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Abstract

This guide provides good practice advice and conceptual information about hardening the security
of a Red Hat OpenStack Platform environment.
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MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE
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CHAPTER 1. INTRODUCTION TO SECURITY
Use the tools provided with Red Hat Openstack Platform (RHOSP) to prioritize security in planning, and
in operations, to meet users' expectations of privacy and the security of their data. Failure to implement
security standards can lead to downtime or data breaches. Your use case might be subject to laws that
require passing audits and compliance processes. Note

Follow the instructions in this guide to harden the security of your environment. However, these
recommendations do not guarantee security or compliance. You must assess security from the unique
requirements of your environment.

For information about hardening Ceph, see Data security and hardening guide.

1.1. RED HAT OPENSTACK PLATFORM SECURTIY

By default, Red Hat OpenStack Platform (RHOSP) director creates the overcloud with the following
tools and access controls for security:

SElinux

SELinux provides security enhancement for RHOSP by providing access controls that require each
process to have explicit permissions for every action.

Podman

Podman as a container tool is a secure option for RHOSP as it does not use a client/server model
that requires processes with root access to function.

System access restriction

You can only log into overcloud nodes using either the SSH key that director creates for heat-admin
during the overcloud deployment, or a SSH key that you have created on the overcloud. You cannot
use SSH with a password to log into overcloud nodes, or log into overcloud nodes using root.

You can configure director with the following additional security features based on the needs and trust
level of your organization:

Public TLS and TLS-everywhere

Hardware security module integration with OpenStack Key Manager (barbican)

Signed images and encrypted volumes

Password and fernet key rotation using workflow executions

1.2. SECURITY ZONES

Security zones are common resources, applications, networks and servers that share common security
concerns. Security zones should share the same authentication and authorization requirements and
users.

You may need to redefine your own security zones to be more granular based on the unique architecture
of your cloud, the level of acceptable trust in your environment, and standardized requirements. The
zones and their trust requirements can vary depending upon whether the cloud instance is public,
private, or hybrid.

The minimum zones required to deploy a security-hardened OpenStack cloud, from the least to most
trusted, are as follows:
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Public zone: The public zone hosts public-facing APIs and neutron external networks like
floating IP and SNAT for the external connectivity of instances. This zone is an untrusted area of
the cloud infrastructure. It refers either to cloud access by the public or to networks outside of
your area or responsibility that are external to your Red Hat OpenStack Platform deployment.

Any data with confidentiality or integrity requirements that traverses this zone should be protected
using compensating controls.

Guest zone: The guest zone hosts project networks, whether VXLAN or GENEVE. It is untrusted
for public and private cloud providers that do not have stringent controls on instance use or
allow unrestricted internet access to instances.

If you are a private cloud provider, you can consider this network as internal and trusted if controls are
implemented to assert that the instances and associated projects, to include the underlying hardware
and physical networks, can be trusted.

Storage access zone: The storage access zone is for storage management, monitoring and
clustering, as well as storage traffic itself.

Data transmitted across this network requires a high level of integrity and confidentiality. There can also
be strong availability requirements.

With the exception of replication requirements, do not make this network accessible from outside the
cloud, other than by storage appliances Components deployed into this zone are sensitive from a
security perspective.

Management zone: The management zone includes the undercloud, host operating system,
server hardware, physical networking, and the Red Hat OpenStack Platform director control
plane.

The management network is used for system administration, monitoring, or backup. Do not host
OpenStack APIs or control interfaces on this zone.

Admin zone: The admin zone hosts traffic for system administration, monitoring, or backup. but
is a place where no OpenStack APIs or control interfaces are hosted.

1.3. CONNECTING SECURITY ZONES

Any component that spans across multiple security zones with different trust levels or authentication
requirements must be carefully configured. These connections are often the weak points in network
architecture, and should always be configured to meet the security requirements of the highest trust
level of any of the zones being connected. In many cases the security controls the connected zones
should be a primary concern due to the likelihood of attack. The points where zones meet do present an
additional attack service, and adds opportunities for attackers to migrate their attack to more sensitive
parts of the deployment.

In some cases, OpenStack operators might want to consider securing the integration point at a higher
standard than any of the zones in which it resides. Given the above example of an API endpoint, an
adversary could potentially target the Public API endpoint from the public zone, leveraging this foothold
in the hopes of compromising or gaining access to the internal or admin API within the management
zone if these zones were not completely isolated.

The design of OpenStack is such that separation of security zones is difficult. Because core services will
usually span at least two zones, special consideration must be given when applying security controls to
them.

CHAPTER 1. INTRODUCTION TO SECURITY
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1.4. THREAT CLASSIFICATION, ACTORS, AND ATTACK VECTORS

Most types of cloud deployment, public, private, or hybrid, are exposed to some form of attack. This
section categorizes attackers and summarizes potential types of attacks in each security zone.

1.4.1. Threat actors

A threat actor is an abstract way to refer to a class of adversary that you might attempt to defend
against. The more capable the actor, the more rigorous the security controls that are required for
successful attack mitigation and prevention. Security is a matter of balancing convenience, defense, and
cost, based on requirements. In some cases it will not be possible to secure a cloud deployment against
all of the threat actors described here. When deploying an OpenStack cloud, you must decide where the
balance lies for your deployment and usage.

As part of your risk assessment, you must also consider the type of data you store and any accessible
resources, as this will also influence certain actors. However, even if your data is not appealing to threat
actors, they could simply be attracted to your computing resources, for example, to participate in a
botnet, or to run unauthorized cryptocurrency mining.

Nation-State Actors - This is the most capable adversary. Nation-state actors can bring
tremendous resources against a target. They have capabilities beyond that of any other actor. It
is very difficult to defend against these actors without incredibly stringent controls in place,
both human and technical.

Serious Organized Crime - This class describes highly capable and financially driven groups of
attackers. They are able to fund in-house exploit development and target research. In recent
years the rise of organizations such as the Russian Business Network, a massive cyber-criminal
enterprise, has demonstrated how cyber attacks have become a commodity. Industrial
espionage falls within the serious organized crime group.

Highly Capable Groups - This refers to ‘Hacktivist’ type organizations who are not typically
commercially funded but can pose a serious threat to service providers and cloud operators.

Motivated Individuals Acting alone - these attackers come in many guises, such as rogue or
malicious employees, disaffected customers, or small-scale industrial espionage.

Script Kiddies - These attackers don’t target a specific organization, but run automated
vulnerability scanning and exploitation. They are often only a nuisance, however compromise by
one of these actors is a major risk to an organization’s reputation.

The following practices can help mitigate some of the risks identified above:

Security updates - You must consider the end-to-end security posture of your underlying
physical infrastructure, including networking, storage, and server hardware. These systems will
require their own security hardening practices. For your Red Hat OpenStack Platform
deployment, you should have a plan to regularly test and deploy security updates.

Access management - When granting system access to individuals, you should apply the
principle of least privilege , and only grant them the granular system privileges they actually need.
You can help enforce this policy using the practice of AAA (access, authorization, and
accounting). This approach can also help mitigate the risks of both malicious actors and
typographical errors from system administrators.

Manage insiders - You can help mitigate the threat of malicious insiders by applying careful
assignment of role-based access control (minimum required access), using encryption on
internal interfaces, and using authentication/authorization security (such as centralized identity
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management). You can also consider additional non-technical options, such as separation of
duties and irregular job role rotation.

1.4.2. Outbound Attacks and Reputational Risk

Careful consideration should be given to potential outbound abuse from a cloud deployment. Cloud
deployments tend to have lots of resources available; an attacker who has established a point of
presence within the cloud, either through hacking or entitled access, such as rogue employee, can use
these resources for malicious purposes. Clouds with Compute services make for ideal DDoS and brute
force engines. The issue is especially pressing for public clouds as their users are largely unaccountable,
and can quickly spin up numerous disposable instances for outbound attacks. Methods of prevention
include egress security groups, traffic inspection, intrusion detection systems, customer education and
awareness, and fraud and abuse mitigation strategies. For deployments accessible by or with access to
public networks, such as the Internet, processes and infrastructure should be in place to ideally detect,
and also address outbound abuse.

1.5. SUPPORTING SOFTWARE

Underpinning the whole of the Red Hat solution stack is the secure software supply chain. A cornerstone
of Red Hat’s security strategy, the goal of this strategically important set of practices and procedures is
to deliver solutions that have security built-in upfront and supported over time. Specific steps which Red
Hat take include:

Maintaining upstream relationships and community involvement to help focus on security from
the start.

Selecting and configuring packages based on their security and performance track records.

Building binaries from associated source code (instead of simply accepting upstream builds).

Applying a suite of inspection and quality assurance tools to prevent an extensive array of
potential security issues and regressions.

Digitally signing all released packages and distributing them through cryptographically
authenticated distribution channels.

Providing a single, unified mechanism for distributing patches and updates. The Red Hat
Enterprise Linux and KVM components which underlie OpenStack are also Common Criteria
certified. This involves a third party auditor performing physical site visits, and interviewing staff
about adhering to good practices, for example, about the supply chain or development.

In addition, Red Hat maintains a dedicated security team that analyzes threats and vulnerabilities
against our products, and provides relevant advice and updates through the Customer Portal. This team
determines which issues are important, as opposed to those that are mostly theoretical problems. The
Red Hat Product Security team maintains expertise in, and makes extensive contributions to the
upstream communities associated with our subscription products. A key part of the process, Red Hat
Security Advisories, deliver proactive notification of security flaws affecting Red Hat solutions – along
with patches that are frequently distributed on the same day the vulnerability is first published.

CHAPTER 1. INTRODUCTION TO SECURITY
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CHAPTER 2. DOCUMENTATION
Documentation should provide a general description of the OpenStack environment and cover all
systems used (for example, production, development, or test). Documenting system components,
networks, services, and software often provides the perspective needed to thoroughly cover and
consider security concerns, attack vectors, and possible security zone bridging points. A system
inventory might need to capture ephemeral resources such as virtual machines or virtual disk volumes
that would otherwise be persistent resources in a traditional IT environment.

2.1. SYSTEM ROLES AND TYPES

Document roles that are used in your environment. The two broadly defined types of nodes that
generally make up an OpenStack installation are:

Infrastructure nodes - These run the cloud-related services, such as the OpenStack API
providers (such as neutron), the message queuing service, storage management, monitoring,
networking, and other services required to support the operation and provisioning of the cloud.

Compute, storage, or other resource nodes - Provide compute and storage capacity for
instances running on your cloud.

2.2. HARDWARE INVENTORY

Clouds without stringent compliance requirements for written documentation might benefit from having
a Configuration Management Database (CMDB). CMDBs are normally used for hardware asset tracking
and overall life-cycle management. By leveraging a CMDB, an organization can quickly identify cloud
infrastructure hardware such as compute nodes, storage nodes, or network devices. A CMDB can assist
in identifying assets that exist on the network which might have vulnerabilities due to inadequate
maintenance, inadequate protection, or being displaced and forgotten. An OpenStack provisioning
system can provide some basic CMDB functions if the underlying hardware supports the necessary
auto-discovery features.

2.3. SOFTWARE INVENTORY

As with hardware, all software components within the OpenStack deployment should be documented.
Examples include:

System databases, such as MySQL or mongoDB

OpenStack software components, such as Identity or Compute

Supporting components, such as load-balancers, reverse proxies, DNS, or DHCP services An
authoritative list of software components might be critical when assessing the impact of a
compromise or vulnerability in a library, application or class of software.
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12



CHAPTER 3. ENCRYPTION AND KEY MANAGEMENT
Inter-device communication is a serious security concern. Secure methods of communication over a
network are becoming increasingly important, as demonstrated by significant vulnerabilities such as
Heartbleed, or more advanced attacks such as BEAST and CRIME. However, encryption is only one part
of a larger security strategy. The compromise of an endpoint means that an attacker no longer needs to
break the encryption used, but is able to view and manipulate messages as they are processed by the
system.

This chapter will review features around configuring Transport Layer Security (TLS) to secure both
internal and external resources, and will call out specific categories of systems that should be given
specific attention.

OpenStack components communicate with each other using various protocols and the communication
might involve sensitive or confidential data. An attacker might try to eavesdrop on the channel in order
to get access to sensitive information. It is therefore important that all the components must
communicate with each other using a secured communication protocol.

3.1. INTRODUCTION TO TLS AND SSL

There are situations where there is a security requirement to assure the confidentiality or integrity of
network traffic in an OpenStack deployment. You would generally configure this using cryptographic
measures, such as the TLS protocol. In a typical deployment, all traffic transmitted over public networks
should be security hardened, but security good practice expects that internal traffic must also be
secured. It is insufficient to rely on security zone separation for protection. If an attacker gains access to
the hypervisor or host resources, compromises an API endpoint, or any other service, they must not be
able to easily inject or capture messages, commands, or otherwise affect the management capabilities
of the cloud.

You should security harden all zones with TLS, including the management zone services and intra-
service communications. TLS provides the mechanisms to ensure authentication, non-repudiation,
confidentiality, and integrity of user communications to the OpenStack services, and between the
OpenStack services themselves.

Due to the published vulnerabilities in the Secure Sockets Layer (SSL) protocols, consider using TLS 1.2
or higher in preference to SSL, and that SSL is disabled in all cases, unless you require compatibility with
obsolete browsers or libraries.

3.2. PUBLIC KEY INFRASTRUCTURE

Public Key Infrastructure (PKI) is a framework on which to provide encryption algorithms, cipher modes,
and protocols for securing data and authentication. It consists of a set of systems and processes to
ensure traffic can be sent encrypted while validating the identity of the parties. The PKI profile
described here is the Internet Engineering Task Force (IETF) Public Key Infrastructure (PKIX) profile
developed by the PKIX working group. The core components of PKI are:

Digital Certificates - Signed public key certificates are data structures that have verifiable data
of an entity, its public key along with some other attributes. These certificates are issued by a
Certificate Authority (CA). As the certificates are signed by a CA that is trusted, once verified,
the public key associated with the entity is guaranteed to be associated with the said entity. The
most common standard used to define these certificates is the X.509 standard. The X.509 v3
which is the current standard is described in detail in RFC5280, and updated by RFC6818.
Certificates are issued by CAs as a mechanism to prove the identity of online entities. The CA
digitally signs the certificate by creating a message digest from the certificate and encrypting
the digest with its private key.

CHAPTER 3. ENCRYPTION AND KEY MANAGEMENT
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End entity - The user, process, or system that is the subject of a certificate. The end entity
sends its certificate request to a Registration Authority (RA) for approval. If approved, the RA
forwards the request to a Certification Authority (CA). The Certification Authority verifies the
request and if the information is correct, a certificate is generated and signed. This signed
certificate is then send to a Certificate Repository.

Relying party - The endpoint that receives the digitally signed certificate that is verifiable with
reference to the public key listed on the certificate. The relying party should be in a position to
verify the certificate up the chain, ensure that it is not present in the CRL and also must be able
to verify the expiry date on the certificate.

Certification Authority (CA) - CA is a trusted entity, both by the end party and the party that
relies upon the certificate for certification policies, management handling, and certificate
issuance.

Registration Authority (RA) - An optional system to which a CA delegates certain management
functions, this includes functions such as, authentication of end entities before they are issued a
certificate by a CA.

Certificate Revocation Lists (CRL) - A Certificate Revocation List (CRL) is a list of certificate
serial numbers that have been revoked. End entities presenting these certificates should not be
trusted in a PKI model. Revocation can happen because of several reasons for example, key
compromise, CA compromise.

CRL issuer - An optional system to which a CA delegates the publication of certificate
revocation lists.

Certificate Repository - The location where the end entity certificates and certificate
revocation lists are stored and queried - sometimes referred to as the certificate bundle.

3.3. CERTIFICATION AUTHORITIES

Many organizations have an established Public Key Infrastructure with their own Certification Authority
(CA), certificate policies, and management for which they should use to issue certificates for internal
OpenStack users or services. Organizations in which the public security zone is Internet facing will
additionally need certificates signed by a widely recognized public CA. For cryptographic
communications over the management network, it is recommended one not use a public CA. Instead,
the recommendation is that most deployments deploy their own internal CA.

NOTE

Effective use of TLS relies on the deployment being given a domain or subdomain in DNS
which can be used by either a wildcard, or series of specific certificates issues by either a
public or internal CA. To ensure TLS certificates can be effectively validated, access to
platform services would need to be through these DNS records.

It is recommended that the OpenStack cloud architect consider using separate PKI deployments for
internal systems and customer facing services. This allows the cloud deployer to maintain control of
their PKI infrastructure and makes requesting, signing and deploying certificates for internal systems
easier. Advanced configurations might use separate PKI deployments for different security zones. This
allows OpenStack operators to maintain cryptographic separation of environments, ensuring that
certificates issued to one are not recognized by another.

Certificates used to support TLS on internet facing cloud endpoints (or customer interfaces where the
customer is not expected to have installed anything other than standard operating system provided
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certificate bundles) should be provisioned using Certificate Authorities that are installed in the operating
system certificate bundle.

NOTE

There are management, policy, and technical challenges around creating and signing
certificates. This is an area where cloud architects or operators might wish to seek the
advice of industry leaders and vendors in addition to the guidance recommended here.

3.4. CONFIGURING ENCRYPTION USING DIRECTOR

By default, the overcloud uses unencrypted endpoints for its services. This means that the overcloud
configuration requires an additional environment file to enable SSL/TLS for its Public API endpoints.
The Advanced Overcloud Customization  guide describes how to configure your SSL/TLS certificate and
include it as a part of your overcloud creation process: https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/13/html/advanced_overcloud_customization/sect-
enabling_ssltls_on_the_overcloud

3.5. TLS LIBRARIES

Certain components, services, and applications within the OpenStack ecosystem can be configured to
use TLS libraries. The TLS and HTTP services within OpenStack are typically implemented using
OpenSSL, which has a module that has been validated for FIPS 140-2. However, consider that each
application or service can still introduce weaknesses in how they use the OpenSSL libraries.

3.6. DEPRECATION OF TLS 1.0

IMPORTANT

FedRAMP-authorized systems are required to move away from TLS 1.0. The
recommended level is 1.2, and 1.1 is acceptable only if broad compatibility is required. For
more information, see
https://www.fedramp.gov/assets/resources/documents/CSP_TLS_Requirements.pdf.

For Red Hat OpenStack Platform 13 deployments, TLS 1.0 connections are not accepted by HAProxy,
which handles TLS connections for TLS enabled APIs. This is implemented by the no-tlsv10 option. For
HA deployments with InternalTLS enabled, cross-node traffic on the controller plane is also encrypted.
This includes RabbitMQ, MariaDB, and Redis, among others. MariaDB and Redis have deprecated
TLS1.0, and the same deprecation for RabbitMQ is expected to be backported from upstream.

3.6.1. Checking whether TLS 1.0 is in use

You can use cipherscan to determine whether TLS 1.0 is being presented by your deployment.
Cipherscan can be cloned from https://github.com/mozilla/cipherscan. This example output
demonstrates results received from horizon:

NOTE

Run cipherscan from a non-production system, as it might install additional
dependencies when you first run it.

$ ./cipherscan https://openstack.lab.local
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..............................
Target: openstack.lab.local:443

prio  ciphersuite                  protocols  pfs                 curves
1     ECDHE-RSA-AES128-GCM-SHA256  TLSv1.2    ECDH,P-256,256bits  prime256v1
2     ECDHE-RSA-AES256-GCM-SHA384  TLSv1.2    ECDH,P-256,256bits  prime256v1
3     DHE-RSA-AES128-GCM-SHA256    TLSv1.2    DH,1024bits         None
4     DHE-RSA-AES256-GCM-SHA384    TLSv1.2    DH,1024bits         None
5     ECDHE-RSA-AES128-SHA256      TLSv1.2    ECDH,P-256,256bits  prime256v1
6     ECDHE-RSA-AES256-SHA384      TLSv1.2    ECDH,P-256,256bits  prime256v1
7     ECDHE-RSA-AES128-SHA         TLSv1.2    ECDH,P-256,256bits  prime256v1
8     ECDHE-RSA-AES256-SHA         TLSv1.2    ECDH,P-256,256bits  prime256v1
9     DHE-RSA-AES128-SHA256        TLSv1.2    DH,1024bits         None
10    DHE-RSA-AES128-SHA           TLSv1.2    DH,1024bits         None
11    DHE-RSA-AES256-SHA256        TLSv1.2    DH,1024bits         None
12    DHE-RSA-AES256-SHA           TLSv1.2    DH,1024bits         None
13    ECDHE-RSA-DES-CBC3-SHA       TLSv1.2    ECDH,P-256,256bits  prime256v1
14    EDH-RSA-DES-CBC3-SHA         TLSv1.2    DH,1024bits         None
15    AES128-GCM-SHA256            TLSv1.2    None                None
16    AES256-GCM-SHA384            TLSv1.2    None                None
17    AES128-SHA256                TLSv1.2    None                None
18    AES256-SHA256                TLSv1.2    None                None
19    AES128-SHA                   TLSv1.2    None                None
20    AES256-SHA                   TLSv1.2    None                None
21    DES-CBC3-SHA                 TLSv1.2    None                None

Certificate: trusted, 2048 bits, sha256WithRSAEncryption signature
TLS ticket lifetime hint: None
NPN protocols: None
OCSP stapling: not supported
Cipher ordering: server
Curves ordering: server - fallback: no
Server supports secure renegotiation
Server supported compression methods: NONE
TLS Tolerance: yes

Intolerance to:
 SSL 3.254           : absent
 TLS 1.0             : PRESENT
 TLS 1.1             : PRESENT
 TLS 1.2             : absent
 TLS 1.3             : absent
 TLS 1.4             : absent

When scanning a server, Cipherscan advertises support for a specific TLS version, which is the highest
TLS version it is willing to negotiate. If the target server correctly follows TLS protocol, it will respond
with the highest version that is mutually supported, which may be lower than what Cipherscan initially
advertised. If the server does proceed to establish a connection with the client using that specific
version, it is not considered to be intolerant to that protocol version. If it does not establish the
connection (with the specified version, or any lower version), then intolerance for that version of
protocol is considered to be present. For example:

Intolerance to:
 SSL 3.254           : absent
 TLS 1.0             : PRESENT
 TLS 1.1             : PRESENT
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 TLS 1.2             : absent
 TLS 1.3             : absent
 TLS 1.4             : absent

In this output, intolerance of TLS 1.0 and TLS 1.1 is reported as PRESENT, meaning that the
connection could not be established, and that Cipherscan was unable to connect while advertising
support for those TLS versions. As a result, it is reasonable to conclude that those (and any lower)
versions of the protocol are not enabled on the scanned server.

