
Red Hat OpenStack Platform 17.0

Spine Leaf Networking

Configuring routed spine-leaf networks using Red Hat OpenStack Platform director

Last Updated: 2024-03-21

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

Configuring routed spine-leaf networks using Red Hat OpenStack Platform director

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides a basic scenario about how to configure a routed spine-leaf network on the
overcloud. This includes configuring the undercloud, writing the main configuration files, and
creating roles for your nodes.

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. INTRODUCTION TO SPINE-LEAF NETWORKING
1.1. SPINE-LEAF NETWORKING
1.2. SPINE-LEAF NETWORK TOPOLOGY
1.3. SPINE-LEAF REQUIREMENTS
1.4. SPINE-LEAF LIMITATIONS

CHAPTER 2. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD
2.1. CONFIGURING THE SPINE LEAF PROVISIONING NETWORKS
2.2. CONFIGURING A DHCP RELAY
2.3. DESIGNATING A ROLE FOR LEAF NODES
2.4. MAPPING BARE METAL NODE PORTS TO CONTROL PLANE NETWORK SEGMENTS
2.5. ADDING A NEW LEAF TO A SPINE-LEAF PROVISIONING NETWORK

CHAPTER 3. ALTERNATIVE PROVISIONING NETWORK METHODS
3.1. VLAN PROVISIONING NETWORK
3.2. VXLAN PROVISIONING NETWORK

CHAPTER 4. CONFIGURING THE OVERCLOUD
4.1. DEFINING THE LEAF NETWORKS
4.2. DEFINING LEAF ROLES AND ATTACHING NETWORKS
4.3. CREATING A CUSTOM NIC CONFIGURATION FOR LEAF ROLES
4.4. MAPPING SEPARATE NETWORKS AND SETTING CONTROL PLANE PARAMETERS
4.5. SETTING THE SUBNET FOR VIRTUAL IP ADDRESSES
4.6. PROVISIONING NETWORKS AND VIPS FOR THE OVERCLOUD
4.7. REGISTERING BARE METAL NODES ON THE OVERCLOUD
4.8. INTROSPECTING BARE METAL NODES ON THE OVERCLOUD
4.9. PROVISIONING BARE METAL NODES FOR THE OVERCLOUD
4.10. DEPLOYING A SPINE-LEAF ENABLED OVERCLOUD
4.11. ADDING A NEW LEAF TO A SPINE-LEAF DEPLOYMENT

3

4
4
4
6
7

8
8
9

12
14
15

17
17
17

19
19
21
23
25
28
29
31

33
34
37
39

Table of Contents

1

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

2

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INTRODUCTION TO SPINE-LEAF NETWORKING
The following chapters provide information about constructing a spine-leaf network topology for your
Red Hat OpenStack Platform environment. This includes a full end-to-end scenario and example files
to help replicate a more extensive network topology within your own environment.

1.1. SPINE-LEAF NETWORKING

Red Hat OpenStack Platform has a composable network architecture that you can use to adapt your
networking to the routed spine-leaf data center topology. In a practical application of routed spine-leaf,
a leaf is represented as a composable Compute or Storage role usually in a data center rack, as shown in
Figure 1.1, "Routed spine-leaf example" . The Leaf 0 rack has an undercloud node, Controller nodes, and
Compute nodes. The composable networks are presented to the nodes, which have been assigned to
composable roles. The following diagram contains the following configuration:

The StorageLeaf networks are presented to the Ceph storage and Compute nodes.

The NetworkLeaf represents an example of any network you might want to compose.

Figure 1.1. Routed spine-leaf example

1.2. SPINE-LEAF NETWORK TOPOLOGY

The spine-leaf scenario takes advantage of OpenStack Networking (neutron) functionality to define
multiple subnets within segments of a single network. Each network uses a base network which acts as
Leaf 0. Director creates Leaf 1 and Leaf 2 subnets as segments of the main network.

This scenario uses the following networks:

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

4

Table 1.1. Leaf 0 Networks (base networks)

Network Roles attached Subnet

Provisioning / Ctlplane / Leaf0 Controller, ComputeLeaf0,
CephStorageLeaf0

192.168.10.0/24

Storage Controller, ComputeLeaf0,
CephStorageLeaf0

172.16.0.0/24

StorageMgmt Controller, CephStorageLeaf0 172.17.0.0/24

InternalApi Controller, ComputeLeaf0 172.18.0.0/24

Tenant [1] Controller, ComputeLeaf0 172.19.0.0/24

External Controller 10.1.1.0/24

[1] Tenant networks are also known as project networks.

Table 1.2. Leaf 1 Networks

Network Roles attached Subnet

Provisioning / Ctlplane / Leaf1 ComputeLeaf1,
CephStorageLeaf1

192.168.11.0/24

StorageLeaf1 ComputeLeaf1,
CephStorageLeaf1

172.16.1.0/24

StorageMgmtLeaf1 CephStorageLeaf1 172.17.1.0/24

InternalApiLeaf1 ComputeLeaf1 172.18.1.0/24

TenantLeaf1 [1] ComputeLeaf1 172.19.1.0/24

[1] Tenant networks are also known as project networks.

Table 1.3. Leaf 2 Networks

Network Roles attached Subnet

Provisioning / Ctlplane / Leaf2 ComputeLeaf2,
CephStorageLeaf2

192.168.12.0/24

StorageLeaf2 ComputeLeaf2,
CephStorageLeaf2

172.16.2.0/24

CHAPTER 1. INTRODUCTION TO SPINE-LEAF NETWORKING

5

StorageMgmtLeaf2 CephStorageLeaf2 172.17.2.0/24

InternalApiLeaf2 ComputeLeaf2 172.18.2.0/24

TenantLeaf2 [1] ComputeLeaf2 172.19.2.0/24

Network Roles attached Subnet

[1] Tenant networks are also known as project networks.

Figure 1.2. Spine-leaf network topology

1.3. SPINE-LEAF REQUIREMENTS

To deploy the overcloud on a network with a L3 routed architecture, complete the following prerequisite
steps:

Layer-3 routing

Configure the routing of the network infrastructure to enable traffic between the different L2
segments. You can configure this routing statically or dynamically.

DHCP-Relay

Each L2 segment not local to the undercloud must provide dhcp-relay. You must forward DHCP

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

6

Each L2 segment not local to the undercloud must provide dhcp-relay. You must forward DHCP
requests to the undercloud on the provisioning network segment where the undercloud is connected.

NOTE

The undercloud uses two DHCP servers. One for baremetal node introspection, and
another for deploying overcloud nodes. Ensure that you read DHCP relay configuration to
understand the requirements when you configure dhcp-relay.

1.4. SPINE-LEAF LIMITATIONS

Some roles, such as the Controller role, use virtual IP addresses and clustering. The mechanism
behind this functionality requires L2 network connectivity between these nodes. You must place
these nodes within the same leaf.

Similar restrictions apply to Networker nodes. The network service implements highly-available
default paths in the network with Virtual Router Redundancy Protocol (VRRP). Because VRRP
uses a virtual router IP address, you must connect master and backup nodes to the same L2
network segment.

When you use tenant or provider networks with VLAN segmentation, you must share the
particular VLANs between all Networker and Compute nodes.

NOTE

It is possible to configure the network service with multiple sets of Networker nodes.
Each set of Networker nodes share routes for their networks, and VRRP provides highly-
available default paths within each set of Networker nodes. In this type of configuration,
all Networker nodes that share networks must be on the same L2 network segment.

CHAPTER 1. INTRODUCTION TO SPINE-LEAF NETWORKING

7

CHAPTER 2. CONFIGURING ROUTED SPINE-LEAF IN THE
UNDERCLOUD

This section describes a use case about how to configure the undercloud to accommodate routed
spine-leaf with composable networks.

2.1. CONFIGURING THE SPINE LEAF PROVISIONING NETWORKS

To configure the provisioning networks for your spine leaf infrastructure, edit the undercloud.conf file
and set the relevant parameters included in the following procedure.

