
Red Hat OpenStack Platform 10

Director Installation and Usage

An end-to-end scenario on using Red Hat OpenStack Platform director to create an
OpenStack cloud

Last Updated: 2020-10-29

Red Hat OpenStack Platform 10 Director Installation and Usage

An end-to-end scenario on using Red Hat OpenStack Platform director to create an OpenStack
cloud

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide explains how to install Red Hat OpenStack Platform 10 in an enterprise environment
using the Red Hat OpenStack Platform director. This includes installing the director, planning your
environment, and creating an OpenStack environment with the director.

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. UNDERCLOUD
1.2. OVERCLOUD
1.3. HIGH AVAILABILITY
1.4. CEPH STORAGE

CHAPTER 2. REQUIREMENTS
2.1. ENVIRONMENT REQUIREMENTS
2.2. UNDERCLOUD REQUIREMENTS

2.2.1. Virtualization Support
2.3. NETWORKING REQUIREMENTS
2.4. OVERCLOUD REQUIREMENTS

2.4.1. Compute Node Requirements
2.4.2. Controller Node Requirements
2.4.3. Ceph Storage Node Requirements
2.4.4. Object Storage Node Requirements

2.5. REPOSITORY REQUIREMENTS

CHAPTER 3. PLANNING YOUR OVERCLOUD
3.1. PLANNING NODE DEPLOYMENT ROLES
3.2. PLANNING NETWORKS
3.3. PLANNING STORAGE

CHAPTER 4. INSTALLING THE UNDERCLOUD
4.1. CREATING A DIRECTOR INSTALLATION USER
4.2. CREATING DIRECTORIES FOR TEMPLATES AND IMAGES
4.3. SETTING THE HOSTNAME FOR THE SYSTEM
4.4. REGISTERING YOUR SYSTEM
4.5. INSTALLING THE DIRECTOR PACKAGES
4.6. CONFIGURING THE DIRECTOR
4.7. OBTAINING IMAGES FOR OVERCLOUD NODES
4.8. SETTING A NAMESERVER ON THE UNDERCLOUD’S NEUTRON SUBNET
4.9. BACKING UP THE UNDERCLOUD
4.10. COMPLETING THE UNDERCLOUD CONFIGURATION

CHAPTER 5. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE CLI TOOLS
5.1. REGISTERING NODES FOR THE OVERCLOUD
5.2. INSPECTING THE HARDWARE OF NODES
5.3. TAGGING NODES INTO PROFILES
5.4. DEFINING THE ROOT DISK FOR NODES
5.5. CUSTOMIZING THE OVERCLOUD
5.6. CREATING THE OVERCLOUD WITH THE CLI TOOLS
5.7. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION
5.8. MANAGING OVERCLOUD PLANS
5.9. VALIDATING OVERCLOUD TEMPLATES AND PLANS
5.10. MONITORING THE OVERCLOUD CREATION
5.11. ACCESSING THE OVERCLOUD
5.12. COMPLETING THE OVERCLOUD CREATION

CHAPTER 6. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE WEB UI
6.1. ACCESSING THE WEB UI
6.2. NAVIGATING THE WEB UI

6
6
7
9
9

11
11

12
12
14
16
17
17
18
19

20

22
22
23
27

29
29
29
29
30
31
31

35
36
36
37

38
38
40
41

42
44
44
49
51
52
53
53
53

54
54
56

Table of Contents

1

. .

. .

. .

. .

6.3. IMPORTING AN OVERCLOUD PLAN IN THE WEB UI
6.4. REGISTERING NODES IN THE WEB UI
6.5. INSPECTING THE HARDWARE OF NODES IN THE WEB UI
6.6. EDITING OVERCLOUD PLAN PARAMETERS IN THE WEB UI
6.7. TAGGING NODES INTO ROLES IN THE WEB UI
6.8. EDITING NODES IN THE WEB UI
6.9. STARTING THE OVERCLOUD CREATION IN THE WEB UI
6.10. COMPLETING THE OVERCLOUD CREATION

CHAPTER 7. PERFORMING TASKS AFTER OVERCLOUD CREATION
7.1. CREATING THE OVERCLOUD TENANT NETWORK
7.2. CREATING THE OVERCLOUD EXTERNAL NETWORK
7.3. CREATING ADDITIONAL FLOATING IP NETWORKS
7.4. CREATING THE OVERCLOUD PROVIDER NETWORK
7.5. CREATING A BASIC OVERCLOUD FLAVOR
7.6. VALIDATING THE OVERCLOUD
7.7. FENCING THE CONTROLLER NODES
7.8. MODIFYING THE OVERCLOUD ENVIRONMENT
7.9. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD
7.10. RUNNING ANSIBLE AUTOMATION
7.11. PROTECTING THE OVERCLOUD FROM REMOVAL
7.12. REMOVING THE OVERCLOUD

CHAPTER 8. MIGRATING VIRTUAL MACHINES BETWEEN COMPUTE NODES
8.1. MIGRATION TYPES
8.2. MIGRATION CONSTRAINTS
8.3. PRE-MIGRATION PROCEDURES
8.4. LIVE MIGRATE A VIRTUAL MACHINE
8.5. COLD MIGRATE A VIRTUAL MACHINE
8.6. CHECK MIGRATION STATUS
8.7. POST-MIGRATION PROCEDURES
8.8. TROUBLESHOOTING MIGRATION

CHAPTER 9. SCALING THE OVERCLOUD
9.1. ADDING ADDITIONAL NODES
9.2. REMOVING COMPUTE NODES
9.3. REPLACING COMPUTE NODES
9.4. REPLACING CONTROLLER NODES

9.4.1. Preliminary Checks
9.4.2. Removing a Ceph Monitor Daemon
9.4.3. Node Replacement
9.4.4. Manual Intervention
9.4.5. Finalizing Overcloud Services
9.4.6. Finalizing L3 Agent Router Hosting
9.4.7. Finalizing Compute Services
9.4.8. Conclusion

9.5. REPLACING CEPH STORAGE NODES
9.6. REPLACING OBJECT STORAGE NODES

CHAPTER 10. REBOOTING NODES
10.1. REBOOTING THE DIRECTOR
10.2. REBOOTING CONTROLLER NODES
10.3. REBOOTING STANDALONE CEPH MON NODES
10.4. REBOOTING CEPH STORAGE NODES

58
58
60
61

62
63
66
67

68
68
68
69
69
70
71
71
73
74
75
76
76

77
78
79
81

83
83
84
85
85

88
88
90
91
91

92
93
94
96
101
101
102
103
103
103

105
105
105
106
107

Red Hat OpenStack Platform 10 Director Installation and Usage

2

. .

. .

. .

. .

. .

. .

. .

10.5. REBOOTING COMPUTE NODES
10.6. REBOOTING OBJECT STORAGE NODES

CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES
11.1. TROUBLESHOOTING NODE REGISTRATION
11.2. TROUBLESHOOTING HARDWARE INTROSPECTION
11.3. TROUBLESHOOTING WORKFLOWS AND EXECUTIONS
11.4. TROUBLESHOOTING OVERCLOUD CREATION

11.4.1. Orchestration
11.4.2. Bare Metal Provisioning
11.4.3. Post-Deployment Configuration

11.5. TROUBLESHOOTING IP ADDRESS CONFLICTS ON THE PROVISIONING NETWORK
11.6. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS
11.7. TROUBLESHOOTING THE OVERCLOUD AFTER CREATION

11.7.1. Overcloud Stack Modifications
11.7.2. Controller Service Failures
11.7.3. Compute Service Failures
11.7.4. Ceph Storage Service Failures

11.8. TUNING THE UNDERCLOUD
11.9. IMPORTANT LOGS FOR UNDERCLOUD AND OVERCLOUD

APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION
A.1. INITIALIZING THE SIGNING HOST
A.2. CREATING A CERTIFICATE AUTHORITY
A.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS
A.4. CREATING AN SSL/TLS KEY
A.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST
A.6. CREATING THE SSL/TLS CERTIFICATE
A.7. USING THE CERTIFICATE WITH THE UNDERCLOUD

APPENDIX B. POWER MANAGEMENT DRIVERS
B.1. DELL REMOTE ACCESS CONTROLLER (DRAC)
B.2. INTEGRATED LIGHTS-OUT (ILO)
B.3. CISCO UNIFIED COMPUTING SYSTEM (UCS)
B.4. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
B.5. SSH AND VIRSH
B.6. FAKE PXE DRIVER

APPENDIX C. WHOLE DISK IMAGES
C.1. CREATING WHOLE DISK IMAGES
C.2. AUTOMATICALLY CREATING A WHOLE DISK IMAGE
C.3. ENCRYPTING VOLUMES ON WHOLE DISK IMAGES
C.4. UPLOADING WHOLE DISK IMAGES

APPENDIX D. ALTERNATIVE BOOT MODES
D.1. STANDARD PXE
D.2. UEFI BOOT MODE

APPENDIX E. AUTOMATIC PROFILE TAGGING
E.1. POLICY FILE SYNTAX
E.2. POLICY FILE EXAMPLE
E.3. IMPORTING POLICY FILES
E.4. AUTOMATIC PROFILE TAGGING PROPERTIES

APPENDIX F. FIREFOX SERVER EXCEPTIONS FOR UI ACCESS

107
109

110
110
110
112
114
114
114
115
117
118
118
119
119

120
120
120
121

124
124
124
124
125
125
126
126

128
128
128
128
129
130
130

132
132
133
136
137

138
138
138

139
139
140
142
142

144

Table of Contents

3

. .APPENDIX G. SECURITY ENHANCEMENTS
G.1. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY

145
145

Red Hat OpenStack Platform 10 Director Installation and Usage

4

Table of Contents

5

CHAPTER 1. INTRODUCTION
The Red Hat OpenStack Platform director is a toolset for installing and managing a complete
OpenStack environment. It is based primarily on the OpenStack project TripleO, which is an abbreviation
for "OpenStack-On-OpenStack". This project takes advantage of OpenStack components to install a
fully operational OpenStack environment. This includes new OpenStack components that provision and
control bare metal systems to use as OpenStack nodes. This provides a simple method for installing a
complete Red Hat OpenStack Platform environment that is both lean and robust.

The Red Hat OpenStack Platform director uses two main concepts: an undercloud and an overcloud.
The undercloud installs and configures the overcloud. The next few sections outline the concept of
each.

1.1. UNDERCLOUD

The undercloud is the main director node. It is a single-system OpenStack installation that includes
components for provisioning and managing the OpenStack nodes that form your OpenStack
environment (the overcloud). The components that form the undercloud provide the multiple functions:

Environment Planning

The undercloud provides planning functions for users to create and assign certain node roles. The
undercloud includes a default set of nodes such as Compute, Controller, and various storage roles,
but also provides the ability to use custom roles. In addition, you can select which OpenStack
Platform services to include on each node role, which provides a method to model new node types or
isolate certain components on their own host.

Bare Metal System Control

The undercloud uses out-of-band management interface, usually Intelligent Platform Management
Interface (IPMI), of each node for power management control and a PXE-based service to discover
hardware attributes and install OpenStack to each node. This provides a method to provision bare
metal systems as OpenStack nodes. See Appendix B, Power Management Drivers for a full list of
power management drivers.

Orchestration

The undercloud provides a set of YAML templates that acts as a set of plans for your environment.
The undercloud imports these plans and follows their instructions to create the resulting OpenStack
environment. The plans also include hooks that allow you to incorporate your own customizations as

Red Hat OpenStack Platform 10 Director Installation and Usage

6

certain points in the environment creation process.

Command Line Tools and a Web UI

The Red Hat OpenStack Platform director performs these undercloud functions through a terminal-
based command line interface or a web-based user interface.

Undercloud Components

The undercloud uses OpenStack components as its base tool set. This includes the following
components:

OpenStack Identity (keystone) - Provides authentication and authorization for the director’s
components.

OpenStack Bare Metal (ironic) and OpenStack Compute (nova) - Manages bare metal
nodes.

OpenStack Networking (neutron) and Open vSwitch - Controls networking for bare metal
nodes.

OpenStack Image Service (glance) - Stores images that are written to bare metal machines.

OpenStack Orchestration (heat) and Puppet - Provides orchestration of nodes and
configuration of nodes after the director writes the overcloud image to disk.

OpenStack Telemetry (ceilometer) - Performs monitoring and data collection. This also
includes:

OpenStack Telemetry Metrics (gnocchi) - Provides a time series database for metrics.

OpenStack Telemetry Alarming (aodh) - Provides a an alarming component for
monitoring.

OpenStack Workflow Service (mistral) - Provides a set of workflows for certain director-
specific actions, such as importing and deploying plans.

OpenStack Messaging Service (zaqar) - Provides a messaging service for the OpenStack
Workflow Service.

OpenStack Object Storage (swift) - Provides object storage for various OpenStack
Platform components, including:

Image storage for OpenStack Image Service

Introspection data for OpenStack Bare Metal

Deployment plans for OpenStack Workflow Service

1.2. OVERCLOUD

The overcloud is the resulting Red Hat OpenStack Platform environment created using the undercloud.
This includes different nodes roles which you define based on the OpenStack Platform environment you
aim to create. The undercloud includes a default set of overcloud node roles, which include:

Controller

Nodes that provide administration, networking, and high availability for the OpenStack environment.

CHAPTER 1. INTRODUCTION

7

Nodes that provide administration, networking, and high availability for the OpenStack environment.
An ideal OpenStack environment recommends three of these nodes together in a high availability
cluster.
A default Controller node contains the following components:

OpenStack Dashboard (horizon)

OpenStack Identity (keystone)

OpenStack Compute (nova) API

OpenStack Networking (neutron)

OpenStack Image Service (glance)

OpenStack Block Storage (cinder)

OpenStack Object Storage (swift)

OpenStack Orchestration (heat)

OpenStack Telemetry (ceilometer)

OpenStack Telemetry Metrics (gnocchi)

OpenStack Telemetry Alarming (aodh)

OpenStack Clustering (sahara)

OpenStack Shared File Systems (manila)

OpenStack Bare Metal (ironic)

MariaDB

Open vSwitch

Pacemaker and Galera for high availability services.

Compute

These nodes provide computing resources for the OpenStack environment. You can add more
Compute nodes to scale out your environment over time. A default Compute node contains the
following components:

OpenStack Compute (nova)

KVM/QEMU

OpenStack Telemetry (ceilometer) agent

Open vSwitch

Storage

Nodes that provide storage for the OpenStack environment. This includes nodes for:

Ceph Storage nodes - Used to form storage clusters. Each node contains a Ceph Object

Red Hat OpenStack Platform 10 Director Installation and Usage

8

Ceph Storage nodes - Used to form storage clusters. Each node contains a Ceph Object
Storage Daemon (OSD). In addition, the director installs Ceph Monitor onto the Controller
nodes in situations where it deploys Ceph Storage nodes.

Block storage (cinder) - Used as external block storage for HA Controller nodes. This node
contains the following components:

OpenStack Block Storage (cinder) volume

OpenStack Telemetry (ceilometer) agent

Open vSwitch.

Object storage (swift) - These nodes provide a external storage layer for OpenStack Swift.
The Controller nodes access these nodes through the Swift proxy. This node contains the
following components:

OpenStack Object Storage (swift) storage

OpenStack Telemetry (ceilometer) agent

Open vSwitch.

1.3. HIGH AVAILABILITY

The Red Hat OpenStack Platform director uses a Controller node cluster to provide high availability
services to your OpenStack Platform environment. The director installs a duplicate set of components
on each Controller node and manages them together as a single service. This type of cluster
configuration provides a fallback in the event of operational failures on a single Controller node; this
provides OpenStack users with a certain degree of continuous operation.

The OpenStack Platform director uses some key pieces of software to manage components on the
Controller node:

Pacemaker - Pacemaker is a cluster resource manager. Pacemaker manages and monitors the
availability of OpenStack components across all nodes in the cluster.

HAProxy - Provides load balancing and proxy services to the cluster.

Galera - Replicates the Red Hat OpenStack Platform database across the cluster.

Memcached - Provides database caching.

NOTE

Red Hat OpenStack Platform director automatically configures the bulk of high
availability on Controller nodes. However, the nodes require some manual configuration
to enable fencing and power management controls. This guide includes these
instructions.

1.4. CEPH STORAGE

It is common for large organizations using OpenStack to serve thousands of clients or more. Each
OpenStack client is likely to have their own unique needs when consuming block storage resources.
Deploying glance (images), cinder (volumes) and/or nova (Compute) on a single node can become

CHAPTER 1. INTRODUCTION

9

impossible to manage in large deployments with thousands of clients. Scaling OpenStack externally
resolves this challenge.

However, there is also a practical requirement to virtualize the storage layer with a solution like Red Hat
Ceph Storage so that you can scale the Red Hat OpenStack Platform storage layer from tens of
terabytes to petabytes (or even exabytes) of storage. Red Hat Ceph Storage provides this storage
virtualization layer with high availability and high performance while running on commodity hardware.
While virtualization might seem like it comes with a performance penalty, Ceph stripes block device
images as objects across the cluster; this means large Ceph Block Device images have better
performance than a standalone disk. Ceph Block devices also support caching, copy-on-write cloning,
and copy-on-read cloning for enhanced performance.

See Red Hat Ceph Storage for additional information about Red Hat Ceph Storage.

Red Hat OpenStack Platform 10 Director Installation and Usage

10

https://access.redhat.com/products/red-hat-ceph-storage

CHAPTER 2. REQUIREMENTS
This chapter outlines the main requirements for setting up an environment to provision Red Hat
OpenStack Platform using the director. This includes the requirements for setting up the director,
accessing it, and the hardware requirements for hosts that the director provisions for OpenStack
services.

NOTE

Prior to deploying Red Hat OpenStack Platform, it is important to consider the
characteristics of the available deployment methods. For more information, refer to the
Installing and Managing Red Hat OpenStack Platform .

2.1. ENVIRONMENT REQUIREMENTS

Minimum Requirements:

1 host machine for the Red Hat OpenStack Platform director

1 host machine for a Red Hat OpenStack Platform Compute node

1 host machine for a Red Hat OpenStack Platform Controller node

Recommended Requirements:

1 host machine for the Red Hat OpenStack Platform director

3 host machines for Red Hat OpenStack Platform Compute nodes

3 host machines for Red Hat OpenStack Platform Controller nodes in a cluster

3 host machines for Red Hat Ceph Storage nodes in a cluster

Note the following:

It is recommended to use bare metal systems for all nodes. At minimum, the Compute nodes
require bare metal systems.

All overcloud bare metal systems require an Intelligent Platform Management Interface (IPMI).
This is because the director controls the power management.

Set the each node’s internal BIOS clock to UTC. This prevents issues with future-dated file
timestamps when hwclock synchronizes the BIOS clock before applying the timezone offset.

WARNING

Do not upgrade to the Red Hat Enterprise Linux 7.3 kernel without also upgrading
from Open vSwitch (OVS) 2.4.0 to OVS 2.5.0. If only the kernel is upgraded, then
OVS will stop functioning.



CHAPTER 2. REQUIREMENTS

11

https://access.redhat.com/articles/2477851

2.2. UNDERCLOUD REQUIREMENTS

The undercloud system hosting the director provides provisioning and management for all nodes in the
overcloud.

An 8-core 64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

A minimum of 16 GB of RAM.

A minimum of 40 GB of available disk space on the root disk. Make sure to leave at least 10 GB
free space before attempting an overcloud deployment or update. This free space
accommodates image conversion and caching during the node provisioning process.

A minimum of 2 x 1 Gbps Network Interface Cards. However, it is recommended to use a 10 Gbps
interface for Provisioning network traffic, especially if provisioning a large number of nodes in
your overcloud environment.

Red Hat Enterprise Linux 7.7 is installed as the host operating system.

SELinux is enabled in Enforcing mode on the host.

2.2.1. Virtualization Support

Red Hat only supports a virtualized undercloud on the following platforms:

Platform Notes

Kernel-based Virtual Machine (KVM) Hosted by Red Hat Enterprise Linux 7, as listed on
certified hypervisors.

Red Hat Virtualization Hosted by Red Hat Virtualization 4.x, as listed on
certified hypervisors.

Microsoft Hyper-V Hosted by versions of Hyper-V as listed on the Red
Hat Customer Portal Certification Catalogue.

VMware ESX and ESXi Hosted by versions of ESX and ESXi as listed on the
Red Hat Customer Portal Certification Catalogue.

IMPORTANT

Red Hat OpenStack Platform director 10 requires the latest version of Red Hat Enterprise
Linux as the host operating system. This means your virtualization platform must also
support the underlying Red Hat Enterprise Linux version.

Virtual Machine Requirements

Resource requirements for a virtual undercloud are similar to those of a bare metal undercloud. You
should consider the various tuning options when provisioning such as network model, guest CPU
capabilities, storage backend, storage format, and caching mode.

Network Considerations

Red Hat OpenStack Platform 10 Director Installation and Usage

12

https://access.redhat.com/ecosystem/search/#/ecosystem/Red Hat OpenStack Platform
https://access.redhat.com/ecosystem/search/#/ecosystem/Red Hat OpenStack Platform

Note the following network considerations for your virtualized undercloud:

Power Management

The undercloud VM requires access to the overcloud nodes' power management devices. This is the
IP address set for the pm_addr parameter when registering nodes.

Provisioning network

The NIC used for the provisioning (ctlplane) network requires the ability to broadcast and serve
DHCP requests to the NICs of the overcloud’s bare metal nodes. As a recommendation, create a
bridge that connects the VM’s NIC to the same network as the bare metal NICs.

NOTE

A common problem occurs when the hypervisor technology blocks the undercloud from
transmitting traffic from an unknown address. - If using Red Hat Enterprise Virtualization,
disable anti-mac-spoofing to prevent this. - If using VMware ESX or ESXi, allow forged
transmits to prevent this.

Example Architecture

This is just an example of a basic undercloud virtualization architecture using a KVM server. It is intended
as a foundation you can build on depending on your network and resource requirements.

The KVM host uses two Linux bridges:

br-ex (eth0)

Provides outside access to the undercloud

DHCP server on outside network assigns network configuration to undercloud using the
virtual NIC (eth0)

Provides access for the undercloud to access the power management interfaces for the
bare metal servers

br-ctlplane (eth1)

Connects to the same network as the bare metal overcloud nodes

Undercloud fulfills DHCP and PXE boot requests through virtual NIC (eth1)

Bare metal servers for the overcloud boot through PXE over this network

The KVM host requires the following packages:

$ yum install libvirt-client libvirt-daemon qemu-kvm libvirt-daemon-driver-qemu libvirt-daemon-kvm
virt-install bridge-utils rsync

The following command creates the undercloud virtual machine on the KVM host and create two virtual
NICs that connect to the respective bridges:

$ virt-install --name undercloud --memory=16384 --vcpus=4 --location /var/lib/libvirt/images/rhel-
server-7.3-x86_64-dvd.iso --disk size=100 --network bridge=br-ex --network bridge=br-ctlplane --
graphics=vnc --hvm --os-variant=rhel7

This starts a libvirt domain. Connect to it with virt-manager and walk through the install process.

CHAPTER 2. REQUIREMENTS

13

This starts a libvirt domain. Connect to it with virt-manager and walk through the install process.
Alternatively, you can perform an unattended installation using the following options to include a
kickstart file:

--initrd-inject=/root/ks.cfg --extra-args "ks=file:/ks.cfg"

Once installation completes, SSH into the instance as the root user and follow the instructions in
Chapter 4, Installing the Undercloud

Backups

To back up a virtualized undercloud, there are multiple solutions:

Option 1: Follow the instructions in the Back Up and Restore the Director Undercloud Guide.

Option 2: Shut down the undercloud and take a copy of the undercloud virtual machine storage
backing.

Option 3: Take a snapshot of the undercloud VM if your hypervisor supports live or atomic
snapshots.

If using a KVM server, use the following procedure to take a snapshot:

1. Make sure qemu-guest-agent is running on the undercloud guest VM.

2. Create a live snapshot of the running VM:

$ virsh snapshot-create-as --domain undercloud --disk-only --atomic --quiesce

1. Take a copy of the (now read-only) QCOW backing file

$ rsync --sparse -avh --progress /var/lib/libvirt/images/undercloud.qcow2 1.qcow2

1. Merge the QCOW overlay file into the backing file and switch the undercloud VM back to using
the original file:

$ virsh blockcommit undercloud vda --active --verbose --pivot

2.3. NETWORKING REQUIREMENTS

The undercloud host requires at least two networks:

Provisioning network - Provides DHCP and PXE boot functions to help discover bare metal
systems for use in the overcloud. Typically, this network must use a native VLAN on a trunked
interface so that the director serves PXE boot and DHCP requests. Some server hardware
BIOSes support PXE boot from a VLAN, but the BIOS must also support translating that VLAN
into a native VLAN after booting, otherwise the undercloud will not be reachable. Currently, only
a small subset of server hardware fully supports this feature. This is also the network you use to
control power management through Intelligent Platform Management Interface (IPMI) on all
overcloud nodes.

External Network - A separate network for external access to the overcloud and undercloud.
The interface connecting to this network requires a routable IP address, either defined statically,
or dynamically through an external DHCP service.

Red Hat OpenStack Platform 10 Director Installation and Usage

14

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/back-up-and-restore-the-director-undercloud/

This represents the minimum number of networks required. However, the director can isolate other Red
Hat OpenStack Platform network traffic into other networks. Red Hat OpenStack Platform supports
both physical interfaces and tagged VLANs for network isolation.

Note the following:

Typical minimal overcloud network configuration can include:

Single NIC configuration - One NIC for the Provisioning network on the native VLAN and
tagged VLANs that use subnets for the different overcloud network types.

Dual NIC configuration - One NIC for the Provisioning network and the other NIC for the
External network.

Dual NIC configuration - One NIC for the Provisioning network on the native VLAN and the
other NIC for tagged VLANs that use subnets for the different overcloud network types.

Multiple NIC configuration - Each NIC uses a subnet for a different overcloud network type.

Additional physical NICs can be used for isolating individual networks, creating bonded
interfaces, or for delegating tagged VLAN traffic.

If using VLANs to isolate your network traffic types, use a switch that supports 802.1Q standards
to provide tagged VLANs.

During the overcloud creation, you will refer to NICs using a single name across all overcloud
machines. Ideally, you should use the same NIC on each overcloud node for each respective
network to avoid confusion. For example, use the primary NIC for the Provisioning network and
the secondary NIC for the OpenStack services.

Make sure the Provisioning network NIC is not the same NIC used for remote connectivity on
the director machine. The director installation creates a bridge using the Provisioning NIC, which
drops any remote connections. Use the External NIC for remote connections to the director
system.

The Provisioning network requires an IP range that fits your environment size. Use the following
guidelines to determine the total number of IP addresses to include in this range:

Include at least one IP address per node connected to the Provisioning network.

If planning a high availability configuration, include an extra IP address for the virtual IP of
the cluster.

Include additional IP addresses within the range for scaling the environment.

NOTE

Duplicate IP addresses should be avoided on the Provisioning network. For
more information, see Section 3.2, “Planning Networks”.

NOTE

For more information on planning your IP address usage, for example, for
storage, provider, and tenant networks, see the Networking Guide.

Set all overcloud systems to PXE boot off the Provisioning NIC, and disable PXE boot on the

CHAPTER 2. REQUIREMENTS

15

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/networking-guide/#sec-planning-ip

Set all overcloud systems to PXE boot off the Provisioning NIC, and disable PXE boot on the
External NIC (and any other NICs on the system). Also ensure that the Provisioning NIC has PXE
boot at the top of the boot order, ahead of hard disks and CD/DVD drives.

All overcloud bare metal systems require a supported power management interface, such as an
Intelligent Platform Management Interface (IPMI). This allows the director to control the power
management of each node.

Make a note of the following details for each overcloud system: the MAC address of the
Provisioning NIC, the IP address of the IPMI NIC, IPMI username, and IPMI password. This
information will be useful later when setting up the overcloud nodes.

Fencing is mandatory for Red Hat support. You must add a network flow from controller to OOB
IPMI.

If an instance needs to be accessible from the external internet, you can allocate a floating IP
address from a public network and associate it with an instance. The instance still retains its
private IP but network traffic uses NAT to traverse through to the floating IP address. Note that
a floating IP address can only be assigned to a single instance rather than multiple private IP
addresses. However, the floating IP address is reserved only for use by a single tenant, allowing
the tenant to associate or disassociate with a particular instance as required. This configuration
exposes your infrastructure to the external internet. As a result, you might need to check that
you are following suitable security practices.

To mitigate the risk of network loops in Open vSwitch, only a single interface or a single bond
may be a member of a given bridge. If you require multiple bonds or interfaces, you can
configure multiple bridges.

It is recommended to use DNS hostname resolution so that your overcloud nodes can connect
to external services, such as the Red Hat Content Delivery Network and network time servers.

IMPORTANT

Your OpenStack Platform implementation is only as secure as its environment. Follow
good security principles in your networking environment to ensure that network access is
properly controlled. For example:

Use network segmentation to mitigate network movement and isolate sensitive
data; a flat network is much less secure.

Restrict services access and ports to a minimum.

Ensure proper firewall rules and password usage.

Ensure that SELinux is enabled.

For details on securing your system, see:

Red Hat Enterprise Linux 7 Security Guide

Red Hat Enterprise Linux 7 SELinux User’s and Administrator’s Guide

2.4. OVERCLOUD REQUIREMENTS

The following sections detail the requirements for individual systems and nodes in the overcloud
installation.

Red Hat OpenStack Platform 10 Director Installation and Usage

16

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/index.html

NOTE

Booting an overcloud node from the SAN (FC-AL, FCoE, iSCSI) is not yet supported.

2.4.1. Compute Node Requirements

Compute nodes are responsible for running virtual machine instances after they are launched. Compute
nodes must support hardware virtualization. Compute nodes must also have enough memory and disk
space to support the requirements of the virtual machine instances they host.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions, and the AMD-V or
Intel VT hardware virtualization extensions enabled. It is recommended this processor has a minimum
of 4 cores.

Memory

A minimum of 6 GB of RAM. + Add additional RAM to this requirement based on the amount of
memory that you intend to make available to virtual machine instances.

Disk Space

A minimum of 40 GB of available disk space.

Network Interface Cards

A minimum of one 1 Gbps Network Interface Cards, although it is recommended to use at least two
NICs in a production environment. Use additional network interface cards for bonded interfaces or to
delegate tagged VLAN traffic.

Power Management

Each Controller node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server’s motherboard.

2.4.2. Controller Node Requirements

Controller nodes are responsible for hosting the core services in a RHEL OpenStack Platform
environment, such as the Horizon dashboard, the back-end database server, Keystone authentication,
and High Availability services.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Memory

Minimum amount of memory is 32 GB. However, the amount of recommended memory depends on
the number of vCPUs (which is based on CPU cores multiplied by hyper-threading value). Use the
following calculations as guidance:

Controller RAM minimum calculation:

Use 1.5 GB of memory per vCPU. For example, a machine with 48 vCPUs should have 72
GB of RAM.

