
Red Hat OpenShift Pipelines 1.14

Managing performance and resource use

Managing resource consumption in OpenShift Pipelines

Last Updated: 2024-03-21

Red Hat OpenShift Pipelines 1.14 Managing performance and resource use

Managing resource consumption in OpenShift Pipelines

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about managing resource consumption in OpenShift Pipelines.

. .

. .

. .

Table of Contents

CHAPTER 1. MANAGING OPENSHIFT PIPELINES PERFORMANCE
1.1. IMPROVING OPENSHIFT PIPELINES PERFORMANCE
1.2. ADDITIONAL RESOURCES

CHAPTER 2. REDUCING RESOURCE CONSUMPTION OF OPENSHIFT PIPELINES
2.1. UNDERSTANDING RESOURCE CONSUMPTION IN PIPELINES
2.2. MITIGATING EXTRA RESOURCE CONSUMPTION IN PIPELINES
2.3. ADDITIONAL RESOURCES

CHAPTER 3. SETTING COMPUTE RESOURCE QUOTA FOR OPENSHIFT PIPELINES
3.1. ALTERNATIVE APPROACHES FOR LIMITING COMPUTE RESOURCE CONSUMPTION IN OPENSHIFT
PIPELINES
3.2. SPECIFYING PIPELINES RESOURCE QUOTA USING PRIORITY CLASS
3.3. ADDITIONAL RESOURCES

3
3
3

4
4
5
6

7

7
8

12

Table of Contents

1

Red Hat OpenShift Pipelines 1.14 Managing performance and resource use

2

CHAPTER 1. MANAGING OPENSHIFT PIPELINES
PERFORMANCE

If your OpenShift Pipelines installation runs a large number of tasks at the same time, its performance
might degrade. You might experience slowdowns and failed pipeline runs.

For reference, in Red Hat tests, on a three-node OpenShift Container Platform cluster running on
Amazon Web Services (AWS) m6a.2xlarge nodes, up to 60 simple test pipelines ran concurrently
without significant failures or delays. If more pipelines ran concurrently, the number of failed pipeline
runs, the average duration of a pipeline run, the pod creation latency, the work queue depth, and the
number of pending pods increased. This testing was performed on Red Hat OpenShift Pipelines version
1.13; no statistically significant difference was observed from version 1.12.

NOTE

These results depend on the test configuration. Performance results with your
configuration can be different.

1.1. IMPROVING OPENSHIFT PIPELINES PERFORMANCE

If you experience slowness or recurrent failures of pipeline runs, you can take any of the following steps
to improve the performance of OpenShift Pipelines.

Monitor the resource usage of the nodes in the OpenShift Container Platform cluster on which
OpenShift Pipelines runs. If the resource usage is high, increase the number of nodes.

Enable high-availability mode. This mode affects the controller that creates and starts pods for
task runs and pipeline runs. In Red Hat testing, high-availability mode significantly reduced
pipeline execution times as well as the delay from creating a TaskRun resource CR to the start
of the pod executing the task run. To enable high-availability mode, make the following changes
in the TektonConfig custom resource (CR):

Set the pipeline.performance.disable-ha spec to false.

Set the pipeline.performance.buckets spec to a number between 5 and 10.

Set the pipeline.performance.replicas spec to a number higher than 2 and lower than or
equal to the pipeline.performance.buckets setting.

NOTE

You can try different numbers for buckets and replicas to observe the effect
on performance. In general, higher numbers are beneficial. Monitor for
exhausting the resources of the nodes, including CPU and memory
utilization.

1.2. ADDITIONAL RESOURCES

Performance tuning using the TektonConfig CR

CHAPTER 1. MANAGING OPENSHIFT PIPELINES PERFORMANCE

3

https://access.redhat.com/documentation/en-us/red_hat_openshift_pipelines/1.14/html-single/installing_and_configuring/#op-performance-tuning-using-tektonconfig-cr_customizing-configurations-in-the-tektonconfig-cr

CHAPTER 2. REDUCING RESOURCE CONSUMPTION OF
OPENSHIFT PIPELINES

If you use clusters in multi-tenant environments you must control the consumption of CPU, memory, and
storage resources for each project and Kubernetes object. This helps prevent any one application from
consuming too many resources and affecting other applications.

To define the final resource limits that are set on the resulting pods, Red Hat OpenShift Pipelines use
resource quota limits and limit ranges of the project in which they are executed.

To restrict resource consumption in your project, you can:

Set and manage resource quotas to limit the aggregate resource consumption.