3.7. CRYPTOGRAPHIC ALGORITHMS, CIPHER MODES, AND
PROTOCOLS

You should consider only using TLS 1.2. Other versions, such as TLS 1.0 and 1.1, are vulnerable to multiple
attacks and are expressly forbidden by many government agencies and regulated industries. TLS 1.0
should be disabled in your environment. TLS 1.1 might be used for broad client compatibility, however
exercise caution when enabling this protocol. Only enable TLS version 1.1 if there is a mandatory
compatibility requirement and if you are aware of the risks involved. All versions of SSL (the predecessor
to TLS) must not be used due to multiple public vulnerabilities.

When you are using TLS 1.2 and control both the clients and the server, the cipher suite should be limited
to ECDHE-ECDSA-AES256-GCM-SHA384. In circumstances where you do not control both endpoints
and are using TLS 1.1 or 1.2 the more general 
HIGH:!aNULL:!eNULL:!DES:!3DES:!SSLv3:!TLSv1:!CAMELLIA is a reasonable cipher selection.

NOTE

This guide is not intended as a reference on cryptography, and is not prescriptive about
what specific algorithms or cipher modes you should enable or disable in your OpenStack
services.

3.8. TLS PROXIES AND HTTP SERVICES

OpenStack endpoints are HTTP services providing APIs to both end-users on public networks and to
other OpenStack services on the management network. You can currently encrypt the external requests
using TLS. To configure this in Red Hat OpenStack Platform, you can deploy the API services behind
HAproxy, which is able to establish and terminate TLS sessions.

In cases where software termination offers insufficient performance, hardware accelerators might be
worth exploring as an alternative option. This approach would require additional configuration on the
platform, and not all hardware load balancers might be compatible with Red Hat OpenStack Platform. It
is important to be mindful of the size of requests that will be processed by any chosen TLS proxy.

3.9. PERFECT FORWARD SECRECY

Configuring TLS servers for perfect forward secrecy requires careful planning around key size, session
IDs, and session tickets. In addition, for multi-server deployments, shared state is also an important
consideration. Real-world deployments might consider enabling this feature for improved performance.
This can be done in a security hardened way, but would require special consideration around key
management. Such configurations are beyond the scope of this guide.

3.10. USE BARBICAN TO MANAGE SECRETS

OpenStack Key Manager (barbican) is the secrets manager for Red Hat OpenStack Platform. You can
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OpenStack Key Manager (barbican) is the secrets manager for Red Hat OpenStack Platform. You can
use the barbican API and command line to centrally manage the certificates, keys, and passwords used
by OpenStack services. Barbican currently supports the following use cases:

Symmetric encryption keys - used for Block Storage (cinder) volume encryption, ephemeral
disk encryption, and Object Storage (swift) object encryption.

Asymmetric keys and certificates - glance image signing and verification, Octavia TLS load
balancing.

In this release, barbican offers integration with the cinder, swift, Octavia, and Compute (nova)
components. For example, you can use barbican for the following use cases:

Support for Encrypted Volumes - You can use barbican to manage your cinder encryption
keys. This configuration uses LUKS to encrypt the disks attached to your instances, including
boot disks. The key management aspect is performed transparently to the user.

Glance Image Signing - You can configure the Image Service (glance) to verify that an
uploaded image has not been tampered with. The image is first signed with a key that is stored
in barbican, with the image then being validated before each use.

For more information, see the Barbican guide: https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/13/html-single/manage_secrets_with_openstack_key_manager/
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CHAPTER 4. IDENTITY AND ACCESS MANAGEMENT
The Identity service (keystone) provides authentication and authorization for cloud users, and is an
important component in security considerations.

The Identity service can directly provide end-user authentication, or can be configured to use external
authentication methods to conform to an organization’s security policies and requirements.

4.1. AUTHENTICATION

Authentication is an integral part of any real world OpenStack deployment. Give careful thought to this
aspect of system design. A complete treatment of this topic is beyond the scope of this guide however
some key topics are presented in the following sections.

At its most basic, authentication is the process of confirming identity - that a user is actually who they
claim to be. A familiar example is providing a username and password when logging in to a system.

The OpenStack Identity service (keystone) supports multiple methods of authentication, including user
name & password, LDAP, and other external authentication methods. Upon successful authentication,
the Identity service provides the user with an authorization token used for subsequent service requests.

Transport Layer Security (TLS) provides authentication between services and persons using X.509
certificates. Although the default mode for TLS is server-side only authentication, you should consider
using certificates for client authentication, as it is mandated in US government standards.

4.2. INVALID LOGIN ATTEMPTS

The Identity Service (keystone) can limit access to accounts after repeated unsuccessful login
attempts. A pattern of repetitive failed login attempts is generally an indicator of brute-force attacks.
This type of attack is more prevalent in public cloud deployments. You can also mitigate this by using an
external authentication system that blocks out an account after a configured number of failed login
attempts. The account then might only be unlocked with further administrative intervention.

Detection techniques can also be used to mitigate damage. Detection involves frequent review of
access control logs to identify unauthorized attempts to access accounts. Possible remediation would
include reviewing the strength of the user password, or blocking the network source of the attack
through firewall rules. You can add firewall rules on the keystone server that restrict the number of
connections; this can help reduce the attack’s effectiveness.

In addition, it is useful to examine account activity for unusual login times and suspicious actions, and
take corrective actions such as disabling the account.

4.3. AUTHORIZATION

The Identity service supports the notion of groups and roles. Users belong to groups while a group has a
list of roles. OpenStack services reference the roles of the user attempting to access the service. The
OpenStack policy enforcer middleware takes into consideration the policy rule associated with each
resource then the user’s group/roles and association to determine if access is allowed to the requested
resource.

4.4. ESTABLISH FORMAL ACCESS CONTROL POLICIES

Prior to configuring roles, groups, and users, you should document your required access control policies
for the OpenStack installation. The policies should be consistent with any regulatory or legal
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requirements for the organization. Future modifications to the access control configuration should be
done consistently with the formal policies. The policies should include the conditions and processes for
creating, deleting, disabling, and enabling accounts, and for assigning privileges to the accounts.
Periodically review the policies and ensure that the configuration is in compliance with approved
policies.

4.5. SERVICE AUTHORIZATION

Cloud administrators must define a user with the role of admin for each service. This service account
provides the service with the authorization to authenticate users.

The Compute and Object Storage services can be configured to use the Identity service to store
authentication information. The Identity service supports client authentication for TLS, which might be
enabled. TLS client authentication provides an additional authentication factor, in addition to the user
name and password, that provides greater reliability on user identification. It reduces the risk of
unauthorized access when user names and passwords might be compromised. However, there is
additional administrative overhead and cost to issue certificates to users that might not be feasible in
every deployment.

The cloud administrator should protect sensitive configuration files from unauthorized modification. This
can be configured using mandatory access control frameworks such as SELinux, including the 
/var/lib/config-data/puppet-generated/keystone/etc/keystone/keystone.conf file and X.509
certificates.

Client authentication with TLS requires certificates be issued to services. These certificates can be
signed by an external or internal certificate authority. OpenStack services check the validity of certificate
signatures against trusted CAs by default and connections will fail if the signature is not valid or the CA
is not trusted. Cloud deployers might use self-signed certificates; in this case, the validity check must be
disabled or the certificate should be marked as trusted. To disable validation of self-signed certificates,
set insecure=False in the [filter:authtoken] section in the /etc/nova/api.paste.ini file. This setting also
disables certificates for other components. Note that the exact file path might vary for containerized
services.

4.6. TOKENS

Once a user is authenticated, a token is generated for authorization and access to an OpenStack
environment. A token can have a variable life span; however the default value for expiry is one hour. The
recommended expiry value should be set to a lower value that allows enough time for internal services to
complete tasks. In the event that the token expires before tasks complete, the cloud might become
unresponsive or stop providing services. An example of expended time during use would be the time
needed by the Compute service to transfer a disk image onto the hypervisor for local caching.

The token is often passed within the structure of a larger context of an Identity service response. These
responses also provide a catalog of the various OpenStack services. Each service is listed with its name,
access endpoints for internal, admin, and public access. The Identity service supports token revocation.
This manifests as an API to revoke a token, to list revoked tokens and individual OpenStack services that
cache tokens to query for the revoked tokens and remove them from their cache and append the same
to their list of cached revoked tokens. Fernet tokens are the only supported tokens in Red Hat
OpenStack Platform 13.

4.6.1. Fernet tokens

Fernet tokens are now the default token provider. Fernet is a secure messaging format explicitly
designed for use in API tokens. Fernet tokens are non-persistent (no need to be persisted to a
database), lightweight (within 180 to 240 bytes) and reduce the operational overhead required to run a
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cloud. Authentication and authorization metadata is bundled into a message packed payload, which is
then encrypted and signed in as a Fernet token (within 180 to 240 bytes).

Unlike UUID, PKI and PKIZ tokens, Fernet tokens do not require persistence. The keystone token
database no longer suffers bloat as a side effect of authentication. Pruning expired tokens from the
token database is no longer required when using Fernet tokens. Since Fernet tokens are non-persistent,
they do not have to be replicated. As long as each keystone node shares the same repository, you can
create and validate Fernet tokens instantly across nodes.

Compared to PKI and PKIZ tokens, Fernet tokens are smaller in size; usually kept under a 250 byte limit.
For PKI and PKIZ tokens, bigger service catalogs will result in longer token lengths. This pattern does not
exist with Fernet tokens because the contents of the encrypted payload is kept to minimum.

For information about Fernet tokens and rotating Fernet keys, see
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-
single/deploy_fernet_on_the_overcloud/.

4.7. KEYSTONE DOMAINS

Keystone domains are high-level security boundaries, logically grouping projects, users and groups. As
such, they can be used to centrally manage all keystone-based identity components. With the
introduction of account domains, server, storage and other resources can now be logically grouped into
multiple projects (previously called tenants) which can themselves be grouped under a master account-
like container. In addition, multiple users can be managed within an account domain and assigned roles
that vary for each project.

The Identity V3 API supports multiple domains. Users of different domains might be represented in
different authentication backends. They might even have different attributes that must be mapped to a
single set of roles and privileges, that are used in the policy definitions to access the various service
resources.

Where a rule might specify access to only admin users and users belonging to the project, the mapping
might be trivial. In other scenarios the cloud administrator might need to approve the mapping routines
per project.

Domain-specific authentication drivers allow the Identity service to be configured for multiple domains
using domain-specific configuration files. Enabling the drivers and setting the domain-specific
configuration file location occur in the [identity] section of the /var/lib/config-data/puppet-
generated/keystone/etc/keystone/keystone.conf file. For example:

[identity]
domain_specific_drivers_enabled = True
domain_config_dir = /var/lib/config-data/puppet-generated/keystone/etc/keystone/domains/

Any domains without a domain-specific configuration file will use options in the primary /var/lib/config-
data/puppet-generated/keystone/etc/keystone/keystone.conf file.

4.8. AUTHENTICATING WITH LDAP

You can use an external identity provider (IdP) to authenticate to OpenStack service providers (SP). In
this case, the Service Providers are the services provided by an OpenStack cloud.

For authentication and authorization services, the OpenStack identity model considers the external
authentication database to be a separate keystone domain. Each external authentication mechanism is
associated with a keystone domain, with support for multiple coexisting domains. You can use roles to

CHAPTER 4. IDENTITY AND ACCESS MANAGEMENT

21

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/deploy_fernet_on_the_overcloud/


grant users in external domains access to resources in the cloud; this approach also works in cross-
domain multi-project deployments. This approach also has implications for a per-component policy, as
not all OpenStack roles can be mapped in policy back to externally authenticated users. For example,
there is usually additional configuration and consideration required if users in an external authentication
database require administrative access similar to that of the admin user in the admin domain.

External authentication provides a way to use existing credentials to access cloud resources such as
servers, volumes, and databases, across multiple endpoints provided in multiple authorized clouds using
a single set of credentials, without having to provision additional identities or log in multiple times. The
credential is maintained by the user’s Identity Provider.

The Identity service can store user credentials in an SQL Database, or might use an LDAP-compliant
directory server. The Identity database might be separate from databases used by other OpenStack
services to reduce the risk of a compromise of the stored credentials.

When you use a username and password to authenticate, Identity does not enforce policies on password
strength, expiration, or failed authentication attempts. Organizations that desire to enforce stronger
password policies should consider using Identity extensions or external authentication services.

LDAP simplifies integration of Identity authentication into an organization’s existing directory service
and user account management processes. Authentication and authorization policy in OpenStack might
be delegated to another service. A typical use case is an organization that seeks to deploy a private
cloud and already has a database of employees and users in an LDAP system. Using this as the
authentication authority, requests to the Identity service are delegated to the LDAP system, which will
then authorize or deny based on its policies. Upon successful authentication, the Identity service then
generates a token that is used for access to authorized services.

Note that if the LDAP system has attributes defined for the user such as admin, finance, HR etc, these
must be mapped into roles and groups within Identity for use by the various OpenStack services. The 
/var/lib/config-data/puppet-generated/keystone/etc/keystone/keystone.conf file maps LDAP
attributes to Identity attributes.

4.9. INTEGRATE WITH LDAP-BASED SERVICES

Identity Service (keystone) can authenticate user accounts stored in LDAP-based services, such as
Microsoft Active Directory Domain Services (AD DS), and Red Hat Identity Management (IdM). In this
use case, keystone has read-only access to the LDAP user database authentication, and retains
management over the authZ privileges assigned to authenticated accounts. The authZ function
(permissions, roles, projects) is still performed by keystone, whereby permissions and roles are assigned
to the LDAP accounts using the keystone management tools.

4.9.1. How LDAP integration works

In the diagram below, keystone uses an encrypted LDAPS connection to connect to an Active Directory
Domain Controller. When a user logs in to horizon, keystone receives the supplied user credentials and
passes them to Active Directory for authZ.
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For information on integrating OpenStack with AD DS and IdM, see the integration guide:
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-
single/integrate_with_identity_service/
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CHAPTER 5. POLICIES
Each OpenStack service contains resources that are managed by access policies. For example, a
resource might include the following functions:

Permission to create and start instances

The ability to attach a volume to an instance

As a Red Hat OpenStack Platform (RHOSP) administrator, you might need to create custom policies to
introduce new roles with varying levels of access, or to change the default behavior of existing roles. You
also need the ability to validate API access policies after changes, and debug those policies when they
do not work. Validate and debug policies outside of a production deployment, where syntax errors can
lead to downtime, and misapplied authorization can negatively impact security or usability.

5.1. REVIEWING EXISTING POLICIES

Policy files for services traditionally existed in the /etc/$service directory. For example, the full path of
the policy.json file for Compute (nova) was /etc/nova/policy.json.

There are two important architectural changes that affect how you can find existing policies:

Red Hat OpenStack Platform is now containerized.

Policy files, if present, are in the traditional path if you view them from inside the service
container:
/etc/$service/policy.json

Policy files, if present, are in the following path if you view them from outside the service
container:
/var/lib/config-data/puppet-generated/$service/etc/$service/policy.json

Each service has default policies that are provided in code, with files that are available only if you
created them manually, or if they are generated with oslopolicy tooling. To generate a policy
file, use the oslopolicy-policy-generator from within a container, as in the following example:

docker exec -it keystone oslopolicy-policy-generator --namespace keystone

By default, generated policies are pushed to stdout by osly.policy CLI tools.

5.2. UNDERSTANDING SERVICE POLICIES

Service policy file statements are either alias definitions or rules. Alias definitions exist at the top of the
file. The following list contains an explanation of the alias definitions from the generated policy.json file
for Compute (nova):

"context_is_admin": "role:admin"
When rule:context_is_admin appears after a target, the policy checks that the user is
operating with an administrative context before it allows that action.

"admin_or_owner": "is_admin:True or project_id:%(project_id)s"
When admin_or_owner appears after a target, the policy checks that the user is either an
admin, or that their project ID matches the owning project ID of the target object before it
allows that action.
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"admin_api": "is_admin:True
When admin_api appears after a target, the policy checks that the user is an admin before it
allows that action.

5.3. POLICY SYNTAX

Policy.json files support certain operators so that you can control the target scope of these settings. For
example, the following keystone setting contains the rule that only admin users can create users:

"identity:create_user": "rule:admin_required"

The section to the left of the : character describes the privilege, and the section to the right defines who
can use the privilege. You can also use operators to the right side to further control the scope:

! - No user (including admin) can perform this action.

@ and "" - Any user can perform this action.

not, and, or - Standard operator functions are available.

For example, the following setting means that no users have permission to create new users:

"identity:create_user": "!"

5.4. USING POLICY FILES FOR ACCESS CONTROL

To override the default rules, edit the policy.json file for the appropriate OpenStack service. For
example, the Compute service has a policy.json in the nova directory, which is the correct location of
the file for containerized services when you view it from inside the container.

NOTE

You must thoroughly test changes to policy files in a staging environment before
implementing them in production.

You must check that any changes to the access control policies do not
unintentionally weaken the security of any resource. In addition, any changes to a 
policy.json file are effective immediately and do not require a service restart.

5.5. EXAMPLE: CREATING A POWER USER ROLE

To customize the permissions of a keystone role, update the policy.json file of a service. This means
that you can more granularly define the permissions that you assign to a class of users. This example
creates a power user  role for your deployment with the following privileges:

Start an instance.

Stop an instance.

Manage the volumes that are attached to instances.

The intention of this role is to grant additional permissions to certain users, without the need to then
grant admin access. To use these privileges, you must grant the following permissions to a custom role:
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Start an instance: "os_compute_api:servers:start": "role:PowerUsers"

Stop an instance: "os_compute_api:servers:stop": "role:PowerUsers"

Configure an instance to use a particular volume: 
"os_compute_api:servers:create:attach_volume": "role:PowerUsers"

List the volumes that are attached to an instance: "os_compute_api:os-volumes-
attachments:index": "role:PowerUsers"

Attach a volume: "os_compute_api:os-volumes-attachments:create": "role:PowerUsers"

View the details of an attached volume: "os_compute_api:os-volumes-attachments:show": 
"role:PowerUsers"

Change the volume that is attached to an instance: "os_compute_api:os-volumes-
attachments:update": "role:PowerUsers"

Delete a volume that is attached to an instance: "os_compute_api:os-volumes-
attachments:delete": "role:PowerUsers"

NOTE

When you modify the policy.json file, you override the default policy. As a result,
members of PowerUsers are the only users that can perform these actions. To allow 
admin users to retain these permissions, you can create rules for admin_or_power_user.
You can also use some basic conditional logic to define role:PowerUsers or role:Admin.

1. To ensure you use the keystone v3 API in your command line session, source the rc file that
defines the v3 endpoint and settings:

OS_AUTH_URL=http://controller-hostname.lab.local:5000/v3
OS_USERNAME=username
OS_PASSWORD=password
OS_USER_DOMAIN_NAME=Default
OS_PROJECT_DOMAIN_NAME=Default
OS_PROJECT_NAME=project-name
OS_IDENTITY_API_VERSION=3

2. Create the custom keystone role:

$ openstack role create PowerUsers
+-----------+----------------------------------+
| Field     | Value                            |
+-----------+----------------------------------+
| domain_id | None                             |
| id        | 7061a395af43455e9057ab631ad49449 |
| name      | PowerUsers                      |
+-----------+----------------------------------+

3. Add an existing user to the role, and assign the role to a project:

$ openstack role add --project [PROJECT_NAME] --user [USER_ID] [PowerUsers-ROLE_ID]

NOTE
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NOTE

A role assignment is paired exclusively with one project. This means that when
you assign a role to a user, you also define the target project at the same time. If
you want the user to receive the same role but for a different project, you must
assign the role to them again separately but target the different project.

4. View the default nova policy settings:

$ oslopolicy-policy-generator --namespace nova

5. Create custom permissions for the new PowerUsers role by adding the following entries to 
/var/lib/config-data/puppet-generated/nova/etc/nova/policy.json:

NOTE

Test your policy changes before deployment to verify that they work as you
expect.

