
Red Hat OpenStack Platform 13

Red Hat OpenDaylight Installation and
Configuration Guide

Install and Configure OpenDaylight using Red Hat OpenStack Platform

Last Updated: 2023-01-31

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and
Configuration Guide

Install and Configure OpenDaylight using Red Hat OpenStack Platform

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides information on Red Hat OpenDaylight installation and configuration.

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. OVERVIEW
1.1. WHAT IS OPENDAYLIGHT?
1.2. HOW DOES OPENDAYLIGHT WORK WITH OPENSTACK?

1.2.1. The default neutron architecture
1.2.2. Networking architecture based on OpenDaylight

1.3. WHAT IS RED HAT OPENSTACK PLATFORM DIRECTOR AND HOW IS IT DESIGNED?
1.3.1. Red Hat OpenStack Platform director and OpenDaylight
1.3.2. Network isolation in Red Hat OpenStack Platform director
1.3.3. Network and firewall configuration

CHAPTER 2. WHAT DO YOU NEED TO RUN OPENDAYLIGHT?
2.1. COMPUTE NODE REQUIREMENTS
2.2. CONTROLLER NODE REQUIREMENTS

CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD
3.1. UNDERSTAND DEFAULT CONFIGURATION AND CUSTOMIZING SETTINGS

3.1.1. Understanding the default environment file
3.1.2. Configuring the OpenDaylight API Service

3.1.2.1. Configurable Options
3.1.3. Configuring the OpenDaylight OVS Service

3.1.3.1. Configurable options
3.1.4. Using neutron metadata service with OpenDaylight
3.1.5. Understanding the network configuration and NIC template

3.2. BASIC INSTALLATION OF OPENDAYLIGHT
3.2.1. Prepare the OpenDaylight environment files for overcloud
3.2.2. Install overcloud with OpenDaylight

3.3. INSTALL OPENDAYLIGHT IN CUSTOM ROLE
3.3.1. Customize the role file based on default roles
3.3.2. Create a custom role for OpenDaylight
3.3.3. Install OverCloud with OpenDaylight in the custom role
3.3.4. Verify the installation of OpenDaylight in custom role

3.4. INSTALL OPENDAYLIGHT WITH SR-IOV SUPPORT
3.4.1. Prepare the SR-IOV Compute role
3.4.2. Configuring the SR-IOV agent service
3.4.3. Install OpenDaylight with SR-IOV

3.5. INSTALL OPENDAYLIGHT WITH OVS-DPDK SUPPORT
3.5.1. Prepare the OVS-DPDK deployment files
3.5.2. Configuring the OVS-DPDK deployment
3.5.3. Install OpenDaylight with OVS-DPDK
3.5.4. Example: Configuring OVS-DPDK with ODL and VXLAN tunnelling

3.5.4.1. Generating the ComputeOvsDpdk composable role
3.5.4.2. Configuring OVS-DPDK parameters
3.5.4.3. Configuring the Controller node
3.5.4.4. Configuring the Compute node for DPDK interfaces
3.5.4.5. Deploying the overcloud

3.6. INSTALL OPENDAYLIGHT WITH L2GW SUPPORT
3.6.1. Prepare L2GW deployment files
3.6.2. Configuring OpenDaylight L2GW deployment
3.6.3. Install OpenDaylight with L2GW

5

6
6
6
6
6
6
7
8
11

13
13
13

15
15
15
16
16
17
17
18
19

20
20
21
22
22
23
25
26
26
26
28
29
30
31
32
33
34
34
34
35
37
38
38
39
39
40

Table of Contents

1

. .

. .

. .

. .

CHAPTER 4. TEST THE DEPLOYMENT
4.1. PERFORM A BASIC TEST

4.1.1. Create a new network for testing
4.1.2. Set up networking in the test environment
4.1.3. Test the connectivity
4.1.4. Create devices

4.2. PERFORM ADVANCED TESTS
4.2.1. Connect to overcloud nodes
4.2.2. Test OpenDaylight
4.2.3. Test Open vSwitch
4.2.4. Verify the Open vSwitch configuration on Compute nodes.
4.2.5. Verify neutron configuration

CHAPTER 5. DEBUGGING
5.1. LOCATE THE LOGS

5.1.1. Access OpenDaylight logs
5.1.2. Access OpenStack Networking logs

5.2. DEBUG NETWORKING ERRORS
5.2.1. Advanced debugging using OpenFlow flows
5.2.2. Packet traverse in OpenFlow

CHAPTER 6. DEPLOYMENT EXAMPLES
6.1. MODEL INSTALLATION SCENARIO USING TENANT NETWORK

6.1.1. Physical Topology
6.1.2. Planning Physical Network Environment
6.1.3. Planning NIC Connectivity
6.1.4. Planning Networks, VLANs and IPs
6.1.5. OpenDaylight configuration files used in this scenario

6.1.5.1. The extra_env.yaml file.
6.1.5.2. The undercloud.conf file
6.1.5.3. The network-environment.yaml file
6.1.5.4. The controller.yaml file
6.1.5.5. The compute.yaml file

6.1.6. Red Hat OpenStack Platform director configuration files used in this scenario
6.1.6.1. The neutron.conf file
6.1.6.2. The ml2_conf.ini file

6.2. MODEL INSTALLATION SCENARIO USING PROVIDER NETWORKS
6.2.1. Physical Topology
6.2.2. Planning Physical Network Environment
6.2.3. Planning NIC Connectivity
6.2.4. Planning Networks, VLANs and IPs
6.2.5. OpenDaylight configuration files used in this scenario

6.2.5.1. extra_env.yaml file.
6.2.5.2. undercloud.conf file
6.2.5.3. network-environment.yaml file
6.2.5.4. controller.yaml file
6.2.5.5. compute.yaml file

6.2.6. Red Hat OpenStack Platform director configuration files used in this scenario
6.2.6.1. neutron.conf file
6.2.6.2. ml2_conf.ini file

CHAPTER 7. HIGH AVAILABILITY AND CLUSTERING WITH OPENDAYLIGHT
7.1. CONFIGURING OPENDAYLIGHT FOR HIGH AVAILABILITY AND CLUSTERING
7.2. CLUSTER BEHAVIOUR

41
41
41

42
42
43
43
44
44
46
47
48

50
50
50
50
50
51
52

54
54
54
54
55
55
57
57
57
58
60
63
65
65
65
66
66
66
67
67
69
69
69
70
72
75
77
77
78

79
79
80

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

2

. .

7.3. CLUSTER REQUIREMENTS
7.4. OPEN VSWITCH CONFIGURATION
7.5. CLUSTER MONITORING

7.5.1. Monitoring with Jolokia
7.6. UNDERSTANDING OPENDAYLIGHT PORTS
7.7. UNDERSTANDING OPENDAYLIGHT FLOWS
7.8. NEUTRON DHCP AGENT HA
7.9. NEUTRON METADATA AGENT HA

CHAPTER 8. WHERE CAN I FIND MORE INFORMATION ABOUT RED HAT OPENSTACK PLATFORM AND
OPENDAYLIGHT?

80
80
80
81
81

82
83
83

84

Table of Contents

3

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

4

PREFACE
This document describes how to deploy Red Hat OpenStack Platform 13 with the OpenDaylight
software-defined network (SDN) controller. The OpenDaylight controller is a drop-in replacement for
the neutron ML2/OVS plug-in and for the L2 and L3 agents, and provides network virtualization within
the Red Hat OpenStack environment.

PREFACE

5

CHAPTER 1. OVERVIEW

1.1. WHAT IS OPENDAYLIGHT?

The OpenDaylight platform is a programmable SDN controller written in Java that you can use for
network virtualization for OpenStack environments. The controller architecture consists of separated
northbound and southbound interfaces. For OpenStack integration purposes, the main northbound
interface uses the NeutronNorthbound project, which communicates with neutron, the OpenStack
Networking service. The southbound OpenDaylight projects, the OVSDB and the OpenFlow plug-ins,
are used to communicate with the Open vSwitch (OVS) control and the data plane. The main
OpenDaylight project that translates the neutron configuration into network virtualization is the NetVirt
project.

1.2. HOW DOES OPENDAYLIGHT WORK WITH OPENSTACK?

1.2.1. The default neutron architecture

The neutron reference architecture uses a series of agents to manage networks within OpenStack.
These agents are provided to neutron as different plug-ins. The core plug-ins are used to manage the
Layer 2 overlay technologies and data plane types. The service plug-ins are used to manage network
operations for Layer 3 or higher in the OSI model, such as firewall, DHCP, routing and NAT.

By default, Red Hat OpenStack Platform uses the Modular Layer 2 (ML2) core plug-in with the OVS
mechanism driver, that provides an agent to configure OVS on each Compute and Controller node. The
service plug-ins, the DHCP agent, the metadata agent, along with the L3 agent, run on controllers.

1.2.2. Networking architecture based on OpenDaylight

OpenDaylight integrates with the ML2 core plug-in by providing its own driver called networking-odl.
This eliminates the need to use the OVS agent on every node. OpenDaylight can program each OVS
instance across the environment directly, without needing any agents on individual nodes. For Layer 3
services, neutron is configured to use the OpenDaylight L3 plug-in. This approach reduces the number
of agents on multiple nodes that handle routing and network address translation (NAT), because
OpenDaylight can handle the distributed virtual routing functionality by programming the data plane
directly. The neutron DHCP and metadata agents are still used for managing DHCP and metadata
(cloud-init) requests.

NOTE

OpenDaylight provides DHCP services. However, when deploying the current Red Hat
OpenStack Platform director architecture, using the neutron DHCP agent provides High
Availability (HA) and support for the virtual machine (VM) instance metadata (cloud-
init), and therefore Red Hat recommends you deploy the neutron DHCP agent rather
than rely on OpenDaylight for such functionality.

1.3. WHAT IS RED HAT OPENSTACK PLATFORM DIRECTOR AND HOW
IS IT DESIGNED?

The Red Hat OpenStack Platform director is a toolset for installing and managing a complete
OpenStack environment. It is primarily based on the OpenStack TripleO (OpenStack-On-OpenStack)
project.

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

6

https://wiki.openstack.org/wiki/TripleO

The project uses OpenStack components to install a fully operational OpenStack environment. It also
includes new OpenStack components that provision and control bare metal systems to operate as
OpenStack nodes. With this approach, you can install a complete Red Hat OpenStack Platform
environment that is both lean and robust.

The Red Hat OpenStack Platform director uses two main concepts: an undercloud and an overcloud.
The undercloud installs and configures the overcloud. For more information about the Red Hat
OpenStack Platform director architecture, see Director Installation and Usage.

Figure 1.1. Red Hat OpenStack Platform director — undercloud and overcloud

1.3.1. Red Hat OpenStack Platform director and OpenDaylight

Red Hat OpenStack Platform director introduces the concept of composable services and custom roles.
Composable services form isolated resources, that can be included and enabled per role, when they are
needed. Custom roles enable users to create their own roles, independent from the default Controller
and Compute roles. Users now have the option to choose which OpenStack services they will deploy,
and which node will host them.

Two services have been added to integrate OpenDaylight with director:

The OpenDaylightApi service for running the OpenDaylight SDN controller

The OpenDaylightOvs service for configuring OVS on each node to properly communicate
with OpenDaylight.

By default, the OpenDaylightApi service runs on the Controller role, while the OpenDaylightOvs
service runs on Controller and Compute roles. OpenDaylight offers High Availability (HA) by scaling the
number of OpenDaylightApi service instances. By default, scaling the number of Controllers to three or
more automatically enables HA. For more information on the OpenDaylight HA architecture, see High
Availability and Clustering with OpenDaylight.

Figure 1.2. OpenDaylight and OpenStack — base architecture

CHAPTER 1. OVERVIEW

7

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/director_installation_and_usage/

Figure 1.2. OpenDaylight and OpenStack — base architecture

1.3.2. Network isolation in Red Hat OpenStack Platform director

Red Hat OpenStack Platform director can configure individual services to specific, predefined network
types. These network traffic types include:

IPMI The power management network for nodes. You must configure this
network before you install the undercloud.

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

8

Provisioning (ctlplane) The director uses this network traffic type to deploy new nodes over the
DHCP and PXE boot and orchestrates the installation of OpenStack
Platform on the overcloud bare metal servers. You must configure the
network before you install the undercloud. Alternatively, operating system
images can be deployed directly by ironic. In that case, the PXE boot is not
necessary.

Internal API (internal_api) The Internal API network is used for communication between the OpenStack
services using API communication, RPC messages, and database
communication, as well as for internal communication behind the load
balancer.

Tenant (tenant) neutron provides each tenant with their own networks using either VLANs
(where each tenant network is a network VLAN), or overlay tunnels. Network
traffic is isolated within each tenant network. If tunnelling is used, multiple
tenant networks can use the same IP address range without any conflicts.

NOTE

While both Generic Routing Encapsulation (GRE) and Virtual eXtensible Local Area
Network (VXLAN) are available in the codebase, VXLAN is the recommended tunneling
protocol to use with OpenDaylight. VXLAN is defined in RFC 7348. The rest of this
document is focused on VXLAN whenever tunneling is used.

Storage (storage) Block Storage, NFS, iSCSI, and others. Ideally, this would be isolated to an
entirely separate switch fabric for performance optimization.

Storage Management
(storage_mgmt)

OpenStack Object Storage (swift) uses this network to synchronize data
objects between participating the replica nodes. The proxy service acts as
an intermediary interface between user requests and the underlying storage
layer. The proxy receives incoming requests and locates the necessary
replica to retrieve the requested data. Services that use a Ceph back-end
connect over the Storage Management Network, because they do not
interact with Ceph directly but rather use the front-end service. Note that
the RBD driver is an exception, as this traffic connects directly to Ceph.

External/Public API This API hosts the OpenStack Dashboard (horizon) for graphical system
management, the public APIs for OpenStack services, and performs SNAT
for incoming traffic going to the instances. If the external network uses
private IP addresses (as per RFC-1918), then further NAT must be
performed for any traffic coming in from the internet.

Floating IPs Allows incoming traffic to reach instances using one-to-one IPv4 address
mapping between the floating IP address and the fixed IP address, assigned
to the instance in the tenant network. A common configuration is to
combine the external and the floating IPs network instead of maintaining a
separate one.

Management Provides access for system administration functions such as SSH access,
DNS traffic, and NTP traffic. This network also acts as a gateway for nodes
that are not controllers.

CHAPTER 1. OVERVIEW

9

https://tools.ietf.org/html/rfc7348

In a typical Red Hat OpenStack Platform installation, the number of network types often exceeds the
number of physical network links. In order to connect all the networks to the proper hosts, the overcloud
may use the 802.1q VLAN tagging to deliver more than one network per interface. Most of the networks
are isolated subnets but some require a Layer 3 gateway to provide routing for Internet access or
infrastructure network connectivity.

For OpenDaylight, the relevant networks include Internal API and Tenant services that are mapped to
each network inside of the ServiceNetMap. By default, the ServiceNetMap maps the
OpenDaylightApi network to the Internal API network. This configuration means that northbound traffic
to neutron as well as southbound traffic to OVS are isolated to the Internal API network.

As OpenDaylight uses a distributed routing architecture, each Compute node should be connected to
the Floating IP network. By default, Red Hat OpenStack Platform director assumes that the External
network will run on the physical neutron network datacentre, which is mapped to the OVS bridge br-ex.
Therefore, you must include the br-ex bridge in the default configuration of the Compute node NIC
templates.

Figure 1.3. OpenDaylight and OpenStack — Network isolation example

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

10

Figure 1.3. OpenDaylight and OpenStack — Network isolation example

1.3.3. Network and firewall configuration

On some deployments, such as those where restrictive firewalls are in place, you might need to configure
the firewall manually to enable OpenStack and OpenDaylight service traffic.

By default, OpenDaylight Northbound uses the 8080 port. In order not to conflict with the swift service,
that also uses the 8080 port, the OpenDaylight ports are set to 8081 when installed with Red Hat
OpenStack Platform director. The Southbound, in Red Hat OpenDaylight solution, is configured to
listen on ports 6640 and 6653, that the OVS instances usually connect to.

CHAPTER 1. OVERVIEW

11

In OpenStack, each service typically has its own virtual IP address (VIP) and OpenDaylight behaves the
same way. HAProxy is configured to open the 8081 port to the public and control the plane’s VIPs that
are already present in OpenStack. The VIP and the port are presented to the ML2 plug-in and neutron
sends all communication through it. The OVS instances connect directly to the physical IP of the node
where OpenDaylight is running for Southbound.

Service Protocol Default Ports Network

OpenStack Neutron API TCP 9696 Internal API

OpenStack Neutron API
(SSL)

TCP 13696 Internal API

OpenDaylight
Northbound

TCP 8081 Internal API

OpenDaylight
Southbound: OVSDB

TCP 6640 Internal API

OpenDaylight
Southbound: OpenFlow

TCP 6653 Internal API

OpenDaylight High
Availability

TCP 2550 Internal API

VXLAN UDP 4789 Tenant

Table 1: Network and Firewall configuration

NOTE

This section focuses on the services and protocols relevant to the OpenDaylight
integration and is not exhaustive. For a complete list of network ports required for
services running on Red Hat OpenStack, see the Firewall Rules for Red Hat OpenStack
Platform guide.

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

12

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/firewall_rules_for_red_hat_openstack_platform/

CHAPTER 2. WHAT DO YOU NEED TO RUN OPENDAYLIGHT?
The following section contains information about the deployment requirements for the overcloud with
OpenDaylight. You must have sufficient computer resources available to correctly install and run Red
Hat OpenDaylight. Use the following information to understand the minimum requirements.

2.1. COMPUTE NODE REQUIREMENTS

Compute nodes are responsible for running virtual machine instances after they are launched. All
Compute nodes must support hardware virtualization. They must also have sufficient memory and disk
space to support the requirements of the virtual machine instances that they host.