Controller RAM recommended calculation:

Use 3 GB of memory per vCPU. For example, a machine with 48 vCPUs should have 144
GB of RAM

For more information on measuring memory requirements, see "Red Hat OpenStack Platform
Hardware Requirements for Highly Available Controllers" on the Red Hat Customer Portal.

CHAPTER 2. REQUIREMENTS

17

https://access.redhat.com/articles/2431181

Disk Storage and Layout

By default, the Telemetry (gnocchi) and Object Storage (swift) services are both installed on the
Controller, with both configured to use the root disk. These defaults are suitable for deploying small
overclouds built on commodity hardware; such environments are typical of proof-of-concept and
test environments. These defaults also allow the deployment of overclouds with minimal planning but
offer little in terms of workload capacity and performance.
In an enterprise environment, however, this could cause a significant bottleneck, as Telemetry
accesses storage constantly. This results in heavy disk I/O usage, which severely impacts the
performance of all other Controller services. In this type of environment, you need to plan your
overcloud and configure it accordingly.

Red Hat provides several configuration recommendations for both Telemetry and Object Storage.
See Deployment Recommendations for Specific Red Hat OpenStack Platform Services for details.

Disk Space

A minimum of 40 GB of available disk space, if the Object Storage service (swift) is not running on
the controller nodes.

Network Interface Cards

A minimum of 2 x 1 Gbps Network Interface Cards. Use additional network interface cards for bonded
interfaces or to delegate tagged VLAN traffic.

Power Management

Each Controller node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server’s motherboard.

2.4.3. Ceph Storage Node Requirements

Ceph Storage nodes are responsible for providing object storage in a RHEL OpenStack Platform
environment.

Placement Groups

Ceph uses Placement Groups to facilitate dynamic and efficient object tracking at scale. In the case
of OSD failure or cluster re-balancing, Ceph can move or replicate a placement group and its
contents, which means a Ceph cluster can re-balance and recover efficiently. The default Placement
Group count that Director creates is not always optimal so it is important to calculate the correct
Placement Group count according to your requirements. You can use the Placement Group
calculator to calculate the correct count: Ceph Placement Groups (PGs) per Pool Calculator

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Memory

Memory requirements depend on the amount of storage space. Ideally, use at minimum 1 GB of
memory per 1 TB of hard disk space.

Disk Space

Storage requirements depends on the amount of memory. Ideally, use at minimum 1 GB of memory
per 1 TB of hard disk space.

Disk Layout

The recommended Red Hat Ceph Storage node configuration requires at least three or more disks in
a layout similar to the following:

/dev/sda - The root disk. The director copies the main Overcloud image to the disk.

/dev/sdb - The journal disk. This disk divides into partitions for Ceph OSD journals. For

Red Hat OpenStack Platform 10 Director Installation and Usage

18

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/deployment_recommendations_for_specific_red_hat_openstack_platform_services/
https://access.redhat.com/labs/cephpgc/

/dev/sdb - The journal disk. This disk divides into partitions for Ceph OSD journals. For
example, /dev/sdb1, /dev/sdb2, /dev/sdb3, and onward. The journal disk is usually a solid
state drive (SSD) to aid with system performance.

/dev/sdc and onward - The OSD disks. Use as many disks as necessary for your storage
requirements.

Network Interface Cards

A minimum of one 1 Gbps Network Interface Cards, although it is recommended to use at least two
NICs in a production environment. Use additional network interface cards for bonded interfaces or to
delegate tagged VLAN traffic. It is recommended to use a 10 Gbps interface for storage node,
especially if creating an OpenStack Platform environment that serves a high volume of traffic.

Power Management

Each Controller node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server’s motherboard.

See the Red Hat Ceph Storage for the Overcloud guide for more information about installing an
overcloud with a Ceph Storage cluster.

2.4.4. Object Storage Node Requirements

Object Storage nodes provides an object storage layer for the overcloud. The Object Storage proxy is
installed on Controller nodes. The storage layer will require bare metal nodes with multiple number of
disks per node.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Memory

Memory requirements depend on the amount of storage space. Ideally, use at minimum 1 GB of
memory per 1 TB of hard disk space. For optimal performance, it is recommended to use 2 GB per 1
TB of hard disk space, especially for small file (less 100GB) workloads.

Disk Space

Storage requirements depends on the capacity needed for the workload. It is recommended to use
SSD drives to store the account and container data. The capacity ratio of account and container
data to objects is of about 1 per cent. For example, for every 100TB of hard drive capacity, provide
1TB of SSD capacity for account and container data.
However, this depends on the type of stored data. If STORING mostly small objects, provide more
SSD space. For large objects (videos, backups), use less SSD space.

Disk Layout

The recommended node configuration requires a disk layout similar to the following:

/dev/sda - The root disk. The director copies the main overcloud image to the disk.

/dev/sdb - Used for account data.

/dev/sdc - Used for container data.

/dev/sdd and onward - The object server disks. Use as many disks as necessary for your
storage requirements.

Network Interface Cards

A minimum of 2 x 1 Gbps Network Interface Cards. Use additional network interface cards for bonded

CHAPTER 2. REQUIREMENTS

19

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/red_hat_ceph_storage_for_the_overcloud

A minimum of 2 x 1 Gbps Network Interface Cards. Use additional network interface cards for bonded
interfaces or to delegate tagged VLAN traffic.

Power Management

Each Controller node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server’s motherboard.

2.5. REPOSITORY REQUIREMENTS

Both the undercloud and overcloud require access to Red Hat repositories either through the Red Hat
Content Delivery Network, or through Red Hat Satellite 5 or 6. If using a Red Hat Satellite Server,
synchronize the required repositories to your OpenStack Platform environment. Use the following list of
CDN channel names as a guide:

WARNING

Do not upgrade to the Red Hat Enterprise Linux 7.3 kernel without also upgrading
from Open vSwitch (OVS) 2.4.0 to OVS 2.5.0. If only the kernel is upgraded, then
OVS will stop functioning.

Table 2.1. OpenStack Platform Repositories

Name Repository Description of Requirement

Red Hat Enterprise Linux 7 Server
(RPMs)

rhel-7-server-rpms Base operating system repository.

Red Hat Enterprise Linux 7 Server
- Extras (RPMs)

rhel-7-server-extras-rpms Contains Red Hat OpenStack
Platform dependencies.

Red Hat Enterprise Linux 7 Server
- RH Common (RPMs)

rhel-7-server-rh-common-
rpms

Contains tools for deploying and
configuring Red Hat OpenStack
Platform.

Red Hat Satellite Tools for RHEL
7 Server RPMs x86_64

rhel-7-server-satellite-tools-
6.2-rpms

Tools for managing hosts with Red
Hat Satellite 6.

Red Hat Enterprise Linux High
Availability (for RHEL 7 Server)
(RPMs)

rhel-ha-for-rhel-7-server-
rpms

High availability tools for Red Hat
Enterprise Linux. Used for
Controller node high availability.

Red Hat Enterprise Linux
OpenStack Platform 10 for RHEL
7 (RPMs)

rhel-7-server-openstack-10-
rpms

Core Red Hat OpenStack
Platform repository. Also contains
packages for Red Hat OpenStack
Platform director.



Red Hat OpenStack Platform 10 Director Installation and Usage

20

Red Hat Ceph Storage OSD 2 for
Red Hat Enterprise Linux 7 Server
(RPMs)

rhel-7-server-rhceph-2-osd-
rpms

(For Ceph Storage Nodes)
Repository for Ceph Storage
Object Storage daemon. Installed
on Ceph Storage nodes.

Red Hat Ceph Storage MON 2 for
Red Hat Enterprise Linux 7 Server
(RPMs)

rhel-7-server-rhceph-2-mon-
rpms

(For Ceph Storage Nodes)
Repository for Ceph Storage
Monitor daemon. Installed on
Controller nodes in OpenStack
environments using Ceph Storage
nodes.

Red Hat Ceph Storage Tools 2 for
Red Hat Enterprise Linux 7 Server
(RPMs)

rhel-7-server-rhceph-2-tools-
rpms

Provides tools for nodes to
communicate with the Ceph
Storage cluster. This repository
should be enabled for all
overcloud nodes when deploying
an overcloud with a Ceph Storage
cluster.

NOTE

To configure repositories for your Red Hat OpenStack Platform environment in an offline
network, see "Configuring Red Hat OpenStack Platform Director in an Offline
Environment" on the Red Hat Customer Portal.

CHAPTER 2. REQUIREMENTS

21

https://access.redhat.com/articles/2377701

CHAPTER 3. PLANNING YOUR OVERCLOUD
The following section provides some guidelines on planning various aspects of your Red Hat OpenStack
Platform environment. This includes defining node roles, planning your network topology, and storage.

3.1. PLANNING NODE DEPLOYMENT ROLES

The director provides multiple default node types for building your overcloud. These node types are:

Controller

Provides key services for controlling your environment. This includes the dashboard (horizon),
authentication (keystone), image storage (glance), networking (neutron), orchestration (heat), and
high availability services. A Red Hat OpenStack Platform environment requires three Controller
nodes for a highly available environment.

NOTE

Environments with one node can be used for testing purposes. Environments with two
nodes or more than three nodes are not supported.

Compute

A physical server that acts as a hypervisor, and provides the processing capabilities required for
running virtual machines in the environment. A basic Red Hat OpenStack Platform environment
requires at least one Compute node.

Ceph Storage

A host that provides Red Hat Ceph Storage. Additional Ceph Storage hosts scale into a cluster. This
deployment role is optional.

Swift Storage

A host that provides external object storage for OpenStack’s swift service. This deployment role is
optional.

The following table provides some example of different overclouds and defines the node types for each
scenario.

Table 3.1. Node Deployment Roles for Scenarios

 Controller Compute Ceph Storage Swift Storage Total

Small
overcloud

3 1 - - 4

Medium
overcloud

3 3 - - 6

Medium
overcloud with
additional
Object storage

3 3 - 3 9

Red Hat OpenStack Platform 10 Director Installation and Usage

22

Medium
overcloud with
Ceph Storage
cluster

3 3 3 - 9

In addition, consider whether to split individual services into custom roles. For more information on the
composable roles architecture, see Chapter 8. Composable Roles and Services in the Advanced
Overcloud Customization guide.

3.2. PLANNING NETWORKS

It is important to plan your environment’s networking topology and subnets so that you can properly
map roles and services to correctly communicate with each other. Red Hat OpenStack Platform uses
the neutron networking service, which operates autonomously and manages software-based networks,
static and floating IP addresses, and DHCP. The director deploys this service on each Controller node in
an overcloud environment.

Red Hat OpenStack Platform maps the different services onto separate network traffic types, which are
assigned to the various subnets in your environments. These network traffic types include:

Table 3.2. Network Type Assignments

Network Type Description Used By

IPMI Network used for power
management of nodes. This
network is predefined before the
installation of the undercloud.

All nodes

Provisioning The director uses this network
traffic type to deploy new nodes
over PXE boot and orchestrate
the installation of OpenStack
Platform on the overcloud bare
metal servers. This network is
predefined before the installation
of the undercloud.

All nodes

Internal API The Internal API network is used
for communication between the
OpenStack services using API
communication, RPC messages,
and database communication.

Controller, Compute, Cinder
Storage, Swift Storage

CHAPTER 3. PLANNING YOUR OVERCLOUD

23

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/advanced-overcloud-customization/#Roles

Tenant Neutron provides each tenant
with their own networks using
either VLAN segregation (where
each tenant network is a network
VLAN), or tunneling (through
VXLAN or GRE). Network traffic
is isolated within each tenant
network. Each tenant network has
an IP subnet associated with it,
and network namespaces means
that multiple tenant networks can
use the same address range
without causing conflicts.

Controller, Compute

Storage Block Storage, NFS, iSCSI, and
others. Ideally, this would be
isolated to an entirely separate
switch fabric for performance
reasons.

All nodes

Storage Management OpenStack Object Storage (swift)
uses this network to synchronize
data objects between
participating replica nodes. The
proxy service acts as the
intermediary interface between
user requests and the underlying
storage layer. The proxy receives
incoming requests and locates
the necessary replica to retrieve
the requested data. Services that
use a Ceph back end connect
over the Storage Management
network, since they do not
interact with Ceph directly but
rather use the frontend service.
Note that the RBD driver is an
exception, as this traffic connects
directly to Ceph.

Controller, Ceph Storage, Cinder
Storage, Swift Storage

External Hosts the OpenStack Dashboard
(horizon) for graphical system
management, the public APIs for
OpenStack services, and performs
SNAT for incoming traffic
destined for instances. If the
external network uses private IP
addresses (as per RFC-1918),
then further NAT must be
performed for traffic originating
from the internet.

Controller and undercloud

Red Hat OpenStack Platform 10 Director Installation and Usage

24

Floating IP Allows incoming traffic to reach
instances using 1-to-1 IP address
mapping between the floating IP
address, and the IP address
actually assigned to the instance
in the tenant network. If hosting
the Floating IPs on a VLAN
separate from External, you can
trunk the Floating IP VLAN to the
Controller nodes and add the
VLAN through Neutron after
overcloud creation. This provides
a means to create multiple
Floating IP networks attached to
multiple bridges. The VLANs are
trunked but are not configured as
interfaces. Instead, neutron
creates an OVS port with the
VLAN segmentation ID on the
chosen bridge for each Floating IP
network.

Controller

Management Provides access for system
administration functions such as
SSH access, DNS traffic, and NTP
traffic. This network also acts as a
gateway for non-Controller nodes

All nodes

In a typical Red Hat OpenStack Platform installation, the number of network types often exceeds the
number of physical network links. In order to connect all the networks to the proper hosts, the overcloud
uses VLAN tagging to deliver more than one network per interface. Most of the networks are isolated
subnets but some require a Layer 3 gateway to provide routing for Internet access or infrastructure
network connectivity.

NOTE

It is recommended that you deploy a project network (tunneled with GRE or VXLAN)
even if you intend to use a neutron VLAN mode (with tunneling disabled) at deployment
time. This requires minor customization at deployment time and leaves the option
available to use tunnel networks as utility networks or virtualization networks in the future.
You still create Tenant networks using VLANs, but you can also create VXLAN tunnels for
special-use networks without consuming tenant VLANs. It is possible to add VXLAN
capability to a deployment with a Tenant VLAN, but it is not possible to add a Tenant
VLAN to an existing overcloud without causing disruption.

The director provides a method for mapping six of these traffic types to certain subnets or VLANs.
These traffic types include:

Internal API

Storage

Storage Management

CHAPTER 3. PLANNING YOUR OVERCLOUD

25

Tenant Networks

External

Management (optional)

Any unassigned networks are automatically assigned to the same subnet as the Provisioning network.

The diagram below provides an example of a network topology where the networks are isolated on
separate VLANs. Each overcloud node uses two interfaces (nic2 and nic3) in a bond to deliver these
networks over their respective VLANs. Meanwhile, each overcloud node communicates with the
undercloud over the Provisioning network through a native VLAN using nic1.

The following table provides examples of network traffic mappings different network layouts:

Table 3.3. Network Mappings

Red Hat OpenStack Platform 10 Director Installation and Usage

26

 Mappings Total Interfaces Total VLANs

Flat Network with
External Access

Network 1 - Provisioning,
Internal API, Storage,
Storage Management,
Tenant Networks

Network 2 - External,
Floating IP (mapped
after overcloud
creation)

2 2

Isolated Networks Network 1 - Provisioning

Network 2 - Internal API

Network 3 - Tenant
Networks

Network 4 - Storage

Network 5 - Storage
Management

Network 6 -
Management (optional)

Network 7 - External,
Floating IP (mapped
after overcloud
creation)

3 (includes 2 bonded
interfaces)

7

3.3. PLANNING STORAGE

NOTE

Using LVM on a guest instance that uses a back end cinder-volume of any driver or back-
end type results in issues with performance, volume visibility and availability, and data
corruption. These issues can be mitigated using a LVM filter. For more information, refer
to section 2.1 Back Ends in the Storage Guide and KCS article 3213311, "Using LVM on a
cinder volume exposes the data to the compute host."

The director provides different storage options for the overcloud environment. This includes:

Ceph Storage Nodes

The director creates a set of scalable storage nodes using Red Hat Ceph Storage. The overcloud
uses these nodes for:

Images - Glance manages images for VMs. Images are immutable. OpenStack treats images
as binary blobs and downloads them accordingly. You can use glance to store images in a
Ceph Block Device.

Volumes - Cinder volumes are block devices. OpenStack uses volumes to boot VMs, or to

CHAPTER 3. PLANNING YOUR OVERCLOUD

27

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/storage_guide/#ch-backends
https://access.redhat.com/solutions/3213311

Volumes - Cinder volumes are block devices. OpenStack uses volumes to boot VMs, or to
attach volumes to running VMs. OpenStack manages volumes using Cinder services. You can
use Cinder to boot a VM using a copy-on-write clone of an image.

Guest Disks - Guest disks are guest operating system disks. By default, when you boot a
virtual machine with nova, its disk appears as a file on the filesystem of the hypervisor
(usually under /var/lib/nova/instances/<uuid>/). It is possible to boot every virtual machine
inside Ceph directly without using cinder, which is advantageous because it allows you to
perform maintenance operations easily with the live-migration process. Additionally, if your
hypervisor dies it is also convenient to trigger nova evacuate and run the virtual machine
elsewhere almost seamlessly.

IMPORTANT

If you want to boot virtual machines in Ceph (ephemeral back end or boot
from volume), the glance image format must be RAW format. Ceph does not
support other image formats such as QCOW2 or VMDK for hosting a virtual
machine disk.

See Red Hat Ceph Storage Architecture Guide for additional information.

Swift Storage Nodes

The director creates an external object storage node. This is useful in situations where you need to
scale or replace controller nodes in your overcloud environment but need to retain object storage
outside of a high availability cluster.

Red Hat OpenStack Platform 10 Director Installation and Usage

28

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/architecture-guide/

CHAPTER 4. INSTALLING THE UNDERCLOUD
The first step to creating your Red Hat OpenStack Platform environment is to install the director on the
undercloud system. This involves a few prerequisite steps to enable the necessary subscriptions and
repositories.

4.1. CREATING A DIRECTOR INSTALLATION USER

The director installation process requires a non-root user to execute commands. Use the following
commands to create the user named stack and set a password:

[root@director ~]# useradd stack
[root@director ~]# passwd stack # specify a password

Disable password requirements for this user when using sudo:

[root@director ~]# echo "stack ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/stack
[root@director ~]# chmod 0440 /etc/sudoers.d/stack

Switch to the new stack user:

[root@director ~]# su - stack
[stack@director ~]$

Continue the director installation as the stack user.

4.2. CREATING DIRECTORIES FOR TEMPLATES AND IMAGES

The director uses system images and Heat templates to create the overcloud environment. To keep
these files organized, we recommend creating directories for images and templates:

$ mkdir ~/images
$ mkdir ~/templates

Other sections in this guide use these two directories to store certain files.

4.3. SETTING THE HOSTNAME FOR THE SYSTEM

The director requires a fully qualified domain name for its installation and configuration process. This
means you may need to set the hostname of your director’s host. Check the hostname of your host:

$ hostname # Checks the base hostname
$ hostname -f # Checks the long hostname (FQDN)

If either commands do not report the correct hostname or report an error, use hostnamectl to set a
hostname:

$ sudo hostnamectl set-hostname manager.example.com
$ sudo hostnamectl set-hostname --transient manager.example.com

The director also requires an entry for the system’s hostname and base name in /etc/hosts. For example,

CHAPTER 4. INSTALLING THE UNDERCLOUD

29

The director also requires an entry for the system’s hostname and base name in /etc/hosts. For example,
if the system is named manager.example.com, then /etc/hosts requires an entry like:

127.0.0.1 manager.example.com manager localhost localhost.localdomain localhost4
localhost4.localdomain4

4.4. REGISTERING YOUR SYSTEM

To install the Red Hat OpenStack Platform director, first register the host system using Red Hat
Subscription Manager, and subscribe to the required channels.

Register your system with the Content Delivery Network, entering your Customer Portal user name and
password when prompted:

$ sudo subscription-manager register

Find the entitlement pool ID for Red Hat OpenStack Platform director. For example:

$ sudo subscription-manager list --available --all --matches="*OpenStack*"
Subscription Name: Name of SKU
Provides: Red Hat Single Sign-On
 Red Hat Enterprise Linux Workstation
 Red Hat CloudForms
 Red Hat OpenStack
 Red Hat Software Collections (for RHEL Workstation)
 Red Hat Virtualization
SKU: SKU-Number
Contract: Contract-Number
Pool ID: Valid-Pool-Number-123456
Provides Management: Yes
Available: 1
Suggested: 1
Service Level: Support-level
Service Type: Service-Type
Subscription Type: Sub-type
Ends: End-date
System Type: Physical

Locate the Pool ID value and attach the Red Hat OpenStack Platform 10 entitlement:

$ sudo subscription-manager attach --pool=Valid-Pool-Number-123456

Disable all default repositories, and then enable the required Red Hat Enterprise Linux repositories:

$ sudo subscription-manager repos --disable=*
$ sudo subscription-manager repos --enable=rhel-7-server-rpms --enable=rhel-7-server-extras-rpms -
-enable=rhel-7-server-rh-common-rpms --enable=rhel-ha-for-rhel-7-server-rpms --enable=rhel-7-
server-openstack-10-rpms

These repositories contain packages the director installation requires.

IMPORTANT

Red Hat OpenStack Platform 10 Director Installation and Usage

30

IMPORTANT

Only enable the repositories listed in Section 2.5, “Repository Requirements”. Additional
repositories can cause package and software conflicts. Do not enable any additional
repositories.

Set the RHEL version to RHEL 7.7:

$ sudo subscription-manager release --set=7.7

Perform an update on your system to make sure you have the latest base system packages:

$ sudo yum update -y
$ sudo reboot

The system is now ready for the director installation.

4.5. INSTALLING THE DIRECTOR PACKAGES

Use the following command to install the required command line tools for director installation and
configuration:

$ sudo yum install -y python-tripleoclient

This installs all packages required for the director installation.

4.6. CONFIGURING THE DIRECTOR

The director installation process requires certain settings to determine your network configurations. The
settings are stored in a template located in the stack user’s home directory as undercloud.conf.

Red Hat provides a basic template to help determine the required settings for your installation. Copy
this template to the stack user’s home directory:

$ cp /usr/share/instack-undercloud/undercloud.conf.sample ~/undercloud.conf

The undercloud.conf file contains settings to configure your undercloud. If you omit or comment out a
parameter, the undercloud installation uses the default value.

The template contains two sections: [DEFAULT] and [auth]. The [DEFAULT] section contains the
following parameters:

undercloud_hostname

Defines the fully qualified host name for the undercloud. If set, the undercloud installation configures
all system host name settings. If left unset, the undercloud uses the current host name, but the user
must configure all system host name settings appropriately.

local_ip

The IP address defined for the director’s Provisioning NIC. This is also the IP address the director
uses for its DHCP and PXE boot services. Leave this value as the default 192.0.2.1/24 unless you are
using a different subnet for the Provisioning network, for example, if it conflicts with an existing IP
address or subnet in your environment.

network_gateway

CHAPTER 4. INSTALLING THE UNDERCLOUD

31

The gateway for the overcloud instances. This is the undercloud host, which forwards traffic to the
External network. Leave this as the default 192.0.2.1 unless you are either using a different IP
address for the director or want to directly use an external gateway.

NOTE

The director’s configuration script also automatically enables IP forwarding using the
relevant sysctl kernel parameter.

undercloud_public_vip

The IP address or hostname defined for director Public API endpoints over SSL/TLS. The director
configuration attaches the IP address to the director software bridge as a routed IP address, which
uses the /32 netmask.

undercloud_admin_vip

The IP address or hostname defined for director Admin API endpoints over SSL/TLS. The director
configuration attaches the IP address to the director software bridge as a routed IP address, which
uses the /32 netmask.

undercloud_service_certificate

The location and filename of the certificate for OpenStack SSL communication. Ideally, you obtain
this certificate from a trusted certificate authority. Otherwise generate your own self-signed
certificate using the guidelines in Appendix A, SSL/TLS Certificate Configuration . These guidelines
also contain instructions on setting the SELinux context for your certificate, whether self-signed or
from an authority.

generate_service_certificate

Defines whether to generate an SSL certificate during the undercloud installation, which is used for
the undercloud_service_certificate parameter. The undercloud installation saves the resulting
certificate /etc/pki/tls/certs/undercloud-[undercloud_public_vip].pem. The CA defined in the
certificate_generation_ca parameter signs this certificate.

certificate_generation_ca

The certmonger nickname of the CA that signs the requested certificate. Only use this option if you
have set the generate_service_certificate parameter. If you select the local CA, certmonger
extracts the local CA certificate to /etc/pki/ca-trust/source/anchors/cm-local-ca.pem and adds it
to the trust chain.

service_principal

The Kerberos principal for the service using the certificate. Only use this if your CA requires a
Kerberos principal, such as in FreeIPA.

local_interface

The chosen interface for the director’s Provisioning NIC. This is also the device the director uses for
its DHCP and PXE boot services. Change this value to your chosen device. To see which device is
connected, use the ip addr command. For example, this is the result of an ip addr command:

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen
1000
 link/ether 52:54:00:75:24:09 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.178/24 brd 192.168.122.255 scope global dynamic eth0
 valid_lft 3462sec preferred_lft 3462sec
 inet6 fe80::5054:ff:fe75:2409/64 scope link
 valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noop state DOWN
 link/ether 42:0b:c2:a5:c1:26 brd ff:ff:ff:ff:ff:ff

Red Hat OpenStack Platform 10 Director Installation and Usage

32

In this example, the External NIC uses eth0 and the Provisioning NIC uses eth1, which is currently not
configured. In this case, set the local_interface to eth1. The configuration script attaches this
interface to a custom bridge defined with the inspection_interface parameter.

local_mtu

MTU to use for the local_interface.

network_cidr

The network that the director uses to manage overcloud instances. This is the Provisioning network,
which the undercloud’s neutron service manages. Leave this as the default 192.0.2.0/24 unless you
are using a different subnet for the Provisioning network.

masquerade_network

Defines the network that will masquerade for external access. This provides the Provisioning network
with a degree of network address translation (NAT) so that it has external access through the
director. Leave this as the default (192.0.2.0/24) unless you are using a different subnet for the
Provisioning network.

dhcp_start; dhcp_end

The start and end of the DHCP allocation range for overcloud nodes. Ensure this range contains
enough IP addresses to allocate your nodes.

hieradata_override

Path to hieradata override file. If set, the undercloud installation copies this file under
/etc/puppet/hieradata and sets it as the first file in the hierarchy. Use this to provide custom
configuration to services beyond the undercloud.conf parameters.

net_config_override

Path to network configuration override template. If set, the undercloud uses a JSON format template
to configure the networking with os-net-config. This ignores the network parameters set in
undercloud.conf. See /usr/share/instack-undercloud/templates/net-config.json.template for an
example.

inspection_interface

The bridge the director uses for node introspection. This is custom bridge that the director
configuration creates. The LOCAL_INTERFACE attaches to this bridge. Leave this as the default
br-ctlplane.

inspection_iprange

A range of IP address that the director’s introspection service uses during the PXE boot and
provisioning process. Use comma-separated values to define the start and end of this range. For
example, 192.0.2.100,192.0.2.120. Make sure this range contains enough IP addresses for your
nodes and does not conflict with the range for dhcp_start and dhcp_end.

inspection_extras

Defines whether to enable extra hardware collection during the inspection process. Requires
python-hardware or python-hardware-detect package on the introspection image.

inspection_runbench

Runs a set of benchmarks during node introspection. Set to true to enable. This option is necessary if
you intend to perform benchmark analysis when inspecting the hardware of registered nodes. See
Section 5.2, “Inspecting the Hardware of Nodes” for more details.

inspection_enable_uefi

Defines whether to support introspection of nodes with UEFI-only firmware. For more information,
see Appendix D, Alternative Boot Modes .

undercloud_debug

Sets the log level of undercloud services to DEBUG. Set this value to true to enable.

CHAPTER 4. INSTALLING THE UNDERCLOUD

33

enable_tempest

Defines whether to install the validation tools. The default is set to false, but you can can enable
using true.

enable_mistral

Defines whether to install the OpenStack Workflow Service (mistral) in the undercloud.

enable_zaqar

Defines whether to install the OpenStack Messaging Service (zaqar) in the undercloud.

ipxe_enabled

Defines whether to use iPXE or standard PXE. The default is true, which enables iPXE. Set to false
to set to standard PXE. For more information, see Appendix D, Alternative Boot Modes .

enable_telemetry

Defines whether to install OpenStack Telemetry (ceilometer, aodh) services in the undercloud. The
default value is false, which disables telemetry on the undercloud. This parameter is required if using
other products that consume metrics data, such as Red Hat CloudForms.

enable_ui

Defines Whether to install the director’s web UI. This allows you to perform overcloud planning and
deployments through a graphical web interface. For more information, see Chapter 6, Configuring
Basic Overcloud Requirements with the Web UI. Note that the UI is only available with SSL/TLS
enabled using either the undercloud_service_certificate or generate_service_certificate.

enable_validations

Defines whether to install the requirements to run validations.

store_events

Defines whether to store events in OpenStack Telemetry (ceilometer) on the undercloud.

scheduler_max_attempts

Maximum number of times the scheduler attempts to deploy an instance. Keep this greater or equal
to the number of bare metal nodes you expect to deploy at once to work around potential race
condition when scheduling.

The [auth] section contains the following parameters:

undercloud_db_password; undercloud_admin_token; undercloud_admin_password;
undercloud_glance_password; etc

The remaining parameters are the access details for all of the director’s services. No change is
required for the values. The director’s configuration script automatically generates these values if
blank in undercloud.conf. You can retrieve all values after the configuration script completes.

IMPORTANT

The configuration file examples for these parameters use <None> as a placeholder
value. Setting these values to <None> leads to a deployment error.

Modify the values for these parameters to suit your network. When complete, save the file and run the
following command:

$ openstack undercloud install

This launches the director’s configuration script. The director installs additional packages and configures
its services to suit the settings in the undercloud.conf. This script takes several minutes to complete.

Red Hat OpenStack Platform 10 Director Installation and Usage

34

The configuration script generates two files when complete:

undercloud-passwords.conf - A list of all passwords for the director’s services.

stackrc - A set of initialization variables to help you access the director’s command line tools.

The configuration also starts all OpenStack Platform services automatically. Check the enabled services
using the following command:

$ sudo systemctl list-units openstack-*

To initialize the stack user to use the command line tools, run the following command:

$ source ~/stackrc

You can now use the director’s command line tools.

4.7. OBTAINING IMAGES FOR OVERCLOUD NODES

The director requires several disk images for provisioning overcloud nodes. This includes:

An introspection kernel and ramdisk - Used for bare metal system introspection over PXE boot.

A deployment kernel and ramdisk - Used for system provisioning and deployment.

