& RedHat

Red Hat OpenShift Pipelines 1.14

Securing OpenShift Pipelines

Security features of OpenShift Pipelines

Last Updated: 2024-03-21






Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

Security features of OpenShift Pipelines



Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about security features of OpenShift Pipelines.



Table of Contents

Table of Contents

CHAPTER 1. USING TEKTON CHAINS FOR OPENSHIFT PIPELINES SUPPLY CHAIN SECURITY ...........
11. KEY FEATURES
1.2. CONFIGURING TEKTON CHAINS
1.2.1. Supported parameters for Tekton Chains configuration

w

1.2.1.1. Supported parameters for task run artifacts
1.2.1.2. Supported parameters for pipeline run artifacts
1.2.1.3. Supported parameters for OCl artifacts
1.2.1.4. Supported parameters for KMS signers
1.2.1.5. Supported parameters for storage
1.3. SECRETS FOR SIGNING DATA IN TEKTON CHAINS
1.3.1. Signing using cosign
1.3.2. Signing using skopeo

O O 0 U1 U1 U1 N W W W W

1.3.3. Resolving the "secret already exists" error 10
1.4. AUTHENTICATING TO AN OCI REGISTRY 1
1.5. CREATING AND VERIFYING TASK RUN SIGNATURES WITHOUT ANY ADDITIONAL AUTHENTICATION 12

1.5.1. Additional resources 14
1.6. USING TEKTON CHAINS TO SIGN AND VERIFY IMAGE AND PROVENANCE 14
1.7. ADDITIONAL RESOURCES 16

CHAPTER 2. SETTING UP OPENSHIFT PIPELINES IN THE WEB CONSOLE TO VIEW SOFTWARE SUPPLY

CHAIN SECURITY ELEMENT S .ttt e et ettt ettt ai i eaeenns 17
2.1.SETTING UP OPENSHIFT PIPELINES TO VIEW PROJECT VULNERABILITIES 17
2.2.SETTING UP OPENSHIFT PIPELINES TO DOWNLOAD OR VIEW SBOMS 20

2.2.1. Viewing an SBOM in the web Ul 22
2.2.2. Downloading an SBOM in the CLI 23
2.2.3. Reading the SBOM 23
2.3. ADDITIONAL RESOURCES 24
CHAPTER 3. CONFIGURING THE SECURITY CONTEXT FORPODS ... ..ttt iiiiiiieeeannn, 25
3.1. CONFIGURING THE DEFAULT AND MAXIMUM SCC FOR PODS THAT OPENSHIFT PIPELINES CREATES
25
3.2. CONFIGURING THE SCC FOR PODS IN A NAMESPACE 26
3.3. RUNNING PIPELINE RUN AND TASK RUN BY USING A CUSTOM SCC AND A CUSTOM SERVICE
ACCOUNT 26
3.4. ADDITIONAL RESOURCES 29

CHAPTER 4. SECURING WEBHOOKS WITH EVENTLISTENERS ......ciiiii i iiiiiieenns 30
4.1. PROVIDING SECURE CONNECTION WITH OPENSHIFT ROUTES 30
4.2. CREATING A SAMPLE EVENTLISTENER RESOURCE USING A SECURE HTTPS CONNECTION 31

CHAPTER 5. AUTHENTICATING PIPELINES USING GITSECRET .....ciiiitiiiiiiieiiiiiieennnnn, 32
5.1. CREDENTIAL SELECTION 32
5.2. CONFIGURING BASIC AUTHENTICATION FOR GIT 33
5.3. CONFIGURING SSH AUTHENTICATION FOR GIT 34
5.4. USING SSH AUTHENTICATION IN GIT TYPE TASKS 36
5.5. USING SECRETS AS A NON-ROOT USER 37
5.6. LIMITING SECRET ACCESS TO SPECIFIC STEPS 37

CHAPTER 6. BUILDING OF CONTAINER IMAGES USING BUILDAH AS A NON-ROOT USER .............. 38
6.1. CONFIGURING CUSTOM SERVICE ACCOUNT AND SECURITY CONTEXT CONSTRAINT 38
6.2. CONFIGURING BUILDAH TO USE BUILD USER 40
6.3. STARTING A TASK RUN WITH CUSTOM CONFIG MAP, OR A PIPELINE RUN 42
6.4. LIMITATIONS OF UNPRIVILEGED BUILDS 44



Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines




CHAPTER 1. USING TEKTON CHAINS FOR OPENSHIFT PIPELINES SUPPLY CHAIN SECURITY

CHAPTER 1. USING TEKTON CHAINS FOR OPENSHIFT
PIPELINES SUPPLY CHAIN SECURITY

Tekton Chains is a Kubernetes Custom Resource Definition (CRD) controller. You can use it to manage
the supply chain security of the tasks and pipelines created using Red Hat OpenShift Pipelines.

By default, Tekton Chains observes all task run executions in your OpenShift Container Platform cluster.
When the task runs complete, Tekton Chains takes a snapshot of the task runs. It then converts the
snapshot to one or more standard payload formats, and finally signs and stores all artifacts.

To capture information about task runs, Tekton Chains uses Result objects. When the objects are
unavailable, Tekton Chains the URLs and qualified digests of the OCl images.

1.1. KEY FEATURES

® You can sign task runs, task run results, and OCl registry images with cryptographic keys that
are generated by tools such as cosign and skopeo.

® You can use attestation formats such as in-toto.

® You can securely store signatures and signed artifacts using OCl repository as a storage
backend.

1.2. CONFIGURING TEKTON CHAINS

The Red Hat OpenShift Pipelines Operator installs Tekton Chains by default. You can configure Tekton
Chains by modifying the TektonConfig custom resource; the Operator automatically applies the
changes that you make in this custom resource.

To edit the custom resource, use the following command:

I $ oc edit TektonConfig config

The custom resource includes a chain: array. You can add any supported configuration parameters to
this array, as shown in the following example:

apiVersion: operator.tekton.dev/vialphat
kind: TektonConfig
metadata:

name: config
spec:

addon: {}

chain:

artifacts.taskrun.format: tekton
config: {}

1.2.1. Supported parameters for Tekton Chains configuration

Cluster administrators can use various supported parameter keys and values to configure specifications
about task runs, OCl images, and storage.

1.2.1.1. Supported parameters for task run artifacts



Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

Table 1.1. Chains configuration: Supported parameters for task run artifacts

Key Description Supported values Default value
artifacts.taskrun.for The format for storing in-toto, slsa/v1 in-toto

mat task run payloads.

artifacts.taskrun.stor  The storage backend for ~ tekton, oci, gcs, tekton

age task run signatures. You docdb, grafeas

can specify multiple
backends as a comma-
separated list, such as
“tekton,oci”. To
disable storing task run
artifacts, provide an

empty string .

artifacts.taskrun.sig The signature backend x509 kms x509
ner for signing task run
payloads.
NOTE

slsa/v1 is an alias of in-toto for backwards compatibility.

1.2.1.2. Supported parameters for pipeline run artifacts

Table 1.2. Chains configuration: Supported parameters for pipeline run artifacts

Parameter Description Supported values Default value
artifacts.pipelinerun.  The format for storing in-toto, slsa/v1 in-toto
format pipeline run payloads.

artifacts.pipelinerun.  The storage backend for  tekton, oci, gcs, tekton
storage storing pipeline run docdb, grafeas

signatures. You can
specify multiple
backends as a comma-
separated list, such as
“tekton,oci”. To
disable storing pipeline
run artifacts, provide an
empty string “”.

artifacts.pipelinerun.  The signature backend x509, kms x509
signer for signing pipeline run
payloads.



CHAPTER 1. USING TEKTON CHAINS FOR OPENSHIFT PIPELINES SUPPLY CHAIN SECURITY

NOTE
® slsa/v1 is an alias of in-toto for backwards compatibility.

® For the grafeas storage backend, only Container Analysis is supported. You can
not configure the grafeas server address in the current version of Tekton Chains.

1.2.1.3. Supported parameters for OCI artifacts

Table 1.3. Chains configuration: Supported parameters for OCl artifacts

Parameter Description Supported values Default value

artifacts.oci.format The format for storing simplesigning simplesigning
OCl payloads.

artifacts.oci.storage The storage backend for  tekton, oci, gcs, oci
storing OCl signatures. docdb, grafeas

You can specify multiple
backends as a comma-
separated list, such as
“oci,tekton”. To
disable storing OCI
artifacts, provide an

empty string .

artifacts.oci.signer The signature backend x509, kms x509
for signing OCI
payloads.

1.2.1.4. Supported parameters for KMS signers

Table 1.4. Chains configuration: Supported parameters for KMS signers

Parameter Description Supported values Default value

signers.kms.kmsref The URI reference to a Supported schemes:
KMS service to use in gcpkms://, awskms://,
kms signers. azurekms://,

hashivault://. See KMS
Supportin the Sigstore
documentation for more
details.