Procedure

1. Log in to the undercloud as the stack user.

2. If you do not already have an undercloud.conf file, copy the sample template file:

[stack@director ~]$ cp /usr/share/python-tripleoclient/undercloud.conf.sample
~/undercloud.conf

3. Edit the undercloud.conf file.

4. Set the following values in the [DEFAULT] section:

a. Set local_ip to the undercloud IP on leaf0:

local_ip = 192.168.10.1/24

b. Set undercloud_public_host to the externally facing IP address of the undercloud:

undercloud_public_host = 10.1.1.1

c. Set undercloud_admin_host to the administration IP address of the undercloud. This IP
address is usually on leaf0:

undercloud_admin_host = 192.168.10.2

d. Set local_interface to the interface to bridge for the local network:

local_interface = eth1

e. Set enable_routed_networks to true:

enable_routed_networks = true

f. Define your list of subnets using the subnets parameter. Define one subnet for each L2
segment in the routed spine and leaf:

subnets = leaf0,leaf1,leaf2

g. Specify the subnet associated with the physical L2 segment local to the undercloud using
the local_subnet parameter:

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

8

local_subnet = leaf0

h. Set the value of undercloud_nameservers.

undercloud_nameservers = 10.11.5.19,10.11.5.20

TIP

You can find the current IP addresses of the DNS servers that are used for the undercloud
nameserver by looking in /etc/resolv.conf.

5. Create a new section for each subnet that you define in the subnets parameter:

[leaf0]
cidr = 192.168.10.0/24
dhcp_start = 192.168.10.10
dhcp_end = 192.168.10.90
inspection_iprange = 192.168.10.100,192.168.10.190
gateway = 192.168.10.1
masquerade = False

[leaf1]
cidr = 192.168.11.0/24
dhcp_start = 192.168.11.10
dhcp_end = 192.168.11.90
inspection_iprange = 192.168.11.100,192.168.11.190
gateway = 192.168.11.1
masquerade = False

[leaf2]
cidr = 192.168.12.0/24
dhcp_start = 192.168.12.10
dhcp_end = 192.168.12.90
inspection_iprange = 192.168.12.100,192.168.12.190
gateway = 192.168.12.1
masquerade = False

6. Save the undercloud.conf file.

7. Run the undercloud installation command:

[stack@director ~]$ openstack undercloud install

This configuration creates three subnets on the provisioning network or control plane. The overcloud
uses each network to provision systems within each respective leaf.

To ensure proper relay of DHCP requests to the undercloud, you might need to configure a DHCP relay.

2.2. CONFIGURING A DHCP RELAY

You run the DHCP relay service on a switch, router, or server that is connected to the remote network
segment you want to forward the requests from.

NOTE

CHAPTER 2. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

9

NOTE

Do not run the DHCP relay service on the undercloud.

The undercloud uses two DHCP servers on the provisioning network:

An introspection DHCP server.

A provisioning DHCP server.

You must configure the DHCP relay to forward DHCP requests to both DHCP servers on the
undercloud.

You can use UDP broadcast with devices that support it to relay DHCP requests to the L2 network
segment where the undercloud provisioning network is connected. Alternatively, you can use UDP
unicast, which relays DHCP requests to specific IP addresses.

NOTE

Configuration of DHCP relay on specific device types is beyond the scope of this
document. As a reference, this document provides a DHCP relay configuration example
using the implementation in ISC DHCP software. For more information, see manual page
dhcrelay(8).

IMPORTANT

DHCP option 79 is required for some relays, particularly relays that serve DHCPv6
addresses, and relays that do not pass on the originating MAC address. For more
information, see RFC6939.

Broadcast DHCP relay

This method relays DHCP requests using UDP broadcast traffic onto the L2 network segment where the
DHCP server or servers reside. All devices on the network segment receive the broadcast traffic. When
using UDP broadcast, both DHCP servers on the undercloud receive the relayed DHCP request.
Depending on the implementation, you can configure this by specifying either the interface or IP
network address:

Interface

Specify an interface that is connected to the L2 network segment where the DHCP requests are
relayed.

IP network address

Specify the network address of the IP network where the DHCP requests are relayed.

Unicast DHCP relay

This method relays DHCP requests using UDP unicast traffic to specific DHCP servers. When you use
UDP unicast, you must configure the device that provides the DHCP relay to relay DHCP requests to
both the IP address that is assigned to the interface used for introspection on the undercloud and the
IP address of the network namespace that the OpenStack Networking (neutron) service creates to host
the DHCP service for the ctlplane network.

The interface used for introspection is the one defined as inspection_interface in the undercloud.conf
file. If you have not set this parameter, the default interface for the undercloud is br-ctlplane.

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

10

https://www.rfc-editor.org/rfc/rfc6939

NOTE

It is common to use the br-ctlplane interface for introspection. The IP address that you
define as the local_ip in the undercloud.conf file is on the br-ctlplane interface.

The IP address allocated to the Neutron DHCP namespace is the first address available in the IP range
that you configure for the local_subnet in the undercloud.conf file. The first address in the IP range is
the one that you define as dhcp_start in the configuration. For example, 192.168.10.10 is the IP address
if you use the following configuration:

[DEFAULT]
local_subnet = leaf0
subnets = leaf0,leaf1,leaf2

[leaf0]
cidr = 192.168.10.0/24
dhcp_start = 192.168.10.10
dhcp_end = 192.168.10.90
inspection_iprange = 192.168.10.100,192.168.10.190
gateway = 192.168.10.1
masquerade = False

WARNING

The IP address for the DHCP namespace is automatically allocated. In most cases,
this address is the first address in the IP range. To verify that this is the case, run the
following commands on the undercloud:

$ openstack port list --device-owner network:dhcp -c "Fixed IP Addresses"
+--+
| Fixed IP Addresses |
+--+
| ip_address='192.168.10.10', subnet_id='7526fbe3-f52a-4b39-a828-
ec59f4ed12b2' |
+--+
$ openstack subnet show 7526fbe3-f52a-4b39-a828-ec59f4ed12b2 -c name
+-------+--------+
| Field | Value |
+-------+--------+
| name | leaf0 |
+-------+--------+

Example dhcrelay configuration

In the following examples, the dhcrelay command in the dhcp package uses the following configuration:

Interfaces to relay incoming DHCP request: eth1, eth2, and eth3.

Interface the undercloud DHCP servers on the network segment are connected to: eth0.



CHAPTER 2. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

11

The DHCP server used for introspection is listening on IP address: 192.168.10.1.

The DHCP server used for provisioning is listening on IP address 192.168.10.10.

This results in the following dhcrelay command:

dhcrelay version 4.2.x:

$ sudo dhcrelay -d --no-pid 192.168.10.10 192.168.10.1 \
 -i eth0 -i eth1 -i eth2 -i eth3

dhcrelay version 4.3.x and later:

$ sudo dhcrelay -d --no-pid 192.168.10.10 192.168.10.1 \
 -iu eth0 -id eth1 -id eth2 -id eth3

Example Cisco IOS routing switch configuration

This example uses the following Cisco IOS configuration to perform the following tasks:

Configure a VLAN to use for the provisioning network.

Add the IP address of the leaf.

Forward UDP and BOOTP requests to the introspection DHCP server that listens on IP
address: 192.168.10.1.

Forward UDP and BOOTP requests to the provisioning DHCP server that listens on IP address
192.168.10.10.

interface vlan 2
ip address 192.168.24.254 255.255.255.0
ip helper-address 192.168.10.1
ip helper-address 192.168.10.10
!

Now that you have configured the provisioning network, you can configure the remaining overcloud leaf
networks.

2.3. DESIGNATING A ROLE FOR LEAF NODES

Each role in each leaf network requires a flavor and role assignment so that you can tag nodes into their
respective leaf. Complete the following steps to create and assign each flavor to a role.

Procedure

1. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

2. Retrieve a list of your nodes to identify their UUIDs:

(undercloud)$ openstack baremetal node list

3. Assign each bare metal node that you want to designate for a role with a custom resource class

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

12

3. Assign each bare metal node that you want to designate for a role with a custom resource class
that identifies its leaf network and role.

openstack baremetal node set \
 --resource-class baremetal.<ROLE> <node>

Replace <ROLE> with a name that identifies the role.

Replace <node> with the ID of the bare metal node.
For example, enter the following command to tag a node with UUID 58c3d07e-24f2-48a7-
bbb6-6843f0e8ee13 to the Compute role on Leaf2:

(undercloud)$ openstack baremetal node set \
 --resource-class baremetal.COMPUTE-LEAF2 58c3d07e-24f2-48a7-bbb6-
6843f0e8ee13

4. Add each role to your overcloud-baremetal-deploy.yaml if it is not already defined.

5. Define the resource class that you want to assign to the nodes for the role:

- name: <role>
 count: 1
 defaults:
 resource_class: baremetal.<ROLE>

Replace <role> with the name of the role.