An overcloud kernel, ramdisk, and full image - A base overcloud system that is written to the
node’s hard disk.

Obtain these images from the rhosp-director-images and rhosp-director-images-ipa packages:

$ sudo yum install rhosp-director-images rhosp-director-images-ipa

Extract the archives to the images directory on the stack user’s home (/home/stack/images):

$ cd ~/images
$ for i in /usr/share/rhosp-director-images/overcloud-full-latest-10.0.tar /usr/share/rhosp-director-
images/ironic-python-agent-latest-10.0.tar; do tar -xvf $i; done

Import these images into the director:

$ openstack overcloud image upload --image-path /home/stack/images/

This uploads the following images into the director: bm-deploy-kernel, bm-deploy-ramdisk,
overcloud-full, overcloud-full-initrd, overcloud-full-vmlinuz. These are the images for deployment
and the overcloud. The script also installs the introspection images on the director’s PXE server.

View a list of the images in the CLI:

$ openstack image list
+--------------------------------------+------------------------+
| ID | Name |
+--------------------------------------+------------------------+
| 765a46af-4417-4592-91e5-a300ead3faf6 | bm-deploy-ramdisk |
| 09b40e3d-0382-4925-a356-3a4b4f36b514 | bm-deploy-kernel |

CHAPTER 4. INSTALLING THE UNDERCLOUD

35

ef793cd0-e65c-456a-a675-63cd57610bd5	overcloud-full
9a51a6cb-4670-40de-b64b-b70f4dd44152	overcloud-full-initrd
4f7e33f4-d617-47c1-b36f-cbe90f132e5d	overcloud-full-vmlinuz
+--------------------------------------+------------------------+

This list will not show the introspection PXE images. The director copies these files to /httpboot.

[stack@host1 ~]$ ls -l /httpboot
total 341460
-rwxr-xr-x. 1 root root 5153184 Mar 31 06:58 agent.kernel
-rw-r--r--. 1 root root 344491465 Mar 31 06:59 agent.ramdisk
-rw-r--r--. 1 root root 337 Mar 31 06:23 inspector.ipxe

NOTE

The default overcloud-full.qcow2 image is a flat partition image. However, you can also
import and use whole disk images. See Appendix C, Whole Disk Images for more
information.

4.8. SETTING A NAMESERVER ON THE UNDERCLOUD’S NEUTRON
SUBNET

If you intend for the overcloud to resolve external hostnames, such as cdn.redhat.com, it is
recommended to set a nameserver on the overcloud nodes. For a standard overcloud without network
isolation, the nameserver is defined using the undercloud’s neutron subnet. Use the following
commands to define nameservers for the environment:

$ openstack subnet list
$ openstack subnet set --dns-nameserver [nameserver1-ip] --dns-nameserver [nameserver2-ip]
[subnet-uuid]

View the subnet to verify the nameserver:

$ openstack subnet show [subnet-uuid]
+-------------------+---+
| Field | Value |
+-------------------+---+
...	
dns_nameservers	8.8.8.8
...	
+-------------------+---+

IMPORTANT

If you aim to isolate service traffic onto separate networks, the overcloud nodes use the
DnsServer parameter in your network environment files.

4.9. BACKING UP THE UNDERCLOUD

Red Hat provides a process to back up important data from the undercloud host and the Red Hat
OpenStack Platform director. For more information about undercloud backups, see the "Back Up and
Restore the Director Undercloud" guide.

Red Hat OpenStack Platform 10 Director Installation and Usage

36

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/back-up-and-restore-the-director-undercloud

4.10. COMPLETING THE UNDERCLOUD CONFIGURATION

This completes the undercloud configuration. The next chapter explores basic overcloud configuration,
including registering nodes, inspecting them, and then tagging them into various node roles.

CHAPTER 4. INSTALLING THE UNDERCLOUD

37

CHAPTER 5. CONFIGURING BASIC OVERCLOUD
REQUIREMENTS WITH THE CLI TOOLS

This chapter provides the basic configuration steps for an OpenStack Platform environment using the
CLI tools. An overcloud with a basic configuration contains no custom features. However, you can add
advanced configuration options to this basic overcloud and customize it to your specifications using the
instructions in the Advanced Overcloud Customization guide.

For the examples in this chapter, all nodes in this chapter are bare metal systems using IPMI for power
management. For more supported power management types and their options, see Appendix B, Power
Management Drivers.

Workflow

1. Create a node definition template and register blank nodes in the director.

2. Inspect hardware of all nodes.

3. Tag nodes into roles.

4. Define additional node properties.

Requirements

The director node created in Chapter 4, Installing the Undercloud

A set of bare metal machines for your nodes. The number of node required depends on the type
of overcloud you intend to create (see Section 3.1, “Planning Node Deployment Roles” for
information on overcloud roles). These machines also must comply with the requirements set
for each node type. For these requirements, see Section 2.4, “Overcloud Requirements”. These
nodes do not require an operating system. The director copies a Red Hat Enterprise Linux 7
image to each node.

One network connection for our Provisioning network, which is configured as a native VLAN. All
nodes must connect to this network and comply with the requirements set in Section 2.3,
“Networking Requirements”. For the examples in this chapter, we use 192.0.2.0/24 as the
Provisioning subnet with the following IP address assignments:

Table 5.1. Provisioning Network IP Assignments

Node Name IP Address MAC Address IPMI IP Address

Director 192.0.2.1 aa:aa:aa:aa:aa:aa None required

Controller DHCP defined bb:bb:bb:bb:bb:bb 192.0.2.205

Compute DHCP defined cc:cc:cc:cc:cc:cc 192.0.2.206

All other network types use the Provisioning network for OpenStack services. However, you can
create additional networks for other network traffic types.

5.1. REGISTERING NODES FOR THE OVERCLOUD

Red Hat OpenStack Platform 10 Director Installation and Usage

38

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/advanced-overcloud-customization/

The director requires a node definition template, which you create manually. This file (instackenv.json)
uses the JSON format file, and contains the hardware and power management details for your nodes.
For example, a template for registering two nodes might look like this:

{
 "nodes":[
 {
 "mac":[
 "bb:bb:bb:bb:bb:bb"
],
 "name":"node01",
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.205"
 },
 {
 "mac":[
 "cc:cc:cc:cc:cc:cc"
],
 "name":"node02",
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.206"
 }
]
}

This template uses the following attributes:

name

The logical name for the node.

pm_type

The power management driver to use. This example uses the IPMI driver (pxe_ipmitool), which is
the preferred driver for power management.

pm_user; pm_password

The IPMI username and password.

pm_addr

The IP address of the IPMI device.

mac

(Optional) A list of MAC addresses for the network interfaces on the node. Use only the MAC
address for the Provisioning NIC of each system.

cpu

CHAPTER 5. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE CLI TOOLS

39

(Optional) The number of CPUs on the node.

memory

(Optional) The amount of memory in MB.

disk

(Optional) The size of the hard disk in GB.

arch

(Optional) The system architecture.

NOTE

IPMI is the preferred supported power management driver. For more supported power
management types and their options, see Appendix B, Power Management Drivers . If
these power management drivers do not work as expected, use IPMI for your power
management.

After creating the template, run the following command to verify the formatting and syntax:

$ openstack baremetal instackenv validate --file instackenv.json

Save the file to the stack user’s home directory (/home/stack/instackenv.json), then run the following
command to import the template to the director:

$ openstack overcloud node import ~/instackenv.json

This imports the template and registers each node from the template into the director.

After the node registration and configuration completes, wiew a list of these nodes in the CLI:

$ openstack baremetal node list

5.2. INSPECTING THE HARDWARE OF NODES

The director can run an introspection process on each node. This process causes each node to boot an
introspection agent over PXE. This agent collects hardware data from the node and sends it back to the
director. The director then stores this introspection data in the OpenStack Object Storage (swift)
service running on the director. The director uses hardware information for various purposes such as
profile tagging, benchmarking, and manual root disk assignment.

NOTE

You can also create policy files to automatically tag nodes into profiles immediately after
introspection. For more information on creating policy files and including them in the
introspection process, see Appendix E, Automatic Profile Tagging. Alternatively, you can
manually tag nodes into profiles as per the instructions in Section 5.3, “Tagging Nodes
into Profiles”.

Set all nodes to a managed state:

$ for node in $(openstack baremetal node list -c UUID -f value) ; do openstack baremetal node
manage $node ; done

Red Hat OpenStack Platform 10 Director Installation and Usage

40

Run the following command to inspect the hardware attributes of each node:

$ openstack overcloud node introspect --all-manageable --provide

The --all-manageable option introspects only nodes in a managed state. In this example, it is all
of them.

The --provide option resets all nodes to an active state after introspection.

Monitor the progress of the introspection using the following command in a separate terminal window:

$ sudo journalctl -l -u openstack-ironic-inspector -u openstack-ironic-inspector-dnsmasq -u
openstack-ironic-conductor -f

IMPORTANT

Make sure this process runs to completion. This process usually takes 15 minutes for bare
metal nodes.

Alternatively, perform a single introspection on each node individually. Set the node to management
mode, perform the introspection, then move the node out of management mode:

$ openstack baremetal node manage [NODE UUID]
$ openstack overcloud node introspect [NODE UUID] --provide

5.3. TAGGING NODES INTO PROFILES

After registering and inspecting the hardware of each node, you will tag them into specific profiles.
These profile tags match your nodes to flavors, and in turn the flavors are assigned to a deployment role.
The following example shows the relationship across roles, flavors, profiles, and nodes for Controller
nodes:

Type Description

Role The Controller role defines how to configure
controller nodes.

Flavor The control flavor defines the hardware profile for
nodes to use as controllers. You assign this flavor to
the Controller role so the director can decide which
nodes to use.

Profile The control profile is a tag you apply to the control
flavor. This defines the nodes that belong to the
flavor.

Node You also apply the control profile tag to individual
nodes, which groups them to the control flavor and,
as a result, the director configures them using the
Controller role.

CHAPTER 5. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE CLI TOOLS

41

Default profile flavors compute, control, swift-storage, ceph-storage, and block-storage are created
during undercloud installation and are usable without modification in most environments.

NOTE

For a large number of nodes, use automatic profile tagging. See Appendix E, Automatic
Profile Tagging for more details.

To tag a node into a specific profile, add a profile option to the properties/capabilities parameter for
each node. For example, to tag your nodes to use Controller and Compute profiles respectively, use the
following commands:

$ openstack baremetal node set --property capabilities='profile:compute,boot_option:local' 58c3d07e-
24f2-48a7-bbb6-6843f0e8ee13
$ openstack baremetal node set --property capabilities='profile:control,boot_option:local' 1a4e30da-
b6dc-499d-ba87-0bd8a3819bc0

The addition of the profile:compute and profile:control options tag the two nodes into each
respective profiles.

These commands also set the boot_option:local parameter, which defines how each node boots.
Depending on your hardware, you might also need to add the boot_mode parameter to uefi so that
nodes boot using UEFI instead of the default BIOS mode. For more information, see Section D.2, “UEFI
Boot Mode”.

After completing node tagging, check the assigned profiles or possible profiles:

$ openstack overcloud profiles list

Custom Role Profiles

If using custom roles, you might need to create additional flavors and profiles to accommodate these
new roles. For example, to create a new flavor for a Networker role, run the following command:

$ openstack flavor create --id auto --ram 4096 --disk 40 --vcpus 1 networker
$ openstack flavor set --property "cpu_arch"="x86_64" --property "capabilities:boot_option"="local" --
property "capabilities:profile"="networker" networker

Assign nodes with this new profile:

$ openstack baremetal node set --property capabilities='profile:networker,boot_option:local'
dad05b82-0c74-40bf-9d12-193184bfc72d

5.4. DEFINING THE ROOT DISK FOR NODES

Some nodes might use multiple disks. This means the director needs to identify the disk to use for the
root disk during provisioning. There are several properties you can use to help the director identify the
root disk:

model (String): Device identifier.

vendor (String): Device vendor.

Red Hat OpenStack Platform 10 Director Installation and Usage

42

serial (String): Disk serial number.

hctl (String): Host:Channel:Target:Lun for SCSI.

size (Integer): Size of the device in GB.

wwn (String): Unique storage identifier.

wwn_with_extension (String): Unique storage identifier with the vendor extension appended.

wwn_vendor_extension (String): Unique vendor storage identifier.

rotational (Boolean): True for a rotational device (HDD), otherwise false (SSD).

name (String): The name of the device, for example: /dev/sdb1 Only use this for devices with
persistent names.

This example shows how to use a disk’s serial number to specify the root disk to deploy the overcloud
image.

Check the disk information from each node’s hardware introspection. The following command displays
the disk information from a node:

$ openstack baremetal introspection data save 1a4e30da-b6dc-499d-ba87-0bd8a3819bc0 | jq
".inventory.disks"

For example, the data for one node might show three disks:

[
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sda",
 "wwn_vendor_extension": "0x1ea4dcc412a9632b",
 "wwn_with_extension": "0x61866da04f3807001ea4dcc412a9632b",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f380700",
 "serial": "61866da04f3807001ea4dcc412a9632b"
 }
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sdb",
 "wwn_vendor_extension": "0x1ea4e13c12e36ad6",
 "wwn_with_extension": "0x61866da04f380d001ea4e13c12e36ad6",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f380d00",
 "serial": "61866da04f380d001ea4e13c12e36ad6"
 }
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sdc",

CHAPTER 5. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE CLI TOOLS

43

 "wwn_vendor_extension": "0x1ea4e31e121cfb45",
 "wwn_with_extension": "0x61866da04f37fc001ea4e31e121cfb45",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f37fc00",
 "serial": "61866da04f37fc001ea4e31e121cfb45"
 }
]

For this example, set the root device to disk 2, which has 61866da04f380d001ea4e13c12e36ad6 as the
serial number. This requires a change to the root_device parameter for the node definition:

$ openstack baremetal node set --property root_device='{"serial":
"61866da04f380d001ea4e13c12e36ad6"}' 1a4e30da-b6dc-499d-ba87-0bd8a3819bc0

This helps the director identify the specific disk to use as the root disk. When we initiate our overcloud
creation, the director provisions this node and writes the overcloud image to this disk.

NOTE

Make sure to configure the BIOS of each node to include booting from the chosen root
disk. The recommended boot order is network boot, then root disk boot.

IMPORTANT

Do not use name to set the root disk as this value can change when the node boots.

5.5. CUSTOMIZING THE OVERCLOUD

The undercloud includes a set of Heat templates that acts as a plan for your overcloud creation. You can
customize advanced features for your overcloud using the Advanced Overcloud Customization guide.

Otherwise, you can continue and deploy a basic overcloud. See Section 5.6, “Creating the Overcloud
with the CLI Tools” for more information.

IMPORTANT

A basic overcloud uses local LVM storage for block storage, which is not a supported
configuration. It is recommended to use an external storage solution for block storage.

5.6. CREATING THE OVERCLOUD WITH THE CLI TOOLS

The final stage in creating your OpenStack environment is to run the openstack overcloud deploy
command to create it. Before running this command, you should familiarize yourself with key options
and how to include custom environment files. The following section discusses the openstack overcloud
deploy command and the options associated with it.

Red Hat OpenStack Platform 10 Director Installation and Usage

44

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/advanced-overcloud-customization/

WARNING

Do not run openstack overcloud deploy as a background process. The overcloud
creation might hang in mid-deployment if started as a background process.

Setting Overcloud Parameters

The following table lists the additional parameters when using the openstack overcloud deploy
command.

Table 5.2. Deployment Parameters

Parameter Description

--templates [TEMPLATES] The directory containing the Heat templates to
deploy. If blank, the command uses the default
template location at /usr/share/openstack-
tripleo-heat-templates/

--stack STACK The name of the stack to create or update

-t [TIMEOUT], --timeout [TIMEOUT] Deployment timeout in minutes

--libvirt-type [LIBVIRT_TYPE] Virtualization type to use for hypervisors

--ntp-server [NTP_SERVER] Network Time Protocol (NTP) server to use to
synchronize time. You can also specify multiple NTP
servers in a comma-separated list, for example: --
ntp-server
0.centos.pool.org,1.centos.pool.org. For a high
availability cluster deployment, it is essential that
your controllers are consistently referring to the
same time source. Note that a typical environment
might already have a designated NTP time source
with established practices.

--no-proxy [NO_PROXY] Defines custom values for the environment variable
no_proxy, which excludes certain domain extensions
from proxy communication.

--overcloud-ssh-user
OVERCLOUD_SSH_USER

Defines the SSH user to access the overcloud nodes.
Normally SSH access occurs through the heat-
admin user.



CHAPTER 5. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE CLI TOOLS

45

-e [EXTRA HEAT TEMPLATE], --extra-
template [EXTRA HEAT TEMPLATE]

Extra environment files to pass to the overcloud
deployment. Can be specified more than once. Note
that the order of environment files passed to the
openstack overcloud deploy command is
important. For example, parameters from each
sequential environment file override the same
parameters from earlier environment files.

--environment-directory The directory containing environment files to include
in deployment. The command processes these
environment files in numerical, then alphabetical
order.

--validation-errors-nonfatal The overcloud creation process performs a set of
pre-deployment checks. This option exits if any non-
fatal errors occur from the pre-deployment checks. It
is advisable to use this option as any errors can cause
your deployment to fail.

--validation-warnings-fatal The overcloud creation process performs a set of
pre-deployment checks. This option exits if any non-
critical warnings occur from the pre-deployment
checks.

--dry-run Performs validation check on the overcloud but does
not actually create the overcloud.

--skip-postconfig Skip the overcloud post-deployment configuration.

--force-postconfig Force the overcloud post-deployment configuration.

--answers-file ANSWERS_FILE Path to a YAML file with arguments and parameters.

--rhel-reg Register overcloud nodes to the Customer Portal or
Satellite 6.

--reg-method Registration method to use for the overcloud nodes.
satellite for Red Hat Satellite 6 or Red Hat Satellite
5, portal for Customer Portal.

--reg-org [REG_ORG] Organization to use for registration.

--reg-force Register the system even if it is already registered.

Parameter Description

Red Hat OpenStack Platform 10 Director Installation and Usage

46

--reg-sat-url [REG_SAT_URL] The base URL of the Satellite server to register
overcloud nodes. Use the Satellite’s HTTP URL and
not the HTTPS URL for this parameter. For example,
use http://satellite.example.com and not
https://satellite.example.com. The overcloud
creation process uses this URL to determine whether
the server is a Red Hat Satellite 5 or Red Hat
Satellite 6 server. If a Red Hat Satellite 6 server, the
overcloud obtains the katello-ca-consumer-
latest.noarch.rpm file, registers with
subscription-manager, and installs katello-
agent. If a Red Hat Satellite 5 server, the overcloud
obtains the RHN-ORG-TRUSTED-SSL-CERT file
and registers with rhnreg_ks.

--reg-activation-key
[REG_ACTIVATION_KEY]

Activation key to use for registration.

Parameter Description

Some command line parameters are outdated or deprecated in favor of using Heat template
parameters, which you include in the parameter_defaults section on an environment file. The following
table maps deprecated parameters to their Heat Template equivalents.

Table 5.3. Mapping Deprecated CLI Parameters to Heat Template Parameters

Parameter Description Heat Template Parameter

--control-scale The number of Controller nodes
to scale out

ControllerCount

--compute-scale The number of Compute nodes to
scale out

ComputeCount

--ceph-storage-scale The number of Ceph Storage
nodes to scale out

CephStorageCount

--block-storage-scale The number of Cinder nodes to
scale out

BlockStorageCount

--swift-storage-scale The number of Swift nodes to
scale out

ObjectStorageCount

--control-flavor The flavor to use for Controller
nodes

OvercloudControlFlavor

--compute-flavor The flavor to use for Compute
nodes

OvercloudComputeFlavor

CHAPTER 5. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE CLI TOOLS

47

http://satellite.example.com
https://satellite.example.com

--ceph-storage-flavor The flavor to use for Ceph
Storage nodes

OvercloudCephStorageFlavo
r

--block-storage-flavor The flavor to use for Cinder nodes OvercloudBlockStorageFlav
or

--swift-storage-flavor The flavor to use for Swift storage
nodes

OvercloudSwiftStorageFlavo
r

--neutron-flat-networks Defines the flat networks to
configure in neutron plugins.
Defaults to "datacentre" to
permit external network creation

NeutronFlatNetworks

--neutron-physical-bridge An Open vSwitch bridge to create
on each hypervisor. This defaults
to "br-ex". Typically, this should
not need to be changed

HypervisorNeutronPhysicalB
ridge

--neutron-bridge-mappings The logical to physical bridge
mappings to use. Defaults to
mapping the external bridge on
hosts (br-ex) to a physical name
(datacentre). You would use this
for the default floating network

NeutronBridgeMappings

--neutron-public-interface Defines the interface to bridge
onto br-ex for network nodes

NeutronPublicInterface

--neutron-network-type The tenant network type for
Neutron

NeutronNetworkType

--neutron-tunnel-types The tunnel types for the Neutron
tenant network. To specify
multiple values, use a comma
separated string

NeutronTunnelTypes

--neutron-tunnel-id-ranges Ranges of GRE tunnel IDs to
make available for tenant network
allocation

NeutronTunnelIdRanges

--neutron-vni-ranges Ranges of VXLAN VNI IDs to
make available for tenant network
allocation

NeutronVniRanges

Parameter Description Heat Template Parameter

Red Hat OpenStack Platform 10 Director Installation and Usage

48

--neutron-network-vlan-
ranges

The Neutron ML2 and Open
vSwitch VLAN mapping range to
support. Defaults to permitting
any VLAN on the datacentre
physical network

NeutronNetworkVLANRange
s

--neutron-mechanism-
drivers

The mechanism drivers for the
neutron tenant network. Defaults
to "openvswitch". To specify
multiple values, use a comma-
separated string

NeutronMechanismDrivers

--neutron-disable-tunneling Disables tunneling in case you aim
to use a VLAN segmented
network or flat network with
Neutron

No parameter mapping.

--validation-errors-fatal The overcloud creation process
performs a set of pre-deployment
checks. This option exits if any
fatal errors occur from the pre-
deployment checks. It is advisable
to use this option as any errors
can cause your deployment to fail.

No parameter mapping

Parameter Description Heat Template Parameter

These parameters are scheduled for removal in a future version of Red Hat OpenStack Platform.

NOTE

Run the following command for a full list of options:

$ openstack help overcloud deploy

5.7. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION

The -e includes an environment file to customize your overcloud. You can include as many environment
files as necessary. However, the order of the environment files is important as the parameters and
resources defined in subsequent environment files take precedence. Use the following list as an example
of the environment file order:

The amount of nodes per each role and their flavors. It is vital to include this information for
overcloud creation.

Any network isolation files, starting with the initialization file (environments/network-
isolation.yaml) from the heat template collection, then your custom NIC configuration file, and
finally any additional network configurations.

Any external load balancing environment files.

CHAPTER 5. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE CLI TOOLS

49

Any storage environment files such as Ceph Storage, NFS, iSCSI, etc.

Any environment files for Red Hat CDN or Satellite registration.

Any other custom environment files.

Any environment files added to the overcloud using the -e option become part of your overcloud’s stack
definition. The following command is an example of how to start the overcloud creation with custom
environment files included:

$ openstack overcloud deploy --templates \
 -e ~/templates/node-info.yaml\
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
 -e ~/templates/network-environment.yaml \
 -e ~/templates/storage-environment.yaml \
 --ntp-server pool.ntp.org \

This command contains the following additional options:

--templates - Creates the overcloud using the Heat template collection in
/usr/share/openstack-tripleo-heat-templates.

-e ~/templates/node-info.yaml - The -e option adds an additional environment file to the
overcloud deployment. In this case, it is a custom environment file that defines how many nodes
and which flavors to use for each role. For example:

parameter_defaults:
 OvercloudControlFlavor: control
 OvercloudComputeFlavor: compute
 OvercloudCephStorageFlavor: ceph-storage
 ControllerCount: 3
 ComputeCount: 3
 CephStorageCount: 3

-e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml - The
-e option adds an additional environment file to the overcloud deployment. In this case, it is an
environment file that initializes network isolation configuration.

-e ~/templates/network-environment.yaml - The -e option adds an additional environment file
to the overcloud deployment. In this case, it is a network environment file that contains
customization for network isolation.

-e ~/templates/storage-environment.yaml - The -e option adds an additional environment file
to the overcloud deployment. In this case, it is a custom environment file that initializes our
storage configuration.

--ntp-server pool.ntp.org - Use an NTP server for time synchronization. This is useful for
keeping the Controller node cluster in synchronization.

The director requires these environment files for re-deployment and post-deployment functions in
Chapter 7, Performing Tasks after Overcloud Creation. Failure to include these files can result in damage
to your overcloud.

If you aim to later modify the overcloud configuration, you should:

1. Modify parameters in the custom environment files and Heat templates

Red Hat OpenStack Platform 10 Director Installation and Usage

50

2. Run the openstack overcloud deploy command again with the same environment files

Do not edit the overcloud configuration directly as such manual configuration gets overridden by the
director’s configuration when updating the overcloud stack with the director.

Including an Environment File Directory

You can add a whole directory containing environment files using the --environment-directory option.
The deployment command processes the environment files in this directory in numerical, then
alphabetical order. If using this method, it is recommended to use filenames with a numerical prefix to
order how they are processed. For example:

$ ls -1 ~/templates
00-node-info.yaml
10-network-isolation.yaml
20-network-environment.yaml
30-storage-environment.yaml
40-rhel-registration.yaml

Run the following deployment command to include the directory:

$ openstack overcloud deploy --templates --environment-directory ~/templates

Using an Answers File

An answers file is a YAML format file that simplifies the inclusion of templates and environment files.
The answers file uses the following parameters:

templates

The core Heat template collection to use. This acts as a substitute for the --templates command line
option.

environments

A list of environment files to include. This acts as a substitute for the --environment-file (-e)
command line option.

For example, an answers file might contain the following:

templates: /usr/share/openstack-tripleo-heat-templates/
environments:
 - ~/templates/00-node-info.yaml
 - ~/templates/10-network-isolation.yaml
 - ~/templates/20-network-environment.yaml
 - ~/templates/30-storage-environment.yaml
 - ~/templates/40-rhel-registration.yaml

Run the following deployment command to include the answers file:

$ openstack overcloud deploy --answers-file ~/answers.yaml

5.8. MANAGING OVERCLOUD PLANS

As an alternative to using the openstack overcloud deploy command, the director can also manage
imported plans.

CHAPTER 5. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE CLI TOOLS

51

To create a new plan, run the following command as the stack user:

$ openstack overcloud plan create --templates /usr/share/openstack-tripleo-heat-templates my-
overcloud

This creates a plan from the core Heat template collection in /usr/share/openstack-tripleo-heat-
templates. The director names the plan based on your input. In this example, it is my-overcloud. The
director uses this name as a label for the object storage container, the workflow environment, and
overcloud stack names.

Add parameters from environment files using the following command:

$ openstack overcloud parameters set my-overcloud ~/templates/my-environment.yaml

Deploy your plans using the following command:

$ openstack overcloud plan deploy my-overcloud

Delete existing plans using the following command:

$ openstack overcloud plan delete my-overcloud

NOTE

The openstack overcloud deploy command essentially uses all of these commands to
remove the existing plan, upload a new plan with environment files, and deploy the plan.

5.9. VALIDATING OVERCLOUD TEMPLATES AND PLANS

Before executing an overcloud creation or stack update, validate your Heat templates and environment
files for any errors.

Creating a Rendered Template

The core Heat templates for the overcloud are in a Jinja2 format. To validate your templates, render a
version without Jinja2 formatting using the following commands:

$ openstack overcloud plan create --templates /usr/share/openstack-tripleo-heat-templates
overcloud-validation
$ mkdir ~/overcloud-validation
$ cd ~/overcloud-validation
$ swift download overcloud-validation

Use the rendered template in ~/overcloud-validation for the validation tests that follow.

Validating Template Syntax

Use the following command to validate the template syntax:

$ openstack orchestration template validate --show-nested --template ~/overcloud-
validation/overcloud.yaml -e ~/overcloud-validation/overcloud-resource-registry-puppet.yaml -e
[ENVIRONMENT FILE] -e [ENVIRONMENT FILE]

NOTE

Red Hat OpenStack Platform 10 Director Installation and Usage

52

NOTE

The validation requires the overcloud-resource-registry-puppet.yaml environment file
to include overcloud-specific resources. Add any additional environment files to this
command with -e option. Also include the --show-nested option to resolve parameters
from nested templates.

This command identifies any syntax errors in the template. If the template syntax validates successfully,
the output shows a preview of the resulting overcloud template.

5.10. MONITORING THE OVERCLOUD CREATION

The overcloud creation process begins and the director provisions your nodes. This process takes some
time to complete. To view the status of the overcloud creation, open a separate terminal as the stack
user and run:

$ source ~/stackrc
$ openstack stack list --nested

The openstack stack list --nested command shows the current stage of the overcloud creation.

5.11. ACCESSING THE OVERCLOUD

The director generates a script to configure and help authenticate interactions with your overcloud from
the director host. The director saves this file, overcloudrc, in your stack user’s home director. Run the
following command to use this file:

$ source ~/overcloudrc

This loads the necessary environment variables to interact with your overcloud from the director host’s
CLI. To return to interacting with the director’s host, run the following command:

$ source ~/stackrc

Each node in the overcloud also contains a user called heat-admin. The stack user has SSH access to
this user on each node. To access a node over SSH, find the IP address of the desired node:

$ nova list

Then connect to the node using the heat-admin user and the node’s IP address:

$ ssh heat-admin@192.0.2.23

5.12. COMPLETING THE OVERCLOUD CREATION

This concludes the creation of the overcloud using the command line tools. For post-creation functions,
see Chapter 7, Performing Tasks after Overcloud Creation.

CHAPTER 5. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE CLI TOOLS

53

CHAPTER 6. CONFIGURING BASIC OVERCLOUD
REQUIREMENTS WITH THE WEB UI

This chapter provides the basic configuration steps for an OpenStack Platform environment using the
web UI. An overcloud with a basic configuration contains no custom features. However, you can add
advanced configuration options to this basic overcloud and customize it to your specifications using the
instructions in the Advanced Overcloud Customization guide.

For the examples in this chapter, all nodes in this chapter are bare metal systems using IPMI for power
management. For more supported power management types and their options, see Appendix B, Power
Management Drivers.

Workflow

1. Register blank nodes using a node definition template and manual registration.

2. Inspect hardware of all nodes.

3. Upload an overcloud plan to the director.

4. Assign nodes into roles.

Requirements

The director node created in Chapter 4, Installing the Undercloud with the UI enabled

A set of bare metal machines for your nodes. The number of node required depends on the type
of overcloud you intend to create (see Section 3.1, “Planning Node Deployment Roles” for
information on overcloud roles). These machines also must comply with the requirements set
for each node type. For these requirements, see Section 2.4, “Overcloud Requirements”. These
nodes do not require an operating system. The director copies a Red Hat Enterprise Linux 7
image to each node.