1.2.1.5. Supported parameters for storage

Table 1.5. Chains configuration: Supported parameters for storage

Parameter Description Supported values Default value



https://docs.sigstore.dev/cosign/kms_support

Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

Parameter Description Supported values Default value

storage.gcs.bucket The GCS bucket for
storage

storage.oci.repositor = The OCl repository for If you configure one of
y storing OCl signatures the artifact storage
and attestation. backends to oci and do

not define this key,
Tekton Chains stores
the attestation
alongside the stored
OCl artifact itself. If you
define this key, the
attestation is not stored
alongside the OCI
artifact and is instead
stored in the designated
location. See the cosign
documentation for
additional information.

builder.id The builder ID to set for https://tekton.dev/ch
in-toto attestations ains/v2

If you enable the docdb storage method is for any artifacts, configure docstore storage options. For
more information about the go-cloud docstore URI format, see the docstore package documentation.
Red Hat OpenShift Pipelines supports the following docstore services:

e firestore

e dynamodb

Table 1.6. Chains configuration: Supported parameters fordocstore storage

Parameter Description Supported values Default value

storage.docdb.url The go-cloud URI firestore://projects/[P
reference to a ROJECT]/databases/
docstore collection. (default)/documents/
Used if the docdb [COLLECTION]?
storage method is name_field=name
enabled for any
artifacts.

If you enable the grafeas storage method for any artifacts, configure Grafeas storage options. For
more information about Grafeas notes and occurrences, see Grafeas concepts.

To create occurrences, Red Hat OpenShift Pipelines must first create notes that are used to link
occurrences. Red Hat OpenShift Pipelines creates two types of occurrences: ATTESTATION
Occurrence and BUILD Occurrence.


https://github.com/sigstore/cosign#specifying-registry
https://gocloud.dev/howto/docstore/
https://github.com/grafeas/grafeas/blob/master/docs/grafeas_concepts.md

CHAPTER 1. USING TEKTON CHAINS FOR OPENSHIFT PIPELINES SUPPLY CHAIN SECURITY

Red Hat OpenShift Pipelines uses the configurable noteid as the prefix of the note name. It appends
the suffix -simplesigning for the ATTESTATION note and the suffix -intoto for the BUILD note. If the
noteid field is not configured, Red Hat OpenShift Pipelines uses tekton-<NAMESPACE> as the prefix.

Table 1.7. Chains configuration: Supported parameters for Grafeas storage

Parameter Description Supported values Default value

storage.grafeas.proj The OpenShift

ectid Container Platform
project in which the
Grafeas server for
storing occurrences is

located.
storage.grafeas.note Optional: the prefix to A string without spaces.
id use for the name of all

created notes.

storage.grafeas.note = Optional: the This attestation note

hint human_readable_na was generated by
me field for the Grafeas Tekton Chains
ATTESTATION note.

Optionally, you can enable additional uploads of binary transparency attestations.

Table 1.8. Chains configuration: Supported parameters for transparency attestation storage

Parameter Description Supported values Default value
transparency.enable Enable or disable true, false, manual false
d automatic binary

transparency uploads.

transparency.url The URL for uploading https://rekor.sigstore
binary transparency .dev
attestations, if enabled.

NOTE

If you set transparency.enabled to manual, only task runs and pipeline runs with the
following annotation are uploaded to the transparency log:

I chains.tekton.dev/transparency-upload: "true"

If you configure the x509 signature backend, you can optionally enable keyless signing with Fulcio.

Table 1.9. Chains configuration: Supported parameters forx509 keyless signing with Fulcio


https://github.com/grafeas/grafeas/blob/cd23d4dc1bef740d6d6d90d5007db5c9a2431c41/proto/v1/attestation.proto#L49

Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

Parameter

Supported values

Description

Default value

signers.x509.fulcio.e
nabled

signers.x509.fulcio.a
ddress

signers.x509.fulcio.i
ssuer

signers.x509.fulcio.p
rovider

signers.x509.identity
.token.file

signers.x509.tuf.mirr
or.url

Enable or disable true, false
requesting automatic

certificates from Fulcio.

The Fulcio address for
requesting certificates,
if enabled.

The expected OIDC
issuer.

google, spiffe, github,
filesystem

The provider from which
to request the ID Token.

Path to the file
containing the ID Token.

The URL for the TUF
server.
$TUF_URL/root.json
must be present.

false

https://v1.fulcio.sigst
ore.dev

https://oauth2.sigsto
re.dev/auth

Red Hat OpenShift
Pipelines attempts to
use every provider

https://sigstore-tuf-
root.storage.googlea
pis.com

If you configure the kms signature backend, set the KMS configuration, including OIDC and Spire, as

necessary.

Table 1.10. Chains configuration: Supported parameters for KMS signing

Parameter

Supported values

Description

Default value

signers.kms.auth.ad
dress

signers.kms.auth.oid
c.path

signers.kms.auth.spi
re.sock

1.3. SECRETS FOR SIGNING DATA IN TEKTON CHAINS

URI of the KMS server signers.kms.auth.tok
(the value of en
VAULT_ADDR).

The path for OIDC
authentication (for
example, jwt for Vault).

signers.kms.auth.oid
c.role

The URI of the Spire
socket for the KMS
token (for example,
unix://tmp/spire-
agent/public/api.soc
k).

signers.kms.auth.spi
re.audience

Authentication token for
the KMS server (the
value of

VAULT_TOKEN).

The role for OIDC
authentication.

The audience for
requesting a SVID from
Spire.



CHAPTER 1. USING TEKTON CHAINS FOR OPENSHIFT PIPELINES SUPPLY CHAIN SECURITY

Cluster administrators can generate a key pair and use Tekton Chains to sign artifacts using a
Kubernetes secret. For Tekton Chains to work, a private key and a password for encrypted keys must
exist as part of the signing-secrets secret in the openshift-pipelines namespace.

Currently, Tekton Chains supports the x509 and cosign signature schemes.

NOTE

Use only one of the supported signature schemes.

To use the x509 signing scheme with Tekton Chains, store the x509.pem private key of the ed25519 or
ecdsa type in the signing-secrets Kubernetes secret.

1.3.1. Signing using cosign

You can use the cosign signing scheme with Tekton Chains using the cosign tool.

Prerequisites

® You installed the cosign tool.
Procedure
1. Generate the cosign.key and cosign.pub key pairs by running the following command:
I $ cosign generate-key-pair k8s://openshift-pipelines/signing-secrets

Cosign prompts you for a password and then creates a Kubernetes secret.
2. Store the encrypted cosign.key private key and the cosign.password decryption password in

the signing-secrets Kubernetes secret. Ensure that the private key is stored as an encrypted
PEM file of the ENCRYPTED COSIGN PRIVATE KEY type.

1.3.2. Signing using skopeo

You can generate keys using the skopeo tool and use them in the cosign signing scheme with Tekton
Chains.

Prerequisites

® You installed the skopeo tool.

Procedure

1. Generate a public/private key pair by running the following command:
I $ skopeo generate-sigstore-key --output-prefix <mykey> ﬂ

ﬂ Replace <mykey> with a key name of your choice.

Skopeo prompts you for a passphrase for the private key and then creates the key files named
<mykey>.private and <mykeys.pub.


https://docs.sigstore.dev/cosign/installation/
https://github.com/containers/skopeo

Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

2. Encode the <mykey>.pub file using the base64 tool by running the following command:
I $ base64 -w 0 <mykey>.pub > b64.pub

3. Encode the <mykeys.private file using the base64 tool by running the following command:
I $ base64 -w 0 <mykey>.private > b64.private

4. Encode the passhprase using the base64 tool by running the following command:
I $ echo -n '<passphrase>' | base64 -w 0 > b64.passphrase ﬂ

ﬂ Replace <passphrase> with the passphrase that you used for the key pair.

5. Create the signing-secrets secret in the openshift-pipelines namespace by running the
following command:

I $ oc create secret generic signing-secrets -n openshift-pipelines
6. Edit the signing-secrets secret by running the following command:
I $ oc edit secret -n openshift-pipelines signing-secrets

Add the encoded keys in the data of the secret in the following way:

apiVersion: vi

data:
cosign.key: <Encoded <mykey>.private> ﬂ
cosign.password: <Encoded passphrase>
cosign.pub: <Encoded <mykey>.pub>

immutable: true

kind: Secret

metadata:
name: signing-secrets

#...

type: Opaque

Q Replace <Encoded <mykeys.private> with the content of the b64.private file.
9 Replace <Encoded passphrase> with the content of the b64.passphrase file.

9 Replace <Encoded <mykeys.pub> with the content of the b64.pub file.

1.3.3. Resolving the "secret already exists" error

If the signing-secret secret is already populated, the command to create this secret might output the
following error message:

I Error from server (AlreadyExists): secrets "signing-secrets" already exists

You can resolve this error by deleting the secret.

10



CHAPTER 1. USING TEKTON CHAINS FOR OPENSHIFT PIPELINES SUPPLY CHAIN SECURITY

Procedure

1. Delete the signing-secret secret by running the following command:

I $ oc delete secret signing-secrets -n openshift-pipelines

2. Re-create the key pairs and store them in the secret using your preferred signing scheme.

1.4. AUTHENTICATING TO AN OCI REGISTRY
Before pushing signatures to an OCl registry, cluster administrators must configure Tekton Chains to
authenticate with the registry. The Tekton Chains controller uses the same service account under which

the task runs execute. To set up a service account with the necessary credentials for pushing signatures
to an OCl registry, perform the following steps:

Procedure
1. Set the namespace and name of the Kubernetes service account.

$ export NAMESPACE=<namespace> ﬂ
$ export SERVICE_ACCOUNT_NAME=<service_account> @)

ﬂ The namespace associated with the service account.

