

[tripleo-admin@controller-0 ~]$ source overcloudrc
(overcloudrc) [tripleo-admin@central-controller-0 ~]$ bash glance_pod.sh
()[glance@controller-0 /]$

7. Use a command such as glance image-list to verify that the container can run authenticated
commands against the overcloud.

()[glance@controller-0 /]$ glance image-list
+--------------------------------------+----------------------------------+
| ID | Name |
+--------------------------------------+----------------------------------+
| ad2f8daf-56f3-4e10-b5dc-d28d3a81f659 | cirros-0.4.0-x86_64-disk.img |
+--------------------------------------+----------------------------------+
()[glance@controller-0 /]$

1.6.3. Using a periodic job to pre-cache an image

When you have completed the prerequisite procedure in Section 1.6.2, “Preparing to use a periodic job
to pre-cache an image”, you can use a periodic job to pre-cache an image.

Procedure

1. As the admin user, queue an image to cache:

$ glance-cache-manage --host=<host_ip> queue-image <image_id>

Replace <host_ip> with the IP address of the Controller node where the glance-api
container is running.

Replace <image_id> with the ID of the image that you want to queue.
When you have queued the images that you want to pre-cache, the cache_images periodic
job prefetches all queued images concurrently.

NOTE

Because the image cache is local to each node, if your Red Hat OpenStack
Platform (RHOSP) deployment is HA, with 3, 5, or 7 Controllers, then you
must specify the host address with the --host option when you run the
glance-cache-manage command.

2. Run the following command to view the images in the image cache:

$ glance-cache-manage --host=<host_ip> list-cached

Replace <host_ip> with the IP address of the host in your environment.

1.6.4. Image caching command options

You can use the following glance-cache-manage command options to queue images for caching and

Red Hat OpenStack Platform 17.1 Creating and managing images

12

You can use the following glance-cache-manage command options to queue images for caching and
manage cached images:

list-cached to list all images that are currently cached.

list-queued to list all images that are currently queued for caching.

queue-image to queue an image for caching.

delete-cached-image to purge an image from the cache.

delete-all-cached-images to remove all images from the cache.

delete-queued-image to delete an image from the cache queue.

delete-all-queued-images to delete all images from the cache queue.

1.7. USING THE IMAGE SERVICE API TO ENABLE SPARSE IMAGE
UPLOAD

With the Image service (glance) API, you can use sparse image upload to reduce network traffic and
save storage space. This feature is particularly useful in distributed compute node (DCN) environments.
With a sparse image file, the Image service does not write null byte sequences. The Image service writes
data with a given offset. Storage back ends interpret these offsets as null bytes that do not actually
consume storage space.

Use the Image service command-line client for image management.

Limitations

Sparse image upload is supported only with Ceph RADOS Block Device (RBD).

Sparse image upload is not supported for file systems.

Sparseness is not maintained during the transfer between the client and the Image service API.
The image is sparsed at the Image service API level.

Prerequisites

Your Red Hat OpenStack Platform (RHOSP) deployment uses RBD for the Image service back
end.

Procedure

1. Log in to the undercloud node as the stack user.

2. Source the stackrc credentials file:

$ source stackrc

3. Create an environment file with the following content:

parameter_defaults:
 GlanceSparseUploadEnabled: true

4. Add your new environment file to the stack with your other environment files and deploy the

CHAPTER 1. THE IMAGE SERVICE (GLANCE)

13

4. Add your new environment file to the stack with your other environment files and deploy the
overcloud:

$ openstack overcloud deploy \
 --templates \
 …
 -e <existing_overcloud_environment_files> \
 -e <new_environment_file>.yaml \
 ...

For more information about uploading images, see Uploading images to the Image service .

Verification

You can import an image and check its size to verify sparse image upload.

The following procedure uses example commands. Replace the values with those from your environment
where appropriate.

1. Download the image file locally:

$ wget <file_location>/<file_name>

Replace <file_location> with the location of the file.

Replace <file_name> with the name of the file.
For example:

$ wget https://cloud.centos.org/centos/6/images/CentOS-6-x86_64-GenericCloud-
1508.qcow2

2. Check the disk size and the virtual size of the image to be uploaded:

$ qemu-img info <file_name>

For example:

$ qemu-img info CentOS-6-x86_64-GenericCloud-1508.qcow2

image: CentOS-6-x86_64-GenericCloud-1508.qcow2
file format: qcow2
virtual size: 8 GiB (8589934592 bytes)
disk size: 1.09 GiB
cluster_size: 65536
Format specific information:
compat: 0.10
refcount bits: 1

3. Import the image:

$ glance image-create-via-import --disk-format qcow2 --container-format bare --name
centos_1 --file <file_name>

4. Record the image ID. It is required in a subsequent step.

Red Hat OpenStack Platform 17.1 Creating and managing images

14

5. Verify that the image is imported and in an active state:

$ glance image show <image_id>

6. From a Ceph Storage node, verify that the size of the image is less than the virtual size from the
output of step 1:

$ sudo rbd -p images diff <image_id> | awk '{ SUM += $2 } END { print SUM/1024/1024/1024
" GB" }'

1.03906 GB

7. Optional: You can confirm that rbd_thin_provisioning is configured in the Image service
configuration file on the Controller nodes:

a. Use SSH to access a Controller node:

$ ssh -A -t tripleo-admin@<controller_node_IP_address>

b. Confirm that rbd_thin_provisioning equals True on that Controller node:

$ sudo podman exec -it glance_api sh -c 'grep ^rbd_thin_provisioning /etc/glance/glance-
api.conf'

1.8. SECURE METADEF APIS

In Red Hat OpenStack Platform (RHOSP), cloud administrators can define key value pairs and tag
metadata with metadata definition (metadef) APIs. There is no limit on the number of metadef
namespaces, objects, properties, resources, or tags that cloud administrators can create.

Image service policies control metadef APIs. By default, only cloud administrators can create, update, or
delete (CUD) metadef APIs. This limitation prevents metadef APIs from exposing information to
unauthorized users and mitigates the risk of a malicious user filling the Image service (glance) database
with unlimited resources, which can create a Denial of Service (DoS) style attack. However, cloud
administrators can override the default policy.

1.9. ENABLING METADEF API ACCESS FOR CLOUD USERS

Cloud administrators with users who depend on write access to metadata definition (metadef) APIs can
make those APIs accessible to all users by overriding the default admin-only policy. In this type of
configuration, however, there is the potential to unintentionally leak sensitive resource names, such as
customer names and internal projects. Administrators must audit their systems to identify previously
created resources that might be vulnerable even if only read-access is enabled for all users.

Procedure

1. As a cloud administrator, log in to the undercloud and create a file for policy overrides. For
example:

$ cat open-up-glance-api-metadef.yaml

2. Configure the policy override file to allow metadef API read-write access to all users:

CHAPTER 1. THE IMAGE SERVICE (GLANCE)

15

GlanceApiPolicies: {
 glance-metadef_default: { key: 'metadef_default', value: '' },
 glance-get_metadef_namespace: { key: 'get_metadef_namespace', value:
'rule:metadef_default' },
 glance-get_metadef_namespaces: { key: 'get_metadef_namespaces', value:
'rule:metadef_default' },
 glance-modify_metadef_namespace: { key: 'modify_metadef_namespace', value:
'rule:metadef_default' },
 glance-add_metadef_namespace: { key: 'add_metadef_namespace', value:
'rule:metadef_default' },
 glance-delete_metadef_namespace: { key: 'delete_metadef_namespace', value:
'rule:metadef_default' },
 glance-get_metadef_object: { key: 'get_metadef_object', value: 'rule:metadef_default' },
 glance-get_metadef_objects: { key: 'get_metadef_objects', value: 'rule:metadef_default' },
 glance-modify_metadef_object: { key: 'modify_metadef_object', value:
'rule:metadef_default' },
 glance-add_metadef_object: { key: 'add_metadef_object', value: 'rule:metadef_default' },
 glance-delete_metadef_object: { key: 'delete_metadef_object', value: 'rule:metadef_default'
},
 glance-list_metadef_resource_types: { key: 'list_metadef_resource_types', value:
'rule:metadef_default' },
 glance-get_metadef_resource_type: { key: 'get_metadef_resource_type', value:
'rule:metadef_default' },
 glance-add_metadef_resource_type_association: { key:
'add_metadef_resource_type_association', value: 'rule:metadef_default' },
 glance-remove_metadef_resource_type_association: { key:
'remove_metadef_resource_type_association', value: 'rule:metadef_default' },
 glance-get_metadef_property: { key: 'get_metadef_property', value: 'rule:metadef_default'
},
 glance-get_metadef_properties: { key: 'get_metadef_properties', value:
'rule:metadef_default' },
 glance-modify_metadef_property: { key: 'modify_metadef_property', value:
'rule:metadef_default' },
 glance-add_metadef_property: { key: 'add_metadef_property', value: 'rule:metadef_default'
},
 glance-remove_metadef_property: { key: 'remove_metadef_property', value:
'rule:metadef_default' },
 glance-get_metadef_tag: { key: 'get_metadef_tag', value: 'rule:metadef_default' },
 glance-get_metadef_tags: { key: 'get_metadef_tags', value: 'rule:metadef_default' },
 glance-modify_metadef_tag: { key: 'modify_metadef_tag', value: 'rule:metadef_default' },
 glance-add_metadef_tag: { key: 'add_metadef_tag', value: 'rule:metadef_default' },
 glance-add_metadef_tags: { key: 'add_metadef_tags', value: 'rule:metadef_default' },
 glance-delete_metadef_tag: { key: 'delete_metadef_tag', value: 'rule:metadef_default' },
 glance-delete_metadef_tags: { key: 'delete_metadef_tags', value: 'rule:metadef_default' }
 }

NOTE

You must configure all metadef policies to use rule:metadeta_default.

3. Include the new policy file in the deployment command with the -e option when you deploy the
overcloud:

$ openstack overcloud deploy -e open-up-glance-api-metadef.yaml

Red Hat OpenStack Platform 17.1 Creating and managing images

16

CHAPTER 2. CREATING RHEL KVM OR RHOSP-COMPATIBLE
IMAGES

To create images that you can manage in the Red Hat OpenStack Platform (RHOSP) Image service
(glance), you can use Red Hat Enterprise Linux (RHEL) Kernel-based Virtual Machine (KVM) instance
images, or you can manually create RHOSP-compatible images in the QCOW2 format by using RHEL
ISO files or Windows ISO files.