{
"os_compute_api:servers:start": "role:PowerUsers",
"os_compute_api:servers:stop": "role:PowerUsers",
"os_compute_api:servers:create:attach_volume": "role:PowerUsers",
"os_compute_api:os-volumes-attachments:index": "role:PowerUsers",
"os_compute_api:os-volumes-attachments:create": "role:PowerUsers",
"os_compute_api:os-volumes-attachments:show": "role:PowerUsers",
"os_compute_api:os-volumes-attachments:update": "role:PowerUsers",
"os_compute_api:os-volumes-attachments:delete": "role:PowerUsers"
}

You implement the changes when you save this file and restart the nova container. Users that
are added to the PowerUsers keystone role receive these privileges.

5.6. EXAMPLE: LIMITING ACCESS BASED ON ATTRIBUTES

You can create policies that will restrict access to API calls based on the attributes of the user making
that API call. For example, the following default rule states that keypair deletion is allowed if run from an
administrative context, or if the user ID of the token matches the user ID associated with the target.

"os_compute_api:os-keypairs:delete": "rule:admin_api or user_id:%(user_id)s"

NOTE: * Newly implemented features are not guaranteed to be in every service with each release.
Therefore, it is important to write rules using the conventions of the target service’s existing policies. For
details on viewing these policies, see Reviewing existing policies. * All policies should be rigorously tested
in a non-production environment for every version on which they will be deployed, as policies are not
guaranteed for compatibility across releases.

Based on the above example, you can craft API rules to expand or restrict access to users based on
whether or not they own a resource. Additionally, attributes can be combined with other restrictions to
form rules as seen in the example below:

"admin_or_owner": "is_admin:True or project_id:%(project_id)s"
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Considering the examples above, you can create a unique rule limited to administrators and users, and
then use that rule to further restrict actions:

"admin_or_user": "is_admin:True or user_id:%(user_id)s"
"os_compute_api:os-instance-actions": "rule:admin_or_user"

For more information about the policy.json syntax options that are available, see Policy syntax .

5.7. AUDITING YOUR USERS AND ROLES

You can use tools available in Red Hat OpenStack Platform to build a report of role assignments per
user and associated privileges.

1. Run the openstack role list command to see the roles currently in your environment:

openstack role list -c Name -f value

swiftoperator
ResellerAdmin
admin
_member_
heat_stack_user

2. Run the openstack role assignment list command to list all users that are members of a
particular role. For example, to see all users that have the admin role, run the following:

$ openstack role assignment list --names --role admin
+-------+------------------------------------+-------+-----------------+------------+--------+-----------+
| Role  | User                               | Group | Project         | Domain     | System | Inherited |
+-------+------------------------------------+-------+-----------------+------------+--------+-----------+
| admin | heat-cfn@Default                   |       | service@Default |            |        | False     |
| admin | placement@Default                  |       | service@Default |            |        | False     |
| admin | neutron@Default                    |       | service@Default |            |        | False     |
| admin | zaqar@Default                      |       | service@Default |            |        | False     |
| admin | swift@Default                      |       | service@Default |            |        | False     |
| admin | admin@Default                      |       | admin@Default   |            |        | False     |
| admin | zaqar-websocket@Default            |       | service@Default |            |        | False     |
| admin | heat@Default                       |       | service@Default |            |        | False     |
| admin | ironic-inspector@Default           |       | service@Default |            |        | False     |
| admin | nova@Default                       |       | service@Default |            |        | False     |
| admin | ironic@Default                     |       | service@Default |            |        | False     |
| admin | glance@Default                     |       | service@Default |            |        | False     |
| admin | mistral@Default                    |       | service@Default |            |        | False     |
| admin | heat_stack_domain_admin@heat_stack |       |                 | heat_stack |        | False     
|
| admin | admin@Default                      |       |                 |            | all    | False     |
+-------+------------------------------------+-------+-----------------+------------+--------+-----------+

NOTE

You can use the -f {csv,json,table,value,yaml} parameter to export these
results.
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5.8. AUDITING API ACCESS

You can audit the API calls a given role can access. Repeating this process for each role will result in a
comprehensive report on the accessible APIs for each role. For the following steps you need:

An authentication file to source as a user in the target role.

An access token in JSON format.

A policy file for each service’s API you wish to audit.

Procedure

1. Start by sourcing an authentication file of a user in the desired role.

2. Capture a Keystone generated token and save it to a file. You can do this by running any
openstack-cli command and using the --debug option, which prints the provided token to
stdout. You can copy this token and save it to an access file. Use the following command to do
this as a single step:

openstack token issue --debug 2>&1 | egrep ^'{\"token\":' > access.file.json

3. Create a policy file. This can be done on an overcloud node that hosts the containerized service
of interest. The following example creates a policy file for the cinder service:

ssh heat-admin@CONTROLLER-1 sudo docker exec cinder_api \
oslopolicy-policy-generator \
--config-file /etc/cinder/cinder.conf \
--namespace cinder > cinderpolicy.json

4. Using these files, you can now audit the role in question for access to cinder’s APIs:

oslopolicy-checker --policy cinderpolicy.json --access access.file.json
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CHAPTER 6. HARDENING INFRASTRUCTURE AND
VIRTUALIZATION

Your operating procedures should have a plan to learn about new vulnerabilities and security updates.
Hardware and software vendors typically announce the existence of vulnerabilities, and could offer
workaround s and patches to address these.

Red Hat Product Security maintains sites to help you stay aware of security updates:

https://www.redhat.com/mailman/listinfo/rhsa-announce

https://www.redhat.com/wapps/ugc/protected/notif.html

https://access.redhat.com/security/security-updates/#/?
q=openstack&p=1&sort=portal_publication_date%20desc&rows=10&portal_advisory_type=Security%20Advisory&documentKind=PortalProduct

NOTE

In addition to tracking updates, ensure that your processes and deployments can
accommodate the installation of regular security updates. Also use the following
guidelines:

Include instance security updates when you design your processes.

Reboot the Compute and management nodes for kernel updates.

Periodically update hosted Image service (glance) images to ensure that freshly
created instances have the latest updates.

6.1. HYPERVISORS

When you evaluate a hypervisor platform, consider the supportability of the hardware on which the
hypervisor will run. Additionally, consider the additional features available in the hardware and how those
features are supported by the hypervisor you chose as part of the OpenStack deployment. To that end,
hypervisors each have their own hardware compatibility lists (HCLs). When selecting compatible
hardware it is important to know in advance which hardware-based virtualization technologies are
important from a security perspective.

6.1.1. Hypervisor versus bare metal

It is important to recognize the difference between using Linux containers or bare metal systems versus
using a hypervisor like KVM. Specifically, the focus of this security guide is largely based on having a
hypervisor and virtualization platform. However, should your implementation require the use of a bare
metal or containerized environment, you must pay attention to the particular differences in regard to
deployment of that environment.

For bare metal, make sure the node has been properly sanitized of data prior to re-provisioning and
decommissioning. In addition, before reusing a node, you must provide assurances that the hardware has
not been tampered or otherwise compromised. For more information see
https://docs.openstack.org/ironic/queens/admin/cleaning.html

6.1.2. Hypervisor memory optimization

Certain hypervisors use memory optimization techniques that overcommit memory to guest virtual
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machines. This is a useful feature that allows you to deploy very dense compute clusters. One approach
to this technique is through deduplication or sharing of memory pages: When two virtual machines have
identical data in memory, there are advantages to having them reference the same memory. Typically
this is performed through Copy-On-Write (COW) mechanisms, such as kernel same-page merging
(KSM). These mechanisms are vulnerable to attack:

Memory deduplication systems are vulnerable to side-channel attacks. In academic studies,
attackers were able to identify software packages and versions running on neighboring virtual
machines as well as software downloads and other sensitive information through analyzing
memory access times on the attacker VM. Consequently, one VM can infer something about the
state of another, which might not be appropriate for multi-project environments where not all
projects are trusted or share the same levels of trust

More importantly, row-hammer type attacks have been demonstrated against KSM to enact
cross-VM modification of executable memory. This means that a hostile instance can gain
code-execution access to other instances on the same Compute host.

Deployers should disable KSM if they require strong project separation (as with public clouds and some
private clouds):

To disable KSM, refer to Deactivating KSM.

6.2. PCI PASSTHROUGH

PCI passthrough allows an instance to have direct access to a piece of hardware on the node. For
example, this could be used to allow instances to access video cards or GPUs offering the compute
unified device architecture (CUDA) for high performance computation. This feature carries two types of
security risks: direct memory access and hardware infection.

Direct memory access (DMA) is a feature that permits certain hardware devices to access arbitrary
physical memory addresses in the host computer. Often video cards have this capability. However, an
instance should not be given arbitrary physical memory access because this would give it full view of
both the host system and other instances running on the same node. Hardware vendors use an
input/output memory management unit (IOMMU) to manage DMA access in these situations. You
should confirm that the hypervisor is configured to use this hardware feature.

A hardware infection occurs when an instance makes a malicious modification to the firmware or some
other part of a device. As this device is used by other instances or the host OS, the malicious code can
spread into those systems. The end result is that one instance can run code outside of its security zone.
This is a significant breach as it is harder to reset the state of physical hardware than virtual hardware,
and can lead to additional exposure such as access to the management network.

Due to the risk and complexities associated with PCI passthrough, it should be disabled by default. If
enabled for a specific need, you will need to have appropriate processes in place to help ensure the
hardware is clean before reuse.

6.3. SELINUX

Mandatory access controls limit the impact an attempted attack, by restricting the privileges on QEMU
process to only what is needed. On Red Hat OpenStack Platform, SELinux is configured to run each
QEMU process under a separate security context. SELinux policies have been pre-configured for Red
Hat OpenStack Platform services.

OpenStack’s SELinux policies intend to help protect hypervisor hosts and virtual machines against two
primary threat vectors:
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Hypervisor threats - A compromised application running within a virtual machine attacks the
hypervisor to access underlying resources. For example, when a virtual machine is able to access
the hypervisor OS, physical devices, or other applications. This threat vector represents
considerable risk as a compromise on a hypervisor can infect the physical hardware as well as
exposing other virtual machines and network segments.

Virtual Machine (multi-project) threats - A compromised application running within a VM attacks
the hypervisor to access or control another virtual machine and its resources. This is a threat
vector unique to virtualization and represents considerable risk as a multitude of virtual machine
file images could be compromised due to vulnerability in a single application. This virtual
network attack is a major concern as the administrative techniques for protecting real networks
do not directly apply to the virtual environment. Each KVM-based virtual machine is a process
which is labeled by SELinux, effectively establishing a security boundary around each virtual
machine. This security boundary is monitored and enforced by the Linux kernel, restricting the
virtual machine’s access to resources outside of its boundary, such as host machine data files or
other VMs.

Red Hat’s SELinux-based isolation is provided regardless of the guest operating system running inside
the virtual machine. Linux or Windows VMs can be used.

6.3.1. Labels and Categories

KVM-based virtual machine instances are labelled with their own SELinux data type, known as 
svirt_image_t. Kernel level protections prevent unauthorized system processes, such as malware, from
manipulating the virtual machine image files on disk. When virtual machines are powered off, images are
stored as svirt_image_t as shown below:

system_u:object_r:svirt_image_t:SystemLow image1
system_u:object_r:svirt_image_t:SystemLow image2
system_u:object_r:svirt_image_t:SystemLow image3
system_u:object_r:svirt_image_t:SystemLow image4

The svirt_image_t label uniquely identifies image files on disk, allowing for the SELinux policy to
restrict access. When a KVM-based compute image is powered on, SELinux appends a random
numerical identifier to the image. SELinux is capable of assigning numeric identifiers to a maximum of
524,288 virtual machines per hypervisor node, however most OpenStack deployments are highly unlikely
to encounter this limitation . This example shows the SELinux category identifier:

system_u:object_r:svirt_image_t:s0:c87,c520 image1
system_u:object_r:svirt_image_t:s0:419,c172 image2

6.3.2. SELinux users and roles

SELinux manages user roles. These can be viewed through the -Z flag, or with the semanage
command. On the hypervisor, only administrators should be able to access the system, and should have
an appropriate context around both the administrative users and any other users that are on the system.

6.4. CONTAINERIZED SERVICES

Certain services, such as nova, glance, and keystone, now run within containers. This approach helps
improve your security posture by making it easier to apply updates to services. Running each service in
its own container also improves isolation between the services that coexist on the same bare metal. This
can be helpful in reducing the attack surface should any one service be vulnerable to attack, by
preventing easy access to adjacent services.
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NOTE

Any paths on the host machine that are mounted into the containers can be used as
mount points to transfer data between container and host, if they are configured as
ro/rw.

If you intend to update any configuration files, there are certain administration practices to consider,
given that containerized services are ephemeral:

Do not update any configuration file you might find on the physical node’s host operating
system, for example, /etc/cinder/cinder.conf. This is because the containerized service does not
reference this file.

Do not update the configuration file running within the container. This is because any changes
are lost once you restart the container.

Instead, if you need to add any changes to containerized services, you will need to update the
configuration file that is used to seed the container. These files are generated during the initial
deployment, by puppet, and contain sensitive data important to the running of the cloud, and should be
treated accordingly. These are stored within /var/lib/config-data/puppet-generated/. For example:

keystone: /var/lib/config-data/puppet-generated/keystone/etc/keystone/keystone.conf

cinder: /var/lib/config-data/puppet-generated/cinder/etc/cinder/cinder.conf

nova: /var/lib/config-data/puppet-generated/nova_libvirt/etc/nova/nova.conf

Any changes made to these files will be applied once the container is restarted.

6.5. HARDENING COMPUTE DEPLOYMENTS

One of the main security concerns with any OpenStack deployment is the security and controls around
sensitive files, such as the /var/lib/config-data/puppet-generated/nova_libvirt/etc/nova/nova.conf file.
This configuration file contains many sensitive options including configuration details and service
passwords. All such sensitive files should be given strict file level permissions, and monitored for
changes through file integrity monitoring (FIM) tools, such as AIDE. These utilities will take a hash of the
target file in a known good state, and then periodically take a new hash of the file and compare it to the
known good hash. An alert can be created if it was found to have been modified unexpectedly.

The permissions of a file can be examined by moving into the directory the file is contained in and
running the ls -lh command. This will show the permissions, owner, and group that have access to the
file, as well as other information such as the last time the file was modified and when it was created.

The /var/lib/nova directory holds information about the instances on a given Compute node. This
directory should be considered sensitive, with strictly enforced file permissions. In addition, it should be
backed up regularly as it contains information and metadata for the instances associated with that host.

If your deployment does not require full virtual machine backups, consider excluding the 
/var/lib/nova/instances directory as it will be as large as the combined space of each instance running
on that node. If your deployment does require full VM backups, you will need to ensure this directory is
backed up successfully.

NOTE
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NOTE

Data stored in the storage subsystem (for example, Ceph) being used for Block Storage
(cinder) volumes should also be considered sensitive, as full virtual machine images can
be retrieved from the storage subsystem if network or logical access allows this,
potentially bypassing OpenStack controls.

6.6. FIRMWARE UPDATES

Physical servers use complex firmware to enable and operate server hardware and lights-out
management cards, which can have their own security vulnerabilities, potentially allowing system access
and interruption. To address these, hardware vendors will issue firmware updates, which are installed
separately from operating system updates. You will need an operational security process that retrieves,
tests, and implements these updates on a regular schedule, noting that firmware updates often require a
reboot of physical hosts to become effective.

6.7. BLOCK STORAGE

OpenStack Block Storage (cinder) is a service that provides software (services and libraries) to self-
service manage persistent block-level storage devices. This creates on-demand access to Block
Storage resources for use with Compute (nova) instances. This creates software-defined storage
through abstraction by virtualizing pools of block storage to a variety of back-end storage devices which
can be either software implementations or traditional hardware storage products. The primary functions
of this is to manage the creation, attachment, and detachment of the block devices. The consumer
requires no knowledge of the type of back-end storage equipment or where it is located.

Compute instances store and retrieve block storage using industry-standard storage protocols such as
iSCSI, ATA over Ethernet, or Fibre-Channel. These resources are managed and configured using
OpenStack native standard HTTP RESTful API.

6.7.1. Volume Wiping

There are multiple ways to wipe a block storage device. The traditional approach is to set the lvm_type
to thin, and then use the volume_clear parameter. Alternatively, if the volume encryption feature is us
ed, then volume wiping is not necessary if the volume encryption key is deleted.

NOTE

Previously, lvm_type=default was used to signify a wipe. While this method still works, 
lvm_type=default is not recommended for setting secure delete.

The volume_clear parameter can accept either zero or shred as arguments. zero will write a single
pass of zeroes to the device. The shred operation will write three passes of predetermined bit patterns.

6.7.2. Set user/group ownership of config files to root/cinder

Configuration files contain critical parameters and information required for smooth functioning of the
component. If an unprivileged user, either intentionally or accidentally, modifies or deletes any of the par
ameters or the file itself then it would cause severe availability issues resulting in a denial of service to
the other end users. Thus user ownership of such critical configuration files must be set to root and
group ownership must be set to cinder.

The cinder group is not present on the host. Using ls -l will show the group owner’s GID.
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sudo ls -l /var/lib/config-data/puppet-generated/cinder/etc/cinder/cinder.conf
-rw-r-----. 1 root 42407 188012 Dec 11 09:34 /var/lib/config-data/puppet-
generated/cinder/etc/cinder/cinder.conf

sudo stat -L -c "%U %G" /var/lib/config-data/puppet-generated/cinder/etc/cinder/cinder.conf
root UNKNOWN

Check that the user and group ownership of the cinder.conf configuration file is set to root and cinder
respectively, with this command:

sudo docker exec -it cinder_api stat -L -c "%U %G" /etc/cinder/cinder.conf
root cinder

6.7.3. Set strict permissions for configuration files

Check that the permissions for the cinder.conf configuration file is set to 640 or stricter.

$ stat -L -c "%a" /var/lib/config-data/puppet-generated/cinder/etc/cinder/cinder.conf

6.7.4. Use keystone for authentication

In /var/lib/config-data/puppet-generated/cinder/etc/cinder/cinder.conf, check that the value of 
auth_strategy under the [DEFAULT] section is set to keystone and not noauth.

6.7.5. Enable TLS for authentication

In /var/lib/config-data/puppet-generated/cinder/etc/cinder/cinder.conf, check that the value of 
auth_uri under the [keystone_authtoken] section is set to an Identity API endpoint that starts with 
https:// `, and the value of the parameter `insecure also under [keystone_authtoken] is set to False.

6.7.6. Ensure Block Storage uses TLS to communicate with Compute

In cinder.conf, check that the value of glance_api_servers under the [DEFAULT] section is set to a
value that starts with https://, and the value of the parameter glance_api_insecure is set to False.

6.7.7. Set the max size for the body of a request

If the maximum body size per request is not defined, the attacker can craft an arbitrary OSAPI request
of large size, causing the service to crash and finally resulting in a Denial Of Service attack. Assigning t
he maximum value ensures that any malicious oversized request gets blocked ensuring continued
availability of the service.

Review whether max_request_body_size under the [oslo_middleware] section in cinder.conf is set to
114688.

6.7.8. Enable volume encryption

Unencrypted volume data makes volume-hosting platforms especially high-value targets for attackers,
as it allows the attacker to read the data for many different VMs. In addition, the physical storage
medium cou ld be stolen, remounted, and accessed from a different machine. Encrypting volume data
and volume backups can help mitigate these risks and provides defense-in-depth to volume-hosting
platforms. Block Storage (c inder) is able to encrypt volume data before it is written to disk, so consider
enabling volume encryption, and using Barbican for private key storage.
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6.8. NETWORKING

The OpenStack Networking service (neutron) enables the end-user or project to define and consume
networking resources. OpenStack Networking provides a project-facing API for defining network
connectivity and IP addressing for instances in the cloud, in addition to orchestrating the network
configuration. With the transition to an API-centric networking service, cloud architects and
administrators should take into consideration good practices to secure physical and virtual network
infrastructure and services.

OpenStack Networking was designed with a plug-in architecture that provides extensibility of the API
through open source community or third-party services. As you evaluate your architectural design
requirements, it is important to determine what features are available in OpenStack Networking core
services, any additional services that are provided by third-party products, and what supplemental
services are required to be implemented in the physical infrastructure.

This section is a high-level overview of what processes and good practices should be considered when
implementing OpenStack Networking.

6.8.1. Networking architecture

OpenStack Networking is a standalone service that deploys multiple processes across a number of
nodes. These processes interact with each other and other OpenStack services. The main process of
the OpenStack Networking service is neutron-server, a Python daemon that exposes the OpenStack
Networking API and passes project requests to a suite of plug-ins for additional processing.

The OpenStack Networking components are:

Neutron server (neutron-server and neutron-*-plugin) - The neutron-server service runs on
the Controller node to service the Networking API and its extensions (or plugins). It also
enforces the network model and IP addressing of each port. The neutron-server requires direct
access to a persistent database. Agents have indirect access to the database through neutron-
server, with which they communicate using AMQP (Advanced Message Queuing Protocol).

Neutron database - The database is the centralized source of neutron information, with the
API recording all transactions in the database. This allows multiple Neutron servers to share the
same database cluster, which keeps them all in sync, and allows persistence of network
configuration topology.