9 The name of the service account.

2. Create a Kubernetes secret.
$ oc create secret registry-credentials \
--from-file=.dockerconfigjson \ ﬂ
--type=kubernetes.io/dockerconfigjson \
-n SNAMESPACE

ﬂ Substitute with the path to your Docker config file. Default path is ~/.docker/config.json.

3. Give the service account access to the secret.

$ oc patch serviceaccount $SERVICE_ACCOUNT_NAME \
-p "{\"imagePullSecrets\": [{\"name\": \"registry-credentials\"}]}" -n SNAMESPACE

If you patch the default pipeline service account that Red Hat OpenShift Pipelines assigns to
all task runs, the Red Hat OpenShift Pipelines Operator will override the service account. As a
best practice, you can perform the following steps:

a. Create a separate service account to assign to user’s task runs.

I $ oc create serviceaccount <service_account_name>

b. Associate the service account to the task runs by setting the value of the
serviceaccountname field in the task run template.

I apiVersion: tekton.dev/v1

1



Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

kind: TaskRun
metadata:
name: build-push-task-run-2
spec:
taskRunTemplate:
serviceAccountName: build-bot ﬂ
taskRef:
name: build-push

ﬂ Substitute with the name of the newly created service account.

1.5. CREATING AND VERIFYING TASK RUN SIGNATURES WITHOUT
ANY ADDITIONAL AUTHENTICATION

To verify signatures of task runs using Tekton Chains with any additional authentication, perform the
following tasks:

® Create an encrypted x509 key pair and save it as a Kubernetes secret.
e Configure the Tekton Chains backend storage.

® Create atask run, signit, and store the signature and the payload as annotations on the task run
itself.

® Retrieve the signature and payload from the signed task run.
e Verify the signature of the task run.
Prerequisites
Ensure that the following components are installed on the cluster:
® Red Hat OpenShift Pipelines Operator
® Tekton Chains

® Cosign

Procedure

1. Create an encrypted x509 key pair and save it as a Kubernetes secret. For more information
about creating a key pair and saving it as a secret, see "Signing secrets in Tekton Chains".

2. In the Tekton Chains configuration, disable the OCl storage, and set the task run storage and
format to tekton. In the TektonConfig custom resource set the following values:

apiVersion: operator.tekton.dev/vialphat
kind: TektonConfig
metadata:
name: config
spec:
#...
chain:
artifacts.oci.storage: ™"

12


https://docs.sigstore.dev/cosign/installation/

CHAPTER 1. USING TEKTON CHAINS FOR OPENSHIFT PIPELINES SUPPLY CHAIN SECURITY

artifacts.taskrun.format: tekton
artifacts.taskrun.storage: tekton
#...

For more information about configuring Tekton Chains using the TektonConfig custom
resource, see "Configuring Tekton Chains".

3. Torestart the Tekton Chains controller to ensure that the modified configuration is applied,
enter the following command:

I $ oc delete po -n openshift-pipelines -I app=tekton-chains-controller
4. Create a task run by entering the following command:
$ oc create -f
https://raw.githubusercontent.com/tektoncd/chains/main/examples/taskruns/task-output-

image.yaml

ﬂ Replace the example URI with the URI or file path pointing to your task run.

Example output
I taskrun.tekton.dev/build-push-run-output-image-gbjvh created

5. Check the status of the steps by entering the following command. Wait until the process
finishes.

I $ tkn tr describe --last
Example output

[...truncated output...]

NAME STATUS

- create-dir-builtimage-9467f Completed

- git-source-sourcerepo-p2sk8 Completed
- build-and-push Completed

- echo Completed

- image-digest-exporter-xlkn7 Completed

6. Toretrieve the signature from the object stored as base64 encoded annotations, enter the
following commands:

$ tkn tr describe --last -0 jsonpath="{.metadata.annotations.chains\.tekton\.dev/signature-
taskrun-$TASKRUN_UID}" | base64 -d > sig

I $ export TASKRUN_UID=$(tkn tr describe --last -0 jsonpath='{.metadata.uid}")
7. To verify the signature using the public key that you created, enter the following command:

$ cosign verify-blob-attestation --insecure-ignore-tlog --key path/to/cosign.pub --signature sig --type
slsaprovenance --check-claims=false /dev/null

13



Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

ﬂ Replace path/to/cosign.pub with the path name of the public key file.

Example output

I Verified OK

1.5.1. Additional resources

® Section 1.3, “Secrets for signing data in Tekton Chains”

® Section 1.2, “Configuring Tekton Chains”

1.6. USING TEKTON CHAINS TO SIGN AND VERIFY IMAGE AND
PROVENANCE

Cluster administrators can use Tekton Chains to sign and verify images and provenances, by performing
the following tasks:

® Create an encrypted x509 key pair and save it as a Kubernetes secret.

® Set up authentication for the OCl registry to store images, image signatures, and signed image
attestations.

e Configure Tekton Chains to generate and sign provenance.
® Create animage with Kaniko in a task run.
e Verify the signed image and the signed provenance.

Prerequisites

Ensure that the following are installed on the cluster:
® Red Hat OpenShift Pipelines Operator
® Tekton Chains
® Cosign
® Rekor
®
Procedure
1. Create an encrypted x509 key pair and save it as a Kubernetes secret:
I $ cosign generate-key-pair k8s://openshift-pipelines/signing-secrets

Provide a password when prompted. Cosign stores the resulting private key as part of the
signing-secrets Kubernetes secret in the openshift-pipelines namespace, and writes the
public key to the cosign.pub local file.

2. Configure authentication for the image registry.

14


https://docs.sigstore.dev/cosign/installation/
https://docs.sigstore.dev/rekor/installation/
https://stedolan.github.io/jq/

CHAPTER 1. USING TEKTON CHAINS FOR OPENSHIFT PIPELINES SUPPLY CHAIN SECURITY

a. To configure the Tekton Chains controller for pushing signature to an OCl registry, use the
credentials associated with the service account of the task run. For detailed information,
see the "Authenticating to an OCl registry" section.

b. To configure authentication for a Kaniko task that builds and pushes image to the registry,

create a Kubernetes secret of the docker config.json file containing the required
credentials.

$ oc create secret generic <docker_config_secret_name> \ﬂ
--from-file <path_to_config.json>

ﬂ Substitute with the name of the docker config secret.

Q Substitute with the path to docker config.json file.

3. Configure Tekton Chains by setting the artifacts.taskrun.format, artifacts.taskrun.storage,
and transparency.enabled parameters in the chains-config object:

$ oc patch configmap chains-config -n openshift-pipelines -p='{"data":
{"artifacts.taskrun.format": "in-toto"}}'

$ oc patch configmap chains-config -n openshift-pipelines -p="{"data":
{"artifacts.taskrun.storage": "oci"}}'

$ oc patch configmap chains-config -n openshift-pipelines -p='{"data":
{"transparency.enabled": "true"}}'

4. Start the Kaniko task.

a. Apply the Kaniko task to the cluster.
I $ oc apply -f examples/kaniko/kaniko.yaml ﬂ

ﬂ Substitute with the URI or file path to your Kaniko task.

b. Set the appropriate environment variables.

$ export REGISTRY=<url_of_registry> @)

$ export DOCKERCONFIG_SECRET_NAME=
<name_of the_secret_in_docker_config_json> g

ﬂ Substitute with the URL of the registry where you want to push the image.

9 Substitute with the name of the secret in the docker config.json file.

c. Start the Kaniko task.

$ tkn task start --param IMAGE=$REGISTRY/kaniko-chains --use-param-defaults --
workspace name=source,emptyDir="" --workspace
name=dockerconfig,secret=$DOCKERCONFIG_SECRET_NAME kaniko-chains

15



Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

Observe the logs of this task until all steps are complete. On successful authentication, the
final image will be pushed to $REGISTRY/kaniko-chains.

5. Wait for a minute to allow Tekton Chains to generate the provenance and sign it, and then check
the availability of the chains.tekton.dev/signed=true annotation on the task run.

$ oc get tr <task_run_name> \ ﬂ
-0 json | jq -r .metadata.annotations

{

"chains.tekton.dev/signed": "true",

}...

ﬂ Substitute with the name of the task run.

6. Verify the image and the attestation.
$ cosign verify --key cosign.pub $REGISTRY/kaniko-chains

$ cosign verify-attestation --key cosign.pub $REGISTRY/kaniko-chains

7. Find the provenance for the image in Rekor.

a. Get the digest of the $REGISTRY/kaniko-chains image. You can search for it ing the task
run, or pull the image to extract the digest.

b. Search Rekor to find all entries that match the sha256 digest of the image.

$ rekor-cli search --sha <image_digest> ﬂ
<uuid_1>
<uuid_2>

ﬂ Substitute with the sha256 digest of the image.

9 The first matching universally unique identifier (UUID).

9 The second matching UUID.

The search result displays UUIDs of the matching entries. One of those UUIDs holds the
attestation.

c. Check the attestation.

I $ rekor-cli get --uuid <uuid> --format json | jq -r .Attestation | base64 --decode | jq

1.7. ADDITIONAL RESOURCES

® |nstalling OpenShift Pipelines

16


https://access.redhat.com/documentation/en-us/red_hat_openshift_pipelines/1.14/html-single/installing_and_configuring/#installing-pipelines

» UP OPENSHIFT PIPELINES IN THE WEB CONSOLE TO VIEW SOFTWARE SUPPLY CHAIN SECURITY ELEMENT:?