Processor 64-bit processor with support for the Intel 64 or
AMD64 CPU extensions, and the AMD-V or Intel VT
hardware virtualization extensions enabled. It is
recommended that this processor has a minimum of
4 cores.

Memory A minimum of 6 GB of RAM. Add additional RAM to
this requirement according to the amount of memory
that you intend to make available to virtual machine
instances.

Disk Space A minimum of 40 GB of available disk space.

Network Interface Cards A minimum of one 1 Gbps Network Interface Cards,
although it is recommended to use at least two
Network Interface Cards (NICs) in a production
environment. Use additional network interface cards
for bonded interfaces or to delegate tagged VLAN
traffic. For more information about NICs, see Tested
NICs.

Power Management Each Controller node requires a supported power
management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality,
on the server’s motherboard.

2.2. CONTROLLER NODE REQUIREMENTS

Controller nodes are responsible for hosting the core services in a Red Hat OpenStack Platform
environment, such as the horizon dashboard, the back-end database server, keystone authentication,
and High Availability services.

Processor A 64-bit processor with support for the Intel 64 or
AMD64 CPU extensions.

CHAPTER 2. WHAT DO YOU NEED TO RUN OPENDAYLIGHT?

13

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/network_functions_virtualization_planning_and_configuration_guide/#ref_supported-nics

Memory Minimum amount of memory is 20 GB. However, the
amount of recommended memory depends on the
number of CPU cores. Use the following calculations
as guidance:

Controller RAM minimum calculation: Use 1.5 GB of
memory per core. For example, a machine with 48
cores must have 72 GB of RAM.

Controller RAM recommended calculation: Use 3
GB of memory per core. For example, a machine with
48 cores must have 144 GB of RAM. For more
information about measuring memory requirements,
see Red Hat OpenStack Platform Hardware
Requirements for Highly Available Controllers on the
Red Hat Customer Portal.

Disk Space A minimum of 40 GB of available disk space.

Network Interface Cards A minimum of 2 x 1 Gbps Network Interface Cards.
Use additional network interface cards for bonded
interfaces or to delegate tagged VLAN traffic.

Power Management Each Controller node requires a supported power
management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality,
on the server’s motherboard.

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

14

https://access.redhat.com/articles/2431181

CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD
This document focuses only on OpenDaylight installation. Before you can deploy OpenDaylight, you
must ensure that you have a working undercloud environment and that the overcloud nodes are
connected to the physical network.

See Installing the Undercloud and Configuring Basic Overcloud Requirements with the CLI Tools of the
Director Installation and Usage guide, which describes the procedures necessary to deploy the
undercloud and overcloud.

There are several methods to install OpenDaylight in Red Hat OpenStack platform. The following
chapter introduces the most useful scenarios of OpenDaylight and how to install them.

3.1. UNDERSTAND DEFAULT CONFIGURATION AND CUSTOMIZING
SETTINGS

The recommended approach to installing OpenDaylight is to use the default environment file neutron-
opendaylight.yaml and pass it as an argument to the deployment command on the undercloud. This
deploys the default installation of OpenDaylight.

Other OpenDaylight installation and configuration scenarios are based on this installation method. You
can deploy OpenDaylight with various different scenarios by providing specific environment files to the
deployment command.

3.1.1. Understanding the default environment file

The default environment file is neutron-opendaylight.yaml in the /usr/share/openstack-tripleo-heat-
templates/environments/services directory. This environment file enables or disables services that the
OpenDaylight supports. The environment file also defines necessary parameters that the director sets
during deployment.

The following file is an example neutron-opendaylight.yaml file that you can use for a Docker based
deployment:

A Heat environment that can be used to deploy OpenDaylight with L3 DVR using Docker containers
resource_registry:
 OS::TripleO::Services::NeutronOvsAgent: OS::Heat::None
 OS::TripleO::Services::ComputeNeutronOvsAgent: OS::Heat::None
 OS::TripleO::Services::ComputeNeutronCorePlugin: OS::Heat::None
 OS::TripleO::Services::OpenDaylightApi: ../../docker/services/opendaylight-api.yaml
 OS::TripleO::Services::OpenDaylightOvs: ../../puppet/services/opendaylight-ovs.yaml
 OS::TripleO::Services::NeutronL3Agent: OS::Heat::None
 OS::TripleO::Docker::NeutronMl2PluginBase: ../../puppet/services/neutron-plugin-ml2-odl.yaml

parameter_defaults:
 NeutronEnableForceMetadata: true
 NeutronPluginExtensions: 'port_security'
 NeutronMechanismDrivers: 'opendaylight_v2'
 NeutronServicePlugins: 'odl-router_v2,trunk'
 OpenDaylightLogMechanism: 'console'

Red Hat OpenStack Platform director uses the resource_registry to map resources for a deployment
to the corresponding resource definition yaml file. Services are one type of resource that you can map.
If you want to disable a particular service, set the value OS::Heat::None. In the default file, the

CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD

15

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage/#chap-Installing_the_Undercloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage/#chap-Configuring_Basic_Overcloud_Requirements_with_the_CLI_Tools
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/director_installation_and_usage/

OpenDaylightApi and OpenDaylightOvs services are enabled, while default neutron agents are
explicitly disabled as OpenDaylight inherits their functionality.

You can use heat parameters to configure settings for a deployment with director. You can override
their default values with the parameter_defaults section of the environment file.

In this example, the NeutronEnableForceMetadata, NeutronMechanismDrivers, and
NeutronServicePlugins parameters are set to enable OpenDaylight.

NOTE

The list of other services and their configuration options are provided later in this guide.

3.1.2. Configuring the OpenDaylight API Service

You can change the default values in the /usr/share/openstack-tripleo-heat-
templates/puppet/services/opendaylight-api.yaml file to suit your needs. Do not overwrite the
settings in this file directly. Duplicate this file and retain the original as a backup solution. Only modify
the duplicate and pass the duplicate to the deployment command.

NOTE

The parameters in the latter environment files override those set in previous environment
files. Ensure that you pay attention to the order of the environment files to avoid
overwriting parameters accidentally.

3.1.2.1. Configurable Options

When you configure the OpenDaylight API Service, you can set several parameters:

OpenDaylightPort The port used for Northbound communication. The default value is 0.
This parameter is deprecated in OSP 13.

OpenDaylightUsername The login user name for OpenDaylight. The default value is admin.

OpenDaylightPassword The login password for OpenDaylight. The default value is admin.

OpenDaylightEnableDHCP Enables OpenDaylight to act as the DHCP service. The default value is
false.

OpenDaylightFeatures A comma-delimited list of features to boot in OpenDaylight. The
default value is [odl-netvirt-openstack, odl-jolokia].

OpenDaylightConnectionProto
col

The L7 protocol used for REST access. The default value is http.

OpenDaylightManageReposito
ries

Defines whether to manage the OpenDaylight repository. The default
value is false.

OpenDaylightSNATMechanism The SNAT mechanism to be used by OpenDaylight. Select
conntrack or controller. The default value is conntrack.

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

16

OpenDaylightLogMechanism The logging mechanism for OpenDaylight. Select file or console.
The default value is file.

OpenDaylightTLSKeystorePas
sword

The password for the OpenDaylight TLS keystore. The default value is
opendaylight. Passwords must be at least 6 characters.

EnableInternalTLS Enables or disables TLS in the internal network. You can use values
true or false. The default value is false.

InternalTLSCAFile If you enable TLS for services in the internal network, you must use
the InternalTLSCAFile parameter to specify the default CA cert.
The default value is /etc/ipa/ca.crt.

For more information on how to deploy with TLS, see the Advanced Overcloud Customization Guide.

3.1.3. Configuring the OpenDaylight OVS Service

You can change the default values in the /usr/share/openstack-tripleo-heat-
templates/puppet/services/opendaylight-ovs.yaml file to suit your needs. Do not overwrite the
settings in this file directly. Duplicate this file and retain the original as a backup solution. Modify only the
duplicate and pass the duplicate to the deployment command.

NOTE

The parameters in the latter environment files override those set in previous environment
files. Ensure that you pay attention to the order of the environment files to avoid
overwriting parameters accidentally.

3.1.3.1. Configurable options

When you configure the OpenDaylight OVS Service, you can set several parameters:

OpenDaylightPort The port used for Northbound communication to OpenDaylight. The
default value is 0. The OVS Service uses the Northbound to query
OpenDaylight to ensure that it is fully up before connecting. This
parameter is deprecated in OSP 13.

OpenDaylightConnectionProto
col

The Layer 7 protocol used for REST access. The default value is http.
http is the only supported protocol in OpenDaylight. This parameter is
deprecated in OSP 13.

OpenDaylightCheckURL The URL to verify OpenDaylight is fully up before OVS connects. The
default value is restconf/operational/network-
topology:network-topology/topology/netvirt:1

OpenDaylightProviderMapping
s

A comma-delimited list of mappings between logical networks and
physical interfaces. This setting is required for VLAN deployments.
The default value is datacentre:br-ex.

CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD

17

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/advanced_overcloud_customization/sect-enabling_internal_ssltls_on_the_overcloud

OpenDaylightUsername The custom username for the OpenDaylight OVS service. The default
value is admin.

OpenDaylightPassword The custom password for the OpenDaylight OVS service. The default
value is admin.

HostAllowedNetworkTypes Defines the allowed tenant network types for this OVS host. They can
vary per host or role to constrain the hosts that nova instances and
networks are scheduled to. The default value is ['local', 'vlan',
'vxlan', 'gre', 'flat'].

OvsEnableDpdk Enable or disable DPDK in OVS. The default values is false.

OvsVhostuserMode The mode for OVS with vhostuser port creation. In client mode, the
hypervisor is responsible for creating vhostuser sockets. In server
mode, OVS creates them. The default value is client.

VhostuserSocketDir The directory to use for vhostuser sockets. The default value is
/var/run/openvswitch.

OvsHwOffload Enables or disables OVS Hardware Offload. You can use true or false.
The default value is false. This parameter is in technical preview for
this release.

EnableInternalTLS Enables or disables TLS in the internal network. You can use values
true or false. The default value is false.

InternalTLSCAFile If you enable TLS for services in the internal network, you must use
the InternalTLSCAFile parameter to specify the default CA cert.
The default value is /etc/ipa/ca.crt.

ODLUpdateLevel The OpenDaylight update level. You can use values 1 or 2. The default
value is 1.

VhostuserSocketGroup The vhost-user socket directory group. When vhostuser is in the
default dpdkvhostuserclient mode, qemu creates the vhost socket.
The default value for VhostuserSocketGroup is qemu.

VhostuserSocketUser The vhost-user socket directory user name. When vhostuser is in the
default dpdkvhostuserclient mode, qemu creates the vhost socket.
The default value for VhostuserSocketUser is qemu.

3.1.4. Using neutron metadata service with OpenDaylight

The OpenStack Compute service allows virtual machines to query metadata associated with them by
making a web request to a special address, 169.254.169.254. The OpenStack Networking proxies such
requests to the nova-api, even when the requests come from isolated or multiple networks with
overlapping IP addresses.

The Metadata service uses either the neutron L3 agent router to serve the metadata requests or the
DHCP agent instance. Deploying OpenDaylight with the Layer 3 routing plug-in enabled disables the

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

18

neutron L3 agent. Therefore Metadata must be configured to flow through the DHCP instance, even
when a router exists in a tenant network. This functionality is enabled in the default environment file
neutron-opendaylight.yaml. To disable it, set the NeutronEnableForceMetadata to false.

VM instances have a static host route installed, using the DHCP option 121, for 169.254.169.254/32. With
this static route in place, Metadata requests to 169.254.169.254:80 go to the Metadata name server
proxy in the DHCP network namespace. The namespace proxy then adds the HTTP headers with the
instance’s IP to the request, and connects it to the Metadata agent through the Unix domain socket.
The Metadata agent queries neutron for the instance ID that corresponds to the source IP and the
network ID and proxies it to the nova Metadata service. The additional HTTP headers are required to
maintain isolation between tenants and allow overlapping IP support.

3.1.5. Understanding the network configuration and NIC template

In Red Hat OpenStack Platform director, the physical neutron network datacenter is mapped to an OVS
bridge called br-ex by default. It is consistently the same with the OpenDaylight integration. If you use
the default OpenDaylightProviderMappings and plan to create a flat or VLAN _External network, you
have to configure the OVS br-ex bridge in the NIC template for Compute nodes. Since the Layer 3
plug-in uses distributed routing to these nodes, it is not necessary to configure br-ex on the Controller
role NIC template any more.

The br-ex bridge can be mapped to any network in network isolation, but it is typically mapped to the
External network, as shown in the example.

type: ovs_bridge
 name: {get_input: bridge_name}
 use_dhcp: false
 members:
 -
 type: interface
 name: nic3
 # force the MAC address of the bridge to this interface
 primary: true
 dns_servers: {get_param: DnsServers}
 addresses:
 -
 ip_netmask: {get_param: ExternalIpSubnet}
 routes:
 -
 default: true
 ip_netmask: 0.0.0.0/0
 next_hop: {get_param: ExternalInterfaceDefaultRoute}

With the DPDK, you must create another OVS bridge, typically called br-phy, and provide it with the
ovs-dpdk-port. The IP address of the bridge is configured for VXLAN overlay network tunnels.

type: ovs_user_bridge
 name: br-phy
 use_dhcp: false
 addresses:
 -
 ip_netmask: {get_param: TenantIpSubnet}
 members:
 -
 type: ovs_dpdk_port

CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD

19

 name: dpdk0
 driver: uio_pci_generic
 members:
 -
 type: interface
 name: nic1
 # force the MAC address of the bridge to this interface
 primary: true

NOTE

When using network isolation, you do not need to place an IP address, or a default route,
in this bridge on Compute nodes.

Alternatively, you can configure external network access without using the br-ex bridge. To use this
method, you must know the interface name of the overcloud Compute node in advance. For example, if
eth3 is the deterministic name of the third interface on the Compute node, then you can use it to
specify an interface in the NIC template for the Compute node.

-
 type: interface
 name: eth3
 use_dhcp: false

3.2. BASIC INSTALLATION OF OPENDAYLIGHT

This section shows how to deploy OpenDaylight with the standard environment files.

3.2.1. Prepare the OpenDaylight environment files for overcloud

Before you start

Install the undercloud. For more information, see Installing the undercloud.

Optionally, create a local registry with the container images that you want to use during the
overcloud and OpenDaylight installation. For more information, see Configuring a container
image source in the Director installation and usage guide.

Procedure

1. Log in to the undercloud and load the admin credentials.

$ source ~/stackrc

2. Create a Docker registry file odl-images.yaml that contains references to the Docker container
images that you need for the OpenStack and OpenDaylight installation.

$ openstack overcloud container image prepare -e /usr/share/openstack-tripleo-heat-
templates/environments/services-docker/neutron-opendaylight.yaml --output-env-file
/home/stack/templates/odl-images.yaml

You now successfully prepared the environment to deploy overcloud and you are ready to start the

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

20

https://access.redhat.com/documentation/en-is/red_hat_openstack_platform/13/html/director_installation_and_usage/installing-the-undercloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/director_installation_and_usage/configuring-a-container-image-source

You now successfully prepared the environment to deploy overcloud and you are ready to start the
installation described in Section 3.2.2, “Install overcloud with OpenDaylight” .

More information

The openstack overcloud image prepare command prepares the container images environment files
for the installation of overcloud and OpenDaylight. This command uses the following options:

-e

specifies the service environment file to add specific container images required by that environment,
such as OpenDaylight and OVS

--env-file

creates a new container image environment file with a list of container images to use for the
installation

--pull-source

sets the location of the Docker containers registry

--namespace

sets the version of the Docker containers

--prefix

adds a prefix to the image name

--suffix

adds a suffix to the image name

--tag

defines the release of the images

3.2.2. Install overcloud with OpenDaylight

Before you start

Follow the Prepare the OpenDaylight environment files for overcloud procedure to create the
necessary environment files for the deployment.

Procedure

1. Log in to the undercloud and load the admin credentials.

$ source ~/stackrc

2. Deploy the overcloud using previously created environment files.

$ openstack overcloud deploy --templates /usr/share/openstack-tripleo-heat-templates \
 -e <other environment files>
 -e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/neutron-
opendaylight.yaml \
 -e /home/stack/templates/odl-images.yaml

NOTE

CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD

21

NOTE

Environment files present in the deployment command overwrite environment files that
you include earlier in the command. You must pay attention to the order of the
environment files that you include to avoid overwriting parameters accidentally.

TIP

You can override some of the parameters by creating a minimal environment file that sets only the
parameters that you want to change and combining it with the default environment files.

More information

The openstack overcloud deploy command in this procedure uses the following options:

--templates

defines the path to the heat templates directory

-e

specifies an environment file

3.3. INSTALL OPENDAYLIGHT IN CUSTOM ROLE

Installing OpenDaylight in a Custom role results in an isolated OpenDaylightApi service that runs on a
designated OpenDaylight node, different from the Controller node.

If you want to use a Custom role for OpenDaylight, you must create a role file that contains node layout
and function configuration.

3.3.1. Customize the role file based on default roles

You can deploy OpenStack with a user-defined list of roles, each role running a user-defined list of
services. A role is a group of nodes that contains individual services or configurations. For example, you
can create a Controller role that contains the nova API service. You can view example roles in
openstack-tripleo-heat-templates.

Use these roles to generate a roles_data.yaml file that contains the roles that you want for the
overcloud nodes. You can also create custom roles by creating individual files in a directory and use
them to generate a new roles_data.yaml.

To create customized environment files that install only specific OpenStack roles, complete the
following steps:

Procedure

Load the admin credentials.

$ source ~/stackrc

List the default roles that you can use to generate the custom roles_data.yaml file.