Plugin agent (neutron-*-agent) - Runs on each compute node and networking node (together
with the L3 and DHCP agents) to manage local virtual switch (vswitch) configuration. The
enabled plug-in determines which agents are enabled. These services require message queue
access and depending on the plug-in being used, access to external network controllers or SDN
implementations. Some plug-ins, like OpenDaylight(ODL) and Open Virtual Network (OVN), do
not require any python agents on compute nodes, requiring only an enabled Neutron plug-in for
integration.

DHCP agent (neutron-dhcp-agent) - Provides DHCP services to project networks. This agent
is the same across all plug-ins and is responsible for maintaining DHCP configuration. The
neutron-dhcp-agent requires message queue access. Optional depending on plug-in.

Metadata agent (neutron-metadata-agent, neutron-ns-metadata-proxy) - Provides
metadata services used to apply instance operating system configuration and user-supplied
initialisation scripts (‘userdata’). The implementation requires the neutron-ns-metadata-proxy
running in the L3 or DHCP agent namespace to intercept metadata API requests sent by cloud-
init to be proxied to the metadata agent.

L3 agent (neutron-l3-agent) - Provides L3/NAT forwarding for external network access of
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L3 agent (neutron-l3-agent) - Provides L3/NAT forwarding for external network access of
VMs on project networks. Requires message queue access. Optional depending on plug-in.

Network provider services (SDN server/services) - Provides additional networking services to
project networks. These SDN services might interact with neutron-server, neutron-plugin, and
plugin-agents through communication channels such as REST APIs.

The following diagram shows an architectural and networking flow diagram of the OpenStack
Networking components:

Note that this approach changes significantly when Distributed Virtual Routing (DVR) and Layer-3 High
Availability (L3HA) are used. These modes change the security landscape of neutron, since L3HA
implements VRRP between routers. The deployment needs to be correctly sized and hardened to help
mitigate DoS attacks against routers, and local-network traffic between routers must be treated as
sensitive, to help address the threat of VRRP spoofing. DVR moves networking components (such as
routing) to the Compute nodes, while still requiring network nodes. As a result, the Compute nodes
require access to and from public networks, increasing their exposure and requiring additional security
consideration for customers, as they will need to make sure firewall rules and security model support this
approach.

6.8.2. Neutron service placement on physical servers

This section describes a standard architecture that includes a controller node, a network node, and a set
of compute nodes for running instances. To establish network connectivity for physical servers, a typical
neutron deployment has up to four distinct physical data center networks:
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Management network - Used for internal communication between OpenStack Components.
The IP addresses on this network should be reachable only within the data center and is
considered the Management Security zone. By default, the Management network role is
performed by the Internal API  network.

Guest network(s) - Used for VM data communication within the cloud deployment. The IP
addressing requirements of this network depend on the OpenStack Networking plug-in in use
and the network configuration choices of the virtual networks made by the project. This network
is considered the Guest Security zone.

External network - Used to provide VMs with Internet access in some deployment scenarios.
The IP addresses on this network should be reachable by anyone on the Internet. This network is
considered to be in the Public Security zone. This network is provided by the neutron External
network(s). These neutron VLANs are hosted on the external bridge. They are not created by
Red Hat OpenStack Platform director, but are created by neutron in post-deployment.

Public API network - Exposes all OpenStack APIs, including the OpenStack Networking API, to
projects. The IP addresses on this network should be reachable by anyone on the Internet. This
might be the same network as the external network, as it is possible to create a subnet for the
external network that uses IP allocation ranges smaller than the full range of IP addresses in an
IP block. This network is considered to be in the Public Security zone.

It is recommended you segment this traffic into separate zones. See the next section for more
information.

6.8.3. Security zones

It is recommended that you use the concept of security zones to keep critical systems separate from
each other. In a practical sense, this means isolating network traffic using VLANs and firewall rules. This
sho uld be done with granular detail, and the result should be that only the services that need to connect
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to neutron are able to do so.

In the following diagram, you can see that zones have been created to separate certain components:

Dashboard: Accessible to public network and management network.

Keystone: Accessible to management network.

Compute node: Accessible to management network and Compute instances.

Network node: Accessible to management network, Compute instances, and possibly public
network depending upon neutron-plugin in use.

SDN service node: Management services, Compute instances, and possibly public depending
upon product used and configuration.

.

6.8.4. Networking Services

In the initial architectural phases of designing your OpenStack Network infrastructure it is important to
ensure appropriate expertise is available to assist with the design of th e physical networking
infrastructure, to identify proper security controls and auditing mechanisms.

OpenStack Networking adds a layer of virtualized network services which gives projects the capability to
architect their own virtual networks. Currently, these virtualized service s are not as mature as their
traditional networking counterparts. Consider the current state of these virtualized services before
adopting them as it dictates what controls you mi ght have to implement at the virtualized and traditional
network boundaries.
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6.8.5. L2 isolation using VLANs and tunneling

OpenStack Networking can employ two different mechanisms for traffic segregation on a per
project/network combination: VLANs (IEEE 802.1Q tagging) or L2 tunnels using VXLAN or GRE
encapsulation. The scope and scale of your OpenStack deployment determines which method you
should use for traffic segregation or isolation.

6.8.6. VLANs

VLANs are realized as packets on a specific physical network containing IEEE 802.1Q headers with a
specific VLAN ID (VID) field value. VLAN networks sharing the same physical netw ork are isolated from
each other at L2, and can even have overlapping IP address spaces. Each distinct physical network
supporting VLAN networks is treated as a separate VLAN trun k, with a distinct space of VID values.
Valid VID values are 1 through 4094.

VLAN configuration complexity depends on your OpenStack design requirements. To allow OpenStack
Networking to more efficiently use VLANs, you must allocate a VLAN range (one for each project) and
turn each Compute node physical switch port into a VLAN trunk port.

6.8.7. L2 tunneling

Network tunneling encapsulates each project/network combination with a unique “tunnel-id” that is
used to identify the network traffic belonging to that combination. The project’s L2 network
connectivity is independent of physical locality or underlying network design. By encapsulating traffic
inside IP packets, that traffic can cross Layer-3 boundaries, removing the need for pre-configured
VLANs and VLAN trunking. Tunneling adds a layer of obfuscation to network data traffic, reducing the
visibility of individual project traffic f rom a monitoring point of view.

OpenStack Networking currently supports both GRE and VXLAN encapsulation. The choice of
technology to provide L2 isolation is dependent upon the scope and size of project networks that will be
created in your deployment.

6.8.8. Access control lists

Compute supports project network traffic access controls through use of the OpenStack Networking
service. Security groups allow administrators and projects the ability to specify the type of traffic, and
direction (ingress/egress) that is allowed to pass through a virtual interface port. Security groups rules
are stateful L2-L4 traffic filters.

6.8.9. L3 routing and NAT

OpenStack Networking routers can connect multiple L2 networks, and can also provide a gateway that
connects one or more private L2 networks to a shared external network, such as a public network for
access to the Internet.

The L3 router provides basic Network Address Translation (SNAT and DNAT) capabilities on gateway
ports that uplink the router to external networks. This router SNATs (Source NAT) all egress traffic by
default, and supports floating IPs, which creates a static one-to-one bidirectional mapping from a public
IP on the external network to a private IP on one o f the other subnets attached to the router. Floating
IPs (through DNAT) provide external inbound connectivity to instances, and can be moved from one
instances to another.

Consider using per-project L3 routing and Floating IPs for more granular connectivity of project
instances. Special consideration should be given to instances connected to public networks or using
Floating IPs. Usage of carefully considered security groups is recommended to filter access to only
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services which need to be exposed externally.

6.8.10. Quality of Service (QoS)

By default, Quality of Service (QoS) policies and rules are managed by the cloud administrator, which
results in projects being unable to create specific QoS rules, or to attach s pecific policies to ports. In
some use cases, such as some telecommunications applications, the administrator might trust the
projects and therefore let them create and attach the ir own policies to ports. This can be done by
modifying the policy.json file.

From Red Hat OpenStack Platform 12, neutron supports bandwidth-limiting QoS rules for both ingress
and egress traffic. This QoS rule is named QosBandwidthLimitRule and it accept s two non-negative
integers measured in kilobits per second:

max-kbps: bandwidth

max-burst-kbps: burst buffer

The QoSBandwidthLimitRule has been implemented in the neutron Open vSwitch, Linux bridge and
SR-IOV drivers. However, for SR-IOV drivers, the max-burst-kbps value is not used, and is ignored if
set.

The QoS rule QosDscpMarkingRule sets the Differentiated Service Code Point (DSCP) value in the
type of service header on IPv4 (RFC 2474) and traffic class header on IPv6 on all traffic leaving a virtual
machine, where the rule is applied. This is a 6-bit header with 21 valid values that denote the drop priority
of a packet as it crosses networks should it meet congestion. It can also be used by firewalls to match
valid or invalid traffic against its access control list.

6.8.11. Load balancing

The OpenStack Load-balancing service (octavia) provides a load balancing-as-a-service (LBaaS)
implementation for Red Hat OpenStack platform director installations. To achieve load balancing,
octavia supports enabling multiple provider drivers. The reference provider driver (Amphora provider
driver) is an open-source, scalable, and highly available load bal ancing provider. It accomplishes its
delivery of load balancing services by managing a fleet of virtual machines—collectively known as
amphorae—which it spins up on demand.

For more information about the Load-balancing service, see the Using Octavia for Load Balancing-as-
a-Service guide.

6.8.12. Hardening the Networking Service

This section discusses OpenStack Networking configuration good practices as they apply to project
network security within your OpenStack deployment.

6.8.13. Restrict bind address of the API server: neutron-server

To restrict the interface or IP address on which the OpenStack Networking API service binds a network
socket for incoming client connections, specify the bind_host and bind_por t in the /var/lib/config-
data/puppet-generated/neutron/etc/neutron/neutron.conf file:

# Address to bind the API server
bind_host = IP ADDRESS OF SERVER
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# Port the bind the API server to
bind_port = 9696

6.8.14. Restrict DB and RPC communication of the OpenStack Networking services

Various components of the OpenStack Networking services use either the messaging queue or
database connections to communicate with other components in OpenStack Networking.

NOTE

It is recommended that you follow the guidelines provided in Section 15.3, “Queue
authentication and access control” for all components which require RPC communication.

6.8.15. Project network services workflow

OpenStack Networking provides users self-service configuration of network resources. It is important
that cloud architects and operators evaluate their design use cases in providing users the ability to
create, update, and destroy available network resources.

6.8.16. Networking resource policy engine

A policy engine and its configuration file (policy.json) within OpenStack Networking provides a method
to provide finer grained authorization of users on project networking methods and objects. The
OpenStack N etworking policy definitions affect network availability, network security and overall
OpenStack security. Cloud architects and operators should carefully evaluate their policy towards user
and project access to administration of network resources.

NOTE

It is important to review the default networking resource policy, as this policy can be
modified to suit your security posture.

If your deployment of OpenStack provides multiple external access points into different security zones
it is important that you limit the project’s ability to attach multiple vNICs to multiple external access po
ints — this would bridge these security zones and could lead to unforeseen security compromise. You can
help mitigate this risk by using the host aggregates functionality provided by Compute, or by splitting th
e project instances into multiple projects with different virtual network configurations. For more
information on host aggregates, see link:https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/13/html/configuring_the_compute_service_for_instance_creation/crea
ting-and-managing-host-aggregates[Creating and managing host aggregates].

6.8.17. Security groups

A security group is a collection of security group rules. Security groups and their rules allow
administrators and projects the ability to specify the type of traffic and direction (ingress/egress) that
is allow ed to pass through a virtual interface port. When a virtual interface port is created in OpenStack
Networking it is associated with a security group. Rules can be added to the default security group in
order to change the behavior on a per-deployment basis.

When using the Compute API to modify security groups, the updated security group applies to all virtual
interface ports on an instance. This is due to the Compute security group APIs being instance-based
rather than port-based, as found in neutron.
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6.8.18. Quotas

Quotas provide the ability to limit the number of network resources available to projects. You can
enforce default quotas for all projects. To review the quota options, see /var/lib/config-data/puppet-
generated /neutron/etc/neutron/neutron.conf.

OpenStack Networking also supports per-project quotas limit through a quota extension API. To enable
per-project quotas, you must set the quota_driver option in /var/lib/config-data/puppet-
generated/neutron/e tc/neutron/neutron.conf. For example:

quota_driver = neutron.db.quota_db.DbQuotaDriver

6.8.19. Mitigate ARP spoofing

OpenStack Networking has a built-in feature to help mitigate the threat of ARP spoofing for instances.
This should not be disabled unless careful consideration is given to the resulting risks.

6.8.20. Set the user/group ownership of config files to root/neutron

Configuration files contain critical parameters and information required for smooth functioning of the
component. If an unprivileged user, either intentionally or accidentally modifies or deletes any of the
para meters or the file itself then it would cause severe availability issues causing a denial of service to
the other end users. Thus user ownership of such critical configuration files must be set to root and
group ownership must be set to neutron.

The neutron group is not present on the host. Using ls -l will show the group owner’s GID.

sudo ls -l /var/lib/config-data/puppet-generated/neutron/etc/neutron/neutron.conf
-rw-r-----. 1 root 42435 41748 Dec 11 09:34 /var/lib/config-data/puppet-
generated/neutron/etc/neutron/neutron.conf

sudo stat -L -c "%U %G" /var/lib/config-data/puppet-generated/neutron/etc/neutron/neutron.conf
root UNKNOWN

Ensure the user and group ownership of the neuton.conf configuration file is set to root and neutron
respectively:

sudo docker exec -it neutron_api stat -L -c "%U %G" /etc/neutron/neutron.conf
root neutron

6.8.21. Set Strict Permissions for Configuration Files

Check that the permissions for the neutron.conf configuration file is set to 640 or stricter:

$ stat -L -c "%a" /var/lib/config-data/puppet-generated/neutron/etc/neutron/neutron.conf

6.8.22. Use Keystone for Authentication

In /var/lib/config-data/puppet-generated/neutron/etc/neutron/neutron.conf check that the value of 
auth_strategy under the [DEFAULT] section is set to keystone and not noauth or noauth2.

6.8.23. Use a Secure Protocol for Authentication
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In /var/lib/config-data/puppet-generated/neutron/etc/neutron/neutron.conf check that the value of 
auth_uri under the [keystone_authtoken] section is set to an Identity API endpoint that starts with
`https:

6.8.24. Enable TLS on Neutron API Server

In /var/lib/config-data/puppet-generated/neutron/etc/neutron/neutron.conf, ensure the parameter 
use_ssl under the [DEFAULT] section is set to True.
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CHAPTER 7. NETWORK TIME PROTOCOL
You need to ensure that systems within your Red Hat OpenStack Platform cluster have accurate and
consistent timestamps between systems.

7.1. WHY CONSISTENT TIME IS IMPORTANT

Consistent time throughout your organization is important for both operational and security needs:

Identifying a security event

Consistent timekeeping helps you correlate timestamps for events on affected systems so that you
can understand the sequence of events.

Authentication and security systems

Security systems can be sensitive to time skew, for example:

A kerberos-based authentication system might refuse to authenticate clients that are
affected by seconds of clock skew.

Transport layer security (TLS) certificates depend on a valid source of time. A client to
server TLS connection fails if the difference between client and server system times exceeds
the Valid From  date range.

Red Hat OpenStack Platform services

Some core OpenStack services are especially dependent on accurate timekeeping, including High
Availability (HA) and Ceph.

7.2. NTP DESIGN

Network time protocol (NTP) is organized in a hierarchical design. Each layer is called a stratum. At the
top of the hierarchy are stratum 0 devices such as atomic clocks. In the NTP hierarchy, stratum 0
devices provide reference for publicly available stratum 1 and stratum 2 NTP time servers.

Do not connect your data center clients directly to publicly available NTP stratum 1 or 2 servers. The
number of direct connections would put unnecessary strain on the public NTP resources. Instead,
allocate a dedicated time server in your data center, and connect the clients to that dedicated server.

Configure instances to receive time from your dedicated time servers, not the host on which they reside.

NOTE

Service containers running within the Red Hat OpenStack Platform environment still
receive time from the host on which they reside.
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CHAPTER 8. USING DIRECTOR TO CONFIGURE SECURITY
HARDENING

Use Red Hat OpenStack Platform director to apply security hardening values as part of the deployment
process. OpenStack configuration files are managed by director, and can be overwritten if directly
edited.

When running openstack overcloud deploy, remember that you will always need to include all
necessary environment files needed to deploy the overcloud, in addition to any changes you want to
make.

8.1. USE SSH BANNER TEXT

You can set a banner that displays a console message to all users that connect over SSH. You can add
banner text to /etc/issue using the following parameters in an environment file. Consider customizing
this sample text to suit your requirements.

resource_registry:
  OS::TripleO::Services::Sshd: ../puppet/services/sshd.yaml

parameter_defaults:
  BannerText: |
   ******************************************************************
   * This system is for the use of authorized users only. Usage of  *
   * this system may be monitored and recorded by system personnel. *
   * Anyone using this system expressly consents to such monitoring *
   * and is advised that if such monitoring reveals possible        *
   * evidence of criminal activity, system personnel may provide    *
   * the evidence from such monitoring to law enforcement officials.*
   ******************************************************************

To apply this change to your deployment, save the settings as a file called ssh_banner.yaml, and then
pass it to the overcloud deploy command as follows. The <full environment> indicates that you must
still include all of your original deployment parameters. For example:

    openstack overcloud deploy --templates \
      -e <full environment> -e  ssh_banner.yaml

8.2. AUDIT FOR SYSTEM EVENTS

Maintaining a record of all audit events helps you establish a system baseline, perform troubleshooting,
or analyze the sequence of events that led to a certain outcome. The audit system is capable of logging
many types of events, such as changes to the system time, changes to Mandatory/Discretionary Access
Control, and creating/deleting users or groups.

Rules can be created using an environment file, which are then injected by director into 
/etc/audit/audit.rules. For example:

    resource_registry:
      OS::TripleO::Services::Auditd: /usr/share/openstack-tripleo-heat-
templates/puppet/services/auditd.yaml
    parameter_defaults:
      AuditdRules:
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        'Record Events that Modify User/Group Information':
          content: '-w /etc/group -p wa -k audit_rules_usergroup_modification'
          order  : 1
        'Collects System Administrator Actions':
          content: '-w /etc/sudoers -p wa -k actions'
          order  : 2
        'Record Events that Modify the Systems Mandatory Access Controls':
          content: '-w /etc/selinux/ -p wa -k MAC-policy'
          order  : 3

8.3. MANAGE FIREWALL RULES

Firewall rules are automatically applied on overcloud nodes during deployment, and are intended to only
expose the ports required to get OpenStack working. You can specify additional firewall rules as needed.
For example, to add rules for a Zabbix monitoring system:

    parameter_defaults:
      ControllerExtraConfig:
        tripleo::firewall::firewall_rules:
          '301 allow zabbix':
            dport: 10050
            proto: tcp
            source: 10.0.0.8
            action: accept

You can also add rules that restrict access. The number used during rule definition will determine the
rule’s precedence. For example, RabbitMQ’s rule number is 109 by default. If you want to restrain it, you
switch it to use a lower value:

    parameter_defaults:
      ControllerExtraConfig:
        tripleo::firewall::firewall_rules:
          '098 allow rabbit from internalapi network':
            dport: [4369,5672,25672]
            proto: tcp
            source: 10.0.0.0/24
            action: accept
          '099 drop other rabbit access':
            dport: [4369,5672,25672]
            proto: tcp
            action: drop

In this example, 098 and 099 are arbitrarily chosen numbers that are lower than RabbitMQ’s rule number 
109. To determine a rule’s number, you can inspect the iptables rule on the appropriate node; for
RabbitMQ, you would check the controller:

iptables-save
[...]
-A INPUT -p tcp -m multiport --dports 4369,5672,25672 -m comment --comment "109 rabbitmq" -m 
state --state NEW -j ACCEPT

Alternatively, you can extract the port requirements from the puppet definition. For example,
RabbitMQ’s rules are stored in puppet/services/rabbitmq.yaml:
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    tripleo.rabbitmq.firewall_rules:
      '109 rabbitmq':
        dport:
          - 4369
          - 5672
          - 25672

The following parameters can be set for a rule:

port: The port associated to the rule. Deprecated by puppetlabs-firewall.

dport: The destination port associated to the rule.

sport: The source port associated to the rule.

proto: The protocol associated to the rule. Defaults to tcp

action: The action policy associated to the rule. Defaults to accept

jump: The chain to jump to.

state: Array of states associated to the rule. Default to [ NEW]

source: The source IP address associated to the rule.

iniface: The network interface associated to the rule.

chain: The chain associated to the rule. Default to INPUT

destination: The destination cidr associated to the rule.

extras: Hash of any additional parameters supported by the puppetlabs-firewall module.

8.4. INTRUSION DETECTION WITH AIDE

AIDE (Advanced Intrusion Detection Environment) is a file and directory integrity checker. It is used to
detect incidents of unauthorized file tampering or changes. For example, AIDE can alert you if system
password files are changed.

AIDE works by analyzing system files and then compiling an integrity database of file hashes. The
database then serves as a comparison point to verify the integrity of the files and directories and detect
changes.