CHAPTER 2. SETTING UP OPENSHIFT PIPELINES IN THE WEB
CONSOLE TO VIEW SOFTWARE SUPPLY CHAIN SECURITY
ELEMENTS

Use the Developer or Administrator perspective to create or modify a pipeline and view key Software
Supply Chain Security elements within a project.

Set up OpenShift Pipelines to view:
® Project vulnerabilities: Visual representation of identified vulnerabilities within a project.

e Software Bill of Materials (SBOMs) Download or view detailed listing of PipelineRun
components.

Additionally, PipelineRuns that meet Tekton Chains requirement displays signed badges next to their
names. This badge indicates that the pipeline run execution results are cryptographically signed and
stored securely, for example within an OCl image.

Figure 2.1. The signed badge

PipelineRuns » PipelineRun details

pipelinerun-with-scan-task@| ©succeeded

Details @ YAML  TaskRuns Parameters Logs Events Output

The PipelineRun displays the signed badge next to its name only if you have configured Tekton Chains.
For information on configuring Tekton Chains, see Using Tekton Chains for OpenShift Pipelines supply
chain security.

2.1.SETTING UP OPENSHIFT PIPELINES TO VIEW PROJECT
VULNERABILITIES

The PipelineRun details page provides a visual representation of identified vulnerabilities, categorized by
the severity (critical, high, medium, and low). This streamlined view facilitates prioritization and
remediation efforts.

17


https://docs.openshift.com/pipelines/1.13/secure/using-tekton-chains-for-openshift-pipelines-supply-chain-security.html

Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

Figure 2.2. Viewing vulnerabilities on thePipelineRun details page

PipelineRun details

@ scantask 11

a 4 b

ra
bd

Name Status

pipelinerun-with-scan-task @ Succeeded

Vulnerabilities
Namespace A Critical 13 % High 29 = Medium 32 ¥ Low 3

@B test

Pipeline

Labels Edit & Embedded Pipeline

Start time
@ Jan 15,2024, 1:50 PM

tekton.dev/pipeline=pipelinerun-with-scan-task

You can also review the vulnerabilities in the Vulnerabilities column in the pipeline run list view page.

Figure 2.3. Viewing vulnerabilities on thePipelineRun list view

P|pellnes Setup GitHub App

Pipelines PipelineRuns Repositories

Y Filter = Name =  Search by name.. /

) . i
Name Vulnerabilities Status Task status Started Duration
pipelinerun-with- | M13 229 =32 ¥ 3 @ Succeeded I 9 Jan 15,2024, 1:50 PM 14 seconds

scan-task @

Prerequisites

® You have logged in to the web console .

® You have the appropriate roles and permissions in a project to create applications and other
workloads in OpenShift Container Platform.

® You have an existing vulnerability scan task.

Procedures

1. In the Developer or Administrator perspective, switch to the relevant project where you want a
visual representation of vulnerabilities.

2. Update your existing vulnerability scan task to ensure that it stores the output in the json file
and then extracts the vulnerability summary in the following format:

# The format to extract vulnerability summary (adjust the jg command for different JSON
structures).
jq -rce\

"{vulnerabilities:{

18


https://docs.openshift.com/container-platform/4.14/web_console/web-console.html#web-console
https://docs.openshift.com/container-platform/4.14/authentication/using-rbac.html#default-roles_using-rbac

» UP OPENSHIFT PIPELINES IN THE WEB CONSOLE TO VIEW SOFTWARE SUPPLY CHAIN SECURITY ELEMENT:?

critical: (.result.summary.CRITICAL),

high: (.result.summary.IMPORTANT),

medium: (.result.summary.MODERATE),

low: (.result.summary.LOW)

1}' scan_output.json | tee $(results.SCAN_OUTPUT.path)

NOTE

- ' You might need to adjust the jg command for different JSON structures.

a. (Optional) If you do not have a vulnerability scan task, create one in the following format:
Example vulnerability scan task using Roxctl

apiVersion: tekton.dev/v1
kind: Task
metadata:
name: vulnerability-scan ﬂ
annotations:
task.output.location: results 9
task.results.format: application/json
task.results.key: SCAN_OUTPUT €)
spec:
results:
- description: CVE result format ﬂ
name: SCAN_OUTPUT
type: string
steps:
- name: roxctl 6
image: quay.io/roxctl-tool-image G
env:
- name: ENV_VAR_NAME_1 @)
valueFrom:
secretKeyRef:
key: secret_key_1
name: secret_name_1
env:
- name: ENV_VAR_NAME_2
valueFrom:
secretKeyRef:
key: secret_key 2
name: secret_name_2
script: |6
#l/bin/sh
# Sample shell script
echo "ENV_VAR_NAME_1: " $ENV_VAR_NAME _1
echo "ENV_VAR_NAME_2: " $ENV_VAR_NAME_2
jq --version (adjust the jg command for different JSON structures)
curl -k -L -H "Authorization: Bearer $ENV_VAR_NAME_1"
https://$ENV_VAR_NAME_ 2/api/cli/download/roxctl-linux --output ./roxctl
chmod +x ./roxctl
echo "roxctl version"
roxctl version
echo "image from pipeline: "

19


https://jqlang.github.io/jq/download/

Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

# Replace the following line with your dynamic image logic
DYNAMIC_IMAGE=$(get_dynamic_image_logic_here)
echo "Dynamic image: $DYNAMIC_IMAGE"
Jroxctl image scan --insecure-skip-tls-verify -e $ENV_VAR_NAME_2 --image
$DYNAMIC_IMAGE --output json > roxctl_output.json

more roxctl_output.json
jq -rce\ Q

"{vulnerabilities:{

critical: (.result.summary.CRITICAL),

high: (.result.summary.IMPORTANT),

medium: (.result.summary.MODERATE),

low: (.result.summary.LOW)

1}' scan_output.json | tee $(results. SCAN_OUTPUT.path)

The name of your task.

The location for storing the task outputs.

The naming convention of the scan task result. A valid naming convention must end
with the SCAN_OUTPUT string. For example, SCAN_OUTPUT,
MY_CUSTOM_SCAN_OUTPUT, or ACS_SCAN_OUTPUT.

The description of the result.

The name of the vulnerability scanning tool that you have used.

The location of the actual image containing the scan tool.

The tool-specific environment variables.

The shell script to be executed with json output. For example, scan_output.json.

909990906 609

The format to extract vulnerability summary (adjust jg command for different JSSON
structures).

3. Update an appropriate Pipeline to add vulnerabilities specifications in the following format:

spec:
results:
- description: The common vulnerabilities and exposures (CVE) result
name: SCAN_OUTPUT
type: $(tasks.vulnerability-scan.results. SCAN_OUTPUT)

Verification

® Navigate to the PipelineRun details page and review the Vulnerabilities row for a visual
representation of identified vulnerabilities.

® Alternatively, you can navigate to the PipelineRun list view page, and review the
Vulnerabilities column.

2.2. SETTING UP OPENSHIFT PIPELINES TO DOWNLOAD OR VIEW
SBOMS

20



» UP OPENSHIFT PIPELINES IN THE WEB CONSOLE TO VIEW SOFTWARE SUPPLY CHAIN SECURITY ELEMENT:?

The PipelineRun details page provides an option to download or view Software Bill of Materials
(SBOMs), enhancing transparency and control within your supply chain. SBOMs lists all the software
libraries that a component uses. Those libraries can enable specific functionality or facilitate
development.

You can use an SBOM to better understand the composition of your software, identify vulnerabilities,
and assess the potential impact of any security issues that might arise.

Figure 2.4. Options to download or view SBOMs

PipelineRun details

@® sbom-task 11

Qa a X

Name Status
pipelinerun-with-sbom-task @ Succeeded
Vulnerabilities
Namespace

@ test

Pipeline

(2™ Embedded Pipeli
Labels Edit & (& Embedded Pipeline

tekton.dev/pipeline=pipelinerun-with-sbom-task Download SBOM
cosign download sbom L]

Annotations Install Cosign @
1annotation &

SBOM

View SBOM
Created at

Prerequisites

® You have logged in to the web console .

® You have the appropriate roles and permissions in a project to create applications and other
workloads in OpenShift Container Platform.

Procedure

1. In the Developer or Administrator perspective, switch to the relevant project where you want a
visual representation of SBOMs.

2. Add a task in the following format to view or download the SBOM information:

Example SBOM task

apiVersion: tekton.dev/v1
kind: Task
metadata:
name: sbom-task ﬂ
annotations:
task.output.location: results 9
task.results.format: application/text
task.results.key: LINK_TO_SBOM @)
task.results.type: external-link ﬂ
spec:
results:

21


https://docs.openshift.com/container-platform/4.14/web_console/web-console.html#web-console
https://docs.openshift.com/container-platform/4.14/authentication/using-rbac.html#default-roles_using-rbac

Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

Q99909000

- description: Contains the SBOM link 6
name: LINK_TO_SBOM
steps:
- name: print-sbom-results
image: quay.io/image G
script: |
#l/bin/sh
syft version
syft quay.io/<username>/quarkus-demo:v2 --output cyclonedx-json=sbom-image.json
echo 'BEGIN SBOM'
cat sbom-image.json
echo 'END SBOM'
echo 'quay.io/user/workloads/<namespace>/node-express/node-express:build-8e536-

1692702836' | tee $(results.LINK_TO_SBOM.path)

The name of your task.

The location for storing the task outputs.