2.1. CREATING RHEL KVM IMAGES

Use Red Hat Enterprise Linux (RHEL) Kernel-based Virtual Machine (KVM) instance images to create
images that you can manage in the Red Hat OpenStack Platform (RHOSP) Image service (glance).

2.1.1. Using a RHEL KVM instance image with Red Hat OpenStack Platform

You can use one of the following Red Hat Enterprise Linux (RHEL) Kernel-based Virtual Machine (KVM)
instance images with Red Hat OpenStack Platform (RHOSP):

Red Hat Enterprise Linux 9 KVM Guest Image

Red Hat Enterprise Linux 8 KVM Guest Image

These QCOW2 images are configured with cloud-init and must have EC2-compatible metadata
services for provisioning Secure Shell (SSH) keys to function correctly.

Ready Windows KVM instance images in QCOW2 format are not available.

NOTE

For KVM instance images:

The root account in the image is deactivated, but sudo access is granted to a
special user named cloud-user.

There is no root password set for this image.

The root password is locked in /etc/shadow by placing !! in the second field.

For a RHOSP instance, generate an SSH keypair from the RHOSP dashboard or command line, and use
that key combination to perform an SSH public authentication to the instance as root user.

When you launch the instance, this public key is injected to it. You can then authenticate by using the
private key that you download when you create the keypair.

2.1.2. Creating a RHEL-based root partition image for bare-metal instances

To create a custom root partition image for bare-metal instances, download the base Red Hat
Enterprise Linux KVM instance image, and then upload the image to the Image service (glance).

Procedure

1. Download the base Red Hat Enterprise Linux KVM instance image from the Customer Portal.

2. Define DIB_LOCAL_IMAGE as the downloaded image:

CHAPTER 2. CREATING RHEL KVM OR RHOSP-COMPATIBLE IMAGES

17

https://access.redhat.com/downloads/content/479/ver=/rhel---9/9.0/x86_64/product-software
https://access.redhat.com/downloads/content/479/ver=/rhel---8
https://access.redhat.com/downloads/content/479

$ export DIB_LOCAL_IMAGE=rhel-<ver>-x86_64-kvm.qcow2

Replace <ver> with the RHEL version number of the image.

3. Set your registration information depending on your method of registration:

Red Hat Customer Portal:

$ export REG_USER='<username>'
$ export REG_PASSWORD='<password>'
$ export REG_AUTO_ATTACH=true
$ export REG_METHOD=portal
$ export https_proxy='<IP_address:port>' (if applicable)
$ export http_proxy='<IP_address:port>' (if applicable)

Red Hat Satellite:

$ export REG_USER='<username>'
$ export REG_PASSWORD='<password>'
$ export REG_SAT_URL='<satellite-url>'
$ export REG_ORG='<satellite-org>'
$ export REG_ENV='<satellite-env>'
$ export REG_METHOD=<method>

Replace values in angle brackets <> with the correct values for your Red Hat Customer
Portal or Red Hat Satellite registration.

4. Optional: If you have any offline repositories, you can define DIB_YUM_REPO_CONF as a local
repository configuration:

$ export DIB_YUM_REPO_CONF=<file-path>

Replace <file-path> with the path to your local repository configuration file.

5. Use the diskimage-builder tool to extract the kernel as rhel-image.vmlinuz and the initial
RAM disk as rhel-image.initrd:

$ export DIB_RELEASE=<ver>
$ disk-image-create rhel baremetal \
 -o rhel-image

6. Upload the images to the Image service:

$ KERNEL_ID=$(openstack image create \
 --file rhel-image.vmlinuz --public \
 --container-format aki --disk-format aki \
 -f value -c id rhel-image.vmlinuz)
$ RAMDISK_ID=$(openstack image create \
 --file rhel-image.initrd --public \
 --container-format ari --disk-format ari \
 -f value -c id rhel-image.initrd)
$ openstack image create \
 --file rhel-image.qcow2 --public \
 --container-format bare \

Red Hat OpenStack Platform 17.1 Creating and managing images

18

 --disk-format qcow2 \
 --property kernel_id=$KERNEL_ID \
 --property ramdisk_id=$RAMDISK_ID \
 rhel-root-partition-bare-metal-image

2.1.3. Creating a RHEL-based whole-disk user image for bare-metal instances

To create a whole-disk user image for bare-metal instances, download the base Red Hat Enterprise
Linux KVM instance image, and then upload the image to the Image service (glance).

Procedure

1. Download the base Red Hat Enterprise Linux KVM instance image from the Customer Portal.

2. Define DIB_LOCAL_IMAGE as the downloaded image:

$ export DIB_LOCAL_IMAGE=rhel-<ver>-x86_64-kvm.qcow2

Replace <ver> with the RHEL version number of the image.

3. Set your registration information depending on your method of registration:

Red Hat Customer Portal:

$ export REG_USER='<username>'
$ export REG_PASSWORD='<password>'
$ export REG_AUTO_ATTACH=true
$ export REG_METHOD=portal
$ export https_proxy='<IP_address:port>' (if applicable)
$ export http_proxy='<IP_address:port>' (if applicable)

Red Hat Satellite:

$ export REG_USER='<username>'
$ export REG_PASSWORD='<password>'
$ export REG_SAT_URL='<satellite-url>'
$ export REG_ORG='<satellite-org>'
$ export REG_ENV='<satellite-env>'
$ export REG_METHOD=<method>

Replace values in angle brackets <> with the correct values for your Red Hat Customer
Portal or Red Hat Satellite registration.

4. Optional: If you have any offline repositories, you can define DIB_YUM_REPO_CONF as a local
repository configuration:

$ export DIB_YUM_REPO_CONF=<file-path>

Replace <file-path> with the path to your local repository configuration file.

5. Upload the image to the Image service:

$ openstack image create \
 --file rhel-image.qcow2 --public \

CHAPTER 2. CREATING RHEL KVM OR RHOSP-COMPATIBLE IMAGES

19

https://access.redhat.com/downloads/content/479

 --container-format bare \
 --disk-format qcow2 \
 rhel-whole-disk-bare-metal-image

2.2. CREATING INSTANCE IMAGES WITH RHEL OR WINDOWS ISO
FILES

You can create custom Red Hat Enterprise Linux (RHEL) or Windows images in QCOW2 format from
ISO files, and upload these images to the Red Hat OpenStack Platform (RHOSP) Image service
(glance) for use when creating instances.

2.2.1. Prerequisites

A Linux host machine to create an image. This can be any machine on which you can install and
run the Linux packages, except for the undercloud or the overcloud.

The advanced-virt repository is enabled:

$ sudo subscription-manager repos --enable=advanced-virt-for-rhel-<ver>-x86_64-rpms

The virt-manager application is installed to have all packages necessary to create a guest
operating system:

$ sudo dnf module install -y virt

The libguestfs-tools package is installed to have a set of tools to access and modify virtual
machine images:

$ sudo dnf install -y libguestfs-tools-c

A RHEL 9 or 8 ISO file or a Windows ISO file. For more information about RHEL ISO files, see
RHEL 9.0 Binary DVD or RHEL 8.6 Binary DVD . If you do not have a Windows ISO file, see the
Microsoft Evaluation Center to download an evaluation image.

A text editor, if you want to change the kickstart files (RHEL only).

IMPORTANT

If you install the libguestfs-tools package on the undercloud, deactivate iscsid.socket
to avoid port conflicts with the tripleo_iscsid service on the undercloud:

$ sudo systemctl disable --now iscsid.socket

When you have the prerequisites in place, you can proceed to create a RHEL or Windows image:

Create a Red Hat Enterprise Linux 9 image

Create a Red Hat Enterprise Linux 8 image

Create a Windows image

2.2.2. Creating a Red Hat Enterprise Linux 9 image

Red Hat OpenStack Platform 17.1 Creating and managing images

20

https://access.redhat.com/downloads/content/479/ver=/rhel---9/9.0/x86_64/product-software
https://access.redhat.com/downloads/content/479/ver=/rhel---8/8.6/x86_64/product-software
https://www.microsoft.com/en-us/evalcenter/

You can create a Red Hat OpenStack Platform (RHOSP) image in QCOW2 format by using a Red Hat
Enterprise Linux (RHEL) 9 ISO file.

Procedure

1. Log on to your host machine as the root user.

2. Start the installation by using virt-install:

[root@host]# virt-install \
 --virt-type kvm \
 --name <rhel9-cloud-image> \
 --ram <2048> \
 --cdrom </var/lib/libvirt/images/rhel-9.0-x86_64-dvd.iso> \
 --disk <rhel9.qcow2>,format=qcow2,size=<10> \
 --network=bridge:virbr0 \
 --graphics vnc,listen=127.0.0.1 \
 --noautoconsole \
 --os-variant=<rhel9.0>

Replace the values in angle brackets <> with the correct values for your RHEL 9 image.
This command launches an instance and starts the installation process.

NOTE

If the instance does not launch automatically, run the virt-viewer command
to view the console:

[root@host]# virt-viewer <rhel9-cloud-image>

3. Configure the instance:

a. At the initial Installer boot menu, select Install Red Hat Enterprise Linux 9.

b. Choose the appropriate Language and Keyboard options.

c. When prompted about which type of devices your installation uses, select Auto-detected
installation media.

d. When prompted about which type of installation destination, select Local Standard Disks.
For other storage options, select Automatically configure partitioning.

e. In the Which type of installation would you like? window, choose the Basic Server install,
which installs an SSH server.

f. For network and host name, select eth0 for network and choose a host name for your
device. The default host name is localhost.localdomain.

g. Enter a password in the Root Password field and enter the same password again in the
Confirm field.

4. When the on-screen message confirms that the installation is complete, reboot the instance
and log in as the root user.

5. Update the /etc/sysconfig/network-scripts/ifcfg-eth0 file so that it contains only the following

CHAPTER 2. CREATING RHEL KVM OR RHOSP-COMPATIBLE IMAGES

21

5. Update the /etc/sysconfig/network-scripts/ifcfg-eth0 file so that it contains only the following
values:

TYPE=Ethernet
DEVICE=eth0
ONBOOT=yes
BOOTPROTO=dhcp
NM_CONTROLLED=no

6. Reboot the machine.

7. Register the machine with the Content Delivery Network.

sudo subscription-manager register
sudo subscription-manager attach \
 --pool=<pool-id>
sudo subscription-manager repos \
 --enable rhel-9-for-x86_64-baseos-rpms \
 --enable rhel-9-for-x86_64-appstream-rpms

Replace pool-id with a valid pool ID. You can see a list of available pool IDs by running the
subscription-manager list --available command.