One network connection for our Provisioning network, which is configured as a native VLAN. All
nodes must connect to this network and comply with the requirements set in Section 2.3,
“Networking Requirements”.

All other network types use the Provisioning network for OpenStack services. However, you can
create additional networks for other network traffic types.

6.1. ACCESSING THE WEB UI

The UI runs as a standalone application in your browser. However, your client system requires access to
the Public API endpoints for the following components on the undercloud:

Component UI Purpose

OpenStack Identity (keystone) For authentication to the UI and for endpoint
discovery of other services.

OpenStack Orchestration (heat) For the status of the deployment.

Red Hat OpenStack Platform 10 Director Installation and Usage

54

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/advanced-overcloud-customization/

OpenStack Bare Metal (ironic) For control of nodes.

OpenStack Object Storage (swift) For storage of the Heat template collection or plan
used for the overcloud creation.

OpenStack Workflow (mistral) To access and execute director tasks.

OpenStack Messaging (zaqar) A websocket-based service to find the status of
certain tasks.

Component UI Purpose

The UI interacts directly with these Public APIs, which is why your client system requires access to their
endpoints.

IMPORTANT

Accessing the director’s web UI using Mozilla Firefox will require certain server identity
exceptions for these OpenStack Platform Public APIs. See Appendix F, Firefox Server
Exceptions for UI Access for information on implementing these exceptions.

Users access the director’s web UI through SSL. For example, if the IP address of your undercloud is
192.0.2.1, then the address to access the UI is https://192.0.2.1. The web UI initially presents a login
screen with fields for the following:

Username - The administration user for the director. The default is admin.

Password - The password for the administration user. Run sudo hiera admin_password as the
stack user on the undercloud host terminal to find out the password.

When logging in to the UI, the UI accesses the OpenStack Identity Public API and obtains the endpoints
for the other Public API services. However, if you aim to change the endpoint or use a different IP for
endpoint access, the director UI reads settings from the /var/www/openstack-tripleo-
ui/dist/tripleo_ui_config.js file. This file uses the following parameters:

Parameter Description

keystone The Public API for the OpenStack Identity
(keystone) service. The UI automatically discovers
the endpoints for the other services through this
service, which means you only need to define this
parameter. However, you can define custom URLs for
the other endpoints if necessary.

heat The Public API for the OpenStack Orchestration
(heat) service. Requires the URL in the format:
https://<IP>:13004//v1/<tenant_id> where
tenant_id is the admin tenant of the undercloud.

CHAPTER 6. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE WEB UI

55

ironic The Public API for the OpenStack Bare Metal
(ironic) service.

swift The Public API for the OpenStack Object Storage
(swift) service. Requires the URL in the format:
https://<IP>:8080/v1/AUTH_<tenant_id> where
tenant_id is the admin tenant of the undercloud.

mistral The Public API for the OpenStack Workflow
(mistral) service.

zaqar-websocket The websocket for the OpenStack Messaging
(zaqar) service.

zaqar_default_queue The messaging queue to use for the OpenStack
Messaging (zaqar) service. The default is tripleo.

Parameter Description

The following is an example tripleo_ui_config.js file:

window.tripleOUiConfig = {
 "keystone": "https://192.0.2.2:13000/v2.0",
 "heat": "https://192.0.2.2:13004/v1/f30d815864be456dbc2a00f4e9200e9e",
 "ironic": "https://192.0.2.2:13385",
 "mistral": "https://192.0.2.2:13989/v2",
 "swift": "https://192.0.2.2:13808/v1/AUTH_f30d815864be456dbc2a00f4e9200e9e",
 "zaqar-websocket": "wss://192.0.2.2:9000",
 "zaqar_default_queue": "tripleo"
};

6.2. NAVIGATING THE WEB UI

The UI provides three main sections:

Deployment Plan

A menu item at the top of the UI. This page acts as the main UI section and allows you to define the
plan to use for your overcloud creation, the nodes to assign to each role, and the status of the
current overcloud. This section also provides a deployment workflow to guide you through each step
of the overcloud creation process, including setting deployment parameters and assigning your
nodes to roles.

Red Hat OpenStack Platform 10 Director Installation and Usage

56

Nodes

A menu item at the top of the UI. This page acts as a node configuration section and provides
methods for registering new nodes and introspecting registered nodes. This section also defines the
nodes available for deployment, the nodes currently deployed, and nodes in maintenance.

Validations

A side panel on the right side of the page. This section provides a set of pre-deployment and post-
deployment system checks to ensure a successful overcloud creation process. These validation tasks
run automatically at certain points in the deployment. However, you can also run them manually. Click
the Play button for a validation task you want to run. Click the title of each validation task to run it, or
click a validation title to view more information about it.

CHAPTER 6. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE WEB UI

57

6.3. IMPORTING AN OVERCLOUD PLAN IN THE WEB UI

The director UI requires a plan before configuring the overcloud. This plan is usually a Heat template
collection, like the one on your undercloud at /usr/share/openstack-tripleo-heat-templates. In addition,
you can customize the plan to suit your hardware and environment requirements. For more information
about customizing the overcloud, see the Advanced Overcloud Customization guide.

The plan displays four main steps to configuring your overcloud:

1. Prepare Hardware - Node registration and introspection.

2. Specify Deployment Configuration - Configuring overcloud parameters and defining the
environment files to include.

3. Configure Roles and Assign Nodes - Assign nodes to roles and modify role-specific
parameters.

4. Deploy - Launch the creation of your overcloud.

The undercloud installation and configuration automatically uploads a plan. You can also import multiple
plans in the web UI. Click on Manage Deployments on the Deployment Plan screen. This displays the
current Plans table.

Click Create New Plan and a window appears asking you for the following information:

Plan Name - A plain text name for the plan. For example overcloud.

Upload Type - Choose whether to upload a Tar Archive (tar.gz) or a full Local Folder (Google
Chrome only).

Plan Files - Click browser to choose the plan on your local file system.

If you need to copy the director’s Heat template collection to a client machine, archive the files and copy
them:

$ cd /usr/share/openstack-tripleo-heat-templates/
$ tar -cf ~/overcloud.tar *
$ scp ~/overcloud.tar user@10.0.0.55:~/.

Once the director UI uploads the plan, the plan appears in the Plans table and you can now configure it.
Click on the Deployment Plan.

6.4. REGISTERING NODES IN THE WEB UI

The first step in configuring the overcloud is to register your nodes. Start the node registration process
either through:

Clicking Register Nodes under 1 Prepare Hardware on the Deployment Plan screen.

Red Hat OpenStack Platform 10 Director Installation and Usage

58

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/advanced-overcloud-customization/

Clicking Register Nodes on the Nodes screen.

This displays the Register Nodes window.

The director requires a list of nodes for registration, which you can supply using one of two methods:

1. Uploading a node definition template - This involves clicking the Upload from File button and
selecting a file. See Section 5.1, “Registering Nodes for the Overcloud” for the syntax of the
node definition template.

2. Manually registering each node - This involves clicking Add New and providing a set of details
for the node.

The details you need to provide for manual registration include the following:

Name

A plain text name for the node. Use only RFC3986 unreserved characters.

Driver

The power management driver to use. This example uses the IPMI driver (pxe_ipmitool).

IPMI IP Address

The IP address of the IPMI device.

IPMI Username; IPMI Password

The IPMI username and password.

Architecture

(Optional) The system architecture.

CHAPTER 6. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE WEB UI

59

CPU count

(Optional) The number of CPUs on the node.

Memory (MB)

(Optional) The amount of memory in MB.

Disk (GB)

(Optional) The size of the hard disk in GB.

NIC MAC Addresses

A list of MAC addresses for the network interfaces on the node. Use only the MAC address for the
Provisioning NIC of each system.

NOTE

The UI also allows for registration of nodes from a KVM host using the pxe_ssh driver.
Note that this option is available for testing and evaluation purposes only. It is not
recommended for Red Hat OpenStack Platform enterprise environments. For more
information, see Section B.5, “SSH and Virsh” .

After entering your node information, click Register Nodes at the bottom of the window.

The director registers the nodes. Once complete, you can use the UI to perform introspection on the
nodes.

6.5. INSPECTING THE HARDWARE OF NODES IN THE WEB UI

The director UI can run an introspection process on each node. This process causes each node to boot
an introspection agent over PXE. This agent collects hardware data from the node and sends it back to
the director. The director then stores this introspection data in the OpenStack Object Storage (swift)
service running on the director. The director uses hardware information for various purposes such as
profile tagging, benchmarking, and manual root disk assignment.

NOTE

You can also create policy files to automatically tag nodes into profiles immediately after
introspection. For more information on creating policy files and including them in the
introspection process, see Appendix E, Automatic Profile Tagging. Alternatively, you can
tag nodes into profiles through the UI. See Section 6.7, “Tagging Nodes into Roles in the
Web UI” for details on manually tagging nodes.

To start the introspection process:

1. Navigate to the Nodes screen

2. Select all nodes you aim to introspect.

3. Click Introspect Nodes

IMPORTANT

Make sure this process runs to completion. This process usually takes 15 minutes for bare
metal nodes.

Once the introspection process completes, select all nodes with the Provision State set to

Red Hat OpenStack Platform 10 Director Installation and Usage

60

Once the introspection process completes, select all nodes with the Provision State set to
manageable then click the Provide Nodes button. Wait until the Provision State changes to available.

The nodes are now ready to provision.

6.6. EDITING OVERCLOUD PLAN PARAMETERS IN THE WEB UI

The Deployment Plan screen provides a method to customize your uploaded plan. Under 2 Specify
Deployment Configuration, click the Edit Configuration link to modify your base overcloud
configuration.

A window appears with two main tabs:

Overall Settings

This provides a method to include different features from your overcloud. These features are
defined in the plan’s capabilities-map.yaml file, which each feature using a different environment
file. For example, under Storage you can select Storage Environment, which the plan maps to the
environments/storage-environment.yaml file and allows you to configure NFS, iSCSI, or Ceph
settings for your overcloud. The Other tab contains any environment files detected in the plan but
not listed in the capabilities-map.yaml, which is useful for adding custom environment files included
in the plan. Once you have selected the features to include, click Save.

CHAPTER 6. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE WEB UI

61

Parameters

This includes various base-level and environment file parameters for your overcloud. For example,
you can change the node count for each role in this section. If you aim to use three controller nodes,
change the ControllerCount to 3. Once you have modified your base-level parameters, click Save.

6.7. TAGGING NODES INTO ROLES IN THE WEB UI

After registering and inspecting the hardware of each node, you tag them into specific profiles. These
profiles match your nodes to a specific flavor and deployment role.

To assign nodes to a role, scroll to the 3 Configure Roles and Assign Nodes section on the
Deployment Plan screen. Click Assign Nodes for a chosen role. A window appears that allows you to
select the nodes to assign to the role. Once you have selected the role’s nodes, click Assign/Unassign
Selected Nodes.

Red Hat OpenStack Platform 10 Director Installation and Usage

62

Once these nodes are assigned to the role, click Done to return to the Deployment Plan screen.

Complete this task for each role you want in your overcloud.

6.8. EDITING NODES IN THE WEB UI

Each node role provides a method for configuring role-specific parameters. Scroll to 3 Configure Roles
and Assign Nodes roles on the Deployment Plan screen. Click the Edit Role Parameters icon (pencil
icon) next to the role name.

A window appears that shows two main tabs:

Parameters

This includes various role specific parameters. For example, if you are editing the controller role, you
can change the default flavor for the role using the OvercloudControlFlavor parameter. Once you
have modified your role specific parameters, click Save Changes.

CHAPTER 6. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE WEB UI

63

Services

This defines the service-specific parameters for the chosen role. The left panel shows a list of
services that you select and modify. For example, to change the time zone, click the
OS::TripleO:Services:Timezone service and change the TimeZone parameter to your desired time
zone. Once you have modified your service-specific parameters, click Save Changes.

Red Hat OpenStack Platform 10 Director Installation and Usage

64

Network Configuration

This allows you to define an IP address or subnet range for various networks in your overcloud.

IMPORTANT

CHAPTER 6. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE WEB UI

65

IMPORTANT

Although the role’s service parameters appear in the UI, some services might be disabled
by default. You can enable these services through the instructions in Section 6.6, “Editing
Overcloud Plan Parameters in the Web UI”. See also the Composable Roles section of the
Advanced Overcloud Customization guide for information on enabling these services.

6.9. STARTING THE OVERCLOUD CREATION IN THE WEB UI

Once the overcloud plan is configured, you can start the overcloud deployment. This involves scrolling to
the 4 Deploy section and clicking Validate and Deploy.

If you have not run or passed all the validations for the undercloud, a warning message appears. Make
sure that your undercloud host satisfies the requirements before running a deployment.

When you are ready to deploy, click Deploy.

The UI regularly monitors the progress of the overcloud’s creation and display a progress bar indicating
the current percentage of progress. The View detailed information link displays a log of the current
OpenStack Orchestration stacks in your overcloud.

Red Hat OpenStack Platform 10 Director Installation and Usage

66

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/advanced-overcloud-customization/

Wait until the overcloud deployment completes.

After the overcloud creation process completes, the 4 Deploy section displays the current overcloud
status and the following details:

IP address - The IP address for accessing your overcloud.

Password - The password for the OpenStack admin user on the overcloud.

Use this information to access your overcloud.

6.10. COMPLETING THE OVERCLOUD CREATION

This concludes the creation of the overcloud through the director’s UI. For post-creation functions, see
Chapter 7, Performing Tasks after Overcloud Creation.

CHAPTER 6. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE WEB UI

67

CHAPTER 7. PERFORMING TASKS AFTER OVERCLOUD
CREATION

This chapter explores some of the functions you perform after creating your overcloud of choice.

7.1. CREATING THE OVERCLOUD TENANT NETWORK

The overcloud requires a Tenant network for instances. Source the overcloud and create an initial
Tenant network in Neutron. For example:

$ source ~/overcloudrc
$ openstack network create default
$ openstack subnet create default --network default --gateway 172.20.1.1 --subnet-range
172.20.0.0/16

This creates a basic Neutron network called default. The overcloud automatically assigns IP addresses
from this network using an internal DHCP mechanism.

Confirm the created network with neutron net-list:

$ openstack network list
+-----------------------+-------------+--------------------------------------+
| id | name | subnets |
+-----------------------+-------------+--------------------------------------+
| 95fadaa1-5dda-4777... | default | 7e060813-35c5-462c-a56a-1c6f8f4f332f |
+-----------------------+-------------+--------------------------------------+

7.2. CREATING THE OVERCLOUD EXTERNAL NETWORK

You need to create the External network on the overcloud so that you can assign floating IP addresses
to instances.

Using a Native VLAN

This procedure assumes a dedicated interface or native VLAN for the External network.

Source the overcloud and create an External network in Neutron. For example:

$ source ~/overcloudrc
$ openstack network create public --external --provider-network-type flat --provider-physical-network
datacentre
$ openstack subnet create public --network public --dhcp --allocation-pool
start=10.1.1.51,end=10.1.1.250 --gateway 10.1.1.1 --subnet-range 10.1.1.0/24

In this example, you create a network with the name public. The overcloud requires this specific name
for the default floating IP pool. This is also important for the validation tests in Section 7.6, “Validating
the Overcloud”.

This command also maps the network to the datacentre physical network. As a default, datacentre
maps to the br-ex bridge. Leave this option as the default unless you have used custom neutron settings
during the overcloud creation.

Using a Non-Native VLAN

Red Hat OpenStack Platform 10 Director Installation and Usage

68

If not using the native VLAN, assign the network to a VLAN using the following commands:

$ source ~/overcloudrc
$ openstack network create public --external --provider-network-type vlan --provider-physical-network
datacentre --provider-segment 104
$ openstack subnet create public --network public --dhcp --allocation-pool
start=10.1.1.51,end=10.1.1.250 --gateway 10.1.1.1 --subnet-range 10.1.1.0/24

The provider:segmentation_id value defines the VLAN to use. In this case, you can use 104.

Confirm the created network with neutron net-list:

$ openstack network list
+-----------------------+-------------+--------------------------------------+
| id | name | subnets |
+-----------------------+-------------+--------------------------------------+
| d474fe1f-222d-4e32... | public | 01c5f621-1e0f-4b9d-9c30-7dc59592a52f |
+-----------------------+-------------+--------------------------------------+

7.3. CREATING ADDITIONAL FLOATING IP NETWORKS

Floating IP networks can use any bridge, not just br-ex, as long as you meet the following conditions:

NeutronExternalNetworkBridge is set to "''" in your network environment file.

You have mapped the additional bridge during deployment. For example, to map a new bridge
called br-floating to the floating physical network:

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-heat-
templates/environments/network-isolation.yaml -e ~/templates/network-environment.yaml --
neutron-bridge-mappings datacentre:br-ex,floating:br-floating

Create the Floating IP network after creating the overcloud:

$ openstack network create ext-net --external --provider-physical-network floating --provider-network-
type vlan --provider-segment 105
$ openstack subnet create ext-subnet --network ext-net --dhcp --allocation-pool
start=10.1.2.51,end=10.1.2.250 --gateway 10.1.2.1 --subnet-range 10.1.2.0/24

7.4. CREATING THE OVERCLOUD PROVIDER NETWORK

A provider network is a network attached physically to a network existing outside of the deployed
overcloud. This can be an existing infrastructure network or a network that provides external access
directly to instances through routing instead of floating IPs.

When creating a provider network, you associate it with a physical network, which uses a bridge mapping.
This is similar to floating IP network creation. You add the provider network to both the Controller and
the Compute nodes because the Compute nodes attach VM virtual network interfaces directly to the
attached network interface.

For example, if the desired provider network is a VLAN on the br-ex bridge, use the following command
to add a provider network on VLAN 201:

CHAPTER 7. PERFORMING TASKS AFTER OVERCLOUD CREATION

69

$ openstack network create provider_network --provider-physical-network datacentre --provider-
network-type vlan --provider-segment 201 --share

This command creates a shared network. It is also possible to specify a tenant instead of specifying --
share. That network will only be available to the specified tenant. If you mark a provider network as
external, only the operator may create ports on that network.

Add a subnet to a provider network if you want neutron to provide DHCP services to the tenant
instances:

$ openstack subnet create provider-subnet --network provider_network --dhcp --allocation-pool
start=10.9.101.50,end=10.9.101.100 --gateway 10.9.101.254 --subnet-range 10.9.101.0/24

Other networks might require access externally through the provider network. In this situation, create a
new router so that other networks can route traffic through the provider network:

$ openstack router create external
$ openstack router set --external-gateway provider_network external

Attach other networks to this router. For example, if you had a subnet called subnet1, you can attach it
to the router with the following commands:

$ openstack router add subnet external subnet1

This adds subnet1 to the routing table and allows traffic using subnet1 to route to the provider
network.

7.5. CREATING A BASIC OVERCLOUD FLAVOR

Validation steps in this guide assume that your installation contains flavors. If you have not already
created at least one flavor, use the following commands to create a basic set of default flavors that
have a range of storage and processing capability:

$ openstack flavor create m1.tiny --ram 512 --disk 0 --vcpus 1
$ openstack flavor create m1.smaller --ram 1024 --disk 0 --vcpus 1
$ openstack flavor create m1.small --ram 2048 --disk 10 --vcpus 1
$ openstack flavor create m1.medium --ram 3072 --disk 10 --vcpus 2
$ openstack flavor create m1.large --ram 8192 --disk 10 --vcpus 4
$ openstack flavor create m1.xlarge --ram 8192 --disk 10 --vcpus 8

Command options

ram

Use the ram option to define the maximum RAM for the flavor.

disk

Use the disk option to define the hard disk space for the flavor.

vcpus

Use the vcpus option to define the quantity of virtual CPUs for the flavor.

Use $ openstack flavor create --help to learn more about the openstack flavor create command.

Red Hat OpenStack Platform 10 Director Installation and Usage

70

7.6. VALIDATING THE OVERCLOUD

The overcloud uses the OpenStack Integration Test Suite (tempest) tool set to conduct a series of
integration tests. This section provides information on preparations for running the integration tests. For
full instruction on using the OpenStack Integration Test Suite, see the OpenStack Integration Test
Suite Guide.

Before Running the Integration Test Suite

If running this test from the undercloud, ensure that the undercloud host has access to the overcloud’s
Internal API network. For example, add a temporary VLAN on the undercloud host to access the Internal
API network (ID: 201) using the 172.16.0.201/24 address:

$ source ~/stackrc
$ sudo ovs-vsctl add-port br-ctlplane vlan201 tag=201 -- set interface vlan201 type=internal
$ sudo ip l set dev vlan201 up; sudo ip addr add 172.16.0.201/24 dev vlan201

Before running OpenStack Validation, check that the heat_stack_owner role exists in your overcloud:

$ source ~/overcloudrc
$ openstack role list
+----------------------------------+------------------+
| ID | Name |
+----------------------------------+------------------+
| 6226a517204846d1a26d15aae1af208f | swiftoperator |
| 7c7eb03955e545dd86bbfeb73692738b | heat_stack_owner |
+----------------------------------+------------------+

If the role does not exist, create it:

$ openstack role create heat_stack_owner

After Running the Integration Test Suite

After completing the validation, remove any temporary connections to the overcloud’s Internal API. In
this example, use the following commands to remove the previously created VLAN on the undercloud:

$ source ~/stackrc
$ sudo ovs-vsctl del-port vlan201

7.7. FENCING THE CONTROLLER NODES

Fencing is the process of isolating a node to protect a cluster and its resources. Without fencing, a faulty
node can cause data corruption in a cluster.

The director uses Pacemaker to provide a highly available cluster of Controller nodes. Pacemaker uses a
process called STONITH (Shoot-The-Other-Node-In-The-Head) to help fence faulty nodes. By
default, STONITH is disabled on your cluster and requires manual configuration so that Pacemaker can
control the power management of each node in the cluster.

NOTE

CHAPTER 7. PERFORMING TASKS AFTER OVERCLOUD CREATION

71

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/openstack_integration_test_suite_guide/

NOTE

Login to each node as the heat-admin user from the stack user on the director. The
overcloud creation automatically copies the stack user’s SSH key to each node’s heat-
admin.

Verify you have a running cluster with pcs status:

$ sudo pcs status
Cluster name: openstackHA
Last updated: Wed Jun 24 12:40:27 2015
Last change: Wed Jun 24 11:36:18 2015
Stack: corosync
Current DC: lb-c1a2 (2) - partition with quorum
Version: 1.1.12-a14efad
3 Nodes configured
141 Resources configured

Verify that stonith is disabled with pcs property show:

$ sudo pcs property show
Cluster Properties:
cluster-infrastructure: corosync
cluster-name: openstackHA
dc-version: 1.1.12-a14efad
have-watchdog: false
stonith-enabled: false

The Controller nodes contain a set of fencing agents for the various power management devices the
director supports. This includes:

Table 7.1. Fence Agents

Device Type

fence_ipmilan The Intelligent Platform Management Interface
(IPMI)

fence_idrac, fence_drac5 Dell Remote Access Controller (DRAC)

fence_ilo Integrated Lights-Out (iLO)

fence_ucs Cisco UCS - For more information, see Configuring
Cisco Unified Computing System (UCS) Fencing on
an OpenStack High Availability Environment

fence_xvm, fence_virt Libvirt and SSH

The rest of this section uses the IPMI agent (fence_ipmilan) as an example.

View a full list of IPMI options that Pacemaker supports:

Red Hat OpenStack Platform 10 Director Installation and Usage

72

https://access.redhat.com/articles/1981813

$ sudo pcs stonith describe fence_ipmilan

Each node requires configuration of IPMI devices to control the power management. This involves
adding a stonith device to Pacemaker for each node. Use the following commands for the cluster:

NOTE

The second command in each example is to prevent the node from asking to fence itself.

For Controller node 0:

$ sudo pcs stonith create my-ipmilan-for-controller-0 fence_ipmilan pcmk_host_list=overcloud-
controller-0 ipaddr=192.0.2.205 login=admin passwd=p@55w0rd! lanplus=1 cipher=1 op monitor
interval=60s
$ sudo pcs constraint location my-ipmilan-for-controller-0 avoids overcloud-controller-0

For Controller node 1:

$ sudo pcs stonith create my-ipmilan-for-controller-1 fence_ipmilan pcmk_host_list=overcloud-
controller-1 ipaddr=192.0.2.206 login=admin passwd=p@55w0rd! lanplus=1 cipher=1 op monitor
interval=60s
$ sudo pcs constraint location my-ipmilan-for-controller-1 avoids overcloud-controller-1

For Controller node 2:

$ sudo pcs stonith create my-ipmilan-for-controller-2 fence_ipmilan pcmk_host_list=overcloud-
controller-2 ipaddr=192.0.2.207 login=admin passwd=p@55w0rd! lanplus=1 cipher=1 op monitor
interval=60s
$ sudo pcs constraint location my-ipmilan-for-controller-2 avoids overcloud-controller-2

Run the following command to see all stonith resources:

$ sudo pcs stonith show

Run the following command to see a specific stonith resource:

$ sudo pcs stonith show [stonith-name]

Finally, enable fencing by setting the stonith property to true:

$ sudo pcs property set stonith-enabled=true

Verify the property:

$ sudo pcs property show

7.8. MODIFYING THE OVERCLOUD ENVIRONMENT

Sometimes you might intend to modify the overcloud to add additional features, or change the way it
operates. To modify the overcloud, make modifications to your custom environment files and Heat
templates, then rerun the openstack overcloud deploy command from your initial overcloud creation.

CHAPTER 7. PERFORMING TASKS AFTER OVERCLOUD CREATION

73

For example, if you created an overcloud using Section 5.6, “Creating the Overcloud with the CLI Tools” ,
you would rerun the following command:

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-heat-
templates/environments/network-isolation.yaml -e ~/templates/network-environment.yaml -e
~/templates/storage-environment.yaml --control-scale 3 --compute-scale 3 --ceph-storage-scale 3 --
control-flavor control --compute-flavor compute --ceph-storage-flavor ceph-storage --ntp-server
pool.ntp.org --neutron-network-type vxlan --neutron-tunnel-types vxlan

The director checks the overcloud stack in heat, and then updates each item in the stack with the
environment files and heat templates. It does not recreate the overcloud, but rather changes the
existing overcloud.

If you aim to include a new environment file, add it to the openstack overcloud deploy command with a
-e option. For example:

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-heat-
templates/environments/network-isolation.yaml -e ~/templates/network-environment.yaml -e
~/templates/storage-environment.yaml -e ~/templates/new-environment.yaml --control-scale 3 --
compute-scale 3 --ceph-storage-scale 3 --control-flavor control --compute-flavor compute --ceph-
storage-flavor ceph-storage --ntp-server pool.ntp.org --neutron-network-type vxlan --neutron-tunnel-
types vxlan

This includes the new parameters and resources from the environment file into the stack.

IMPORTANT

It is advisable not to make manual modifications to the overcloud’s configuration as the
director might overwrite these modifications later.

7.9. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD

Use the following procedure if you have an existing OpenStack environment and aim to migrate its
virtual machines to your Red Hat OpenStack Platform environment.

Create a new image by taking a snapshot of a running server and download the image.

$ openstack server image create instance_name --name image_name
$ openstack image save image_name --file exported_vm.qcow2

Upload the exported image into the overcloud and launch a new instance.

$ openstack image create imported_image --file exported_vm.qcow2 --disk-format qcow2 --
container-format bare
$ openstack server create imported_instance --key-name default --flavor m1.demo --image
imported_image --nic net-id=net_id

IMPORTANT

Each VM disk has to be copied from the existing OpenStack environment and into the
new Red Hat OpenStack Platform. Snapshots using QCOW will lose their original layering
system.

Red Hat OpenStack Platform 10 Director Installation and Usage

74

7.10. RUNNING ANSIBLE AUTOMATION

The director provides the ability to run Ansible-based automation on your OpenStack Platform
environment. The director uses the tripleo-ansible-inventory command to generate a dynamic
inventory of nodes in your environment.

IMPORTANT

The dynamic inventory tool only includes the undercloud and the default controller and
compute overcloud nodes. Other roles are not supported.

To view a dynamic inventory of nodes, run the tripleo-ansible-inventory command after sourcing
stackrc:

$ souce ~/stackrc
$ tripleo-ansible-inventory --list

The --list option provides details on all hosts.

This outputs the dynamic inventory in a JSON format:

{"overcloud": {"children": ["controller", "compute"], "vars": {"ansible_ssh_user": "heat-admin"}},
"controller": ["192.0.2.2"], "undercloud": {"hosts": ["localhost"], "vars": {"overcloud_horizon_url":
"http://192.0.2.4:80/dashboard", "overcloud_admin_password": "abcdefghijklm12345678",
"ansible_connection": "local"}}, "compute": ["192.0.2.3"]}

To execute Ansible automations on your environment, run the ansible command and include the full
path of the dynamic inventory tool using the -i option. For example:

ansible [HOSTS] -i /bin/tripleo-ansible-inventory [OTHER OPTIONS]

Exchange [HOSTS] for the type of hosts to use. For example:

controller for all Controller nodes

compute for all Compute nodes

overcloud for all overcloud child nodes i.e. controller and compute

undercloud for the undercloud

"*" for all nodes

Exchange [OTHER OPTIONS] for the additional Ansible options. Some useful options include:

--ssh-extra-args='-o StrictHostKeyChecking=no' to bypasses confirmation on host key
checking.

-u [USER] to change the SSH user that executes the Ansible automation. The default SSH
user for the overcloud is automatically defined using the ansible_ssh_user parameter in
the dynamic inventory. The -u option overrides this parameter.

-m [MODULE] to use a specific Ansible module. The default is command, which executes
Linux commands.

CHAPTER 7. PERFORMING TASKS AFTER OVERCLOUD CREATION

75

-a [MODULE_ARGS] to define arguments for the chosen module.

IMPORTANT

Ansible automation on the overcloud falls outside the standard overcloud stack. This
means subsequent execution of the openstack overcloud deploy command might
override Ansible-based configuration for OpenStack Platform services on overcloud
nodes.

7.11. PROTECTING THE OVERCLOUD FROM REMOVAL

To avoid accidental removal of the overcloud with the heat stack-delete overcloud command, Heat
contains a set of policies to restrict certain actions. Edit the /etc/heat/policy.json and find the following
parameter:

"stacks:delete": "rule:deny_stack_user"

Change it to:

"stacks:delete": "rule:deny_everybody"

Save the file.

This prevents removal of the overcloud with the heat client. To allow removal of the overcloud, revert
the policy to the original value.

7.12. REMOVING THE OVERCLOUD

The whole overcloud can be removed when desired.

Delete any existing overcloud:

$ openstack stack delete overcloud

Remove the overcloud plan from the director:

$ openstack overcloud plan delete overcloud

Confirm the deletion of the overcloud:

$ openstack stack list

Deletion takes a few minutes.

Once the removal completes, follow the standard steps in the deployment scenarios to recreate your
overcloud.