The SBOM task result name. Do not change the name of the SBOM result task.
(Optional) Set to open the SBOM in a new tab.

The description of the result.

The image that generates the SBOM.

The script that generates the SBOM image.

The SBOM image along with the path name.

3. Update the Pipeline to reference the newly created SBOM task.

1]
2]
©

spec:
tasks:

- name: sbom-task
taskRef:
name: sbom-task ﬂ
results:
- name: IMAGE_URL @)
description: url
value: <oci_image_registry_url> e

The same name as created in Step 2.
The name of the result.

The OClimage repository URL which contains the .sbom images.

4. Rerun the affected OpenShift Pipeline.

2.2.1. Viewing an SBOM in the web Ul

22



» UP OPENSHIFT PIPELINES IN THE WEB CONSOLE TO VIEW SOFTWARE SUPPLY CHAIN SECURITY ELEMENT:?

Prerequisites

® You have set up OpenShift Pipelines to download or view SBOMs.

Procedure

1. Navigate to the Activity — PipelineRuns tab.
2. For the project whose SBOM you want to view, select its most recent pipeline run.

3. On the PipelineRun details page, select View SBOM.

a. You can use your web browser to immediately search the SBOM for terms that indicate
vulnerabilities in your software supply chain. For example, try searching for log4j.

b. You can select Download to download the SBOM, or Expand to view it full-screen.

2.2.2. Downloading an SBOM in the CLI

Prerequisites

® You have installed the Cosign CLI tool.

® You have set up OpenShift Pipelines to download or view SBOMs.

Procedure

1. Open terminal, log in to Developer or Administrator perspective, and then switch to the
relevant project.

2. From the OpenShift web console, copy the download sbom command and run it on your
terminal.

Example cosign command
I $ cosign download sbom quay.io/<workspace>/user-workload@sha256

a. (Optional) To view the full SBOM in a searchable format, run the following command to
redirect the output:

Example cosign command

I $ cosign download sbom quay.io/<workspace>/user-workload@sha256 > sbom.txt

2.2.3. Reading the SBOM

In the SBOM, as the following sample excerpt shows, you can see four characteristics of each library
that a project uses:

® |ts author or publisher
® |tsname

® |[ts version

23


https://redhat-appstudio.github.io/docs.appstudio.io/Documentation/main/how-to-guides/Secure-your-supply-chain/proc_inspect_sbom/

Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

® |tslicenses
This information helps you verify that individual libraries are safely-sourced, updated, and compliant.

Example SBOM

"bomFormat": "CycloneDX",

"specVersion™": "1.4",

"serialNumber": "urn:uuid:89146fc4-342f-496b-9cc9-07a6a1554220",
"version": 1,

"metadata”: {

,

"components": [
{
"bom-ref": "pkg:pypi/flask@2.1.0?package-id=d6ad7ed5aac04a8",
"type": "library",
"author": "Armin Ronacher <armin.ronacher@active-4.com>",
"name": "Flask",
"version": "2.1.0",
"licenses": [
{
"license™: {
"id": "BSD-3-Clause"
}
}
1,

"cpe": "cpe:2.3:a:armin-ronacher:python-Flask:2.1.0:*:" ",
"purl": "pkg:pypi/Flask@2.1.0",
"properties":

{

"name": "syft:package:foundBy",
"value": "python-package-cataloger”

2.3. ADDITIONAL RESOURCES

® Working with Red Hat OpenShift Pipelines in the web console

24


https://access.redhat.com/documentation/en-us/red_hat_openshift_pipelines/1.14/html-single/creating_cicd_pipelines/#additional-resources_working-with-pipelines-web-console

CHAPTER 3. CONFIGURING THE SECURITY CONTEXT FOR PODS

CHAPTER 3. CONFIGURING THE SECURITY CONTEXT FOR
PODS

The default service account for pods that OpenShift Pipelines starts is pipeline. The security context
constraint (SCC) associated with the pipeline service account is pipelines-scc. The pipelines-scc SCC
is based the anyuid SCC, with minor differences as defined in the following YAML specification:

Example pipelines-scc.yaml snippet

apiVersion: security.openshift.io/v1
kind: SecurityContextConstraints
#...
allowedCapabilities:
- SETFCAP
#...
fsGroup:
type: MustRunAs
#...

In addition, the Buildah cluster task, shipped as part of OpenShift Pipelines, uses vfs as the default
storage driver.

You can configure the security context for pods that OpenShift Pipelines creates for pipeline runs and
task runs. You can make the following changes:

® Change the default and maximum SCC for all pods

® Change the default SCC for pods created for pipeline runs and task runs in a particular
namespace

e Configure a particular pipeline run or task run to use a custom SCC and service account

NOTE
The simplest way to run buildah that ensures all images can build is to run it as root in a
pod with the privileged SCC. For instructions about running buildah with more

restrictive security settings, see Building of container images using Buildah as a non-root
user.

3.1. CONFIGURING THE DEFAULT AND MAXIMUM SCC FOR PODS
THAT OPENSHIFT PIPELINES CREATES

You can configure the default security context constraint (SCC) for all pods that OpenShift Pipelines
creates for task runs and pipeline runs. You can also configure the maximum SCC, which is the least
restrictive SCC that can be configured for these pods in any namespace.

Procedure

e Edit the TektonConfig custom resource (CR) by entering the following command:
I $ oc edit TektonConfig config

Set the default and maximum SCC in the spec, as in the following example:

25



Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

apiVersion: operator.tekton.dev/vialphat
kind: TektonConfig
metadata:

name: config
spec:
# ..

platforms:

openshift:
scc:
default: "restricted-v2" ﬂ

maxAllowed: "privileged" g

Q spec.platforms.openshift.scc.default specifies the default SCC that OpenShift Pipelines
attaches to the service account (SA) used for workloads, which is, by default, the pipeline
SA. This SCC is used for all pipeline run and task run pods.

9 spec.platforms.openshift.scc.maxAllowed specifies the least restrictive SCC that you
can configure for pipeline run and task run pods in any namespace. This setting does not
apply when you configure a custom SA and SCC in a particular pipeline run or task run.

Additional resources

® Changing the default service account for OpenShift Pipelines

3.2. CONFIGURING THE SCC FOR PODS IN A NAMESPACE

You can configure the security context constraint (SCC) for all pods that OpenShift Pipelines creates
for pipeline runs and task runs that you create in a particular namespace. This SCC must not be less
restrictive than the maximum SCC that you configured using the TektonConfig CR, in the
spec.platforms.openshift.scc.maxAllowed spec.

Procedure

® Set the operator.tekton.dev/scc annotation for the namespace to the name of the SCC.

Example namespace annotation for configuring the SCC for OpenShift Pipelines
pods

apiVersion: vi
kind: Namespace
metadata:
name: test-namespace
annotations:
operator.tekton.dev/scc: nonroot

3.3. RUNNING PIPELINE RUN AND TASK RUN BY USING A CUSTOM
SCC AND A CUSTOM SERVICE ACCOUNT

When using the pipelines-scc security context constraint (SCC) associated with the default pipelines
service account, the pipeline run and task run pods might face timeouts. This happens because in the
default pipelines-scc SCC, the fsGroup.type parameter is set to MustRunAs.

26


https://access.redhat.com/documentation/en-us/red_hat_openshift_pipelines/1.14/html-single/installing_and_configuring/#op-changing-default-service-account_customizing-configurations-in-the-tektonconfig-cr

NOTE

CHAPTER 3. CONFIGURING THE SECURITY CONTEXT FOR PODS

For more information about pod timeouts, see BZ#1995779.

To avoid pod timeouts, you can create a custom SCC with the fsGroup.type parameter set to
RunAsAny, and associate it with a custom service account.

Procedure

NOTE

As a best practice, use a custom SCC and a custom service account for pipeline runs and
task runs. This approach allows greater flexibility and does not break the runs when the
defaults are modified during an upgrade.

1. Define a custom SCC with the fsGroup.type parameter set to RunAsAny:

Example: Custom SCC

apiVersion: security.openshift.io/v1
kind: SecurityContextConstraints

metadata:
annotations:

kubernetes.io/description: my-scc is a close replica of anyuid scc. pipelines-scc has

fsGroup - RunAsAny.
name: my-scc

allowHostDirVolumePlugin: false

allowHostIPC: false
allowHostNetwork: false
allowHostPID: false
allowHostPorts: false
allowPrivilegeEscalation: true
allowPrivilegedContainer: false
allowedCapabilities: null
defaultAddCapabilities: null
fsGroup:

type: RunAsAny
groups:
- system:cluster-admins
priority: 10
readOnlyRootFilesystem: false
requiredDropCapabilities:
- MKNOD
runAsUser:

type: RunAsAny
seLinuxContext:

type: MustRunAs
supplementalGroups:

type: RunAsAny
volumes:
- configMap
- downwardAPI
- emptyDir

27


https://bugzilla.redhat.com/show_bug.cgi?id=1995779

Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

28

- persistentVolumeClaim
- projected
- secret

2. Create the custom SCC:

Example: Create the my-scc SCC

I $ oc create -f my-scc.yaml

. Create a custom service account:

Example: Create a fsgroup-runasany service account

I $ oc create serviceaccount fsgroup-runasany

. Associate the custom SCC with the custom service account:

Example: Associate the my-scc SCC with the fsgroup-runasany service account
I $ oc adm policy add-scc-to-user my-scc -z fsgroup-runasany

If you want to use the custom service account for privileged tasks, you can associate the
privileged SCC with the custom service account by running the following command:

Example: Associate the privileged SCC with the fsgroup-runasany service account

I $ oc adm policy add-scc-to-user privileged -z fsgroup-runasany

. Use the custom service account in the pipeline run and task run:

Example: Pipeline run YAML with fsgroup-runasany custom service account

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
name: <pipeline-run-name>
spec:
pipelineRef:
name: <pipeline-cluster-task-name>
taskRunTemplate:
serviceAccountName: 'fsgroup-runasany'

Example: Task run YAML with fsgroup-runasany custom service account

apiVersion: tekton.dev/v1
kind: TaskRun
metadata:

name: <task-run-name>
spec:

taskRef:



CHAPTER 3. CONFIGURING THE SECURITY CONTEXT FOR PODS

name: <cluster-task-name>
taskRunTemplate:
serviceAccountName: 'fsgroup-runasany’

3.4. ADDITIONAL RESOURCES

® Managing security context constraints.