The director includes the AIDE service, allowing you to add entries into an AIDE configuration, which is
then used by the AIDE service to create an integrity database. For example:

  resource_registry:
    OS::TripleO::Services::Aide: ../puppet/services/aide.yaml

  parameter_defaults:
    AideRules:
      'TripleORules':
        content: 'TripleORules = p+sha256'
        order: 1
      'etc':
        content: '/etc/ TripleORules'
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        order: 2
      'boot':
        content: '/boot/ TripleORules'
        order: 3
      'sbin':
        content: '/sbin/ TripleORules'
        order: 4
      'var':
        content: '/var/ TripleORules'
        order: 5
      'not var/log':
        content: '!/var/log.*'
        order: 6
      'not var/spool':
        content: '!/var/spool.*'
        order: 7
      'not nova instances':
        content: '!/var/lib/nova/instances.*'
        order: 8

NOTE

The above example is not actively maintained or benchmarked, so you should select the
AIDE values that suit your requirements.

1. An alias named TripleORules is declared to avoid having to repeatedly out the same attributes
each time.

2. The alias receives the attributes of p+sha256. In AIDE terms, this reads as the following
instruction: monitor all file permissions p with an integrity checksum of sha256.

For a complete list of attributes available for AIDE’s config files, see the AIDE MAN page at
https://aide.github.io/.

Complete the following to apply changes to your deployment:

1. Save the settings as a file called aide.yaml in the /home/stack/templates/ directory.

2. You must ensure that the value for the OS::TripleO::Services::Aide parameter is changed
from being a relative path, to being an absolute path:

    OS::TripleO::Services::Aide: /usr/share/openstack-tripleo-heat-
templates/puppet/services/aide.yaml

3. Include the /home/stack/templates/aide.yaml environment file in the openstack overcloud 
deploy command, along with all other necessary heat templates and environment files specific
to your environment:

openstack overcloud deploy --templates
...
-e /home/stack/templates/aide.yaml

8.4.1. Using complex AIDE rules
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Complex rules can be created using the format described previously. For example:

    MyAlias = p+i+n+u+g+s+b+m+c+sha512

The above would translate as the following instruction: monitor permissions, inodes, number of links,
user, group, size, block count, mtime, ctime, using sha256 for checksum generation.

Note, the alias should always have an order position of 1, which means that it is positioned at the top of
the AIDE rules and is applied recursively to all values below.

Following after the alias are the directories to monitor. Note that regular expressions can be used. For
example we set monitoring for the var directory, but overwrite with a not clause using ! with '!/var/log.*'
and '!/var/spool.*'.

8.4.2. Additional AIDE values

The following AIDE values are also available:

AideConfPath: The full POSIX path to the aide configuration file, this defaults to /etc/aide.conf. If no
requirement is in place to change the file location, it is recommended to stick with the default path.

AideDBPath: The full POSIX path to the AIDE integrity database. This value is configurable to allow
operators to declare their own full path, as often AIDE database files are stored off node perhaps on a
read only file mount.

AideDBTempPath: The full POSIX path to the AIDE integrity temporary database. This temporary files
is created when AIDE initializes a new database.

AideHour: This value is to set the hour attribute as part of AIDE cron configuration.

AideMinute: This value is to set the minute attribute as part of AIDE cron configuration.

AideCronUser: This value is to set the linux user as part of AIDE cron configuration.

AideEmail: This value sets the email address that receives AIDE reports each time a cron run is made.

AideMuaPath: This value sets the path to the Mail User Agent that is used to send AIDE reports to the
email address set within AideEmail.

8.4.3. Cron configuration for AIDE

The AIDE director service allows you to configure a cron job. By default, it will send reports to 
/var/log/audit/; if you want to use email alerts, then enable the AideEmail parameter to send the alerts
to the configured email address. Note that a reliance on email for critical alerts can be vulnerable to
system outages and unintentional message filtering.

8.4.4. Considering the effect of system upgrades

When an upgrade is performed, the AIDE service will automatically regenerate a new integrity database
to ensure all upgraded files are correctly recomputed to possess an updated checksum.

If openstack overcloud deploy is called as a subsequent run to an initial deployment, and the AIDE
configuration rules are changed, the director AIDE service will rebuild the database to ensure the new
config attributes are encapsulated in the integrity database.
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8.5. REVIEW SECURETTY

SecureTTY allows you to disable root access for any console device (tty). This behavior is managed by
entries in the /etc/securetty file. For example:

  resource_registry:
    OS::TripleO::Services::Securetty: ../puppet/services/securetty.yaml

  parameter_defaults:
    TtyValues:
      - console
      - tty1
      - tty2
      - tty3
      - tty4
      - tty5
      - tty6

8.6. CADF AUDITING FOR IDENTITY SERVICE

A thorough auditing process can help you review the ongoing security posture of your OpenStack
deployment. This is especially important for keystone, due to its role in the security model.

Red Hat OpenStack Platform has adopted Cloud Auditing Data Federation (CADF) as the data format
for audit events, with the keystone service generating CADF events for Identity and Token operations.
You can enable CADF auditing for keystone using KeystoneNotificationFormat:

  parameter_defaults:
    KeystoneNotificationFormat: cadf

8.7. REVIEW THE LOGIN.DEFS VALUES

To enforce password requirements for new system users (non-keystone), director can add entries to 
/etc/login.defs by following these example parameters:

  resource_registry:
    OS::TripleO::Services::LoginDefs: ../puppet/services/login-defs.yaml

  parameter_defaults:
    PasswordMaxDays: 60
    PasswordMinDays: 1
    PasswordMinLen: 5
    PasswordWarnAge: 7
    FailDelay: 4
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CHAPTER 9. HARDENING THE DASHBOARD SERVICE
This chapter describes security hardening considerations for Red Hat OpenStack Platform deployments
that use the OpenStack Dashboard (horizon).

The Dashboard gives users a self-service portal for provisioning their own resources (within the limits
set by administrators). For example, you can use the Dashboard to define instance flavors, upload virtual
machine (VM) images, manage virtual networks, create security groups, start instances, and remotely
access the instances through a management console.

The Dashboard should be treated with the same sensitivity as the OpenStack APIs, given both have the
ability to grant access to cloud resources and configuration.

9.1. PLANNING DASHBOARD DEPLOYMENT

This section describes security aspects to consider prior to deploying the Dashboard (horizon) service.

9.1.1. Selecting a domain name

It is recommended that you deploy dashboard to a second-level domain, such as https://example.com,
rather than deploying dashboard on a shared subdomain (at any level), for example 
https://openstack.example.org or https://horizon.openstack.example.org. It is also suggested that
you avoid deploying the Dashboard to bare internal domains, such as https://horizon/. These
recommendations are based on the limitations of browser same-origin-policy.

This approach helps you isolate cookies and security tokens from other domains, where you might not
have complete control of the content. When deployed on a subdomain, the dashboard’s security is
equivalent to the least secure application deployed on the same second-level domain.

You can further mitigate this risk by avoiding a cookie-backed session store, and configuring HTTP Strict
Transport Security (HSTS) (described in this guide).

9.1.2. Configure ALLOWED_HOSTS

Web services can be vulnerable to threats associated with fake HTTP Host headers. To help mitigate
this, consider configuring the ALLOWED_HOSTS setting to use the FQDN served by the OpenStack
dashboard.

Once configured, if the value in the Host: header of an incoming HTTP request does not match any of
the values in this list, an error will be raised and the requestor will not be able to proceed.

Horizon is built on the python Django web framework, which requires ALLOWED_HOSTS be set to
protect against potentially malicious manipulation of the HTTP Host: header. Set this value to the
FQDN the dashboard should be accessible from. For director, this setting is managed by 
HorizonAllowedHosts.

9.2. UNDERSTANDING COMMON WEB SERVER VULNERABILITIES

This chapter describes how you can help mitigate some common web server vulnerabilities.

9.2.1. Cross Site Scripting (XSS)

The OpenStack Dashboard is customizable, and allows the entire Unicode character set in most fields;
this extensibility could allow the introduction of cross-site scripting (XSS) vulnerabilities. Horizon
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includes tools to help developers avoid inadvertently creating XSS vulnerabilities, but they only work if
developers use them correctly. It is recommended that you audit any custom dashboards, and pay
particular attention to the following capabilities:

The mark_safe function.

is_safe - when used with custom template tags.

The safe template tag.

Anywhere auto escape is turned off, and any JavaScript which might evaluate improperly
escaped data.

9.2.2. Cross Site Request Forgery (CSRF)

The OpenStack dashboard is designed to discourage developers from introducing cross-site scripting
vulnerabilities with custom dashboards, as there is potential for threats to be introduced. Dashboards
that use multiple JavaScript instances should be audited for vulnerabilities, such as inappropriate use of
the @csrf_exempt decorator. Any dashboard that does not follow these recommended security
settings should be carefully evaluated before CORS (Cross Origin Resource Sharing) restrictions are
relaxed.

You should configure your web server to send a restrictive CORS header with each response, allowing
only the dashboard domain and protocol. For example:Access-Control-Allow-Origin: 
https://example.com/. You should never allow the wild card origin.

9.2.3. Cross-Frame Scripting (XFS)

The disallow_iframe_embed setting disallows Dashboard from being embedded within an iframe.
Legacy browsers can still be vulnerable to Cross-Frame Scripting (XFS) vulnerabilities, so this option
adds extra security hardening for deployments that do not require iframes.

You can allow iframe embedding using the following parameter:

    parameter_defaults:
      ControllerExtraConfig:
        horizon::disallow_iframe_embed: false

9.2.4. Using HTTPS encryption for Dashboard traffic

It is recommended you use HTTPS to encrypt Dashboard traffic. You can do this by configuring it to use
a valid, trusted certificate from a recognized certificate authority (CA). Private organization-issued
certificates are only appropriate when the root of trust is pre-installed in all user browsers.

Configure HTTP requests to the dashboard domain to redirect to the fully qualified HTTPS URL.

For director-based deployments, see https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/13/html/advanced_overcloud_customization/sect-
enabling_ssltls_on_the_overcloud.

9.2.5. HTTP Strict Transport Security (HSTS)

HTTP Strict Transport Security (HSTS) prevents browsers from making subsequent insecure
connections after they have initially made a secure connection. If you have deployed your HTTP services
on a public or an untrusted zone, HSTS is especially important.
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For director-based deployments, this setting is enabled by default:

enable_secure_proxy_ssl_header: true

9.3. CACHING THE DASHBOARD CONTENT

9.3.1. Front-end caching

It is not recommended to use front-end caching tools with the Dashboard, as it renders dynamic content
resulting directly from OpenStack API requests. As a result, front-end caching layers such as varnish
can prevent the correct content from being displayed. The Dashboard uses Django, which serves static
media directly served from the web service and already benefits from web host caching.

9.3.2. Session backend

For director-based deployments, the default session backend for horizon is 
django.contrib.sessions.backends.cache, which is combined with memcached. This approach is
preferred to local-memory cache for performance reasons, is safer for highly-available and load
balanced installs, and has the ability to share cache over multiple servers, while still treating it as a single
cache.

You can review these settings in director’s horizon.yaml file:

          horizon::cache_backend: django.core.cache.backends.memcached.MemcachedCache
          horizon::django_session_engine: 'django.contrib.sessions.backends.cache'

9.4. REVIEWING THE SECRET KEY

The Dashboard depends on a shared SECRET_KEY setting for some security functions. The secret key
should be a randomly generated string at least 64 characters long, which must be shared across all active
dashboard instances. Compromise of this key might allow a remote attacker to execute arbitrary code.
Rotating this key invalidates existing user sessions and caching. Do not commit this key to public
repositories.

For director deployments, this setting is managed as the HorizonSecret value.

9.5. CONFIGURING SESSION COOKIES

The Dashboard session cookies can be open to interaction by browser technologies, such as JavaScript.
For director deployments with TLS everywhere, you can harden this behavior using the 
HorizonSecureCookies setting.

NOTE

Never configure CSRF or session cookies to use a wildcard domain with a leading dot.

9.6. STATIC MEDIA

The dashboard’s static media should be deployed to a subdomain of the dashboard domain and served
by the web server. The use of an external content delivery network (CDN) is also acceptable. This
subdomain should not set cookies or serve user-provided content. The media should also be served
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with HTTPS.

Dashboard’s default configuration uses django_compressor to compress and minify CSS and
JavaScript content before serving it. This process should be statically done before deploying the
dashboard, rather than using the default in-request dynamic compression and copying the resulting files
along with deployed code or to the CDN server. Compression should be done in a non-production build
environment. If this is not practical, consider disabling resource compression entirely. Online
compression dependencies (less, Node.js) should not be installed on production machines.

9.7. VALIDATING PASSWORD COMPLEXITY

The OpenStack Dashboard (horizon) can use a password validation check to enforce password
complexity.

You can specify a regular expression for password validation, as well as help text to be displayed for
failed tests. The following example requires users to create a password of between 8 to 18 characters in
length:

    parameter_defaults:
      HorizonPasswordValidator: '^.{8,18}$'
      HorizonPasswordValidatorHelp: 'Password must be between 8 and 18 characters.'

To apply this change to your deployment, save the settings as a file called horizon_password.yaml, and
then pass it to the overcloud deploy command as follows. The <full environment> indicates that you
must still include all of your original deployment parameters. For example:

    openstack overcloud deploy --templates \
      -e <full environment> -e  horizon_password.yaml

9.8. ENFORCE THE ADMINISTRATOR PASSWORD CHECK

The following setting is set to True by default, however it can be disabled using an environment file, if
needed.

NOTE

These settings should only be set to False once the potential security impacts are fully
understood.

The ENFORCE_PASSWORD_CHECK setting in Dashboard’s local_settings.py file displays an Admin
Password field on the Change Password form, which helps verify that an administrator is initiating the
password change.

You can disable ENFORCE_PASSWORD_CHECK using an environment file:

    parameter_defaults:
      ControllerExtraConfig:
        horizon::enforce_password_check: false

9.9. DISALLOW IFRAME EMBEDDING

NOTE
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NOTE

These settings should only be set to False once the potential security impacts are fully
understood.

The DISALLOW_IFRAME_EMBED setting disallows Dashboard from being embedded within an iframe.
Legacy browsers can still be vulnerable to Cross-Frame Scripting (XFS) vulnerabilities, so this option
adds extra security hardening for deployments that do not require iframes. The setting is set to True by
default, however it can be disabled using an environment file, if needed. For example, you can allow
iframe embedding using the following parameter:

    parameter_defaults:
      ControllerExtraConfig:
        horizon::disallow_iframe_embed: false

9.10. DISABLE PASSWORD REVEAL

The following setting is set to True by default, however it can be disabled using an environment file, if
needed.

NOTE

These settings should only be set to False once the potential security impacts are fully
understood.

The password reveal button allows a user at the Dashboard to view the password they are about to
enter. This option can be toggled using the DISABLE_PASSWORD_REVEAL parameter:

    parameter_defaults:
      ControllerExtraConfig:
        horizon::disable_password_reveal: false

9.11. DISPLAYING A LOGIN BANNER FOR THE DASHBOARD

Many regulated industries, such as HIPAA, PCI-DSS, and the U.S. Government, require you to display a
user logon banner. The Dashboard service runs within a container, so you will need to customize the
Dashboard container image to apply the banner. For more information on customizing the Dashboard
container, see https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-
single/introduction_to_the_openstack_dashboard/index#dashboard-customization.

9.11.1. Customizing the theme

Within the custom Dashboard container, you can create a logon banner by manually editing the 
/usr/share/openstack-dashboard/openstack_dashboard/themes/rcue/templates/auth/login.html
file:

1. Enter the required logon banner immediately before the {% include 'auth/_login.html' %}
section. Note that HTML tags are allowed. For example:

<snip>
<div class="container">
  <div class="row-fluid">
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    <div class="span12">
      <div id="brand">
        <img src="../../static/themes/rcue/images/RHOSP-Login-Logo.svg">
      </div><!--/#brand-->
    </div><!--/.span*-->

    <!-- Start of Logon Banner -->
    <p>Authentication to this information system reflects acceptance of user monitoring 
agreement.</p>
    <!-- End of Logon Banner -->

    {% include 'auth/_login.html' %}
  </div><!--/.row-fluid→
</div><!--/.container-->

{% block js %}
  {% include "horizon/_scripts.html" %}
{% endblock %}

  </body>
</html>

The updated dashboard will look similar to the following:
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9.12. LIMITING THE SIZE OF FILE UPLOADS

You can optionally configure the dashboard to limit the size of file uploads; this setting might be a
requirement for various security hardening policies.

LimitRequestBody - This value (in bytes) limits the maximum size of a file that you can transfer using
the Dashboard, such as images and other large files.

IMPORTANT

This setting has not been formally tested by Red Hat. It is recommended that you
thoroughly test the effect of this setting before deploying it to your production
environment.

NOTE

File uploads will fail if the value is too small.
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For example, this setting limits each file upload to a maximum size of 10 GB (10737418240). You will
need to adjust this value to suit your deployment.

/var/lib/config-data/puppet-generated/horizon/etc/httpd/conf/httpd.conf

<Directory />
  LimitRequestBody 10737418240
</Directory>

/var/lib/config-data/puppet-generated/horizon/etc/httpd/conf.d/10-horizon_vhost.conf

<Directory "/var/www">
  LimitRequestBody 10737418240
</Directory>

/var/lib/config-data/puppet-generated/horizon/etc/httpd/conf.d/15-horizon_ssl_vhost.conf

<Directory "/var/www">
  LimitRequestBody 10737418240
</Directory>

NOTE

These configuration files are managed by Puppet, so any unmanaged changes are
overwritten whenever you run the openstack overcloud deploy process.

9.13. DEBUGGING THE DASHBOARD SERVICE

It is recommend that you keep the DEBUG setting set to False in production environments. If set to 
True, Django might output stack traces to browser users that contain sensitive web server state
information. In addition, DEBUG mode has the effect of disabling ALLOWED_HOSTS, which could be
an undesirable result, depending on your requirements.
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CHAPTER 10. HARDENING THE SHARED FILE SYSTEM
(MANILA)

The Shared File System service (manila) provides a set of services for managing shared file systems in a
multi-project cloud environment. It is similar to how OpenStack provides block-based storage
management through the Block Storage service (cinder) project. With manila, you can create a shared
file system and manage its properties, such as visibility, accessibility, and usage quotas.

For more information on manila, see the Storage Guide: https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/13/html-single/storage_guide/

10.1. SECURITY CONSIDERATIONS FOR MANILA

Manila is registered with keystone, allowing you to the locate the API using the manila endpoints
command. For example:

 $ manila endpoints
 +-------------+-----------------------------------------+
 | manila      | Value                                   |
 +-------------+-----------------------------------------+
 | adminURL    | http://172.18.198.55:8786/v1/20787a7b...|
 | region      | RegionOne                               |
 | publicURL   | http://172.18.198.55:8786/v1/20787a7b...|
 | internalURL | http://172.18.198.55:8786/v1/20787a7b...|
 | id          | 82cc5535aa444632b64585f138cb9b61        |
 +-------------+-----------------------------------------+

 +-------------+-----------------------------------------+
 | manilav2    | Value                                   |
 +-------------+-----------------------------------------+
 | adminURL    | http://172.18.198.55:8786/v2/20787a7b...|
 | region      | RegionOne                               |
 | publicURL   | http://172.18.198.55:8786/v2/20787a7b...|
 | internalURL | http://172.18.198.55:8786/v2/20787a7b...|
 | id          | 2e8591bfcac4405fa7e5dc3fd61a2b85        |
 +-------------+-----------------------------------------+

By default, the manila API service only listens on port 8786 with tcp6, which supports both IPv4 and
IPv6.

Manila uses multiple configurations files; these are stored in /var/lib/config-data/puppet-
generated/manila/:

 api-paste.ini
 manila.conf
 policy.json
 rootwrap.conf
 rootwrap.d

 ./rootwrap.d:
 share.filters

It is recommended that you configure manila to run under a non-root service account, and change file
permissions so that only the system administrator can modify them. Manila expects that only
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administrators can write to configuration files, and services can only read them through their group
membership in the manila group. Other users must not be able to read these files, as they contain
service account passwords.

NOTE

Only the root user should own be able to write to the configuration for manila-rootwrap
in rootwrap.conf, and the manila-rootwrap command filters for share nodes in 
rootwrap.d/share.filters.

10.2. NETWORK AND SECURITY MODELS FOR MANILA

A share driver in manila is a Python class that can be set for the back end to manage share operations,
some of which are vendor-specific. The back end is an instance of the manila-share service. Manila has
share drivers for many different storage systems, supporting both commercial vendors and open source
solutions. Each share driver supports one or more back end modes: share servers and no share 
servers. An administrator selects a mode by specifying it in manila.conf, using 
driver_handles_share_servers.

A share server is a logical Network Attached Storage (NAS) server that exports shared file systems.
Back-end storage systems today are sophisticated and can isolate data paths and network paths
between different OpenStack projects.

A share server provisioned by a manila share driver would be created on an isolated network that belongs
to the project user creating it. The share servers mode can be configured with either a flat network, or
a segmented network, depending on the network provider.

It is possible to have separate drivers for different modes use the same hardware. Depending on the
chosen mode, you might need to provide more configuration details through the configuration file.

10.3. SHARE BACKEND MODES

Each share driver supports at least one of the available driver modes:

Share servers - driver_handles_share_servers = True - The share driver creates share servers
and manages the share server life cycle.

No share servers - driver_handles_share_servers = False - An administrator (rather than a
share driver) manages the bare metal storage with a network interface, instead of relying on the
presence of the share servers.