$ openstack overcloud role list

If you want to use all of these roles, run the following command to generate a roles_data.yaml

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

22

If you want to use all of these roles, run the following command to generate a roles_data.yaml
file:

$ openstack overcloud roles generate -o roles_data.yaml

If you want to customize the role file to include only some of the roles, you can pass the names
of the roles as arguments to the command in the previous step. For example, to create a
roles_data.yaml file with the Controller, Compute and Telemetry roles, run the following
command:

$ openstack overcloud roles generate - roles_data.yaml Controller Compute Telemetry

3.3.2. Create a custom role for OpenDaylight

To create a custom role, create a new role file in the role files directory and generate a new
roles_data.yaml file. For each custom role that you create, you must create a new role file. Each custom
role file must include the data only for a specific role, and the custom role file name must match the role
name.

Minimally, the file must define these parameters:

Name: defines the name of the role. The name must always be a non-empty unique string.

- Name: Custom_role

ServicesDefault: lists the services used in this role. The variable can remain empty, if there are
no services used. The example format looks like this:

ServicesDefault:
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CertmongerUser
 - OS::TripleO::Services::Collectd
 - OS::TripleO::Services::Docker

In addition to the required parameters, you can also define further settings:

CountDefault: defines the default number of nodes. If CountDefault: is empty, it defaults to
zero.

CountDefault: 1

HostnameFormatDefault: defines the format string for a host name. The value is optional.

HostnameFormatDefault: '%stackname%-computeovsdpdk-%index%'

Description: describes and adds information about the role.

Description:
 Compute OvS DPDK Role

Procedure

CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD

23

1. Copy the default role files into a new directory and keep the original files as a backup.

$ mkdir ~/roles
$ cp /usr/share/openstack-tripleo-heat-templates/roles/* ~/roles

2. Modify the default Controller role in the Controller.yaml file in ~/roles and remove the
OpenDaylightApi line from the file to disable the OpenDaylightAPI service on the Controller
node:

 - name: Controller
 CountDefault: 1
 ServicesDefault:
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::OpenDaylightApi #<--Remove this
 - OS::TripleO::Services::OpenDaylightOvs

3. Create a new OpenDaylight.yaml file in the ~/roles directory and add the OpenDaylight role
description:

- name: OpenDaylight
 CountDefault: 1
 ServicesDefault:
 - OS::TripleO::Services::Aide
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CertmongerUser
 - OS::TripleO::Services::Collectd
 - OS::TripleO::Services::Docker
 - OS::TripleO::Services::Fluentd
 - OS::TripleO::Services::Ipsec
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::LoginDefs
 - OS::TripleO::Services::MySQLClient
 - OS::TripleO::Services::Ntp
 - OS::TripleO::Services::ContainersLogrotateCrond
 - OS::TripleO::Services::Rhsm
 - OS::TripleO::Services::RsyslogSidecar
 - OS::TripleO::Services::Securetty
 - OS::TripleO::Services::SensuClient
 - OS::TripleO::Services::Snmp
 - OS::TripleO::Services::Sshd
 - OS::TripleO::Services::Timezone
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::Tuned
 - OS::TripleO::Services::Ptp
 - OS::TripleO::Services::OpenDaylightApi

4. Save the file.

5. Generate the new role file to use when you deploy the OpenStack overcloud with OpenDaylight
in the custom role.

$ openstack overcloud roles generate --roles-path ~/roles -o ~/roles_data.yaml Controller
Compute OpenDaylight

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

24

3.3.3. Install OverCloud with OpenDaylight in the custom role

Before you start

Install the undercloud. For more information, see Installing the undercloud.

Create environment files with links to overcloud container images. For more information, see
Preparing the installation of overcloud with OpenDaylight .

Prepare the role file to configure OpenDaylight in a custom role. For more information, see
Create a custom role for OpenDaylight .

Procedure

1. Create a custom role. Set the following parameter values in the environment file:

 - OvercloudOpenDaylightFlavor: opendaylight
 - OvercloudOpenDaylightCount: 3

For more information, see Creating a roles_data file .

2. Run the deployment command with the -r argument to override the default role definitions. This
option tells the deployment command to use the roles_data.yaml file that contains your
custom role. Pass the odl-composable.yaml environment file that you created in the previous
step to this deployment command. In this example, there are three ironic nodes in total. One
ironic node is reserved for the custom OpenDaylight role:

$ openstack overcloud deploy --templates /usr/share/openstack-tripleo-heat-templates
-e /usr/share/openstack-tripleo-heat-templates/environments/docker.yaml
-e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/neutron-
opendaylight.yaml
-e network-environment.yaml --compute-scale 1 --ntp-server 0.se.pool.ntp.org --control-
flavor control --compute-flavor compute -r ~/roles_data.yaml
-e /home/stack/templates/docker-images.yaml
-e /home/stack/templates/odl-images.yaml
-e /home/stack/templates/odl-composable.yaml

NOTE

Environment files present in the deployment command overwrite environment files that
you include earlier in the command. You must pay attention to the order of the
environment files that you include to avoid overwriting parameters accidentally.

TIP

You can override some of the parameters by creating a minimal environment file that sets only the
parameters that you want to change and combining it with the default environment files.

More information

The -r option overrides the role definitions at installation time.

CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD

25

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/director_installation_and_usage/installing-the-undercloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Creating_a_Custom_Roles_File

-r <roles_data>.yaml

A custom role requires an extra ironic node during the installation.

To override the node counter in the rhosp13 composable role for any custom role, use the
syntax in this example: <role-name>Count: <value> The role name updates with accurate name
details from role_data.yaml file.

3.3.4. Verify the installation of OpenDaylight in custom role

Before you start

Install the Overcloud with OpenDaylight in the custom role. For more information, see Install
Overcloud with OpenDaylight in custom role.

Procedure

1. List the existing instances:

$ openstack server list

2. Verify that the new OpenDaylight role is dedicated as an instance:

+--------------------------------------+--------------------------+--------+------------+-------------+-------
-------------+
| ID | Name | Status | Task State | Power State | Networks
|
+--------------------------------------+--------------------------+--------+------------+-------------+-------
-------------+
| 360fb1a6-b5f0-4385-b68a-ff19bcf11bc9 | overcloud-controller-0 | BUILD | spawning |
NOSTATE | ctlplane=192.0.2.4 |
| e38dde02-82da-4ba2-b5ad-d329a6ceaef1 | overcloud-novacompute-0 | BUILD | spawning
| NOSTATE | ctlplane=192.0.2.5 |
| c85ca64a-77f7-4c2c-a22e-b71d849a72e8 | overcloud-opendaylight-0 | BUILD | spawning |
NOSTATE | ctlplane=192.0.2.8 |
+--------------------------------------+--------------------------+--------+------------+-------------+-------
-------------+

3.4. INSTALL OPENDAYLIGHT WITH SR-IOV SUPPORT

OpenDaylight might be deployed with Compute nodes that support Single Root Input/Output
Virtualization (SR-IOV). In this deployment, Compute nodes must operate as dedicated SR-IOV nodes
and must not be mixed with nova instances based on OVS. It is possible to deploy both OVS and SR-IOV
Compute nodes in a single OpenDaylight deployment.

This scenario utilizes a custom SR-IOV Compute role to accomplish this kind of deployment.

The SR-IOV deployment requires that you use the neutron SR-IOV agent to configure the virtual
functions (VFs). These functions are then passed to the Compute instance directly when it is deployed,
and they serve as a network port. The VFs derive from a host NIC on the Compute node, and therefore
some information about the host interface is required before you start the deployment.

3.4.1. Prepare the SR-IOV Compute role

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

26

Following the same methodology as shown in Install of OpenDaylight In Custom Role , you must create a
custom role for the SR-IOV Compute nodes to allow creation of the SR-IOV based instances, while the
default Compute role serves the OVS based nova instances.

Before you start

Study the chapter Install of OpenDaylight In Custom Role

Procedure

1. Copy the default role files into a new directory and keep the original files as a backup.

$ mkdir ~/roles
$ cp /usr/share/openstack-tripleo-heat-templates/roles/* ~/roles

2. Create a new ComputeSriov.yaml file in the ~/roles directory and add the following role
description:

 - name: ComputeSRIOV
 CountDefault: 1
 ServicesDefault:
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::Ntp
 - OS::TripleO::Services::NeutronSriovHostConfig
 - OS::TripleO::Services::NeutronSriovAgent
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::Sshd
 - OS::TripleO::Services::NovaCompute
 - OS::TripleO::Services::NovaLibvirt
 - OS::TripleO::Services::NovaMigrationTarget
 - OS::TripleO::Services::Timezone
 - OS::TripleO::Services::ComputeNeutronCorePlugin
 - OS::TripleO::Services::Securetty

3. Save the file.

4. Remove the NeutronSriovAgent and NeutronSriovHostConfig services from the default
Compute role and save the information in roles_data.yaml.

 - OS::TripleO::Services::NeutronSriovHostConfig
 - OS::TripleO::Services::NeutronSriovAgent

5. Generate the new role file to use to deploy the OpenStack overcloud with OpenDaylight
Compute SR-IOV support.

$ openstack overcloud roles generate --roles-path ~/roles -o ~/roles_data.yaml Controller
Compute ComputeSriov

6. Create the local registry:

openstack overcloud container image prepare --namespace=192.168.24.1:8787/rhosp13 -
-prefix=openstack- --tag=2018-05-07.2
-e /home/stack/templates/environments/services-docker/neutron-opendaylight.yaml -e

CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD

27

/home/stack/templates/environments/services-docker/neutron-opendaylight-sriov.yaml --
output-env-file=/home/stack/templates/overcloud_images.yaml --roles-file
/home/stack/templates/roles_data.yaml

3.4.2. Configuring the SR-IOV agent service

To deploy OpenDaylight with the SR-IOV support, you must override the default parameters in the
neutron-opendaylight.yaml file. You can use a standard SR-IOV environment file that resides in
/usr/share/openstack-tripleo-heat-templates and the neutron-opendaylight.yaml environment file.
However, it is a good practice not to edit the original files. Instead, duplicate the original environment file
and modify the parameters in the duplicate file.

Alternatively, you can create a new environment file in which you provide only the parameters that you
want to change, and use both files for deployment. To deploy the customized OpenDaylight, pass both
files to the deployment command. Because newer environment files override any previous settings, you
must include them in the deployment command in the correct order. The correct order is neutron-
opendaylight.yaml first, and then neutron-opendaylight-sriov.yaml.

If you want to deploy OpenDaylight and SR-IOV with the default settings, you can use the neutron-
opendaylight-sriov.yaml that is provided by Red Hat. If you need to change or add parameters, make a
copy of the default SR-IOV environment file and edit the newly created file.

The following is an illustrative example of a customized neutron-opendaylight-sriov.yaml file:

A Heat environment that can be used to deploy OpenDaylight with SRIOV
resource_registry:
 OS::TripleO::Services::NeutronOvsAgent: OS::Heat::None
 OS::TripleO::Services::ComputeNeutronOvsAgent: OS::Heat::None
 OS::TripleO::Services::ComputeNeutronCorePlugin: ../puppet/services/neutron-plugin-ml2.yaml
 OS::TripleO::Services::NeutronCorePlugin: ../puppet/services/neutron-plugin-ml2-odl.yaml
 OS::TripleO::Services::OpenDaylightApi: ../docker/services/opendaylight-api.yaml
 OS::TripleO::Services::OpenDaylightOvs: ../puppet/services/opendaylight-ovs.yaml
 OS::TripleO::Services::NeutronSriovAgent: ../puppet/services/neutron-sriov-agent.yaml
 OS::TripleO::Services::NeutronL3Agent: OS::Heat::None

parameter_defaults:
 NeutronEnableForceMetadata: true
 NeutronPluginExtensions: 'port_security'
 NeutronMechanismDrivers: ['sriovnicswitch','opendaylight_v2']
 NeutronServicePlugins: 'odl-router_v2,trunk'

 # Add PciPassthroughFilter to the scheduler default filters
 #NovaSchedulerDefaultFilters:
['RetryFilter','AvailabilityZoneFilter','RamFilter','ComputeFilter','ComputeCapabilitiesFilter',
'ImagePropertiesFilter','ServerGroupAntiAffinityFilter','ServerGroupAffinityFilter','PciPassthroughFilter']

 #NovaSchedulerAvailableFilters:
["nova.scheduler.filters.all_filters","nova.scheduler.filters.pci_passthrough_filter.PciPassthroughFilter"]

 #NeutronPhysicalDevMappings: "datacentre:ens20f2"

 # Number of VFs that needs to be configured for a physical interface
 #NeutronSriovNumVFs: "ens20f2:5"

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

28

 #NovaPCIPassthrough:
 # - devname: "ens20f2"
 # physical_network: "datacentre"

More information

You can configure the following options in the neutron-opendaylight-sriov.yaml file. The table
describes individual options and mentions the required settings to enable the SR-IOV functionality:

NovaSchedulerDefaultFilters Allows the use of PCI Passthrough for SR-IOV. This
must be uncommented in the environment file and
include PciPassthroughFilter

NovaSchedulerAvailableFilters Enables specifying PCI Passthrough Filter for Nova
Default filters. Must be set and include
nova.scheduler.filters.all_filters

NeutronPhysicalDevMappings Maps the logical neutron network to a host network
interface. This must be specified so that neutron is
able to bind the virtual network to a physical port.

NeutronSriovNumVFs Number of VFs to create for a host network
interface. Syntax: <Interface name>:<number of
VFs>

NovaPCIPassthrough Configures the whitelist of allowed PCI devices in
nova to be used for PCI Passthrough in a list format,
for example:

NovaPCIPassthrough:
 - vendor_id: "8086"
 product_id: "154c"
 address: "0000:05:00.0"
 physical_network: "datacentre"

It can also simply use logical device name rather than
specific hardware attributes:

NovaPCIPassthrough:
 - devname: "ens20f2"
 physical_network: "datacentre"

3.4.3. Install OpenDaylight with SR-IOV

Before you start

Install the undercloud. For more information, see Installing the undercloud.

Create environment files with links to overcloud container images. For more information, see
Preparing the installation of overcloud with OpenDaylight).

Prepare the role file to configure OpenDaylight in a custom role with the SR-IOV support. For

CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD

29

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/director_installation_and_usage/installing-the-undercloud

Prepare the role file to configure OpenDaylight in a custom role with the SR-IOV support. For
more information, see Prepare the SR-IOV compute role .

Procedure

1. Run the deployment command with the -r argument to include your custom role file and the
necessary environment files to enable the SR-IOV functionality with OpenDaylight.

$ openstack overcloud deploy --templates /usr/share/openstack-tripleo-heat-templates
-e <other environment files>
-e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/neutron-
opendaylight.yaml
-e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/neutron-
opendaylight-sriov.yaml
-e network-environment.yaml --compute-scale 1 --ntp-server 0.se.pool.ntp.org --control-
flavor control --compute-flavor compute -r my_roles_data.yaml
-e /home/stack/templates/docker-images.yaml
-e /home/stack/templates/odl-images.yaml

NOTE

Environment files present in the deployment command overwrite environment files that
you include earlier in the command. You must pay attention to the order of the
environment files that you include to avoid overwriting parameters accidentally.

TIP

You can override some of the parameters by creating a minimal environment file that sets only the
parameters that you want to change and combining it with the default environment files.

More information

The -r option overrides the role definitions at installation time.

-r <roles_data>.yaml

A custom role requires an extra ironic node during the installation.

3.5. INSTALL OPENDAYLIGHT WITH OVS-DPDK SUPPORT

OpenDaylight might be deployed with Open vSwitch Data Plane Development Kit (DPDK) acceleration
with director. This deployment offers higher dataplane performance as packets are processed in user
space rather than in the kernel. Deploying with OVS-DPDK requires knowledge of the hardware physical
layout for each Compute node to take advantage of potential performance gains.

You should consider especially:

that the network interface on the host supports DPDK

the NUMA node topology of the Compute node (number of sockets, CPU cores, and memory
per socket)

that the DPDK NIC PCI bus proximity to each NUMA node

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

30

the amount of RAM available on the Compute node

consulting the Network Functions Virtualization Planning and Configuration Guide .

3.5.1. Prepare the OVS-DPDK deployment files

To deploy OVS-DPDK, use a different environment file. The file will override some of the parameters
set by the neutron-opendaylight.yaml environment file in the /usr/share/openstack-tripleo-heat-
templates/environments/services-docker directory. Do not modify the original environment file.
Instead, create a new environment file that contains the necessary parameters, for example neutron-
opendaylight-dpdk.yaml.

If you want to deploy OpenDaylight with OVS-DPDK with the default settings, use the default neutron-
opendaylight-dpdk.yaml environment file in the /usr/share/openstack-tripleo-heat-
templates/environments/services-docker directory.

The default file contains the following values:

A Heat environment that can be used to deploy OpenDaylight with L3 DVR and DPDK.
This file is to be used with neutron-opendaylight.yaml

parameter_defaults:
 NovaSchedulerDefaultFilters:
"RamFilter,ComputeFilter,AvailabilityZoneFilter,ComputeCapabilitiesFilter,ImagePropertiesFilter,NUMA
TopologyFilter"
 OpenDaylightSNATMechanism: 'controller'

 ComputeOvsDpdkParameters:
 OvsEnableDpdk: True

 ## Host configuration Parameters
 #TunedProfileName: "cpu-partitioning"
 #IsolCpusList: "" # Logical CPUs list to be isolated from the host process (applied via cpu-
partitioning tuned).
 # It is mandatory to provide isolated cpus for tuned to achive optimal
performance.
 # Example: "3-8,12-15,18"
 #KernelArgs: "" # Space separated kernel args to configure hugepage and IOMMU.
 # Deploying DPDK requires enabling hugepages for the overcloud compute
nodes.
 # It also requires enabling IOMMU when using the VFIO (vfio-pci)
OvsDpdkDriverType.
 # This should be done by configuring parameters via host-config-and-
reboot.yaml environment file.