29


https://docs.openshift.com/container-platform/latest/authentication/managing-security-context-constraints.html

Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

CHAPTER 4. SECURING WEBHOOKS WITH EVENT LISTENERS

As an administrator, you can secure webhooks with event listeners. After creating a namespace, you
enable HTTPS for the Eventlistener resource by adding the operator.tekton.dev/enable-
annotation=enabled label to the namespace. Then, you create a Trigger resource and a secured route
using the re-encrypted TLS termination.

Triggers in Red Hat OpenShift Pipelines support insecure HTTP and secure HTTPS connections to the
Eventlistener resource. HTTPS secures connections within and outside the cluster.

Red Hat OpenShift Pipelines runs a tekton-operator-proxy-webhook pod that watches for the labels
in the namespace. When you add the label to the namespace, the webhook sets the
service.beta.openshift.io/serving-cert-secret-name=<secret_name> annotation on the
EventListener object. This, in turn, creates secrets and the required certificates.

I service.beta.openshift.io/serving-cert-secret-name=<secret_name>

In addition, you can mount the created secret into the Eventlistener pod to secure the request.

4.1. PROVIDING SECURE CONNECTION WITH OPENSHIFT ROUTES

To create a route with the re-encrypted TLS termination, run:

$ oc create route reencrypt --service=<svc-name> --cert=tls.crt --key=tls.key --ca-cert=ca.crt --
hostname=<hostname>

Alternatively, you can create a re-encrypted TLS termination YAML file to create a secure route.

Example re-encrypt TLS termination YAML to create a secure route

apiVersion: route.openshift.io/v1
kind: Route
metadata:
name: route-passthrough-secured ﬂ
spec:
host: <hostname>
to:
kind: Service
name: frontend 9
tls:
termination: reencrypt e
key: [as in edge termination]
certificate: [as in edge termination]
caCertificate: [as in edge termination]
destinationCACertificate: |-

wThe name of the object, which is limited to only 63 characters.

9 The termination field is set to reencrypt. This is the only required TLS field.

30



CHAPTER 4. SECURING WEBHOOKS WITH EVENT LISTENERS

This is required for re-encryption. The destinationCACertificate field specifies a CA certificate to
validate the endpoint certificate, thus securing the connection from the router to the destination

® The service uses a service signing certificate.

® The administrator specifies a default CA certificate for the router, and the service has a
certificate signed by that CA.

You can run the oc create route reencrypt --help command to display more options.

4.2. CREATING A SAMPLE EVENTLISTENER RESOURCE USING A
SECURE HTTPS CONNECTION

This section uses the pipelines-tutorial example to demonstrate creation of a sample EventListener
resource using a secure HTTPS connection.

Procedure

1. Create the TriggerBinding resource from the YAML file available in the pipelines-tutorial
repository:

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-
tutorial/master/03_triggers/01_binding.yaml

2. Create the TriggerTemplate resource from the YAML file available in the pipelines-tutorial
repository:

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-
tutorial/master/03_triggers/02_template.yaml

3. Create the Trigger resource directly from the pipelines-tutorial repository:

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-
tutorial/master/03_triggers/03_trigger.yaml

4. Create an EventListener resource using a secure HTTPS connection:

a. Add a label to enable the secure HTTPS connection to the Eventlistener resource:

I $ oc label namespace <ns-name> operator.tekton.dev/enable-annotation=enabled

b. Create the EventListener resource from the YAML file available in the pipelines-tutorial
repository:

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-
tutorial/master/03_triggers/04_event_listener.yaml

c. Create aroute with the re-encrypted TLS termination:

$ oc create route reencrypt --service=<svc-name> --cert=tls.crt --key=tls.key --ca-
cert=ca.crt --hostname=<hostname>

31


https://github.com/openshift/pipelines-tutorial

Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

CHAPTER 5. AUTHENTICATING PIPELINES USING GIT
SECRET

A Git secret consists of credentials to securely interact with a Git repository, and is often used to
automate authentication. In Red Hat OpenShift Pipelines, you can use Git secrets to authenticate
pipeline runs and task runs that interact with a Git repository during execution.

A pipeline run or a task run gains access to the secrets through the associated service account.
OpenShift Pipelines support the use of Git secrets as annotations (key-value pairs) for basic
authentication and SSH-based authentication.

5.1. CREDENTIAL SELECTION

A pipeline run or task run might require multiple authentications to access different Git repositories.
Annotate each secret with the domains where OpenShift Pipelines can use its credentials.

A credential annotation key for Git secrets must begin with tekton.dev/git-, and its value is the URL of
the host for which you want OpenShift Pipelines to use that credential.

In the following example, OpenShift Pipelines uses a basic-auth secret, which relies on a username and
password, to access repositories at github.com and gitlab.com.

Example: Multiple credentials for basic authentication

apiVersion: vi
kind: Secret
metadata:
annotations:
tekton.dev/qgit-0: github.com
tekton.dev/qgit-1: gitlab.com
type: kubernetes.io/basic-auth
stringData:
username: <username> ﬂ

password: <password> g

ﬂ Username for the repository

9 Password or personal access token for the repository

You can also use an ssh-auth secret (private key) to access a Git repository.

Example: Private key for SSH based authentication

apiVersion: vi
kind: Secret
metadata:

annotations:

tekton.dev/qit-0: https:/github.com

type: kubernetes.io/ssh-auth
stringData:

ssh-privatekey:

32



CHAPTER 5. AUTHENTICATING PIPELINES USING GIT SECRET

ﬂ The content of the SSH private key file.

5.2. CONFIGURING BASIC AUTHENTICATION FOR GIT

For a pipeline to retrieve resources from password-protected repositories, you must configure the basic
authentication for that pipeline.

To configure basic authentication for a pipeline, update the secret.yaml, serviceaccount.yaml, and
run.yaml files with the credentials from the Git secret for the specified repository. When you complete
this process, OpenShift Pipelines can use that information to retrieve the specified pipeline resources.

NOTE

For GitHub, authentication using plain password is deprecated. Instead, use a personal
access token.

Procedure

1. In the secret.yaml file, specify the username and password or GitHub personal access token to
access the target Git repository.

apiVersion: vi
kind: Secret
metadata:

name: basic-user-pass ﬂ

annotations:

tekton.dev/qit-0: https:/github.com

type: kubernetes.io/basic-auth
stringData:

username: <username> 9

password: <password> 6

ﬂ Name of the secret. In this example, basic-user-pass.
9 Username for the Git repository.

9 Password for the Git repository.

2. In the serviceaccount.yaml file, associate the secret with the appropriate service account.

apiVersion: vi
kind: ServiceAccount
metadata:

name: build-botﬂ
secrets:

- name: basic-user-pass 9

ﬂ Name of the service account. In this example, build-bot.

9 Name of the secret. In this example, basic-user-pass.

33


https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

3. In the run.yaml file, associate the service account with a task run or a pipeline run.

® Associate the service account with a task run:

apiVersion: tekton.dev/v1
kind: TaskRun
metadata:
name: build-push-task-run-2 ﬂ
spec:
taskRunTemplate:
serviceAccountName: build-bot 9
taskRef:
name: build-push 6

ﬂ Name of the task run. In this example, build-push-task-run-2.
9 Name of the service account. In this example, build-bot.

9 Name of the task. In this example, build-push.

® Associate the service account with a PipelineRun resource:

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
name: demo-pipeline ﬂ
namespace: default
spec:
taskRunTemplate:
serviceAccountName: build-bot 9
pipelineRef:
name: demo-pipeline 6

ﬂ Name of the pipeline run. In this example, demo-pipeline.

9 Name of the service account. In this example, build-bot.

9 Name of the pipeline. In this example, demo-pipeline.

4. Apply the changes.

I $ oc apply --filename secret.yaml,serviceaccount.yaml,run.yami

5.3. CONFIGURING SSH AUTHENTICATION FOR GIT

For a pipeline to retrieve resources from repositories configured with SSH keys, you must configure the
SSH-based authentication for that pipeline.

To configure SSH-based authentication for a pipeline, update the secret.yaml, serviceaccount.yaml,
and run.yaml files with the credentials from the SSH private key for the specified repository. When you
complete this process, OpenShift Pipelines can use that information to retrieve the specified pipeline
resources.

34



CHAPTER 5. AUTHENTICATING PIPELINES USING GIT SECRET

NOTE

Consider using SSH-based authentication rather than basic authentication.