Use limit ranges to restrict resource consumption for specific objects, such as pods, images,
image streams, and persistent volume claims.

2.1. UNDERSTANDING RESOURCE CONSUMPTION IN PIPELINES

Each task consists of a number of required steps to be executed in a particular order defined in the
steps field of the Task resource. Every task runs as a pod, and each step runs as a container within that
pod.

Steps are executed one at a time. The pod that executes the task only requests enough resources to
run a single container image (step) in the task at a time, and thus does not store resources for all the
steps in the task.

The Resources field in the steps spec specifies the limits for resource consumption. By default, the
resource requests for the CPU, memory, and ephemeral storage are set to BestEffort (zero) values or
to the minimums set through limit ranges in that project.

Example configuration of resource requests and limits for a step

When the LimitRange parameter and the minimum values for container resource requests are specified
in the project in which the pipeline and task runs are executed, Red Hat OpenShift Pipelines looks at all
the LimitRange values in the project and uses the minimum values instead of zero.

Example configuration of limit range parameters at a project level

spec:
 steps:
 - name: <step_name>
 resources:
 requests:
 memory: 2Gi
 cpu: 600m
 limits:
 memory: 4Gi
 cpu: 900m

apiVersion: v1
kind: LimitRange
metadata:
 name: <limit_container_resource>

Red Hat OpenShift Pipelines 1.14 Managing performance and resource use

4

https://docs.openshift.com/container-platform/latest/applications/quotas/quotas-setting-per-project.html
https://docs.openshift.com/container-platform/latest/nodes/clusters/nodes-cluster-limit-ranges.html

2.2. MITIGATING EXTRA RESOURCE CONSUMPTION IN PIPELINES

When you have resource limits set on the containers in your pod, OpenShift Container Platform sums up
the resource limits requested as all containers run simultaneously.

To consume the minimum amount of resources needed to execute one step at a time in the invoked
task, Red Hat OpenShift Pipelines requests the maximum CPU, memory, and ephemeral storage as
specified in the step that requires the most amount of resources. This ensures that the resource
requirements of all the steps are met. Requests other than the maximum values are set to zero.

However, this behavior can lead to higher resource usage than required. If you use resource quotas, this
could also lead to unschedulable pods.

For example, consider a task with two steps that uses scripts, and that does not define any resource
limits and requests. The resulting pod has two init containers (one for entrypoint copy, the other for
writing scripts) and two containers, one for each step.

OpenShift Container Platform uses the limit range set up for the project to compute required resource
requests and limits. For this example, set the following limit range in the project:

In this scenario, each init container uses a request memory of 1Gi (the max limit of the limit range), and
each container uses a request memory of 500Mi. Thus, the total memory request for the pod is 2Gi.

If the same limit range is used with a task of ten steps, the final memory request is 5Gi, which is higher
than what each step actually needs, that is 500Mi (since each step runs after the other).

spec:
 limits:
 - max:
 cpu: "600m"
 memory: "2Gi"
 min:
 cpu: "200m"
 memory: "100Mi"
 default:
 cpu: "500m"
 memory: "800Mi"
 defaultRequest:
 cpu: "100m"
 memory: "100Mi"
 type: Container
...

apiVersion: v1
kind: LimitRange
metadata:
 name: mem-min-max-demo-lr
spec:
 limits:
 - max:
 memory: 1Gi
 min:
 memory: 500Mi
 type: Container

CHAPTER 2. REDUCING RESOURCE CONSUMPTION OF OPENSHIFT PIPELINES

5

Thus, to reduce resource consumption of resources, you can:

Reduce the number of steps in a given task by grouping different steps into one bigger step,
using the script feature, and the same image. This reduces the minimum requested resource.

Distribute steps that are relatively independent of each other and can run on their own to
multiple tasks instead of a single task. This lowers the number of steps in each task, making the
request for each task smaller, and the scheduler can then run them when the resources are
available.

2.3. ADDITIONAL RESOURCES

Setting compute resource quota for OpenShift Pipelines

Resource quotas per project

Restricting resource consumption using limit ranges

Resource requests and limits in Kubernetes

Red Hat OpenShift Pipelines 1.14 Managing performance and resource use

6

https://docs.openshift.com/container-platform/latest/applications/quotas/quotas-setting-per-project.html
https://docs.openshift.com/container-platform/latest/nodes/clusters/nodes-cluster-limit-ranges.html
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/#resources

CHAPTER 3. SETTING COMPUTE RESOURCE QUOTA FOR
OPENSHIFT PIPELINES

A ResourceQuota object in Red Hat OpenShift Pipelines controls the total resource consumption per
namespace. You can use it to limit the quantity of objects created in a namespace, based on the type of
the object. In addition, you can specify a compute resource quota to restrict the total amount of
compute resources consumed in a namespace.