8. Update the system:

dnf -y update

9. Install the cloud-init packages:

dnf install -y cloud-utils-growpart cloud-init

10. Edit the /etc/cloud/cloud.cfg configuration file and add the following content under
cloud_init_modules:

- resolv-conf

The resolv-conf option automatically configures the resolv.conf file when an instance boots
for the first time. This file contains information related to the instance such as nameservers,
domain, and other options.

11. Add the following line to /etc/sysconfig/network to avoid issues when accessing the EC2
metadata service:

NOZEROCONF=yes

12. To ensure that the console messages appear in the Log tab on the dashboard and the nova
console-log output, add the following boot option to the /etc/default/grub file:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty0 console=ttyS0,115200n8"

13. Run the grub2-mkconfig command:

grub2-mkconfig -o /boot/grub2/grub.cfg

Red Hat OpenStack Platform 17.1 Creating and managing images

22

The output is as follows:

Generating grub configuration file ...
Found linux image: /boot/vmlinuz-3.10.0-229.9.2.el9.x86_64
Found initrd image: /boot/initramfs-3.10.0-229.9.2.el9.x86_64.img
Found linux image: /boot/vmlinuz-3.10.0-121.el9.x86_64
Found initrd image: /boot/initramfs-3.10.0-121.el9.x86_64.img
Found linux image: /boot/vmlinuz-0-rescue-b82a3044fb384a3f9aeacf883474428b
Found initrd image: /boot/initramfs-0-rescue-b82a3044fb384a3f9aeacf883474428b.img
done

14. Deregister the instance so that the resulting image does not contain the subscription details for
this instance:

subscription-manager repos --disable=*
subscription-manager unregister
dnf clean all

15. Power off the instance:

poweroff

16. Reset and clean the image by using the virt-sysprep command so that it can be used to create
instances without issues:

[root@host]# virt-sysprep -d <rhel9-cloud-image>

17. Reduce the image size by converting any free space in the disk image back to free space in the
host:

[root@host]# virt-sparsify \
 --compress <rhel9.qcow2> <rhel9-cloud.qcow2>

This command creates a new <rhel9-cloud.qcow2> file in the location from where the
command is run.

NOTE

You must manually resize the partitions of instances based on the image in
accordance with the disk space in the flavor that is applied to the instance.

The <rhel9-cloud.qcow2> image file is ready to be uploaded to the Image service. For more
information about uploading this image to your RHOSP deployment, see Uploading images to the
Image service.

2.2.3. Creating a Red Hat Enterprise Linux 8 image

You can create a Red Hat OpenStack Platform (RHOSP) image in QCOW2 format by using a Red Hat
Enterprise Linux (RHEL) 8 ISO file.

Procedure

1. Log on to your host machine as the root user.

CHAPTER 2. CREATING RHEL KVM OR RHOSP-COMPATIBLE IMAGES

23

2. Start the installation by using virt-install:

[root@host]# virt-install \
 --virt-type kvm \
 --name <rhel86-cloud-image> \
 --ram <2048> \
 --vcpus <2> \
 --disk <rhel86.qcow2>,format=qcow2,size=<10> \
 --location <rhel-8.6-x86_64-boot.iso> \
 --network=bridge:virbr0 \
 --graphics vnc,listen=127.0.0.1 \
 --noautoconsole \
 --os-variant <rhel8.6>

Replace the values in angle brackets <> with the correct values for your RHEL image.
This command launches an instance and starts the installation process.

NOTE

If the instance does not launch automatically, run the virt-viewer command
to view the console:

[root@host]# virt-viewer <rhel86-cloud-image>

3. Configure the instance:

a. At the initial Installer boot menu, select Install Red Hat Enterprise Linux 8.

b. Choose the appropriate Language and Keyboard options.

c. When prompted about which type of devices your installation uses, select Basic Storage
Devices.

d. Choose a host name for your device. The default host name is localhost.localdomain.

e. Set the timezone and root password.

f. In the Which type of installation would you like? window, choose the Basic Server install,
which installs an SSH server.

4. When the on-screen message confirms that the installation is complete, reboot the instance
and log in as the root user.

5. Update the /etc/sysconfig/network-scripts/ifcfg-eth0 file so that it contains only the following
values:

TYPE=Ethernet
DEVICE=eth0
ONBOOT=yes
BOOTPROTO=dhcp
NM_CONTROLLED=no

6. Reboot the machine.

7. Register the machine with the Content Delivery Network:

Red Hat OpenStack Platform 17.1 Creating and managing images

24

sudo subscription-manager register
sudo subscription-manager attach \
 --pool=<pool-id>
sudo subscription-manager repos \
 --enable rhel-8-for-x86_64-baseos-rpms \
 --enable rhel-8-for-x86_64-appstream-rpms

Replace pool-id with a valid pool ID. You can see a list of available pool IDs by running the
subscription-manager list --available command.

8. Update the system:

dnf -y update

9. Install the cloud-init packages:

dnf install -y cloud-utils-growpart cloud-init

10. Edit the /etc/cloud/cloud.cfg configuration file and add the following content under
cloud_init_modules.

- resolv-conf

The resolv-conf option automatically configures the resolv.conf file when an instance boots
for the first time. This file contains information related to the instance such as nameservers,
domain, and other options.

11. To prevent network issues, create /etc/udev/rules.d/75-persistent-net-generator.rules:

echo "#" > /etc/udev/rules.d/75-persistent-net-generator.rules

This prevents the /etc/udev/rules.d/70-persistent-net.rules file from being created. If the
/etc/udev/rules.d/70-persistent-net.rules file is created, networking might not function
correctly when you boot from snapshots because the network interface is created as eth1
instead of eth0 and the IP address is not assigned.

12. Add the following line to /etc/sysconfig/network to avoid issues when accessing the EC2
metadata service:

NOZEROCONF=yes

13. To ensure that the console messages appear in the Log tab on the dashboard and the nova
console-log output, add the following boot option to the /etc/grub.conf file:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty0 console=ttyS0,115200n8"

14. Deregister the instance so that the resulting image does not contain the same subscription
details for this instance:

subscription-manager repos --disable=*
subscription-manager unregister
dnf clean all

CHAPTER 2. CREATING RHEL KVM OR RHOSP-COMPATIBLE IMAGES

25

15. Power off the instance:

poweroff

16. Reset and clean the image by using the virt-sysprep command so that it can be used to create
instances without issues:

[root@host]# virt-sysprep -d <rhel86-cloud-image>

17. Reduce the image size by converting any free space in the disk image back to free space in the
host:

[root@host]# virt-sparsify \
 --compress <rhel86.qcow2> <rhel86-cloud.qcow2>

This command creates a new <rhel86-cloud.qcow2> file in the location from where the
command is run.

NOTE

You must manually resize the partitions of instances based on the image in
accordance with the disk space in the flavor that is applied to the instance.

The <rhel86-cloud.qcow2> image file is ready to be uploaded to the Image service. For more
information about uploading this image to your RHOSP deployment, see Uploading images to the
Image service.

2.2.4. Creating a Windows image

You can create a Red Hat OpenStack Platform (RHOSP) image in QCOW2 format by using a Windows
ISO file.

Procedure

1. Log on to your host machine as the root user.

2. Start the installation by using virt-install:

[root@host]# virt-install \
 --name=<windows-image> \
 --disk size=<size> \
 --cdrom=<file-path-to-windows-iso-file> \
 --os-type=windows \
 --network=bridge:virbr0 \
 --graphics spice \
 --ram=<ram>

Replace the values in angle brackets <> withe the correct values for your Windows image.

NOTE

Red Hat OpenStack Platform 17.1 Creating and managing images

26

NOTE

The --os-type=windows parameter ensures that the clock is configured
correctly for the Windows instance and enables its Hyper-V enlightenment
features. You must also set os_type=windows in the image metadata
before uploading the image to the Image service (glance).

3. The virt-install command saves the instance image as /var/lib/libvirt/images/<windows-
image>.qcow2 by default. If you want to keep the instance image elsewhere, change the
parameter of the --disk option:

--disk path=<file-name>,size=<size>

Replace <file-name> with the name of the file that stores the instance image, and
optionally its path. For example, path=win8.qcow2,size=8 creates an 8 GB file named
win8.qcow2 in the current working directory.

NOTE

If the instance does not launch automatically, run the virt-viewer command
to view the console:

[root@host]# virt-viewer <windows-image>

For more information about how to install Windows, see the Microsoft documentation.

4. To allow the newly-installed Windows system to use the virtualized hardware, you might need to
install VirtIO drivers. For more information, see Installing KVM paravirtualized drivers for
Windows virtual machines in Configuring and managing virtualization .

5. To complete the configuration, download and run Cloudbase-Init on the Windows system. At
the end of the installation of Cloudbase-Init, select the Run Sysprep and Shutdown
checkboxes. The Sysprep tool makes the instance unique by generating an OS ID, which is used
by certain Microsoft services.

IMPORTANT

Red Hat does not provide technical support for Cloudbase-Init. If you encounter
an issue, see Contact Cloudbase Solutions .

When the Windows system shuts down, the <windows-image.qcow2> image file is ready to be
uploaded to the Image service. For more information about uploading this image to your
RHOSP deployment, see Uploading images to the Image service .

2.3. CREATING AN IMAGE FOR UEFI SECURE BOOT

When the overcloud contains UEFI Secure Boot Compute nodes, you can create a Secure Boot instance
image that cloud users can use to launch Secure Boot instances.

Procedure

1. Create a new image for UEFI Secure Boot:

CHAPTER 2. CREATING RHEL KVM OR RHOSP-COMPATIBLE IMAGES

27

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/configuring_and_managing_virtualization/index#installing-kvm-paravirtualized-drivers-for-rhel-virtual-machines_optimizing-windows-virtual-machines-on-rhel
http://www.cloudbase.it/cloudbase-init/
https://cloudbase.it/about/#contact

$ openstack image create --file <base_image_file> uefi_secure_boot_image

Replace <base_image_file> with an image file that supports UEFI and the GUID Partition
Table (GPT) standard, and includes an EFI system partition.