Procedure

1. Generate an SSH private key, or copy an existing private key, which is usually available in the
~/.ssh/id_rsa file.

2. In the secret.yaml file, set the value of ssh-privatekey to the content of the SSH private key
file, and set the value of known_hosts to the content of the known hosts file.

apiVersion: vi
kind: Secret
metadata:

name: ssh-key ﬂ

annotations:

tekton.dev/qgit-0: github.com

type: kubernetes.io/ssh-auth
stringData:

ssh-privatekey: g
known_hosts:

ﬂ Name of the secret containing the SSH private key. In this example, ssh-key.
9 The content of the SSH private key file.

9 The content of the known hosts file.

CAUTION

If you omit the private key, OpenShift Pipelines accepts the public key of any server.

3. Optional: To specify a custom SSH port, add :<port numbers to the end of the annotation
value. For example, tekton.dev/git-0: github.com:2222.

4. In the serviceaccount.yaml file, associate the ssh-key secret with the build-bot service
account.

apiVersion: vi
kind: ServiceAccount
metadata:

name: build-botﬂ
secrets:

- name: ssh-key 9

ﬂ Name of the service account. In this example, build-bot.

9 Name of the secret containing the SSH private key. In this example, ssh-key.

5. In the run.yaml file, associate the service account with a task run or a pipeline run.

® Associate the service account with a task run:

35


https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

apiVersion: tekton.dev/v1
kind: TaskRun
metadata:
name: build-push-task-run-2 ﬂ
spec:
taskRunTemplate:
serviceAccountName: build-bot 9
taskRef:
name: build-push 6

ﬂ Name of the task run. In this example, build-push-task-run-2.
9 Name of the service account. In this example, build-bot.

9 Name of the task. In this example, build-push.

® Associate the service account with a pipeline run:

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
name: demo-pipeline 0
namespace: default
spec:
taskRunTemplate:
serviceAccountName: build-bot 9
pipelineRef:
name: demo-pipeline 6

ﬂ Name of the pipeline run. In this example, demo-pipeline.

9 Name of the service account. In this example, build-bot.

9 Name of the pipeline. In this example, demo-pipeline.

6. Apply the changes.

I $ oc apply --filename secret.yaml,serviceaccount.yaml,run.yami

5.4. USING SSH AUTHENTICATION IN GIT TYPE TASKS

When invoking Git commands, you can use SSH authentication directly in the steps of a task. SSH
authentication ignores the $HOME variable and only uses the user’'s home directory specified in the
/etc/passwd file. So each step in a task must symlink the /tekton/home/.ssh directory to the home
directory of the associated user.

However, explicit symlinks are not necessary when you use a pipeline resource of the git type, or the git-
clone task available in the Tekton catalog.

As an example of using SSH authentication in git type tasks, refer to authenticating-git-commands.yaml.

36


https://github.com/tektoncd/pipeline/blob/main/examples/v1/taskruns/authenticating-git-commands.yaml

CHAPTER 5. AUTHENTICATING PIPELINES USING GIT SECRET

5.5. USING SECRETS AS A NON-ROOT USER

You might need to use secrets as a non-root user in certain scenarios, such as:
® The users and groups that the containers use to execute runs are randomized by the platform.
® The stepsin a task define a non-root security context.
® A task specifies a global non-root security context, which applies to all steps in a task.

In such scenarios, consider the following aspects of executing task runs and pipeline runs as a non-root
user:

® SSH authentication for Git requires the user to have a valid home directory configured in the
/etc/passwd directory. Specifying a UID that has no valid home directory results in
authentication failure.

® SSH authentication ignores the $HOME environment variable. So you must or symlink the
appropriate secret files from the $HOME directory defined by OpenShift Pipelines
(/tekton/home), to the non-root user’s valid home directory.

In addition, to configure SSH authentication in a non-root security context, refer to the example for
authenticating git commands.

5.6. LIMITING SECRET ACCESS TO SPECIFIC STEPS

By default, the secrets for OpenShift Pipelines are stored in the $HOME/tekton/home directory, and are
available for all the steps in a task.

To limit a secret to specific steps, use the secret definition to specify a volume, and mount the volume in
specific steps.

37


https://github.com/tektoncd/pipeline/blob/main/examples/v1/taskruns/authenticating-git-commands.yaml

Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

CHAPTER 6. BUILDING OF CONTAINER IMAGES USING
BUILDAH AS A NON-ROOT USER

Running OpenShift Pipelines as the root user on a container can expose the container processes and
the host to other potentially malicious resources. You can reduce this type of exposure by running the
workload as a specific non-root user in the container. To run builds of container images using Buildah as
a non-root user, you can perform the following steps:

e Define custom service account (SA) and security context constraint (SCC).
e Configure Buildah to use the build user with id 1000.

® Start a task run with a custom config map, or integrate it with a pipeline run.

6.1. CONFIGURING CUSTOM SERVICE ACCOUNT AND SECURITY
CONTEXT CONSTRAINT

The default pipeline SA allows using a user id outside of the namespace range. To reduce dependency
on the default SA, you can define a custom SA and SCC with necessary cluster role and role bindings for
the build user with user id 1000.

IMPORTANT

At this time, enabling the allowPrivilegeEscalation setting is required for Buildah to run
successfully in the container. With this setting, Buildah can leverage SETUID and SETGID
capabilities when running as a non-root user.

Procedure

® Create a custom SA and SCC with necessary cluster role and role bindings.

Example: Custom SA and SCC for used id 1000

apiVersion: vi
kind: ServiceAccount
metadata:

name: pipelines-sa-userid-1000 0
kind: SecurityContextConstraints
metadata:

annotations:

name: pipelines-scc-userid-1000 9
allowHostDirVolumePlugin: false
allowHostIPC: false
allowHostNetwork: false
allowHostPID: false
allowHostPorts: false
allowPrivilegeEscalation: true 6
allowPrivilegedContainer: false
allowedCapabilities: null
apiVersion: security.openshift.io/v1
defaultAddCapabilities: null
fsGroup:

38



CHAPTER 6. BUILDING OF CONTAINER IMAGES USING BUILDAH AS A NON-ROOT USEF

type: MustRunAs
groups:
- system:cluster-admins
priority: 10
readOnlyRootFilesystem: false
requiredDropCapabilities:
- MKNOD
- KILL
runAsUser: ﬂ
type: MustRunAs
uid: 1000
seLinuxContext:
type: MustRunAs
supplementalGroups:
type: RunAsAny
users: []
volumes:
- configMap
- downwardAPI
- emptyDir
- persistentVolumeClaim
- projected
- secret
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: pipelines-scc-userid-1000-clusterrole 6
rules:
- apiGroups:
- security.openshift.io
resourceNames:
- pipelines-scc-userid-1000
resources:
- securitycontextconstraints
verbs:
- use
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: pipelines-scc-userid-1000-rolebinding G
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: pipelines-scc-userid-1000-clusterrole
subjects:
- kind: ServiceAccount
name: pipelines-sa-userid-1000

ﬂ Define a custom SA.

9 Define a custom SCC created based on restricted privileges, with modified runAsUser field.

©

39



Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

At this time, enabling the allowPrivilegeEscalation setting is required for Buildah to run
successfully in the container. With this setting, Buildah can leverage SETUID and SETGID

Q Restrict any pod that gets attached with the custom SCC through the custom SA to run as user id
1000.

9 Define a cluster role that uses the custom SCC.

6 Bind the cluster role that uses the custom SCC to the custom SA.

6.2. CONFIGURING BUILDAH TO USE BuiLb USER

You can define a Buildah task to use the build user with user id 1000.

Procedure

1. Create a copy of the buildah cluster task as an ordinary task.

$ oc get clustertask buildah -o yaml | yq '. |= (del .metadata |= with_entries(select(.key ==
"name")))' | yq "kind="Task™ | yq ".metadata.name="buildah-as-user" | oc create -f -

2. Edit the copied buildah task.

I $ oc edit task buildah-as-user
Example: Modified Buildah task with build user

apiVersion: tekton.dev/v1
kind: Task
metadata:
name: buildah-as-user
spec:
description: >-
Buildah task builds source into a container image and
then pushes it to a container registry.
Buildah Task builds source into a container image using Project Atomic's
Buildah build tool.lt uses Buildah's support for building from Dockerfiles,
using its buildah bud command.This command executes the directives in the
Dockerfile to assemble a container image, then pushes that image to a
container registry.
params:
- name: IMAGE
description: Reference of the image buildah will produce.
- name: BUILDER_IMAGE
description: The location of the buildah builder image.
default:
registry.redhat.io/rhel8/buildah@sha256:99cae35f40c7ec050fed3765b2b27e0b8bbea2aa2da7
c16408e2cai3c60ff8ee
- name: STORAGE_DRIVER
description: Set buildah storage driver
default: vfs
- name: DOCKERFILE
description: Path to the Dockerfile to build.