 ## Attempting to deploy DPDK without appropriate values for the below parameters may lead to
unstable deployments
 ## due to CPU contention of DPDK PMD threads.
 ## It is highly recommended to to enable isolcpus (via KernelArgs) on compute overcloud nodes
and set the following parameters:
 #OvsDpdkSocketMemory: "" # Sets the amount of hugepage memory to assign per NUMA
node.
 # It is recommended to use the socket closest to the PCIe slot used for the
 # desired DPDK NIC. Format should be comma separated per socket string
such as:
 # "<socket 0 mem MB>,<socket 1 mem MB>", for example: "1024,0".

CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD

31

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/network_functions_virtualization_planning_and_configuration_guide/

 #OvsDpdkDriverType: "vfio-pci" # Ensure the Overcloud NIC to be used for DPDK supports this
UIO/PMD driver.
 #OvsPmdCoreList: "" # List or range of CPU cores for PMD threads to be pinned to. Note,
NIC
 # location to cores on socket, number of hyper-threaded logical cores, and
 # desired number of PMD threads can all play a role in configuring this setting.
 # These cores should be on the same socket where OvsDpdkSocketMemory is
assigned.
 # If using hyperthreading then specify both logical cores that would equal the
 # physical core. Also, specifying more than one core will trigger multiple PMD
 # threads to be spawned, which may improve dataplane performance.
 #NovaVcpuPinSet: "" # Cores to pin Nova instances to. For maximum performance, select
cores
 # on the same NUMA node(s) selected for previous settings.

3.5.2. Configuring the OVS-DPDK deployment

You can configure the OVS-DPDK service by changing the values in neutron-opendaylight-dpdk.yaml.

TunedProfileName Enables pinning of IRQs in order to isolate them from the CPU cores to be
used with OVS-DPDK. Default profile: cpu-partitioning

IsolCpusList Specifies a list of CPU cores to prevent the kernel scheduler from using
these cores that can instead be assigned and dedicated to OVS-DPDK. The
format takes a comma separated list of individual or a range of cores, for
example 1,2,3,4-8,10-12

KernelArgs Lists arguments to be passed to the kernel at boot time. For OVS-DPDK, it
is required to enable IOMMU and Hugepages, for example:

---- intel_iommu=on iommu=pt default_hugepagesz=1GB
hugepagesz=1G hugepages=60 ----

Note the amount of RAM for specified is 60 GB for hugepages. It is
important to consider the available amount of RAM on Compute nodes
when setting this value.

OvsDpdkSocketMemory Specifies the amount of hugepage memory (in MB) to assign to each
NUMA node. For maximum performance, assign memory to the socket
closest to the DPDK NIC. List format of memory per socket:

---- "<socket 0 mem MB>,<socket 1 mem MB>" ----

For example: "1024,0"

OvsDpdkDriverType Specifies the UIO driver type to use with PMD threads. The DPDK NIC must
support the driver specified. Red Hat OpenStack Platform deployments
support the driver type vfio-pci. Red Hat OpenStack Platform
deployments do not support UIO drivers, including uio_pci_generic and
igb_uio.

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

32

OvsPmdCoreList Lists single cores or ranges of cores for PMD threads to be pinned to. The
cores specified here should be on the same NUMA node where memory was
assigned with the OvsDpdkSocketMemory setting. If hyper-threading is
being used, then specify the logical cores that would make up the physical
core on the host.

OvsDpdkMemoryChannel
s

Specifies the number of memory channels per socket.

NovaVcpuPinSet Cores to pin nova instances to with libvirtd. For best performance use cores
on the same socket where OVS PMD Cores have been pinned to.

3.5.3. Install OpenDaylight with OVS-DPDK

Before you start

Install the undercloud. For more information, see Installing the undercloud.

Create environment files with links to overcloud container images. For more information, see
Preparing the installation of overcloud with OpenDaylight .

Prepare the role file to configure OpenDaylight in a custom role with the SR-IOV support. For
more information, see Prepare the OVS-DPDK deployment files .

Procedure

1. Run the deployment command with the necessary environment files to enable the DPDK
functionality with OpenDaylight.

$ openstack overcloud deploy --templates /usr/share/openstack-tripleo-heat-templates
-e <other environment files>
-e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/neutron-
opendaylight.yaml
-e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/neutron-opendaylight-
dpdk.yaml
-e network-environment.yaml --compute-scale 1 --ntp-server 0.se.pool.ntp.org --control-flavor control
--compute-flavor compute -r my_roles_data.yaml
-e /home/stack/templates/docker-images.yaml
-e /home/stack/templates/odl-images.yaml

NOTE

Environment files present in the deployment command overwrite environment files that
you include earlier in the command. You must pay attention to the order of the
environment files that you include to avoid overwriting parameters accidentally.

TIP

You can override some of the parameters by creating a minimal environment file that sets only the
parameters that you want to change and combining it with the default environment files.

CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD

33

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/director_installation_and_usage/installing-the-undercloud

3.5.4. Example: Configuring OVS-DPDK with ODL and VXLAN tunnelling

This section describes an example configuration of OVS-DPDK with ODL and VXLAN tunnelling.

IMPORTANT

You must determine the best values for the OVS-DPDK parameters that you set in the
network-environment.yaml file to optimize your OpenStack network for OVS-DPDK.
See Deriving DPDK parameters with workflows for details.

3.5.4.1. Generating the ComputeOvsDpdk composable role

Generate roles_data.yaml for the ComputeOvsDpdk role.

openstack overcloud roles generate --roles-path templates/openstack-tripleo-heat-templates/roles -
o roles_data.yaml Controller ComputeOvsDpdk

3.5.4.2. Configuring OVS-DPDK parameters

IMPORTANT

You must determine the best values for the OVS-DPDK parameters that you set in the
network-environment.yaml file to optimize your OpenStack network for OVS-DPDK.
See https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/13/html/network_functions_virtualization_planning_and_configuration_guide/part-
dpdk-configure#proc_derive-dpdk for details.

1. Add the custom resources for OVS-DPDK under resource_registry:

2. Under parameter_defaults, set the tunnel type and the tenant type to vxlan:

3. Under parameters_defaults, set the bridge mappings:

4. Under parameter_defaults, set the role-specific parameters for the ComputeOvsDpdk role:

 resource_registry:
 # Specify the relative/absolute path to the config files you want to use for override the
default.
 OS::TripleO::ComputeOvsDpdk::Net::SoftwareConfig: nic-configs/computeovsdpdk.yaml
 OS::TripleO::Controller::Net::SoftwareConfig: nic-configs/controller.yaml

NeutronTunnelTypes: 'vxlan'
NeutronNetworkType: 'vxlan'

The OVS logical->physical bridge mappings to use.
NeutronBridgeMappings: 'tenant:br-link0'
OpenDaylightProviderMappings: 'tenant:br-link0'

 ##########################
 # OVS DPDK configuration #
 ##########################
 ComputeOvsDpdkParameters:

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

34

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/network_functions_virtualization_planning_and_configuration_guide/part-dpdk-configure#proc_derive-dpdk
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/network_functions_virtualization_planning_and_configuration_guide/part-dpdk-configure#proc_derive-dpdk

NOTE

You must assign at least one CPU (with sibling thread) on each NUMA node with
or without DPDK NICs present for DPDK PMD to avoid failures in creating guest
instances.

NOTE

These huge pages are consumed by the virtual machines, and also by OVS-DPDK
using the OvsDpdkSocketMemory parameter as shown in this procedure. The
number of huge pages available for the virtual machines is the boot parameter
minus the OvsDpdkSocketMemory.

You must also add hw:mem_page_size=1GB to the flavor you associate with
the DPDK instance.

NOTE

OvsDPDKCoreList and OvsDpdkMemoryChannels are the required settings
for this procedure. Attempting to deploy DPDK without appropriate values
causes the deployment to fail or lead to unstable deployments.

3.5.4.3. Configuring the Controller node

1. Create the control plane Linux bond for an isolated network.

 KernelArgs: "default_hugepagesz=1GB hugepagesz=1G hugepages=32 iommu=pt
intel_iommu=on isolcpus=2-19,22-39"
 TunedProfileName: "cpu-partitioning"
 IsolCpusList: "2-19,22-39"
 NovaVcpuPinSet: ['4-19,24-39']
 NovaReservedHostMemory: 4096
 OvsDpdkSocketMemory: "4096,4096"
 OvsDpdkMemoryChannels: "4"
 OvsDpdkCoreList: "0,20,1,21"
 OvsPmdCoreList: "2,22,3,23"
 OvsEnableDpdk: true

 - type: linux_bond
 name: bond_api
 bonding_options: "mode=active-backup"
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 addresses:
 - ip_netmask:
 list_join:
 - /
 - - get_param: ControlPlaneIp
 - get_param: ControlPlaneSubnetCidr
 routes:
 - ip_netmask: 169.254.169.254/32
 next_hop:
 get_param: EC2MetadataIp

CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD

35

2. Assign VLANs to this Linux bond.

3. Create the OVS bridge for access to the floating IPs into cloud networks.

 members:
 - type: interface
 name: eth1
 primary: true

 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: bond_api
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet

 - type: vlan
 vlan_id:
 get_param: StorageNetworkVlanID
 device: bond_api
 addresses:
 - ip_netmask:
 get_param: StorageIpSubnet

 - type: vlan
 vlan_id:
 get_param: StorageMgmtNetworkVlanID
 device: bond_api
 addresses:
 - ip_netmask:
 get_param: StorageMgmtIpSubnet

 - type: vlan
 vlan_id:
 get_param: ExternalNetworkVlanID
 device: bond_api
 addresses:
 - ip_netmask:
 get_param: ExternalIpSubnet
 routes:
 - default: true
 next_hop:
 get_param: ExternalInterfaceDefaultRoute

 - type: ovs_bridge
 name: br-link0
 use_dhcp: false
 mtu: 9000
 members:
 - type: interface
 name: eth2
 mtu: 9000
 - type: vlan
 vlan_id:

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

36

3.5.4.4. Configuring the Compute node for DPDK interfaces

Create the compute-ovs-dpdk.yaml file from the default compute.yaml file and make the following
changes:

1. Create the control plane Linux bond for an isolated network.

2. Assign VLANs to this Linux bond.

3. Set a bridge with a DPDK port to link to the controller.

 get_param: TenantNetworkVlanID
 mtu: 9000
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

 - type: linux_bond
 name: bond_api
 bonding_options: "mode=active-backup"
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 members:
 - type: interface
 name: nic7
 primary: true
 - type: interface
 name: nic8

 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: bond_api
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet

 - type: vlan
 vlan_id:
 get_param: StorageNetworkVlanID
 device: bond_api
 addresses:
 - ip_netmask:
 get_param: StorageIpSubnet

 - type: ovs_user_bridge
 name: br-link0
 use_dhcp: false
 ovs_extra:
 - str_replace:
 template: set port br-link0 tag=_VLAN_TAG_
 params:
 _VLAN_TAG_:
 get_param: TenantNetworkVlanID

CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD

37

NOTE

To include multiple DPDK devices, repeat the type code section for each DPDK
device you want to add.

NOTE

When using OVS-DPDK, all bridges on the same Compute node should be of
type ovs_user_bridge. The director may accept the configuration, but Red Hat
OpenStack Platform does not support mixing ovs_bridge and ovs_user_bridge
on the same node.

3.5.4.5. Deploying the overcloud

Run the overcloud_deploy.sh script to deploy the overcloud.

3.6. INSTALL OPENDAYLIGHT WITH L2GW SUPPORT

This feature is available in this release as a Technology Preview , and therefore is not fully supported by

 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet
 members:
 - type: ovs_dpdk_bond
 name: dpdkbond0
 mtu: 9000
 rx_queue: 2
 members:
 - type: ovs_dpdk_port
 name: dpdk0
 members:
 - type: interface
 name: nic3
 - type: ovs_dpdk_port
 name: dpdk1
 members:
 - type: interface
 name: nic4

 #!/bin/bash

 openstack overcloud deploy \
--templates \
-r /home/stack/ospd-13-vxlan-dpdk-odl-ctlplane-dataplane-bonding-hybrid/roles_data.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/host-config-and-reboot.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/neutron-
opendaylight.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/neutron-opendaylight-
dpdk.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/ovs-dpdk-permissions.yaml \
-e /home/stack/ospd-13-vxlan-dpdk-odl-ctlplane-dataplane-bonding-hybrid/docker-images.yaml \
-e /home/stack/ospd-13-vxlan-dpdk-odl-ctlplane-dataplane-bonding-hybrid/network-environment.yaml

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

38

This feature is available in this release as a Technology Preview , and therefore is not fully supported by
Red Hat. It should only be used for testing, and should not be deployed in a production environment. For
more information about Technology Preview features, see Scope of Coverage Details.

Layer 2 gateway services allow a tenant’s virtual network to be bridged to a physical network. This
integration enables users to access resources on a physical server through a layer 2 network connection
rather than through a routed layer 3 connection. This means extending the layer 2 broadcast domain
instead of going through L3 or Floating IPs.

3.6.1. Prepare L2GW deployment files

To deploy OpenDaylight with L2GW support, use the neutron-l2gw-opendaylight.yaml file in the
/usr/share/openstack-tripleo-heat-templates/environments directory. If you need to change the
settings in that file, do not modify the existing file. Instead, create a new copy of the environment file
that contains the necessary parameters.

If you want to deploy OpenDaylight and L2GW with the default settings, you can use neutron-l2gw-
opendaylight.yaml in the /usr/share/openstack-tripleo-heat-templates/environments/services-
docker directory.

The default file contains these values:

A Heat environment file that can be used to deploy Neutron L2 Gateway service
#
Currently there are only two service provider for Neutron L2 Gateway
This file enables L2GW service with OpenDaylight as driver.
#
- OpenDaylight:
L2GW:OpenDaylight:networking_odl.l2gateway.driver.OpenDaylightL2gwDriver:default
resource_registry:
 OS::TripleO::Services::NeutronL2gwApi: ../../docker/services/neutron-l2gw-api.yaml

parameter_defaults:
 NeutronServicePlugins: "odl-router_v2,trunk,l2gw"
 L2gwServiceProvider:
['L2GW:OpenDaylight:networking_odl.l2gateway.driver.OpenDaylightL2gwDriver:default']

 # Optional
 # L2gwServiceDefaultInterfaceName: "FortyGigE1/0/1"
 # L2gwServiceDefaultDeviceName: "Switch1"
 # L2gwServiceQuotaL2Gateway: 10
 # L2gwServicePeriodicMonitoringInterval: 5

3.6.2. Configuring OpenDaylight L2GW deployment

You can configure the service by changing the values in the neutron-l2gw-opendaylight.yaml file:

NeutronServicePlugins Comma-separated list of service plugin entrypoints
to be loaded from the neutron.service_plugins
namespace. Defaults to router.

CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD

39

https://access.redhat.com/support/offerings/production/scope_moredetail

L2gwServiceProvider Defines the provider that should be used to provide
this service. Defaults to
L2GW:OpenDaylight:networking_odl.l2gatew
ay.driver.OpenDaylightL2gwDriver:default

L2gwServiceDefaultInterfaceName Sets the name of the default interface.

L2gwServiceDefaultDeviceName Sets the name of the default device.

L2gwServiceQuotaL2Gateway Specifies the service quota for the L2 gateway.
Defaults to 10.

L2gwServicePeriodicMonitoringInterval Specifies the monitoring interval for the L2GW
service.

3.6.3. Install OpenDaylight with L2GW

Before you start

Install the undercloud. For more information, see Installing the undercloud.

Create environment files with links to overcloud container images. For more information, see
Preparing the installation of overcloud with OpenDaylight .

Prepare the role file to configure OpenDaylight in a custom role with the SR-IOV support. For
more information, see Prepare the L2GW deployment files.

Procedure

1. Run the deployment command with the necessary environment files to enable the L2GW
functionality with OpenDaylight.

$ openstack overcloud deploy --templates /usr/share/openstack-tripleo-heat-templates
-e <other environment files>
-e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/neutron-
opendaylight.yaml
-e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/neutron-l2gw-
opendaylight.yaml
-e /home/stack/templates/docker-images.yaml
-e /home/stack/templates/odl-images.yaml

NOTE

Environment files present in the deployment command overwrite environment files that
you include earlier in the command. You must pay attention to the order of the
environment files that you include to avoid overwriting parameters accidentally.

TIP

You can override some of the parameters by creating a minimal environment file that sets only the
parameters that you want to change and combining it with the default environment files.

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

40

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/director_installation_and_usage/installing-the-undercloud

CHAPTER 4. TEST THE DEPLOYMENT

4.1. PERFORM A BASIC TEST

The basic test verifies that instances can ping each other. The test also checks the Floating IP SSH
access. This example describes how you can perform this test from the undercloud.

This procedure requires that you follow a large number of individual steps. For convenience, the
procedure is divided into smaller parts. However, you must follow all steps in the following order.

NOTE

In this setup, a flat network is used to create the _External_ network, and _VXLAN_ is
used for the _Tenant_ networks. _VLAN External_ networks and _VLAN Tenant_
networks are also supported, depending on the desired deployment.