2. If the default machine type is not q35, then set the machine type to q35:

$ openstack image set --property hw_machine_type=q35 uefi_secure_boot_image

3. Specify that the instance must be scheduled on a UEFI Secure Boot host:

$ openstack image set \
 --property hw_firmware_type=uefi \
 --property os_secure_boot=required \
 uefi_secure_boot_image

2.4. METADATA PROPERTIES FOR VIRTUAL HARDWARE

The Compute service (nova) has deprecated support for using libosinfo data to set default device
models. Instead, use the following image metadata properties to configure the optimal virtual hardware
for an instance:

os_distro

os_version

hw_cdrom_bus

hw_disk_bus

hw_scsi_model

hw_vif_model

hw_video_model

hypervisor_type

For more information about these metadata properties, see Image configuration parameters.

Red Hat OpenStack Platform 17.1 Creating and managing images

28

CHAPTER 3. MANAGING IMAGES, IMAGE PROPERTIES, AND
IMAGE FORMATS

Manage images and the properties and formats of images that you upload, import, or store in the Red
Hat OpenStack Platform (RHOSP) Image service (glance).

3.1. UPLOADING IMAGES TO THE IMAGE SERVICE

You can upload an image to the Red Hat OpenStack Platform (RHOSP) Image service (glance) by using
the glance image-create command with the --property option.

For a list of glance image-create command options, see Image service command options . For a list of
property keys, see Image configuration parameters.

Procedure

Use the glance image-create command with the property option to upload an image.
For example:

$ glance image-create --name <name> \
 --is-public true --disk-format <qcow2> \
 --container-format <bare> \
 --file </path/to/image> \
 --property <os_version>=<11.10>

Replace <name> with a descriptive name for your image.

Replace <disk-format> with one of the following disk formats: None, ami, ari, aki, vhd, vhdx,
vmdk, raw, qcow2, vdi, iso, ploop.

Replace <container-format> with one of the following container formats: None, ami, ari, aki,
bare, ovf, ova, docker.

Replace </path/to/image> with the file path to your image file.

Replace <os_version> and <11.10> with the key-value pair of the property you want to
associate to your image. You can use the --property option multiple times with different
key-value pairs you want to associate to your image.

3.2. IMAGE SERVICE IMAGE IMPORT METHODS

You can import images to the Red Hat OpenStack Platform (RHOSP) Image service (glance) by using
the following methods:

Use the web-download (default) method to import images from a URI.

Use the glance-direct method to import images from a local file system.

Use the copy-image method to copy an existing image to other Image service back ends that
are in your deployment. Use this import method only if multiple Image service back ends are
enabled in your deployment.

The web-download method is enabled by default, but the cloud administrator configures other import
methods. You can run the glance import-info command to list available import options.

CHAPTER 3. MANAGING IMAGES, IMAGE PROPERTIES, AND IMAGE FORMATS

29

3.2.1. Importing an image from a remote URI

You can use the web-download image import method to copy an image from a remote URI to the
Red Hat OpenStack Platform (RHOSP) Image service (glance).

The Image service web-download method uses a two-stage process to perform the import:

1. The web-download method creates an image record.

2. The web-download method retrieves the image from the specified URI.

The URI is subject to optional denylist and allowlist filtering.

The image property injection plugin may inject metadata properties to the image. These injected
properties determine which Compute nodes the image instances are launched on.

Procedure

Create an image and specify the URI of the image to import:

$ glance image-create-via-import \
 --container-format <container-format> \
 --disk-format <disk-format> \
 --name <name> \
 --import-method web-download \
 --uri <uri>

Replace <container-format> with one of the following container formats: None, ami, ari, aki,
bare, ovf, ova, docker

Replace <disk-format> with one of the following disk formats: None, ami, ari, aki, vhd, vhdx,
vmdk, raw, qcow2, vdi, iso, ploop.

Replace <name> with a descriptive name for your image.

Replace <uri> with the URI of your image.

Verification

Check the availability of the image:

$ glance image-show <image-id>

Replace <image-id> with the image ID you provided during image creation.

3.2.2. Importing an image from a local volume

The glance-direct image import method creates an image record, which generates an image ID. When
you upload an image to the Image service (glance) from a local volume, the image is stored in a staging
area and becomes active when it passes any configured checks.

NOTE

Red Hat OpenStack Platform 17.1 Creating and managing images

30

NOTE

The glance-direct method requires a shared staging area when used in a highly available
(HA) configuration. If you upload images by using the glance-direct import method, the
upload can fail in a HA environment if a shared staging area is not present. In a HA active-
active environment, API calls are distributed to the Image service controllers. The
download API call can be sent to a different controller than the API call to upload the
image.

The glance-direct image import method uses three different calls to import an image:

glance image-create

glance image-stage

glance image-import

You can use the glance image-create-via-import command to perform all three of the glance-direct
calls in one command.

Procedure

1. Source your credentials file.

2. Use the glance image-create-via-import command to import a local image:

$ glance image-create-via-import \
 --container-format <container-format> \
 --disk-format <disk-format> \
 --name <name> \
 --file </path/to/image>

Replace <container-format> with one of the following container formats: None, ami, ari, aki,
bare, ovf, ova, docker

Replace <disk-format> with one of the following disk formats: None, ami, ari, aki, vhd, vhdx,
vmdk, raw, qcow2, vdi, iso, ploop.

Replace <name> with a descriptive name for your image.

Replace </path/to/image> with the file path to your image file.
When the image moves from the staging area to the back-end storage location, the image
is listed. However, it might take some time for the image to become active.

Verification

Check the availability of the image:

$ glance image-show <image-id>

Replace <image-id> with the image ID you provided during image creation.

3.3. UPDATING IMAGE PROPERTIES

Update the properties of images that you have stored in the Red Hat OpenStack Platform (RHOSP)

CHAPTER 3. MANAGING IMAGES, IMAGE PROPERTIES, AND IMAGE FORMATS

31

Update the properties of images that you have stored in the Red Hat OpenStack Platform (RHOSP)
Image service (glance).

Procedure

Use the glance image-update command with the property option to update an image.
For example:

$ glance image-update IMG-UUID \
 --property architecture=x86_64

For a list of glance image-update command options, see Image service (glance) command
options.

For a list of property keys, see Image configuration parameters.

3.4. ENABLING IMAGE CONVERSION

You can upload a QCOW2 image to the Image service (glance) by enabling the
GlanceImageImportPlugins parameter. You can then convert the QCOW2 image to RAW format.

NOTE

Image conversion is automatically enabled when you use Red Hat Ceph Storage RADOS
Block Device (RBD) to store images and boot Nova instances.

To enable image conversion, create an environment file that contains the following parameter value.
Include the new environment file with the -e option in the openstack overcloud deploy command:

parameter_defaults:
 GlanceImageImportPlugins:'image_conversion'

Use the Image service command-line client for image management.

3.4.1. Converting an image to RAW format

Red Hat Ceph Storage can store, but does not support using, QCOW2 images to host virtual machine
(VM) disks.

When you upload a QCOW2 image and create a VM from it, the compute node downloads the image,
converts the image to RAW, and uploads it back into Ceph, which can then use it. This process affects
the time it takes to create VMs, especially during parallel VM creation.

For example, when you create multiple VMs simultaneously, uploading the converted image to the Ceph
cluster might impact already running workloads. The upload process can starve those workloads of IOPS
and impede storage responsiveness.

To boot VMs in Ceph more efficiently (ephemeral back end or boot from volume), the glance image
format must be RAW.

Procedure

1. Converting an image to RAW might yield an image that is larger in size than the original QCOW2

Red Hat OpenStack Platform 17.1 Creating and managing images

32

1. Converting an image to RAW might yield an image that is larger in size than the original QCOW2
image file. Run the following command before the conversion to determine the final RAW image
size:

$ qemu-img info <image>.qcow2

2. Convert an image from QCOW2 to RAW format:

$ qemu-img convert -p -f qcow2 -O raw <original qcow2 image>.qcow2 <new raw
image>.raw

3.4.2. Configuring disk formats with the GlanceDiskFormats parameter

You can the configure the Image service (glance) to enable or reject disk formats by using the
GlanceDiskFormats parameter.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the undercloud credentials file:

$ source ~/stackrc

3. Include the GlanceDiskFormats parameter in an environment file, for example,
glance_disk_formats.yaml:

parameter_defaults:
 GlanceDiskFormats:
 - <disk_format>

For example, use the following configuration to enable only RAW and ISO disk formats:

parameter_defaults:
 GlanceDiskFormats:
 - raw
 - iso

Use the following example configuration to reject QCOW2 disk images:

parameter_defaults:
 GlanceDiskFormats:
 - raw
 - iso
 - aki
 - ari
 - ami

4. Include the environment file that contains your new configuration in the openstack overcloud
deploy command with any other environment files that are relevant to your environment:

$ openstack overcloud deploy --templates \
 -e <overcloud_environment_files> \

CHAPTER 3. MANAGING IMAGES, IMAGE PROPERTIES, AND IMAGE FORMATS

33

 -e <new_environment_file> \
 …

Replace <overcloud_environment_files> with the list of environment files that are part of
your deployment.

Replace <new_environment_file> with the environment file that contains your new
configuration.

For more information about the disk formats available in RHOSP, see Image configuration parameters.

3.4.3. Storing an image in RAW format

With the GlanceImageImportPlugins parameter enabled, run the following command to store a
previously created image in RAW format:

$ glance image-create-via-import \
 --disk-format qcow2 \
 --container-format bare \
 --name <name> \
 --visibility public \
 --import-method web-download \
 --uri <http://server/image.qcow2>

Replace <name> with the name of the image; this is the name that will appear in glance image-
list.

Replace <http://server/image.qcow2> with the location and file name of the QCOW2 image.

NOTE

This command example creates the image record and imports it by using the web-
download method. The glance-api downloads the image from the --uri location during
the import process. If web-download is not available, glanceclient cannot automatically
download the image data. Run the glance import-info command to list the available
image import methods.

3.5. HIDING OR UNHIDING IMAGES

You can hide public images from normal listings presented to users. For example, you can hide obsolete
CentOS 7 images and show only the latest version to simplify the user experience. Users can discover
and use hidden images.

To create a hidden image, add the --hidden argument to the glance image-create command.

Procedure

Hide an image:

$ glance image-update <image_id> --hidden 'true'

Unhide an image:

$ glance image-update <image_id> --hidden 'false'

Red Hat OpenStack Platform 17.1 Creating and managing images

34

List hidden images:

$ glance image-list --hidden 'true'

3.6. DELETING IMAGES FROM THE IMAGE SERVICE

Use the glance image-delete command to delete one or more images that you do not need to store in
the Image service (glance).

Procedure

Delete one or more images:

$ glance image-delete <image-id> [<image-id> ...]