Replace <ROLE> with a name that identifies the role.

6. In a baremetal-deploy.yaml file, define the resource class that you want to assign to the nodes
for the role. Specify the role, profile, quantity, and associated networks that you are deploying:

- name: <role>
 count: 1
 hostname_format: <role>-%index%
 ansible_playbooks:
 - playbook: bm-deploy-playbook.yaml
 defaults:
 resource_class: baremetal.<ROLE>
 profile: control
 networks:
 - network: external
 subnet: external_subnet
 - network: internal_api
 subnet: internal_api_subnet01
 - network: storage
 subnet: storage_subnet01
 - network: storage_mgmt
 subnet: storage_mgmt_subnet01
 - network: tenant
 subnet: tenant_subnet01
 network_config:
 template: templates/multiple_nics/multiple_nics_dvr.j2
 default_route_network:
 - external

CHAPTER 2. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

13

Replace <role> with the name of the role.

Replace <ROLE> with a name that identifies the role.

NOTE

You must create a baremetal-deploy.yaml environment file for every stack
you are deploying, in /home/stack/<stack>.

2.4. MAPPING BARE METAL NODE PORTS TO CONTROL PLANE
NETWORK SEGMENTS

To enable deployment on a L3 routed network, you must configure the physical_network field on the
bare metal ports. Each bare metal port is associated with a bare metal node in the OpenStack Bare
Metal (ironic) service. The physical network names are the names that you include in the subnets option
in the undercloud configuration.

NOTE

The physical network name of the subnet specified as local_subnet in the
undercloud.conf file is always named ctlplane.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Check the bare metal nodes:

$ openstack baremetal node list

3. Ensure that the bare metal nodes are either in enroll or manageable state. If the bare metal
node is not in one of these states, the command that sets the physical_network property on
the baremetal port fails. To set all nodes to manageable state, run the following command:

$ for node in $(openstack baremetal node list -f value -c Name); do openstack baremetal
node manage $node --wait; done

4. Check which baremetal ports are associated with which baremetal node:

$ openstack baremetal port list --node <node-uuid>

5. Set the physical-network parameter for the ports. In the example below, three subnets are
defined in the configuration: leaf0, leaf1, and leaf2. The local_subnet is leaf0. Because the
physical network for the local_subnet is always ctlplane, the baremetal port connected to
leaf0 uses ctlplane. The remaining ports use the other leaf names:

$ openstack baremetal port set --physical-network ctlplane <port-uuid>
$ openstack baremetal port set --physical-network leaf1 <port-uuid>
$ openstack baremetal port set --physical-network leaf2 <port-uuid>

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

14

6. Introspect the nodes before you deploy the overcloud. Include the --all-manageable and --
provide options to set the nodes as available for deployment:

$ openstack overcloud node introspect --all-manageable --provide

2.5. ADDING A NEW LEAF TO A SPINE-LEAF PROVISIONING
NETWORK

When increasing network capacity which can include adding new physical sites, you might need to add a
new leaf and a corresponding subnet to your Red Hat OpenStack Platform spine-leaf provisioning
network. When provisioning a leaf on the overcloud, the corresponding undercloud leaf is used.

Prerequisites

Your RHOSP deployment uses a spine-leaf network topology.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the undercloud credentials file:

$ source ~/stackrc

3. In the /home/stack/undercloud.conf file, do the following:

a. Locate the subnets parameter, and add a new subnet for the leaf that you are adding.
A subnet represents an L2 segment in the routed spine and leaf:

Example

In this example, a new subnet (leaf3) is added for the new leaf (leaf3):

subnets = leaf0,leaf1,leaf2,leaf3

b. Create a section for the subnet that you added.

Example

In this example, the section [leaf3] is added for the new subnet (leaf3):

[leaf0]
cidr = 192.168.10.0/24
dhcp_start = 192.168.10.10
dhcp_end = 192.168.10.90
inspection_iprange = 192.168.10.100,192.168.10.190
gateway = 192.168.10.1
masquerade = False

[leaf1]
cidr = 192.168.11.0/24
dhcp_start = 192.168.11.10
dhcp_end = 192.168.11.90
inspection_iprange = 192.168.11.100,192.168.11.190

CHAPTER 2. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

15

gateway = 192.168.11.1
masquerade = False

[leaf2]
cidr = 192.168.12.0/24
dhcp_start = 192.168.12.10
dhcp_end = 192.168.12.90
inspection_iprange = 192.168.12.100,192.168.12.190
gateway = 192.168.12.1
masquerade = False

[leaf3]
cidr = 192.168.13.0/24
dhcp_start = 192.168.13.10
dhcp_end = 192.168.13.90
inspection_iprange = 192.168.13.100,192.168.13.190
gateway = 192.168.13.1
masquerade = False

4. Save the undercloud.conf file.

5. Reinstall your undercloud:

$ openstack undercloud install

Additional resources

Adding a new leaf to a spine-leaf deployment

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

16

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/spine_leaf_networking/index#proc_add-new-leaf_spine-leaf

CHAPTER 3. ALTERNATIVE PROVISIONING NETWORK
METHODS

This section contains information about other methods that you can use to configure the provisioning
network to accommodate routed spine-leaf with composable networks.

3.1. VLAN PROVISIONING NETWORK

In this example, the director deploys new overcloud nodes through the provisioning network and uses a
VLAN tunnel across the L3 topology. For more information, see Figure 3.1, "VLAN provisioning network
topology". If you use a VLAN provisioning network, the director DHCP servers can send DHCPOFFER
broadcasts to any leaf. To establish this tunnel, trunk a VLAN between the Top-of-Rack (ToR) leaf
switches. In the following diagram, the StorageLeaf networks are presented to the Ceph storage and
Compute nodes; the NetworkLeaf represents an example of any network that you want to compose.

Figure 3.1. VLAN provisioning network topology

3.2. VXLAN PROVISIONING NETWORK

In this example, the director deploys new overcloud nodes through the provisioning network and uses a
VXLAN tunnel to span across the layer 3 topology. For more information, see Figure 3.2, "VXLAN
provisioning network topology". If you use a VXLAN provisioning network, the director DHCP servers can
send DHCPOFFER broadcasts to any leaf. To establish this tunnel, configure VXLAN endpoints on the
Top-of-Rack (ToR) leaf switches.

Figure 3.2. VXLAN provisioning network topology

CHAPTER 3. ALTERNATIVE PROVISIONING NETWORK METHODS

17

Figure 3.2. VXLAN provisioning network topology

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

18

CHAPTER 4. CONFIGURING THE OVERCLOUD
Use Red Hat OpenStack Platform (RHOSP) director to install and configure spine leaf networking in the
RHOSP overcloud. The high-level steps are:

1. Define the overcloud networks for each leaf .

2. Create a composable role for each leaf and attach the composable network to each respective
role.

3. Create a unique NIC configuration for each role .

4. Set the control plane parameters and the change bridge mappings so that each leaf routes
traffic through the specific bridge or VLAN on that leaf.

5. Define virtual IPs (VIPs) for your overcloud endpoints, and identify the subnet for each VIP .

6. Provision your overcloud networks and overcloud VIPs .

7. Register the bare metal nodes in your overcloud .

NOTE

Skip steps 7, 8, and 9 if you are using pre-provisioned bare metal nodes.

8. Introspect the bare metal nodes in your overcloud .

9. Provision bare metal nodes .

10. Deploy your overcloud using the configuration you set in the earlier steps .

4.1. DEFINING THE LEAF NETWORKS

The Red Hat OpenStack Platform (RHOSP) director creates the overcloud leaf networks from a YAML-
formatted, custom network definition file that you construct. This custom network definition file lists
each composable network and its attributes and also defines the subnets needed for each leaf.

Complete the following steps to create a YAML-formatted, custom network definition file that contains
the specifications for your spine-leaf network on the overcloud. Later, the provisioning process creates
a heat environment file from your network definition file that you will include when you deploy your
RHOSP overcloud.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credential file:

$ source ~/stackrc

CHAPTER 4. CONFIGURING THE OVERCLOUD

19

3. Create a templates directory under /home/stack:

$ mkdir /home/stack/templates

4. Use the default template, routed-networks.yaml, template as a basis to create a custom
network definition template for your environment, by copying it to your templates directory:

Example

$ cp /usr/share/openstack-tripleo-heat-templates/network-data-samples/\
routed-networks.yaml \
/home/stack/templates/spine-leaf-networks-data.yaml

5. Edit your copy of the network definition template to define each base network and respective
leaf subnets as a composable network item.