40



CHAPTER 6. BUILDING OF CONTAINER IMAGES USING BUILDAH AS A NON-ROOT USEF

default: ./Dockerfile
- name: CONTEXT
description: Path to the directory to use as context.
default: .
- name: TLSVERIFY
description: Verify the TLS on the registry endpoint (for push/pull to a non-TLS registry)
default: "true"
- name: FORMAT
description: The format of the built container, oci or docker
default: "oci"
- name: BUILD_EXTRA_ARGS
description: Extra parameters passed for the build command when building images.
default: ™"
- description: Extra parameters passed for the push command when pushing images.
name: PUSH_EXTRA_ARGS
type: string
default: ™"
- description: Skip pushing the built image
name: SKIP_PUSH
type: string
default: "false"
results:
- description: Digest of the image just built.
name: IMAGE_DIGEST
type: string
workspaces:
- name: source
steps:
- name: build
securityContext:
runAsUser: 1000 ﬂ
image: $(params.BUILDER_IMAGE)
workingDir: $(workspaces.source.path)
script: |
echo "Running as USER ID id™
buildah --storage-driver=$(params.STORAGE_DRIVER) bud \
$(params.BUILD_EXTRA_ARGS) --format=$(params.FORMAT) \
--tls-verify=$(params.TLSVERIFY) --no-cache \
-f $(params.DOCKERFILE) -t $(params.IMAGE) $(params.CONTEXT)
[[ "$(params.SKIP_PUSH)" == "true" ]] && echo "Push skipped" && exit 0
buildah --storage-driver=$(params.STORAGE_DRIVER) push \
$(params.PUSH_EXTRA_ARGS) --tls-verify=$(params.TLSVERIFY) \
--digestfile $(workspaces.source.path)/image-digest $(params.IMAGE) \
docker//$(params.IMAGE)
cat $(workspaces.source.path)/image-digest | tee /tekton/results/IMAGE_DIGEST
volumeMounts:
- name: varlibcontainers
mountPath: /home/build/.local/share/containers 6
volumes:
- name: varlibcontainers
emptyDir: {}

Run the container explicitly as the user id 1000, which corresponds to the build user in the
Buildah image.

41



Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

9 Display the user id to confirm that the process is running as user id 1000.

9 You can change the path for the volume mount as necessary.

6.3. STARTING A TASK RUN WITH CUSTOM CONFIG MAP, ORA
PIPELINE RUN

After defining the custom Buildah cluster task, you can create a TaskRun object that builds an image as
a build user with user id 1000. In addition, you can integrate the TaskRun object as part of a
PipelineRun object.

Procedure

1. Create a TaskRun object with a custom ConfigMap and Dockerfile objects.

Example: A task run that runs Buildah as user id 1000

apiVersion: vi
data:
Dockerfile: |
ARG BASE_IMG=registry.access.redhat.com/ubi9/ubi
FROM $BASE_IMG AS buildah-runner
RUN dnf -y update && \
dnf -y install git && \
dnf clean all
CMD git
kind: ConfigMap
metadata:
name: dockerfile ﬂ
apiVersion: tekton.dev/v1
kind: TaskRun
metadata:
name: buildah-as-user-1000
spec:
taskRunTemplate:
serviceAccountName: pipelines-sa-userid-1000 9
params:
- name: IMAGE
value: image-registry.openshift-image-registry.svc:5000/test/buildahuser
taskRef:
kind: Task
name: buildah-as-user
workspaces:
- configMap:
name: dockerfile
name: source

Use a config map because the focus is on the task run, without any prior task that fetches
some sources with a Dockerfile.

9 The name of the service account that you created.

42



CHAPTER 6. BUILDING OF CONTAINER IMAGES USING BUILDAH AS A NON-ROOT USEF

9 Mount a config map as the source workspace for the buildah-as-user task.

2. (Optional) Create a pipeline and a corresponding pipeline run.

Example: A pipeline and corresponding pipeline run

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:

name: pipeline-buildah-as-user-1000
spec:

params:

- name: IMAGE

- name: URL

workspaces:

- name: shared-workspace

- name: sslcertdir

optional: true

tasks:

- name: fetch-repository ﬂ
taskRef:

name: git-clone

kind: ClusterTask
workspaces:
- name: output

workspace: shared-workspace
params:
- name: url

value: $(params.URL)
- name: subdirectory

value: "
- name: deleteExisting

value: "true"
name: buildah
taskRef:

name: buildah-as-user 9
runAfter:
- fetch-repository
workspaces:
- name: source

workspace: shared-workspace
- name: sslcertdir

workspace: sslcertdir
params:
- name: IMAGE

value: $(params.IMAGE)

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:

name: pipelinerun-buildah-as-user-1000
spec:

taskRunSpecs:

- pipelineTaskName: buildah
taskServiceAccountName: pipelines-sa-userid-1000 6

43



Red Hat OpenShift Pipelines 1.14 Securing OpenShift Pipelines

O00® 9

params:
- name: URL
value: https://github.com/openshift/pipelines-vote-api
- name: IMAGE
value: image-registry.openshift-image-registry.svc:5000/test/buildahuser
pipelineRef:
name: pipeline-buildah-as-user-1000
workspaces:
- name: shared-workspace ﬂ
volumeClaimTemplate:
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 100Mi

Use the git-clone cluster task to fetch the source containing a Dockerfile and build it using
the modified Buildah task.

Refer to the modified Buildah task.
Use the service account that you created for the Buildah task.

Share data between the git-clone task and the modified Buildah task using a persistent
volume claim (PVC) created automatically by the controller.

3. Start the task run or the pipeline run.

6.4. LIMITATIONS OF UNPRIVILEGED BUILDS

The process for unprivileged builds works with most Dockerfile objects. However, there are some known
limitations might cause a build to fail:

Using the --mount=type=cache option might fail due to lack of necessay permissions issues.
For more information, see this article.

Using the --mount=type=secret option fails because mounting resources requires additionnal
capabilities that are not provided by the custom SCC.

Additional resources

® Managing security context constraints (SCCs)

44


https://access.redhat.com/solutions/6969529
https://docs.openshift.com/container-platform/latest/authentication/managing-security-context-constraints.html

	Table of Contents
	CHAPTER 1. USING TEKTON CHAINS FOR OPENSHIFT PIPELINES SUPPLY CHAIN SECURITY
	1.1. KEY FEATURES
	1.2. CONFIGURING TEKTON CHAINS
	1.2.1. Supported parameters for Tekton Chains configuration
	1.2.1.1. Supported parameters for task run artifacts
	1.2.1.2. Supported parameters for pipeline run artifacts
	1.2.1.3. Supported parameters for OCI artifacts
	1.2.1.4. Supported parameters for KMS signers
	1.2.1.5. Supported parameters for storage


	1.3. SECRETS FOR SIGNING DATA IN TEKTON CHAINS
	1.3.1. Signing using cosign
	1.3.2. Signing using skopeo
	1.3.3. Resolving the "secret already exists" error

	1.4. AUTHENTICATING TO AN OCI REGISTRY
	1.5. CREATING AND VERIFYING TASK RUN SIGNATURES WITHOUT ANY ADDITIONAL AUTHENTICATION
	1.5.1. Additional resources

	1.6. USING TEKTON CHAINS TO SIGN AND VERIFY IMAGE AND PROVENANCE
	1.7. ADDITIONAL RESOURCES

	CHAPTER 2. SETTING UP OPENSHIFT PIPELINES IN THE WEB CONSOLE TO VIEW SOFTWARE SUPPLY CHAIN SECURITY ELEMENTS
	2.1. SETTING UP OPENSHIFT PIPELINES TO VIEW PROJECT VULNERABILITIES
	2.2. SETTING UP OPENSHIFT PIPELINES TO DOWNLOAD OR VIEW SBOMS
	2.2.1. Viewing an SBOM in the web UI
	2.2.2. Downloading an SBOM in the CLI
	2.2.3. Reading the SBOM

	2.3. ADDITIONAL RESOURCES

	CHAPTER 3. CONFIGURING THE SECURITY CONTEXT FOR PODS
	3.1. CONFIGURING THE DEFAULT AND MAXIMUM SCC FOR PODS THAT OPENSHIFT PIPELINES CREATES
	3.2. CONFIGURING THE SCC FOR PODS IN A NAMESPACE
	3.3. RUNNING PIPELINE RUN AND TASK RUN BY USING A CUSTOM SCC AND A CUSTOM SERVICE ACCOUNT
	3.4. ADDITIONAL RESOURCES

	CHAPTER 4. SECURING WEBHOOKS WITH EVENT LISTENERS
	4.1. PROVIDING SECURE CONNECTION WITH OPENSHIFT ROUTES
	4.2. CREATING A SAMPLE EVENTLISTENER RESOURCE USING A SECURE HTTPS CONNECTION

	CHAPTER 5. AUTHENTICATING PIPELINES USING GIT SECRET
	5.1. CREDENTIAL SELECTION
	5.2. CONFIGURING BASIC AUTHENTICATION FOR GIT
	5.3. CONFIGURING SSH AUTHENTICATION FOR GIT
	5.4. USING SSH AUTHENTICATION IN GIT TYPE TASKS
	5.5. USING SECRETS AS A NON-ROOT USER
	5.6. LIMITING SECRET ACCESS TO SPECIFIC STEPS

	CHAPTER 6. BUILDING OF CONTAINER IMAGES USING BUILDAH AS A NON-ROOT USER
	6.1. CONFIGURING CUSTOM SERVICE ACCOUNT AND SECURITY CONTEXT CONSTRAINT
	6.2. CONFIGURING BUILDAH TO USE BUILD USER
	6.3. STARTING A TASK RUN WITH CUSTOM CONFIG MAP, OR A PIPELINE RUN
	6.4. LIMITATIONS OF UNPRIVILEGED BUILDS