Replace <image-id> with the ID of the image you want to delete.

WARNING

The glance image-delete command permanently deletes the image
and all copies of the image, as well as the image instance and metadata.

CHAPTER 3. MANAGING IMAGES, IMAGE PROPERTIES, AND IMAGE FORMATS

35

CHAPTER 4. CONFIGURING THE IMAGE SERVICE IMAGE
IMPORT METHOD

The default settings for the Image service (glance) are determined by the Orchestration service (heat)
templates that you use when you install Red Hat OpenStack Platform (RHOSP). The Orchestration
service template for the Image service is deployment/glance/glance-api-container-puppet.yaml.

You can customize aspects of the Image service with a custom environment file, which is a special type
of template you can use to customize your Orchestration service templates. For more information about
Orchestration service templates and environment files, see Understanding heat templates in Installing
and managing Red Hat OpenStack Platform with director.

As a cloud administrator, you can configure an image import workflow for cloud users to upload their
own images to the Image service by using the web-download or glance-direct import methods. You can
monitor uploaded images in a staging area before they go active in a storage back end, and you can
configure the import workflow to run a set of plugins to make user images discoverable, for example, the
image property injection plugin for metadata or the image conversion plugin for image formats.

The web-download image import method is enabled by default, but cloud administrators can configure
the glance-direct method. For further information about the available import methods in Red Hat
OpenStack Platform (RHOSP), see Image service image import methods .

4.1. CONFIGURING THE GLANCE-DIRECT IMAGE IMPORT METHOD

When cloud administrators enable the glance-direct image import method, cloud users can upload local
images to a shared staging area in the OpenStack Image service (glance), a temporary shared storage
location common to all Image service API workers.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. Create or open a YAML environment file to configure the import parameters:

Example

$ vi /home/stack/templates/<glance-import-settings>.yaml

Replace <glance-import-settings> with the name of your file.

4. Configure the NFS back end that is required for shared staging:

parameter_defaults:
 GlanceBackend: file
 GlanceNfsEnabled: true
 GlanceNfsShare: 192.168.122.1:/export/glance

5. Add glance-direct to the GlanceEnabledImportMethods parameter to enable the glance-
direct import method:

Red Hat OpenStack Platform 17.1 Creating and managing images

36

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/index#con_heat-templates_understanding-heat-templates

parameter_defaults:
 [...]
 GlanceEnabledImportMethods: glance-direct,web-download

6. Configure the NFS staging area that is required for the glance-direct import method:

parameter_defaults:
 [...]
 GlanceStagingNfsShare: 192.168.122.1:/export/glance-staging

The GlanceEnabledImportMethods parameter is necessary if you want to enable methods
other than web-download. For more information about the GlanceBackend,
GlanceNfsEnabled, and GlanceStagingNfsShare parameters, see Image Storage (glance)
Parameters in Overcloud parameters.

7. Add your <glance-import-settings>.yaml file to the stack with your other environment files
and deploy the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
-e [your environment files] \
-e /home/stack/templates/<glance-import-settings>.yaml

4.2. CONTROLLING IMAGE WEB-IMPORT SOURCES

You can limit the sources of web-import image downloads by adding URI blocklists and allowlists to the
optional glance-image-import.conf file.

You can allow or block image source URIs at three levels:

scheme (allowed_schemes, disallowed_schemes)

host (allowed_hosts, disallowed_hosts)

port (allowed_ports, disallowed_ports)

If you specify both allowlist and blocklist at any level, the allowlist is honored and the blocklist is ignored.

The Image service (glance) applies the following decision logic to validate image source URIs:

1. The scheme is checked.

a. Missing scheme: reject

b. If there is an allowlist, and the scheme is not present in the allowlist: reject. Otherwise, skip C
and continue on to 2.

c. If there is a blocklist, and the scheme is present in the blocklist: reject.

2. The host name is checked.

a. Missing host name: reject

b. If there is an allowlist, and the host name is not present in the allowlist: reject. Otherwise,
skip C and continue on to 3.

c. If there is a blocklist, and the host name is present in the blocklist: reject.

CHAPTER 4. CONFIGURING THE IMAGE SERVICE IMAGE IMPORT METHOD

37

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/overcloud_parameters/ref_image-storage-glance-parameters_overcloud_parameters#doc-wrapper

3. If there is a port in the URI, the port is checked.

a. If there is a allowlist, and the port is not present in the allowlist: reject. Otherwise, skip B and
continue on to 4.

b. If there is a blocklist, and the port is present in the blocklist: reject.

4. The URI is accepted as valid.

If you allow a scheme, either by adding it to an allowlist or by not adding it to a blocklist, any URI that uses
the default port for that scheme by not including a port in the URI is allowed. If it does include a port in
the URI, the URI is validated according to the default decision logic.

4.2.1. Image import allowlist example

In this example, the default port for FTP is 21.

Because ftp is in the list for allowed_schemes, this URL to the image resource is allowed:
ftp://example.org/some/resource.

However, because 21 is not in the list for allowed_ports, this URL to the same image resource is
rejected: ftp://example.org:21/some/resource.

allowed_schemes = [http,https,ftp]
disallowed_schemes = []
allowed_hosts = []
disallowed_hosts = []
allowed_ports = [80,443]
disallowed_ports = []

4.2.2. Default image import blocklist and allowlist settings

The glance-image-import.conf file is an optional file that contains the following default options:

allowed_schemes - [http, https]

disallowed_schemes - empty list

allowed_hosts - empty list

disallowed_hosts - empty list

allowed_ports - [80, 443]

disallowed_ports - empty list

If you use the defaults, end users can access URIs by using only the http or https scheme. The only ports
that users can specify are 80 and 443. Users do not have to specify a port, but if they do, it must be
either 80 or 443.

You can find the glance-image-import.conf file in the etc/ subdirectory of the Image service source
code tree. Ensure that you are looking in the correct branch for your release of Red Hat OpenStack
Platform.

4.3. INJECTING METADATA ON IMAGE IMPORT TO CONTROL WHERE

Red Hat OpenStack Platform 17.1 Creating and managing images

38

ftp://example.org/some/resource
ftp://example.org:21/some/resource

4.3. INJECTING METADATA ON IMAGE IMPORT TO CONTROL WHERE
INSTANCES LAUNCH

Cloud users can upload images to the Image service (glance) and use these images to launch instances.
Cloud users must launch these images on a specific set of Compute nodes. You can control the
assignment of an instance to a Compute node by using image metadata properties.

The image property injection plugin injects metadata properties to images during import. You can
specify the properties by editing the [image_import_opts] and [inject_metadata_properties] sections
of the glance-image-import.conf file. You can find the glance-image-import.conf file in the etc/
subdirectory of the Image service source code tree. Ensure that you are looking in the correct branch for
your release of Red Hat OpenStack Platform (RHOSP).

To enable the image property injection plugin, add the following line to the [image_import_opts]
section:

[image_import_opts]
image_import_plugins = [inject_image_metadata]

To limit the metadata injection to images provided by a certain set of users, set the ignore_user_roles
parameter. For example, use the following configuration to inject one value for property1 and two
values for property2 into images downloaded by any non-admin user.

[DEFAULT]
[image_conversion]
[image_import_opts]
image_import_plugins = [inject_image_metadata]
[import_filtering_opts]
[inject_metadata_properties]
ignore_user_roles = admin
inject = PROPERTY1:value,PROPERTY2:value;another value

The parameter ignore_user_roles is a comma-separated list of the Identity service (keystone) roles
that the plugin ignores. This means that if the user that makes the image import call has any of these
roles, the plugin does not inject any properties into the image.

The parameter inject is a comma-separated list of properties and values that are injected into the
image record for the imported image. Each property and value must be quoted and separated by a colon
(‘:’).

CHAPTER 4. CONFIGURING THE IMAGE SERVICE IMAGE IMPORT METHOD

39

CHAPTER 5. IMAGE SERVICE WITH MULTIPLE STORES
The Red Hat OpenStack Platform (RHOSP) Image service (glance) supports using multiple stores with
distributed edge architecture so that you can have an image pool at every edge site.

5.1. IMAGE COPIES ON MULTIPLE STORES

When you use multiple stores with distributed edge architecture, you can have an image pool at every
edge site. You can copy images between the central site, which is also known as the hub site, and the
edge sites.

The image metadata contains the location of each copy. For example, an image present on two edge
sites is exposed as a single UUID with three locations: the central site plus the two edge sites. This
means you can have copies of image data that share a single UUID on many stores. For more information
about locations, see Understanding the location of images .

With a RADOS Block Device (RBD) image pool at every edge site, you can boot Virtual Machines (VMs)
quickly by using Ceph RBD copy-on-write (COW) and snapshot layering technology. This means that
you can boot VMs from volumes and have live migration. For more information about layering with Ceph
RBD, see Ceph block device layering in the Block Device Guide .

When you launch an instance at an edge site, the required image is copied to the local Image service
(glance) store automatically. However, you can copy images in advance from the central Image store to
edge sites by using glance multistore to save time during instance launch.

5.2. REQUIREMENTS OF STORAGE EDGE ARCHITECTURE

Refer to the following requirements to use images with edge sites:

A copy of each image must exist in the Image service (glance) at the central location.

You must copy images from an edge site to the central location before you can copy them to
other edge sites.

You must use raw images when deploying a Distributed Compute Node (DCN) architecture with
Red Hat Ceph Storage.

RADOS Block Device (RBD) must be the storage driver for the Image, Compute, and Block
Storage services.

For each site, you must assign the same value to the NovaComputeAvailabilityZone and
CinderStorageAvailabilityZone parameters.

5.3. IMPORTING AN IMAGE TO MULTIPLE STORES

Use the interoperable image import workflow to import image data into multiple Red Hat Ceph Storage
clusters. You can import images to the Image service (glance) that are available on the local file system
or through a web server.

If you import an image from a web server, the image can be imported into multiple stores at once. If the
image is not available on a web server, you can import the image from a local file system into the central
store and then copy it to additional stores. For more information, see Copy an existing image to multiple
stores.

Use the Image service command-line client for image management.

Red Hat OpenStack Platform 17.1 Creating and managing images

40

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html-single/block_device_guide/index#ceph-block-device-layering_block

IMPORTANT

Always store an image copy on the central site, even if there are no instances using the
image at the central location. For more information about importing images into the
Image service, see the Deploying a Distributed Compute Node architecture guide.