Red Hat OpenStack Platform 10 Director Installation and Usage

76

CHAPTER 8. MIGRATING VIRTUAL MACHINES BETWEEN
COMPUTE NODES

In some situations, you might need to migrate virtual machines from one Compute node to another
Compute node in the overcloud. For example:

Compute Node Maintenance: If you must temporarily take a Compute node out of service, you
can temporarily migrate virtual machines running on the Compute node to another Compute
node. Common scenarios include hardware maintenance, hardware repair, kernel upgrades and
software updates.

Failing Compute Node: If a Compute node is about to fail and must be serviced or replaced,
you must migrate virtual machines from the failing Compute node to a healthy Compute node.
For Compute nodes that have already failed, see Evacuating VMs.

Workload Rebalancing: You can consider migrating one or more virtual machines to another
Compute node to rebalance the workload. For example, you can consolidate virtual machines on
a Compute node to conserve power, migrate virtual machines to a Compute node that is
physically closer to other networked resources to reduce latency, or distribute virtual machines
across Compute nodes to avoid hot spots and increase resiliency.

The director configures all Compute nodes to provide secure migration. All Compute nodes also require
a shared SSH key to provide each host’s nova user with access to other Compute nodes during the
migration process. The director creates this key using the OS::TripleO::Services::NovaCompute
composable service. This composable service is one of the main services included on all Compute roles
by default (see Composable Services and Custom Roles in Advanced Overcloud Customization).

UPDATES TO MIGRATION FUNCTIONALITY

The latest update of Red Hat OpenStack Platform 10 includes the
OS::TripleO::Services::Sshd composable service, which is required for live migration
capabilities. The director’s core template collection did not include this service in the
initial release but is now included in the openstack-tripleo-heat-templates-5.2.0-12
package and later versions.

If using the default roles, update your environment to use the Heat templates
from the openstack-tripleo-heat-templates-5.2.0-12 package or later versions.

If using a custom roles data file, update your environment to use the Heat
templates from the openstack-tripleo-heat-templates-5.2.0-12 package or later
versions, include the OS::TripleO::Services::Sshd service on each overcloud
role, then update your overcloud stack to include the new service.

For more information, see "Red Hat OpenStack Platform director (TripleO) CVE-2017-
2637 bug and Red Hat OpenStack Platform".

IMPORTANT

CHAPTER 8. MIGRATING VIRTUAL MACHINES BETWEEN COMPUTE NODES

77

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/instances_and_images_guide/index#section-migration-evacuation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/advanced_overcloud_customization/roles
https://access.redhat.com/node/3022771/

IMPORTANT

RHSA-2018:0369 - Security Advisory issued on 2018-02-27 and RHBA-2019:0074 - Bug
Fix Advisory issued on 2019-01-16 impact the migration of virtual machines.

RHSA-2018:0369 - Security Advisory prevents live migration of virtual machines to
Compute nodes where the CPUs defined in the domain XML are already in use. RHSA-
2018:0369 - Security Advisory unnecessarily imposes the same restrictions on operations
such as cold migration, evacuation, resize and unshelve. RHBA-2019:0074 - Bug Fix
Advisory relaxes those restrictions by making them optional. See the new
cpu_pinning_migration_quick_fail configuration option introduced with this advisory
for details.

Red Hat recommends applying both advisories.

See Migration Constraints for additional details on migration constraints.

8.1. MIGRATION TYPES

OpenStack Platform supports two types of migration:

Live Migration

Live migration involves spinning up the virtual machine on the destination node and shutting down the
virtual machine on the source node seamlessly while maintaining state consistency.

Live migration handles virtual machine migration with little or no perceptible downtime. In some cases,
virtual machines cannot use live migration. See Migration Constraints for details on migration
constraints.

Cold Migration

Cold migration or non-live migration involves nova shutting down a virtual machine before migrating it
from the source Compute node to the destination Compute node.

Red Hat OpenStack Platform 10 Director Installation and Usage

78

https://access.redhat.com/errata/RHSA-2018:0369
https://access.redhat.com/errata/RHBA-2019:0074
https://access.redhat.com/errata/RHSA-2018:0369
https://access.redhat.com/errata/RHSA-2018:0369
https://access.redhat.com/errata/RHBA-2019:0074

Cold migration involves some downtime for the virtual machine. However, cold migration still provides
the migrated virtual machine with access to the same volumes and IP addresses.

IMPORTANT

For source Compute nodes that have already failed, see Evacuation. Migration requires
that both the source and destination Compute nodes are running.

8.2. MIGRATION CONSTRAINTS

In some cases, migrating virtual machines involves additional constraints. Migration constraints typically
arise with block migration, configuration disks, or when one or more virtual machines access physical
hardware on the Compute node.

CPU Constraints

The source and destination Compute nodes must have the same CPU architecture. For example, Red
Hat does not support migrating a virtual machine from an x86_64 CPU to a ppc64le CPU. In some
cases, the CPU of the source and destination Compute node must match exactly, such as virtual
machines using CPU host passthrough. In all cases, the CPU features of the destination node must be a
superset of the CPU features on the source node. Additionally, when virtual machines use CPU pinning,
the NUMA node used on the source node must target the same NUMA node on the destination
Compute node and the NUMA node must be empty.

Memory Constraints

The destination Compute node must have sufficient available RAM. Memory oversubscription can
cause migration to fail. Additionally, virtual machines using a NUMA topology must have sufficient
available RAM on the same NUMA node on the destination Compute node.

Block Migration Constraints

Migrating virtual machines that use disks stored locally on a Compute node takes significantly longer
than migrating volume-backed virtual machines that utilize shared storage such as Red Hat Ceph
Storage. This latency arises because nova migrates local disks block-by-block between the Compute
nodes over the control plane network by default. By contrast, volume-backed instances using shared
storage such as Red Hat Ceph Storage do not have to migrate the volumes, because each Compute
node already has access to the shared storage.

NOTE

CHAPTER 8. MIGRATING VIRTUAL MACHINES BETWEEN COMPUTE NODES

79

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/instances_and_images_guide/index#section-migration-evacuation

NOTE

Network congestion in the control plane network caused by migrating local disks or virtual
machines that consume large amounts of RAM could impact the performance of other
systems using the control plane network, such as RabbitMQ.

Read-only Drive Migration Constraints

Migrating a drive is only supported if the drive has both read and write capabilities. For example, nova
cannot migrate a CD-ROM drive or a read-only config drive. However, nova can migrate a drive with
both read and write capabilities, including a config drive with a drive format such as vfat.

Live Migration Constraints

There are a few additional live migration constraints in Red Hat OpenStack Platform:

No New Operations During Migration: To achieve state consistency between the copies of the
virtual machine on the source and destination nodes, Red Hat OpenStack Platform must
prevent new operations during live migration. Otherwise, live migration could take a long time or
potentially never end if writes to memory occur faster than live migration can replicate the state
of the memory.

Non-Uniform Memory Access (NUMA): In previous releases, migrating virtual machines when
configured with a NUMA topology was not recommended. Currently, nova can migrate virtual
machines with NUMA topology cleanly subject to some constraints.

CPU Pinning: When a flavor uses CPU pinning, the flavor implicitly introduces a NUMA
topology to the virtual machine and maps its CPUs and memory to specific host CPUs and
memory. The difference been a simple NUMA topology and CPU pinning is that NUMA uses a
range of CPU cores, whereas CPU pinning uses specific CPU cores. See CPU pinning for
additional details.

Data Plane Development Kit (DPDK): When a virtual machine uses DPDK, such as a virtual
machine running Open vSwitch with dpdk-netdev, the virtual machine also uses huge pages
which imposes a NUMA topology such that nova pins the virtual machine to a NUMA node.

nova can live migrate a virtual machine that uses NUMA, CPU pinning or DPDK. However, the
destination Compute node must have sufficient capacity on the same NUMA node that the virtual
machine uses on the source Compute node. For example, if a virtual machine uses NUMA 0 on
overcloud-compute-0, when migrating the virtual machine to overcloud-compute-1, you must ensure
that overcloud-compute-1 has sufficient capacity on NUMA 0 to support the virtual machine in order to
use live migration.

Constraints that Preclude Live Migration

There are a few cases where virtual machine configuration precludes live migration in Red Hat
OpenStack Platform:

Single-root Input/Output Virtualization (SR-IOV): You can assign SR-IOV Virtual Functions
(VFs) to virtual machines. However, this prevents live migration. Unlike a regular network device,
an SR-IOV VF network device does not have a permanent unique MAC address. The VF network
device receives a new MAC address each time the Compute node reboots or when nova-
scheduler migrates the virtual machine to a new Compute node. Consequently, nova cannot
live migrate virtual machines that use SR-IOV in OpenStack Platform 10. You must cold migrate
virtual machines that use SR-IOV.

PCI Passthrough: QEMU/KVM hypervisors support attaching PCI devices on the Compute
node to a virtual machine. PCI passthrough allows a virtual machine to have exclusive access to

Red Hat OpenStack Platform 10 Director Installation and Usage

80

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/instances_and_images_guide/index#ch-cpu_pinning

PCI devices, which appear and behave as if they are physically attached to the virtual machine’s
operating system. However, since PCI passthrough involves physical addresses, nova does not
support live migration of virtual machines using PCI passthrough in OpenStack Platform 10.

8.3. PRE-MIGRATION PROCEDURES

Before migrating one or more virtual machines, perform the following steps:

Procedure

1. From the undercloud, identify the source Compute node hostname and the destination
Compute node hostname.

$ source ~/overcloudrc
$ openstack compute service list

2. List virtual machines on the source Compute node and locate the ID of the virtual machine(s)
you intend to migrate:

$ openstack server list --host [source] --all-projects

Replace [source] with the host name of the source Compute node.

Pre-Migration Procedure for Compute Node Maintenance

If you are taking down the source Compute node for maintenance, disable the source Compute node
from the undercloud to ensure that the scheduler does not attempt to assign new virtual machines to
the source Compute node during maintenance.

$ openstack compute service set [source] nova-compute --disable

Replace [source] with the host name of the source Compute node.

Pre-Migration Procedure for NUMA, CPU-pinned and DPDK Instances

When migrating virtual machines that use NUMA, CPU-pinning or DPDK, the destination Compute node
should have an identical hardware specification and configuration as the source Compute node.
Additionally, the destination Compute node should have no virtual machines running on it to ensure that
it preserves the NUMA topology of the source Compute node.

NOTE

When migrating virtual machines using NUMA, CPU-pinning or DPDK, the
/etc/nova/nova.conf file requires appropriate values for the scheduler_default_filters
configuration setting, such as AggregateInstanceExtraSpecFilter and
NUMATopologyFilter. You can accomplish this by setting the
NovaSchedulerDefaultFilters heat parameter in an environment file.

1. If the destination Compute node for NUMA, CPU-pinned or DPDK virtual machines is not
disabled, disable it to prevent the scheduler from assigning virtual machines to the node.

$ openstack compute service set [dest] nova-compute --disable

Replace [dest] with the host name of the destination Compute node.

CHAPTER 8. MIGRATING VIRTUAL MACHINES BETWEEN COMPUTE NODES

81

2. Ensure the destination Compute node has no virtual machines, except for virtual machines
previously migrated from the source Compute node when migrating multiple DPDK or NUMA
virtual machines.

$ openstack server list --host [dest] --all-projects

Replace [dest] with the host name of the destination Compute node.

3. Ensure the destination Compute node has sufficient resources to run the NUMA, CPU-pinned
or DPDK virtual machine.

$ openstack host show overcloud-compute-n
$ ssh overcloud-compute-n
$ numactl --hardware
$ exit

Replace overcloud-compute-n with the host name of the destination Compute node.

4. To discover NUMA information about the source or destination Compute nodes, execute the
following as needed:

$ ssh root@overcloud-compute-n
lscpu && lscpu | grep NUMA
virsh nodeinfo
virsh capabilities
exit

Use ssh to connect to overcloud-compute-n where overcloud-compute-n is the source or
destination Compute node.

5. If you are unsure if a virtual machine uses NUMA, check the flavor of the virtual machine.

$ openstack server list -c Name -c Flavor --name [vm]

Replace [vm] with the name or ID for the virtual machine.

Then, check the flavor:

$ openstack flavor show [flavor]

Replace [flavor] with the name or ID of the flavor. If the result of the properties field includes
hw:mem_page_size with a value other than any such as 2MB, 2048 or 1GB, the virtual machine
will have a NUMA topology. If the properties field includes
aggregate_instance_extra_specs:pinned='true', the virtual machine uses CPU pinning. If the
properties field includes hw:numa_nodes, nova restricts the virtual machine to a specific
NUMA node.

6. For each virtual machine using NUMA, consider retrieving information about the NUMA
topology from the underlying Compute node so that you can verify that the NUMA topology on
the destination Compute node reflects the NUMA topology of the source Compute node after
migration is complete.

$ ssh root@overcloud-compute-n
virsh vcpuinfo [vm]
virsh numatune [vm]

Red Hat OpenStack Platform 10 Director Installation and Usage

82

exit

Replace [vm] with the name of the virtual machine. The vcpuinfo command provides details
about NUMA and CPU pinning. The numatune command provides details about which NUMA
node the virtual machine is using.

8.4. LIVE MIGRATE A VIRTUAL MACHINE

Live migration moves a virtual machine from a source Compute node to a destination Compute node
with a minimal amount of downtime. However, live migration might not be appropriate for all virtual
machines. See Migration Constraints for additional details.

Procedure

1. To live migrate a virtual machine, specify the virtual machine and the destination Compute
node:

$ openstack server migrate [vm] --live [dest] --wait

Replace [vm] with the name or ID of the virtual machine. Replace [dest] with the hostname of
the destination Compute node. Specify the --block-migration flag if migrating a locally stored
volume.

2. Wait for migration to complete. See Check Migration Status to check the status of the
migration.

3. Confirm the migration was successful:

$ openstack server list --host [dest] --all-projects

Replace [dest] with the hostname of the destination Compute node.

4. For virtual machines using NUMA, CPU-pinning or DPDK, consider retrieving information about
the NUMA topology from a Compute node to compare it with NUMA topology retrieved during
the pre-migration procedure.

$ ssh root@overcloud-compute-n
virsh vcpuinfo [vm]
virsh numatune [vm]
exit

Replace overcloud-compute-n with the host name of the Compute node. Replace [vm] with
the name of the virtual machine. Comparing the NUMA topologies of the source and
destination Compute nodes helps to ensure that the source and destination Compute nodes
use the same NUMA topology.

5. Repeat this procedure for each additional virtual machine that you intend to migrate.

When you have finished migrating the virtual machines, proceed to the Post-migration Procedures .

8.5. COLD MIGRATE A VIRTUAL MACHINE

Cold migrating a virtual machine involves stopping the virtual machine and moving it to another
Compute node. Cold migration facilitates migration scenarios that live migrating cannot facilitate, such

CHAPTER 8. MIGRATING VIRTUAL MACHINES BETWEEN COMPUTE NODES

83

as migrating virtual machines using PCI passthrough or Single-Root Input/Output Virtualization (SR-
IOV). The Scheduler automatically selects the destination Compute node. See Migration Constraints for
additional details.

Procedure

1. To migrate a virtual machine, specify the virtual machine.

$ openstack server migrate [vm] --wait

Replace [vm] with the virtual machine ID. Specify the --block-migration flag if migrating a
locally stored volume.

2. Wait for migration to complete. See Check Migration Status to check the status of the
migration.

3. Confirm the migration was successful.

$ openstack server list --all-projects

When you have finished migrating virtual machines, proceed to the Post-migration Procedures .

8.6. CHECK MIGRATION STATUS

Migration involves numerous state transitions before migration is complete. During a healthy migration,
the migration state typically transitions as follows:

1. Queued: nova accepted the request to migrate a virtual machine and migration is pending.

2. Preparing: nova is preparing to migrate the virtual machine.

3. Running: nova is in the process of migrating the virtual machine.

4. Post-migrating: nova has built the virtual machine on the destination Compute node and is
freeing up resources on the source Compute node.

5. Completed: nova has completed migrating the virtual machine and finished freeing up
resources on the source Compute node.

Procedure

1. Retrieve the list of migrations for the virtual machine.

$ nova server-migration-list [vm]

Replace [vm] with the virtual machine name or ID.

2. Show the status of the migration.

$ nova server-migration-show [vm] [migration]

Replace [vm] with the virtual machine name or ID. Replace [migration] with the ID of the
migration.

Sometimes virtual machine migration can take a long time or encounter errors. See Section 8.8,

Red Hat OpenStack Platform 10 Director Installation and Usage

84

Sometimes virtual machine migration can take a long time or encounter errors. See Section 8.8,
“Troubleshooting Migration” for details.

8.7. POST-MIGRATION PROCEDURES

After migrating one or more virtual machines, review the following procedures and execute them as
appropriate.

Post-Migration Procedure for Compute Node Maintenance

If you previously shut down the source Compute node for maintenance and maintenance is complete,
you may re-enable the source Compute node from the undercloud to ensure that the scheduler can
assign new virtual machines to the source Compute node.

$ source ~/overcloudrc
$ openstack compute service set [source] nova-compute --enable

Replace [source] with the host name of the source Compute node.

Post-Migration Procedure for NUMA, CPU-pinned or DPDK Instances

After migrating virtual machines that use NUMA, CPU-pinning or DPDK, you may re-enable the
destination Compute node from the undercloud.

$ source ~/overcloudrc
$ openstack compute service set [dest] nova-compute --enable

Replace [dest] with the host name of the destination Compute node.

8.8. TROUBLESHOOTING MIGRATION

There are several issues that can arise during virtual machine migration:

1. The migration process encounters errors.

2. The migration process never ends.

3. Virtual machine performance degrades after migration

Errors During Migration

The following issues can send the migration operation into an error state:

1. Running a cluster with different versions of OpenStack.

2. Specifying a virtual machine ID that cannot be found.

3. The virtual machine you are trying to migrate is in an error state.

4. The Compute service is shutting down.

5. A race condition occurs.

6. Live migration enters a failed state.

When live migration enters a failed state, it is typically followed by an error state. The following common

CHAPTER 8. MIGRATING VIRTUAL MACHINES BETWEEN COMPUTE NODES

85

When live migration enters a failed state, it is typically followed by an error state. The following common
issues can cause a failed state:

1. A destination Compute host is not available.

2. A scheduler exception occurs.

3. The rebuild process fails due to insufficient computing resources.

4. A server group check fails.

5. The virtual machine on the source Compute node gets deleted before migration to the
destination Compute node is complete.

Never-ending Live Migration

Live migration can fail to complete in a timely manner, which leaves migration in a perpetual running
state. A common reason for a live migration that never completes is that client requests to the virtual
machine running on the source Compute node create changes that occur faster than nova can replicate
them to the destination Compute node.

There are a few ways to address this situation:

1. Abort the live migration.

2. Force the live migration to complete.

Aborting Live Migration

If the virtual machine state changes faster than the migration procedure can copy it to the destination
node and you do not want to temporarily suspend the virtual machine’s operations, you can abort the
live migration procedure.

1. Retrieve the list of migrations for the virtual machine:

$ nova server-migration-list [vm]

Replace [vm] with the virtual machine name or ID.

2. Abort the live migration:

$ nova live-migration-abort [vm] [migration]

Replace [vm] with the virtual machine name or ID, and [migration] with the ID of the migration.

Forcing Live Migration to Complete

If the virtual machine state changes faster than the migration procedure can copy it to the destination
node and you want to temporarily suspend the virtual machine’s operations to force migration to
complete, you can force the live migration procedure to complete.

IMPORTANT

Forcing live migration to complete might lead to perceptible downtime.

1. Retrieve the list of migrations for the virtual machine:

Red Hat OpenStack Platform 10 Director Installation and Usage

86

$ nova server-migration-list [vm]

Replace [vm] with the virtual machine name or ID.

2. Force the live migration to complete:

$ nova live-migration-force-complete [vm] [migration]

Replace [vm] with the virtual machine name or ID. Replace [migration] with the ID of the
migration.

Virtual Machine Performance Degrades After Migration

For VMs using a NUMA topology, the source and destination Compute nodes must have the same
NUMA topology and configuration. The destination Compute node’s NUMA topology must have
sufficient resources available. If the NUMA configuration between the source and destination Compute
nodes is not the same, it is possible that live migration succeeds while the virtual machine performance
degrades. For example, if the source Compute node maps NIC 1 to NUMA node 0, but the destination
Compute node maps NIC 1 to NUMA node 5, after migration the virtual machine might route network
traffic from a first CPU across the bus to a second CPU with NUMA node 5 to route traffic to NIC 1—​
resulting in expected behavior, but degraded performance. Similarly, if NUMA node 0 on the source
Compute node has sufficient available CPU and RAM, but NUMA node 0 on the destination Compute
node already has virtual machines using some of the resources, the virtual machine might run properly
but suffer performance degradation. See Section 8.2, “Migration Constraints” for additional details.

CHAPTER 8. MIGRATING VIRTUAL MACHINES BETWEEN COMPUTE NODES

87

CHAPTER 9. SCALING THE OVERCLOUD

WARNING

Do not use openstack server delete to remove nodes from the overcloud. Read
the procedures defined in this section to properly remove and replace nodes.

There might be situations where you need to add or remove nodes after the creation of the overcloud.
For example, you might need to add more Compute nodes to the overcloud. This situation requires
updating the overcloud.

Use the following table to determine support for scaling each node type:

Table 9.1. Scale Support for Each Node Type

Node Type Scale Up? Scale Down? Notes

Controller N N

Compute Y Y

Ceph Storage Nodes Y N You must have at least 1
Ceph Storage node
from the initial
overcloud creation.

Block Storage Nodes N N

Object Storage Nodes Y Y Requires manual ring
management, which is
described in Section 9.6,
“Replacing Object
Storage Nodes”.

IMPORTANT

Make sure to leave at least 10 GB free space before scaling the overcloud. This free
space accommodates image conversion and caching during the node provisioning
process.

9.1. ADDING ADDITIONAL NODES

To add more nodes to the director’s node pool, create a new JSON file (for example, newnodes.json)
containing the new node details to register:

{



Red Hat OpenStack Platform 10 Director Installation and Usage

88

 "nodes":[
 {
 "mac":[
 "dd:dd:dd:dd:dd:dd"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.207"
 },
 {
 "mac":[
 "ee:ee:ee:ee:ee:ee"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.208"
 }
]
}

See Section 5.1, “Registering Nodes for the Overcloud” for an explanation of these parameters.

Run the following command to register these nodes:

$ openstack baremetal import --json newnodes.json

After registering the new nodes, launch the introspection process for them. Use the following
commands for each new node:

$ openstack baremetal node manage [NODE UUID]
$ openstack overcloud node introspect [NODE UUID] --provide

This detects and benchmarks the hardware properties of the nodes.

After the introspection process completes, tag each new node for its desired role. For example, for a
Compute node, use the following command:

$ openstack baremetal node set --property capabilities='profile:compute,boot_option:local' [NODE
UUID]

Scaling the overcloud requires running the openstack overcloud deploy again with the desired number
of nodes for a role. For example, to scale to 5 Compute nodes:

$ openstack overcloud deploy --templates --compute-scale 5 [OTHER_OPTIONS]

CHAPTER 9. SCALING THE OVERCLOUD

89

This updates the entire overcloud stack. Note that this only updates the stack. It does not delete the
overcloud and replace the stack.

IMPORTANT

Make sure to include all environment files and options from your initial overcloud creation.
This includes the same scale parameters for non-Compute nodes.

9.2. REMOVING COMPUTE NODES

There might be situations where you need to remove Compute nodes from the overcloud. For example,
you might need to replace a problematic Compute node.

IMPORTANT

Before removing a Compute node from the overcloud, migrate the workload from the
node to other Compute nodes. See Chapter 8, Migrating Virtual Machines Between
Compute Nodes for more details.

Next, disable the node’s Compute service on the overcloud. This stops the node from scheduling new
instances.

$ source ~/overcloudrc
$ openstack compute service list
$ openstack compute service set [hostname] nova-compute --disable
$ source ~/stackrc

Removing overcloud nodes requires an update to the overcloud stack in the director using the local
template files. First identify the UUID of the overcloud stack:

$ openstack stack list

Identify the UUIDs of the nodes to delete:

$ openstack server list

Run the following commands to update the overcloud plan and delete the nodes from the stack:

$ openstack overcloud deploy --update-plan-only \
 --templates \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
 -e /home/stack/templates/network-environment.yaml \
 -e /home/stack/templates/storage-environment.yaml \
 -e /home/stack/templates/rhel-registration/environment-rhel-registration.yaml \
 [-e |...]
$ openstack overcloud node delete --stack [STACK_UUID] --templates -e [ENVIRONMENT_FILE]
[NODE1_UUID] [NODE2_UUID] [NODE3_UUID]

IMPORTANT

Red Hat OpenStack Platform 10 Director Installation and Usage

90

IMPORTANT

If you passed any extra environment files when you created the overcloud, pass them
here again using the -e or --environment-file option to avoid making undesired manual
changes to the overcloud.

IMPORTANT

Make sure the openstack overcloud node delete command runs to completion before
you continue. Use the openstack stack list command and check the overcloud stack
has reached an UPDATE_COMPLETE status.

Finally, remove the node’s Compute service:

$ source ~/overcloudrc
$ openstack compute service list
$ openstack compute service delete [service-id]
$ source ~/stackrc

And remove the node’s Open vSwitch agent:

$ source ~/overcloudrc
$ openstack network agent list
$ openstack network agent delete [openvswitch-agent-id]
$ source ~/stackrc

You are now free to remove the node from the overcloud and re-provision it for other purposes.

9.3. REPLACING COMPUTE NODES

If a Compute node fails, you can replace the node with a working one. Replacing a Compute node uses
the following process:

Migrate workload off the existing Compute node and shutdown the node. See Chapter 8,
Migrating Virtual Machines Between Compute Nodes for this process.

Remove the Compute node from the overcloud. See Section 9.2, “Removing Compute Nodes”
for this process.

Scale out the overcloud with a new Compute node. See Section 9.1, “Adding Additional Nodes”
for this process.

This process ensures that a node can be replaced without affecting the availability of any instances.

9.4. REPLACING CONTROLLER NODES

In certain circumstances a Controller node in a high availability cluster might fail. In these situations, you
must remove the node from the cluster and replace it with a new Controller node. This also includes
ensuring the node connects to the other nodes in the cluster.

This section provides instructions on how to replace a Controller node. The process involves running the
openstack overcloud deploy command to update the overcloud with a request to replace a controller
node. Note that this process is not completely automatic; during the overcloud stack update process,

CHAPTER 9. SCALING THE OVERCLOUD

91

the openstack overcloud deploy command will at some point report a failure and halt the overcloud
stack update. At this point, the process requires some manual intervention. Then the openstack
overcloud deploy process can continue.

IMPORTANT

The following procedure only applies to high availability environments. Do not use this
procedure if only using one Controller node.

9.4.1. Preliminary Checks

Before attempting to replace an overcloud Controller node, it is important to check the current state of
your Red Hat OpenStack Platform environment. Checking the current state can help avoid
complications during the Controller replacement process. Use the following list of preliminary checks to
determine if it is safe to perform a Controller node replacement. Run all commands for these checks on
the undercloud.

1. Check the current status of the overcloud stack on the undercloud:

$ source stackrc
$ openstack stack list --nested

The overcloud stack and its subsequent child stacks should have either a
CREATE_COMPLETE or UPDATE_COMPLETE.

2. Perform a backup of the undercloud databases:

$ mkdir /home/stack/backup
$ sudo mysqldump --all-databases --quick --single-transaction | gzip >
/home/stack/backup/dump_db_undercloud.sql.gz
$ sudo systemctl stop openstack-ironic-api.service openstack-ironic-conductor.service
openstack-ironic-inspector.service openstack-ironic-inspector-dnsmasq.service
$ sudo cp /var/lib/ironic-inspector/inspector.sqlite /home/stack/backup
$ sudo systemctl start openstack-ironic-api.service openstack-ironic-conductor.service
openstack-ironic-inspector.service openstack-ironic-inspector-dnsmasq.service

3. Check your undercloud contains 10 GB free storage to accommodate for image caching and
conversion when provisioning the new node.

4. Check the status of Pacemaker on the running Controller nodes. For example, if 192.168.0.47 is
the IP address of a running Controller node, use the following command to get the Pacemaker
status:

$ ssh heat-admin@192.168.0.47 'sudo pcs status'

The output should show all services running on the existing nodes and stopped on the failed
node.

5. Check the following parameters on each node of the overcloud’s MariaDB cluster:

wsrep_local_state_comment: Synced

wsrep_cluster_size: 2
Use the following command to check these parameters on each running Controller node
(respectively using 192.168.0.47 and 192.168.0.46 for IP addresses):

Red Hat OpenStack Platform 10 Director Installation and Usage

92

$ for i in 192.168.0.47 192.168.0.46 ; do echo "*** $i ***" ; ssh heat-admin@$i "sudo
mysql --exec=\"SHOW STATUS LIKE 'wsrep_local_state_comment'\" ; sudo mysql --
exec=\"SHOW STATUS LIKE 'wsrep_cluster_size'\""; done

6. Check the RabbitMQ status. For example, if 192.168.0.47 is the IP address of a running
Controller node, use the following command to get the status

$ ssh heat-admin@192.168.0.47 "sudo rabbitmqctl cluster_status"

The running_nodes key should only show the two available nodes and not the failed node.

7. Disable fencing, if enabled. For example, if 192.168.0.47 is the IP address of a running Controller
node, use the following command to disable fencing:

$ ssh heat-admin@192.168.0.47 "sudo pcs property set stonith-enabled=false"

Check the fencing status with the following command:

$ ssh heat-admin@192.168.0.47 "sudo pcs property show stonith-enabled"

8. Check the nova-compute service on the director node:

$ sudo systemctl status openstack-nova-compute
$ openstack hypervisor list

The output should show all non-maintenance mode nodes as up.

9. Make sure all undercloud services are running:

$ sudo systemctl -t service

9.4.2. Removing a Ceph Monitor Daemon

This procedure removes a ceph-mon daemon from the storage cluster. If your Controller node is
running a Ceph monitor service, complete the following steps to remove the ceph-mon daemon. This
procedure assumes the Controller is reachable.

NOTE

A new Ceph monitor daemon will be added after a new Controller is added to the cluster.

1. Connect to the controller to be replaced and become root:

ssh heat-admin@192.168.0.47
sudo su -

NOTE

If the controller is unreachable, skip steps 1 and 2 and continue the procedure at
step 3 on any working controller node.

CHAPTER 9. SCALING THE OVERCLOUD

93

2. As root, stop the monitor:

systemctl stop ceph-mon@<monitor_hostname>

For example:

systemctl stop ceph-mon@overcloud-controller-2

3. Remove the monitor from the cluster:

ceph mon remove <mon_id>

4. On the Ceph monitor node, remove the monitor entry from /etc/ceph/ceph.conf. For example,
if you remove controller-2, then remove the IP and hostname for controller-2.
Before:

mon host = 172.18.0.21,172.18.0.22,172.18.0.24
mon initial members = overcloud-controller-2,overcloud-controller-1,overcloud-controller-0

After:

mon host = 172.18.0.22,172.18.0.24
mon initial members = overcloud-controller-1,overcloud-controller-0

5. Apply the same change to /etc/ceph/ceph.conf on the other overcloud nodes.

NOTE

The ceph.conf file is updated on the relevant overcloud nodes by director when
the replacement controller node is added. Normally, this configuration file is
managed only by director and should not be manually edited, but it is edited in
this step to ensure consistency in case the other nodes restart before the new
node is added.