4.1.1. Create a new network for testing

1. Source the credentials to access the overcloud:

$ source /home/stack/overcloudrc

2. Create an external neutron network to access the instance from outside the overcloud:

$ openstack network create --external --project service --external --provider-network-type
flat --provider-physical-network datacentre external

3. Create the corresponding neutron subnet for the new external network that you create in the
previous step:

$ openstack subnet create --project service --no-dhcp --network external --gateway
192.168.37.1 --allocation-pool start=192.168.37.200,end=192.168.37.220 --subnet-range
192.168.37.0/24 external-subnet

4. Download the cirros image that you want to use to create overcloud instances:

$ wget http://download.cirros-cloud.net/0.3.4/cirros-0.3.4-x86_64-disk.img

5. Upload the cirros image to glance on the overcloud:

$ openstack image create cirros --public --file ./cirros-0.3.4-x86_64-disk.img --disk-format
qcow2 --container-format bare

6. Create a tiny flavor to use for overcloud instances:

$ openstack flavor create m1.tiny --ram 512 --disk 1 --public

7. Create a VXLAN tenant network to host the instances:

$ openstack network create net_test --provider-network-type=vxlan --provider-segment 100

CHAPTER 4. TEST THE DEPLOYMENT

41

8. Create a subnet for the tenant network that you created in the previous step:

$ openstack subnet create --network net_test --subnet-range 123.123.123.0/24 test

9. Find and store the ID of the tenant network:

$ net_mgmt_id=$(openstack network list | grep net_test | awk '{print $2}')

10. Create an instance cirros1 and attach it to the net_test network and SSH security group:

$ openstack server create --flavor m1.tiny --image cirros --nic net-id=$vlan1 --security-group
SSH --key-name RDO_KEY --availability-zone nova:overcloud-novacompute-0.localdomain
cirros1

11. Create a second instance called cirros2, also attached to the net_test network and SSH
security group:

$ openstack server create --flavor m1.tiny --image cirros --nic net-id=$vlan1 --security-group
SSH --key-name RDO_KEY --availability-zone nova:overcloud-novacompute-0.localdomain
cirros2

4.1.2. Set up networking in the test environment

1. Find and store the ID of the admin project:

$ admin_project_id=$(openstack project list | grep admin | awk '{print $2}')

2. Find and store the default security group of the admin project:

$ admin_sec_group_id=$(openstack security group list | grep $admin_project_id | awk '{print
$2}')

3. Add a rule to the admin default security group to allow ICMP traffic ingress:

$ openstack security group rule create $admin_sec_group_id --protocol icmp --ingress

4. Add a rule to the admin default security group to allow ICMP traffic egress:

$ openstack security group rule create $admin_sec_group_id --protocol icmp --egress

5. Add a rule to the admin default security group to allow SSH traffic ingress:

$ openstack security group rule create $admin_sec_group_id --protocol tcp --dst-port 22 --
ingress

6. Add a rule to the admin default security group to allow SSH traffic egress:

$ openstack security group rule create $admin_sec_group_id --protocol tcp --dst-port 22 --
egress

4.1.3. Test the connectivity

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

42

1. From horizon, you should be able to access the novnc console for an instance. Use the password
from overcloudrc to log in to horizon as admin. The default credentials for cirros images are
username cirros and password cubswin:).

2. From the novnc console, verify that the instance receives a DHCP address:

$ ip addr show

NOTE

You can also run the command nova console-log <instance id> from the
undercloud to verify that the instance receives a DHCP address.

3. Repeat the steps 1 and 2 for all other instances.

4. From one instance, attempt to ping the other instances. This will validate the basic Tenant
network connectivity in the overcloud.

5. Verify that you can reach other instances by using a Floating IP .

4.1.4. Create devices

1. Create a floating IP on the external network to be associated with cirros1 instance:

$ openstack floating ip create external

2. Create a router to handle NAT between the floating IP and cirros1 tenant IP:

$ openstack router create test

3. Set the gateway of the router to be the external network:

$ openstack router set test --external-gateway external

4. Add an interface to the router attached to the tenant network:

$ openstack router add subnet test test

5. Find and store the floating IP that you create in Step 1:

$ floating_ip=$(openstack floating ip list | head -n -1 | grep -Eo '[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+')

6. Associate the floating IP with the cirros1 instance:

$ openstack server add floating ip cirros1 $floating_ip

7. From a node that has external network access, attempt to log in to the instance:

$ ssh cirros@$floating_ip

4.2. PERFORM ADVANCED TESTS

CHAPTER 4. TEST THE DEPLOYMENT

43

You can test several components of the OpenDaylight configuration and deployment after you deploy
OpenDaylight. To test specific parts of the installation, you must follow several procedures. Each
procedure is described separately.

You must perform the procedures on the overcloud nodes.

4.2.1. Connect to overcloud nodes

To connect to the overcloud nodes and ensure that they are operating correctly, complete the following
steps:

Procedure

1. Log in to the undercloud.

2. Enter the following command to start the process:

 $ source /home/stack/stackrc

3. List all instances:

 $ openstack server list

4. Choose the required instance and note the instance IP address in the list.

5. Connect to the machine with the IP address from the list that you obtain in the previous step:

 $ ssh heat-admin@<IP from step 4>

6. Switch to superuser:

 $ sudo -i

4.2.2. Test OpenDaylight

To test that OpenDaylight is operating correctly, you must verify that the service is operational and that
the specified features are loaded correctly.

Procedure

1. Log in to the overcloud node running OpenDaylight as a superuser, or to an OpenDaylight node
running in a custom role.

2. Verify that the OpenDaylight Controller is running on all Controller nodes:

docker ps | grep opendaylight
2363a99d514a 192.168.24.1:8787/rhosp13/openstack-opendaylight:latest
"kolla_start" 4 hours ago Up 4 hours (healthy) opendaylight_api

3. Verify that HAProxy is properly configured to listen on port 8081:

docker exec -it haproxy-bundle-docker-0 grep -A7 opendaylight /etc/haproxy/haproxy.cfg
listen opendaylight

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

44

 bind 172.17.0.10:8081 transparent
 bind 192.168.24.10:8081 transparent
 mode http
 balance source
 server overcloud-controller-0.internalapi.localdomain 172.17.0.22:8081 check fall 5 inter
2000 rise 2
 server overcloud-controller-1.internalapi.localdomain 172.17.0.12:8081 check fall 5 inter
2000 rise 2
 server overcloud-controller-2.internalapi.localdomain 172.17.0.13:8081 check fall 5 inter
2000 rise 2

4. Use HAproxy IP to connect the karaf account. The karaf password is karaf:

ssh -p 8101 karaf@localhost

5. List the installed features.

feature:list -i | grep odl-netvirt-openstack

If there is an x in the third column of the list, as generated during the procedure, then the
feature is correctly installed.

6. Verify that the API is operational.

 # web:list | grep neutron

This API endpoint is set in /etc/neutron/plugins/ml2/ml2_conf.ini and used by the neutron to
communicate with OpenDaylight.

7. Verify that VXLAN tunnels between the nodes are up.

vxlan:show

8. To test that the REST API is responding correctly, list the modules that are using it.

curl -u "admin:admin" http://localhost:8081/restconf/modules

The output will be similar (the example has been shortened).

{"modules":{"module":[{"name":"netty-event-executor","revision":"2013-11-
12","namespace":"urn:opendaylight:params:xml:ns:yang:controller:netty:eventexecutor"},
{"name" ...

9. List the REST streams that use the host internal_API IP.

curl -u "admin:admin" http://localhost:8081/restconf/streams

You get a similar output:

{"streams":{}}

10. Run the following command with host internal_API IP to verify that NetVirt is operational:

CHAPTER 4. TEST THE DEPLOYMENT

45

curl -u "admin:admin" http://localhost:8081/restconf/operational/network-topology:network-
topology/topology/netvirt:1

Note the following output to confirm that NetVirt is operational.

{"topology":[{"topology-id":"netvirt:1"}]}

4.2.3. Test Open vSwitch

To validate Open vSwitch, connect to one of the Compute nodes and verify that it is properly
configured and connected to OpenDaylight.

Procedure

1. Connect to one of the Compute nodes in the overcloud as a superuser.

2. List the Open vSwitch settings.

ovs-vsctl show

3. Note multiple Managers in the output. In this example, lines 2 and 3 display multiple Managers.

 6b003705-48fc-4534-855f-344327d36f2a
 Manager "ptcp:6639:127.0.0.1"
 Manager "tcp:172.17.1.16:6640"
 is_connected: true
 Bridge br-ex
 fail_mode: standalone
 Port br-ex-int-patch
 Interface br-ex-int-patch
 type: patch
 options: {peer=br-ex-patch}
 Port br-ex
 Interface br-ex
 type: internal
 Port "eth2"
 Interface "eth2"
 Bridge br-isolated
 fail_mode: standalone
 Port "eth1"
 Interface "eth1"
 Port "vlan50"
 tag: 50
 Interface "vlan50"
 type: internal
 Port "vlan30"
 tag: 30
 Interface "vlan30"
 type: internal
 Port br-isolated
 Interface br-isolated
 type: internal
 Port "vlan20"
 tag: 20

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

46

 Interface "vlan20"
 type: internal
 Bridge br-int
 Controller "tcp:172.17.1.16:6653"
 is_connected: true
 fail_mode: secure
 Port br-ex-patch
 Interface br-ex-patch
 type: patch
 options: {peer=br-ex-int-patch}
 Port "tun02d236d8248"
 Interface "tun02d236d8248"
 type: vxlan
 options: {key=flow, local_ip="172.17.2.18", remote_ip="172.17.2.20"}
 Port br-int
 Interface br-int
 type: internal
 Port "tap1712898f-15"
 Interface "tap1712898f-15"
 ovs_version: "2.7.0"

4. Verify that the tcp manager points to the IP of the node where OpenDaylight is running.

5. Verify that the Managers show is_connected: true to ensure that connectivity to
OpenDaylight from OVS is established and uses the OVSDB protocol.

6. Verify that each bridge (other than br-int) exists and corresponds to the NIC template used for
deployment with the Compute role.

7. Verify that the tcp connection corresponds to the IP where the OpenDaylight service is running.

8. Verify that the bridge br-int shows is_connected: true and that an OpenFlow protocol
connection to OpenDaylight is established.

More information

OpenDaylight creates the br-int bridge automatically.

4.2.4. Verify the Open vSwitch configuration on Compute nodes.

1. Connect to a Compute node as a superuser.

2. List the Open vSwitch configuration settings.

ovs-vsctl list open_vswitch

3. Read the output. It will be similar to this example.

 _uuid : 4b624d8f-a7af-4f0f-b56a-b8cfabf7635d
 bridges : [11127421-3bcc-4f9a-9040-ff8b88486508, 350135a4-4627-4e1b-8bef-
56a1e4249bef]
 cur_cfg : 7
 datapath_types : [netdev, system]
 db_version : "7.12.1"
 external_ids : {system-id="b8d16d0b-a40a-47c8-a767-e118fe22759e"}

CHAPTER 4. TEST THE DEPLOYMENT

47

 iface_types : [geneve, gre, internal, ipsec_gre, lisp, patch, stt, system, tap, vxlan]
 manager_options : [c66f2e87-4724-448a-b9df-837d56b9f4a9, defec179-720e-458e-8875-
ea763a0d8909]
 next_cfg : 7
 other_config : {local_ip="11.0.0.30", provider_mappings="datacentre:br-ex"}
 ovs_version : "2.7.0"
 ssl : []
 statistics : {}
 system_type : RedHatEnterpriseServer
 system_version : "7.4-Maipo"

4. Verify that the value of the other_config option has the correct local_ip set for the local
interface that connects to the Tenant network through VXLAN tunnels.

5. Verify that the provider_mappings value under the other_config option matches the value in
the OpenDaylightProviderMappings heat template parameter. This configuration maps the
neutron logical networks to corresponding physical interfaces.

4.2.5. Verify neutron configuration

Procedure

1. Connect to the superuser account on one of the Controller role nodes.

2. Ensure that the /etc/neutron/neutron.conf file contains service_plugins=odl-
router_v2,trunk.

3. Ensure that the /etc/neutron/plugin.ini file contains the following ml2 configuration:

[ml2]
mechanism_drivers=opendaylight_v2

[ml2_odl]
password=admin
username=admin
url=http://192.0.2.9:8081/controller/nb/v2/neutron

4. On one of the overcloud controllers, verify that neutron agents are running properly.

openstack network agent list

5. Verify that the admin_state_up value for both the Metadata and DHCP agents are True:

+--------------------------------------+----------------+--------------------------+-------------------+------
-+----------------+------------------------+
| id | agent_type | host | availability_zone | alive |
admin_state_up | binary |
+--------------------------------------+----------------+--------------------------+-------------------+------
-+----------------+------------------------+
| 3be198c5-b3aa-4d0e-abb4-51b29db3af47 | Metadata agent | controller-0.localdomain |
| :-) | True | neutron-metadata-agent |
| 79579d47-dd7d-4ef3-9614-cd2f736043f3 | DHCP agent | controller-0.localdomain | nova

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

48

| :-) | True | neutron-dhcp-agent |
+--------------------------------------+----------------+--------------------------+-------------------+------
-+----------------+------------------------+

More information

The IP in the plugin.ini, mentioned in step 3, should be the InternalAPI Virtual IP Address
(VIP).

There is no Open vSwitch agent, nor L3 agent, listed in output of step 5, which is a desired state,
as both are now managed by OpenDaylight.

CHAPTER 4. TEST THE DEPLOYMENT

49

CHAPTER 5. DEBUGGING

5.1. LOCATE THE LOGS

5.1.1. Access OpenDaylight logs

OpenDaylight stores logs in containers in the /var/log/containers/opendaylight directory. The most
recent log is named karaf.log. OpenDaylight appends incremental numbering to previous logs, for
example, karaf.log.1, karaf.log.2.

5.1.2. Access OpenStack Networking logs

When OpenStack networking commands fail, first examine the neutron logs. You can find the neutron
logs in the server.log file on each neutron node in the /var/log/containers/neutron directory.

The server.log file also includes errors about the communication with OpenDaylight. If the neutron
error originates from interacting with OpenDaylight, you must also examine the OpenDaylight logs to
locate the cause of the failure.

5.2. DEBUG NETWORKING ERRORS

If you experience a network error such as loss of instance connectivity, but no errors are reported when
issuing OpenStack commands or in the neutron logs, then it might be useful to inspect the OVS nodes
for network traffic and OpenFlow flows:

1. Log in as superuser to the node where the network error occurs.

2. Display the information about the br-int switch.

ovs-ofctl -O openflow13 show br-int

3. Examine the output. It must be similar to this example:

OFPT_FEATURES_REPLY (OF1.3) (xid=0x2): dpid:0000e4c153bdb306
n_tables:254, n_buffers:256
capabilities: FLOW_STATS TABLE_STATS PORT_STATS GROUP_STATS
QUEUE_STATS
OFPST_PORT_DESC reply (OF1.3) (xid=0x3):
 1(br-ex-patch): addr:ae:38:01:09:66:5b
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max
 2(tap1f0f610c-8e): addr:00:00:00:00:00:00
 config: PORT_DOWN
 state: LINK_DOWN
 speed: 0 Mbps now, 0 Mbps max
 3(tun1147c81b59c): addr:66:e3:d2:b3:b8:e3
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max
 LOCAL(br-int): addr:e4:c1:53:bd:b3:06
 config: PORT_DOWN

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

50

 state: LINK_DOWN
 speed: 0 Mbps now, 0 Mbps max
OFPT_GET_CONFIG_REPLY (OF1.3) (xid=0x5): frags=normal miss_send_len=0

4. List the statistics for the br-int switch.

ovs-ofctl -O openflow13 dump-ports br-int

5. Examine the output. It must be similar to this example:

OFPST_PORT reply (OF1.3) (xid=0x2): 4 ports
 port LOCAL: rx pkts=101215, bytes=6680190, drop=0, errs=0, frame=0, over=0, crc=0
 tx pkts=0, bytes=0, drop=0, errs=0, coll=0
 duration=90117.708s
 port 1: rx pkts=126887, bytes=8970074, drop=0, errs=0, frame=0, over=0, crc=0
 tx pkts=18764, bytes=2067792, drop=0, errs=0, coll=0
 duration=90117.418s
 port 2: rx pkts=1171, bytes=70800, drop=0, errs=0, frame=0, over=0, crc=0
 tx pkts=473, bytes=44448, drop=0, errs=0, coll=0
 duration=88644.819s
 port 3: rx pkts=120197, bytes=8776126, drop=0, errs=0, frame=0, over=0, crc=0
 tx pkts=119408, bytes=8727254, drop=0, errs=0, coll=0
 duration=88632.426s

More information

In Step 3, note that there are three ports on this OVS node. The first port is a patch port going
to the bridge br-ex, which is an External network connectivity port in this scenario. The second
port is a tap port, which connects to a DHCP agent instance. We know this because the host is a
controller, otherwise on a Compute role it would be an instance. The third port is a VXLAN tunnel
port created for the tenant traffic.

When you understand what each port is, you can examine the port statistics to verify that the
port is receiving/sending traffic (see Step 4).

From the output in Step 5, note that each port is receiving (rx pkts) and sending packets (tx
pkts).

5.2.1. Advanced debugging using OpenFlow flows

For advanced users who are familiar with OpenFlow, you can examine the flows on the switch to detect
where the traffic drops.

1. To list the flows, and to see how many packets have hit them, enter the following command:

ovs-ofctl -O openflow13 dump-flows br-int

2. Examine the output of the command to get the necessary information:

OFPST_FLOW reply (OF1.3) (xid=0x2):
 cookie=0x8000000, duration=90071.665s, table=0, n_packets=126816, n_bytes=8964820,
priority=1,in_port=1
actions=write_metadata:0x20000000001/0xffffff0000000001,goto_table:17
 cookie=0x8000000, duration=88967.292s, table=0, n_packets=473, n_bytes=44448,

CHAPTER 5. DEBUGGING

51

priority=4,in_port=2
actions=write_metadata:0x40000000000/0xffffff0000000001,goto_table:17
 cookie=0x8000001, duration=88954.901s, table=0, n_packets=120636, n_bytes=8807869,
priority=5,in_port=3
actions=write_metadata:0x70000000001/0x1fffff0000000001,goto_table:36
 cookie=0x8000001, duration=90069.534s, table=17, n_packets=126814, n_bytes=8964712,
priority=5,metadata=0x20000000000/0xffffff0000000000
actions=write_metadata:0xc0000200000222e0/0xfffffffffffff
ffe,goto_table:19
 cookie=0x8040000, duration=90069.533s, table=17, n_packets=126813, n_bytes=8964658,
priority=6,metadata=0xc000020000000000/0xffffff0000000000
actions=write_metadata:0xe00002138a000000/0xffffffff
fffffffe,goto_table:48
 cookie=0x8040000, duration=88932.689s, table=17, n_packets=396, n_bytes=36425,
priority=6,metadata=0xc000040000000000/0xffffff0000000000
actions=write_metadata:0xe00004138b000000/0xfffffffffffff
ffe,goto_table:48

NOTE

This output has been edited for length.