5.3.1. Managing image import failures

You can manage failures of the image import operation by using the --allow-failure parameter:

If the value of the --allow-failure parameter to true, the image status becomes active after the
first store successfully imports the data. This is the default setting. You can view a list of stores
that failed to import the image data by using the os_glance_failed_import image property.

If you set the value of the --allow-failure parameter to false, the image status only becomes
active after all specified stores successfully import the data. Failure of any store to import the
image data results in an image status of failed. The image is not imported into any of the
specified stores.

5.3.2. Importing image data to multiple stores

Because the default setting of the --allow-failure parameter is true, you do not need to include the
parameter in the command if it is acceptable for some stores to fail to import the image data.

NOTE

This procedure does not require all stores to successfully import the image data.

Procedure

Import image data to multiple, specified stores:

$ glance image-create-via-import \
--container-format bare \
--name <image-name> \
--import-method web-download \
--uri <uri> \
--stores <store-1>,<store-2>,<store-3>

Replace <image-name> with the name of the image you want to import.

Replace <uri> with the URI of the image.

Replace <store-1>, <store-2>, and <store-3> with the names of the stores to which you
want to import the image data.

Alternatively, replace --stores with --all-stores true to upload the image to all the stores.

NOTE

The glance image-create-via-import command, which automatically converts the
QCOW2 image to RAW format, works only with the web-download method. The glance-
direct method is available, but it works only in deployments with a configured shared file
system.

CHAPTER 5. IMAGE SERVICE WITH MULTIPLE STORES

41

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/deploying_a_distributed_compute_node_dcn_architecture/index

5.3.3. Importing image data to multiple stores without failure

This procedure requires all stores to successfully import the image data.

Procedure

1. Import image data to multiple, specified stores:

$ glance image-create-via-import \
--container-format bare \
--name <image-name> \
--import-method web-download \
--uri <uri> \
--stores <store-1>,<store-2>,<store-3>

Replace <image-name> with the name of the image you want to import.

Replace <uri> with the URI of the image.

Replace <store-1>, <store-2>, and <store-3> with the names of stores to which you want to
copy the image data.

Alternatively, replace --stores with --all-stores true to upload the image to all the stores.

NOTE

With the --allow-failure parameter set to false, the Image service (glance)
does not ignore stores that fail to import the image data. You can view the
list of failed stores with the image property os_glance_failed_import. For
more information, see Section 5.4, “Checking the progress of the image
import operation”.

2. Verify that the image data was added to specific stores:

$ glance image-show <image-id> | grep stores

Replace <image-id> with the ID of the original existing image.

The output displays a comma-delimited list of stores.

5.3.4. Importing image data to a single store

You can use the Image service (glance) to import image data to a single store.

Procedure

1. Import image data to a single store:

$ glance image-create-via-import \
--container-format bare \
--name <image-name> \
--import-method web-download \
--uri <uri> \
--store <store>

Red Hat OpenStack Platform 17.1 Creating and managing images

42

Replace <image-name> with the name of the image you want to import.

Replace <uri> with the URI of the image.

Replace <store> with the name of the store to which you want to copy the image data.

NOTE

If you do not include the options of --stores, --all-stores, or --store in the
command, the Image service creates the image in the central store.

2. Verify that the image data was added to specific store:

$ glance image-show <image-id> | grep stores

Replace <image-id> with the ID of the original existing image.
The output displays a comma-delimited list of stores.

5.4. CHECKING THE PROGRESS OF THE IMAGE IMPORT OPERATION

The interoperable image import workflow sequentially imports image data into stores. The size of the
image, the number of stores, and the network speed between the central site and the edge sites impact
how long it takes for the image import operation to complete.

You can follow the progress of the image import by looking at two image properties, which appear in
notifications sent during the image import operation:

The os_glance_importing_to_stores property lists the stores that have not imported the
image data. At the beginning of the import, all requested stores show up in the list. Each time a
store successfully imports the image data, the Image service removes the store from the list.

The os_glance_failed_import property lists the stores that fail to import the image data. This
list is empty at the beginning of the image import operation.

NOTE

In the following procedure, the environment has three Red Hat Ceph Storage clusters:
the central store and two stores at the edge, dcn0 and dcn1.

Procedure

1. Verify that the image data was added to specific stores:

$ glance image-show <image-id>

Replace <image-id> with the ID of the original existing image.
The output displays a comma-delimited list of stores similar to the following example
snippet:

| os_glance_failed_import |
| os_glance_importing_to_stores | central,dcn0,dcn1
| status | importing

2. Monitor the status of the image import operation. When you precede a command with watch,

CHAPTER 5. IMAGE SERVICE WITH MULTIPLE STORES

43

2. Monitor the status of the image import operation. When you precede a command with watch,
the command output refreshes every two seconds.

$ watch glance image-show <image-id>

Replace <image-id> with the ID of the original existing image.
The status of the operation changes as the image import operation progresses:

| os_glance_failed_import |
| os_glance_importing_to_stores | dcn0,dcn1
| status | importing

Output that shows that an image failed to import resembles the following example:

| os_glance_failed_import | dcn0
| os_glance_importing_to_stores | dcn1
| status | importing

After the operation completes, the status changes to active:

| os_glance_failed_import | dcn0
| os_glance_importing_to_stores |
| status | active

5.5. COPYING AN EXISTING IMAGE TO MULTIPLE STORES

This feature enables you to copy existing images using Red Hat OpenStack Image service (glance)
image data into multiple Red Hat Ceph Storage stores at the edge by using the interoperable image
import workflow.

NOTE

The image must be present at the central site before you copy it to any edge sites. Only
the image owner or administrator can copy existing images to newly added stores.

You can copy existing image data either by setting --all-stores to true or by specifying specific stores to
receive the image data.

The default setting for the --all-stores option is false. If --all-stores is false, you must specify
which stores receive the image data by using --stores <store-1>,<store-2>. If the image data is
already present in any of the specified stores, the request fails.

If you set all-stores to true, and the image data already exists in some of the stores, then those
stores are excluded from the list.

After you specify which stores receive the image data, the Image service (glance) copies data from the
central site to a staging area. Then the Image service imports the image data by using the interoperable
image import workflow. For more information, see Importing an image to multiple stores .

Use the Image service command-line client for image management.

IMPORTANT

Red Hat OpenStack Platform 17.1 Creating and managing images

44

IMPORTANT

Red Hat recommends that administrators carefully avoid closely timed image copy
requests. Two closely timed copy-image operations for the same image causes race
conditions and unexpected results. Existing image data remains as it is, but copying data
to new stores fails.

5.5.1. Copying an image to all stores

Use the following procedure to copy image data to all available stores.

Procedure

1. Copy image data to all available stores:

$ glance image-import <image-id> \
--all-stores true \
--import-method copy-image

Replace <image-id> with the name of the image you want to copy.

2. Confirm that the image data successfully replicated to all available stores:

$ glance image-list --include-stores

For information about how to check the status of the image import operation, see Section 5.4,
“Checking the progress of the image import operation”.

5.5.2. Copying an image to specific stores

Use the following procedure to copy image data to specific stores.

Procedure

1. Copy image data to specific stores:

$ glance image-import <image-id> \
--stores <store-1>,<store-2> \
--import-method copy-image

Replace <image-id> with the name of the image you want to copy.

Replace <store-1> and <store-2> with the names of the stores to which you want to copy
the image data.

2. Confirm that the image data successfully replicated to the specified stores:

$ glance image-list --include-stores

For information about how to check the status of the image import operation, see Section 5.4,
“Checking the progress of the image import operation”.

5.6. DELETING AN IMAGE FROM A SPECIFIC STORE

CHAPTER 5. IMAGE SERVICE WITH MULTIPLE STORES

45

Delete an existing image copy on a specific store by using the Red Hat OpenStack Platform (RHOSP)
Image service (glance).

Use the Image service command-line client for image management.

Procedure

Delete an image from a specific store:

$ glance stores-delete --store <store-id> <image-id>

Replace <store-id> with the name of the store on which the image copy should be deleted.

Replace <image-id> with the ID of the image you want to delete.

WARNING

The glance image-delete command permanently deletes the image across all the
sites. All image copies are deleted, as well as the image instance and metadata.

5.7. LISTING IMAGE LOCATIONS AND LOCATION PROPERTIES

Although an image can be present on multiple sites, there is only a single Universal Unique Identifier
(UUID) for a given image. The image metadata contains the locations of each copy. For example, an
image present on two edge sites is exposed as a single UUID with three locations: the central site and
the two edge sites.

NOTE

Use the Image service (glance) command-line client instead of the OpenStack
command-line client for image management. However, use the openstack image show
command to list image location properties. The glance image-show command output
does not include locations.

Procedure

1. Show the sites on which a copy of the image exists:

$ glance image-show ID | grep "stores"

| stores | default_backend,dcn1,dcn2

In the example, the image is present on the central site, the default_backend, and on the two
edge sites dcn1 and dcn2.

2. Alternatively, you can run the glance image-list command with the --include-stores option to
see the sites where the images exist:

$ glance image-list --include-stores



Red Hat OpenStack Platform 17.1 Creating and managing images

46

| ID | Name | Stores

| 2bd882e7-1da0-4078-97fe-f1bb81f61b00 | cirros | default_backend,dcn1,dcn2

3. List the image location properties to show the details of each location:

$ openstack image show ID -c properties

| properties |

(--- cut ---)
locations='[{'url': 'rbd://79b70c32-df46-4741-93c0-8118ae2ae284/images/2bd882e7-1da0-
4078-97fe-f1bb81f61b00/snap', 'metadata': {'store': 'default_backend'}}, {'url': 'rbd://63df2767-
8ddb-4e06-8186-8c155334f487/images/2bd882e7-1da0-4078-97fe-f1bb81f61b00/snap',
'metadata': {'store': 'dcn1'}}, {'url': 'rbd://1b324138-2ef9-4ef9-bd9e-
aa7e6d6ead78/images/2bd882e7-1da0-4078-97fe-f1bb81f61b00/snap', 'metadata': {'store':
'dcn2'}}]',
(--- cut --)

The image properties show the different Ceph RBD URIs for the location of each image.

In the example, the central image location URI is:

rbd://79b70c32-df46-4741-93c0-8118ae2ae284/images/2bd882e7-1da0-4078-97fe-
f1bb81f61b00/snap', 'metadata': {'store': 'default_backend'}}

The URI is composed of the following data:

79b70c32-df46-4741-93c0-8118ae2ae284 corresponds to the central Ceph FSID. Each
Ceph cluster has a unique FSID.

The default value for all sites is images, which corresponds to the Ceph pool on which the
images are stored.

2bd882e7-1da0-4078-97fe-f1bb81f61b00 corresponds to the image UUID. The UUID is the
same for a given image regardless of its location.

The metadata shows the glance store to which this location maps. In this example, it maps to
the default_backend, which is the central hub site.

CHAPTER 5. IMAGE SERVICE WITH MULTIPLE STORES

47

APPENDIX A. IMAGE SERVICE COMMAND OPTIONS
You can use the following optional arguments with the glance image-create, glance image-create-via-
import, and glance image-update commands.

Table A.1. Command options

Specific to Option Description

All --architecture
<ARCHITECTURE>

Operating system architecture as specified in
https://docs.openstack.org/glance/latest/user/com
mon-image-properties.html#architecture

All --protected [True_False] If true, image will not be deletable.

All --name <NAME> Descriptive name for the image

All --instance-uuid
<INSTANCE_UUID>

Metadata that can be used to record which instance
this image is associated with. (Informational only,
does not create an instance snapshot.)

All --min-disk <MIN_DISK> Amount of disk space (in GB) required to boot
image.

All --visibility <VISIBILITY> Scope of image accessibility. Valid values: public,
private, community, shared

All --kernel-id <KERNEL_ID> ID of image stored in the Image service (glance) that
should be used as the kernel when booting an AMI-
style image.

All --os-version <OS_VERSION> Operating system version as specified by the
distributor

All --disk-format
<DISK_FORMAT>

Format of the disk. Valid values: None, ami, ari, aki,
vhd, vhdx, vmdk, raw, qcow2, vdi, iso, ploop

All --os-distro <OS_DISTRO> Common name of operating system distribution as
specified in
https://docs.openstack.org/glance/latest/user/com
mon-image-properties.html#os-distro

All --owner <OWNER> Owner of the image

All --ramdisk-id <RAMDISK_ID> ID of image stored in the Image service that should
be used as the ramdisk when booting an AMI-style
image.

All --min-ram <MIN_RAM> Amount of RAM (in MB) required to boot image.

Red Hat OpenStack Platform 17.1 Creating and managing images

48

https://docs.openstack.org/glance/latest/user/common-image-properties.html#architecture
https://docs.openstack.org/glance/latest/user/common-image-properties.html#os-distro

All --container-format
<CONTAINER_FORMAT>

Format of the container. Valid values: None, ami, ari,
aki, bare, ovf, ova, docker

All --property <key=value> Arbitrary property to associate with image. May be
used multiple times.

glance
image-create

--tags <TAGS> [<TAGS> ...] List of strings related to the image

glance
image-create

--id <ID> An identifier for the image

glance
image-
update

--remove-property Key name of arbitrary property to remove from the
image.

Specific to Option Description

APPENDIX A. IMAGE SERVICE COMMAND OPTIONS

49

APPENDIX B. IMAGE CONFIGURATION PARAMETERS
You can use the following keys with the --property option for the glance image-create, glance image-
create-via-import, and glance image-update commands.

Table B.1. Property keys

Specific to Key Description Supported values

All architecture The CPU architecture that
must be supported by the
hypervisor. For example,
x86_64, arm, or ppc64.
Run uname -m to get the
architecture of a machine.

aarch - ARM 64-bit

alpha - DEC 64-bit RISC

armv7l - ARM Cortex-A7
MPCore

cris- Ethernet, Token Ring,
AXis-Code Reduced
Instruction Set

i686 - Intel sixth-generation
x86 (P6 micro architecture)

ia64 - Itanium

lm32 - Lattice Micro32

m68k - Motorola 68000

microblaze - Xilinx 32-bit
FPGA (Big Endian)

microblazeel - Xilinx 32-
bit FPGA (Little Endian)

mips - MIPS 32-bit RISC
(Big Endian)

mipsel - MIPS 32-bit RISC
(Little Endian)

mips64 - MIPS 64-bit RISC
(Big Endian)

mips64el - MIPS 64-bit
RISC (Little Endian)

openrisc - OpenCores
RISC

parisc - HP Precision
Architecture RISC

parisc64 - HP Precision
Architecture 64-bit RISC

ppc - PowerPC 32-bit

ppc64 - PowerPC 64-bit

ppcemb - PowerPC
(Embedded 32-bit)

Red Hat OpenStack Platform 17.1 Creating and managing images

50

s390 - IBM Enterprise
Systems Architecture/390

s390x - S/390 64-bit

sh4 - SuperH SH-4 (Little
Endian)

sh4eb - SuperH SH-4 (Big
Endian)

sparc - Scalable Processor
Architecture, 32-bit

sparc64 - Scalable
Processor Architecture, 64-
bit

unicore32 -
Microprocessor Research
and Development Center
RISC Unicore32

x86_64 - 64-bit extension
of IA-32

xtensa - Tensilica Xtensa
configurable
microprocessor core

xtensaeb - Tensilica
Xtensa configurable
microprocessor core (Big
Endian)

All hypervisor_ty
pe

The hypervisor type. kvm, vmware

All instance_uuid For snapshot images, this is
the UUID of the server
used to create this image.

Valid server UUID

All kernel_id The ID of an image stored
in the Image Service that
should be used as the
kernel when booting an
AMI-style image.

Valid image ID

All os_distro The common name of the
operating system
distribution in lowercase.

arch - Arch Linux. Do not
use archlinux or
org.archlinux.

centos - Community
Enterprise Operating
System. Do not use
org.centos or CentOS.

debian - Debian. Do not
use Debian or org.debian.

fedora - Fedora. Do not

Specific to Key Description Supported values

APPENDIX B. IMAGE CONFIGURATION PARAMETERS

51

fedora - Fedora. Do not
use Fedora, org.fedora, or
org.fedoraproject.

freebsd - FreeBSD. Do not
use org.freebsd, freeBSD,
or FreeBSD.

gentoo - Gentoo Linux. Do
not use Gentoo or
org.gentoo.

mandrake - Mandrakelinux
(MandrakeSoft) distribution.
Do not use
mandrakelinux or
MandrakeLinux.

mandriva - Mandriva
Linux. Do not use
mandrivalinux.

mes - Mandriva Enterprise
Server. Do not use
mandrivaent or
mandrivaES.

msdos - Microsoft Disc
Operating System. Do not
use ms-dos.

netbsd - NetBSD. Do not
use NetBSD or
org.netbsd.

netware - Novell NetWare.
Do not use novell or
NetWare.

openbsd - OpenBSD. Do
not use OpenBSD or
org.openbsd.

opensolaris -
OpenSolaris. Do not use
OpenSolaris or
org.opensolaris.

opensuse - openSUSE. Do
not use suse, SuSE, or
org.opensuse.

rhel - Red Hat Enterprise
Linux. Do not use redhat,
RedHat, or com.redhat.

sled - SUSE Linux
Enterprise Desktop. Do not
use com.suse.

ubuntu - Ubuntu. Do not
use Ubuntu, com.ubuntu,
org.ubuntu, or canonical.

windows - Microsoft

Specific to Key Description Supported values

Red Hat OpenStack Platform 17.1 Creating and managing images

52

windows - Microsoft
Windows. Do not use
com.microsoft.server.

All os_version The operating system
version as specified by the
distributor.

Version number (for example, "11.10")

All ramdisk_id The ID of image stored in
the Image Service that
should be used as the
ramdisk when booting an
AMI-style image.

Valid image ID

All vm_mode The virtual machine mode.
This represents the
host/guest ABI
(application binary
interface) used for the
virtual machine.

hvm-Fully virtualized. This is the
mode used by QEMU and KVM.

libvirt API driver hw_cdrom_bu
s

Specifies the type of disk
controller to attach CD-
ROM devices to.

scsi, virtio, ide, or usb. If you
specify iscsi, you must set the
hw_scsi_model parameter to
virtio-scsi.

libvirt API driver hw_disk_bus Specifies the type of disk
controller to attach disk
devices to.

scsi, virtio, ide, or usb. Note that if
using iscsi, the hw_scsi_model
needs to be set to virtio-scsi.

libvirt API driver hw_firmware_
type

Specifies the type of
firmware to use to boot
the instance.

Set to one of the following valid
values:

bios

uefi

libvirt API driver hw_machine_t
ype

Enables booting an ARM
system using the specified
machine type. If an ARM
image is used and its
machine type is not
explicitly specified, then
Compute uses the virt
machine type as the
default for ARMv7 and
AArch64.

Valid types can be viewed by using
the virsh capabilities command.
The machine types are displayed in
the machine tag.

libvirt API driver hw_numa_no
des

Number of NUMA nodes
to expose to the instance
(does not override flavor
definition).

Integer.

Specific to Key Description Supported values

APPENDIX B. IMAGE CONFIGURATION PARAMETERS

53

libvirt API driver hw_numa_cpu
s.0

Mapping of vCPUs N-M to
NUMA node 0 (does not
override flavor definition).

Comma-separated list of integers.

libvirt API driver hw_numa_cpu
s.1

Mapping of vCPUs N-M to
NUMA node 1 (does not
override flavor definition).

Comma-separated list of integers.

libvirt API driver hw_numa_me
m.0

Mapping N MB of RAM to
NUMA node 0 (does not
override flavor definition).

Integer

libvirt API driver hw_numa_me
m.1

Mapping N MB of RAM to
NUMA node 1 (does not
override flavor definition).

Integer

libvirt API driver hw_pci_numa
_affinity_polic
y

Specifies the NUMA
affinity policy for PCI
passthrough devices and
SR-IOV interfaces.

Set to one of the following valid
values:

required: The Compute
service creates an instance
that requests a PCI device
only when at least one of
the NUMA nodes of the
instance has affinity with the
PCI device. This option
provides the best
performance.

preferred: The Compute
service attempts a best
effort selection of PCI
devices based on NUMA
affinity. If affinity is not
possible, then the Compute
service schedules the
instance on a NUMA node
that has no affinity with the
PCI device.

legacy: (Default) The
Compute service creates
instances that request a PCI
device in one of the
following cases:

The PCI device has
affinity with at least one
of the NUMA nodes.

The PCI devices do not
provide information
about their NUMA
affinities.

Specific to Key Description Supported values

Red Hat OpenStack Platform 17.1 Creating and managing images

54

libvirt API driver hw_qemu_gue
st_agent

Guest agent support. If set
to yes, and if qemu-ga is
also installed, file systems
can be quiesced (frozen)
and snapshots created
automatically.

yes / no

libvirt API driver hw_rng_mode
l

Adds a random number
generator (RNG) device to
instances launched with
this image.

The instance flavor
enables the RNG device by
default. To disable the
RNG device, the cloud
administrator must set
hw_rng:allowed to
False on the flavor.

The default entropy source
is /dev/random. To
specify a hardware RNG
device, set rng_dev_path
to /dev/hwrng in your
Compute environment file.

virtio, or other supported device.

libvirt API driver hw_scsi_mod
el

Enables the use of VirtIO
SCSI (virtio-scsi) to
provide block device
access for compute
instances; by default,
instances use VirtIO Block
(virtio-blk). VirtIO SCSI is a
para-virtualized SCSI
controller device that
provides improved
scalability and
performance, and supports
advanced SCSI hardware.

virtio-scsi

libvirt API driver hw_tpm_mod
el

Set to the model of TPM
device to use. Ignored if
hw:tpm_version is not
configured.

tpm-tis: (Default) TPM
Interface Specification.

tpm-crb: Command-
Response Buffer.
Compatible only with TPM
version 2.0.

Specific to Key Description Supported values

APPENDIX B. IMAGE CONFIGURATION PARAMETERS

55

libvirt API driver hw_tpm_versi
on

Set to the version of TPM
to use. TPM version 2.0 is
the only supported version.

2.0

libvirt API driver hw_video_mo
del

The video device driver for
the display device to use in
virtual machine instances.

Set to one of the following values to
specify the supported driver to use:

virtio - (Default)
Recommended Driver for
the virtual machine display
device, supported by most
architectures. The VirtIO
GPU driver is included in
RHEL-7 and later, and Linux
kernel versions 4.4 and later.
If an instance kernel has the
VirtIO GPU driver, then the
instance can use all the
VirtIO GPU features. If an
instance kernel does not
have the VirtIO GPU driver,
the VirtIO GPU device
gracefully falls back to VGA
compatibility mode, which
provides a working display
for the instance.

qxl - Deprecated Driver for
Spice or noVNC
environments that is no
longer maintained.

cirrus - Legacy driver,
supported only for backward
compatibility. Do not use for
new instances.

vga - Use this driver for IBM
Power environments.

gop - Not supported for
QEMU/KVM environments.

xen - Not supported for
KVM environments.

vmvga - Legacy driver, do
not use.

none - Use this value to
disable emulated graphics or
video in virtual GPU (vGPU)
instances where the driver is
configured separately.

Specific to Key Description Supported values

Red Hat OpenStack Platform 17.1 Creating and managing images

56

libvirt API driver hw_video_ram Maximum RAM for the
video image. Used only if a
hw_video:ram_max_m
b value has been set in the
flavor’s extra_specs and
that value is higher than
the value set in
hw_video_ram.

Integer in MB (for example, 64)

libvirt API driver hw_watchdog
_action

Enables a virtual hardware
watchdog device that
carries out the specified
action if the server hangs.
The watchdog uses the
i6300esb device
(emulating a PCI Intel
6300ESB). If
hw_watchdog_action is
not specified, the
watchdog is disabled.

disabled-The device is not
attached. Allows the user to
disable the watchdog for the
image, even if it has been
enabled using the image’s
flavor. The default value for
this parameter is disabled.

reset-Forcefully reset the
guest.

poweroff-Forcefully power
off the guest.

pause-Pause the guest.

none-Only enable the
watchdog; do nothing if the
server hangs.

libvirt API driver os_command
_line

The kernel command line
to be used by the libvirt
driver, instead of the
default. For Linux
Containers(LXC), the
value is used as arguments
for initialization. This key is
valid only for Amazon
kernel, ramdisk, or machine
images (aki, ari, or ami).

Specific to Key Description Supported values

APPENDIX B. IMAGE CONFIGURATION PARAMETERS

57

libvirt API driver os_secure_bo
ot

Use to create an instance
that is protected with UEFI
Secure Boot.

Set to one of the following valid
values:

required: Enables Secure
Boot for instances launched
with this image. The
instance is only launched if
the Compute service
locates a host that can
support Secure Boot. If no
host is found, the Compute
service returns a "No valid
host" error.

disabled: Disables Secure
Boot for instances launched
with this image. Disabled by
default.

optional: Enables Secure
Boot for instances launched
with this image only when
the Compute service
determines that the host
can support Secure Boot.

libvirt API driver
and VMware API
driver

hw_vif_model Specifies the model of
virtual network interface
device to use.

The valid options depend on the
configured hypervisor.

KVM and QEMU: e1000,
ne2k_pci, pcnet, rtl8139, and
virtio.

VMware: e1000, e1000e,
VirtualE1000,
VirtualE1000e,
VirtualPCNet32,
VirtualSriovEthernetCard,
and VirtualVmxnet.

Xen: e1000, netfront,
ne2k_pci, pcnet, and rtl8139.

VMware API
driver

vmware_adapt
ertype

The virtual SCSI or IDE
controller used by the
hypervisor.

lsiLogic, busLogic, or ide

VMware API
driver

vmware_ostyp
e

A VMware GuestID which
describes the operating
system installed in the
image. This value is passed
to the hypervisor when
creating a virtual machine.
If not specified, the key
defaults to otherGuest.

For more information, see Images
with VMware vSphere.

Specific to Key Description Supported values

Red Hat OpenStack Platform 17.1 Creating and managing images

58

https://docs.openstack.org/nova/train/admin/configuration/hypervisor-vmware.html#images-with-vmware-vsphere

VMware API
driver

vmware_imag
e_version

Currently unused. 1

XenAPI driver auto_disk_co
nfig

If true, the root partition on
the disk is automatically
resized before the instance
boots. This value is only
taken into account by the
Compute service when
using a Xen-based
hypervisor with the XenAPI
driver. The Compute
service will only attempt to
resize if there is a single
partition on the image, and
only if the partition is in
ext3 or ext4 format.

true / false

libvirt API driver
and XenAPI
driver

os_type The operating system
installed on the image. The
XenAPI driver contains
logic that takes different
actions depending on the
value of the os_type
parameter of the image.
For example, for
os_type=windows
images, it creates a
FAT32-based swap
partition instead of a Linux
swap partition, and it limits
the injected host name to
less than 16 characters.

linux or windows

Specific to Key Description Supported values

APPENDIX B. IMAGE CONFIGURATION PARAMETERS

59

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. THE IMAGE SERVICE (GLANCE)
	1.1. VIRTUAL MACHINE IMAGE FORMATS
	1.2. SUPPORTED IMAGE SERVICE BACK ENDS
	1.3. IMAGE SIGNING AND VERIFICATION
	1.4. IMAGE FORMAT CONVERSION
	1.5. IMPROVING SCALABILITY WITH IMAGE SERVICE CACHING
	1.6. IMAGE PRE-CACHING
	1.6.1. Configuring the default interval for periodic image pre-caching
	1.6.2. Preparing to use a periodic job to pre-cache an image
	1.6.3. Using a periodic job to pre-cache an image
	1.6.4. Image caching command options

	1.7. USING THE IMAGE SERVICE API TO ENABLE SPARSE IMAGE UPLOAD
	1.8. SECURE METADEF APIS
	1.9. ENABLING METADEF API ACCESS FOR CLOUD USERS

	CHAPTER 2. CREATING RHEL KVM OR RHOSP-COMPATIBLE IMAGES
	2.1. CREATING RHEL KVM IMAGES
	2.1.1. Using a RHEL KVM instance image with Red Hat OpenStack Platform
	2.1.2. Creating a RHEL-based root partition image for bare-metal instances
	2.1.3. Creating a RHEL-based whole-disk user image for bare-metal instances

	2.2. CREATING INSTANCE IMAGES WITH RHEL OR WINDOWS ISO FILES
	2.2.1. Prerequisites
	2.2.2. Creating a Red Hat Enterprise Linux 9 image
	2.2.3. Creating a Red Hat Enterprise Linux 8 image
	2.2.4. Creating a Windows image

	2.3. CREATING AN IMAGE FOR UEFI SECURE BOOT
	2.4. METADATA PROPERTIES FOR VIRTUAL HARDWARE

	CHAPTER 3. MANAGING IMAGES, IMAGE PROPERTIES, AND IMAGE FORMATS
	3.1. UPLOADING IMAGES TO THE IMAGE SERVICE
	3.2. IMAGE SERVICE IMAGE IMPORT METHODS
	3.2.1. Importing an image from a remote URI
	3.2.2. Importing an image from a local volume

	3.3. UPDATING IMAGE PROPERTIES
	3.4. ENABLING IMAGE CONVERSION
	3.4.1. Converting an image to RAW format
	3.4.2. Configuring disk formats with the GlanceDiskFormats parameter
	3.4.3. Storing an image in RAW format

	3.5. HIDING OR UNHIDING IMAGES
	3.6. DELETING IMAGES FROM THE IMAGE SERVICE

	CHAPTER 4. CONFIGURING THE IMAGE SERVICE IMAGE IMPORT METHOD
	4.1. CONFIGURING THE GLANCE-DIRECT IMAGE IMPORT METHOD
	4.2. CONTROLLING IMAGE WEB-IMPORT SOURCES
	4.2.1. Image import allowlist example
	4.2.2. Default image import blocklist and allowlist settings

	4.3. INJECTING METADATA ON IMAGE IMPORT TO CONTROL WHERE INSTANCES LAUNCH

	CHAPTER 5. IMAGE SERVICE WITH MULTIPLE STORES
	5.1. IMAGE COPIES ON MULTIPLE STORES
	5.2. REQUIREMENTS OF STORAGE EDGE ARCHITECTURE
	5.3. IMPORTING AN IMAGE TO MULTIPLE STORES
	5.3.1. Managing image import failures
	5.3.2. Importing image data to multiple stores
	5.3.3. Importing image data to multiple stores without failure
	5.3.4. Importing image data to a single store

	5.4. CHECKING THE PROGRESS OF THE IMAGE IMPORT OPERATION
	5.5. COPYING AN EXISTING IMAGE TO MULTIPLE STORES
	5.5.1. Copying an image to all stores
	5.5.2. Copying an image to specific stores

	5.6. DELETING AN IMAGE FROM A SPECIFIC STORE
	5.7. LISTING IMAGE LOCATIONS AND LOCATION PROPERTIES

	APPENDIX A. IMAGE SERVICE COMMAND OPTIONS
	APPENDIX B. IMAGE CONFIGURATION PARAMETERS