However, you might want to limit the amount of compute resources consumed by pods resulting from a
pipeline run, rather than setting quotas for the entire namespace. Currently, Red Hat OpenShift
Pipelines does not enable you to directly specify the compute resource quota for a pipeline.

3.1. ALTERNATIVE APPROACHES FOR LIMITING COMPUTE
RESOURCE CONSUMPTION IN OPENSHIFT PIPELINES

To attain some degree of control over the usage of compute resources by a pipeline, consider the
following alternative approaches:

Set resource requests and limits for each step in a task.

Example: Set resource requests and limits for each step in a task.

Set resource limits by specifying values for the LimitRange object. For more information on
LimitRange, refer to Restrict resource consumption with limit ranges .

Reduce pipeline resource consumption.

Set and manage resource quotas per project .

Ideally, the compute resource quota for a pipeline should be same as the total amount of
compute resources consumed by the concurrently running pods in a pipeline run. However, the
pods running the tasks consume compute resources based on the use case. For example, a
Maven build task might require different compute resources for different applications that it
builds. As a result, you cannot predetermine the compute resource quotas for tasks in a generic
pipeline. For greater predictability and control over usage of compute resources, use
customized pipelines for different applications.

NOTE

...
spec:
 steps:
 - name: step-with-limts
 resources:
 requests:
 memory: 1Gi
 cpu: 500m
 limits:
 memory: 2Gi
 cpu: 800m
...

CHAPTER 3. SETTING COMPUTE RESOURCE QUOTA FOR OPENSHIFT PIPELINES

7

https://docs.openshift.com/container-platform/latest/nodes/clusters/nodes-cluster-limit-ranges.html
https://docs.openshift.com/container-platform/latest/applications/quotas/quotas-setting-per-project.html

NOTE

When using Red Hat OpenShift Pipelines in a namespace configured with a
ResourceQuota object, the pods resulting from task runs and pipeline runs might fail
with an error, such as: failed quota: <quota name> must specify cpu, memory.

To avoid this error, do any one of the following:

(Recommended) Specify a limit range for the namespace.

Explicitly define requests and limits for all containers.

For more information, refer to the issue and the resolution.

If your use case is not addressed by these approaches, you can implement a workaround by using a
resource quota for a priority class.

3.2. SPECIFYING PIPELINES RESOURCE QUOTA USING PRIORITY
CLASS

A PriorityClass object maps priority class names to the integer values that indicates their relative
priorities. Higher values increase the priority of a class. After you create a priority class, you can create
pods that specify the priority class name in their specifications. In addition, you can control a pod’s
consumption of system resources based on the pod’s priority.

Specifying resource quota for a pipeline is similar to setting a resource quota for the subset of pods
created by a pipeline run. The following steps provide an example of the workaround by specifying
resource quota based on priority class.

Procedure

1. Create a priority class for a pipeline.

Example: Priority class for a pipeline

2. Create a resource quota for a pipeline.

Example: Resource quota for a pipeline

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
 name: pipeline1-pc
value: 1000000
description: "Priority class for pipeline1"

apiVersion: v1
kind: ResourceQuota
metadata:
 name: pipeline1-rq
spec:
 hard:
 cpu: "1000"
 memory: 200Gi

Red Hat OpenShift Pipelines 1.14 Managing performance and resource use

8

https://issues.redhat.com/browse/SRVKP-1801
https://access.redhat.com/solutions/2841971

3. Verify the resource quota usage for the pipeline.

Example: Verify resource quota usage for the pipeline

Sample output

Name: pipeline1-rq
Namespace: default
Resource Used Hard
-------- ---- ----
cpu 0 1k
memory 0 200Gi
pods 0 10

Because pods are not running, the quota is unused.