TIP

For information, see Network definition file configuration options in the Director Installation and
Usage guide.

Example

The following example demonstrates how to define the Internal API network and its leaf
networks:

- name: InternalApi
 name_lower: internal_api
 vip: true
 mtu: 1500
 subnets:
 internal_api_subnet:
 ip_subnet: 172.16.32.0/24
 gateway_ip: 172.16.32.1
 allocation_pools:
 - start: 172.16.32.4
 end: 172.16.32.250
 vlan: 20
 internal_api_leaf1_subnet:
 ip_subnet: 172.16.33.0/24
 gateway_ip: 172.16.33.1
 allocation_pools:
 - start: 172.16.33.4
 end: 172.16.33.250
 vlan: 30
 internal_api_leaf2_subnet:
 ip_subnet: 172.16.34.0/24
 gateway_ip: 172.16.34.1
 allocation_pools:
 - start: 172.16.34.4
 end: 172.16.34.250
 vlan: 40

NOTE

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

20

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#ref_network-data-yaml-options_overcloud_networking

NOTE

You do not define the Control Plane networks in your custom network definition template
because the undercloud has already created these networks. However, you must set the
parameters manually so that the overcloud can configure the NICs accordingly. For more
information, see Configuring routed spine-leaf in the undercloud .

NOTE

There is currently no automatic validation for the network subnet and allocation_pools
values. Ensure that you define these values consistently and that there is no conflict with
existing networks.

NOTE

Add the vip parameter and set the value to true for the networks that host the
Controller-based services. In this example, the InternalApi network contains these
services.

Next steps

1. Note the path and file name of the custom network definition file that you have created. You
will need this information later when you provision your networks for the RHOSP overcloud.

2. Proceed to the next step Defining leaf roles and attaching networks .

Additional resources

Network definition file configuration options in the Director Installation and Usage guide

4.2. DEFINING LEAF ROLES AND ATTACHING NETWORKS

The Red Hat OpenStack Platform (RHOSP) director creates a composable role for each leaf and
attaches the composable network to each respective role from a roles template that you construct. Start
by copying the default Controller, Compute, and Ceph Storage roles from the director core templates,
and modifying these to meet your environment’s needs. After you have created all of the individual roles,
you run the openstack overcloud roles generate command to concatenate them into one large
custom roles data file.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credential file:

$ source ~/stackrc

3. Copy the default roles for Controller, Compute, and Ceph Storage roles that ship with RHOSP
to the home directory of the stack user. Rename the files to reflect that they are leaf 0:

CHAPTER 4. CONFIGURING THE OVERCLOUD

21

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/spine_leaf_networking/assembly_configuring-routed-spine-leaf-in-the-undercloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#ref_network-data-yaml-options_overcloud_networking

$ cp /usr/share/openstack-tripleo-heat-templates/roles/Controller.yaml
~/roles/Controller0.yaml
$ cp /usr/share/openstack-tripleo-heat-templates/roles/Compute.yaml ~/roles/Compute0.yaml
$ cp /usr/share/openstack-tripleo-heat-templates/roles/CephStorage.yaml
~/roles/CephStorage0.yaml

4. Copy the leaf 0 files as a basis for your leaf 1 and leaf 2 files:

$ cp ~/roles/Compute0.yaml ~/roles/Compute1.yaml
$ cp ~/roles/Compute0.yaml ~/roles/Compute2.yaml
$ cp ~/roles/CephStorage0.yaml ~/roles/CephStorage1.yaml
$ cp ~/roles/CephStorage0.yaml ~/roles/CephStorage2.yaml

5. Edit the parameters in each file to align with their respective leaf parameters.

TIP

For information about the various parameters in a roles data template, see Examining role
parameters in the Director Installation and Usage guide.

Example - ComputeLeaf0

- name: ComputeLeaf0
 HostnameFormatDefault: '%stackname%-compute-leaf0-%index%'

Example - CephStorageLeaf0

- name: CephStorageLeaf0
 HostnameFormatDefault: '%stackname%-cephstorage-leaf0-%index%'

6. Edit the network parameter in the leaf 1 and leaf 2 files so that they align with the respective
leaf network parameters.

Example - ComputeLeaf1

- name: ComputeLeaf1
 networks:
 InternalApi:
 subnet: internal_api_leaf1
 Tenant:
 subnet: tenant_leaf1
 Storage:
 subnet: storage_leaf1

Example - CephStorageLeaf1

- name: CephStorageLeaf1
 networks:
 Storage:
 subnet: storage_leaf1
 StorageMgmt:
 subnet: storage_mgmt_leaf1

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

22

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_composable-services-and-custom-roles#ref_examining-role-parameters_composable-services-and-custom-roles

NOTE

This applies only to leaf 1 and leaf 2. The network parameter for leaf 0 retains the
base subnet values, which are the lowercase names of each subnet combined
with a _subnet suffix. For example, the Internal API for leaf 0 is
internal_api_subnet.

7. When your role configuration is complete, run the overcloud roles generate command to
generate the full roles data file.

Example

$ openstack overcloud roles generate --roles-path ~/roles -o spine-leaf-roles-data.yaml
Controller Compute Compute1 Compute2 CephStorage CephStorage1 CephStorage2

This creates one custom roles data file that includes all of the custom roles for each respective
leaf network.

Next steps

1. Note the path and file name of the custom roles data file that the overcloud roles generate
command has output. You will need this information later when you deploy your overcloud.

2. Proceed to the next step Creating a custom NIC configuration for leaf roles .

Additional resources

Examining role parameters in the Director Installation and Usage guide

4.3. CREATING A CUSTOM NIC CONFIGURATION FOR LEAF ROLES

Each role that the Red Hat OpenStack Platform (RHOSP) director creates requires a unique NIC
configuration. Complete the following steps to create a custom set of NIC templates and a custom
environment file that maps the custom templates to the respective role.

Prerequisites

Access to the undercloud host and credentials for the stack user.

You have a custom network definition file.

You have a custom roles data file.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credential file:

$ source ~/stackrc

3. Copy the content from one of the default NIC templates to use as a basis for a custom template
for your NIC configuration.

CHAPTER 4. CONFIGURING THE OVERCLOUD

23

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_composable-services-and-custom-roles#ref_examining-role-parameters_composable-services-and-custom-roles

Example

In this example, the single-nic-vlans NIC template is being copied and will be used as the basis
for a custom template for your NIC configuration:

$ cp -r /usr/share/ansible/roles/tripleo_network_config/\
templates/single-nic-vlans/* /home/stack/templates/spine-leaf-nics/.

4. Edit each NIC configuration in the NIC templates that you copied in the earlier step to reflect
the specifics for your spine-leaf topology.

Example

{% set mtu_list = [ctlplane_mtu] %}
{% for network in role_networks %}
{{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
{%- endfor %}
{% set min_viable_mtu = mtu_list | max %}
network_config:
- type: ovs_bridge
 name: {{ neutron_physical_bridge_name }}
 mtu: {{ min_viable_mtu }}
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_subnet_cidr }}
 routes: {{ ctlplane_host_routes }}
 members:
 - type: interface
 name: nic1
 mtu: {{ min_viable_mtu }}
 # force the MAC address of the bridge to this interface
 primary: true
{% for network in role_networks %}
 - type: vlan
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask:
 {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}
{% endfor %}

TIP

For more information, see Custom network interface templates in the Director Installation and
Usage guide.

5. Create a custom environment file, such as spine-leaf-nic-roles-map.yaml, that contains a
parameter_defaults section that maps the custom NIC templates to each custom role.

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

24

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#assembly_custom-network-interface-templates

parameter_defaults:
 %%ROLE%%NetworkConfigTemplate: <path_to_ansible_jinja2_nic_config_file>

Example

parameter_defaults:
 Controller0NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'
 Controller1NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'
 Controller2NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'
 ComputeLeaf0NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'
 ComputeLeaf1NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'
 ComputeLeaf2NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'
 CephStorage0NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'
 CephStorage1NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'
 CephStorage2NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'

Next steps

1. Note the path and file name of your custom NIC templates and the custom environment file
that maps the custom NIC templates to each custom role. You will need this information later
when you deploy your overcloud.