No share servers mode - In this mode, drivers will not set up share servers, and consequently will not
need to set up any new network interfaces. It is assumed that storage controller being managed by the
driver has all of the network interfaces it is going to need. Drivers create shares directly without
previously creating a share server. To create shares using drivers operating in this mode, manila does not
require users to create any private share networks either.

NOTE

In no share servers mode, manila will assume that the network interfaces through which
any shares are exported are already reachable by all projects.

In the no share servers mode a share driver does not handle share server life cycle. An administrator is
expected to handle the storage, networking, and other host-side configuration that might be necessary
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to provide project isolation. In this mode an administrator can set storage as a host which exports shares.
All projects within the OpenStack cloud share a common network pipe. Lack of isolation can impact
security and quality of service. When using share drivers that do not handle share servers, cloud users
cannot be sure that their shares cannot be accessed by untrusted users by a tree walk over the top
directory of their file systems. In public clouds it is possible that all network bandwidth is used by one
client, so an administrator should care for this not to happen. Network balancing can be done by any
means, and not necessarily just with OpenStack tools.

Share servers mode - In this mode, a driver is able to create share servers and plug them to existing
OpenStack networks. Manila determines if a new share server is required, and provides all the
networking information necessary for the share drivers to create the requisite share server.

When creating shares in the driver mode that handles share servers, users must provide a share network
that they expect their shares to be exported upon. Manila uses this network to create network ports for
the share server on this network.

Users can configure security services in both share servers and no share servers back end modes.
But with the no share servers back end mode, an administrator must set the required authentication
services manually on the host. And in share servers mode manila can configure security services
identified by the users on the share servers it spawns.

10.4. NETWORKING REQUIREMENTS FOR MANILA

Manila can integrate with different network types: flat, GRE, VLAN, VXLAN.

NOTE

Manila is only storing the network information in the database, with the real networks
being supplied by the network provider. Manila supports using the OpenStack Networking
service (neutron) and also "standalone" pre-configured networking.

In the share servers back end mode, a share driver creates and manages a share server for each share
network. This mode can be divided in two variations:

Flat network in share servers backend mode

Segmented network in share servers backend mode

Users can use a network and subnet from the OpenStack Networking (neutron) service to create share
networks. If the administrator decides to use the StandAloneNetworkPlugin, users need not provide
any networking information since the administrator pre-configures this in the configuration file.

NOTE

Share servers spawned by some share drivers are Compute servers created with the
Compute service. A few of these drivers do not support network plugins.

After a share network is created, manila retrieves network information determined by a network provider:
network type, segmentation identifier (if the network uses segmentation) and the IP block in CIDR
notation from which to allocate the network.

Users can create security services that specify security requirements such as AD or LDAP domains or a
Kerberos realm. Manila assumes that any hosts referred to in security service are reachable from a
subnet where a share server is created, which limits the number of cases where this mode could be used.

NOTE
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NOTE

Some share drivers might not support all types of segmentation, for more details see the
specification for the driver you are using.

10.5. SECURITY SERVICES WITH MANILA

Manila can restrict access to file shares by integrating with network authentication protocols. Each
project can have its own authentication domain that functions separately from the cloud’s keystone
authentication domain. This project domain can be used to provide authorization (AuthZ) services to
applications that run within the OpenStack cloud, including manila. Available authentication protocols
include LDAP, Kerberos, and Microsoft Active Directory authentication service.

10.5.1. Introduction to security services

After creating a share and getting its export location, users have no permissions to mount it and operate
with files. Users need to explicitly grant access to the new share.

The client authentication and authorization (authN/authZ) can be performed in conjunction with
security services. Manila can use LDAP, Kerberos, or Microsoft Active directory if they are supported by
the share drivers and back ends.

NOTE

In some cases, it is required to explicitly specify one of the security services, for example,
NetApp, EMC and Windows drivers require Active Directory for the creation of shares
with the CIFS protocol.

10.5.2. Security services management

A security service is a manila entity that abstracts a set of options that define a security zone for a
particular shared file system protocol, such as an Active Directory domain or a Kerberos domain. The
security service contains all of the information necessary for manila to create a server that joins a given
domain.

Using the API, users can create, update, view, and delete a security service. Security Services are
designed on the following assumptions:

Projects provide details for the security service.

Administrators care about security services: they configure the server side of such security
services.

Inside the manila API, a security_service is associated with the share_networks.

Share drivers use data in the security service to configure newly created share servers.

When creating a security service, you can select one of these authentication services:

LDAP - The Lightweight Directory Access Protocol. An application protocol for accessing and
maintaining distributed directory information services over an IP network.

Kerberos - The network authentication protocol which works on the basis of tickets to allow
nodes communicating over a non-secure network to prove their identity to one another in a
secure manner.
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Active Directory - A directory service that Microsoft developed for Windows domain networks.
Uses LDAP, Microsoft’s version of Kerberos, and DNS.

Manila allows you to configure a security service with these options:

A DNS IP address that is used inside the project network.

An IP address or hostname of a security service.

A domain of a security service.

A user or group name that is used by a project.

A password for a user, if you specify a username.

An existing security service entity can be associated with share network entities that inform manila about
security and network configuration for a group of shares. You can also see the list of all security services
for a specified share network and disassociate them from a share network.

An administrator and users as share owners can manage access to the shares by creating access rules
with authentication through an IP address, user, group, or TLS certificates. Authentication methods
depend on which share driver and security service you configure and use. You can then configure a back
end to use a specific authentication service, which can operate with clients without manila and keystone.

NOTE

Different authentication services are supported by different share drivers. For details of
supporting of features by different drivers, see
https://docs.openstack.org/manila/latest/admin/share_back_ends_feature_support_mapping.html

Support for a specific authentication service by a driver does not mean that it can be configured with
any shared file system protocol. Supported shared file systems protocols are NFS, CEPHFS, CIFS,
GlusterFS, and HDFS. See the driver vendor’s documentation for information on a specific driver and its
configuration for security services.

Some drivers support security services and other drivers do not support any of the security services
mentioned above. For example, Generic Driver with the NFS or the CIFS shared file system protocol
supports only authentication method through the IP address.

NOTE

In most cases, drivers that support the CIFS shared file system protocol can be
configured to use Active Directory and manage access through the user authentication.

Drivers that support the GlusterFS protocol can be used with authentication using TLS
certificates.

With drivers that support NFS protocol authentication using an IP address is the only supported
option.

Since the HDFS shared file system protocol uses NFS access it also can be configured to
authenticate using an IP address.

The recommended configuration for production manila deployments is to create a share with the CIFS
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The recommended configuration for production manila deployments is to create a share with the CIFS
share protocol and add to it the Microsoft Active Directory directory service. With this configuration you
will get the centralized database and the service that integrates the Kerberos and LDAP approaches.

10.6. SHARE ACCESS CONTROL

Users can specify which specific clients have access to the shares they create. Due to the keystone
service, shares created by individual users are only visible to themselves and other users within the same
project. Manila allows users to create shares that are "publicly" visible. These shares are visible in
dashboards of users that belong to other OpenStack projects if the owners grant them access, they
might even be able to mount these shares if they are made accessible on the network.

While creating a share, use key --public to make your share public for other projects to see it in a list of
shares and see its detailed information.

According to the policy.json file, an administrator and the users as share owners can manage access to
shares by means of creating access rules. Using the manila access-allow, manila access-deny, and 
manila access-list commands, you can grant, deny and list access to a specified share correspondingly.

NOTE

Manila does not provide end-to-end management of the storage system. You will still
need to separately protect the backend system from unauthorized access. As a result,
the protection offered by the manila API can still be circumvented if someone
compromises the backend storage device, thereby gaining out of band access.

When a share is just created there are no default access rules associated with it and permission to
mount it. This could be seen in mounting config for export protocol in use. For example, there is an NFS
command exportfs or /etc/exports file on the storage which controls each remote share and defines
hosts that can access it. It is empty if nobody can mount a share. For a remote CIFS server there is net 
conf list command which shows the configuration. The hosts deny parameter should be set by the
share driver to 0.0.0.0/0 which means that any host is denied to mount the share.

Using manila, you can grant or deny access to a share by specifying one of these supported share access
levels:

rw - Read and write (RW) access. This is the default value.

ro- Read-only (RO) access.

NOTE

The RO access level can be helpful in public shares when the administrator gives read and
write (RW) access for some certain editors or contributors and gives read-only (RO)
access for the rest of users (viewers).

You must also specify one of these supported authentication methods:

ip - Uses an IP address to authenticate an instance. IP access can be provided to clients
addressable by well-formed IPv4 or IPv6 addresses or subnets denoted in CIDR notation.

cert - Uses a TLS certificate to authenticate an instance. Specify the TLS identity as the 
IDENTKEY. A valid value is any string up to 64 characters long in the common name (CN) of the
certificate.
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user - Authenticates by a specified user or group name. A valid value is an alphanumeric string
that can contain some special characters and is from 4 to 32 characters long.

NOTE

Supported authentication methods depend on which share driver, security service and
shared file system protocol you use. Supported shared file system protocols are MapRFS,
CEPHFS, NFS, CIFS, GlusterFS, and HDFS. Supported security services are LDAP,
Kerberos protocols, or Microsoft Active Directory service.

To verify that access rules (ACL) were configured correctly for a share, you can list its permissions.

NOTE

When selecting a security service for your share, you will need to consider whether the
share driver is able to create access rules using the available authentication methods.
Supported security services are LDAP, Kerberos, and Microsoft Active Directory.

10.7. SHARE TYPE ACCESS CONTROL

A share type is an administrator-defined type of service , comprised of a project visible description, and a
list of non-project-visible key-value pairs called extra specifications. The manila-scheduler uses extra
specifications to make scheduling decisions, and drivers control the share creation.

An administrator can create and delete share types, and can also manage extra specifications that give
them meaning inside manila. Projects can list the share types and can use them to create new shares.
Share types can be created as public and private. This is the level of visibility for the share type that
defines whether other projects can or cannot see it in a share types list and use it to create a new share.

By default, share types are created as public. While creating a share type, use --is_public parameter set
to False to make your share type private which will prevent other projects from seeing it in a list of share
types and creating new shares with it. On the other hand, public share types are available to every
project in a cloud.

Manila allows an administrator to grant or deny access to the private share types for projects. You can
also get information about the access for a specified private share type.

NOTE

Since share types due to their extra specifications help to filter or choose back ends
before users create a share, using access to the share types you can limit clients in choice
of specific back ends.

For example, an administrator user in the admin project can create a private share type named my_type
and see it in the list. In the console examples below, the logging in and out is omitted, and environment
variables are provided to show the currently logged in user.

 $ env | grep OS_
 ...
 OS_USERNAME=admin
 OS_TENANT_NAME=admin
 ...
 $ manila type-list --all
 +----+--------+-----------+-----------+-----------------------------------+-----------------------+
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 | ID | Name   | Visibility| is_default| required_extra_specs              | optional_extra_specs  |
 +----+--------+-----------+-----------+-----------------------------------+-----------------------+
 | 4..| my_type| private   | -         | driver_handles_share_servers:False| snapshot_support:True |
 | 5..| default| public    | YES       | driver_handles_share_servers:True | snapshot_support:True |
 +----+--------+-----------+-----------+-----------------------------------+-----------------------+

The demo user in the demo project can list the types and the private share type named my_type is not
visible for him.

 $ env | grep OS_
 ...
 OS_USERNAME=demo
 OS_TENANT_NAME=demo
 ...
 $ manila type-list --all
 +----+--------+-----------+-----------+----------------------------------+----------------------+
 | ID | Name   | Visibility| is_default| required_extra_specs             | optional_extra_specs |
 +----+--------+-----------+-----------+----------------------------------+----------------------+
 | 5..| default| public    | YES       | driver_handles_share_servers:True| snapshot_support:True|
 +----+--------+-----------+-----------+----------------------------------+----------------------+

The administrator can grant access to the private share type for the demo project with the project ID
equal to df29a37db5ae48d19b349fe947fada46:

 $ env | grep OS_
 ...
 OS_USERNAME=admin
 OS_TENANT_NAME=admin
 ...
 $ openstack project list
 +----------------------------------+--------------------+
 | ID                               | Name               |
 +----------------------------------+--------------------+
 | ...                              | ...                |
 | df29a37db5ae48d19b349fe947fada46 | demo               |
 +----------------------------------+--------------------+
 $ manila type-access-add my_type df29a37db5ae48d19b349fe947fada46

As a result, users in the demo project can see the private share type and use it in the share creation:

 $ env | grep OS_
 ...
 OS_USERNAME=demo
 OS_TENANT_NAME=demo
 ...
 $ manila type-list --all
 +----+--------+-----------+-----------+-----------------------------------+-----------------------+
 | ID | Name   | Visibility| is_default| required_extra_specs              | optional_extra_specs  |
 +----+--------+-----------+-----------+-----------------------------------+-----------------------+
 | 4..| my_type| private   | -         | driver_handles_share_servers:False| snapshot_support:True |
 | 5..| default| public    | YES       | driver_handles_share_servers:True | snapshot_support:True |
 +----+--------+-----------+-----------+-----------------------------------+-----------------------+

To deny access for a specified project, use manila type-access-remove <share_type> <project_id>.
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NOTE

For an example that demonstrates the purpose of the share types, consider a situation
where you have two back ends: LVM as a public storage and Ceph as a private storage. In
this case you can grant access to certain projects and control access with user/group
authentication method.

10.8. POLICIES

The Shared File Systems service API is gated with role-based access control policies. These policies
determine which user can access certain APIs in a certain way, and are defined in the service’s 
policy.json file.

NOTE

The configuration file policy.json may be placed anywhere. The path /var/lib/config-
data/puppet-generated/manila/etc/manila/policy.json is expected by default.

Whenever an API call is made to manila, the policy engine uses the appropriate policy definitions to
determine if the call can be accepted. A policy rule determines under which circumstances the API call is
permitted. The /var/lib/config-data/puppet-generated/manila/etc/manila/policy.json file has rules
where an action is always permitted, when the rule is an empty string: ""; the rules based on the user role
or rules; rules with boolean expressions. Below is a snippet of the policy.json file for manila. It can be
expected to change between OpenStack releases.

   {
       "context_is_admin": "role:admin",
       "admin_or_owner": "is_admin:True or project_id:%(project_id)s",
       "default": "rule:admin_or_owner",
       "share_extension:quotas:show": "",
       "share_extension:quotas:update": "rule:admin_api",
       "share_extension:quotas:delete": "rule:admin_api",
       "share_extension:quota_classes": "",
   }

Users must be assigned to groups and roles that you refer to in your policies. This is done automatically
by the service when user management commands are used.

NOTE

Any changes to /var/lib/config-data/puppet-generated/manila/etc/manila/policy.json
are effective immediately, which allows new policies to be implemented while manila is
running. Manual modification of the policy can have unexpected side effects and is not
encouraged. Manila does not provide a default policy file; all the default policies are within
the code base. You can generate the default policies from the manila code by executing: 
oslopolicy-sample-generator --config-file=var/lib/config-data/puppet-
generated/manila/etc/manila/manila-policy-generator.conf
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CHAPTER 11. OBJECT STORAGE
The Object Storage (swift) service stores and retrieves data over HTTP. Objects (blobs of data) are
stored in an organizational hierarchy that can be configured to offer anonymous read-only access, ACL
defined access, or even temporary access. Swift supports multiple token-based authentication
mechanisms implemented through middleware.

Applications store and retrieve data in Object Storage using an industry-standard HTTP RESTful API.
The back end swift components follow the same RESTful model, although some APIs (such as those
managing durability) are kept private to the cluster.

The components of swift fall into the following primary groups:

Proxy services

Auth services

Storage services

Account service

Container service

Object service

NOTE

An Object Storage installation does not have to be internet-facing and could also be a
private cloud with the public switch a part of the organization’s internal network
infrastructure.
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11.1. NETWORK SECURITY

Security hardening for swift begins with securing the networking component. See the networking
chapter for more information.

For high availability, the rsync protocol is used to replicate data between storage service nodes. In
addition, the proxy service communicates with the storage service when relaying data between the client
end-point and the cloud environment.

NOTE

Swift does not use encryption or authentication with inter-node communications. This is
because swift uses the native rsync protocol for performance reasons, and does not use
SSH for rsync communications.This is why you see a private switch or private network
([V]LAN) in the architecture diagrams. This data zone should be separate from other
OpenStack data networks as well.

NOTE

Use a private (V)LAN network segment for your storage nodes in the data zone.

This requires that the proxy nodes have dual interfaces (physical or virtual):

One interface as a public interface for consumers to reach.

Another interface as a private interface with access to the storage nodes.

The following figure demonstrates one possible network architecture, using the Object Storage network
architecture with a management node (OSAM):
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11.2. GENERAL SERVICE SECURITY

11.2.1. Run services as non-root user

It is recommend that you configure swift to run under a non-root (UID 0) service account. One
recommendation is the username swift with the primary group swift, as deployed by director. Object
Storage services include, for example, proxy-server, container-server, account-server.

11.2.2. File permissions

The /var/lib/config-data/puppet-generated/swift/etc/swift/ directory contains information about the
ring topology and environment configuration. The following permissions are recommended:

chown -R root:swift /var/lib/config-data/puppet-generated/swift/etc/swift/*
find /var/lib/config-data/puppet-generated/swift/etc/swift/ -type f -exec chmod 640 {} \;
find /var/lib/config-data/puppet-generated/swift/etc/swift/ -type d -exec chmod 750 {} \;

This restriction only allows root to modify configuration files, while still allowing the services to read
them, due to their membership in the swift group.

11.3. SECURING STORAGE SERVICES

The following are the default listening ports for the various storage services:

Account service - TCP/6002
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Container service - TCP/6001

Object Service - TCP/6000

Rsync - TCP/873

NOTE

If ssync is used instead of rsync, the object service port is used for maintaining durability.

NOTE

Authentication does not occur at the storage nodes. If you are able to connect to a
storage node on one of these ports, you can access or modify data without
authentication. To help mitigate this issue, you should follow the recommendations given
previously about using a private storage network.

11.3.1. Object Storage account terminology

A swift account is not a user account or credential. The following distinctions exist:

Swift account - A collection of containers (not user accounts or authentication). The
authentication system you use will determine which users are associated with the account and
how they might access it.

Swift containers - A collection of objects. Metadata on the container is available for ACLs. The
usage of ACLs is dependent on the authentication system used.

Swift objects - The actual data objects. ACLs at the object level are also available with
metadata, and are dependent on the authentication system used.

At each level, you have ACLs that control user access; ACLs are interpreted based on the authentication
system in use. The most common type of authentication provider is the Identity Service (keystone);
custom authentication providers are also available.

11.4. SECURING PROXY SERVICES

A proxy node should have at least two interfaces (physical or virtual): one public and one private. You
can use firewalls or service binding to help protect the public interface. The public-facing service is an
HTTP web server that processes end-point client requests, authenticates them, and performs the
appropriate action. The private interface does not require any listening services, but is instead used to
establish outgoing connections to storage nodes on the private storage network.

11.4.1. HTTP listening port

Director configures the web services to run under a non-root (no UID 0) user. Using port numbers higher
than 1024 help avoid running any part of the web container as root. Normally, clients that use the HTTP
REST API (and perform automatic authentication) will retrieve the full REST API URL they require from
the authentication response. The OpenStack REST API allows a client to authenticate to one URL and
then be redirected to use a completely different URL for the actual service. For example, a client can
authenticate to https://identity.cloud.example.org:55443/v1/auth and get a response with their
authentication key and storage URL (the URL of the proxy nodes or load balancer) of 
https://swift.cloud.example.org:44443/v1/AUTH_8980.
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11.4.2. Load balancer

If the option of using Apache is not feasible, or for performance you wish to offload your TLS work, you
might employ a dedicated network device load balancer. This is a common way to provide redundancy
and load balancing when using multiple proxy nodes.

If you choose to offload your TLS, ensure that the network link between the load balancer and your
proxy nodes are on a private (V)LAN segment such that other nodes on the network (possibly
compromised) cannot wiretap (sniff) the unencrypted traffic. If such a breach was to occur, the attacker
could gain access to endpoint client or cloud administrator credentials and access the cloud data.

The authentication service you use will determine how you configure a different URL in the responses to
endpoint clients, allowing them to use your load balancer instead of an individual proxy node.

11.5. OBJECT STORAGE AUTHENTICATION

Object Storage (swift) uses a WSGI model to provide for a middleware capability that not only provides
general extensibility, but is also used for authentication of endpoint clients. The authentication provider
defines what roles and user types exist. Some use traditional username and password credentials, while
others might leverage API key tokens or even client-side x.509 certificates. Custom providers can be
integrated using custom middleware.

Object Storage comes with two authentication middleware modules by default, either of which can be
used as sample code for developing a custom authentication middleware.

11.5.1. Keystone

Keystone is the commonly used Identity provider in OpenStack. It may also be used for authentication in
Object Storage.

11.6. ENCRYPT AT-REST SWIFT OBJECTS

Swift can integrate with Barbican to transparently encrypt and decrypt your stored (at-rest) objects. At-
rest encryption is distinct from in-transit encryption, and refers to the objects being encrypted while
being stored on disk.

Swift performs these encryption tasks transparently, with the objects being automatically encrypted
when uploaded to swift, then automatically decrypted when served to a user. This encryption and
decryption is done using the same (symmetric) key, which is stored in Barbican.