4. Create the pipelines and tasks.

Example: YAML for the pipeline

 pods: "10"
 scopeSelector:
 matchExpressions:
 - operator : In
 scopeName: PriorityClass
 values: ["pipeline1-pc"]

$ oc describe quota

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: maven-build
spec:
 params:
 - name: GIT_URL
 workspaces:
 - name: local-maven-repo
 - name: source
 tasks:
 - name: git-clone
 taskRef:
 kind: ClusterTask
 name: git-clone
 params:
 - name: url
 value: $(params.GIT_URL)
 workspaces:
 - name: output
 workspace: source
 - name: build
 taskRef:
 name: mvn
 runAfter: ["git-clone"]

CHAPTER 3. SETTING COMPUTE RESOURCE QUOTA FOR OPENSHIFT PIPELINES

9

Example: YAML for a task in the pipeline

 params:
 - name: GOALS
 value: ["package"]
 workspaces:
 - name: maven-repo
 workspace: local-maven-repo
 - name: source
 workspace: source
 - name: int-test
 taskRef:
 name: mvn
 runAfter: ["build"]
 params:
 - name: GOALS
 value: ["verify"]
 workspaces:
 - name: maven-repo
 workspace: local-maven-repo
 - name: source
 workspace: source
 - name: gen-report
 taskRef:
 name: mvn
 runAfter: ["build"]
 params:
 - name: GOALS
 value: ["site"]
 workspaces:
 - name: maven-repo
 workspace: local-maven-repo
 - name: source
 workspace: source

apiVersion: tekton.dev/v1
kind: Task
metadata:
 name: mvn
spec:
 workspaces:
 - name: maven-repo
 - name: source
 params:
 - name: GOALS
 description: The Maven goals to run
 type: array
 default: ["package"]
 steps:
 - name: mvn
 image: gcr.io/cloud-builders/mvn
 workingDir: $(workspaces.source.path)
 command: ["/usr/bin/mvn"]
 args:
 - -Dmaven.repo.local=$(workspaces.maven-repo.path)
 - "$(params.GOALS)"

Red Hat OpenShift Pipelines 1.14 Managing performance and resource use

10

5. Create and start the pipeline run.

Example: YAML for a pipeline run

NOTE

The pipeline run might fail with an error: failed quota: <quota name> must
specify cpu, memory.

To avoid this error, set a limit range for the namespace, where the defaults from
the LimitRange object apply to pods created during the build process.

For more information about setting limit ranges, refer to Restrict resource
consumption with limit ranges in the Additional resources section.

6. After the pods are created, verify the resource quota usage for the pipeline run.

Example: Verify resource quota usage for the pipeline

Sample output

Name: pipeline1-rq
Namespace: default
Resource Used Hard
-------- ---- ----

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 generateName: petclinic-run-
spec:
 pipelineRef:
 name: maven-build
 params:
 - name: GIT_URL
 value: https://github.com/spring-projects/spring-petclinic
 taskRunTemplate:
 podTemplate:
 priorityClassName: pipeline1-pc
 workspaces:
 - name: local-maven-repo
 emptyDir: {}
 - name: source
 volumeClaimTemplate:
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 200M

$ oc describe quota

CHAPTER 3. SETTING COMPUTE RESOURCE QUOTA FOR OPENSHIFT PIPELINES

11

cpu 500m 1k
memory 10Gi 200Gi
pods 1 10

The output indicates that you can manage the combined resource quota for all concurrent
running pods belonging to a priority class, by specifying the resource quota per priority class.

3.3. ADDITIONAL RESOURCES

Restrict resource consumption with limit ranges

Resource quotas in Kubernetes

Limit ranges in Kubernetes

Resource requests and limits in Kubernetes

Red Hat OpenShift Pipelines 1.14 Managing performance and resource use

12

https://docs.openshift.com/container-platform/latest/nodes/clusters/nodes-cluster-limit-ranges.html
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/limit-range/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/#resources

	Table of Contents
	CHAPTER 1. MANAGING OPENSHIFT PIPELINES PERFORMANCE
	1.1. IMPROVING OPENSHIFT PIPELINES PERFORMANCE
	1.2. ADDITIONAL RESOURCES

	CHAPTER 2. REDUCING RESOURCE CONSUMPTION OF OPENSHIFT PIPELINES
	2.1. UNDERSTANDING RESOURCE CONSUMPTION IN PIPELINES
	2.2. MITIGATING EXTRA RESOURCE CONSUMPTION IN PIPELINES
	2.3. ADDITIONAL RESOURCES

	CHAPTER 3. SETTING COMPUTE RESOURCE QUOTA FOR OPENSHIFT PIPELINES
	3.1. ALTERNATIVE APPROACHES FOR LIMITING COMPUTE RESOURCE CONSUMPTION IN OPENSHIFT PIPELINES
	3.2. SPECIFYING PIPELINES RESOURCE QUOTA USING PRIORITY CLASS
	3.3. ADDITIONAL RESOURCES