2. Proceed to the next step Mapping separate networks and setting control plane parameters .

Additional resources

Custom network interface templates in the Director Installation and Usage guide

4.4. MAPPING SEPARATE NETWORKS AND SETTING CONTROL
PLANE PARAMETERS

In a spine leaf architecture, each leaf routes traffic through the specific bridge or VLAN on that leaf,
which is often the case with edge computing scenarios. So, you must change the default mappings
where the Red Hat OpenStack Platform (RHOSP) Controller and Compute network configurations use
a br-ex bridge.

The RHOSP director creates the control plane network during undercloud creation. However, the
overcloud requires access to the control plane for each leaf. To enable this access, you must define
additional parameters in your deployment.

Complete the following steps to create a custom network environment file that contains the separate
network mappings and sets access to the control plane networks for the overcloud.

Prerequisites

CHAPTER 4. CONFIGURING THE OVERCLOUD

25

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#assembly_custom-network-interface-templates

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credential file:

$ source ~/stackrc

3. In a new custom environment file, such as spine-leaf-ctlplane.yaml, create a
parameter_defaults section and set the NeutronBridgeMappings parameter for each leaf that
uses the default br-ex bridge.

IMPORTANT

The name of the custom environment file that you create to contain your
network definition must end in either .yaml or .template.

For flat network mappings, list each leaf in the NeutronFlatNetworks parameter and set
the NeutronBridgeMappings parameter for each leaf:

Example

parameter_defaults:
 NeutronFlatNetworks: leaf0,leaf1,leaf2
 Controller0Parameters:
 NeutronBridgeMappings: "leaf0:br-ex"

 Controller1Parameters:
 NeutronBridgeMappings: "leaf0:br-ex"

 Controller2Parameters:
 NeutronBridgeMappings: "leaf0:br-ex"

 Compute0Parameters:
 NeutronBridgeMappings: "leaf0:br-ex"

 Compute1Parameters:
 NeutronBridgeMappings: "leaf1:br-ex"

 Compute2Parameters:
 NeutronBridgeMappings: "leaf2:br-ex"

TIP

For more information, see Chapter 17. Networking (neutron) Parameters in the Overcloud
Parameters guide

For VLAN network mappings, add vlan to NeutronNetworkType, and by using
NeutronNetworkVLANRanges, map VLANs for the leaf networks:

Example

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

26

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/overcloud_parameters/ref_networking-neutron-parameters_overcloud_parameters

parameter_defaults:
 NeutronNetworkType: 'geneve,vlan'
 NeutronNetworkVLANRanges: 'leaf0:1:1000,leaf1:1:1000,leaf2:1:1000'

 Controller0Parameters:
 NeutronBridgeMappings: "leaf0:br-ex"

 Controller1Parameters:
 NeutronBridgeMappings: "leaf0:br-ex"

 Controller2Parameters:
 NeutronBridgeMappings: "leaf0:br-ex"

 Compute0Parameters:
 NeutronBridgeMappings: "leaf0:br-ex"

 Compute1Parameters:
 NeutronBridgeMappings: "leaf1:br-ex"

 Compute2Parameters:
 NeutronBridgeMappings: "leaf2:br-ex"

NOTE

You can use both flat networks and VLANs in your spine-leaf topology.

4. Add the control plane subnet mapping for each spine-leaf network by using the
<role>ControlPlaneSubnet parameter:

Example

parameter_defaults:
 NeutronFlatNetworks: leaf0,leaf1,leaf2
 Controller0Parameters:
 NeutronBridgeMappings: "leaf0:br-ex"
 ControllerControlPlaneSubnet: leaf0
 Controller1Parameters:
 NeutronBridgeMappings: "leaf0:br-ex"
 Controller1ControlPlaneSubnet: leaf0
 Controller2Parameters:
 NeutronBridgeMappings: "leaf0:br-ex"
 Controller2ControlPlaneSubnet: leaf0
 Compute0Parameters:
 NeutronBridgeMappings: "leaf0:br-ex"
 Compute0ControlPlaneSubnet: leaf0
 CephStorage0Parameters:
 CephStorage0ControlPlaneSubnet: leaf0
 Compute1Parameters:
 NeutronBridgeMappings: "leaf1:br-ex"
 Compute1ControlPlaneSubnet: leaf1
 CephStorage1Parameters:
 CephStorage1ControlPlaneSubnet: leaf1
 Compute2Parameters:
 NeutronBridgeMappings: "leaf2:br-ex"

CHAPTER 4. CONFIGURING THE OVERCLOUD

27

 Compute2ControlPlaneSubnet: leaf2
 CephStorage2Parameters:
 CephStorage2ControlPlaneSubnet: leaf2

Next steps

1. Note the path and file name of the custom network environment file that you have created. You
will need this information later when you deploy your overcloud.

2. Proceed to the next step Setting the subnet for virtual IP addresses .

Additional resources

Chapter 17. Networking (neutron) Parameters in the Overcloud Parameters guide

4.5. SETTING THE SUBNET FOR VIRTUAL IP ADDRESSES

The Red Hat OpenStack Platform (RHOSP) Controller role typically hosts virtual IP (VIP) addresses for
each network. By default, the RHOSP overcloud takes the VIPs from the base subnet of each network
except for the control plane. The control plane uses ctlplane-subnet, which is the default subnet name
created during a standard undercloud installation.

In this spine-leaf scenario, the default base provisioning network is leaf0 instead of ctlplane-subnet.
This means that you must add overriding values to the VipSubnetMap parameter to change the subnet
that the control plane VIP uses.

Additionally, if the VIPs for each network do not use the base subnet of one or more networks, you must
add additional overrides to the VipSubnetMap parameter to ensure that the RHOSP director creates
VIPs on the subnet associated with the L2 network segment that connects the Controller nodes.

Complete the following steps to create a YAML-formatted, custom network VIP definition file that
contains the overrides for your VIPs on the overcloud. Later, the provisioning process creates a heat
environment file from your network VIP definition file that you will include when you deploy your RHOSP
overcloud. You will also use your network VIP definition file when you run the overcloud deploy
command.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credential file:

$ source ~/stackrc

3. In a new custom network VIP definition template, such as spine-leaf-vip-data.yaml, create a
parameter_defaults section and add the VipSubnetMap parameter based on your
requirements.

If you use leaf0 for the provisioning-control plane network, set the ctlplane VIP remapping
to leaf0:

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

28

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/overcloud_parameters/ref_networking-neutron-parameters_overcloud_parameters

parameter_defaults:
 VipSubnetMap:
 ctlplane: leaf0

TIP

For more information, see Configuring and provisioning network VIPs for the overcloud in
the Director Installation and Usage guide.

If you use a different leaf for multiple VIPs, set the VIP remapping to suit these
requirements. For example, use the following snippet to configure the VipSubnetMap
parameter to use leaf1 for all VIPs:

parameter_defaults:
 VipSubnetMap:
 ctlplane: leaf1
 redis: internal_api_leaf1
 InternalApi: internal_api_leaf1
 Storage: storage_leaf1
 StorageMgmt: storage_mgmt_leaf1

Next steps

1. Note the path and file name of the custom network VIP definition template that you have
created. You will need this information later when you provision your network VIPs for the
RHOSP overcloud.

2. Proceed to the next step Provisioning networks and VIPs for the overcloud .

Additional resources

Chapter 17. Networking (neutron) Parameters in the Overcloud Parameters guide

4.6. PROVISIONING NETWORKS AND VIPS FOR THE OVERCLOUD

The Red Hat OpenStack Platform (RHOSP) provisioning process creates a heat environment file from
your network definition file that contains your network specifications. If you are using VIPs, the RHOSP
provisioning process works the same way: RHOSP creates a heat environment file from your VIP
definition file that contains your VIP specifications. After you provision your networks and VIPs, you have
two heat environment files that you will use later to deploy your overcloud.

Prerequisites

Access to the undercloud host and credentials for the stack user.

You have a network configuration template.

If you are using VIPs, you have a VIP definition template.

Procedure

1. Log in to the undercloud host as the stack user.

CHAPTER 4. CONFIGURING THE OVERCLOUD

29

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-network-vips-for-the-overcloud_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/overcloud_parameters/ref_networking-neutron-parameters_overcloud_parameters

2. Source the stackrc undercloud credential file:

$ source ~/stackrc

3. Using the network configuration template that was created earlier, provision your overcloud
networks, using the --output option to name the file that the overcloud network provision
command outputs:

TIP

For more information, see Configuring and provisioning overcloud network definitions in the
Director Installation and Usage guide.