5.2.2. Packet traverse in OpenFlow

The important things to understand are that the network functions performed on a packet are broken
into different OpenFlow tables, and packets traverse those tables in order, starting from zero. An
incoming packet lands in table 0, and then progresses through the OpenFlow Pipeline until it is sent out
of a port, to the OpenDaylight Controller, or dropped. A packet may skip one or more tables depending
on which network function it may need to go to. The full diagram of tables and how they correspond to
network functions is shown below:

Figure 5.1. OpenDaylight NetVirt OpenFlow Pipeline

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

52

Figure 5.1. OpenDaylight NetVirt OpenFlow Pipeline

CHAPTER 5. DEBUGGING

53

CHAPTER 6. DEPLOYMENT EXAMPLES

6.1. MODEL INSTALLATION SCENARIO USING TENANT NETWORK

In this section you explore an example of OpenDaylight installation using OpenStack in a production
environment. This scenario uses tunneling (VXLAN) for tenant traffic separation.

6.1.1. Physical Topology

The topology of this scenario consists of six nodes:

1 x director undercloud node

3 x OpenStack overcloud controllers with the OpenDaylight SDN controller installed in addition
to other OpenStack services

2 x OpenStack overcloud Compute nodes

6.1.2. Planning Physical Network Environment

The overcloud Controller nodes use three network interface cards (NICs) each:

Name Purpose

nic1 Management network (e.g accessing the node through SSH)

nic2 Tenant (VXLAN) carrier, provisioning (PXE, DHCP), and Internal API networks

nic3 Public API network access

The overcloud Compute nodes are equipped with three NICs:

Name Purpose

nic1 Management network

nic2 Tenant carrier, provisioning, and Internal API networks

nic3 External (Floating IPs) network

The undercloud node is equipped with two NICs:

Name Purpose

nic1 Used for the Management network

nic2 Used for the Provisioning network

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

54

6.1.3. Planning NIC Connectivity

In this case, the environment files use abstracted numbered interfaces (nic1, nic2) and not the actual
device names presented on the host operating system (like eth0 or eno2). The hosts that belong to the
same role do not require identical network interface device names. There is no problem if one host uses
the em1 and em2 interfaces, while the other uses eno1 and eno2. Each of the NIC is referred to as nic1
and nic2.

The abstracted NIC scheme relies only on interfaces that are live and connected. In cases where the
hosts have a different number of interfaces, it is sufficient to use the minimal number of interfaces that
you need to connect the hosts. For example, if there are four physical interfaces on one host and six on
the other, you should only use nic1, nic2, nic3, and nic4 and plug in four cables on both hosts.

6.1.4. Planning Networks, VLANs and IPs

This scenario uses network isolation to separate the Management, Provisioning, Internal API , Tenant,
Public API, and Floating IPs network traffic. This graphic is an example network configuration. It shows
custom role deployment. If required, you can also include OpenDaylight in the Red Hat OpenStack
Platform conroller. This is the default setup. In this scheme IPMI network, NICs and routing are not
shown. You might need additional networks depending on the OpenStack configuration.

Figure 6.1. Detailed network topology used in this scenario

CHAPTER 6. DEPLOYMENT EXAMPLES

55

Figure 6.1. Detailed network topology used in this scenario

The table shows the VLAN ID and IP subnet associated with each network:

Network VLAN ID IP Subnet

Provisioning Native 192.0.5.0/24

Internal API 600 172.17.0.0/24

Tenant 603 172.16.0.0/24

Public API 411 10.35.184.144/28

Floating IP 412 10.35.186.146/28

OpenStack Platform director creates the br-isolated OVS bridge and adds the VLAN interfaces for

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

56

OpenStack Platform director creates the br-isolated OVS bridge and adds the VLAN interfaces for
each network as defined in the network configurations files. The director also creates the br-ex bridge
with the relevant network interface attached to it.

Ensure that your physical network switches that provide connectivity between the hosts are properly
configured to carry those VLAN IDs. You must configure all switch ports facing the hosts as "trunks" with
the VLANs. The term "trunk" is used here to describe a port that allows multiple VLAN IDs to traverse
through the same port.

NOTE

Configuration guidance for the physical switches is outside the scope of this document.

NOTE

You can use the TenantNetworkVlanID attribute in the network-environment.yaml file
to define a VLAN tag for the Tenant network when using VXLAN tunneling. For example,
VXLAN tenant traffic transported over a VLAN tagged underlay network. This value can
also be empty if the Tenant network is desired to run over the native VLAN. Also note
that when using VLAN tenant type networks, VLAN tags other than the value provided
for TenantNetworkVlanID can be used.

6.1.5. OpenDaylight configuration files used in this scenario

To deploy this scenario of OpenStack and OpenDaylight, the following deployment command was
entered on the undercloud node:

$ openstack overcloud deploy --debug \
 --templates \
 --environment-file "$HOME/extra_env.yaml" \
 --libvirt-type kvm \
 -e /home/stack/baremetal-vlan/network-environment.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/neutron-opendaylight.yaml \
 --log-file overcloud_install.log &> overcloud_install.log

Further, this guide will show the configuration files used in this scenario, their content, and it will also
provide explanation on the setting used.

6.1.5.1. The extra_env.yaml file.

The file has only one parameter.

 parameter_defaults:
 OpenDaylightProviderMappings: 'datacentre:br-ex,tenant:br-isolated'

These are the mappings that each node, controlled by OpenDaylight, will use. The physical network
datacenter will be mapped to the br-ex OVS bridge and the tenant network traffic will be mapped to
the br-isolated OVS bridge.

6.1.5.2. The undercloud.conf file

This file is located in the /home/stack/baremetal-vlan/ directory.

NOTE

CHAPTER 6. DEPLOYMENT EXAMPLES

57

NOTE

The file path points to customized versions of the configuration files.

 [DEFAULT]
 local_ip = 192.0.5.1/24
 network_gateway = 192.0.5.1
 undercloud_public_vip = 192.0.5.2
 undercloud_admin_vip = 192.0.5.3
 local_interface = eno2
 network_cidr = 192.0.5.0/24
 masquerade_network = 192.0.5.0/24
 dhcp_start = 192.0.5.5
 dhcp_end = 192.0.5.24
 inspection_iprange = 192.0.5.100,192.0.5.120

In this example, the 192.0.5.0/24 subnet for the Provisioning network is used. Note that the physical
interface eno2 is used on the undercloud node for provisioning.

6.1.5.3. The network-environment.yaml file

This is the main file for configuring the network. It is located in the /home/stack/baremetal-vlan/
directory. In the following file, the VLAN IDs and IP subnets are specified for the different networks, as
well as the provider mappings. The two files in the nic-configs directory controller.yaml and
compute.yaml are used for specifying the network configuration for the Controller and Compute
nodes.

The number of Controller nodes (3) and Compute nodes (2) is specified in the example.

resource_registry:
 # Specify the relative/absolute path to the config files you want to use for
 # override the default.
 OS1::TripleO::Compute::Net::SoftwareConfig: nic-configs/compute.yaml
 OS::TripleO::Controller::Net::SoftwareConfig: nic-configs/controller.yaml

 # Network isolation configuration
 # Service section
 # If some service should be disable, use the following example
 # OS::TripleO::Network::Management: OS::Heat::None
 OS::TripleO::Network::External: /usr/share/openstack-tripleo-heat-templates/network/external.yaml
 OS::TripleO::Network::InternalApi: /usr/share/openstack-tripleo-heat-
templates/network/internal_api.yaml
 OS::TripleO::Network::Tenant: /usr/share/openstack-tripleo-heat-templates/network/tenant.yaml
 OS::TripleO::Network::Management: OS::Heat::None
 OS::TripleO::Network::StorageMgmt: OS::Heat::None
 OS::TripleO::Network::Storage: OS::Heat::None

 # Port assignments for the VIP addresses
 OS::TripleO::Network::Ports::ExternalVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/external.yaml
 OS::TripleO::Network::Ports::InternalApiVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api.yaml
 OS::TripleO::Network::Ports::RedisVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/vip.yaml
 OS::TripleO::Network::Ports::StorageVipPort: /usr/share/openstack-tripleo-heat-

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

58

templates/network/ports/noop.yaml
 OS::TripleO::Network::Ports::StorageMgmtVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml

 # Port assignments for the controller role
 OS::TripleO::Controller::Ports::ExternalPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/external.yaml
 OS::TripleO::Controller::Ports::InternalApiPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api.yaml
 OS::TripleO::Controller::Ports::TenantPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/tenant.yaml
 OS::TripleO::Controller::Ports::ManagementPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml
 OS::TripleO::Controller::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml
 OS::TripleO::Controller::Ports::StorageMgmtPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml

 # Port assignments for the Compute role
 OS::TripleO::Compute::Ports::ExternalPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/external.yaml
 OS::TripleO::Compute::Ports::InternalApiPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api.yaml
 OS::TripleO::Compute::Ports::TenantPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/tenant.yaml
 OS::TripleO::Compute::Ports::ManagementPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml
 OS::TripleO::Compute::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml
 OS::TripleO::Compute::Ports::StorageMgmtPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml

 # Port assignments for service virtual IP addresses for the controller role
 OS::TripleO::Controller::Ports::RedisVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/vip.yaml

parameter_defaults:
 # Customize all these values to match the local environment
 InternalApiNetCidr: 172.17.0.0/24
 TenantNetCidr: 172.16.0.0/24
 ExternalNetCidr: 10.35.184.144/28
 # CIDR subnet mask length for provisioning network
 ControlPlaneSubnetCidr: '24'
 InternalApiAllocationPools: [{'start': '172.17.0.10', 'end': '172.17.0.200'}]
 TenantAllocationPools: [{'start': '172.16.0.100', 'end': '172.16.0.200'}]
 # Use an External allocation pool which will leave room for floating IP addresses
 ExternalAllocationPools: [{'start': '10.35.184.146', 'end': '10.35.184.157'}]
 # Set to the router gateway on the external network
 ExternalInterfaceDefaultRoute: 10.35.184.158
 # Gateway router for the provisioning network (or Undercloud IP)
 ControlPlaneDefaultRoute: 192.0.5.254
 # Generally the IP of the Undercloud
 EC2MetadataIp: 192.0.5.1
 InternalApiNetworkVlanID: 600
 TenantNetworkVlanID: 603
 ExternalNetworkVlanID: 411

CHAPTER 6. DEPLOYMENT EXAMPLES

59

 # Define the DNS servers (maximum 2) for the overcloud nodes
 DnsServers: ["10.35.28.28","8.8.8.8"]
 # May set to br-ex if using floating IP addresses only on native VLAN on bridge br-ex
 NeutronExternalNetworkBridge: "''"
 # The tunnel type for the tenant network (vxlan or gre). Set to '' to disable tunneling.
 NeutronTunnelTypes: ''
 # The tenant network type for Neutron (vlan or vxlan).
 NeutronNetworkType: 'vxlan'
 # The OVS logical->physical bridge mappings to use.
 # NeutronBridgeMappings: 'datacentre:br-ex,tenant:br-isolated'
 # The Neutron ML2 and OpenVSwitch vlan mapping range to support.
 NeutronNetworkVLANRanges: 'datacentre:412:412'
 # Nova flavor to use.
 OvercloudControlFlavor: baremetal
 OvercloudComputeFlavor: baremetal
 # Number of nodes to deploy.
 ControllerCount: 3
 ComputeCount: 2

 # Sets overcloud nodes custom names
 # http://docs.openstack.org/developer/tripleo-
docs/advanced_deployment/node_placement.html#custom-hostnames
 ControllerHostnameFormat: 'controller-%index%'
 ComputeHostnameFormat: 'compute-%index%'
 CephStorageHostnameFormat: 'ceph-%index%'
 ObjectStorageHostnameFormat: 'swift-%index%'

6.1.5.4. The controller.yaml file

The file is located in the /home/stack/baremetal-vlan/nic-configs/ directory. In this example, you are
defining two switches: br-isolated and br-ex. nic2 will be under br-isolated and nic3 under br-ex:

heat_template_version: pike

description: >
 Software Config to drive os-net-config to configure VLANs for the
 controller role.

parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal API network
 type: string
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

60

 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage mgmt network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 ExternalNetworkVlanID:
 default: ''
 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: ''
 description: Vlan ID for the internal_api network traffic.
 type: number
 TenantNetworkVlanID:
 default: ''
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 23
 description: Vlan ID for the management network traffic.
 type: number
 ExternalInterfaceDefaultRoute:
 default: ''
 description: default route for the external network
 type: string
 ControlPlaneSubnetCidr: # Override this with parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 DnsServers: # Override this with parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this with parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string

resources:
 OsNetConfigImpl:
 type: OS::Heat::StructuredConfig
 properties:
 group: os-apply-config
 config:
 os_net_config:
 network_config:
 -
 type: ovs_bridge
 name: br-isolated

CHAPTER 6. DEPLOYMENT EXAMPLES

61

 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 addresses:
 -
 ip_netmask:
 list_join:
 - '/'
 - - {get_param: ControlPlaneIp}
 - {get_param: ControlPlaneSubnetCidr}
 routes:
 -
 ip_netmask: 169.254.169.254/32
 next_hop: {get_param: EC2MetadataIp}
 members:
 -
 type: interface
 name: nic2
 # force the MAC address of the bridge to this interface
 primary: true
 -
 type: vlan
 vlan_id: {get_param: InternalApiNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: InternalApiIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: TenantNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: TenantIpSubnet}
 -
 type: ovs_bridge
 name: br-ex
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 members:
 -
 type: interface
 name: nic3
 # force the MAC address of the bridge to this interface
 -
 type: vlan
 vlan_id: {get_param: ExternalNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: ExternalIpSubnet}
 routes:
 -
 default: true
 next_hop: {get_param: ExternalInterfaceDefaultRoute}

outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value: {get_resource: OsNetConfigImpl}

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

62

6.1.5.5. The compute.yaml file

The file is located in the /home/stack/baremetal-vlan/nic-configs/ directory. Most of the options in the
Compute configuration are the same as in the Controller configuration. In this example, nic3 is under br-
ex to be used for External connectivity (Floating IP network)

heat_template_version: pike

description: >
 Software Config to drive os-net-config to configure VLANs for the
 Compute role.

parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal API network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 InternalApiNetworkVlanID:
 default: ''
 description: Vlan ID for the internal_api network traffic.
 type: number
 TenantNetworkVlanID:
 default: ''
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 23
 description: Vlan ID for the management network traffic.
 type: number
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage mgmt network
 type: string
 ControlPlaneSubnetCidr: # Override this with parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.

CHAPTER 6. DEPLOYMENT EXAMPLES

63

 type: string
 ControlPlaneDefaultRoute: # Override this with parameter_defaults
 description: The default route of the control plane network.
 type: string
 DnsServers: # Override this with parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this with parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string
 ExternalInterfaceDefaultRoute:
 default: ''
 description: default route for the external network
 type: string

resources:
 OsNetConfigImpl:
 type: OS::Heat::StructuredConfig
 properties:
 group: os-apply-config
 config:
 os_net_config:
 network_config:
 -
 type: ovs_bridge
 name: br-isolated
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 addresses:
 -
 ip_netmask:
 list_join:
 - '/'
 - - {get_param: ControlPlaneIp}
 - {get_param: ControlPlaneSubnetCidr}
 routes:
 -
 ip_netmask: 169.254.169.254/32
 next_hop: {get_param: EC2MetadataIp}
 -
 next_hop: {get_param: ControlPlaneDefaultRoute}
 members:
 -
 type: interface
 name: nic2
 # force the MAC address of the bridge to this interface
 primary: true
 -
 type: vlan
 vlan_id: {get_param: InternalApiNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: InternalApiIpSubnet}
 -

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

64

 type: vlan
 vlan_id: {get_param: TenantNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: TenantIpSubnet}
 -
 type: ovs_bridge
 name: br-ex
 use_dhcp: false
 members:
 -
 type: interface
 name: nic3

outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value: {get_resource: OsNetConfigImpl}

6.1.6. Red Hat OpenStack Platform director configuration files used in this scenario

6.1.6.1. The neutron.conf file

This file is located in the /etc/neutron/ directory and should contain the following information:

[DEFAULT]
service_plugins=odl-router_v2,trunk

6.1.6.2. The ml2_conf.ini file

This file is located in the /etc/neutron/plugins/ml2/ directory and should contain the following
information:

[ml2]
type_drivers = vxlan,vlan,flat,gre
tenant_network_types = vxlan
mechanism_drivers = opendaylight_v2

[ml2_type_vlan]
network_vlan_ranges = datacentre:412:412

[ml2_odl]
password = admin
username = admin
url = http://172.17.1.18:8081/controller/nb/v2/neutron

1. Under the [ml2] section note that VXLAN is used as the networks’ type and so is the
opendaylight_v2 mechanism driver.

2. Under [ml2_type_vlan], the same mappings as configured in network-environment.yaml file,
should be set.

3. Under [ml2_odl], you should see the configuration accessing the OpenDaylightController.

CHAPTER 6. DEPLOYMENT EXAMPLES

65

You can use these details to confirm access to the OpenDaylight Controller:

$ curl -H "Content-Type:application/json" -u admin:admin
http://172.17.1.18:8081/controller/nb/v2/neutron/networks

6.2. MODEL INSTALLATION SCENARIO USING PROVIDER NETWORKS

This installation scenario shows an example of OpenStack and OpenDaylight using provider networks
instead of tenant networks. An external neutron provider network bridges VM instances to a physical
network infrastructure that provides Layer-3 (L3) and other network services. In most cases, provider
networks implement Layer-2 (L2) segmentation using the VLAN IDs. A provider network maps to a
provider bridge on each Compute node that supports launching VM instances on the provider network.