6. Optionally, archive the monitor data and save it on another server:

mv /var/lib/ceph/mon/<cluster>-<daemon_id> /var/lib/ceph/mon/removed-<cluster>-
<daemon_id>

9.4.3. Node Replacement

Identify the index of the node to remove. The node index is the suffix on the instance name from nova
list output.

[stack@director ~]$ openstack server list
+--------------------------------------+------------------------+
| ID | Name |
+--------------------------------------+------------------------+
861408be-4027-4f53-87a6-cd3cf206ba7a	overcloud-compute-0
0966e9ae-f553-447a-9929-c4232432f718	overcloud-compute-1
9c08fa65-b38c-4b2e-bd47-33870bff06c7	overcloud-compute-2
a7f0f5e1-e7ce-4513-ad2b-81146bc8c5af	overcloud-controller-0

Red Hat OpenStack Platform 10 Director Installation and Usage

94

| cfefaf60-8311-4bc3-9416-6a824a40a9ae | overcloud-controller-1 |
| 97a055d4-aefd-481c-82b7-4a5f384036d2 | overcloud-controller-2 |
+--------------------------------------+------------------------+

In this example, the aim is to remove the overcloud-controller-1 node and replace it with overcloud-
controller-3. First, set the node into maintenance mode so the director does not reprovision the failed
node. Correlate the instance ID from nova list with the node ID from openstack baremetal node list

[stack@director ~]$ openstack baremetal node list
+--------------------------------------+------+--------------------------------------+
| UUID | Name | Instance UUID |
+--------------------------------------+------+--------------------------------------+
36404147-7c8a-41e6-8c72-a6e90afc7584	None	7bee57cf-4a58-4eaf-b851-2a8bf6620e48
91eb9ac5-7d52-453c-a017-c0e3d823efd0	None	None
75b25e9a-948d-424a-9b3b-f0ef70a6eacf	None	None
038727da-6a5c-425f-bd45-fda2f4bd145b	None	763bfec2-9354-466a-ae65-2401c13e07e5
dc2292e6-4056-46e0-8848-d6e96df1f55d	None	2017b481-706f-44e1-852a-2ee857c303c4
c7eadcea-e377-4392-9fc3-cf2b02b7ec29	None	5f73c7d7-4826-49a5-b6be-8bfd558f3b41
da3a8d19-8a59-4e9d-923a-6a336fe10284	None	cfefaf60-8311-4bc3-9416-6a824a40a9ae
807cb6ce-6b94-4cd1-9969-5c47560c2eee	None	c07c13e6-a845-4791-9628-260110829c3a
+--------------------------------------+------+--------------------------------------+

Set the node into maintenance mode:

[stack@director ~]$ openstack baremetal node maintenance set da3a8d19-8a59-4e9d-923a-
6a336fe10284

Tag the new node with the control profile.

[stack@director ~]$ openstack baremetal node set --property
capabilities='profile:control,boot_option:local' 75b25e9a-948d-424a-9b3b-f0ef70a6eacf

The overcloud’s database must continue running during the replacement procedure. To ensure
Pacemaker does not stop Galera during this procedure, select a running Controller node and run the
following command on the undercloud using the Controller node’s IP address:

[stack@director ~]$ ssh heat-admin@192.168.0.47 "sudo pcs resource unmanage galera"

Create a YAML file (~/templates/remove-controller.yaml) that defines the node index to remove:

parameters:
 ControllerRemovalPolicies:
 [{'resource_list': ['1']}]

NOTE

You can speed up the replacement process by reducing the number for tries for settle in
Corosync. Include the CorosyncSettleTries parameter in the ~/templates/remove-
controller.yaml environment file:

parameter_defaults:
 CorosyncSettleTries: 5

CHAPTER 9. SCALING THE OVERCLOUD

95

After identifying the node index, redeploy the overcloud and include the remove-controller.yaml
environment file:

[stack@director ~]$ openstack overcloud deploy --templates --control-scale 3 -e ~/templates/remove-
controller.yaml [OTHER OPTIONS]

If you passed any extra environment files or options when you created the overcloud, pass them again
here to avoid making undesired changes to the overcloud.

However, note that the -e ~/templates/remove-controller.yaml is only required once in this instance.

The director removes the old node, creates a new one, and updates the overcloud stack. You can check
the status of the overcloud stack with the following command:

[stack@director ~]$ openstack stack list --nested

9.4.4. Manual Intervention

During the ControllerNodesPostDeployment stage, the overcloud stack update halts with an
UPDATE_FAILED error at ControllerDeployment_Step1. This is because some Puppet modules do
not support nodes replacement. This point in the process requires some manual intervention. Follow
these configuration steps:

1. Get a list of IP addresses for the Controller nodes. For example:

[stack@director ~]$ openstack server list
... +------------------------+ ... +-------------------------+
... | Name | ... | Networks |
... +------------------------+ ... +-------------------------+
... | overcloud-compute-0 | ... | ctlplane=192.168.0.44 |
... | overcloud-controller-0 | ... | ctlplane=192.168.0.47 |
... | overcloud-controller-2 | ... | ctlplane=192.168.0.46 |
... | overcloud-controller-3 | ... | ctlplane=192.168.0.48 |
... +------------------------+ ... +-------------------------+

2. Check the nodeid value of the removed node in the /etc/corosync/corosync.conf file on an
existing node. For example, the existing node is overcloud-controller-0 at 192.168.0.47:

[stack@director ~]$ ssh heat-admin@192.168.0.47 "sudo cat /etc/corosync/corosync.conf"

This displays a nodelist that contains the ID for the removed node (overcloud-controller-1):

nodelist {
 node {
 ring0_addr: overcloud-controller-0
 nodeid: 1
 }
 node {
 ring0_addr: overcloud-controller-1
 nodeid: 2
 }
 node {
 ring0_addr: overcloud-controller-2

Red Hat OpenStack Platform 10 Director Installation and Usage

96

 nodeid: 3
 }
}

Note the nodeid value of the removed node for later. In this example, it is 2.

3. Delete the failed node from the Corosync configuration on each node and restart Corosync. For
this example, log into overcloud-controller-0 and overcloud-controller-2 and run the following
commands:

[stack@director] ssh heat-admin@192.168.0.47 "sudo pcs cluster localnode remove
overcloud-controller-1"
[stack@director] ssh heat-admin@192.168.0.47 "sudo pcs cluster reload corosync"
[stack@director] ssh heat-admin@192.168.0.46 "sudo pcs cluster localnode remove
overcloud-controller-1"
[stack@director] ssh heat-admin@192.168.0.46 "sudo pcs cluster reload corosync"

4. Log into one of the remaining nodes and delete the node from the cluster with the crm_node
command:

[stack@director] ssh heat-admin@192.168.0.47
[heat-admin@overcloud-controller-0 ~]$ sudo crm_node -R overcloud-controller-1 --force

Stay logged into this node.

5. Delete the failed node from the RabbitMQ cluster:

[heat-admin@overcloud-controller-0 ~]$ sudo rabbitmqctl forget_cluster_node
rabbit@overcloud-controller-1

6. Delete the failed node from MongoDB. First, find the IP address for the node’s Interal API
connection.

[heat-admin@overcloud-controller-0 ~]$ sudo netstat -tulnp | grep 27017
tcp 0 0 192.168.0.47:27017 0.0.0.0:* LISTEN 13415/mongod

Check that the node is the primary replica set:

[root@overcloud-controller-0 ~]# echo "db.isMaster()" | mongo --host 192.168.0.47:27017
MongoDB shell version: 2.6.11
connecting to: 192.168.0.47:27017/echo
{
 "setName" : "tripleo",
 "setVersion" : 1,
 "ismaster" : true,
 "secondary" : false,
 "hosts" : [
 "192.168.0.47:27017",
 "192.168.0.46:27017",
 "192.168.0.45:27017"
],
 "primary" : "192.168.0.47:27017",
 "me" : "192.168.0.47:27017",
 "electionId" : ObjectId("575919933ea8637676159d28"),

CHAPTER 9. SCALING THE OVERCLOUD

97

 "maxBsonObjectSize" : 16777216,
 "maxMessageSizeBytes" : 48000000,
 "maxWriteBatchSize" : 1000,
 "localTime" : ISODate("2016-06-09T09:02:43.340Z"),
 "maxWireVersion" : 2,
 "minWireVersion" : 0,
 "ok" : 1
}
bye

This should indicate if the current node is the primary. If not, use the IP address of the node
indicated in the primary key.

Connect to MongoDB on the primary node:

[heat-admin@overcloud-controller-0 ~]$ mongo --host 192.168.0.47
MongoDB shell version: 2.6.9
connecting to: 192.168.0.47:27017/test
Welcome to the MongoDB shell.
For interactive help, type "help".
For more comprehensive documentation, see
http://docs.mongodb.org/
Questions? Try the support group
http://groups.google.com/group/mongodb-user
tripleo:PRIMARY>

Check the status of the MongoDB cluster:

tripleo:PRIMARY> rs.status()

Identify the node using the _id key and remove the failed node using the name key. In this case,
we remove Node 1, which has 192.168.0.45:27017 for name:

tripleo:PRIMARY> rs.remove('192.168.0.45:27017')

IMPORTANT

You must run the command against the PRIMARY replica set. If you see the
following message:

"replSetReconfig command must be sent to the current replica set primary."

Relog into MongoDB on the node designated as PRIMARY.

NOTE

Red Hat OpenStack Platform 10 Director Installation and Usage

98

NOTE

The following output is normal when removing the failed node’s replica set:

2016-05-07T03:57:19.541+0000 DBClientCursor::init call() failed
2016-05-07T03:57:19.543+0000 Error: error doing query: failed at
src/mongo/shell/query.js:81
2016-05-07T03:57:19.545+0000 trying reconnect to 192.168.0.47:27017
(192.168.0.47) failed
2016-05-07T03:57:19.547+0000 reconnect 192.168.0.47:27017
(192.168.0.47) ok

Exit MongoDB:

tripleo:PRIMARY> exit

7. Update list of nodes in the Galera cluster:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs resource update galera
wsrep_cluster_address=gcomm://overcloud-controller-0,overcloud-controller-3,overcloud-
controller-2

8. Configure the Galera cluster check on the new node. Copy the /etc/sysconfig/clustercheck
from the existing node to the same location on the new node.

9. Configure the root user’s Galera access on the new node. Copy the /root/.my.cnf from the
existing node to the same location on the new node.

10. Add the new node to the cluster:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs cluster node add overcloud-controller-3

11. Check the /etc/corosync/corosync.conf file on each node. If the nodeid of the new node is the
same as the removed node, update the value to a new nodeid value. For example, the
/etc/corosync/corosync.conf file contains an entry for the new node (overcloud-controller-3):

nodelist {
 node {
 ring0_addr: overcloud-controller-0
 nodeid: 1
 }
 node {
 ring0_addr: overcloud-controller-2
 nodeid: 3
 }
 node {
 ring0_addr: overcloud-controller-3
 nodeid: 2
 }
}

Note that in this example, the new node uses the same nodeid of the removed node. Update
this value to a unused node ID value. For example:

CHAPTER 9. SCALING THE OVERCLOUD

99

node {
 ring0_addr: overcloud-controller-3
 nodeid: 4
}

Update this nodeid value on each Controller node’s /etc/corosync/corosync.conf file,
including the new node.

12. Restart the Corosync service on the existing nodes only. For example, on overcloud-controller-
0:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs cluster reload corosync

And on overcloud-controller-2:

[heat-admin@overcloud-controller-2 ~]$ sudo pcs cluster reload corosync

Do not run this command on the new node.

13. Start the new Controller node:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs cluster start overcloud-controller-3

14. Restart the Galera cluster and return it to Pacemaker management:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs resource cleanup galera
[heat-admin@overcloud-controller-0 ~]$ sudo pcs resource manage galera

15. Enable and restart some services through Pacemaker. The cluster is currently in maintenance
mode and you will need to temporarily disable it to enable the service. For example:

[heat-admin@overcloud-controller-3 ~]$ sudo pcs property set maintenance-mode=false --
wait

16. Wait until the Galera service starts on all nodes.

[heat-admin@overcloud-controller-3 ~]$ sudo pcs status | grep galera -A1
Master/Slave Set: galera-master [galera]
Masters: [overcloud-controller-0 overcloud-controller-2 overcloud-controller-3]

If need be, perform a cleanup on the new node:

[heat-admin@overcloud-controller-3 ~]$ sudo pcs resource cleanup galera --node overcloud-
controller-3

17. Switch the cluster back into maintenance mode:

[heat-admin@overcloud-controller-3 ~]$ sudo pcs property set maintenance-mode=true --
wait

The manual configuration is complete. Re-run the overcloud deployment command to continue the
stack update:

Red Hat OpenStack Platform 10 Director Installation and Usage

100

[stack@director ~]$ openstack overcloud deploy --templates --control-scale 3 [OTHER OPTIONS]

IMPORTANT

If you passed any extra environment files or options when you created the overcloud,
pass them again here to avoid making undesired changes to the overcloud. However,
note that the remove-controller.yaml file is no longer needed.

9.4.5. Finalizing Overcloud Services

After the overcloud stack update completes, some final configuration is required. Log in to one of the
Controller nodes and refresh any stopped services in Pacemaker:

[heat-admin@overcloud-controller-0 ~]$ for i in `sudo pcs status|grep -B2 Stop |grep -v
"Stop\|Start"|awk -F"[" '/\[/ {print substr($NF,0,length($NF)-1)}'`; do echo $i; sudo pcs resource
cleanup $i; done

Perform a final status check to make sure services are running correctly:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs status

NOTE

If any services have failed, use the pcs resource cleanup command to restart them after
resolving them.

If the Controller nodes use fencing, delete the old fencing record and create a new one:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs stonith show
[heat-admin@overcloud-controller-0 ~]$ sudo pcs stonish delete my-ipmilan-for-controller-1
[heat-admin@overcloud-controller-0 ~]$ sudo pcs stonith create my-ipmilan-for-controller-3
fence_ipmilan pcmk_host_list=overcloud-controller-3 ipaddr=192.0.2.208 login=admin
passwd=p@55w0rd! lanplus=1 cipher=1 op monitor interval=60s
[heat-admin@overcloud-controller-0 ~]$ sudo pcs constraint location my-ipmilan-for-controller-3
avoids overcloud-controller-3

Re-enable fencing:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs property set stonith-enabled=true

NOTE

For more information on fencing configuration, see Section 7.7, “Fencing the Controller
Nodes”.

Exit to the director

[heat-admin@overcloud-controller-0 ~]$ exit

9.4.6. Finalizing L3 Agent Router Hosting

CHAPTER 9. SCALING THE OVERCLOUD

101

Source the overcloudrc file so that you can interact with the overcloud. Check your routers to make
sure the L3 agents are properly hosting the routers in your overcloud environment. In this example, we
use a router with the name r1:

[stack@director ~]$ source ~/overcloudrc
[stack@director ~]$ neutron l3-agent-list-hosting-router r1

This list might still show the old node instead of the new node. To replace it, list the L3 network agents
in your environment:

[stack@director ~]$ neutron agent-list | grep "neutron-l3-agent"

Identify the UUID for the agents on the new node and the old node. Add the router to the agent on the
new node and remove the router from old node. For example:

[stack@director ~]$ neutron l3-agent-router-add fd6b3d6e-7d8c-4e1a-831a-4ec1c9ebb965 r1
[stack@director ~]$ neutron l3-agent-router-remove b40020af-c6dd-4f7a-b426-eba7bac9dbc2 r1

Perform a final check on the router and make all are active:

[stack@director ~]$ neutron l3-agent-list-hosting-router r1

Delete the existing Neutron agents that point to old Controller node. For example:

[stack@director ~]$ neutron agent-list -F id -F host | grep overcloud-controller-1
| ddae8e46-3e8e-4a1b-a8b3-c87f13c294eb | overcloud-controller-1.localdomain |
[stack@director ~]$ neutron agent-delete ddae8e46-3e8e-4a1b-a8b3-c87f13c294eb

9.4.7. Finalizing Compute Services

Compute services for the removed node still exist in the overcloud and require removal. Source the
overcloudrc file so that you can interact with the overcloud. Check the compute services for the
removed node:

[stack@director ~]$ source ~/overcloudrc
[stack@director ~]$ nova service-list | grep "overcloud-controller-1.localdomain"

Remove the compute services for the node. For example, if the nova-scheduler service for overcloud-
controller-1.localdomain has an ID of 5, run the following command:

[stack@director ~]$ nova service-delete 5

Perform this task for each service of the removed node.

Check the openstack-nova-consoleauth service on the new node.

[stack@director ~]$ nova service-list | grep consoleauth

If the service is not running, log into a Controller node and restart the service:

[stack@director] ssh heat-admin@192.168.0.47
[heat-admin@overcloud-controller-0 ~]$ pcs resource restart openstack-nova-consoleauth

Red Hat OpenStack Platform 10 Director Installation and Usage

102

9.4.8. Conclusion

The failed Controller node and its related services are now replaced with a new node.

IMPORTANT

If you disabled automatic ring building for Object Storage, like in Section 9.6, “Replacing
Object Storage Nodes”, you need to manually build the Object Storage ring files for the
new node. See Section 9.6, “Replacing Object Storage Nodes” for more information on
manually building ring files.

9.5. REPLACING CEPH STORAGE NODES

The director provides a method to replace Ceph Storage nodes in a director-created cluster. You can
find these instructions in the Red Hat Ceph Storage for the Overcloud .

9.6. REPLACING OBJECT STORAGE NODES

This section describes how to replace Object Storage nodes while maintaining the integrity of the
cluster. In this example, we have a two-node Object Storage cluster where the node overcloud-
objectstorage-1 needs to be replaced. Our aim is to add one more node, then remove overcloud-
objectstorage-1 (effectively replacing it).

1. Create an environment file called ~/templates/swift-upscale.yaml with the following content:

parameter_defaults:
 ObjectStorageCount: 3

The ObjectStorageCount defines how many Object Storage nodes in our environment. In this
situation, we scale from 2 to 3 nodes.

2. Include the swift-upscale.yaml file with the rest of your overcloud’s environment files
(ENVIRONMENT_FILES) as part of the openstack overcloud deploy:

$ openstack overcloud deploy --templates ENVIRONMENT_FILES -e swift-upscale.yaml

NOTE

Add swift-upscale.yaml to the end of the environment file list so its parameters
supersede previous environment file parameters.

After redeployment completes, the overcloud now contains an additional Object Storage node.

3. Data now needs to be replicated to the new node. Before removing a node (in this case,
overcloud-objectstorage-1) you should wait for a replication pass to finish on the new node.
You can check the replication pass progress in /var/log/swift/swift.log. When the pass finishes,
the Object Storage service should log entries similar to the following:

Mar 29 08:49:05 localhost object-server: Object replication complete.
Mar 29 08:49:11 localhost container-server: Replication run OVER
Mar 29 08:49:13 localhost account-server: Replication run OVER

4. To remove the old node from the ring, reduce the ObjectStorageCount in swift-upscale.yaml

CHAPTER 9. SCALING THE OVERCLOUD

103

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/red-hat-ceph-storage-for-the-overcloud

4. To remove the old node from the ring, reduce the ObjectStorageCount in swift-upscale.yaml
to the omit the old ring. In this case, we reduce it to 2:

parameter_defaults:
 ObjectStorageCount: 2

5. Create a new environment file named remove-object-node.yaml. This file will identify and
remove the specified Object Storage node. The following content specifies the removal of
overcloud-objectstorage-1:

parameter_defaults:
 ObjectStorageRemovalPolicies:
 [{'resource_list': ['1']}]

6. Include both environment files with the deployment command:

$ openstack overcloud deploy --templates ENVIRONMENT_FILES -e swift-upscale.yaml -e
remove-object-node.yaml ...

The director deletes the Object Storage node from the overcloud and updates the rest of the nodes on
the overcloud to accommodate the node removal.

Red Hat OpenStack Platform 10 Director Installation and Usage

104

CHAPTER 10. REBOOTING NODES
Some situations require a reboot of nodes in the undercloud and overcloud. The following procedures
show how to reboot different node types. Be aware of the following notes:

If rebooting all nodes in one role, it is advisable to reboot each node individually. This helps
retain services for that role during the reboot.

If rebooting all nodes in your OpenStack Platform environment, use the following list to guide
the reboot order:

Recommended Node Reboot Order

1. Reboot the director

2. Reboot Controller nodes

3. Reboot standalone Ceph MON nodes

4. Reboot Ceph Storage nodes

5. Reboot Compute nodes

6. Reboot object Storage nodes

10.1. REBOOTING THE DIRECTOR

To reboot the director node, follow this process:

1. Reboot the node:

$ sudo reboot

2. Wait until the node boots.

3. When the node boots, check the status of all services:

$ sudo systemctl list-units "openstack*" "neutron*" "openvswitch*"

NOTE

It might take approximately 10 minutes for the openstack-nova-compute to
become active after a reboot.

4. Verify the existence of your Overcloud and its nodes:

$ source ~/stackrc
$ openstack server list
$ openstack baremetal node list
$ openstack stack list

10.2. REBOOTING CONTROLLER NODES

CHAPTER 10. REBOOTING NODES

105

To reboot the Controller nodes, follow this process:

1. Select a node to reboot. Log into it and stop the cluster before rebooting:

$ sudo pcs cluster stop

2. Reboot the cluster:

$ sudo reboot

The remaining Controller Nodes in the cluster retain the high availability services during the
reboot.

3. Wait until the node boots.

4. Re-enable the cluster for the node:

$ sudo pcs cluster start

5. Log into the node and check the cluster status:

$ sudo pcs status

The node rejoins the cluster.

NOTE

If any services fail after the reboot, run sudo pcs resource cleanup, which cleans
the errors and sets the state of each resource to Started. If any errors persist,
contact Red Hat and request guidance and assistance.

6. Check all systemd services on the Controller Node are active:

$ sudo systemctl list-units "openstack*" "neutron*" "openvswitch*"

7. Log out of the node, select the next Controller Node to reboot, and repeat this procedure until
you have rebooted all Controller Nodes.

10.3. REBOOTING STANDALONE CEPH MON NODES

To reboot the Ceph MON nodes, follow this process:

1. Log into a Ceph MON node.

2. Reboot the node:

$ sudo reboot

3. Wait until the node boots and rejoins the MON cluster.

Repeat these steps for each MON node in the cluster.

Red Hat OpenStack Platform 10 Director Installation and Usage

106

10.4. REBOOTING CEPH STORAGE NODES

To reboot the Ceph Storage nodes, follow this process:

1. Log into a Ceph MON or Controller node and disable Ceph Storage cluster rebalancing
temporarily:

$ sudo ceph osd set noout
$ sudo ceph osd set norebalance

2. Select the first Ceph Storage node to reboot and log into it.

3. Reboot the node:

$ sudo reboot

4. Wait until the node boots.

5. Log into the node and check the cluster status:

$ sudo ceph -s

Check that the pgmap reports all pgs as normal (active+clean).

6. Log out of the node, reboot the next node, and check its status. Repeat this process until you
have rebooted all Ceph storage nodes.

7. When complete, log into a Ceph MON or Controller node and enable cluster rebalancing again:

$ sudo ceph osd unset noout
$ sudo ceph osd unset norebalance

8. Perform a final status check to verify the cluster reports HEALTH_OK:

$ sudo ceph status

10.5. REBOOTING COMPUTE NODES

Reboot each Compute node individually and ensure zero downtime of instances in your OpenStack
Platform environment. This involves the following workflow:

1. Select a Compute node to reboot

2. Migrate its instances to another Compute node

3. Reboot the empty Compute node

List all Compute nodes and their UUIDs:

$ nova list | grep "compute"

Select a Compute node to reboot and first migrate its instances using the following process:

1. From the undercloud, select a Compute Node to reboot and disable it:

CHAPTER 10. REBOOTING NODES

107

$ source ~/overcloudrc
$ openstack compute service list
$ openstack compute service set [hostname] nova-compute --disable

2. List all instances on the Compute node:

$ openstack server list --host [hostname] --all-projects

3. Migrate each instance from the disabled host. Use one of the following commands:

a. Migrate the instance to a specific host of your choice:

$ openstack server migrate [instance-id] --live [target-host]--wait

b. Let nova-scheduler automatically select the target host:

$ nova live-migration [instance-id]

NOTE

The nova command might cause some deprecation warnings, which are safe
to ignore.

4. Wait until migration completes.

5. Confirm the instance has migrated from the Compute node:

$ openstack server list --host [hostname] --all-projects

6. Repeat this step until you have migrated all instances from the Compute Node.

IMPORTANT

For full instructions on configuring and migrating instances, see Chapter 8, Migrating
Virtual Machines Between Compute Nodes.

Reboot the Compute node using the following process

1. Log into the Compute Node and reboot it:

$ sudo reboot

2. Wait until the node boots.

3. Enable the Compute Node again:

$ source ~/overcloudrc
$ openstack compute service set [hostname] nova-compute --enable

4. Select the next node to reboot.

Red Hat OpenStack Platform 10 Director Installation and Usage

108

10.6. REBOOTING OBJECT STORAGE NODES

To reboot the Object Storage nodes, follow this process:

1. Select a Object Storage node to reboot. Log into it and reboot it:

$ sudo reboot

2. Wait until the node boots.

3. Log into the node and check the status:

$ sudo systemctl list-units "openstack-swift*"

4. Log out of the node and repeat this process on the next Object Storage node.

CHAPTER 10. REBOOTING NODES

109

CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES
An error can occur at certain stages of the director’s processes. This section provides some information
for diagnosing common problems.

Note the common logs for the director’s components:

The /var/log directory contains logs for many common OpenStack Platform components as well
as logs for standard Red Hat Enterprise Linux applications.

The journald service provides logs for various components. Note that ironic uses two units:
openstack-ironic-api and openstack-ironic-conductor. Likewise, ironic-inspector uses two
units as well: openstack-ironic-inspector and openstack-ironic-inspector-dnsmasq. Use
both units for each respective component. For example:

$ sudo journalctl -u openstack-ironic-inspector -u openstack-ironic-inspector-dnsmasq

ironic-inspector also stores the ramdisk logs in /var/log/ironic-inspector/ramdisk/ as gz-
compressed tar files. Filenames contain date, time, and the IPMI address of the node. Use these
logs for diagnosing introspection issues.

11.1. TROUBLESHOOTING NODE REGISTRATION

Issues with node registration usually arise from issues with incorrect node details. In this case, use ironic
to fix problems with node data registered. Here are a few examples:

Find out the assigned port UUID:

$ ironic node-port-list [NODE UUID]

Update the MAC address:

$ ironic port-update [PORT UUID] replace address=[NEW MAC]

Run the following command:

$ ironic node-update [NODE UUID] replace driver_info/ipmi_address=[NEW IPMI ADDRESS]

11.2. TROUBLESHOOTING HARDWARE INTROSPECTION

The introspection process must run to completion. However, ironic’s Discovery daemon (ironic-
inspector) times out after a default 1 hour period if the discovery ramdisk provides no response.
Sometimes this might indicate a bug in the discovery ramdisk but usually it happens due to an
environment misconfiguration, particularly BIOS boot settings.

Here are some common scenarios where environment misconfiguration occurs and advice on how to
diagnose and resolve them.

Errors with Starting Node Introspection

Normally the introspection process uses the baremetal introspection, which acts an an umbrella
command for ironic’s services. However, if running the introspection directly with ironic-inspector, it
might fail to discover nodes in the AVAILABLE state, which is meant for deployment and not for

Red Hat OpenStack Platform 10 Director Installation and Usage

110

discovery. Change the node status to the MANAGEABLE state before discovery:

$ ironic node-set-provision-state [NODE UUID] manage

Then, when discovery completes, change back to AVAILABLE before provisioning:

$ ironic node-set-provision-state [NODE UUID] provide

Introspected node is not booting in PXE

Before a node reboots, ironic-inspector adds the MAC address of the node to the undercloud firewall’s
ironic-inspector chain. This allows the node to boot over PXE. To verify the correct configuration, run
the following command:

$ `sudo iptables -L`

The output should display the following chain table with the MAC address:

Chain ironic-inspector (1 references)
target prot opt source destination
DROP all -- anywhere anywhere MAC xx:xx:xx:xx:xx:xx
ACCEPT all -- anywhere anywhere

If the MAC address is not there, the most common cause is a corruption in the ironic-inspector cache,
which is in an SQLite database. To fix it, delete the SQLite file:

$ sudo rm /var/lib/ironic-inspector/inspector.sqlite

And recreate it:

$ sudo ironic-inspector-dbsync --config-file /etc/ironic-inspector/inspector.conf upgrade
$ sudo systemctl restart openstack-ironic-inspector

Stopping the Discovery Process

Currently ironic-inspector does not provide a direct means for stopping discovery. The recommended
path is to wait until the process times out. If necessary, change the timeout setting in /etc/ironic-
inspector/inspector.conf to change the timeout period to another period in minutes.

In worst case scenarios, you can stop discovery for all nodes using the following process:

Change the power state of each node to off:

$ ironic node-set-power-state [NODE UUID] off

Remove ironic-inspector cache and restart it:

$ rm /var/lib/ironic-inspector/inspector.sqlite

Resynchronize the ironic-inspector cache:

$ sudo ironic-inspector-dbsync --config-file /etc/ironic-inspector/inspector.conf upgrade
$ sudo systemctl restart openstack-ironic-inspector

CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES

111

Accessing the Introspection Ramdisk

The introspection ramdisk uses a dynamic login element. This means you can provide either a temporary
password or an SSH key to access the node during introspection debugging. Use the following process
to set up ramdisk access:

1. Provide a temporary password to the openssl passwd -1 command to generate an MD5 hash.
For example:

$ openssl passwd -1 mytestpassword
1enjRSyIw$/fYUpJwr6abFy/d.koRgQ/

2. Edit the /httpboot/inspector.ipxe file, find the line starting with kernel, and append the
rootpwd parameter and the MD5 hash. For example:

kernel http://192.2.0.1:8088/agent.kernel ipa-inspection-callback-
url=http://192.168.0.1:5050/v1/continue ipa-inspection-collectors=default,extra-hardware,logs
systemd.journald.forward_to_console=yes BOOTIF=${mac} ipa-debug=1 ipa-inspection-
benchmarks=cpu,mem,disk rootpwd="1enjRSyIw$/fYUpJwr6abFy/d.koRgQ/" selinux=0

Alternatively, you can append the sshkey parameter with your public SSH key.

NOTE

Quotation marks are required for both the rootpwd and sshkey parameters.