Example

$ openstack overcloud network provision \
 --output spine-leaf-networks-provisioned.yaml \
 /home/stack/templates/spine_leaf_networks_data.yaml

IMPORTANT

The name of the output file that you specify must end in either .yaml or
.template.

4. Using the VIP definition file created earlier, provision your overcloud VIPs, using the --output
option to name the file that the overcloud network provision command outputs:

TIP

For more information, see Configuring and provisioning network VIPs for the overcloud in the
Director Installation and Usage guide.

$ openstack overcloud network vip provision \
 --stack spine_leaf_overcloud \
 --output spine-leaf-vips_provisioned.yaml \
 /home/stack/templates/spine_leaf_vip_data.yaml

IMPORTANT

The name of the output file that you specify must end in either .yaml or
.template.

5. Note the path and file names of the generated output files. You will need this information later
when you deploy your overcloud.

Verification

You can use the following commands to confirm that the command created your overcloud
networks and subnets:

$ openstack network list

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

30

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-overcloud-network-definitions_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-network-vips-for-the-overcloud_network_provisioning

$ openstack subnet list
$ openstack network show <network>
$ openstack subnet show <subnet>
$ openstack port list
$ openstack port show <port>

Replace <network>, <subnet>, and <port> with the name or UUID of the network, subnet, and
port that you want to check.

Next steps

1. If you are using pre-provisioned nodes, skip to Running the overcloud deployment command .

2. Otherwise, proceed to the next step Registering bare metal nodes on the overcloud .

Additional resources

Configuring and provisioning overcloud network definitions in the Director Installation and Usage
guide

Configuring and provisioning network VIPs for the overcloud in the Director Installation and
Usage guide

overcloud network provision in the Command Line Interface Reference

overcloud network vip provision in the Command Line Interface Reference

4.7. REGISTERING BARE METAL NODES ON THE OVERCLOUD

Registering your physical machines is the first of three steps for provisioning bare metal nodes. Red Hat
OpenStack Platform (RHOSP) director requires a custom node definition template that specifies the
hardware and power management details of your physical machines. You can create this template in
JSON or YAML formats. After you register your physical machines as bare metal nodes, you introspect
them, and then you finally provision them.

NOTE

If you are using pre-provisioned bare metal nodes then you can skip registering and
introspecting bare metal nodes on the overcloud.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credential file:

$ source ~/stackrc

3. Inside a new node definition template, such as barematal-nodes.yaml, create a list of your
physical machines that specifies their hardware and power management details.

Example

CHAPTER 4. CONFIGURING THE OVERCLOUD

31

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-overcloud-network-definitions_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-network-vips-for-the-overcloud_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/command_line_interface_reference/overcloud#overcloud_network_provision
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/command_line_interface_reference/overcloud#overcloud_network_vip_provision

Example

nodes:
 - name: "node01"
 ports:
 - address: "aa:aa:aa:aa:aa:aa"
 physical_network: ctlplane
 local_link_connection:
 switch_id: 52:54:00:00:00:00
 port_id: p0
 cpu: 4
 memory: 6144
 disk: 40
 arch: "x86_64"
 pm_type: "ipmi"
 pm_user: "admin"
 pm_password: "p@55w0rd!"
 pm_addr: "192.168.24.205"
 - name: "node02"
 ports:
 - address: "bb:bb:bb:bb:bb:bb"
 physical_network: ctlplane
 local_link_connection:
 switch_id: 52:54:00:00:00:00
 port_id: p0
 cpu: 4
 memory: 6144
 disk: 40
 arch: "x86_64"
 pm_type: "ipmi"
 pm_user: "admin"
 pm_password: "p@55w0rd!"
 pm_addr: "192.168.24.206"

TIP

For more information about template parameter values and for a JSON example, see
Registering nodes for the overcloud in the Director Installation and Usage guide.

4. Verify the template formatting and syntax.

Example

$ openstack overcloud node import --validate-only ~/templates/\
baremetal-nodes.yaml

5. Correct any errors and save your node definition template.

6. Import your node definition template to RHOSP director to register each node from your
template into director:

Example

$ openstack overcloud node import ~/baremetal-nodes.yaml

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

32

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#proc_registering-nodes-for-the-overcloud_ironic_provisioning

Verification

When the node registration and configuration is complete, confirm that director has successfully
registered the nodes:

$ openstack baremetal node list

The baremetal node list command should include the imported nodes and the status should be
manageable.

Next steps

Proceed to the next step, Introspecting bare metal nodes on the overcloud .

Additional resources

Registering nodes for the overcloud in the Director Installation and Usage guide.

overcloud node import in the Command Line Interface Reference

4.8. INTROSPECTING BARE METAL NODES ON THE OVERCLOUD

After you register a physical machine as a bare metal node, you can automatically add its hardware
details and create ports for each of its Ethernet MAC addresses by using Red Hat OpenStack Platform
(RHOSP) director introspection. After you perform introspection on your bare metal nodes, the final
step is to provision them.

NOTE

If you are using pre-provisioned bare metal nodes then you can skip registering and
introspecting bare metal nodes on the overcloud.

Prerequisites

Access to the undercloud host and credentials for the stack user.

You have registered your bare metal nodes for your overcloud with RHOSP.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the undercloud credentials file:

$ source ~/stackrc

3. Run the pre-introspection validation group to check the introspection requirements:

$ validation run --group pre-introspection

4. Review the results of the validation report.

5. (Optional) Review detailed output from a specific validation:

CHAPTER 4. CONFIGURING THE OVERCLOUD

33

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#proc_registering-nodes-for-the-overcloud_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/command_line_interface_reference/overcloud#overcloud_node_import

$ validation history get --full <UUID>

Replace <UUID> with the UUID of the specific validation from the report that you want to review.

IMPORTANT

A FAILED validation does not prevent you from deploying or running RHOSP.
However, a FAILED validation can indicate a potential issue with a production
environment.

6. Inspect the hardware attributes of all nodes:

$ openstack overcloud node introspect --all-manageable --provide

TIP

For more information, see Using director introspection to collect bare metal node hardware
information in the Director Installation and Usage guide.

Monitor the introspection progress logs in a separate terminal window:

$ sudo tail -f /var/log/containers/ironic-inspector/ironic-inspector.log

Verification

After the introspection completes, all nodes change to an available state.

Next steps

Proceed to the next step, Provisioning bare metal nodes for the overcloud .

Additional resources

Using director introspection to collect bare metal node hardware information in the Director
Installation and Usage guide

overcloud node introspect in the Command Line Interface Reference

4.9. PROVISIONING BARE METAL NODES FOR THE OVERCLOUD

To provision your bare metal nodes for Red Hat OpenStack Platform (RHOSP), you define the quantity
and attributes of the bare metal nodes that you want to deploy in a node definition file in YAML format,
and assign overcloud roles to these nodes. You also define the network layout of the nodes.

The provisioning process creates a heat environment file from your node definition file. This heat
environment file contains the node specifications you configured in your node definition file, including
node count, predictive node placement, custom images, and custom NICs. When you deploy your
overcloud, include this file in the deployment command. The provisioning process also provisions the
port resources for all networks defined for each node or role in the node definition file.

NOTE

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

34

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#proc_using-director-introspection-to-collect-bare-metal-node-hardware-information_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#proc_using-director-introspection-to-collect-bare-metal-node-hardware-information_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/command_line_interface_reference/overcloud#overcloud_node_introspect

NOTE

If you are using pre-provisioned bare metal nodes then you can skip provisioning bare
metal nodes on the overcloud.

Prerequisites

Access to the undercloud host and credentials for the stack user.

The bare metal nodes are registered, introspected, and available for provisioning and
deployment.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credential file:

$ source ~/stackrc

3. Create a bare metal nodes definition file, such as spine-leaf-baremetal-nodes.yaml, and define
the node count for each role that you want to provision.