6.2.1. Physical Topology

The topology of this scenario consists of six nodes:

1 x director undercloud node

3 x OpenStack overcloud controllers with the OpenDaylight SDN controller installed in addition
to other OpenStack services

2 x OpenStack overcloud Compute nodes

6.2.2. Planning Physical Network Environment

The overcloud Controller nodes use four network interface cards (NICs) each:

Name Purpose

nic1 Management network (e.g accessing the node through SSH)

nic2 Provisioning (PXE, DHCP), and Internal API networks

nic3 Tenant network

nic4 Public API network, Floating IP network

The overcloud Compute nodes are equipped with four NICs:

Name Purpose

nic1 Management network

nic2 Provisioning, and Internal API networks

nic3 Tenant network

nic4 Floating IP network

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

66

The undercloud node is equipped with two NICs:

Name Purpose

nic1 Used for the Management network

nic2 Used for the Provisioning network

6.2.3. Planning NIC Connectivity

In this case, the environment files use abstracted numbered interfaces (nic1, nic2) and not the actual
device names presented on the host operating system, for example, eth0 or eno2. The hosts that
belong to the same role do not require identical network interface device names. There is no problem if
one host uses the em1 and em2 interfaces, while the other uses eno1 and eno2. Each of the NIC will be
referred to as nic1 and nic2.

The abstracted NIC scheme relies only on interfaces that are live and connected. In cases where the
hosts have a different number of interfaces, it is sufficient to use the minimal number of interfaces that
you need to connect the hosts. For example, if there are four physical interfaces on one host and six on
the other, you should only use nic1, nic2, nic3, and nic4 and plug in four cables on both hosts.

6.2.4. Planning Networks, VLANs and IPs

This scenario uses network isolation to separate the Management, Provisioning, Internal API , Tenant,
Public API, and Floating IPs network traffic.

Figure 6.2. Detailed network topology used in this scenario

CHAPTER 6. DEPLOYMENT EXAMPLES

67

Figure 6.2. Detailed network topology used in this scenario

The table shows the VLAN ID and IP subnet associated with each network:

Network VLAN ID IP Subnet

Provisioning Native 192.0.5.0/24

Internal API 600 172.17.0.0/24

Tenant 554,555-601 172.16.0.0/24

Public API 552 192.168.210.0/24

Floating IP 553 10.35.186.146/28

The OpenStack Platform director creates the br-isolated OVS bridge and adds the VLAN interfaces for

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

68

The OpenStack Platform director creates the br-isolated OVS bridge and adds the VLAN interfaces for
each network as defined in the network configurations files. The director also creates the br-ex bridge
automatically with the relevant network interface attached to it.

Ensure that the physical network switches that provide connectivity between the hosts are properly
configured to carry those VLAN IDs. You must configure all switch ports facing the hosts as trunks with
the VLANs. The term "trunk" is used here to describe a port that allows multiple VLAN IDs to traverse
through the same port.

NOTE

Configuration guidance for the physical switches is outside the scope of this document.

NOTE

The TenantNetworkVlanID in network-environment.yaml is where a VLAN tag can be
defined for Tenant network when using VXLAN tunneling (i.e VXLAN tenant traffic
transported over a VLAN tagged underlay network). This value may also be empty if the
Tenant network is desired to run over the native VLAN. Also note, that when using VLAN
tenant type networks, VLAN tags other than the value provided for
TenantNetworkVlanID may be used.

6.2.5. OpenDaylight configuration files used in this scenario

To deploy this scenario of OpenStack and OpenDaylight, the following deployment command was
entered on the undercloud node:

$ openstack overcloud deploy --debug \
 --templates \
 --environment-file "$HOME/extra_env.yaml" \
 --libvirt-type kvm \
 -e /home/stack/baremetal-vlan/network-environment.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/neutron-opendaylight.yaml \
 --log-file overcloud_install.log &> overcloud_install.log

This guide also shows the configuration files for this scenario, the configuration file content, and
explanatory information about the configuration.

6.2.5.1. extra_env.yaml file.

The file has only one parameter.

 parameter_defaults:
 OpenDaylightProviderMappings: 'datacentre:br-ex,tenant:br-vlan'

These are the mappings that each node, controlled by OpenDaylight, will use. The physical network
datacenter is mapped to the br-ex OVS bridge, and the tenant network traffic is mapped to the br-vlan
OVS bridge.

6.2.5.2. undercloud.conf file

This file is in the /home/stack/ directory.

NOTE

CHAPTER 6. DEPLOYMENT EXAMPLES

69

NOTE

The file path points to customized versions of the configuration files.

 [DEFAULT]
 local_ip = 192.0.5.1/24
 network_gateway = 192.0.5.1
 undercloud_public_vip = 192.0.5.2
 undercloud_admin_vip = 192.0.5.3
 local_interface = eno2
 network_cidr = 192.0.5.0/24
 masquerade_network = 192.0.5.0/24
 dhcp_start = 192.0.5.5
 dhcp_end = 192.0.5.24
 inspection_iprange = 192.0.5.100,192.0.5.120

This example uses the the 192.0.5.0/24 subnet for the Provisioning network. Note that the physical
interface eno2 is used on the undercloud node for provisioning.

6.2.5.3. network-environment.yaml file

This is the main file for configuring the network. It is located in the /home/stack/baremetal-vlan/
directory. The following file specifies the VLAN IDs and IP subnets for the different networks, and
shows the provider mappings. The controller.yaml and compute.yaml files in the nic-configs
directory are used to specify the network configuration for the Controller and Compute nodes.

The number of Controller nodes (3) and Compute nodes (2) is specified in the example.

resource_registry:
 # Specify the relative/absolute path to the config files you want to use for override the default.
 OS::TripleO::Compute::Net::SoftwareConfig: nic-configs/compute.yaml
 OS::TripleO::Controller::Net::SoftwareConfig: nic-configs/controller.yaml

 # Network isolation configuration
 # Service section
 # If some service should be disabled, use the following example
 # OS::TripleO::Network::Management: OS::Heat::None
 OS::TripleO::Network::External: /usr/share/openstack-tripleo-heat-templates/network/external.yaml
 OS::TripleO::Network::InternalApi: /usr/share/openstack-tripleo-heat-
templates/network/internal_api.yaml
 OS::TripleO::Network::Tenant: /usr/share/openstack-tripleo-heat-templates/network/tenant.yaml
 OS::TripleO::Network::Management: OS::Heat::None
 OS::TripleO::Network::StorageMgmt: OS::Heat::None
 OS::TripleO::Network::Storage: OS::Heat::None

 # Port assignments for the VIPs
 OS::TripleO::Network::Ports::ExternalVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/external.yaml
 OS::TripleO::Network::Ports::InternalApiVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api.yaml
 OS::TripleO::Network::Ports::RedisVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/vip.yaml
 OS::TripleO::Network::Ports::StorageVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml
 OS::TripleO::Network::Ports::StorageMgmtVipPort: /usr/share/openstack-tripleo-heat-

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

70

templates/network/ports/noop.yaml

 # Port assignments for the controller role
 OS::TripleO::Controller::Ports::ExternalPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/external.yaml
 OS::TripleO::Controller::Ports::InternalApiPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api.yaml
 OS::TripleO::Controller::Ports::TenantPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/tenant.yaml
 OS::TripleO::Controller::Ports::ManagementPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml
 OS::TripleO::Controller::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml
 OS::TripleO::Controller::Ports::StorageMgmtPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml

 # Port assignments for the compute role
 OS::TripleO::Compute::Ports::ExternalPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/external.yaml
 OS::TripleO::Compute::Ports::InternalApiPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api.yaml
 OS::TripleO::Compute::Ports::TenantPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/tenant.yaml
 OS::TripleO::Compute::Ports::ManagementPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml
 OS::TripleO::Compute::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml
 OS::TripleO::Compute::Ports::StorageMgmtPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml

 # Port assignments for service virtual IPs for the controller role
 OS::TripleO::Controller::Ports::RedisVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/vip.yaml
 OS::TripleO::NodeUserData: /home/stack/baremetal-vlan/firstboot-config.yaml

parameter_defaults:
 # Customize all these values to match the local environment
 InternalApiNetCidr: 172.17.0.0/24
 TenantNetCidr: 172.16.0.0/24
 ExternalNetCidr: 192.168.210.0/24
 # CIDR subnet mask length for provisioning network
 ControlPlaneSubnetCidr: '24'
 InternalApiAllocationPools: [{'start': '172.17.0.10', 'end': '172.17.0.200'}]
 TenantAllocationPools: [{'start': '172.16.0.100', 'end': '172.16.0.200'}]
 # Use an External allocation pool which will leave room for floating IPs
 ExternalAllocationPools: [{'start': '192.168.210.2', 'end': '192.168.210.12'}]
 # Set to the router gateway on the external network
 ExternalInterfaceDefaultRoute: 192.168.210.1
 # Gateway router for the provisioning network (or Undercloud IP)
 ControlPlaneDefaultRoute: 192.0.5.1
 # Generally the IP of the Undercloud
 EC2MetadataIp: 192.0.5.1
 InternalApiNetworkVlanID: 600
 TenantNetworkVlanID: 554
 ExternalNetworkVlanID: 552
 # Define the DNS servers (maximum 2) for the overcloud nodes

CHAPTER 6. DEPLOYMENT EXAMPLES

71

 DnsServers: ["10.35.28.28","8.8.8.8"]
 # May set to br-ex if using floating IPs only on native VLAN on bridge br-ex
 NeutronExternalNetworkBridge: "''"
 # The tunnel type for the tenant network (vxlan or gre). Set to '' to disable tunneling.
 NeutronTunnelTypes: ''
 # The tenant network type for Neutron (vlan or vxlan).
 NeutronNetworkType: 'vlan'
 # The OVS logical->physical bridge mappings to use.
 # NeutronBridgeMappings: 'datacentre:br-ex,tenant:br-isolated'
 # The Neutron ML2 and OpenVSwitch vlan mapping range to support.
 NeutronNetworkVLANRanges: 'datacentre:552:553,tenant:555:601'
 # Nova flavor to use.
 OvercloudControlFlavor: baremetal
 OvercloudComputeFlavor: baremetal
 # Number of nodes to deploy.
 ControllerCount: 3
 ComputeCount: 2

 # Sets overcloud nodes custom names
 # http://docs.openstack.org/developer/tripleo-
docs/advanced_deployment/node_placement.html#custom-hostnames
 ControllerHostnameFormat: 'controller-%index%'
 ComputeHostnameFormat: 'compute-%index%'
 CephStorageHostnameFormat: 'ceph-%index%'
 ObjectStorageHostnameFormat: 'swift-%index%'

6.2.5.4. controller.yaml file

This file is in the /home/stack/baremetal-vlan/nic-configs/ directory. This example defines the
following switches: br-isolated, br-vlan, and br-ex. nic2 is under br-isolated and nic3 is under br-ex:

heat_template_version: pike

description: >
 Software Config to drive os-net-config to configure VLANs for the
 controller role.

parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal API network
 type: string
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

72

 default: ''
 description: IP address/subnet on the storage mgmt network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 ExternalNetworkVlanID:
 default: ''
 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: ''
 description: Vlan ID for the internal_api network traffic.
 type: number
 TenantNetworkVlanID:
 default: ''
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 23
 description: Vlan ID for the management network traffic.
 type: number
 ExternalInterfaceDefaultRoute:
 default: ''
 description: default route for the external network
 type: string
 ControlPlaneSubnetCidr: # Override this with parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 DnsServers: # Override this with parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this with parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string

resources:
 OsNetConfigImpl:
 type: OS::Heat::StructuredConfig
 properties:
 group: os-apply-config
 config:
 os_net_config:
 network_config:
 -
 type: interface
 name: nic1
 use_dhcp: false

CHAPTER 6. DEPLOYMENT EXAMPLES

73

 -
 type: ovs_bridge
 name: br-isolated
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 addresses:
 -
 ip_netmask:
 list_join:
 - '/'
 - - {get_param: ControlPlaneIp}
 - {get_param: ControlPlaneSubnetCidr}
 routes:
 -
 ip_netmask: 169.254.169.254/32
 next_hop: {get_param: EC2MetadataIp}
 members:
 -
 type: interface
 name: nic2
 # force the MAC address of the bridge to this interface
 primary: true
 -
 type: vlan
 vlan_id: {get_param: InternalApiNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: InternalApiIpSubnet}
 -
 type: ovs_bridge
 name: br-ex
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 members:
 -
 type: interface
 name: nic4
 # force the MAC address of the bridge to this interface
 -
 type: vlan
 vlan_id: {get_param: ExternalNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: ExternalIpSubnet}
 routes:
 -
 default: true
 next_hop: {get_param: ExternalInterfaceDefaultRoute}
 -
 type: ovs_bridge
 name: br-vlan
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 members:
 -
 type: interface

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

74

 name: nic3
 -
 type: vlan
 vlan_id: {get_param: TenantNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: TenantIpSubnet}

outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value: {get_resource: OsNetConfigImpl}

6.2.5.5. compute.yaml file

This file is in the /home/stack/baremetal-vlan/nic-configs/ directory. Most of the options in the
Compute configuration are the same as in the Controller configuration. In this example, nic4 is under br-
ex to be used for External connectivity (Floating IP network)

heat_template_version: pike

description: >
 Software Config to drive os-net-config to configure VLANs for the
 compute role.

parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal API network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 InternalApiNetworkVlanID:
 default: ''
 description: Vlan ID for the internal_api network traffic.
 type: number
 TenantNetworkVlanID:
 default: ''
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:

CHAPTER 6. DEPLOYMENT EXAMPLES

75

 default: 23
 description: Vlan ID for the management network traffic.
 type: number
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage mgmt network
 type: string
 ControlPlaneSubnetCidr: # Override this with parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 ControlPlaneDefaultRoute: # Override this with parameter_defaults
 description: The default route of the control plane network.
 type: string
 DnsServers: # Override this with parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this with parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string
 ExternalInterfaceDefaultRoute:
 default: ''
 description: default route for the external network
 type: string

resources:
 OsNetConfigImpl:
 type: OS::Heat::StructuredConfig
 properties:
 group: os-apply-config
 config:
 os_net_config:
 network_config:
 -
 type: interface
 name: nic1
 use_dhcp: false
 -
 type: ovs_bridge
 name: br-isolated
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 addresses:
 -
 ip_netmask:
 list_join:
 - '/'
 - - {get_param: ControlPlaneIp}
 - {get_param: ControlPlaneSubnetCidr}
 routes:

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

76

 -
 ip_netmask: 169.254.169.254/32
 next_hop: {get_param: EC2MetadataIp}
 -
 next_hop: {get_param: ControlPlaneDefaultRoute}
 default: true
 members:
 -
 type: interface
 name: nic2
 # force the MAC address of the bridge to this interface
 primary: true
 -
 type: vlan
 vlan_id: {get_param: InternalApiNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: InternalApiIpSubnet}
 -
 type: ovs_bridge
 name: br-ex
 use_dhcp: false
 members:
 -
 type: interface
 name: nic4
 -
 type: ovs_bridge
 name: br-vlan
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 members:
 -
 type: interface
 name: nic3
 -
 type: vlan
 vlan_id: {get_param: TenantNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: TenantIpSubnet}

outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value: {get_resource: OsNetConfigImpl}

6.2.6. Red Hat OpenStack Platform director configuration files used in this scenario

6.2.6.1. neutron.conf file

This file is in the /etc/neutron/ directory and contains the following information:

CHAPTER 6. DEPLOYMENT EXAMPLES

77

[DEFAULT]
service_plugins=odl-router_v2,trunk

6.2.6.2. ml2_conf.ini file

This file is in the /etc/neutron/plugins/ml2/ directory and contains the following information:

[DEFAULT]
[ml2]
type_drivers = vxlan,vlan,flat,gre
tenant_network_types = vlan
mechanism_drivers = opendaylight_v2
extension_drivers = qos,port_security
path_mtu = 0

[ml2_type_flat]
flat_networks = datacentre

[ml2_type_geneve]
[ml2_type_gre]
tunnel_id_ranges = 1:4094

[ml2_type_vlan]
network_vlan_ranges = datacentre:552:553,tenant:555:601

[ml2_type_vxlan]
vni_ranges = 1:4094
vxlan_group = 224.0.0.1

[securitygroup]
[ml2_odl]
password=<PASSWORD>
username=<USER>
url=http://172.17.0.10:8081/controller/nb/v2/neutron

1. Under the [ml2] section note that VXLAN is used as the networks’ type and so is the
opendaylight_v2 mechanism driver.

2. Under [ml2_type_vlan], set the same mappings as in the network-environment.yaml file.

3. Under [ml2_odl], you should see the configuration accessing the OpenDaylightController.

You can use these details to confirm access to the OpenDaylight Controller:

$ curl -H "Content-Type:application/json" -u admin:admin
http://172.17.1.18:8081/controller/nb/v2/neutron/networks

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

78

CHAPTER 7. HIGH AVAILABILITY AND CLUSTERING WITH
OPENDAYLIGHT

Red Hat OpenStack Platform 13 supports High Availability clustering for both neutron and the
OpenDaylight Controller. The table below shows the architecture recommended to run a high
availability cluster:

Node type Number of nodes Node mode

Neutron 3 active/active/active

OpenDaylight 3 active/active/active

Compute nodes (nova or OVS) any

The OpenDaylight role is composable, so it can be deployed on the same nodes as the neutron nodes, or
on separate nodes. The setup is an all-active setup. All nodes can handle requests. If the receiving node
cannot handle a request, the node forwards the request to another appropriate node. All nodes maintain
synchronisation with each other. In Open vSwitch database schema (OVSDB) Southbound, available
Controller nodes share the Open vSwitches, so that a specific node in the cluster handles each switch.

7.1. CONFIGURING OPENDAYLIGHT FOR HIGH AVAILABILITY AND
CLUSTERING

Because the Red Hat OpenStack Platform director deploys the OpenDaylight Controller nodes, it has all
the information required to configure clustering for OpenDaylight. Each OpenDaylight node requires an
akka.conf configuration file that identifies the node role (its name in the cluster) and lists at least some
of the other nodes in the cluster, the seed nodes. The nodes also require a module-shards.conf file
that defines how data is replicated in the cluster. The Red Hat OpenStack Platform director makes the
correct settings based on the selected deployment configuration. The akka.conf file depends on the
nodes, while the module-shards.conf file depends on the nodes and the installed datastores (and
hence the installed features, which we control to a large extent).

Example akka.conf file:

$ docker exec -it opendaylight_api cat
/var/lib/kolla/config_files/src/opt/opendaylight/configuration/initial/akka.conf

odl-cluster-data {
 akka {
 remote {
 netty.tcp {
 hostname = "192.0.2.1"
 }
 },
 cluster {
 seed-nodes = [
 "akka.tcp://opendaylight-cluster-data@192.0.2.1:2550",
 "akka.tcp://opendaylight-cluster-data@192.0.2.2:2550",
 "akka.tcp://opendaylight-cluster-data@192.0.2.3:2550"],

CHAPTER 7. HIGH AVAILABILITY AND CLUSTERING WITH OPENDAYLIGHT

79

 roles = ["member-1"]
 }
 }
}

These example nodes are seed nodes. They do not need to reflect the current cluster setup as a whole.
As long as one of the real nodes in the current cluster is reachable using the list of seed nodes, a
starting-up node can join the cluster. In the configuration file, you can use names instead of IP
addresses.

7.2. CLUSTER BEHAVIOUR

The cluster is not defined dynamically, which means that it does not adjust automatically. It is not
possible to start a new node and connect it to an existing cluster by configuring only the new node. The
cluster must be informed about nodes' additions and removals through the cluster administration RPCs.

The cluster is a leader/followers model. One of the active nodes is elected as the leader, and the
remaining active nodes become followers. The cluster handles persistence according to the Raft
consensus-based model. Following this principle, a transaction is only committed if the majority of the
nodes in the cluster agree.

In OpenDaylight, if a node loses its connection with the cluster, its local transactions will no longer make
forward progress. Eventually they will timeout (10 minutes by default) and the front-end actor will stop.
All this applies per shard, so different shards can have different leaders. The behaviour results in one of
the following:

Lack of communication for less than ten minutes results in the minority nodes reconnecting with
the majority leader. All the transactions are rolled back and the majority transactions are
replayed.

Lack of communication for more than ten minutes results in the minority nodes stopping
working and recording the information into log messages. Read-only requests should still
complete, but no changes persist and the nodes are not able to re-join the cluster
autonomously.

This means that users must monitor the nodes. Users must check for availability and cluster
synchronisation and restart them if they are out of synchronization for too long. For monitoring the
nodes, users can use the Jolokia REST service. For more information, see Monitoring with Jolokia.

7.3. CLUSTER REQUIREMENTS

There are no specific networking requirements to support the cluster, such as bonding or MTUs. The
cluster communications do not support high latencies, but latencies on the order of data-centre level
are acceptable.

7.4. OPEN VSWITCH CONFIGURATION

Red Hat OpenStack Platform director configures each switch with all of the controllers automatically.
The OVSDB supports sharing switches among the cluster nodes, to allow some level of load-balancing.
However, each switch contacts all the nodes in the cluster and picks the one that answers first and
makes it the master switch by default. This behaviour leads to clustering of the controller assignments
when the fastest answering node handles most of the switches.

7.5. CLUSTER MONITORING

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

80

https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=blob;f=opendaylight/md-sal/sal-cluster-admin-api/src/main/yang/cluster-admin.yang

7.5.1. Monitoring with Jolokia

To monitor the status of the cluster, you must enable the Jolokia support in OpenDaylight.

Obtain a configuration datastore clustering report from the Jolokia address:

 # curl -u <odl_username>
<odl_password>http://<odl_ip>:8081/jolokia/read/org.opendaylight.controller:type=DistributedConfigData
store,Category=ShardManager,name=shard-manager-config

Obtain an operational datastore clustering report from the Jolokia address:

 # curl -u <odl_username>
<odl_password>http://<odl_ip>:8081/jolokia/read/org.opendaylight.controller:type=DistributedOperationa
lDatastore,Category=ShardManager,name=shard-manager-operational

The reports are JSON documents.

NOTE

You must change the IP address and the member-1 values to match your environment.
The IP address can point to a VIP, if there is no preference in which node will respond.
However, addressing specific controllers provides more relevant results.

This description must indicate the same leader on each node.

NOTE

You can also monitor the cluster with the Cluster Monitor Tool that is being developed
by the upstream OpenDaylight team. You can find it in the OpenDaylight Github
repository.

The tool is not a part of Red Hat OpenStack Platform 13 and as such is not supported or
provided by Red Hat.

7.6. UNDERSTANDING OPENDAYLIGHT PORTS

The official list of all OpenDaylight ports is available on the OpenDaylight wiki page. The ports relevant
for this scenario are:

Port number Used for

2550 clustering

6653 OpenFlow

6640, 6641 OVSDB

8087 neutron

8081 RESTCONF, Jolokia

CHAPTER 7. HIGH AVAILABILITY AND CLUSTERING WITH OPENDAYLIGHT

81

Blocking traffic to these ports on the controller has the following effects:

Clustering

The clustered nodes will not be able to communicate. When running in clustered mode, each node
must have at least one peer. If all traffic is blocked, the controller stops.

OpenFlow

The switches will not be able to reach the controller.

OVSDB

Open vSwitch will not be able to reach the controller. The controller will be able to initiate an active
OVS connection, but any pings from the switch to the controller will fail and the switch will finally fail
over to another controller.

neutron

Neutron will not be able to reach the controller.

RESTCONF

External tools using the REST endpoints will not be able to reach the controller. In this scenario, it
only should affect the monitoring tools.

On the OpenDaylight side, the logs show only blocked traffic for clustering, because the other ports are
used to talk to the ODL controller.

Blocking traffic to these ports on the target devices has the following effects:

Clustering

The clustered nodes will not be able to communicate. When running in clustered mode, each node
must have at least one peer. If all traffic is blocked, the controller stops.

OpenFlow

The controller will not be able to push flows.

OVSDB

The controller will not be able to reach the switch (the controller will be able to respond to passive
OVS connections).

In all cases in the latter situation, because OpenDaylight maintains its configuration and its operational
status in distinct trees, the configuration still points to the unreachable devices, and the controller
continues to try to connect to them.

7.7. UNDERSTANDING OPENDAYLIGHT FLOWS

Flow Explanation

Neutron → ODL Neutron to HA Proxy to ODL. PaceMaker manages
the VIP (with three backing PIPs). The driver tries to
keep TCP sessions open which may have an impact
(https://review.openstack.org/#/c/440866/).

ODL → Neutron There are no ODL-initiated communications.

ODL → ODL ODL nodes communicate with each other on port
2550 (configurable).

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

82

https://review.openstack.org/#/c/440866/

ODL → OVS ODL communicates with switches using OVSDB
(ports 6640 and 6641) and OpenFlow (port 6633).
There is no VIP involved, ODL knows every switch’s
IP address and each ODL node knows about every
switch.

OVS → ODL ODL communicates with switches using OVSDB
(ports 6640 and 6641) and OpenFlow (port 6633).
There is no VIP involved, ODL configures every
switch so that it knows about all the controllers.
Notifications from the switches to the controller are
sent to all nodes.

Flow Explanation

7.8. NEUTRON DHCP AGENT HA

The default setup runs the DHCP agent on all neutron nodes, along with the OVS agent. The roles are
composable, so the agents can be separated from the controllers. The DHCP agent is important for HA
only during the port bringing-up phase and during lease renewal. On port creation, neutron assigns IP
and MAC addresses and configures all the DHCP agents appropriately, before the port comes up.
During this phase, all DHCP agents answer the resulting DHCP requests.

To maximise the dataplane availability in the case of a DHCP agent failure, the leases are configured
with long lease times, and the nodes are configured with short renewal delays. Thus, the DHCP agents
are seldom needed, but when they are, the requesting nodes will quickly fail an unavailable DHCP agent
and issue a broadcast request, picking up any remaining DHCP agent automatically.

The agents have their own process monitors. systemd starts the agents, and they create their
namespaces and start the processes inside them. If an agent dies, the namespace stays up, systemd
restarts the agent without terminating or restarting any other processes (it does not own them). Then
the agent re-attaches to the namespace and re-uses it together with all running processes.

7.9. NEUTRON METADATA AGENT HA

In the reference implementation, the metadata services run on the controllers, that are combined with
the network nodes, in the same namespace as the corresponding DHCP agent. A metadata proxy listens
on port 80, and a static route redirects the traffic from the virtual machines to the proxy using the well-
known metadata address. The proxy uses a Unix socket to talk to the metadata service, which is on the
same node, and the latter talks to nova. With Unix sockets, we do not need to be able to route IP
between the proxy and the service, so the metadata service is available even if the node is not routed.
HA is handled using keepalive and VRRP elections. Failover time is 2-5s. The agents are handled in the
same way as DHCP agents (with systemd and namespaces).

The metadata service in Red Hat OpenStack Platform 11 is a custom Python script while in Red Hat
OpenStack Platform 13 it is HAProxy, which lowers the memory usage by 30. This is particularly
significant because many users run one proxy per router, and hundreds if not thousands of routers per
controller.

CHAPTER 7. HIGH AVAILABILITY AND CLUSTERING WITH OPENDAYLIGHT

83

CHAPTER 8. WHERE CAN I FIND MORE INFORMATION ABOUT
RED HAT OPENSTACK PLATFORM AND OPENDAYLIGHT?

Component Reference

OpenDaylight For further information that is not covered in this document, see the
OpenDaylight Carbon documentation.

Red Hat OpenDaylight
Product Guide

For more information about the Red Hat OpenDaylight and its relation to
the Red Hat OpenStack Platform, see the Red Hat OpenDaylight Product
Guide.

Red Hat Enterprise Linux Red Hat OpenStack Platform is supported on Red Hat Enterprise Linux 7.4.
For information on installing Red Hat Enterprise Linux, see the
corresponding installation guide at Red Hat Enterprise Linux Installation
Guide.

Red Hat OpenStack Platform To install OpenStack components and their dependencies, use the Red Hat
OpenStack Platform director. The director uses a basic OpenStack
undercloud, which is then used to provision and manage the OpenStack
nodes in the final overcloud. Be aware that you will need one extra host
machine for the installation of the undercloud, in addition to the
environment necessary for the deployed overcloud. For detailed
instructions, see Director Installation and Usage.

For information on configuring advanced features for a Red Hat OpenStack
Platform enterprise environment using the Red Hat OpenStack Platform
director such as network isolation, storage configuration, SSL
communication, and general configuration method, see Advanced
Overcloud Customization.

NFV Documentation For more details on planning your Red Hat OpenStack Platform
deployment with NFV, see Network Functions Virtualization Planning and
Configuration Guide.

Red Hat OpenStack Platform 13 Red Hat OpenDaylight Installation and Configuration Guide

84

http://docs.opendaylight.org/en/stable-carbon/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/red_hat_opendaylight_product_guide/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/network_functions_virtualization_planning_and_configuration_guide/

	Table of Contents
	PREFACE
	CHAPTER 1. OVERVIEW
	1.1. WHAT IS OPENDAYLIGHT?
	1.2. HOW DOES OPENDAYLIGHT WORK WITH OPENSTACK?
	1.2.1. The default neutron architecture
	1.2.2. Networking architecture based on OpenDaylight

	1.3. WHAT IS RED HAT OPENSTACK PLATFORM DIRECTOR AND HOW IS IT DESIGNED?
	1.3.1. Red Hat OpenStack Platform director and OpenDaylight
	1.3.2. Network isolation in Red Hat OpenStack Platform director
	1.3.3. Network and firewall configuration

	CHAPTER 2. WHAT DO YOU NEED TO RUN OPENDAYLIGHT?
	2.1. COMPUTE NODE REQUIREMENTS
	2.2. CONTROLLER NODE REQUIREMENTS

	CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD
	3.1. UNDERSTAND DEFAULT CONFIGURATION AND CUSTOMIZING SETTINGS
	3.1.1. Understanding the default environment file
	3.1.2. Configuring the OpenDaylight API Service
	3.1.2.1. Configurable Options

	3.1.3. Configuring the OpenDaylight OVS Service
	3.1.3.1. Configurable options

	3.1.4. Using neutron metadata service with OpenDaylight
	3.1.5. Understanding the network configuration and NIC template

	3.2. BASIC INSTALLATION OF OPENDAYLIGHT
	3.2.1. Prepare the OpenDaylight environment files for overcloud
	3.2.2. Install overcloud with OpenDaylight

	3.3. INSTALL OPENDAYLIGHT IN CUSTOM ROLE
	3.3.1. Customize the role file based on default roles
	3.3.2. Create a custom role for OpenDaylight
	3.3.3. Install OverCloud with OpenDaylight in the custom role
	3.3.4. Verify the installation of OpenDaylight in custom role

	3.4. INSTALL OPENDAYLIGHT WITH SR-IOV SUPPORT
	3.4.1. Prepare the SR-IOV Compute role
	3.4.2. Configuring the SR-IOV agent service
	3.4.3. Install OpenDaylight with SR-IOV

	3.5. INSTALL OPENDAYLIGHT WITH OVS-DPDK SUPPORT
	3.5.1. Prepare the OVS-DPDK deployment files
	3.5.2. Configuring the OVS-DPDK deployment
	3.5.3. Install OpenDaylight with OVS-DPDK
	3.5.4. Example: Configuring OVS-DPDK with ODL and VXLAN tunnelling
	3.5.4.1. Generating the ComputeOvsDpdk composable role
	3.5.4.2. Configuring OVS-DPDK parameters
	3.5.4.3. Configuring the Controller node
	3.5.4.4. Configuring the Compute node for DPDK interfaces
	3.5.4.5. Deploying the overcloud

	3.6. INSTALL OPENDAYLIGHT WITH L2GW SUPPORT
	3.6.1. Prepare L2GW deployment files
	3.6.2. Configuring OpenDaylight L2GW deployment
	3.6.3. Install OpenDaylight with L2GW

	CHAPTER 4. TEST THE DEPLOYMENT
	4.1. PERFORM A BASIC TEST
	4.1.1. Create a new network for testing
	4.1.2. Set up networking in the test environment
	4.1.3. Test the connectivity
	4.1.4. Create devices

	4.2. PERFORM ADVANCED TESTS
	4.2.1. Connect to overcloud nodes
	4.2.2. Test OpenDaylight
	4.2.3. Test Open vSwitch
	4.2.4. Verify the Open vSwitch configuration on Compute nodes.
	4.2.5. Verify neutron configuration

	CHAPTER 5. DEBUGGING
	5.1. LOCATE THE LOGS
	5.1.1. Access OpenDaylight logs
	5.1.2. Access OpenStack Networking logs

	5.2. DEBUG NETWORKING ERRORS
	5.2.1. Advanced debugging using OpenFlow flows
	5.2.2. Packet traverse in OpenFlow

	CHAPTER 6. DEPLOYMENT EXAMPLES
	6.1. MODEL INSTALLATION SCENARIO USING TENANT NETWORK
	6.1.1. Physical Topology
	6.1.2. Planning Physical Network Environment
	6.1.3. Planning NIC Connectivity
	6.1.4. Planning Networks, VLANs and IPs
	6.1.5. OpenDaylight configuration files used in this scenario
	6.1.5.1. The extra_env.yaml file.
	6.1.5.2. The undercloud.conf file
	6.1.5.3. The network-environment.yaml file
	6.1.5.4. The controller.yaml file
	6.1.5.5. The compute.yaml file

	6.1.6. Red Hat OpenStack Platform director configuration files used in this scenario
	6.1.6.1. The neutron.conf file
	6.1.6.2. The ml2_conf.ini file

	6.2. MODEL INSTALLATION SCENARIO USING PROVIDER NETWORKS
	6.2.1. Physical Topology
	6.2.2. Planning Physical Network Environment
	6.2.3. Planning NIC Connectivity
	6.2.4. Planning Networks, VLANs and IPs
	6.2.5. OpenDaylight configuration files used in this scenario
	6.2.5.1. extra_env.yaml file.
	6.2.5.2. undercloud.conf file
	6.2.5.3. network-environment.yaml file
	6.2.5.4. controller.yaml file
	6.2.5.5. compute.yaml file

	6.2.6. Red Hat OpenStack Platform director configuration files used in this scenario
	6.2.6.1. neutron.conf file
	6.2.6.2. ml2_conf.ini file

	CHAPTER 7. HIGH AVAILABILITY AND CLUSTERING WITH OPENDAYLIGHT
	7.1. CONFIGURING OPENDAYLIGHT FOR HIGH AVAILABILITY AND CLUSTERING
	7.2. CLUSTER BEHAVIOUR
	7.3. CLUSTER REQUIREMENTS
	7.4. OPEN VSWITCH CONFIGURATION
	7.5. CLUSTER MONITORING
	7.5.1. Monitoring with Jolokia

	7.6. UNDERSTANDING OPENDAYLIGHT PORTS
	7.7. UNDERSTANDING OPENDAYLIGHT FLOWS
	7.8. NEUTRON DHCP AGENT HA
	7.9. NEUTRON METADATA AGENT HA

	CHAPTER 8. WHERE CAN I FIND MORE INFORMATION ABOUT RED HAT OPENSTACK PLATFORM AND OPENDAYLIGHT?