3. Start the introspection and find the IP address from either the arp command or the DHCP logs:

$ arp
$ sudo journalctl -u openstack-ironic-inspector-dnsmasq

4. SSH as a root user with the temporary password or the SSH key.

$ ssh root@192.0.2.105

Checking Introspection Storage

The director uses OpenStack Object Storage (swift) to save the hardware data obtained during the
introspection process. If this service is not running, the introspection can fail. Check all services related
to OpenStack Object Storage to ensure the service is running:

$ sudo systemctl list-units openstack-swift*

11.3. TROUBLESHOOTING WORKFLOWS AND EXECUTIONS

The OpenStack Workflow (mistral) service groups multiple OpenStack tasks into workflows. Red Hat
OpenStack Platform uses a set of these workflow to perform common functions across the CLI and web
UI. This includes bare metal node control, validations, plan management, and overcloud deployment.

For example, when running the openstack overcloud deploy command, the OpenStack Workflow
service executes two workflows. The first one uploads the deployment plan:

Removing the current plan files

Red Hat OpenStack Platform 10 Director Installation and Usage

112

Uploading new plan files
Started Mistral Workflow. Execution ID: aef1e8c6-a862-42de-8bce-073744ed5e6b
Plan updated

The second one starts the overcloud deployment:

Deploying templates in the directory /tmp/tripleoclient-LhRlHX/tripleo-heat-templates
Started Mistral Workflow. Execution ID: 97b64abe-d8fc-414a-837a-1380631c764d
2016-11-28 06:29:26Z [overcloud]: CREATE_IN_PROGRESS Stack CREATE started
2016-11-28 06:29:26Z [overcloud.Networks]: CREATE_IN_PROGRESS state changed
2016-11-28 06:29:26Z [overcloud.HeatAuthEncryptionKey]: CREATE_IN_PROGRESS state
changed
2016-11-28 06:29:26Z [overcloud.ServiceNetMap]: CREATE_IN_PROGRESS state changed
...

Workflow Objects

OpenStack Workflow uses the following objects to keep track of the workflow:

Actions

A particular instruction that OpenStack performs once an associated task runs. Examples include
running shell scripts or performing HTTP requests. Some OpenStack components have in-built
actions that OpenStack Workflow uses.

Tasks

Defines the action to run and the result of running the action. These tasks usually have actions or
other workflows associated with them. Once a task completes, the workflow directs to another task,
usually depending on whether the task succeeded or failed.

Workflows

A set of tasks grouped together and executed in a specific order.

Executions

Defines a particular action, task, or workflow running.

Workflow Error Diagnosis

OpenStack Workflow also provides robust logging of executions, which help you identify issues with
certain command failures. For example, if a workflow execution fails, you can identify the point of failure.
List the workflow executions that have the failed state ERROR:

$ mistral execution-list | grep "ERROR"

Get the UUID of the failed workflow execution (for example, 3c87a885-0d37-4af8-a471-
1b392264a7f5) and view the execution and its output:

$ mistral execution-get 3c87a885-0d37-4af8-a471-1b392264a7f5
$ mistral execution-get-output 3c87a885-0d37-4af8-a471-1b392264a7f5

This provides information about the failed task in the execution. The mistral execution-get also displays
the workflow used for the execution (for example,
tripleo.plan_management.v1.update_deployment_plan). You can view the full workflow definition
using the following command:

$ mistral execution-get-definition tripleo.plan_management.v1.update_deployment_plan

CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES

113

This is useful for identifying where in the workflow a particular task occurs.

You can also view action executions and their results using a similar command syntax:

$ mistral action-execution-list
$ mistral action-execution-get b59245bf-7183-4fcf-9508-c83ec1a26908
$ mistral action-execution-get-output b59245bf-7183-4fcf-9508-c83ec1a26908

This is useful for identifying a specific action causing issues.

11.4. TROUBLESHOOTING OVERCLOUD CREATION

There are three layers where the deployment can fail:

Orchestration (heat and nova services)

Bare Metal Provisioning (ironic service)

Post-Deployment Configuration (Puppet)

If an overcloud deployment has failed at any of these levels, use the OpenStack clients and service log
files to diagnose the failed deployment.

11.4.1. Orchestration

In most cases, Heat shows the failed overcloud stack after the overcloud creation fails:

$ heat stack-list
+-----------------------+------------+--------------------+----------------------+
| id | stack_name | stack_status | creation_time |
+-----------------------+------------+--------------------+----------------------+
| 7e88af95-535c-4a55... | overcloud | CREATE_FAILED | 2015-04-06T17:57:16Z |
+-----------------------+------------+--------------------+----------------------+

If the stack list is empty, this indicates an issue with the initial Heat setup. Check your Heat templates
and configuration options, and check for any error messages that presented after running openstack
overcloud deploy.

11.4.2. Bare Metal Provisioning

Check ironic to see all registered nodes and their current status:

$ ironic node-list

+----------+------+---------------+-------------+-----------------+-------------+
| UUID | Name | Instance UUID | Power State | Provision State | Maintenance |
+----------+------+---------------+-------------+-----------------+-------------+
| f1e261...| None | None | power off | available | False |
| f0b8c1...| None | None | power off | available | False |
+----------+------+---------------+-------------+-----------------+-------------+

Here are some common issues that arise from the provisioning process.

Review the Provision State and Maintenance columns in the resulting table. Check for the

Red Hat OpenStack Platform 10 Director Installation and Usage

114

Review the Provision State and Maintenance columns in the resulting table. Check for the
following:

An empty table, or fewer nodes than you expect

Maintenance is set to True

Provision State is set to manageable. This usually indicates an issue with the registration or
discovery processes. For example, if Maintenance sets itself to True automatically, the
nodes are usually using the wrong power management credentials.

If Provision State is available, then the problem occurred before bare metal deployment has
even started.

If Provision State is active and Power State is power on, the bare metal deployment has
finished successfully. This means that the problem occurred during the post-deployment
configuration step.

If Provision State is wait call-back for a node, the bare metal provisioning process has not yet
finished for this node. Wait until this status changes, otherwise, connect to the virtual console of
the failed node and check the output.

If Provision State is error or deploy failed, then bare metal provisioning has failed for this node.
Check the bare metal node’s details:

$ ironic node-show [NODE UUID]

Look for last_error field, which contains error description. If the error message is vague, you can
use logs to clarify it:

$ sudo journalctl -u openstack-ironic-conductor -u openstack-ironic-api

If you see wait timeout error and the node Power State is power on, connect to the virtual
console of the failed node and check the output.

11.4.3. Post-Deployment Configuration

Many things can occur during the configuration stage. For example, a particular Puppet module could
fail to complete due to an issue with the setup. This section provides a process to diagnose such issues.

List all the resources from the overcloud stack to see which one failed:

$ heat resource-list overcloud

This shows a table of all resources and their states. Look for any resources with a CREATE_FAILED.

Show the failed resource:

$ heat resource-show overcloud [FAILED RESOURCE]

Check for any information in the resource_status_reason field that can help your diagnosis.

Use the nova command to see the IP addresses of the overcloud nodes.

$ nova list

CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES

115

Log in as the heat-admin user to one of the deployed nodes. For example, if the stack’s resource list
shows the error occurred on a Controller node, log in to a Controller node. The heat-admin user has
sudo access.

$ ssh heat-admin@192.0.2.14

Check the os-collect-config log for a possible reason for the failure.

$ sudo journalctl -u os-collect-config

In some cases, nova fails deploying the node in entirety. This situation would be indicated by a failed
OS::Heat::ResourceGroup for one of the overcloud role types. Use nova to see the failure in this case.

$ nova list
$ nova show [SERVER ID]

The most common error shown will reference the error message No valid host was found. See
Section 11.6, “Troubleshooting "No Valid Host Found" Errors” for details on troubleshooting this error. In
other cases, look at the following log files for further troubleshooting:

/var/log/nova/*

/var/log/heat/*

/var/log/ironic/*

Use the SOS toolset, which gathers information about system hardware and configuration. Use this
information for diagnostic purposes and debugging. SOS is commonly used to help support technicians
and developers. SOS is useful on both the undercloud and overcloud. Install the sos package:

$ sudo yum install sos

Generate a report:

$ sudo sosreport --all-logs

The post-deployment process for Controller nodes uses five main steps for the deployment. This
includes:

Table 11.1. Controller Node Configuration Steps

Step Description

ControllerDeployment_Step1 Initial load balancing software configuration, including
Pacemaker, RabbitMQ, Memcached, Redis, and
Galera.

ControllerDeployment_Step2 Initial cluster configuration, including Pacemaker
configuration, HAProxy, MongoDB, Galera, Ceph
Monitor, and database initialization for OpenStack
Platform services.

Red Hat OpenStack Platform 10 Director Installation and Usage

116

ControllerDeployment_Step3 Initial ring build for OpenStack Object Storage
(swift). Configuration of all OpenStack Platform
services (nova, neutron, cinder, sahara,
ceilometer, heat, horizon, aodh, gnocchi).

ControllerDeployment_Step4 Configure service start up settings in Pacemaker,
including constraints to determine service start up
order and service start up parameters.

ControllerDeployment_Step5 Initial configuration of projects, roles, and users in
OpenStack Identity (keystone).

11.5. TROUBLESHOOTING IP ADDRESS CONFLICTS ON THE
PROVISIONING NETWORK

Discovery and deployment tasks will fail if the destination hosts are allocated an IP address which is
already in use. To avoid this issue, you can perform a port scan of the Provisioning network to determine
whether the discovery IP range and host IP range are free.

Perform the following steps from the undercloud host:

Install nmap:

yum install nmap

Use nmap to scan the IP address range for active addresses. This example scans the 192.0.2.0/24
range, replace this with the IP subnet of the Provisioning network (using CIDR bitmask notation):

nmap -sn 192.0.2.0/24

Review the output of the nmap scan:

For example, you should see the IP address(es) of the undercloud, and any other hosts that are present
on the subnet. If any of the active IP addresses conflict with the IP ranges in undercloud.conf, you will
need to either change the IP address ranges or free up the IP addresses before introspecting or
deploying the overcloud nodes.

nmap -sn 192.0.2.0/24

Starting Nmap 6.40 (http://nmap.org) at 2015-10-02 15:14 EDT
Nmap scan report for 192.0.2.1
Host is up (0.00057s latency).
Nmap scan report for 192.0.2.2
Host is up (0.00048s latency).
Nmap scan report for 192.0.2.3
Host is up (0.00045s latency).
Nmap scan report for 192.0.2.5
Host is up (0.00040s latency).
Nmap scan report for 192.0.2.9
Host is up (0.00019s latency).
Nmap done: 256 IP addresses (5 hosts up) scanned in 2.45 seconds

CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES

117

11.6. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS

Sometimes the /var/log/nova/nova-conductor.log contains the following error:

NoValidHost: No valid host was found. There are not enough hosts available.

This means the nova Scheduler could not find a bare metal node suitable for booting the new instance.
This in turn usually means a mismatch between resources that nova expects to find and resources that
ironic advertised to nova. Check the following in this case:

1. Make sure introspection succeeds for you. Otherwise check that each node contains the
required ironic node properties. For each node:

$ ironic node-show [NODE UUID]

Check the properties JSON field has valid values for keys cpus, cpu_arch, memory_mb and
local_gb.

2. Check that the nova flavor used does not exceed the ironic node properties above for a
required number of nodes:

$ nova flavor-show [FLAVOR NAME]

3. Check that sufficient nodes are in the available state according to ironic node-list. Nodes in
manageable state usually mean a failed introspection.

4. Check the nodes are not in maintenance mode. Use ironic node-list to check. A node
automatically changing to maintenance mode usually means incorrect power credentials. Check
them and then remove maintenance mode:

$ ironic node-set-maintenance [NODE UUID] off

5. If you’re using the Automated Health Check (AHC) tools to perform automatic node tagging,
check that you have enough nodes corresponding to each flavor/profile. Check the
capabilities key in properties field for ironic node-show. For example, a node tagged for the
Compute role should contain profile:compute.

6. It takes some time for node information to propagate from ironic to nova after introspection.
The director’s tool usually accounts for it. However, if you performed some steps manually,
there might be a short period of time when nodes are not available to nova. Use the following
command to check the total resources in your system.:

$ nova hypervisor-stats

11.7. TROUBLESHOOTING THE OVERCLOUD AFTER CREATION

After creating your overcloud, you might want to perform certain overcloud operations in the future. For
example, you might aim to scale your available nodes, or replace faulty nodes. Certain issues might arise
when performing these operations. This section provides some advice to diagnose and troubleshoot
failed post-creation operations.

Red Hat OpenStack Platform 10 Director Installation and Usage

118

11.7.1. Overcloud Stack Modifications

Problems can occur when modifying the overcloud stack through the director. Example of stack
modifications include:

Scaling Nodes

Removing Nodes

Replacing Nodes

Modifying the stack is similar to the process of creating the stack, in that the director checks the
availability of the requested number of nodes, provisions additional or removes existing nodes, and then
applies the Puppet configuration. Here are some guidelines to follow in situations when modifying the
overcloud stack.

As an initial step, follow the advice set in Section 11.4.3, “Post-Deployment Configuration”. These same
steps can help diagnose problems with updating the overcloud heat stack. In particular, use the
following command to help identify problematic resources:

heat stack-list --show-nested

List all stacks. The --show-nested displays all child stacks and their respective parent stacks. This
command helps identify the point where a stack failed.

heat resource-list overcloud

List all resources in the overcloud stack and their current states. This helps identify which resource is
causing failures in the stack. You can trace this resource failure to its respective parameters and
configuration in the heat template collection and the Puppet modules.

heat event-list overcloud

List all events related to the overcloud stack in chronological order. This includes the initiation,
completion, and failure of all resources in the stack. This helps identify points of resource failure.

The next few sections provide advice to diagnose issues on specific node types.

11.7.2. Controller Service Failures

The overcloud Controller nodes contain the bulk of Red Hat OpenStack Platform services. Likewise, you
might use multiple Controller nodes in a high availability cluster. If a certain service on a node is faulty,
the high availability cluster provides a certain level of failover. However, it then becomes necessary to
diagnose the faulty service to ensure your overcloud operates at full capacity.

The Controller nodes use Pacemaker to manage the resources and services in the high availability
cluster. The Pacemaker Configuration System (pcs) command is a tool that manages a Pacemaker
cluster. Run this command on a Controller node in the cluster to perform configuration and monitoring
functions. Here are few commands to help troubleshoot overcloud services on a high availability cluster:

pcs status

Provides a status overview of the entire cluster including enabled resources, failed resources, and
online nodes.

pcs resource show

Shows a list of resources, and their respective nodes.

pcs resource disable [resource]

Stop a particular resource.

pcs resource enable [resource]

CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES

119

Start a particular resource.

pcs cluster standby [node]

Place a node in standby mode. The node is no longer available in the cluster. This is useful for
performing maintenance on a specific node without affecting the cluster.

pcs cluster unstandby [node]

Remove a node from standby mode. The node becomes available in the cluster again.

Use these Pacemaker commands to identify the faulty component and/or node. After identifying the
component, view the respective component log file in /var/log/.

11.7.3. Compute Service Failures

Compute nodes use the Compute service to perform hypervisor-based operations. This means the
main diagnosis for Compute nodes revolves around this service. For example:

View the status of the service using the following systemd function:

$ sudo systemctl status openstack-nova-compute.service

Likewise, view the systemd journal for the service using the following command:

$ sudo journalctl -u openstack-nova-compute.service

The primary log file for Compute nodes is /var/log/nova/nova-compute.log. If issues occur with
Compute node communication, this log file is usually a good place to start a diagnosis.

If performing maintenance on the Compute node, migrate the existing instances from the host
to an operational Compute node, then disable the node. See Chapter 8, Migrating Virtual
Machines Between Compute Nodes for more information on node migrations.

11.7.4. Ceph Storage Service Failures

For any issues that occur with Red Hat Ceph Storage clusters, see Chapter 10. Logging and Debugging
in the Red Hat Ceph Storage Configuration Guide. This section provides information on diagnosing logs
for all Ceph storage services.

11.8. TUNING THE UNDERCLOUD

The advice in this section aims to help increase the performance of your undercloud. Implement the
recommendations as necessary.

The Identity Service (keystone) uses a token-based system for access control against the other
OpenStack services. After a certain period, the database will accumulate a large number of
unused tokens; a default cronjob flushes the token table every day. It is recommended that you
monitor your environment and adjust the token flush interval as needed. For the undercloud,
you can adjust the interval using crontab -u keystone -e. Note that this is a temporary change
and that openstack undercloud update will reset this cronjob back to its default.

Heat stores a copy of all template files in its database’s raw_template table each time you run
openstack overcloud deploy. The raw_template table retains all past templates and grows in
size. To remove unused templates in the raw_templates table, create a daily cronjob that clears
unused templates that exist in the database for longer than a day:

Red Hat OpenStack Platform 10 Director Installation and Usage

120

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/configuration-guide/chapter-10-logging-and-debugging

0 04 * * * /bin/heat-manage purge_deleted -g days 1

The openstack-heat-engine and openstack-heat-api services might consume too many
resources at times. If so, set max_resources_per_stack=-1 in /etc/heat/heat.conf and restart
the heat services:

$ sudo systemctl restart openstack-heat-engine openstack-heat-api

Sometimes the director might not have enough resources to perform concurrent node
provisioning. The default is 10 nodes at the same time. To reduce the number of concurrent
nodes, set the max_concurrent_builds parameter in /etc/nova/nova.conf to a value less than
10 and restart the nova services:

$ sudo systemctl restart openstack-nova-api openstack-nova-scheduler

Edit the /etc/my.cnf.d/server.cnf file. Some recommended values to tune include:

max_connections

Number of simultaneous connections to the database. The recommended value is 4096.

innodb_additional_mem_pool_size

The size in bytes of a memory pool the database uses to store data dictionary information
and other internal data structures. The default is usually 8M and an ideal value is 20M for the
undercloud.

innodb_buffer_pool_size

The size in bytes of the buffer pool, the memory area where the database caches table and
index data. The default is usually 128M and an ideal value is 1000M for the undercloud.

innodb_flush_log_at_trx_commit

Controls the balance between strict ACID compliance for commit operations, and higher
performance that is possible when commit-related I/O operations are rearranged and done
in batches. Set to 1.

innodb_lock_wait_timeout

The length of time in seconds a database transaction waits for a row lock before giving up.
Set to 50.

innodb_max_purge_lag

This variable controls how to delay INSERT, UPDATE, and DELETE operations when purge
operations are lagging. Set to 10000.

innodb_thread_concurrency

The limit of concurrent operating system threads. Ideally, provide at least two threads for
each CPU and disk resource. For example, if using a quad-core CPU and a single disk, use 10
threads.

Ensure that heat has enough workers to perform an overcloud creation. Usually, this depends on
how many CPUs the undercloud has. To manually set the number of workers, edit the
/etc/heat/heat.conf file, set the num_engine_workers parameter to the number of workers you
need (ideally 4), and restart the heat engine:

$ sudo systemctl restart openstack-heat-engine

11.9. IMPORTANT LOGS FOR UNDERCLOUD AND OVERCLOUD

CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES

121

Use the following logs to find out information about the undercloud and overcloud when
troubleshooting.

Table 11.2. Important Logs for the Undercloud

Information Log Location

OpenStack Compute log /var/log/nova/nova-compute.log

OpenStack Compute API interactions /var/log/nova/nova-api.log

OpenStack Compute Conductor log /var/log/nova/nova-conductor.log

OpenStack Orchestration log heat-engine.log

OpenStack Orchestration API interactions heat-api.log

OpenStack Orchestration CloudFormations log /var/log/heat/heat-api-cfn.log

OpenStack Bare Metal Conductor log ironic-conductor.log

OpenStack Bare Metal API interactions ironic-api.log

Introspection /var/log/ironic-inspector/ironic-inspector.log

OpenStack Workflow Engine log /var/log/mistral/engine.log

OpenStack Workflow Executor log /var/log/mistral/executor.log

OpenStack Workflow API interactions /var/log/mistral/api.log

Table 11.3. Important Logs for the Overcloud

Information Log Location

Cloud-Init Log /var/log/cloud-init.log

Overcloud Configuration (Summary of Last Puppet
Run)

/var/lib/puppet/state/last_run_summary.yaml

Overcloud Configuration (Report from Last Puppet
Run)

/var/lib/puppet/state/last_run_report.yaml

Overcloud Configuration (All Puppet Reports) /var/lib/puppet/reports/overcloud-*/*

Overcloud Configuration (stdout from each Puppet
Run)

/var/run/heat-config/deployed/*-stdout.log

Red Hat OpenStack Platform 10 Director Installation and Usage

122

Overcloud Configuration (stderr from each Puppet
Run)

/var/run/heat-config/deployed/*-stderr.log

High availability log /var/log/pacemaker.log

Information Log Location

CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES

123

APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION
You can configure the undercloud to use SSL/TLS for communication over public endpoints. However,
if using a SSL certificate with your own certificate authority, the certificate requires the configuration
steps in the following section.

NOTE

For overcloud SSL/TLS certificate creation, see "Enabling SSL/TLS on the Overcloud" in
the Advanced Overcloud Customization guide.

A.1. INITIALIZING THE SIGNING HOST

The signing host is the host that generates new certificates and signs them with a certificate authority. If
you have never created SSL certificates on the chosen signing host, you might need to initialize the host
so that it can sign new certificates.

The /etc/pki/CA/index.txt file stores records of all signed certificates. Check if this file exists. If it does
not exist, create an empty file:

$ sudo touch /etc/pki/CA/index.txt

The /etc/pki/CA/serial file identifies the next serial number to use for the next certificate to sign. Check
if this file exists. If it does not exist, create a new file with a new starting value:

$ echo '1000' | sudo tee /etc/pki/CA/serial

A.2. CREATING A CERTIFICATE AUTHORITY

Normally you sign your SSL/TLS certificates with an external certificate authority. In some situations, you
might aim to use your own certificate authority. For example, you might aim to have an internal-only
certificate authority.

For example, generate a key and certificate pair to act as the certificate authority:

$ openssl genrsa -out ca.key.pem 4096
$ openssl req -key ca.key.pem -new -x509 -days 7300 -extensions v3_ca -out ca.crt.pem

The openssl req command asks for certain details about your authority. Enter these details.

This creates a certificate authority file called ca.crt.pem.

A.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS

For any external clients aiming to communicate using SSL/TLS, copy the certificate authority file to
each client that requires access your Red Hat OpenStack Platform environment. Once copied to the
client, run the following command on the client to add it to the certificate authority trust bundle:

$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/
$ sudo update-ca-trust extract

Red Hat OpenStack Platform 10 Director Installation and Usage

124

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/advanced_overcloud_customization/

A.4. CREATING AN SSL/TLS KEY

Run the following commands to generate the SSL/TLS key (server.key.pem), which we use at different
points to generate our undercloud or overcloud certificates:

$ openssl genrsa -out server.key.pem 2048

A.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST

This next procedure creates a certificate signing request for either the undercloud or overcloud.

Copy the default OpenSSL configuration file for customization.

$ cp /etc/pki/tls/openssl.cnf .

Edit the custom openssl.cnf file and set SSL parameters to use for the director. An example of the
types of parameters to modify include:

[req]
distinguished_name = req_distinguished_name
req_extensions = v3_req

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = AU
stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Queensland
localityName = Locality Name (eg, city)
localityName_default = Brisbane
organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = Red Hat
commonName = Common Name
commonName_default = 192.168.0.1
commonName_max = 64

[v3_req]
Extensions to add to a certificate request
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]
IP.1 = 192.168.0.1
DNS.1 = instack.localdomain
DNS.2 = vip.localdomain
DNS.3 = 192.168.0.1

Set the commonName_default to one of the following:

If using an IP address to access over SSL/TLS, use the undercloud_public_vip parameter in
undercloud.conf.

If using a fully qualified domain name to access over SSL/TLS, use the domain name instead.

APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION

125

Edit the alt_names section to include the following entries:

IP - A list of IP addresses for clients to access the director over SSL.

DNS - A list of domain names for clients to access the director over SSL. Also include the Public
API IP address as a DNS entry at the end of the alt_names section.

For more information about openssl.cnf, run man openssl.cnf.

Run the following command to generate certificate signing request (server.csr.pem):

$ openssl req -config openssl.cnf -key server.key.pem -new -out server.csr.pem

Make sure to include the SSL/TLS key you created in Section A.4, “Creating an SSL/TLS Key” for the -
key option.

Use the server.csr.pem file to create the SSL/TLS certificate in the next section.

A.6. CREATING THE SSL/TLS CERTIFICATE

The following command creates a certificate for your undercloud or overcloud:

$ sudo openssl ca -config openssl.cnf -extensions v3_req -days 3650 -in server.csr.pem -out
server.crt.pem -cert ca.crt.pem -keyfile ca.key.pem

This command uses:

The configuration file specifying the v3 extensions. Include this as the -config option.

The certificate signing request from Section A.5, “Creating an SSL/TLS Certificate Signing
Request” to generate the certificate and sign it through a certificate authority. Include this as
the -in option.

The certificate authority you created in Section A.2, “Creating a Certificate Authority” , which
signs the certificate. Include this as the -cert option.

The certificate authority private key you created in Section A.2, “Creating a Certificate
Authority”. Include this as the -keyfile option.

This results in a certificate named server.crt.pem. Use this certificate in conjunction with the SSL/TLS
key from Section A.4, “Creating an SSL/TLS Key” to enable SSL/TLS.

A.7. USING THE CERTIFICATE WITH THE UNDERCLOUD

Run the following command to combine the certificate and key together:

$ cat server.crt.pem server.key.pem > undercloud.pem

This creates a undercloud.pem file. You specify the location of this file for the
undercloud_service_certificate option in your undercloud.conf file. This file also requires a special
SELinux context so that the HAProxy tool can read it. Use the following example as a guide:

$ sudo mkdir /etc/pki/instack-certs
$ sudo cp ~/undercloud.pem /etc/pki/instack-certs/.

Red Hat OpenStack Platform 10 Director Installation and Usage

126

$ sudo semanage fcontext -a -t etc_t "/etc/pki/instack-certs(/.*)?"
$ sudo restorecon -R /etc/pki/instack-certs

Add the undercloud.pem file location to the undercloud_service_certificate option in the
undercloud.conf file. For example:

undercloud_service_certificate = /etc/pki/instack-certs/undercloud.pem

In addition, make sure to add your certificate authority from Section A.2, “Creating a Certificate
Authority” to the undercloud’s list of trusted Certificate Authorities so that different services within the
undercloud have access to the certificate authority:

$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/
$ sudo update-ca-trust extract

Continue installing the undercloud as per the instructions in Section 4.6, “Configuring the Director” .

APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION

127

APPENDIX B. POWER MANAGEMENT DRIVERS
Although IPMI is the main method the director uses for power management control, the director also
supports other power management types. This appendix provides a list of the supported power
management features. Use these power management settings for Section 5.1, “Registering Nodes for
the Overcloud”.

B.1. DELL REMOTE ACCESS CONTROLLER (DRAC)

DRAC is an interface that provides out-of-band remote management features including power
management and server monitoring.

pm_type

Set this option to pxe_drac.

pm_user; pm_password

The DRAC username and password.

pm_addr

The IP address of the DRAC host.

B.2. INTEGRATED LIGHTS-OUT (ILO)

iLO from Hewlett-Packard is an interface that provides out-of-band remote management features
including power management and server monitoring.

pm_type

Set this option to pxe_ilo.

pm_user; pm_password

The iLO username and password.

pm_addr

The IP address of the iLO interface.

Edit the /etc/ironic/ironic.conf file and add pxe_ilo to the enabled_drivers option to
enable this driver.

The director also requires an additional set of utilities for iLo. Install the python-proliantutils
package and restart the openstack-ironic-conductor service:

$ sudo yum install python-proliantutils
$ sudo systemctl restart openstack-ironic-conductor.service

HP nodes must a 2015 firmware version for successful introspection. The director has been
successfully tested with nodes using firmware version 1.85 (May 13 2015).

Using a shared iLO port is not supported.

B.3. CISCO UNIFIED COMPUTING SYSTEM (UCS)

UCS from Cisco is a data center platform that unites compute, network, storage access, and
virtualization resources. This driver focuses on the power management for bare metal systems
connected to the UCS.

Red Hat OpenStack Platform 10 Director Installation and Usage

128

pm_type

Set this option to pxe_ucs.

pm_user; pm_password

The UCS username and password.

pm_addr

The IP address of the UCS interface.

pm_service_profile

The UCS service profile to use. Usually takes the format of org-root/ls-[service_profile_name]. For
example:

"pm_service_profile": "org-root/ls-Nova-1"

Edit the /etc/ironic/ironic.conf file and add pxe_ucs to the enabled_drivers option to
enable this driver.

The director also requires an additional set of utilities for UCS. Install the python-UcsSdk
package and restart the openstack-ironic-conductor service:

$ sudo yum install python-UcsSdk
$ sudo systemctl restart openstack-ironic-conductor.service

B.4. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER
(IRMC)

Fujitsu’s iRMC is a Baseboard Management Controller (BMC) with integrated LAN connection and
extended functionality. This driver focuses on the power management for bare metal systems
connected to the iRMC.

IMPORTANT

iRMC S4 or higher is required.

pm_type

Set this option to pxe_irmc.

pm_user; pm_password

The username and password for the iRMC interface.

pm_addr

The IP address of the iRMC interface.

pm_port (Optional)

The port to use for iRMC operations. The default is 443.

pm_auth_method (Optional)

The authentication method for iRMC operations. Use either basic or digest. The default is basic

pm_client_timeout (Optional)

Timeout (in seconds) for iRMC operations. The default is 60 seconds.

pm_sensor_method (Optional)

Sensor data retrieval method. Use either ipmitool or scci. The default is ipmitool.

APPENDIX B. POWER MANAGEMENT DRIVERS

129

Edit the /etc/ironic/ironic.conf file and add pxe_irmc to the enabled_drivers option to
enable this driver.

The director also requires an additional set of utilities if you enabled SCCI as the sensor
method. Install the python-scciclient package and restart the openstack-ironic-conductor
service:

$ yum install python-scciclient
$ sudo systemctl restart openstack-ironic-conductor.service

B.5. SSH AND VIRSH

The director can access a host running libvirt through SSH and use virtual machines as nodes. The
director uses virsh to control the power management of these nodes.

IMPORTANT

This option is available for testing and evaluation purposes only. It is not recommended
for Red Hat OpenStack Platform enterprise environments.

pm_type

Set this option to pxe_ssh.

pm_user; pm_password

The SSH username and contents of the SSH private key. If using the CLI tools to register your nodes,
the private key must be on one line with new lines replaced with escape characters (\n). For example:

-----BEGIN RSA PRIVATE KEY-----\nMIIEogIBAAKCAQEA kk+WXt9Y=\n-----END RSA
PRIVATE KEY-----

Add the SSH public key to the libvirt server’s authorized_keys collection.

pm_addr

The IP address of the virsh host.