Example

- name: Controller
 count: 3
 defaults:
 networks:
 - network: ctlplane
 vif: true
 - network: external
 subnet: external_subnet
 - network: internal_api
 subnet: internal_api_subnet01
 - network: storage
 subnet: storage_subnet01
 - network: storage_mgmt
 subnet: storage_mgmt_subnet01
 - network: tenant
 subnet: tenant_subnet01
 network_config:
 template: /home/stack/templates/spine-leaf-nics/single-nic-vlans.j2
 default_route_network:
 - external
- name: Compute0
 count: 1
 defaults:
 networks:
 - network: ctlplane
 vif: true
 - network: internal_api
 subnet: internal_api_subnet02
 - network: tenant
 subnet: tenant_subnet02

CHAPTER 4. CONFIGURING THE OVERCLOUD

35

 - network: storage
 subnet: storage_subnet02
 network_config:
 template: /home/stack/templates/spine-leaf-nics/single-nic-vlans.j2
- name: Compute1
...

TIP

For more information about the properties that you can set bare metal node definition file, see
Provisioning bare metal nodes for the overcloud in the Director Installation and Usage guide.

4. Provision the overcloud bare metal nodes, using the overcloud node provision command.

Example

$ openstack overcloud node provision \
 --stack spine_leaf_overcloud \
 --network-config \
 --output spine-leaf-baremetal-nodes-provisioned.yaml \
 /home/stack/templates/spine-leaf-baremetal-nodes.yaml

IMPORTANT

The name of the output file that you specify must end in either .yaml or
.template.

5. Monitor the provisioning progress in a separate terminal. When provisioning is successful, the
node state changes from available to active:

$ watch openstack baremetal node list

6. Use the metalsmith tool to obtain a unified view of your nodes, including allocations and ports:

$ metalsmith list

7. Note the path and file name of the generated output file. You will need this information later
when you deploy your overcloud.

Verification

Confirm the association of nodes to hostnames:

$ openstack baremetal allocation list

Next steps

Proceed to the next step Deploying a spine-leaf enabled overcloud .

Additional resources

Provisioning bare metal nodes for the overcloud in the Director Installation and Usage guide

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

36

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

4.10. DEPLOYING A SPINE-LEAF ENABLED OVERCLOUD

The last step in deploying your Red Hat OpenStack Platform (RHOSP) overcloud is to run the
overcloud deploy command. This command uses as inputs all of the various overcloud templates and
environment files that you have constructed that represents the blueprint of your overcloud. Using
these templates and environment files, the RHOSP director installs and configures your overcloud.

Prerequisites

Access to the undercloud host and credentials for the stack user.

You have performed all of the steps listed in the earlier procedures in this section and have
assembled all of the various heat templates and environment files to use as inputs for the
overcloud deploy command.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credential file:

$ source ~/stackrc

3. Collate the custom environment files and custom templates that you need for your overcloud
environment, both the unedited heat template files provided with your director installation, and
the custom files you created. This should include the following files:

Your custom network definition file that contains the specifications for your spine-leaf
network on the overcloud, for example, spine-leaf-networks-data.yaml.
For more information, see Defining the leaf networks .

Your custom roles data file that defines a role for each leaf, for example, spine-leaf-
roles.yaml.
For more information, see Defining leaf roles and attaching networks

Your custom environment file that contains the roles and the custom NIC template
mappings for each role, for example, spine-leaf-nic-roles-map.yaml.
For more information, see Creating a custom NIC configuration for leaf roles .

Your custom network environment file that contains the separate network mappings and
sets access to the control plane networks for the overcloud, for example, spine-leaf-
ctlplane.yaml
For more information, see Mapping separate networks and setting control plane
parameters.

Your custom network VIP definition file that contains the overrides for your VIPs on the
overcloud, for example, spine-leaf-vip-data.yaml.
For more information, see Setting the subnet for virtual IP addresses .

The output file from provisioning your overcloud networks, for example, spine-leaf-
networks-provisioned.yaml.
For more information, see Provisioning networks and VIPs for the overcloud .

The output file from provisioning your overcloud VIPs, for example, spine-leaf-vips-
provisioned.yaml.

CHAPTER 4. CONFIGURING THE OVERCLOUD

37

For more information, see Provisioning networks and VIPs for the overcloud .

If you are not using pre-provisioned nodes, the output file from provisioning bare-metal
nodes, for example, spine-leaf-baremetal-nodes-provisioned.yaml.
For more information, see Provisioning bare metal nodes for the overcloud .

Any other custom environment files.

4. Enter the overcloud deploy command by carefully ordering the custom environment files and
custom templates that are inputs to the command.
The general rule is to specify any unedited heat template files first, followed by your custom
environment files and custom templates that contain custom configurations, such as overrides
to the default properties.

In particular, follow this order for listing the inputs to the overcloud deploy command:

a. Include your custom environment file that contains your custom NIC templates mapped to
each role, for example, spine-leaf-nic-roles-map.yaml, after network-environment.yaml.
The network-environment.yaml file provides the default network configuration for
composable network parameters, that your mapping file overrides. Note that the director
renders this file from the network-environment.j2.yaml Jinja2 template.

b. If you created any other spine leaf network environment files, include these environment
files after the roles-NIC templates mapping file.

c. Add any additional environment files. For example, an environment file with your container
image locations or Ceph cluster configuration.

Example

The following command snippet demonstrates the ordering:

$ openstack overcloud deploy --templates \
 -n /home/stack/templates/spine-leaf-networks-data.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml
\
 -e /home/stack/templates/spine-leaf-nic-roles-map.yaml \
 -e /home/stack/templates/spine-leaf-ctlplane.yaml \
 -e /home/stack/templates/spine-leaf-vip-data.yaml \
 -e /home/stack/templates/spine-leaf-baremetal-provisioned.yaml \
 -e /home/stack/templates/spine-leaf-networks-provisioned.yaml \
 -e /home/stack/templates/spine-leaf-vips-provisioned.yaml \
 -e /home/stack/containers-prepare-parameter.yaml \
 -e /home/stack/inject-trust-anchor-hiera.yaml \
 -r /home/stack/templates/spine-leaf-roles-data.yaml

TIP

For more information, see Creating your overcloud in the Director Installation and Usage
guide.

5. Run the overcloud deploy command.
When the overcloud creation completes, director provides details to access your overcloud.

Verification

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

38

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#proc_creating-your-overcloud_ironic_provisioning

Perform the steps in Validating your overcloud deployment in the Director Installation and Usage
guide.

Additional resources

Creating your overcloud in the Director Installation and Usage guide

overcloud deploy in the Command Line Interface Reference

4.11. ADDING A NEW LEAF TO A SPINE-LEAF DEPLOYMENT

When increasing network capacity or adding a new physical site, you might need to add a new leaf to
your Red Hat OpenStack Platform (RHOSP) spine-leaf network.

Prerequisites

Your RHOSP deployment uses a spine-leaf network topology.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credential file:

$ source ~/stackrc

3. Open your network definition template, for example, /home/stack/templates/spine-leaf-
networks-data.yaml. Under the appropriate base network, add a leaf subnet as a composable
network item for the new leaf that you are adding.

Example

In this example, a subnet entry for the new leaf (leaf3) has been added:

- name: InternalApi
 name_lower: internal_api
 vip: true
 vlan: 10
 ip_subnet: '172.18.0.0/24'
 allocation_pools: [{'start': '172.18.0.4', 'end': '172.18.0.250'}]
 gateway_ip: '172.18.0.1'
 subnets:
 internal_api_leaf1:
 vlan: 11
 ip_subnet: '172.18.1.0/24'
 allocation_pools: [{'start': '172.18.1.4', 'end': '172.18.1.250'}]
 gateway_ip: '172.18.1.1'
 internal_api_leaf2:
 vlan: 12
 ip_subnet: '172.18.2.0/24'
 allocation_pools: [{'start': '172.18.2.4', 'end': '172.18.2.250'}]
 gateway_ip: '172.18.2.1'
 internal_api_leaf3:
 vlan: 13

CHAPTER 4. CONFIGURING THE OVERCLOUD

39

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#proc_validating-your-overcloud-deployment_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#proc_creating-your-overcloud_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/command_line_interface_reference/overcloud#overcloud_deploy

 ip_subnet: '172.18.3.0/24'
 allocation_pools: [{'start': '172.18.3.4', 'end': '172.18.3.250'}]
 gateway_ip: '172.18.3.1'

4. Create a roles data file for the new leaf that you are adding.

a. Copy a leaf Compute and a leaf Ceph Storage file for the new leaf that you are adding.

Example

In this example, Compute1.yaml and CephStorage1.yaml are copied for the new leaf,
Compute3.yaml and CephStorage3.yaml, respectively:

$ cp ~/roles/Compute1.yaml ~/roles/Compute3.yaml
$ cp ~/roles/CephStorage1.yaml ~/roles/CephStorage3.yaml

b. Edit the name and HostnameFormatDefault parameters in the new leaf files so that they
align with the respective leaf parameters.

Example

For example, the parameters in the Leaf 1 Compute file have the following values:

- name: ComputeLeaf1
 HostnameFormatDefault: '%stackname%-compute-leaf1-%index%'

Example

The Leaf 1 Ceph Storage parameters have the following values:

- name: CephStorageLeaf1
 HostnameFormatDefault: '%stackname%-cephstorage-leaf1-%index%'

c. Edit the network parameter in the new leaf files so that they align with the respective Leaf
network parameters.

Example

For example, the parameters in the Leaf 1 Compute file have the following values:

- name: ComputeLeaf1
 networks:
 InternalApi:
 subnet: internal_api_leaf1
 Tenant:
 subnet: tenant_leaf1
 Storage:
 subnet: storage_leaf1

Example

The Leaf 1 Ceph Storage parameters have the following values:

- name: CephStorageLeaf1
 networks:
 Storage:

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

40

 subnet: storage_leaf1
 StorageMgmt:
 subnet: storage_mgmt_leaf1

d. When your role configuration is complete, run the following command to generate the full
roles data file. Include all of the leafs in your network and the new leaf that you are adding.

Example

In this example, leaf3 is added to leaf0, leaf1, and leaf2:

$ openstack overcloud roles generate --roles-path ~/roles -o roles_data_spine_leaf.yaml
Controller Controller1 Controller2 Compute Compute1 Compute2 Compute3
CephStorage CephStorage1 CephStorage2 CephStorage3

This creates a full roles_data_spine_leaf.yaml file that includes all of the custom roles for
each respective leaf network.

5. Create a custom NIC configuration for the leaf that you are adding.

a. Copy a leaf Compute and a leaf Ceph Storage NIC configuration file for the new leaf that
you are adding.

Example

In this example, computeleaf1.yaml and ceph-storageleaf1.yaml are copied for the new
leaf, computeleaf3.yaml and ceph-storageleaf3.yaml, respectively:

$ cp ~/templates/spine-leaf-nics/computeleaf1.yaml ~/templates/spine-leaf-
nics/computeleaf3.yaml
$ cp ~/templates/spine-leaf-nics/ceph-storageleaf1.yaml ~/templates/spine-leaf-
nics/ceph-storageleaf3.yaml

6. Open your custom environment file that contains the roles and the custom NIC template
mappings for each role, for example, spine-leaf-nic-roles-map.yaml. Insert an entry for each role
for the new leaf that you are adding.

parameter_defaults:
 %%ROLE%%NetworkConfigTemplate: <path_to_ansible_jinja2_nic_config_file>

Example

In this example, the entries ComputeLeaf3NetworkConfigTemplate and
CephStorage3NetworkConfigTemplate have been added:

parameter_defaults:
 Controller0NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'
 Controller1NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'
 Controller2NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'
 ComputeLeaf0NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'
 ComputeLeaf1NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'

CHAPTER 4. CONFIGURING THE OVERCLOUD

41

 ComputeLeaf2NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'
 ComputeLeaf3NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'
 CephStorage0NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'
 CephStorage1NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'
 CephStorage2NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'
 CephStorage3NetworkConfigTemplate: '/home/stack/templates/spine-leaf-nics/single-nic-
vlans.j2'

7. Open your custom network environment file that contains the separate network mappings and
sets access to the control plane networks for the overcloud, for example, spine-leaf-
ctlplane.yaml and update the control plane parameters.
Under the parameter_defaults section, add the control plane subnet mapping for the new leaf
network. Also, include the external network mapping for the new leaf network.

For flat network mappings, list the new leaf (leaf3) in the NeutronFlatNetworks parameter
and set the NeutronBridgeMappings parameter for the new leaf:

parameter_defaults:
 NeutronFlatNetworks: leaf0,leaf1,leaf2,leaf3
 Controller0Parameters:
 NeutronBridgeMappings: "leaf0:br-ex"
 Compute0Parameters:
 NeutronBridgeMappings: "leaf0:br-ex"
 Compute1Parameters:
 NeutronBridgeMappings: "leaf1:br-ex"
 Compute2Parameters:
 NeutronBridgeMappings: "leaf2:br-ex"
 Compute3Parameters:
 NeutronBridgeMappings: "leaf3:br-ex"

For VLAN network mappings, additionally set the NeutronNetworkVLANRanges to map
VLANs for the new leaf (leaf3) network:

 NeutronNetworkType: 'geneve,vlan'
 NeutronNetworkVLANRanges: 'leaf0:1:1000,leaf1:1:1000,leaf2:1:1000,leaf3:1:1000'

Example

In this example, flat network mappings are used, and the new leaf (leaf3) entries are added:

parameter_defaults:
 NeutronFlatNetworks: leaf0,leaf1,leaf2,leaf3
 Controller0Parameters:
 NeutronBridgeMappings: "leaf0:br-ex"
 ControllerControlPlaneSubnet: leaf0
 Controller1Parameters:
 NeutronBridgeMappings: "leaf0:br-ex"
 Controller1ControlPlaneSubnet: leaf0
 Controller2Parameters:
 NeutronBridgeMappings: "leaf0:br-ex"

Red Hat OpenStack Platform 17.0 Spine Leaf Networking

42

 Controller2ControlPlaneSubnet: leaf0
 Compute0Parameters:
 NeutronBridgeMappings: "leaf0:br-ex"
 Compute0ControlPlaneSubnet: leaf0
 Compute1Parameters:
 NeutronBridgeMappings: "leaf1:br-ex"
 Compute1ControlPlaneSubnet: leaf1
 Compute2Parameters:
 NeutronBridgeMappings: "leaf2:br-ex"
 Compute2ControlPlaneSubnet: leaf2
 Compute3Parameters:
 NeutronBridgeMappings: "leaf3:br-ex"
 Compute3ControlPlaneSubnet: leaf3

8. Redeploy your spine-leaf enabled overcloud, by following the steps in Deploying a spine-leaf
enabled overcloud.

CHAPTER 4. CONFIGURING THE OVERCLOUD

43

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION TO SPINE-LEAF NETWORKING
	1.1. SPINE-LEAF NETWORKING
	1.2. SPINE-LEAF NETWORK TOPOLOGY
	1.3. SPINE-LEAF REQUIREMENTS
	1.4. SPINE-LEAF LIMITATIONS

	CHAPTER 2. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD
	2.1. CONFIGURING THE SPINE LEAF PROVISIONING NETWORKS
	2.2. CONFIGURING A DHCP RELAY
	2.3. DESIGNATING A ROLE FOR LEAF NODES
	2.4. MAPPING BARE METAL NODE PORTS TO CONTROL PLANE NETWORK SEGMENTS
	2.5. ADDING A NEW LEAF TO A SPINE-LEAF PROVISIONING NETWORK

	CHAPTER 3. ALTERNATIVE PROVISIONING NETWORK METHODS
	3.1. VLAN PROVISIONING NETWORK
	3.2. VXLAN PROVISIONING NETWORK

	CHAPTER 4. CONFIGURING THE OVERCLOUD
	4.1. DEFINING THE LEAF NETWORKS
	4.2. DEFINING LEAF ROLES AND ATTACHING NETWORKS
	4.3. CREATING A CUSTOM NIC CONFIGURATION FOR LEAF ROLES
	4.4. MAPPING SEPARATE NETWORKS AND SETTING CONTROL PLANE PARAMETERS
	4.5. SETTING THE SUBNET FOR VIRTUAL IP ADDRESSES
	4.6. PROVISIONING NETWORKS AND VIPS FOR THE OVERCLOUD
	4.7. REGISTERING BARE METAL NODES ON THE OVERCLOUD
	4.8. INTROSPECTING BARE METAL NODES ON THE OVERCLOUD
	4.9. PROVISIONING BARE METAL NODES FOR THE OVERCLOUD
	4.10. DEPLOYING A SPINE-LEAF ENABLED OVERCLOUD
	4.11. ADDING A NEW LEAF TO A SPINE-LEAF DEPLOYMENT