For more information, see the Barbican integration guide:
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-
single/manage_secrets_with_openstack_key_manager/

11.7. ADDITIONAL ITEMS

In /var/lib/config-data/puppet-generated/swift/etc/swift/swift.conf on every node, there is a 
swift_hash_path_prefix setting and a swift_hash_path_suffix setting. These are provided to reduce
the chance of hash collisions for objects being stored and avert one user overwriting the data of another
user.

This value should be initially set with a cryptographically secure random number generator and
consistent across all nodes. Ensure that it is protected with proper ACLs and that you have a backup
copy to avoid data loss.
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CHAPTER 12. MONITORING AND LOGGING
Log management is an important component of monitoring the security status of your OpenStack
deployment. Logs provide insight into the BAU actions of administrators, projects, and instances, in
addition to the component activities that comprise your OpenStack deployment.

Logs are not only valuable for proactive security and continuous compliance activities, but they are also
a valuable information source for investigation and incident response. For example, analyzing the
keystone access logs could alert you to failed logins, their frequency, origin IP, and whether the events
are restricted to select accounts, among other pertinent information.

The director includes intrusion detection capabilities using AIDE, and CADF auditing for keystone. For
more information, see the director hardening chapter.

12.1. HARDEN THE MONITORING INFRASTRUCTURE

Centralized logging systems are a high value target for intruders, as a successful breach could allow them
to erase or tamper with the record of events. It is recommended you harden the monitoring platform
with this in mind. In addition, consider making regular backups of these systems, with failover planning in
the event of an outage or DoS.

12.2. EXAMPLE EVENTS TO MONITOR

Event monitoring is a more proactive approach to securing an environment, providing real-time
detection and response. Multiple tools exist which can aid in monitoring. For an OpenStack deployment,
you will need to monitor the hardware, the OpenStack services, and the cloud resource usage.

This section describes some example events you might need to be aware of.

IMPORTANT

This list is not exhaustive. You will need to consider additional use cases that might apply
to your specific network, and that you might consider anomalous behavior.

Detecting the absence of log generation is an event of high value. Such a gap might indicate a
service failure, or even an intruder who has temporarily switched off logging or modified the log
level to hide their tracks.

Application events, such as start or stop events, that were unscheduled might have possible
security implications.

Operating system events on the OpenStack nodes, such as user logins or restarts. These can
provide valuable insight into distinguishing between proper and improper usage of systems.

Networking bridges going down. This would be an actionable event due to the risk of service
outage.

IPtables flushing events on Compute nodes, and the resulting loss of access to instances.

To reduce security risks from orphaned instances on a user, project, or domain deletion in the Identity
service there is discussion to generate notifications in the system and have OpenStack components
respond to these events as appropriate such as terminating instances, disconnecting attached volumes,
reclaiming CPU and storage resources and so on.

Security monitoring controls such as intrusion detection software, antivirus software, and spyware

Red Hat OpenStack Platform 13 Security and Hardening Guide

74



Security monitoring controls such as intrusion detection software, antivirus software, and spyware
detection and removal utilities can generate logs that show when and how an attack or intrusion took
place. These tools can provide a layer of protection when deployed on the OpenStack nodes. Project
users might also want to run such tools on their instances.
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CHAPTER 13. DATA PRIVACY FOR PROJECTS
OpenStack is designed to support multi-tenancy between projects with different data requirements. A
cloud operator will need to consider their applicable data privacy concerns and regulations. This chapter
addresses aspects of data residency and disposal for OpenStack deployments.

13.1. DATA PRIVACY CONCERNS

This section describes some concerns that can arise for data privacy in OpenStack deployments.

13.1.1. Data residency

The privacy and isolation of data has consistently been cited as the primary barrier to cloud adoption
over the past few years. Concerns over who owns data in the cloud and whether the cloud operator can
be ultimately trusted as a custodian of this data have been significant issues in the past.

Certain OpenStack services have access to data and metadata belonging to projects or reference
project information. For example, project data stored in an OpenStack cloud might include the following
items:

Object Storage objects.

Compute instance ephemeral filesystem storage.

Compute instance memory.

Block Storage volume data.

Public keys for Compute access.

Virtual machine images in the Image service.

Instance snapshots.

Data passed to Compute’s configuration-drive extension.

Metadata stored by an OpenStack cloud includes the following items (this list is non-exhaustive):

Organization name.

User’s “Real Name”.

Number or size of running instances, buckets, objects, volumes, and other quota-related items.

Number of hours running instances or storing data.

IP addresses of users.

Internally generated private keys for compute image bundling.

13.1.2. Data disposal

Good practices suggest that the operator must sanitize cloud system media (digital and non-digital)
prior to disposal, prior to release out of organization control, or prior to release for reuse. Sanitization
methods should implement an appropriate level of strength and integrity given the specific security
domain and sensitivity of the information.
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NOTE

The NIST Special Publication 800-53 Revision 4 takes a particular view on this topic:

The sanitization process removes information from the media such that the information cannot be 
retrieved or reconstructed. Sanitization techniques, including clearing, purging, cryptographic erase, 
and destruction, prevent the disclosure of information to unauthorized individuals when such media is 
reused or released for disposal.

Cloud operators should consider the following when developing general data disposal and sanitization
guidelines (as per the NIST recommended security controls):

Track, document and verify media sanitization and disposal actions.

Test sanitation equipment and procedures to verify proper performance.

Sanitize portable, removable storage devices prior to connecting such devices to the cloud
infrastructure.

Destroy cloud system media that cannot be sanitized.

As a result, an OpenStack deployment will need to address the following practices (among others):

Secure data erasure

Instance memory scrubbing

Block Storage volume data

Compute instance ephemeral storage

Bare metal server sanitization

13.1.3. Data not securely erased

Within OpenStack some data might be deleted, but not securely erased in the context of the NIST
standards outlined above. This is generally applicable to most or all of the above-defined metadata and
information stored in the database. This might be remediated with database and/or system
configuration for auto vacuuming and periodic free-space wiping.

13.1.4. Instance memory scrubbing

Specific to various hypervisors is the treatment of instance memory. This behavior is not defined in
Compute, although it is generally expected of hypervisors that they will make a best effort to scrub
memory either upon deletion of an instance, upon creation of an instance, or both.

13.1.5. Encrypting cinder volume data

Use of the OpenStack volume encryption feature is highly encouraged. This is discussed below in the
Data Encryption section under Volume Encryption. When this feature is used, destruction of data is
accomplished by securely deleting the encryption key. The end user can select this feature while
creating a volume, but note that an admin must perform a one-time set up of the volume encryption
feature first.

If the OpenStack volume encryption feature is not used, then other approaches generally would be
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more difficult to enable. If a back-end plug-in is being used, there might be independent ways of doing
encryption or non-standard overwrite solutions. Plug-ins to OpenStack Block Storage will store data in a
variety of ways. Many plug-ins are specific to a vendor or technology, whereas others are more DIY
solutions around filesystems (such as LVM or ZFS). Methods for securely destroying data will vary
between plug-ins, vendors, and filesystems.

Some back ends (such as ZFS) will support copy-on-write to prevent data exposure. In these cases,
reads from unwritten blocks will always return zero. Other back ends (such as LVM) might not natively
support this, so the cinder plug-in takes the responsibility to override previously written blocks before
handing them to users. It is important to review what assurances your chosen volume back-end provides
and to see what remediation might be available for those assurances not provided.

13.1.6. Image service delay delete features

Image Service has a delayed delete feature, which will pend the deletion of an image for a defined time
period. Consider disabling this feature if this behavior is a security concern; you can do this by editing 
glance-api.conf file and setting the delayed_delete option to False.

13.1.7. Compute soft delete features

Compute has a soft-delete feature, which enables an instance that is deleted to be in a soft-delete state
for a defined time period. The instance can be restored during this time period. To disable the soft-
delete feature, edit the /var/lib/config-data/puppet-generated/nova_libvirt/etc/nova/nova.conf file
and leave the reclaim_instance_interval option empty.

13.1.8. Ephemeral storage for Compute instances

Note that the OpenStack Ephemeral disk encryption feature provides a means of improving ephemeral
storage privacy and isolation, during both active use as well as when the data is to be destroyed. As in
the case of encrypted block storage, one can simply delete the encryption key to effectively destroy the
data.

Alternate measures to provide data privacy, in the creation and destruction of ephemeral storage, will
be somewhat dependent on the chosen hypervisor and the Compute plug-in.

The libvirt driver for compute might maintain ephemeral storage directly on a filesystem, or in LVM.
Filesystem storage generally will not overwrite data when it is removed, although there is a guarantee
that dirty extents are not provisioned to users.

When using LVM backed ephemeral storage, which is block-based, it is necessary that the Compute
software securely erases blocks to prevent information disclosure. There have previously been
information disclosure vulnerabilities related to improperly erased ephemeral block storage devices.

Filesystem storage is a more secure solution for ephemeral block storage devices than LVM as dirty
extents cannot be provisioned to users. However, it is important to be mindful that user data is not
destroyed, so it is suggested to encrypt the backing filesystem.

13.2. SECURITY HARDENING FOR BARE METAL PROVISIONING

For your bare metal provisioning infrastructure, you should consider security hardening the baseboard
management controllers (BMC) in general, and IPMI in particular. For example, you might isolate these
systems within a provisioning network, configure non-default and strong passwords, and disable
unwanted management functions. For more information, you can refer to the vendor’s guidance on
security hardening these components.

NOTE
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NOTE

If possible, consider evaluating Redfish-based BMCs over legacy ones.

13.2.1. Hardware identification

When deploying a server, there might not always have a reliable way to distinguish it from an attacker’s
server. This capability might be dependent on the hardware/BMC to some extent, but generally it seems
that there is no verifiable means of identification built into servers.

13.3. DATA ENCRYPTION

The option exists for implementers to encrypt project data wherever it is stored on disk or transported
over a network, such as the OpenStack volume encryption feature described below. This is above and
beyond the general recommendation that users encrypt their own data before sending it to their
provider.

The importance of encrypting data on behalf of projects is largely related to the risk assumed by a
provider that an attacker could access project data. There might be requirements here in government,
as well as requirements per-policy, in private contract, or even in case law in regard to private contracts
for public cloud providers. Consider getting a risk assessment and legal advice before choosing project
encryption policies.

Per-instance or per-object encryption is preferable over, in descending order, per-project, per-host, and
per-cloud aggregations. This recommendation is inverse to the complexity and difficulty of
implementation. Presently, in some projects it is difficult or impossible to implement encryption as
loosely granular as even per-project. Implementers should give serious consideration to encrypting
project data.

Often, data encryption relates positively to the ability to reliably destroy project and per-instance data,
simply by throwing away the keys. It should be noted that in doing so, it becomes of great importance to
destroy those keys in a reliable and secure manner.

Opportunities to encrypt data for users are present:

Object Storage objects

Network data

13.3.1. Volume encryption

A volume encryption feature in OpenStack supports privacy on a per-project basis. The following
features are supported:

Creation and usage of encrypted volume types, initiated through the dashboard or a command
line interface

Enable encryption and select parameters such as encryption algorithm and key size

Volume data contained within iSCSI packets is encrypted

Supports encrypted backups if the original volume is encrypted

Dashboard indication of volume encryption status. Includes indication that a volume is
encrypted, and includes the encryption parameters such as algorithm and key size

CHAPTER 13. DATA PRIVACY FOR PROJECTS

79



Interface with the Key management service

13.3.2. Ephemeral disk encryption

An ephemeral disk encryption feature addresses data privacy. The ephemeral disk is a temporary work
space used by the virtual host operating system. Without encryption, sensitive user information could be
accessed on this disk, and vestigial information could remain after the disk is unmounted. The following
ephemeral disk encryption features are supported:

13.3.2.1. Creation and usage of encrypted LVM ephemeral disks

NOTE

The Compute service currently only supports encrypting ephemeral disks in the LVM
format.

The Compute configuration file (/var/lib/config-data/puppet-
generated/nova_libvirt/etc/nova/nova.conf) has the following default parameters within the 
ephemeral_storage_encryption section:

cipher = aes-xts-plain64 - This field sets the cipher and mode used to encrypt ephemeral
storage. AES-XTS is recommended by NIST specifically for disk storage, and the name is
shorthand for AES encryption using the XTS encryption mode. Available ciphers depend on
kernel support. At the command line, type cryptsetup benchmark to determine the available
options (and see benchmark results), or go to /proc/crypto.

enabled = false - To use ephemeral disk encryption, set option: enabled = true

key_size = 512 - Note that there might be a key size limitation from the back end key manager
that could require the use of key_size = 256, which would only provide an AES key size of 128-
bits. XTS requires its own “tweak key” in addition to the encryption key AES requires. This is
typically expressed as a single large key. In this case, using the 512-bit setting, 256 bits will be
used by AES and 256 bits by XTS. (see NIST)

13.3.2.2. Interacting with the key management service

The key management service will support data isolation by providing ephemeral disk encryption keys on
a per-project basis. Ephemeral disk encryption is supported by back end key storage for enhanced
security. With the Key management service, when an ephemeral disk is no longer needed, simply
deleting the key may take the place of overwriting the ephemeral disk storage area.

13.3.3. Object Storage objects

Object Storage (swift) supports the optional encryption of object data at rest on storage nodes. The
encryption of object data is intended to mitigate the risk of user’s` data being read if an unauthorized
party were to gain physical access to a disk.

Encryption of data at rest is implemented by middleware that may be included in the proxy server WSGI
pipeline. The feature is internal to a swift cluster and not exposed through the API. Clients are unaware
that data is encrypted by this feature internally to the swift service; internally encrypted data should
never be returned to clients through the swift API.

The following data are encrypted while at rest in swift:
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Object content, for example, the content of an object PUT request’s body.

The entity tag (ETag) of objects that have non-zero content.

All custom user object metadata values. For example, metadata sent using X-Object-Meta-
prefixed headers with PUT or POST requests.

Any data or metadata not included in the list above is not encrypted, including:

Account, container, and object names

Account and container custom user metadata values

All custom user metadata names

Object Content-Type values

Object size

System metadata

13.3.4. Block Storage performance and back ends

When enabling the operating system, OpenStack Volume Encryption performance can be enhanced by
using the hardware acceleration features currently available in both Intel and AMD processors. Both the
OpenStack Volume Encryption feature and the OpenStack Ephemeral Disk Encryption feature use dm-
crypt to secure volume data. dm-crypt is a transparent disk encryption capability in Linux kernel
versions 2.6 and later. When using hardware acceleration, the performance impact of both of the
encryption features is minimized.

13.3.5. Network data

Project data for Compute nodes could be encrypted over IPsec or other tunnels. This practice is not
common or standard in OpenStack, but is an option available to motivated and interested implementers.
Likewise, encrypted data remains encrypted as it is transferred over the network.

13.4. KEY MANAGEMENT

To address the often mentioned concern of project data privacy, there is significant interest within the
OpenStack community to make data encryption more ubiquitous. It is relatively easy for an end-user to
encrypt their data prior to saving it to the cloud, and this is a viable path for project objects such as
media files, database archives among others. In some instances, client-side encryption is used to encrypt
data held by the virtualization technologies which requires client interaction, such as presenting keys, to
decrypt data for future use.

Barbican can help projects more seamlessly encrypt the data and have it accessible without burdening
the user with key management. Providing encryption and key management services as part of
OpenStack eases data-at-rest security adoption and can help address customer concerns about privacy
or misuse of data.

The volume encryption and ephemeral disk encryption features rely on a key management service (for
example, barbican) for the creation and security-hardened storage of keys.
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CHAPTER 14. MANAGING INSTANCE SECURITY
One of the benefits of running instances in a virtualized environment is the new opportunities for
security controls that are not typically available when deploying onto bare metal. Certain technologies
can be applied to the virtualization stack that bring improved information assurance for OpenStack
deployments. Operators with strong security requirements might want to consider deploying these
technologies, however, not all are applicable in every situation. In some cases, technologies might be
ruled out for use in a cloud because of prescriptive business requirements. Similarly some technologies
inspect instance data such as run state which might be undesirable to the users of the system.

This chapter describes these technologies and the situations where they can be used to help improve
security for instances or the underlying nodes. Possible privacy concerns are also highlighted, which can
include data passthrough, introspection, or entropy sources.

14.1. SUPPLYING ENTROPY TO INSTANCES

This chapter uses the term entropy to refer to the quality and source of random data that is available to
an instance. Cryptographic technologies typically rely heavily on randomness, which requires drawing
from a high quality pool of entropy. It is typically difficult for an instance to get enough entropy to
support these operations; this is referred to as entropy starvation. This condition can manifest in
instances as something seemingly unrelated. For example, slow boot time might be caused by the
instance waiting for SSH key generation. This condition can also risk motivating users to use poor quality
entropy sources from within the instance, making applications running in the cloud less secure overall.

Fortunately, you can help address these issues by providing a high quality source of entropy to the
instances. This can be done by having enough hardware random number generators (HRNG) in the
cloud to support the instances. In this case, enough is somewhat domain-specific. For everyday
operations, a modern HRNG is likely to produce enough entropy to support 50-100 compute nodes.
High bandwidth HRNGs, such as the RdRand instruction available with Intel Ivy Bridge and newer
processors could potentially handle more nodes. For a given cloud, an architect needs to understand the
application requirements to ensure that sufficient entropy is available.

The Virtio RNG is a random number generator that uses /dev/random as the source of entropy by
default. It can also can be configured to use a hardware RNG, or a tool such as the entropy gathering
daemon (EGD) to provide a way to fairly distribute entropy through a deployment. You can enable Virtio
RNG at instance creation time using the hw_rng metadata property.

14.2. SCHEDULING INSTANCES TO NODES

Before an instance is created, a host for the image instantiation must be selected. This selection is
performed by the nova-scheduler which determines how to dispatch compute and volume requests.

The FilterScheduler is the default scheduler for Compute, although other schedulers exist. This
capability works in collaboration with filter hints to determine where an instance should be started. This
process of host selection allows administrators to fulfill many different security and compliance
requirements. If data isolation is a primary concern, you could choose to have project instances reside on
the same hosts whenever possible. Conversely, you could attempt to have instances reside on as many
different hosts as possible for availability or fault tolerance reasons.

Filter schedulers fall under the following main categories:

Resource based filters - Determines the placement of an instance, based on the system
resource usage of the hypervisor host sets, and can trigger on free or used properties such as
RAM, IO, or CPU utilization.

Image based filters - Delegates instance creation based on the image metadata used, such as
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Image based filters - Delegates instance creation based on the image metadata used, such as
the operating system of the VM or type of image used.

Environment based filters  - Determines the placement of an instance based on external details,
such as within a specific IP range, across availability zones, or on the same host as another
instance.

Custom criteria  - Delegates instance creation based on user or administrator-provided criteria
such as trusts or metadata parsing.

Multiple filters can be applied at once. For example, the ServerGroupAffinity filter checks that an
instance is created on a member of a specific set of hosts, and the ServerGroupAntiAffinity filter
checks that same instance is not created on another specific set of hosts. Note that these two filters
would usually be both enabled at the same time, and can never conflict with each other as they each
check for the value of a given property, and cannot both be true at the same time.

NOTE

The DiskFilter filter is capable of oversubscribing disk space. While not normally an issue,
this can be a concern on thinly provisioned storage devices. This filter should be used with
well-tested quotas applied. This feature has been deprecated and should not be used
after Red Hat OpenStack Platform 12.

IMPORTANT

Consider disabling filters that parse objects that are provided by users, or could be
manipulated (such as metadata).
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14.3. USING TRUSTED IMAGES

In a cloud environment, users work with either pre-installed images or images they upload themselves. In
both cases, users should be able to ensure the image they are using has not been tampered with. The
ability to verify images is a fundamental imperative for security. A chain of trust is needed from the
source of the image to the destination where it is used. This can be accomplished by signing images
obtained from trusted sources and by verifying the signature prior to use. Various ways to obtain and
create verified images will be discussed below, followed by a description of the image signature
verification feature.

14.3.1. Creating images

The OpenStack documentation provides guidance on how to create and upload an image to the Image
service. In addition, it is assumed that you have a process for installing and hardening the guest
operating systems. The following items will provide additional guidance on how transferring your images
into OpenStack. There are a variety of options for obtaining images. Each has specific steps that help
validate the image’s provenance.

Option 1: Obtain boot media from a trusted source. For example, you can download images from
official Red Hat sources and then perform additional checksum validation.

Option 2: Use the OpenStack Virtual Machine Image Guide. In this case, you will want to follow
your organizations OS hardening guidelines.

Option 3: Use an automated image builder. The following example uses the Oz image builder.
The OpenStack community has recently created a newer tool called disk-image-builder, which
has not yet undergone a security evaluation.

In this example, RHEL 6 CCE-26976-1 helps implement NIST 800-53 Section AC-19(d) within Oz.

<template>
<name>centos64</name>
<os>
  <name>RHEL-6</name>
  <version>4</version>
  <arch>x86_64</arch>
  <install type='iso'>
  <iso>http://trusted_local_iso_mirror/isos/x86_64/RHEL-6.4-x86_64-bin-DVD1.iso</iso>
  </install>
  <rootpw>CHANGE THIS TO YOUR ROOT PASSWORD</rootpw>
</os>
<description>RHEL 6.4 x86_64</description>
<repositories>
  <repository name='epel-6'>
  <url>http://download.fedoraproject.org/pub/epel/6/$basearch</url>
  <signed>no</signed>
  </repository>
</repositories>
<packages>
  <package name='epel-release'/>
  <package name='cloud-utils'/>
  <package name='cloud-init'/>
</packages>
<commands>
  <command name='update'>
  yum update
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  yum clean all
  sed -i '/^HWADDR/d' /etc/sysconfig/network-scripts/ifcfg-eth0
  echo -n > /etc/udev/rules.d/70-persistent-net.rules
  echo -n > /lib/udev/rules.d/75-persistent-net-generator.rules
  chkconfig --level 0123456 autofs off
  service autofs stop
  </command>
</commands>
</template>

Consider avoiding the manual image building process as it is complex and prone to error. In addition,
using an automated system like Oz for image building, or a configuration management utility (like Chef
or Puppet) for post-boot image hardening, gives you the ability to produce a consistent image as well as
track compliance of your base image to its respective hardening guidelines over time.

If subscribing to a public cloud service, you should check with the cloud provider for an outline of the
process used to produce their default images. If the provider allows you to upload your own images, you
will want to ensure that you are able to verify that your image was not modified before using it to create
an instance. To do this, refer to the following section on _ Verifying image signatures_, or the following
paragraph if signatures cannot be used.

The Image Service (glance) is used to upload the image to the Compute service on a node. This transfer
should be further hardened over TLS. Once the image is on the node, it is checked with a basic
checksum and then its disk is expanded based on the size of the instance being launched. If, at a later
time, the same image is launched with the same instance size on this node, it is launched from the same
expanded image. Since this expanded image is not re-verified by default before launching, there is a risk
that it has undergone tampering. The user would not be aware of tampering, unless a manual inspection
of the files is performed in the resulting image. To help mitigate this, see the following section on the
topic of verifying image signatures.

14.3.2. Verifying image signatures

Certain features related to image signing are now available in OpenStack. As of Red Hat OpenStack
Platform 13, the Image Service can verify these signed images, and, to provide a full chain of trust, the
Compute service has the option to perform image signature verification prior to image boot. Successful
signature validation before image boot ensures the signed image hasn’t changed. With this feature
enabled, unauthorized modification of images (for example, modifying the image to include malware or
rootkits) can be detected.

You can enable instance signature verification by setting the verify_glance_signatures flag to True in
the /var/lib/config-data/puppet-generated/nova_libvirt/etc/nova/nova.conf file. When enabled, the
Compute service automatically validates the signed instance when it is retrieved from glance. If this
verification fails, the boot process will not start.

NOTE

When this feature is enabled, images that do not have a signature (unsigned images) will
also fail verification, and the boot process will not start.

14.4. MIGRATING INSTANCES

OpenStack and the underlying virtualization layers provide for the live migration of images between
OpenStack nodes, allowing you to seamlessly perform rolling upgrades of your Compute nodes without
instance downtime. However, live migrations also carry significant risk. To understand the risks involved,
the following are the high-level steps performed during a live migration:
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1. Start instance on destination host

2. Transfer memory

3. Stop the guest and sync disks

4. Transfer the state

5. Start the guest

NOTE

Certain operations, such as cold migration, resize, and shelve can all result in some
amount of transferring the instance’s data to other services, across the network, among
others.

14.4.1. Live migration risks

At various stages of the live migration process, the contents of an instance’s run time memory and disk
are transmitted over the network in plain text. Consequently there are multiple risks that need to be
addressed when using live migration. The following non-exhaustive list details some of these risks:

Denial of Service (DoS): If something fails during the migration process, the instance could be
lost.

Data exposure: Memory or disk transfers must be handled securely.

Data manipulation: If memory or disk transfers are not handled securely, then an attacker could
manipulate user data during the migration.

Code injection: If memory or disk transfers are not handled securely, then an attacker could
manipulate executables, either on disk or in memory, during the migration.

14.4.2. Live migration mitigations

There are multiple methods available to help mitigate some of the risk associated with live migrations.
These are described in the following sections:

14.4.2.1. Disable live migration

Currently, live migration is enabled in OpenStack by default. Live migrations are admin-only tasks by
default, so a user cannot initiate this operation, only administrators (which are presumably trusted). Live
migrations can be disabled by adding the following lines to the nova policy.json file:

"compute_extension:admin_actions:migrate": "!",
"compute_extension:admin_actions:migrateLive": "!",

Alternatively, live migration can be expected to fail when blocking TCP ports 49152 through 49261, or
ensuring that the nova user does not have passwordless SSH access between compute hosts.

Note that SSH configuration for live migration is significantly locked down: A new user is created
(nova_migration) and the SSH keys are restricted to that user, and only for use on the whitelisted
networks. A wrapper script then restricts the commands that can be run (for example, netcat on the
libvirt socket).
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14.4.2.2. Migration network

Live migration traffic transfers the contents of disk and memory of a running instance in plain text, and
is currently hosted on the Internal API network by default.

14.4.2.3. Encrypted live migration

If there is a sufficient requirement (such as upgrades) for keeping live migration enabled, then libvirtd
can provide encrypted tunnels for the live migrations. However, this feature is not exposed in either the
OpenStack Dashboard or nova-client commands, and can only be accessed through manual
configuration of libvirtd. The live migration process then changes to the following high-level steps:

1. Instance data is copied from the hypervisor to libvirtd.

2. An encrypted tunnel is created between libvirtd processes on both source and destination
hosts.

3. The destination libvirtd host copies the instances back to an underlying hypervisor.

NOTE

For Red Hat OpenStack Platform 13, the recommended approach is to use tunnelled
migration, which is enabled by default when using Ceph as the back end. For more
information, see
https://docs.openstack.org/nova/queens/configuration/config.html#libvirt.live_migration_tunnelled

14.5. MONITORING, ALERTING, AND REPORTING

Instances are a server image capable of being replicated across hosts. Consequently, it would be a good
practice to apply logging similarly between physical and virtual hosts. Operating system and application
events should be logged, including access events to hosts and data, user additions and removals,
privilege changes, and others as dictated by your requirements. Consider exporting the results to a log
aggregator that collects log events, correlates them for analysis, and stores them for reference or
further action. One common tool to do this is an ELK stack, or Elasticsearch, Logstash, and Kibana.

NOTE

These logs should be reviewed regularly, or even monitored within a live view performed
by a network operations center (NOC).

You will need to further determine which events will trigger an alert that is subsequently sent to a
responder for action.

For more information, see the Monitoring Tools Configuration Guide

14.5.1. Updates and patches

A hypervisor runs independent virtual machines. This hypervisor can run in an operating system or
directly on the hardware (called bare metal). Updates to the hypervisor are not propagated down to the
virtual machines. For example, if a deployment is using KVM and has a set of CentOS virtual machines, an
update to KVM will not update anything running on the CentOS virtual machines.

Consider assigning clear ownership of virtual machines to owners, who are then responsible for the
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Consider assigning clear ownership of virtual machines to owners, who are then responsible for the
hardening, deployment, and continued functionality of the virtual machines. You should also have a plan
to regularly deploy updates, while first testing them in an environment that resembles production.

14.5.2. Firewalls and instance profiles

Most common operating systems include host-based firewalls for an additional layer of security. While
instances should run as few applications as possible (to the point of being single-purpose instances, if
possible), all applications running on an instance should be profiled to determine which system
resources the application needs access to, the lowest level of privilege required for it to run, and what
the expected network traffic is that will be going into and coming from the virtual machine. This
expected traffic should be added to the host-based firewall as allowed traffic (or whitelisted), along with
any necessary logging and management communication such as SSH or RDP. All other traffic should be
explicitly denied in the firewall configuration.

On Linux instances, the application profile above can be used in conjunction with a tool like audit2allow
to build an SELinux policy that will further protect sensitive system information on most Linux
distributions. SELinux uses a combination of users, policies and security contexts to compartmentalize
the resources needed for an application to run, and segmenting it from other system resources that are
not needed.

NOTE

Red Hat OpenStack Platform has SELinux enabled by default, with policies that are
customized for OpenStack services. Consider reviewing these polices regularly, as
required.

14.5.2.1. Security Groups

OpenStack provides security groups for both hosts and the network to add defense-in-depth to the
instances in a given project. These are similar to host-based firewalls as they allow or deny incoming
traffic based on port, protocol, and address. However, security group rules are applied to incoming
traffic only, while host-based firewall rules can be applied to both incoming and outgoing traffic. It is also
possible for host and network security group rules to conflict and deny legitimate traffic. Consider
checking that security groups are configured correctly for the networking being used. See Security
groups in this guide for more detail.

NOTE

You should keep security groups and port security enabled unless you specifically need
them to be disabled. To build on the defense-in-depth approach, it is recommended that
you apply granular rules to instances.

14.5.3. Accessing the instance console

By default, an instance’s console is remotely accessible through a virtual console. This can be useful for
troubleshooting purposes. Red Hat OpenStack Platform uses VNC for remote console access.

Consider locking down the VNC port using firewall rules. By default, nova_vnc_proxy uses 6080
and 13080.

Confirm that the VNC traffic is encrypted by TLS. For director-based deployments, start with 
UseTLSTransportForVnc.
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14.5.4. Certificate injection

If you need to SSH into your instances, you can configure Compute to automatically inject the required
SSH key into the instance upon creation.

For more information, see https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/13/html-single/instances_and_images_guide/#section-create-images
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CHAPTER 15. MESSAGE QUEUING
Message queuing services facilitate inter-process communication in OpenStack. This is done using
these message queuing service back ends:

RabbitMQ - Red Hat OpenStack Platform uses RabbitMQ by default.

Qpid

Both RabbitMQ and Qpid are Advanced Message Queuing Protocol (AMQP) frameworks, which provide
message queues for peer-to-peer communication. Queue implementations are typically deployed as a
centralized or decentralized pool of queue servers.

Message queues effectively facilitate command and control functions across OpenStack deployments.
Once access to the queue is permitted, no further authorization checks are performed. Services
accessible through the queue do validate the contexts and tokens within the actual message payload.
However, you must note the expiration date of the token because tokens are potentially re-playable and
can authorize other services in the infrastructure.

OpenStack does not support message-level confidence, such as message signing. Consequently, you
must secure and authenticate the message transport itself. For high-availability (HA) configurations,
you must perform queue-to-queue authentication and encryption.

15.1. MESSAGING SECURITY

This section discusses security hardening approaches for the three most common message queuing
solutions used in OpenStack: RabbitMQ and Qpid.

15.2. MESSAGING TRANSPORT SECURITY

AMQP based solutions (Qpid and RabbitMQ) support transport-level security using TLS.

Consider enabling transport-level cryptography for your message queue. Using TLS for the messaging
client connections provides protection of the communications from tampering and eavesdropping in-
transit to the messaging server. Guidance is included below on how TLS is typically configured for the
two popular messaging servers: Qpid and RabbitMQ. When configuring the trusted certificate authority
(CA) bundle that your messaging server uses to verify client connections, it is recommended that this be
limited to only the CA used for your nodes, preferably an internally managed CA. The bundle of trusted
CAs will determine which client certificates will be authorized and pass the client-server verification step
of the setting up the TLS connection.

NOTE

When installing the certificate and key files, ensure that the file permissions are
restricted, for example using chmod 0600, and the ownership is restricted to the
messaging server daemon user to prevent unauthorized access by other processes and
users on the messaging server.

15.2.1. RabbitMQ server SSL configuration

The following lines should be added to the system-wide RabbitMQ configuration file, typically 
/etc/rabbitmq/rabbitmq.config:

[

Red Hat OpenStack Platform 13 Security and Hardening Guide

90



  {rabbit, [
     {tcp_listeners, [] },
     {ssl_listeners, [{"<IP address or hostname of management network interface>", 5671}] },
     {ssl_options, [{cacertfile,"/etc/ssl/cacert.pem"},
                    {certfile,"/etc/ssl/rabbit-server-cert.pem"},
                    {keyfile,"/etc/ssl/rabbit-server-key.pem"},
                    {verify,verify_peer},
                    {fail_if_no_peer_cert,true}]}
   ]}
].

NOTE

The tcp_listeners option is set to [] to prevent it from listening on a non-SSL port. The 
ssl_listeners option should be restricted to only listen on the management network for
the services.

15.3. QUEUE AUTHENTICATION AND ACCESS CONTROL

RabbitMQ and Qpid offer authentication and access control mechanisms for controlling access to
queues.

Simple Authentication and Security Layer (SASL) is a framework for authentication and data security in
Internet protocols. Both RabbitMQ and Qpid offer SASL and other pluggable authentication
mechanisms beyond simple usernames and passwords that allow for increased authentication security.
While RabbitMQ supports SASL, support in OpenStack does not currently allow for requesting a specific
SASL authentication mechanism. RabbitMQ support in OpenStack allows for either username and
password authentication over an unencrypted connection or user name and password in conjunction
with X.509 client certificates to establish the secure TLS connection.

Consider configuring X.509 client certificates on all the OpenStack service nodes for client connections
to the messaging queue and where possible (currently only Qpid) perform authentication with X.509
client certificates. When using usernames and passwords, accounts should be created per-service and
node for finer grained auditability of access to the queue.

Before deployment, consider the TLS libraries that the queuing servers use. Qpid uses Mozilla’s NSS
library, whereas RabbitMQ uses Erlang’s TLS module which uses OpenSSL.

15.3.1. OpenStack service configuration for RabbitMQ

This section describes the typical RabbitMQ configuration for OpenStack services:

[DEFAULT]
rpc_backend = nova.openstack.common.rpc.impl_kombu
rabbit_use_ssl = True
rabbit_host = RABBIT_HOST
rabbit_port = 5671
rabbit_user = compute01
rabbit_password = RABBIT_PASS
kombu_ssl_keyfile = /etc/ssl/node-key.pem
kombu_ssl_certfile = /etc/ssl/node-cert.pem
kombu_ssl_ca_certs = /etc/ssl/cacert.pem

NOTE
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NOTE

Replace RABBIT_PASS with a suitable password.

15.3.2. OpenStack service configuration for Qpid

This section describes the typical Qpid configuration for OpenStack services:

[DEFAULT]
rpc_backend = nova.openstack.common.rpc.impl_qpid
qpid_protocol = ssl
qpid_hostname = <IP or hostname of management network interface of messaging server>
qpid_port = 5671
qpid_username = compute01
qpid_password = QPID_PASS

NOTE

Replace QPID_PASS with a suitable password.

Optionally, if using SASL with Qpid specify the SASL mechanisms in use by adding:

qpid_sasl_mechanisms = <space separated list of SASL mechanisms to use for auth>

15.4. MESSAGE QUEUE PROCESS ISOLATION AND POLICY

Each project provides a number of services which send and consume messages. Each binary which sends
a message is expected to consume messages, if only replies, from the queue.

Message queue service processes should be isolated from each other and other processes on a machine.

15.4.1. Namespaces

Neutron and Open vSwitch (OVS) networking run within namespaces, however certain OVS host
services do not, including vswitchd, libvirtd, and QEMU. When running a containerised control plane, all
control plane services run within network namespaces by default. Network namespaces are highly
recommended for all services running on Compute hypervisors (as they run the AMQP services). This
approach can help prevent against the bridging of network traffic between instances and the
management network.
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CHAPTER 16. HARDENING API ENDPOINTS
The process of engaging with an OpenStack cloud begins by querying an API endpoint. While there are
different challenges for public and private endpoints, these are high value assets that can pose a
significant risk if compromised.

This chapter recommends security enhancements for both public and private-facing API endpoints.

16.1. API ENDPOINT CONFIGURATION RECOMMENDATIONS

This section describes recommendations for hardening your API endpoints.

16.1.1. Internal API communications

OpenStack provides both public-facing, internal admin, and private API endpoints. By default,
OpenStack components use the publicly defined endpoints. The recommendation is to configure these
components to use the API endpoint within the proper security domain. The internal admin endpoint
allows further elevated access to keystone, so it might be desirable to further isolate this.

Services select their respective API endpoints based on the OpenStack service catalog. These services
might not obey the listed public or internal API endpoint values. This can lead to internal management
traffic being routed to external API endpoints.

16.1.2. Configure internal URLs in the Identity service catalog

The Identity service catalog should be aware of your internal URLs. While this feature is not used by
default, it may be available through configuration. In addition, it should be forward-compatible with
expectant changes once this behavior becomes the default.

Consider isolating the configured endpoints from a network level, given that they have different levels
of access. The Admin endpoint is intended for access by cloud administrators, as it provides elevated
access to keystone operations not available on the internal or public endpoints. The internal endpoints
are intended for uses internal to the cloud (for example, by OpenStack services), and usually would not
be accessible outside of the deployment network. The public endpoints should be TLS-enabled, and the
only API endpoints accessible outside of the deployment for cloud users to operate on.

Registration of an internal URL for an endpoint is automated by director. For more information, see
https://github.com/openstack/tripleo-heat-
templates/blob/a7857d6dfcc875eb2bc611dd9334104c18fe8ac6/network/endpoints/build_endpoint_map.py

16.1.3. Configure applications for internal URLs

You can force some services to use specific API endpoints. As a result, it is recommended that any
OpenStack service that contacts the API of another service must be explicitly configured to access the
proper internal API endpoint.

Each project might present an inconsistent way of defining target API endpoints. Future releases of
OpenStack seek to resolve these inconsistencies through consistent use of the Identity service catalog.

16.1.4. Paste and middleware

Most API endpoints and other HTTP services in OpenStack use the Python Paste Deploy library. From a
security perspective, this library enables manipulation of the request filter pipeline through the
application’s configuration. Each element in this chain is referred to as middleware. Changing the order
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of filters in the pipeline or adding additional middleware might have unpredictable security impact.

Commonly, implementers add middleware to extend OpenStack’s base functionality. Consider giving
careful consideration to the potential exposure introduced by the addition of non-standard software
components to the HTTP request pipeline.

16.1.5. API endpoint process isolation and policy

You should isolate API endpoint processes, especially those that reside within the public security domain
should be isolated as much as possible. Where deployments allow, API endpoints should be deployed on
separate hosts for increased isolation.

16.1.6. Namespaces

Linux uses namespaces to assign processes into independent domains. Other parts of this guide cover
system compartmentalization in more detail.

16.1.7. Network policy

API endpoints will typically span multiple security zones, so you must pay particular attention to the
separation of the API processes. For example, at the network design level, you can consider restricting
access to specified systems only. See the guidance on security zones for more information.

With careful modeling, you can use network ACLs and IDS technologies to enforce explicit point-to-
point communication between network services. As a critical cross domain service, this type of explicit
enforcement works well for OpenStack’s message queue service.

To enforce policies, you can configure services, host-based firewalls (such as iptables), local policy
(SELinux), and optionally global network policy.

16.1.8. Mandatory access controls

You should isolate API endpoint processes from each other and other processes on a machine. The
configuration for those processes should be restricted to those processes by Discretionary Access
Controls (DAC) and Mandatory Access Controls (MAC). The goal of these enhanced access controls is
to aid in the containment of API endpoint security breaches.

16.1.9. API endpoint rate-limiting

Rate Limiting is a means to control the frequency of events received by a network based application.
When robust rate limiting is not present, it can result in an application being susceptible to various denial
of service attacks. This is especially true for APIs, which by their nature are designed to accept a high
frequency of similar request types and operations.

It is recommended that all endpoints (especially public) are give an extra layer of protection, for
example, using physical network design, a rate-limiting proxy, or web application firewall.

It is key that the operator carefully plans and considers the individual performance needs of users and
services within their OpenStack cloud when configuring and implementing any rate limiting functionality.

NOTE For Red Hat OpenStack Platform deployments, all services are placed behind load balancing
proxies.
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CHAPTER 17. IMPLEMENTING FEDERATION

WARNING

Red Hat does not support federation at this time. This feature should only be used
for testing, and should not be deployed in a production environment.

17.1. FEDERATE WITH IDM USING RED HAT SINGLE SIGN-ON

You can use Red Hat Single Sign-On (RH-SSO) to federate your IdM users for OpenStack
authentication (authN). Federation allows your IdM users to login to the OpenStack Dashboard without
revealing their credentials to any OpenStack services. Instead, when Dashboard needs a user’s
credentials, it will forward the user to Red Hat Single Sign-On (RH-SSO) and allow them to enter their
IdM credentials there. As a result, RH-SSO asserts back to Dashboard that the user has successfully
authenticated, and Dashboard then allows the user to access the project.

17.2. THE FEDERATION WORKFLOW

This section describes how keystone, RH-SSO and IdM interact with each other. Federation in
OpenStack uses the concept of Identity Providers and Service Providers:

Identity Provider (IdP) - the service that stores the user accounts. In this case, the user accounts held
in IdM, are presented to Keystone using RH-SSO.

Service Provider (SP) - the service that requires authentication from the users in the IdP. In this case,
keystone is the service provider that grants Dashboard access to IdM users.

In the diagram below, keystone (the SP) communicates with RH-SSO (the IdP), which provides the
necessary SAML2 WebSSO. RH-SSO is also able to serve as a universal adapter for other IdPs. In this
configuration, you can point keystone at RH-SSO, and RH-SSO will forward requests on to the Identity
Providers that it supports (known as authentication modules), these currently include IdM and Active
Directory. This is done by having the Service Provider (SP) and Identity Provider (IdP) exchange
metadata, which each sysadmin then makes a decision to trust. The result is that the IdP can confidently
make assertions, and the SP can then receive these assertions.
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For more information, see the federation guide: https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/13/html-single/federate_with_identity_service/
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