The server hosting libvirt requires an SSH key pair with the public key set as the
pm_password attribute.

Ensure the chosen pm_user has full access to the libvirt environment.

B.6. FAKE PXE DRIVER

This driver provides a method to use bare metal devices without power management. This means the
director does not control the registered bare metal devices and as such require manual control of power
at certain points in the introspect and deployment processes.

IMPORTANT

This option is available for testing and evaluation purposes only. It is not recommended
for Red Hat OpenStack Platform enterprise environments.

Red Hat OpenStack Platform 10 Director Installation and Usage

130

pm_type

Set this option to fake_pxe.

This driver does not use any authentication details because it does not control power
management.

Edit the /etc/ironic/ironic.conf file and add fake_pxe to the enabled_drivers option to
enable this driver. Restart the baremetal services after editing the file:

$ sudo systemctl restart openstack-ironic-api openstack-ironic-conductor

When performing introspection on nodes, manually power the nodes after running the
openstack baremetal introspection bulk start command.

When performing overcloud deployment, check the node status with the ironic node-list
command. Wait until the node status changes from deploying to deploy wait-callback and
then manually power the nodes.

After the overcloud provisioning process completes, reboot the nodes. To check the
completion of provisioning, check the node status with the ironic node-list command, wait
until the node status changes to active, then manually reboot all overcloud nodes.

APPENDIX B. POWER MANAGEMENT DRIVERS

131

APPENDIX C. WHOLE DISK IMAGES
The main overcloud image is a flat partition image. This means it contains no partitioning information or
bootloader on the images itself. The director uses a seperate kernel and ramdisk when booting and
creates a basic partitioning layout when writing the overcloud image to disk. However, you can create a
whole disk image, which includes a partitioning layout and bootloader.

C.1. CREATING WHOLE DISK IMAGES

Creating a whole disk image from the overcloud-full.qcow2 flat partition image involves the following
steps:

1. Open the overcloud-full flat partition as a base for our whole disk image.

2. Create a new whole disk image with the desired size. This example uses a 10 GB image.

3. Create partitions and volumes on the whole disk image. Create as many partitions and volumes
necessary for your desired whole disk image. This example creates an isolated partition for boot
and logical volumes for the other content in the filesystem.

4. Create the initial filesystems on the partitions and volumes.

5. Mount flat partition filesystem and copy content to the right partitions on the whole disk image.

6. Generate the fstab content and save it to /etc/fstab on the whole disk image.

7. Unmount all the filesystems.

8. Mount the partitions on the whole disk image only. Start with the root partition mounted at / and
mount the other partition in their respective directories.

9. Install the bootloader using shell commands to execute grub2-install and grub2-mkconfig on
the whole disk image. This installs the grub2 bootloader in the whole disk image.

10. Update dracut to provide support for logical volume management

11. Unmount all the filesystems and close the image

Manually Creating a Whole Disk Image

A recommended tool for creating images is guestfish, which you install using the following command:

$ sudo yum install -y guestfish

Once installed, run the guestfish interactive shell:

$ guestfish

Welcome to guestfish, the guest filesystem shell for
editing virtual machine filesystems and disk images.

Type: 'help' for help on commands
 'man' to read the manual
 'quit' to quit the shell

><fs>

Red Hat OpenStack Platform 10 Director Installation and Usage

132

For more information on using guestfish see "The Guestfish Shell" in the Virtualization Deployment and
Administration Guide for Red Hat Enterprise Linux 7.

C.2. AUTOMATICALLY CREATING A WHOLE DISK IMAGE

The following Python script uses the guestfish library to automatically generate the whole disk image.

#!/usr/bin/env python
import guestfs
import os

remove old generated drive
try:
 os.unlink("/home/stack/images/overcloud-full-partitioned.qcow2")
except:
 pass

g = guestfs.GuestFS(python_return_dict=True)

import old and new images
print("Creating new repartitioned image")
g.add_drive_opts("/home/stack/images/overcloud-full.qcow2", format="qcow2", readonly=1)
g.disk_create("/home/stack/images/overcloud-full-partitioned.qcow2", "qcow2", 10.2 * 1024 * 1024 *
1024) #10.2G
g.add_drive_opts("/home/stack/images/overcloud-full-partitioned.qcow2", format="qcow2",
readonly=0)
g.launch()

create the partitions for new image
print("Creating the initial partitions")
g.part_init("/dev/sdb", "mbr")
g.part_add("/dev/sdb", "primary", 2048, 616448)
g.part_add("/dev/sdb", "primary", 616449, -1)

g.pvcreate("/dev/sdb2")
g.vgcreate("vg", ['/dev/sdb2',])
g.lvcreate("var", "vg", 5 * 1024)
g.lvcreate("tmp", "vg", 500)
g.lvcreate("swap", "vg", 250)
g.lvcreate("home", "vg", 100)
g.lvcreate("root", "vg", 4 * 1024)
g.part_set_bootable("/dev/sdb", 1, True)

add filesystems to volumes
print("Adding filesystems")
ids = {}
keys = ['var', 'tmp', 'swap', 'home', 'root']
volumes = ['/dev/vg/var', '/dev/vg/tmp', '/dev/vg/swap', '/dev/vg/home', '/dev/vg/root']
swap_volume = volumes[2]

count = 0
for volume in volumes:
 if count!=2:
 g.mkfs('ext4', volume)

APPENDIX C. WHOLE DISK IMAGES

133

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/sect-Guest_virtual_machine_disk_access_with_offline_tools-The_guestfish_shell.html

 ids[keys[count]] = g.vfs_uuid(volume)
 count +=1

create filesystem on boot and swap
g.mkfs('ext4', '/dev/sdb1')
g.mkswap_opts(volumes[2])
ids['swap'] = g.vfs_uuid(volumes[2])

mount drives and copy content
print("Start copying content")
g.mkmountpoint('/old')
g.mkmountpoint('/root')
g.mkmountpoint('/boot')
g.mkmountpoint('/home')
g.mkmountpoint('/var')
g.mount('/dev/sda', '/old')

g.mount('/dev/sdb1', '/boot')
g.mount(volumes[4], '/root')
g.mount(volumes[3], '/home')
g.mount(volumes[0], '/var')

copy content to root
results = g.ls('/old/')
for result in results:
 if result not in ('boot', 'home', 'tmp', 'var'):
 print("Copying %s to root" % result)
 g.cp_a('/old/%s' % result, '/root/')

copy extra content
folders_to_copy = ['boot', 'home', 'var']
for folder in folders_to_copy:
 results = g.ls('/old/%s/' % folder)
 for result in results:
 print("Copying %s to %s" % (result, folder))
 g.cp_a('/old/%s/%s' % (folder, result),
 '/%s/' % folder)

create /etc/fstab file
print("Generating fstab content")
fstab_content = """
UUID={boot_id} /boot ext4 defaults 0 2
UUID={root_id} / ext4 defaults 0 1
UUID={swap_id} none swap sw 0 0
UUID={tmp_id} /tmp ext4 defaults 0 2
UUID={home_id} /home ext4 defaults 0 2
UUID={var_id} /var ext4 defaults 0 2
""".format(
 boot_id=g.vfs_uuid('/dev/sdb1'),
 root_id=ids['root'],
 swap_id=ids['swap'],
 tmp_id=ids['tmp'],
 home_id=ids['home'],
 var_id=ids['var'])

g.write('/root/etc/fstab', fstab_content)

Red Hat OpenStack Platform 10 Director Installation and Usage

134

unmount filesystems
g.umount('/root')
g.umount('/boot')
g.umount('/old')
g.umount('/var')

mount in the right directories to install bootloader
print("Installing bootloader")
g.mount(volumes[4], '/')
g.mkdir('/boot')
g.mkdir('/var')
g.mount('/dev/sdb1', '/boot')
g.mount(volumes[0], '/var')

do a selinux relabel
g.selinux_relabel('/etc/selinux/targeted/contexts/files/file_contexts', '/', force=True)
g.selinux_relabel('/etc/selinux/targeted/contexts/files/file_contexts', '/var', force=True)

g.sh('grub2-install --target=i386-pc /dev/sdb')
g.sh('grub2-mkconfig -o /boot/grub2/grub.cfg')

create dracut.conf file
dracut_content = """
add_dracutmodules+="lvm crypt"
"""
g.write('/etc/dracut.conf', dracut_content)

update initramfs to include lvm and crypt
kernels = g.ls('/lib/modules')
for kernel in kernels:
 print("Updating dracut to include modules in kernel %s" % kernel)
 g.sh('dracut -f /boot/initramfs-%s.img %s --force' % (kernel, kernel))
g.umount('/boot')
g.umount('/var')
g.umount('/')

close images
print("Finishing image")
g.shutdown()
g.close()

Save this script as a executable file on the undercloud and run it as the stack user:

$./whole-disk-image.py

This automatically creates the whole disk image from the flat partition image. Once the whole disk image
creation completes, replace the old overcloud-full.qcow2 image:

$ mv ~/images/overcloud-full.qcow2 ~/images/overcloud-full-old.qcow2
$ cp ~/images/overcloud-full-partitioned.qcow2 ~/images/overcloud-full.qcow2

You can now upload the whole disk image along with your other images.

APPENDIX C. WHOLE DISK IMAGES

135

C.3. ENCRYPTING VOLUMES ON WHOLE DISK IMAGES

You can also use guestfish to encrypt volumes on your whole disk image. This requires using the luks-
format subcommand, which erases the current volume and creates an encrypted volume.

The following Python script opens the overcloud-full-partitioned.qcow2 image created previously,
removes the current home volume (which is empty), and replaces it with an encrypted home volume:

#!/usr/bin/env python
import binascii
import guestfs

g = guestfs.GuestFS(python_return_dict=True)
g.add_drive_opts("/home/stack/images/overcloud-full-partitioned.qcow2", format="qcow2",
readonly=0)
g.launch()

random_content = binascii.b2a_hex(os.urandom(1024))
g.luks_format('/dev/vg/home', random_content, 0)
g.luks_open('/dev/vg/home', random_content, 'cryptedhome')
g.vgscan()
g.vg_activate_all(True)
g.mkfs('ext4', '/dev/mapper/cryptedhome')
g.mount('/dev/vg/root','/')

volumes = lvs()
volumes.remove('/dev/vg/home')
volumes.remove('/dev/vg/root')
volumes.remove('/dev/vg/swap')
fstab_content = []
fstab_content.append('UUID=%s /boot ext4 defaults 0 2' % g.vfs_uuid('/dev/sda1'))
fstab_content.append('UUID=%s / ext4 defaults 0 1' % g.vfs_uuid('/dev/vg/root'))
fstab_content.append('UUID=%s none swap sw 0 0' % g.vfs_uuid('/dev/vg/swap'))
fstab_content.append('/dev/mapper/cryptedhome /home ext4 defaults 0 1')
for volume in volumes:
 volume_name = volume.replace('/dev/vg/', '')
 fstab_content.append('UUID=%s /%s ext4 defaults 0 2' % (g.vfs_uuid(volume), volume_name))

g.write('/etc/fstab', '\n'.join(fstab_content))
print '\n'.join(fstab_content)

g.write('/root/home_keyfile', random_content)
g.chmod(0400, '/root/home_keyfile')

mapper = """
home UUID={home_id} /root/home_keyfile
""".format(home_id=g.vfs_uuid('/dev/mapper/cryptedhome'))
g.write('/etc/crypttab', mapper)

g.luks_close('/dev/mapper/cryptedhome')
g.selinux_relabel('/etc/selinux/targeted/contexts/files/file_contexts', '/', force=True)
g.shutdown()
g.close()

This script also:

Red Hat OpenStack Platform 10 Director Installation and Usage

136

Creates a key (random_content)

Regenerates the /etc/fstab file with the new encrypted volume

Saves the encryption key at /root/home_keyfile

Generates a crypttab file to automatically decrypt the volume using the /root/home_keyfile)

Use this script as an example to create encrypted volumes as part of your whole disk image creation
process.

C.4. UPLOADING WHOLE DISK IMAGES

To upload a whole disk image, use the --whole-disk-image option with the image upload command. For
example:

$ openstack overcloud image upload --whole-disk --image-path /home/stack/images

This command uploads the images from /home/stack/images but treats the overcloud-full.qcow2 file
as a whole disk image. This means you must rename the desired whole disk image to overcloud-
full.qcow2 before running the image upload command.

APPENDIX C. WHOLE DISK IMAGES

137

APPENDIX D. ALTERNATIVE BOOT MODES
The default boot mode for nodes is BIOS over iPXE. The following sections outline some alternative
boot modes for the director to use when provisioning and inspecting nodes.

D.1. STANDARD PXE

The iPXE boot process uses HTTP to boot the introspection and deployment images. Older systems
might only support a standard PXE boot, which boots over TFTP.

To change from iPXE to PXE, edit the undercloud.conf file on the director host and set ipxe_enabled
to False:

ipxe_enabled = False

Save this file and run the undercloud installation:

$ openstack undercloud install

For more information on this process, see the article "Changing from iPXE to PXE in Red Hat OpenStack
Platform director".

D.2. UEFI BOOT MODE

The default boot mode is the legacy BIOS mode. Newer systems might require UEFI boot mode instead
of the legacy BIOS mode. In this situation, set the following in your undercloud.conf file:

ipxe_enabled = True
inspection_enable_uefi = True

Save this file and run the undercloud installation:

$ openstack undercloud install

Set the boot mode to uefi for each registered node. For example, to add or replace the existing
boot_mode parameters in the capabilities property:

$ NODE=<NODE NAME OR ID> ; openstack baremetal node set --property
capabilities="boot_mode:uefi,$(openstack baremetal node show $NODE -f json -c properties | jq -r
.properties.capabilities | sed "s/boot_mode:[^,]*,//g")" $NODE

NOTE

Check that you have retained the profile and boot_option capabilities with this
command.

In addition, set the boot mode to uefi for each flavor. For example:

$ openstack flavor set --property capabilities:boot_mode='uefi' control

Red Hat OpenStack Platform 10 Director Installation and Usage

138

https://access.redhat.com/articles/2142881

APPENDIX E. AUTOMATIC PROFILE TAGGING
The introspection process performs a series of benchmark tests. The director saves the data from these
tests. You can create a set of policies that use this data in various ways. For example:

The policies can identify and isolate underperforming or unstable nodes from use in the
overcloud.

The policies can define whether to automatically tag nodes into specific profiles.

E.1. POLICY FILE SYNTAX

Policy files use a JSON format that contains a set of rules. Each rule defines a description, a condition,
and an action.

Description

This is a plain text description of the rule.

Example:

"description": "A new rule for my node tagging policy"

Conditions

A condition defines an evaluation using the following key-value pattern:

field

Defines the field to evaluate. For field types, see Section E.4, “Automatic Profile Tagging Properties”

op

Defines the operation to use for the evaluation. This includes the following:

eq - Equal to

ne - Not equal to

lt - Less than

gt - Greater than

le - Less than or equal to

ge - Greater than or equal to

in-net - Checks that an IP address is in a given network

matches - Requires a full match against a given regular expression

contains - Requires a value to contain a given regular expression;

is-empty - Checks that field is empty.

invert

Boolean value to define whether to invert the result of the evaluation.

APPENDIX E. AUTOMATIC PROFILE TAGGING

139

multiple

Defines the evaluation to use if multiple results exist. This includes:

any - Requires any result to match

all - Requires all results to match

first - Requires the first result to match

value

Defines the value in the evaluation. If the field and operation result in the value, the condition return a
true result. If not, the condition returns false.

Example:

"conditions": [
 {
 "field": "local_gb",
 "op": "ge",
 "value": 1024
 }
],

Actions

An action is performed if the condition returns as true. It uses the action key and additional keys
depending on the value of action:

fail - Fails the introspection. Requires a message parameter for the failure message.

set-attribute - Sets an attribute on an Ironic node. Requires a path field, which is the path to an
Ironic attribute (e.g. /driver_info/ipmi_address), and a value to set.

set-capability - Sets a capability on an Ironic node. Requires name and value fields, which are
the name and the value for a new capability accordingly. The existing value for this same
capability is replaced. For example, use this to define node profiles.

extend-attribute - The same as set-attribute but treats the existing value as a list and appends
value to it. If the optional unique parameter is set to True, nothing is added if the given value is
already in a list.

Example:

"actions": [
 {
 "action": "set-capability",
 "name": "profile",
 "value": "swift-storage"
 }
]

E.2. POLICY FILE EXAMPLE

The following is an example JSON file (rules.json) with the introspection rules to apply:

Red Hat OpenStack Platform 10 Director Installation and Usage

140

[
 {
 "description": "Fail introspection for unexpected nodes",
 "conditions": [
 {
 "op": "lt",
 "field": "memory_mb",
 "value": 4096
 }
],
 "actions": [
 {
 "action": "fail",
 "message": "Memory too low, expected at least 4 GiB"
 }
]
 },
 {
 "description": "Assign profile for object storage",
 "conditions": [
 {
 "op": "ge",
 "field": "local_gb",
 "value": 1024
 }
],
 "actions": [
 {
 "action": "set-capability",
 "name": "profile",
 "value": "swift-storage"
 }
]
 },
 {
 "description": "Assign possible profiles for compute and controller",
 "conditions": [
 {
 "op": "lt",
 "field": "local_gb",
 "value": 1024
 },
 {
 "op": "ge",
 "field": "local_gb",
 "value": 40
 }
],
 "actions": [
 {
 "action": "set-capability",
 "name": "compute_profile",
 "value": "1"
 },
 {
 "action": "set-capability",

APPENDIX E. AUTOMATIC PROFILE TAGGING

141

 "name": "control_profile",
 "value": "1"
 },
 {
 "action": "set-capability",
 "name": "profile",
 "value": null
 }
]
 }
]

This example consists of three rules:

Fail introspection if memory is lower is 4096 MiB. Such rules can be applied to exclude nodes
that should not become part of your cloud.

Nodes with hard drive size 1 TiB and bigger are assigned the swift-storage profile
unconditionally.

Nodes with hard drive less than 1 TiB but more than 40 GiB can be either Compute or Controller
nodes. We assign two capabilities (compute_profile and control_profile) so that the
openstack overcloud profiles match command can later make the final choice. For that to
work, we remove the existing profile capability, otherwise it will have priority.

Other nodes are not changed.

NOTE

Using introspection rules to assign the profile capability always overrides the existing
value. However, [PROFILE]_profile capabilities are ignored for nodes with an existing
profile capability.

E.3. IMPORTING POLICY FILES

Import the policy file into the director with the following command:

$ openstack baremetal introspection rule import rules.json

Then run the introspection process.

$ openstack baremetal introspection bulk start

After introspection completes, check the nodes and their assigned profiles:

$ openstack overcloud profiles list

If you made a mistake in introspection rules, you can delete them all:

$ openstack baremetal introspection rule purge

E.4. AUTOMATIC PROFILE TAGGING PROPERTIES

Automatic Profile Tagging evaluates the following node properties for the field attribute for each

Red Hat OpenStack Platform 10 Director Installation and Usage

142

Automatic Profile Tagging evaluates the following node properties for the field attribute for each
condition:

Property Description

memory_mb The amount of memory for the node in MB.

cpus The total number of cores for the node’s CPUs.

cpu_arch The architecture of the node’s CPUs.

local_gb The total storage space of the node’s root disk. See
Section 5.4, “Defining the Root Disk for Nodes” for
more information about setting the root disk for a
node.

APPENDIX E. AUTOMATIC PROFILE TAGGING

143

APPENDIX F. FIREFOX SERVER EXCEPTIONS FOR UI ACCESS
Accessing the director’s web UI through Firefox requires certain server identity exceptions to allow
OpenStack Platform services. This includes the following service URLs:

URL service

https://<undercloud>:13000 OpenStack Identity (keystone)

https://<undercloud>:13004 OpenStack Orchestration (heat)

https://<undercloud>:13385 OpenStack Bare Metal (ironic)

https://<undercloud>:13989 OpenStack Workflow Service (mistral)

https://<undercloud>:13808 OpenStack Object Storage (swift)

https://<undercloud>:9000 OpenStack Messaging Service (zaqar)

Replace <undercloud> with the Public API IP address of your undercloud.

To add an server identity exception for a URL in Firefox:

1. Navigate to the Preferences.

2. Navigate to Certificates > View Certificates.

3. Click on the Servers tab and click Add Exception.

4. A window appears asking for the URL of the server. Enter a service URL and port from the list
above and click Get Certificate.

5. Click Confirm Security Exception.

Continue adding exceptions for all service URLs.

Red Hat OpenStack Platform 10 Director Installation and Usage

144

APPENDIX G. SECURITY ENHANCEMENTS
The following sections provide some suggestions to harden the security of your undercloud.

G.1. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY

If you enabled SSL/TLS in the undercloud (see Section 4.6, “Configuring the Director”), you might want
to harden the SSL/TLS ciphers and rules used with the HAProxy configuration. This helps avoid
SSL/TLS vulnerabilities, such as the POODLE vulnerability.

Set the following hieradata using the hieradata_override undercloud configuration option:

tripleo::haproxy::ssl_cipher_suite

The cipher suite to use in HAProxy.

tripleo::haproxy::ssl_options

The SSL/TLS rules to use in HAProxy.

For example, you might aim to use the following cipher and rules:

Cipher: ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-
POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-
AES256-SHA384:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-
ECDSA-AES256-SHA:ECDHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-
AES128-SHA:DHE-RSA-AES256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-
CBC3-SHA:ECDHE-RSA-DES-CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-
SHA256:AES256-GCM-SHA384:AES128-SHA256:AES256-SHA256:AES128-SHA:AES256-
SHA:DES-CBC3-SHA:!DSS

Rules: no-sslv3 no-tls-tickets

Create a hieradata override file (haproxy-hiera-overrides.yaml) with the following content:

tripleo::haproxy::ssl_cipher_suite: ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-
CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-
AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-
SHA384:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES256-
SHA:ECDHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-RSA-
AES256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-CBC3-SHA:ECDHE-RSA-DES-
CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-
SHA256:AES256-SHA256:AES128-SHA:AES256-SHA:DES-CBC3-SHA:!DSS
tripleo::haproxy::ssl_options: no-sslv3 no-tls-tickets

NOTE

The cipher collection is one continuous line.

Set the hieradata_override parameter in the undercloud.conf file to use the hieradata override file
you created before running openstack undercloud install:

APPENDIX G. SECURITY ENHANCEMENTS

145

https://access.redhat.com/solutions/1291123

[DEFAULT]
...
hieradata_override = haproxy-hiera-overrides.yaml
...

Red Hat OpenStack Platform 10 Director Installation and Usage

146

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. UNDERCLOUD
	1.2. OVERCLOUD
	1.3. HIGH AVAILABILITY
	1.4. CEPH STORAGE

	CHAPTER 2. REQUIREMENTS
	2.1. ENVIRONMENT REQUIREMENTS
	2.2. UNDERCLOUD REQUIREMENTS
	2.2.1. Virtualization Support

	2.3. NETWORKING REQUIREMENTS
	2.4. OVERCLOUD REQUIREMENTS
	2.4.1. Compute Node Requirements
	2.4.2. Controller Node Requirements
	2.4.3. Ceph Storage Node Requirements
	2.4.4. Object Storage Node Requirements

	2.5. REPOSITORY REQUIREMENTS

	CHAPTER 3. PLANNING YOUR OVERCLOUD
	3.1. PLANNING NODE DEPLOYMENT ROLES
	3.2. PLANNING NETWORKS
	3.3. PLANNING STORAGE

	CHAPTER 4. INSTALLING THE UNDERCLOUD
	4.1. CREATING A DIRECTOR INSTALLATION USER
	4.2. CREATING DIRECTORIES FOR TEMPLATES AND IMAGES
	4.3. SETTING THE HOSTNAME FOR THE SYSTEM
	4.4. REGISTERING YOUR SYSTEM
	4.5. INSTALLING THE DIRECTOR PACKAGES
	4.6. CONFIGURING THE DIRECTOR
	4.7. OBTAINING IMAGES FOR OVERCLOUD NODES
	4.8. SETTING A NAMESERVER ON THE UNDERCLOUD’S NEUTRON SUBNET
	4.9. BACKING UP THE UNDERCLOUD
	4.10. COMPLETING THE UNDERCLOUD CONFIGURATION

	CHAPTER 5. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE CLI TOOLS
	5.1. REGISTERING NODES FOR THE OVERCLOUD
	5.2. INSPECTING THE HARDWARE OF NODES
	5.3. TAGGING NODES INTO PROFILES
	5.4. DEFINING THE ROOT DISK FOR NODES
	5.5. CUSTOMIZING THE OVERCLOUD
	5.6. CREATING THE OVERCLOUD WITH THE CLI TOOLS
	5.7. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION
	5.8. MANAGING OVERCLOUD PLANS
	5.9. VALIDATING OVERCLOUD TEMPLATES AND PLANS
	5.10. MONITORING THE OVERCLOUD CREATION
	5.11. ACCESSING THE OVERCLOUD
	5.12. COMPLETING THE OVERCLOUD CREATION

	CHAPTER 6. CONFIGURING BASIC OVERCLOUD REQUIREMENTS WITH THE WEB UI
	6.1. ACCESSING THE WEB UI
	6.2. NAVIGATING THE WEB UI
	6.3. IMPORTING AN OVERCLOUD PLAN IN THE WEB UI
	6.4. REGISTERING NODES IN THE WEB UI
	6.5. INSPECTING THE HARDWARE OF NODES IN THE WEB UI
	6.6. EDITING OVERCLOUD PLAN PARAMETERS IN THE WEB UI
	6.7. TAGGING NODES INTO ROLES IN THE WEB UI
	6.8. EDITING NODES IN THE WEB UI
	6.9. STARTING THE OVERCLOUD CREATION IN THE WEB UI
	6.10. COMPLETING THE OVERCLOUD CREATION

	CHAPTER 7. PERFORMING TASKS AFTER OVERCLOUD CREATION
	7.1. CREATING THE OVERCLOUD TENANT NETWORK
	7.2. CREATING THE OVERCLOUD EXTERNAL NETWORK
	7.3. CREATING ADDITIONAL FLOATING IP NETWORKS
	7.4. CREATING THE OVERCLOUD PROVIDER NETWORK
	7.5. CREATING A BASIC OVERCLOUD FLAVOR
	7.6. VALIDATING THE OVERCLOUD
	7.7. FENCING THE CONTROLLER NODES
	7.8. MODIFYING THE OVERCLOUD ENVIRONMENT
	7.9. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD
	7.10. RUNNING ANSIBLE AUTOMATION
	7.11. PROTECTING THE OVERCLOUD FROM REMOVAL
	7.12. REMOVING THE OVERCLOUD

	CHAPTER 8. MIGRATING VIRTUAL MACHINES BETWEEN COMPUTE NODES
	8.1. MIGRATION TYPES
	8.2. MIGRATION CONSTRAINTS
	8.3. PRE-MIGRATION PROCEDURES
	8.4. LIVE MIGRATE A VIRTUAL MACHINE
	8.5. COLD MIGRATE A VIRTUAL MACHINE
	8.6. CHECK MIGRATION STATUS
	8.7. POST-MIGRATION PROCEDURES
	8.8. TROUBLESHOOTING MIGRATION

	CHAPTER 9. SCALING THE OVERCLOUD
	9.1. ADDING ADDITIONAL NODES
	9.2. REMOVING COMPUTE NODES
	9.3. REPLACING COMPUTE NODES
	9.4. REPLACING CONTROLLER NODES
	9.4.1. Preliminary Checks
	9.4.2. Removing a Ceph Monitor Daemon
	9.4.3. Node Replacement
	9.4.4. Manual Intervention
	9.4.5. Finalizing Overcloud Services
	9.4.6. Finalizing L3 Agent Router Hosting
	9.4.7. Finalizing Compute Services
	9.4.8. Conclusion

	9.5. REPLACING CEPH STORAGE NODES
	9.6. REPLACING OBJECT STORAGE NODES

	CHAPTER 10. REBOOTING NODES
	10.1. REBOOTING THE DIRECTOR
	10.2. REBOOTING CONTROLLER NODES
	10.3. REBOOTING STANDALONE CEPH MON NODES
	10.4. REBOOTING CEPH STORAGE NODES
	10.5. REBOOTING COMPUTE NODES
	10.6. REBOOTING OBJECT STORAGE NODES

	CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES
	11.1. TROUBLESHOOTING NODE REGISTRATION
	11.2. TROUBLESHOOTING HARDWARE INTROSPECTION
	11.3. TROUBLESHOOTING WORKFLOWS AND EXECUTIONS
	11.4. TROUBLESHOOTING OVERCLOUD CREATION
	11.4.1. Orchestration
	11.4.2. Bare Metal Provisioning
	11.4.3. Post-Deployment Configuration

	11.5. TROUBLESHOOTING IP ADDRESS CONFLICTS ON THE PROVISIONING NETWORK
	11.6. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS
	11.7. TROUBLESHOOTING THE OVERCLOUD AFTER CREATION
	11.7.1. Overcloud Stack Modifications
	11.7.2. Controller Service Failures
	11.7.3. Compute Service Failures
	11.7.4. Ceph Storage Service Failures

	11.8. TUNING THE UNDERCLOUD
	11.9. IMPORTANT LOGS FOR UNDERCLOUD AND OVERCLOUD

	APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION
	A.1. INITIALIZING THE SIGNING HOST
	A.2. CREATING A CERTIFICATE AUTHORITY
	A.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS
	A.4. CREATING AN SSL/TLS KEY
	A.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST
	A.6. CREATING THE SSL/TLS CERTIFICATE
	A.7. USING THE CERTIFICATE WITH THE UNDERCLOUD

	APPENDIX B. POWER MANAGEMENT DRIVERS
	B.1. DELL REMOTE ACCESS CONTROLLER (DRAC)
	B.2. INTEGRATED LIGHTS-OUT (ILO)
	B.3. CISCO UNIFIED COMPUTING SYSTEM (UCS)
	B.4. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
	B.5. SSH AND VIRSH
	B.6. FAKE PXE DRIVER

	APPENDIX C. WHOLE DISK IMAGES
	C.1. CREATING WHOLE DISK IMAGES
	C.2. AUTOMATICALLY CREATING A WHOLE DISK IMAGE
	C.3. ENCRYPTING VOLUMES ON WHOLE DISK IMAGES
	C.4. UPLOADING WHOLE DISK IMAGES

	APPENDIX D. ALTERNATIVE BOOT MODES
	D.1. STANDARD PXE
	D.2. UEFI BOOT MODE

	APPENDIX E. AUTOMATIC PROFILE TAGGING
	E.1. POLICY FILE SYNTAX
	E.2. POLICY FILE EXAMPLE
	E.3. IMPORTING POLICY FILES
	E.4. AUTOMATIC PROFILE TAGGING PROPERTIES

	APPENDIX F. FIREFOX SERVER EXCEPTIONS FOR UI ACCESS
	APPENDIX G. SECURITY ENHANCEMENTS
	G.1. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY

